WorldWideScience

Sample records for confluence toxic chemical

  1. Description of interview data regarding Pittsburgh and confluence toxic chemical accidents

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, G.O.; Shumpert, B.L.; Sorensen, J.H.

    1990-11-01

    Evacuation is the protective action most often recommended in response to chemical releases in the United States. The appropriateness of a decision to evacuate depends on whether the affected areas can be cleared of residents before it is contaminated by the chemical release. In determining whether an evacuation can be completed in time, emergency officials must consider both technical and behavioral aspects. The technical components can be readily conceived and quantified. In contrast, the behavioral components are much more abstract and more difficult to estimate. This report summarizes the univariate analysis of responses to surveys conducted in two communities where evacuation was recommended following train derailments involving hazardous chemicals. The surveys were designed to identify the actions taken by residents upon receiving the emergency warning; determine when people received the warning, decided to take action, and implemented the action; and ascertain factors that might explain the nature and timing of their actions. The surveys were conducted in the Bloomfield section of Pittsburgh, Pennsylvania, and in the town of Confluence, Pennsylvania. The study confirms that compliance with an emergency warning to evacuate varies and that potentially dangerous delays can be expected. Significant differences were noted, however, in the rate and speed of compliance in the two communities. The surveys provide information on several factors that may be useful in determining the reasons for differences in the responses from the two communities as well as differences among individual respondents. Such factors include the time of day when the accident occurred, where the respondent was at the time, whether the family was together, previous disaster experience, pet ownership, the content of the warning message, and demographic characteristics. 4 refs., 4 figs., 18 tabs.

  2. Enhancing the natural removal of As in a reactive fluvial confluence receiving acid drainage

    Science.gov (United States)

    Abarca, M. I.; Arce, G.; Montecinos, M.; Guerra, P. A.; Pasten, P.

    2014-12-01

    Fluvial confluences are natural reactors that can determine the fate of contaminants in watersheds receiving acid drainage. Hydrological, hydrodynamic and chemical factors determine distinct conditions for the formation of suspended particles of iron and aluminum oxyhydroxides. The chemical and physical properties of these particle assemblages (e.g. particle size, chemical composition) can vary according to inflow mixing ratios, hydrodynamic velocity profiles, and chemical composition of the flows mixing at the confluence. Due to their capacity to sorb metals, it is important to identify the optimal conditions for removing metals from the aqueous phase, particularly arsenic, a contaminant frequently found in acid drainage. We studied a river confluence in the Lluta watershed, located in the arid Chilean Altiplano. We performed field measurements and laboratory studies to find optimal mixing ratio for arsenic sorption onto oxyhydroxide particles at the confluence between the Azufre (pH=2, As=2 mg/L) and the Caracarani river (pH=8, Ascontaminants. An analogy between confluences and coagulation-flocculation-sedimentation drinking water plants could be used to engineer such intervention.Acknowledgements: Proyecto Fondecyt 1130936 and Proyecto CONICYT FONDAP 15110020

  3. Confluence

    Directory of Open Access Journals (Sweden)

    Tod L. Shockey

    2017-01-01

    Full Text Available This position paper argues that ethnomathematics, while not a curriculum (nor a discipline, that is why D’Ambrosio call it a program, is a confluence of ideas and concepts that may lead to different mathematics engagement of our students. Just as water swirls together from multiple sources, so does our cognition when many ideas are brought together, leading to a cognitive confluence. The definition of ethnomathematics, as coined by org.siir.client.entities.Xref@64f8a745sets the foundation. Scholarship from other disciplines is included, as these areas motivate new thinking, new questions, and new perspectives.

  4. Mixing zone hydrodynamics in a large confluence: a case study of the Snake and Clearwater Rivers confluence

    Science.gov (United States)

    Shehata, M. M.; Petrie, J.

    2015-12-01

    Confluences are a basic component in all fluvial systems, which are often characterized by complex flow and sediment transport patterns. Addressing confluences, however, started only recently in parallel with new advances of flow measurement tools and computational techniques. A limited number of field studies exist investigating flow hydrodynamics through confluences, particularly for large confluences with central zone widths of 100 m or greater. Previous studies have indicated that the size of the confluent rivers and the post-confluence zone may impact flow and sediment transport processes in the confluence zone, which consequently could impact the biodiversity within the river network. This study presents the results of a field study conducted at the confluence of the Snake and the Clearwater rivers near the towns of Clarkston, WA and Lewiston, ID (average width of 700 m at the confluence center). This confluence supports many different and, sometimes, conflicting purposes including commercial navigation, recreation, and fish and wildlife conservation. The confluence properties are affected by dredging operations carried out periodically to maintain the minimum water depth required for safe flow conveyance and navigation purposes. Also, a levee system was constructed on the confluence banks as an extra flood control measure. In the recent field work, an Acoustic Doppler Current Profiler was used to measure water velocity profiles at cross sections in the confluence region. Fixed and moving vessel measurements were taken at selected locations to evaluate both the spatial and temporal variation in velocity throughout the confluence. The confluence bathymetry was surveyed with a multi-beam sonar to investigate existent bed morphological elements. The results identify the velocity pattern in the mixing zone between the two rivers. The present findings are compared to previous studies on small confluences to demonstrate the influence of scale on flow processes.

  5. Identification of Chemical Toxicity Using Ontology Information of Chemicals

    Directory of Open Access Journals (Sweden)

    Zhanpeng Jiang

    2015-01-01

    Full Text Available With the advance of the combinatorial chemistry, a large number of synthetic compounds have surged. However, we have limited knowledge about them. On the other hand, the speed of designing new drugs is very slow. One of the key causes is the unacceptable toxicities of chemicals. If one can correctly identify the toxicity of chemicals, the unsuitable chemicals can be discarded in early stage, thereby accelerating the study of new drugs and reducing the R&D costs. In this study, a new prediction method was built for identification of chemical toxicities, which was based on ontology information of chemicals. By comparing to a previous method, our method is quite effective. We hope that the proposed method may give new insights to study chemical toxicity and other attributes of chemicals.

  6. The Planform Mobility of Large River Channel Confluences

    Science.gov (United States)

    Sambrook Smith, Greg; Dixon, Simon; Nicholas, Andrew; Bull, Jon; Vardy, Mark; Best, James; Goodbred, Steven; Sarker, Maminul

    2017-04-01

    Large river confluences are widely acknowledged as exerting a controlling influence upon both upstream and downstream morphology and thus channel planform evolution. Despite their importance, little is known concerning their longer-term evolution and planform morphodynamics, with much of the literature focusing on confluences as representing fixed, nodal points in the fluvial network. In contrast, some studies of large sand bed rivers in India and Bangladesh have shown large river confluences can be highly mobile, although the extent to which this is representative of large confluences around the world is unknown. Confluences have also been shown to generate substantial bed scours, and if the confluence location is mobile these scours could 'comb' across wide areas. This paper presents field data of large confluences morphologies in the Ganges-Brahmaputra-Meghna river basin, illustrating the spatial extent of large river bed scours and showing scour depth can extend below base level, enhancing long term preservation potential. Based on a global review of the planform of large river confluences using Landsat imagery from 1972 to 2014 this study demonstrates such scour features can be highly mobile and there is an array of confluence morphodynamic types: from freely migrating confluences, through confluences migrating on decadal timescales to fixed confluences. Based on this analysis, a conceptual model of large river confluence types is proposed, which shows large river confluences can be sites of extensive bank erosion and avulsion, creating substantial management challenges. We quantify the abundance of mobile confluence types by classifying all large confluences in both the Amazon and Ganges-Brahmaputra-Meghna basins, showing these two large rivers have contrasting confluence morphodynamics. We show large river confluences have multiple scales of planform adjustment with important implications for river management, infrastructure and interpretation of the rock

  7. Mixture toxicity of PBT-like chemicals

    DEFF Research Database (Denmark)

    Syberg, Kristian; Dai, Lina; Ramskov, Tina

    addition is a suitable model for default estimations of mixture effects. One of the major challenges is therefore how to select specific chemicals for actual mixture toxicity assessments. Persistant chemicals are likely to be present in the environment for an extended period of time, thus increasing...... the likelihood of them being present in environmentally found mixtures. Persistant, bioaccumulative and toxic (PBT) chemicals are therefore a highly relevant group of chemicals to consider for mixture toxicity regulation. The present study evaluates to what extent a number of PBT-like chemicals posess concern...... beyond that of the individual components. Firstly, the effects of three chemicals with PBT-like properties (acetyl cedrene, pyrene and triclosan) was examined on the freshwater snail, Potamopyrgus antipodarum. Secondly, mixture bioaccumulation of the same three chemicals were assessed experimentally...

  8. An integrated multi-label classifier with chemical-chemical interactions for prediction of chemical toxicity effects.

    Science.gov (United States)

    Liu, Tao; Chen, Lei; Pan, Xiaoyong

    2018-05-31

    Chemical toxicity effect is one of the major reasons for declining candidate drugs. Detecting the toxicity effects of all chemicals can accelerate the procedures of drug discovery. However, it is time-consuming and expensive to identify the toxicity effects of a given chemical through traditional experiments. Designing quick, reliable and non-animal-involved computational methods is an alternative way. In this study, a novel integrated multi-label classifier was proposed. First, based on five types of chemical-chemical interactions retrieved from STITCH, each of which is derived from one aspect of chemicals, five individual classifiers were built. Then, several integrated classifiers were built by integrating some or all individual classifiers. By testing the integrated classifiers on a dataset with chemicals and their toxicity effects in Accelrys Toxicity database and non-toxic chemicals with their performance evaluated by jackknife test, an optimal integrated classifier was selected as the proposed classifier, which provided quite high prediction accuracies and wide applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Hybrid modelling of bed-discordant river confluences

    Science.gov (United States)

    Franca, M. J.; Guillén-Ludeña, S.; Cheng, Z.; Cardoso, A. H.; Constantinescu, G.

    2016-12-01

    In fluvial networks, tributaries are the main providers of sediment and water to the main rivers. Furthermore, confluences are environmental hotspots since they provide ecological connectivity and flow and morphology diversity. Mountain confluences, in particular, are characterized by narrow and steep tributaries that provide important sediment load to the confluence, whereas the main channel supplies the dominant flow discharge. This results in a marked bed discordance between the tributary and main channel. This discordance has been observed to be a key feature that alters the dynamics of the confluence, when compared to concordant confluences. The processes of initiation and maintenance of the morphology of confluences is still unknown, and research linking morphodynamics and hydrodynamics of river confluences is required to understand this. Here, a hybrid approach combining laboratory experiments made in a live-bed model of a river confluence, with 3D numerical simulations using advanced turbulence models is presented. We use the laboratory experiments performed by Guillén-Ludeña et al. (2016) for a 70o channel confluence, which focused on sediment transport and morphology changes rather than on the structure of the flow. Highly eddy resolving simulations were performed for two extreme bathymetric conditions, at the start of the experiment and at equilibrium scour conditions. The first allows to understand the initiation mechanisms which will condition later the equilibrium morphology. The second allows to understand the hydrodynamics actions which keep the equilibrium morphology. The patterns of the mean flow, turbulence and dynamics of the large-scale coherent structures, show how the main sediment-entrainment mechanisms evolve during the scour process. The present results contribute to a better understanding of the interaction between bed morphology and flow dynamics at discordant mountain river confluences.

  10. CADDIS Volume 2. Sources, Stressors and Responses: Unspecified Toxic Chemicals

    Science.gov (United States)

    Intro to the unspecified toxic chemicals module, when to list toxic chemicals as a candidate cause, ways to measure toxic chemicals, simple and detailed conceptual diagrams for toxic chemicals, toxic chemicals module references and literature reviews.

  11. Asymmetry of blood flow and cancer cell adhesion in a microchannel with symmetric bifurcation and confluence.

    Science.gov (United States)

    Ishikawa, Takuji; Fujiwara, Hiroki; Matsuki, Noriaki; Yoshimoto, Takefumi; Imai, Yohsuke; Ueno, Hironori; Yamaguchi, Takami

    2011-02-01

    Bifurcations and confluences are very common geometries in biomedical microdevices. Blood flow at microchannel bifurcations has different characteristics from that at confluences because of the multiphase properties of blood. Using a confocal micro-PIV system, we investigated the behaviour of red blood cells (RBCs) and cancer cells in microchannels with geometrically symmetric bifurcations and confluences. The behaviour of RBCs and cancer cells was strongly asymmetric at bifurcations and confluences whilst the trajectories of tracer particles in pure water were almost symmetric. The cell-free layer disappeared on the inner wall of the bifurcation but increased in size on the inner wall of the confluence. Cancer cells frequently adhered to the inner wall of the bifurcation but rarely to other locations. Because the wall surface coating and the wall shear stress were almost symmetric for the bifurcation and the confluence, the result indicates that not only chemical mediation and wall shear stress but also microscale haemodynamics play important roles in the adhesion of cancer cells to the microchannel walls. These results provide the fundamental basis for a better understanding of blood flow and cell adhesion in biomedical microdevices.

  12. DOE contractor's meeting on chemical toxicity

    International Nuclear Information System (INIS)

    1987-01-01

    The Office of Health and Environmental Research (OHER) is required to determine the potential health and environmental effects associated with energy production and use. To ensure appropriate communication among investigators and scientific disciplines that these research studies represent, OHER has sponsored workshops. This document provides a compilation of activities at the Third Annual DOE/OHER Workshop. This year's workshop was broadened to include all OHER activities identified as within the chemical effects area. The workshop consisted of eight sessions entitled Isolation and Detection of Toxic chemicals; Adduct Formation and Repair; Chemical Toxicity (Posters); Metabolism and Genotoxicity; Inhalation Toxicology; Gene Regulation; Metals Toxicity; and Biological Mechanisms. This document contains abstracts of the information presented by session

  13. A geometric proof of confluence by decreasing diagrams

    NARCIS (Netherlands)

    Klop, J.W.; Oostrom, V. van; Vrijer, R. de

    The criterion for confluence using decreasing diagrams is a generalization of several well-known confluence criteria in abstract rewriting, such as the strong confluence lemma. We give a new proof of the decreasing diagram theorem based on a geometric study of in finite reduction diagrams, arising

  14. Minimizing employee exposure to toxic chemical releases

    International Nuclear Information System (INIS)

    Plummer, R.W.; Stobbe, T.J.; Mogensen, J.E.; Jeram, L.K.

    1987-01-01

    This book describes procedures for minimizing employee exposure to toxic chemical releases and suggested personal protective equipment (PPE) to be used in the event of such chemical release. How individuals, employees, supervisors, or companies perceive the risks of chemical exposure (risk meaning both probability of exposure and effect of exposure) determines to a great extent what precautions are taken to avoid risk. In Part I, the authors develop and approach which divides the project into three phases: kinds of procedures currently being used; the types of toxic chemical release accidents and injuries that occur; and, finally, integration of this information into a set of recommended procedures which should decrease the likelihood of a toxic chemical release and, if one does occur, will minimize the exposure and its severity to employees. Part II covers the use of personal protective equipment. It addresses the questions: what personal protective equipment ensembles are used in industry in situations where the release of a toxic or dangerous chemical may occur or has occurred; and what personal protective equipment ensembles should be used in these situations

  15. Sediment–flow interactions at channel confluences: A flume study

    Directory of Open Access Journals (Sweden)

    Tonghuan Liu

    2015-06-01

    Full Text Available Sediment transport and bed morphology at channel confluences with different confluence angles and discharge ratios are analyzed through a series of flume experiments. Bed topography and sediment transport rate are measured and results are compared among different conditions. Sediment transport is intermittent and pulsating as the tributary flow mixes with the mainstream, and the sediment transport rate goes up with the increase in discharge ratio and confluence angle. With no sediment supplied from upstream of the flume, a central scour hole will form along the shear plane and develop toward the right bank, and the depth of the central scour hole increases as the confluence angle and discharge ratio increase. With heavy upstream sediment supplement, deposition will happen in the separation zone and upstream of the confluence area because of the tributary. And the deposition height is related to the discharge ratio and confluence angle. Results indicate the significant impact of confluence geometry, sediment, and flow factors on fluvial processes.

  16. Toxic Release Inventory Chemicals by Groupings

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Toxics Release Inventory (TRI) makes available information for more than 600 toxic chemicals that are being used, manufactured, treated, transported, or released...

  17. Toxicity evaluation and prediction of toxic chemicals on activated sludge system.

    Science.gov (United States)

    Cai, Bijing; Xie, Li; Yang, Dianhai; Arcangeli, Jean-Pierre

    2010-05-15

    The gaps of data for evaluating toxicity of new or overloaded organic chemicals on activated sludge system resulted in the requirements for methodology of toxicity estimation. In this study, 24 aromatic chemicals typically existed in the industrial wastewater were selected and classified into three groups of benzenes, phenols and anilines. Their toxicity on activated sludge was then investigated. Two indexes of IC(50-M) and IC(50-S) were determined respectively from the respiration rates of activated sludge with different toxicant concentration at mid-term (24h) and short-term (30min) time intervals. Experimental results showed that the group of benzenes was the most toxic, followed by the groups of phenols and anilines. The values of IC(50-M) of the tested chemicals were higher than those of IC(50-S). In addition, quantitative structure-activity relationships (QSARs) models developed from IC(50-M) were more stable and accurate than those of IC(50-S). The multiple linear models based on molecular descriptors and K(ow) presented better reliability than single linear models based on K(ow). Among these molecular descriptors, E(lumo) was the most important impact factor for evaluation of mid-term toxicity. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  18. Low-level toxicity of chemicals: No acceptable levels?

    Directory of Open Access Journals (Sweden)

    Bruce P Lanphear

    2017-12-01

    Full Text Available Over the past 3 decades, in a series of studies on some of the most extensively studied toxic chemicals and pollutants, scientists have found that the amount of toxic chemical linked with the development of a disease or death-which is central to determining "safe" or "hazardous" levels-is proportionately greater at the lowest dose or levels of exposure. These results, which are contrary to the way the United States Environmental Protection Agency (EPA and other regulatory agencies assess the risk of chemicals, indicate that we have underestimated the impact of toxic chemicals on death and disease. If widely disseminated chemicals and pollutants-like radon, lead, airborne particles, asbestos, tobacco, and benzene-do not exhibit a threshold and are proportionately more toxic at the lowest levels of exposure, we will need to achieve near-zero exposures to protect public health.

  19. Yellow phosphorus process to convert toxic chemicals to non-toxic products

    Science.gov (United States)

    Chang, S.G.

    1994-07-26

    The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O[sub 3], PO, PO[sub 2], etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like. 20 figs.

  20. Confluence Modulo Equivalence in Constraint Handling Rules

    DEFF Research Database (Denmark)

    Christiansen, Henning; Kirkeby, Maja Hanne

    2015-01-01

    Previous results on confluence for Constraint Handling Rules, CHR, are generalized to take into account user-defined state equivalence relations. This allows a much larger class of programs to enjoy the advantages of confluence, which include various optimization techniques and simplified...

  1. Runaway chemical reaction exposes community to highly toxic chemicals

    International Nuclear Information System (INIS)

    Kaszniak, Mark; Vorderbrueggen, John

    2008-01-01

    The U.S. Chemical Safety and Hazard Investigation Board (CSB) conducted a comprehensive investigation of a runaway chemical reaction at MFG Chemical (MFG) in Dalton, Georgia on April 12, 2004 that resulted in the uncontrolled release of a large quantity of highly toxic and flammable allyl alcohol and allyl chloride into the community. Five people were hospitalized and 154 people required decontamination and treatment for exposure to the chemicals. This included police officers attempting to evacuate the community and ambulance personnel who responded to 911 calls from residents exposed to the chemicals. This paper presents the findings of the CSB report (U.S. Chemical Safety and Hazard Investigation Board (CSB), Investigation Report: Toxic Chemical Vapor Cloud Release, Report No. 2004-09-I-GA, Washington DC, April 2006) including a discussion on tolling practices; scale-up of batch reaction processes; Process Safety Management (PSM) and Risk Management Plan (RMP) implementation; emergency planning by the company, county and the city; and emergency response and mitigation actions taken during the incident. The reactive chemical testing and atmospheric dispersion modeling conducted by CSB after the incident and recommendations adopted by the Board are also discussed

  2. Diurnal cycles control the fate of contaminants at an Andean river confluence impacted by legacy mining

    Science.gov (United States)

    Pasten, P.; Guerra, P. A.; Simonson, K.; Bonilla, C.; Pizarro, G. E.; Escauriaza, C. R.; González, C.

    2014-12-01

    The importance of hydrologic-geochemical interactions in arid environments is a controlling factor in quality and quantity of water available for human consumption and agriculture. When acid drainage affects these watersheds, water quality is gravely degraded. Despite its effect on watersheds, the relationship between time changes in hydrological variables and water quality in arid regions has not been studied thoroughly. Temporal variations in acid drainage can control when the transport of toxic elements is increased. We performed field work at the Azufre River (pH 2, E.C~10.9 mS/cm) and Caracarani River (pH 8.7, E.C~1.2 mS/cm) confluence, located in the Northern Chilean Altiplano (at 4000 m asl). We registered stream flowrates (total flowrate~430 L/s), temperature and electric conductivity (E.C) hourly using in-stream data loggers during one year. We also measured turbidity and pH during one field survey at different distances from the junction, as a proxy of the formation of iron-aluminum particles that cycle trace elements in these environments. We found turbidity-pH diurnal cycles were caused by upstream hourly changes in upstream flowrate: when the Caracarani River flowrate reached its daily peak, particle formation occurred, while the dissolution of particles occurred when the Azufre River reached its maximum value. This last process occurred due to upstream freeze-thaw cycles. This study shows how the dynamics of natural confluences determines chemical transport. The formation of particles enriched in toxic elements can promote settling as a natural attenuation process, while their dissolution will produce their release and transport long distances downstream. It is important to consider time as an important variable in water quality monitoring and in water management infrastructure where pulses of contamination can have potentially negative effects in its use. Acknowledgements: Funding was provided by "Proyecto Fondecyt 1130936" and "CONICYT

  3. Confluence Modulo Equivalence in Constraint Handling Rules

    DEFF Research Database (Denmark)

    Christiansen, Henning; Kirkeby, Maja Hanne

    2014-01-01

    Previous results on confluence for Constraint Handling Rules, CHR, are generalized to take into account user-defined state equivalence relations. This allows a much larger class of programs to enjoy the ad- vantages of confluence, which include various optimization techniques and simplified...

  4. Chemical toxicity approach for emergency response

    International Nuclear Information System (INIS)

    Bauer, T.

    2009-01-01

    In the event of an airborne release of chemical agent or toxic industrial chemical by accidental or intentional means, emergency responders must have a reasonable estimate of the location and size of the resulting hazard area. Emergency responders are responsible for warning persons downwind of the hazard to evacuate or shelter-in-place and must know where to look for casualties after the hazard has passed or dissipated. Given the same source characterization, modern hazard assessment models provide comparable concentration versus location and time estimates. Even urban hazard assessment models often provide similar predictions. There is a major shortcoming, though, in applying model output to estimating human toxicity effects. There exist a variety of toxicity values for non-lethal effects ranging from short-term to occupational to lifetime exposures. For health and safety purposes, these estimates are all safe-sided in converting animal data to human effects and in addressing the most sensitive subset of the population. In addition, these values are usually based on an assumed 1 hour exposure duration at constant concentration and do not reflect either a passing clouds concentration profile or duration. Emergency responders need expected value toxicity parameters rather than the existing safe-sided ones. This presentation will specify the types of toxicity values needed to provide appropriate chemical hazard estimates to emergency responders and will demonstrate how dramatically their use changes the hazard area.(author)

  5. The Industrial Toxics Project: Targeting chemicals for environmental results

    International Nuclear Information System (INIS)

    Burch, W.M.

    1991-01-01

    In September, 1990, the Administrator of the US Environmental Protection Agency committed the Agency to a program of targeting chemicals for multi-media risk reduction activities through pollution prevention. The Industrial Toxics Project will place emphasis on obtaining voluntary commitments from industry to reduce releases of toxic chemicals to the air, water, and land with a goal of reducing releases nationwide by 33% by 1992 and 50% by 1995. An initial list of 18 chemicals have been selected based on recommendations from each Agency program. The chemicals selected are subject to reporting under the Toxic Chemical Release Inventory Program which will provide the basis for tracking progress. The chemicals are characterized by high production volume, toxicity and releases and present the potential for significant risk reduction through pollution prevention. This presentation will discuss the focus and direction of this new initiative

  6. Comparative toxicity of chemicals to earthworms

    Energy Technology Data Exchange (ETDEWEB)

    Callahan, C.A.; Shirazi, M.A. (Environmental Protection Agency, Corvallis, OR (United States)); Neuhauser, E.F. (Niagara Mohawk Power Corp., Syracuse, NY (United States))

    1994-02-01

    The concentration-response (mortality) relationships of four species of earthworms, Eisenia fetida (Savigny), Allolobophora tuberculata (Eisen), Eudrilus eugeniae (Kinberg), and Perionyx excavatus (Perrier) are summarized for 62 chemicals and two test protocols. A Weibull function is used to summarize these data for each chemical in terms of sensitivity and toxicity, in addition to the LC50. The estimation of the Weibull parameters a and k summarize the entire concentration-response relationship. This technique should be applicable to a variety of testing protocols with different species whenever the goal is summarizing the shape of the concentration-response curves to fully evaluate chemical impact on organisms. In some cases for these data four orders of magnitude separate LC50s of the soil test and the contact test for the same chemical and species. All four species appear to be similar in range of toxicity and tolerance to these chemicals, suggesting that Eisenia fetida and may be representative of these four species and these chemicals.

  7. CADDIS Volume 2. Sources, Stressors and Responses: Unspecified Toxic Chemicals - Detailed Conceptual Diagram

    Science.gov (United States)

    Intro to the unspecified toxic chemicals module, when to list toxic chemicals as a candidate cause, ways to measure toxic chemicals, simple and detailed conceptual diagrams for toxic chemicals, toxic chemicals module references and literature reviews.

  8. CADDIS Volume 2. Sources, Stressors and Responses: Unspecified Toxic Chemicals - Simple Conceptual Diagram

    Science.gov (United States)

    Intro to the unspecified toxic chemicals module, when to list toxic chemicals as a candidate cause, ways to measure toxic chemicals, simple and detailed conceptual diagrams for toxic chemicals, toxic chemicals module references and literature reviews.

  9. Toxic chemicals: risk prevention through use reduction

    National Research Council Canada - National Science Library

    Higgins, Thomas E; Sachdev, Jayanti A; Engleman, Stephen A

    2011-01-01

    ... on the actual toxicity of chemicals currently in use, discusses variables that contribute to the relative toxicity of a substance, compares alternate emphases in existing programs for reducing environmental...

  10. 2008 Toxic Chemical Release Inventory 2008 Toxic Chemical Release Inventory Community Right-to-Know Act of 1986, Title III, Section 313

    Energy Technology Data Exchange (ETDEWEB)

    Ecology and Air Quality Group

    2009-10-01

    For reporting year 2008, Los Alamos National Laboratory (LANL) submitted a Form R report for lead as required under the Emergency Planning and Community Right-to- Know Act (EPCRA) Section 313. No other EPCRA Section 313 chemicals were used in 2008 above the reportable thresholds. This document was prepared to provide a description of the evaluation of EPCRA Section 313 chemical use and threshold determinations for LANL for calendar year 2008, as well as to provide background information about data included on the Form R reports. Section 313 of EPCRA specifically requires facilities to submit a Toxic Chemical Release Inventory Report (Form R) to the U.S. Environmental Protection Agency (EPA) and state agencies if the owners and operators manufacture, process, or otherwise use any of the listed toxic chemicals above listed threshold quantities. EPA compiles this data in the Toxic Release Inventory database. Form R reports for each chemical over threshold quantities must be submitted on or before July 1 each year and must cover activities that occurred at the facility during the previous year. In 1999, EPA promulgated a final rule on persistent bioaccumulative toxics (PBTs). This rule added several chemicals to the EPCRA Section 313 list of toxic chemicals and established lower reporting thresholds for these and other PBT chemicals that were already reportable. These lower thresholds became applicable in reporting year 2000. In 2001, EPA expanded the PBT rule to include a lower reporting threshold for lead and lead compounds. Facilities that manufacture, process, or otherwise use more than 100 lb of lead or lead compounds must submit a Form R.

  11. Comparative toxicity of ten organic chemicals to four earthworm species

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, E.F.; Durkin, P.R.; Malecki, M.R.; Anatra, M.

    1986-01-01

    Ten organic chemicals were tested for toxicity to four earthworm species: Allolobophora tuberculata, Eisenia fetida, Eudrilus eugeniae and Perionyx excavatus, using the European Economic Community's (EEC) earthworm artificial soil and contact testing procedure. The phenols were the most toxic chemicals tested, followed by the amine, substituted benzenes, halogenated aliphatic hydrocarbon, polycyclic aromatic hydrocarbon and phthalate as the least toxic chemical tested. Correlations among species within each type of test for a given chemical were extremely high, suggesting that the selection of earthworm test species does not markedly affect the assessment of a chemical's toxicity. The correlation between the two tests was low for all test species. The contact test LC50 for a given chemical cannot be directly correlated to an artificial soil test LC50 for the same earthworm species.

  12. DOE contractor's meeting on chemical toxicity

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    The Office of Health and Environmental Research (OHER) is required to determine the potential health and environmental effects associated with energy production and use. To ensure appropriate communication among investigators and scientific disciplines that these research studies represent, OHER has sponsored workshops. This document provides a compilation of activities at the Third Annual DOE/OHER Workshop. This year's workshop was broadened to include all OHER activities identified as within the chemical effects area. The workshop consisted of eight sessions entitled Isolation and Detection of Toxic chemicals; Adduct Formation and Repair; Chemical Toxicity (Posters); Metabolism and Genotoxicity; Inhalation Toxicology; Gene Regulation; Metals Toxicity; and Biological Mechanisms. This document contains abstracts of the information presented by session.

  13. Transformation of highly toxic chemicals factory for Fuqing nuclear power plant

    International Nuclear Information System (INIS)

    Wang Hongkai; Gao Yuan; Li Hua

    2014-01-01

    For the iodine adsorption tests of current M310 nuclear power plant, dimethyl sulfate is one of highly toxic chemical of national strict standard management, and the nation make strict control over toxic chemicals procurement, transportation, storage, management requirements. Since the appropriate toxic chemicals storage place was not considered in the design of M310 nuclear power plant, Fuqing nuclear power sites for storage of dimethyl sulfate implement technical transformation to meet and regulate the storage requirements for highly toxic chemical. This will lay the foundation for carrying out smoothly the relevant tests of nuclear power plant, and provide the reference for the use and construction of toxic chemicals reactor in the same type nuclear power plant. (authors)

  14. Novel view on predicting acute toxicity: Decomposing toxicity data in species vulnerability and chemical potency.

    NARCIS (Netherlands)

    Jager, D.T.; Posthuma, L.; Zwart, D.D.; van de Meent, D.

    2007-01-01

    Chemical risk assessment usually applies empirical methods to predict toxicant effects on different species. We propose a more mechanism-oriented approach, and introduce a method to decompose toxicity data in a contribution from the chemical (potency) and from the exposed species (vulnerability). We

  15. The Nature of Creativity: Cognitive and Confluence Perspectives

    Science.gov (United States)

    Megalakaki, Olga; Craft, Anna; Cremin, Teresa

    2012-01-01

    In the present psychology-informed literature review we address some aspects of the nature of creativity from cognitive and confluence perspectives. The authors begin by discussing models of creativity offered by cognitive and confluence approaches, focusing on the transition from univariate to multivariate models. The article explores what these…

  16. Comparison of the radiological and chemical toxicity of lead

    Energy Technology Data Exchange (ETDEWEB)

    Beitel, G.A.; Mott, S.

    1995-03-01

    This report estimates the worst-case radiological dose to an individual from ingested lead containing picocurie levels of radionuclides and then compares the calculated radiological health effects to the chemical toxic effects from that same lead. This comparison provides an estimate of the consequences of inadvertently recycling, in the commercial market, lead containing nominally undetectable concentrations of radionuclides. Quantitative expressions for the radiological and chemical toxicities of lead are based on concentrations of lead in the blood stream. The result shows that the chemical toxicity of lead is a greater health hazard, by orders of magnitude, than any probable companion radiation dose.

  17. Comparison of the radiological and chemical toxicity of lead

    International Nuclear Information System (INIS)

    Beitel, G.A.; Mott, S.

    1995-03-01

    This report estimates the worst-case radiological dose to an individual from ingested lead containing picocurie levels of radionuclides and then compares the calculated radiological health effects to the chemical toxic effects from that same lead. This comparison provides an estimate of the consequences of inadvertently recycling, in the commercial market, lead containing nominally undetectable concentrations of radionuclides. Quantitative expressions for the radiological and chemical toxicities of lead are based on concentrations of lead in the blood stream. The result shows that the chemical toxicity of lead is a greater health hazard, by orders of magnitude, than any probable companion radiation dose

  18. Modelling of groundwater quality using bicarbonate chemical parameter in Netravathi and Gurpur river confluence, India

    Science.gov (United States)

    Sylus, K. J.; H., Ramesh

    2018-04-01

    In the coastal aquifer, seawater intrusion considered the major problem which contaminates freshwater and reduces its quality for domestic use. In order to find seawater intrusion, the groundwater quality analysis for the different chemical parameter was considered as the basic method to find out contamination. This analysis was carried out as per Bureau of Indian standards (2012) and World Health Organisations (1996). In this study, Bicarbonate parameter was considered for groundwater quality analysis which ranges the permissible limit in between 200-600 mg/l. The groundwater system was modelled using Groundwater modelling software (GMS) in which the FEMWATER package used for flow and transport. The FEMWATER package works in the principle of finite element method. The base input data of model include elevation, Groundwater head, First bottom and second bottom of the study area. The modelling results show the spatial occurrence of contamination in the study area of Netravathi and Gurpur river confluence at the various time period. Further, the results of the modelling also show that the contamination occurs up to a distance of 519m towards the freshwater zone of the study area.

  19. In silico toxicology: computational methods for the prediction of chemical toxicity

    KAUST Repository

    Raies, Arwa B.; Bajic, Vladimir B.

    2016-01-01

    Determining the toxicity of chemicals is necessary to identify their harmful effects on humans, animals, plants, or the environment. It is also one of the main steps in drug design. Animal models have been used for a long time for toxicity testing. However, in vivo animal tests are constrained by time, ethical considerations, and financial burden. Therefore, computational methods for estimating the toxicity of chemicals are considered useful. In silico toxicology is one type of toxicity assessment that uses computational methods to analyze, simulate, visualize, or predict the toxicity of chemicals. In silico toxicology aims to complement existing toxicity tests to predict toxicity, prioritize chemicals, guide toxicity tests, and minimize late-stage failures in drugs design. There are various methods for generating models to predict toxicity endpoints. We provide a comprehensive overview, explain, and compare the strengths and weaknesses of the existing modeling methods and algorithms for toxicity prediction with a particular (but not exclusive) emphasis on computational tools that can implement these methods and refer to expert systems that deploy the prediction models. Finally, we briefly review a number of new research directions in in silico toxicology and provide recommendations for designing in silico models.

  20. In silico toxicology: computational methods for the prediction of chemical toxicity

    KAUST Repository

    Raies, Arwa B.

    2016-01-06

    Determining the toxicity of chemicals is necessary to identify their harmful effects on humans, animals, plants, or the environment. It is also one of the main steps in drug design. Animal models have been used for a long time for toxicity testing. However, in vivo animal tests are constrained by time, ethical considerations, and financial burden. Therefore, computational methods for estimating the toxicity of chemicals are considered useful. In silico toxicology is one type of toxicity assessment that uses computational methods to analyze, simulate, visualize, or predict the toxicity of chemicals. In silico toxicology aims to complement existing toxicity tests to predict toxicity, prioritize chemicals, guide toxicity tests, and minimize late-stage failures in drugs design. There are various methods for generating models to predict toxicity endpoints. We provide a comprehensive overview, explain, and compare the strengths and weaknesses of the existing modeling methods and algorithms for toxicity prediction with a particular (but not exclusive) emphasis on computational tools that can implement these methods and refer to expert systems that deploy the prediction models. Finally, we briefly review a number of new research directions in in silico toxicology and provide recommendations for designing in silico models.

  1. SCREENING FOR TOXIC INDUSTRIAL CHEMICALS USING SEMIPERMEABLE MEMBRANE DEVICES WITH RAPID TOXICITY ASSAYS

    Science.gov (United States)

    A time-integrated sampling device interfaced with two toxicity-based assays is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethylsulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor...

  2. Toxicity studies of drugs and chemicals in animals: An overview

    Directory of Open Access Journals (Sweden)

    S. Saganuwan

    2017-12-01

    Full Text Available Toxicity study is the investigation of either short or long-term toxic effects of a drug or chemical on animals. The toxicity is dose-dependent as asserted by Paracelsus over 500 years ago. However, short-term toxic effect is determined using median lethal dose (LD50 first introduced by Trevan in 1927 and revised many times. Presently there is a growing preponderance of rejection of scientific papers on acute toxicity study, simply because of the belief that in the current hazard and safety as-sessment of drugs and chemicals, LD50 values are no longer used. In view of this, literature search was carried out with a view to investigating the relevance of LD50 in development and assessment of drugs and chemicals. The findings revealed that in the past, many animals had been used for LD50 determination. OECD has reduced the number of test animals to 5–15 and presently it is further re-duced to 2–6. Acute toxicity study is being carried out in medicinal plants research and in the study of patent medicine. Although the application of LD50 has been drastically reduced, it is still applied and accepted in some parts of the world. Moreover, animals on which LD50 tests are conducted, should be allowed to die to see the end effect of the test drug or chemical because euthanisia of test animals may mask some toxicity signs of the test agents. Therefore, toxicity study of drugs and chemicals is a sci-entific process necessary for discovery and development of drugs as well as identification of potential toxicants.

  3. On proving confluence modulo equivalence for Constraint Handling Rules

    DEFF Research Database (Denmark)

    Christiansen, Henning; Kirkeby, Maja Hanne

    2017-01-01

    -logical built-in predicates such as var/1 and incomplete ones such as is/2, that are ignored in previous work on confluence. To this end, a new operational semantics for CHR is developed which includes such predicates. In addition, this semantics differs from earlier approaches by its simplicity without loss......Previous results on proving confluence for Constraint Handling Rules are extended in two ways in order to allow a larger and more realistic class of CHR programs to be considered confluent. Firstly, we introduce the relaxed notion of confluence modulo equivalence into the context of CHR: while...

  4. Comprehensive assessment of toxic chemical pollutants at Trombay region

    International Nuclear Information System (INIS)

    Sahu, S.K.; Saradhi, I.V.; Raghunath, R.; Pandit, G.G.; Puranik, V.D.

    2006-04-01

    Anthropogenic activities like industrial production and transportation, a wide range of chemical pollutants such as trace and toxic metals, pesticides, polycyclic aromatic hydrocarbons etc. eventually found their way into various environmental compartments. These pollutants get distributed among soil, water bodies, air and if left unattended can cause serious health risk to all exposed ecosystem components including human beings. These compounds may produce immediate toxicity to ecosystems or exhibit long term effects such as mutagenicity, carcinogenicity or biomagnify (concentrations of pollutant increase per unit body weight) in higher trophic organism of the food chain. Thus regular monitoring of these toxic chemicals in all the environmental matrices is unquestionably essential for reclaiming our natural resources. This report describes some of the activities of Environmental Assessment Division which are having direct relevance to the public health and regulatory bodies. Extensive studies were carried out in our laboratories for the Trombay site, over the years; on the organic as well as inorganic pollution in the environment to understand inter compartmental behaviour of these chemical pollutants. In this report attempt has been made to compare the data on various toxic chemical pollutants that are being monitored regularly at Trombay site and their levels are compared with existing regulations. For monitoring, methodologies have been standardized for characterization of toxic chemical pollutants using different analytical techniques. Regular sample collection from different environmental matrices has been done. Sample analysis has been carried out using different analytical instruments such as high performance liquid chromatograph, ion chromatograph, gas chromatograph, atomic absorption spectrophotometer, and differential pulse anodic stripping voltammetry. Major portion of the study covers Air quality monitoring of toxic chemical pollutants, as the other

  5. The morphodynamics and sedimentology of large river confluences

    Science.gov (United States)

    Nicholas, Andrew; Sambrook Smith, Greg; Best, James; Bull, Jon; Dixon, Simon; Goodbred, Steven; Sarker, Mamin; Vardy, Mark

    2017-04-01

    Confluences are key locations within large river networks, yet surprisingly little is known about how they migrate and evolve through time. Moreover, because confluence sites are associated with scour pools that are typically several times the mean channel depth, the deposits associated with such scours should have a high potential for preservation within the rock record. However, paradoxically, such scours are rarely observed, and the sedimentological characteristics of such deposits are poorly understood. This study reports results from a physically-based morphodynamic model, which is applied to simulate the evolution and resulting alluvial architecture associated with large river junctions. Boundary conditions within the model simulation are defined to approximate the junction of the Ganges and Jamuna rivers, in Bangladesh. Model results are supplemented by geophysical datasets collected during boat-based surveys at this junction. Simulated deposit characteristics and geophysical datasets are compared with three existing and contrasting conceptual models that have been proposed to represent the sedimentary architecture of confluence scours. Results illustrate that existing conceptual models may be overly simplistic, although elements of each of the three conceptual models are evident in the deposits generated by the numerical simulation. The latter are characterised by several distinct styles of sedimentary fill, which can be linked to particular morphodynamic behaviours. However, the preserved characteristics of simulated confluence deposits vary substantial according to the degree of reworking by channel migration. This may go some way towards explaining the confluence scour paradox; while abundant large scours might be expected in the rock record, they are rarely reported.

  6. Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents.

    Science.gov (United States)

    Bobbitt, N Scott; Mendonca, Matthew L; Howarth, Ashlee J; Islamoglu, Timur; Hupp, Joseph T; Farha, Omar K; Snurr, Randall Q

    2017-06-06

    Owing to the vast diversity of linkers, nodes, and topologies, metal-organic frameworks can be tailored for specific tasks, such as chemical separations or catalysis. Accordingly, these materials have attracted significant interest for capture and/or detoxification of toxic industrial chemicals and chemical warfare agents. In this paper, we review recent experimental and computational work pertaining to the capture of several industrially-relevant toxic chemicals, including NH 3 , SO 2 , NO 2 , H 2 S, and some volatile organic compounds, with particular emphasis on the challenging issue of designing materials that selectively adsorb these chemicals in the presence of water. We also examine recent research on the capture and catalytic degradation of chemical warfare agents such as sarin and sulfur mustard using metal-organic frameworks.

  7. Materials Safety Data Sheets: the basis for control of toxic chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Ketchen, E.E.; Porter, W.E.

    1979-09-01

    The Material Safety Data Sheets contained in this volume are the basis for the Toxic Chemical Control Program developed by the Industrial Hygiene Department, Health Division, ORNL. The three volumes are the update and expansion of ORNL/TM-5721 and ORNL/TM-5722 Material Safety Data Sheets: The Basis for Control of Toxic Chemicals, Volume I and Volume II. As such, they are a valuable adjunct to the data cards issued with specific chemicals. The chemicals are identified by name, stores catalog number where appropriate, and sequence numbers from the NIOSH Registry of Toxic Effects of Chemical Substances, 1977 Edition, if available. The data sheets were developed and compiled to aid in apprising the employees of hazards peculiar to the handling and/or use of specific toxic chemicals. Space limitation necessitate the use of descriptive medical terms and toxicological abbreviations. A glossary and an abbreviation list were developed to define some of those sometimes unfamiliar terms and abbreviations. The page numbers are keyed to the catalog number in the chemical stores at ORNL.

  8. Meta-analysis of toxicity and teratogenicity of 133 chemicals from zebrafish developmental toxicity studies

    Science.gov (United States)

    Zebrafish developmental toxicity testing is an emerging field, which faces considerable challenges regarding data meta-analysis and the establishment of standardized test protocols. Here, we present an initial correlation study on toxicity of 133 chemicals based on data in the li...

  9. 76 FR 7841 - Agency Information Collection Activities; Proposed Collections; Toxic Chemical Release Reporting...

    Science.gov (United States)

    2011-02-11

    ... agencies, and others to promote reductions in toxic chemical releases. Industrial facilities use the TRI... Activities; Proposed Collections; Toxic Chemical Release Reporting; Request for Comments on Proposed Renewal... the individual listed in the preceding FOR FURTHER INFORMATION CONTACT section. Title: Toxic Chemical...

  10. Electron Beam Treatment of Toxic Chemicals

    International Nuclear Information System (INIS)

    Jung, In Ha; Lee, Myun Joo; Lee, Oh Mi; Kim, Tae Hoon

    2011-01-01

    Polychlorinated biphenyls (PCBs) were commercially produced from 1920s as complex mixtures containing multiple isomers for a variety of applications. They are very toxic, chemically stable and resist microbial, photochemical, chemical, and thermal degradation. The public, legal, and scientific concerns about PCBs arose from research indicating they were environmental contaminants that had a potential to adversely impact the environment, and, therefore, were undesirable as commercial products. Eventually, most producers reduced or stopped production of PCBs in the 1970s. Stockholm convention on POPs (Persistent Organic Pollutants), which was effective on May 2004 and 151 nations including Korea were joined on June 2005, asked to dispose of PCBs by 2028 with environmental friendly methods. Korean government also has declared to perform by 2015. According to the Environmental law of Korea, over 2 ppm of PCBs has to be decomposed by legal methods of incineration and thermal destruction. But those are inapplicable owing to the environmental groups. KAERI(Korea Atomic Energy Research Institute) has recently developed a remarkable technology for radiation treatment of toxic chemicals including chlorides using an electron beam accelerator

  11. THE CONFLUENCE RATIO OF THE TRANSYLVANIAN BASIN RIVERS

    Directory of Open Access Journals (Sweden)

    ROŞIAN GH.

    2014-03-01

    Full Text Available There are many possibilities to assess the hydrological and geomorphological evolution of a territory. Among them, one remarks the confluence ratio of the rivers belonging to different catchment areas. The values of this indicator may provide information regarding the stage of evolution of the fluvial landforms in the Transylvanian Basin. Also, the values may serve for the calculation of other parameters of catchment areas like: the degree of finishing of the drainage basin for its corresponding order, the density of river segments within a catchment area etc. To calculate the confluence ratio, 35 catchment areas of different orders have been selected. The confluence ratio varies between 3.04 and 6.07. The large range of values demonstrates the existence of a heterogeneous lithology and of morphological and hydrographical contrasts from one catchment area to the other. The existence of values above 5, correlated also with observations in the field, reveals an accelerated dynamics of the geomorphological processes in those catchment areas. This dynamic is mainly supported by the high landform fragmentation due to the first order rivers. In contrast, the catchment areas that have a confluence ratio below 5 are in a more advanced stage of evolution with stable slopes, unable to initiate new first order river segments.

  12. Confluence reduction for Markov automata

    NARCIS (Netherlands)

    Timmer, Mark; Katoen, Joost P.; van de Pol, Jaco; Stoelinga, Mariëlle Ida Antoinette

    2016-01-01

    Markov automata are a novel formalism for specifying systems exhibiting nondeterminism, probabilistic choices and Markovian rates. As expected, the state space explosion threatens the analysability of these models. We therefore introduce confluence reduction for Markov automata, a powerful reduction

  13. Confluence reduction for probabilistic systems

    NARCIS (Netherlands)

    Timmer, Mark; van de Pol, Jan Cornelis; Stoelinga, Mariëlle Ida Antoinette

    In this presentation we introduce a novel technique for state space reduction of probabilistic specifications, based on a newly developed notion of confluence for probabilistic automata. We proved that this reduction preserves branching probabilistic bisimulation and can be applied on-the-fly. To

  14. Toxicity assessment of unintentional exposure to multiple chemicals

    International Nuclear Information System (INIS)

    Mumtaz, M.M.; Ruiz, P.; De Rosa, C.T.

    2007-01-01

    Typically exposure to environmental chemicals is unintentional, and often the exposure is to chemical mixtures, either simultaneously or sequentially. When exposure occurs, in public health practice, it is prudent to ascertain if thresholds for harmful health effects are exceeded, whether by individual chemicals or by chemicals in combination. Three alternative approaches are available for assessing the toxicity of chemical mixtures. Each approach, however, has shortcomings. As the procedures of each approach are described in this paper, at various steps research needs are identified. Recently, reliance has increased on computational toxicology methods for predicting toxicological effects when data are limited. Advances in molecular biology, identification of biomarkers, and availability of accurate and sensitive methods allow us to more precisely define the relationships between multiple chemical exposures and health effects, both qualitatively and quantitatively. Key research needs are best fulfilled through collaborative research. It is through such collaborations that resources are most effectively leveraged to further develop and apply toxicity assessment methods that advance public health practices in vulnerable communities

  15. Studies of radiation and chemical toxicity. Progress report

    International Nuclear Information System (INIS)

    1986-01-01

    Annual report for the Studies of Radiation and Chemical Toxicity Program at the University of Rochester is presented. Progress is reported on four projects: Neurobehavorial Toxicity of Organometallic Fuel Additives, Mechanisms of Permanent and Delayed Pathologic Effects of Ionizing Radiation, Solid State Radiation Chemistry of the DNA Backbone, and Pulmonary Biochemistry

  16. Evaluating macroinvertebrate community shifts in the confluence of freestone and limestone streams

    Directory of Open Access Journals (Sweden)

    Jennifer K. Hellmann

    2014-07-01

    Full Text Available Aquatic macroinvertebrates are critical to ecosystem functioning through their regulation of many essential top-down and bottom-up ecosystem processes such as energy translocation, nutrient flow, and detrital decomposition. However, specific preferences by macroinvertebrates for certain ranges of abiotic and biotic characteristics mean that changes in these factors often create large differences in benthic community structure. Investigations into drivers of community structure have found distinct patterns of variation between ecosystems, but drivers of macroscale variation may differ from drivers of microscale variation. Such microscale variation in macroinvertebrate community structure as a function of abiotic conditions may be found in the confluence of two geologically distinct freshwater streams. Variation in the origin, underlying bedrock, and watershed of a stream results in drastically different physical and chemical characteristics and correspondingly distinct macroinvertebrate community structures. In areas where water from geologically distinct streams flows together, a mixing zone emerges with unique chemical and physical characteristics. There is little information on how invertebrate communities are structured within this mixing zone. To investigate this, we examined how the structure of the macroinvertebrate community changed downstream of the confluence. Up to thirty metres downstream, we found distinct stream sections that mirrored physical and chemical conditions found in limestone and freestone streams, and a mixing zone with emergent properties. These physical and chemical changes between sites were accompanied by shifts in macroinvertebrate community composition. Diversity indices indicated significantly higher diversity in freestone sites than in limestone sites or the mixing zone and there was a unique composition of genera in the mixing zone that were distinct from both limestone and freestone sites. Factors driving

  17. Surgical outcomes of hepatocellular carcinoma invading hepatocaval confluence.

    Science.gov (United States)

    Li, Wei; Wu, Hong; Han, Jun

    2016-12-01

    Combined liver and inferior vena cava (IVC) resection followed by IVC and/or hepatic vein reconstruction (HVR) is a curative operation for selected patients with hepatocellular carcinoma (HCC) invading the hepatocaval confluence. The present study aimed to elucidate the prognostic factors for patients with HCC invading the hepatocaval confluence. Forty-two consecutive patients underwent hepatectomy, combined with IVC replacement and/or HVR for HCC between January 2009 and December 2014 were included in this study. The cases were divided into three groups based on the surgical approaches of HVR: group 1 (n=13), tumor invaded the hepatocaval confluence but with one or two hepatic veins intact in the residual liver, thus only the replacement of IVC, not HVR; group 2 (n=23), the hepatic vein of the residual liver was also partially invaded, and the hepatic vein defect was repaired with patches locally; group 3 (n=6), three hepatic veins at the hepatocaval confluence were infiltrated, and the hepatic vein remnant was re-implanted onto the side of the tube graft. The patient characteristics, intra- and postoperative results, and long-term overall survival were compared among the three groups. The survival-related factors were analyzed by univariate and multivariate analysis. The group 1 had higher preoperative alpha-fetoprotein level (PHVR (PHVR (group 1). HVR was one of the unfavorable prognostic factors of overall survival.

  18. Management of low and intermediate level radioactive wastes with regard to their chemical toxicity

    International Nuclear Information System (INIS)

    2002-12-01

    A preliminary overview is provided of management options for low and intermediate level radioactive waste (LILW) with regard to its chemical toxicity. In particular, the following issues are identified and described associated with the management and safe disposal of chemically toxic materials in LILW: the origin and characteristics; the regulatory approaches; the pre-disposal management; the disposal; the safety assessment. Also included are: regulatory framework for chemically toxic low level wastes in the USA; pre-disposal processing options for LILW containing chemically toxic components; example treatment technologies for LILW containing chemically toxic components and safety assessment case studies for Germany, Belgium, France and Sweden

  19. Investigation of the potential influence of production treatment chemicals on produced water toxicity

    International Nuclear Information System (INIS)

    Stine, E.R.; Gala, W.R.; Henry, L.R.

    1993-01-01

    Production treatment chemicals represent a diverse collection of chemical classes, added at various points from the wellhead to the final flotation cell, to prevent operational upsets and enhance the separation of oil from water. Information in the literature indicates that while many treatment chemicals are thought to partition into oil and not into the produced water, there are cases where a sufficiently water soluble treatment chemical is added at high enough concentrations to suggest that the treatment chemical may add to the aquatic toxicity of the produced water. A study was conducted to evaluate the potential effect of production treatment chemicals on the toxicity of produced waters using the US EPA Seven-day Mysidopsis bahia Survival, Growth and Fecundity Test. Samples of produced water were collected and tested for toxicity from three platforms under normal operating conditions, followed by repeated sampling and testing after a 72-hour period in which treatment chemical usage was discontinued, to the degree possible. Significant reductions in produced water toxicity were observed for two of the three platforms tested following either cessation of treatment chemical usage, or by comparing the toxicity of samples collected upstream and downstream of the point of treatment chemical addition

  20. Toxic chemicals: risk prevention through use reduction

    National Research Council Canada - National Science Library

    Higgins, Thomas E; Sachdev, Jayanti A; Engleman, Stephen A

    2011-01-01

    "Catastrophic events such as the Bhopal, India tragedy and rising incidences of cancer in areas neighboring industrial facilities have heightened concern over the use of toxic chemicals in manufacturing and industry...

  1. [Assessment of the relationship of properties of chemical compounds and their toxicity to a unified hygienic standardization for chemicals].

    Science.gov (United States)

    Trushkov, V F; Perminov, K A; Sapozhnikova, V V; Ignatova, O L

    2013-01-01

    The connection of thermodynamic properties and parameters of toxicity of chemical substances was determined. Obtained data are used for the evaluation of toxicity and hygienic rate setting of chemical compounds. The relationship between enthalpy and toxicity of chemical compounds has been established. Orthogonal planning of the experiment was carried out in the course of the investigations. Equation of unified hygienic rate setting in combined, complex, conjunct influence on the organism is presented. Prospects of determination of toxicity and methodology of unified hygienic rate setting in combined, complex, conjunct influence on the organism are presented

  2. Merging flows in an arterial confluence : The vertebro-basilar junction

    NARCIS (Netherlands)

    Ravensbergen, J; Krijger, JKB; Hillen, B; Hoogstraten, HW

    1995-01-01

    The basilar artery is one of the three vessels providing the blood supply to the human brain. It arises from the confluence of the two vertebral arteries. In fact, it is the only artery of this size in the human body arising from a confluence instead of a bifurcation. Earlier work, concerning flow

  3. Toxic neuropathies: Mechanistic insights based on a chemical perspective.

    Science.gov (United States)

    LoPachin, Richard M; Gavin, Terrence

    2015-06-02

    2,5-Hexanedione (HD) and acrylamide (ACR) are considered to be prototypical among chemical toxicants that cause central-peripheral axonopathies characterized by distal axon swelling and degeneration. Because the demise of distal regions was assumed to be causally related to the onset of neurotoxicity, substantial effort was devoted to deciphering the respective mechanisms. Continued research, however, revealed that expression of the presumed hallmark morphological features was dependent upon the daily rate of toxicant exposure. Indeed, many studies reported that the corresponding axonopathic changes were late developing effects that occurred independent of behavioral and/or functional neurotoxicity. This suggested that the toxic axonopathy classification might be based on epiphenomena related to dose-rate. Therefore, the goal of this mini-review is to discuss how quantitative morphometric analyses and the establishment of dose-dependent relationships helped distinguish primary, mechanistically relevant toxicant effects from non-specific consequences. Perhaps more importantly, we will discuss how knowledge of neurotoxicant chemical nature can guide molecular-level research toward a better, more rational understanding of mechanism. Our discussion will focus on HD, the neurotoxic γ-diketone metabolite of the industrial solvents n-hexane and methyl-n-butyl ketone. Early investigations suggested that HD caused giant neurofilamentous axonal swellings and eventual degeneration in CNS and PNS. However, as our review will point out, this interpretation underwent several iterations as the understanding of γ-diketone chemistry improved and more quantitative experimental approaches were implemented. The chemical concepts and design strategies discussed in this mini-review are broadly applicable to the mechanistic studies of other chemicals (e.g., n-propyl bromine, methyl methacrylate) that cause toxic neuropathies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Radiation-dosimetry and chemical-toxicity considerations for 99Tc

    International Nuclear Information System (INIS)

    Coffey, J.L.; Hayes, R.L.; Rafter, J.J.; Watson, E.E.; Carlton, J.E.

    1982-01-01

    Technetium-99 (T/sub 1/2/ = 2.13 x 10 5 y) is produced in the fission of 235 U and 239 Pu. Technitium-99 has been found to contaminate some areas of the uranium re-enrichment process. ICRP-30 Part 2 gives the Annual Limit on Intake (ALI) for 99 Tc as 2 x 10 8 Bq (5.4 mCi) for class D inhaled material (IC80). The ICRP states clearly that ALIs are based on radiation risk only and that chemical toxicity is not considered (IC79). No data were found on the chemical toxicity of 99 Tc, possibly because there are no stable isotopes of technetium with which to study the toxicity, although, because of its long T/sub 1/2/, 99 Tc can, for all practical purposes, be considered stable. The ALI values for 99 Tc are based on data obtained using high specific activity /sup 99m/Tc (T/sub 1/2/ = 6 h) and /sup 95m/Tc (T/sub 1/2/ = 61 days). Since the specific activities of 99 Tc and Na 99 TcO 4 are quite low (17 mCi/g and 9 mCi/g, respectively) and 99 Tc is available in abundant supply, we have attempted to assess the relative radiation and chemical hazards that are associated with this radionuclide. The approach in this study was (1) to study the effect of chemical dose on the whole body retention of 99 Tc sodium pertechnetate in rats and to relate these effects to the radiation dose and the ALI and (2) to compare the chemical toxicity of 99 Tc sodium pertechnetate with the ALI at different chemical dose levels

  5. 76 FR 64022 - Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting

    Science.gov (United States)

    2011-10-17

    ... Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting AGENCY: Environmental Protection Agency (EPA). ACTION: Lifting of Administrative Stay for Hydrogen Sulfide. SUMMARY: EPA is announcing... (EPCRA) section 313 toxic chemical release reporting requirements for hydrogen sulfide (Chemical...

  6. Iliocaval Confluence Stenting for Chronic Venous Obstructions

    Energy Technology Data Exchange (ETDEWEB)

    Graaf, Rick de, E-mail: r.de.graaf@mumc.nl [Maastricht University Medical Centre (MUMC), Department of Radiology (Netherlands); Wolf, Mark de, E-mail: markthewolf@gmail.com [Maastricht University Medical Centre (MUMC), Department of Surgery (Netherlands); Sailer, Anna M., E-mail: anni.sailer@mumc.nl [Maastricht University Medical Centre (MUMC), Department of Radiology (Netherlands); Laanen, Jorinde van, E-mail: jorinde.van.laanen@mumc.nl; Wittens, Cees, E-mail: c.wittens@me.com [Maastricht University Medical Centre (MUMC), Department of Surgery (Netherlands); Jalaie, Houman, E-mail: hjalaie@ukaachen.de [University Hospital Aachen, Department of Surgery (Germany)

    2015-10-15

    PurposeDifferent techniques have been described for stenting of venous obstructions. We report our experience with two different confluence stenting techniques to treat chronic bi-iliocaval obstructions.Materials and MethodsBetween 11/2009 and 08/2014 we treated 40 patients for chronic total bi-iliocaval obstructions. Pre-operative magnetic resonance venography showed bilateral extensive post-thrombotic scarring in common and external iliac veins as well as obstruction of the inferior vena cava (IVC). Stenting of the IVC was performed with large self-expandable stents down to the level of the iliocaval confluence. To bridge the confluence, either self-expandable stents were placed inside the IVC stent (24 patients, SECS group) or high radial force balloon-expandable stents were placed at the same level (16 patients, BECS group). In both cases, bilateral iliac extensions were performed using nitinol stents.ResultsRecanalization was achieved for all patients. In 15 (38 %) patients, a hybrid procedure with endophlebectomy and arteriovenous fistula creation needed to be performed because of significant involvement of inflow vessels below the inguinal ligament. Mean follow-up was 443 ± 438 days (range 7–1683 days). For all patients, primary, assisted-primary, and secondary patency rate at 36 months were 70, 73, and 78 %, respectively. Twelve-month patency rates in the SECS group were 85, 85, and 95 % for primary, assisted-primary, and secondary patency. In the BECS group, primary patency was 100 % during a mean follow-up period of 134 ± 118 (range 29–337) days.ConclusionStenting of chronic bi-iliocaval obstruction shows relatively high patency rates at medium follow-up. Short-term patency seems to favor confluence stenting with balloon-expandable stents.

  7. COMPUTER SUPPORT SYSTEMS FOR ESTIMATING CHEMICAL TOXICITY: PRESENT CAPABILITIES AND FUTURE TRENDS

    Science.gov (United States)

    Computer Support Systems for Estimating Chemical Toxicity: Present Capabilities and Future Trends A wide variety of computer-based artificial intelligence (AI) and decision support systems exist currently to aid in the assessment of toxicity for environmental chemicals. T...

  8. Acute toxicity of fire control chemicals to Daphnia magna(Straus) and Selenastrum capricornutum(Printz)

    Science.gov (United States)

    McDonald, Susan F.; Hamilton, Steven J.; Buhl, Kevin J.; Heisinger, James F.

    1996-01-01

    Acute toxicity tests were conducted exposingDaphnia magnaStraus (daphnid) in soft and hard reconstituted waters (hardness 42 and 162 mg/liter as CaCO3, respectively), andSelenastrum capricornutumPrintz (algae) in ASTM algal assay medium (hardness 15 mg/liter as CaCO3) to fire retardants Fire-Trol GTS-R, Fire-Trol LCG-R, and Phos-Chek D75-F, and foam suppressants Phos-Chek WD-881 and Silv-Ex. The chemicals were slightly toxic to practically harmless to daphnids and moderately toxic to algae. Water quality did not consistently alter the toxicity of the test chemicals to daphnids. The most toxic chemical to daphnids was Silv-Ex (48-hr EC507 mg/liter in soft and hard waters), whereas the least toxic chemical to daphnids was Fire-Trol LCG-R (48-hr EC50848 mg/liter in soft water, 813 mg/liter in hard water). The most toxic chemical to algae was Fire-Trol LCG-R (96-hr IC5010 mg/liter), and the least toxic chemical was Phos-Chek D75-F (96-hr IC5079 mg/liter). Un-ionized ammonia concentrations near the EC50or IC50value in tests with the Fire-Trol compounds were frequently equal to or above reported LC50un-ionized ammonia concentrations. Un-ionized ammonia concentrations in tests with Phos-Chek D75-F were low, thus other toxic components present in the compounds probably contributed to the toxicity. When compared to the daphnids tested in ASTM soft water, the Fire-Trol compounds were most toxic to algae, whereas Phos-Chek D75-F and the foam suppressants were most toxic to daphnids. The results of these tests are comparable to those obtained from research conducted in other laboratories with the same species and similar chemicals. Accidental entry of fire-fighting chemicals into aquatic environments could adversely affect algae and aquatic invertebrates, thus disrupting ecosystem function.

  9. Temperature influence on chemical toxicity to aquatic organisms

    International Nuclear Information System (INIS)

    Cairns, J. Jr.; Heath, A.G.; Parker, B.C.

    1975-01-01

    The literature on the effects of temperature on chemical toxicity to aquatic animals and microorganisms is reviewed. Microbial photosynthesis and respiration is briefly discussed. It is concluded that there is a paucity of information on the inter-relations of temperature and toxicants to algae, bacteria, and protozoa and that standards based on the in situ response of indigenous organisms to specific discharge areas should be developed

  10. Toxicity studies of drugs and chemicals in animals: An overview

    OpenAIRE

    S. Saganuwan

    2017-01-01

    Toxicity study is the investigation of either short or long-term toxic effects of a drug or chemical on animals. The toxicity is dose-dependent as asserted by Paracelsus over 500 years ago. However, short-term toxic effect is determined using median lethal dose (LD50) first introduced by Trevan in 1927 and revised many times. Presently there is a growing preponderance of rejection of scientific papers on acute toxicity study, simply because of the belief that in the current hazard and safety ...

  11. Base catalyzed decomposition of toxic and hazardous chemicals

    International Nuclear Information System (INIS)

    Rogers, C.J.; Kornel, A.; Sparks, H.L.

    1991-01-01

    There are vast amounts of toxic and hazardous chemicals, which have pervaded our environment during the past fifty years, leaving us with serious, crucial problems of remediation and disposal. The accumulation of polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), ''dioxins'' and pesticides in soil sediments and living systems is a serious problem that is receiving considerable attention concerning the cancer-causing nature of these synthetic compounds.US EPA scientists developed in 1989 and 1990 two novel chemical Processes to effect the dehalogenation of chlorinated solvents, PCBs, PCDDs, PCDFs, PCP and other pollutants in soil, sludge, sediment and liquids. This improved technology employs hydrogen as a nucleophile to replace halogens on halogenated compounds. Hydrogen as nucleophile is not influenced by steric hinderance as with other nucleophile where complete dehalogenation of organohalogens can be achieved. This report discusses catalyzed decomposition of toxic and hazardous chemicals

  12. Toxic chemical considerations for tank farm releases

    Energy Technology Data Exchange (ETDEWEB)

    Van Keuren, J.C.; Davis, J.S., Westinghouse Hanford

    1996-08-01

    This topical report contains technical information used to determine the accident consequences of releases of toxic chemical and gases for the Tank Farm Final Safety Analysis report (FSAR).It does not provide results for specific accident scenarios but does provide information for use in those calculations including chemicals to be considered, chemical concentrations, chemical limits and a method of summing the fractional contributions of each chemical. Tank farm composites evaluated were liquids and solids for double shell tanks, single shell tanks, all solids,all liquids, headspace gases, and 241-C-106 solids. Emergency response planning guidelines (ERPGs) were used as the limits.Where ERPGs were not available for the chemicals of interest, surrogate ERPGs were developed. Revision 2 includes updated sample data, an executive summary, and some editorial revisions.

  13. Oxidative stress in chemical toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Kappus, H.

    1986-05-01

    The toxic effect of compounds which undergo redox cycling enzymatic one-electron reduction are reviewed. First of all, the enzymatic reduction of these compounds leads to reactive intermediates, mainly radicals which react with oxygen, whereby superoxide anion radicals are formed. Further oxygen metabolites are hydrogen peroxide, singlet oxygen and hydroxyl radicals. The role of these oxygen metabolites in toxicity is discussed. The occurrence of lipid peroxidation during redox cycling of quinonoide compounds, e.g., adriamycin, and the possible relationship to their toxicity is critically evaluated. It is shown that iron ions play a crucial role in lipid peroxidation induced by redox cycling compounds. DNA damage by metal chelates, e.g., bleomycin, is discussed on the basis of findings that enzymatic redox cycling of a bleomycin-iron complex has been observed. The involvement of hydroxyl radicals in bleomycin-induced DNA damage occurring during redox cycling in cell nuclei is claimed. Redox cycling of other substances, e.g., aromatic amines, is discussed in relation to carcinogenesis. Other chemical groups, e.g., nitroaromatic compounds, hydroxylamines and azo compounds are included. Other targets for oxygen radical attack, e.g., proteins, are also dealt with. It is concluded that oxygen radical formation by redox cycling may be a critical event in toxic effects of several compounds if the protective mechanisms of cells are overwhelmed.

  14. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY TOXIC INDUSTRIAL CHEMICALS

    Science.gov (United States)

    One of the reported effects for exposure to many of the toxic industrial chemicals is DNA damage. The present study describes a simple, rapid and innovative assay to detect DNA damage resulting from exposure of surrogate DNA to toxic industrial chemicals (acrolein, allylamine, ch...

  15. Toxics Release Inventory Chemical Hazard Information Profiles (TRI-CHIP) Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Toxics Release Inventory (TRI) Chemical Hazard Information Profiles (TRI-CHIP) dataset contains hazard information about the chemicals reported in TRI. Users can...

  16. The underlying toxicological mechanism of chemical mixtures: A case study on mixture toxicity of cyanogenic toxicants and aldehydes to Photobacterium phosphoreum

    International Nuclear Information System (INIS)

    Tian, Dayong; Lin, Zhifen; Zhou, Xianghong; Yin, Daqiang

    2013-01-01

    Intracellular chemical reaction of chemical mixtures is one of the main reasons that cause synergistic or antagonistic effects. However, it still remains unclear what the influencing factors on the intracellular chemical reaction are, and how they influence on the toxicological mechanism of chemical mixtures. To reveal this underlying toxicological mechanism of chemical mixtures, a case study on mixture toxicity of cyanogenic toxicants and aldehydes to Photobacterium phosphoreum was employed, and both their joint effects and mixture toxicity were observed. Then series of two-step linear regressions were performed to describe the relationships between joint effects, the expected additive toxicities and descriptors of individual chemicals (including concentrations, binding affinity to receptors, octanol/water partition coefficients). Based on the quantitative relationships, the underlying joint toxicological mechanisms were revealed. The result shows that, for mixtures with their joint effects resulting from intracellular chemical reaction, their underlying toxicological mechanism depends on not only their interaction with target proteins, but also their transmembrane actions and their concentrations. In addition, two generic points of toxicological mechanism were proposed including the influencing factors on intracellular chemical reaction and the difference of the toxicological mechanism between single reactive chemicals and their mixtures. This study provided an insight into the understanding of the underlying toxicological mechanism for chemical mixtures with intracellular chemical reaction. - Highlights: • Joint effects of nitriles and aldehydes at non-equitoxic ratios were determined. • A novel descriptor, ligand–receptor interaction energy (E binding ), was employed. • Quantitative relationships for mixtures were developed based on a novel descriptor. • The underlying toxic mechanism was revealed based on quantitative relationships. • Two generic

  17. The underlying toxicological mechanism of chemical mixtures: A case study on mixture toxicity of cyanogenic toxicants and aldehydes to Photobacterium phosphoreum

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Dayong [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Department of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000 (China); Lin, Zhifen, E-mail: lzhifen@tongji.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Zhou, Xianghong [Department of Public Management, Tongji University, Shanghai 200092 (China); Yin, Daqiang [Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2013-10-15

    Intracellular chemical reaction of chemical mixtures is one of the main reasons that cause synergistic or antagonistic effects. However, it still remains unclear what the influencing factors on the intracellular chemical reaction are, and how they influence on the toxicological mechanism of chemical mixtures. To reveal this underlying toxicological mechanism of chemical mixtures, a case study on mixture toxicity of cyanogenic toxicants and aldehydes to Photobacterium phosphoreum was employed, and both their joint effects and mixture toxicity were observed. Then series of two-step linear regressions were performed to describe the relationships between joint effects, the expected additive toxicities and descriptors of individual chemicals (including concentrations, binding affinity to receptors, octanol/water partition coefficients). Based on the quantitative relationships, the underlying joint toxicological mechanisms were revealed. The result shows that, for mixtures with their joint effects resulting from intracellular chemical reaction, their underlying toxicological mechanism depends on not only their interaction with target proteins, but also their transmembrane actions and their concentrations. In addition, two generic points of toxicological mechanism were proposed including the influencing factors on intracellular chemical reaction and the difference of the toxicological mechanism between single reactive chemicals and their mixtures. This study provided an insight into the understanding of the underlying toxicological mechanism for chemical mixtures with intracellular chemical reaction. - Highlights: • Joint effects of nitriles and aldehydes at non-equitoxic ratios were determined. • A novel descriptor, ligand–receptor interaction energy (E{sub binding}), was employed. • Quantitative relationships for mixtures were developed based on a novel descriptor. • The underlying toxic mechanism was revealed based on quantitative relationships. • Two

  18. Evaluation of Chemical Warfare Agent Percutaneous Vapor Toxicity: Derivation of Toxicity Guidelines for Assessing Chemical Protective Ensembles.

    Energy Technology Data Exchange (ETDEWEB)

    Watson, A.P.

    2003-07-24

    Percutaneous vapor toxicity guidelines are provided for assessment and selection of chemical protective ensembles (CPEs) to be used by civilian and military first responders operating in a chemical warfare agent vapor environment. The agents evaluated include the G-series and VX nerve agents, the vesicant sulfur mustard (agent HD) and, to a lesser extent, the vesicant Lewisite (agent L). The focus of this evaluation is percutaneous vapor permeation of CPEs and the resulting skin absorption, as inhalation and ocular exposures are assumed to be largely eliminated through use of SCBA and full-face protective masks. Selection of appropriately protective CPE designs and materials incorporates a variety of test parameters to ensure operability, practicality, and adequacy. One aspect of adequacy assessment should be based on systems tests, which focus on effective protection of the most vulnerable body regions (e.g., the groin area), as identified in this analysis. The toxicity range of agent-specific cumulative exposures (Cts) derived in this analysis can be used as decision guidelines for CPE acceptance, in conjunction with weighting consideration towards more susceptible body regions. This toxicity range is bounded by the percutaneous vapor estimated minimal effect (EME{sub pv}) Ct (as the lower end) and the 1% population threshold effect (ECt{sub 01}) estimate. Assumptions of exposure duration used in CPE certification should consider that each agent-specific percutaneous vapor cumulative exposure Ct for a given endpoint is a constant for exposure durations between 30 min and 2 hours.

  19. Microbial contamination and chemical toxicity of the Rio Grande

    Directory of Open Access Journals (Sweden)

    Valles Adrian

    2004-04-01

    Full Text Available Abstract Background The Rio Grande River is the natural boundary between U.S. and Mexico from El Paso, TX to Brownsville, TX. and is one of the major water resources of the area. Agriculture, farming, maquiladora industry, domestic activities, as well as differences in disposal regulations and enforcement increase the contamination potential of water supplies along the border region. Therefore, continuous and accurate assessment of the quality of water supplies is of paramount importance. The objectives of this study were to monitor water quality of the Rio Grande and to determine if any correlations exist between fecal coliforms, E. coli, chemical toxicity as determined by Botsford's assay, H. pylori presence, and environmental parameters. Seven sites along a 112-Km segment of the Rio Grande from Sunland Park, NM to Fort Hancock, TX were sampled on a monthly basis between January 2000 and December 2002. Results The results showed great variability in the number of fecal coliforms, and E. coli on a month-to-month basis. Fecal coliforms ranged between 0–106 CFU/100 ml while E. coli ranged between 6 to > 2419 MPN. H. pylori showed positive detection for all the sites at different times. Toxicity ranged between 0 to 94% of inhibition capacity (IC. Since values above 50% are considered to be toxic, most of the sites displayed significant chemical toxicity at different times of the year. No significant correlations were observed between microbial indicators and chemical toxicity. Conclusion The results of the present study indicate that the 112-Km segment of the Rio Grande river from Sunland Park, NM to Fort Hancock, TX exceeds the standards for contact recreation water on a continuous basis. In addition, the presence of chemical toxicity in most sites along the 112-Km segment indicates that water quality is an area of concern for the bi-national region. The presence of H. pylori adds to the potential health hazards of the Rio Grande. Since no

  20. Radiation treatment of toxic chemicals

    International Nuclear Information System (INIS)

    Lee, M.J.; Jung, I.H.; Jo, S.K.

    2010-01-01

    Polychlorinated biphenyls (PCBs) were commercially produced from 1920s as complex mixtures containing multiple isomers for a variety of applications. They are very toxic, chemically stable and resist microbial, photochemical, chemical, and thermal degradation. The public, legal, and scientific concerns about PCBs arose from research indicating they were environmental contaminants that had a potential to adversely impact the environment, and, therefore, were undesirable as commercial products. Eventually, most producers reduced or stopped production of PCBs in the 1970s. Stockholm convention on POPs (Persistent Organic Pollutants), which was effective on May 2004 and 151 nations including Korea were joined on June 2005, asked to dispose of PCBs by 2028 with environmental friendly methods. Korean government also has declared to conduct by 2015. According to the Environmental law of Korea, over 2 ppm of PCBs has to be decomposed by legal methods of incineration and thermal destruction. But those are inapplicable owing to the environmental groups. KAERI(Korea Atomic Energy Research Institute) has recently developed a remarkable technology for radiation treatment of toxic chemicals including chlorides using an electron beam accelerator. Electron beam accelerator of 2.5 MeV energy and 100 kW power capacity was used to decompose of PCBs having been used as a commercial transformer oil for more than 30 years. The oil were irradiated with ∼ 0.1 percent of TEA (Triethyl Amin) to make chloride ion aparted off from the PCBs into precipitate at the conditions of normal temperature and pressure. The concentrations of PCBs were measured by GC (Gas Chromatography) with ECD (Electron Capture Detector) following the KS (Korean Standard) test procedure. Electron beam should be a useful tool for environmental conservation. Residual concentrations of PCBs after irradiation were depended on the absorption dose of electron beam energy. Advantages comparing to other methods such as

  1. Identifying and designing chemicals with minimal acute aquatic toxicity.

    Science.gov (United States)

    Kostal, Jakub; Voutchkova-Kostal, Adelina; Anastas, Paul T; Zimmerman, Julie Beth

    2015-05-19

    Industrial ecology has revolutionized our understanding of material stocks and flows in our economy and society. For this important discipline to have even deeper impact, we must understand the inherent nature of these materials in terms of human health and the environment. This paper focuses on methods to design synthetic chemicals to reduce their intrinsic ability to cause adverse consequence to the biosphere. Advances in the fields of computational chemistry and molecular toxicology in recent decades allow the development of predictive models that inform the design of molecules with reduced potential to be toxic to humans or the environment. The approach presented herein builds on the important work in quantitative structure-activity relationships by linking toxicological and chemical mechanistic insights to the identification of critical physical-chemical properties needed to be modified. This in silico approach yields design guidelines using boundary values for physiochemical properties. Acute aquatic toxicity serves as a model endpoint in this study. Defining value ranges for properties related to bioavailability and reactivity eliminates 99% of the chemicals in the highest concern for acute aquatic toxicity category. This approach and its future implementations are expected to yield very powerful tools for life cycle assessment practitioners and molecular designers that allow rapid assessment of multiple environmental and human health endpoints and inform modifications to minimize hazard.

  2. Toxic chemical risk acceptance criteria

    International Nuclear Information System (INIS)

    Craig, D.K.; Davis, J.; Lee, L.; Lein, P.; Omberg, S.

    1992-01-01

    This paper presents recommendations of a subcommittee of the Westinghouse M ampersand 0 Nuclear Facility Safety Committee concerning toxic chemical risk acceptance criteria. Two sets of criteria have been developed, one for use in the hazard classification of facilities, and the second for use in comparing risks in DOE non-reactor nuclear facility Safety Analysis Reports. The Emergency Response Planning Guideline (ERPG) values are intended to provide estimates of concentration ranges for specific chemicals above which exposure would be expected to lead to adverse heath effects of increasing severity for ERPG-1, -2, and -3s. The subcommittee recommends that criteria for hazard class or risk range be based on ERPGs for all chemicals. Probability-based Incremental Cancer Risk (ICR) criteria are recommended for additional analyses of risks from all known or suspected human carcinogens. Criteria are given for both on-site and off-site exposure. The subcommittee also recommends that the 5-minute peak concentration be compared with the relevant criterion with no adjustment for exposure time. Since ERPGs are available for only a limited number of chemicals, the subcommittee has developed a proposed hierarchy of concentration limit parameters for the different criteria

  3. Toxicity of selected organic chemicals to the earthworm Eisenia fetida

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, E.F.; Loehr, R.C.; Malecki, M.R.; Milligan, D.L.; Durkin, P.R.

    A number of methods recently have been developed to biologically evaluate the impact of man's activities on soil ecosystems. Two test methods, the 2-d contact test and the 14-d artificial soil test, were used to evaluate the impact of six major classes of organic chemicals on the earthworm Eisenia fetida (Savigny). Of the organic chemicals tested, phenols and amines were the most toxic to the worms, followed in descending order of toxicity by the substituted aromatics, halogenated aliphatics, polycyclic aromatic hydrocarbons, and phthalates. No relationship was found between earthworm toxicity as determined by the contact test and rat, Rattus norvegicus Berkenhout and mouse, Mus musculus L. LD/sub 50/ values. The physicochemical parameters of water solubility, vapor pressure, and octanol/water partition coefficient for the chemicals tested in the contact test did not show a significant relationship to the E. fetida LC/sub 50/ values. These studies indicate that: (i) earthworms can be a suitable biomonitoring tool to assist in measuring the impact of organic chemicals in wastes added to soils and (ii) contact and artificial soil tests can be useful in measuring biological impacts.

  4. A Conceptual Framework for Predicting the Toxicity of Reactive Chemicals: Modeling Soft Electrophilicity

    Science.gov (United States)

    Although the literature is replete with QSAR models developed for many toxic effects caused by reversible chemical interactions, the development of QSARs for the toxic effects of reactive chemicals lacks a consistent approach. While limitations exit, an appropriate starting-point...

  5. Turbulent flow structure at a discordant river confluence: Asymmetric jet dynamics with implications for channel morphology

    Science.gov (United States)

    Sukhodolov, Alexander N.; Krick, Julian; Sukhodolova, Tatiana A.; Cheng, Zhengyang; Rhoads, Bruce L.; Constantinescu, George S.

    2017-06-01

    Only a handful of field studies have examined turbulent flow structure at discordant confluences; the dynamics of flow at such confluences have mainly been examined in the laboratory. This paper reports results of a field-based investigation of turbulent flow structure at a discordant river confluence. These results support the hypothesis that flow at a discordant alluvial confluence with a velocity ratio greater than 2 exhibits jet-like characteristics. Scaling analysis shows that the dynamics of the jet core are quite similar to those of free jets but that the complex structure of flow at the confluence imposes strong effects that can locally suppress or enhance the spreading rate of the jet. This jet-like behavior of the flow has important implications for morphodynamic processes at these types of confluences. The highly energetic core of the jet at this discordant confluence is displaced away from the riverbed, thereby inhibiting scour; however, helical motion develops adjacent to the jet, particularly at high flows, which may promote scour. Numerical experiments demonstrate that the presence or absence of a depositional wedge at the mouth of the tributary can strongly influence detachment of the jet from the bed and the angle of the jet within the confluence.

  6. 40 CFR 372.45 - Notification about toxic chemicals.

    Science.gov (United States)

    2010-07-01

    ...) If the person considers the specific identity of a toxic chemical in a mixture or trade name product... corporate or business interest (including common ownership or control), as described in § 372.38(f), operate...

  7. Toxic industrial chemicals and chemical weapons: exposure, identification, and management by syndrome.

    Science.gov (United States)

    Tomassoni, Anthony J; French, Robert N E; Walter, Frank G

    2015-02-01

    Toxidromes aid emergency care providers in the context of the patient presenting with suspected poisoning, unexplained altered mental status, unknown hazardous materials or chemical weapons exposure, or the unknown overdose. The ability to capture an adequate chemical exposure history and to recognize toxidromes may reduce dependence on laboratory tests, speed time to delivery of specific antidote therapy, and improve selection of supportive care practices tailored to the etiologic agent. This article highlights elements of the exposure history and presents selected toxidromes that may be caused by toxic industrial chemicals and chemical weapons. Specific antidotes for toxidromes and points regarding their use, and special supportive measures, are presented. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Sources of toxicity and exposure information for identifying chemicals of high concern to children

    International Nuclear Information System (INIS)

    Stone, Alex; Delistraty, Damon

    2010-01-01

    Due to the large number of chemicals in commerce without adequate toxicity characterization data, coupled with an ineffective federal policy for chemical management in the United States, many states are grappling with the challenge to identify toxic chemicals that may pose a risk to human health and the environment. Specific populations (e.g., children, elderly) are particularly sensitive to these toxic chemicals. In 2008, the Children's Safe Product Act (CSPA) was passed in Washington State. The CSPA included specific requirements to identify High Priority Chemicals (HPCs) and Chemicals of High Concern to Children (CHCCs). To implement this legislation, a methodology was developed to identify HPCs from authoritative scientific and regulatory sources on the basis of toxicity criteria. Another set of chemicals of concern was then identified from authoritative sources, based on their potential exposure to children. Exposure potential was evaluated by identifying chemicals detected in biomonitoring studies (i.e., human tissues), as well as those present in residential exposure media (e.g., indoor air, house dust, drinking water, consumer products). Accordingly, CHCCs were defined as HPCs that also appear in biomonitoring studies or relevant exposure media. For chemicals with unique Chemical Abstracts Service (CAS) numbers, we identified 2044 HPCs and 2219 chemicals with potential exposure to children, resulting in 476 CHCCs. The process of chemical identification is dynamic, so that chemicals may be added or subtracted as new information becomes available. Although beyond the scope of this paper, the 476 CHCCs will be prioritized in a more detailed assessment, based on the strength and weight of evidence of toxicity and exposure data. Our approach was developed to be flexible which allows the addition or removal of specific sources of toxicity or exposure information, as well as transparent to allow clear identification of inputs. Although the methodology was

  9. Sampling the stratum corneum for toxic chemicals.

    Science.gov (United States)

    Coman, Garrett; Blickenstaff, Nicholas R; Blattner, Collin M; Andersen, Rosa; Maibach, Howard I

    2014-01-01

    Dermal exposure is an important pathway in environmental health. Exposure comes from contaminated water, soil, treated surfaces, textiles, aerosolized chemicals, and agricultural products. It can occur in homes, schools, play areas, and work settings in the form of industrial sources, consumer products, or hazardous wastes. Dermal exposure is most likely to occur through contact with liquids, water, soil, sediment, and contaminated surfaces. The ability to detect and measure exposure to toxic materials on the skin is an important environmental health issue. The stratum corneum is the skin's first and principal barrier layer of protection from the outside world. It has a complex structure that can effectively protect against a wide variety of physical, chemical, and biological contaminants. However, there are a variety of chemical agents that can damage the stratum corneum and the underlying epidermis, dermis and subcutis, and/or enter systemic circulation through the skin. There are numerous ways of sampling the stratum corneum for these toxic materials like abrasion techniques, biopsy, suction blistering, imaging, washing, wipe sampling, tape stripping, and spot testing. Selecting a method likely depends on the particular needs of the situation. Hence, there is a need to review practical considerations for their use in sampling the stratum corneum for toxins.

  10. Exploring the role of quantum chemical descriptors in modeling acute toxicity of diverse chemicals to Daphnia magna.

    Science.gov (United States)

    Reenu; Vikas

    2015-09-01

    Various quantum-mechanically computed molecular and thermodynamic descriptors along with physico-chemical, electrostatic and topological descriptors are compared while developing quantitative structure-activity relationships (QSARs) for the acute toxicity of 252 diverse organic chemicals towards Daphnia magna. QSAR models based on the quantum-chemical descriptors, computed with routinely employed advanced semi-empirical and ab-initio methods, along with the electron-correlation contribution (CORR) of the descriptors, are analyzed for the external predictivity of the acute toxicity. The models with reliable internal stability and external predictivity are found to be based on the HOMO energy along with the physico-chemical, electrostatic and topological descriptors. Besides this, the total energy and electron-correlation energy are also observed as highly reliable descriptors, suggesting that the intra-molecular interactions between the electrons play an important role in the origin of the acute toxicity, which is in fact an unexplored phenomenon. The models based on quantum-chemical descriptors such as chemical hardness, absolute electronegativity, standard Gibbs free energy and enthalpy are also observed to be reliable. A comparison of the robust models based on the quantum-chemical descriptors computed with various quantum-mechanical methods suggests that the advanced semi-empirical methods such as PM7 can be more reliable than the ab-initio methods which are computationally more expensive. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Toxicity assessment of chemical contaminants;transition from in vitromethods to novel in vitro methods

    Directory of Open Access Journals (Sweden)

    A.A. Farshad

    2007-04-01

    Full Text Available Exposure to occupational and environmental contaminants is a major contributor to human health problems. Despite significant achievements in the risk assessment of chemicals, the toxicological database, particularly for industrial chemicals, remains limited. Considering there areapproximately 80, 000 chemicals in commerce, and an extremely large number of chemical mixtures, in vivo testing of this large number is unachievable from ethical, economical and scientific perspectives. Therefore, increasing the number of available industrial chemicals andnew products has created a demand for alternatives to animal methods for better safety evaluation. Recent toxicity studies have demonstrated that in vitro methods are capable of rapidly providing toxicity information. In this review, current toxicity test methods for risk evaluation of industrial chemical contaminants are presented. To evaluate the potential applications of  more recent test methods developed for toxicity testing of chemical contaminants are discussed. Although  to be considered more broadly for risk assessment of human chemical exposures. In vitro methods,in vitro toxicology methods cannot exactly mimic the biodynamics of the whole body, in vitro  relationships (QSARs and physiologically based toxicokinetic (PBTK models have a potentialtest systems in combination with the knowledge of quantitative structure activity.

  12. Interactions between toxic chemicals and natural environmental factors--a meta-analysis and case studies.

    Science.gov (United States)

    Laskowski, Ryszard; Bednarska, Agnieszka J; Kramarz, Paulina E; Loureiro, Susana; Scheil, Volker; Kudłek, Joanna; Holmstrup, Martin

    2010-08-15

    The paper addresses problems arising from effects of natural environmental factors on toxicity of pollutants to organisms. Most studies on interactions between toxicants and natural factors, including those completed in the EU project NoMiracle (Novel Methods for Integrated Risk Assessment of Cumulative Stressors in Europe) described herein, showed that effects of toxic chemicals on organisms can differ vastly depending purely on external conditions. We compiled data from 61 studies on effects of temperature, moisture and dissolved oxygen on toxicity of a range of chemicals representing pesticides, polycyclic aromatic hydrocarbons, plant protection products of bacterial origin and trace metals. In 62.3% cases significant interactions (pnatural factors and chemicals were found, reaching 100% for the effect of dissolved oxygen on toxicity of waterborne chemicals. The meta-analysis of the 61 studies showed that the null hypothesis assuming no interactions between toxic chemicals and natural environmental factors should be rejected at p=2.7 x 10(-82) (truncated product method probability). In a few cases of more complex experimental designs, also second-order interactions were found, indicating that natural factors can modify interactions among chemicals. Such data emphasize the necessity of including information on natural factors and their variation in time and across geographic regions in ecological risk assessment. This can be done only if appropriate ecotoxicological test designs are used, in which test organisms are exposed to toxicants at a range of environmental conditions. We advocate designing such tests for the second-tier ecological risk assessment procedures. Copyright 2010 Elsevier B.V. All rights reserved.

  13. The chemical toxicity of cesium in Indian mustard (Brassica juncea L.) seedlings

    International Nuclear Information System (INIS)

    Lai, Jin-long; Tao, Zong-ya; Fu, Qian; Han, Na; Wu, Guo; Zhang, Hong; Lu, Hong; Luo, Xue-gang

    2016-01-01

    To distinguish between the radiological and chemical effects of radiocesium, we study the chemical toxicity of cesium in the seedlings of Indian mustard (Brassica juncea L.). In this study, the experiment was designed in two factors and five levels random block design to investigate the interaction effects of Cs and K. Results showed that excessive Cs was one of the main factors influence the growth of Brassica juncea seedlings. And the toxicity of Cs in Brassica juncea is likely to be caused by Cs interacts with K-binding sites in essential K-dependent protein, either competes with K for essential biochemical functions, causing intracellular metabolic disturbance. To test the hypothesis that the toxicity of Cs might cause intracellular metabolic disturbance, next-generation sequencing (NGS)-based Illumina paired-end Solexa sequencing platform was employed to analysis the changes in gene expression, and understand the key genes in B. juncea seedlings responding to the toxicity of Cs. Based on the assembled de novo transcriptome, 2032 DEGs that play significant roles in the response to the toxicity of Cs were identified. Further analysis showed that excessive Cs is disturbance the auxin signal transduction pathway, and inhibited the indoleacetic acid-induced protein (AUX/IAA) genes expression eventually lead the seedlings growth and development be inhibited. The results suggest that disturbances to tryptophan metabolism might be linked to changes in growth. - Highlights: • Analyze the chemical toxicity of cesium in seedlings of Indian mustard. • Distinguish between the radiological and chemical effects of radiocesium. • 2032 DEGs that play significant roles in the response to Cs toxicity were identified. • Excessive Cs is disturbance the auxin signal transduction pathway.

  14. In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Kunwar P., E-mail: kpsingh_52@yahoo.com; Gupta, Shikha

    2014-03-15

    Ensemble learning approach based decision treeboost (DTB) and decision tree forest (DTF) models are introduced in order to establish quantitative structure–toxicity relationship (QSTR) for the prediction of toxicity of 1450 diverse chemicals. Eight non-quantum mechanical molecular descriptors were derived. Structural diversity of the chemicals was evaluated using Tanimoto similarity index. Stochastic gradient boosting and bagging algorithms supplemented DTB and DTF models were constructed for classification and function optimization problems using the toxicity end-point in T. pyriformis. Special attention was drawn to prediction ability and robustness of the models, investigated both in external and 10-fold cross validation processes. In complete data, optimal DTB and DTF models rendered accuracies of 98.90%, 98.83% in two-category and 98.14%, 98.14% in four-category toxicity classifications. Both the models further yielded classification accuracies of 100% in external toxicity data of T. pyriformis. The constructed regression models (DTB and DTF) using five descriptors yielded correlation coefficients (R{sup 2}) of 0.945, 0.944 between the measured and predicted toxicities with mean squared errors (MSEs) of 0.059, and 0.064 in complete T. pyriformis data. The T. pyriformis regression models (DTB and DTF) applied to the external toxicity data sets yielded R{sup 2} and MSE values of 0.637, 0.655; 0.534, 0.507 (marine bacteria) and 0.741, 0.691; 0.155, 0.173 (algae). The results suggest for wide applicability of the inter-species models in predicting toxicity of new chemicals for regulatory purposes. These approaches provide useful strategy and robust tools in the screening of ecotoxicological risk or environmental hazard potential of chemicals. - Graphical abstract: Importance of input variables in DTB and DTF classification models for (a) two-category, and (b) four-category toxicity intervals in T. pyriformis data. Generalization and predictive abilities of the

  15. In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches

    International Nuclear Information System (INIS)

    Singh, Kunwar P.; Gupta, Shikha

    2014-01-01

    Ensemble learning approach based decision treeboost (DTB) and decision tree forest (DTF) models are introduced in order to establish quantitative structure–toxicity relationship (QSTR) for the prediction of toxicity of 1450 diverse chemicals. Eight non-quantum mechanical molecular descriptors were derived. Structural diversity of the chemicals was evaluated using Tanimoto similarity index. Stochastic gradient boosting and bagging algorithms supplemented DTB and DTF models were constructed for classification and function optimization problems using the toxicity end-point in T. pyriformis. Special attention was drawn to prediction ability and robustness of the models, investigated both in external and 10-fold cross validation processes. In complete data, optimal DTB and DTF models rendered accuracies of 98.90%, 98.83% in two-category and 98.14%, 98.14% in four-category toxicity classifications. Both the models further yielded classification accuracies of 100% in external toxicity data of T. pyriformis. The constructed regression models (DTB and DTF) using five descriptors yielded correlation coefficients (R 2 ) of 0.945, 0.944 between the measured and predicted toxicities with mean squared errors (MSEs) of 0.059, and 0.064 in complete T. pyriformis data. The T. pyriformis regression models (DTB and DTF) applied to the external toxicity data sets yielded R 2 and MSE values of 0.637, 0.655; 0.534, 0.507 (marine bacteria) and 0.741, 0.691; 0.155, 0.173 (algae). The results suggest for wide applicability of the inter-species models in predicting toxicity of new chemicals for regulatory purposes. These approaches provide useful strategy and robust tools in the screening of ecotoxicological risk or environmental hazard potential of chemicals. - Graphical abstract: Importance of input variables in DTB and DTF classification models for (a) two-category, and (b) four-category toxicity intervals in T. pyriformis data. Generalization and predictive abilities of the

  16. Flow Patterns in an Open Channel Confluence with Increasingly Dominant Tributary Inflow

    Directory of Open Access Journals (Sweden)

    Laurent Schindfessel

    2015-08-01

    Full Text Available Despite the ratio of incoming discharges being recognized as a key parameter in open-channel confluence hydrodynamics, little is known about the flow patterns when the tributary provides more than 90% of the total discharge. This paper offers a systematic study of flow features when the tributary becomes increasingly dominant in a 90° confluence with a fixed concordant bed. Large-eddy simulations are used to investigate the three-dimensional complex flow patterns for three different discharge ratios. It is found that the tributary flow impinges on the opposing bank when the tributary flow becomes sufficiently dominant, causing a recirculating eddy in the upstream channel of the confluence, which induces significant changes in the incoming velocity distribution. Moreover, it results in stronger helicoidal cells in the downstream channel, along with zones of upwelling flow. In turn, the changed flow patterns also influence the mixing layer and the flow recovery. Finally, intermittent events of stronger upwelling flow are discerned. Improved understanding of flow patterns at confluences where the tributary is dominant is applicable to both engineering and earth sciences.

  17. The confluence model: birth order as a within-family or between-family dynamic?

    Science.gov (United States)

    Zajonc, R B; Sulloway, Frank J

    2007-09-01

    The confluence model explains birth-order differences in intellectual performance by quantifying the changing dynamics within the family. Wichman, Rodgers, and MacCallum (2006) claimed that these differences are a between-family phenomenon--and hence are not directly related to birth order itself. The study design and analyses presented by Wichman et al. nevertheless suffer from crucial shortcomings, including their use of unfocused tests, which cause statistically significant trends to be overlooked. In addition, Wichman et al. treated birth-order effects as a linear phenomenon thereby ignoring the confluence model's prediction that these two samples may manifest opposing results based on age. This article cites between- and within-family data that demonstrate systematic birth-order effects as predicted by the confluence model. The corpus of evidence invoked here offers strong support for the assumption of the confluence model that birth-order differences in intellectual performance are primarily a within-family phenomenon.

  18. Confluence Reduction for Probabilistic Systems (extended version)

    NARCIS (Netherlands)

    Timmer, Mark; Stoelinga, Mariëlle Ida Antoinette; van de Pol, Jan Cornelis

    2010-01-01

    This paper presents a novel technique for state space reduction of probabilistic specifications, based on a newly developed notion of confluence for probabilistic automata. We prove that this reduction preserves branching probabilistic bisimulation and can be applied on-the-fly. To support the

  19. Effects of toxic metals and chemicals on biofilm and biocorrosion.

    Science.gov (United States)

    Fang, Herbert H P; Xu, Li-Chong; Chan, Kwong-Yu

    2002-11-01

    Microbes in marine biofilms aggregated into clusters and increased the production of extracellular polymeric substances (EPS), by over 100% in some cases, when the seawater media containing toxic metals and chemicals, such as Cd(II), Cu(II), Pb(II), Zn(II), AI(III), Cr(III), glutaraldehyde, and phenol. The formation of microbial cluster and the increased production of EPS, which contained 84-92% proteins and 8-16% polysaccharides, accelerated the corrosion of the mild steel. However, there was no quantitative relationship between the degree of increased corrosion and the toxicity of metals/chemicals towards sulfate-reducing bacteria, or the increased EPS production.

  20. Acute toxicity of fire-retardant and foam-suppressant chemicals to yalella azteca (Saussure)

    Science.gov (United States)

    McDonald, Susan F.; Hamilton, Steven J.; Buhl, Kevin J.; Heisinger, James F.

    1997-01-01

    Acute toxicity tests were conducted with Hyalella azteca Saussure (an amphipod) exposed in soft and hard waters to three fire retardants (Fire-Trol GTS-R, Fire-Trol LCG-R, and Phos-Chek D75-F) and two foam suppressants (Phos-Chek WD-881 and Silv-Ex). The chemicals were slightly to moderately toxic to amphipods. The most toxic chemical to amphipods in soft and hard water was Phos-Chek WD-881 (96-h mean lethal concentration [LC50] equal to 10 mg/L and 22 mg/L, respectively), and the least toxic chemical to amphipods in soft water was Fire-Trol GTS-R (96-h LC50 equal to 127 mg/L) and in hard water was Fire-Trol LCG-R (96-h LC50 equal to 535 mg/L). Concentrations of ammonia in tests with the three fire retardants and both water types were greater than reported LC50 values and probably were the major toxic component. Estimated un-ionized ammonia concentrations near the LC50 were frequently less than the reported LC50 ammonia concentrations for amphipods. The three fire retardants were more toxic in soft water than in hard water even though ammonia and un-ionized ammonia concentrations were higher in hard water tests than in soft water tests. The accidental entry of fire-fighting chemicals into aquatic environments could adversely affect aquatic invertebrates, thereby disrupting ecosystem function.

  1. Dissecting the assays to assess microbial tolerance to toxic chemicals in bioprocessing.

    Science.gov (United States)

    Zingaro, Kyle A; Nicolaou, Sergios A; Papoutsakis, Eleftherios T

    2013-11-01

    Microbial strains are increasingly used for the industrial production of chemicals and biofuels, but the toxicity of components in the feedstock and product streams limits process outputs. Selected or engineered microbes that thrive in the presence of toxic chemicals can be assessed using tolerance assays. Such assays must reasonably represent the conditions the cells will experience during the intended process and measure the appropriate physiological trait for the desired application. We review currently used tolerance assays, and examine the many parameters that affect assay outcomes. We identify and suggest the use of the best-suited assays for each industrial bioreactor operating condition, discuss next-generation assays, and propose a standardized approach for using assays to examine tolerance to toxic chemicals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Fate of chemical warfare agents and toxic indutrial chemicals in landfills

    DEFF Research Database (Denmark)

    Bartelt-Hunt, D.L.; Barlaz, M.A.; Knappe, D.R.U.

    2006-01-01

    One component of preparedness for a chemical attack is planning for the disposal of contaminated debris. To assess the feasibility of contaminated debris disposal in municipal solid waste (MSW) landfills, the fate of selected chemical warfare agents (CWAs) and toxic industrial chemicals (TICs......], and two TICs [furan and carbon disulfide] were studied. The effects of both infiltration (climate) and contaminant biodegradability on fate predictions were assessed. Model results showed that hydrolysis and gas-phase advection were the principal fate pathways for CWAs and TICs, respectively. Apart from...... CX and the TICs, none of the investigated compounds was predicted to persist in a landfill for more than 5 years. Climate had little impact on CWA/TIC fate, and biodegradability was only important for compounds with long hydrolysis halflives. Monte Carlo simulations were performed to assess...

  3. Toxicity of organic chemical pollution in groundwater downgradient of a landfill (Grindsted, Denmark)

    DEFF Research Database (Denmark)

    Baun, Anders; Jensen, S. D.; Bjerg, Poul Løgstrup

    2000-01-01

    The aim of the present study was to describe the occurrence and distribution of toxicity related to organic chemical contaminants in the leachate plume downgradient of the Grindsted Landfill (Denmark). A total of 27 groundwater samples were preconcentrated by solidphase extraction (SPE) using XAD-2...... bioassays, it was concluded that SPE extracts of groundwater collected close to the landfill were toxic. The toxicity decreased with the distance from the landfill. At distances greater than 80 m from the border of the landfill, the groundwater toxicity was not significantly different from the background...... characterization and hazard ranking of groundwater polluted with complex chemical mixtures, such as landfill leachates....

  4. In silico assessment of the acute toxicity of chemicals: recent advances and new model for multitasking prediction of toxic effect.

    Science.gov (United States)

    Kleandrova, Valeria V; Luan, Feng; Speck-Planche, Alejandro; Cordeiro, M Natália D S

    2015-01-01

    The assessment of acute toxicity is one of the most important stages to ensure the safety of chemicals with potential applications in pharmaceutical sciences, biomedical research, or any other industrial branch. A huge and indiscriminate number of toxicity assays have been carried out on laboratory animals. In this sense, computational approaches involving models based on quantitative-structure activity/toxicity relationships (QSAR/QSTR) can help to rationalize time and financial costs. Here, we discuss the most significant advances in the last 6 years focused on the use of QSAR/QSTR models to predict acute toxicity of drugs/chemicals in laboratory animals, employing large and heterogeneous datasets. The advantages and drawbacks of the different QSAR/QSTR models are analyzed. As a contribution to the field, we introduce the first multitasking (mtk) QSTR model for simultaneous prediction of acute toxicity of compounds by considering different routes of administration, diverse breeds of laboratory animals, and the reliability of the experimental conditions. The mtk-QSTR model was based on artificial neural networks (ANN), allowing the classification of compounds as toxic or non-toxic. This model correctly classified more than 94% of the 1646 cases present in the whole dataset, and its applicability was demonstrated by performing predictions of different chemicals such as drugs, dietary supplements, and molecules which could serve as nanocarriers for drug delivery. The predictions given by the mtk-QSTR model are in very good agreement with the experimental results.

  5. Bedload transport in a river confluence

    Science.gov (United States)

    Martín-Vide, J. P.; Plana-Casado, A.; Sambola, A.; Capapé, S.

    2015-12-01

    The confluence of the regulated Toltén River and its tributary the unregulated Allipén (south of Chile) has proved dynamic in the last decade. Daily bedload measurements with a Helley-Smith sampler, bed surveys, and grain-size distributions of the two rivers are obtained from a field campaign that lasts 3 months in high-flow season. The goals are to quantify total bedload and to understand the balance between tributary and main river and the bedload distribution in space and texture. The bedload transport varies 200-fold, with a maximum of 5000 t/day. The discharge varies five-fold, with a maximum of 900 m3/s. Two-thirds of the total bedload volume are transported through the deeper area of the cross section and gravel is predominant (64%). Average bedload volumes in the confluence seem unbalanced in favour of the tributary. Main river bedload transport is predominantly at below-capacity conditions, while the tributary bedload transport is at-capacity conditions. This is deemed the main reason of inaccuracy of the bedload predictors. The roles of entrainment into suspension, helical flow, partial transport, and mobile armour are discussed.

  6. An Acetyltransferase Conferring Tolerance to Toxic Aromatic Amine Chemicals

    Science.gov (United States)

    Martins, Marta; Rodrigues-Lima, Fernando; Dairou, Julien; Lamouri, Aazdine; Malagnac, Fabienne; Silar, Philippe; Dupret, Jean-Marie

    2009-01-01

    Aromatic amines (AA) are a major class of environmental pollutants that have been shown to have genotoxic and cytotoxic potentials toward most living organisms. Fungi are able to tolerate a diverse range of chemical compounds including certain AA and have long been used as models to understand general biological processes. Deciphering the mechanisms underlying this tolerance may improve our understanding of the adaptation of organisms to stressful environments and pave the way for novel pharmaceutical and/or biotechnological applications. We have identified and characterized two arylamine N-acetyltransferase (NAT) enzymes (PaNAT1 and PaNAT2) from the model fungus Podospora anserina that acetylate a wide range of AA. Targeted gene disruption experiments revealed that PaNAT2 was required for the growth and survival of the fungus in the presence of toxic AA. Functional studies using the knock-out strains and chemically acetylated AA indicated that tolerance of P. anserina to toxic AA was due to the N-acetylation of these chemicals by PaNAT2. Moreover, we provide proof-of-concept remediation experiments where P. anserina, through its PaNAT2 enzyme, is able to detoxify the highly toxic pesticide residue 3,4-dichloroaniline in experimentally contaminated soil samples. Overall, our data show that a single xenobiotic-metabolizing enzyme can mediate tolerance to a major class of pollutants in a eukaryotic species. These findings expand the understanding of the role of xenobiotic-metabolizing enzyme and in particular of NATs in the adaptation of organisms to their chemical environment and provide a basis for new systems for the bioremediation of contaminated soils. PMID:19416981

  7. Bed erosion control at 60 degree river confluence using vanes

    Science.gov (United States)

    Wuppukondur, Ananth; Chandra, Venu

    2017-04-01

    Confluences are common occurrences along natural rivers. Hydrodynamics at the confluence is complex due to merging of main and lateral flows with different characteristics. Bed erosion occurs at the confluence due to turbulence and also secondary circulation induced by centrifugal action of the lateral flow. The eroded sediment poses various problems in the river ecosystem including river bank failure. Reservoirs are majorly affected due to sediment deposition which reduces storage capacity. The bed erosion also endangers stability of pipeline crossings and bridge piers. The aim of this experimental study is to check the performance of vanes in controlling bed erosion at the confluence. Experiments are performed in a 600 confluence mobile bed model with a non-uniform sediment of mean particle size d50 = 0.28mm. Discharge ratio (q=ratio of lateral flow discharge to main flow discharge) is maintained as 0.5 and 0.75 with a constant average main flow depth (h) of 5cm. Vanes of width 0.3h (1.5cm) and thickness of 1 mm are placed along the mixing layer at an angle of 150, 300 and 600(with respect to main flow) to perform the experiments. Also, two different spacing of 2h and 3h (10cm and 15cm) between the vanes are used for conducting the experiments. A digital point gauge with an accuracy of ±0.1mm is used to measure bed levels and flow depths at the confluence. An Acoustic Doppler Velocitimeter (ADV) with a frequency of 25Hz and accuracy of ±1mm/s is used to measure flow velocities. Maximum scour depth ratio Rmax, which is ratio between maximum scour depth (Ds) and flow depth (h), is used to present the experimental results.From the experiments without vanes, it is observed that the velocities are increasing along the mixing layer and Rmax=0.82 and 1.06, for q=0.5 and 0.75, respectively. The velocities reduce with vanes since roughness increases along the mixing layer. For q=0.5 and 0.75, Rmax reduces to 0.62 and 0.7 with vanes at 2h spacing, respectively. Similarly

  8. 78 FR 69414 - Toxic Substances Control Act Chemical Testing; Receipt of Test Data

    Science.gov (United States)

    2013-11-19

    ...; Acute emulsion polymerization in Inhalation Toxicity in paper, textile, fiber, and Rats; Bacterial.../ Reproduction Development Toxicity. Note: CAS No. = Chemical Abstracts Service Registry Number. Authority: 15 U...

  9. Plant exposure chambers for study of toxic chemical-plant interactions (journal version)

    International Nuclear Information System (INIS)

    McFarlane, J.C.; Pfleeger, T.

    1987-01-01

    Chambers for the study of plant uptake and phytotoxicity of toxic, radio-labeled chemicals are described. The chambers are designed to meet the criteria of continuously stirred tank reactors while providing containment for toxic chemicals. They are computer managed and operated within a controlled-environment room. Besides providing controlled conditions within the contained spaces, continuous measurements are made of various environmental parameters and plant transpiration, net photosynthesis, and dark respiration in up to 18 separate chambers

  10. Cobalt toxicity: Chemical and radiological combined effects on HaCaT keratinocyte cell line

    International Nuclear Information System (INIS)

    Sandre, C.; Moulin, C.; Bresson, C.; Gault, N.; Poncy, J. L.; Lefaix, J. L.

    2010-01-01

    Cobalt (Co) is an essential trace element well known as a constituent of vitamin B 12 , but different compounds of Co are also described as highly toxic and/or radio-toxic for individuals or the environment. In nuclear power plants, 58 Co and 60 Co are radioactive isotopes of cobalt present as activation products of stable Co and Ni used in alloys. Skin exposure is a current occupational risk in the hard metal and nuclear industries. As biochemical and molecular cobalt-induced toxicological mechanisms are not fully identified, we investigated cobalt toxicity in a model human keratinocyte cell line, HaCaT. In this study, we propose a model to determine the in vitro chemical impact on cell viability of a soluble form of cobalt (CoCl 2 ) with or without gamma-ray doses to mimic contamination by 60 Co, to elucidate the mechanisms of cobalt intracellular chemical and radiological toxicity. Intracellular cobalt concentration was determined after HaCaT cell contamination and chemical toxicity was evaluated in terms of cellular viability and clonogenic survival. We investigated damage to DNA in HaCaT cells by combined treatment with chemical cobalt and a moderate gamma-ray dose. Additive effects of cobalt and irradiation were demonstrated. The underlying mechanism of cobalt toxicity is not clearly established, but our results seem to indicate that the toxicity of Co(II) and of irradiation arises from production of reactive oxygen species. (authors)

  11. Cobalt toxicity: Chemical and radiological combined effects on HaCaT keratinocyte cell line

    Energy Technology Data Exchange (ETDEWEB)

    Gault, N. [CEA Fontenay aux Roses, DSV/IRCM/SCSR/LRTS, 92265 Fontenay aux Rose (France); Sandre, C.; Moulin, B.; Bresson, C. [CEA, DEN, SECR, Laboratoire de Speciation des Radionucleides et des Molecules, F-91191 Gif-sur-Yvette (France); Poncy, J.L. [CEA Bruyeres Le Chatel, DSV/IRCM/SREIT/LRT, 91680 Bruyeres Le Chatel (France); Lefaix, J.L. [CEA Caen, DSV/IRCM/SRO/LARIA, 14070 Caen (France)

    2010-07-01

    Cobalt (Co) is an essential trace element well known as a constituent of vitamin B12, but different compounds of Co are also described as highly toxic and/or radio-toxic for individuals or the environment. In nuclear power plants, {sup 58}Co and {sup 60}Co are radioactive isotopes of cobalt present as activation products of stable Co and Ni used in alloys. Skin exposure is a current occupational risk in the hard metal and nuclear industries. As biochemical and molecular cobalt-induced toxicological mechanisms are not fully identified, we investigated cobalt toxicity in a model human keratinocyte cell line, HaCaT. In this study, we propose a model to determine the in vitro chemical impact on cell viability of a soluble form of cobalt (CoCl{sub 2}) with or without {gamma}-ray doses to mimic contamination by {sup 60}Co, to elucidate the mechanisms of cobalt intracellular chemical and radiological toxicity. Intracellular cobalt concentration was determined after HaCaT cell contamination and chemical toxicity was evaluated in terms of cellular viability and clonogenic survival. We investigated damage to DNA in HaCaT cells by combined treatment with chemical cobalt and a moderate {gamma}-ray dose. Additive effects of cobalt and irradiation were demonstrated. The underlying mechanism of cobalt toxicity is not clearly established, but our results seem to indicate that the toxicity of Co(II) and of irradiation arises from production of reactive oxygen species. (authors)

  12. Cobalt toxicity: Chemical and radiological combined effects on HaCaT keratinocyte cell line

    Energy Technology Data Exchange (ETDEWEB)

    Sandre, C.; Moulin, C.; Bresson, C. [CEA Saclay, DEN, SECR, Lab Speciat Radionucleides and Mol, F-91191 Gif Sur Yvette (France); Gault, N. [CEA Fontenay Roses, DSV IRCM SCSR LRTS, F-92265 Fontenay Aux Roses (France); Poncy, J. L. [CEA Bruyeres Le Chatel, DSV IRCM SREIT LRT, F-91680 Bruyeres Le Chatel (France); Lefaix, J. L. [CEA Caen, DSV IRCM SRO LARIA, F-14070 Caen (France)

    2010-07-01

    Cobalt (Co) is an essential trace element well known as a constituent of vitamin B{sub 12}, but different compounds of Co are also described as highly toxic and/or radio-toxic for individuals or the environment. In nuclear power plants, {sup 58}Co and {sup 60}Co are radioactive isotopes of cobalt present as activation products of stable Co and Ni used in alloys. Skin exposure is a current occupational risk in the hard metal and nuclear industries. As biochemical and molecular cobalt-induced toxicological mechanisms are not fully identified, we investigated cobalt toxicity in a model human keratinocyte cell line, HaCaT. In this study, we propose a model to determine the in vitro chemical impact on cell viability of a soluble form of cobalt (CoCl{sub 2}) with or without gamma-ray doses to mimic contamination by {sup 60}Co, to elucidate the mechanisms of cobalt intracellular chemical and radiological toxicity. Intracellular cobalt concentration was determined after HaCaT cell contamination and chemical toxicity was evaluated in terms of cellular viability and clonogenic survival. We investigated damage to DNA in HaCaT cells by combined treatment with chemical cobalt and a moderate gamma-ray dose. Additive effects of cobalt and irradiation were demonstrated. The underlying mechanism of cobalt toxicity is not clearly established, but our results seem to indicate that the toxicity of Co(II) and of irradiation arises from production of reactive oxygen species. (authors)

  13. Elucidating mechanisms of toxic action of dissolved organic chemicals in oil sands process-affected water (OSPW).

    Science.gov (United States)

    Morandi, Garrett D; Wiseman, Steve B; Guan, Miao; Zhang, Xiaowei W; Martin, Jonathan W; Giesy, John P

    2017-11-01

    Oil sands process-affected water (OSPW) is generated during extraction of bitumen in the surface-mining oil sands industry in Alberta, Canada, and is acutely and chronically toxic to aquatic organisms. It is known that dissolved organic compounds in OSPW are responsible for most toxic effects, but knowledge of the specific mechanism(s) of toxicity, is limited. Using bioassay-based effects-directed analysis, the dissolved organic fraction of OSPW has previously been fractionated, ultimately producing refined samples of dissolved organic chemicals in OSPW, each with distinct chemical profiles. Using the Escherichia coli K-12 strain MG1655 gene reporter live cell array, the present study investigated relationships between toxic potencies of each fraction, expression of genes and characterization of chemicals in each of five acutely toxic and one non-toxic extract of OSPW derived by use of effects-directed analysis. Effects on expressions of genes related to response to oxidative stress, protein stress and DNA damage were indicative of exposure to acutely toxic extracts of OSPW. Additionally, six genes were uniquely responsive to acutely toxic extracts of OSPW. Evidence presented supports a role for sulphur- and nitrogen-containing chemical classes in the toxicity of extracts of OSPW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Chemical toxicity and radiological health detriment associated with the inhalation of various enrichments of uranium

    International Nuclear Information System (INIS)

    3C Limited, Queen Square House, 18-21 Queen Square, Bristol BS1 4NH (United Kingdom))" data-affiliation=" (SR3C Limited, Queen Square House, 18-21 Queen Square, Bristol BS1 4NH (United Kingdom))" >Bryant, P A

    2014-01-01

    The occupational risks associated with the chemical toxicity of uranium can be overlooked during the processing, handling and storage of the material, as the radioactivity of the material is often used alone to assess the health consequences of exposure to uranium compounds. This note provides a summary of the current United Kingdom occupational standards for uranium based on radiation dose and/or chemical toxicity with a particular focus on intake via inhalation. A simple model is subsequently presented to allow a comparison to be drawn between the occupational exposure standard for chemical toxicity and radiological dose limit. Using these data a set of suggested limits on occupational exposure to airborne uranium is proposed that indicate where the legal annual radiological dose limit for workers or the Health and Safety Executive occupational exposure standard for chemical toxicity are at risk of being breached. (note)

  15. A field study of the confluence between Negro and Solimões Rivers. Part 1: Hydrodynamics and sediment transport

    Science.gov (United States)

    Gualtieri, Carlo; Filizola, Naziano; de Oliveira, Marco; Santos, Andrè Martinelli; Ianniruberto, Marco

    2018-01-01

    Confluences are a common feature of riverine systems, where are located converging flow streamlines and potential mixing of separate flows. The confluence of the Negro and Solimões Rivers ranks among the largest on Earth and its study may provide some general insights into large confluence dynamics and processes. An investigation was recently conducted about that confluence in both low and high-flow conditions using acoustic Doppler velocity profiling (ADCP), water quality sampling and high-resolution seismic data. First, the study gained insights into the characterization of the basic hydrodynamics parameters about the confluence as well as of those affecting sediments transport. Second, the analysis of the results showed that common hydrodynamic features noted in previous confluence studies were herein observed. Finally, some differences between low-flow and relatively high-flow conditions about the transfer of momentum from the Solimões to the Negro side of the Amazon Channel were identified.

  16. Acclimation of Chlamydomonas reinhardtii to ultraviolet radiation and its impact on chemical toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Korkaric, Muris; Xiao, Mao [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland); Behra, Renata [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Duebendorf (Switzerland); Eggen, Rik I.L., E-mail: rik.eggen@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Duebendorf (Switzerland); ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich (Switzerland)

    2015-10-15

    Highlights: • Systematic study of UVR acclimation and its impact on chemical toxicity in C. reinhardtii. • UVR acclimation is mediated through fast and reversible physiological defense mechanisms. • Pigment analysis suggests a role of lutein in UVR acclimation. • Co-tolerance to rose bengal suggests a role of singlet oxygen defense in UVR acclimation. • Knowledge on the toxic mechanism of chemicals needed to predict co-tolerance. - Abstract: The toxicity of chemical pollutants can be modulated under stressful environmental conditions, such as increased temperature, salinity or ultraviolet radiation (UVR), due to the interaction of effects during simultaneous stressor exposure. However, organisms may acclimate to such conditions by activation of physiological and biochemical defence mechanisms. In sequential exposures, organisms acclimated to environmental stressors may display an increased sensitivity or co-tolerance towards chemical pollutants. It has been suggested that co-tolerance might be expected for similarly acting stressors due to common defence mechanisms. To test this for combinations of UVR and chemical stressors, we first acclimatized the model green alga Chlamydomonas reinhardtii to UVR and subsequently compared the sensitivity of UVR pre-exposed and control algae towards chemicals. Selected chemicals all act on photosynthesis and thus share a common physiological target, but display distinct toxicity mechanisms. Results showed that UVR pre-exposure for four days partially inhibited algal growth and photosynthesis, but also increased algal tolerance to higher UVR levels, confirming UVR acclimation. HPLC analysis of algal pigments indicated that UVR acclimation might in part be explained by the protective function of lutein while the contribution of UVR absorbing compounds was less clear. Challenge exposure to chemicals in the absence of UVR showed that acclimated algae were co-tolerant to the photosensitizer rose bengal, but not to the

  17. Acclimation of Chlamydomonas reinhardtii to ultraviolet radiation and its impact on chemical toxicity

    International Nuclear Information System (INIS)

    Korkaric, Muris; Xiao, Mao; Behra, Renata; Eggen, Rik I.L.

    2015-01-01

    Highlights: • Systematic study of UVR acclimation and its impact on chemical toxicity in C. reinhardtii. • UVR acclimation is mediated through fast and reversible physiological defense mechanisms. • Pigment analysis suggests a role of lutein in UVR acclimation. • Co-tolerance to rose bengal suggests a role of singlet oxygen defense in UVR acclimation. • Knowledge on the toxic mechanism of chemicals needed to predict co-tolerance. - Abstract: The toxicity of chemical pollutants can be modulated under stressful environmental conditions, such as increased temperature, salinity or ultraviolet radiation (UVR), due to the interaction of effects during simultaneous stressor exposure. However, organisms may acclimate to such conditions by activation of physiological and biochemical defence mechanisms. In sequential exposures, organisms acclimated to environmental stressors may display an increased sensitivity or co-tolerance towards chemical pollutants. It has been suggested that co-tolerance might be expected for similarly acting stressors due to common defence mechanisms. To test this for combinations of UVR and chemical stressors, we first acclimatized the model green alga Chlamydomonas reinhardtii to UVR and subsequently compared the sensitivity of UVR pre-exposed and control algae towards chemicals. Selected chemicals all act on photosynthesis and thus share a common physiological target, but display distinct toxicity mechanisms. Results showed that UVR pre-exposure for four days partially inhibited algal growth and photosynthesis, but also increased algal tolerance to higher UVR levels, confirming UVR acclimation. HPLC analysis of algal pigments indicated that UVR acclimation might in part be explained by the protective function of lutein while the contribution of UVR absorbing compounds was less clear. Challenge exposure to chemicals in the absence of UVR showed that acclimated algae were co-tolerant to the photosensitizer rose bengal, but not to the

  18. A Risk Assessment Methodology for Toxic Chemicals Evaporation ...

    African Journals Online (AJOL)

    This study presents a method for determining the mass transfer coefficient for the toxic chemicals evaporation from circular pools formed due to the failure of plant integrity or escape from valves. The approach used in this present research work is to develop a correlation by a robust optimization technique known as Genetic ...

  19. The scales of variability of stream fish assemblage at tributary confluences

    Directory of Open Access Journals (Sweden)

    István Czeglédi

    2015-12-01

    Full Text Available Tributary confluences play an important role in the dispersal of organisms, and consequently, in shaping regional scale diversity in stream networks. Despite their importance in dispersal processes, little is known about how ecological assemblages are organized in these habitats. We studied the scales of variability of stream fish assemblages over three seasons using a hierarchical sampling design, which incorporated three tributaries, three sites at the mouth of each tributary and using four sampling units at each site. We found strong scale dependent variability in species richness, composition and relative abundance. Most of the variation was accounted for by the interactive effect of season, between stream and between site effects, while habitat structure of the sampling units had a relatively minor role. Species richness showed a continuous decrease from the mainstem river in most cases, while species composition and relative abundance changed less consistently along the longitudinal profile. Consequently, we found that not only the junctions presented a strong filter on the species pool, but some species were filtered out if they passed this critical habitat bottleneck. Spatial position of the tributaries along the river also contributed to assemblage variability in the confluences. Overall, our results suggest high variability in fish assemblages across multiple scales at tributary confluences. Environmental management should take a more critical care on the filtering role of tributary confluences in species dispersal, for better understanding patterns and processes in the branches of dendritic stream networks.

  20. 2001 Toxic Chemical Release Inventory Emergency Planning and Community Right to Know Act SEC 313

    International Nuclear Information System (INIS)

    ZALOUDEK, D.E.

    2002-01-01

    Pursuant to section 313 of the Emergency Planning and Community Right-To-Know Act of 1986 (EPCRA), and Executive Order 13148, Greening the Government Through Leadership in Environmental Management, the US Department of Energy has prepared and submitted a Toxic Chemical Release Inventory for the Hanford Site covering activities performed during calendar year 2001. EPCRA Section 313 requires facilities that manufacture, process, or otherwise use listed toxic chemicals in quantities exceeding established threshold levels to report total annual releases of those chemicals. During calendar year 2001, Hanford Site activities resulted in one chemical used in amounts exceeding an activity threshold. Accordingly, the Hanford Site 2001 Toxic Chemical Release Inventory, DOE/RL-2002-37, includes total annual amount of lead released to the environment, transferred to offsite locations, and otherwise managed as waste

  1. Toxics release inventory: List of toxic chemicals within the polychlorinated alkanes category and guidance for reporting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    Section 313 of the Emergency Planning and Community Right-to-Know Act of 1986 (EPCRA) requires certain facilities manufacturing, processing, or otherwise using listed toxic chemicals to report their environmental releases of such chemicals annually. On November 30, 1994 EPA added 286 chemicals and chemical categories. Six chemical categories (nicotine and salts, strychnine and salts, polycyclic aromatic compounds, water dissociable nitrate compounds, diisocyanates, and polychlorinated alkanes) are included in these additions. At the time of the addition, EPA indicated that the Agency would develop, as appropriate, interpretations and guidance that the Agency determines are necessary to facilitate accurate reporting for these categories. This document constitutes such guidance for the polychlorinated alkanes category.

  2. Linear solvation energy relationships for toxicity of selected organic chemicals to Daphnia pulex and Daphnia magna

    Science.gov (United States)

    Passino, Dora R.M.; Hickey, James P.; Frank, Anthony M.

    1988-01-01

    In the Laurentian Great Lakes, more than 300 contaminants have been identified in fish, other biota, water, and sediment. Current hazard assessment of these chemicals by the National Fisheries Research Center-Great Lakes is based on their toxicity, occurrence in the environment, and source. Although scientists at the Center have tested over 70 chemicals with the crustacean Daphnia pulex, the number of experimental data needed to screen the huge array of chemicals in the Great Lakes exceeds the practical capabilities of conducting bioassays. This limitation can be partly circumvented, however, by using mathematical models based on quantitative structure-activity relationships (QSAR) to provide rapid, inexpensive estimates of toxicity. Many properties of chemicals, including toxicity, bioaccumulation and water solubility are well correlated and can be predicted by equations of the generalized linear solvation energy relationships (LSER). The equation we used to model solute toxicity is Toxicity = constant + mVI/100 + s (π* + dδ) + bβm + aαm where VI = intrinsic (Van der Waals) molar volume; π* = molecular dipolarity/polarizability; δ = polarizability 'correction term'; βm = solute hydrogen bond acceptor basicity; and αm = solute hydrogen bond donor acidity. The subscript m designates solute monomer values for α and β. We applied the LSER model to 48-h acute toxicity data (measured as immobilization) for six classes of chemicals detected in Great Lakes fish. The following regression was obtained for Daphnia pulex (concentration = μM): log EC50 = 4.86 - 4.35 VI/100; N = 38, r2 = 0.867, sd = 0.403 We also used the LSER modeling approach to analyze to a large published data set of 24-h acute toxicity for Daphnia magna; the following regression resulted, for eight classes of compounds (concentration = mM): log EC50 = 3.88 - 4.52 VI/100 - 1.62 π* + 1.66 βm - 0.916 αm; N = 62, r2 = 0.859, sd = 0.375 In addition we developed computer software that identifies

  3. The complex interaction between marine debris and toxic chemicals in the ocean.

    Science.gov (United States)

    Engler, Richard E

    2012-11-20

    Marine debris, especially plastic debris, is widely recognized as a global environmental problem. There has been substantial research on the impacts of plastic marine debris, such as entanglement and ingestion. These impacts are largely due to the physical presence of plastic debris. In recent years there has been an increasing focus on the impacts of toxic chemicals as they relate to plastic debris. Some plastic debris acts as a source of toxic chemicals: substances that were added to the plastic during manufacturing leach from plastic debris. Plastic debris also acts as a sink for toxic chemicals. Plastic sorbs persistent, bioaccumulative, and toxic substances (PBTs), such as polychlorinated biphenyls (PCBs) and dioxins, from the water or sediment. These PBTs may desorb when the plastic is ingested by any of a variety of marine species. This broad look at the current research suggests that while there is significant uncertainty and complexity in the kinetics and thermodynamics of the interaction, plastic debris appears to act as a vector transferring PBTs from the water to the food web, increasing risk throughout the marine food web, including humans. Because of the extremely long lifetime of plastic and PBTs in the ocean, prevention strategies are vital to minimizing these risks.

  4. Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis.

    Science.gov (United States)

    Zhu, Hao; Tropsha, Alexander; Fourches, Denis; Varnek, Alexandre; Papa, Ester; Gramatica, Paola; Oberg, Tomas; Dao, Phuong; Cherkasov, Artem; Tetko, Igor V

    2008-04-01

    Selecting most rigorous quantitative structure-activity relationship (QSAR) approaches is of great importance in the development of robust and predictive models of chemical toxicity. To address this issue in a systematic way, we have formed an international virtual collaboratory consisting of six independent groups with shared interests in computational chemical toxicology. We have compiled an aqueous toxicity data set containing 983 unique compounds tested in the same laboratory over a decade against Tetrahymena pyriformis. A modeling set including 644 compounds was selected randomly from the original set and distributed to all groups that used their own QSAR tools for model development. The remaining 339 compounds in the original set (external set I) as well as 110 additional compounds (external set II) published recently by the same laboratory (after this computational study was already in progress) were used as two independent validation sets to assess the external predictive power of individual models. In total, our virtual collaboratory has developed 15 different types of QSAR models of aquatic toxicity for the training set. The internal prediction accuracy for the modeling set ranged from 0.76 to 0.93 as measured by the leave-one-out cross-validation correlation coefficient ( Q abs2). The prediction accuracy for the external validation sets I and II ranged from 0.71 to 0.85 (linear regression coefficient R absI2) and from 0.38 to 0.83 (linear regression coefficient R absII2), respectively. The use of an applicability domain threshold implemented in most models generally improved the external prediction accuracy but at the same time led to a decrease in chemical space coverage. Finally, several consensus models were developed by averaging the predicted aquatic toxicity for every compound using all 15 models, with or without taking into account their respective applicability domains. We find that consensus models afford higher prediction accuracy for the

  5. THE FUTURE OF TOXICOLOGY-PREDICTIVE TOXICOLOGY: AN EXPANDED VIEW OF CHEMICAL TOXICITY

    Science.gov (United States)

    A chemistry approach to predictive toxicology relies on structure−activity relationship (SAR) modeling to predict biological activity from chemical structure. Such approaches have proven capabilities when applied to well-defined toxicity end points or regions of chemical space. T...

  6. Handbook of acute toxicity of chemicals to fish and aquatic invertebrates : summaries of toxicity tests conducted at Columbia National Fisheries Research Laboratory, 1965-78

    Science.gov (United States)

    Johnson, W. Waynon; Finley, Mack T.

    1980-01-01

    Acute toxicity is a major subject of research at Columbia National Fisheries Research Laboratory for evaluating the impact of toxic chemicals on fishery resources. The Laboratory has played a leading role in developing research technology for toxicity testing and data interpretation. In 1965-78, more than 400 chemicals were tested against a variety of invertebrates and fish species representative of both cold- and warm-water climates.The use of acute toxicity tests for assessing the potential hazard of chemical contaminants to aquatic organisms is well documented (Boyd 1957; Henderson et al. 1960; Sanders and Cope 1966; Macek and McAllister 1970). Static acute toxicity tests provide rapid and (within limits) reproducible concentration-response curves for estimating toxic effects of chemicals on aquatic organisms. These tests provide a database for determining relative toxicity of a large number of chemicals to a variety of species and for estimating acute effects of chemical spills on natural aquatic systems; they also assist in determining priority and design of additional toxicity studies.Acute toxicity tests usually provide estimates of the exposure concentration causing 50% mortality (LC50) to test organisms during a specified period of time. For certain invertebrates, the effective concentration is based on immobilization, or some other identifiable endpoint, rather than on lethality. The application of the LC50 has gained acceptance among toxicologists and is generally the most highly rated test for assessing potential adverse effects of chemical contaminants to aquatic life (Brungs and Mount 1978; American Institute for Biological Sciences 1978a).The literature contains numerous papers dealing with the acute toxicity of chemicals to freshwater organisms. However, there is a tremendous need for a concise compendium of toxicity data covering a large variety of chemicals and test species. This Handbook is a compilation of a large volume of acute toxicity data

  7. Comparing rankings of selected TRI organic chemicals for two environments using a level III fugacity model and toxicity

    International Nuclear Information System (INIS)

    Edwards, F.G.; Egemen, E.; Nirmalakhandan, N.

    1998-01-01

    The Toxics Release Inventory, TRI (USEPA, 1995) is a comprehensive listing of chemicals, mass released, source of releases, and other related information for chemicals which are released into the environment in the US. These chemicals are then ranked according to the mass released as a indication of their environmental impact. Industries have been encouraged to adopt production methods to decrease the release of chemicals which are ranked highly in the TRI. Clearly, this ranking of the chemicals based upon the mass released fails to take into account very important environmental aspects. The first and most obvious aspect is the wide range of toxicity's of the chemicals released. Numerous researchers have proposed systems to rank chemicals according to their toxicity. The second aspect, which a mass released based ranking does not take into account, is the fate and transport of each chemical within the environment. Cohen and Ryan (1985) and Mackay and Paterson (1991) have proposed models to evaluate the fate and transport of chemicals released into the environment. Some authors have incorporated the mass released and toxicity with some fate and transport aspects to rank the impact of released chemicals. But, due to the complexities of modeling the environment, the lack of published data on properties of chemicals, and the lack of information on the speciation of chemicals in complex systems, modeling the fate and transport of toxic chemicals in the environment remains difficult. To provide an indication of the need to rank chemicals according to their environmental impact instead of the mass released, the authors have utilized a subset of 45 organic chemicals from the TRI, modeled the fate and transport of the chemicals using a Level III fugacity model, and compared those equilibrium concentrations with toxicity data to yield a hazard value for each chemical

  8. Chemical composition and toxicities of essential oil of Illicium ...

    African Journals Online (AJOL)

    The aim of this research was to determine the chemical composition and toxicities of essential oil derived from Illicium fargesii Finet et Gagnep fruits against the maize weevil (Sitophilus zeamais Motsch). Essential oil of I. fargesii fruits was obtained from hydrodistillation and was investigated by GC (Gas Chromatography) ...

  9. VAPOR SAMPLING DEVICE FOR INTERFACE WITH MICROTOX ASSAY FOR SCREENING TOXIC INDUSTRIAL CHEMICALS

    Science.gov (United States)

    A time-integrated sampling system interfaced with a toxicity-based assay is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethyl sulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor...

  10. Enhancement of particle aggregation in the presence of organic matter during neutralization of acid drainage in a stream confluence and its effect on arsenic immobilization.

    Science.gov (United States)

    Arce, Guillermo; Montecinos, Mauricio; Guerra, Paula; Escauriaza, Cristian; Coquery, Marina; Pastén, Pablo

    2017-08-01

    Acid drainage (AD) is an important environmental concern that impacts water quality. The formation of reactive Fe and Al oxyhydroxides during the neutralization of AD at river confluences is a natural attenuation process. Although it is known that organic matter (OM) can affect the aggregation of Fe and Al oxyhydroxides and the sorption of As onto their surfaces, the role of OM during the neutralization of AD at river confluences has not been studied. Field and experimental approaches were used to understand this role, using the Azufre River (pH 2) - Caracarani River (pH 8.6) confluence (northern Chile) as model system. Field measurements of organic carbon revealed a 10-15% loss of OM downstream the confluence, which was attributed to associations with Fe and Al oxyhydroxides that settle in the river bed. Laboratory mixtures of AD water with synthetic Caracarani waters under varying conditions of pH, concentration and type of OM revealed that OM promoted the aggregation of Fe oxyhydroxides without reducing As sorption, enhancing the removal of As at slightly acidic conditions (pH ∼4.5). At acidic conditions (pH ∼3), aggregation of OM - metal complexes at high OM concentrations could become the main removal mechanism. One type of OM promoted bimodal particle size distributions with larger mean sizes, possibly increasing the settling velocity of aggregates. This work contributes to a better understanding of the role of OM in AD affected basins, showing that the presence of OM during processes of neutralization of AD can enhance the removal of toxic elements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Toxicity challenges in environmental chemicals: Prediction of ...

    Science.gov (United States)

    Physiologically based pharmacokinetic (PBPK) models bridge the gap between in vitro assays and in vivo effects by accounting for the adsorption, distribution, metabolism, and excretion of xenobiotics, which is especially useful in the assessment of human toxicity. Quantitative structure-activity relationships (QSAR) serve as a vital tool for the high-throughput prediction of chemical-specific PBPK parameters, such as the fraction of a chemical unbound by plasma protein (Fub). The presented work explores the merit of utilizing experimental pharmaceutical Fub data for the construction of a universal QSAR model, in order to compensate for the limited range of high-quality experimental Fub data for environmentally relevant chemicals, such as pollutants, pesticides, and consumer products. Independent QSAR models were constructed with three machine-learning algorithms, k nearest neighbors (kNN), random forest (RF), and support vector machine (SVM) regression, from a large pharmaceutical training set (~1000) and assessed with independent test sets of pharmaceuticals (~200) and environmentally relevant chemicals in the ToxCast program (~400). Small descriptor sets yielded the optimal balance of model complexity and performance, providing insight into the biochemical factors of plasma protein binding, while preventing over fitting to the training set. Overlaps in chemical space between pharmaceutical and environmental compounds were considered through applicability of do

  12. The effects on health of radiological and chemical toxicity

    International Nuclear Information System (INIS)

    Toledano, M.; Flury-Herard, A.

    2003-01-01

    Future trends in the protection against the effects on health of radiological and/or chemical toxicity will certainly be based on improved knowledge of specific biological mechanisms and individual sensitivity. Progress in these areas will most likely be made at the interfaces between research, health care and biomedical monitoring. (authors)

  13. 78 FR 64210 - Extension of Review Periods Under the Toxic Substances Control Act; Certain Chemicals and...

    Science.gov (United States)

    2013-10-28

    ... Under the Toxic Substances Control Act; Certain Chemicals and Microorganisms; Premanufacture... 325 and 324110), e.g., chemical manufacturing and petroleum refineries. The North American Industrial... Agency under section 5 of the Toxic Substances Control Act (TSCA), received by EPA on or before October 1...

  14. Brand switching and toxic chemicals in cigarette smoke: A national study.

    Science.gov (United States)

    Mendel, Jennifer R; Baig, Sabeeh A; Hall, Marissa G; Jeong, Michelle; Byron, M Justin; Morgan, Jennifer C; Noar, Seth M; Ribisl, Kurt M; Brewer, Noel T

    2018-01-01

    US law requires disclosure of quantities of toxic chemicals (constituents) in cigarette smoke by brand and sub-brand. This information may drive smokers to switch to cigarettes with lower chemical quantities, under the misperception that doing so can reduce health risk. We sought to understand past brand-switching behavior and whether learning about specific chemicals in cigarette smoke increases susceptibility to brand switching. Participants were US adult smokers surveyed by phone (n = 1,151, probability sample) and online (n = 1,561, convenience sample). Surveys assessed whether smokers had ever switched cigarette brands or styles to reduce health risk and about likelihood of switching if the smoker learned their brand had more of a specific chemical than other cigarettes. Chemicals presented were nicotine, carbon monoxide, lead, formaldehyde, arsenic, and ammonia. Past brand switching to reduce health risk was common among smokers (43% in phone survey, 28% in online survey). Smokers who were female, over 25, and current "light" cigarette users were more likely to have switched brands to reduce health risks (all p brand switching based on information about particular chemicals. In both samples, lead, formaldehyde, arsenic, and ammonia led to more susceptibility to switch than nicotine (all p brands or styles to reduce health risks. The majority said they might or would definitely switch brands if they learned their cigarettes had more of a toxic chemical than other brands. Brand switching is a probable unintended consequence of communications that show differences in smoke chemicals between brands.

  15. Antioxidants as potential medical countermeasures for chemical warfare agents and toxic industrial chemicals.

    Science.gov (United States)

    McElroy, Cameron S; Day, Brian J

    2016-01-15

    The continuing horrors of military conflicts and terrorism often involve the use of chemical warfare agents (CWAs) and toxic industrial chemicals (TICs). Many CWA and TIC exposures are difficult to treat due to the danger they pose to first responders and their rapid onset that can produce death shortly after exposure. While the specific mechanism(s) of toxicity of these agents are diverse, many are associated either directly or indirectly with increased oxidative stress in affected tissues. This has led to the exploration of various antioxidants as potential medical countermeasures for CWA/TIC exposures. Studies have been performed across a wide array of agents, model organisms, exposure systems, and antioxidants, looking at an almost equally diverse set of endpoints. Attempts at treating CWAs/TICs with antioxidants have met with mixed results, ranging from no effect to nearly complete protection. The aim of this commentary is to summarize the literature in each category for evidence of oxidative stress and antioxidant efficacy against CWAs and TICs. While there is great disparity in the data concerning methods, models, and remedies, the outlook on antioxidants as medical countermeasures for CWA/TIC management appears promising. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Dividing Streamline Formation Channel Confluences by Physical Modeling

    Directory of Open Access Journals (Sweden)

    Minarni Nur Trilita

    2010-02-01

    Full Text Available Confluence channels are often found in open channel network system and is the most important element. The incoming flow from the branch channel to the main cause various forms and cause vortex flow. Phenomenon can cause erosion of the side wall of the channel, the bed channel scour and sedimentation in the downstream confluence channel. To control these problems needed research into the current width of the branch channel. The incoming flow from the branch channel to the main channel flow bounded by a line distributors (dividing streamline. In this paper, the wide dividing streamline observed in the laboratory using a physical model of two open channels, a square that formed an angle of 30º. Observations were made with a variety of flow coming from each channel. The results obtained in the laboratory observation that the width of dividing streamline flow is influenced by the discharge ratio between the channel branch with the main channel. While the results of a comparison with previous studies showing that the observation in the laboratory is smaller than the results of previous research.

  17. Toxicity assessment of industrial chemicals and airborne contaminants: transition from in vivo to in vitro test methods: a review.

    Science.gov (United States)

    Bakand, S; Winder, C; Khalil, C; Hayes, A

    2005-12-01

    Exposure to occupational and environmental contaminants is a major contributor to human health problems. Inhalation of gases, vapors, aerosols, and mixtures of these can cause a wide range of adverse health effects, ranging from simple irritation to systemic diseases. Despite significant achievements in the risk assessment of chemicals, the toxicological database, particularly for industrial chemicals, remains limited. Considering there are approximately 80,000 chemicals in commerce, and an extremely large number of chemical mixtures, in vivo testing of this large number is unachievable from both economical and practical perspectives. While in vitro methods are capable of rapidly providing toxicity information, regulatory agencies in general are still cautious about the replacement of whole-animal methods with new in vitro techniques. Although studying the toxic effects of inhaled chemicals is a complex subject, recent studies demonstrate that in vitro methods may have significant potential for assessing the toxicity of airborne contaminants. In this review, current toxicity test methods for risk evaluation of industrial chemicals and airborne contaminants are presented. To evaluate the potential applications of in vitro methods for studying respiratory toxicity, more recent models developed for toxicity testing of airborne contaminants are discussed.

  18. Sanitary Assessment of Hazardous Materials Exposed To Highly Toxic Chemical Compounds

    International Nuclear Information System (INIS)

    Rembovskiy, V.; Ermolaeva, E.

    2007-01-01

    Industrial or terroristic accidents in which toxic chemicals (TC) are the main or attendant damaging factors should be regarded as a new challenge for experts, because of little knowledge on the methodology to estimating the long-term risk for humans due to contamination of the building materials and environment. In the Russian Federation, there appeared to be a kind of model systems for developing an algorithm for solving these or similar problems. Under dismantling and liquidation of the former facilities for chemical weapon production (FCWP) the building materials are regarded as potential waste products the fate of which (processing, warehousing, utilization, and destruction) is dependent on their possible hazard for human population and environment. The standard approaches for hazard assessment of waste products of the FCWP turned out to be insufficient. When conducting the present work, the following problems have been solved: 1. Selection of representative samples taking into consideration a diversity of construction materials, great quantities of potentially toxic waste materials, information on the production conditions, breakdowns in the process of production, accidents, composition of the decontaminators used, decontamination frequency, etc. 2. Analysis of TC in composite matrixes complicated by the following problems: extraction, masking effects of concomitant components during indirect analysis, lack of certified methods of direct analysis of TC, discrepancy of results of GC and direct GCMS analysis, low sensitivity of GCMS analysis, big volume of samples (more than 0.5 kg), heterogeneity of physical-chemical properties of different matrixes influencing the process of degradation of TC. 3. Hazard assessment of the wastes in toxic-and-sanitary experiment relying on non-specific signs of intoxication due to relatively low percentage of TC and masking effects of various matrix components. Application of the integral toxicity tests with soil

  19. Confluence of calculational and experimental information for determination of power distribution and burnup

    International Nuclear Information System (INIS)

    Serov, I.V.; Hoogenboom, J.E.

    1996-01-01

    A technique for the statistical confluence of any number of possibly correlated informational sources employed in reactor analysis can be used to improve the estimates of physical quantities given by the sources taken separately. The formulas of the presented technique being based on multivariate Bayesian conditioning are general and can be employed in different applications. Insight into the nature of the informational source allows different types of data associated with the source to be improved. Estimation of biases, variances and correlation coefficients for the systematic and statistical errors associated with the informational sources is reliable confluence, but pays off by providing optimal estimates. The technique of the calculational and experimental information confluence is applied to the determination of the power distribution and burnup for the research reactor HOR of the Delft University of Technology. The code system CONHOR carries out all the stages of the calculation for the HOR reactor, using an existing code for static core calculations and burnup calculations. (author)

  20. Confluence of calculational and experimental information for determination of power distribution and burnup

    Energy Technology Data Exchange (ETDEWEB)

    Serov, I.V.; Hoogenboom, J.E. [Interuniversitair Reactor Inst., Delft (Netherlands)

    1996-05-01

    A technique for the statistical confluence of any number of possibly correlated informational sources employed in reactor analysis can be used to improve the estimates of physical quantities given by the sources taken separately. The formulas of the presented technique being based on multivariate Bayesian conditioning are general and can be employed in different applications. Insight into the nature of the informational source allows different types of data associated with the source to be improved. Estimation of biases, variances and correlation coefficients for the systematic and statistical errors associated with the informational sources is reliable confluence, but pays off by providing optimal estimates. The technique of the calculational and experimental information confluence is applied to the determination of the power distribution and burnup for the research reactor HOR of the Delft University of Technology. The code system CONHOR carries out all the stages of the calculation for the HOR reactor, using an existing code for static core calculations and burnup calculations. (author).

  1. Hydromorphodynamic effects of the width ratio and local tributary widening on discordant confluences

    Science.gov (United States)

    Guillén-Ludeña, S.; Franca, M. J.; Alegria, F.; Schleiss, A. J.; Cardoso, A. H.

    2017-09-01

    River training works performed in the last couple of centuries constrained the natural dynamics of channel networks in locations that include the confluences between tributaries and main channels. As a result, the dynamics of these confluences are currently characterized by homogeneous flow depths, flow velocities, and morphologic conditions, which are associated with impoverished ecosystems. The widening of river reaches is seen as a useful measure for river restoration, as it enhances the heterogeneity in flow depths, flow velocities, sediment transport, and bed substrates. The purpose of this study is to analyze the effects of local widening of the tributary mouth as well as the effects of the ratio between the width of the tributary and that of the main channel on the flow dynamics and bed morphology of river confluences. For that purpose, 12 experiments were conducted in a 70° laboratory confluence. In these experiments, three unit-discharge ratios were tested (qr = 0.37, 0.50, and 0.77) with two width ratios and two tributary configurations. The unit-discharge ratio is defined as the unit discharge in the tributary divided by that of the main channel, measured upstream of the confluence. The width ratio, which is defined as the width of the tributary divided by that of the main channel, was modified by changing the width of the main channel from 0.50 to 1.00 m (corresponding to Br = 0.30 and 0.15 respectively). The tributary configurations consisted of (i) a straight reach with a constant width (the so-called reference configuration) and (ii) a straight reach with a local widening at the downstream end (the so-called widened configuration). During the experiments, a uniform sediment mixture was continuously supplied to both channels. This experimental setup is novel among existing experimental studies on confluence dynamics, as it addresses new confluence configurations and includes a continuous sediment supply to both channels. The experiments were run

  2. Globalisation plus Comparative and International Education: Towards a Theory of the Confluence

    Directory of Open Access Journals (Sweden)

    Emefa Amoako

    2012-04-01

    Full Text Available This paper attempts to contribute to ways by which confluence, referring to a meeting point for the different agents to cooperate and communicate on education policy processes, can be understood. Pertinent national education policies in countries receiving aid, in particular, are formed and implemented in a complex nexus. Cultural and context sensitivity can be stimulated through a thorough understanding of this confluence, which subsequently can enable the different policy agents, which function at this meeting point, collaborate to alleviate some of the educational challenges. Comparative and international education, in this respect, has a significant role to play.

  3. Host Response to Environmental Hazards: Using Literature, Bioinformatics, and Computation to Derive Candidate Biomarkers of Toxic Industrial Chemical Exposure

    Science.gov (United States)

    2015-10-01

    military threat chemicals with adverse health effects and clinical outcomes to improve diagnostic potential after exposure to toxic industrial...end organ injury following chemical exposures in the field. Markers of end-organ injury and toxicity and other health effects markers, particularly...Biomarkers of Toxic Industrial Chemical Exposure Major Jonathan D. Stallings *1 , Danielle L. Ippolito 1 , Anders Wallqvist 2 , B. Claire McDyre 3 , and

  4. Effects-driven chemical fractionation of heavy fuel oil to isolate compounds toxic to trout embryos.

    Science.gov (United States)

    Bornstein, Jason M; Adams, Julie; Hollebone, Bruce; King, Thomas; Hodson, Peter V; Brown, R Stephen

    2014-04-01

    Heavy fuel oil (HFO) spills account for approximately 60% of ship-source oil spills and are up to 50 times more toxic than medium and light crude oils. Heavy fuel oils contain elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) and alkyl-PAHs, known to be toxic to fish; however, little direct characterization of HFO toxicity has been reported. An effects-driven chemical fractionation was conducted on HFO 7102 to separate compounds with similar chemical and physical properties, including toxicity, to isolate the groups of compounds most toxic to trout embryos. After each separation, toxicity tests directed the next phase of fractionation, and gas chromatography-mass spectrometry analysis correlated composition with toxicity, with a focus on PAHs. Low-temperature vacuum distillation permitted the separation of HFO into 3 fractions based on boiling point ranges. The most toxic of these fractions underwent wax precipitation to remove long-chain n-alkanes. The remaining PAH-rich extract was further separated using open column chromatography, which provided distinct fractions that were grouped according to increasing aromatic ring count. The most toxic of these fractions was richest in PAHs and alkyl-PAHs. The results of the present study were consistent with previous crude oil studies that identified PAH-rich fractions as the most toxic. © 2013 SETAC.

  5. Toxicity and chemical analyses of airport runoff waters in Poland.

    Science.gov (United States)

    Sulej, Anna Maria; Polkowska, Zaneta; Wolska, Lidia; Cieszynska, Monika; Namieśnik, Jacek

    2014-05-01

    The aim of this study was to assess the ecotoxicological effects of various compounds in complex airport effluents using a chemical and ecotoxicological integrated strategy. The present work deals with the determination of sum of PCBs, PAHs, pesticides, cations, anions, phenols, anionic, cationic, non-ionic detergents, formaldehyde and metals--as well as TOC and conductivity--in runoff water samples collected from 2009 to 2011 at several locations on two Polish international airports. Two microbiotests (Vibrio fischeri bacteria and the crustacean Thamnocephalus platyurus) have been used to determine the ecotoxicity of airport runoff waters. The levels of many compounds exceeded several or even several tens of times the maximum permissible levels. Analysis of the obtained data shows that samples that displayed maximum toxicity towards the bioindicators Vibrio fischeri were not toxic towards Thamnocephalus platyurus. Levels of toxicity towards T. platyurus are strongly correlated with pollutants that originate from the technological operations related to the maintenance of airport infrastructure. The integrated (chemical-ecotoxicological) approach to environmental contamination assessment in and around airports yields extensive information on the quality of the environment. These methodologies can be then used as tools for tracking the environmental fate of these compounds and for assessing the environmental effect of airports. Subsequently, these data will provide a basis for airport infrastructure management.

  6. Confluence Model or Resource Dilution Hypothesis?

    DEFF Research Database (Denmark)

    Jæger, Mads

    have a negative effect on educational attainment most studies cannot distinguish empirically between the CM and the RDH. In this paper, I use the different theoretical predictions in the CM and the RDH on the role of cognitive ability as a partial or complete mediator of the sibship size effect......Studies on family background often explain the negative effect of sibship size on educational attainment by one of two theories: the Confluence Model (CM) or the Resource Dilution Hypothesis (RDH). However, as both theories – for substantively different reasons – predict that sibship size should...

  7. Physical and chemical parameters of sediment extraction and fractionation that influence toxicity, as evaluated by microtox (trade name)

    International Nuclear Information System (INIS)

    Ho, K.T.Y.; Quinn, J.G.

    1993-01-01

    Several physical and chemical parameters of sediment extraction and fractionation of organic compounds that influence bioassay results were evaluated. Each parameter was evaluated with a photoluminescent bacterial bioassay (Microtox) as an end point. Three solvents (acetonitrile, acetone, and methanol) were studied for their ability to extract toxic organic components from marine sediments. Acetone extracted the most toxicity, with no difference between acetonitrile and methanol. Two methods of fractionating sediment extracts (silica-gel-column chromatography (SGCC) and acid-base fractionation) were compared. SGCC was more useful because it resulted in a wider range of responses and was faster to perform than acid-base fractionation. Microtox was used to rank four marine sediments with respect to toxicity and to determine if one chemical class (or fraction) was consistently more toxic among different sediments. With some caveats, Microtox results agreed with general chemical concentration trends and other bioassay results in distinguishing between contaminated and noncontaminated sediments. Although results indicated there was not a consistently most toxic fraction among sediments, there was a consistently least toxic fraction. The effect of sediment storage time on toxicity was also evaluated. Results indicated that the most stable chemical fraction (containing nonpolar hydrocarbons) did not change toxicologically for 30 weeks, whereas the more chemically active fraction (containing ketones, quinones, and carboxyls) changed as soon as one week

  8. Acute oral toxicity of chemicals in terrestrial life stages of amphibians: Comparisons to birds and mammals.

    Science.gov (United States)

    Crane, Mark; Finnegan, Meaghean; Weltje, Lennart; Kosmala-Grzechnik, Sylwia; Gross, Melanie; Wheeler, James R

    2016-10-01

    Amphibians are currently the most threatened and rapidly declining group of vertebrates and this has raised concerns about their potential sensitivity and exposure to plant protection products and other chemicals. Current environmental risk assessment procedures rely on surrogate species (e.g. fish and birds) to cover the risk to aquatic and terrestrial life stages of amphibians, respectively. Whilst a recent meta-analysis has shown that in most cases amphibian aquatic life stages are less sensitive to chemicals than fish, little research has been conducted on the comparative sensitivity of terrestrial amphibian life stages. Therefore, in this paper we address the questions "What is the relative sensitivity of terrestrial amphibian life stages to acute chemical oral exposure when compared with mammals and birds?" and "Are there correlations between oral toxicity data for amphibians and data for mammals or birds?" Identifying a relationship between these data may help to avoid additional vertebrate testing. Acute oral amphibian toxicity data collected from the scientific literature and ecotoxicological databases were compared with toxicity data for mammals and birds. Toxicity data for terrestrial amphibian life stages are generally sparse, as noted in previous reviews. Single-dose oral toxicity data for terrestrial amphibian life stages were available for 26 chemicals and these were positively correlated with LD50 values for mammals, while no correlation was found for birds. Further, the data suggest that oral toxicity to terrestrial amphibian life stages is similar to or lower than that for mammals and birds, with a few exceptions. Thus, mammals or birds are considered adequate toxicity surrogates for use in the assessment of the oral exposure route in amphibians. However, there is a need for further data on a wider range of chemicals to explore the wider applicability of the current analyses and recommendations. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Children's vulnerability to toxic chemicals: a challenge and opportunity to strengthen health and environmental policy.

    Science.gov (United States)

    Landrigan, Philip J; Goldman, Lynn R

    2011-05-01

    A key policy breakthrough occurred nearly twenty years ago with the discovery that children are far more sensitive than adults to toxic chemicals in the environment. This finding led to the recognition that chemical exposures early in life are significant and preventable causes of disease in children and adults. We review this knowledge and recommend a new policy to regulate industrial and consumer chemicals that will protect the health of children and all Americans, prevent disease, and reduce health care costs. The linchpins of a new US chemical policy will be: first, a legally mandated requirement to test the toxicity of chemicals already in commerce, prioritizing chemicals in the widest use, and incorporating new assessment technologies; second, a tiered approach to premarket evaluation of new chemicals; and third, epidemiologic monitoring and focused health studies of exposed populations.

  10. Overview of toxicity data and risk assessment methods for evaluating the chemical effects of depleted uranium compounds

    International Nuclear Information System (INIS)

    Hartmann, H.M.; Monette, F.A.; Avci, H.I.

    2000-01-01

    In the United States, depleted uranium is handled or used in several chemical forms by both governmental agencies and private industry (primarily companies producing and machining depleted uranium metal for military applications). Human exposure can occur as a result of handling these compounds, routine low-level effluent releases to the environment from processing facilities, or materials being accidentally released from storage locations or during processing or transportation. Exposure to uranium can result in both chemical and radiological toxicity, but in most instances chemical toxicity is of greater concern. This article discusses the chemical toxic effects from human exposure to depleted uranium compounds that are likely to be handled during the long-term management and use of depleted uranium hexafluoride (UF 6 ) inventories in the United States. It also reviews representative publications in the toxicological literature to establish appropriate reference values for risk assessments. Methods are described for evaluating chemical toxicity caused by chronic low-level exposure and acute exposure. Example risk evaluations are provided for illustration. Preliminary results indicate that chemical effects of chronic exposure to uranium compounds under normal operating conditions would be negligibly small. Results also show that acute exposures under certain accident conditions could cause adverse chemical effects among the populations exposed.

  11. Associations between water physicochemistry and Prymnesium parvum presence, abundance, and toxicity in west Texas reservoirs

    Science.gov (United States)

    VanLandeghem, Matthew M.; Farooqi, Mukhtar; Southard, Greg M.; Patino, Reynaldo

    2015-01-01

    Toxic blooms of golden alga (Prymnesium parvum) have caused substantial ecological and economic harm in freshwater and marine systems throughout the world. In North America, toxic blooms have impacted freshwater systems including large reservoirs. Management of water chemistry is one proposed option for golden alga control in these systems. The main objective of this study was to assess physicochemical characteristics of water that influence golden alga presence, abundance, and toxicity in the Upper Colorado River basin (UCR) in Texas. The UCR contains reservoirs that have experienced repeated blooms and other reservoirs where golden alga is present but has not been toxic. We quantified golden alga abundance (hemocytometer counts), ichthyotoxicity (bioassay), and water chemistry (surface grab samples) at three impacted reservoirs on the Colorado River; two reference reservoirs on the Concho River; and three sites at the confluence of these rivers. Sampling occurred monthly from January 2010 to July 2011. Impacted sites were characterized by higher specific conductance, calcium and magnesium hardness, and fluoride than reference and confluence sites. At impacted sites, golden alga abundance and toxicity were positively associated with salinity-related variables and blooms peaked at ~10°C and generally did not occur above 20°C. Overall, these findings suggest management of land and water use to reduce hardness or salinity could produce unfavorable conditions for golden alga.

  12. Non-invasive and non-destructive measurements of confluence in cultured adherent cell lines.

    Science.gov (United States)

    Busschots, Steven; O'Toole, Sharon; O'Leary, John J; Stordal, Britta

    2015-01-01

    Many protocols used for measuring the growth of adherent monolayer cells in vitro are invasive, destructive and do not allow for the continued, undisturbed growth of cells within flasks. Protocols often use indirect methods for measuring proliferation. Microscopy techniques can analyse cell proliferation in a non-invasive or non-destructive manner but often use expensive equipment and software algorithms. In this method images of cells within flasks are captured by photographing under a standard inverted phase contract light microscope using a digital camera with a camera lens adaptor. Images are analysed for confluence using ImageJ freeware resulting in a measure of confluence known as an Area Fraction (AF) output. An example of the AF method in use on OVCAR8 and UPN251 cell lines is included. •Measurements of confluence from growing adherent cell lines in cell culture flasks is obtained in a non-invasive, non-destructive, label-free manner.•The technique is quick, affordable and eliminates sample manipulation.•The technique provides an objective, consistent measure of when cells reach confluence and is highly correlated to manual counting with a haemocytometer. The average correlation co-efficient from a Spearman correlation (n = 3) was 0.99 ± 0.008 for OVCAR8 (p = 0.01) and 0.99 ± 0.01 for UPN251 (p = 0.01) cell lines.

  13. Upper parameters of toxicity (LDsub(50/30)) of some radioactive and chemical substances

    International Nuclear Information System (INIS)

    Rodionova, L.F.; Kupriyanova, V.M.; Zasedatelev, A.A.

    1978-01-01

    The toxicities of radioactive ( 90 Sr, 210 Po) and chemical (lead nitrate, mercuric chloride) substances were compared using equivalent procedures. Ninety six doses of toxic substances in various concentrations were tested on mice to which these substances were administered by intragastric intubation. The material was processed and analyzed by conventional methods used in toxicology. The upper limits of toxicity for the tested substances were determined from their LDsub(50/30) values by various methods of calculation

  14. Lethal toxicity of industrial chemicals to early life stages of Tilapia guineensis.

    Science.gov (United States)

    Ezemonye, L I N; Ogeleka, D F; Okieimen, F E

    2008-08-30

    The toxic effects of industrial chemicals on three early life stages of an economically important fish, Tilapia guineensis were investigated using the Organisation for Economic Cooperation and Development (OECD) # 203 recommended semi-static renewal bioassay. The assessment was necessary for the uncontrollable disposal of Neatex (liquid detergent) and Norust CR 486 (corrosion inhibitor) into the Niger Delta environment of Nigeria. The estimated 96-h LC(50) for 7-, 14- and 28-day-old fish in Norust CR 486 exposure was considered "more toxic" than Neatex in all life stages and was dependent on species age, exposure duration and environment. In the fresh water test, for Neatex and Norust CR 486 exposures for day 7, 14 and 28, the 96-h LC50 were 8.79, 17.10 and 82.42 mg/l and 5.55, 13.58 and 20.21 mg/l, respectively. In the brackish test, 15.42 and 46.52 mg/l, not determined (ND) and 7.35, 13.95 and 24.50mg/l were obtained. Differential toxicity was observed in the fresh and brackish water fish for the two chemicals and controls at pchemicals provides a rationale for regulatory surveillance and monitoring of both chemicals in the fragile Niger Delta environment.

  15. Chemical mixtures in untreated water from public-supply wells in the U.S. - Occurrence, composition, and potential toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Toccalino, Patricia L., E-mail: ptocca@usgs.gov [U.S. Geological Survey (USGS), 6000 J Street, Placer Hall, Sacramento, California 95819 (United States); Norman, Julia E., E-mail: jnorman@usgs.gov [USGS, 2130 SW 5th Avenue, Portland, Oregon 97201 (United States); Scott, Jonathon C., E-mail: jon@usgs.gov [USGS, 202 NW 66th Street, Oklahoma City, Oklahoma 73116 (United States)

    2012-08-01

    Chemical mixtures are prevalent in groundwater used for public water supply, but little is known about their potential health effects. As part of a large-scale ambient groundwater study, we evaluated chemical mixtures across multiple chemical classes, and included more chemical contaminants than in previous studies of mixtures in public-supply wells. We (1) assessed the occurrence of chemical mixtures in untreated source-water samples from public-supply wells, (2) determined the composition of the most frequently occurring mixtures, and (3) characterized the potential toxicity of mixtures using a new screening approach. The U.S. Geological Survey collected one untreated water sample from each of 383 public wells distributed across 35 states, and analyzed the samples for as many as 91 chemical contaminants. Concentrations of mixture components were compared to individual human-health benchmarks; the potential toxicity of mixtures was characterized by addition of benchmark-normalized component concentrations. Most samples (84%) contained mixtures of two or more contaminants, each at concentrations greater than one-tenth of individual benchmarks. The chemical mixtures that most frequently occurred and had the greatest potential toxicity primarily were composed of trace elements (including arsenic, strontium, or uranium), radon, or nitrate. Herbicides, disinfection by-products, and solvents were the most common organic contaminants in mixtures. The sum of benchmark-normalized concentrations was greater than 1 for 58% of samples, suggesting that there could be potential for mixtures toxicity in more than half of the public-well samples. Our findings can be used to help set priorities for groundwater monitoring and suggest future research directions for drinking-water treatment studies and for toxicity assessments of chemical mixtures in water resources. - Highlights: Black-Right-Pointing-Pointer We assessed mixtures in untreated groundwater samples from public

  16. Brand switching and toxic chemicals in cigarette smoke: A national study.

    Directory of Open Access Journals (Sweden)

    Jennifer R Mendel

    Full Text Available US law requires disclosure of quantities of toxic chemicals (constituents in cigarette smoke by brand and sub-brand. This information may drive smokers to switch to cigarettes with lower chemical quantities, under the misperception that doing so can reduce health risk. We sought to understand past brand-switching behavior and whether learning about specific chemicals in cigarette smoke increases susceptibility to brand switching.Participants were US adult smokers surveyed by phone (n = 1,151, probability sample and online (n = 1,561, convenience sample. Surveys assessed whether smokers had ever switched cigarette brands or styles to reduce health risk and about likelihood of switching if the smoker learned their brand had more of a specific chemical than other cigarettes. Chemicals presented were nicotine, carbon monoxide, lead, formaldehyde, arsenic, and ammonia.Past brand switching to reduce health risk was common among smokers (43% in phone survey, 28% in online survey. Smokers who were female, over 25, and current "light" cigarette users were more likely to have switched brands to reduce health risks (all p < .05. Overall, 61-92% of smokers were susceptible to brand switching based on information about particular chemicals. In both samples, lead, formaldehyde, arsenic, and ammonia led to more susceptibility to switch than nicotine (all p < .05.Many US smokers have switched brands or styles to reduce health risks. The majority said they might or would definitely switch brands if they learned their cigarettes had more of a toxic chemical than other brands. Brand switching is a probable unintended consequence of communications that show differences in smoke chemicals between brands.

  17. Predicting acute aquatic toxicity of structurally diverse chemicals in fish using artificial intelligence approaches.

    Science.gov (United States)

    Singh, Kunwar P; Gupta, Shikha; Rai, Premanjali

    2013-09-01

    The research aims to develop global modeling tools capable of categorizing structurally diverse chemicals in various toxicity classes according to the EEC and European Community directives, and to predict their acute toxicity in fathead minnow using set of selected molecular descriptors. Accordingly, artificial intelligence approach based classification and regression models, such as probabilistic neural networks (PNN), generalized regression neural networks (GRNN), multilayer perceptron neural network (MLPN), radial basis function neural network (RBFN), support vector machines (SVM), gene expression programming (GEP), and decision tree (DT) were constructed using the experimental toxicity data. Diversity and non-linearity in the chemicals' data were tested using the Tanimoto similarity index and Brock-Dechert-Scheinkman statistics. Predictive and generalization abilities of various models constructed here were compared using several statistical parameters. PNN and GRNN models performed relatively better than MLPN, RBFN, SVM, GEP, and DT. Both in two and four category classifications, PNN yielded a considerably high accuracy of classification in training (95.85 percent and 90.07 percent) and validation data (91.30 percent and 86.96 percent), respectively. GRNN rendered a high correlation between the measured and model predicted -log LC50 values both for the training (0.929) and validation (0.910) data and low prediction errors (RMSE) of 0.52 and 0.49 for two sets. Efficiency of the selected PNN and GRNN models in predicting acute toxicity of new chemicals was adequately validated using external datasets of different fish species (fathead minnow, bluegill, trout, and guppy). The PNN and GRNN models showed good predictive and generalization abilities and can be used as tools for predicting toxicities of structurally diverse chemical compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Toxicity testing of chemical mixtures: some general aspects and need of international guidelines.

    Science.gov (United States)

    Kappus, H; Yang, R S

    1996-01-01

    The topics discussed by the Working Group on Toxicity Testing of Chemical Mixtures included the following (1) the study designs and results from two real-life exposure scenarios as additional information to the various investigations reported at the conference; (2) the need to take into consideration low-level, long-term exposure (i.e. mimicking human exposure conditions) as well as the issue of limited resources in experimental toxicology studies; (3) the importance of exploring alternative and predictive toxicology methodologies to minimize animal use and to conserve resources; (4) the realization that interactive toxicity should include the consideration of physical and biological agents in addition to chemicals. Two specific studies reported at the conference were also discussed. A number of recommendations were made concerning the planning and implementation of toxicology studies on chemical mixtures.

  19. Particle size: a missing factor in risk assessment of human exposure to toxic chemicals in settled indoor dust.

    Science.gov (United States)

    Cao, Zhi-Guo; Yu, Gang; Chen, Yong-Shan; Cao, Qi-Ming; Fiedler, Heidelore; Deng, Shu-Bo; Huang, Jun; Wang, Bin

    2012-11-15

    For researches on toxic chemicals in settled indoor dust, selection of dust fraction is a critical influencing factor to the accuracy of human exposure risk assessment results. However, analysis of the selection of dust fraction in recent studies revealed that there is no consensus. This study classified and presented researches on distribution of toxic chemicals according to dust particle size and on relationship between dust particle size and human exposure possibility. According to the literature, beyond the fact that there were no consistent conclusions on particle size distribution of adherent fraction, dust with particle size less than 100 μm should be paid more attention and that larger than 250 μm is neither adherent nor proper for human exposure risk assessment. Calculation results based on literature data show that with different selections of dust fractions, analytical results of toxic chemicals would vary up to 10-fold, which means that selecting dust fractions arbitrarily will lead to large errors in risk assessment of human exposure to toxic chemicals in settled dust. Taking into account the influence of dust particle size on risk assessment of human exposure to toxic chemicals, a new methodology for risk assessment of human exposure to toxic chemicals in settled indoor dust is proposed and human exposure parameter systems to settled indoor dust are advised to be established at national and regional scales all over the world. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Integrating attachment and depression in the confluence model of sexual assault perpetration.

    Science.gov (United States)

    Nguyen, David; Parkhill, Michele R

    2014-08-01

    This study sought to extend the confluence model of sexual assault perpetration by examining attachment insecurity and depression as additional predictors of sexual aggression. Male college students (N = 193) completed an online questionnaire assessing confluence model constructs in addition to attachment and history of depression. Overall, the model fit the data well, χ(2)(11, 193) = 19.43, p = ns; root mean square error of approximation = .063; comparative fit index = .94. Attachment and depression demonstrated both direct and indirect relationships with perpetration severity. The results contribute to elucidating the process by which certain men become susceptible to perpetrating sexual assault. Implications are discussed. © The Author(s) 2014.

  1. Chemical mixtures in untreated water from public-supply wells in the U.S. — Occurrence, composition, and potential toxicity

    International Nuclear Information System (INIS)

    Toccalino, Patricia L.; Norman, Julia E.; Scott, Jonathon C.

    2012-01-01

    Chemical mixtures are prevalent in groundwater used for public water supply, but little is known about their potential health effects. As part of a large-scale ambient groundwater study, we evaluated chemical mixtures across multiple chemical classes, and included more chemical contaminants than in previous studies of mixtures in public-supply wells. We (1) assessed the occurrence of chemical mixtures in untreated source-water samples from public-supply wells, (2) determined the composition of the most frequently occurring mixtures, and (3) characterized the potential toxicity of mixtures using a new screening approach. The U.S. Geological Survey collected one untreated water sample from each of 383 public wells distributed across 35 states, and analyzed the samples for as many as 91 chemical contaminants. Concentrations of mixture components were compared to individual human-health benchmarks; the potential toxicity of mixtures was characterized by addition of benchmark-normalized component concentrations. Most samples (84%) contained mixtures of two or more contaminants, each at concentrations greater than one-tenth of individual benchmarks. The chemical mixtures that most frequently occurred and had the greatest potential toxicity primarily were composed of trace elements (including arsenic, strontium, or uranium), radon, or nitrate. Herbicides, disinfection by-products, and solvents were the most common organic contaminants in mixtures. The sum of benchmark-normalized concentrations was greater than 1 for 58% of samples, suggesting that there could be potential for mixtures toxicity in more than half of the public-well samples. Our findings can be used to help set priorities for groundwater monitoring and suggest future research directions for drinking-water treatment studies and for toxicity assessments of chemical mixtures in water resources. - Highlights: ► We assessed mixtures in untreated groundwater samples from public-supply wells. ► A screening

  2. In vitro development of cloned bovine embryos produced by handmade cloning using somatic cells from distinct levels of cell culture confluence.

    Science.gov (United States)

    Gerger, R P C; Ribeiro, E S; Forell, F; Bertolini, L R; Rodrigues, J L; Ambrósio, C E; Miglino, M A; Mezzalira, A; Bertolini, M

    2010-02-18

    The relationship between the level of cell confluence near the plateau phase of growth and blastocyst yield following somatic cell cloning is not well understood. We examined the effect of distinct cell culture confluence levels on in vitro development of cloned bovine embryos. In vitro-matured bovine oocytes were manually bisected and selected by DNA staining. One or two enucleated hemi-cytoplasts were paired and fused with an adult skin somatic cell. Cultured skin cells from an adult Nellore cow harvested at three distinct culture confluence levels (70-80, 80-90, and >95%) were used for construction of embryos and hemi-embryos. After activation, structures were cultured in vitro as one embryo (1 x 100%) or as aggregates of two hemi-embryos (2 x 50%) per microwell. Fusion, cleavage and blastocyst rates were compared using the chi(2) test. The fusion rate for hemi-embryos (51.4%) was lower than for embryos (67.6%), with no influence of degree of cell confluence. However, blastocyst rates improved linearly (7.0, 17.5, and 29.4%) with increases in cell confluence. We conclude that degree of cell culture confluence significantly influences subsequent embryo development; use of a cell population in high confluence (>90%) for nuclear transfer significantly improved blastocyst yield after cloning.

  3. Human computer confluence applied in healthcare and rehabilitation.

    Science.gov (United States)

    Viaud-Delmon, Isabelle; Gaggioli, Andrea; Ferscha, Alois; Dunne, Stephen

    2012-01-01

    Human computer confluence (HCC) is an ambitious research program studying how the emerging symbiotic relation between humans and computing devices can enable radically new forms of sensing, perception, interaction, and understanding. It is an interdisciplinary field, bringing together researches from horizons as various as pervasive computing, bio-signals processing, neuroscience, electronics, robotics, virtual & augmented reality, and provides an amazing potential for applications in medicine and rehabilitation.

  4. Use of multispectral satellite remote sensing to assess mixing of suspended sediment downstream of large river confluences

    Science.gov (United States)

    Umar, M.; Rhoads, Bruce L.; Greenberg, Jonathan A.

    2018-01-01

    Although past work has noted that contrasts in turbidity often are detectable on remotely sensed images of rivers downstream from confluences, no systematic methodology has been developed for assessing mixing over distance of confluent flows with differing surficial suspended sediment concentrations (SSSC). In contrast to field measurements of mixing below confluences, satellite remote-sensing can provide detailed information on spatial distributions of SSSC over long distances. This paper presents a methodology that uses remote-sensing data to estimate spatial patterns of SSSC downstream of confluences along large rivers and to determine changes in the amount of mixing over distance from confluences. The method develops a calibrated Random Forest (RF) model by relating training SSSC data from river gaging stations to derived spectral indices for the pixels corresponding to gaging-station locations. The calibrated model is then used to predict SSSC values for every river pixel in a remotely sensed image, which provides the basis for mapping of spatial variability in SSSCs along the river. The pixel data are used to estimate average surficial values of SSSC at cross sections spaced uniformly along the river. Based on the cross-section data, a mixing metric is computed for each cross section. The spatial pattern of change in this metric over distance can be used to define rates and length scales of surficial mixing of suspended sediment downstream of a confluence. This type of information is useful for exploring the potential influence of various controlling factors on mixing downstream of confluences, for evaluating how mixing in a river system varies over time and space, and for determining how these variations influence water quality and ecological conditions along the river.

  5. Characterization of ZnS thin films synthesized through a non-toxic precursors chemical bath

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, C.A. [Department of Materials Engineering, Faculty of Engineering, University of Concepción, Edmundo Larenas 270, Concepción 4070409 (Chile); Sandoval-Paz, M.G. [Department of Physics, Faculty of Physics and Mathematics, University of Concepción, Concepción (Chile); Cabello, G. [Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, Campus Fernando May, Chillán (Chile); Flores, M.; Fernández, H. [Department of Physics, Faculty of Physics and Mathematics, University of Chile, Beauchef 850, Santiago (Chile); Carrasco, C., E-mail: ccarrascoc@udec.cl [Department of Materials Engineering, Faculty of Engineering, University of Concepción, Edmundo Larenas 270, Concepción 4070409 (Chile)

    2014-12-15

    Highlights: • High quality ZnS thin films have been deposited by chemical bath deposition technique from a non-toxic precursor’s solution. • Nanocrystalline ZnS thin films with large band gap energy were synthesized without using ammonia. • Evidence that the growing of the thin films is carried out by means of hydroxide mechanism was found. • The properties of these ZnS thin films are similar and in some cases better than the corresponding ones produced using toxic precursors such as ammonia. - Abstract: In solar cells, ZnS window layer deposited by chemical bath technique can reach the highest conversion efficiency; however, precursors used in the process normally are materials highly volatile, toxic and harmful to the environment and health (typically ammonia and hydrazine). In this work the characterization of ZnS thin films deposited by chemical bath in a non-toxic alkaline solution is reported. The effect of deposition technique (growth in several times) on the properties of the ZnS thin film was studied. The films exhibited a high percentage of optical transmission (greater than 80%); as the deposition time increased a decreasing in the band gap values from 3.83 eV to 3.71 eV was observed. From chemical analysis, the presence of ZnS and Zn(OH){sub 2} was identified and X-ray diffraction patterns exhibited a clear peak corresponding to ZnS hexagonal phase (1 0 3) plane, which was confirmed by electron diffraction patterns. From morphological studies, compact samples with well-defined particles, low roughness, homogeneous and pinhole-free in the surface were observed. From obtained results, it is evident that deposits of ZnS–CBD using a non-toxic solution are suitable as window layer for TFSC.

  6. Assessment of the chemical toxicity of long-lived radionuclides on the basis of Who guidelines for drinking-water quality

    International Nuclear Information System (INIS)

    Renaud-Salis, V.; Menetrier, F.; Leudet, A.; Flury-Herard, A.

    2003-01-01

    The current assessment of health risks related to long lived radionuclides waste management is not complete if accounting only for radiological toxicity aspects. Although such an approach is justified for a large number of radionuclides of concern, it nevertheless cannot be exclusive and generalised: the chemical toxicity should be considered for radionuclides with a radioactive half-life exceeding 10 5 years. When assessing the chemical or radiological toxicity of a radionuclide, a reference dose applied to drinking water consumption (0.1 mSv/year) can be compared to existing toxicological data. Such an approach has been used by the World Health Organization for natural uranium, for which a guideline value in drinking water derived from its chemical toxicity (2 μg/l) is recommended. WHO's approach is used here for illustrating that the potential chemical toxicity of an element is to be considered for assessing health risks related to long-lived radionuclides. (authors)

  7. CHEMICAL CONTAMINATION AND TOXICITY ASSOCIATED WITH A COASTAL GOLF COURSE COMPLEX

    Science.gov (United States)

    The increasing density of golf courses represents a potential source of contamination to nearby coastal areas, the chemical and biological magnitude of which is almost unknown. The objective of this study was to compare the concentrations of contaminants and toxicities of sedime...

  8. Passive dosing of polycyclic aromatic hydrocarbon (PAH) mixtures to terrestrial springtails: Linking mixture toxicity to chemical activities, equilibrium lipid concentrations, and toxic units

    DEFF Research Database (Denmark)

    Schmidt, Stine Nørgaard; Holmstrup, Martin; Smith, Kilian E. C.

    2013-01-01

    treatments, containing the polycyclic aromatic hydrocarbons (PAHs) naphthalene, phenanthrene, and pyrene. Springtail lethality was then linked to sum chemical activities (∑a), sum equilibrium lipid concentrations (∑Clipid eq.), and sum toxic units (∑TU). In each case, the effects of all 12 mixture treatments...... could be fitted to one sigmoidal exposure-response relationship. The effective lethal chemical activity (La50) of 0.027 was well within the expected range for baseline toxicity of 0.01-0.1. Linking the effects to the lipid-based exposure parameter yielded an effective lethal concentration (LClipid eq...

  9. Mobility and Attenuation Dynamics of Potentially Toxic Chemical Species at an Abandoned Copper Mine Tailings Dump

    Directory of Open Access Journals (Sweden)

    Wilson Mugera Gitari

    2018-02-01

    Full Text Available Large volumes of disposed mine tailings abound in several regions of South Africa, as a consequence of unregulated, unsustainable long years of mining activities. Tailings dumps occupy a large volume of valuable land, and present a potential risk for aquatic systems, through leaching of potentially toxic chemical species. This paper reports on the evaluation of the geochemical processes controlling the mobility of potentially toxic chemical species within the tailings profile, and their potential risk with regard to surface and groundwater systems. Combination of X-ray fluorescence (XRF, X-ray diffraction (XRD, and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS techniques, show that the tailing profiles are uniform, weakly altered, and vary slightly with depth in both physical and geochemical properties, as well as mineralogical composition. Mineralogical analysis showed the following order of abundance: quartz > epidote > chlorite > muscovite > calcite > hematite within the tailings profiles. The neutralization of the dominant alumino-silicate minerals and the absence of sulfidic minerals, have produced medium alkaline pH conditions (7.97–8.37 at all depths and low concentrations of dissolved Cu (20.21–47.9 µg/L, Zn (0.88–1.80 µg/L, Pb (0.27–0.34 µg/L, and SO42− (15.71–55.94 mg/L in the tailings profile leachates. The relative percentage leach for the potentially toxic chemical species was low in the aqueous phase (Ni 0.081%, Cu 0.006%, and Zn 0.05%. This indicates that the transport load of potentially toxic chemical species from tailings to the aqueous phase is very low. The precipitation of secondary hematite has an important known ability to trap and attenuate the mobility of potentially toxic chemical species (Cu, Zn, and Pb by adsorption on the surface area. Geochemical modelling MINTEQA2 showed that the tailings leachates were below saturation regarding oxyhydroxide minerals, but oversaturated with Cu

  10. Confluence of an extension of combinatory logic by Boolean constants

    DEFF Research Database (Denmark)

    Czajka, Łukasz

    2017-01-01

    We show confluence of a conditional term rewriting system CL-pc1, which is an extension of Combinatory Logic by Boolean constants. This solves problem 15 from the RTA list of open problems. The proof has been fully formalized in the Coq proof assistant....

  11. Comparison of toxicity of class-based organic chemicals to algae and fish based on discrimination of excess toxicity from baseline level.

    Science.gov (United States)

    Li, Jin J; Tai, Hong W; Yu, Yang; Wen, Yang; Wang, Xiao H; Zhao, Yuan H

    2015-07-01

    Toxicity data to fish and algae were used to investigate excess toxicity between species. Results show that chemicals exhibiting excess toxicity to fish also show excess toxicity to algae for most of the compounds. This indicates that they share the same mode of action between species. Similar relationships between logKOW and toxicities to fish and algae for baseline and less inert compounds suggest that they have similar critical body residues in the two species. Differences in excess toxicity for some compounds suggest that there is a difference of physiological structure and metabolism between fish and algae. Some reactive compounds (e.g. polyamines) exhibit greater toxic effects for algae than those for fish because of relatively low bio-uptake potential of these hydrophilic compounds in fish as compared with that in algae. Esters exhibiting greater toxicity in fish than that in algae indicate that metabolism can affect the discrimination of excess toxicity from baseline level. Algae growth inhibition is a very good surrogate for fish lethality. This is not only because overall toxicity sensitivity to algae is greater than that to fish, but also the excess toxicity calculated from algal toxicity can better reflect reactivity of compounds with target molecules than fish toxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Passive dosing of polycyclic aromatic hydrocarbon (PAH) mixtures to terrestrial springtails: linking mixture toxicity to chemical activities, equilibrium lipid concentrations, and toxic units.

    Science.gov (United States)

    Schmidt, Stine N; Holmstrup, Martin; Smith, Kilian E C; Mayer, Philipp

    2013-07-02

    A 7-day mixture toxicity experiment with the terrestrial springtail Folsomia candida was conducted, and the effects were linked to three different mixture exposure parameters. Passive dosing from silicone was applied to tightly control exposure levels and compositions of 12 mixture treatments, containing the polycyclic aromatic hydrocarbons (PAHs) naphthalene, phenanthrene, and pyrene. Springtail lethality was then linked to sum chemical activities (∑a), sum equilibrium lipid concentrations (∑C(lipid eq.)), and sum toxic units (∑TU). In each case, the effects of all 12 mixture treatments could be fitted to one sigmoidal exposure-response relationship. The effective lethal chemical activity (La50) of 0.027 was well within the expected range for baseline toxicity of 0.01-0.1. Linking the effects to the lipid-based exposure parameter yielded an effective lethal concentration (LC(lipid eq 50)) of 133 mmol kg(-1) lipid in good correspondence with the lethal membrane burden for baseline toxicity (40-160 mmol kg(-1) lipid). Finally, the effective lethal toxic unit (LTU50) of 1.20 was rather close to the expected value of 1. Altogether, passive dosing provided tightly controlled mixture exposure in terms of both level and composition, while ∑a, ∑C(lipid eq.), and ∑TU allowed baseline toxicity to be linked to mixture exposure.

  13. Reactive formulations for a neutralization of toxic industrial chemicals

    Science.gov (United States)

    Tucker, Mark D [Albuqueruqe, NM; Betty, Rita G [Rio Rancho, NM

    2006-10-24

    Decontamination formulations for neutralization of toxic industrial chemicals, and methods of making and using same. The formulations are effective for neutralizing malathion, hydrogen cyanide, sodium cyanide, butyl isocyanate, carbon disulfide, phosgene gas, capsaicin in commercial pepper spray, chlorine gas, anhydrous ammonia gas; and may be effective at neutralizing hydrogen sulfide, sulfur dioxide, formaldehyde, ethylene oxide, methyl bromide, boron trichloride, fluorine, tetraethyl pyrophosphate, phosphorous trichloride, arsine, and tungsten hexafluoride.

  14. Mode of Action Frameworks in Toxicity Testing and Chemical Risk Assessment

    NARCIS (Netherlands)

    Meek, B.

    2009-01-01

    Recently, legislative mandates worldwide are requiring systematic consideration of much larger numbers of chemicals. This necessitates more efficient and effective toxicity testing, as a basis to be more predictive in a risk assessment context. This in turn requires much more emphasis early in the

  15. Chemical mixtures in untreated water from public-supply wells in the U.S.--occurrence, composition, and potential toxicity.

    Science.gov (United States)

    Toccalino, Patricia L; Norman, Julia E; Scott, Jonathon C

    2012-08-01

    Chemical mixtures are prevalent in groundwater used for public water supply, but little is known about their potential health effects. As part of a large-scale ambient groundwater study, we evaluated chemical mixtures across multiple chemical classes, and included more chemical contaminants than in previous studies of mixtures in public-supply wells. We (1) assessed the occurrence of chemical mixtures in untreated source-water samples from public-supply wells, (2) determined the composition of the most frequently occurring mixtures, and (3) characterized the potential toxicity of mixtures using a new screening approach. The U.S. Geological Survey collected one untreated water sample from each of 383 public wells distributed across 35 states, and analyzed the samples for as many as 91 chemical contaminants. Concentrations of mixture components were compared to individual human-health benchmarks; the potential toxicity of mixtures was characterized by addition of benchmark-normalized component concentrations. Most samples (84%) contained mixtures of two or more contaminants, each at concentrations greater than one-tenth of individual benchmarks. The chemical mixtures that most frequently occurred and had the greatest potential toxicity primarily were composed of trace elements (including arsenic, strontium, or uranium), radon, or nitrate. Herbicides, disinfection by-products, and solvents were the most common organic contaminants in mixtures. The sum of benchmark-normalized concentrations was greater than 1 for 58% of samples, suggesting that there could be potential for mixtures toxicity in more than half of the public-well samples. Our findings can be used to help set priorities for groundwater monitoring and suggest future research directions for drinking-water treatment studies and for toxicity assessments of chemical mixtures in water resources. Published by Elsevier B.V.

  16. Aquatic toxicity testing of liquid hydrophobic chemicals – Passive dosing exactly at the saturation limit

    DEFF Research Database (Denmark)

    Stibany, Felix; Nørgaard Schmidt, Stine; Schäffer, Andreas

    2017-01-01

    The aims of the present study were (1) to develop a passive dosing approach for aquatic toxicity testing of liquid substances with very high Kow values and (2) to apply this approach to the model substance dodecylbenzene (DDB, Log Kow = 8.65). The first step was to design a new passive dosing...... format for testing DDB exactly at its saturation limit. Silicone O-rings were saturated by direct immersion in pure liquid DDB, which resulted in swelling of >14%. These saturated O-rings were used to establish and maintain DDB exposure exactly at the saturation limit throughout 72-h algal growth...... at chemical activity of unity was higher than expected relative to a reported hydrophobicity cut-off in toxicity, but lower than expected relative to a reported chemical activity range for baseline toxicity. The present study introduces a new effective approach for toxicity testing of an important group...

  17. Allium-test as a tool for toxicity testing of environmental radioactive-chemical mixtures

    Science.gov (United States)

    Oudalova, A. A.; Geras'kin, S. A.; Dikareva, N. S.; Pyatkova, S. V.

    2017-01-01

    Bioassay-based approaches have been propagated to assess toxicity of unknown mixtures of environmental contaminants, but it was rarely applied in cases of chemicals with radionuclides combinations. Two Allium-test studies were performed to assess environmental impact from potential sources of combined radioactive-chemical pollution. Study sites were located at nuclear waste storage facilities in European and in Far-Eastern parts of Russia. As environmental media under impact, waters from monitor wells and nearby water bodies were tested. Concentrations of some chemicals and radionuclides in the samples collected enhanced the permitted limits. Cytogenetic and cytotoxic effects were used as biological endpoints, namely, frequency and spectrum of chromosome aberrations and mitotic abnormalities in anatelophase cells as well as mitotic activity in Allium root tips. Sample points were revealed where waters have an enhanced mutagenic potential. The findings obtained could be used to optimize monitoring system and advance decision making on management and rehabilitation of industrial sites. The Allium-test could be recommended and applied as an effective tool for toxicity testing in case of combined contamination of environmental compartments with radionuclides and chemical compounds.

  18. UTMTOX, Toxic Chemical Transport in Atmosphere, Ground Water, Sediments

    International Nuclear Information System (INIS)

    1988-01-01

    A - Description of program or function: UTMTOX is a unified transport model for toxic materials. It combines hydrologic, atmospheric, and sediment transport in one computer code and extends the scope to predict the transport of not only trace metals but also many chemical compounds, including organics. UTMTOX is capable of calculating 1) the atmospheric dispersion of up to 20 chemicals from a maximum of 10 point, 10 line, and 10 area sources; 2) deposition of one chemical at a time in both wet and dry form on foliage or the surface of the earth; 3) surface flow and erosion; 4) percolation through the soil to a stream channel; and 5) flow in the stream channel to the outfall of a watershed. B - Method of solution: UTMTOX calculates rates of flux of chemicals from release to the atmosphere, through deposition on a watershed, infiltration, and runoff from the soil to flow in the stream channel and the associated sediment transport. From these values, mass balances can be established, budgets for the chemical can be made, and concentrations in many environmental compartments can be estimated. Since the coupling is established among three major submodels, they can share data

  19. Protecting children from toxic chemicals: putting it on Australia's public health agenda.

    Science.gov (United States)

    Lantz, Sarah

    2013-11-01

    The high volume and widespread use of industrial chemicals, the backlog of internationally untested chemicals, the uptake of synthetic chemicals found in babies in utero, cord blood, and in breast milk, and the lack of a unified and comprehensive regulatory framework all necessitate developing policies that protect the most vulnerable in our society - our children. Australia's failure to do so raises profound intergenerational ethical issues. This article tells a story of international policy, and where Australia is falling down. It demonstrates that we can learn from countries already taking critical steps to reduce the toxic chemical exposure, and that the development of a comprehensive, child-centered chemical regulation framework is central to turning around Australia's failure.

  20. Toxic effects of the interaction of titanium dioxide nanoparticles with chemicals or physical factors

    Science.gov (United States)

    Liu, Kui; Lin, Xialu; Zhao, Jinshun

    2013-01-01

    Due to their chemical stability and nonallergic, nonirritant, and ultraviolet protective properties, titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in industries such as electronics, optics, and material sciences, as well as architecture, medicine, and pharmacology. However, increasing concerns have been raised in regards to its ecotoxicity and toxicity on the aquatic environment as well as to humans. Although insights have been gained into the effects of TiO2 NPs on susceptible biological systems, there is still much ground to be covered, particularly in respect of our knowledge of the effects of the interaction of TiO2 NPs with other chemicals or physical factors. Studies suggest that interactions of TiO2 NPs with other chemicals or physical factors may result in an increase in toxicity or adverse effects. This review highlights recent progress in the study of the interactive effects of TiO2 NPs with other chemicals or physical factors. PMID:23901269

  1. Intellectual Development within Transracial Adoptive Families: Retesting the Confluence Model.

    Science.gov (United States)

    Berbaum, Michael L.; Moreland, Richard L.

    1985-01-01

    Estimates confluence model of intellectual development for a within-family sample of 321 children from 101 transracial adoptive families. Mental ages of children and their parents and birth or adoption intervals were used in a nonlinear least-squares estimation procedure to obtain children's predicted mental ages. Results suggest efficiency of the…

  2. 1997 toxic chemical release inventory. Emergency Planning and Community Right-To-Know Act, Section 313

    International Nuclear Information System (INIS)

    Zaloudek, D.E.

    1998-01-01

    Two listed toxic chemicals were used at the Hanford Site above established activity thresholds: phosphoric acid and chlorine. Because total combined quantities of chlorine released, disposed, treated, recovered through recycle operations, co-combusted for energy recovery, and transferred to off-site locations for the purpose of recycle, energy recovery, treatment, and/or disposal, amounted to less than 500 pounds, the Hanford Site qualified for the alternate one million pound threshold for chlorine. Accordingly, this Toxic Chemical Release Inventory includes a Form A for chlorine, and a Form B for phosphoric acid

  3. Fate of chemical warfare agents and toxic industrial chemicals in landfills.

    Science.gov (United States)

    Bartelt-Hunt, Shannon L; Barlaz, Morton A; Knappe, Detlef R U; Kjeldsen, Peter

    2006-07-01

    One component of preparedness for a chemical attack is planning for the disposal of contaminated debris. To assess the feasibility of contaminated debris disposal in municipal solid waste (MSW) landfills, the fate of selected chemical warfare agents (CWAs) and toxic industrial chemicals (TICs) in MSW landfills was predicted with a mathematical model. Five blister agents [sulfur mustard (HD), nitrogen mustard (HN-2), lewisite (L), ethyldichloroarsine (ED), and phosgene oxime (CX)], eight nerve agents [tabun (GA), sarin (GB), soman (GD), GE, GF, VX, VG, and VM], one riot-control agent [CS], and two TICs [furan and carbon disulfide] were studied. The effects of both infiltration (climate) and contaminant biodegradability on fate predictions were assessed. Model results showed that hydrolysis and gas-phase advection were the principal fate pathways for CWAs and TICs, respectively. Apart from CX and the TICs, none of the investigated compounds was predicted to persist in a landfill for more than 5 years. Climate had little impact on CWA/TIC fate, and biodegradability was only important for compounds with long hydrolysis half-lives. Monte Carlo simulations were performed to assess the influence of uncertainty in model input parameters on CWA/TIC fate predictions. Correlation analyses showed that uncertainty in hydrolysis rate constants was the primary contributor to variance of CWA fate predictions, while uncertainty in the Henry's Law constant and landfill gas-production rate accounted for most of the variance of TIC fate predictions. CWA hydrolysates were more persistent than the parent CWAs, but limited information is available on abiotic or biotic transformation rates for these chemicals.

  4. Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes

    Science.gov (United States)

    YanEqual Contribution, Liang; Zhao, Feng; Li, Shoujian; Hu, Zhongbo; Zhao, Yuliang

    2011-02-01

    The toxicity grade for a bulk material can be approximately determined by three factors (chemical composition, dose, and exposure route). However, for a nanomaterial it depends on more than ten factors. Interestingly, some nano-factors (like huge surface adsorbability, small size, etc.) that endow nanomaterials with new biomedical functions are also potential causes leading to toxicity or damage to the living organism. Is it possible to create safe nanomaterials if such a number of complicated factors need to be regulated? We herein try to find answers to this important question. We first discuss chemical processes that are applicable for nanosurface modifications, in order to improve biocompatibility, regulate ADME, and reduce the toxicity of carbon nanomaterials (carbon nanotubes, fullerenes, metallofullerenes, and graphenes). Then the biological/toxicological effects of surface-modified and unmodified carbon nanomaterials are comparatively discussed from two aspects: the lowered toxic responses or the enhanced biomedical functions. We summarize the eight biggest challenges in creating low-toxicity and safer nanomaterials and some significant topics of future research needs: to find out safer nanofactors; to establish controllable surface modifications and simpler chemistries for low-toxic nanomaterials; to explore the nanotoxicity mechanisms; to justify the validity of current toxicological theories in nanotoxicology; to create standardized nanomaterials for toxicity tests; to build theoretical models for cellular and molecular interactions of nanoparticles; and to establish systematical knowledge frameworks for nanotoxicology.

  5. In silico toxicology: comprehensive benchmarking of multi-label classification methods applied to chemical toxicity data

    KAUST Repository

    Raies, Arwa B.

    2017-12-05

    One goal of toxicity testing, among others, is identifying harmful effects of chemicals. Given the high demand for toxicity tests, it is necessary to conduct these tests for multiple toxicity endpoints for the same compound. Current computational toxicology methods aim at developing models mainly to predict a single toxicity endpoint. When chemicals cause several toxicity effects, one model is generated to predict toxicity for each endpoint, which can be labor and computationally intensive when the number of toxicity endpoints is large. Additionally, this approach does not take into consideration possible correlation between the endpoints. Therefore, there has been a recent shift in computational toxicity studies toward generating predictive models able to predict several toxicity endpoints by utilizing correlations between these endpoints. Applying such correlations jointly with compounds\\' features may improve model\\'s performance and reduce the number of required models. This can be achieved through multi-label classification methods. These methods have not undergone comprehensive benchmarking in the domain of predictive toxicology. Therefore, we performed extensive benchmarking and analysis of over 19,000 multi-label classification models generated using combinations of the state-of-the-art methods. The methods have been evaluated from different perspectives using various metrics to assess their effectiveness. We were able to illustrate variability in the performance of the methods under several conditions. This review will help researchers to select the most suitable method for the problem at hand and provide a baseline for evaluating new approaches. Based on this analysis, we provided recommendations for potential future directions in this area.

  6. In silico toxicology: comprehensive benchmarking of multi-label classification methods applied to chemical toxicity data

    KAUST Repository

    Raies, Arwa B.; Bajic, Vladimir B.

    2017-01-01

    One goal of toxicity testing, among others, is identifying harmful effects of chemicals. Given the high demand for toxicity tests, it is necessary to conduct these tests for multiple toxicity endpoints for the same compound. Current computational toxicology methods aim at developing models mainly to predict a single toxicity endpoint. When chemicals cause several toxicity effects, one model is generated to predict toxicity for each endpoint, which can be labor and computationally intensive when the number of toxicity endpoints is large. Additionally, this approach does not take into consideration possible correlation between the endpoints. Therefore, there has been a recent shift in computational toxicity studies toward generating predictive models able to predict several toxicity endpoints by utilizing correlations between these endpoints. Applying such correlations jointly with compounds' features may improve model's performance and reduce the number of required models. This can be achieved through multi-label classification methods. These methods have not undergone comprehensive benchmarking in the domain of predictive toxicology. Therefore, we performed extensive benchmarking and analysis of over 19,000 multi-label classification models generated using combinations of the state-of-the-art methods. The methods have been evaluated from different perspectives using various metrics to assess their effectiveness. We were able to illustrate variability in the performance of the methods under several conditions. This review will help researchers to select the most suitable method for the problem at hand and provide a baseline for evaluating new approaches. Based on this analysis, we provided recommendations for potential future directions in this area.

  7. 1992 Toxic Chemical Release Inventory: Emergency Planning and Community Right-To-Know-Act of 1986 Section 313

    International Nuclear Information System (INIS)

    1993-07-01

    Section 313 of the Emergency Planning and Community Right-To-Know Act of 1986 (EPCRA) requires the annual submittal of toxic chemical release information to the US Environmental Protection Agency (EPA). The following document is the July 1993 submittal of the EPCRA Toxic Chemical Release Inventory Report (Form R). Included is a Form R for chlorine and for lead, the two chemicals used in excess of the established regulatory thresholds at the Hanford Site by the US Department of Energy, Richland Operations Office and its contractors during calendar year 1992

  8. Emergency planning and preparedness for the deliberate release of toxic industrial chemicals.

    Science.gov (United States)

    Russell, David; Simpson, John

    2010-03-01

    Society in developed and developing countries is hugely dependent upon chemicals for health, wealth, and economic prosperity, with the chemical industry contributing significantly to the global economy. Many chemicals are synthesized, stored, and transported in vast quantities and classified as high production volume chemicals; some are recognized as being toxic industrial chemicals (TICs). Chemical accidents involving chemical installations and transportation are well recognized. Such chemical accidents occur with relative frequency and may result in large numbers of casualties with acute and chronic health effects as well as fatalities. The large-scale production of TICs, the potential for widespread exposure and significant public health impact, together with their relative ease of acquisition, makes deliberate release an area of potential concern. The large numbers of chemicals, together with the large number of potential release scenarios means that the number of possible forms of chemical incident are almost infinite. Therefore, prior to undertaking emergency planning and preparedness, it is necessary to prioritize risk and subsequently mitigate. This is a multi-faceted process, including implementation of industrial protection layers, substitution of hazardous chemicals, and relocation away from communities. Residual risk provides the basis for subsequent planning. Risk-prioritized emergency planning is a tool for identifying gaps, enhancing communication and collaboration, and for policy development. It also serves to enhance preparedness, a necessary prelude to preventing or mitigating the public health risk to deliberate release. Planning is an iterative and on-going process that requires multi-disciplinary agency input, culminating in the formation of a chemical incident plan complimentary to major incident planning. Preparedness is closely related and reflects a state of readiness. It is comprised of several components, including training and exercising

  9. SEDIMENT CHEMICAL CONTAMINATION AND TOXICITY ASSOCIATED WITH A COASTAL GOLF COURSE COMPLEX.

    Science.gov (United States)

    The increasing density of golf courses represents a potential source of sediment contamination to nearby coastal areas, the chemical and biological magnitude of which is almost unknown. The objective of this study was to determine the concentrations of contaminants and toxicities...

  10. Enhancement of developmental toxicity effects of chemicals by gestational stress. A review

    DEFF Research Database (Denmark)

    Hougaard, Karin S; Hansen, Åse Marie

    2007-01-01

    Risk assessment of developmental toxicants is almost exclusively based on single chemicals studied in animals under controlled experimental conditions, as to reduce stress. Although humans may be exposed simultaneously to numerous hazards, little is known about the interaction of prenatal chemica...

  11. 1998 Toxic Chemical Release Inventory Report for the Emergency Planning and Community Right-to-Know Act of 1986, Title III

    International Nuclear Information System (INIS)

    Stockton, Marjorie B.

    1999-01-01

    The Emergency Planning and Community Right-to-Know Act (EPCRA) of 1986 [also known as the Superfund Amendment and Reauthorization Act (SARA), Title III], as modified by Executive Order 12856, requires that all federal facilities evaluate the need to submit an annual Toxic Chemical Release Inventory report as prescribed in Title III, Section 313 of this Act. This annual report is due every July for the preceding calendar year. Owners and operators who manufacture, process, or otherwise use certain toxic chemicals above listed threshold quantities are required to report their toxic chemical releases to all environmental mediums (air, water, soil, etc.). At Los Alamos National Laboratory (LANL), no EPCRA Section 313 chemicals were used in 1998 above the reportable threshold limits of 10,000 lb or 25,000 lb. Therefore LANL was not required to submit any Toxic Chemical Release Inventory reports (Form Rs) for 1998. This document was prepared to provide a detailed description of the evaluation on chemical usage and EPCRA Section 313 threshold determinations for LANL for 1998

  12. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    KAUST Repository

    Essack, Magbubah

    2014-10-29

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review.

  13. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    KAUST Repository

    Essack, Magbubah; Alzubaidy, Hanin S.; Bajic, Vladimir B.; Archer, John A.C.

    2014-01-01

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review.

  14. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    Science.gov (United States)

    Essack, Magbubah; Alzubaidy, Hanin S.; Bajic, Vladimir B.; Archer, John A. C.

    2014-01-01

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review. PMID:25356733

  15. A high-throughput method for assessing chemical toxicity using a Caenorhabditis elegans reproduction assay

    International Nuclear Information System (INIS)

    Boyd, Windy A.; McBride, Sandra J.; Rice, Julie R.; Snyder, Daniel W.; Freedman, Jonathan H.

    2010-01-01

    The National Research Council has outlined the need for non-mammalian toxicological models to test the potential health effects of a large number of chemicals while also reducing the use of traditional animal models. The nematode Caenorhabditis elegans is an attractive alternative model because of its well-characterized and evolutionarily conserved biology, low cost, and ability to be used in high-throughput screening. A high-throughput method is described for quantifying the reproductive capacity of C. elegans exposed to chemicals for 48 h from the last larval stage (L4) to adulthood using a COPAS Biosort. Initially, the effects of exposure conditions that could influence reproduction were defined. Concentrations of DMSO vehicle ≤ 1% did not affect reproduction. Previous studies indicated that C. elegans may be influenced by exposure to low pH conditions. At pHs greater than 4.5, C. elegans reproduction was not affected; however below this pH there was a significant decrease in the number of offspring. Cadmium chloride was chosen as a model toxicant to verify that automated measurements were comparable to those of traditional observational studies. EC 50 values for cadmium for automated measurements (176-192 μM) were comparable to those previously reported for a 72-h exposure using manual counting (151 μM). The toxicity of seven test toxicants on C. elegans reproduction was highly correlative with rodent lethality suggesting that this assay may be useful in predicting the potential toxicity of chemicals in other organisms.

  16. Impact of bioavailability on the correlation between in vitro cytotoxic and in vivo acute fish toxic concentrations of chemicals

    International Nuclear Information System (INIS)

    Guelden, Michael; Seibert, Hasso

    2005-01-01

    The lower sensitivity of in vitro cytotoxicity assays currently restricts their use as alternative to the fish acute toxicity assays for hazard assessment of chemicals in the aquatic environment. In vitro cytotoxic potencies mostly refer to nominal concentrations. The main objective of the present study was to investigate, whether a reduced availability of chemicals in vitro can account for the lower sensitivity of in vitro toxicity test systems. For this purpose, the bioavailable free fractions of the nominal cytotoxic concentrations (EC 50 ) of chemicals determined with a cytotoxicity test system using Balb/c 3T3 cells and the corresponding free cytotoxic concentrations (ECu 50 ) were calculated. The algorithm applied is based on a previously developed simple equilibrium distribution model for chemicals in cell cultures with serum-supplemented culture media. This model considers the distribution of chemicals between water, lipids and serum albumin. The algorithm requires the relative lipid volume of the test system, the octanol-water partition coefficient (K ow ) and the in vitro albumin-bound fraction of the chemicals. The latter was determined from EC 50 -measurements in the presence of different albumin concentrations with the Balb/c 3T3 test system. Organic chemicals covering a wide range of cytotoxic potency (EC 50 : 0.16-527000 μM) and lipophilicity (log K ow : -5.0-6.96) were selected, for which fish acute toxicity data (LC 50 -values) from at least one of the three fish species, medaka, rainbow trout and fathead minnow, respectively, were available. The availability of several chemicals was shown to be extensively reduced either by partitioning into lipids or by serum albumin binding, or due to both mechanisms. Reduction of bioavailability became more important with increasing cytotoxic potency. The sensitivity of the Balb/c 3T3 cytotoxicity assay and the correspondence between in vivo and in vitro toxic potencies were increased when the free cytotoxic

  17. Role of environmental stress in the physiological response to chemical toxicants

    International Nuclear Information System (INIS)

    Gordon, C.J.

    2003-01-01

    Environmental physiology is the study of the physiological mechanisms that allow animals to cope with and adapt to changes in temperature, humidity, atmospheric pressure, and other natural factors of their physical environment. Nearly all toxicological and pharmacological studies are performed in resting (i.e., non exercising) experimental animals acclimatized to standard environmental conditions that are usually considered ideal to the animal's physiological well-being. These ideal test conditions are clearly not representative of the fluctuations in the natural environment encountered by humans and other animals on a day-to-day basis. It behooves the toxicologist, especially those interested in extrapolating experimental data from laboratory animals to humans, to consider how variations in the natural environment will alter physiological responses to toxicants. Temperature and exercise are the two most well-studied parameters in the fields of environmental physiology and toxicology. In general, high temperatures exacerbate the toxic effects of many environmental toxicants. Moreover, exercising subjects are generally more vulnerable to airborne toxic agents. The prospect of global warming also warrants a better assessment of how higher environmental temperatures may impact on the response of humans and other species to toxic chemicals. Hence, this paper and accompanying papers from the proceedings of a symposium focus on the salient aspects of the interaction between environmental stress and physiological response to toxic agents with particular emphasis on temperature and exercise

  18. Allium -test as a tool for toxicity testing of environmental radioactive-chemical mixtures

    International Nuclear Information System (INIS)

    Oudalova, A A; Pyatkova, S V; Geras’kin, S A; Dikareva, N S

    2017-01-01

    Bioassay-based approaches have been propagated to assess toxicity of unknown mixtures of environmental contaminants, but it was rarely applied in cases of chemicals with radionuclides combinations. Two Allium -test studies were performed to assess environmental impact from potential sources of combined radioactive-chemical pollution. Study sites were located at nuclear waste storage facilities in European and in Far-Eastern parts of Russia. As environmental media under impact, waters from monitor wells and nearby water bodies were tested. Concentrations of some chemicals and radionuclides in the samples collected enhanced the permitted limits. Cytogenetic and cytotoxic effects were used as biological endpoints, namely, frequency and spectrum of chromosome aberrations and mitotic abnormalities in anatelophase cells as well as mitotic activity in Allium root tips. Sample points were revealed where waters have an enhanced mutagenic potential. The findings obtained could be used to optimize monitoring system and advance decision making on management and rehabilitation of industrial sites. The Allium -test could be recommended and applied as an effective tool for toxicity testing in case of combined contamination of environmental compartments with radionuclides and chemical compounds. (paper)

  19. Relationship between physico-chemical characteristics and potential toxicity of PM10.

    Science.gov (United States)

    Megido, Laura; Suárez-Peña, Beatriz; Negral, Luis; Castrillón, Leonor; Suárez, Susana; Fernández-Nava, Yolanda; Marañón, Elena

    2016-11-01

    PM10 was sampled at a suburban location affected by traffic and industry in the north of Spain. The samples were analysed to determine the chemical components of PM10 (organic and elemental carbon, soluble chemical species and metals). The aim of this study was to assess the toxicity of PM10 in terms of the bulk analysis and the physico-chemical properties of the particles. Total carbon, sulphates, ammonium, chlorides and nitrates were found to be the major constituents of PM10. The contribution of the last of these was found to increase significantly with PM10 concentration (Pearson coefficient correlation of 0.7, p-value major risk to human health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. In silico prediction of Tetrahymena pyriformis toxicity for diverse industrial chemicals with substructure pattern recognition and machine learning methods.

    Science.gov (United States)

    Cheng, Feixiong; Shen, Jie; Yu, Yue; Li, Weihua; Liu, Guixia; Lee, Philip W; Tang, Yun

    2011-03-01

    There is an increasing need for the rapid safety assessment of chemicals by both industries and regulatory agencies throughout the world. In silico techniques are practical alternatives in the environmental hazard assessment. It is especially true to address the persistence, bioaccumulative and toxicity potentials of organic chemicals. Tetrahymena pyriformis toxicity is often used as a toxic endpoint. In this study, 1571 diverse unique chemicals were collected from the literature and composed of the largest diverse data set for T. pyriformis toxicity. Classification predictive models of T. pyriformis toxicity were developed by substructure pattern recognition and different machine learning methods, including support vector machine (SVM), C4.5 decision tree, k-nearest neighbors and random forest. The results of a 5-fold cross-validation showed that the SVM method performed better than other algorithms. The overall predictive accuracies of the SVM classification model with radial basis functions kernel was 92.2% for the 5-fold cross-validation and 92.6% for the external validation set, respectively. Furthermore, several representative substructure patterns for characterizing T. pyriformis toxicity were also identified via the information gain analysis methods. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Adolescent Exposure to Toxic Volatile Organic Chemicals From E-Cigarettes.

    Science.gov (United States)

    Rubinstein, Mark L; Delucchi, Kevin; Benowitz, Neal L; Ramo, Danielle E

    2018-04-01

    There is an urgent need to understand the safety of e-cigarettes with adolescents. We sought to identify the presence of chemical toxicants associated with e-cigarette use among adolescents. Adolescent e-cigarette users (≥1 use within the past 30 days, ≥10 lifetime e-cigarette use episodes) were divided into e-cigarette-only users (no cigarettes in the past 30 days, urine 4-[methylnitrosamino]-1-[3-pyridyl]-1-butanol [NNAL] level 30 pg/mL; n = 16), and never-using controls ( N = 20). Saliva was collected within 24 hours of the last e-cigarette use for analysis of cotinine and urine for analysis of NNAL and levels of 8 volatile organic chemical compounds. Bivariate analyses compared e-cigarette-only users with dual users, and regression analyses compared e-cigarette-only users with dual users and controls on levels of toxicants. The participants were 16.4 years old on average. Urine excretion of metabolites of benzene, ethylene oxide, acrylonitrile, acrolein, and acrylamide was significantly higher in dual users versus e-cigarette-only users (all P < .05). Excretion of metabolites of acrylonitrile, acrolein, propylene oxide, acrylamide, and crotonaldehyde were significantly higher in e-cigarette-only users compared with controls (all P < .05). Although e-cigarette vapor may be less hazardous than tobacco smoke, our findings can be used to challenge the idea that e-cigarette vapor is safe, because many of the volatile organic compounds we identified are carcinogenic. Messaging to teenagers should include warnings about the potential risk from toxic exposure to carcinogenic compounds generated by these products. Copyright © 2018 by the American Academy of Pediatrics.

  2. Effects of toxic chemicals on the reproductive system. Council on Scientific Affairs.

    Science.gov (United States)

    1985-06-21

    In an effort to make physicians more aware of the hazards of the workplace to pregnant workers, the Council on Scientific Affairs' Advisory Panel on Reproductive Hazards in the Workplace prepared this third and final report reviewing the effects of chemical exposure. A total of 120 chemicals were considered for reviews based on an estimation of their imminent hazard, ie, widespread use and/or inherent toxicity. Following a brief introduction, which sets out general principles, clinical applications, and aids to the recognition of a human teratogen, the report presents reviews and opinions for three representative chemicals. Information concerning the remaining 117 compounds is available upon request.

  3. Chemical and Plant-Based Insect Repellents: Efficacy, Safety, and Toxicity.

    Science.gov (United States)

    Diaz, James H

    2016-03-01

    Most emerging infectious diseases today are arthropod-borne and cannot be prevented by vaccinations. Because insect repellents offer important topical barriers of personal protection from arthropod-borne infectious diseases, the main objectives of this article were to describe the growing threats to public health from emerging arthropod-borne infectious diseases, to define the differences between insect repellents and insecticides, and to compare the efficacies and toxicities of chemical and plant-derived insect repellents. Internet search engines were queried with key words to identify scientific articles on the efficacy, safety, and toxicity of chemical and plant-derived topical insect repellants and insecticides to meet these objectives. Data sources reviewed included case reports; case series; observational, longitudinal, and surveillance studies; and entomological and toxicological studies. Descriptive analysis of the data sources identified the most effective application of insect repellents as a combination of topical chemical repellents, either N-diethyl-3-methylbenzamide (formerly N, N-diethyl-m-toluamide, or DEET) or picaridin, and permethrin-impregnated or other pyrethroid-impregnated clothing over topically treated skin. The insecticide-treated clothing would provide contact-level insecticidal effects and provide better, longer lasting protection against malaria-transmitting mosquitoes and ticks than topical DEET or picaridin alone. In special cases, where environmental exposures to disease-transmitting ticks, biting midges, sandflies, or blackflies are anticipated, topical insect repellents containing IR3535, picaridin, or oil of lemon eucalyptus (p-menthane-3, 8-diol or PMD) would offer better topical protection than topical DEET alone. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  4. Identifying developmental toxicity pathways for a subset of ToxCast chemicals using human embryonic stem cells and metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Kleinstreuer, N.C., E-mail: kleinstreuer.nicole@epa.gov [NCCT, US EPA, RTP, NC 27711 (United States); Smith, A.M.; West, P.R.; Conard, K.R.; Fontaine, B.R. [Stemina Biomarker Discovery, Inc., Madison, WI 53719 (United States); Weir-Hauptman, A.M. [Covance, Inc., Madison, WI 53704 (United States); Palmer, J.A. [Stemina Biomarker Discovery, Inc., Madison, WI 53719 (United States); Knudsen, T.B.; Dix, D.J. [NCCT, US EPA, RTP, NC 27711 (United States); Donley, E.L.R. [Stemina Biomarker Discovery, Inc., Madison, WI 53719 (United States); Cezar, G.G. [Stemina Biomarker Discovery, Inc., Madison, WI 53719 (United States); University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2011-11-15

    Metabolomics analysis was performed on the supernatant of human embryonic stem (hES) cell cultures exposed to a blinded subset of 11 chemicals selected from the chemical library of EPA's ToxCast Trade-Mark-Sign chemical screening and prioritization research project. Metabolites from hES cultures were evaluated for known and novel signatures that may be indicative of developmental toxicity. Significant fold changes in endogenous metabolites were detected for 83 putatively annotated mass features in response to the subset of ToxCast chemicals. The annotations were mapped to specific human metabolic pathways. This revealed strong effects on pathways for nicotinate and nicotinamide metabolism, pantothenate and CoA biosynthesis, glutathione metabolism, and arginine and proline metabolism pathways. Predictivity for adverse outcomes in mammalian prenatal developmental toxicity studies used ToxRefDB and other sources of information, including Stemina Biomarker Discovery's predictive DevTox Registered-Sign model trained on 23 pharmaceutical agents of known developmental toxicity and differing potency. The model initially predicted developmental toxicity from the blinded ToxCast compounds in concordance with animal data with 73% accuracy. Retraining the model with data from the unblinded test compounds at one concentration level increased the predictive accuracy for the remaining concentrations to 83%. These preliminary results on a 11-chemical subset of the ToxCast chemical library indicate that metabolomics analysis of the hES secretome provides information valuable for predictive modeling and mechanistic understanding of mammalian developmental toxicity. -- Highlights: Black-Right-Pointing-Pointer We tested 11 environmental compounds in a hESC metabolomics platform. Black-Right-Pointing-Pointer Significant changes in secreted small molecule metabolites were observed. Black-Right-Pointing-Pointer Perturbed mass features map to pathways critical for normal

  5. Identifying developmental toxicity pathways for a subset of ToxCast chemicals using human embryonic stem cells and metabolomics

    International Nuclear Information System (INIS)

    Kleinstreuer, N.C.; Smith, A.M.; West, P.R.; Conard, K.R.; Fontaine, B.R.; Weir-Hauptman, A.M.; Palmer, J.A.; Knudsen, T.B.; Dix, D.J.; Donley, E.L.R.; Cezar, G.G.

    2011-01-01

    Metabolomics analysis was performed on the supernatant of human embryonic stem (hES) cell cultures exposed to a blinded subset of 11 chemicals selected from the chemical library of EPA's ToxCast™ chemical screening and prioritization research project. Metabolites from hES cultures were evaluated for known and novel signatures that may be indicative of developmental toxicity. Significant fold changes in endogenous metabolites were detected for 83 putatively annotated mass features in response to the subset of ToxCast chemicals. The annotations were mapped to specific human metabolic pathways. This revealed strong effects on pathways for nicotinate and nicotinamide metabolism, pantothenate and CoA biosynthesis, glutathione metabolism, and arginine and proline metabolism pathways. Predictivity for adverse outcomes in mammalian prenatal developmental toxicity studies used ToxRefDB and other sources of information, including Stemina Biomarker Discovery's predictive DevTox® model trained on 23 pharmaceutical agents of known developmental toxicity and differing potency. The model initially predicted developmental toxicity from the blinded ToxCast compounds in concordance with animal data with 73% accuracy. Retraining the model with data from the unblinded test compounds at one concentration level increased the predictive accuracy for the remaining concentrations to 83%. These preliminary results on a 11-chemical subset of the ToxCast chemical library indicate that metabolomics analysis of the hES secretome provides information valuable for predictive modeling and mechanistic understanding of mammalian developmental toxicity. -- Highlights: ► We tested 11 environmental compounds in a hESC metabolomics platform. ► Significant changes in secreted small molecule metabolites were observed. ► Perturbed mass features map to pathways critical for normal development and pregnancy. ► Arginine, proline, nicotinate, nicotinamide and glutathione pathways were affected.

  6. Comparative analysis of pharmaceuticals versus industrial chemicals acute aquatic toxicity classification according to the United Nations classification system for chemicals. Assessment of the (Q)SAR predictability of pharmaceuticals acute aquatic toxicity and their predominant acute toxic mode-of-action

    DEFF Research Database (Denmark)

    Sanderson, Hans; Thomsen, Marianne

    2009-01-01

    data. Pharmaceuticals were found to be more frequent than industrial chemicals in GHS category III. Acute toxicity was predictable (>92%) using a generic (Q)SAR ((Quantitative) Structure Activity Relationship) suggesting a narcotic MOA. Analysis of model prediction error suggests that 68...

  7. 1995 Toxic chemical release inventory: Emergency Planning and Community Right-to-Know Act of 1986, Section 313

    International Nuclear Information System (INIS)

    Mincey, S.L.

    1996-08-01

    Section 313 of the Emergency Planning and Community Right-To-Know Act (EPCRA) requires the annual submittal of toxic chemical release information to the U.S. Environmental Protection Agency.Executive Order 12856, 'Federal Compliance With Right-to-Know Laws and Pollution Prevention Requirements' extends the requirements of EPCRA to all Federal agencies. The following document is the August 1996 submittal of the Hanford Site Toxic Chemical Release Inventory report. Included is a Form R for ethylene glycol, the sole chemical used in excess of the established regulatory thresholds at the Hanford Site by the U.S. Department of Energy, Richland Operations Office and its contractors during Calendar Year 1995

  8. Renal cysteine conjugate C-S lyase mediated toxicity of halogenated alkenes in primary cultures of human and rat proximal tubular cells.

    Science.gov (United States)

    McGoldrick, Trevor A; Lock, Edward A; Rodilla, Vicente; Hawksworth, Gabrielle M

    2003-07-01

    Proximal tubular cells from human (HPT) and rat (RPT) kidneys were isolated, grown to confluence and incubated with S-(1,2-dichlorovinyl)- l-cysteine (DCVC), S-(1,2,2-trichlorovinyl)- l-cysteine (TCVC), S-(1,1,2,2-tetrafluoroethyl)- l-cysteine (TFEC) and S-(2-chloro-1,1-difluorethyl)- l-cysteine (CDFEC), the cysteine conjugates of nephrotoxicants. The cultures were exposed to the conjugates for 12, 24 and 48 h and the toxicity determined using the MTT assay. All four conjugates caused dose-dependent toxicity to RPT cells over the range 50-1,000 microM, the order of toxicity being DCVC>TCVC>TFEC=CDFEC. The inclusion of aminooxyacetic acid (AOAA; 250 microM), an inhibitor of pyridoxal phosphate-dependent enzymes such as C-S lyase, afforded protection, indicating that C-S lyase has a role in the bioactivation of these conjugates. In HPT cultures only DCVC caused significant time- and dose-dependent toxicity. Exposure to DCVC (500 microM) for 48 h decreased cell viability to 7% of control cell values, whereas co-incubation of DCVC (500 microM) with AOAA (250 microM) resulted in cell viability of 71%. Human cultures were also exposed to S-(1,2-dichlorovinyl)-glutathione (DCVG). DCVG was toxic to HPT cells, but the onset of toxicity was delayed compared with the corresponding cysteine conjugate. AOAA afforded almost complete protection from DCVG toxicity. Acivicin (250 microM), an inhibitor of gamma-glutamyl transferase (gamma-GT), partially protected against DCVG (500 microM)-induced toxicity at 48 h (5% viability and 53% viability in the absence and presence of acivicin, respectively). These results suggest that DCVG requires processing by gamma-GT prior to bioactivation by C-S lyase in HPT cells. The activity of C-S lyase, using TFEC as a substrate, and glutamine transaminase K (GTK) was measured in rat and human cells with time in culture. C-S lyase activity in RPT and HPT cells decreased to approximately 30% of fresh cell values by the time the cells reached

  9. Monitoring and trace detection of hazardous waste and toxic chemicals using resonance Raman spectroscopy

    International Nuclear Information System (INIS)

    Sedlacek, A.J. III; Dougherty, D.R.; Chen, C.L.

    1993-01-01

    Raman scattering is a coherent, inelastic, two-photon process, which shifts the frequency of an outgoing photon according to the vibrational structure of the irradiated species, thereby providing a unique fingerprint of the molecule. When involving an allowed electronic transition (resonance Raman), this scattering cross section can be enhanced by 10 4 to 10 6 and provides the basis for a viable technique that can monitor and detect trace quantities of hazardous wastes and toxic chemicals. Resonance Raman spectroscopy (RRS) possesses many of the ideal characteristics for monitoring and detecting of hazardous waste and toxic chemicals. Some of these traits are: (1) very high selectivity (chemical specific fingerprints); (2) independence from the excitation wavelength (ability to monitor in the solar blind region); (3) chemical mixture fingerprints are the sum of its individual components (no spectral cross-talk); (4) near independence of the Raman fingerprint to its physical state (very similar spectra for gas, liquid, solid and solutions -- either bulk or aerosols); and (5) insensitivity of the Raman signature to environmental conditions (no quenching). Data from a few chemicals will be presented which illustrate these features. In cases where background fluorescence accompanies the Raman signals, an effective frequency modulation technique has been developed, which can completely eliminate this interference

  10. 76 FR 38169 - Toxic Substances Control Act Chemical Testing; Receipt of Test Data

    Science.gov (United States)

    2011-06-29

    ... (7405M), Office of Pollution Prevention and Toxics, Environmental Protection Agency, 1200 Pennsylvania... gold leaf, dyeing mixtures, antifreeze mixtures, extraction of resins and waxes, preservative for...: June 21, 2011. Maria J. Doa, Director, Chemical Control Division, Office of Pollution Prevention and...

  11. 76 FR 69136 - Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting

    Science.gov (United States)

    2011-11-08

    ... Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting AGENCY: Environmental Protection Agency (EPA). ACTION: Lifting of Administrative Stay for Hydrogen Sulfide; Correction. SUMMARY: The... Administrative Stay of the reporting requirements for hydrogen sulfide. The Office of the Federal Register...

  12. Toxic chemical hazard classification and risk acceptance guidelines for use in DOE facilities. Revision 2

    International Nuclear Information System (INIS)

    Craig, D.K.; Davis, J.S.; Prowse, J.; Hoffman, P.W.

    1995-01-01

    The concentration-limit guidelines presented in this document apply to airborne releases of chemicals evaluated with respect to human health effects for the purposes of hazard classification and categorization, risk assessment and safety analysis. They apply to all DOE facilities and operations involving the use of potentially hazardous chemicals. The guidelines do not address other nonradiological hazards such as fire, pressure releases (including explosions), and chemical reactivity, but the guidelines are applicable to hazardous chemical releases resulting from these events. This report presents the subcommittee's evaluation and recommendations regarding analyses of accidentally released toxic chemicals. The premise upon which these recommendations are based is that the mechanism of action of toxic chemicals is fundamentally different from that associated with radionuclides, with the exception of carcinogens. The recommendations reported herein are restricted to the airborne pathway because in an accident scenario this typically represents the most immediately significant route of public exposure. However, the subcommittee recognizes that exposure to chemicals through other pathways, in particular waterborne, can have significant impacts on human health and the environment. Although there are a number of chemicals for which absorption through the skin can contribute measurably to the total dose in chronic (e.g., occupational) exposure situations, this pathway has not been considered for the acute exposure scenarios considered in this report. Later studies. will address these issues if it appears desirable

  13. History of EPI Suite™ and future perspectives on chemical property estimation in US Toxic Substances Control Act new chemical risk assessments.

    Science.gov (United States)

    Card, Marcella L; Gomez-Alvarez, Vicente; Lee, Wen-Hsiung; Lynch, David G; Orentas, Nerija S; Lee, Mari Titcombe; Wong, Edmund M; Boethling, Robert S

    2017-03-22

    Chemical property estimation is a key component in many industrial, academic, and regulatory activities, including in the risk assessment associated with the approximately 1000 new chemical pre-manufacture notices the United States Environmental Protection Agency (US EPA) receives annually. The US EPA evaluates fate, exposure and toxicity under the 1976 Toxic Substances Control Act (amended by the 2016 Frank R. Lautenberg Chemical Safety for the 21 st Century Act), which does not require test data with new chemical applications. Though the submission of data is not required, the US EPA has, over the past 40 years, occasionally received chemical-specific data with pre-manufacture notices. The US EPA has been actively using this and publicly available data to develop and refine predictive computerized models, most of which are housed in EPI Suite™, to estimate chemical properties used in the risk assessment of new chemicals. The US EPA develops and uses models based on (quantitative) structure-activity relationships ([Q]SARs) to estimate critical parameters. As in any evolving field, (Q)SARs have experienced successes, suffered failures, and responded to emerging trends. Correlations of a chemical structure with its properties or biological activity were first demonstrated in the late 19 th century and today have been encapsulated in a myriad of quantitative and qualitative SARs. The development and proliferation of the personal computer in the late 20 th century gave rise to a quickly increasing number of property estimation models, and continually improved computing power and connectivity among researchers via the internet are enabling the development of increasingly complex models.

  14. Zebrafish Get Connected: Investigating Neurotransmission Targets and Alterations in Chemical Toxicity

    Directory of Open Access Journals (Sweden)

    Katharine A. Horzmann

    2016-08-01

    Full Text Available Neurotransmission is the basis of neuronal communication and is critical for normal brain development, behavior, learning, and memory. Exposure to drugs and chemicals can alter neurotransmission, often through unknown pathways and mechanisms. The zebrafish (Danio rerio model system is increasingly being used to study the brain and chemical neurotoxicity. In this review, the major neurotransmitter systems, including glutamate, GABA, dopamine, norepinephrine, serotonin, acetylcholine, histamine, and glutamate are surveyed and pathways of synthesis, transport, metabolism, and action are examined. Differences between human and zebrafish neurochemical pathways are highlighted. We also review techniques for evaluating neurological function, including the measurement of neurotransmitter levels, assessment of gene expression through transcriptomic analysis, and the recording of neurobehavior. Finally examples of chemical toxicity studies evaluating alterations in neurotransmitter systems in the zebrafish model are reviewed.

  15. Investigations with beagles about toxicity and radioprotective effect of the chemical radioprotection substance WR 2721

    International Nuclear Information System (INIS)

    Wagner, M.; Sedlmeier, H.; Wustrow, T.; Messerschmidt, O.

    1980-01-01

    The toxicity of the chemical radioprotection substance WR 2721 (S-2-(3-aminopropylamino)ethyl-thiophosphate) was examined in 25 beagles. The study showed that the toxicity of the substance increases as the dose gets higher. Between the doses 200 and 250 mg/kg of body weight, the increase of toxicity was significantly greater than could be expected on the basis of the dose difference. Until a dose of 200 mg/kg, the authors found no side effects which would have disturbed vital functions, but higher doses led to marked symptoms of intoxication. (orig.) [de

  16. Guidance on health effects of toxic chemicals. Safety Analysis Report Update Program

    Energy Technology Data Exchange (ETDEWEB)

    Foust, C.B.; Griffin, G.D.; Munro, N.B.; Socolof, M.L.

    1994-02-01

    Martin Marietta Energy Systems, Inc. (MMES), and Martin Marietta Utility Services, Inc. (MMUS), are engaged in phased programs to update the safety documentation for the existing US Department of Energy (DOE)-owned facilities. The safety analysis of potential toxic hazards requires a methodology for evaluating human health effects of predicted toxic exposures. This report provides a consistent set of health effects and documents toxicity estimates corresponding to these health effects for some of the more important chemicals found within MMES and MMUS. The estimates are based on published toxicity information and apply to acute exposures for an ``average`` individual. The health effects (toxicological endpoints) used in this report are (1) the detection threshold; (2) the no-observed adverse effect level; (3) the onset of irritation/reversible effects; (4) the onset of irreversible effects; and (5) a lethal exposure, defined to be the 50% lethal level. An irreversible effect is defined as a significant effect on a person`s quality of life, e.g., serious injury. Predicted consequences are evaluated on the basis of concentration and exposure time.

  17. 75 FR 19319 - Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting; Extension of Comment...

    Science.gov (United States)

    2010-04-14

    ... Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting; Extension of Comment Period... reporting requirements for hydrogen sulfide (Chemical Abstracts Service Number (CAS No.) 7783-06-4) (75 FR... may be potentially affected by this action if you manufacture, process, or otherwise use hydrogen...

  18. Use of computer-assisted prediction of toxic effects of chemical substances

    International Nuclear Information System (INIS)

    Simon-Hettich, Brigitte; Rothfuss, Andreas; Steger-Hartmann, Thomas

    2006-01-01

    The current revision of the European policy for the evaluation of chemicals (REACH) has lead to a controversy with regard to the need of additional animal safety testing. To avoid increases in animal testing but also to save time and resources, alternative in silico or in vitro tests for the assessment of toxic effects of chemicals are advocated. The draft of the original document issued in 29th October 2003 by the European Commission foresees the use of alternative methods but does not give further specification on which methods should be used. Computer-assisted prediction models, so-called predictive tools, besides in vitro models, will likely play an essential role in the proposed repertoire of 'alternative methods'. The current discussion has urged the Advisory Committee of the German Toxicology Society to present its position on the use of predictive tools in toxicology. Acceptable prediction models already exist for those toxicological endpoints which are based on well-understood mechanism, such as mutagenicity and skin sensitization, whereas mechanistically more complex endpoints such as acute, chronic or organ toxicities currently cannot be satisfactorily predicted. A potential strategy to assess such complex toxicities will lie in their dissection into models for the different steps or pathways leading to the final endpoint. Integration of these models should result in a higher predictivity. Despite these limitations, computer-assisted prediction tools already today play a complementary role for the assessment of chemicals for which no data is available or for which toxicological testing is impractical due to the lack of availability of sufficient compounds for testing. Furthermore, predictive tools offer support in the screening and the subsequent prioritization of compound for further toxicological testing, as expected within the scope of the European REACH program. This program will also lead to the collection of high-quality data which will broaden the

  19. Therapeutic values, chemical constituents and toxicity of Taiwanese Dysosma pleiantha--a review.

    Science.gov (United States)

    Karuppaiya, Palaniyandi; Tsay, Hsin Sheng

    2015-07-16

    Dysosma pleiantha (Hance) Woodson also called as Bajiaolian belongs to the family Berberidaceae, is widely used in Taiwan as traditional Chinese herbal medicine for more than thousands of years. It is usually recommended by various traditional Chinese medical doctors and herbal pharmacies for general remedies including postpartum recovery, treatment of weakness, neck mass, acne, hepatoma, lumbago, snakebite, tumor growth and dysmenorrhea. In the textbooks of traditional Chinese medicine, there is limited information about the toxicity of Bajiaolian. Podophyllotoxin, a lignan is the main toxic ingredient of Bajiaolian rhizome. Therefore, Bajiaolian is documented as the fifth highest cause of poisoning among the herbal medicine in Taiwan. Since the therapeutic and toxic doses are very close, Bajiaolian poisoning cases are frequently reported in Taiwan. Moreover, Dysosma poisoning cases are difficult to diagnosis because physicians are unfamiliar with this medicine's multiple clinical presentations in different stages of intoxication. Therefore, the objective of this review is to represent the collective information available in literatures regarding D. pleiantha, a cytotoxic lignan containing medicinal plant. Specifically, the literatures have been reviewed for articles pertaining to chemical constituents, properties, therapeutical benefits, toxicity, poisoning symptoms, toxic as well as therapeutic dose and medical management. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Toxic industrial chemicals (TICs) as asymmetric weapons: the design basis threat

    International Nuclear Information System (INIS)

    Skinner, L.

    2009-01-01

    Asymmetric warfare concepts relate well to the use of improvised chemical weapons against urban targets. Sources of information on toxic industrial chemicals (TICs) and lists of high threat chemicals are available that point to likely choices for an attack. Accident investigations can be used as a template for attacks, and to judge the possible effectiveness of an attack using TICs. The results of a chlorine rail car accident in South Carolina, USA and the Russian military assault on a Moscow theater provide many illustrative points for similar incidents that mighty be carried out deliberately. Computer modeling of outdoor releases shows how an attack might take into consideration issues of stand-off distance and dilution. Finally, the preceding may be used to estimate with some accuracy the design basis threat posed by the used of TICs as weapons.(author)

  1. Risk factors for sexual aggression in young men: an expansion of the confluence model.

    Science.gov (United States)

    Abbey, Antonia; Jacques-Tiura, Angela J; LeBreton, James M

    2011-01-01

    There are many explanations for high rates of sexual aggression, with no one theory dominating the field. This study extends past research by evaluating an expanded version of the confluence model with a community sample. One-hour audio computer-assisted self-interviews were completed by 470 young single men. Using structural equation analyses, delinquency, hostile masculinity, impersonal sex, and misperception of women's sexual cues were positively and directly associated with the number of sexually aggressive acts committed. There were also indirect effects of childhood victimization, personality traits associated with subclinical levels of psychopathy, and alcohol consumption. These findings demonstrate the usefulness of the confluence model, as well as the importance of broadening this theory to include additional constructs. © 2011 Wiley-Liss, Inc.

  2. Biodegradation of toxic chemicals by Pleurotus eryngii in submerged fermentation and solid-state fermentation.

    Science.gov (United States)

    Chang, Bea-Ven; Chang, Yi-Ming

    2016-04-01

    The toxic chemicals bisphenol A (BPA), bisphenol F (BPF), nonylphenol (NP), and tetrabromobisphenol A (TBBPA) are endocrine-disrupting chemicals that have consequently drawn much concern regarding their effect on the environment. The objectives of this study were to investigate the degradation of BPA, BPF, NP, and TBBPA by enzymes from Pleurotus eryngii in submerged fermentation (SmF) and solid-state fermentation (SSF), and also to assess the removal of toxic chemicals in spent mushroom compost (SMC). BPA and BPF were analyzed by high-performance liquid chromatography; NP and TBBPA were analyzed by gas chromatography. NP degradation was enhanced by adding CuSO4 (1 mM), MnSO4 (0.5 mM), gallic acid (1 mM), tartaric acid (20 mM), citric acid (20 mM), guaiacol (1 mM), or 2,2'-azino-bis- (3-ethylbenzothiazoline-6-sulfonic acid; 1 mM), with the last yielding a higher NP degradation rate than the other additives from SmF. The optimal conditions for enzyme activity from SSF were a sawdust/wheat bran ratio of 1:4 and a moisture content of 5 mL/g. The enzyme activities were higher with sawdust/wheat bran than with sawdust/rice bran. The optimal conditions for the extraction of enzyme from SMC required using sodium acetate buffer (pH 5.0, solid/solution ratio 1:5), and extraction over 3 hours. The removal rates of toxic chemicals by P. eryngii, in descending order of magnitude, were SSF > SmF > SMC. The removal rates were BPF > BPA > NP > TBBPA. Copyright © 2014. Published by Elsevier B.V.

  3. Evaluation of Confluence Model Variables on IQ and Achievement Test Scores in a Sample of 6- to 11-Year-Old Children.

    Science.gov (United States)

    Svanum, Soren; Bringle, Robert G.

    1980-01-01

    The confluence model of cognitive development was tested on 7,060 children. Family size, sibling order within family sizes, and hypothesized age-dependent effects were tested. Findings indicated an inverse relationship between family size and the cognitive measures; age-dependent effects and other confluence variables were found to be…

  4. Chemical concentrations, exposures, health risks by census tract from National Scale Air Toxics Assessment (NATA)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Chemical concentrations, exposures, health risks by census tract for the United States from National Scale Air Toxics Assessment (NATA). This dataset is associated...

  5. 76 FR 38013 - Safety Zone; Big Sioux River From the Military Road Bridge North Sioux City to the Confluence of...

    Science.gov (United States)

    2011-06-29

    ...-AA00 Safety Zone; Big Sioux River From the Military Road Bridge North Sioux City to the Confluence of... Military Road Bridge in North Sioux City, South Dakota to the confluence of the Missouri River and... Big Sioux River from the Military Road Bridge in North Sioux City, SD at 42.52 degrees North, 096.48...

  6. Fine Sediment Input and Benthic Fauna Interactions at the Confluence of Two Large Rivers

    International Nuclear Information System (INIS)

    Blettler, M. C. M.; Amsler, M. L.; Ezcurra De Drago, I.; Drago, E.; Paira, A.; Espinola, L. A.; Eberle, E.; Szupiany, R.

    2016-01-01

    Several studies suggest that invertebrate abundance and richness are disrupted and reset at confluences. Thus, junctions contribute disproportionately to the overall aquatic biodiversity of the river. In general terms, authors have reported high abundance and diversity due to the major physical heterogeneity at junctions. However, data are still scarce and uncertainties are plentiful. The impact of a great input of fine sediments on the distribution patterns of benthic invertebrates at a river confluence was quantitatively analyzed herein. The junction of the subtropical Bermejo River (high suspended sediment load) with the large Paraguay River is the selected study area to achieve this aim. While diversity increased slightly downstream the junction (from 0.21 to 0.36), density and richness of the macro invertebrate assemblage significantly diminished downstream the confluence (from 29050 to 410 ind/m2; p< 0.05) due to the input of fine sediment from the Bermejo River (mean fine sediment increased downstream from 6.3 to 10.2 mg/L), causing a negatively impact on invertebrate assemblage. This study highlights the ecological importance of the sediment input effects on benthic invertebrates, a topic still poorly explored in river ecology. It is speculated that the spatial extent of the impact would be dependent upon the hydrological and sedimentological context, highly unequal between both rivers. New hypotheses should be tested through new studies considering different hydrological stages.

  7. Insect-gene-activity detection system for chemical and biological warfare agents and toxic industrial chemicals

    Science.gov (United States)

    Mackie, Ryan S.; Schilling, Amanda S.; Lopez, Arturo M.; Rayms-Keller, Alfredo

    2002-02-01

    Detection of multiple chemical and biological weapons (CBW) agents and/or complex mixtures of toxic industrial chemicals (TIC) is imperative for both the commercial and military sectors. In a military scenario, a multi-CBW attack would create confusion, thereby delaying decontamination and therapeutic efforts. In the commercial sector, polluted sites invariably contain a mixture of TIC. Novel detection systems capable of detecting CBW and TIC are sorely needed. While it may be impossible to build a detector capable of discriminating all the possible combinations of CBW, a detection system capable of statistically predicting the most likely composition of a given mixture is within the reach of current emerging technologies. Aquatic insect-gene activity may prove to be a sensitive, discriminating, and elegant paradigm for the detection of CBW and TIC. We propose to systematically establish the expression patterns of selected protein markers in insects exposed to specific mixtures of chemical and biological warfare agents to generate a library of biosignatures of exposure. The predicting capabilities of an operational library of biosignatures of exposures will allow the detection of emerging novel or genetically engineered agents, as well as complex mixtures of chemical and biological weapons agents. CBW and TIC are discussed in the context of war, terrorism, and pollution.

  8. Environmental toxicity of Chemical Warfare Agents (CWAs) - MicrotoxTM and Spontaneous Locomotor Changes

    DEFF Research Database (Denmark)

    Storgaard, Morten Swayne; Sanderson, Hans; Baatrup, Erik

    After the 2nd World War the CWAs were prohibited by law and 11,000 tonnes of toxic agents were dumped in the Bornholm Basin east of Bornholm. The dumped chemical munitions have not reached attention from politicians and scientists until recently. During earlier projects, such as MERCW (2005...

  9. Genetic and chemical modifiers of a CUG toxicity model in Drosophila.

    Directory of Open Access Journals (Sweden)

    Amparo Garcia-Lopez

    2008-02-01

    Full Text Available Non-coding CUG repeat expansions interfere with the activity of human Muscleblind-like (MBNL proteins contributing to myotonic dystrophy 1 (DM1. To understand this toxic RNA gain-of-function mechanism we developed a Drosophila model expressing 60 pure and 480 interrupted CUG repeats in the context of a non-translatable RNA. These flies reproduced aspects of the DM1 pathology, most notably nuclear accumulation of CUG transcripts, muscle degeneration, splicing misregulation, and diminished Muscleblind function in vivo. Reduced Muscleblind activity was evident from the sensitivity of CUG-induced phenotypes to a decrease in muscleblind genetic dosage and rescue by MBNL1 expression, and further supported by the co-localization of Muscleblind and CUG repeat RNA in ribonuclear foci. Targeted expression of CUG repeats to the developing eye and brain mushroom bodies was toxic leading to rough eyes and semilethality, respectively. These phenotypes were utilized to identify genetic and chemical modifiers of the CUG-induced toxicity. 15 genetic modifiers of the rough eye phenotype were isolated. These genes identify putative cellular processes unknown to be altered by CUG repeat RNA, and they include mRNA export factor Aly, apoptosis inhibitor Thread, chromatin remodelling factor Nurf-38, and extracellular matrix structural component Viking. Ten chemical compounds suppressed the semilethal phenotype. These compounds significantly improved viability of CUG expressing flies and included non-steroidal anti-inflammatory agents (ketoprofen, muscarinic, cholinergic and histamine receptor inhibitors (orphenadrine, and drugs that can affect sodium and calcium metabolism such as clenbuterol and spironolactone. These findings provide new insights into the DM1 phenotype, and suggest novel candidates for DM1 treatments.

  10. Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties

    Science.gov (United States)

    Sukhanova, Alyona; Bozrova, Svetlana; Sokolov, Pavel; Berestovoy, Mikhail; Karaulov, Alexander; Nabiev, Igor

    2018-02-01

    Studies on the methods of nanoparticle (NP) synthesis, analysis of their characteristics, and exploration of new fields of their applications are at the forefront of modern nanotechnology. The possibility of engineering water-soluble NPs has paved the way to their use in various basic and applied biomedical researches. At present, NPs are used in diagnosis for imaging of numerous molecular markers of genetic and autoimmune diseases, malignant tumors, and many other disorders. NPs are also used for targeted delivery of drugs to tissues and organs, with controllable parameters of drug release and accumulation. In addition, there are examples of the use of NPs as active components, e.g., photosensitizers in photodynamic therapy and in hyperthermic tumor destruction through NP incorporation and heating. However, a high toxicity of NPs for living organisms is a strong limiting factor that hinders their use in vivo. Current studies on toxic effects of NPs aimed at identifying the targets and mechanisms of their harmful effects are carried out in cell culture models; studies on the patterns of NP transport, accumulation, degradation, and elimination, in animal models. This review systematizes and summarizes available data on how the mechanisms of NP toxicity for living systems are related to their physical and chemical properties.

  11. Toxicity of fire retardant chemicals and fire suppressant foams to vertebrate and invertebrate wildlife species

    Science.gov (United States)

    Vyas, Nimish B.; Hill, Elwood F.

    1996-01-01

    Under laboratory conditions, acute single-dose oral toxicity tests (LD50) were conducted with three fire retardant chemicals (Fire-Trol GTS-R, Phos-Chek D75-F, and Fire-Trol LCG-R) and two fire suppressant foams (Silv-Ex and Phos-Chek WD-881) to determine effects on adult northern bobwhite, American kestrel, red-winged blackbird, and white-footed mouse. In addition, earthworms were exposed (LC50) for 14 days in treated soil.In general, no toxic responses were evident. For northern bobwhite, the LD50 for all five chemicals was >2000 mg a.l./kg of body mass. American kestrels regurgitated all chemicals except Silv-ex; LD50s all exceeded 2000 mg/kg. The LD50 for red-winged blackbird was also >2000 mg/kg for all chemicals except Fire-Trol GTS-R which is currently undergoing further testing. In addition, the LD50 for white-footed mouse was >2000 mg/kg for Phos-Chek D75F. The 14-day LC50 for earthworms was >1000 ppm for all chemicals. Therefore, we concluded that these retardants and foams do not pose an acute hazard to adult birds, mammals, or earthworms. However, ecological studies to evaluate the potential effects of these formulations on vertebrate behavior and population dynamics are in progress.

  12. Exploring Chemical Routes Relevant to the Toxicity of Paracetamol and Its meta-Analogue at a Molecular Level.

    Science.gov (United States)

    Castañeda-Arriaga, Romina; Galano, Annia

    2017-06-19

    Several chemical routes related to the toxicity of paracetamol (APAP, also known as acetaminophen), its analogue N-acetyl-m-aminophenol (AMAP), and their deacetylated derivatives, were investigated using the density functional theory. It was found that AMAP is more resilient to chemical oxidation than APAP. The chemical degradation of AMAP into radical intermediates is predicted to be significant only when it is induced by strong oxidants. This might explain the apparent contradictions among experimental evidence regarding AMAP toxicity. All of the investigated species are incapable of oxidizing DNA, but they can damage lipids by H atom transfer (HAT) from the bis-allylic site, with the phenoxyl radical of AMAP being the most threatening to the lipids' chemical integrity. Regarding protein damage, Cys residues were identified as the most likely targets. The damage in this case may involve two different routes: (i) HAT from the thiol site by phenoxyl radicals and (ii) protein arylation by the quinone imine (QI) derivatives. Both are not only thermochemically viable, but also are very fast reactions. According to the mechanism identified here as the most likely one for protein arylation, a rather large concentration of QI would be necessary for this damage to be significant. This might explain why APAP is nontoxic in therapeutic doses, while overdoses can result in hepatic toxicity. In addition, the QI derived from both APAP and AMAP were found to be capable of inflicting this kind of damage. In addition, it is proposed that they might increase • OH production via the Fenton reaction, which would contribute to their toxicity.

  13. ToxiFly: Can Fruit Flies be Used to Identify Toxicity Pathways for Airborne Chemicals?

    Science.gov (United States)

    Current high-throughput and alternative screening assays for chemical toxicity are unable to test volatile organic compounds (VOCs), thus limiting their scope. Further, the data generated by these assays require mechanistic information to link effects at molecular targets to adve...

  14. Generally applicable limits on intakes of uranium based on its chemical toxicity and the radiological significance of intakes at those limits

    International Nuclear Information System (INIS)

    Thorne, M C; Wilson, J

    2015-01-01

    Uranium is chemically toxic and radioactive, and both considerations have to be taken into account when limiting intakes of the element, in the context of both occupational and public exposures. Herein, the most recent information available on the chemical toxicity and biokinetics of uranium is used to propose new standards for limiting intakes of the element. The approach adopted allows coherent standards to be set for ingestion and inhalation of different chemical forms of the element by various age groups. It also allows coherent standards to be set for occupational and public exposures (including exposures of different age groups) and for various exposure regimes (including short-term and chronic exposures). The proposed standards are more restrictive than those used previously, but are less restrictive than the Minimal Risk Levels proposed recently by the US Agency for Toxic Substances and Disease Registry. Having developed a set of proposed limits based solely on chemical toxicity considerations, the radiological implications of exposure at those proposed limits are investigated for natural, depleted and enriched uranium. (paper)

  15. [Risk assessment and risk control for occupational exposure to chemical toxicants from an isophorone nitrile device].

    Science.gov (United States)

    Wang, Dejun; Fu, Xiaokuan; Kong, Fanling; Sui, Shaofeng; Jiang, Yuanyuan; Du, Yinglin; Zhou, Jingyang

    2014-06-01

    Risk assessment and risk control for occupational exposure to chemical toxicants were performed on an isophorone nitrile device with an annual production of 5,000 tons, based on improved Singaporean semi-quantitative risk assessment method, with consideration of actual situation in China and in the present project. With the use of engineering analysis and identification of occupational hazards in the improved Singaporean semi-quantitative risk assessment method, hazard rating (HR) and risk assessment were performed on chemical toxicants from an isophorone nitrile device with an annual production of 5,000 tons. The chemical toxicants in the isophorone nitrile device were mainly isophorone, hydrocyanic acid, methanol, phosphoric acid, sodium hydroxide, and sodium cyanide; the HR values were mild hazard (2), extreme hazard (5), mild hazard (2), mild hazard (2), moderate hazard (3), and extreme hazard (5), respectively, and the corresponding exposure rating (ER) values were 2.09, 2.72, 2.76, 1.68, 2.0, and 1.59, respectively. The risk of chemical toxicants in this project was assessed according to the formula Risk = [HR×ER](1/2). Hydrocyanic acid was determined as high risk, sodium hydroxide and sodium cyanide as medium risk, and isophorone, methanol, and phosphoric acid as low risk. Priority in handling of risks was determined by risk rating. The table of risk control measure was established for pre-assessment of occupational hazards. With risk assessment in this study, we concluded that the isophorone nitrile device with 5,000 ton annual production was a high-occupational hazard device. This device is a project of extreme occupational hazard. The improved Singaporean semi-quantitative risk assessment method is a scientific and applicable method, and is especially suitable for pre-evaluation of on-site project with no analogy.

  16. 2002 Toxic Chemical Release Inventory Report for the Emergency Planning and Community Right-to-Know Act of 1986, Title III, Section 313

    International Nuclear Information System (INIS)

    Stockton, M.

    2003-01-01

    For reporting year 2002, Los Alamos National Laboratory (LANL or the Laboratory) submitted Form R reports for lead compounds and mercury as required under the Emergency Planning and Community Right-to-Know Act (EPCRA), Section 313. No other EPCRA Section 313 chemicals were used in 2002 above the reportable thresholds. This document was prepared to provide a description of the evaluation of EPCRA Section 313 chemical usage and threshold determinations for LANL for calendar year 2002 as well as provide background information about the data included on the Form R reports. Section 313 of EPCRA specifically requires facilities to submit a Toxic Chemical Release Inventory report (Form R) to the U.S. Environmental Protection Agency (EPA) and state agencies if the owners and operators manufacture, process, or otherwise use any of the listed toxic chemicals above listed threshold quantities. EPA compiles this data in the Toxic Release Inventory database. Form R reports for each chemical over threshold quantities must be submitted on or before July 1 each year and must cover activities that occurred at the facility during the previous year. In 1999 EPA promulgated a final rule on Persistent Bioaccumulative Toxics (PBTs). This rule added several chemicals to the EPCRA Section 313 list of toxic chemicals and established lower reporting thresholds for these and other PBT chemicals that were already reportable under EPCRA Section 313. These lower thresholds became applicable in reporting year 2000. In 2001, EPA expanded the PBT rule to include a lower reporting threshold for lead and lead compounds. Facilities that manufacture, process, or otherwise use more than 100 lb of lead or lead compounds must submit a Form R

  17. 2006 Toxic Chemical Release Inventory Report for the Emergency Planning and Community Right-to-Know Act of 1986, Title III, Section 313

    Energy Technology Data Exchange (ETDEWEB)

    Ecology and Air Quality Group (ENV-EAQ)

    2007-12-12

    For reporting year 2006, Los Alamos National Laboratory (LANL or the Laboratory) submitted Form R reports for lead as required under the Emergency Planning and Community Right-to-Know Act (EPCRA) Section 313. No other EPCRA Section 313 chemicals were used in 2006 above the reportable thresholds. This document was prepared to provide a description of the evaluation of EPCRA Section 313 chemical use and threshold determinations for LANL for calendar year 2006, as well as to provide background information about data included on the Form R reports. Section 313 of EPCRA specifically requires facilities to submit a Toxic Chemical Release Inventory Report (Form R) to the U.S. Environmental Protection Agency (EPA) and state agencies if the owners and operators manufacture, process, or otherwise use any of the listed toxic chemicals above listed threshold quantities. EPA compiles this data in the Toxic Release Inventory database. Form R reports for each chemical over threshold quantities must be submitted on or before July 1 each year and must cover activities that occurred at the facility during the previous year. In 1999, EPA promulgated a final rule on persistent bioaccumulative toxics (PBTs). This rule added several chemicals to the EPCRA Section 313 list of toxic chemicals and established lower reporting thresholds for these and other PBT chemicals that were already reportable. These lower thresholds became applicable in reporting year 2000. In 2001, EPA expanded the PBT rule to include a lower reporting threshold for lead and lead compounds. Facilities that manufacture, process, or otherwise use more than 100 lb of lead or lead compounds must submit a Form R.

  18. Environmental Pollution, Toxicity Profile and Treatment Approaches for Tannery Wastewater and Its Chemical Pollutants.

    Science.gov (United States)

    Saxena, Gaurav; Chandra, Ram; Bharagava, Ram Naresh

    Leather industries are key contributors in the economy of many developing countries, but unfortunately they are facing serious challenges from the public and governments due to the associated environmental pollution. There is a public outcry against the industry due to the discharge of potentially toxic wastewater having alkaline pH, dark brown colour, unpleasant odour, high biological and chemical oxygen demand, total dissolved solids and a mixture of organic and inorganic pollutants. Various environment protection agencies have prioritized several chemicals as hazardous and restricted their use in leather processing however; many of these chemicals are used and discharged in wastewater. Therefore, it is imperative to adequately treat/detoxify the tannery wastewater for environmental safety. This paper provides a detail review on the environmental pollution and toxicity profile of tannery wastewater and chemicals. Furthermore, the status and advances in the existing treatment approaches used for the treatment and/or detoxification of tannery wastewater at both laboratory and pilot/industrial scale have been reviewed. In addition, the emerging treatment approaches alone or in combination with biological treatment approaches have also been considered. Moreover, the limitations of existing and emerging treatment approaches have been summarized and potential areas for further investigations have been discussed. In addition, the clean technologies for waste minimization, control and management are also discussed. Finally, the international legislation scenario on discharge limits for tannery wastewater and chemicals has also been discussed country wise with discharge standards for pollution prevention due to tannery wastewater.

  19. Sacrifice zones: the front lines of toxic chemical exposure in the United States

    National Research Council Canada - National Science Library

    Lerner, Steve

    2010-01-01

    ... States of America. Library of Congress Cataloging-in-Publication Data Lerner, Steve. Sacrifice zones: the front lines of toxic chemical exposure in the United States / Steve Lerner. p. cm. Includes bibliographical references and index. ISBN 978-0-262-01440-3 (hardcover : alk. paper) 1. Environmental toxicology- United States- Case studies. 2. Che...

  20. Probing nanomechanical interaction at the interface between biological membrane and potentially toxic chemical.

    Science.gov (United States)

    Lim, Chanoong; Park, Sohee; Park, Jinwoo; Ko, Jina; Lee, Dong Woog; Hwang, Dong Soo

    2018-04-12

    Various xenobiotics interact with biological membranes, and precise evaluations of the molecular interactions between them are essential to foresee the toxicity and bioavailability of existing or newly synthesized molecules. In this study, surface forces apparatus (SFA) measurement and Langmuir trough based tensiometry are performed to reveal nanomechanical interaction mechanisms between potential toxicants and biological membranes for ex vivo toxicity evaluation. As a toxicant, polyhexamethylene guanidine (PHMG) was selected because PHMG containing humidifier disinfectant and Vodka caused lots of victims in both S. Korea and Russia, respectively, due to the lack of holistic toxicity evaluation of PHMG. Here, we measured strong attraction (Wad ∼4.2 mJ/m 2 ) between PHMG and head group of biological membranes while no detectable adhesion force between the head group and control molecules was measured. Moreover, significant changes in π-A isotherm of 1,2-Dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) monolayers were measured upon PHMG adsorption. These results indicate PHMG strongly binds to hydrophilic group of lipid membranes and alters the structural and phase behavior of them. More importantly, complementary utilization of SFA and Langmuir trough techniques are found to be useful to predict the potential toxicity of a chemical by evaluating the molecular interaction with biological membranes, the primary protective barrier for living organisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Acute and chronic toxicity study of the water accommodated fraction (WAF), chemically enhanced WAF (CEWAF) of crude oil and dispersant in the rock pool copepod Tigriopus japonicus.

    Science.gov (United States)

    Lee, Kyun-Woo; Shim, Won Joon; Yim, Un Hyuk; Kang, Jung-Hoon

    2013-08-01

    We determined the toxicity of the water accommodated hydrocarbon fraction (WAF), two chemically enhanced WAFs (CEWAFs; CEWAF-C, Crude oil+Corexit 9500 and CEWAF-H, Crude oil+Hiclean) of crude oil and two dispersants (Corexit 9500 and Hiclean) to the rock pool copepod Tigriopus japonicus. In the acute toxicity test, Corexit 9500 was the most toxic of all the chemicals studied. The nauplius stage of T. japonicus was more susceptible to the toxic chemicals studied than the adult female. The toxicity data using the nauplius stage was then considered as baseline to determine the spiking concentration of chemicals for chronic toxicity tests on the copepod. As the endpoints in the chronic toxicity test, survival, sex ratio, developmental time and fecundity of the copepod were used. All chemicals used in this study resulted in increased toxicity in the F1 generation. The lowest-observed-adverse-effect (LOAE) concentrations of WAF, CEWAF-H, CEWAF-C, Hiclean and Corexit 9500 were observed to be 50%, 10%, 0.1%, 1% and 1%, respectively. The results in present study imply that copepods in marine may be negatively influenced by spilled oil and dispersant. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Comparative analysis of pharmaceuticals versus industrial chemicals acute aquatic toxicity classification according to the United Nations classification system for chemicals. Assessment of the (Q)SAR predictability of pharmaceuticals acute aquatic toxicity and their predominant acute toxic mode-of-action

    DEFF Research Database (Denmark)

    Sanderson, Hans; Thomsen, Marianne

    2009-01-01

    data. Pharmaceuticals were found to be more frequent than industrial chemicals in GHS category III. Acute toxicity was predictable (>92%) using a generic (Q)SAR ((Quantitative) Structure Activity Relationship) suggesting a narcotic MOA. Analysis of model prediction error suggests that 68...... a comprehensive database based on OECD's standardized measured ecotoxicological data and to evaluate if there is generally cause of greater concern with regards to pharmaceutical aquatic toxicological profiles relative to industrial chemicals. Comparisons were based upon aquatic ecotoxicity classification under...... the United Nations Global Harmonized System for classification and labeling of chemicals (GHS). Moreover, we statistically explored whether the predominant mode-of-action (MOA) for pharmaceuticals is narcosis. We found 275 pharmaceuticals with 569 acute aquatic effect data; 23 pharmaceuticals had chronic...

  3. Evaluation of an adherent mouse embryonic stem cell in vitro assay to predict developmental toxicity of ToxCast chemicals.

    Science.gov (United States)

    The potential for most environmental chemicals to produce developmental toxicity is unknown. Mouse embryonic stem cell (mESC) assays are an alternative in vitro model to assess chemicals. The chemical space evaluated using mESC and compared to in vivo is limited. We used an adher...

  4. Assessing joint toxicity of chemicals in Enchytraeus albidus (Enchytraeidae) and Porcellionides pruinosus (Isopoda) using avoidance behaviour as an endpoint

    International Nuclear Information System (INIS)

    Loureiro, Susana; Amorim, Monica J.B.; Campos, Bruno; Rodrigues, Sandra M.G.; Soares, Amadeu M.V.M.

    2009-01-01

    Contamination problems are often characterized by complex mixtures of chemicals. There are two conceptual models usually used to evaluate patterns of mixture toxicity: Concentration Addition (CA) and Independent Action (IA). Deviations from these models as synergism, antagonism and dose dependency also occur. In the present study, single and mixture toxicity of atrazine, dimethoate, lindane, zinc and cadmium were tested in Porcellionides pruinosus and Enchytraeus albidus, using avoidance as test parameter. For both species patterns of antagonism were found when exposed to dimethoate and atrazine, synergism for lindane and dimethoate exposures (with the exception of lower doses in the isopod case study) and concentration addition for cadmium and zinc occurred, while the exposure to cadmium and dimethoate showed dissimilar patterns. This study highlights the importance of dose dependencies when testing chemical mixtures and that avoidance tests can also be used to asses the effects of mixture toxicity. - Avoidance behaviour to binary mixtures of chemicals in two edaphic species

  5. Passive dosing of pyrethroid insecticides to Daphnia magna: Expressing excess toxicity by chemical activity

    DEFF Research Database (Denmark)

    Nørgaard Schmidt, Stine; Gan, Jay; Kretschmann, A. C.

    2015-01-01

    ) Effective chemical activities resulting in 50% immobilisation (Ea50) will be estimated from pyrethroid EC50 values via the correlation of sub-cooled liquid solubility (S L, [mmol/L], representing a=1) and octanol to water partitioning ratios (Kow), (3) The excess toxicity observed for pyrethroids...

  6. Toxic chemical considerations for tank farm releases. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Van Keuren, J.C.

    1995-11-01

    This document provides a method of determining the toxicological consequences of accidental releases from Hanford Tank Farms. A determination was made of the most restrictive toxic chemicals that are expected to be present in the tanks. Concentrations were estimated based on the maximum sample data for each analyte in all the tanks in the composite. Composite evaluated were liquids and solids from single shell tanks, double shell tanks, flammable gas watch list tanks, as well as all solids, all liquids, head space gases, and 241-C-106 solids. A sum of fractions of the health effects was computed for each composite for unit releases based emergency response planning guidelines (ERPGs). Where ERPGs were not available for chemical compounds of interest, surrogate guidelines were established. The calculation method in this report can be applied to actual release scenarios by multiplying the sum of fractions by the release rate for continuous releases, or the release amount for puff releases. Risk guidelines are met if the product is less than for equal to one.

  7. Toxic chemical considerations for tank farm releases. Revision 1

    International Nuclear Information System (INIS)

    Van Keuren, J.C.

    1995-11-01

    This document provides a method of determining the toxicological consequences of accidental releases from Hanford Tank Farms. A determination was made of the most restrictive toxic chemicals that are expected to be present in the tanks. Concentrations were estimated based on the maximum sample data for each analyte in all the tanks in the composite. Composite evaluated were liquids and solids from single shell tanks, double shell tanks, flammable gas watch list tanks, as well as all solids, all liquids, head space gases, and 241-C-106 solids. A sum of fractions of the health effects was computed for each composite for unit releases based emergency response planning guidelines (ERPGs). Where ERPGs were not available for chemical compounds of interest, surrogate guidelines were established. The calculation method in this report can be applied to actual release scenarios by multiplying the sum of fractions by the release rate for continuous releases, or the release amount for puff releases. Risk guidelines are met if the product is less than for equal to one

  8. Classification of baseline toxicants for QSAR predictions to replace fish acute toxicity studies.

    Science.gov (United States)

    Nendza, Monika; Müller, Martin; Wenzel, Andrea

    2017-03-22

    Fish acute toxicity studies are required for environmental hazard and risk assessment of chemicals by national and international legislations such as REACH, the regulations of plant protection products and biocidal products, or the GHS (globally harmonised system) for classification and labelling of chemicals. Alternative methods like QSARs (quantitative structure-activity relationships) can replace many ecotoxicity tests. However, complete substitution of in vivo animal tests by in silico methods may not be realistic. For the so-called baseline toxicants, it is possible to predict the fish acute toxicity with sufficient accuracy from log K ow and, hence, valid QSARs can replace in vivo testing. In contrast, excess toxicants and chemicals not reliably classified as baseline toxicants require further in silico, in vitro or in vivo assessments. Thus, the critical task is to discriminate between baseline and excess toxicants. For fish acute toxicity, we derived a scheme based on structural alerts and physicochemical property thresholds to classify chemicals as either baseline toxicants (=predictable by QSARs) or as potential excess toxicants (=not predictable by baseline QSARs). The step-wise approach identifies baseline toxicants (true negatives) in a precautionary way to avoid false negative predictions. Therefore, a certain fraction of false positives can be tolerated, i.e. baseline toxicants without specific effects that may be tested instead of predicted. Application of the classification scheme to a new heterogeneous dataset for diverse fish species results in 40% baseline toxicants, 24% excess toxicants and 36% compounds not classified. Thus, we can conclude that replacing about half of the fish acute toxicity tests by QSAR predictions is realistic to be achieved in the short-term. The long-term goals are classification criteria also for further groups of toxicants and to replace as many in vivo fish acute toxicity tests as possible with valid QSAR

  9. Echocolor Doppler morpho-functional study of the jugulo-subclavian confluence in chronic cerebro-spinal venous insufficiency and multiple sclerosis patients.

    Science.gov (United States)

    Mandolesi, Sandro; d'Alessandro, Aldo; Desogus, Antonello Ignazio; Ciccone, Marco Matteo; Zito, Annapaola; Stammegna, Immacolata; Niglio, Tarcisio; Orsini, Augusto; Mandolesi, Dimitri; d'Alessandro, Alessandro; Revelli, Luca

    2017-01-01

    The aim of this work is to measure the mean diameter of the confluence jugulo- subclavian, the impact of different types of jugular confluences and the correlation between the types of confluences and the Valsalva maneuver (jugular reflux) in subjects with Chronic Cerebro-Spinal Venous Insufficiency (CCSVI) and Multiple Sclerosis. We investigated by Echo-Color-Doppler (ECD) 103 subjects (67 F 36M) of mean age 45 ± 12 years (a minimum of 22 to a maximum of 79 years, with a median of 44 and a modal value 42 years), mean EDSS of 4.7 and average disease duration of 12 years. The 103 right jugular veins investigated had an average diameter of 8.4 ± 2.4 mm (minimum 4.0, maximum 14.9 mm; median 7.9; modal value 7.6 mm). Three form types were found: 56 cylindrical, 29 conical and 18 funnel. Valsalva maneuver was positive in 30 patients. The 103 left jugular investigated had an average diameter of 8.9 ± 2.4 mm (minimum 2.8, maximum 14.4 mm; median of 8.8; modal value 8.7 mm). The form types were found: 42 cylindrical, 45 conical and 16 funnel. Valsalva maneuver was positive in 30 patients. The mean diameter of the jugular veins was 8.7 mm. Internal jugular veins with cylindrical morphology have a diameter smaller than other forms; this difference is statistically significant. The different morphology of the jugular vein confluence does not increase the possibility of a reflux because the positive Valsalva maneuvers are not statistically significant when compared to the various types. CCSVI, EchoColorDoppler Map, Jugulo-Subclavian Confluence Diameter.

  10. An assessment of the long-term impact of chemically toxic contaminants from the disposal of nuclear fuel waste

    International Nuclear Information System (INIS)

    Goodwin, B.W.; Garisto, N.C.; Barnard, J.W.

    1987-01-01

    This paper presents a study on the potential for impact on man of chemically toxic contaminants associated with the Canadian concept for the disposal of nuclear fuel waste. The elements of concern are determined through a series of screening criteria such as elemental abundances and solubilities. A systems variability analysis approach is then used to predict the possible concentrations of these elements that may arise in the biosphere. These concentrations are compared with environmental guidelines such as permissible levels in drinking water. Conclusions are made regarding the potential for the chemically toxic contaminants to have an impact on man. 54 refs

  11. Physical and toxic properties of hazardous chemicals regularly stored and transported in the vicinity of nuclear installations

    International Nuclear Information System (INIS)

    1976-03-01

    This report gives a compilation of data based on information assembled by the US Nuclear Regulatory Commission and completed by the Safety and Reliability Directorate of the UK AEA, the Dutch Reactor Safety Commission, the French Atomic Energy Commission, and the CSNI Secretariat. Data sheets for a large number of hazardous chemicals are presented (from acetaldehyde to xylene), giving details of their physical and toxic properties such as: molecular weight, boiling point, vapor density, heat of vaporization, toxic concentration in air, flammability limits, toxic effects, vapor pressure data, etc.

  12. Characterization of Platinum Electrodes and In-situ Cell Confluency Measurement Based on Current Changes of Cell-Electrodes

    Directory of Open Access Journals (Sweden)

    Chin Fhong SOON

    2015-04-01

    Full Text Available This study aimed at the development of a biosensor to examine the growth confluency of human derived keratinocytes (HaCaT cell lines in-situ. The biosensor consists of a sputter- coated glass substrate with platinum patterns. Cells were grown on the conductive substrates and the confluency of the cells were monitored in-situ based on the conductivity changes of the substrates. Characterization of the cell proliferation and confluency were interrogated using electrical cell-substrate impedance sensing (ECIS techniques and current change of cells using a pico-ammeter. The investigation was followed by the electrical characterization of the platinum electrode (PE using a two probe I-V measurement system. The surface morphology of platinum electrodes were studied using an atomic force microscopy (AFM and the HaCaT cell morphology was studied using Field-Emission Scanning Electron Microscopy (FE-SEM. The microscopy results showed that the cells coupled and proliferated on the platinum electrodes. For monitoring the conductivity and impedance changes of the cell-electrode in-situ, the cover of a Petri dish was inserted with pogo pins to be in contact with the platinum electrodes. The impedance was sampled using the ECIS technique at a twenty-four hour interval. In our findings, the cell proliferation rate can be measured by observing the changes in capacitance or impedance measured at low ac frequencies ranged from 10 - 1 kHz. In good agreement, the current measured at micro-ampere range by the biosensor decreased as the cell coverage area increased over the time. Thus, the percent of cell confluence was shown inversely proportional to the current changes.

  13. QSAR modeling of toxicity of diverse organic chemicals to Daphnia magna using 2D and 3D descriptors

    International Nuclear Information System (INIS)

    Kar, Supratik; Roy, Kunal

    2010-01-01

    One of the major economic alternatives to experimental toxicity testing is the use of quantitative structure-activity relationships (QSARs) which are used in formulating regulatory decisions of environmental protection agencies. In this background, we have modeled a large diverse group of 297 chemicals for their toxicity to Daphnia magna using mechanistically interpretable descriptors. Three-dimensional (3D) (electronic and spatial) and two-dimensional (2D) (topological and information content indices) descriptors along with physicochemical parameter log K o/w (n-octanol/water partition coefficient) and structural descriptors were used as predictor variables. The QSAR models were developed by stepwise multiple linear regression (MLR), partial least squares (PLS), genetic function approximation (GFA), and genetic PLS (G/PLS). All the models were validated internally and externally. Among several models developed using different chemometric tools, the best model based on both internal and external validation characteristics was a PLS equation with 7 descriptors and three latent variables explaining 67.8% leave-one-out predicted variance and 74.1% external predicted variance. The PLS model suggests that higher lipophilicity and electrophilicity, less negative charge surface area and presence of ether linkage, hydrogen bond donor groups and acetylenic carbons are responsible for greater toxicity of chemicals. The developed model may be used for prediction of toxicity, safety and risk assessment of chemicals to achieve better ecotoxicological management and prevent adverse health consequences.

  14. QSAR modeling of toxicity of diverse organic chemicals to Daphnia magna using 2D and 3D descriptors

    Energy Technology Data Exchange (ETDEWEB)

    Kar, Supratik [Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032 (India); Roy, Kunal, E-mail: kunalroy_in@yahoo.com [Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032 (India)

    2010-05-15

    One of the major economic alternatives to experimental toxicity testing is the use of quantitative structure-activity relationships (QSARs) which are used in formulating regulatory decisions of environmental protection agencies. In this background, we have modeled a large diverse group of 297 chemicals for their toxicity to Daphnia magna using mechanistically interpretable descriptors. Three-dimensional (3D) (electronic and spatial) and two-dimensional (2D) (topological and information content indices) descriptors along with physicochemical parameter log K{sub o/w} (n-octanol/water partition coefficient) and structural descriptors were used as predictor variables. The QSAR models were developed by stepwise multiple linear regression (MLR), partial least squares (PLS), genetic function approximation (GFA), and genetic PLS (G/PLS). All the models were validated internally and externally. Among several models developed using different chemometric tools, the best model based on both internal and external validation characteristics was a PLS equation with 7 descriptors and three latent variables explaining 67.8% leave-one-out predicted variance and 74.1% external predicted variance. The PLS model suggests that higher lipophilicity and electrophilicity, less negative charge surface area and presence of ether linkage, hydrogen bond donor groups and acetylenic carbons are responsible for greater toxicity of chemicals. The developed model may be used for prediction of toxicity, safety and risk assessment of chemicals to achieve better ecotoxicological management and prevent adverse health consequences.

  15. Chronic uranium exposure and growth toxicity for phytoplankton. Dose-effect relationship: first comparison of chemical and radiological toxicity

    International Nuclear Information System (INIS)

    Gilbin, R.; Pradines, C.; Garnier-Laplace, J.

    2004-01-01

    The bioavailability of uranium for freshwater organisms, as for other dissolved metals, is closely linked to chemical speciation in solution (U aqueous speciation undergoes tremendous changes in the presence of ligands commonly found in natural waters e.g. carbonate, phosphate, hydroxide and natural organic matter). For the studied chemical domain, short-term uranium uptake experiments have already shown that the free uranyl ion concentration [UO 2 2+ ] is a good predictor of uranium uptake by the green algae Chlamydomonas reinhardtii, as predicted by the Free Ion Activity Model. In agreement with these results, acidic pH and low ligands concentrations in water enhance uranium bioavailability and consequently its potential chronic effects on phytoplankton. Moreover, uranium is known to be both radio-toxic and chemo-toxic. The use of different isotopes of uranium allows to expose organisms to different radiological doses for the same molar concentration: e.g. for a given element concentration (chemical dose), replacing depleted U by U-233 obviously leads to an enhanced radiological delivered dose to organisms (x10 4 ). In this work we established relationships between uranium doses (depleted uranium and 233-U ) and effect on the growth rate of the green algae Chlamydomonas reinhardtii. Uranium bioaccumulation was also monitored. Growth rate was measured both in classical batch (0-72 hrs) and continuous (turbidostat) cultures, the latter protocol allowing medium renewal to diminish exudates accumulation and speciation changes in the medium. The differences in effects will be, if possible, related to the development of defence mechanisms against the formation of reactive oxygen species (forms of glutathione) and the production of phyto-chelatins (small peptides rich in cystein that play an important role in the homeostasis and the detoxication of metals in cells). (author)

  16. Nature and prevalence of non-additive toxic effects in industrially relevant mixtures of organic chemicals.

    Science.gov (United States)

    Parvez, Shahid; Venkataraman, Chandra; Mukherji, Suparna

    2009-06-01

    The concentration addition (CA) and the independent action (IA) models are widely used for predicting mixture toxicity based on its composition and individual component dose-response profiles. However, the prediction based on these models may be inaccurate due to interaction among mixture components. In this work, the nature and prevalence of non-additive effects were explored for binary, ternary and quaternary mixtures composed of hydrophobic organic compounds (HOCs). The toxicity of each individual component and mixture was determined using the Vibrio fischeri bioluminescence inhibition assay. For each combination of chemicals specified by the 2(n) factorial design, the percent deviation of the predicted toxic effect from the measured value was used to characterize mixtures as synergistic (positive deviation) and antagonistic (negative deviation). An arbitrary classification scheme was proposed based on the magnitude of deviation (d) as: additive (50%, class-IV) antagonistic/synergistic. Naphthalene, n-butanol, o-xylene, catechol and p-cresol led to synergism in mixtures while 1, 2, 4-trimethylbenzene and 1, 3-dimethylnaphthalene contributed to antagonism. Most of the mixtures depicted additive or antagonistic effect. Synergism was prominent in some of the mixtures, such as, pulp and paper, textile dyes, and a mixture composed of polynuclear aromatic hydrocarbons. The organic chemical industry mixture depicted the highest abundance of antagonism and least synergism. Mixture toxicity was found to depend on partition coefficient, molecular connectivity index and relative concentration of the components.

  17. Effects of fish community on occurrences of Yangtze finless porpoise in confluence of the Yangtze and Wanhe Rivers.

    Science.gov (United States)

    Zhang, Xiaoke; Yu, Daoping; Wang, Huili; Wan, An; Chen, Minmin; Tao, Feng; Song, Zunrong

    2015-06-01

    The Yangtze finless porpoise is a subspecies of narrow-ridged finless porpoise endemic to the middle and lower reaches of the Yangtze River and the adjoining Poyang and Dongting Lakes. With the depletion of fish stocks in the Yangtze River in recent decades, food availability has become the most important factor affecting the survival of this subspecies. Despite this, the relationships between fish community and occurrences of porpoise are far from being fully understood. Therefore, during September 2013 to August 2014, the occurrences of porpoise were investigated in confluence of the Yangtze and Wanhe Rivers; fish community was also surveyed synchronously in confluence and two adjacent transects. The results showed that (1) the confluence had maximum fish species richness, and the main dominant species was upper fish, while the other two transects were mainly dominated by demersal fish. ANOVA analyses showed that individual number and yield of upper fish which can be eaten by porpoise (upper edible fish) in the confluence were significantly higher than other two transects. (2) Average group size of the porpoise was 3.7 ± 1.8 individuals. The occurrences of porpoise in different seasons had great differences, and the porpoise was more likely to be detected in autumn and winter. (3) Fish community had significant effects on occurrences of porpoise, and the main influencing factors were fish species richness, individual number, and yield of edible fish, especially the upper edible fish. The results of this study will have important implications for the conservation of porpoise.

  18. Natural and active chemical remediation of toxic metals and radionuclides in the aquatic environment

    International Nuclear Information System (INIS)

    McPherson, G.; Pintauro, P.; O'Connor, S.; Zhang, J.; Gonzales, R.; Flowers, G.

    1993-01-01

    The focus of this research is the non-biological, chemical remediation of toxic heavy metals and radionuclides in aquatic environments. This Tulane/Xavier group includes researchers from Chemistry, Chemical Engineering, and Geology. Active methods using novel zeolites and ion exchange membranes are currently being evaluated for use in removing heavy metals from natural waters. In addition, field and laboratory studies of metal ion exchange reactions and competitive, heavy metal adsorption on clay substrates are underway to determine sediment metal sequestering capacity. A summary of progress to date and future work is presented

  19. NODC Standard Format Marine Toxic Substances and Pollutants (F144) chemical identification codes (NODC Accession 9200273)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival information package contains a listing of codes and chemical names that were used in NODC Standard Format Marine Toxic Substances and Pollutants (F144)...

  20. Colorimetric sensor array for determination and identification of toxic industrial chemicals.

    Science.gov (United States)

    Feng, Liang; Musto, Christopher J; Kemling, Jonathan W; Lim, Sung H; Zhong, Wenxuan; Suslick, Kenneth S

    2010-11-15

    A low-cost yet highly sensitive colorimetric sensor array for the detection and identification of toxic industrial chemicals (TICs) has been developed. The sensor consists of a disposable array of cross-responsive nanoporous pigments whose colors are changed by diverse chemical interactions with analytes. Clear differentiation among 20 different TICs has been easily achieved at both their IDLH (immediately dangerous to life or health) concentration within 2 min of exposure and PEL (permissible exposure limit) concentration within 5 min of exposure with no errors or misclassifications. Detection limits are generally well below the PEL (in most cases below 5% of PEL) and are typically in the low ppb range. The colorimetric sensor array is not responsive to changes in humidity or temperature over a substantial range. The printed arrays show excellent batch to batch reproducibility and long shelf life (greater than 3 months).

  1. 2004 Toxic Chemical Release Inventory Report for the Emergency Planning and Community Right-to-Know Act of 1986, Title III, Section 313

    Energy Technology Data Exchange (ETDEWEB)

    M. Stockton

    2006-01-15

    Section 313 of Emergency Planning and Community Right-to-Know Act (EPCRA) specifically requires facilities to submit a Toxic Chemical Release Inventory Report (Form R) to the U.S. Environmental Protection Agency (EPA) and state agencies if the owners and operators manufacture, process, or otherwise use any of the listed toxic chemicals above listed threshold quantities. EPA compiles this data in the Toxic Release Inventory database. Form R reports for each chemical over threshold quantities must be submitted on or before July 1 each year and must cover activities that occurred at the facility during the previous year. For reporting year 2004, Los Alamos National Laboratory (LANL or the Laboratory) submitted Form R reports for lead compounds, nitric acid, and nitrate compounds as required under the EPCRA Section 313. No other EPCRA Section 313 chemicals were used in 2004 above the reportable thresholds. This document provides a description of the evaluation of EPCRA Section 313 chemical use and threshold determinations for LANL for calendar year 2004, as well as background information about data included on the Form R reports.

  2. Chemical warfare agent and biological toxin-induced pulmonary toxicity: could stem cells provide potential therapies?

    Science.gov (United States)

    Angelini, Daniel J; Dorsey, Russell M; Willis, Kristen L; Hong, Charles; Moyer, Robert A; Oyler, Jonathan; Jensen, Neil S; Salem, Harry

    2013-01-01

    Chemical warfare agents (CWAs) as well as biological toxins present a significant inhalation injury risk to both deployed warfighters and civilian targets of terrorist attacks. Inhalation of many CWAs and biological toxins can induce severe pulmonary toxicity leading to the development of acute lung injury (ALI) as well as acute respiratory distress syndrome (ARDS). The therapeutic options currently used to treat these conditions are very limited and mortality rates remain high. Recent evidence suggests that human stem cells may provide significant therapeutic options for ALI and ARDS in the near future. The threat posed by CWAs and biological toxins for both civilian populations and military personnel is growing, thus understanding the mechanisms of toxicity and potential therapies is critical. This review will outline the pulmonary toxic effects of some of the most common CWAs and biological toxins as well as the potential role of stem cells in treating these types of toxic lung injuries.

  3. Prediction of Chemical Carcinogenicity in Rodents from in vitro Genetic Toxicity Assays

    Science.gov (United States)

    Tennant, Raymond W.; Margolin, Barry H.; Shelby, Michael D.; Zeiger, Errol; Haseman, Joseph K.; Spalding, Judson; Caspary, William; Resnick, Michael; Stasiewicz, Stanley; Anderson, Beth; Minor, Robert

    1987-05-01

    Four widely used in vitro assays for genetic toxicity were evaluated for their ability to predict the carcinogenicity of selected chemicals in rodents. These assays were mutagenesis in Salmonella and mouse lymphoma cells and chromosome aberrations and sister chromatid exchanges in Chinese hamster ovary cells. Seventy-three chemicals recently tested in 2-year carcinogenicity studies conducted by the National Cancer Institute and the National Toxicology Program were used in this evaluation. Test results from the four in vitro assays did not show significant differences in individual concordance with the rodent carcinogenicity results; the concordance of each assay was approximately 60 percent. Within the limits of this study there was no evidence of complementarity among the four assays, and no battery of tests constructed from these assays improved substantially on the overall performance of the Salmonella assay. The in vitro assays which represented a range of three cell types and four end points did show substantial agreement among themselves, indicating that chemicals positive in one in vitro assay tended to be positive in the other in vitro assays. To help put this project into its proper context, we emphasize certain features of the study: 1) Standard protocols were used to mimic the major use of STTs worldwide--screening for mutagens and carcinogens; no attempt was made to optimize protocols for specific chemicals. 2) The 73 NTP chemicals and their 60% incidence of carcinogenicity are probably not representative of the universe of chemicals but rather reflect the recent chemical selection process for the NTP carcinogenicity assay. 3) The small, diverse group of chemicals precludes a meaningful evaluation of the predictive utility of chemical structure information. 4) The NTP is currently testing these same 73 chemicals in two in vivo STTs for chromosomal effects. 5) Complete data for an additional group of 30 to 40 NTP chemicals will be gathered on

  4. Probing the ToxCastTM Chemical Library for Predictive Signatures of Developmental Toxicity - Poster at Teratology Society Annual Meeting

    Science.gov (United States)

    EPA’s ToxCast™ project is profiling the in vitro bioactivity of chemical compounds to assess pathway-level and cell-based signatures that correlate with observed in vivo toxicity. We hypothesize that cell signaling pathways are primary targets for diverse environmental chemicals ...

  5. Neurodevelopmental toxicity risks due to occupational exposure to industrial chemicals during pregnancy

    DEFF Research Database (Denmark)

    Julvez, Jordi; Grandjean, Philippe

    2009-01-01

    Exposure to neurotoxic chemicals is of particular concern when it occurs during early development. The immature brain is highly vulnerable prenatally and is therefore at risk due to occupational exposures incurred by pregnant women. A systematic search of the literature has been performed...... by occupational health researchers and practitioners from the need to protect pregnant workers. Due to the vulnerability of the brain during early development, a precautionary approach to neurodevelopmental toxicity needs to be applied in occupational health....

  6. Toxicity identification evaluation methods for identification of toxicants in refinery effluents

    International Nuclear Information System (INIS)

    Barten, K.A.; Mount, D.R.; Hackett, J.R.

    1993-01-01

    During the last five years, the authors have used Toxicity Identification Evaluation (TIE) methods to characterize and identify the source(s) of toxicity in effluents from dozens of municipal and industrial facilities. In most cases, specific chemicals responsible for toxicity have been identified. Although generally successful, the initial experience was that for several refinery effluents, they were able only to qualitatively characterize the presence of organic toxicants; standard toxicant identification procedures were not able to isolate specific organic chemicals. They believe that organic toxicity in these refinery effluents is caused by multiple organic compounds rather than by just a few; evidence for this includes an inability to isolate toxicity in a small number of fractions using liquid chromatography and the presence of very large numbers of compounds in isolated fractions. There is also evidence that the toxicant(s) may be ionic, in that the toxicity of whole effluent and isolated fractions often show increasing toxicity with decreasing pH. Finally, positive-pressure filtration has also reduced toxicity in some samples. In this presentation the authors summarize their experiences with refinery effluents, focusing on typical patterns they have observed and alternative procedures they have used to better understand the nature of these toxicants

  7. The influence of flow discharge variations on the morphodynamics of a diffluence-confluence unit on the Mekong River

    Science.gov (United States)

    Hackney, Christopher; Darby, Stephen; Parsons, Daniel; Leyland, Julian; Aalto, Rolf; Nicholas, Andrew; Best, Jim

    2017-04-01

    Bifurcations represent key morphological nodes within the channel networks of anabranching and braided fluvial channels, playing an important role in controlling local bed morphology, the routing of sediment and water, and defining the stability of the downstream reaches. Herein, we detail field observations of the three-dimensional flow structure, bed morphological changes and partitioning of both flow discharge and suspended sediment through a large diffluence-confluence unit on the Mekong River, Cambodia, across a range of flow stages (from 13,500 m3 s-1 to 27,000 m3 s-1) over the monsoonal flood-pulse cycle. We show that the discharge asymmetry (a measure of the disparity between discharges distributed down the left and right branches of the bifurcation) varies with flow discharge and that the influence of upstream curvature-induced cross-stream water surface slope and bed morphological changes are first-order controls in modulating the asymmetry in bifurcation discharge. Flow discharge is shown to play a key role in defining the morphodynamics of the diffluence-confluence unit downstream of the bifurcation. Our data show that during high flows (Q 27,000 m3 s-1), the downstream island complex acts as a net sink of suspended sediment (with 2600 kg s-1 being deposited between the diffluence and confluence), whereas during lower flows, on both the rising and falling limbs of the flood wave, the sediment balance is in quasi-equilibrium. We propose, therefore, that the long term stability of the bifurcation, as well as the larger channel planform and morphology of the diffluence-confluence unit, is therefore controlled by annual monsoonal flood pulses and the associated variations in discharge.

  8. The aquatic toxicity and chemical forms of coke plant effluent cyanide -- Implications for discharge limits

    International Nuclear Information System (INIS)

    Garibay, R.; Rupnow, M.; Godwin-Saad, E.; Hall, S.

    1995-01-01

    Cyanide is present in treated cokemaking process waters at concentrations as high as 8.0 mg/L. In assessing options for managing the discharge of a treated effluent, the development and implementation of discharge limits for cyanide became a critical issue. A study was initiated to evaluate possible alternatives to cyanide permit limits at the US Steel Gary Works Facility. The objectives of the study were to: (1) evaluation the forms of cyanide present in coke plant effluent; (2) determine whether these forms of cyanide are toxic to selected aquatic organisms; (3) compare the aquatic toxicity of various chemical forms of cyanide; (4) identify if the receiving water modifies cyanide bioavailability; and (5) confirm, with respect to water quality-based effluent limits, an appropriate analytical method for monitoring cyanide in a coke plant effluent. The results of aquatic toxicity tests and corresponding analytical data are presented. Toxicity tests were conducted with various pure chemical forms of cyanide as well as whole coke plant effluent (generated from a pilot-scale treatment system). Test species included the fathead minnow (Pimephales promelas), rainbow trout (Oncorhynchus mykiss), Ceriodaphnia dubia (C. dubia) and Daphnia magna (D. magna). Analytical measurements for cyanide included total, weak acid dissociable, diffusible cyanide and selected metal species of cyanide. The findings presented by the paper are relevant with respect to the application of cyanide water quality criteria for a coke plant effluent discharge, the translation of these water quality-based effluent limits to permit limits, and methods for compliance monitoring for cyanide

  9. In Vitro Rat Hepatocyte Toxicity and Bacteria Genotoxicity Evaluation of High Energy Chemicals for Replacement of Hydrazine

    National Research Council Canada - National Science Library

    Husain, S

    2002-01-01

    In an effort to develop methods to predict the toxicological response of newly synthesized chemicals that are of interest to the US Air Force, in vitro rat hepatocyte toxicity and bacteria (Salmonella...

  10. Introducing Toxics

    OpenAIRE

    David C. Bellinger

    2013-01-01

    With this inaugural issue, Toxics begins its life as a peer-reviewed, open access journal focusing on all aspects of toxic chemicals. We are interested in publishing papers that present a wide range of perspectives on toxicants and naturally occurring toxins, including exposure, biomarkers, kinetics, biological effects, fate and transport, treatment, and remediation. Toxics differs from many other journals in the absence of a page or word limit on contributions, permitting authors to present ...

  11. Developing predictions of in vivo developmental toxicity of ToxCast chemicals using mouse embryonic stem cells.

    Science.gov (United States)

    Developing predictions of in vivo developmental toxicity of ToxCast chemicals using mouse embryonic stem cells S. Hunter, M. Rosen, M. Hoopes, H. Nichols, S. Jeffay, K. Chandler1, Integrated Systems Toxicology Division, National Health and Environmental Effects Research Labor...

  12. Impacts of chemical modification on the toxicity of diverse nanocellulose materials to developing zebrafish.

    Science.gov (United States)

    Harper, Bryan J; Clendaniel, Alicea; Sinche, Federico; Way, Daniel; Hughes, Michael; Schardt, Jenna; Simonsen, John; Stefaniak, Aleksandr B; Harper, Stacey L

    2016-06-01

    Cellulose is an abundant and renewable resource currently being investigated for utility in nanomaterial form for various promising applications ranging from medical and pharmaceutical uses to mechanical reinforcement and biofuels. The utility of nanocellulose and wide implementation ensures increasing exposure to humans and the environment as nanocellulose-based technologies advance. Here, we investigate how differences in aspect ratio and changes to surface chemistry, as well as synthesis methods, influence the biocompatibility of nanocellulose materials using the embryonic zebrafish. Investigations into the toxicity of neutral, cationic and anionic surface functionalities revealed that surface chemistry had a minimal influence on the overall toxicity of nanocellulose materials. Higher aspect ratio cellulose nanofibers produced by mechanical homogenization were, in some cases, more toxic than other cellulose-based nanofibers or nanocrystals produced by chemical synthesis methods. Using fluorescently labeled nanocellulose we were able to show that nanocellulose uptake did occur in embryonic zebrafish during development. We conclude that the benign nature of nanocellulose materials makes them an ideal platform to systematically investigate the inherent surface features driving nanomaterial toxicity in order to create safer design principles for engineered nanoparticles.

  13. Toxic chemical release inventory reporting form R and instructions. Revised 1992 version. Section 313 of the Emergency Planning and Community Right-to-Know Act

    International Nuclear Information System (INIS)

    1993-01-01

    Reporting is required to provide the public with information on the releases of listed toxic chemicals in their communities and to provide EPA with release information to assist the Agency in determining the need for future regulations. Facilities must report the quantities of both routine and accidental releases of listed toxic chemicals, as well as the maximum amount of the listed toxic chemical on-site during the calendar year and the amount contained in wastes transferred off-site. These instructions supplement and elaborate on the requirements in the reporting rule (40 CFR Part 372). Together with the reporting rule, they constitute the reporting requirements. All references in these instructions are to sections in the reporting rule unless otherwise indicated

  14. Source apportionment of toxic chemical pollutants at Trombay region

    International Nuclear Information System (INIS)

    Sahu, S.K.; Pandit, G.G.; Puranik, V.D.

    2007-05-01

    Anthropogenic activities like industrial production and transportation, a wide range of chemical pollutants such as trace and toxic metals, pesticides, polycyclic aromatic hydrocarbons etc. eventually find their way into various environmental compartments. One of the main issues of environmental pollution is the chemical composition of aerosols and their sources. In spite of all the efforts a considerable part of the atmospheric aerosol mass is still not accounted for. This report describes some of the activities of Environmental Assessment Division which are having direct relevance to the public health and regulatory bodies. Extensive studies were carried out in our laboratories for the Trombay site, over the years; on the organic as well as inorganic pollution in the environment to understand inter compartmental behaviour of these chemical pollutants. In this report an attempt has been made to collect different size fractionated ambient aerosols and to quantify the percentage contribution of each size fraction to the total aerosol mass. Subsequently, an effort has been made for chemical characterization (inorganic, organic and carbon content) of these particulate matter using different analytical techniques. The comprehensive data set on chemical characterization of particulate matter thus generated is being used with receptor modeling techniques to identify the possible sources contributing to the observed concentrations of the measured pollutants. The use of this comprehensive data set in receptor modeling has been helpful in distinguishing the source types in a better way. Receptor modeling techniques are powerful tools that can be used to locate sources of pollutants to the atmosphere. The major advantage of the receptor models is that actual ambient data are used to apportion source contributions, negating the need for dispersion calculations. Pollution sources affecting the sampling site were statistically identified using varimax rotated factor analysis of

  15. Exploring the Q-marker of "sweat soaking method" processed radix Wikstroemia indica: Based on the "effect-toxicity-chemicals" study.

    Science.gov (United States)

    Feng, Guo; Chen, Yun-Long; Li, Wei; Li, Lai-Lai; Wu, Zeng-Guang; Wu, Zi-Jun; Hai, Yue; Zhang, Si-Chao; Zheng, Chuan-Qi; Liu, Chang-Xiao; He, Xin

    2018-06-01

    Radix Wikstroemia indica (RWI), named "Liao Ge Wang" in Chinese, is a kind of toxic Chinese herbal medicine (CHM) commonly used in Miao nationality of South China. "Sweat soaking method" processed RWI could effectively decrease its toxicity and preserve therapeutic effect. However, the underlying mechanism of processing is still not clear, and the Q-markers database for processed RWI has not been established. Our study is to investigate and establish the quality evaluation system and potential Q-markers based on "effect-toxicity-chemicals" relationship of RWI for quality/safety assessment of "sweat soaking method" processing. The variation of RWI in efficacy and toxicity before and after processing was investigated by pharmacological and toxicological studies. Cytotoxicity test was used to screen the cytotoxicity of components in RWI. The material basis in ethanol extract of raw and processed RWI was studied by UPLC-Q-TOF/MS. And the potential Q-markers were analyzed and predicted according to "effect-toxicity-chemical" relationship. RWI was processed by "sweat soaking method", which could preserve efficacy and reduce toxicity. Raw RWI and processed RWI did not show significant difference on the antinociceptive and anti-inflammatory effect, however, the injury of liver and kidney by processed RWI was much weaker than that by raw RWI. The 20 compounds were identified from the ethanol extract of raw product and processed product of RWI using UPLC-Q-TOF/MS, including daphnoretin, emodin, triumbelletin, dibutyl phthalate, Methyl Paraben, YH-10 + OH and matairesinol, arctigenin, kaempferol and physcion. Furthermore, 3 diterpenoids (YH-10, YH-12 and YH-15) were proved to possess the high toxicity and decreased by 48%, 44% and 65%, respectively, which could be regarded as the potential Q-markers for quality/safety assessment of "sweat soaking method" processed RWI. A Q-marker database of processed RWI by "sweat soaking method" was established according to the results

  16. Toxic Effects of Peracetic Acid Used as a Chemical Weapon During Workers Riots

    International Nuclear Information System (INIS)

    Jovic-Stosic, J.; Todorovic, V.; Segrt, Z.

    2007-01-01

    Peracetic acid (PAA) is a mixture of acetic acid and hydrogen peroxide, often used as antimicrobial agent on food processing equipment. It may explosively decompose on shock, friction or concussion. PAA is a strong oxidant, corrosive to the eyes, skin, respiratory and digestive tract. Depending on concentration, contact may cause severe burns of the skin or the eyes, and inhalation may cause lung edema. We report toxic effects of PAA used as a chemical weapon in workers riots. Group of workers attacked the security guards in beverage plant, throwing out beer bottles filled with PAA. Bottles exploded, producing irritant mists and fumes, and splashing some of the guards with acid. After about 20 minutes of exposure in the closed space, 30 persons were transported to the emergency room; 22 of them were transferred to the hospital. After the initial treatment, 10 patients were admitted for further treatment. The symptoms of exposure included burning sensation and pain of the eyes, throat and skin, cough and shortness of breath. Effects on the eyes included redness and corneal erosions. Pulmonary disturbances were prolonged expirium and wheezing by auscultation, and hypoxemia. Skin burns were ranged as grade I-III. Treatment included rinse of eyes and skin, systemic therapy with corticosteroids, beta adrenergic drugs and theophylline. Surgical treatment was necessary in grade III skin burns. A variety of common industrial chemicals may be misused as a chemical weapon. We point out the hazards of serious toxic effects of PAA if used in riots or terrorists attacks. (author)

  17. Creating and maintaining chemical artificial life by robotic symbiosis

    DEFF Research Database (Denmark)

    Hanczyc, Martin M.; Parrilla, Juan M.; Nicholson, Arwen

    2015-01-01

    We present a robotic platform based on the open source RepRap 3D printer that can print and maintain chemical artificial life in the form of a dynamic, chemical droplet. The robot uses computer vision, a self-organizing map, and a learning program to automatically categorize the behavior of the d......We present a robotic platform based on the open source RepRap 3D printer that can print and maintain chemical artificial life in the form of a dynamic, chemical droplet. The robot uses computer vision, a self-organizing map, and a learning program to automatically categorize the behavior...... confluence of chemical, artificial intelligence, and robotic approaches to artificial life....

  18. Creating and Maintaining Chemical Artificial Life by Robotic Symbiosis

    DEFF Research Database (Denmark)

    Hanczyc, Martin; Parrilla, Juan M.; Nicholson, Arwen

    2015-01-01

    We present a robotic platform based on the open source RepRap 3D printer that can print and maintain chemical artificial life in the form of a dynamic, chemical droplet. The robot uses computer vision, a self-organizing map, and a learning program to automatically categorize the behavior of the d......We present a robotic platform based on the open source RepRap 3D printer that can print and maintain chemical artificial life in the form of a dynamic, chemical droplet. The robot uses computer vision, a self-organizing map, and a learning program to automatically categorize the behavior...... confluence of chemical, artificial intelligence, and robotic approaches to artificial life....

  19. Systems thinking, critical realism and philosophy a confluence of ideas

    CERN Document Server

    Mingers, John

    2014-01-01

    Systems Thinking, Critical Realism and Philosophy: A Confluence of Ideas seeks to re-address the whole question of philosophy and systems thinking for the twenty first century and provide a new work that would be of value to both systems and philosophy. This is a highly opportune time when different fields - critical realism, philosophy of science and systems thinking - are all developing around the same set of concepts and yet not realizing it. This book will be of interest to the academic systems community worldwide and due to it's interdisciplinary coverage, it will also

  20. Proliferation of pulmonary endothelial cells: time-lapse cinematography of growth to confluence and restitution of monolayer after wounding.

    Science.gov (United States)

    Ryan, U S; Absher, M; Olazabal, B M; Brown, L M; Ryan, J W

    1982-01-01

    A fundamental characteristic of vascular endothelium is that it exists as a monolayer, a condition that must be met in both vascular growth and repair. Maintenance of the monolayer is important both for the exchange of nutrients and for interactions between blood solutes and endothelial enzymes and transport systems. We have used time-lapse cinematography to compare proliferative behavior of bovine pulmonary endothelial cells in (1) establishment of a monolayer from a low-density seed (7.5 X 10(4) cells in a 60 mm dish) and (2) restitution of a confluent monolayer (approx. 2.9 x 10(6) cells in a 60 mm dish) following a mechanical wound (removal of cells from an area 5 x 15 mm by scraping). Culture 2 was not refed after wounding. In culture 2, approx. 30% of the cells accounted for repopulation (confluence in 40 hr). In culture 1, all cells entered into division. Participating cells of culture 2 began division immediately (69 divisions/filmed area in 10 hr, vs. four divisions in culture 1). Interdivision times (IDT) were longer and relatively constant in culture 1 until near confluence; none were less than 10 h, whereas in 2, 24% of the IDT's were less than or equal to 10 hr. Remarkably, IDTs of culture 2 decreased steadily until confluence was re-established. Cell migration in culture 1 was multidirectional while direction of migration in culture 2 was always into the wound area. Mean migration rate (MIG) in culture 2 was related to the site of origin of the cells, those dividing farthest from the unwounded area had fastest MIGs. Neither culture formed more than a single layer of cells. Although the cell kinetics of cultures 1 and 2 differed, the same goal, confluence, was achieved in either case.

  1. Toxic substances handbook

    Science.gov (United States)

    Junod, T. L.

    1979-01-01

    Handbook, published in conjunction with Toxic Substances Alert Program at NASA Lewis Research Center, profiles 187 toxic chemicals in their relatively pure states and include 27 known or suspected carcinogens.

  2. Confluence or independence of microwave plasma bullets in atmospheric argon plasma jet plumes

    Science.gov (United States)

    Li, Ping; Chen, Zhaoquan; Mu, Haibao; Xu, Guimin; Yao, Congwei; Sun, Anbang; Zhou, Yuming; Zhang, Guanjun

    2018-03-01

    Plasma bullet is the formation and propagation of a guided ionization wave (streamer), normally generated in atmospheric pressure plasma jet (APPJ). In most cases, only an ionization front produces in a dielectric tube. The present study shows that two or three ionization fronts can be generated in a single quartz tube by using a microwave coaxial resonator. The argon APPJ plumes with a maximum length of 170 mm can be driven by continuous microwaves or microwave pulses. When the input power is higher than 90 W, two or three ionization fronts propagate independently at first; thereafter, they confluence to form a central plasma jet plume. On the other hand, the plasma bullets move independently as the lower input power is applied. For pulsed microwave discharges, the discharge images captured by a fast camera show the ionization process in detail. Another interesting finding is that the strongest lightening plasma jet plumes always appear at the shrinking phase. Both the discharge images and electromagnetic simulations suggest that the confluence or independent propagation of plasma bullets is resonantly excited by the local enhanced electric fields, in terms of wave modes of traveling surface plasmon polaritons.

  3. Confluence via strong normalisation in an algebraic λ-calculus with rewriting

    Directory of Open Access Journals (Sweden)

    Pablo Buiras

    2012-03-01

    Full Text Available The linear-algebraic lambda-calculus and the algebraic lambda-calculus are untyped lambda-calculi extended with arbitrary linear combinations of terms. The former presents the axioms of linear algebra in the form of a rewrite system, while the latter uses equalities. When given by rewrites, algebraic lambda-calculi are not confluent unless further restrictions are added. We provide a type system for the linear-algebraic lambda-calculus enforcing strong normalisation, which gives back confluence. The type system allows an abstract interpretation in System F.

  4. CHEMICAL COMPOSITION AND TOXICITY OF CITRUS ESSENTIAL OILS ON Dysmicoccus brevipes (HEMIPTERA: PSEUDOCOCCIDAE)

    OpenAIRE

    MARTINS, GISELE DOS SANTOS OLIVEIRA; ZAGO, HUGO BOLSONI; COSTA, ADILSON VIDAL; ARAUJO JUNIOR, LUIS MOREIRA DE; CARVALHO, JOSÉ ROMÁRIO DE

    2017-01-01

    ABSTRACT The insect Dysmicoccus brevipes (Hemiptera: Pseudococcidae) has been reported as an important pest for several crops, especially coffee. The citrus essential oils can be obtained as by-products of the citrus-processing industry and have been tested as an alternative to control different insect groups. Therefore, the objective of this work was to determine the chemical composition and evaluate the toxicity of commercial sweet orange (Citrus sinensis), bitter orange (Citrus aurantium) ...

  5. Predicting Developmental Toxicity of ToxCast Phase I Chemicals Using Human Embryonic Stem Cells and Metabolomics

    Science.gov (United States)

    EPA’s ToxRefDB contains prenatal guideline study data from rats and rabbits for over 240 chemicals that overlap with the ToxCast in vitro high throughput screening project. A subset of these compounds were tested in Stemina Biomarker Discovery's developmental toxicity platform, a...

  6. Interplay of Proximal Flow Confluence and Distal Flow Divergence in Patient-Specific Vertebrobasilar System.

    Directory of Open Access Journals (Sweden)

    Xiaoping Yin

    Full Text Available Approximately one-quarter of ischemic strokes involve the vertebrobasilar arterial system that includes the upstream flow confluence and downstream flow divergence. A patient-specific hemodynamic analysis is needed to understand the posterior circulation. The objective of this study is to determine the distribution of hemodynamic parameters in the vertebrobasilar system, based on computer tomography angiography images. Here, the interplay of upstream flow confluence and downstream flow divergence was hypothesized to be a determinant factor for the hemodynamic distribution in the vertebrobasilar system. A computational fluid dynamics model was used to compute the flow fields in patient-specific vertebrobasilar models (n = 6. The inlet and outlet boundary conditions were the aortic pressure waveform and flow resistances, respectively. A 50% reduction of total outlet area was found to induce a ten-fold increase in surface area ratio of low time-averaged wall shear stress (i.e., TAWSS ≤ 4 dynes/cm2. This study enhances our understanding of the posterior circulation associated with the incidence of atherosclerotic plaques.

  7. Overview of Chronic Oral Toxicity Values for Chemicals Present in Hydraulic Fracturing Fluids, Flowback and Produced Waters

    Science.gov (United States)

    as part of EPA's Hydraulic Fracturing Drinking Water Assessment, EPA is summarizing existing toxicity data for chemicals reported to be used in hydraulic fracturing fluids and/or found in flowback or produced waters from hydraulically fractured wells

  8. Proteomic Signatures of the Zebrafish (Danio rerio) Embryo: Sensitivity and Specificity in Toxicity Assessment of Chemicals.

    Science.gov (United States)

    Hanisch, Karen; Küster, Eberhard; Altenburger, Rolf; Gündel, Ulrike

    2010-01-01

    Studies using embryos of the zebrafish Danio rerio (DarT) instead of adult fish for characterising the (eco-) toxic potential of chemicals have been proposed as animal replacing methods. Effect analysis at the molecular level might enhance sensitivity, specificity, and predictive value of the embryonal studies. The present paper aimed to test the potential of toxicoproteomics with zebrafish eleutheroembryos for sensitive and specific toxicity assessment. 2-DE-based toxicoproteomics was performed applying low-dose (EC(10)) exposure for 48 h with three-model substances Rotenone, 4,6-dinitro-o-cresol (DNOC) and Diclofenac. By multivariate "pattern-only" PCA and univariate statistical analyses, alterations in the embryonal proteome were detectable in nonetheless visibly intact organisms and treatment with the three substances was distinguishable at the molecular level. Toxicoproteomics enabled the enhancement of sensitivity and specificity of the embryonal toxicity assay and bear the potency to identify protein markers serving as general stress markers and early diagnosis of toxic stress.

  9. Destruction of highly toxic chemical materials by using the energy of underground thermonuclear explosion

    International Nuclear Information System (INIS)

    Trutnev, Y.

    1991-01-01

    One of the main problems of modern technogenic civilisation is the evergrowing ecological crisis caused by the growth of industrial wastes harmful for biosphere. Among them the radioactive wastes of atomic energetics, worked out nuclear energy facilities and toxic wastes from various chemical plants begin to play a specific role. Traditional technologies of destruction and disposal of these wastes demand great investments up to many billions of dollars, enormous maintenance expenditures, occupation of substantial territories by new productions and security zones as well as many qualified specialists. On the other hand potential accidents during the conventional processes of waste reprocessing are fraught with the possibility of large ecological disasters, that are the reason of strong oppositions of population and 'green movement' to the foundation of such installations. So, rather progressive seem to be the technologies based on the utilisation of underground nuclear explosion energy for annihilations and disposal of high-level wastes of atomic energetics and nuclear facilities as well as for thermal decomposition of chemically toxic substances at extremely high temperatures. These technologies will be rather cheap, they will allow to process big amounts of materials in ecologically safe form far from the populated regions and will need a commercially beneficial if used for international purposes. The application of these technologies may be of great significance for realisation of disarmament process- destruction of chemical weapons and in future the nuclear warheads and some production components. (au)

  10. A toxicity reduction evaluation for an oily waste treatment plant exhibiting episodic effluent toxicity.

    Science.gov (United States)

    Erten-Unal, M; Gelderloos, A B; Hughes, J S

    1998-07-30

    A Toxicity Reduction Evaluation (TRE) was conducted on the oily wastewater treatment plant (Plant) at a Naval Fuel Depot. The Plant treats ship and ballast wastes, berm water from fuel storage areas and wastes generated in the fuel reclamation plant utilizing physical/chemical treatment processes. In the first period of the project (Period I), the TRE included chemical characterization of the plant wastewaters, monitoring the final effluent for acute toxicity and a thorough evaluation of each treatment process and Plant operating procedures. Toxicity Identification Evaluation (TIE) procedures were performed as part of the overall TRE to characterize and identify possible sources of toxicity. Several difficulties were encountered because the effluent was saline, test organisms were marine species and toxicity was sporadic and unpredictable. The treatability approach utilizing enhancements, improved housekeeping, and operational changes produced substantial reductions in the acute toxicity of the final effluent. In the second period (Period II), additional acute toxicity testing and chemical characterization were performed through the Plant to assess the long-term effects of major unit process improvements for the removal of toxicity. The TIE procedures were also modified for saline wastewaters to focus on suspected class of toxicants such as surfactants. The TRE was successful in reducing acute toxicity of the final effluent through process improvements and operational modifications. The results indicated that the cause of toxicity was most likely due to combination of pollutants (matrix effect) rather than a single pollutant.

  11. Data gaps in toxicity testing of chemicals allowed in food in the United States.

    Science.gov (United States)

    Neltner, Thomas G; Alger, Heather M; Leonard, Jack E; Maffini, Maricel V

    2013-12-01

    In the United States, chemical additives cannot be used in food without an affirmative determination that their use is safe by FDA or additive manufacturer. Feeding toxicology studies designed to estimate the amount of a chemical additive that can be eaten safely provide the most relevant information. We analyze how many chemical additives allowed in human food have feeding toxicology studies in three toxicological information sources including the U.S. Food and Drug Administration's (FDA) database. Less than 38% of FDA-regulated additives have a published feeding study. For chemicals directly added to food, 21.6% have feeding studies necessary to estimate a safe level of exposure and 6.7% have reproductive or developmental toxicity data in FDA's database. A program is needed to fill these significant knowledge gaps by using in vitro and in silico methods complemented with targeted in vivo studies to ensure public health is protected. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Human Pluripotent Stem Cell-Based Assay Predicts Developmental Toxicity Potential of ToxCast Chemicals (ACT meeting)

    Science.gov (United States)

    Worldwide initiatives to screen for toxicity potential among the thousands of chemicals currently in use require inexpensive and high-throughput in vitro models to meet their goals. The devTOX quickPredict platform is an in vitro human pluripotent stem cell-based assay used to as...

  13. Estimation of toxicity using the Toxicity Estimation Software Tool (TEST)

    Science.gov (United States)

    Tens of thousands of chemicals are currently in commerce, and hundreds more are introduced every year. Since experimental measurements of toxicity are extremely time consuming and expensive, it is imperative that alternative methods to estimate toxicity are developed.

  14. Applicability of the fish embryo acute toxicity (FET) test (OECD 236) in the regulatory context of Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH).

    NARCIS (Netherlands)

    Sobanska, Marta; Scholz, Stefan; Nyman, Anna-Maija; Cesnaitis, Romanas; Gutierrez Alonso, Simon; Klüver, Nils; Kühne, Ralph; Tyle, Henrik; de Knecht, Joop; Dang, Zhichao; Lundbergh, Ivar; Carlon, Claudio; De Coen, Wim

    In 2013 the Organisation for Economic Co-operation and Development (OECD) test guideline (236) for fish embryo acute toxicity (FET) was adopted. It determines the acute toxicity of chemicals to embryonic fish. Previous studies show a good correlation of FET with the standard acute fish toxicity

  15. Chemical and biological properties of toxic metals and use of chelating agents for the pharmacological treatment of metal poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Sinicropi, Maria Stefania; Caruso, Anna [University of Calabria, Department of Pharmaceutical Sciences, Rende (Italy); Amantea, Diana [University of Calabria, Department of Pharmacobiology, Rende (Italy); Saturnino, Carmela [University of Salerno, Department of Pharmaceutical Sciences, Fisciano (Italy)

    2010-07-15

    Exposure to toxic metals is a well-known problem in industrialized countries. Metals interfere with a number of physiological processes, including central nervous system (CNS), haematopoietic, hepatic and renal functions. In the evaluation of the toxicity of a particular metal it is crucial to consider many parameters: chemical forms (elemental, organic or inorganic), binding capability, presence of specific proteins that selectively bind metals, etc. Medical treatment of acute and chronic metal toxicity is provided by chelating agents, namely organic compounds capable of interacting with metal ions to form structures called chelates. The present review attempts to provide updated information about the mechanisms, the cellular targets and the effects of toxic metals. (orig.)

  16. Toxic effects exerted on methanogenic, nitrifying and denitrifying bacteria by chemicals used in a milk analysis laboratory

    NARCIS (Netherlands)

    Lopez-Fiuza, J.; Buys, B.; Mosquera-Corral, A.; Omil, F.; Mendez, R.

    2002-01-01

    The toxic effects caused by the chemicals contained in wastewaters generated by laboratories involved in raw milk analyses were assessed using batch assays. These assays were carried out separately with methanogenic, ammonium-oxidizing, nitrite-oxidizing and denitrifying bacteria. Since sodium azide

  17. Windows of sensitivity to toxic chemicals in the motor effects development.

    Science.gov (United States)

    Ingber, Susan Z; Pohl, Hana R

    2016-02-01

    Many chemicals currently used are known to elicit nervous system effects. In addition, approximately 2000 new chemicals introduced annually have not yet undergone neurotoxicity testing. This review concentrated on motor development effects associated with exposure to environmental neurotoxicants to help identify critical windows of exposure and begin to assess data needs based on a subset of chemicals thoroughly reviewed by the Agency for Toxic Substances and Disease Registry (ATSDR) in Toxicological Profiles and Addenda. Multiple windows of sensitivity were identified that differed based on the maturity level of the neurological system at the time of exposure, as well as dose and exposure duration. Similar but distinct windows were found for both motor activity (GD 8-17 [rats], GD 12-14 and PND 3-10 [mice]) and motor function performance (insufficient data for rats, GD 12-17 [mice]). Identifying specific windows of sensitivity in animal studies was hampered by study designs oriented towards detection of neurotoxicity that occurred at any time throughout the developmental process. In conclusion, while this investigation identified some critical exposure windows for motor development effects, it demonstrates a need for more acute duration exposure studies based on neurodevelopmental windows, particularly during the exposure periods identified in this review. Published by Elsevier Inc.

  18. Non-invasive and non-destructive measurements of confluence in cultured adherent cell lines

    Directory of Open Access Journals (Sweden)

    Steven Busschots

    2015-01-01

    • The technique provides an objective, consistent measure of when cells reach confluence and is highly correlated to manual counting with a haemocytometer. The average correlation co-efficient from a Spearman correlation (n = 3 was 0.99 ± 0.008 for OVCAR8 (p = 0.01 and 0.99 ± 0.01 for UPN251 (p = 0.01 cell lines.

  19. Differential reconstructed gene interaction networks for deriving toxicity threshold in chemical risk assessment.

    Science.gov (United States)

    Yang, Yi; Maxwell, Andrew; Zhang, Xiaowei; Wang, Nan; Perkins, Edward J; Zhang, Chaoyang; Gong, Ping

    2013-01-01

    Pathway alterations reflected as changes in gene expression regulation and gene interaction can result from cellular exposure to toxicants. Such information is often used to elucidate toxicological modes of action. From a risk assessment perspective, alterations in biological pathways are a rich resource for setting toxicant thresholds, which may be more sensitive and mechanism-informed than traditional toxicity endpoints. Here we developed a novel differential networks (DNs) approach to connect pathway perturbation with toxicity threshold setting. Our DNs approach consists of 6 steps: time-series gene expression data collection, identification of altered genes, gene interaction network reconstruction, differential edge inference, mapping of genes with differential edges to pathways, and establishment of causal relationships between chemical concentration and perturbed pathways. A one-sample Gaussian process model and a linear regression model were used to identify genes that exhibited significant profile changes across an entire time course and between treatments, respectively. Interaction networks of differentially expressed (DE) genes were reconstructed for different treatments using a state space model and then compared to infer differential edges/interactions. DE genes possessing differential edges were mapped to biological pathways in databases such as KEGG pathways. Using the DNs approach, we analyzed a time-series Escherichia coli live cell gene expression dataset consisting of 4 treatments (control, 10, 100, 1000 mg/L naphthenic acids, NAs) and 18 time points. Through comparison of reconstructed networks and construction of differential networks, 80 genes were identified as DE genes with a significant number of differential edges, and 22 KEGG pathways were altered in a concentration-dependent manner. Some of these pathways were perturbed to a degree as high as 70% even at the lowest exposure concentration, implying a high sensitivity of our DNs approach

  20. Distributed Structure Searchable Toxicity

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Distributed Structure Searchable Toxicity (DSSTox) online resource provides high quality chemical structures and annotations in association with toxicity data....

  1. Variable partitioning of flow and sediment transfer through a large river diffluence-confluence unit across a monsoonal flood pulse

    Science.gov (United States)

    Hackney, C. R.; Aalto, R. E.; Darby, S. E.; Parsons, D. R.; Leyland, J.; Nicholas, A. P.; Best, J.

    2016-12-01

    Bifurcations represent key morphological nodes within the channel networks of anabranching and braided fluvial channels, playing an important role in controlling local bed morphology, the routing of sediment and water, and defining the stability of the downstream reaches. Herein, we detail field observations of the three-dimensional flow structure, bed morphological changes and partitioning of both flow discharge and suspended sediment through a large diffluence-confluence unit on the Mekong River, Cambodia, across a range of flow stages (from 13,500 m3 s-1 to 27,000 m3 s-1) over the monsoonal flood-pulse cycle. We show that the discharge asymmetry (a measure of the disparity between discharges distributed down the left and right branches of the bifurcation) varies with flow discharge and that the influence of upstream curvature-induced cross-stream water surface slope and bed morphological changes are first-order controls in modulating the asymmetry in bifurcation discharge. Flow discharge is shown to play a key role in defining the morphodynamics of the diffluence-confluence unit downstream of the bifurcation. Our data show that during peak flows (Q 27,000 m3 s-1), the downstream island complex acts as a net sink of suspended sediment (with 2600 kg s-1 being deposited between the diffluence and confluence), whereas during lower flows, on both the rising and falling limbs of the flood wave, the sediment balance is in quasi-equilibrium. We propose a new conceptual model of bifurcation stability that incorporates varying flood discharge and in which the long term stability of the bifurcation, as well as the larger channel planform and morphology of the diffluence-confluence unit, are controlled by the variations in flood discharge.

  2. Toxicity testing and chemical analyses of recycled fibre-based paper for food contact

    DEFF Research Database (Denmark)

    Binderup, Mona-Lise; Pedersen, Gitte Alsing; Vinggaard, Anne

    2002-01-01

    of different qualities as food-contact materials and to Perform a preliminary evaluation of their suitability from a safety point of view, and, second, to evaluate the use of different in vitro toxicity tests for screening of paper and board. Paper produced from three different categories of recycled fibres (B...... of the paper products were extracted with either 99% ethanol or water. Potential migrants in the extracts were identified and semiquantified by GC-1R-MS or GC-HRMS. In parallel to the chemical analyses, a battery of four different in vitro toxicity tests with different endpoints were applied to the same...... was less cytotoxic than the extracts prepared from paper made from recycled fibres, and extracts prepared from C was the most cytotoxic. None of the extracts showed mutagenic activity No conclusion about the oestrogenic activity could be made, because all extracts were cytotoxic to the test organism (yeast...

  3. In Silico Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts

    Science.gov (United States)

    Yang, Hongbin; Sun, Lixia; Li, Weihua; Liu, Guixia; Tang, Yun

    2018-02-01

    For a drug, safety is always the most important issue, including a variety of toxicities and adverse drug effects, which should be evaluated in preclinical and clinical trial phases. This review article at first simply introduced the computational methods used in prediction of chemical toxicity for drug design, including machine learning methods and structural alerts. Machine learning methods have been widely applied in qualitative classification and quantitative regression studies, while structural alerts can be regarded as a complementary tool for lead optimization. The emphasis of this article was put on the recent progress of predictive models built for various toxicities. Available databases and web servers were also provided. Though the methods and models are very helpful for drug design, there are still some challenges and limitations to be improved for drug safety assessment in the future.

  4. In Silico Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts

    Directory of Open Access Journals (Sweden)

    Hongbin Yang

    2018-02-01

    Full Text Available During drug development, safety is always the most important issue, including a variety of toxicities and adverse drug effects, which should be evaluated in preclinical and clinical trial phases. This review article at first simply introduced the computational methods used in prediction of chemical toxicity for drug design, including machine learning methods and structural alerts. Machine learning methods have been widely applied in qualitative classification and quantitative regression studies, while structural alerts can be regarded as a complementary tool for lead optimization. The emphasis of this article was put on the recent progress of predictive models built for various toxicities. Available databases and web servers were also provided. Though the methods and models are very helpful for drug design, there are still some challenges and limitations to be improved for drug safety assessment in the future.

  5. In Silico Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts.

    Science.gov (United States)

    Yang, Hongbin; Sun, Lixia; Li, Weihua; Liu, Guixia; Tang, Yun

    2018-01-01

    During drug development, safety is always the most important issue, including a variety of toxicities and adverse drug effects, which should be evaluated in preclinical and clinical trial phases. This review article at first simply introduced the computational methods used in prediction of chemical toxicity for drug design, including machine learning methods and structural alerts. Machine learning methods have been widely applied in qualitative classification and quantitative regression studies, while structural alerts can be regarded as a complementary tool for lead optimization. The emphasis of this article was put on the recent progress of predictive models built for various toxicities. Available databases and web servers were also provided. Though the methods and models are very helpful for drug design, there are still some challenges and limitations to be improved for drug safety assessment in the future.

  6. A new index to assess chemicals increasing the greenhouse effect based on their toxicity to algae.

    Science.gov (United States)

    Wang, Ting; Zhang, Xiaoxian; Tian, Dayong; Gao, Ya; Lin, Zhifen; Liu, Ying; Kong, Lingyun

    2015-11-01

    CO2, as the typical greenhouse gas causing the greenhouse effect, is a major global environmental problem and has attracted increasing attention from governments. Using algae to eliminate CO2, which has been proposed as an effective way to reduce the greenhouse effect in the past decades, can be disturbed by a growing number of artificial chemicals. Thus, seven types of chemicals and Selenastrum capricornutum (algae) were examined in this study, and the good consistency between the toxicity of artificial chemicals to algae and the disturbance of carbon fixation by the chemicals was revealed. This consistency showed that the disturbance of an increasing number of artificial chemicals to the carbon fixation of algae might be a "malware" worsening the global greenhouse effect. Therefore, this study proposes an original, promising index to assess the risk of deepening the greenhouse effect by artificial chemicals before they are produced and marketed. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Toxicity alarm: Case history

    International Nuclear Information System (INIS)

    Hogan, D.; Retallack, J.

    1993-01-01

    In late fall 1991, the Novacor petrochemical plant near Joffre, Alberta experienced a toxicity alarm, the first since its startup 14 years ago. Fish exposed to a normal toxicity test were stressed within 2 h and showed 100% mortality after 24 h. A history of the events leading up to, during, and after the toxicity alarm is presented. The major effluent sources were three cooling water systems. Although these sources are well characterized, the event causes were not immediately clear. Initial toxic screening indicated that one was very toxic, another moderately toxic, and the third not toxic at all. All three systems utilized the same chemical treatment program to avoid fouling: stabilized phosphates with minor variants. The most toxic of the cooling systems operated at 10-12 cycles, had three chemicals for biocide control, and had three makeup streams. Toxic and nontoxic system characteristics were compared. An in-depth modified toxicity identification and evaluation program was then performed to identify and evaluate the cause of the toxicity alarm for future prevention. The most probable causes of toxicity were identified by elimination. The combination of high numbers of cycles, hydrocarbons in the makeup water, and bromine added as an antifoulant resulted in formation of aromatic bromamines which are capable of causing the toxic condition experienced. 2 tabs

  8. Toxicity tests with crustaceans for detecting sublethal effects of potential endocrine disrupting chemicals

    DEFF Research Database (Denmark)

    Wollenberger, Leah

    /antagonistic activity with the ecdysteroid-responsive Drosophila melanogaster BII cell line 6) to draft an OECD guideline proposal for testing of chemicals based on the experimental work performed within this study In preliminary investigations with A. tonsa were studied various parameters related to processes......New and updated test methods to detect and characterise endocrine disrupting chemicals are urgently needed for the purpose of environmental risk assessment. Although endocrine disruption in invertebrates has not been studied as extensive as in vertebrates, in particular in fish, numerous reports...... of the present Ph.D. project were: 1) to develop a fully synthetic saltwater medium suitable for laboratory culturing of marine copepods including their feeding organism as well as for toxicity testing 2) to identify sensitive endpoints related to growth, development and reproduction of the pelagic calanoid...

  9. Assessing the toxic effects of ethylene glycol ethers using Quantitative Structure Toxicity Relationship models

    International Nuclear Information System (INIS)

    Ruiz, Patricia; Mumtaz, Moiz; Gombar, Vijay

    2011-01-01

    Experimental determination of toxicity profiles consumes a great deal of time, money, and other resources. Consequently, businesses, societies, and regulators strive for reliable alternatives such as Quantitative Structure Toxicity Relationship (QSTR) models to fill gaps in toxicity profiles of compounds of concern to human health. The use of glycol ethers and their health effects have recently attracted the attention of international organizations such as the World Health Organization (WHO). The board members of Concise International Chemical Assessment Documents (CICAD) recently identified inadequate testing as well as gaps in toxicity profiles of ethylene glycol mono-n-alkyl ethers (EGEs). The CICAD board requested the ATSDR Computational Toxicology and Methods Development Laboratory to conduct QSTR assessments of certain specific toxicity endpoints for these chemicals. In order to evaluate the potential health effects of EGEs, CICAD proposed a critical QSTR analysis of the mutagenicity, carcinogenicity, and developmental effects of EGEs and other selected chemicals. We report here results of the application of QSTRs to assess rodent carcinogenicity, mutagenicity, and developmental toxicity of four EGEs: 2-methoxyethanol, 2-ethoxyethanol, 2-propoxyethanol, and 2-butoxyethanol and their metabolites. Neither mutagenicity nor carcinogenicity is indicated for the parent compounds, but these compounds are predicted to be developmental toxicants. The predicted toxicity effects were subjected to reverse QSTR (rQSTR) analysis to identify structural attributes that may be the main drivers of the developmental toxicity potential of these compounds.

  10. Bioassay of Lake Onego bottom sediments toxicity based on their chemical composition and deepwater macrozoobenthos state

    Directory of Open Access Journals (Sweden)

    Kalinkina Nataliya Michailovna

    2017-03-01

    Full Text Available The bioassay of the toxicity of bottom sediments sampled in different areas of Lake Onega was carried out by crustaceans biotesting (Ceriodaphnia affinis Lillijeborg. It was shown that in the most areas of Lake Onega there are non-toxic bottom sediments. Toxic bottom sediments were found in Kondopogskaya Bay, intensively polluted with pulp-and-paper mill wastewaters. For the first time in the deep central part of Lake Onega the area was revealed where the toxic bottom sediments contain a high content of iron, manganese and other trace elements typical for the central areas of the lake. The mapping of the bottom of Lake Onega was accomplished, and three zones were identified based on the analysis of the data concerning the chemical composition of bottom sediments, bioassay toxicity data and the results of the deepwater macrozoobenthos assessment. For each zone the parameters of the main groups of benthos (Amphipoda, Oligochaeta, Chironomidae were defined. The first zone is located in the area of intensive anthropogenic influence (Kondopogskaya Bay, Petrozavodskaya Bay, Povenets Bay, Kizhi Skerries. The second zone is located mostly in the deep part of Petrozavodskaya Bay, where the most intensive development of amphipods is observed. The third area is identified for the first time: it is located in the central deep part of Lake Onega, where the communities of macrozoobenthos are limited by a natural toxic factor.

  11. Standardization and Confluence in Pure Lambda-Calculus Formalized for the Matita Theorem Prover

    Directory of Open Access Journals (Sweden)

    Ferruccio Guidi

    2012-01-01

    Full Text Available We present a formalization of pure lambda-calculus for the Matita interactive theorem prover, including the proofs of two relevant results in reduction theory: the confluence theorem and the standardization theorem. The proof of the latter is based on a new approach recently introduced by Xi and refined by Kashima that, avoiding the notion of development and having a neat inductive structure, is particularly suited for formalization in theorem provers.

  12. Fluorescence-based assay as a new screening tool for toxic chemicals

    Science.gov (United States)

    Moczko, Ewa; Mirkes, Evgeny M.; Cáceres, César; Gorban, Alexander N.; Piletsky, Sergey

    2016-09-01

    Our study involves development of fluorescent cell-based diagnostic assay as a new approach in high-throughput screening method. This highly sensitive optical assay operates similarly to e-noses and e-tongues which combine semi-specific sensors and multivariate data analysis for monitoring biochemical processes. The optical assay consists of a mixture of environmental-sensitive fluorescent dyes and human skin cells that generate fluorescence spectra patterns distinctive for particular physico-chemical and physiological conditions. Using chemometric techniques the optical signal is processed providing qualitative information about analytical characteristics of the samples. This integrated approach has been successfully applied (with sensitivity of 93% and specificity of 97%) in assessing whether particular chemical agents are irritating or not for human skin. It has several advantages compared with traditional biochemical or biological assays and can impact the new way of high-throughput screening and understanding cell activity. It also can provide reliable and reproducible method for assessing a risk of exposing people to different harmful substances, identification active compounds in toxicity screening and safety assessment of drugs, cosmetic or their specific ingredients.

  13. Improving ecological risk assessment of persistent, bioaccumulative, and toxic (PBT) chemicals by using an integrated modeling system - An example assessing chloroparaffins in riverine environments.

    Science.gov (United States)

    Chemical risk assessment (CRA) is primarily carried out at the screening level relying on empirical relationships between chemical properties and tested toxicity effects. Ultimately, risk to aquatic ecosystems is strongly dependent on actual exposure, which depends on chemical pr...

  14. Integrative Chemical-Biological Read-Across Approach for Chemical Hazard Classification

    Science.gov (United States)

    Low, Yen; Sedykh, Alexander; Fourches, Denis; Golbraikh, Alexander; Whelan, Maurice; Rusyn, Ivan; Tropsha, Alexander

    2013-01-01

    Traditional read-across approaches typically rely on the chemical similarity principle to predict chemical toxicity; however, the accuracy of such predictions is often inadequate due to the underlying complex mechanisms of toxicity. Here we report on the development of a hazard classification and visualization method that draws upon both chemical structural similarity and comparisons of biological responses to chemicals measured in multiple short-term assays (”biological” similarity). The Chemical-Biological Read-Across (CBRA) approach infers each compound's toxicity from those of both chemical and biological analogs whose similarities are determined by the Tanimoto coefficient. Classification accuracy of CBRA was compared to that of classical RA and other methods using chemical descriptors alone, or in combination with biological data. Different types of adverse effects (hepatotoxicity, hepatocarcinogenicity, mutagenicity, and acute lethality) were classified using several biological data types (gene expression profiling and cytotoxicity screening). CBRA-based hazard classification exhibited consistently high external classification accuracy and applicability to diverse chemicals. Transparency of the CBRA approach is aided by the use of radial plots that show the relative contribution of analogous chemical and biological neighbors. Identification of both chemical and biological features that give rise to the high accuracy of CBRA-based toxicity prediction facilitates mechanistic interpretation of the models. PMID:23848138

  15. Modeling Aquatic Toxicity through Chromatographic Systems.

    Science.gov (United States)

    Fernández-Pumarega, Alejandro; Amézqueta, Susana; Farré, Sandra; Muñoz-Pascual, Laura; Abraham, Michael H; Fuguet, Elisabet; Rosés, Martí

    2017-08-01

    Environmental risk assessment requires information about the toxicity of the growing number of chemical products coming from different origins that can contaminate water and become toxicants to aquatic species or other living beings via the trophic chain. Direct toxicity measurements using sensitive aquatic species can be carried out but they may become expensive and ethically questionable. Literature refers to the use of chromatographic measurements that correlate to the toxic effect of a compound over a specific aquatic species as an alternative to get toxicity information. In this work, we have studied the similarity in the response of the toxicity to different species and we have selected eight representative aquatic species (including tadpoles, fish, water fleas, protozoan, and bacteria) with known nonspecific toxicity to chemical substances. Next, we have selected four chromatographic systems offering good perspectives for surrogation of the eight selected aquatic systems, and thus prediction of toxicity from the chromatographic measurement. Then toxicity has been correlated to the chromatographic retention factor. Satisfactory correlation results have been obtained to emulate toxicity in five of the selected aquatic species through some of the chromatographic systems. Other aquatic species with similar characteristics to these five representative ones could also be emulated by using the same chromatographic systems. The final aim of this study is to model chemical products toxicity to aquatic species by means of chromatographic systems to reduce in vivo testing.

  16. Full-thickness human skin explants for testing the toxicity of topically applied chemicals

    International Nuclear Information System (INIS)

    Nakamura, M.; Rikimaru, T.; Yano, T.; Moore, K.G.; Pula, P.J.; Schofield, B.H.; Dannenberg, A.M. Jr.

    1990-01-01

    This report describes a model organ-culture system for testing the toxicity of chemical substances that are topically applied to human skin. In this system, the viable keratinocytes in the full-thickness skin explants are protected by the same keratinized layer as skin remaining on the donor, and toxicity can be assessed microscopically and/or biochemically. The human skin specimens were discards from a variety of surgical procedures. They were cut into full-thickness 1.0-cm2 explants, and briefly exposed to the military vesicant sulfur mustard (SM), which was used as a model toxicant. The explants were then organ cultured in small Petri dishes for 24 h at 36 degrees C. In the 0.03-1.0% dosage range, a straight-line dose-response relationship occurred between the concentration of SM applied and the number of paranuclear vacuoles seen histologically in the epidermis. Within the same SM dosage range, there was also a proportional decrease in 14C-leucine incorporation by the explants. Thus, the number of paranuclear vacuoles reflected decreases in protein synthesis by the injured epidermal cells. The epidermis of full-thickness untreated (control) human skin explants usually remained viable for 7 d when stored at 4 degrees C in culture medium. During storage, a relatively small number of paranuclear vacuoles developed within the epidermis, but the explants were still quite satisfactory for testing SM toxicity. Incubation (for 4 or 24 h at 36 degrees C) of such control skin explants reduced (often by 50%) the small number of paranuclear vacuoles produced during 4-7 d of storage. This reduction was probably caused by autolysis of many of the vacuolated cells. Two types of paranuclear vacuoles could be identified by both light and electron microscopy: a storage type and a toxicant type. The storage type seemed to be caused by autolysis of cell components

  17. Full-thickness human skin explants for testing the toxicity of topically applied chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M.; Rikimaru, T.; Yano, T.; Moore, K.G.; Pula, P.J.; Schofield, B.H.; Dannenberg, A.M. Jr. (Johns Hopkins Univ., Baltimore, MD (USA))

    1990-09-01

    This report describes a model organ-culture system for testing the toxicity of chemical substances that are topically applied to human skin. In this system, the viable keratinocytes in the full-thickness skin explants are protected by the same keratinized layer as skin remaining on the donor, and toxicity can be assessed microscopically and/or biochemically. The human skin specimens were discards from a variety of surgical procedures. They were cut into full-thickness 1.0-cm2 explants, and briefly exposed to the military vesicant sulfur mustard (SM), which was used as a model toxicant. The explants were then organ cultured in small Petri dishes for 24 h at 36 degrees C. In the 0.03-1.0% dosage range, a straight-line dose-response relationship occurred between the concentration of SM applied and the number of paranuclear vacuoles seen histologically in the epidermis. Within the same SM dosage range, there was also a proportional decrease in 14C-leucine incorporation by the explants. Thus, the number of paranuclear vacuoles reflected decreases in protein synthesis by the injured epidermal cells. The epidermis of full-thickness untreated (control) human skin explants usually remained viable for 7 d when stored at 4 degrees C in culture medium. During storage, a relatively small number of paranuclear vacuoles developed within the epidermis, but the explants were still quite satisfactory for testing SM toxicity. Incubation (for 4 or 24 h at 36{degrees}C) of such control skin explants reduced (often by 50%) the small number of paranuclear vacuoles produced during 4-7 d of storage. This reduction was probably caused by autolysis of many of the vacuolated cells. Two types of paranuclear vacuoles could be identified by both light and electron microscopy: a storage type and a toxicant type. The storage type seemed to be caused by autolysis of cell components.

  18. Generation of a Sediment Rating and Load Curve Demonstrated at the Mackinaw River Confluence

    Science.gov (United States)

    2016-12-01

    Demonstrated at the Mackinaw River Confluence by Jeremy A. Sharp and Ronald E. Heath PURPOSE: This Coastal and Hydraulics Engineering Technical Note...transport behavior of the system. Total flow delivered to the point of interest must be accounted for correctly in order to reduce error in the SRC...River watershed (Adjusted). NORMAL DEPTH COMPUTATION: Normal depth computations were computed with the Stable Analytical Method (SAM) Hydraulic Design

  19. Enhanced toxic cloud knockdown spray system for decontamination applications

    Science.gov (United States)

    Betty, Rita G [Rio Rancho, NM; Tucker, Mark D [Albuquerque, NM; Brockmann, John E [Albuquerque, NM; Lucero, Daniel A [Albuquerque, NM; Levin, Bruce L [Tijeras, NM; Leonard, Jonathan [Albuquerque, NM

    2011-09-06

    Methods and systems for knockdown and neutralization of toxic clouds of aerosolized chemical or biological warfare (CBW) agents and toxic industrial chemicals using a non-toxic, non-corrosive aqueous decontamination formulation.

  20. Strategic Planning Process and Organizational Structure: Impacts, Confluence and Similarities

    Directory of Open Access Journals (Sweden)

    Dyogo Felype Neis

    2017-01-01

    Full Text Available This article aims to analyze the relationship between the strategic planning process and organizational structure in the reality of a complex organization: the Public Prosecutor’s Office of Santa Catarina (MPSC. The research is set by the single case study research strategy and data were collected through the following instruments: bibliographical research, documentary research, semi-structured interviews and systematic observation. The conclusion indicates that the phases of the strategic planning process influence and are influenced by the elements of the organizational structure and highlights the confluences, the impacts and similarities between the stages of formulation and implementation of the strategic process with the various constituent elements of the organizational structure.

  1. Oocyte toxicity: female germ-cell loss from radiation and chemical exposures

    International Nuclear Information System (INIS)

    Dobson, R.L.

    1984-01-01

    In some mammals, female germ cells are extraordinarily sensitive to killing by exposure to ionizing radiation, especially during development. Immature oocytes, which constitute the lifetime germ-cell pool of the female, have an LD 50 in juvenile mice of only 6 rad (compared with typical LD 50 s of 100-300 rad for most other cell types studied). Essentially, the entire germ-cell supply in female squirrel monkeys is destroyed prenatally by exposure of only 0.7 rad/day. Severe but lesser destruction has been found in other species. However, evidence suggests (though not ruled out for all developmental stages) that unusually high sensitivity probably does not occur in the human female. Germ cells can also be killed by certain chemicals, and similarities exist between chemical and radiation effects. More than 75 compounds have been quantitatively studied in mice, with determination of OTI values (OTI = oocyte toxicity index = mouse LD 50 /oocyte LD 50 ) to measure the degree of preferential oocyte killing. High sensitivity in mice does not mean necessarily high sensitivity in women. Of special interest is the recent discovery that the lethal target in the extremely sensitive mouse immature oocyte is probably the plasma membrane, not DNA. Since mouse data form the main basis from which human genetic hazard (for both radiation and chemicals) is estimated, this has important implications for the determination of genetic risk in women

  2. Acute sensitivity of freshwater mollusks and commonly tested invertebrates to select chemicals with different toxic models of action

    Science.gov (United States)

    Previous studies indicate that freshwater mollusks are more sensitive than commonly tested organisms to some chemicals, such as copper and ammonia. Nevertheless, mollusks are generally under-represented in toxicity databases. Studies are needed to generate data with which to comp...

  3. Removal of toxic chemicals from water with activated carbon

    Science.gov (United States)

    Dawson, V.K.; Marking, L.L.; Bills, T.D.

    1976-01-01

    Activated carbon was effective in removing fish toxicants and anesthetics from water solutions. Its capacity to adsorb 3-trifluoromethyl-4-nitrophenol (TFM), antimycin, NoxfishA? (5% rotenone), Dibrorms, juglone, MSa??222, and benzocaine ranged from 0.1 to 64 mg per gram of carbon. The adsorptive capacity (end point considered as a significant discharge) of activated carbon for removal of TFM was determined at column depths of 15, 30, and 60 cm; temperatures of 7, 12, 17, and 22 C; pH's of 6.5, 7.5, 8.5, and 9.5; and flow rates of 50, 78, 100, 200, and 940 ml/min. Adsorptive capacity increased when the contact time was increased by reducing the flow rate or increasing the column depth. The adsorptive capacity was not significantly influenced by temperature but was substantially higher at pH 6.5 than at the other pH's tested. A practical and efficient filter for purifying chemically treated water was developed.

  4. Toxicity Estimation Software Tool (TEST)

    Science.gov (United States)

    The Toxicity Estimation Software Tool (TEST) was developed to allow users to easily estimate the toxicity of chemicals using Quantitative Structure Activity Relationships (QSARs) methodologies. QSARs are mathematical models used to predict measures of toxicity from the physical c...

  5. Membrane alterations following toxic chemical insult. Research progress report No. 3 (Final), 15 July 1984-31 January 1988

    Energy Technology Data Exchange (ETDEWEB)

    Liss, A.

    1988-03-10

    A procaryotic cell system was developed that can be used to determine the toxic action of chemicals acting at the level of the eucaryotic or procaryotic cytoplasmic membrane. Cell wall-less microbes known as mycoplasmas were used. In this current study, two perfluorinated fatty acids (CB and C10) were found to inhibit the growth of the test mycoplasmas. Two apparent activities, cytotoxicity and cytolysis, were observed. At high concentrations (>10 mM), a detergent-like action was noted. At low concentrations (<10 mM), cell death was observed without detectable cell lysis. Altering the cell membrane (the presumed target of the toxic compounds) resulted in altered levels to toxicity. Similar results were obtained when human or murine B-cells were used as the target organism. The toxic action of the perfluorinated fatty acids apparently involves some interaction with the membrane of the cells being treated.

  6. Chemical toxicity and radioactivity of depleted uranium: The evidence from in vivo and in vitro studies.

    Science.gov (United States)

    Asic, Adna; Kurtovic-Kozaric, Amina; Besic, Larisa; Mehinovic, Lejla; Hasic, Azra; Kozaric, Mirza; Hukic, Mirsada; Marjanovic, Damir

    2017-07-01

    The main aim of this review is to summarize and discuss the current state of knowledge on chemical toxicity and radioactivity of depleted uranium (DU) and their effect on living systems and cell lines. This was done by presenting a summary of previous investigations conducted on different mammalian body systems and cell cultures in terms of potential changes caused by either chemical toxicity or radioactivity of DU. In addition, the authors aimed to point out the limitations of those studies and possible future directions. The majority of both in vitro and in vivo studies performed using animal models regarding possible effects caused by acute or chronic DU exposure has been reviewed. Furthermore, exposure time and dose, DU particle solubility, and uranium isotopes as factors affecting the extent of DU effects have been discussed. Special attention has been dedicated to chromosomal aberrations, DNA damage and DNA breaks, as well as micronuclei formation and epigenetic changes, as DU has recently been considered a possible causative factor of all these processes. Therefore, this approach might represent a novel area of study of DU-related irradiation effects on health. Since different studies offer contradictory results, the main aim of this review is to summarize and briefly discuss previously obtained results in order to identify the current opinion on DU toxicity and radioactivity effects in relation to exposure type and duration, as well as DU properties. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The density and biomass of mesozooplankton and ichthyoplankton in the Negro and the Amazon Rivers during the rainy season: the ecological importance of the confluence boundary.

    Science.gov (United States)

    Nakajima, Ryota; Rimachi, Elvis V; Santos-Silva, Edinaldo N; Calixto, Laura S F; Leite, Rosseval G; Khen, Adi; Yamane, Tetsuo; Mazeroll, Anthony I; Inuma, Jomber C; Utumi, Erika Y K; Tanaka, Akira

    2017-01-01

    The boundary zone between two different hydrological regimes is often a biologically enriched environment with distinct planktonic communities. In the center of the Amazon River basin, muddy white water of the Amazon River meets with black water of the Negro River, creating a conspicuous visible boundary spanning over 10 km along the Amazon River. Here, we tested the hypothesis that the confluence boundary between the white and black water rivers concentrates prey and is used as a feeding habitat for consumers by investigating the density, biomass and distribution of mesozooplankton and ichthyoplankton communities across the two rivers during the rainy season. Our results show that mean mesozooplankton density (2,730 inds. m -3 ) and biomass (4.8 mg m -3 ) were higher in the black-water river compared to the white-water river (959 inds. m -3 ; 2.4 mg m -3 ); however an exceptionally high mesozooplankton density was not observed in the confluence boundary. Nonetheless we found the highest density of ichthyoplankton in the confluence boundary (9.7 inds. m -3 ), being up to 9-fold higher than in adjacent rivers. The confluence between white and black waters is sandwiched by both environments with low (white water) and high (black water) zooplankton concentrations and by both environments with low (white water) and high (black water) predation pressures for fish larvae, and may function as a boundary layer that offers benefits of both high prey concentrations and low predation risk. This forms a plausible explanation for the high density of ichthyoplankton in the confluence zone of black and white water rivers.

  8. The Simplest Flowchart Stating the Mechanisms for Organic Xenobiotics-induced Toxicity: Can it Possibly be Accepted as a "Central Dogma" for Toxic Mechanisms?

    Science.gov (United States)

    Park, Yeong-Chul; Lee, Sundong; Cho, Myung-Haing

    2014-09-01

    Xenobiotics causing a variety of toxicity in biological systems could be classified as two types, inorganic and organic chemicals. It is estimated that the organic xenobiotics are responsible for approximately 80~90% of chemical-induced toxicity in human population. In the class for toxicology, we have encountered some difficulties in explaining the mechanisms of toxicity caused especially by organic chemicals. Here, a simple flowchart was introduced for explaining the mechanism of toxicity caused by organic xenobiotics, as the central dogma of molecular biology. This flowchart, referred to as a central dogma, was described based on a view of various aspects as follows: direct-acting chemicals vs. indirect-acting chemicals, cytochrome P450-dependent vs. cytochrome P450-independent biotransformation, reactive intermediates, reactivation, toxicokinetics vs. toxicodynamics, and reversibility vs. irreversibility. Thus, the primary objective of this flowchart is to help better understanding of the organic xenobiotics-induced toxic mechanisms, providing a major pathway for toxicity occurring in biological systems.

  9. Bio-EdIP: An automatic approach for in vitro cell confluence images quantification.

    Science.gov (United States)

    Cardona, Andrés; Ariza-Jiménez, Leandro; Uribe, Diego; Arroyave, Johanna C; Galeano, July; Cortés-Mancera, Fabian M

    2017-07-01

    Cell imaging is a widely-employed technique to analyze multiple biological processes. Therefore, simple, accurate and quantitative tools are needed to understand cellular events. For this purpose, Bio-EdIP was developed as a user-friendly tool to quantify confluence levels using cell culture images. The proposed algorithm combines a pre-processing step with subsequent stages that involve local processing techniques and a morphological reconstruction-based segmentation algorithm. Segmentation performance was assessed in three constructed image sets, comparing F-measure scores and AUC values (ROC analysis) for Bio-EdIP, its previous version and TScratch. Furthermore, segmentation results were compared with published algorithms using eight public benchmarks. Bio-EdIP automatically segmented cell-free regions from images of in vitro cell culture. Based on mean F-measure scores and ROC analysis, Bio-EdIP conserved a high performance regardless of image characteristics of the constructed dataset, when compared with its previous version and TScratch. Although acquisition quality of the public dataset affected Bio-EdIP segmentation, performance was better in two out of eight public sets. Bio-EdIP is a user-friendly interface, which is useful for the automatic analysis of confluence levels and cell growth processes using in vitro cell culture images. Here, we also presented new manually annotated data for algorithms evaluation. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Predicting algal growth inhibition toxicity: three-step strategy using structural and physicochemical properties.

    Science.gov (United States)

    Furuhama, A; Hasunuma, K; Hayashi, T I; Tatarazako, N

    2016-05-01

    We propose a three-step strategy that uses structural and physicochemical properties of chemicals to predict their 72 h algal growth inhibition toxicities against Pseudokirchneriella subcapitata. In Step 1, using a log D-based criterion and structural alerts, we produced an interspecies QSAR between algal and acute daphnid toxicities for initial screening of chemicals. In Step 2, we categorized chemicals according to the Verhaar scheme for aquatic toxicity, and we developed QSARs for toxicities of Class 1 (non-polar narcotic) and Class 2 (polar narcotic) chemicals by means of simple regression with a hydrophobicity descriptor and multiple regression with a hydrophobicity descriptor and a quantum chemical descriptor. Using the algal toxicities of the Class 1 chemicals, we proposed a baseline QSAR for calculating their excess toxicities. In Step 3, we used structural profiles to predict toxicity either quantitatively or qualitatively and to assign chemicals to the following categories: Pesticide, Reactive, Toxic, Toxic low and Uncategorized. Although this three-step strategy cannot be used to estimate the algal toxicities of all chemicals, it is useful for chemicals within its domain. The strategy is also applicable as a component of Integrated Approaches to Testing and Assessment.

  11. Toxic releases from power plants

    International Nuclear Information System (INIS)

    Rubin, E.S.

    1999-01-01

    Beginning in 1998, electric power plants burning coal or oil must estimate and report their annual releases of toxic chemicals listed in the Toxics Release Inventory (TRI) published by the US Environmental Protection Agency (EPA). This paper identifies the toxic chemicals of greatest significance for the electric utility sector and develops quantitative estimates of the toxic releases reportable to the TRI for a representative coal-fired power plant. Key factors affecting the magnitude and types of toxic releases for individual power plants also are discussed. A national projection suggests that the magnitude of electric utility industry releases will surpass those of the manufacturing industries which current report to the TRI. Risk communication activities at the community level will be essential to interpret and provide context for the new TRI results

  12. Preliminary study of chemical compositional data from Amazon ceramics

    International Nuclear Information System (INIS)

    Toyota, Rosimeiri G.; Munita, Casimiro S.; Luz, Fabio A.; Neves, Eduardo G.; Oliveira, Paulo M.S.

    2005-01-01

    Eighty seven ceramic samples from Acutuba, Lago Grande and Osvaldo archaeological sites located in the confluence of the rivers Negro and Solimoes were submitted to chemical analysis using instrumental neutron activation analysis to determine As, Ba, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Rb, Na, Nd, Sb, Sc, Sm, Ta, Tb, Th, Yb, Zn, and U. The database were studied using the Mahalanobis distance, and discriminant analysis. The results showed that the ceramics of each site differ from each other in chemical composition and that they form three different groups. Chemical classification of the ceramics suggests that vessels were made locally, as only ceramics from the same area show homogeneity of data. (author)

  13. E-SovTox: An online database of the main publicly-available sources of toxicity data concerning REACH-relevant chemicals published in the Russian language.

    Science.gov (United States)

    Sihtmäe, Mariliis; Blinova, Irina; Aruoja, Villem; Dubourguier, Henri-Charles; Legrand, Nicolas; Kahru, Anne

    2010-08-01

    A new open-access online database, E-SovTox, is presented. E-SovTox provides toxicological data for substances relevant to the EU Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) system, from publicly-available Russian language data sources. The database contains information selected mainly from scientific journals published during the Soviet Union era. The main information source for this database - the journal, Gigiena Truda i Professional'nye Zabolevania [Industrial Hygiene and Occupational Diseases], published between 1957 and 1992 - features acute, but also chronic, toxicity data for numerous industrial chemicals, e.g. for rats, mice, guinea-pigs and rabbits. The main goal of the abovementioned toxicity studies was to derive the maximum allowable concentration limits for industrial chemicals in the occupational health settings of the former Soviet Union. Thus, articles featured in the database include mostly data on LD50 values, skin and eye irritation, skin sensitisation and cumulative properties. Currently, the E-SovTox database contains toxicity data selected from more than 500 papers covering more than 600 chemicals. The user is provided with the main toxicity information, as well as abstracts of these papers in Russian and in English (given as provided in the original publication). The search engine allows cross-searching of the database by the name or CAS number of the compound, and the author of the paper. The E-SovTox database can be used as a decision-support tool by researchers and regulators for the hazard assessment of chemical substances. 2010 FRAME.

  14. Specific Chemical and Genetic Markers Revealed a Thousands-Year Presence of Toxic Nodularia spumigena in the Baltic Sea.

    Science.gov (United States)

    Cegłowska, Marta; Toruńska-Sitarz, Anna; Kowalewska, Grażyna; Mazur-Marzec, Hanna

    2018-04-04

    In the Baltic Sea, diazotrophic cyanobacteria have been present for thousands of years, over the whole brackish water phase of the ecosystem. However, our knowledge about the species composition of the cyanobacterial community is limited to the last several decades. In the current study, the presence of species-specific chemical and genetic markers in deep sediments were analyzed to increase the existing knowledge on the history of toxic Nodularia spumigena blooms in the Baltic Sea. As chemical markers, three cyclic nonribosomal peptides were applied: the hepatotoxic nodularin, which in the sea was detected solely in N. spumigena , and two anabaenopeptins (AP827 and AP883a) characteristic of two different chemotypes of this species. From the same sediment samples, DNA was isolated and the gene involved in biosynthesis of nodularin, as well as the phycocyanin intergenic spacer region (PC-IGS), were amplified. The results of chemical and genetic analyses proved for the first time the thousands-year presence of toxic N. spumigena in the Baltic Sea. They also indicated that through all this time, the same two sub-populations of the species co-existed.

  15. Chemical toxicity of uranium hexafluoride compared to acute effects of radiation

    International Nuclear Information System (INIS)

    McGuire, S.A.

    1991-02-01

    The chemical effects from acute exposures to uranium hexafluoride are compared to the nonstochastic effects from acute radiation doses of 25 rems to the whole body and 300 rems to the thyroid. The analysis concludes that an intake of about 10 mg of uranium in soluble form is roughly comparable, in terms of early effects, to an acute whole body dose of 25 rems because both are just below the threshold for significant nonstochastic effects. Similarly, an exposure to hydrogen fluoride at a concentration of 25 mg/m 3 for 30 minutes is roughly comparable because there would be no significant nonstochastic effects. For times t other than 30 minutes, the concentration C of hydrogen fluoride considered to have the same effect can be calculated using a quadratic equation: C = 25 mg/m 3 (30 min/t). The purpose of these analyses is to provide information for developing design and siting guideline based on chemical toxicity for enrichment plants using uranium hexafluoride. These guidelines are to be similar, in terms of stochastic health effects, to criteria in NRC regulations of nuclear power plants, which are based on radiation doses. 26 refs., 1 fig., 5 tabs

  16. Chemical toxicity of uranium hexafluoride compared to acute effects of radiation

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, S.A.

    1991-02-01

    The chemical effects from acute exposures to uranium hexafluoride are compared to the nonstochastic effects from acute radiation doses of 25 rems to the whole body and 300 rems to the thyroid. The analysis concludes that an intake of about 10 mg of uranium in soluble form is roughly comparable, in terms of early effects, to an acute whole body dose of 25 rems because both are just below the threshold for significant nonstochastic effects. Similarly, an exposure to hydrogen fluoride at a concentration of 25 mg/m{sup 3} for 30 minutes is roughly comparable because there would be no significant nonstochastic effects. For times t other than 30 minutes, the concentration C of hydrogen fluoride considered to have the same effect can be calculated using a quadratic equation: C = 25 mg/m{sup 3} (30 min/t). The purpose of these analyses is to provide information for developing design and siting guideline based on chemical toxicity for enrichment plants using uranium hexafluoride. These guidelines are to be similar, in terms of stochastic health effects, to criteria in NRC regulations of nuclear power plants, which are based on radiation doses. 26 refs., 1 fig., 5 tabs.

  17. Evidence of Coal-Fly-Ash Toxic Chemical Geoengineering in the Troposphere: Consequences for Public Health.

    Science.gov (United States)

    Herndon, J Marvin

    2015-08-11

    The widespread, intentional and increasingly frequent chemical emplacement in the troposphere has gone unidentified and unremarked in the scientific literature for years. The author presents evidence that toxic coal combustion fly ash is the most likely aerosolized particulate sprayed by tanker-jets for geoengineering, weather-modification and climate-modification purposes and describes some of the multifold consequences on public health. Two methods are employed: (1) Comparison of 8 elements analyzed in rainwater, leached from aerosolized particulates, with corresponding elements leached into water from coal fly ash in published laboratory experiments, and (2) Comparison of 14 elements analyzed in dust collected outdoors on a high-efficiency particulate air (HEPA) filter with corresponding elements analyzed in un-leached coal fly ash material. The results show: (1) the assemblage of elements in rainwater and in the corresponding experimental leachate are essentially identical. At a 99% confidence interval, they have identical means (T-test) and identical variances (F-test); and (2) the assemblage of elements in the HEPA dust and in the corresponding average un-leached coal fly ash are likewise essentially identical. The consequences on public health are profound, including exposure to a variety of toxic heavy metals, radioactive elements, and neurologically-implicated chemically mobile aluminum released by body moisture in situ after inhalation or through transdermal induction.

  18. Health risks associated with inhaled nasal toxicants

    NARCIS (Netherlands)

    Feron, VJ; Arts, JHE; Kuper, CF; Slootweg, PJ; Woutersen, RA

    2001-01-01

    Health risks of inhaled nasal toxicants were reviewed with emphasis on chemically induced nasal lesions in humans, sensory irritation, olfactory and trigeminal nerve toxicity, nasal immunopathology and carcinogenesis, nasal responses to chemical mixtures, in vitro models, and nasal dosimetry- and

  19. The Simplest Flowchart Stating the Mechanisms for Organic Xenobiotics-induced Toxicity: Can it Possibly be Accepted as a “Central Dogma” for Toxic Mechanisms?

    Science.gov (United States)

    Lee, Sundong; Cho, Myung-Haing

    2014-01-01

    Xenobiotics causing a variety of toxicity in biological systems could be classified as two types, inorganic and organic chemicals. It is estimated that the organic xenobiotics are responsible for approximately 80~90% of chemical-induced toxicity in human population. In the class for toxicology, we have encountered some difficulties in explaining the mechanisms of toxicity caused especially by organic chemicals. Here, a simple flowchart was introduced for explaining the mechanism of toxicity caused by organic xenobiotics, as the central dogma of molecular biology. This flowchart, referred to as a central dogma, was described based on a view of various aspects as follows: direct-acting chemicals vs. indirect-acting chemicals, cytochrome P450-dependent vs. cytochrome P450-independent biotransformation, reactive intermediates, reactivation, toxicokinetics vs. toxicodynamics, and reversibility vs. irreversibility. Thus, the primary objective of this flowchart is to help better understanding of the organic xenobiotics-induced toxic mechanisms, providing a major pathway for toxicity occurring in biological systems. PMID:25343011

  20. The density and biomass of mesozooplankton and ichthyoplankton in the Negro and the Amazon Rivers during the rainy season: the ecological importance of the confluence boundary

    Directory of Open Access Journals (Sweden)

    Ryota Nakajima

    2017-05-01

    Full Text Available The boundary zone between two different hydrological regimes is often a biologically enriched environment with distinct planktonic communities. In the center of the Amazon River basin, muddy white water of the Amazon River meets with black water of the Negro River, creating a conspicuous visible boundary spanning over 10 km along the Amazon River. Here, we tested the hypothesis that the confluence boundary between the white and black water rivers concentrates prey and is used as a feeding habitat for consumers by investigating the density, biomass and distribution of mesozooplankton and ichthyoplankton communities across the two rivers during the rainy season. Our results show that mean mesozooplankton density (2,730 inds. m−3 and biomass (4.8 mg m−3 were higher in the black-water river compared to the white-water river (959 inds. m−3; 2.4 mg m−3; however an exceptionally high mesozooplankton density was not observed in the confluence boundary. Nonetheless we found the highest density of ichthyoplankton in the confluence boundary (9.7 inds. m−3, being up to 9-fold higher than in adjacent rivers. The confluence between white and black waters is sandwiched by both environments with low (white water and high (black water zooplankton concentrations and by both environments with low (white water and high (black water predation pressures for fish larvae, and may function as a boundary layer that offers benefits of both high prey concentrations and low predation risk. This forms a plausible explanation for the high density of ichthyoplankton in the confluence zone of black and white water rivers.

  1. Toxicity induced by chemical warfare agents: insights on the protective role of melatonin.

    Science.gov (United States)

    Pita, René; Marco-Contelles, José; Ramos, Eva; Del Pino, Javier; Romero, Alejandro

    2013-11-25

    Chemical Warfare Agents (CWAs) are substances that can be used to kill, injure or incapacitate an enemy in warfare, but also against civilian population in terrorist attacks. Many chemical agents are able to generate free radicals and derived reactants, excitotoxicity process, or inflammation, and as consequence they can cause neurological symptoms and damage in different organs. Nowadays, taking into account that total immediate decontamination after exposure is difficult to achieve and there are not completely effective antidotes and treatments against all CWAs, we advance and propose that medical countermeasures against CWAs poisoning would benefit from a broad-spectrum multipotent molecule. Melatonin, a versatile and ubiquitous antioxidant molecule, originally discovered as a hormone synthesized mainly in the pineal gland, has low toxicity and high efficacy in reducing oxidative damage, anti-inflammatory effects by regulation of multiple cellular pathways and properties to prevent excitotoxicity, among others. The purpose of this review is to show the multiple and diverse properties of melatonin, as a pleiotropic indole derivative, and its marked potential for improving human health against the most widely used chemical weapons. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Numerical modelling of admixture transport in a turbulent flow at river confluence

    International Nuclear Information System (INIS)

    Lyubimova, T; Parshakova, Ya; Konovalov, V; Shumilova, N; Lepikhin, A; Tiunov, A

    2013-01-01

    The paper is concerned with the development of the hydrodynamic model of the Chusovskoy water intake located in the confluence zone of two rivers with essentially different hydrochemical regimes and in the backwater zone of the Kamskaya hydroelectric power station. The proposed model is used for numerical simulation in the framework of two-and three-dimensional approaches for the annual average, minimal and maximal values of the water flow rates in two rivers. The data for water mineralization in the water intake zone have been obtained. The recommendations for optimization of the water intake structure have been formulated.

  3. Analyse on changes of runoff generation and confluence of the Luohe River

    International Nuclear Information System (INIS)

    Yiming Si; Xiaowei Liu

    2004-01-01

    The change trend of water cycle factors such as rainfall, runoff and flood events etc. in the Luohe River basin are analysed based on hydrological data since 1950s. The analysis shows that rainfall has been decreasing, but not much, while runoff has been decreasing remarkably. Under the same rainfall conditions, runoff and peak discharge have dropped considerably, runoff coefficient has become much smaller, and the frequency of flood occurrence has been decreasing. It is considered that environmental variation caused by human activities accounts for the change, in characteristics of runoff generation and confluence in the basin.(Author)

  4. A Novel Two-Step Hierarchial Quantitative Structure-Activity Relationship Modeling Workflow for Predicting Acute Toxicity of Chemicals in Rodents

    Science.gov (United States)

    Background: Accurate prediction of in vivo toxicity from in vitro testing is a challenging problem. Large public–private consortia have been formed with the goal of improving chemical safety assessment by the means of high-throughput screening. Methods and results: A database co...

  5. Investigation of Acute Toxicity of a Chemical Warfare Agent in Kidneys

    Directory of Open Access Journals (Sweden)

    Turgut Topal

    2007-08-01

    Full Text Available One of the most important chemical warfare agents, sulfur mustard (SM causes crucial acute and chronic toxic effects. Lung, skin, eye and kidneys are the most affected organs. In this work, it was investigated if increased nitric oxide (NO and peroxynitrite are involved in nitrogen mustard (NM induced kidney damage. In this experimen, aminoguanidine (AG as inducible nitric oxide synthase (iNOS inhibitor and ebselen as peroxynitrite scavenger were used. NM administration resulted in important oxidant and antioxidant changes as well as tissue damage in kidneys. Therapeutic agents showed significant protection and reduced oxidant parameteres leading to tissue healing was observed. Results of this study suggest that drugs with similar properties can be used to protect kidney damage caused by NM. [TAF Prev Med Bull. 2007; 6(4: 227-232

  6. Investigation of Acute Toxicity of a Chemical Warfare Agent in Kidneys

    Directory of Open Access Journals (Sweden)

    Turgut Topal

    2007-08-01

    Full Text Available One of the most important chemical warfare agents, sulfur mustard (SM causes crucial acute and chronic toxic effects. Lung, skin, eye and kidneys are the most affected organs. In this work, it was investigated if increased nitric oxide (NO and peroxynitrite are involved in nitrogen mustard (NM induced kidney damage. In this experimen, aminoguanidine (AG as inducible nitric oxide synthase (iNOS inhibitor and ebselen as peroxynitrite scavenger were used. NM administration resulted in important oxidant and antioxidant changes as well as tissue damage in kidneys. Therapeutic agents showed significant protection and reduced oxidant parameteres leading to tissue healing was observed. Results of this study suggest that drugs with similar properties can be used to protect kidney damage caused by NM. [TAF Prev Med Bull 2007; 6(4.000: 227-232

  7. New facility for processing and storage of radioactive and toxic chemical waste

    International Nuclear Information System (INIS)

    Gallagher, F.E. III

    1976-01-01

    A new facility for the processing and storage of radioactive and toxic chemical waste is described. The facility is located in the science and engineering complex of the Santa Barbara campus of the University of California, near the Pacific Ocean. It is designed to provide a safe and secure processing and storage area for hazardous wastes, while meeting the high aesthetic standards and ecological requirements of campus and community regulatory boards. The ventilation system and fire prevention features will be described in detail. During the design phase, a small laboratory was added to provide an area for the radiation protection and industrial hygiene programs. Operational experience with this new facility is discussed

  8. VirtualToxLab — A platform for estimating the toxic potential of drugs, chemicals and natural products

    International Nuclear Information System (INIS)

    Vedani, Angelo; Dobler, Max; Smieško, Martin

    2012-01-01

    The VirtualToxLab is an in silico technology for estimating the toxic potential (endocrine and metabolic disruption, some aspects of carcinogenicity and cardiotoxicity) of drugs, chemicals and natural products. The technology is based on an automated protocol that simulates and quantifies the binding of small molecules towards a series of proteins, known or suspected to trigger adverse effects. The toxic potential, a non-linear function ranging from 0.0 (none) to 1.0 (extreme), is derived from the individual binding affinities of a compound towards currently 16 target proteins: 10 nuclear receptors (androgen, estrogen α, estrogen β, glucocorticoid, liver X, mineralocorticoid, peroxisome proliferator-activated receptor γ, progesterone, thyroid α, and thyroid β), four members of the cytochrome P450 enzyme family (1A2, 2C9, 2D6, and 3A4), a cytosolic transcription factor (aryl hydrocarbon receptor) and a potassium ion channel (hERG). The interface to the technology allows building and uploading molecular structures, viewing and downloading results and, most importantly, rationalizing any prediction at the atomic level by interactively analyzing the binding mode of a compound with its target protein(s) in real-time 3D. The VirtualToxLab has been used to predict the toxic potential for over 2500 compounds: the results are posted on (http://www.virtualtoxlab.org). The free platform — the OpenVirtualToxLab — is accessible (in client–server mode) over the Internet. It is free of charge for universities, governmental agencies, regulatory bodies and non-profit organizations. -- Highlights: ► In silico technology for estimating the toxic potential of drugs and chemicals. ► Simulation of binding towards 16 proteins suspected to trigger adverse effects. ► Mechanistic interpretation and real-time 3D visualization. ► Accessible over the Internet. ► Free of charge for universities, governmental agencies, regulatory bodies and NPOs.

  9. VirtualToxLab — A platform for estimating the toxic potential of drugs, chemicals and natural products

    Energy Technology Data Exchange (ETDEWEB)

    Vedani, Angelo, E-mail: angelo.vedani@unibas.ch [Biographics Laboratory 3R, Klingelbergstrasse 50, 4056 Basel (Switzerland); Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel (Switzerland); Dobler, Max [Biographics Laboratory 3R, Klingelbergstrasse 50, 4056 Basel (Switzerland); Smieško, Martin [Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel (Switzerland)

    2012-06-01

    The VirtualToxLab is an in silico technology for estimating the toxic potential (endocrine and metabolic disruption, some aspects of carcinogenicity and cardiotoxicity) of drugs, chemicals and natural products. The technology is based on an automated protocol that simulates and quantifies the binding of small molecules towards a series of proteins, known or suspected to trigger adverse effects. The toxic potential, a non-linear function ranging from 0.0 (none) to 1.0 (extreme), is derived from the individual binding affinities of a compound towards currently 16 target proteins: 10 nuclear receptors (androgen, estrogen α, estrogen β, glucocorticoid, liver X, mineralocorticoid, peroxisome proliferator-activated receptor γ, progesterone, thyroid α, and thyroid β), four members of the cytochrome P450 enzyme family (1A2, 2C9, 2D6, and 3A4), a cytosolic transcription factor (aryl hydrocarbon receptor) and a potassium ion channel (hERG). The interface to the technology allows building and uploading molecular structures, viewing and downloading results and, most importantly, rationalizing any prediction at the atomic level by interactively analyzing the binding mode of a compound with its target protein(s) in real-time 3D. The VirtualToxLab has been used to predict the toxic potential for over 2500 compounds: the results are posted on (http://www.virtualtoxlab.org). The free platform — the OpenVirtualToxLab — is accessible (in client–server mode) over the Internet. It is free of charge for universities, governmental agencies, regulatory bodies and non-profit organizations. -- Highlights: ► In silico technology for estimating the toxic potential of drugs and chemicals. ► Simulation of binding towards 16 proteins suspected to trigger adverse effects. ► Mechanistic interpretation and real-time 3D visualization. ► Accessible over the Internet. ► Free of charge for universities, governmental agencies, regulatory bodies and NPOs.

  10. Machine learning for toxicity characterization of organic chemical emissions using USEtox database: Learning the structure of the input space.

    Science.gov (United States)

    Marvuglia, Antonino; Kanevski, Mikhail; Benetto, Enrico

    2015-10-01

    Toxicity characterization of chemical emissions in Life Cycle Assessment (LCA) is a complex task which usually proceeds via multimedia (fate, exposure and effect) models attached to models of dose-response relationships to assess the effects on target. Different models and approaches do exist, but all require a vast amount of data on the properties of the chemical compounds being assessed, which are hard to collect or hardly publicly available (especially for thousands of less common or newly developed chemicals), therefore hampering in practice the assessment in LCA. An example is USEtox, a consensual model for the characterization of human toxicity and freshwater ecotoxicity. This paper places itself in a line of research aiming at providing a methodology to reduce the number of input parameters necessary to run multimedia fate models, focusing in particular to the application of the USEtox toxicity model. By focusing on USEtox, in this paper two main goals are pursued: 1) performing an extensive exploratory analysis (using dimensionality reduction techniques) of the input space constituted by the substance-specific properties at the aim of detecting particular patterns in the data manifold and estimating the dimension of the subspace in which the data manifold actually lies; and 2) exploring the application of a set of linear models, based on partial least squares (PLS) regression, as well as a nonlinear model (general regression neural network--GRNN) in the seek for an automatic selection strategy of the most informative variables according to the modelled output (USEtox factor). After extensive analysis, the intrinsic dimension of the input manifold has been identified between three and four. The variables selected as most informative may vary according to the output modelled and the model used, but for the toxicity factors modelled in this paper the input variables selected as most informative are coherent with prior expectations based on scientific knowledge

  11. OECD validation study to assess intra- and inter-laboratory reproducibility of the zebrafish embryo toxicity test for acute aquatic toxicity testing.

    Science.gov (United States)

    Busquet, François; Strecker, Ruben; Rawlings, Jane M; Belanger, Scott E; Braunbeck, Thomas; Carr, Gregory J; Cenijn, Peter; Fochtman, Przemyslaw; Gourmelon, Anne; Hübler, Nicole; Kleensang, André; Knöbel, Melanie; Kussatz, Carola; Legler, Juliette; Lillicrap, Adam; Martínez-Jerónimo, Fernando; Polleichtner, Christian; Rzodeczko, Helena; Salinas, Edward; Schneider, Katharina E; Scholz, Stefan; van den Brandhof, Evert-Jan; van der Ven, Leo T M; Walter-Rohde, Susanne; Weigt, Stefan; Witters, Hilda; Halder, Marlies

    2014-08-01

    The OECD validation study of the zebrafish embryo acute toxicity test (ZFET) for acute aquatic toxicity testing evaluated the ZFET reproducibility by testing 20 chemicals at 5 different concentrations in 3 independent runs in at least 3 laboratories. Stock solutions and test concentrations were analytically confirmed for 11 chemicals. Newly fertilised zebrafish eggs (20/concentration and control) were exposed for 96h to chemicals. Four apical endpoints were recorded daily as indicators of acute lethality: coagulation of the embryo, lack of somite formation, non-detachment of the tail bud from the yolk sac and lack of heartbeat. Results (LC50 values for 48/96h exposure) show that the ZFET is a robust method with a good intra- and inter-laboratory reproducibility (CV30%) for some very toxic or volatile chemicals, and chemicals tested close to their limit of solubility. The ZFET is now available as OECD Test Guideline 236. Considering the high predictive capacity of the ZFET demonstrated by Belanger et al. (2013) in their retrospective analysis of acute fish toxicity and fish embryo acute toxicity data, the ZFET is ready to be considered for acute fish toxicity for regulatory purposes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Toxic fables: the advertising and marketing of agricultural chemicals in the great plains, 1945-1985.

    Science.gov (United States)

    Vail, David D

    2012-12-01

    This paper examines how pesticides and their technologies were sold to farmers and pilots throughout the midtwentieth century. It principally considers how marketing rhetoric and advertisement strategies used by chemical companies and aerial spraying firms influenced the practices and perspectives of farm producers in the Great Plains. In order to convince landowners and agricultural leaders to buy their pesticides, chemical companies generated advertisements that championed local crop health, mixture accuracy, livestock safety and a chemical-farming 'way of life' that kept fields healthy and productive. Combining notions of safety, accuracy and professionalism with pest eradication messages reinforced the standards that landowners, pilots and agriculturalists would hold regarding toxicity and risk when spraying their fields. As the politics of health changed in the aftermath of Rachel Carson's Silent Spring, these companies and aerial spraying outfits responded by keeping to a vision of agricultural health that required poisons for protection through technological accuracy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Comparison of Toxicities to Vibrio fischeri and Fish Based on Discrimination of Excess Toxicity from Baseline Level

    Science.gov (United States)

    Wang, Xiao H.; Yu, Yang; Huang, Tao; Qin, Wei C.; Su, Li M.; Zhao, Yuan H.

    2016-01-01

    Investigations on the relationship of toxicities between species play an important role in the understanding of toxic mechanisms to environmental organisms. In this paper, the toxicity data of 949 chemicals to fish and 1470 chemicals to V. fischeri were used to investigate the modes of action (MOAs) between species. The results show that although there is a positive interspecies correlation, the relationship is poor. Analysis on the excess toxicity calculated from toxic ratios (TR) shows that many chemicals have close toxicities and share the same MOAs between the two species. Linear relationships between the toxicities and octanol/water partition coefficient (log KOW) for baseline and less inert compounds indicate that the internal critical concentrations (CBRs) approach a constant both to fish and V. fischeri for neutral hydrophobic compounds. These compounds share the same toxic mechanisms and bio-uptake processes between species. On the other hand, some hydrophilic compounds exhibit different toxic effects with greatly different log TR values between V. fischeri and fish species. These hydrophilic compounds were identified as reactive MOAs to V. fischeri, but not to fish. The interspecies correlation is improved by adding a hydrophobic descriptor into the correlation equation. This indicates that the differences in the toxic ratios between fish and V. fischeri for these hydrophilic compounds can be partly attributed to the differences of bioconcentration between the two species, rather than the differences of reactivity with the target macromolecules. These hydrophilic compounds may more easily pass through the cell membrane of V. fischeri than the gill and skin of fish, react with the target macromolecules and exhibit excess toxicity. The compounds with log KOW > 7 exhibiting very low toxicity (log TR toxicity and MOAs. PMID:26901437

  14. Radioisotopic methods - determination of action of toxic chemicals to food - digestion organs

    International Nuclear Information System (INIS)

    Saitmuratova, O.H.; Tursunov, E.A.

    2004-01-01

    Full text: It is known that poison chemicals used for agriculture enter in an organism of human and animal by various ways and affect key processes in cells and tissues. These processes are investigated insufficiently, nevertheless, investigating actions of chemicals on bodies and tissues it, is possible to define a degree of its toxicity. In the present work influence of defoliant drop and insecticide buldok on protein synthetic ability (PSA) of cells of digestive bodies (a liver, a stomach and duodenal gut) is investigated. Experiments carried out on white not purebred rats - males in weight 160-180 g, which entered drop in doze of 1/5 IC 50 5350 mg/kg, buldok 1/5 IC 50 400 mg/kg and 14 C-glutamine acid with the general activity 1 mk Curie (2.2*106 imp/min) in one hour up to slaughter. A control animal in parallel entered a physiological solution. In animals hammered in one hour and investigated inclusion 14 C- glutamine acids in structure of synthesized proteins of a liver, a stomach and duodenal gut. Action of preparations checked in 1, 24 and 72 hours after introduction. As have shown the received data drop suppresses PSA in cells of a liver on 14 % and 45 % in 24 and 72 hours accordingly; in a stomach - on 32 % and 34 %; in duodenal gut - on 39 % and 48 %. PSA it is more suppressed in a stomach. Further process is gradually restored in all bodies. Buldok in the same terms suppresses PSA in a liver on 4 % and 25 %; in a stomach of 4 % and 16 % and in duodenal gut on the contrary are raised with formation of protein on 27 %. The next day there is restoration PSA in all investigated bodies. From the received data it is visible, that defoliant drop as well as insecticide buldok influence on PSA cells, but action of drop is stronger, than buldok. It will be coordinated to earlier received data on change of morphological structures under influence of these pesticides. Though drop and buldok differ on dynamics of action on PSA digestive bodies, they are not strongly

  15. 40 CFR 125.66 - Toxics control program.

    Science.gov (United States)

    2010-07-01

    .... (1) An applicant that has known or suspected industrial sources of toxic pollutants shall have an... any applicant which has no known or suspected industrial sources of toxic pollutants or pesticides and.... (a) Chemical analysis. (1) The applicant shall submit at the time of application a chemical analysis...

  16. Combining polar organic chemical integrative samplers (POCIS) with toxicity testing to evaluate pesticide mixture effects on natural phototrophic biofilms

    International Nuclear Information System (INIS)

    Pesce, Stephane; Morin, Soizic; Lissalde, Sophie; Montuelle, Bernard; Mazzella, Nicolas

    2011-01-01

    Polar organic chemical integrative samplers (POCIS) are valuable tools in passive sampling methods for monitoring polar organic pesticides in freshwaters. Pesticides extracted from the environment using such methods can be used to toxicity tests. This study evaluated the acute effects of POCIS extracts on natural phototrophic biofilm communities. Our results demonstrate an effect of POCIS pesticide mixtures on chlorophyll a fluorescence, photosynthetic efficiency and community structure. Nevertheless, the range of biofilm responses differs according to origin of the biofilms tested, revealing spatial variations in the sensitivity of natural communities in the studied stream. Combining passive sampler extracts with community-level toxicity tests offers promising perspectives for ecological risk assessment. - Research highlights: → Polar organic chemical integrative samplers (POCIS) were used for monitoring polar organic pesticides in a contaminated river. → The acute effects of POCIS extracts were tested on natural phototrophic biofilm communities. → POCIS pesticide mixtures affected chlorophyll a fluorescence, photosynthetic efficiency and community structure. → Biofilm responses differed according to origin of the biofilms tested, revealing variations in the sensitivity of natural communities. → Combining passive sampler extracts with community-level toxicity tests offers promising perspectives for ecological risk assessment. - Pesticide mixtures extracted from POCIS can affect chl a fluorescence, photosynthetic efficiency and community structure of natural biofilms.

  17. Using combined bio-omics methods to evaluate the complicated toxic effects of mixed chemical wastewater and its treated effluent

    International Nuclear Information System (INIS)

    Zhang, Yan; Deng, Yongfeng; Zhao, Yanping; Ren, Hongqiang

    2014-01-01

    Highlights: • Mice exposed to mixed chemical wastewater and its treated effluent for 90 days. • Hepatic transcriptomic alterations were analyzed by digital gene expression. • Serum metabolomic alterations were analyzed by proton nuclear magnetic resonance. • The water samples induced disruption of lipid metabolism and hepatotoxicity. • Omics approaches are valuable to evaluate the complicated toxicity of wastewater. - Abstract: Mixed chemical wastewaters (MCWW) from industrial park contain complex mixtures of trace contaminants, which cannot be effectively removed by wastewater treatment plants (WWTP) and have become an unignored threat to ambient environment. However, limited information is available to evaluate the complicated toxic effects of MCWW and its effluent from wastewater treatment plant (WTPE) from the perspective of bio-omics. In this study, mice were exposed to the MCWW and WTPE for 90 days and distinct differences in the hepatic transcriptome and serum metabolome were analyzed by digital gene expression (DGE) and proton nuclear magnetic resonance ( 1 H-NMR) spectra, respectively. Our results indicated that disruption of lipid metabolism in liver and hepatotoxicity were induced by both MCWW and WTPE exposure. WTPE is still a health risk to the environment, which is in need of more attention. Furthermore, we demonstrated the potential ability of bio-omics approaches for evaluating toxic effects of MCWW and WTPE

  18. Using combined bio-omics methods to evaluate the complicated toxic effects of mixed chemical wastewater and its treated effluent

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan; Deng, Yongfeng; Zhao, Yanping; Ren, Hongqiang, E-mail: hqren@nju.edu.cn

    2014-05-01

    Highlights: • Mice exposed to mixed chemical wastewater and its treated effluent for 90 days. • Hepatic transcriptomic alterations were analyzed by digital gene expression. • Serum metabolomic alterations were analyzed by proton nuclear magnetic resonance. • The water samples induced disruption of lipid metabolism and hepatotoxicity. • Omics approaches are valuable to evaluate the complicated toxicity of wastewater. - Abstract: Mixed chemical wastewaters (MCWW) from industrial park contain complex mixtures of trace contaminants, which cannot be effectively removed by wastewater treatment plants (WWTP) and have become an unignored threat to ambient environment. However, limited information is available to evaluate the complicated toxic effects of MCWW and its effluent from wastewater treatment plant (WTPE) from the perspective of bio-omics. In this study, mice were exposed to the MCWW and WTPE for 90 days and distinct differences in the hepatic transcriptome and serum metabolome were analyzed by digital gene expression (DGE) and proton nuclear magnetic resonance ({sup 1}H-NMR) spectra, respectively. Our results indicated that disruption of lipid metabolism in liver and hepatotoxicity were induced by both MCWW and WTPE exposure. WTPE is still a health risk to the environment, which is in need of more attention. Furthermore, we demonstrated the potential ability of bio-omics approaches for evaluating toxic effects of MCWW and WTPE.

  19. Comparative analysis of pharmaceuticals versus industrial chemicals acute aquatic toxicity classification according to the United Nations classification system for chemicals. Assessment of the (Q)SAR predictability of pharmaceuticals acute aquatic toxicity and their predominant acute toxic mode-of-action.

    Science.gov (United States)

    Sanderson, Hans; Thomsen, Marianne

    2009-06-01

    Pharmaceuticals have been reported to be ubiquitously present in surface waters prompting concerns of effects of these bioactive substances. Meanwhile, there is a general scarcity of publicly available ecotoxicological data concerning pharmaceuticals. The aim of this paper was to compile a comprehensive database based on OECD's standardized measured ecotoxicological data and to evaluate if there is generally cause of greater concern with regards to pharmaceutical aquatic toxicological profiles relative to industrial chemicals. Comparisons were based upon aquatic ecotoxicity classification under the United Nations Global Harmonized System for classification and labeling of chemicals (GHS). Moreover, we statistically explored whether the predominant mode-of-action (MOA) for pharmaceuticals is narcosis. We found 275 pharmaceuticals with 569 acute aquatic effect data; 23 pharmaceuticals had chronic data. Pharmaceuticals were found to be more frequent than industrial chemicals in GHS category III. Acute toxicity was predictable (>92%) using a generic (Q)SAR ((Quantitative) Structure Activity Relationship) suggesting a narcotic MOA. Analysis of model prediction error suggests that 68% of the pharmaceuticals have a non-specific MOA. Additionally, the acute-to-chronic ratio (ACR) for 70% of the analyzed pharmaceuticals was below 25 further suggesting a non-specific MOA. Sub-lethal receptor-mediated effects may however have a more specific MOA.

  20. The Toxicity of Depleted Uranium

    OpenAIRE

    Briner, Wayne

    2010-01-01

    Depleted uranium (DU) is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a c...

  1. Evidence of Coal-Fly-Ash Toxic Chemical Geoengineering in the Troposphere: Consequences for Public Health

    Directory of Open Access Journals (Sweden)

    J. Marvin Herndon

    2015-08-01

    Full Text Available The widespread, intentional and increasingly frequent chemical emplacement in the troposphere has gone unidentified and unremarked in the scientific literature for years. The author presents evidence that toxic coal combustion fly ash is the most likely aerosolized particulate sprayed by tanker-jets for geoengineering, weather-modification and climate-modification purposes and describes some of the multifold consequences on public health. Two methods are employed: (1 Comparison of 8 elements analyzed in rainwater, leached from aerosolized particulates, with corresponding elements leached into water from coal fly ash in published laboratory experiments, and (2 Comparison of 14 elements analyzed in dust collected outdoors on a high-efficiency particulate air (HEPA filter with corresponding elements analyzed in un-leached coal fly ash material. The results show: (1 the assemblage of elements in rainwater and in the corresponding experimental leachate are essentially identical. At a 99% confidence interval, they have identical means (T-test and identical variances (F-test; and (2 the assemblage of elements in the HEPA dust and in the corresponding average un-leached coal fly ash are likewise essentially identical. The consequences on public health are profound, including exposure to a variety of toxic heavy metals, radioactive elements, and neurologically-implicated chemically mobile aluminum released by body moisture in situ after inhalation or through transdermal induction.

  2. Hydatid cyst of the liver which demaged the confluence of the hepatic ducts causing deep obstructive jaundice

    Directory of Open Access Journals (Sweden)

    Čolović Radoje B.

    2003-01-01

    Full Text Available Complications of the hydatid cyst of the liver on bile ducts appear in 5-25% representing almost two third of all complications of the hydatid liver cysts. Fortunately a damage to the bile ducts causes only an infection of the cyst usually without major consequences. More serious complications such as cholangitis and deep obstructive jaundice are much rarer. The defect of the bile duct usually is a periferal one. Damage to the major ducts are rarer and those on the confluence of hepatic ducts itself are the rarity. In that case biliary reconstruction may be a serious chalenge. The authors present a 23 year-old man in whom a centrally localised hydatid cyst made a major damage of the confluence of all three hepatic ducts causing deep obstructive jaundice. After standard procedure for hydatid cyst an intracavital mucosa to mucosa hepaticoje-junostomy was carried out with excellent success. More then six years after surgery the patient stayed symptom-free with bilirubin and alkaline phosphatase within normal limits.

  3. Descriptions of the Animas River-Cement Creek confluence and mixing zone near Silverton, Colorado, during the late summers of 1996 and 1997

    Science.gov (United States)

    Schemel, Laurence E.; Cox, Marisa H.

    2005-01-01

    Acidic waters from Cement Creek discharge into the circum-neutral Animas River in a high-elevation region of the San Juan Mountains near Silverton, Colorado. Cement Creek is acidic and enriched in metals and sulfate because it is fed by discharges from abandoned mines and natural mineral deposits. Mixing with the Animas River raises the pH and produces precipitates of iron and aluminum (oxy)hydroxides, which in turn can adsorb other metals. This confluence was studied in 1996 and 1997 to better understand mixing and sorption processes which are common during the neutralization of acidic streams. The photographs in this report show flow braiding and other features that influenced the way the two streams mixed during the late summers of the two years. They also show 'banding' due to incomplete mixing and 'opalescence' due to chemical reactions and the formation of colloidal-size particles in the mixing zone.

  4. Joint toxic effects on Caenorhabditis elegans

    NARCIS (Netherlands)

    Jonker, M.J.

    2003-01-01

    In polluted areas organisms are generally exposed to mixtures of toxic chemicals rather than a single toxicant only. Since the number of mixture toxicity studies with regard to soil systems is limited, the research in this thesis was focused on investigating ecotoxicological consequences of

  5. Acute oral toxicity test of chemical compounds in silkworms.

    Science.gov (United States)

    Usui, Kimihito; Nishida, Satoshi; Sugita, Takuya; Ueki, Takuro; Matsumoto, Yasuhiko; Okumura, Hidenobu; Sekimizu, Kazuhisa

    2016-02-01

    This study performed an acute oral toxicity test of 59 compounds in silkworms. These compounds are listed in OECD guidelines as standard substances for a cytotoxicity test, and median lethal dose (LD(50)) werecalculated for each compound. Acute oral LD(50) values in mammals are listed in OECD guidelines and acute oral LD(50) values in silkworms were determined in this study. R(2) for the correlation between LD(50) values in mammals and LD(50) values in silkworms was 0.66. In addition, the acute oral toxicity test in silkworms was performed by two different facilities, and test results from the facilities were highly reproducible. These findings suggest that an acute oral toxicity test in silkworms is a useful way to evaluate the toxicity of compounds in mammals.

  6. Preparation of five 3-MCPD fatty acid esters, and the effects of their chemical structures on acute oral toxicity in Swiss mice.

    Science.gov (United States)

    Liu, Man; Liu, Jie; Wu, Yizhen; Gao, Boyan; Wu, Pingping; Shi, Haiming; Sun, Xiangjun; Huang, Haiqiu; Wang, Thomas Ty; Yu, Liangli Lucy

    2017-02-01

    3-monochloro-1, 2-propanediol fatty acid esters (3-MCPDEs) comprise a group of food toxicants formed during food processing. 3-MCPDEs have received increasing attention concerning their potential negative effects on human health. However, reports on the toxicity of 3-MCPD esters are still limited. To determine the effects of fatty acid substitutions on the toxicity of their esters, 1-stearic, 1-oleic, 1-linoleic, 1-linoleic-2-palmitic and 1-palmitic-2-linoleic acid esters of 3-MCPD were synthesized and evaluated with respect to their acute oral toxicities in Swiss mice. 3-MCPDEs were obtained through the reaction of 3-MCPD and fatty acid chlorides, and their purities and structures were characterized by ultraperformance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS), infrared, 1 H and 13 C spectroscopic analyses. Medial lethal doses of 1-stearic, 1-oleic, 1-linoleic, 1-linoleic-2-palmitic and 1-palmitic-2-linoleic acid esters were 2973.8, 2081.4, 2016.3, 5000 and > 5000 mg kg -1 body weight. For the first time, 3-MCPDEs were observed for their toxic effects in the thymus and lung. In addition, major histopathological changes, as well as blood urea nitrogen and creatinine, were examined for mice fed the five 3-MCPDEs. The results from the present study suggest that the degree of unsaturation, chain length, number of substitution and relative substitution locations of fatty acids might alter the toxicity of 3-MCPDEs. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Why the toxic substances control act needs an overhaul, and how to strengthen oversight of chemicals in the interim.

    Science.gov (United States)

    Vogel, Sarah A; Roberts, Jody A

    2011-05-01

    The Toxic Substances Control Act gives the Environmental Protection Agency (EPA) the authority to regulate industrial chemicals not covered by other statutes. Today there are more than 83,000 such chemicals. However, the law is widely perceived as weak and outdated, and various stakeholders have called for its reform, citing the EPA's inability to regulate the use of asbestos, among other substances. We analyze the flaws in the act and suggest ways in which the EPA might better position itself to manage chemical risks and protect the public's health. In addition to the new tools and technologies it is adopting, the agency needs new allies-both inside and outside the government-in its efforts to identify and control hazardous chemicals.

  8. Translation and the Metaphor of Relation: Confluences of Answerability

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Gewaily

    2014-01-01

    Full Text Available This article aims to explore the blurred lines of thoughts on the spirit of translation as a synthetic sign of interaction between the abundant science of cognition and the philosophy of the unfinalized dialogism of the Russian cultural theorist and social philosopher Mikhail Bakhtin (1895-1975. First, it shows the ineluctable view of cultural differences as a house to translation. Second, because humans are different, the article proceeds to reflect the interplay of some views on culture, language and thought, seeking to envisage the confluent relation of the dialogic trans-formation of the act/tact in translation at play. Third, the metaphor of relation is illustrated through the one postcolonial example in the particular setting of the Israel-Palestine political conflict in language. Together with such lines of confluence came a belief about the holistic architectonics of translation in the development of an attitude towards the ‘dialogic turn’ of ‘answerability’ in translation in the future.

  9. Chemical and sewage sludge co-incineration in a full-scale MSW incinerator: toxic trace element mass balance.

    Science.gov (United States)

    Biganzoli, Laura; Grosso, Mario; Giugliano, Michele; Campolunghi, Manuel

    2012-10-01

    Co-incineration of sludges with MSW is a quite common practice in Europe. This paper illustrates a case of co-incineration of both sewage sludges and chemical sludges, the latter obtained from drinking water production, in a waste-to-energy (WTE) plant located in northern Italy and equipped with a grate furnace, and compares the toxic trace elements mass balance with and without the co-incineration of sludges. The results show that co-incineration of sewage and chemical sludges does not result in an increase of toxic trace elements the total release in environment, with the exception of arsenic, whose total release increases from 1 mg t(fuel) (-1) during standard operation to 3 mg t(fuel) (-1) when sludges are co-incinerated. The increase of arsenic release is, however, attributable to the sole bottom ashes, where its concentration is five times higher during sludge co-incineration. No variation is observed for arsenic release at the stack. This fact is a further guarantee that the co-incineration of sludges, when performed in a state-of-the-art WTE plant, does not have negative effects on the atmospheric environment.

  10. Human Toxicity

    DEFF Research Database (Denmark)

    Jolliet, Olivier; Fantke, Peter

    2015-01-01

    all chemicals and impact pathways characterizes the contribution of each factor to the total variation of 10–12 orders of magnitude in impacts per kg across all chemicals. This large variation between characterisation factors for different chemicals as well as the 3 orders of magnitude uncertainty....... As a whole, the assessment of toxicity in LCA has progressed on a very sharp learning curve during the past 20 years. This rapid progression is expected to continue in the coming years, focusing more on direct exposure of workers to chemicals during manufacturing and of consumers during product use...

  11. Harmonizing human exposure and toxicity characterization

    DEFF Research Database (Denmark)

    Fantke, Peter; Jolliet, O.; McKone, T.E.

    2017-01-01

    The UNEP-SETAC Life Cycle Initiative has launched a project to provide global guidance and build consensus on environmental life cycle impact assessment (LCIA) indicators. Human health effects from exposure to toxic chemicals was selected as impact category due to high relevance of human toxicity...... and harmonizing human toxicity characterization in LCIA. Building on initial work for the far-field and indoor air environments, and combining it with latest work on near-field consumer and occupational exposure assessment, dose-response and severity data, we aim at providing revised guidance on the development...... and use of impact factors for toxic chemicals. We propose to couple fate processes in consumer and occupational environments with existing environmental compartments and processes via a consistent and mass balance-based set of transfer fractions to quantify overall aggregated exposure to toxic substances...

  12. Uranium: biokinetics and toxicity

    International Nuclear Information System (INIS)

    Menetrier, F.; Renaud-Salis, V.; Flury-Herard, A.

    2000-01-01

    This report was achieved as a part of a collaboration with the Fuel Cycle Direction. Its aim was to give the state of the art about: the behaviour of uranium in the human organism (biokinetics) after ingestion, its toxicity (mainly renal) and the current regulation about its incorporation. Both in the upstream and in the downstream of the fuel cycle, uranium remains, quantitatively, the first element in the cycle which is, at the present time, temporarily disposed or recycled. Such a considerable quantity of uranium sets the problem of its risk on the health. In the long term, the biosphere may be affected and consequently the public may ingest water or food contaminated with uranium. In this way, radiological and chemical toxicity risk may be activated. This report emphasizes: the necessity of confirming some experimental and epidemiological biokinetic data used or not in the ICRP models. Unsolved questions remain about the gastrointestinal absorption according to chemical form (valency state, mixtures...), mass and individual variations (age, disease) further a chronic ingestion of uranium. It is well established that uranium is mainly deposited in the skeleton and the kidney. But the skeleton kinetics following a chronic ingestion and especially in some diseases has to be more elucidated; the necessity of taking into account uranium at first as a chemical toxic, essentially in the kidney and determining the threshold of functional lesion. In this way, it is important to look for some specific markers; the problem of not considering chemical toxicity of uranium in the texts regulating its incorporation

  13. Toxicity of binary chemical munition destruction products: methylphosphonic acid, methylphosphinic acid, 2-diisopropylaminoethanol, DF neutralent, and QL neutralent.

    Science.gov (United States)

    Watson, Rebecca E; Hafez, Ahmed M; Kremsky, Jonathan N; Bizzigotti, George O

    2007-01-01

    This paper reports the toxicity and environmental impact of neutralents produced from the hydrolysis of binary chemical agent precursor chemicals DF (methylphosphonic difluoride) and QL (2-[bis(1-methylethyl)amino]ethyl ethyl methylphosphonite). Following a literature review of the neutralent mixtures and constituents, basic toxicity tests were conducted to fill data gaps, including acute oral and dermal median lethal dose assays, the Ames mutagenicity test, and ecotoxicity tests. For methylphosphonic acid (MPA), a major constituent of DF neutralent, the acute oral LD(50) in the Sprague-Dawley rat was measured at 1888 mg/kg, and the Ames test using typical tester strains of Salmonella typhimurium and Escherichia coli was negative. The 48-h LC(50) values for pH-adjusted DF neutralent with Daphnia magna and Cyprinodon variegatus were > 2500 mg/L and 1593 mg/L, respectively. The acute oral LD(50) values in the rat for QL neutralent constituents methylphosphinic acid (MP) and 2-diisopropylaminoethanol (KB) were both determined to be 940 mg/kg, and the Ames test was negative for both. Good Laboratory Practice (GLP)-compliant ecotoxicity tests for MP and KB gave 48-h D. magna EC(50) values of 6.8 mg/L and 83 mg/L, respectively. GLP-compliant 96-h C. variegatus assays on MP and KB gave LC(50) values of 73 and 252 mg/L, respectively, and NOEC values of 22 and 108 mg/L. QL neutralent LD(50) values for acute oral and dermal toxicity tests were both > 5000 mg/kg, and the 48-h LD(50) values for D. magna and C. variegatus were 249 and 2500 mg/L, respectively. Using these data, the overall toxicity of the neutralents was assessed.

  14. Anaerobic baffled reactor coupled with chemical precipitation for treatment and toxicity reduction of industrial wastewater.

    Science.gov (United States)

    Laohaprapanona, Sawanya; Marquesa, Marcia; Hogland, William

    2014-01-01

    This study describes the reduction of soluble chemical oxygen demand (CODs) and the removal of dissolved organic carbon (DOC), formaldehyde (FA) and nitrogen from highly polluted wastewater generated during cleaning procedures in wood floor manufacturing using a laboratory-scale biological anaerobic baffled reactor followed by chemical precipitation using MgCI2 .6H20 + Na2HPO4. By increasing the hydraulic retention time from 2.5 to 3.7 and 5 days, the reduction rates of FA, DOC and CODs of nearly 100%, 90% and 83%, respectively, were achieved. When the Mg:N:P molar ratio in the chemical treatment was changed from 1:1:1 to 1.3:1:1.3 at pH 8, the NH4+ removal rate increased from 80% to 98%. Biologically and chemically treated wastewater had no toxic effects on Vibrio fischeri and Artemia salina whereas chemically treated wastewater inhibited germination of Lactuca sativa owing to a high salt content. Regardless of the high conductivity of the treated wastewater, combined biological and chemical treatment was found to be effective for the removal of the organic load and nitrogen, and to be simple to operate and to maintain. A combined process such as that investigated could be useful for on-site treatment of low volumes of highly polluted wastewater generated by the wood floor and wood furniture industries, for which there is no suitable on-site treatment option available today.

  15. Confluence and redistribution of Atlantic water in the Nansen, Amundsen and Makarov basins

    Directory of Open Access Journals (Sweden)

    U. Schauer

    Full Text Available The waters in the Eurasian Basin are conditioned by the confluence of the boundary flow of warm, saline Fram Strait water and cold low salinity water from the Barents Sea entering through the St. Anna Trough. Hydrographic sections obtained from RV Polarstern during the summer of 1996 (ACSYS 96 across the St. Anna Trough and the Voronin Trough in the northern Kara Sea and across the Nansen, Amundsen and Makarov basins allow for the determination of the water mass properties of the two components and the construction of a qualitative picture of the circulation both within the Eurasian Basin and towards the Canadian Basin. At the confluence north of the Kara Sea, the Fram Strait branch is displaced from the upper to the lower slope and it forms a sharp front to the Barents Sea water at depths between 100 m and greater than 1000 m. This front disintegrates downstream along the basin margin and the two components are largely mixed before the boundary current reaches the Lomonosov Ridge. Away from the continental slope, the presence of interleaving structures coherent over wide distances is consistent with low lateral shear. The return flow along the Nansen Gakkel Ridge, if present at all, seems to be slow and the cold water below a deep mixed layer there indicates that the Fram Strait Atlantic water was not covered with a halocline for about a decade. Anomalous water mass properties in the interior of the Eurasian Basin can be attributed to isolated lenses rather than to baroclinic flow cores. Eddies have probably detached from the front at the confluence and migrated into the interior of the basin. One deep (2500 m lens of Canadian Basin water, with an anticyclonic eddy signature, must have spilled through a gap of the Lomonosov Ridge. During ACSYS 96, no clear fronts between Eurasian and Canadian intermediate waters, such as those observed further north in 1991 and 1994, were found at the Siberian side of the Lomonosov Ridge. This indicates that

  16. Confluence and redistribution of Atlantic water in the Nansen, Amundsen and Makarov basins

    Directory of Open Access Journals (Sweden)

    U. Schauer

    2002-02-01

    Full Text Available The waters in the Eurasian Basin are conditioned by the confluence of the boundary flow of warm, saline Fram Strait water and cold low salinity water from the Barents Sea entering through the St. Anna Trough. Hydrographic sections obtained from RV Polarstern during the summer of 1996 (ACSYS 96 across the St. Anna Trough and the Voronin Trough in the northern Kara Sea and across the Nansen, Amundsen and Makarov basins allow for the determination of the water mass properties of the two components and the construction of a qualitative picture of the circulation both within the Eurasian Basin and towards the Canadian Basin. At the confluence north of the Kara Sea, the Fram Strait branch is displaced from the upper to the lower slope and it forms a sharp front to the Barents Sea water at depths between 100 m and greater than 1000 m. This front disintegrates downstream along the basin margin and the two components are largely mixed before the boundary current reaches the Lomonosov Ridge. Away from the continental slope, the presence of interleaving structures coherent over wide distances is consistent with low lateral shear. The return flow along the Nansen Gakkel Ridge, if present at all, seems to be slow and the cold water below a deep mixed layer there indicates that the Fram Strait Atlantic water was not covered with a halocline for about a decade. Anomalous water mass properties in the interior of the Eurasian Basin can be attributed to isolated lenses rather than to baroclinic flow cores. Eddies have probably detached from the front at the confluence and migrated into the interior of the basin. One deep (2500 m lens of Canadian Basin water, with an anticyclonic eddy signature, must have spilled through a gap of the Lomonosov Ridge. During ACSYS 96, no clear fronts between Eurasian and Canadian intermediate waters, such as those observed further north in 1991 and 1994, were found at the Siberian side of the Lomonosov Ridge. This indicates that

  17. Exposure to different toxic chemicals: a threat to environment and human health in mining sites in Tanzania

    International Nuclear Information System (INIS)

    Magduala, J.J.

    2009-01-01

    The mining activities in Tanzania have been existed since time immemorial whereby traditional mining was practiced. However until now the country is still endowed with abundant mineral resources including gold, tanzanite diamonds, iron ore, salt, gypsum, gemstones, natural gas, phosphate, coal, cobalt and nickel. The country's major gold fields are located in Geita, Musoma, Tarime, Chunya and Mpanda. During the last decade, local and foreign investors intensified their mining activities in Tanzania. This resulted in increased use of hazardous chemicals like mercury and cyanide which are harmful and toxic. In this report, the extent and impact to long term exposure of such chemicals to both natural environment and animals including human beings will be discussed. Recommendations to local and international investors and policy markers regarding the safe and sustainable use of harmful chemicals will also be discussed.(author)

  18. The Effect of Discharge Ratio and Confluence Angle on Local Scouring at 60 Degree Erodible Open Channel with SSIIM1 Model

    Directory of Open Access Journals (Sweden)

    R. Ghobadian

    2016-10-01

    Full Text Available Introduction: Flow and sediment transport has an important role in entrance deformation of open channel junctions. As water moved through a drainage network, it forced to converge at confluence. Due to increasing of water discharge and collision of converging flows, a complex three-dimensional and most highly turbulent location were occurred in the vicinity of the junction. Therefore a deep scour hole and point bar has developed in this area that caused the change in rivers morphology. Despite the large amount of research carried out on flow patterns in river confluences, only a few researches have focused on sediment transport. Materials and methods: In this research three dimensional model (SSIIM1 was used to study of flow pattern and sediment and erosion pattern at 60 degree Junction .the Navier-Stockes equation of turbulent flow in a general three-dimensional geometry are solved to obtain the water velocity: , (1 Where U is average velocity, ρ is density of water, is pressure, the Kronecker delta, which is 1 if i is equal to j and 0 otherwise and general space dimension. The last term is Reynolds stress, often modeled with the following equation: (2 Where and k are eddy viscosity and turbulent kinetic energy respectively. Van Rijn's relations were used to calculate sediment suspended and bed load transport. Dirichlet and zero gradients boundary conditions were used at inflow and outflow boundary respectively. fixed-lid approach was used to computed free surface by using zero gradient for all variables. The wall law for rough boundaries was also used as a boundary condition for bed and wall. In equilibrium situation, The sediment concentration for the cell closet to the bed was specified as the bed boundary condition. Specified value was used for sediment concentration of other boundary conditions at upstream boundary and zero gradients for the water surface, outlet, and the sides. the only simulation of local scouring and sedimentation at

  19. A comprehensive study of the toxicity of natural multi-contaminated sediments: New insights brought by the use of a combined approach using the medaka embryo-larval assay and physico-chemical analyses.

    Science.gov (United States)

    Barjhoux, Iris; Clérandeau, Christelle; Menach, Karyn Le; Anschutz, Pierre; Gonzalez, Patrice; Budzinski, Hélène; Morin, Bénédicte; Baudrimont, Magalie; Cachot, Jérôme

    2017-08-01

    Sediment compartment is a long term sink for pollutants and a secondary source of contamination for aquatic species. The abiotic factors controlling the bioavailability and thus the toxicity of complex mixtures of pollutants accumulated in sediments are poorly documented. To highlight the different factors influencing sediment toxicity, we identified and analyzed the physico-chemical properties, micro-pollutant contents, and toxicity level of six contrasted sediments in the Lot-Garonne continuum. Sediment toxicity was evaluated using the recently described Japanese medaka (Oryzias latipes) embryo-larval assay with direct exposure to whole sediment (MELAc). Multiple toxicity endpoints including embryotoxicity, developmental defects and DNA damage were analyzed in exposed embryos. Chemical analyses revealed significant variations in the nature and contamination profile of sediments, mainly impacted by metallic trace elements and, unexpectedly, polycyclic aromatic hydrocarbons. Exposure to sediments induced different toxic impacts on medaka early life stages when compared with the reference site. Principal component analysis showed that the toxic responses following exposure to sediments from the Lot River and its tributary were associated with micro-pollutant contamination: biometric measurements, hatching success, genotoxicity, craniofacial deformities and yolk sac malabsorption were specifically correlated to metallic and organic contaminants. Conversely, the main biological responses following exposure to the Garonne River sediments were more likely related to their physico-chemical properties than to their contamination level. Time to hatch, cardiovascular injuries and spinal deformities were correlated to organic matter content, fine particles and dissolved oxygen levels. These results emphasize the necessity of combining physico-chemical analysis of sediment with toxicity assessment to accurately evaluate the environmental risks associated with sediment

  20. Understanding mechanisms of toxicity: Insights from drug discovery research

    International Nuclear Information System (INIS)

    Houck, Keith A.; Kavlock, Robert J.

    2008-01-01

    Toxicology continues to rely heavily on use of animal testing for prediction of potential for toxicity in humans. Where mechanisms of toxicity have been elucidated, for example endocrine disruption by xenoestrogens binding to the estrogen receptor, in vitro assays have been developed as surrogate assays for toxicity prediction. This mechanistic information can be combined with other data such as exposure levels to inform a risk assessment for the chemical. However, there remains a paucity of such mechanistic assays due at least in part to lack of methods to determine specific mechanisms of toxicity for many toxicants. A means to address this deficiency lies in utilization of a vast repertoire of tools developed by the drug discovery industry for interrogating the bioactivity of chemicals. This review describes the application of high-throughput screening assays as experimental tools for profiling chemicals for potential for toxicity and understanding underlying mechanisms. The accessibility of broad panels of assays covering an array of protein families permits evaluation of chemicals for their ability to directly modulate many potential targets of toxicity. In addition, advances in cell-based screening have yielded tools capable of reporting the effects of chemicals on numerous critical cell signaling pathways and cell health parameters. Novel, more complex cellular systems are being used to model mammalian tissues and the consequences of compound treatment. Finally, high-throughput technology is being applied to model organism screens to understand mechanisms of toxicity. However, a number of formidable challenges to these methods remain to be overcome before they are widely applicable. Integration of successful approaches will contribute towards building a systems approach to toxicology that will provide mechanistic understanding of the effects of chemicals on biological systems and aid in rationale risk assessments

  1. Evaluation of a novel automated water analyzer for continuous monitoring of toxicity and chemical parameters in municipal water supply.

    Science.gov (United States)

    Bodini, Sergio F; Malizia, Marzio; Tortelli, Annalisa; Sanfilippo, Luca; Zhou, Xingpeng; Arosio, Roberta; Bernasconi, Marzia; Di Lucia, Stefano; Manenti, Angela; Moscetta, Pompeo

    2018-08-15

    A novel tool, the DAMTA analyzer (Device for Analytical Monitoring and Toxicity Assessment), designed for fully automated toxicity measurements based on luminescent bacteria as well as for concomitant determination of chemical parameters, was developed and field-tested. The instrument is a robotic water analyzer equipped with a luminometer and a spectrophotometer, integrated on a thermostated reaction plate which contains a movable carousel with 80 cuvettes. Acute toxicity is measured on-line using a wild type Photobacterium phosphoreum strain with measurable bioluminescence and unaltered sensitivity to toxicants lasting up to ten days. The EC50 values of reference compounds tested were consistent with A. fischeri and P. phosphoreum international standards and comparable to previously published data. Concurrently, a laboratory trial demonstrated the feasibility of use of the analyzer for the determination of nutrients and metals in parallel to the toxicity measurements. In a prolonged test, the system was installed only in toxicity mode at the premises of the World Fair "Expo Milano-2015″, a high security site to ensure the quality of the supplied drinking water. The monitoring program lasted for six months during which ca. 2400 toxicity tests were carried out; the results indicated a mean non-toxic outcome of -5.5 ± 6.2%. In order to warrant the system's robustness in detecting toxic substances, Zn was measured daily with highly reproducible inhibition results, 70.8 ± 13.6%. These results assure that this novel toxicity monitor can be used as an early warning system for protection of drinking water sources from emergencies involving low probability/high impact contamination events in source water or treated water. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Toxic and biochemical effects of divalent metal ions in Drosophila: correlation to effects in mice and to chemical softness parameters

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, K B; Turner, J E; Christie, N T; Owenby, R K

    1983-01-01

    The mechanism of toxicity of 11 divalent cations was evaluated by determining the effects of dietary administration to Drosophila melanogaster and measurement of the frequency of lethality at 4 days, alterations in the developmental patterns of proteins, and changes in specific transfer RNAs. The relative effectiveness of divalent cations to kill Drosophila is significantly correlated to the relative values of the coordinate bond energy of the metal ions. The resistance of Drosophila to cadmium toxicity appears to be genetically determined since different inbred strains vary markedly. Also, the resistance is maximal in the young adult. Two different genetic strains seem to respond to different cations (Cd/sup 2 +/, Hg/sup 2 +/, Cu/sup 2 +/, Co/sup 2 +/, Ba/sup 2 +/, and Sr/sup 2 +/) in a similar manner. Basic mechanisms of toxicity may be studied in Drosophila as well as mice since the chemical properties of the metals reflect their toxic effects on the former as closely as the latter. 25 references, 5 figures, 1 table.

  3. Antinociceptive effects, acute toxicity and chemical composition of Vitex agnus-castus essential oil.

    Science.gov (United States)

    Khalilzadeh, Emad; Vafaei Saiah, Gholamreza; Hasannejad, Hamideh; Ghaderi, Adel; Ghaderi, Shahla; Hamidian, Gholamreza; Mahmoudi, Razzagh; Eshgi, Davoud; Zangisheh, Mahsa

    2015-01-01

    Vitex agnus-castus (VAC) and its essential oil have been traditionally used to treat many conditions and symptoms such as premenstrual problems, mastalgia, inflammation, sexual dysfunction, and pain. In this study, the effects of essential oil extracted from Vitex agnus-castus (EOVAC) leaves were investigated in three behavioral models of nociception in adult male Wistar rats. Chemical composition of EOVAC was analyzed using gas chromatography - mass spectrometry (GC-MS) and also its possible toxicity was determined in mice. Analgesic effect of EOVAC was determined using tail immersion test, formalin test, and acetic acid-induced visceral pain in rats. EOVAC (s.c.) and morphine (i.p.) significantly (pVitex agnus-castus essential oil in these models of pain in rats.

  4. Antinociceptive effects, acute toxicity and chemical composition of Vitex agnus-castus essential oil

    Directory of Open Access Journals (Sweden)

    Emad Khalilzadeh

    2015-04-01

    Full Text Available Objective: Vitex agnus-castus (VAC and its essential oil have been traditionally used to treat many conditions and symptoms such as premenstrual problems, mastalgia, inflammation, sexual dysfunction, and pain. In this study, the effects of essential oil extracted from Vitex agnus-castus (EOVAC leaves were investigated in three behavioral models of nociception in adult male Wistar rats. Materials and methods: Chemical composition of EOVAC was analyzed using gas chromatography – mass spectrometry (GC-MS and also its possible toxicity was determined in mice. Analgesic effect of EOVAC was determined using tail immersion test, formalin test, and acetic acid-induced visceral pain in rats. Results: EOVAC (s.c. and morphine (i.p. significantly (p

  5. Chemical warfare agents. Classes and targets.

    Science.gov (United States)

    Schwenk, Michael

    2018-09-01

    Synthetic toxic chemicals (toxicants) and biological poisons (toxins) have been developed as chemical warfare agents in the last century. At the time of their initial consideration as chemical weapon, only restricted knowledge existed about their mechanisms of action. There exist two different types of acute toxic action: nonspecific cytotoxic mechanisms with multiple chemo-biological interactions versus specific mechanisms that tend to have just a single or a few target biomolecules. TRPV1- and TRPA-receptors are often involved as chemosensors that induce neurogenic inflammation. The present work briefly surveys classes and toxicologically relevant features of chemical warfare agents and describes mechanisms of toxic action. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Reproductive Toxic Chemicals at Work and Efforts to Protect Workers' Health: A Literature Review

    Directory of Open Access Journals (Sweden)

    Kyung-Taek Rim

    2017-06-01

    Full Text Available A huge number of chemicals are produced and used in the world, and some of them can have negative effects on the reproductive health of workers. To date, most chemicals and work environments have not been studied for their potential to have damaging effects on the workers' reproductive system. Because of the lack of information, many workers may not be aware that such problems can be related to occupational exposures. Newly industrialized countries such as Republic of Korea have rapidly amassed chemicals and other toxicants that pose health hazards, especially to the reproductive systems of workers. This literature review provides an overview of peer-reviewed literature regarding the teratogenic impact and need for safe handling of chemicals. Literature searches were performed using PubMed, Google Scholar, and ScienceDirect. Search strategies were narrowed based on author expertise and 100 articles were chosen for detailed analysis. A total of 47 articles met prespecified inclusion criteria. The majority of papers contained studies that were descriptive in nature with respect to the Medical Subject Headings (MeSH terms and keywords: “reproductive and heath or hazard and/or workplace or workers or occupations.” In the absence of complete information about the safe occupational handling of chemicals in Republic of Korea (other than a material safety data sheet, this review serves as a valuable reference for identifying and remedying potential gaps in relevant regulations. The review also proposes other public health actions including hazard surveillance and primary prevention activities such as reduction, substitution, ventilation, as well as protective equipment.

  7. Reproductive Toxic Chemicals at Work and Efforts to Protect Workers' Health: A Literature Review.

    Science.gov (United States)

    Rim, Kyung-Taek

    2017-06-01

    A huge number of chemicals are produced and used in the world, and some of them can have negative effects on the reproductive health of workers. To date, most chemicals and work environments have not been studied for their potential to have damaging effects on the workers' reproductive system. Because of the lack of information, many workers may not be aware that such problems can be related to occupational exposures. Newly industrialized countries such as Republic of Korea have rapidly amassed chemicals and other toxicants that pose health hazards, especially to the reproductive systems of workers. This literature review provides an overview of peer-reviewed literature regarding the teratogenic impact and need for safe handling of chemicals. Literature searches were performed using PubMed, Google Scholar, and ScienceDirect. Search strategies were narrowed based on author expertise and 100 articles were chosen for detailed analysis. A total of 47 articles met prespecified inclusion criteria. The majority of papers contained studies that were descriptive in nature with respect to the Medical Subject Headings (MeSH) terms and keywords: "reproductive and heath or hazard and/or workplace or workers or occupations." In the absence of complete information about the safe occupational handling of chemicals in Republic of Korea (other than a material safety data sheet), this review serves as a valuable reference for identifying and remedying potential gaps in relevant regulations. The review also proposes other public health actions including hazard surveillance and primary prevention activities such as reduction, substitution, ventilation, as well as protective equipment.

  8. Functional toxicology: tools to advance the future of toxicity testing

    Science.gov (United States)

    Gaytán, Brandon D.; Vulpe, Chris D.

    2014-01-01

    The increased presence of chemical contaminants in the environment is an undeniable concern to human health and ecosystems. Historically, by relying heavily upon costly and laborious animal-based toxicity assays, the field of toxicology has often neglected examinations of the cellular and molecular mechanisms of toxicity for the majority of compounds—information that, if available, would strengthen risk assessment analyses. Functional toxicology, where cells or organisms with gene deletions or depleted proteins are used to assess genetic requirements for chemical tolerance, can advance the field of toxicity testing by contributing data regarding chemical mechanisms of toxicity. Functional toxicology can be accomplished using available genetic tools in yeasts, other fungi and bacteria, and eukaryotes of increased complexity, including zebrafish, fruit flies, rodents, and human cell lines. Underscored is the value of using less complex systems such as yeasts to direct further studies in more complex systems such as human cell lines. Functional techniques can yield (1) novel insights into chemical toxicity; (2) pathways and mechanisms deserving of further study; and (3) candidate human toxicant susceptibility or resistance genes. PMID:24847352

  9. Confluence for classical logic through the distinction between values and computations

    Directory of Open Access Journals (Sweden)

    José Espírito Santo

    2014-09-01

    Full Text Available We apply an idea originated in the theory of programming languages - monadic meta-language with a distinction between values and computations - in the design of a calculus of cut-elimination for classical logic. The cut-elimination calculus we obtain comprehends the call-by-name and call-by-value fragments of Curien-Herbelin's lambda-bar-mu-mu-tilde-calculus without losing confluence, and is based on a distinction of "modes" in the proof expressions and "mode" annotations in types. Modes resemble colors and polarities, but are quite different: we give meaning to them in terms of a monadic meta-language where the distinction between values and computations is fully explored. This meta-language is a refinement of the classical monadic language previously introduced by the authors, and is also developed in the paper.

  10. Effects of synthetic and natural toxicants on livestock.

    Science.gov (United States)

    Shull, L R; Cheeke, P R

    1983-07-01

    Synthetic and natural toxicants are constituents of soil, air, water and foodstuffs. Their impact on animal agriculture has resulted from acute and chronic intoxication and residues transferred into meat, dairy and poultry products. Recent advances in analytical chemistry and the sciences associated with toxicology have allowed better assessment of the hazard of toxicants on animals including man. Historically, natural toxicants (phytotoxins, mycotoxins and minerals) that are associated with many common feedstuffs accounted for toxicity episodes of epidemic proportions. Most synthetic chemicals (pesticides, nonpesticidal organic chemicals and drugs) have been introduced in increasing numbers since the 1940's. In the 1960's and '70's, recognition of the need to control their environmental distribution stimulated the introduction of numerous laws and regulations. In the last decade, several problematic synthetic chemicals have been banned, particularly those found to persist in the environment or those confirmed or suspected as carcinogens in humans. At the farm level, the development of various preventative management strategies has decreased the exposure of livestock to natural toxicants. In the future, the impact of natural toxicants on animal agriculture is expected to lessen as their existence, etiology and toxicology are determined. On the other hand, synthetic chemicals will continue to threaten animal health as greater numbers and quantities are released into the environment. These challenges should stimulate a greater involvement of animal scientists in toxicology.

  11. Changes in soil toxicity by phosphate-aided soil washing: effect of soil characteristics, chemical forms of arsenic, and cations in washing solutions.

    Science.gov (United States)

    Jho, Eun Hea; Im, Jinwoo; Yang, Kyung; Kim, Young-Jin; Nam, Kyoungphile

    2015-01-01

    This study was set to investigate the changes in the toxicity of arsenic (As)-contaminated soils after washing with phosphate solutions. The soil samples collected from two locations (A: rice paddy and B: forest land) of a former smelter site were contaminated with a similar level of As. Soil washing (0.5 M phosphate solution for 2 h) removed 24.5% As, on average, in soil from both locations. Regardless of soil washing, Location A soil toxicities, determined using Microtox, were greater than that of Location B and this could be largely attributed to different soil particle size distribution. With soils from both locations, the changes in As chemical forms resulted in either similar or greater toxicities after washing. This emphasizes the importance of considering ecotoxicological aspects, which are likely to differ depending on soil particle size distribution and changes in As chemical forms, in addition to the total concentration based remedial goals, in producing ecotoxicologically-sound soils for reuse. In addition, calcium phosphate used as the washing solution seemed to contribute more on the toxic effects of the washed soils than potassium phosphate and ammonium phosphate. Therefore, it would be more appropriate to use potassium or ammonium phosphate than calcium phosphate for phosphate-aided soil washing of the As-contaminated soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Oil sands tailings leachability and toxicity evaluation

    International Nuclear Information System (INIS)

    Gulley, J.R.

    1995-01-01

    Fine tailings disposal and reclamation is a major issue facing the oil sands mining and extraction industry. Government regulations dictate that reclamation must return the site to a level of self-sustaining biological capability which approximates the natural condition. A two-phase laboratory program has been completed to investigate the suitability of alternative reclamation materials. For the first phase of the study, chemical and toxicological analyses were carried out on 13 different reclamation and reference materials (solid phase and extractions). Seedling emergence, nematode maturation, algal growth and bacterial luminescence for leachate samples showed a range of sensitivities in response to the tested materials, although phytotoxicity tests were generally the most sensitive. With the exception of one test material, high toxicity ratings were consistent with that expected from the chemical data. The second phase of the study focused on the evaluation of chemical and toxicological conditions in leachate water generated using bench-scale column percolation tests. Leachate water equivalent to 10 pore volume replacements was generated and temporal variations in toxicity and chemistry monitored. Similar to phase 1 findings, phytotoxicity tests were the most sensitive tests to leachate waters. For most materials tested, most toxicity was removed after 2--3 porewater replacements. More persistent toxicity was noted for samples containing bitumen (e.g., fine tails and oil sands). No clear correspondence was noted between chemical concentrations and toxicity in leachate waters

  13. Toxicity of heavy metals in the environment

    National Research Council Canada - National Science Library

    Oehme, F.W

    1978-01-01

    ... as the fundamental mechanisms of toxicity resulting from heavy metal chemicals. The more common toxic heavy metals, along with their biochemistry and associated clinical syndromes, are then described...

  14. Evaluation of surficial sediment toxicity and sediment physico-chemical characteristics of representative sites in the Lagoon of Venice (Italy)

    Science.gov (United States)

    Losso, C.; Arizzi Novelli, A.; Picone, M.; Marchetto, D.; Pessa, G.; Molinaroli, E.; Ghetti, P. F.; Volpi Ghirardini, A.

    2004-11-01

    Toxic hazard in sites with varying types and levels of contamination in the Lagoon of Venice was estimated by means of toxicity bioassays based on the early life-stages of the autochthonous sea urchin Paracentrotus lividus. Elutriate was chosen as the test matrix, due to its ability to highlight potential toxic effects towards sensitive biological components of the water column caused by sediment resuspension phenomena affecting the Lagoon. Surficial sediments (core-top 5 cm deep), directly influenced by resuspension/redeposition processes, and core sediments (core 20 cm deep), recording time-mediated contamination, were sampled in some sites located in the lagoonal area most greatly influenced by anthropogenic activities. Particle size, organic matter and water content were also analysed. In two sites, the results of physical parameters showed that the core-top sediments were coarser than the 20-cm core sediments. Sperm cell toxicity test results showed the negligible acute toxicity of elutriates from all investigated sites. The embryo toxicity test demonstrated a short-term chronic toxicity gradient for elutriates from the 20-cm core sediments, in general agreement both with the expected contamination gradient and with results of the Microtox® solid-phase test. Elutriates of the core-top 5-cm sediments revealed a totally inverted gradient, in comparison with that for the 20-cm core sediments, and the presence of a "hot spot" of contamination in the site chosen as a possible reference. Investigations on ammonia and sulphides as possible confounding factors excluded their contribution to this "hot spot". Integrated physico-chemical and toxicity results on sediments at various depths demonstrated the presence of disturbed sediments in the central basin of the Lagoon of Venice.

  15. The sensitivity and reproducibility of the zebrafish (Danio rerio) embryo test for the screening of waste water quality and for testing the toxicity of chemicals.

    Science.gov (United States)

    Lahnsteiner, Franz

    2008-07-01

    The sensitivity of the zebrafish embryo test, a test proposed for routine waste water control, was compared with the acute fish toxicity test, in the determination of six types of waste water and ten different chemicals. The waste water was sampled from the following industrial processes: paper and cardboard production, hide tanning, metal galvanisation, carcass treatment and utilisation, and sewage treatment. The chemicals tested were: dimethylacetamide, dimethylsulphoxide, cadmium chloride, cyclohexane, hydroquinone, mercuric chloride, nickel chloride, nonylphenol, resmethrin and sodium nitrite. For many of the test substances, the zebrafish embryo test and the acute fish toxicity test results showed high correlations. However, there were certain environmentally-relevant substances for which the results of the zebrafish embryo test and the acute fish toxicity test differed significantly, up to 10,000-fold (Hg(2+) > 150-fold difference; NO(2)(-) > 300-fold; Cd(2+) > 200-fold; resmethrin > 10,000-fold). For the investigated waste water samples and chemicals, the survival rate of the zebrafish embryos showed high variations between different egg samples, within the range of the EC50 concentration. Subsequently, 5-6 parallel assays were deemed to be the appropriate number necessary for the precise evaluation of the toxicity of the test substances. Also, it was found that the sensitivities of different ontogenetic stages to chemical exposure differed greatly. During the first 12 hours after fertilisation (4-cell stage to the 5-somite stage), the embryos reacted most sensitively to test substance exposure, whereas the later ontogenetic stages showed only slight or no response, indicating that the test is most sensitive during the first 24 hours post-fertilisation.

  16. Reproductive toxicity assessment of surface water of the Tai section of the Yangtze River, China by in vitro bioassays coupled with chemical analysis

    International Nuclear Information System (INIS)

    Wang Xiaoyi; Wu Jiang; Hao Yingqun; Zhu Bingqing; Shi Wei; Hu Guanjiu; Han Xiaodong; Giesy, John P.; Yu Hongxia

    2011-01-01

    Reproductive toxicity of organic extracts of the surface water from the Tai section of the Yangtze River was assessed by in vitro cytotoxity assays and selected persistent organic pollutants including PCBs, OCPs and PAHs were quantified by instrumental analysis. Eleven of the US EPA priority PAHs were detected. Individual PAHs were found to range from 0.7 to 20 ng/L. Concentrations of BaP did not exceed the national drinking water source quality standard of China. However, a 286-fold concentrated organic extract induced significant reproductive toxicity in adult male rats. The morphology of cells, MTT assay and LDH release assay were all affected by exposure to the organic extracts of water. The results of the reproductive toxicity indicated that PAHs posed the greatest risk of the chemicals studied. The compounds present in the water could be bioconcentrated and result in adverse effects. - Highlights: → Only 11 PAHs of US EPA priority PAHs were detected in surface water the Yangtze River. → Level of BaP didn't exceed national drinking water source quality standard of China. → 286-fold concentrated organic extracts induced great reproductive toxicity in rats. → PAHs posed the greatest risk of the chemicals studied. → The compounds in the water could be bioconcentrated and result in adverse effects. - In vitro bioassay responses observed in Yangtze River source water extracts showed great reproductive toxicity, and PAHs were responsible.

  17. Introducing Toxics

    Directory of Open Access Journals (Sweden)

    David C. Bellinger

    2013-04-01

    Full Text Available With this inaugural issue, Toxics begins its life as a peer-reviewed, open access journal focusing on all aspects of toxic chemicals. We are interested in publishing papers that present a wide range of perspectives on toxicants and naturally occurring toxins, including exposure, biomarkers, kinetics, biological effects, fate and transport, treatment, and remediation. Toxics differs from many other journals in the absence of a page or word limit on contributions, permitting authors to present their work in as much detail as they wish. Toxics will publish original research papers, conventional reviews, meta-analyses, short communications, theoretical papers, case reports, commentaries and policy perspectives, and book reviews (Book reviews will be solicited and should not be submitted without invitation. Toxins and toxicants concern individuals from a wide range of disciplines, and Toxics is interested in receiving papers that represent the full range of approaches applied to their study, including in vitro studies, studies that use experimental animal or non-animal models, studies of humans or other biological populations, and mathematical modeling. We are excited to get underway and look forward to working with authors in the scientific and medical communities and providing them with a novel venue for sharing their work. [...

  18. Chemical study of sediments from Solimoes and Negro rivers by Instrumental Neutron Activation Analysis (INAA)

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Jose O. dos [Coordenacao de Cursos Tecnicos e Superiores. Instituto Federal de Educacao, Ciencia e Tecnologia de Sergipe, Lagarto, SE (Brazil); Munita, Casimiro S., E-mail: camunita@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Soares, Emilio A.A., E-mail: easores@ufam.edu.br [Departamento de Geociencias. Universidade Federal do Amazonas (UFAM), Manaus, AM (Brazil)

    2011-07-01

    The events of the last 70,000 yrs of the history of the Solimoes-Amazon river system are recorded in the fluvial terraces at region of confluence of the Negro and Solimoes rivers, and are markers of changes in the landscape of the Amazon region and it can be observed by analyzing the sedimentary deposits quaternary in Amazon fluvial system. The aim of this work was to contribute with the characterization sedimentological - stratigraphic of Pleistocene succession of the confluence zone of the Negro and Solimoes rivers by means of elemental chemical analysis. To provenance study, 24 elements were determined by Instrumental Neutron Activation Analysis from sediment samples collected at confluence of Negro and Solimoes rivers and the results were interpreted using cluster and linear discriminant analysis, which classification to priori were samples previously defined according to Pleistocene stratigraphic units individualized at study area. According to discriminant analysis, one can infer that samples from the basin of the Solimoes River and Parana do Ariau grabens (GPA) are not significantly different, but there was a clear separation of sediments from Negro and GPA groups. It was also obtained that samples from highest and lowest terraces that the of the Solimoes river and Parana do Ariau are different, suggesting that it is a process that reflects the influence of chemical weathering on the uppermost terrace deposits. Thus, this work contributes to determine the contribution of the sediments deposited by the Solimoes and Negro rivers in the filling of tectonic depressions and in the variations of degree of weathering between younger and older units, and provides additional subsidies to build the geological evolution of the area. (author)

  19. Chemical study of sediments from Solimoes and Negro rivers by Instrumental Neutron Activation Analysis (INAA)

    International Nuclear Information System (INIS)

    Santos, Jose O. dos; Munita, Casimiro S.; Soares, Emilio A.A.

    2011-01-01

    The events of the last 70,000 yrs of the history of the Solimoes-Amazon river system are recorded in the fluvial terraces at region of confluence of the Negro and Solimoes rivers, and are markers of changes in the landscape of the Amazon region and it can be observed by analyzing the sedimentary deposits quaternary in Amazon fluvial system. The aim of this work was to contribute with the characterization sedimentological - stratigraphic of Pleistocene succession of the confluence zone of the Negro and Solimoes rivers by means of elemental chemical analysis. To provenance study, 24 elements were determined by Instrumental Neutron Activation Analysis from sediment samples collected at confluence of Negro and Solimoes rivers and the results were interpreted using cluster and linear discriminant analysis, which classification to priori were samples previously defined according to Pleistocene stratigraphic units individualized at study area. According to discriminant analysis, one can infer that samples from the basin of the Solimoes River and Parana do Ariau grabens (GPA) are not significantly different, but there was a clear separation of sediments from Negro and GPA groups. It was also obtained that samples from highest and lowest terraces that the of the Solimoes river and Parana do Ariau are different, suggesting that it is a process that reflects the influence of chemical weathering on the uppermost terrace deposits. Thus, this work contributes to determine the contribution of the sediments deposited by the Solimoes and Negro rivers in the filling of tectonic depressions and in the variations of degree of weathering between younger and older units, and provides additional subsidies to build the geological evolution of the area. (author)

  20. A Tutorial for Analysing the Cost-effectiveness of Alternative Methods for Assessing Chemical Toxicology: The Case of Acute Oral Toxicity Prediction

    NARCIS (Netherlands)

    Norlen, H.; Worth, A.P.; Gabbert, S.G.M.

    2014-01-01

    Compared with traditional animal methods for toxicity testing, in vitro and in silico methods are widely considered to permit a more cost-effective assessment of chemicals. However, how to assess the cost-effectiveness of alternative methods has remained unclear. This paper offers a user-oriented

  1. Thermal Stress and Toxicity | Science Inventory | US EPA

    Science.gov (United States)

    Elevating ambient temperature above thermoneutrality exacerbates toxicity of most air pollutants, insecticides, and other toxic chemicals. On the other hand, safety and toxicity testing of toxicants and drugs is usually performed in mice and rats maintained at subthermoneutral temperatures of —22 °C. When exposed to chemical toxicants under these relatively cool conditions, rodents typically undergo a regulated hypothermic response, characterized by preference for cooler ambient temperatures and controlled reduction in core temperature. Reducing core temperature delays the clearance of most toxicants from the body; however, a mild hypothermia also improves recovery and survival from the toxicant. Raising ambient temperature to thermoneutrality and above increases the rate of clearance of the toxicant but also exacerbates toxicity. Furthermore, heat stress combined with work or exercise is likely to worsen toxicity. Body temperature of large mammals, including humans, does not decrease as much in response to exposure to a toxicant. However, heat stress tan nonetheless worsen toxic outcome in humans through a variety of mechanisms. For example, heat-induced sweating and elevation in skin blood flow accelerates uptake of some insecticides. Epidemiological studies suggest that thermal stress may exacerbate the toxicity of airborne pollutants such as ozone and particulate matter. Overall, translating results of studies in rodents to that of humans is a formidable

  2. Toxicity of Neatex (industrial detergent) and Norust CR 486 ...

    African Journals Online (AJOL)

    Populations of indigenous epigeic adult earthworms, Aporrectodea longa, were exposed to varying concentrations of two chemicals (industrial detergent and corrosion inhibitor) in natural soil to determine the acute toxicity of the chemicals. Earthworm acute toxicity test (OECD) 207 method was employed. After two weeks of ...

  3. Thermoregulatory responses to environmental toxicants: The interaction of thermal stress and toxicant exposure

    International Nuclear Information System (INIS)

    Leon, Lisa R.

    2008-01-01

    Thermal stress can have a profound impact on the physiological responses that are elicited following environmental toxicant exposure. The efficacy by which toxicants enter the body is directly influenced by thermoregulatory effector responses that are evoked in response to high ambient temperatures. In mammals, the thermoregulatory response to heat stress consists of an increase in skin blood flow and moistening of the skin surface to dissipate core heat to the environment. These physiological responses may exacerbate chemical toxicity due to increased permeability of the skin, which facilitates the cutaneous absorption of many environmental toxicants. The core temperature responses that are elicited in response to high ambient temperatures, toxicant exposure or both can also have a profound impact on the ability of an organism to survive the insult. In small rodents, the thermoregulatory response to thermal stress and many environmental toxicants (such as organophosphate compounds) is often biphasic in nature, consisting initially of a regulated reduction in core temperature (i.e., hypothermia) followed by fever. Hypothermia is an important thermoregulatory survival strategy that is used by small rodents to diminish the effect of severe environmental insults on tissue homeostasis. The protective effect of hypothermia is realized by its effects on chemical toxicity as molecular and cellular processes, such as lipid peroxidation and the formation of reactive oxygen species, are minimized at reduced core temperatures. The beneficial effects of fever are unknown under these conditions. Perspective is provided on the applicability of data obtained in rodent models to the human condition

  4. Toxicity of proton-metal mixtures in the field: Linking stream macroinvertebrate species diversity to chemical speciation and bioavailability

    Energy Technology Data Exchange (ETDEWEB)

    Stockdale, Anthony [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom); Tipping, Edward, E-mail: et@ceh.ac.uk [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom); Lofts, Stephen [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom); Ormerod, Stephen J. [Catchment Research Group, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3US (United Kingdom); Clements, William H. [Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO 80523 (United States); Blust, Ronny [Ecophysiology, Biochemistry and Toxicology Group, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2010-10-01

    Understanding metal and proton toxicity under field conditions requires consideration of the complex nature of chemicals in mixtures. Here, we demonstrate a novel method that relates streamwater concentrations of cationic metallic species and protons to a field ecological index of biodiversity. The model WHAM-F{sub TOX} postulates that cation binding sites of aquatic macroinvertebrates can be represented by the functional groups of natural organic matter (humic acid), as described by the Windermere Humic Aqueous Model (WHAM6), and supporting field evidence is presented. We define a toxicity function (F{sub TOX}) by summing the products: (amount of invertebrate-bound cation) x (cation-specific toxicity coefficient, {alpha}{sub i}). Species richness data for Ephemeroptera, Plecoptera and Trichoptera (EPT), are then described with a lower threshold of F{sub TOX}, below which all organisms are present and toxic effects are absent, and an upper threshold above which organisms are absent. Between the thresholds the number of species declines linearly with F{sub TOX}. We parameterised the model with chemistry and EPT data for low-order streamwaters affected by acid deposition and/or abandoned mines, representing a total of 412 sites across three continents. The fitting made use of quantile regression, to take into account reduced species richness caused by (unknown) factors other than cation toxicity. Parameters were derived for the four most common or abundant cations, with values of {alpha}{sub i} following the sequence (increasing toxicity) H{sup +} < Al < Zn < Cu. For waters affected mainly by H{sup +} and Al, F{sub TOX} shows a steady decline with increasing pH, crossing the lower threshold near to pH 7. Competition effects among cations mean that toxicity due to Cu and Zn is rare at lower pH values, and occurs mostly between pH 6 and 8.

  5. Acute and subacute toxicity and chemical constituents of the hydroethanolic extract of Verbena litoralis Kunth.

    Science.gov (United States)

    de Lima, Rachel; Guex, Camille Gaube; da Silva, Andreia Regina Haas; Lhamas, Cibele Lima; Dos Santos Moreira, Karen Luise; Casoti, Rosana; Dornelles, Rafaela Castro; Marques da Rocha, Maria Izabel Ugalde; da Veiga, Marcelo Leite; de Freitas Bauermann, Liliane; Manfron, Melânia Palermo

    2018-05-14

    Verbena litoralis Kunth is a native species of South America, popularly known as gervãozinho-do-campo ou erva-de-pai-caetano. It is used in gastrointestinal disorders, as detoxifying the organism, antifebrile properties and amidaglitis. To identify the chemical constituents of the hydroethanolic extract obtained from the aerial parts of V. litoralis and to evaluate the acute and sub-acute toxicity in male and female rats. The single dose (2000 mg/kg) of the extract was administered orally to male and female rats. In the subacute study the extract was given at doses of 100, 200 and 400mg/kg during 28 days orally. Biochemical, hematological and histological analyzes were performed, oxidative stress markers were tested and chemical constituents were identified through UHPLC-ESI-HRMS RESULTS: Six classes of metabolites were identified: iridoids glycosides, flavonoids, phenylpropanoids-derived, phenylethanoid-derived, cinnamic acid-derived and triterpenes. In the acute treatment, the extract was classified as safe (category 5), according to the OECD guide. Our results demonstrated that subacute administration of the crude extract of V. litoralis at 400mg/kg resulted in an increase in AST in males, whereas ALT enzyme showed a small increase in males that received 200mg/kg and 400mg/kg of the extract. The extract of the aerial parts of Verbena litoralis did not present significant toxicity when administered a single dose. However, when different doses were administered for 28 days, were observed changes in hematological, biochemical and histological parameters in rats. Copyright © 2018. Published by Elsevier B.V.

  6. Wet-chemical passivation of InAs: toward surfaces with high stability and low toxicity.

    Science.gov (United States)

    Jewett, Scott A; Ivanisevic, Albena

    2012-09-18

    In a variety of applications where the electronic and optical characteristics of traditional, siliconbased materials are inadequate, recently researchers have employed semiconductors made from combinations of group III and V elements such as InAs. InAs has a narrow band gap and very high electron mobility in the near-surface region, which makes it an attractive material for high performance transistors, optical applications, and chemical sensing. However, silicon-based materials remain the top semiconductors of choice for biological applications, in part because of their relatively low toxicity. In contrast to silicon, InAs forms an unstable oxide layer under ambient conditions, which can corrode over time and leach toxic indium and arsenic components. To make InAs more attractive for biological applications, researchers have investigated passivation, chemical and electronic stabilization, of the surface by adlayer adsorption. Because of the simplicity, low cost, and flexibility in the type of passivating molecule used, many researchers are currently exploring wet-chemical methods of passivation. This Account summarizes much of the recent work on the chemical passivation of InAs with a particular focus on the chemical stability of the surface and prevention of oxide regrowth. We review the various methods of surface preparation and discuss how crystal orientation affects the chemical properties of the surface. The correct etching of InAs is critical as researchers prepare the surface for subsequent adlayer adsorption. HCl etchants combined with a postetch annealing step allow the tuning of the chemical properties in the near-surface region to either arsenic- or indium-rich environments. Bromine etchants create indium-rich surfaces and do not require annealing after etching; however, bromine etchants are harsh and potentially destructive to the surface. The simultaneous use of NH(4)OH etchants with passivating molecules prevents contact with ambient air that can

  7. Toxic Mixtures in Time-The Sequence Makes the Poison.

    Science.gov (United States)

    Ashauer, Roman; O'Connor, Isabel; Escher, Beate I

    2017-03-07

    "The dose makes the poison". This principle assumes that once a chemical is cleared out of the organism (toxicokinetic recovery), it no longer has any effect. However, it overlooks the other process of re-establishing homeostasis, toxicodynamic recovery, which can be fast or slow depending on the chemical. Therefore, when organisms are exposed to two toxicants in sequence, the toxicity can differ if their order is reversed. We test this hypothesis with the freshwater crustacean Gammarus pulex and four toxicants that act on different targets (diazinon, propiconazole, 4,6-dinitro-o-cresol, 4-nitrobenzyl chloride). We found clearly different toxicity when the exposure order of two toxicants was reversed, while maintaining the same dose. Slow toxicodynamic recovery caused carry-over toxicity in subsequent exposures, thereby resulting in a sequence effect-but only when toxicodynamic recovery was slow relative to the interval between exposures. This suggests that carry-over toxicity is a useful proxy for organism fitness and that risk assessment methods should be revised as they currently could underestimate risk. We provide the first evidence that carry-over toxicity occurs among chemicals acting on different targets and when exposure is several days apart. It is therefore not only the dose that makes the poison but also the exposure sequence.

  8. FLUORIDE TOXICITY – A HARSH REALITY

    OpenAIRE

    Bandlapalli Pavani; Mandava Ragini; David Banji; Otilia J F Banji; N Gouri Pratusha

    2011-01-01

    There are many incidents of fluoride toxicity whether it is acute or chronic. Fluoride toxicity is an environmental hazard which arises from the upper layers of geological crust and is dissolved in water. Prolonged drinking of such water causes chronic fluoride toxicity. Use of fluoride containing compounds for various purposes such as dental products, metal, glass, refrigerator and chemical industries act as a source of fluoride poisoning and increase the risk of toxicity. This review reflec...

  9. Characterization of part of the toxic effects due to alpha irradiation and to the physico-chemical properties of some actinides. An in vitro study on the alveolar macrophage

    International Nuclear Information System (INIS)

    Lizon, Celine

    1999-01-01

    The aim of this work was to characterize the specific effects due to radiotoxicity of α irradiation and the chemical toxicity of actinides. This was performed on alveolar macrophages extracted from rats and primates by pulmonary lavage. This was done by an in vitro study using either α irradiation from electrodeposited sources, or soluble actinides and lanthanides added to the culture medium. Necrosis and apoptosis induction were quantified after vital staining. For each treatment, cells were studied 1 or 7 days after plating. After either α irradiation or exposure to elements, the main route of death induced was apoptosis. After α irradiation, alveolar macrophages are very radioresistant cells. The observed D0 was between 30 and 100 Gy, depending on the species studied and the time in culture at exposure. In fact, alveolar macrophages irradiated after 1 week in culture have show less radioresistance than those treated after 1 day. The chemical toxicity of Uranium and Neptunium was independent both of time in culture at exposure and the animal species. The threshold we observed were respectively at 5 10 -4 and 3 10 -6 M. Moreover, within the concentrations studied, Thorium have not shown any toxicity towards alveolar macrophages. 1 day after plating macrophages, lanthanides exerts a higher chemical toxicity than actinides (threshold : 5 10 -6 M, Gadolinium, 5 10 -5 M, Cerium). These toxicities decreases more than 10 times after exposure 7 days after plating or for primates cells. This phenomenon seems to be due to cell harvesting and/or to cell adaptation to culture. Preliminary results show an impairment of cytokines production, which could be specific of the toxic studied. This was observed at concentrations which appeared non toxic as regards to apoptosis induction. The use of primates alveolar macrophages allow us to extrapolate some of the obtained results to Human. (author) [fr

  10. The current content of artificial radionuclides in the water of the Tobol-Irtysh river system (from the mouth of the Iset River to the confluence with the Ob River)

    International Nuclear Information System (INIS)

    Nikitin, Alexander I.; Chumichev, Vladimir B.; Valetova, Nailia K.; Katrich, Ivan Yu.; Kabanov, Alexander I.; Dunaev, Gennady E.; Shkuro, Valentina N.; Rodin, Victor M.; Mironenko, Alexander N.; Kireeva, Elena V.

    2007-01-01

    Data on content of 90 Sr, 137 Cs, 239,240 Pu and 3 H in water of the Tobol-Irtysh part of the Techa-Iset-Tobol-Irtysh-Ob river system (through which the 'Mayak' PA radioactive wastes are transported) are presented and discussed. The data were received in 2004-2005 under the ISTC project on radioecological monitoring of the Tobol and Irtysh rivers. Monthly observations of 137 Cs, 90 Sr and 3 H content in water in the area of the Tobol and Irtysh confluence have been conducted starting from May 2004. To obtain information on the investigated river system as a whole, the radioecological survey of the Tobol and Irtysh rivers at the section from the mouth of the Iset River to the confluence with the Ob River was carried out in 2004. It is shown that the impact of 'Mayak' PA waste transport by 90 Sr is distinctly traced as far as the area of the Irtysh and Ob confluence

  11. Predictive Model of Systemic Toxicity (SOT)

    Science.gov (United States)

    In an effort to ensure chemical safety in light of regulatory advances away from reliance on animal testing, USEPA and L’Oréal have collaborated to develop a quantitative systemic toxicity prediction model. Prediction of human systemic toxicity has proved difficult and remains a ...

  12. Integrated fate and toxicity assessment for site contaminants

    International Nuclear Information System (INIS)

    MacDonell, Margaret; Peterson, John; Finster, Molly; Douglas, R.

    2007-01-01

    Understanding the fate and toxicity of environmental contaminants is essential to framing practical management decisions. Forms and bioavailable concentrations often change over time due to natural physical, chemical, and biological processes. For some sites, hundreds of contaminants may be of initial interest, and even small projects can involve a substantial number of contaminants. With multiple assessments common, attention to effectiveness and efficiency is important, and integrating fate and toxicity information provides a valuable way to focus the analyses. Fate assessments help identify what forms may be present where and when, while toxicity information indicates what health effects could result if people were exposed. The integration process is illustrated by an application for the Hanford site, to support long-term management decisions for the cesium and strontium capsules. Fate data, health-based benchmarks, and related toxicity information were effectively combined to indicate performance targets for chemicals and radionuclides identified for capsule leachate that could migrate to groundwater. More than 50 relevant benchmarks and toxicity context were identified for 15 of the 17 study contaminants; values for chronic drinking water exposure provided the common basis for selected indicators. For two chemicals, toxicity information was identified from the scientific literature to guide the performance targets. (authors)

  13. Testing of toxicity based methods to develop site specific clean up objectives - phase 1: Toxicity protocol screening and applicability

    International Nuclear Information System (INIS)

    Hamilton, H.; Kerr, D.; Thorne, W.; Taylor, B.; Zadnik, M.; Goudey, S.; Birkholz, D.

    1994-03-01

    A study was conducted to develop a cost-effective and practical protocol for using bio-assay based toxicity assessment methods for remediation of decommissioned oil and gas production, and processing facilities. The objective was to generate site-specific remediation criteria for contaminated sites. Most companies have used the chemical-specific approach which, however, did not meet the ultimate land use goal of agricultural production. The toxicity assessment method described in this study dealt with potential impairment to agricultural crop production and natural ecosystems. Human health concerns were not specifically addressed. It was suggested that chemical-specific methods should be used when human health concerns exist. . Results showed that toxicity tests will more directly identify ecological stress caused by site contamination than chemical-specific remediation criteria, which can be unnecessarily protective. 11 refs., 7 tabs., 6 figs

  14. Discrimination of uranium chemo-toxic and radio-toxic effects: definition of biological markers for evaluating professional risks in nuclear industry

    International Nuclear Information System (INIS)

    Darolles, Carine

    2010-01-01

    Uranium (U) is a heavy metal that is also considered as an alpha emitter. Thus the origin of U toxicity is both chemical and radiological. The identification of bio-markers to discriminate chemical and radiological toxicity for a given U compound is required to assess accurately the health effects of isotopic mixtures such as depleted U in 235 U with a low specific activity. Data from the literature show that the best candidates are cytogenetic markers. In the present work, the assessment of bio-markers of U contamination was performed on three cellular models (mouse fibroblasts, rat lymphocytes and human lymphocytes) that were exposed to different isotopic mixtures of U. The cytokinesis-block micronucleus (MN) centromere assay was performed to discriminate the chemo-toxic and radio-toxic effects of U. This study showed that the evaluation of micronuclei in bi-nucleated cells could not assess U genotoxicity accurately. Instead, the assessment of centromere-negative micronuclei and nucleo-plasmic bridges correlated with the radio-toxic effects of U. The evaluation of centromere-positive micronuclei and micronuclei in mono-nucleated cells correlated with the chemo-toxic effects of U. These cytogenetic markers should be validated on different biological models and could be proposed to discriminate radiological and chemical toxicity of a given isotopic mixture of U. These four cytogenetic markers could be a useful complement of the classical dosimetric bio-markers for the assessment of internal uranium contamination. (author)

  15. A combined approach to investigate the toxicity of an industrial landfill's leachate: Chemical analyses, risk assessment and in vitro assays

    International Nuclear Information System (INIS)

    Baderna, D.; Maggioni, S.; Boriani, E.; Gemma, S.; Molteni, M.; Lombardo, A.; Colombo, A.; Bordonali, S.; Rotella, G.; Lodi, M.; Benfenati, E.

    2011-01-01

    Solid wastes constitute an important and emerging problem. Landfills are still one of the most common ways to manage waste disposal. The risk assessment of pollutants from landfills is becoming a major environmental issue in Europe, due to the large number of sites and to the importance of groundwater protection. Furthermore, there is lack of knowledge for the environmental, ecotoxicological and toxicological characteristics of most contaminants contained into landfill leacheates. Understanding leachate composition and creating an integrated strategy for risk assessment are currently needed to correctly face the landfill issues and to make projections on the long-term impacts of a landfill, with particular attention to the estimation of possible adverse effects on human health and ecosystem. In the present study, we propose an integrated strategy to evaluate the toxicity of the leachate using chemical analyses, risk assessment guidelines and in vitro assays using the hepatoma HepG2 cells as a model. The approach was applied on a real case study: an industrial waste landfill in northern Italy for which data on the presence of leachate contaminants are available from the last 11 years. Results from our ecological risk models suggest important toxic effects on freshwater fish and small rodents, mainly due to ammonia and inorganic constituents. Our results from in vitro data show an inhibition of cell proliferation by leachate at low doses and cytotoxic effect at high doses after 48 h of exposure. - Research highlights: → We study the toxicity of leachate from a non-hazardous industrial waste landfill. → We perform chemical analyses, risk assessments and in vitro assays on HepG2 cells. → Risk models suggest toxic effects due to ammonia and inorganic constituents. → In vitro assays show that leachate inhibits cell proliferation at low doses. → Leachate can induce cytotoxic effects on HepG2 cells at high doses.

  16. 78 FR 66700 - Toxic Substances Control Act Chemical Testing; Receipt of Test Data

    Science.gov (United States)

    2013-11-06

    ... additive for food Rat--Up-and-Down processing, and as Procedure. ingredient in aluminum Micronucleus Test... Toxicity to Fish; Acute Toxicity to Daphnia; Toxicity to Algae; Acute Toxicity to Mammals; Bacterial..., cold Study in Zebra Fish set, and sheet-fed (Brachydanio rerio). applications. Acute Toxicity Study in...

  17. Antidotal or protective effects of Curcuma longa (turmeric) and its active ingredient, curcumin, against natural and chemical toxicities: A review.

    Science.gov (United States)

    Hosseini, Azar; Hosseinzadeh, Hossein

    2018-03-01

    Curcuma longa is a rhizomatous perennial herb that belongs to the family Zingiberaceae, native to South Asia and is commonly known as turmeric. It is used as herbal remedy due to the prevalent belief that the plant has medical properties. C. longa possesses different effects such as antioxidant, anti-tumor, antimicrobial, anti-inflammatory, wound healing, and gastroprotective activities. The recent studies have shown that C. longa and curcumin, its important active ingredient, have protective effects against toxic agents. In this review article, we collected in vitro and animal studies which are related to protective effects of turmeric and its active ingredient against natural and chemical toxic agents. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. Response of Nitrobacter to toxicity of drilling chemicals

    International Nuclear Information System (INIS)

    Okpokwasili, Gideon C.; Odokuma, Lucky O.

    1996-01-01

    The effect of drilling chemicals on nitrate utilization and logarithmic rate of growth of Nitrobacter was investigated using varying concentrations of the chemicals. Results indicated that all the drilling chemicals tested were inhibitory to nitrate utilization and caused decrease in growth rate of Nitrobacter. An increase in nitrite utilization by Nitrobacter with increase in exposure time to the chemicals was observed. Nitrite utilization decreased with increase in concentration of the chemicals. Some concentrations of drilling chemicals stimulated the growth rate of Nitrobacter as exposure time increased. Inhibition of nitrite utilization was greatest with Carbotrol and least with Chaux (lime) and Huile-clean. These results showed that drilling chemicals inhibit an aspect of nitrification in the biosphere thereby negatively affecting soil and water fertility

  19. VARIATIONS IN REPRODUCTIVE TOXICANT IDENTIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, F

    2008-05-13

    Reproductive toxicants are a very important class of compounds. They present unique hazards to those of child bearing ages, perform their 'dirty work' using a wide variety of mechanisms on a number of different organs, and are regulatorily important. Because of all of this, properly identifying reproductive toxicants is important, but fraught with difficulty. In this paper we will describe types or reproductive toxicants, their importance, and both mistakes and good practices that people who are not experts in reproductive toxicology may use in their attempts to identify them. Additionally, this paper will focus on chemical reproductive toxicants and will not address biological agents that could affect reproductive toxicity although many principles outlined here could be applied to that endeavor.

  20. Evaluation of toxic and interactive toxic effects of three agrochemicals and copper using a battery of microbiotests.

    Science.gov (United States)

    Kungolos, A; Emmanouil, C; Tsiridis, V; Tsiropoulos, N

    2009-08-01

    Three commonly used test organisms of different trophic levels (Vibrio fischeri, Pseudokirchneriella subcapitata and Daphnia magna) were exposed to selected agrochemicals (fosthiazate, metalaxyl-M, imidacloprid) and copper, in single doses or in binary mixtures. The toxicity of each single compound varied up to two orders of magnitude, depending on the test species examined. V. fischeri was the most sensitive test organism regarding fosthiazate and metalaxyl-M, indicating an IC(50) value of 0.20 mg/L (0.17-0.25 mg/L) and 0.88 mg/L (0.35-1.57 mg/L), respectively. Imidacloprid was the least toxic compound, indicating an EC(50) value on D. magna of 64.6 mg/L (43.3-122.5 mg/L) and an IC(50) value on V. fischeri of 226 mg/L (159-322 mg/L), while for imidacloprid at a concentration of 1000 mg/L the effect on P. subcapitata was lower than 50%. Copper was the most toxic compound towards all test organisms exhibiting the highest toxic effect on P. subcapitata, with an IC(50) value of 0.05 mg/L (0.003-0.008 mg/L). The toxic effects of the binary mixtures have been compared to the theoretically expected effect, resulting from a simple mathematical model based on the theory of probabilities. The independent action model was used in order to predict the theoretically expected effect. The interactive effects were mostly antagonistic or additive, while in few cases (interactive effects of metalaxyl-M and copper on V. fischeri) a synergistic mode of action was observed for some concentration combinations. Experiments showed that interactive effects of chemicals may vary depending on the test species used as well as on the chemicals and their respective concentrations. Although most of the concentrations of chemicals tested in this study are higher than the ones usually found in natural environment, the evaluation of their interactive toxic effects using a battery of bioassays may comprise a useful tool for the estimation of the environmental hazard of chemicals.

  1. Photoenhanced Toxicity of Petroleum to Aquatic Invertebrates and Fish

    Science.gov (United States)

    Photoenhanced toxicity is a distinct mechanism of petroleum toxicity that is mediated by the interaction of solar radiation with specific polycyclic aromatic compounds in oil. Phototoxicity is observed as a twofold to greater than 1000-fold increase in chemical toxicity to aquati...

  2. Interactive Chemical Safety for Sustainablity Toxicity Forecaster Dashboard

    Science.gov (United States)

    EPA researchers have been using advances in computational toxicology to address lack of data on the thousands of chemicals. EPA released chemical data on 1,800 chemicals. The 1,800 chemicals were screened in more than 800 rapid, automated tests (called high-throughput screening assays) to determine potential human health effects. The data is available through the interactive Chemical Safety for Sustainability Dashboards (iCSS dashboard) and the complete data sets are also available for download.

  3. 76 FR 53827 - Safety Zone; Big Sioux River From the Military Road Bridge North Sioux City to the Confluence of...

    Science.gov (United States)

    2011-08-30

    ...-AA00 Safety Zone; Big Sioux River From the Military Road Bridge North Sioux City to the Confluence of... restricting navigation on the Big Sioux River from the Military Road Bridge in North Sioux City, South Dakota... zone on the Big Sioux River from the Military Road Bridge in North Sioux City, SD at 42.52 degrees...

  4. The current content of artificial radionuclides in the water of the Tobol-Irtysh river system (from the mouth of the Iset River to the confluence with the Ob River)

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, Alexander I. [SI RPA ' Typhoon' of the Roshydromet, 82, Lenin avenue, Obninsk, Kaluga region 249038 (Russian Federation)]. E-mail: nikitin@typhoon.obninsk.ru; Chumichev, Vladimir B. [SI RPA ' Typhoon' of the Roshydromet, 82, Lenin avenue, Obninsk, Kaluga region 249038 (Russian Federation); Valetova, Nailia K. [SI RPA ' Typhoon' of the Roshydromet, 82, Lenin avenue, Obninsk, Kaluga region 249038 (Russian Federation); Katrich, Ivan Yu. [SI RPA ' Typhoon' of the Roshydromet, 82, Lenin avenue, Obninsk, Kaluga region 249038 (Russian Federation); Kabanov, Alexander I. [SI RPA ' Typhoon' of the Roshydromet, 82, Lenin avenue, Obninsk, Kaluga region 249038 (Russian Federation); Dunaev, Gennady E. [SI RPA ' Typhoon' of the Roshydromet, 82, Lenin avenue, Obninsk, Kaluga region 249038 (Russian Federation); Shkuro, Valentina N. [SI RPA ' Typhoon' of the Roshydromet, 82, Lenin avenue, Obninsk, Kaluga region 249038 (Russian Federation); Rodin, Victor M. [Tobolsk Biological Station of RAS, 15, Voikov street, Tobolsk, Tyumen region 626150 (Russian Federation); Mironenko, Alexander N. [Tobolsk Biological Station of RAS, 15, Voikov street, Tobolsk, Tyumen region 626150 (Russian Federation); Kireeva, Elena V. [Tobolsk Biological Station of RAS, 15, Voikov street, Tobolsk, Tyumen region 626150 (Russian Federation)

    2007-07-15

    Data on content of {sup 90}Sr, {sup 137}Cs, {sup 239,240}Pu and {sup 3}H in water of the Tobol-Irtysh part of the Techa-Iset-Tobol-Irtysh-Ob river system (through which the 'Mayak' PA radioactive wastes are transported) are presented and discussed. The data were received in 2004-2005 under the ISTC project on radioecological monitoring of the Tobol and Irtysh rivers. Monthly observations of {sup 137}Cs, {sup 90}Sr and {sup 3}H content in water in the area of the Tobol and Irtysh confluence have been conducted starting from May 2004. To obtain information on the investigated river system as a whole, the radioecological survey of the Tobol and Irtysh rivers at the section from the mouth of the Iset River to the confluence with the Ob River was carried out in 2004. It is shown that the impact of 'Mayak' PA waste transport by {sup 90}Sr is distinctly traced as far as the area of the Irtysh and Ob confluence.

  5. Water mass interaction in the confluence zone of the Daning River and the Yangtze River--a driving force for algal growth in the Three Gorges Reservoir.

    Science.gov (United States)

    Holbach, Andreas; Wang, Lijing; Chen, Hao; Hu, Wei; Schleicher, Nina; Zheng, Binghui; Norra, Stefan

    2013-10-01

    Increasing eutrophication and algal bloom events in the Yangtze River Three Gorges Reservoir, China, are widely discussed with regard to changed hydrodynamics and nutrient transport and distribution processes. Insights into water exchange and interaction processes between water masses related to large-scale water level fluctuations in the reservoir are crucial to understand water quality and eutrophication dynamics. Therefore, confluence zones of tributaries with the Yangtze River main stream are dedicated key interfaces. In this study, water quality data were recorded in situ and on-line in varying depths with the MINIBAT towed underwater multi-sensor system in the confluence zone of the Daning River and the Yangtze River close to Wushan City during 1 week in August 2011. Geostatistical evaluation of the water quality data was performed, and results were compared to phosphorus contents of selective water samples. The strongly rising water level throughout the measurement period caused Yangtze River water masses to flow upstream into the tributary and supply their higher nutrient and particulate loads into the tributary water body. Rapid algal growth and sedimentation occurred immediately when hydrodynamic conditions in the confluence zone became more serene again. Consequently, water from the Yangtze River main stream can play a key role in providing nutrients to the algal bloom stricken water bodies of its tributaries.

  6. Linking algal growth inhibition to chemical activity

    DEFF Research Database (Denmark)

    Schmidt, Stine N.; Mayer, Philipp

    Unitless chemical activity, expressing the energetic level of a compound relative to its energetic level in pure liquid [0-1], has proven useful to quantify the effective exposure to hydrophobic organic compounds through both aerial and aqueous media. Several studies have linked toxicity to chemi......Unitless chemical activity, expressing the energetic level of a compound relative to its energetic level in pure liquid [0-1], has proven useful to quantify the effective exposure to hydrophobic organic compounds through both aerial and aqueous media. Several studies have linked toxicity...... to chemical activity, as opposed to e.g. the total concentration. Baseline toxicity (narcosis) for neutral hydrophobic organic compounds has been shown to initiate in the narrow chemical activity range of 0.01 to 0.1. This presentation focuses on linking algal growth inhibition to chemical activity......-polar liquids were applied to challenge the chemical activity range for baseline toxicity. For each compound, the effective activity (Ea50) was estimated as the ratio of the effective concentration (EC50) and water solubility. Of these ratios, 90% were within the expected chemical activity range of 0.01 to 0...

  7. Extraction tools for identification of chemical contaminants in estuarine and coastal waters to determine toxic pressure on primary producers.

    Science.gov (United States)

    Booij, Petra; Sjollema, Sascha B; Leonards, Pim E G; de Voogt, Pim; Stroomberg, Gerard J; Vethaak, A Dick; Lamoree, Marja H

    2013-09-01

    The extent to which chemical stressors affect primary producers in estuarine and coastal waters is largely unknown. However, given the large number of legacy pollutants and chemicals of emerging concern present in the environment, this is an important and relevant issue that requires further study. The purpose of our study was to extract and identify compounds which are inhibitors of photosystem II activity in microalgae from estuarine and coastal waters. Field sampling was conducted in the Western Scheldt estuary (Hansweert, The Netherlands). We compared four different commonly used extraction methods: passive sampling with silicone rubber sheets, polar organic integrative samplers (POCIS) and spot water sampling using two different solid phase extraction (SPE) cartridges. Toxic effects of extracts prepared from spot water samples and passive samplers were determined in the Pulse Amplitude Modulation (PAM) fluorometry bioassay. With target chemical analysis using LC-MS and GC-MS, a set of PAHs, PCBs and pesticides was determined in field samples. These compound classes are listed as priority substances for the marine environment by the OSPAR convention. In addition, recovery experiments with both SPE cartridges were performed to evaluate the extraction suitability of these methods. Passive sampling using silicone rubber sheets and POCIS can be applied to determine compounds with different structures and polarities for further identification and determination of toxic pressure on primary producers. The added value of SPE lies in its suitability for quantitative analysis; calibration of passive samplers still needs further investigation for quantification of field concentrations of contaminants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Tracking pyrethroid toxicity in surface water samples: Exposure dynamics and toxicity identification tools for laboratory tests with Hyalella azteca (Amphipoda).

    Science.gov (United States)

    Deanovic, Linda A; Stillway, Marie; Hammock, Bruce G; Fong, Stephanie; Werner, Inge

    2018-02-01

    Pyrethroid insecticides are commonly used in pest control and are present at toxic concentrations in surface waters of agricultural and urban areas worldwide. Monitoring is challenging as a result of their high hydrophobicity and low toxicity thresholds, which often fall below the analytical methods detection limits (MDLs). Standard daphnid bioassays used in surface water monitoring are not sensitive enough to protect more susceptible invertebrate species such as the amphipod Hyalella azteca and chemical loss during toxicity testing is of concern. In the present study, we quantified toxicity loss during storage and testing, using both natural and synthetic water, and presented a tool to enhance toxic signal strength for improved sensitivity of H. azteca toxicity tests. The average half-life during storage in low-density polyethylene (LDPE) cubitainers (Fisher Scientific) at 4 °C of 5 pyrethroids (permethrin, bifenthrin, lambda-cyhalothrin, cyfluthrin, and esfenvalerate) and one organophosphate (chlorpyrifos; used as reference) was 1.4 d, and piperonyl butoxide (PBO) proved an effective tool to potentiate toxicity. We conclude that toxicity tests on ambient water samples containing these hydrophobic insecticides are likely to underestimate toxicity present in the field, and mimic short pulse rather than continuous exposures. Where these chemicals are of concern, the addition of PBO during testing can yield valuable information on their presence or absence. Environ Toxicol Chem 2018;37:462-472. © 2017 SETAC. © 2017 SETAC.

  9. White Paper on the Use of Team Calendars with the JIRA Issue Tracking System and Confluence Collaboration Tools for the xLPR Project

    Energy Technology Data Exchange (ETDEWEB)

    Klasky, Hilda B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Williams, Paul T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bass, Bennett Richard [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2012-09-01

    ORNL was tasked by xLPR project management to propose a team calendar for use within the xLPR consortium. Among various options that were considered, the approach judged by ORNL to best fit the needs of the xLPR project is presented in this document. The Atlassian Team Calendars plug-in used with the Confluence collaboration tool was recommended for several reasons, including the advantage that it provides for a tight integration between Confluence (found at https://xlpr.ornl.gov/wiki ) and xLPR s JIRA issue tracking system (found at https://xlpr.ornl.gov/jira ). This document is divided into two parts. The first part (Sections 1-6) consists of the white paper, which highlights some of the ways that Team Calendars can improve com mun ication between xLPR project managers, group leads, and team members when JIRA is applied for both issue tracking and change-management activities. Specific points emphasized herein are as follows: The Team Calendar application greatly enhances the added value that the JIRA and Confluence tools bring to the xLPR Project. The Team Calendar can improve com mun ication between xLPR project managers, group leads, and team members when JIRA is applied for both issue tracking and change-management activities. The Team Calendar works across different email tools such as Outlook 2011, Outlook 2010, Outlook 2007, Google Calendars and Mac s iCalendar to name a few. xLPR users can now access the wiki Confluence (with embedded Team Calendars) directly from JIRA without having to re-validate their login. The second part consists of an Annex (Section 7), which describes how users can subscribe to Team Calendars from different calendar applications. Specific instructions are given in the Annex that describe how to Import xLPR Team Calendar to Outlook Version Office 2010 Import xLPR Team Calendar to Outlook Version Office 2007 Subscribe to Team Calendar from Google Calendar The reader is directed to Section 4 for instructions on adding events to the

  10. Estimation of Toxicity Equivalent Concentration (TEQ) of ...

    African Journals Online (AJOL)

    Estimation of Toxicity Equivalent Concentration (TEQ) of carcinogenic polycyclic aromatic hydrocarbons in soils from Idu Ekpeye playground and University of Port ... Effective soil remediation and detoxification method like Dispersion by chemical reaction technology should be deployed to clean-up sites to avoid soil toxicity ...

  11. LCIA selection methods for assessing toxic releases

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Birkved, Morten; Hauschild, Michael Zwicky

    2002-01-01

    the inventory that contribute significantly to the impact categories on ecotoxicity and human toxicity to focus the characterisation work. The reason why the selection methods are more important for the chemical-related impact categories than for other impact categories is the extremely high number......Characterization of toxic emissions in life cycle impact assessment (LCIA) is in many cases severely limited by the lack of characterization factors for the emissions mapped in the inventory. The number of substances assigned characterization factors for (eco)toxicity included in the dominating LCA....... The methods are evaluated against a set of pre-defined criteria (comprising consistency with characterization and data requirement) and applied to case studies and a test set of chemicals. The reported work is part of the EU-project OMNIITOX....

  12. Evaluating chemical toxicity of surface disposal of LILW-SL in Belgium

    International Nuclear Information System (INIS)

    Mallants, D.; Wang, L.; Weetjens, E.; Cool, W.

    2008-01-01

    ONDRAF/NIRAS is developing and evaluating a surface disposal concept for low and intermediate level short-lived radioactive waste (LILW-SL) at Dessel (Belgium)). In support of ONDRAF/NIRAS's assignment, SCK/CEN carried out long-term performance assessment calculations for the inorganic non-radioactive components that are present in LILW-SL. This paper summarizes the results obtained from calculations that were done for a heavily engineered surface disposal facility at the nuclear zone of Mol/Dessel. The calculations address the migration of chemo-toxic elements from the disposed waste to groundwater. Screening calculations were performed first to decide which non-radioactive components could potentially increase concentrations in groundwater to levels above the groundwater standards. On the basis of very conservative calculations, only 6 out of 41 chemical elements could not be classified as having a negligible impact on man and environment. For each of these six elements (B, Be, Cd, Pb, Sb, and Zn), the source term was characterized in terms of its chemical form (i.e., metal, oxide, or salt), and a macroscopic transport model built that would capture the small-scale dissolution processes relevant to element release from a cementitious waste container. Furthermore, reliable transport parameters in support of the convection dispersion-retardation (CDR) transport calculations were determined. This included derivation of (1) solubility for a cementitious near field environment based on thermodynamic equilibrium calculations with The Geo-chemist's Workbench, and (2) distribution coefficients based on a compilation of literature values. Scoping calculations illustrated the effects of transport parameter uncertainty on the rates at which inorganic components in LILW-SL leach to groundwater. (authors)

  13. Comparative toxicity of leachates from 52 textiles to Daphnia magna.

    Science.gov (United States)

    Dave, Göran; Aspegren, Pia

    2010-10-01

    The environmental aspects of textiles are very complex and include production, processing, transport, usage, and recycling. Textiles are made from a variety of materials and can contain a large number of chemicals. Chemicals are used during production of fibres, for preservation and colouring and they are released during normal wear and during washing. The aim of this study was to investigate the release to water of toxic chemicals from various textiles. Altogether 52 samples of textiles made from cotton (21), linen (4), cotton and linen (7), cellulose (3), synthetic fibres (7), cotton and synthetic fibres (8) and wool (2). Seven were eco-labelled. All textiles were cut into squares and placed into Petri dishes with 50 ml ISO test medium in a concentration series (4-256 cm(2)/50 ml) and tested for acute toxicity to Daphnia magna. Estimated EC50s were converted into weight/volume, and 48-h EC50s ranged between 182 g/L. It was not possible to detect any difference between fibre type and toxicity (ANOVA), but a significantly higher toxicity was found for printed versus unprinted cotton and cotton/linen textiles, while the opposite was found for synthetic textiles. Eco-labelled products were evenly distributed on a toxicity scale, which means that eco-labelling in its present form does not necessarily protect users or the environment from exposure to toxic chemicals. Therefore, the results from the present study suggest that bioassays and toxicity tests should become an integrated part of textile environmental quality control programs. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Toxicity testing in the 21 century: defining new risk assessment approaches based on perturbation of intracellular toxicity pathways.

    Directory of Open Access Journals (Sweden)

    Sudin Bhattacharya

    Full Text Available The approaches to quantitatively assessing the health risks of chemical exposure have not changed appreciably in the past 50 to 80 years, the focus remaining on high-dose studies that measure adverse outcomes in homogeneous animal populations. This expensive, low-throughput approach relies on conservative extrapolations to relate animal studies to much lower-dose human exposures and is of questionable relevance to predicting risks to humans at their typical low exposures. It makes little use of a mechanistic understanding of the mode of action by which chemicals perturb biological processes in human cells and tissues. An alternative vision, proposed by the U.S. National Research Council (NRC report Toxicity Testing in the 21(st Century: A Vision and a Strategy, called for moving away from traditional high-dose animal studies to an approach based on perturbation of cellular responses using well-designed in vitro assays. Central to this vision are (a "toxicity pathways" (the innate cellular pathways that may be perturbed by chemicals and (b the determination of chemical concentration ranges where those perturbations are likely to be excessive, thereby leading to adverse health effects if present for a prolonged duration in an intact organism. In this paper we briefly review the original NRC report and responses to that report over the past 3 years, and discuss how the change in testing might be achieved in the U.S. and in the European Union (EU. EU initiatives in developing alternatives to animal testing of cosmetic ingredients have run very much in parallel with the NRC report. Moving from current practice to the NRC vision would require using prototype toxicity pathways to develop case studies showing the new vision in action. In this vein, we also discuss how the proposed strategy for toxicity testing might be applied to the toxicity pathways associated with DNA damage and repair.

  15. Mechanisms of Phosphine Toxicity

    Directory of Open Access Journals (Sweden)

    Nisa S. Nath

    2011-01-01

    Full Text Available Fumigation with phosphine gas is by far the most widely used treatment for the protection of stored grain against insect pests. The development of high-level resistance in insects now threatens its continued use. As there is no suitable chemical to replace phosphine, it is essential to understand the mechanisms of phosphine toxicity to increase the effectiveness of resistance management. Because phosphine is such a simple molecule (PH3, the chemistry of phosphorus is central to its toxicity. The elements above and below phosphorus in the periodic table are nitrogen (N and arsenic (As, which also produce toxic hydrides, namely, NH3 and AsH3. The three hydrides cause related symptoms and similar changes to cellular and organismal physiology, including disruption of the sympathetic nervous system, suppressed energy metabolism and toxic changes to the redox state of the cell. We propose that these three effects are interdependent contributors to phosphine toxicity.

  16. Mutagenicity of chemicals in genetically modified animals

    NARCIS (Netherlands)

    Willems MI; van Benthem J; LEO

    2001-01-01

    The strategy for assessing human health risks of chemicals consists of a large number of tests in different research disciplines. Tests include acute and chronic toxicity, genotoxicity, reproduction toxicity and carcinogenicity. Genotoxic properties of chemicals are assessed in short-term in vitro

  17. Emergency management of chemical weapons injuries.

    Science.gov (United States)

    Anderson, Peter D

    2012-02-01

    The potential for chemical weapons to be used in terrorism is a real possibility. Classes of chemical weapons include nerve agents, vesicants (blister agents), choking agents, incapacitating agents, riot control agents, blood agents, and toxic industrial chemicals. The nerve agents work by blocking the actions of acetylcholinesterase leading to a cholinergic syndrome. Nerve agents include sarin, tabun, VX, cyclosarin, and soman. The vesicants include sulfur mustard and lewisite. The vesicants produce blisters and also damage the upper airways. Choking agents include phosgene and chlorine gas. Choking agents cause pulmonary edema. Incapacitating agents include fentanyl and its derivatives and adamsite. Riot control agents include Mace and pepper spray. Blood agents include cyanide. The mechanism of toxicity for cyanide is blocking oxidative phosphorylation. Toxic industrial chemicals include agents such as formaldehyde, hydrofluoric acid, and ammonia.

  18. Metal and proton toxicity to lake zooplankton: A chemical speciation based modelling approach

    International Nuclear Information System (INIS)

    Stockdale, Anthony; Tipping, Edward; Lofts, Stephen; Fott, Jan; Garmo, Øyvind A.; Hruska, Jakub; Keller, Bill; Löfgren, Stefan; Maberly, Stephen C.; Majer, Vladimir; Nierzwicki-Bauer, Sandra A.; Persson, Gunnar; Schartau, Ann-Kristin; Thackeray, Stephen J.

    2014-01-01

    The WHAM-F TOX model quantifies the combined toxic effects of protons and metal cations towards aquatic organisms through the toxicity function (F TOX ), a linear combination of the products of organism-bound cation and a toxic potency coefficient for each cation. We describe the application of the model to predict an observable ecological field variable, species richness of pelagic lake crustacean zooplankton, studied with respect to either acidification or the impacts of metals from smelters. The fitted results give toxic potencies increasing in the order H + TOX to relate combined toxic effects of protons and metal cations towards lake crustacean zooplankton. • The fitted results give toxic potencies increasing in the order H + TOX model has been applied to field data for pelagic lake crustacean zooplankton. The fitted results give metal toxic potencies increasing in the order H + < Al < Cu < Zn < Ni

  19. Meta-analysis of aquatic chronic chemical toxicity data

    Science.gov (United States)

    Chronic toxicity data from the open literature and from tests submitted for pesticide registration were extracted and assembled into a database, AquaChronTox, with a flexible search interface. Data were captured at a treatment and, when available, replicate level to support conc...

  20. New applications in EPA’s ECOTOX Knowledge System: Assimilating relative potencies of metals across chemical and biological species from literature-based toxicity effects data.

    Science.gov (United States)

    Toxicity of metals in field settings can vary widely among ionic chemical species and across biological receptors. Thus, a challenge often found in developing TRVs for the risk assessment of metals is identifying the most appropriate metal and biological species combinations for...

  1. Individual Differences in Men’s Misperception of Women’s Sexual Intent: Application and Extension of the Confluence Model

    OpenAIRE

    Wegner, Rhiana; Abbey, Antonia

    2016-01-01

    Men are more likely than women to misperceive a cross-sex companion’s degree of sexual interest. The current study extends previous research by using the confluence model (Malamuth et al., 1991) to examine how narcissism and impulsive sensation-seeking are directly and indirectly associated with men’s misperception of women’s sexual interest. A community sample of young, single men (N = 470) completed audio computer-assisted self-interviews. Using path analyses, hostile masculinity and impers...

  2. Chemical ecotoxicology

    International Nuclear Information System (INIS)

    Paasivirta, J.

    1991-01-01

    This book discusses risk assessment, chemical cycles, structure-activity relations, organohalogens, oil residues, mercury, sampling and analysis of trace chemicals, and emissions from the forestry industry. Topics include: Cycles of chemicals in the environment. Rick assessment and management, strucuture and toxicity, sampling and analysis of trace chemicals in environment, interpretation of the environmental analysis results, mercury in the environment, organohalogen compounds in the environment, emissions from forestry industry, oil residues in the environment: oil spills in the marine environment

  3. Investigations of chemical warfare agents and toxic industrial compounds with proton-transfer-reaction mass spectrometry for a real-time threat monitoring scenario.

    Science.gov (United States)

    Kassebacher, Thomas; Sulzer, Philipp; Jürschik, Simone; Hartungen, Eugen; Jordan, Alfons; Edtbauer, Achim; Feil, Stefan; Hanel, Gernot; Jaksch, Stefan; Märk, Lukas; Mayhew, Chris A; Märk, Tilmann D

    2013-01-30

    Security and protection against terrorist attacks are major issues in modern society. One especially challenging task is the monitoring and protection of air conditioning and heating systems of buildings against terrorist attacks with toxic chemicals. As existing technologies have low selectivity, long response times or insufficient sensitivity, there is a need for a novel approach such as we present here. We have analyzed various chemical warfare agents (CWAs) and/or toxic industrial compounds (TICs) and related compounds, namely phosgene, diphosgene, chloroacetone, chloroacetophenone, diisopropylaminoethanol, and triethyl phosphate, utilizing a high-resolution proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOFMS) instrument with the objective of finding key product ions and their intensities, which will allow a low-resolution quadrupole mass spectrometry based PTR-MS system to be used with high confidence in the assignment of threat agents in the atmosphere. We obtained high accuracy PTR-TOFMS mass spectra of the six compounds under study at two different values for the reduced electric field in the drift tube (E/N). From these data we have compiled a table containing product ions, and isotopic and E/N ratios for highly selective threat compound detection with a compact and cost-effective quadrupole-based PTR-MS instrument. Furthermore, using chloroacetophenone (tear gas), we demonstrated that this instrument's response is highly linear in the concentration range of typical Acute Exposure Guideline Levels (AEGLs). On the basis of the presented results it is possible to develop a compact and cost-effective PTR-QMS instrument that monitors air supply systems and triggers an alarm as soon as the presence of a threat agent is detected. We hope that this real-time surveillance device will help to seriously improve safety and security in environments vulnerable to terrorist attacks with toxic chemicals. Copyright © 2012 John Wiley & Sons, Ltd.

  4. MONITORING THE AIR FOR TOXIC AND GENOTOXIC COMPOUNDS

    Science.gov (United States)

    A time-integrated sampling system interfaced with a toxicity-based assay is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethyl sulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor p...

  5. The Correlation between Chemical Composition, as Determined by UPLC-TOF-MS, and Acute Toxicity of Veratrum nigrum L. and Radix paeoniae alba

    Directory of Open Access Journals (Sweden)

    Xianxie Zhang

    2014-01-01

    Full Text Available The eighteen incompatible medicaments is an important theory in traditional Chinese medicine. The theory suggests that drugs in the eighteen incompatible medicaments can be toxic when used together. Veratrum nigrum L. and Radix paeoniae alba belong to the eighteen incompatible medicaments and have been prohibited for thousands of years. This study offers preliminary insight into the mechanism and chemical constituents responsible for the incompatibility and toxicity of these two agents. Specifically, we performed toxicology studies to identify and quantify the constituent substances of the two agents. Experiments revealed that acute toxicity increases when the dose of V. nigrum L. is higher than, or equal to, RPA. UPLC-TOF-MS analysis showed that, although the volumes of V. nigrum L. were the same, the content of some veratrum alkaloids changed significantly and had a trend toward a highly positive correlation r≥0.8 with toxicity. This suggests that the increased toxicity of the V. nigrum L. and RPA combination was due mainly to increased content of the special veratrum alkaloids. The cytotoxicity of veratridine in SH-SY5Y cells was decreased with increasing paeoniflorin concentrations. This study provides insight into the mechanism behind the incompatibility theory of TCM.

  6. Multiple chemical sensitivity

    DEFF Research Database (Denmark)

    Tran, Marie Thi Dao; Arendt-Nielsen, Lars; Kupers, Ron

    2013-01-01

    BACKGROUND: Multiple Chemical Sensitivity (MCS) is a chronic condition characterized by recurrent, non-specific symptoms in response to chemically unrelated exposures in non-toxic concentrations. Although the pathophysiology of MCS remains unknown, central sensitization may be an important factor...

  7. phytochemical composition and acute toxicity evaluation of aqueous

    African Journals Online (AJOL)

    DR. AMINU

    2012-12-02

    Dec 2, 2012 ... based upon single chemicals, many medicinal and aromatic plants exert their ... metaphorically used to describe toxic effects on larger and more complex ..... Chemical Industries. Branch, Division of Industrial Operations,.

  8. Monitoring of toxic chemical in the basin of Maringá stream - doi: 10.4025/actascitechnol.v34i3.10302

    Directory of Open Access Journals (Sweden)

    Rosane Freire

    2012-05-01

    Full Text Available This study aimed to track the spatial and temporal variations of toxic chemical compounds, such as the metals Al, Cd, Pb, Cu, Cr, Mn, Zn and the pesticide glyphosate, in Maringá stream and in a stretch of Pirapó river. The results pointed out that, in the case of metals, one of the possible sources of these elements is associated to agricultural activities. For glyphosate, were not found concentrations above those established by the Brazilian Water Quality Legislation (CONAMA 357/2005. Concerning this, we emphasized that the impact caused by the agrochemical on water quality should be evaluated considering the adverse effects to the environment caused by its degradation, that produces recalcitrant and surfactant compounds that may be even more toxic for humans and aquatic environment. 

  9. Toxicity of Pesticides. Agrichemical Fact Sheet 2.

    Science.gov (United States)

    Hock, Winand K.

    This fact sheet gives the acute oral and dermal toxicity (LD 50) of over 250 pesticides in lab animals. The chemicals are categorized as fungicides, herbicides, insecticides, or miscellaneous compounds. One or more trade names are given for each pesticide. In addition, a brief explanation of toxicity determination is given. (BB)

  10. Computational screening of functional groups for capture of toxic industrial chemicals in porous materials.

    Science.gov (United States)

    Kim, Ki Chul; Fairen-Jimenez, David; Snurr, Randall Q

    2017-12-06

    A thermodynamic analysis using quantum chemical methods was carried out to identify optimal functional group candidates that can be included in metal-organic frameworks and activated carbons for the selective capture of toxic industrial chemicals (TICs) in humid air. We calculated the binding energies of 14 critical TICs plus water with a series of 10 functional groups attached to a naphthalene ring model. Using vibrational calculations, the free energies of adsorption were calculated in addition to the binding energies. Our results show that, in these systems, the binding energies and free energies follow similar trends. We identified copper(i) carboxylate as the optimal functional group (among those studied) for the selective binding of the majority of the TICs in humid air, and this functional group exhibits especially strong binding for sulfuric acid. Further thermodynamic analysis shows that the presence of water weakens the binding strength of sulfuric acid with the copper carboxylate group. Our calculations predict that functionalization of aromatic rings would be detrimental to selective capture of COCl 2 , CO 2 , and Cl 2 under humid conditions. Finally, we found that forming an ionic complex, H 3 O + HSO 4 - , between H 2 SO 4 and H 2 O via proton transfer is not favorable on copper carboxylate.

  11. Evaluating the Zebrafish Embryo Toxicity Test for Pesticide ...

    Science.gov (United States)

    Given the numerous chemicals used in society, it is critical to develop tools for accurate and efficient evaluation of potential risks to human and ecological receptors. Fish embryo acute toxicity tests are 1 tool that has been shown to be highly predictive of standard, more resource-intensive, juvenile fish acute toxicity tests. However, there is also evidence that fish embryos are less sensitive than juvenile fish for certain types of chemicals, including neurotoxicants. The utility of fish embryos for pesticide hazard assessment was investigated by comparing published zebrafish embryo toxicity data from pesticides with median lethal concentration 50% (LC50) data for juveniles of 3 commonly tested fish species: rainbow trout, bluegill sunfish, and sheepshead minnow. A poor, albeit significant, relationship (r2 = 0.28; p embryo and juvenile fish toxicity when pesticides were considered as a single group, but a much better relationship (r2 = 0.64; p embryo toxicity test endpoints are particularly insensitive to neurotoxicants. These results indicate that it is still premature to replace juvenile fish toxicity tests with embryo-based tests such as the Organisation for Economic Co-op

  12. The molecular basis of simple relationships between exposure concentration and toxic effects with time.

    Science.gov (United States)

    Tennekes, Henk A; Sánchez-Bayo, Francisco

    2013-07-05

    Understanding the toxicity of chemicals to organisms requires considering the molecular mechanisms involved as well as the relationships between exposure concentration and toxic effects with time. Our current knowledge about such relationships is mainly explained from a toxicodynamic and toxicokinetic perspective. This paper re-introduces an old approach that takes into account the biochemical mode of action and their resulting biological effects over time of exposure. Empirical evidence demonstrates that the Druckrey-Küpfmüller toxicity model, which was validated for chemical carcinogens in the early 1960s, is also applicable to a wide range of toxic compounds in ecotoxicology. According to this model, the character of a poison is primarily determined by the reversibility of critical receptor binding. Chemicals showing irreversible or slowly reversible binding to specific receptors will produce cumulative effects with time of exposure, and whenever the effects are also irreversible (e.g. death) they are reinforced over time; these chemicals have time-cumulative toxicity. Compounds having non-specific receptor binding, or involving slowly reversible binding to some receptors that do not contribute to toxicity, may also be time-dependent; however, their effects depend primarily on the exposure concentration, with time playing a minor role. Consequently, the mechanism of toxic action has important implications for risk assessment. Traditional risk approaches cannot predict the impacts of toxicants with time-cumulative toxicity in the environment. New assessment procedures are needed to evaluate the risk that the latter chemicals pose on humans and the environment. An example is shown to explain how the risk of time-dependent toxicants is underestimated when using current risk assessment protocols. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. THE CHEMICAL TECHNOLOGIES OF SOIL’S DECONTAMINATION

    Directory of Open Access Journals (Sweden)

    Roxana – Gabriela POPA

    2017-12-01

    Full Text Available The chemical soil degradation technologies are based on the pollutant conversion and immobilisation, or the mobilization, extraction and washing of pollutants. They use chemical agents that oxidize or reduce pollutants to less toxic or non-toxic forms and immobilize them in the underground environment in order to diminish their migration and the extent of pollution. Classification of chemical methods of depollution is based on the dominant reaction criterion: oxidation, reduction, neutralization, precipitation, chemical extraction, hydrolysis, dehalogenation, precipitation.

  14. National toxicology program chemical nomination and selection process

    Energy Technology Data Exchange (ETDEWEB)

    Selkirk, J.K. [National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States)

    1990-12-31

    The National Toxicology Program (NTP) was organized to support national public health programs by initiating research designed to understand the physiological, metabolic, and genetic basis for chemical toxicity. The primary mandated responsibilities of NTP were in vivo and vitro toxicity testing of potentially hazardous chemicals; broadening the spectrum of toxicological information on known hazardous chemicals; validating current toxicological assay systems as well as developing new and innovative toxicity testing technology; and rapidly communicating test results to government agencies with regulatory responsibilities and to the medical and scientific communities. 2 figs.

  15. A novel approach: chemical relational databases, and the role of the ISSCAN database on assessing chemical carcinogenicity.

    Science.gov (United States)

    Benigni, Romualdo; Bossa, Cecilia; Richard, Ann M; Yang, Chihae

    2008-01-01

    Mutagenicity and carcinogenicity databases are crucial resources for toxicologists and regulators involved in chemicals risk assessment. Until recently, existing public toxicity databases have been constructed primarily as "look-up-tables" of existing data, and most often did not contain chemical structures. Concepts and technologies originated from the structure-activity relationships science have provided powerful tools to create new types of databases, where the effective linkage of chemical toxicity with chemical structure can facilitate and greatly enhance data gathering and hypothesis generation, by permitting: a) exploration across both chemical and biological domains; and b) structure-searchability through the data. This paper reviews the main public databases, together with the progress in the field of chemical relational databases, and presents the ISSCAN database on experimental chemical carcinogens.

  16. Toxic pressure of herbicides on microalgae in Dutch estuarine and coastal waters

    Science.gov (United States)

    Booij, Petra; Sjollema, Sascha B.; van der Geest, Harm G.; Leonards, Pim E. G.; Lamoree, Marja H.; de Voogt, W. Pim; Admiraal, Wim; Laane, Remi W. P. M.; Vethaak, A. Dick

    2015-08-01

    For several decades now, there has been an increase in the sources and types of chemicals in estuarine and coastal waters as a consequence of anthropogenic activities. This has led to considerable concern about the effects of these chemicals on the marine food chain. The fact is that estuarine and coastal waters are the most productive ecosystems with high primary production by microalgae. The toxic pressure of specific phytotoxic chemicals now poses a major threat to these ecosystems. In a previous study, six herbicides (atrazine, diuron, irgarol, isoproturon, terbutryn and terbutylazine) were identified as the main contaminants affecting photosynthesis in marine microalgae. The purpose of this study is to investigate the toxic pressure of these herbicides in the Dutch estuarine and coastal waters in relation to the effective photosystem II efficiency (ΦPSII) in microalgae. Temporal and spatial variations in the concentrations of these herbicides were analyzed based on monitoring data. Additionally, a field study was carried out in which chemical analysis of water was performed and also a toxicity assessment using the Pulse Amplitude Modulation (PAM) fluorometry assay that measures ΦPSII. The toxic pressure on ΦPSII in microalgae has decreased with 55-82% from 2003 to 2012, with the Western Scheldt estuary showing the highest toxic pressure. By combining toxicity data from the PAM assay with chemical analysis of herbicide concentrations, we have identified diuron and terbutylazine as the main contributors to the toxic pressure on microalgae. Although direct effects are not expected, the toxic pressure is close to the 10% effect level in the PAM assay. A compliance check with the current environmental legislation of the European Union revealed that the quality standards are not sufficient to protect marine microalgae.

  17. Rules for distinguishing toxicants that cause type I and type II narcosis syndromes.

    OpenAIRE

    Veith, G D; Broderius, S J

    1990-01-01

    Narcosis is a nonspecific reversible state of arrested activity of protoplasmic structures caused by a wide variety of organic chemicals. The vast majority of industrial organic chemicals can be characterized by a baseline structure-toxicity relationship as developed for diverse aquatic organisms, using only the n-octanol/water partition coefficient as a descriptor. There are, however, many apparent narcotic chemicals that are more toxic than baseline narcosis predicts. Some of these chemical...

  18. Chemically-functionalized microcantilevers for detection of chemical, biological and explosive material

    Science.gov (United States)

    Pinnaduwage, Lal A [Knoxville, TN; Thundat, Thomas G [Knoxville, TN; Brown, Gilbert M [Knoxville, TN; Hawk, John Eric [Olive Branch, MS; Boiadjiev, Vassil I [Knoxville, TN

    2007-04-24

    A chemically functionalized cantilever system has a cantilever coated on one side thereof with a reagent or biological species which binds to an analyte. The system is of particular value when the analyte is a toxic chemical biological warfare agent or an explosive.

  19. Toxicity of lunar dust

    NARCIS (Netherlands)

    Linnarsson, D.; Carpenter, J.; Fubini, B.; Gerde, P.; Loftus, D.; Prisk, K.; Staufer, U.; Tranfield, E.; van Westrenen, W.

    2012-01-01

    The formation, composition and physical properties of lunar dust are incompletely characterised with regard to human health. While the physical and chemical determinants of dust toxicity for materials such as asbestos, quartz, volcanic ashes and urban particulate matter have been the focus of

  20. Toxicity and utilization of chemical weapons: does toxicity and venom utilization contribute to the formation of species communities?

    Science.gov (United States)

    Westermann, Fabian L; McPherson, Iain S; Jones, Tappey H; Milicich, Lesley; Lester, Philip J

    2015-08-01

    Toxicity and the utilization of venom are essential features in the ecology of many animal species and have been hypothesized to be important factors contributing to the assembly of communities through competitive interactions. Ants of the genus Monomorium utilize a variety of venom compositions, which have been reported to give them a competitive advantage. Here, we investigate two pairs of Monomorium species, which differ in the structural compositions of their venom and their co-occurrence patterns with the invasive Argentine ant. We looked at the effects of Monomorium venom toxicity, venom utilization, and aggressive physical interactions on Monomorium and Argentine ant survival rates during arena trials. The venom toxicity of the two species co-occurring with the invasive Argentine ants was found to be significantly higher than the toxicity of the two species which do not. There was no correlation between venom toxicity and Monomorium survival; however, three of the four Monomorium species displayed significant variability in their venom usage which was associated with the number of Argentine ant workers encountered during trials. Average Monomorium mortality varied significantly between species, and in Monomorium smithii and Monomorium antipodum, aggressive interactions with Argentine ants had a significant negative effect on their mortality. Our study demonstrates that different factors and strategies can contribute to the ability of a species to withstand the pressure of a dominant invader at high abundance, and venom chemistry appears to be only one of several strategies utilized.

  1. OECD validation study to assess intra- and inter-laboratory reproducibility of the zebrafish embryo toxicity test for acute aquatic toxicity testing

    NARCIS (Netherlands)

    Busquet, F.; Strecker, R.; Rawlings, J.M.; Belanger, S.E.; Braunbeck, T.; Carr, G.J.; Cenijn, P.H.; Fochtman, P.; Gourmelon, A.; Hübler, N.; Kleensang, A.; Knöbel, M.; Kussatz, C.; Legler, J.; Lillicrap, A.; Martínez-Jerónimo, F.; Polleichtner, C.; Rzodeczko, H.; Salinas, E.; Schneider, K.E.; Scholz, S.; van den Brandhof, E.J.; van der Ven, L.T.; Walter-Rohde, S.; Weigt, S.; Witters, H.; Halder, M.

    2014-01-01

    A The OECD validation study of the zebrafish embryo acute toxicity test (ZFET) for acute aquatic toxicity testing evaluated the ZFET reproducibility by testing 20 chemicals at 5 different concentrations in 3 independent runs in at least 3 laboratories. Stock solutions and test concentrations were

  2. Assessment of multi-chemical pollution in aquatic ecosystems using toxic units: compound prioritization, mixture characterization and relationships with biological descriptors.

    Science.gov (United States)

    Ginebreda, Antoni; Kuzmanovic, Maja; Guasch, Helena; de Alda, Miren López; López-Doval, Julio C; Muñoz, Isabel; Ricart, Marta; Romaní, Anna M; Sabater, Sergi; Barceló, Damià

    2014-01-15

    Chemical pollution is typically characterized by exposure to multiple rather than to single or a limited number of compounds. Parent compounds, transformation products and other non-targeted compounds yield mixtures whose composition can only be partially identified by monitoring, while a substantial proportion remains unknown. In this context, risk assessment based on the application of additive ecotoxicity models, such as concentration addition (CA), is rendered somewhat misleading. Here, we show that ecotoxicity risk information can be better understood upon consideration of the probabilistic distribution of risk among the different compounds. Toxic units of the compounds identified in a sample fit a lognormal probability distribution. The parameters characterizing this distribution (mean and standard deviation) provide information which can be tentatively interpreted as a measure of the toxic load and its apportionment among the constituents in the mixture (here interpreted as mixture complexity). Furthermore, they provide information for compound prioritization tailored to each site and enable prediction of some of the functional and structural biological variables associated with the receiving ecosystem. The proposed approach was tested in the Llobregat River basin (NE Spain) using exposure and toxicity data (algae and Daphnia) corresponding to 29 pharmaceuticals and 22 pesticides, and 5 structural and functional biological descriptors related to benthic macroinvertebrates (diversity, biomass) and biofilm metrics (diatom quality, chlorophyll-a content and photosynthetic capacity). Aggregated toxic units based on Daphnia and algae bioassays provided a good indication of the pollution pattern of the Llobregat River basin. Relative contribution of pesticides and pharmaceuticals to total toxic load was variable and highly site dependent, the latter group tending to increase its contribution in urban areas. Contaminated sites' toxic load was typically dominated by

  3. In vitro toxicities of experimental jet fuel system ice-inhibiting agents.

    Science.gov (United States)

    Geiss, K T; Frazier, J M

    2001-07-02

    One research emphasis within the Department of Defense has been to seek the replacement of operational compounds with alternatives that pose less potential risk to human and ecological systems. Alternatives to glycol ethers, such as diethylene glycol monomethyl ether (M-DE), were investigated for use as jet fuel system ice-inhibiting agents (FSIIs). This group of chemicals includes three derivatives of 1,3-dioxolane-4-methanol (M-1, M-2, and M-3) and a 1,3-dioxane (M-27). In addition, M-DE was evaluated as a reference compound. Our approach was to implement an in vitro test battery based on primary rat hepatocyte cultures to perform initial toxicity evaluations. Hepatocytes were exposed to experimental chemicals (0, 0.001, 0.01, 0.1, 1, 10 mM dosages) for periods up to 24 h. Samples were assayed for lactate dehydrogenase (LDH) release, MTT dye reduction activity, glutathione level, and rate of protein synthesis as indicators of toxicity. Of the compounds tested, M-1, especially at the 10-mM dose, appeared to be more potent than the other chemicals, as measured by these toxicity assays. M-DE, the current FSII, elicited little response in the toxicity assays. Although some variations in toxicity were observed at the 10-mM dose, the in vitro toxicities of the chemicals tested (except for M-1) were not considerably greater than that of M-DE.

  4. The influence of time on lead toxicity and bioaccumulation determined by the OECD earthworm toxicity test

    International Nuclear Information System (INIS)

    Davies, N.A.Nicola A.; Hodson, M.E.Mark E.; Black, S.Stuart

    2003-01-01

    Timing of lead addition and worms to soil affects the response of the worms to soil affects the response of the worms to lead. - Internationally agreed standard protocols for assessing chemical toxicity of contaminants in soil to worms assume that the test soil does not need to equilibrate with the chemical to be tested prior to the addition of the test organisms and that the chemical will exert any toxic effect upon the test organism within 28 days. Three experiments were carried out to investigate these assumptions. The first experiment was a standard toxicity test where lead nitrate was added to a soil in solution to give a range of concentrations. The mortality of the worms and the concentration of lead in the survivors were determined. The LC 50 s for 14 and 28 days were 5311 and 5395 μg Pb g -1 soil respectively. The second experiment was a timed lead accumulation study with worms cultivated in soil containing either 3000 or 5000 μg Pb g -1 soil . The concentration of lead in the worms was determined at various sampling times. Uptake at both concentrations was linear with time. Worms in the 5000 μg g -1 soil accumulated lead at a faster rate (3.16 μg Pb g -1 tissue day -1 ) than those in the 3000 μg g -1 soil (2.21 μg Pb g -1 tissue day -1 ). The third experiment was a timed experiment with worms cultivated in soil containing 7000 μg Pb g -1 soil . Soil and lead nitrate solution were mixed and stored at 20 deg. C. Worms were added at various times over a 35-day period. The time to death increased from 23 h, when worms were added directly after the lead was added to the soil, to 67 h when worms were added after the soil had equilibrated with the lead for 35 days. In artificially Pb-amended soils the worms accumulate Pb over the duration of their exposure to the Pb. Thus time limited toxicity tests may be terminated before worm body load has reached a toxic level. This could result in under-estimates of the toxicity of Pb to worms. As the equilibration

  5. Development of a database: DACTARI for a radio-toxic element ranking methodology

    International Nuclear Information System (INIS)

    Ansoborlo, E.; Santucci, C.; Grouiller, J.P.; Boucher, L.; Fluery-Herard, A.; Menetrier, F.; Comte, A.; Cook, E.; Moulin, V.

    2007-01-01

    Dosimetric impact studies aim at evaluating potential radiological effects of chronic or acute releases from nuclear facilities. A methodology for ranking radionuclides (RN) in terms of their health-related impact on the human population was first developed at CEA with specific criteria for each RN that could be applied to a variety of situations. It is based, in particular, on applying physico-chemical criteria to the complete RN inventory (present in the release or in the source term) and on applying norms related to radiation protection and chemical toxicology. The initial step consisted in identifying and collecting data necessary to apply the methodology, with reference to a previous database of long-lived radionuclides (LLRN, with half-lives ranging from 30 to 10 14 y) containing 95 radionuclides. The initial results have allowed us to identify missing data and revealed the need to complete the study for both toxic and radio-toxic aspects. This led us to the next step, developing a specific database, Database for Chemical Toxicity and Radiotoxicity Assessment of RadIonuclides (DACTARI), to collect data on chemical toxicity and radiotoxicity, including acute or chronic toxicity, the chemical form of the compounds, the contamination route (ingestion, inhalation), lethal doses, target organs, intestinal and maternal-foetal transfer, drinking water guidelines and the mutagenic and carcinogenic properties. (authors)

  6. Report on R and D work on radioactive waste management and dumping of chemical-toxic wastes sponsored by the BMFT in the second half of 1991

    International Nuclear Information System (INIS)

    1992-05-01

    On behalf of the Federal Minister of Research and Technology, the Kernforschungszentrum Karlsruhe has undertaken the projekt management of the R and D programme sector of waste management, subdivided into the programmes decommissioning and nuclear fuel cycle, and ultimate disposal of dangerous wastes. Ultimate disposal of dangerous wastes is understood to be the ultimate disposal of radioactive wastes and the dumping of chemical-toxic wastes. The progress report documents its programme sector of waste management. Its main part contains the formalized interim reports (as of 31.12.1991) on all projects attended by the manager of the waste management project, arranged according to promotion marks (letter C in the promotion mark stands for chemical-toxic, E for ultimate disposal, S for decommisioning, W for reprocessing, and U - for historical reasons - for university project). (orig./BBR) [de

  7. Towards Global QSAR Model Building for Acute Toxicity: Munro Database Case Study

    Directory of Open Access Journals (Sweden)

    Swapnil Chavan

    2014-10-01

    Full Text Available A series of 436 Munro database chemicals were studied with respect to their corresponding experimental LD50 values to investigate the possibility of establishing a global QSAR model for acute toxicity. Dragon molecular descriptors were used for the QSAR model development and genetic algorithms were used to select descriptors better correlated with toxicity data. Toxic values were discretized in a qualitative class on the basis of the Globally Harmonized Scheme: the 436 chemicals were divided into 3 classes based on their experimental LD50 values: highly toxic, intermediate toxic and low to non-toxic. The k-nearest neighbor (k-NN classification method was calibrated on 25 molecular descriptors and gave a non-error rate (NER equal to 0.66 and 0.57 for internal and external prediction sets, respectively. Even if the classification performances are not optimal, the subsequent analysis of the selected descriptors and their relationship with toxicity levels constitute a step towards the development of a global QSAR model for acute toxicity.

  8. Toxic Chemicals in the Soil Environment. Volume 2. Interactions of Some Toxic Chemicals/Chemical Warfare Agents and Soils

    Science.gov (United States)

    1985-06-01

    K., S. Barik , and N. Sethunathan. 1981. Stability of commercial formulations of fenitrothion, methyl parathion, and parathion in anaero- bic soils. J ...34 D(Cl - C2 )L where; J - rate of flow or flWx, or the 4mount of solute (chemical) diffuisiguuit ti= across a unit crossý-ectional area, D difffuoion...surfaces (coatentrations C, aud C2) varies vith the concentration gradient, tlus’: 3 - -D(dC/dx) Where: J * the flux in grams or moles in cm%1s- acroeas a

  9. 76 FR 1067 - Testing of Certain High Production Volume Chemicals; Second Group of Chemicals

    Science.gov (United States)

    2011-01-07

    ... Mfg & NOES (number based criteria based criteria significant chemicals (lbs) industrial of workers... 2070-AD16 Testing of Certain High Production Volume Chemicals; Second Group of Chemicals AGENCY... section 4(a)(1)(B) of the Toxic Substances Control Act (TSCA) to require manufacturers, importers, and...

  10. Extensive review of fish embryo acute toxicities for the prediction of GHS acute systemic toxicity categories.

    Science.gov (United States)

    Scholz, Stefan; Ortmann, Julia; Klüver, Nils; Léonard, Marc

    2014-08-01

    Distribution and marketing of chemicals require appropriate labelling of health, physical and environmental hazards according to the United Nations global harmonisation system (GHS). Labelling for (human) acute toxicity categories is based on experimental findings usually obtained by oral, dermal or inhalative exposure of rodents. There is a strong societal demand for replacing animal experiments conducted for safety assessment of chemicals. Fish embryos are considered as alternative to animal testing and are proposed as predictive model both for environmental and human health effects. Therefore, we tested whether LC50s of the fish embryo acute toxicity test would allow effectively predicting of acute mammalian toxicity categories. A database of published fish embryo LC50 containing 641 compounds was established. For these compounds corresponding rat oral LD50 were identified resulting in 364 compounds for which both fish embryo LC50 and rat LD50 was available. Only a weak correlation of fish embryo LC50 and rat oral LD50 was obtained. Fish embryos were also not able to effectively predict GHS oral acute toxicity categories. We concluded that due to fundamental exposure protocol differences (single oral dose versus water-borne exposure) a reverse dosimetry approach is needed to explore the predictive capacity of fish embryos. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Toxicity of tritium

    International Nuclear Information System (INIS)

    Dobson, R.L.

    1979-01-01

    Among radionuclides of importance in atomic energy, 3 H has relatively low toxicity. The main health and environmental worry is the possibility that significant biological effects may follow from protracted exposure to low concentrations in water. To examine this possible hazard and measure toxicity at low tritium concentrations, chronic exposure studies were done on mice and monkeys. During vulnerable developmental periods animals were exposed to 3 HOH, and mice were exposed also to 60 Co gamma irradiation and energy-related chemical agents. The biological endpoint measured was the irreversible loss of female germ cells. Effects from tritium were observed at surprisingly low concentrations where 3 H was found more damaging than previously thought. Comparisons between tritium and gamma radiation showed the relative biological effectiveness (RBE) to be greater than 1 and to reach approximately 3 at very low exposures. For perspective, other comparisons were made: between radiation and chemical agents, which revealed parallels in action on germ cells, and between pre- and postnatal exposure, which warn of possible special hazard to the fetus from both classes of energy-related byproducts

  12. Grand Rounds: An Outbreak of Toxic Hepatitis among Industrial Waste Disposal Workers

    OpenAIRE

    Cheong, Hae-Kwan; Kim, Eun A; Choi, Jung-Keun; Choi, Sung-Bong; Suh, Jeong-Ill; Choi, Dae Seob; Kim, Jung Ran

    2006-01-01

    Context Industrial waste (which is composed of various toxic chemicals), changes to the disposal process, and addition of chemicals should all be monitored and controlled carefully in the industrial waste industry to reduce the health hazard to workers. Case presentation Five workers in an industrial waste plant developed acute toxic hepatitis, one of whom died after 3 months due to fulminant hepatitis. In the plant, we detected several chemicals with hepatotoxic potential, including pyridine...

  13. Covering sources of toxic vapors with foam

    International Nuclear Information System (INIS)

    Aue, W. P.; Guidetti, F.

    2009-01-01

    In a case of chemical terrorism, first responders might well be confronted with a liquid source of toxic vapor which keeps spreading out its hazardous contents. With foam as an efficient and simple means, such a source could be covered up in seconds and the spread of vapors mitigated drastically. Once covered, the source could then wait for a longer time to be removed carefully and professionally by a decontamination team. In order to find foams useful for covering up toxic vapor sources, a large set of measurements has been performed in order to answer the following questions: - Which foams could be used for this purpose? - How thick should the foam cover be? - For how long would such a foam cover be effective? - Could the practical application of foam cause a spread of the toxic chemical? The toxic vapors sources included GB, GD and HD. Among the foams were 10 fire fighter foams (e.g. AFFF, protein) and the aqueous decontamination foam CASCAD. Small scale experiments showed that CASCAD is best suited for covering a toxic source; a 10 cm layer of it covers and decontaminates GB. The large scale experiments confirmed that any fire fighter foam is a suitable cover for a longer or shorter period.(author)

  14. Interactive Chemical Safety for Sustainablity Toxicity Forecaster Dashboard

    Data.gov (United States)

    U.S. Environmental Protection Agency — EPA researchers have been using advances in computational toxicology to address lack of data on the thousands of chemicals. EPA released chemical data on 1,800...

  15. Dietary intake and health effects of selected toxic elements

    OpenAIRE

    Silva, André Luiz Oliveira da; Barrocas, Paulo R.G.; Jacob, Silvana do Couto; Moreira, Josino Costa

    2005-01-01

    Anthropogenic activities have being contributing to the spread of toxic chemicals into the environment, including several toxic metals and metalloids, increasing the levels of human exposure to many of them. Contaminated food is an important route of human exposure and may represent a serious threat to human health. This mini review covers the health effects caused by toxic metals, especially Cd, Hg, Pb and As, the most relevant toxic elements from a human health point of view. As atividad...

  16. Depiction of variants of the portal confluence venous system using multidetector row CT. Analysis of 916 cases

    Energy Technology Data Exchange (ETDEWEB)

    Krumm, P.; Schraml, C.; Bretschneider, C.; Seeger, A.; Klumpp, B.; Kramer, U.; Claussen, C.D.; Miller, S. [Universitaetsklinikum Tuebingen (Germany). Abt. fuer Diagnostische und Interventionelle Radiologie

    2011-12-15

    Purpose: Detailed knowledge of the venous mesenteric system is important for gastrointestinal surgery, particularly for transplantation planning and surgery and for the comprehension of perioperative complications that may influence patient outcome. Data about the mesenteric venous anatomy in the literature varies substantially. The purpose of this study was to categorize venous mesenteric variants and to determine their incidence. Materials and Methods: We included 916 patients requiring diagnostic abdominal CT in the portal venous phase. The mesenteric vein anatomy was categorized as follows: 1. the inferior mesenteric vein (IMV) enters the splenic vein (SV); 2. the IMV enters into the angle of the confluence of the SV and superior mesenteric vein (SMV) forming the portal vein (PV); 3. the IMV enters the SMV; 4. seven rare variants. We measured the diameters of the veins and distances from the confluence to the IMV origins. Results: The frequency of variants was: 1. 37.6 %, 2. 28.8 %; 3. 19.2 %. The rare variants totaled 14.4 %. The average vessel diameters measured in cm: PV 1.48; SV 1.02; SMV 1.2; IMV 0.5. The mean IMV entering distances were 1.66 cm in variant 1 and 0.75 cm in variant 3. Conclusion: The three common variants (1, 2 and 3) are the most relevant ones. 14.4 % of patients had different anatomic variants. The variability of the mesenteric venous system was higher than previously published. Knowledge of rare variants is important to avoid complications in abdominal surgery. (orig.)

  17. Depiction of variants of the portal confluence venous system using multidetector row CT. Analysis of 916 cases

    International Nuclear Information System (INIS)

    Krumm, P.; Schraml, C.; Bretschneider, C.; Seeger, A.; Klumpp, B.; Kramer, U.; Claussen, C.D.; Miller, S.

    2011-01-01

    Purpose: Detailed knowledge of the venous mesenteric system is important for gastrointestinal surgery, particularly for transplantation planning and surgery and for the comprehension of perioperative complications that may influence patient outcome. Data about the mesenteric venous anatomy in the literature varies substantially. The purpose of this study was to categorize venous mesenteric variants and to determine their incidence. Materials and Methods: We included 916 patients requiring diagnostic abdominal CT in the portal venous phase. The mesenteric vein anatomy was categorized as follows: 1. the inferior mesenteric vein (IMV) enters the splenic vein (SV); 2. the IMV enters into the angle of the confluence of the SV and superior mesenteric vein (SMV) forming the portal vein (PV); 3. the IMV enters the SMV; 4. seven rare variants. We measured the diameters of the veins and distances from the confluence to the IMV origins. Results: The frequency of variants was: 1. 37.6 %, 2. 28.8 %; 3. 19.2 %. The rare variants totaled 14.4 %. The average vessel diameters measured in cm: PV 1.48; SV 1.02; SMV 1.2; IMV 0.5. The mean IMV entering distances were 1.66 cm in variant 1 and 0.75 cm in variant 3. Conclusion: The three common variants (1, 2 and 3) are the most relevant ones. 14.4 % of patients had different anatomic variants. The variability of the mesenteric venous system was higher than previously published. Knowledge of rare variants is important to avoid complications in abdominal surgery. (orig.)

  18. RELATIONSHIP BETWEEN COMPOSITION AND TOXICITY OF ENGINE EMISSION SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    (1)Mauderly, J; Seagrave, J; McDonald; J (2)Eide,I (3)Zielinska, B (4)Lawson, D

    2003-08-24

    Differences in the lung toxicity and bacterial mutagenicity of seven samples from gasoline and diesel vehicle emissions were reported previously [1]. Filter and vapor-phase semivolatile organic samples were collected from normal and high-emitter gasoline and diesel vehicles operated on chassis dynamometers on the Unified Driving Cycle, and the compositions of the samples were measured in detail. The two fractions of each sample were combined in their original mass collection ratios, and the toxicity of the seven samples was compared by measuring inflammation and tissue damage in rat lungs and mutagenicity in bacteria. There was good agreement among the toxicity response variables in ranking the samples and demonstrating a five-fold range of toxicity. The relationship between chemical composition and toxicity was analyzed by a combination of principal component analysis (PCA) and partial least squares regression (PLS, also known as projection to latent surfaces). The PCA /PLS analysis revealed the chemical constituents co-varying most strongly with toxicity and produced models predicting the relative toxicity of the samples with good accuracy. The results demonstrated the utility of the PCA/PLS approach, which is now being applied to additional samples, and it also provided a starting point for confirming the compounds that actually cause the effects.

  19. Chemical Properties And Toxicity of Chromium(III) Nutritional Supplements

    Energy Technology Data Exchange (ETDEWEB)

    Levina, A.; Lay, P.A.

    2009-05-19

    The status of Cr(III) as an essential micronutrient for humans is currently under question. No functional Cr(III)-containing biomolecules have been definitively described as yet, and accumulated experience in the use of Cr(III) nutritional supplements (such as [Cr(pic){sub 3}], where pic = 2-pyridinecarboxylato) has shown no measurable benefits for nondiabetic people. Although the use of large doses of Cr(III) supplements may lead to improvements in glucose metabolism for type 2 diabetics, there is a growing concern over the possible genotoxicity of these compounds, particularly of [Cr(pic){sub 3}]. The current perspective discusses chemical transformations of Cr(III) nutritional supplements in biological media, with implications for both beneficial and toxic actions of Cr(III) complexes, which are likely to arise from the same biochemical mechanisms, dependent on concentrations of the reactive species. These species include: (1) partial hydrolysis products of Cr(III) nutritional supplements, which are capable of binding to biological macromolecules and altering their functions; and (2) highly reactive Cr(VI/V/IV) species and organic radicals, formed in reactions of Cr(III) with biological oxidants. Low concentrations of these species are likely to cause alterations in cell signaling (including enhancement of insulin signaling) through interactions with the active centers of regulatory enzymes in the cell membrane or in the cytoplasm, while higher concentrations are likely to produce genotoxic DNA lesions in the cell nucleus. These data suggest that the potential for genotoxic side-effects of Cr(III) complexes may outweigh their possible benefits as insulin enhancers, and that recommendations for their use as either nutritional supplements or antidiabetic drugs need to be reconsidered in light of these recent findings.

  20. Handbook of toxicology of chemical warfare agents

    CERN Document Server

    2010-01-01

    This groundbreaking book covers every aspect of deadly toxic chemicals used as weapons of mass destruction and employed in conflicts, warfare and terrorism. Including findings from experimental as well as clinical studies, this one-of-a-kind handbook is prepared in a very user- friendly format that can easily be followed by students, teachers and researchers, as well as lay people. Stand-alone chapters on individual chemicals and major topics allow the reader to easily access required information without searching through the entire book. This is the first book that offers in-depth coverage of individual toxicants, target organ toxicity, major incidents, toxic effects in humans, animals and wildlife, biosensors, biomarkers, on-site and laboratory analytical methods, decontamination and detoxification procedures, prophylactic, therapeutic and countermeasures, and the role of homeland security. Presents a comprehensive look at all aspects of chemical warfare toxicology in one reference work. This saves research...

  1. Toxic effect of chemicals dumped in premises of UCIL, Bhopal leading to environmental pollution: An in silico approach

    Directory of Open Access Journals (Sweden)

    Manish Kumar Tripathi

    2016-04-01

    Full Text Available Objective: To investigate the role of dumped residues in the loss of immunity using human immune proteins, which provides protection against Mycobacterium tuberculosis. Methods: In this study, toxic chemicals were docked with immune proteins using AutoDock 4.0, and further, molecular dynamics simulations were performed for refinement of the docked complexes which were obtained from docking to confirm its stable behaviour over the entire simulation period. Results: Results revealed that alpha-naphthol showed the maximum inhibition with glutathione synthetase protein, while butylated hydroxytoluene and carbaryl showed the maximum inhibition with p38 MAPK14 protein with binding free energy ΔG -5.06, -5.1 and -5.36 kcal/ mol, respectively. Molecular dynamics simulation supported the greater stability of carbaryl and alpha-naphthol complexes with p38 MAPK 14 and glutathione synthetase protein as compared to butylated hydroxytoluene. Conclusions: In summary, findings suggested that toxic exposure of carbaryl and alphanaphthol as compared to butylated hydroxytoluene generated immunotoxicity and disrupted the functioning of immune system thus it may have caused an increase in susceptibility to Mycobacterium tuberculosis infection.

  2. Toxic keratopathy due to abuse of topical anesthetic drugs.

    Science.gov (United States)

    Yeniad, Baris; Canturk, Serife; Esin Ozdemir, Fatma; Alparslan, Nilufer; Akarcay, Koray

    2010-06-01

    To describe 8 cases of toxic keratopathy due to abuse of topical anesthetic drugs. Clinical findings from patients with toxic keratopathy were investigated retrospectively. Two patients had toxic keratopathy bilaterally. Five of 8 patients had an ocular history of a corneal foreign body, 1 had basal membrane dystrophy, 1 had ultraviolet radiation, and 1 had chemical burn. All patients had undergone psychiatric consultation. Four patients had anxiety disorder and 1 had bipolar disease. Clinical signs were improved in all patients with discontinuation of topical anesthetic drug use along with adjunctive psychiatric treatment. Penetrating keratoplasty was performed in 2 patients. Toxic keratopathy due to topical anesthetic abuse is a curable disease. Early diagnosis and prevention of topical anesthetic drug use are the most important steps in the treatment of this condition. As these patients commonly exhibit psychiatric disorders, adjunctive psychiatric treatment may help to break the chemical addiction.

  3. Toxic agent and radiation control: meeting the 1990 objectives for the nation

    International Nuclear Information System (INIS)

    Rall, D.P.

    1984-01-01

    Toxic agent and radiation control is 1 of the 15 health priority areas addressed through the Public Health Service's Objectives for the Nation. Several gains in moving toward the 1990 goals for toxic agent and radiation control have been recorded. Research and technical assistance, combined with legislation to reduce the amount of lead in gasoline, have contributed to a decrease in the mean blood lead level of the general population. New testing procedures have been developed to evaluate both reproductive and developmental toxicities of chemicals. Educational implementation of pelvimetry referral criteria in a multiyear study involving approximately 200 U.S. hospitals has resulted in a 50 percent reduction in the number of pelvimetries performed. Health-related responses have been given to environmental problems such as exposures to polychlorinated biphenyls (PCBs) in Massachusetts and Florida and exposures to dioxin in Missouri and New Jersey. Chemical records for some 1000 compounds likely to occur in chemical dumps or in bulk transit are being either created or updated to enhance online data retrieval services. For the foreseeable future, however, improvement of knowledge of the potential health risk posed by toxic chemicals and radiation must remain one of the most important priorities. To control toxic agents, development of surveillance systems and data bases are equally important

  4. Airborne uranium, its concentration and toxicity in uranium enrichment facilities

    International Nuclear Information System (INIS)

    Thomas, J.; Mauro, J.; Ryniker, J.; Fellman, R.

    1979-02-01

    The release of uranium hexafluoride and its hydrolysis products into the work environment of a plant for enriching uranium by means of gas centrifuges is discussed. The maximum permissible mass and curie concentration of airborne uranium (U) is identified as a function of the enrichment level (i.e., U-235/total U), and chemical and physical form. A discussion of the chemical and radiological toxicity of uranium as a function of enrichment and chemical form is included. The toxicity of products of UF 6 hydrolysis in the atmosphere, namely, UO 2 F 2 and HF, the particle size of toxic particulate material produced from this hydrolysis, and the toxic effects of HF and other potential fluoride compounds are also discussed. Results of an investigation of known effects of humidity and temperature on particle size of UO 2 F 2 produced by the reaction of UF 6 with water vapor in the air are reported. The relationship of the solubility of uranium compounds to their toxic effects was studied. Identification and discussion of the standards potentially applicable to airborne uranium compounds in the working environment are presented. The effectiveness of High Efficiency Particulate (HEPA) filters subjected to the corrosive environment imposed by the presence of hydrogen fluoride is discussed

  5. Prediction of Acute Mammalian Toxicity Using QSAR Methods: A Case Study of Sulfur Mustard and Its Breakdown Products

    Directory of Open Access Journals (Sweden)

    John Wheeler

    2012-07-01

    Full Text Available Predicting toxicity quantitatively, using Quantitative Structure Activity Relationships (QSAR, has matured over recent years to the point that the predictions can be used to help identify missing comparison values in a substance’s database. In this manuscript we investigate using the lethal dose that kills fifty percent of a test population (the LD50 for determining relative toxicity of a number of substances. In general, the smaller the LD50 value, the more toxic the chemical, and the larger the LD50 value, the lower the toxicity. When systemic toxicity and other specific toxicity data are unavailable for the chemical(s of interest, during emergency responses, LD50 values may be employed to determine the relative toxicity of a series of chemicals. In the present study, a group of chemical warfare agents and their breakdown products have been evaluated using four available rat oral QSAR LD50 models. The QSAR analysis shows that the breakdown products of Sulfur Mustard (HD are predicted to be less toxic than the parent compound as well as other known breakdown products that have known toxicities. The QSAR estimated break down products LD50 values ranged from 299 mg/kg to 5,764 mg/kg. This evaluation allows for the ranking and toxicity estimation of compounds for which little toxicity information existed; thus leading to better risk decision making in the field.

  6. Proteome Profiling Reveals Potential Toxicity and Detoxification Pathways Following Exposure of BEAS-2B Cells to Engineered Nanoparticle Titanium Dioxide

    Science.gov (United States)

    Identification of toxicity pathways linked to chemical -exposure is critical for a better understanding of biological effects of the exposure, toxic mechanisms, and for enhancement of the prediction of chemical toxicity and adverse health outcomes. To identify toxicity pathways a...

  7. Mercury Toxicity and Treatment: A Review of the Literature

    Science.gov (United States)

    Bernhoft, Robin A.

    2012-01-01

    Mercury is a toxic heavy metal which is widely dispersed in nature. Most human exposure results from fish consumption or dental amalgam. Mercury occurs in several chemical forms, with complex pharmacokinetics. Mercury is capable of inducing a wide range of clinical presentations. Diagnosis of mercury toxicity can be challenging but can be obtained with reasonable reliability. Effective therapies for clinical toxicity have been described. PMID:22235210

  8. Mercury Toxicity and Treatment: A Review of the Literature

    Directory of Open Access Journals (Sweden)

    Robin A. Bernhoft

    2012-01-01

    Full Text Available Mercury is a toxic heavy metal which is widely dispersed in nature. Most human exposure results from fish consumption or dental amalgam. Mercury occurs in several chemical forms, with complex pharmacokinetics. Mercury is capable of inducing a wide range of clinical presentations. Diagnosis of mercury toxicity can be challenging but can be obtained with reasonable reliability. Effective therapies for clinical toxicity have been described.

  9. U.S./Mexico Border environmental study toxics release inventory data, 1988--1992

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, R.F.; LoPresti, C.A.

    1996-02-01

    This is a report on industrial toxic chemical releases and transfers based on information reported to the Toxics Release Inventory (TRI), a database maintained by the USEPA. This document discusses patterns of toxic chemical releases to the atmosphere, to water, to the land, and to underground injection; and transfers of toxic chemicals to Publicly Owned Treatment Works (POTW), and for disposal, treatment and other off-site transfers during the TRI reporting years 1988--1992. Geographic coverage is limited to the US side of the ``Border Area``, the geographic area situated within 100 km of the US/Mexico international boundary. A primary purpose of this study is to provide background information that can be used in the future development of potential ``indicator variables`` for tracking environmental and public health status in the Border Area in conjunction with the implementation of the North American Free Trade Agreement (NAFTA).

  10. Paraquat: model for oxidant-initiated toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Bus, J.S.; Gibson, J.E.

    1984-04-01

    Paraquat, a quaternary ammonium bipyridyl herbicide, produces degenerative lesions in the lung after systemic administration to man and animals. The pulmonary toxicity of paraquat resembles in several ways the toxicity of several other lung toxins, including oxygen, nitrofurantoin and bleomycin. Although a definitive mechanism of toxicity of parquat has not been delineated, a cyclic single electron reduction/oxidation of the parent molecule is a critical mechanistic event. The redox cycling of paraquat has two potentially important consequences relevant to the development of toxicity: generation of activated oxygen (e.g., superoxide anion, hydrogen perioxide, hydroxyl radical) which is highly reactive to cellular macromolecules; and/or oxidation of reducing equivalents (e.g., NADPH, reduced glutathione) necessary for normal cell function. Paraquat-induced pulmonary toxicity, therefore, is a potentially useful model for evaluation of oxidant mechanisms of toxicity. Furthermore, characterization of the consequences of intracellular redox cycling of xenobiotics will no doubt provide basic information regarding the role of this phenomena in the development of chemical toxicity. 105 references, 2 figures.

  11. Acute aquatic toxicity of tire and road wear particles to alga, daphnid, and fish.

    Science.gov (United States)

    Marwood, Christopher; McAtee, Britt; Kreider, Marisa; Ogle, R Scott; Finley, Brent; Sweet, Len; Panko, Julie

    2011-11-01

    Previous studies have indicated that tire tread particles are toxic to aquatic species, but few studies have evaluated the toxicity of such particles using sediment, the likely reservoir of tire wear particles in the environment. In this study, the acute toxicity of tire and road wear particles (TRWP) was assessed in Pseudokirchneriella subcapita, Daphnia magna, and Pimephales promelas using a sediment elutriate (100, 500, 1000 or 10000 mg/l TRWP). Under standard test temperature conditions, no concentration response was observed and EC/LC(50) values were greater than 10,000 mg/l. Additional tests using D. magna were performed both with and without sediment in elutriates collected under heated conditions designed to promote the release of chemicals from the rubber matrix to understand what environmental factors may influence the toxicity of TRWP. Toxicity was only observed for elutriates generated from TRWP leached under high-temperature conditions and the lowest EC/LC(50) value was 5,000 mg/l. In an effort to identify potential toxic chemical constituent(s) in the heated leachates, toxicity identification evaluation (TIE) studies and chemical analysis of the leachate were conducted. The TIE coupled with chemical analysis (liquid chromatography/mass spectrometry/mass spectrometry [LC/MS/MS] and inductively coupled plasma/mass spectrometry [ICP/MS]) of the leachate identified zinc and aniline as candidate toxicants. However, based on the high EC/LC(50) values and the limited conditions under which toxicity was observed, TRWP should be considered a low risk to aquatic ecosystems under acute exposure scenarios.

  12. Removal of toxic dichlorophenol from water by sorption with chemically activated carbon of almond shells - a green approach

    International Nuclear Information System (INIS)

    Jamil, N.; Ahsan, N.; Munwar, M.A.; Anwar, J.; Shafiq, U.

    2011-01-01

    Chloro phenols (CP) represents a group of organic compounds having substituted chlorines attached to phenol ring. These trace organic pollutants represent a major environmental concern, because of toxicity, non-biodegradability, carcinogenic and stubborn properties. The adsorption of 2, 4-dichlorophenol (DCP) by chemically activated carbon of almond shells (CAC-AS) has been studied in the batch setup. Operational parameters like adsorbent dose, pH, and shaking speed were investigated. Langmuir and Freundlich isotherms were employed to calculate adsorption capacity and other sorption features of CAC-AS. The maximum amount of DCP adsorbed was 24.3 mg per gram of activated carbon derived from almond shells. Optimum conditions for DCP uptake were 2.5 g adsorbent dose, pH 5 and agitation speed of 200 rpm whereas the concentration of DCP solution was 25 mg/L (50 mL). Results corroborated that almond shells pretreated chemically, can be an excellent low cost adsorbents for removal of DCP from contaminated water. (author)

  13. Metal and anion composition of two biopolymeric chemical stabilizers and toxicity risk implication for the environment.

    Science.gov (United States)

    Ndibewu, P P; Mgangira, M B; Cingo, N; McCrindle, R I

    2010-01-01

    The objective of this study was to (1) measure the concentration of four anions (Cl(-), F(-), [image omitted], and [image omitted]) and nine other elements (Al, Ba, Ca, K, Mg, Mn, Fe, Ni, and Si) in two nontraditional biopolymeric chemical stabilizers (EBCS1 and EBCS2), (2) investigate consequent environmental toxicity risk implications, and (3) create awareness regarding environmental health issues associated with metal concentration levels in enzyme-based chemical stabilizers that are now gaining widespread application in road construction and other concrete materials. Potential ecotoxicity impacts were studied on aqueous extracts of EBCS1 and EBCS2 using two thermodynamic properties models: the Pitzer-Mayorga model (calculation of the electrolyte activity coefficients) and the Millero-Pitzer model (calculation of the ionic activity coefficients). Results showed not only high concentrations of a variety of metal ions and inorganic anions, but also a significant variation between two chemical stabilizing mixtures. The mixture (EBCS2) with the lower pH value was richer in all the cationic and anionic species than (EBCS1). Sulfate (SO(2-)(4)) concentrations were found to be higher in EBCS2 than in EBCS1. There was no correlation between electrolyte activity and presence of the ionic species, which may be linked to a possible high ionic environmental activity. The concentrations of trace metals found (Mn, Fe, and Ni) were low compared to those of earth metals (Ba, Ca, K, and Mg). The metal concentrations were higher in EBCS1 than in EBCS2. Data suggest that specific studies are needed to establish "zero" permissible metal ecotoxicity values for elements and anions in any such strong polyelectrolytic enzyme-based chemical stabilizers.

  14. Free and Open Source Chemistry Software in Research of Quantitative Structure-Toxicity Relationship of Pesticides

    Directory of Open Access Journals (Sweden)

    Rastija Vesna

    2017-01-01

    Full Text Available Pesticides are toxic chemicals aimed for the destroying pest on crops. Numerous data evidence about toxicity of pesticides on aquatic organisms. Since pesticides with similar properties tend to have similar biological activities, toxicity may be predicted from structure. Their structure feature and properties are encoded my means of molecular descriptors. Molecular descriptors can capture quite simple two-dimensional (2D chemical structures to highly complex three-dimensional (3D chemical structures. Quantitative structure-toxicity relationship (QSTR method uses linear regression analyses for correlation toxicity of chemical with their structural feature using molecular descriptors. Molecular descriptors were calculated using open source software PaDEL and in-house built PyMOL plugin (PyDescriptor. PyDescriptor is a new script implemented with the commonly used visualization software PyMOL for calculation of a large and diverse set of easily interpretable molecular descriptors encoding pharmacophoric patterns and atomic fragments. PyDescriptor has several advantages like free and open source, can work on all major platforms (Windows, Linux, MacOS. QSTR method allows prediction of toxicity of pesticides without experimental assay. In the present work, QSTR analysis for toxicity of a dataset of mixtures of 5 classes of pesticides comprising has been performed.

  15. Using quantitative structure-activity relationships (QSAR) to predict toxic endpoints for polycyclic aromatic hydrocarbons (PAH).

    Science.gov (United States)

    Bruce, Erica D; Autenrieth, Robin L; Burghardt, Robert C; Donnelly, K C; McDonald, Thomas J

    2008-01-01

    Quantitative structure-activity relationships (QSAR) offer a reliable, cost-effective alternative to the time, money, and animal lives necessary to determine chemical toxicity by traditional methods. Additionally, humans are exposed to tens of thousands of chemicals in their lifetimes, necessitating the determination of chemical toxicity and screening for those posing the greatest risk to human health. This study developed models to predict toxic endpoints for three bioassays specific to several stages of carcinogenesis. The ethoxyresorufin O-deethylase assay (EROD), the Salmonella/microsome assay, and a gap junction intercellular communication (GJIC) assay were chosen for their ability to measure toxic endpoints specific to activation-, induction-, and promotion-related effects of polycyclic aromatic hydrocarbons (PAH). Shape-electronic, spatial, information content, and topological descriptors proved to be important descriptors in predicting the toxicity of PAH in these bioassays. Bioassay-based toxic equivalency factors (TEF(B)) were developed for several PAH using the quantitative structure-toxicity relationships (QSTR) developed. Predicting toxicity for a specific PAH compound, such as a bioassay-based potential potency (PP(B)) or a TEF(B), is possible by combining the predicted behavior from the QSTR models. These toxicity estimates may then be incorporated into a risk assessment for compounds that lack toxicity data. Accurate toxicity predictions are made by examining each type of endpoint important to the process of carcinogenicity, and a clearer understanding between composition and toxicity can be obtained.

  16. Toxicity of the sulfhydryl-containing radioprotector dithiothreitol

    International Nuclear Information System (INIS)

    Held, K.D.; Biaglow, J.E.

    1987-01-01

    The toxicity of the sulfhydryl-containing radioprotector dithiothreitol (DTT) has been studied in Chinese hamster V79 cells growing in monolayer. Under the conditions used here DTT causes a biphasic toxic response in which low concentrations of the drug (0.5 to 1.0 mM) are more toxic than are lower (0.2 mM) or higher (10 mM) concentrations. This response is similar to that seen by others with other sulfhydryl compounds. This DTT-induced toxicity is prevented by catalase, glutathione, and lowered temperatures. The toxicity is enhanced by some metal chelators (EDTA) but prevented by others (desferal). Metals (copper and iron) can either enhance or decrease the toxicity depending on their concentration and whether the exposure is in medium or in buffered salt solution. The results suggest a complex chain of chemical reactions and interactions with a role of H/sub 2/O/sub 2/ and perhaps . OH in this DTT toxicity. This is discussed

  17. Comparative Developmental Toxicity of Flavonoids Using an Integrative Zebrafish System.

    Science.gov (United States)

    Bugel, Sean M; Bonventre, Josephine A; Tanguay, Robert L

    2016-11-01

    Flavonoids are a large, structurally diverse class of bioactive naturally occurring chemicals commonly detected in breast milk, soy based infant formulas, amniotic fluid, and fetal cord blood. The potential for pervasive early life stage exposures raises concerns for perturbation of embryogenesis, though developmental toxicity and bioactivity information is limited for many flavonoids. Therefore, we evaluated a suite of 24 flavonoid and flavonoid-like chemicals using a zebrafish embryo-larval toxicity bioassay-an alternative model for investigating developmental toxicity of environmentally relevant chemicals. Embryos were exposed to 1-50 µM of each chemical from 6 to 120 h postfertilization (hpf), and assessed for 26 adverse developmental endpoints at 24, 72, and 120 hpf. Behavioral changes were evaluated in morphologically normal animals at 24 and 72 hpf, at 120 hpf using a larval photomotor response (LPR) assay. Gene expression was comparatively evaluated for all compounds for effects on biomarker transcripts indicative of AHR (cyp1a) and ER (cyp19a1b, esr1, lhb, vtg) pathway bioactivity. Overall, 15 of 24 flavonoids elicited adverse effects on one or more of the developmental or behavioral endpoints. Hierarchical clustering and principle component analyses compared toxicity profiles and identified 3 distinct groups of bioactive flavonoids. Despite robust induction of multiple estrogen-responsive biomarkers, co-exposure with ER and GPER antagonists did not ameliorate toxicity, suggesting ER-independence and alternative modes of action. Taken together, these studies demonstrate that development is sensitive to perturbation by bioactive flavonoids in zebrafish that are not related to traditional estrogen receptor mode of action pathways. This integrative zebrafish platform provides a useful framework for evaluating flavonoid developmental toxicity and hazard prioritization. © The Author 2016. Published by Oxford University Press on behalf of the Society of

  18. Estimated inventory of chemicals added to underground waste tanks, 1944--1975

    International Nuclear Information System (INIS)

    Allen, G.K.

    1976-03-01

    The five major chemical processes, the Bismuth Phosphate process, the Uranium Recovery process, the Redox process, the Purex process, and the Waste Fractionization process have each contributed to give the total Hanford waste chemicals. Each of these processes is studied to determine the total estimated chemicals stored in underground waste tanks. The chemical contents are derived mainly from flowsheet compositions and recorded waste volumes sent to underground storage. The major components and amounts of Hanford waste are sodium hydroxide, 230 million gram-moles (20 million pounds), sodium nitrate, 1400 million gram-moles (270 million pounds), sodium nitrite, 220 million gram-moles (34 million pounds), sodium aluminate, 400 million gram-moles (72 million pounds), and sodium phosphate, 87 million gram-moles (31 million pounds). Chemical analyses of the sludge and salt cake samples are tabulated to determine the chemical characteristics of the solids. A relative chemical toxicity of the Hanford underground waste tank chemicals is developed from maximum permissible chemical concentrations in air and water. The most toxic chemicals are assumed to be sodium phosphate--35%, sodium aluminate--28%, and chromium hydroxide--19%. If air standards set toxicity limits, the most toxic chemicals are bismuth--41%, chromium hydroxide--23%, and fluoride--10%

  19. Differential reconstructed gene interaction networks for deriving toxicity threshold in chemical risk assessment

    OpenAIRE

    Yang, Yi; Maxwell, Andrew; Zhang, Xiaowei; Wang, Nan; Perkins, Edward J; Zhang, Chaoyang; Gong, Ping

    2013-01-01

    Background Pathway alterations reflected as changes in gene expression regulation and gene interaction can result from cellular exposure to toxicants. Such information is often used to elucidate toxicological modes of action. From a risk assessment perspective, alterations in biological pathways are a rich resource for setting toxicant thresholds, which may be more sensitive and mechanism-informed than traditional toxicity endpoints. Here we developed a novel differential networks (DNs) appro...

  20. Low Level Chemical Toxicity: Relevance to Chemical Agent Defense

    Science.gov (United States)

    2005-07-01

    or confirm a diagnosis of chemical sensitivity and suggest novel approaches in managing this malady. Project 4: Studies of gene expression...Lindberg I, Ugleholdt R, Holst J & Steiner DF 2002b Disruption of PC1/3 expression in mice causes dwarfism and multiple neuroendocrine peptide processing...2004;1:32- 34. [10] Diederich S,Eckmanns,T,Exner,P,Al-Saadi,N,Bahr,V,Oelkers,W. Differential diagnosis of polyuric/polydipsic syndromes with the aid