WorldWideScience

Sample records for confinement disposal site

  1. Disposal configuration options for future uses of greater confinement disposal at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Price, L. [Science Applications International Corp., Albuquerque, NM (United States)

    1994-09-01

    The US Department of Energy (DOE) is responsible for disposing of a variety of radioactive and mixed wastes, some of which are considered special-case waste because they do not currently have a clear disposal option. The DOE`s Nevada Field Office contracted with Sandia National Laboratories to investigate the possibility of disposing of some of this special-case waste at the Nevada Test Site (NTS). As part of this investigation, a review of a near-surface and subsurface disposal options that was performed to develop alternative disposal configurations for special-case waste disposal at the NTS. The criteria for the review included (1) configurations appropriate for disposal at the NTS; (2) configurations for disposal of waste at least 100 ft below the ground surface; (3) configurations for which equipment and technology currently exist; and (4) configurations that meet the special requirements imposed by the nature of special-case waste. Four options for subsurface disposal of special-case waste are proposed: mined consolidated rock, mined alluvium, deep pits or trenches, and deep boreholes. Six different methods for near-surface disposal are also presented: earth-covered tumuli, above-grade concrete structures, trenches, below-grade concrete structures, shallow boreholes, and hydrofracture. Greater confinement disposal (GCD) in boreholes at least 100 ft deep, similar to that currently practiced at the GCD facility at the Area 5 Radioactive Waste Management Site at the NTS, was retained as the option that met the criteria for the review. Four borehole disposal configurations are proposed with engineered barriers that range from the native alluvium to a combination of gravel and concrete. The configurations identified will be used for system analysis that will be performed to determine the disposal configurations and wastes that may be suitable candidates for disposal of special-case wastes at the NTS.

  2. Waste inventory and preliminary source term model for the Greater Confinement Disposal site at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Chu, M.S.Y.; Bernard, E.A.

    1991-12-01

    Currently, there are several Greater Confinement Disposal (GCD) boreholes at the Radioactive Waste Management Site (RWMS) for the Nevada Test Site. These are intermediate-depth boreholes used for the disposal of special case wastes, that is, radioactive waste within the Department of Energy complex that do not meet the criteria established for disposal of high-level waste, transuranic waste, or low-level waste. A performance assessment is needed to evaluate the safety of the GCD site, and to examine the feasibility of the GCD disposal concept as a disposal solution for special case wastes in general. This report documents the effort in defining all the waste inventory presently disposed of at the GCD site, and the inventory and release model to be used in a performance assessment for compliance with the Environmental Protection Agency`s 40 CFR 191.

  3. COMPLETION OF THE TRANSURANIC GREATER CONFINEMENT DISPOSAL BOREHOLE PERFORMANCE ASSESSMENT FOR THE NEVADA TEST SITE

    Energy Technology Data Exchange (ETDEWEB)

    Colarusso, Angela; Crowe, Bruce; Cochran, John R.

    2003-02-27

    Classified transuranic material that cannot be shipped to the Waste Isolation Pilot Plant in New Mexico is stored in Greater Confinement Disposal boreholes in the Area 5 Radioactive Waste Management Site on the Nevada Test Site. A performance assessment was completed for the transuranic inventory in the boreholes and submitted to the Transuranic Waste Disposal Federal Review Group. The performance assessment was prepared by Sandia National Laboratories on behalf of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office using an iterative methodology that assessed radiological releases from the intermediate depth disposal configuration against the regulatory requirements of the 1985 version of 40 CFR 191 of the U.S. Environmental Protection Agency. The transuranic materials are stored at 21 to 37 m depth (70 to 120 ft) in large diameter boreholes constructed in the unsaturated alluvial deposits of Frenchman Flat. Hydrologic processes that affect long- term isolation of the radionuclides are dominated by extremely slow upward rates of liquid/vapor advection and diffusion; there is no downward pathway under current climatic conditions and there is no recharge to groundwater under future ''glacial'' climatic conditions. A Federal Review Team appointed by the Transuranic Waste Disposal Federal Review Group reviewed the Greater Confinement Disposal performance assessment and found that the site met the majority of the regulatory criteria of the 1985 and portions of the 1993 versions of 40 CFR 191. A number of technical and procedural issues required development of supplemental information that was incorporated into a final revision of the performance assessment. These issues include inclusion of radiological releases into the complementary cumulative distribution function for the containment requirements associated with drill cuttings from inadvertent human intrusion, verification of mathematical models used in the

  4. Second performance assessment iteration of the Greater Confinement Disposal facility at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Baer, T.A.; Emery, J.N. [GRAM, Inc., Albuquerque, NM (United States); Price, L.L. [Science Applications International Corp., Albuquerque, NM (United States); Olague, N.E. [Sandia National Labs., Albuquerque, NM (United States)

    1994-04-01

    The Greater Confinement Disposal (GCD) facility was established in Area 5 at the Nevada Test Site for containment of waste inappropriate for shallow land burial. Some transuranic (TRU) waste has been disposed of at the GCD facility, and compliance of this disposal system with EPA regulation 40 CFR 191 must be evaluated. We have adopted an iterative approach in which performance assessment results guide site data collection, which in turn influences the parameters and models used in performance assessment. The first iteration was based upon readily available data, and indicated that the GCD facility would likely comply with 40 CFR 191 and that the downward flux of water through the vadose zone (recharge) had a major influence on the results. Very large recharge rates, such as might occur under a cooler, wetter climate, could result in noncompliance. A project was initiated to study recharge in Area 5 by use of three environmental tracers. The recharge rate is so small that the nearest groundwater aquifer will not be contaminated in less than 10,000 years. Thus upward liquid diffusion of radionuclides remained as the sole release pathway. This second assessment iteration refined the upward pathway models and updated the parameter distributions based upon new site information. A new plant uptake model was introduced to the upward diffusion pathway; adsorption and erosion were also incorporated into the model. Several modifications were also made to the gas phase radon transport model. Plutonium solubility and sorption coefficient distributions were changed based upon new information, and on-site measurements were used to update the moisture content distributions. The results of the assessment using these models indicate that the GCD facility is likely to comply with all sections of 40 CFR 191 under undisturbed conditions.

  5. Greater Confinement Disposal Test at the Nevada Test Site, Final Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Dickman, P. T.

    1989-01-01

    The Greater Confinement Disposal Test (GCDT) was conducted at the Nevada Test Site to demonstrate an alternative method for management of high-specific-activity (HSA) low-level waste (LLW). The GCDT was initially conceived as a method for managing small volumes of highly concentrated tritium wastes, which, due to their environmental mobiilty, are considered unsuitable for routine shallow land disposal. Later, the scope of the GCDT was increased to address a variety of other "problem" HSA wastes including isotope sources and thermal generating wastes. The basic design for the GCDT evolved from a series of studies and assessments. Operational design objectives were to (1) emplace the wastes at a depth sufficient to minimize or eliminate routine environmental transport mechanisms and instrusion scenarios and (2) provide sufficient protection for operations personnel in the handling of HSA sources. To achieve both objectives, a large diameter borehole was selected. The GCDT consisted of a borehole 3 meters (10 feet) in diameter and 36 meters (120 feet) deep, surrounded by nine monitoring holes at varying radii. The GCDT was instrumented for the measurement of temperature, moisture, and soil-gas content. Over one million curies of HSA LLW were emplaced in GCDT. This report reviews the development of the GCDT project and presents analyses of data collected.

  6. Ocean Disposal Site Monitoring

    Science.gov (United States)

    EPA is responsible for managing all designated ocean disposal sites. Surveys are conducted to identify appropriate locations for ocean disposal sites and to monitor the impacts of regulated dumping at the disposal sites.

  7. Preliminary identification of potentially disruptive scenarios at the Greater Confinement Disposal Facility, Area 5 of the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Guzowski, R.V. [Science Applications International Corp., Albuquerque, NM (United States); Newman, G. [GRAM, Inc., Albuquerque, NM (United States)

    1993-12-01

    The Greater Confinement Disposal location is being evaluated to determine whether defense-generated transuranic waste buried at this location complies with the Containment Requirements established by the US Environmental Protection Agency. One step in determining compliance is to identify those combinations of events and processes (scenarios) that define possible future states of the disposal system for which performance assessments must be performed. An established scenario-development procedure was used to identify a comprehensive set of mutually exclusive scenarios. To assure completeness, 761 features, events, processes, and other listings (FEPS) were compiled from 11 references. This number was reduced to 205 primarily through the elimination of duplications. The 205 FEPs were screened based on site-specific, goal-specific, and regulatory criteria. Four events survived screening and were used in preliminary scenario development: (1) exploratory drilling penetrates a GCD borehole, (2) drilling of a withdrawal/injection well penetrates a GCD borehole, (3) subsidence occurs at the RWMS, and (4) irrigation occurs at the RWMS. A logic diagram was used to develop 16 scenarios from the four events. No screening of these scenarios was attempted at this time. Additional screening of the currently retained events and processes will be based on additional data and information from site-characterization activities. When screening of the events and processes is completed, a final set of scenarios will be developed and screened based on consequence and probability of occurrence.

  8. Performance assessment methodology as applied to the Greater Confinement Disposal site: Preliminary results of the third performance iteration

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.J. [Sandia National Labs., Albuquerque, NM (United States); Baer, T.A. [GRAM Inc., Albuquerque, NM (United States)

    1994-12-31

    The US Department of Energy has contracted Sandia National Laboratories to conduct a performance assessment of the Greater Confinement Disposal facility, Nevada. The performance assessment is an iterative process in which transport models are used to prioritize site characterization data collection. Then the data are used to refine the conceptual and performance assessment models. The results of the first two performance assessment iterations indicate that the site is likely to comply with the performance standards under the existing hydrologic conditions. The third performance iteration expands the conceptual model of the existing transport system to include possible future events and incorporates these processes in the performance assessment models. The processes included in the third performance assessment are climate change, bioturbation, plant uptake, erosion, upward advection, human intrusion and subsidence. The work completed to date incorporates the effects of bioturbation, erosion and subsidence in the performance assessment model. Preliminary analyses indicate that the development of relatively deep-rooting plant species at the site, which could occur due to climate change, irrigated farming or subsidence, poses the greatest threat to the site`s performance.

  9. Lakeview, Oregon, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [USDOE Office of Legacy Management (LM), Washington, DC (United States); Hall, Steve [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-03-01

    9.1 Compliance Summary The Lakeview, Oregon, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site was inspected September 16 and 17, 2015. Other than some ongoing concern with erosion-control rock riprap degradation, the disposal cell was in good condition. Some minor fence repairs and vegetation removal, and minor erosion repair work along the west site fence is planned. Inspectors identified no other maintenance needs or cause for a follow-up or contingency inspection. Disposal cell riprap is evaluated annually to ensure continued long-term protection of the cell from erosion during a severe precipitation event. Degradation of the rock riprap was first observed at the site in the mid-1990s. Rock gradation monitoring of the riprap on the west side slope has been performed as part of the annual inspection since 1997 to determine the mean diameter (D50) value. As prescribed by the monitoring procedure, the rock monitoring is routinely conducted at random locations. However, at the U.S. Nuclear Regulatory Commission’s (NRC’s) request, the 2015 rock monitoring approach deviated from the normal procedure by using a pre-established monitoring grid in a subset area of the west side slope. This changed the monitoring approach from random sampling to biased sampling. The D50 value measured during the 2015 gradation monitoring is 2.39 inches, which falls below the original D50 design size range of 2.7–3.9 inches for the Type B size side slope riprap. At NRC’s request, rock durability monitoring was added to the gradation monitoring in 2009 to monitor durability by rock type. Results of the 2015 durability monitoring showed that74 percent of the total rock sampled is durability class code A rock with an assigned durability class of “highly durable” or durability class code B “durable” rock, and that over 90 percent of the 3-inch or larger rock is durability class code A or B. The rock durability

  10. DREDGED MATERIAL RECLAMATION AT THE JONES ISLAND CONFINED DISPOSAL FACILITY - ITER

    Science.gov (United States)

    In this SITE demonstration, phytoremediation technology was applied to contaminated dredged materials from the Jones Island Confined Disposal Facility (CDF) located in Milwaukee Harbor, Wisconsin. The Jones Island CDF receives dredged materials from normal maintenance of Milwauke...

  11. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site...

  12. Remediation of a Former USAF Radioactive Material Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, D. E.; Cushman, M; Tupyi, B.; Lambert, J.

    2003-02-25

    This paper describes the remediation of a low-level radiological waste burial site located at the former James Connally Air Force Base in Waco, Texas. Burial activities at the site occurred during the 1950's when the property was under the ownership of the United States Air Force. Included is a discussion of methods and strategies that were used to successfully exhume and characterize the wastes for proper disposal at offsite disposal facilities. Worker and environmental protection measures are also described. Information gained from this project may be used at other similar project sites. A total of nine burial tubes had been identified for excavation, characterization, and removal from the site. The disposal tubes were constructed of 4-ft lengths of concrete pipe buried upright with the upper ends flush with ground surface. Initial ground level observations of the burial tubes indicated that some weathering had occurred; however, the condition of the subsurface portions of the tubes was unknown. Soil excavation occurred in 1-foot lifts in order that the tubes could be inspected and to allow for characterization of the soils at each stage of the excavation. Due to the weight of the concrete pipe and the condition of the piping joints it was determined that special measures would be required to maintain the tubes intact during their removal. Special tube anchoring and handling methods were required to relocate the tubes from their initial positions to a staging area where they could be further characterized. Characterization of the disposal tubes was accomplished using a combination of gamma spectroscopy and activity mapping methods. Important aspects of the project included the use of specialized excavation and disposal tube reinforcement measures to maintain the disposal tubes intact during excavation, removal and subsequent characterization. The non-intrusive gamma spectroscopy and data logging methods allowed for effective characterization of the wastes

  13. Impact of a waste disposal site on children physical growth

    Directory of Open Access Journals (Sweden)

    Carmen Elisa Ocampo

    2009-11-01

    Full Text Available Background: Several epidemiological studies have shown an increased risk of health problems among population living close to landfills. We evaluated the impact of a municipal solid waste disposal site on children’s growth between 0-3 years of age. Methods: Children were selected in sites likely to receive dispersion of air compounds from the waste disposal site and also in a control area, in Cali, Colombia, in 2005. Anthropometric measures were obtained at enrollment and in two follow-up visits at 3 months intervals to obtain standardized z scores of weight for height (WHZ and height for age (HAZ. In addition, questionnaires including information of socio-economical conditions and morbidity were applied at enrolment and during follow-up visits. Results: Children exposed had on average 0.16 less standard deviations (SD in WHZ scores when compared to control group (95% Confidence Interval [CI]: -0.34, 0.01. Among those who have lived >50% of their life in the study area, a significantly lower HAZ score was observed (-0.12 associated with exposure. Our data also suggest a larger effect of exposure to the waste disposal site in WHZ among children with symptoms of respiratory disease than among asymptomatic children (p=0.08. Conclusions: Exposure to this waste disposal site was found associated with lower children’s growth indexes.

  14. The Assessment of Future Human Actions at Radioactive Waste Disposal Sites: An international perspective

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.R. [Sandia National Labs., Albuquerque, NM (United States); Galson, D.A. [Galson Sciences Ltd., (United Kindgom); Patera, E.S. [Nuclear Energy Agency, 75 - Paris (France)

    1994-04-01

    For some deep geological disposal systems, the level of confinement provided by the natural and engineered barriers is considered to be so high that the greatest long-term risks associated with waste disposal may arise from the possibility of future human actions breaching the natural and/or engineered barrier systems. Following a Workshop in 1989, the OECD Nuclear Energy Agency established a Working Group on Assessment of Future Human Actions (FHA) a Radioactive Waste Disposal Sites. This Group met four times in the period 1991--1993, and has extensively reviewed approaches to and experience of incorporating the effects of FHA into long-term performance assessments (PAs). The Working Group`s report reviews the main issues concerning the treatment of FHA, presents a general framework for the quantitative, consideration of FHA in radioactive waste disposal programmes, and discusses means in reduce the risks associated with FHA. The Working Group concluded that FHA must be considered in PAs, although FHA where the actors were cognizant of the risks could be ignored. Credit can be taken for no more than several hundred years of active site control; additional efforts should therefore be taken to reduce the risks associated with FHA. International agreement on principles for the construction of FHA scenarios would build confidence, as would further discussion concerning regulatory policies for judging risks associated with FHA.

  15. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2009-07-31

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed

  16. Impact of a waste disposal site on children physical growth

    Directory of Open Access Journals (Sweden)

    Carmen Elisa Ocampo

    2008-09-01

    Full Text Available Background: Several epidemiological studies have shown an increased risk of health problems among population living close to landfills. We evaluated the impact of a municipal solid waste disposal site on children’s growth between 0-3 years of age.Methods: Children were selected in sites likely to receive dispersion of air compounds from the waste disposal site and also in a control area, in Cali, Colombia, in 2005. Anthropometric measures were obtained at enrollment and in two follow-up visits at 3 months intervals to obtain standardized z scores of weight for height (WHZ and height for age (HAZ. In addition, questionnaires including information of socio-economical conditions and morbidity were applied at enrolment and during follow-up visits.Results: Children exposed had on average 0.16 less standard deviations (SD in WHZ scores when compared to control group (95% Confidence Interval [CI]: -0.34, 0.01. Among those who have lived >50% of their life in the study area, a significantly lower HAZ score was observed (-0.12 associated with exposure. Our data also suggest a larger effect of exposure to the waste disposal site in WHZ among children with symptoms of respiratory disease than among asymptomatic children (p=0.08.

  17. Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Grant Evenson

    2006-04-01

    Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139.

  18. Application for Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-08-05

    The NTS is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. NNSA/NSO is the federal lands management authority for the NTS and NSTec is the Management & Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The U10C Disposal Site is located in the northwest corner of Area 9 at the NTS (Figure 1) and is located in a subsidence crater created by two underground nuclear events, one in October 1962 and another in April 1964. The disposal site opened in 1971 for the disposal of rubbish, refuse, pathological waste, asbestos-containing material, and industrial solid waste. A Notice of Intent form to operate the disposal site as a Class II site was submitted to the state of Nevada on January 26, 1994, and was acknowledged in a letter to the DOE on February 8, 1994. It operated as a state of Nevada Class II Solid Waste Disposal Site (SWDS) until it closed on October 5, 1995, for retrofit as a Class III SWDS. The retrofit consisted of the installation of a minimum four-foot compacted soil layer to segregate the different waste types and function as a liner to inhibit leachate and water flow into the lower waste zone. Five neutron monitoring tubes were installed in this layer to monitor possible leachate production and water activity. Upon acceptance of the installed barrier and approval of an Operating Plan by NDEP/BFF, the site reopened in January 1996 as a Class III SWDS for the disposal of industrial solid waste and other inert waste.

  19. RESULTS OF THE PERFORMANCE ASSESSMENT FOR THE CLASSIFIED TRANSURANIC WASTES DISPOSED AT THE NEVADA TEST SITE

    Energy Technology Data Exchange (ETDEWEB)

    J. COCHRAN; ET AL

    2001-02-01

    Most transuranic (TRU) wastes are destined for the Waste Isolation Pilot Plant (WIPP). However, the TRU wastes from the cleanup of US nuclear weapons accidents are classified for national security reasons and cannot be disposed in WIPP. The US Department of Energy (DOE) sought an alternative disposal method for these ''special case'' TRU wastes and from 1984 to 1987, four Greater Confinement Disposal (GCD) boreholes were used to place these special case TRU wastes a minimum of 21 m (70 ft) below the land surface and a minimum of 200 m (650 ft) above the water table. The GCD boreholes are located in arid alluvium at the DOE's Nevada Test Site (NTS). Because of state regulatory concerns, the GCD boreholes have not been used for waste disposal since 1989. DOE requires that TRU waste disposal facilities meet the US Environmental Protection Agency's (EPA's) requirements for disposal of TRU wastes, which are contained in 40 CFR 191. This EPA standard sets a number of requirements, including probabilistic limits on the cumulative releases of radionuclides to the accessible environment for 10,000 years. The DOE Nevada Operations Office (DOE/NV) has contracted with Sandia National Laboratories (Sandia) to conduct a performance assessment (PA) to determine if the TRU waste emplaced in the GCD boreholes complies with the EPA's requirements. Sandia has completed the PA using all available information and an iterative PA methodology. This paper overviews the PA of the TRU wastes in the GCD boreholes [1]. As such, there are few cited references in this paper and the reader is referred to [1] and [2] for references. The results of the PA are that disposal of TRU wastes in the GCD boreholes easily complies with the EPA's 40 CFR 191 safety standards for disposal of TRU wastes. The PA is undergoing a DOE Headquarters (DOE/HQ) peer review, and the final PA will be released in FY2001 or FY2002.

  20. Automated Monitoring System for Waste Disposal Sites and Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    S. E. Rawlinson

    2003-03-01

    A proposal submitted to the U.S. Department of Energy (DOE), Office of Science and Technology, Accelerated Site Technology Deployment (ASTD) program to deploy an automated monitoring system for waste disposal sites and groundwater, herein referred to as the ''Automated Monitoring System,'' was funded in fiscal year (FY) 2002. This two-year project included three parts: (1) deployment of cellular telephone modems on existing dataloggers, (2) development of a data management system, and (3) development of Internet accessibility. The proposed concept was initially (in FY 2002) to deploy cellular telephone modems on existing dataloggers and partially develop the data management system at the Nevada Test Site (NTS). This initial effort included both Bechtel Nevada (BN) and the Desert Research Institute (DRI). The following year (FY 2003), cellular modems were to be similarly deployed at Sandia National Laboratories (SNL) and Los Alamos National Laboratory (LANL), and the early data management system developed at the NTS was to be brought to those locations for site-specific development and use. Also in FY 2003, additional site-specific development of the complete system was to be conducted at the NTS. To complete the project, certain data, depending on site-specific conditions or restrictions involving distribution of data, were to made available through the Internet via the DRI/Western Region Climate Center (WRCC) WEABASE platform. If the complete project had been implemented, the system schematic would have looked like the figure on the following page.

  1. Trace elements in soil and biota in confined disposal facilities for dredged material

    Science.gov (United States)

    Beyer, W.N.; Miller, G.; Simmers, J.W.

    1990-01-01

    We studied the relation of trace element concentrations in soil to those in house mice (Mus musculus), common reed (Phragmites australis) and ladybugs (Coccinella septempunctata) at five disposal facilities for dredged material. The sites had a wide range of soil trace element concentrations, acid soils and a depauperate fauna. They were very poor wildlife habitat because they were dominated by the common reed. Bioassay earthworms exposed to surface soils from three of the five sites died, whereas those exposed to four of five soils collected a meter deep survived, presumably because the deeper, unoxidized soil, was not as acid. Concentrations of Ni and Cr in the biota from each of the sites did not seem to be related to the concentrations of the same elements in soil. Although Pb, Zn and Cu concentrations in biota were correlated with those in soil, the range of concentrations in the biota was quite small compared to that in soil. The concentrations of Pb detected in mice were about as high as the concentrations previously reported in control mice from other studies. Mice from the most contaminated site (530 ppm Pb in soil) contained only slightly more Pb (8 ppm dry wt) than did mice (2-6 ppm dry wt) from sites containing much less Pb (22-92 ppm in soil). Despite the acid soil conditions, very little Cd was incorporated into food chains. Rather, Cd was leaching from the surface soil. We concluded that even the relatively high concentrations of trace elements in the acid dredged material studied did not cause high, concentrations of trace elements in the biota.

  2. Trace elements in soil and biota in confined disposal facilities for dredged material.

    Science.gov (United States)

    Beyer, W N; Miller, G; Simmers, J W

    1990-01-01

    We studied the relation of trace element concentrations in soil to those in house mice (Mus musculus), common reed (Phragmites australis) and ladybugs (Coccinella septempunctata at five disposal facilities for dredged material. The sites had a wide range of soil trace element concentrations, acid soils and a depauperate fauna. They were very poor wildlife habitat because they were dominated by the common reed. Bioassay earthworms exposed to surface soils from three of the five sites died, whereas those exposed to four of five soils collected a meter deep survived, presumably because the deeper, unoxidized soil, was not as acid. Concentrations of Ni and Cr in the biota from each of the sites did not seem to be related to the concentrations of the same elements in soil. Although Pb, Zn and Cu concentrations in biota were correlated with those in soil, the range of concentrations in the biota was quite small compared to that in soil. The concentrations of Pb detected in mice were about as high as the concentrations previously reported in control mice from other studies. Mice from the most contaminated site (530 ppm Pb in soil) contained only slightly more Pb (8 ppm dry wt) than did mice (2-6 ppm dry wt) from sites containing much less Pb (22-92 ppm in soil). Despite the acid soil conditions, very little Cd was incorporated into food chains. Rather, Cd was leaching from the surface soil. We concluded that even the relatively high concentrations of trace elements in the acid dredged material studied did not cause high concentrations of trace elements in the biota.

  3. Overview of Low-Level Waste Disposal Operations at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    DOE/Navarro

    2007-02-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Environmental Management Program is charged with the responsibility to carry out the disposal of on-site and off-site generated low-level radioactive waste at the Nevada Test Site. Core elements of this mission are ensuring that disposal take place in a manner that is safe and cost-effective while protecting workers, the public, and the environment. This paper focuses on giving an overview of the Nevada Test Site facilities regarding currant design of disposal. In addition, technical attributes of the facilities established through the site characterization process will be further described. An update on current waste disposal volumes and capabilities will also be provided. This discussion leads to anticipated volume projections and disposal site requirements as the Nevada Test Site disposal operations look towards the future.

  4. Confinement and migration of radionuclides in deep geological disposal; Confinement et migration des radionucleides en stockage geologique profond

    Energy Technology Data Exchange (ETDEWEB)

    Poinssot, Ch

    2007-07-15

    Disposing high level nuclear waste in deep disposal repository requires to understand and to model the evolution of the different repository components as well as radionuclides migration on time-frame which are well beyond the time accessible to experiments. In particular, robust and predictive models are a key element to assess the long term safety and their reliability must rely on a accurate description of the actual processes. Within this framework, this report synthesizes the work performed by Ch. Poinssot and has been prepared for the defense of his HDR (French university degree to Manage Research). These works are focused on two main areas which are (i) the long term evolution of spent nuclear fuel and the development of radionuclide source terms models, and (ii) the migration of radionuclides in natural environment. (author)

  5. 78 FR 38672 - Ocean Dumping; Sabine-Neches Waterway (SNWW) Ocean Dredged Material Disposal Site Designation

    Science.gov (United States)

    2013-06-27

    ... AGENCY 40 CFR Part 228 Ocean Dumping; Sabine-Neches Waterway (SNWW) Ocean Dredged Material Disposal Site... Entities B. Background C. Disposal Volume Limit D. Site Management and Monitoring Plan E. Ocean Dumping.... Ocean Dumping Site Designation Criteria In proposing to designate these Sites, the EPA assessed...

  6. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-09-14

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Waste Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the &apos

  7. Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2007-07-01

    Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report.

  8. Application for Permit to Operate a Class II Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-03-31

    The Nevada Test Site (NTS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NTS and National Security Technologies LLC (NSTec) is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The site will be used for the disposal of refuse, rubbish, garbage, sewage sludge, pathological waste, Asbestos-Containing Material (ACM), industrial solid waste, hydrocarbon-burdened soil, hydrocarbon-burdened demolition and construction waste, and other inert waste (hereafter called permissible waste). Waste containing free liquids or regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA) will not be accepted for disposal at the site. Waste regulated under the Toxic Substance Control Act (TSCA), excluding Polychlorinated Biphenyl [PCB], Bulk Product Waste (see Section 6.2.5) and ACM (see Section 6.2.2.2) will not be accepted for disposal at the site. The disposal site will be used as the sole depository of permissible waste which is: (1) Generated by entities covered under the U.S. Environmental Protection Agency (EPA) Hazardous Waste Generator Identification Number for the NTS; (2) Generated at sites identified in the Federal Facilities Agreement and Consent Order (FFACO); (3) Sensitive records and media, including documents, vugraphs, computer disks, typewriter ribbons, magnetic tapes, etc., generated by NNSA/NSO or its contractors; (4) ACM generated by NNSA/NSO or its contractors according to Section 6.2.2.2, as necessary; (5) Hydrocarbon-burdened soil and solid waste from areas covered under the EPA Hazardous Waste Generator Identification Number for the NTS; (6) Other waste on a case-by-case concurrence by

  9. Site selection and licensing issues: Southwest Compact low-level radioactive waste disposal site

    Energy Technology Data Exchange (ETDEWEB)

    Grant, J.L.

    1989-11-01

    The low-level radioactive waste disposal site in California is being selected through a three-phase program. Phase 1 is a systematic statewide, regional, and local screening study. This program was conducted during 1986 and 1987, and culminated in the selection of three candidate sites fur further study. The candidate sites are identified as the Panamint, Silurian, and Ward Valley sites. Phase 2 comprises site characterization and environmental and socio-economic impact study activities at the three candidate sites. Based upon the site characterization studies, the candidate sites are ranked according to the desirability and conformance with regulatory requirements. Phase 3 comprises preparation of a license application for the selected candidate site. The license application will include a detailed characterization of the site, detailed design and operations plans for the proposed facility, and assessments of potential impacts of the site upon the environment and the local communities. Five types of siting criteria were developed to govern the site selection process. These types are: technical suitability exclusionary criteria, high-avoidance criteria beyond technical suitability requirements, discretionary criteria, public acceptance, and schedule requirements of the LLWR Policy Act Amendments. This paper discusses the application of the hydrological and geotechnical criteria during the siting and licensing studies in California. These criteria address site location and performance, and the degree to which present and future site behavior can be predicted. Primary regulatory requirements governing the suitability of a site are that the site must be hydrologically and geologically simple enough for the confident prediction of future behavior, and that the site must be stable enough that frequent or intensive maintenance of the closed site will not be required. This paper addresses the methods to measure site suitability at each stage of the process, methods to

  10. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  11. Application of Industrial Waste CaF2 for Vegetative Covering of Phosphogypsum Disposal Site

    OpenAIRE

    Leaković, S.; Lisac, H.; Vukadin, R.

    2012-01-01

    Phosphogypsum, i.e. calcium sulphate dihydrate is generated as a by-product in the phosphoric acid production during reaction between phosphate rock and sulphuric acid. It is stored as nonhazardous waste in a disposal site. Since 1983, when the phosphoric acid plant started operation, about 8 140 000 t of phosphogypsum have been disposed there. The disposal site consists of four separate ponds (compartments) which are bounded by 6 ...

  12. Sewerage Treatment Plants - WASTE_TREATMENT_STORAGE_DISPOSAL_IDEM_IN: Treatment, Storage, and Disposal Sites in Indiana (Indiana Department of Environmental Management, Point Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — WASTE_TREATMENT_STORAGE_DISPOSAL_IDEM_IN is a point shapefile that contains treatment, storage, and disposal (TSD) site locations in Indiana, provided by personnel...

  13. Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J.A.

    1997-09-01

    According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.

  14. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.:0

    Energy Technology Data Exchange (ETDEWEB)

    Wickline, Alfred

    2005-12-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting

  15. Dungeness crab survey for the Southwest Ocean Disposal Site and addtiional sites off Grays Harbor, Washington, June 1991

    Energy Technology Data Exchange (ETDEWEB)

    Antrim, L.D.; Cullinan, V.I.; Pearson, W.H. (Battelle Marine Research Lab., Sequim, WA (United States))

    1992-01-01

    As part of the Grays Harbor Navigation Improvement Project, the US Army Corps of Engineers, Seattle District (USACE), has made active use of the Southwest Ocean Disposal Site off Grays Harbor, Washington. Disposal site boundaries were established to avoid an area where high densities of Young-of-the-Year (YOY) Dungeness crab, Cancer magister, were observed during the site selection surveys. To monitor possible impacts of disposal operations on Dungeness crab at the site, USACE recommended a crab distribution survey prior to disposal operations in the February 1989 environmental impact statement supplement (EISS) as part of a tiered monitoring strategy for the site. According to the tiered monitoring strategy, a preliminary survey is conducted to determine if the disposal site contains an exceptionally high density of YOY Dungeness crab. The trigger for moving to a more intensive sampling effort is a YOY crab density within the disposal site that is 100 times higher than the density in the reference area to the north. This report concerns a 1991 survey that was designed to verify that the density of YOY Dungeness crab present at the disposal site was not exceptionally high. Another objective of the survey was to estimate Dungeness crab densities at nearshore areas that are being considered as sediment berm sites by USACE.

  16. Long-term surveillance plan for the Cheney disposal site near Grand Junction, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney disposal site. The site is in Mesa County near Grand Junction, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects public health and safety and the environment. Before each disposal site may be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Cheney disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete and the NRC formally accepts this plan. This document describes the long-term surveillance program the DOE will implement to ensure that the Cheney disposal site performs as designed. The program is based on site inspections to identify potential threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  17. Dungeness crab survey for the Southwest Ocean Disposal Site off Grays Harbor, Washington, June 1990

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, B.J.; Pearson, W.H. (Battelle/Marine Sciences Lab., Sequim, WA (United States))

    1991-09-01

    As part of the Grays Harbor Navigation Improvement Project, the Seattle District of the US Army Corps of Engineers has begun active use of the Southwest Ocean Disposal Site off Grays Harbor, Washington. This survey was to verify that the location of the area of high crab density observed during site selection surveys has not shifted into the Southeast Ocean Disposal Site. In June 1990, mean densities of juvenile Dungeness crab were 146 crab/ha within the disposal site and 609 crab/ha outside ad north of the disposal site. At nearshore locations outside the disposal site, juvenile crab density was 3275 crab/ha. Despite the low overall abundance, the spatial distribution of crab was such that the high crab densities in 1990 have remained outside the Southwest Ocean Disposal Site. The survey data have confirmed the appropriateness of the initial selection of the disposal site boundaries and indicated no need to move to the second monitoring tier. 8 refs., 9 figs., 2 tabs.

  18. Locational conflict and the siting of nuclear waste disposal repositories: an international appraisal

    OpenAIRE

    F M Shelley; B D Solomon; M J Pasqualetti; G T Murauskas

    1988-01-01

    The industrialized nations of the world have begun to plan for the storage and eventual disposal of their increasing volumes of nuclear wastes. In this paper the authors inventory the progress made by these nations in planning for nuclear waste disposal. A typology based on the adoption of spent-fuel reprocessing programs and of progress toward selection of permanent disposal sites is developed, and the world's nuclear nations are located within this typology. However, those countries which h...

  19. 10 CFR 61.50 - Disposal site suitability requirements for land disposal.

    Science.gov (United States)

    2010-01-01

    ... should be selected so that projected population growth and future developments are not likely to affect...-year flood plain, coastal high-hazard area or wetland, as defined in Executive Order 11988, “Floodplain... of subpart C of this part being met. In no case will waste disposal be permitted in the zone of...

  20. Data Validation Package May 2016 Groundwater Sampling at the Bluewater, New Mexico, Disposal Site, September 2016

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Dick [Navarro Nevada Environmental Services (NNES), Las Vegas, NV (United States); Tsosie, Bernadette [US Department of Energy, Washington, DC (United States)

    2016-09-01

    Groundwater samples were collected from monitoring wells at the Bluewater, New Mexico, Disposal Site to monitor groundwater contaminants as specified in the 1997 Long-Term Surveillance Plan for the DOE Bluewater (UMTRCA Title II) Disposal Site Near Grants, New Mexico (LTSP). Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location 16(SG).

  1. Framework for DOE mixed low-level waste disposal: Site fact sheets

    Energy Technology Data Exchange (ETDEWEB)

    Gruebel, M.M.; Waters, R.D.; Hospelhorn, M.B.; Chu, M.S.Y. [eds.

    1994-11-01

    The Department of Energy (DOE) is required to prepare and submit Site Treatment Plans (STPS) pursuant to the Federal Facility Compliance Act (FFCAct). Although the FFCAct does not require that disposal be addressed in the STPS, the DOE and the States recognize that treatment of mixed low-level waste will result in residues that will require disposal in either low-level waste or mixed low-level waste disposal facilities. As a result, the DOE is working with the States to define and develop a process for evaluating disposal-site suitability in concert with the FFCAct and development of the STPS. Forty-nine potential disposal sites were screened; preliminary screening criteria reduced the number of sites for consideration to twenty-six. The DOE then prepared fact sheets for the remaining sites. These fact sheets provided additional site-specific information for understanding the strengths and weaknesses of the twenty-six sites as potential disposal sites. The information also provided the basis for discussion among affected States and the DOE in recommending sites for more detailed evaluation.

  2. Long-term surveillance plan for the Bodo Canyon Disposal Site, Durango, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This long-term surveillance plan (LTSP) for the Durango, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Durango (Bodo Canyon) disposal site, which will be referred to as the disposal site throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). RRMs include tailings and other uranium ore processing wastes still at the site, which the DOE determines to be radioactive. This LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992).

  3. 36 CFR 6.6 - Solid waste disposal sites within new additions to the National Park System.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites... NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.6 Solid waste disposal sites within new additions to the National Park System. (a) An...

  4. Water Resources Research Program. Abatement of malodors at diked, dredged-material disposal sites. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, W.; Dravnieks, A.; Zussman, R.; Goltz, R.

    1976-06-01

    Samples of malodorous air and dredged material were collected at diked disposal sites at the following locations: Buffalo, NY; Milwaukee, WI; Mobile, AL; York Harbor, ME; Houston, TX; Detroit, MI; and Anacortes, WA; during the period July--October, 1975. Odorous compounds in the air samples were identified by gas chromatography/mass spectrometry, while the detection threshold, intensity, and character of the various odors were determined by experienced panelists using a dynamic, forced-choice-triangle olfactometer. Although significant problems with malodors were not observed beyond the disposal-area dikes during site visits, noteworthy odor episodes had occurred at some sites. An odor-abatement strategy is presented for handling the expected range of odor conditions at dredged-material disposal sites. Its aim is to reduce to an acceptable level the intensity of malodors in an affected community. The main steps in the strategy cover selection of the disposal site, site preparation, odor characterization of sediments to be dredged, malodor abatement during dredging and disposal operations, malodor abatement after filling of the disposal site, and the handling of malodor complaints.

  5. Geoscientific Investigations for Searching Suitable Solid Waste Disposal Site Using Remote Sensing and GIS

    Directory of Open Access Journals (Sweden)

    V. M. Rokade

    2013-06-01

    Full Text Available The whole world is facing challenges of geo-environmental disposal of municipal solid waste. Considering the problem, in this paper author has established a methodology for searching the geo-scientifically feasible solid waste disposal site using advent geospatial tools. GIS modeling with overlay operation is most useful to find out geoscientifically feasible areas satisfying criteria decided for site selection. Present disposal system of study area is representing the unawareness about the geo-environmental problems and health hazards. This study provides a selection of environment friendly and geo-scientifically suitable areas for the disposal of solid waste supplying reasonable, convenient and administratively transparent solutions to the waste disposal problems.

  6. 78 FR 37759 - Ocean Dumping; Atchafalaya-West Ocean Dredged Material Disposal Site Designation

    Science.gov (United States)

    2013-06-24

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 228 Ocean Dumping; Atchafalaya-West Ocean Dredged Material Disposal Site Designation AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule and draft Environmental...

  7. Overview of Nevada Test Site Radioactive and Mixed Waste Disposal Operations

    Energy Technology Data Exchange (ETDEWEB)

    J.T. Carilli; S.K. Krenzien; R.G. Geisinger; S.J. Gordon; B. Quinn

    2009-03-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office Environmental Management Program is responsible for carrying out the disposal of on-site and off-site generated low-level radioactive waste (LLW) and low-level radioactive mixed waste (MW) at the Nevada Test Site (NTS). Core elements of this mission are ensuring safe and cost-effective disposal while protecting workers, the public, and the environment. This paper focuses on the impacts of new policies, processes, and opportunities at the NTS related to LLW and MW. Covered topics include: the first year of direct funding for NTS waste disposal operations; zero tolerance policy for non-compliant packages; the suspension of mixed waste disposal; waste acceptance changes; DOE Consolidated Audit Program (DOECAP) auditing; the 92-Acre Area closure plan; new eligibility requirements for generators; and operational successes with unusual waste streams.

  8. Disposal of Low-Level Waste (LLW) at the Nevada National Security Site (NNSS)

    Energy Technology Data Exchange (ETDEWEB)

    none, none

    2014-05-14

    DOE Office of Environmental Management presentation at the 2014 Annual Meeting of the National Transportation Stakeholders Forum on the disposal of low-level waste at the Nevada National Security Site.

  9. Deep geological disposal in argillaceous formations: studies at the Tournemire test site

    Science.gov (United States)

    Bonin, B.

    1998-12-01

    Deep argillaceous formations are potential host media for radioactive waste disposal. The French Institute of Protection and Nuclear Safety (IPSN) is developing in situ studies concerning the confining properties of this kind of geological barrier at the Tournemire tunnel site (Aveyron, France). The past research programme covered physical and physico-chemical properties of the consolidated argillaceous medium, diffusive and convective transport; rock and water chemistry and long-term behaviour of the host rock. Investigations conclude that fluid circulations in the unperturbed matrix are very slow. However, past tectonic events have induced fractures which might accelerate these circulations. The hydraulic role of fractures in this type of rocks is poorly known. A detailed study of the role of these fractures is presently under way. Moreover, the 100-year old tunnel exhibits a very clear `Excavation-Damaged Zone' (EDZ), with large fractures which might drain water rather quickly over long distances. The mechanical, hydraulic and physico-chemical properties of the EDZ are being investigated. The present paper summarizes the results obtained so far at Tournemire, and the current research orientations.

  10. Data Validation Package August 2015 Groundwater Sampling at the Grand Junction, Colorado, Disposal Site October 2015

    Energy Technology Data Exchange (ETDEWEB)

    Frazier, William [USDOE Office of Legacy Management (LM), Washington, DC (United States); Baur, Gary [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2015-11-03

    The 1998 Interim Long-Term Surveillance Plan for the Cheney Disposal Site Near Grand Junction, Colorado, requires annual monitoring to assess the performance of the disposal cell. Monitoring wells 0731, 0732 and 0733 were sampled as specified in the plan. Sampling and analyses were conducted in accordance with Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites.

  11. Imprinting of confining sites for cell cultures on thermoplastic substrates

    Science.gov (United States)

    Cone, C. D.; Fleenor, E. N.

    1969-01-01

    Prevention of test cell migration beyond the field of observation involves confining cells or cultures in microlagoons made in either a layer of grease or a thermoplastic substrate. Thermoplastic films or dishes are easily imprinted with specifically designed patterns of microlagoons.

  12. Long-term surveillance plan for the Ambrosia Lake, New Mexico disposal site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Ambrosia Lake disposal site in McKinley County, New Mexico, describes the U.S. Department of Energy`s (DOE) long-term care program for the disposal site. The DOE will carry out this program to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials.

  13. Long-term surveillance plan for the Ambrosia Lake, New Mexico disposal site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Ambrosia Lake disposal site in McKinley County, New Mexico, describes the US Department of Energy`s (DOE) long-term care program for the disposal site. The DOE will carry out this program to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials.

  14. Siting Study for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Joan Connolly; Lance Peterson; Brennon Orr; Bob Starr

    2010-10-01

    The U.S. Department of Energy has identified a mission need for continued disposal capacity for remote-handled low-level waste (LLW) generated at the Idaho National Laboratory (INL). An alternatives analysis that was conducted to evaluate strategies to achieve this mission need identified two broad options for disposal of INL generated remote-handled LLW: (1) offsite disposal and (2) onsite disposal. The purpose of this study is to identify candidate sites or locations within INL boundaries for the alternative of an onsite remote handled LLW disposal facility and recommend the highest-ranked locations for consideration in the National Environmental Policy Act process. The study implements an evaluation based on consideration of five key elements: (1) regulations, (2) key assumptions, (3) conceptual design, (4) facility performance, and (5) previous INL siting study criteria, and uses a five-step process to identify, screen, evaluate, score, and rank 34 separate sites located across INL. The result of the evaluation is identification of two recommended alternative locations for siting an onsite remote-handled LLW disposal facility. The two alternative locations that best meet the evaluation criteria are (1) near the Advanced Test Reactor Complex and (2) west of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility.

  15. Hazardous Material Storage Facilities and Sites - WASTE_DISPOSAL_STORAGE_HANDLING_IDEM_IN: Waste Site Locations for Disposal, Storage and Handling of Solid Waste and Hazardous Waste in Indiana (Indiana Department of Environmental Management, Point Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — WASTE_DISPOSAL_STORAGE_HANDLING_IDEM_IN is a point shapefile that contains waste site locations for the disposal, storage, and handling of solid and hazardous waste...

  16. 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-11-01

    This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management in 2013 at six uranium mill tailings disposal sites reclaimed under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. These activities verified that the UMTRCA Title II disposal sites remain in compliance with license requirements. DOE manages six UMTRCA Title II disposal sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) established at Title 10 Code of Federal Regulations Part 40.28. Reclamation and site transition activities continue at other sites, and DOE ultimately expects to manage approximately 27 Title II disposal sites. Long-term surveillance and maintenance activities and services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective action; and performing administrative, records, stakeholder services, and other regulatory functions. Annual site inspections and monitoring are conducted in accordance with site-specific long-term surveillance plans (LTSPs) and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up inspections, or corrective action. LTSPs and site compliance reports are available online at http://www.lm.doe.gov

  17. Measurements of air pollutants at two disposal sites in Cairo.

    Science.gov (United States)

    Köck, M

    1989-01-01

    40,000 people live on the periphery of Cairo. They dispose of the city's entire waste. A complete recycling of the waste is carried out (up to 90%). The rest is burnt. Enormous fume emissions result form the incomplete burning process of their constituents of rest wastes (plastic, paper rests, tins cloth rests, org. material). The daily burning process lasts from midday to approximately 11 p.m. The main pollutants measured were: Carbon monoxide, hydrochloric acid and sulphur dioxide. As the results demonstrate, high amounts of carbon monoxide and hydrochloric acid are emitted from the burning process.

  18. Long-term surveillance plan for the Rifle, Colorado, Disposal site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Estes Gulch disposal site in Garfield County, Colorado. The U.S. Environmental Protection Agency (EPA) has developed regulations for the issuance of a general license by the U.S. Nuclear Regulatory Commission (NRC) for the custody and long-term care of UMTRA Project disposal Sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites, will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Estes Gulch disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Estes Gulch site and the NRC formally accepts this LTSP.

  19. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    This long-term surveillance plan (LTSP) describes the US Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment.For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP.

  20. Pulp fiction - The volunteer concept (or how not to site additional LLRW disposal capacity)

    Energy Technology Data Exchange (ETDEWEB)

    Burton, D.A. [Heartland Operation to Protect the Environment, Inc., Auburn, NE (United States)

    1995-12-31

    Experiences of compacts and of individual states throughout the nation indicate that low-level radioactive waste disposal siting processes, based from the beginning upon the volunteer concept are fraught with problems. Most apparent among these problems is that the volunteer concept does not lead to scientifically and technically based siting endeavors. Ten years have passed since the Amendments Act of 1985, and no compact or state has been - successful in providing for new LLRW disposal capacity. That failure can be traced in part to the reliance upon the volunteer concept in siting attempts. If success is to be achieved, the future direction for LLRW management must focus on three areas: first, a comprehensive evaluation of all LLRW management options, including reduction of waste generated and on-site storage; secondly, a comprehensive evaluation of the current as well as projected waste stream, to determine the amount of disposal capacity actually needed; and, finally, sound scientifically and technically based siting processes.

  1. Hydrogeologic setting east of a low-level radioactive-waste disposal site near Sheffield, Illinois

    Science.gov (United States)

    Foster, J.B.; Garklavs, George; Mackey, G.W.

    1984-01-01

    Core samples from 45 test wells and 4 borings were used to describe the glacial geology of the area east of the low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois. Previous work has shown that shallow ground water beneath the disposal site flows east through a pebbly-sand unit of the Toulon Member of the Glasford Formation. The pebbly sand was found in core samples from wells in an area extending northeast from the waste-disposal site to a strip-mine lake and east along the south side of the lake. Other stratigraphic units identified in the study area are correlated with units found on the disposal site. The pebbly-sand unit of the Toulon Member grades from a pebbly sand on site into a coarse gravel with sand and pebbles towards the lake. The Hulick Till Member, a key bed, underlies the Toulon Member throughout most of the study area. A narrow channel-like depression in the Hulick Till is filled with coarse gravelly sand of the Toulon Member. The filled depression extends eastward from near the northeast corner of the waste-disposal site to the strip-mine lake. (USGS)

  2. 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-03-01

    This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) in 2013 at 19 uranium mill tailings disposal sites established under Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978.1 These activities verified that the UMTRCA Title I disposal sites remain in compliance with license requirements. DOE operates 18 UMTRCA Title I sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) in accordance with Title 10 Code of Federal Regulations Part 40.27 (10 CFR 40.27). As required under the general license, a long-term surveillance plan (LTSP) for each site was prepared by DOE and accepted by NRC. The Grand Junction, Colorado, Disposal Site, one of the 19 Title I sites, will not be included under the general license until the open, operating portion of the cell is closed. The open portion will be closed either when it is filled or in 2023. This site is inspected in accordance with an interim LTSP. Long-term surveillance and maintenance services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective actions; and performing administrative, records, stakeholder relations, and other regulatory stewardship functions. Annual site inspections and monitoring are conducted in accordance with site-specific LTSPs and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up or contingency inspections, or corrective action in accordance with the LTSP. LTSPs and site compliance reports are available on the Internet at http://www.lm.doe.gov/.

  3. IMPACT OF THE JAKUŠEVEC-PRUDINEC WASTE DISPOSAL SITE ON GROUNDWATER QUALITY

    Directory of Open Access Journals (Sweden)

    Zoran Nakić

    2007-12-01

    Full Text Available The main goal of the research shown in this paper is to investigate the cause and effect relation of the Jakuševec-Prudinec waste disposal site and the groundwater pollution. The recovery of the Jakuševec-Prudinec waste disposal site by the end of 2003 did not have any significant impact on the pollution reduction in groundwater. Very high values of the pollution index defined in the area southeastern from the waste disposal site show spreading of the pollution toward Mičevec village. The analysis of the hydrogeochemical characteristics showed that in the waste disposal site area the local geochemical anomalies of the partial CO2 pressure exist, indicating that the intensive carbonate dissolution processes and HCO3- enrichment dominate in this area. Near the border of the waste disposal site groundwater with high ammonium ion (NH4+ and chloride ion (Cl- dominates. The high concentrations of the heavy metals and very strong geochemical bonds determined from the correlation coefficients show that in the reductive aquifer conditions heavy metals strongly release (the paper is published in Croatian.

  4. Strategies for effective management of health and safety in confined site construction

    Directory of Open Access Journals (Sweden)

    John Spillane

    2013-12-01

    Full Text Available Purpose: The overall aim of this research is to identify and catalogue the numerous managerial strategies for effective management of health and safety on a confined, urban, construction site. Design/Methodology/Approach: This is achieved by utilising individual interviews, focus groups discussion on selected case studies of confined construction sites, coupled with a questionnaire survey. Findings: The top five key strategies include (1 Employ safe system of work plans to mitigate personnel health and safety issues; (2 Inform personnel, before starting on-site, of the potential issues using site inductions; (3 Effective communication among site personnel; (4 Draft and implement an effective design site layout prior to starting on-site; and (5 Use of banksman (traffic co-ordinator to segregate personnel from vehicular traffic. Practical Implication: The construction sector is one of the leading industries in accident causation and with the continued development and regeneration of our urban centres, confined site construction is quickly becoming the norm - an environment which only fuels accident creation within the construction sector. Originality/Value: This research aids on-site management that requires direction and assistance in the identification and implementation of key strategies for the management of health and safety, particularly in confined construction site environments.

  5. Strategies for effective management of health and safety in confined site construction

    Directory of Open Access Journals (Sweden)

    John Spillane

    2013-12-01

    Full Text Available Purpose: The overall aim of this research is to identify and catalogue the numerous managerial strategies for effective management of health and safety on a confined, urban, construction site. Design/Methodology/Approach: This is achieved by utilising individual interviews, focus groups discussion on selected case studies of confined construction sites, coupled with a questionnaire survey. Findings: The top five key strategies include (1 Employ safe system of work plans to mitigate personnel health and safety issues; (2 Inform personnel, before starting on-site, of the potential issues using site inductions; (3 Effective communication among site personnel; (4 Draft and implement an effective design site layout prior to starting on-site; and (5 Use of banksman (traffic co-ordinator to segregate personnel from vehicular traffic. Practical Implication: The construction sector is one of the leading industries in accident causation and with the continued development and regeneration of our urban centres, confined site construction is quickly becoming the norm - an environment which only fuels accident creation within the construction sector. Originality/Value: This research aids on-site management that requires direction and assistance in the identification and implementation of key strategies for the management of health and safety, particularly in confined construction site environments.

  6. A data base for low-level radioactive waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Daum, M.L.; Moskowitz, P.D.

    1989-07-01

    A computerized database was developed to assist the US Environmental Protection Agency (EPA) in evaluating methods and data for characterizing health hazards associated with land and ocean disposal options for low-level radioactive wastes. The data cover 1984 to 1987. The types of sites considered include Nuclear Regulatory Commission (NRC) licensed commercial disposal sites, EPA National Priority List (NPL) sites, US Department of Energy (DOE) Formerly Utilized Sites Remedial Action Project (FUSRAP) and DOE Surplus Facilities Management Program (SFMP) sites, inactive US ocean disposal sites, and DOE/Department of Defense facilities. Sources of information include reports from EPA, the US Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC), as well as direct communication with individuals associated with specific programs. The data include site descriptions, waste volumes and activity levels, and physical and radiological characterization of low-level wastes. Additional information on mixed waste, packaging forms, and disposal methods were compiled, but are not yet included in the database. 55 refs., 4 figs., 2 tabs.

  7. Long-term surveillance plan for the Bodo Canyon Disposal Site, Durango, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Act on (UMTRA) Project Bodo Canyon disposal site at Durango, Colorado, describes the surveillance activities for the disposal site. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal call continues to function as designed This LTSP was prepared as a requirement for DOE acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM) from processing uranium ore. This LTSP documents that the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a). Following the introduction, contents of this report include the following: site final condition; site drawings and photographs; permanent site surveillance features; ground water monitoring; annual site inspections; unscheduled inspections; custodial maintenance; corrective action; record keeping and reporting requirements; emergency notification and reporting; quality assurance; personal health and safety; list of contributions; and references.

  8. Data Validation Package August 2015 Groundwater Sampling at the Grand Junction, Colorado, Disposal Site October 2015

    Energy Technology Data Exchange (ETDEWEB)

    Frazier, William [U.S. Dept. of Energy, Washington, DC (United States). Office of Legacy Management; Baur, Gary [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2015-11-03

    Sampling Period: August 4, 2015. The 1998 Interim Long-Term Surveillance Plan for the Cheney Disposal Site Near Grand Junction, Colorado, requires annual monitoring to assess the performance of the disposal cell. Monitoring wells 0731, 0732, and 0733 were sampled as specified in the plan. Sampling and analyses were conducted in accordance with Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). The water level was measured at each sampled well. The water level in well 0733, located in the disposal cell, is lower than water levels in adjacent wells 0731 and 0732, indicating a hydraulic gradient toward the disposal cell. Results from this sampling event were generally consistent with results from the past as shown in the attached concentration-versus-time graphs. There have been no large changes in contaminant concentration observed over the last several years with the following exception. The uranium concentration in well 0733 has been trending upward since 2003. High uranium concentrations are expected in this well because it is located in the disposal cell. The selenium concentrations observed in wells 0731 and 0732 are elevated when compared to the disposal cell 0733. Wells 0731 and 0732 are completed at the alluvium/Mancos contact; here, elevated selenium concentrations are expected due to contributions from the Mancos shale.

  9. NWTS program criteria for mined geologic disposal of nuclear wasite: site performance criteria

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-02-01

    This report states ten criteria governing the suitability of sites for mined geologic disposal of high-level radioactive waste. The Department of Energy will use these criteria in its search for sites and will reevaluate their use when the Nuclear Regulatory Commission issues radioactive waste repository rules. These criteria encompass site geometry, geohydrology, geochemistry, geologic characteristics, tectonic environment, human intrusion, surface characteristics, environment, and potential socioeconomic impacts. The contents of this document include background discussion, site performance criteria, and appendices. The background section describes the waste disposal system, the application of the site criteria, and applicable criteria from NWTS-33(1) - Program Objectives, Functional Requirements and System Performance Criteria. Appendix A, entitled Comparison with Other Siting Criteria compares the NWTS criteria with those recommended by other agencies. Appendix B contains DOE responses to public comments received on the January 1980 draft of this document. Appendix C is a glossary.

  10. Guidance for implementing the long-term surveillance program for UMTRA Project Title I Disposal Sites

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    This guidance document has two purposes: it provides guidance for writing site-specific long-term surveillance plans (LTSP) and it describes site surveillance, monitoring, and long-term care techniques for Title I disposal sites of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.). Long-term care includes monitoring, maintenance, and emergency measures needed to protect public health and safety and the environment after remedial action is completed. This document applies to the UMTRCA-designated Title I disposal sites. The requirements for long-term care of the Title I sites and the contents of the LTSPs are provided in U.S. Nuclear Regulatory Commission (NRC) regulations (10 CFR Section 40.27) provided in Attachment 1.

  11. CHARACTERIZATION OF BENTONITE FOR ENGINEERED BARRIER SYSTEMS IN RADIOACTIVE WASTE DISPOSAL SITES

    Directory of Open Access Journals (Sweden)

    Dubravko Domitrović

    2012-07-01

    Full Text Available Engineered barrier systems are used in radioactive waste disposal sites in order to provide better protection of humans and the environment from the potential hazards associated with the radioactive waste disposal. The engineered barrier systems usually contain cement or clay (bentonite because of their isolation properties and long term performance. Quality control tests of clays are the same for all engineering barrier systems. Differences may arise in the required criteria to be met due for different application. Prescribed clay properties depend also on the type of host rocks. This article presents radioactive waste management based on best international practice. Standard quality control procedures for bentonite used as a sealing barrier in radioactive waste disposal sites are described as some personal experiences and results of the index tests (free swelling index, water adsorption capacity, plasticity limits and hydraulic permeability of bentonite (the paper is published in Croatian.

  12. Challenges of UK/Irish Contractors regarding Material Management and Logistics in Confined Site Construction

    Directory of Open Access Journals (Sweden)

    Spillane, John P

    2011-12-01

    Full Text Available The aim of this paper is to identify the various managerial issues encountered by UK/Irish contractors in the management of materials in confined urban construction sites. Through extensive literature review, detailed interviews, case studies, cognitive mapping, causal loop diagrams, questionnaire survey and documenting severity indices, a comprehensive insight into the materials management concerns within a confined construction site environment is envisaged and portrayed. The leading issues highlighted are: that contractors’ material spatial requirements exceed available space, it is difficult to coordinate the storage of materials in line with the programme, location of the site entrance makes delivery of materials particularly difficult, it is difficult to store materials on-site due to the lack of space, and difficult to coordinate the storage requirements of the various sub-contractors. With the continued development of confined urban centres and the increasing high cost of materials, any marginal savings made on-site would translate into significant monetary savings at project completion. Such savings would give developers a distinct competitive advantage in this challenging economic climate. As on-site management professionals successfully identify, acknowledge and counteract the numerous issues illustrated, the successful management of materials on a confined urban construction site becomes attainable.

  13. Evaluation of the Acceptability of Potential Depleted Uranium Hexafluoride Conversion Products at the Envirocare Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Croff, A.G.

    2001-01-11

    The purpose of this report is to review and document the capability of potential products of depleted UF{sub 6} conversion to meet the current waste acceptance criteria and other regulatory requirements for disposal at the facility in Clive, Utah, owned by Envirocare of Utah, Inc. The investigation was conducted by identifying issues potentially related to disposal of depleted uranium (DU) products at Envirocare and conducting an initial analysis of them. Discussions were then held with representatives of Envirocare, the state of Utah (which is a NRC Agreement State and, thus, is the cognizant regulatory authority for Envirocare), and DOE Oak Ridge Operations. Provisional issue resolution was then established based on the analysis and discussions and documented in a draft report. The draft report was then reviewed by those providing information and revisions were made, which resulted in this document. Issues that were examined for resolution were (1) license receipt limits for U isotopes; (2) DU product classification as Class A waste; (3) use of non-DOE disposal sites for disposal of DOE material; (4) historical NRC views; (5) definition of chemical reactivity; (6) presence of mobile radionuclides; and (7) National Environmental Policy Act coverage of disposal. The conclusion of this analysis is that an amendment to the Envirocare license issued on October 5, 2000, has reduced the uncertainties regarding disposal of the DU product at Envirocare to the point that they are now comparable with uncertainties associated with the disposal of the DU product at the Nevada Test Site that were discussed in an earlier report.

  14. A sensitivity analysis of hazardous waste disposal site climatic and soil design parameters using HELP3

    Energy Technology Data Exchange (ETDEWEB)

    Adelman, D.D. [Water Resources Engineer, Lincoln, NE (United States); Stansbury, J. [Univ. of Nebraska-Lincoln, Omaha, NE (United States)

    1997-12-31

    The Resource Conservation and Recovery Act (RCRA) Subtitle C, Comprehensive Environmental Response, Compensation, And Liability Act (CERCLA), and subsequent amendments have formed a comprehensive framework to deal with hazardous wastes on the national level. Key to this waste management is guidance on design (e.g., cover and bottom leachate control systems) of hazardous waste landfills. The objective of this research was to investigate the sensitivity of leachate volume at hazardous waste disposal sites to climatic, soil cover, and vegetative cover (Leaf Area Index) conditions. The computer model HELP3 which has the capability to simulate double bottom liner systems as called for in hazardous waste disposal sites was used in the analysis. HELP3 was used to model 54 combinations of climatic conditions, disposal site soil surface curve numbers, and leaf area index values to investigate how sensitive disposal site leachate volume was to these three variables. Results showed that leachate volume from the bottom double liner system was not sensitive to these parameters. However, the cover liner system leachate volume was quite sensitive to climatic conditions and less sensitive to Leaf Area Index and curve number values. Since humid locations had considerably more cover liner system leachate volume than and locations, different design standards may be appropriate for humid conditions than for and conditions.

  15. INTRODUCTION A dump is defined as, “a site used to dispose of ...

    African Journals Online (AJOL)

    BIG TIMMY

    Landfill is defined as a "facility in which solid waste ... assess the quality in view of the proximity of the wells to open solid waste disposal sites and some uncased pit latrines. Results ..... such as agriculture, mining, or other activities (. Kaown.

  16. 1996 Hanford site report on land disposal restrictions for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1996-04-01

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order milestone M-26-OIF. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal-restricted mixed waste management at the Hanford Site.

  17. NRC Monitoring of Salt Waste Disposal at the Savannah River Site - 13147

    Energy Technology Data Exchange (ETDEWEB)

    Pinkston, Karen E.; Ridge, A. Christianne; Alexander, George W.; Barr, Cynthia S.; Devaser, Nishka J.; Felsher, Harry D. [U.S. Nuclear Regulatory Commission (United States)

    2013-07-01

    As part of monitoring required under Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), the NRC staff reviewed an updated DOE performance assessment (PA) for salt waste disposal at the Saltstone Disposal Facility (SDF). The NRC staff concluded that it has reasonable assurance that waste disposal at the SDF meets the 10 CFR 61 performance objectives for protection of individuals against intrusion (chap.61.42), protection of individuals during operations (chap.61.43), and site stability (chap.61.44). However, based on its evaluation of DOE's results and independent sensitivity analyses conducted with DOE's models, the NRC staff concluded that it did not have reasonable assurance that DOE's disposal activities at the SDF meet the performance objective for protection of the general population from releases of radioactivity (chap.61.41) evaluated at a dose limit of 0.25 mSv/yr (25 mrem/yr) total effective dose equivalent (TEDE). NRC staff also concluded that the potential dose to a member of the public is expected to be limited (i.e., is expected to be similar to or less than the public dose limit in chap.20.1301 of 1 mSv/yr [100 mrem/yr] TEDE) and is expected to occur many years after site closure. The NRC staff used risk insights gained from review of the SDF PA, its experience monitoring DOE disposal actions at the SDF over the last 5 years, as well as independent analysis and modeling to identify factors that are important to assessing whether DOE's disposal actions meet the performance objectives. Many of these factors are similar to factors identified in the NRC staff's 2005 review of salt waste disposal at the SDF. Key areas of interest continue to be waste form and disposal unit degradation, the effectiveness of infiltration and erosion controls, and estimation of the radiological inventory. Based on these factors, NRC is revising its plan for monitoring salt waste disposal at the SDF in

  18. Application of Industrial Waste CaF2 for Vegetative Covering of Phosphogypsum Disposal Site

    Directory of Open Access Journals (Sweden)

    Leaković, S.

    2012-11-01

    Full Text Available Phosphogypsum, i.e. calcium sulphate dihydrate is generated as a by-product in the phosphoric acid production during reaction between phosphate rock and sulphuric acid. It is stored as nonhazardous waste in a disposal site. Since 1983, when the phosphoric acid plant started operation, about 8 140 000 t of phosphogypsum have been disposed there. The disposal site consists of four separate ponds (compartments which are bounded by 6 meter high embankments of earth. According to a special design, it is possible to build layers upon the existing disposal site using phosphogypsum for making embankments. So far, the first 6-meter high level has been built with a 1:3 side slope of phosphogypsum embankments. Formation of the second level with 1:5 side slope is currently in progress. Another byproduct of phosphoric acid production is fluoride- and phosphorus-polluted wastewater. Before being discharged into the natural recipient, this wastewater is treated with calcium hydroxide. The product of neutralisation is calcium fluoride (CaF2 which is deposited in separate lagoons as nonhazardous waste. The application of calcium fluoride as a substrate for plants in the process of vegetative covering of the phosphogypsum disposal site is a new method of its usage. This way, a significant financial benefit is achieved because it is not necessary to build a new lagoon for calcium fluoride disposal. Regarding the environmental aspect, usage for vegetative covering is far better than the standard process of calcium fluoride disposal because residual phosphorus from CaF2 is utilised for enhanced growth of the plants. At the same time, the necessity for natural soil covering of the disposal site is reduced by 500 000 m3. Apart from the natural grass species, alfalfa (Medicago sativa L., Bermuda grass (Cynodon dactylon (L. Pers., grass mixtures with high content of red fescue (Festuca rubra L. and false indigo bush (Amorpha fruticosa L. displayed the best growth on the

  19. OPTIMAL ALLOCATION OF LANDFILL DISPOSAL SITE: A FUZZY MULTI-CRITERIA APPROACH

    Directory of Open Access Journals (Sweden)

    Ajit P. Singh, A. K. Vidyarthi

    2008-01-01

    Full Text Available The arbitrary disposal through land-fill sites and also the unscientific management of solid wastes generated by domestic, commercial and industrial activities leading to serious problems of health, sanitation and environmental degradation in India demand an immediate proper solid waste disposal planning otherwise it may cause a serious problem, especially in small and medium-sized cities/towns if proper steps are not initiated now. The present paper aims to develop decision support systems to allocate the best landfill disposal site among the given alternative sites for Vidya Vihar, Pilani, Rajasthan, India. The technique is applied to determine the overall strategy for planning of solid waste disposal and management, while taking into account its environmental impact, as well as economical, technical and sustainable development issues. The model effectively reflects dynamic, interactive, and uncertain characteristics of the solid waste management system and provides decision-makers with a decision tool to make a better decision while choosing a municipal solid waste management strategy.

  20. Olefin polymerization from single site catalysts confined within porous media

    Science.gov (United States)

    Kasi, Rajeswari M.

    Single Site Catalysts (SSCs) have been utilized for olefin polymerization. Altering the metal-ligand architecture in the SSCs, polyolefin properties can be enhanced in a rational manner. This influence of the ligands in the SSC on the property of polyolefins prepared can be referred to as the primary ligand influence. Extending this understanding and subsequent control of the metal-ligand framework to the interaction of SSCs within organic and inorganic supports is vital for the synthesis of polyolefins with tailored properties. The motivation behind this thesis was to explore the support influence on the reactivity of the SSC tethered to a support matrix during ethylene homo and copolymerization. In order to address this question of the support influence on the final polyolefin properties, synthetic routes to covalently bind SSCs on different matrices have been explored. Two distinct supported SSCs have been used to prepare branched polyethylenes. Branched polyethylenes can be prepared by either copolymerization (ethylene and alpha-olefin) or oligomerization/copolymerization processes (ethylene and in situ generated alpha-olefin). Synthetic routes to prepare precursor catalysts to Constrained Geometry Catalysts (CGCs) by silyl elimination chemistry have been developed (Chapter 2). Efficient synthetic protocols to assemble CGCs on aminomethylpolysytrene matrices (Chapter 3) and amine-functionalized mesoporous silica (Chapter 4) are also reported. These supported catalysts, with appropriate cocatalysts have been used to prepare ethylene homo and copolymers, the polymer thermal properties and microstructures were analyzed by various analytical techniques. Branched polyethylenes (LLDPE) can be prepared by copolymerization chemistry. It has been observed is that the influence of the support is seen in the production of lower crystalline forms of high density polyethylene (HDPE, 20--50% crystalline), while homogeneous polymerization of analogous soluble CGCs afford HDPE

  1. 10 CFR 40.27 - General license for custody and long-term care of residual radioactive material disposal sites.

    Science.gov (United States)

    2010-01-01

    ... this general license is to ensure that uranium mill tailings disposal sites will be cared for in such a.... (d) As specified in the Uranium Mill Tailings Radiation Control Act of 1978, as amended, the...) of the Atomic Energy Act of 1954, as amended, for disposal sites under title I of the Uranium...

  2. Comparative approaches to siting low-level radioactive waste disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Newberry, W.F.

    1994-07-01

    This report describes activities in nine States to select site locations for new disposal facilities for low-level radioactive waste. These nine States have completed processes leading to identification of specific site locations for onsite investigations. For each State, the status, legal and regulatory framework, site criteria, and site selection process are described. In most cases, States and compact regions decided to assign responsibility for site selection to agencies of government and to use top-down mapping methods for site selection. The report discusses quantitative and qualitative techniques used in applying top-down screenings, various approaches for delineating units of land for comparison, issues involved in excluding land from further consideration, and different positions taken by the siting organizations in considering public acceptance, land use, and land availability as factors in site selection.

  3. Closure Strategy for a Waste Disposal Facility with Multiple Waste Types and Regulatory Drivers at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    D. Wieland, V. Yucel, L. Desotell, G. Shott, J. Wrapp

    2008-04-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) plans to close the waste and classified material storage cells in the southeast quadrant of the Area 5 Radioactive Waste Management Site (RWMS), informally known as the '92-Acre Area', by 2011. The 25 shallow trenches and pits and the 13 Greater Confinement Disposal (GCD) borings contain various waste streams including low-level waste (LLW), low-level mixed waste (LLMW), transuranic (TRU), mixed transuranic (MTRU), and high specific activity LLW. The cells are managed under several regulatory and permit programs by the U.S. Department of Energy (DOE) and the Nevada Division of Environmental Protection (NDEP). Although the specific closure requirements for each cell vary, 37 closely spaced cells will be closed under a single integrated monolayer evapotranspirative (ET) final cover. One cell will be closed under a separate cover concurrently. The site setting and climate constrain transport pathways and are factors in the technical approach to closure and performance assessment. Successful implementation of the integrated closure plan requires excellent communication and coordination between NNSA/NSO and the regulators.

  4. Metal availability in a highly contaminated, dredged-sediment disposal site: Field measurements and geochemical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lions, Julie, E-mail: j.lions@brgm.f [BRGM, 3 Avenue Claude Guillemin, 45060 Orleans Cedex 2 (France); Centre National de Recherche sur les Sites et Sols Pollues, BP 537, 59505 Douai cedex (France); Guerin, Valerie; Bataillard, Philippe [BRGM, 3 Avenue Claude Guillemin, 45060 Orleans Cedex 2 (France); Centre National de Recherche sur les Sites et Sols Pollues, BP 537, 59505 Douai cedex (France); Lee, Jan van der [Mines ParisTech, Centre de Geosciences, 77305 Fontainebleau Cedex (France); Laboudigue, Agnes [Univ Lille Nord de France, F-59000 Lille (France); EMDouai, MPE-GCE, F-59500 Douai (France); Centre National de Recherche sur les Sites et Sols Pollues, BP 537, 59505 Douai cedex (France)

    2010-09-15

    Two complementary approaches were used to characterize arsenic and metal mobilizations from a dredged-sediment disposal site: a detailed field study combined with hydrogeochemical modeling. Contaminants in sediments were found to be mainly present as sulfides subject to oxidation. Secondary phases (carbonates, sulfates, (hydr)oxides) were also observed. Oxidative processes occurred at different rates depending on physicochemical conditions and contaminant contents in the sediment. Two distinct areas were identified on the site, each corresponding to a specific contaminant mobility behavior. In a reducing area, Fe and As were highly soluble and illustrated anoxic behavior. In well-oxygenated material, groundwater was highly contaminated in Zn, Cd and Pb. A third zone in which sediments and groundwater were less contaminated was also characterized. This study enabled us to prioritize remediation work, which should aim to limit infiltration and long-term environmental impact. - A detailed case study of metal behavior in a dredged-sediment disposal site combined with geochemical modeling.

  5. Inadvertent Intruder Analysis For The Portsmouth On-Site Waste Disposal Facility (OSWDF)

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Frank G.; Phifer, Mark A.

    2014-01-22

    The inadvertent intruder analysis considers the radiological impacts to hypothetical persons who are assumed to inadvertently intrude on the Portsmouth OSWDF site after institutional control ceases 100 years after site closure. For the purposes of this analysis, we assume that the waste disposal in the OSWDF occurs at time zero, the site is under institutional control for the next 100 years, and inadvertent intrusion can occur over the following 1,000 year time period. Disposal of low-level radioactive waste in the OSWDF must meet a requirement to assess impacts on such individuals, and demonstrate that the effective dose equivalent to an intruder would not likely exceed 100 mrem per year for scenarios involving continuous exposure (i.e. chronic) or 500 mrem for scenarios involving a single acute exposure. The focus in development of exposure scenarios for inadvertent intruders was on selecting reasonable events that may occur, giving consideration to regional customs and construction practices. An important assumption in all scenarios is that an intruder has no prior knowledge of the existence of a waste disposal facility at the site. Results of the analysis show that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, resides on the site and consumes vegetables from a garden established on the site using contaminated soil (chronic agriculture scenario) would receive a maximum chronic dose of approximately 7.0 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE chronic dose limit of 100 mrem/yr. Results of the analysis also showed that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, excavates a basement in the soil that reaches the waste (acute basement construction scenario) would receive a maximum acute dose of approximately 0.25 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE acute dose limit of 500 mrem/yr. Disposal inventory

  6. Assessment of compost application to coal ash disposal sites to promote the rapid vegetation establishment

    Science.gov (United States)

    Repmann, F.; Slazak, A.; Babic, M.; Schneider, B. U.; Schaaf, W.; Hüttl, R. F.

    2009-04-01

    In the city of Tuzla, located in Bosnia and Herzegovina, a coal fired thermo electric power plant is operated by the company JP ELEKTROPRIVERDA BIH TERMOELEKTRANA "TUZLA". High amounts of ash are produced by the power plant, which are currently disposed into settlement ponds bordered by dams in natural valleys. A total of four ash disposal sites covering an area of approx. 170 ha have been established during the last decades. Due to the fact that residual ash from coal combustion was found to contain a variety of trace elements (Ni, Cr, As, B), it must be assumed that ash disposal of that magnitude constitutes an environmental problem which is investigated within the EU-FP6 / STREP project "Reintegration of Coal Ash Disposal Sites and Mitigation of Pollution in the West Balkan Area" RECOAL. The main hazards relate to soil and groundwater contamination due to leaching toxins, dust dispersion, and toxins entering the food chain as these disposal sites are used for agricultural purposes. In order to rapidly establish a vegetation cover on barren ash dumps that particularly would prevent dust erosion we assessed the applicability of compost, produced from locally available municipal and industrial organic residues as an amendment to ash to improve substrate fertility. The envisaged remediation technology was considered to be a low cost, easy applicable and rapid method capable of substantially enhancing living conditions of residents in the vicinity of the abandoned disposal sites. Various compost application rates were evaluated in the field on experimental site Divkovici I in Tuzla and additionally in the greenhouse environment at Brandenburg Technical University Cottbus. Field and laboratory tests revealed that plant growth and cover rate can substantially be improved by mixing compost into the upper ash layer to a maximum depth of approx. 20 cm. Besides direct growth observations in the field analysis of soil parameters gave evidence that the fertility of ashy

  7. Current practices for maintaining occupational exposures ALARA at low-level waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Hadlock, D.E.; Herrington, W.N.; Hooker, C.D.; Murphy, D.W.; Gilchrist, R.L.

    1983-12-01

    The United States Nuclear Regulatory Commission contracted with Pacific Northwest Laboratory (PNL) to provide technical assistance in establishing operational guidelines, with respect to radiation control programs and methods of minimizing occupational radiation exposure, at Low-Level Waste (LLW) disposal sites. The PNL, through site visits, evaluated operations at LLW disposal sites to determine the adequacy of current practices in maintaining occupational exposures as low as is reasonably achievable (ALARA). The data sought included the specifics of: ALARA programs, training programs, external exposure control, internal exposure control, respiratory protection, surveillance, radioactive waste management, facilities and equipment, and external dose analysis. The results of the study indicated the following: The Radiation Protection and ALARA programs at the three commercial LLW disposal sites were observed to be adequate in scope and content compared to similar programs at other types of nuclear facilities. However, it should be noted that there were many areas that could be improved upon to help ensure the health and safety of occupationally exposed individuals.

  8. DRINK: a biogeochemical source term model for low level radioactive waste disposal sites.

    Science.gov (United States)

    Humphreys, P; McGarry, R; Hoffmann, A; Binks, P

    1997-07-01

    Interactions between element chemistry and the ambient geochemistry play a significant role in the control of radionuclide migration in the geosphere. These same interactions influence radionuclide release from near surface, low level radioactive waste, disposal sites once physical containment has degraded. In situations where LLW contains significant amounts of metal and organic materials such as cellulose, microbial degradation in conjunction with corrosion can significantly perturb the ambient geochemistry. These processes typically produce a transition from oxidising to reducing conditions and can influence radionuclide migration through changes in both the dominant radionuclide species and mineral phases. The DRINK (DRIgg Near field Kinetic) code is a biogeochemical transport code designed to simulate the long term evolution of the UK low level radioactive waste disposal site at Drigg. Drigg is the UK's principal solid low level radioactive waste disposal site and has been receiving waste since 1959. The interaction between microbial activity, the ambient geochemistry and radionuclide chemistry is central to the DRINK approach with the development of the ambient pH, redox potential and bulk geochemistry being directly influenced by microbial activity. This paper describes the microbial aspects of the code, site data underpinning the microbial model, the microbiology/chemistry interface and provides an example of the code in action.

  9. Data Validation Package - July 2016 Groundwater Sampling at the Gunnison, Colorado, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [USDOE Office of Legacy Management, Washington, DC (United States); Campbell, Sam [Navarro Research and Engineering, Inc., Las Vegas, NV (United States)

    2016-10-25

    Groundwater sampling at the Gunnison, Colorado, Disposal Site is conducted every 5 years to monitor disposal cell performance. During this event, samples were collected from eight monitoring wells as specified in the 1997 Long-Term Surveillance Plan for the Gunnison, Colorado, Disposal Site. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for US Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and­ analysis-plan-us-department-energy-office-legacy-management-sites). Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. A duplicate sample was collected from location 0723. Water levels were measured at all monitoring wells that were sampled and seven additional wells. The analytical data and associated qualifiers can be viewed in environmental database reports and are also available for viewing with dynamic mapping via the GEMS (Geospatial Environmental Mapping System) website at http://gems.lm.doe.gov/#. No issues were identified during the data validation process that require additional action or follow-up.

  10. Quantifying Deep Vadose Zone Soil Water Potential Changes at a Waste Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Joel M. Hubbell; Deborah L. McElroy

    2007-08-01

    Recent advances in moisture monitoring using tensiometers has resulted in long-duration, high quality data sets from within the deep vadose zone. A network of about 30 advanced tensiometers in 18 wells provided field-scale data to monitor soil water potential conditions and movement in the subsurface in and around a mixed waste disposal site at depths ranging from 6 to over 67 m below land surface (bls). Sensors are located in both sediments and fractured rock within the geologic profile and some have been in operation for over 10 years. The moisture monitoring was able to detect long term declines in soil water potential in response to lower than normal precipitation and resultant infiltration over the time period from 2000 to 2004. This trend was reversed in 2005 and 2006 in more than half of the monitoring sites over the 6 to 33 m depth interval and in several monitoring sites from 33 to 67 m, in response to above normal precipitation. These tensiometer data have the potential to effectively and rapidly validate that a remedial action such as placement of an ET cover would be successful in reducing the water moisture movement inside the disposal area to levels similar to those in undisturbed sites outside of the disposal area. This paper will describe the instrument design, how the instruments were installed, and the resultant data from this monitoring system.

  11. Contamination by perfluorinated compounds in water near waste recycling and disposal sites in Vietnam.

    Science.gov (United States)

    Kim, Joon-Woo; Tue, Nguyen Minh; Isobe, Tomohiko; Misaki, Kentaro; Takahashi, Shin; Viet, Pham Hung; Tanabe, Shinsuke

    2013-04-01

    There are very few reports on the contamination by perfluorinated chemicals (PFCs) in the environment of developing countries, especially regarding their emission from waste recycling and disposal sites. This is the first study on the occurrence of a wide range of PFCs (17 compounds) in ambient water in Vietnam, including samples collected from a municipal dumping site (MD), an e-waste recycling site (ER), a battery recycling site (BR) and a rural control site. The highest PFC concentration was found in a leachate sample from MD (360 ng/L). The PFC concentrations in ER and BR (mean, 57 and 16 ng/L, respectively) were also significantly higher than those detected in the rural control site (mean, 9.4 ng/L), suggesting that municipal solid waste and waste electrical and electronic equipment are potential contamination sources of PFCs in Vietnam. In general, the most abundant PFCs were perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluoroundecanoic acid (PFUDA; waste materials.

  12. Corrosion rate of steel in concrete - Evaluation of confinement techniques for on-site corrosion rate

    DEFF Research Database (Denmark)

    Nygaard, Peter Vagn; Geiker, Mette Rica; Elsener, Bernhard

    2009-01-01

    Earlier on-site investigations and laboratory studies have shown that varying corrosion rates are obtained when different commercially available instruments are used. The different confinement techniques, rather than the different electrochemical techniques used in the instruments, are considered...... to be the main reason for the discrepancies. This paper presents a method for the quantitative assessment of confinement techniques based on monitoring the operation of the corrosion rate instrument and the current distribution between the electrode assembly on the concrete surface and a segmented reinforcement...... bar embedded in the concrete. The applicability of the method was demonstrated on two commercially available corrosion rate instruments based on different confinement techniques. The method provided an explanation of the differences in performance of the two instruments. Correlated measurements...

  13. Corrosion rate of steel in concrete - Evaluation of confinement techniques for on-site corrosion rate

    DEFF Research Database (Denmark)

    Nygaard, Peter Vagn; Geiker, Mette Rica; Elsener, Bernhard

    2009-01-01

    Earlier on-site investigations and laboratory studies have shown that varying corrosion rates are obtained when different commercially available instruments are used. The different confinement techniques, rather than the different electrochemical techniques used in the instruments, are considered...... to be the main reason for the discrepancies. This paper presents a method for the quantitative assessment of confinement techniques based on monitoring the operation of the corrosion rate instrument and the current distribution between the electrode assembly on the concrete surface and a segmented reinforcement...... bar embedded in the concrete. The applicability of the method was demonstrated on two commercially available corrosion rate instruments based on different confinement techniques. The method provided an explanation of the differences in performance of the two instruments. Correlated measurements...

  14. A temporal and spatial assessment of TBT concentrations at dredged material disposal sites around the coast of England and Wales.

    Science.gov (United States)

    Bolam, Thi; Barry, Jon; Law, Robin J; James, David; Thomas, Boby; Bolam, Stefan G

    2014-02-15

    Despite legislative interventions since the 1980s, contemporary concentrations of organotin compounds in marine sediments still impose restrictions on the disposal of dredged material in the UK. Here, we analyse temporal and spatial data to assess the effectiveness of the ban on the use of TBT paints in reducing concentrations at disposal sites. At a national scale, there was a statistically significant increase in the proportion of samples in which the concentration was below the limit of detection (LOD) from 1998 to 2010. This was observed for sediments both inside and outside the disposal sites. However, this temporal decline in organotin concentration is disposal site-specific. Of the four sites studied in detail, two displayed significant increases in proportion of samples below LOD over time. We argue that site-specificity in the effectiveness of the TBT ban results from variations in historical practices at source and unique environmental characteristics of each site.

  15. Potential overflow of Mojave Creek near disposal site, Edwards Air Force Base, California

    Science.gov (United States)

    Dinehart, Randy L.; Harmon, Jerry G.

    1998-01-01

    Sedimentological evidence in Mojave Creek near Edwards, California, indicates that the largest discharge in the last hundred years near the disposal site of the Main Base Landfill at Edwards Air Force Base was a few hundred cubic feet per second. The distal ends of two alluvial fans on the Mojave Creek floodplain near the Main Base Landfill have not been eroded substantially since sediment supply was cut off by a railroad grade completed in 1884. Previous estimates of flood discharges were 4,000 cubic feet per second and larger in this reach; the estimates were calculated by regression equations derived from regional characteristics. However, a 100-year rainfall in 1983 failed to produce erosion in Mojave Creek commensurate with discharges of greater than about 100 cubic feet per second. To test the potential for the creek to overflow and reach the disposal site, a hypothetical discharge was used to determine the depth of flooding at local cross sections. Although the access road from Mojave Boulevard to the Main Base Landfill may be inundated during a flood, the artificial grade at the disposal site would not be reached at a discharge of 2,000 cubic feet per second, which is an order of magnitude greater than the apparent flood discharges that occurred during the past hundred years in Mojave Creek near the present Main Base Landfill.

  16. Emission of volatile organic compounds from solid waste disposal sites and importance of heat management.

    Science.gov (United States)

    Urase, Taro; Okumura, Hiroyuki; Panyosaranya, Samerjai; Inamura, Akihiro

    2008-12-01

    The emission of volatile organic compounds (VOCs) from a solid waste disposal site for municipal solid wastes was quantified. The VOCs contained in the landfill gas taken at the site were benzene, toluene, xylenes, ethyl benzenes, and trimethyl benzenes, while the concentrations of chlorinated compounds were very low. The concentration of benzene in the landfill gas samples ranged from below the detection limit to 20 mg m(-3), and the ratio of benzene to toluene ranged from 0.2 to 8. The higher concentrations of VOCs in landfill gas and in leachates were observed with the samples taken at high temperature areas of the target site. Polystyrene plastic waste was identified as one of the sources of VOCs in solid waste disposal sites at a high temperature condition. The appropriate heat management in landfill sites is an important countermeasure to avoid unusually high emission of VOCs because the heat generated by the biodegradation of organic solid wastes may promote the release of VOCs, especially in the case of sites which receive both biodegradable and plastic wastes.

  17. 75 FR 5708 - Ocean Dumping; Designation of Ocean Dredged Material Disposal Sites Offshore of the Siuslaw River...

    Science.gov (United States)

    2010-02-04

    ... AGENCY 40 CFR Part 228 Ocean Dumping; Designation of Ocean Dredged Material Disposal Sites Offshore of... any person, EPA and the Corps must evaluate the project according to the ocean dumping regulatory criteria (40 CFR part 227) and authorize disposal. EPA independently evaluates proposed dumping and has...

  18. Cleveland Harbor, Cuyahoga County, Ohio Confined Disposal Facility Project (Site 10B-15 Year)

    Science.gov (United States)

    1994-01-01

    terrestrial wildlife (upland birds and mammals ). Best management practices will be considered and utilized as needed to help minimize potential conflict...EVALUATION REPORT EIS-C U.S. FISH AND WILDLIFE SERVICE COORDINATION ACT REPORT EIS-D BOTULISM CONTROL MANAGEMENT PLAN EIS-E COASTAL ZONE MANAGEMENT ...REPORT EIS-D BOTULISM CONTROL MANAGEMENT PLAN EIS-E COASTAL ZONE MANAGEMENT - CONSISTENCY DETERMINATION STATEMENT EIS-F CULTURAL RESOURCES

  19. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada National Security Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-10-04

    The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is

  20. Long-term surveillance plan for the Canonsburg, Pennsylvania, disposal site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    This document establishes elements of the US Department of Energy`s (DOE) Long-Term Surveillance Plan for the Canonsburg, Pennsylvania, disposal site. The US Nuclear Regulatory Commission (NRC) will use this plan in support of license issuance for the long-term surveillance of the Canonsburg site. The Canonsburg (CAN) site is located within the borough of Canonsburg, Washington County, in southwestern Pennsylvania. The Canonsburg site covers approximately 30 acres (74 hectares). The disposal cell contains approximately 226,000 tons (241,000 tons) of residual radioactive material (RRM). Area C is southeast of the Canonsburg site, between Strabane Avenue and Chartiers Creek. Contaminated soils were removed from Area C during the remedial action, and the area was restored with uncontaminated fill material.After this cleanup, residual quantities of thorium-230 were detected at several Area C locations. The remedial action plan did not consider the ingrowth of radium-226 from thorium-230 as part of the Area C cleanup, and only two locations contained sufficient thorium-230 concentrations to result in radium-226 concentrations slightly above the US Environmental Protection Agency (EPA) standards.

  1. Quantifying Deep Vadose Zone Soil Water Potential Changes At A Waste Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Joel M. Hubbell; Deborah L. McElroy

    2007-10-01

    Recent advances in moisture monitoring using tensiometers has allowed long-duration, high quality data sets from within the deep vadose zone. A network of about 30 advanced tensiometers in 18 wells provided field-scale data to monitor moisture conditions and movement in the subsurface in and around a mixed waste disposal site at depths ranging from 6 to over 67 m below land surface (bls). Sensors are located in both sediments and fractured rock within the geologic profile and some have been in operation for over 10 years. The moisture monitoring was able to detect long term declines in moisture content presumably in response to lower than normal precipitation and resultant infiltration over the time period from 2000 to 2004. This trend was reversed in 2005 and 2006 in more than half of the monitoring sites over the 6 to 33 m depth interval and in several monitoring sites from 33 to 67 m, in response to normal to above normal precipitation. This tensiometer data can be used to evaluate the appropriateness of the current conceptual model of flow at this site. It also shows that a moisture monitoring system should be effective to rapidly validate that a proposed remedial action (such as placement of an ET cover) would be effective in reducing the moisture movement to levels similar to those in undisturbed sites outside of the disposal area. This paper will describe the instrument design, how the instruments were installed, and the resultant data from this monitoring system.

  2. Use of engineered soils and other site modifications for low-level radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    The U.S. Nuclear Regulatory Commission requires that low-level radioactive waste (LLW) disposal facilities be designed to minimize contact between waste and infiltrating water through the use of site design features. The purpose of this investigation is to identify engineered barriers and evaluate their ability to enhance the long-term performance of an LLW disposal facility. Previously used barriers such as concrete overpacks, vaults, backfill, and engineered soil covers, are evaluated as well as state-of-the-art barriers, including an engineered sorptive soil layer underlying a facility and an advanced design soil cover incorporating a double-capillary layer. The purpose of this investigation is also to provide information in incorporating or excluding specific engineered barriers as part of new disposal facility designs. Evaluations are performed using performance assessment modeling techniques. A generic reference disposal facility design is used as a baseline for comparing the improvements in long-term performance offered by designs incorporating engineered barriers in generic and humid environments. These evaluations simulate water infiltration through the facility, waste leaching, radionuclide transport through the facility, and decay and ingrowth. They also calculate a maximum (peak annual) dose for each disposal system design. A relative dose reduction factor is calculated for each design evaluated. The results of this investigation are presented for concrete overpacks, concrete vaults, sorptive backfill, sorptive engineered soil underlying the facility, and sloped engineered soil covers using a single-capillary barrier and a double-capillary barrier. Designs using combinations of barriers are also evaluated. These designs include a vault plus overpacks, sorptive backfill plus overpacks, and overpack with vault plus sorptive backfill, underlying sorptive soil, and engineered soil cover.

  3. Spatial patterns of serial murder: an analysis of disposal site location choice.

    Science.gov (United States)

    Lundrigan, S; Canter, D

    2001-01-01

    Although the murders committed by serial killers may not be considered rational, there is growing evidence that the locations in which they commit their crimes may be guided by an implicit, if limited rationality. The hypothesized logic of disposal site choice of serial killers led to predictions that (a) their criminal domains would be around their home base and relate to familiar travel distances, (b) they would have a size that was characteristic of each offender, (c) the distribution would be biased towards other non-criminal activities, and (d) the size of the domains would increase over time. Examination of the geographical distribution of the sites at which 126 US and 29 UK serial killers disposed of their victims' bodies supported all four hypotheses. It was found that rational choice and routine activity models of criminal behavior could explain the spatial choices of serial murderers. It was concluded that the locations at which serial killers dispose of their victims' bodies reflect the inherent logic of the choices that underlie their predatory activities.

  4. Characterization and evaluation of sites for deep geological disposal of radioactive waste in fractured rocks. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The third Aespoe International Seminar was organised by SKB to assess the state of the art in characterisation and evaluation of sites for deep geological disposal of radioactive waste in fractured rocks. Site characterisation and evaluation are important elements for determining the site suitability and long-term safety of a geological repository for radioactive waste disposal. Characterisation work also provides vital information for the design of the underground facility and the engineered barrier system that will contain the waste. The aim of the seminar was to provide a comprehensive assessment of the current know-how on this topic based on world-wide experience from more than 20 years of characterisation and evaluation work. The seminar, which was held at the Aespoe Hard Rock Laboratory was attended by 72 scientists from 10 different countries. The program was divided into four sessions of which two were run in parallel. A total of 38 oral and 5 poster presentations were given at the seminar. The presentations gave a comprehensive summary of recently completed and current work on site characterisation, modelling and application in performance assessments. The results presented at the seminar generally show that significant progress has been made in this field during the last decade. New characterisation techniques have become available, strategies for site investigations have developed further, and model concepts and codes have reached new levels of refinement. Data obtained from site characterisation have also successfully been applied in several site specific performance assessments. The seminar clearly showed that there is a solid scientific basis for assessing the suitability of sites for actual repositories based on currently available site characterisation technology and modelling capabilities. Separate abstracts have been prepared for 38 of the presentations

  5. Remote Sensing Analysis Techniques and Sensor Requirements to Support the Mapping of Illegal Domestic Waste Disposal Sites in Queensland, Australia

    Directory of Open Access Journals (Sweden)

    Katharine Glanville

    2015-10-01

    Full Text Available Illegal disposal of waste is a significant management issue for contemporary governments with waste posing an economic, social, and environmental risk. An improved understanding of the distribution of illegal waste disposal sites is critical to enhance the cost-effectiveness and efficiency of waste management efforts. Remotely sensed data has the potential to address this knowledge gap. However, the literature regarding the use of remote sensing to map illegal waste disposal sites is incomplete. This paper aims to analyze existing remote sensing methods and sensors used to monitor and map illegal waste disposal sites. The purpose of this paper is to support the evaluation of existing remote sensing methods for mapping illegal domestic waste sites in Queensland, Australia. Recent advances in technology and the acquisition of very high-resolution remote sensing imagery provide an important opportunity to (1 revisit established analysis techniques for identifying illegal waste disposal sites, (2 examine the applicability of different remote sensors for illegal waste disposal detection, and (3 identify opportunities for future research to increase the accuracy of any illegal waste disposal mapping products.

  6. EFFECTIVENESS OF RECLAMATION OF SODA WASTE DISPOSAL SITE AT JANIKOWO USING SEWAGE SLUDGE

    Directory of Open Access Journals (Sweden)

    Jan Siuta

    2014-10-01

    Full Text Available There are numerous reclamation technologies based on sewage sludge treatment, however, one that is most purposeful consists in applying the sludge in order to achieve green cover (bioremediation with plants on fine grained waste disposal sites which have a high potential for soil formation on the one hand, but on the other, are highly vulnerable to erosive action of wind and atmospheric precipitation. The technological waste at the Janikowo Soda Plant has liquid consistence, contains fine-grained (dust-like and water soluble calcium compounds, and is highly alkaline and saline. The waste was disposed and dehydrated in the large-area earthen ponds elevated beyond the ground level. The combined surface of all the exploited settling ponds (with roads and escarpments jointly exceeds 105 ha. Dehydration by infiltration and evaporation was a source of unrestricted dust emissions from the drying and dry surfaces of the waste site. Urgent action was then deemed necessary to manage the high risk of nuisance dust to the local population, technical infrastructure, engines and cars. Consequently, it was decided that the best way to manage nuisance dust would be to create a thick and permanent vegetal cover on the waste site. The vegetal cover would also limit salt infiltration from the disposal site to groundwater and to adjacent agricultural land, and contribute to improving the local landscape values. Treatment with adequately high (appropriate for reclamation purposes doses of sewage sludge and sowing of plants which have a high growth potential and nutrient demand resulted in the quick establishment of green cover on the waste disposal site. The contents of mineral elements in plants and in the top layer of the ground reclaimed were analyzed starting from the year 2000 onwards until the year 2013. The chemical composition of sewage sludge was systematically analyzed as well. No excessive contents were found of main elements neither of heavy metals in

  7. Reclamation and revegetation of fly ash disposal sites - challenges and research needs

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, R.J. [University of Queensland, St Lucia, Qld. (Australia)

    2009-01-15

    Coal-fired power generation is a principal energy source throughout the world. Approximately, 70-75% of coal combustion residues are fly ash and its utilization worldwide is only slightly above 30%. The remainder is disposed of in landfills and fly ash basins. It is desirable to revegetate these sites for aesthetic purposes, to stabilize the surface ash against wind and water erosion and to reduce the quantity of water leaching through the deposit. Limitations to plant establishment and growth in fly ash can include a high pH (and consequent deficiencies of Fe, Mn, Cu, Zn and P), high soluble salts, toxic levels of elements such as B, pozzalanic properties of ash resulting in cemented/compacted layers and lack of microbial activity. An integrated organic/biotechnological approach to revegetation seems appropriate and should be investigated further. This would include incorporation of organic matter into the surface layer of ash, mycorrhizal inoculation of establishing vegetation and use of inoculated legumes to add N. Leaching losses from ash disposal sites are likely to be site-specific but a sparse number of studies have revealed enriched concentrations of elements such as Ca, Fe, Cd, Pb, and Sb in surrounding groundwater. This aspect deserves further study particularly in the longer-term. In addition, during weathering of the ash and deposition of organic matter during plant growth, a soil will form with properties vastly different to that of the parent ash. In turn, this will influence the effect that the disposal site has on the surrounding environment. Nevertheless, the effects of ash weathering and organic matter accumulation over time on the chemical, physical and biological properties of the developing ash-derived soil are not well understood and require further study.

  8. Data Validation Package, December 2015, Groundwater Sampling at the Bluewater, New Mexico, Disposal Site, September 2016

    Energy Technology Data Exchange (ETDEWEB)

    Tsosie, Bernadette [U. S. Department of Energy, Washington, DC (United States). Office of Legacy Management; Johnson, Richard [Navarro Research and Engineering, Oak Ridge, TN (United States)

    2016-09-01

    Groundwater samples were collected from monitoring wells at the Bluewater, New Mexico, Disposal Site to monitor groundwater contaminants as specified in the 1997 Long-Term Surveillance Plan for the DOE Bluewater (UMTRCA Title II) Disposal Site Near Grants, New Mexico (LTSP). Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location HMC-951. Alluvium wells are completed in the alluvial sediments in the former channel of the Rio San Jose, which was covered by basalt lava flows known as the El Malpais, and are identified by the suffix (M). Bedrock wells are completed in the San Andres Limestone/Glorieta Sandstone hydrologic unit (San Andres aquifer) and are identified by the suffix (SG). Wells HMC-951 and OBS-3 are also completed in the San Andres aquifer. The LTSP requires monitoring for molybdenum, selenium, uranium, and polychlorinated biphenyls (PCBs); PCB monitoring occurs only during November sampling events. This event included sampling for an expanded list of analytes to characterize the site aquifers and to support a regional groundwater investigation being conducted by the New Mexico Environment Department.

  9. A Probabilistic Performance Assessment Study of Potential Low-Level Radioactive Waste Disposal Sites in Taiwan

    Science.gov (United States)

    Knowlton, R. G.; Arnold, B. W.; Mattie, P. D.; Kuo, M.; Tien, N.

    2006-12-01

    For several years now, Taiwan has been engaged in a process to select a low-level radioactive waste (LLW) disposal site. Taiwan is generating LLW from operational and decommissioning wastes associated with nuclear power reactors, as well as research, industrial, and medical radioactive wastes. The preliminary selection process has narrowed the search to four potential candidate sites. These sites are to be evaluated in a performance assessment analysis to determine the likelihood of meeting the regulatory criteria for disposal. Sandia National Laboratories and Taiwan's Institute of Nuclear Energy Research have been working together to develop the necessary performance assessment methodology and associated computer models to perform these analyses. The methodology utilizes both deterministic (e.g., single run) and probabilistic (e.g., multiple statistical realizations) analyses to achieve the goals. The probabilistic approach provides a means of quantitatively evaluating uncertainty in the model predictions and a more robust basis for performing sensitivity analyses to better understand what is driving the dose predictions from the models. Two types of disposal configurations are under consideration: a shallow land burial concept and a cavern disposal concept. The shallow land burial option includes a protective cover to limit infiltration potential to the waste. Both conceptual designs call for the disposal of 55 gallon waste drums within concrete lined trenches or tunnels, and backfilled with grout. Waste emplaced in the drums may be solidified. Both types of sites are underlain or placed within saturated fractured bedrock material. These factors have influenced the conceptual model development of each site, as well as the selection of the models to employ for the performance assessment analyses. Several existing codes were integrated in order to facilitate a comprehensive performance assessment methodology to evaluate the potential disposal sites. First, a need

  10. Radiological audit of remedial action activities at the processing site, transfer site, and Cheney disposal site Grand Junction, Colorado: Audit date, August 9--11, 1993. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The Uranium Mill Tailing Remedial Action (UMTRA) Project`s Technical Assistance Contractor (TAC) performed a radiological audit of the Remedial Action Contractor (RAC), MK-Ferguson and CWM Federal Environmental Services, Inc., at the processing site, transfer site, and Cheney disposal site in Grand Junction, Colorado. Jim Hylko and Bill James of the TAC conducted this audit August 9 through 11, 1993. Bob Cornish and Frank Bosiljevec represented the US Department of Energy (DOE). This report presents one programmatic finding, eleven site-specific observations, one good practice, and four programmatic observations.

  11. LLRW disposal facility siting approaches: Connecticut`s innovative volunteer approach

    Energy Technology Data Exchange (ETDEWEB)

    Forcella, D.; Gingerich, R.E. [Connecticut Hazardous Waste Management Service, Hartford, CT (United States); Holeman, G.R. [Yale Univ., New Haven, CT (United States)

    1994-12-31

    The Connecticut Hazardous Waste Management Service (CHWMS) has embarked on a volunteer approach to siting a LLRW disposal facility in Connecticut. This effort comes after an unsuccessful effort to site a facility using a step-wise, criteria-based site screening process that was a classic example of the decide/announce/defend approach. While some of the specific features of the CHWMS` volunteer process reflect the unique challenge presented by the state`s physical characteristics, political structure and recent unsuccessful siting experience, the basic elements of the process are applicable to siting LLRW disposal facilities in many parts of the United States. The CHWMS` volunteer process is structured to reduce the {open_quotes}outrage{close_quotes} dimension of two of the variables that affect the public`s perception of risk. The two variables are the degree to which the risk is taken on voluntarily (voluntary risks are accepted more readily than those that are imposed) and the amount of control one has over the risk (risks under individual control are accepted more readily than those under government control). In the volunteer process, the CHWMS will only consider sites that have been been voluntarily offered by the community in which they are located and the CHWMS will share control over the development and operation of the facility with the community. In addition to these elements which have broad applicability, the CHWMS has tailored the volunteer approach to take advantage of the unique opportunities made possible by the earlier statewide site screening process. Specifically, the approach presents a {open_quotes}win-win{close_quotes} situation for elected officials in many communities if they decide to participate in the process.

  12. Modeling the Hydrogeochemical Transport of Radionuclides through Engineered Barriers System in the Proposed LLW Disposal Site of Taiwan - 12082

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wen-Sheng [Hydrotech Research Institute, National Taiwan University, Taipei, Taiwan (China); Liu, Chen-Wuing; Tsao, Jui-Hsuan [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan (China); Li, Ming-Hsu [Institute of Hydrological and Oceanic Sciences, National Central University, Jhongli, Taiwan (China)

    2012-07-01

    A proposed site for final disposal of low-level radioactive waste located in Daren Township of Taitung County along the southeastern coast has been on the selected list in Taiwan. The geology of the Daren site consists of argillite and meta-sedimentary rocks. A mined cavern design with a tunnel system of 500 m below the surface is proposed. Concrete is used as the main confinement material for the engineered barrier. To investigate the hydrogeochemical transport of radionuclides through engineered barriers system, HYDROGEOCHEM5.0 model was applied to simulate the complex chemical interactions among radionuclides, the cement minerals of the concrete, groundwater flow, and transport in the proposed site. The simulation results showed that the engineered barriers system with the side ditch efficiently drained the ground water and lowered the concentration of the concrete degradation induced species (e.g., hydrogen ion, sulfate, and chloride). The velocity of groundwater observed at side ditch gradually decreased with time due to the fouling of pore space by the mineral formation of ettringite and thaumasite. The short half-life of Co-60, Sr-90 and Cs-137 significantly reduced the concentrations, whereas the long half-life of I-129(1.57x10{sup 7} years) and Am-241(432 years) remain stable concentrations at the interface of waste canister and concrete barrier after 300 years. The mineral saturation index (SI) was much less than zero due to the low aqueous concentration of radionuclide, so that the precipitation formation of Co-60, Sr-90, I-129, Cs-137 and Am-241 related minerals were not found. The effect of adsorption/desorption (i.e., surface complexation model) could be a crucial geochemical mechanism for the modeling of liquid-solid phase behavior of radionuclide in geochemically dynamic environments. Moreover, the development of advanced numerical models that are coupled with hydrogeochemical transport and dose assessment of radionuclide is required in the future

  13. Searching target sites on DNA by proteins: Role of DNA dynamics under confinement.

    Science.gov (United States)

    Mondal, Anupam; Bhattacherjee, Arnab

    2015-10-30

    DNA-binding proteins (DBPs) rapidly search and specifically bind to their target sites on genomic DNA in order to trigger many cellular regulatory processes. It has been suggested that the facilitation of search dynamics is achieved by combining 3D diffusion with one-dimensional sliding and hopping dynamics of interacting proteins. Although, recent studies have advanced the knowledge of molecular determinants that affect one-dimensional search efficiency, the role of DNA molecule is poorly understood. In this study, by using coarse-grained simulations, we propose that dynamics of DNA molecule and its degree of confinement due to cellular crowding concertedly regulate its groove geometry and modulate the inter-communication with DBPs. Under weak confinement, DNA dynamics promotes many short, rotation-decoupled sliding events interspersed by hopping dynamics. While this results in faster 1D diffusion, associated probability of missing targets by jumping over them increases. In contrast, strong confinement favours rotation-coupled sliding to locate targets but lacks structural flexibility to achieve desired specificity. By testing under physiological crowding, our study provides a plausible mechanism on how DNA molecule may help in maintaining an optimal balance between fast hopping and rotation-coupled sliding dynamics, to locate target sites rapidly and form specific complexes precisely. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Evaluation of Landfill Cover Design Options for Waste Disposal Sites in the Coastal Regions of Ghana

    Directory of Open Access Journals (Sweden)

    Kodwo Beedu Keelson

    2015-01-01

    Full Text Available Uncontrolled leachate generation from operational and closed waste disposal sites is a major environmental concern in the coastal regions of Ghana which have abundant surface water and groundwater resources. The Ghana Landfill Guidelines requires the provision of a final cover or capping system as part of a final closure plan for waste disposal sites in the country as a means of minimizing the harmful environmental effects of these emissions. However, this technical manual does not provide explicit guidance on the material types or configuration for landfill covers that would be suitable for the different climatic conditions in the country. Four landfill cover options which are based on the USEPA RCRA-type and evapotranspirative landfill cover design specifications were evaluated with the aid of the HELP computer program to determine their suitability for waste disposal sites located in the Western, Central and Greater Accra regions. The RCRA Subtitle C cover which yielded flux rates of less than 0.001 mm/yr was found to be suitable for the specific climatic conditions. The RCRA Subtitle D cover was determined to be unsuitable due to the production of very large flux rates in excess of 200 mm/yr. The results for the anisotropic barrier and capillary barrier covers were inconclusive. Recommendations for further study include a longer simulation period as well the study of the combined effects of different topsoil vegetative conditions and evaporative zone depths on the landfill water balance. The use of other water balance models such as EPIC, HYDRUS-2D and UNSAT-H for the evaluation of the evapotranspirative landfill cover design options should also be considered.

  15. Closure Report for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2008-01-01

    This Closure Report (CR) documents closure activities for Corrective Action Unit (CAU) 543, Liquid Disposal Units, according to the Federal Facility Agreement and Consent Order (FFACO, 1996) and the Corrective Action Plan (CAP) for CAU 543 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2007). CAU 543 is located at the Nevada Test Site (NTS), Nevada (Figure 1), and consists of the following seven Corrective Action Sites (CASs): CAS 06-07-01, Decon Pad; CAS 15-01-03, Aboveground Storage Tank; CAS 15-04-01, Septic Tank; CAS 15-05-01, Leachfield; CAS 15-08-01, Liquid Manure Tank; CAS 15-23-01, Underground Radioactive Material Area; CAS 15-23-03, Contaminated Sump, Piping; and CAS 06-07-01 is located at the Decontamination Facility in Area 6, adjacent to Yucca Lake. The remaining CASs are located at the former U.S. Environmental Protection Agency (EPA) Farm in Area 15. The purpose of this CR is to provide a summary of the completed closure activities, to document waste disposal, and to present analytical data confirming that the remediation goals were met. The closure alternatives consisted of closure in place for two of the CASs, and no further action with implementation of best management practices (BMPs) for the remaining five CASs.

  16. Disposal of low-level radioactive waste at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Sauls, V.W. [Dept. of Energy, Aiken, SC (United States). Savannah River Field Office

    1993-03-01

    An important objective of the Savannah River Site`s low-level radioactive waste management program is to isolate the waste from the environment both now and well into the future. A key element in achieving this is the disposal of low-level radioactive waste in sealed concrete vaults. Historically the Site has disposed of low-level radioactive waste via shallow land burial. In 1987, it was decided that better isolation from the environment was required. At that time several options for achieving this isolation were studied and below grade concrete vaults were chosen as the best method. This paper discusses the performance objectives for the vaults, the current design of the vaults and plans for the design of future vaults, the cost to construct the vaults, and the performance assessment on the vaults. Construction of the first set of vaults is essentially complete and readiness reviews before the start of waste receipt are being performed. Startup is to begin late in calendar year 1992 and continue through early CY 1993. The performance assessment is under way and the first draft is to be completed in early 1993.

  17. Data Validation Package: April 2016 Groundwater Sampling at the Falls City, Texas, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Jasso, Tashina [USDOE Office of Legacy Management, Washington, DC (United States); Widdop, Michael [Navarro Research and Engineering, Inc., Las Vegas, NV (United States)

    2016-09-29

    Nine groundwater samples were collected at the Falls City, Texas, Disposal Site as specified in the March 2008 Long-Term Surveillance Plan for the US Department of Energy Falls City Uranium Mill Tailings Disposal Site, Falls City, Texas (DOE-LM/1602-2008). Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for US Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). The wells sampled included the cell performance monitoring wells (0709, 0858, 0880, 0906, and 0921) and the groundwater monitoring wells (0862, 0886, 0891, 0924, and 0963). A duplicate sample was collected from location 0891. Water levels were measured at each sampled well. Historically, cell performance monitoring wells 0908 and 0916 have not produced water and were confirmed as dry during this sampling event. These wells are completed above the saturated interval in the formation. Notable observations for time-concentration graphs in this report include: (1) uranium concentrations in well 0891 continue to increase; (2) the uranium concentration in well 0880 is higher than the 2015 value and lower than the 2014 value, and it remains within the range of historical values; and (3) uranium concentrations in the other sampled wells are below 2 mg/L and consistent with previous results.

  18. [The pathogen spectrum of the conjunctiva of inhabitants of refuse disposal sites in Cairo. I].

    Science.gov (United States)

    Sixl, W; Sixl-Voigt, B; Stögerer, M; Bencko, V; Köck, M; Marth, E; Schaffler, R; Schuhmann, G; Pichler-Semmelrock, F

    1989-01-01

    In Cairo's waste disposal sites conjunctivitis is frequently found resulting from the burning process of plastic, paper, etc.. Recurrent secondary contamination of the conjunctiva by pathogenic and non-pathogenic microorganisms often takes place; however, in certain germ species, the differentiation between pathogenic or non-pathogenic organisms within a damaged mucous membrane cannot be made. Furthermore, in this study, we have attempted to investigate germ reproduction during the application of PVP-eyedrops. However, our results cannot be conclusive because of the high environmental contamination, very low personal hygiene resulting from contaminated water and the constant exposure of samples to environmental contamination. Studies will be continued.

  19. Environmental monitoring report for commercial low-level radioactive waste disposal sites (1960`s through 1990`s)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    During the time period covered in this report (1960`s through early 1990`s), six commercial low-level radioactive waste (LLRW) disposal facilities have been operated in the US. This report provides environmental monitoring data collected at each site. The report summarizes: (1) each site`s general design, (2) each site`s inventory, (3) the environmental monitoring program for each site and the data obtained as the program has evolved, and (4) what the program has indicated about releases to off-site areas, if any, including a statement of the actual health and safety significance of any release. A summary with conclusions is provided at the end of each site`s chapter. The six commercial LLRW disposal sites discussed are located near: Sheffield, Illinois; Maxey Flats, Kentucky; Beatty, Nevada; West Valley, New York; Barnwell, South Carolina; Richland, Washington.

  20. Feasibility study for the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-01

    In July 1990, the US Environmental Protection Agency (EPA) directed the Department of Energy Oak Ridge Operations to comply with Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements for the remediation of the United Nuclear Corporation (UNC) Disposal Site located at the Y-12 Plant, Oak Ridge, Tennessee. EPA, Waste Management Branch, had approved a closure plan in December 1989 for the UNC Disposal Site. This feasibility study (FS) is a fully satisfy the National Oil and Hazardous Substances Contingency Plan (NCP) requirements for support of the selection of a remedial response for closure of the UNC Disposal Site. For two years the UNC Disposal Site accepted and disposed of waste from the decommissioning of a UNC uranium recovery facility in Wood River Junction, Rhode Island. Between June 1982 and November 1984, the UNC Disposal Site received 11,000 55-gal drums of sludge fixed in cement, 18,000 drums of contaminated soil, and 288 wooden boxes of contaminated building and process demolition materials. The FS assembles a wide range of remedial technologies so the most appropriate actions could be selected to remediate potential contamination to below MCLs and/or to below the maximum level of acceptable risk. Technologies were evaluated based on technical effectiveness, ease of implementation, and costs. Applicable technologies were then selected for alternative development. 33 refs., 9 figs., 27 tabs.

  1. Modeling of Carbon Tetrachloride Flow and Transport in the Subsurface of the 200 West Disposal Sites: Large-Scale Model Configuration and Prediction of Future Carbon Tetrachloride Distribution Beneath the 216-Z-9 Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Oostrom, Mart; Thorne, Paul D.; Zhang, Z. F.; Last, George V.; Truex, Michael J.

    2008-12-17

    Three-dimensional simulations considered migration of dense, nonaqueous phase liquid (DNAPL) consisting of CT and co disposed organics in the subsurface as a function of the properties and distribution of subsurface sediments and of the properties and disposal history of the waste. Simulations of CT migration were conducted using the Water-Oil-Air mode of Subsurface Transport Over Multiple Phases (STOMP) simulator. A large-scale model was configured to model CT and waste water discharge from the major CT and waste-water disposal sites.

  2. OPEN SPATIAL DECISION SUPPORT SYSTEM: CASE FOR RADIOACTIVE WASTE DISPOSAL SITE SELECTION

    Directory of Open Access Journals (Sweden)

    Dario Perković

    2012-07-01

    Full Text Available In recent years the scientific and professional circles frequently discussed about radioactive waste and site selection for radioactive waste disposal. This issue will be further updated with accession of Republic of Croatia to the European Union and the only issue is politicized view of the fact that nuclear power plant Krško Croatia shares with neighbouring Republic of Slovenia. All the necessary studies have been made and these are attended by experts from different areas. Also, all Croatian residents should be familiar with this subject matter in a manner accessible to the general public through all available media. There are some questions: What are the institutions have taken on the issue of informing the public and can it be enough? When selecting a suitable site, with many parameters, the basic element is suitable geological formation, although the landfill must be socially acceptable. Well established methods used in the selection of eligible areas are multicriteria decision analysis (MCDA, geographic information system (GIS and combined GIS-MCDA method. The application of these methods is of great help in making decisions about the location of disposal of radioactive waste. Presentation of results, designed in the form of an open spatial decision support system, could help in education and informing the general public (the paper is published in Croatian.

  3. Berm design to reduce risks of catastrophic slope failures at solid waste disposal sites.

    Science.gov (United States)

    De Stefano, Matteo; Gharabaghi, Bahram; Clemmer, Ryan; Jahanfar, M Ali

    2016-11-01

    Existing waste disposal sites are being strained by exceeding their volumetric capacities because of exponentially increasing rates of municipal solid waste generation worldwide, especially in densely populated metropolises. Over the past 40 years, six well-documented and analyzed disposal sites experienced catastrophic failure. This research presents a novel analysis and design method for implementation of a series of in-situ earth berms to slow down the movement of waste material flow following a catastrophic failure. This is the first study of its kind that employs a dynamic landslide analysis model, DAN-W, and the Voellmy rheological model to approximate solid waste avalanche flow. A variety of single and multiple berm configuration scenarios were developed and tested to find an optimum configuration of the various earth berm geometries and number of berms to achieve desired energy dissipation and reduction in total waste material runout length. The case study application of the novel mitigation measure shows that by constructing a series of six relatively inexpensive 3 m high earth berms at an optimum distance of 250 m from the slope toe, the total runout length of 1000 m and associated fatalities of the Leuwigajah dumpsite catastrophic failure in Bandung, Indonesia, could have been reduced by half. © The Author(s) 2016.

  4. Evaluating Transport and Attenuation of Inorganic Contaminants in the Vadose Zone for Aqueous Waste Disposal Sites

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tartakovsky, Guzel D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    An approach was developed for evaluating vadose zone transport and attenuation of aqueous wastes containing inorganic (non-volatile) contaminants that were disposed of at the land surface (i.e., directly to the ground in cribs, trenches, tile fields, etc.) and their effect on the underlying groundwater. The approach provides a structured method for estimating transport of contaminants through the vadose zone and the resulting temporal profile of groundwater contaminant concentrations. The intent of the approach is also to provide a means for presenting and explaining the results of the transport analysis in the context of the site-specific waste disposal conditions and site properties, including heterogeneities and other complexities. The document includes considerations related to identifying appropriate monitoring to verify the estimated contaminant transport and associated predictions of groundwater contaminant concentrations. While primarily intended for evaluating contaminant transport under natural attenuation conditions, the approach can also be applied to identify types of, and targets for, mitigation approaches in the vadose zone that would reduce the temporal profile of contaminant concentrations in groundwater, if needed.

  5. The use of New Brunswick peat moss to treat contaminated groundwater at solid waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, N. [GEMTEC Ltd., Fredericton, NB (Canada)

    1995-12-31

    Alternative treatment methodology of solid waste disposal sites was investigated in an effort to find a reliable, and cost-effective, means of leachate or impacted groundwater. In particular, the investigation dealt with New Brunswick sphagnum peat moss as an agent capable of removing heavy metals, organics and nutrients. Initially, bench-scale trials were designed to determine optimum operating conditions for full-scale systems. Results of the bench-scale trial showed that increasing the hydraulic loading of the bio-filter did not significantly affect the removal efficiency for most contaminant parameters. On the other hand, incremental reduction of bed depth from 120 cm to 30 cm resulted in a reduction in the removal efficiency of the biochemical oxygen demand, chemical oxygen demand, and dissolved organic carbon. Adjusting the influent to the bio-filter to pH 9 improved removal efficiency, particularly for heavy metals. It was found that the peat bio-filters eventually became ineffective either as a result of bio-fouling or saturation of the adsorption sites with heavy metals. Investigation of options for disposing of the spent peat is in progress.

  6. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal.

    Science.gov (United States)

    De Feo, Giovanni; De Gisi, Sabino

    2014-11-01

    The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a "land use map of potentially suitable areas" for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the "Priority Scale") in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method.

  7. US DOE-EM On-Site Disposal Cell Working Group - Fostering Communication On Performance Assessment Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Roger R. [Savannah River Site (SRS), Aiken, SC (United States); Suttora, Linda C. [U.S. Department of Energy, Office of Site Restoration, Germantown, MD (United States); Phifer, Mark [Savannah River Site (SRS), Aiken, SC (United States)

    2014-03-01

    On-site disposal cells are in use and being considered at several U.S. Department of Energy (USDOE) sites as the final disposition for large amounts of waste associated with cleanup of contaminated areas and facilities. These facilities are typically developed with regulatory oversight from States and/or the US Environmental Protection Agency (USEPA) in addition to USDOE. The facilities are developed to meet design standards for disposal of hazardous waste as well as the USDOE performance based standards for disposal of radioactive waste. The involvement of multiple and different regulators for facilities across separate sites has resulted in some differences in expectations for performance assessments and risk assessments (PA/RA) that are developed for the disposal facilities. The USDOE-EM Office of Site Restoration formed a working group to foster improved communication and sharing of information for personnel associated with these Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) disposal cells and work towards more consistent assumptions, as appropriate, for technical and policy considerations related to performance and risk assessments in support of a Record of Decision and Disposal Authorization Statement. The working group holds teleconferences, as needed, focusing on specific topics of interest. The topics addressed to date include an assessment of the assumptions used for performance assessments and risk assessments (PA/RAs) for on-site disposal cells, requirements and assumptions related to assessment of inadvertent intrusion, DOE Manual 435.1-1 requirements, and approaches for consideration of the long-term performance of liners and covers in the context of PAs. The working group has improved communication among the staff and oversight personnel responsible for onsite disposal cells and has provided a forum to identify and resolve common concerns.

  8. Annual Performance Report April 2015 Through March 2016 for the Shiprock, New Mexico, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Kautsky, Mark [USDOE Office of Legacy Management (LM), Washington, DC (United States); Miller, David [Navarro Research and Engineering, Oak Ridge, TN (United States)

    2016-10-01

    This annual report evaluates the performance of the groundwater remediation system at the Shiprock, New Mexico, Disposal Site (Shiprock site) for the period April 2015 through March 2016. The Shiprock site, a former uranium-ore processing facility remediated under the Uranium Mill Tailings Radiation Control Act, is managed by the U.S. Department of Energy (DOE) Office of Legacy Management. This annual report is based on an analysis of groundwater quality and groundwater level data obtained from site monitoring wells and the groundwater flow rates associated with the extraction wells, drains, and seeps. Background The Shiprock mill operated from 1954 to 1968 on property leased from the Navajo Nation. Remediation of surface contamination, including stabilization of mill tailings in an engineered disposal cell, was completed in 1986. During mill operation, nitrate, sulfate, uranium, and other milling-related constituents leached into underlying sediments and contaminated groundwater in the area of the mill site. In March 2003, DOE initiated active remediation of groundwater at the site using extraction wells and interceptor drains. At that time, DOE developed a baseline performance report that established specific performance standards for the Shiprock site groundwater remediation system. The Shiprock site is divided into two distinct areas: the floodplain and the terrace. The floodplain remediation system consists of two groundwater extraction wells, a seep collection drain, and two collection trenches (Trench 1 and Trench 2). The terrace remediation system consists of nine groundwater extraction wells, two collection drains (Bob Lee Wash and Many Devils Wash), and a terrace drainage channel diversion structure. All extracted groundwater is pumped into a lined evaporation pond on the terrace. Compliance Strategy and Remediation Goals As documented in the Groundwater Compliance Action Plan, the U.S. Nuclear Regulatory Commission–approved compliance strategy for the

  9. Geological site characterization for the proposed Mixed Waste Disposal Facility, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Reneau, S.L.; Raymond, R. Jr. [eds.

    1995-12-01

    This report presents the results of geological site characterization studies conducted from 1992 to 1994 on Pajarito Mesa for a proposed Los Alamos National Laboratory Mixed Waste Disposal Facility (MWDF). The MWDF is being designed to receive mixed waste (waste containing both hazardous and radioactive components) generated during Environmental Restoration Project cleanup activities at Los Alamos. As of 1995, there is no Resource Conservation and Recovery Act (RCRA) permitted disposal site for mixed waste at the Laboratory, and construction of the MWDF would provide an alternative to transport of this material to an off-site location. A 2.5 km long part of Pajarito Mesa was originally considered for the MWDF, extending from an elevation of about 2150 to 2225 m (7060 to 7300 ft) in Technical Areas (TAs) 15, 36, and 67 in the central part of the Laboratory, and planning was later concentrated on the western area in TA-67. The mesa top lies about 60 to 75 m (200 to 250 ft) above the floor of Pajarito Canyon on the north, and about 30 m (100 ft) above the floor of Threemile Canyon on the south. The main aquifer used as a water supply for the Laboratory and for Los Alamos County lies at an estimated depth of about 335 m (1100 ft) below the mesa. The chapters of this report focus on surface and near-surface geological studies that provide a basic framework for siting of the MWDF and for conducting future performance assessments, including fulfillment of specific regulatory requirements. This work includes detailed studies of the stratigraphy, mineralogy, and chemistry of the bedrock at Pajarito Mesa by Broxton and others, studies of the geological structure and of mesa-top soils and surficial deposits by Reneau and others, geologic mapping and studies of fracture characteristics by Vaniman and Chipera, and studies of potential landsliding and rockfall along the mesa-edge by Reneau.

  10. 1997 State-by-State Assessment of Low-Level Radioactive Wastes Received at Commercial Disposal Sites

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, R. L.

    1998-08-01

    Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This report provides both national and state-specific disposal data on low-level radioactive waste commercially disposed in the United States. Data in this report are categorized according to disposal site, generator category, waste class, volumes, and radionuclide activity. Included in this report are tables showing the distribution of waste by state for 1997 and a comparison of waste volumes and radioactivity by state for 1993 through 1997; also included is a list of all commercial nuclear power reactors in the United States as of December 31, 1997.

  11. Investigative studies for the use of an inactive asbestos mine as a disposal site for asbestos wastes.

    Science.gov (United States)

    Gidarakos, Evangelos; Anastasiadou, Kalliopi; Koumantakis, Emmanuil; Nikolaos, Stappas

    2008-05-30

    Although, according to European legislation the use of Asbestos Containing Materials is forbidden, many buildings in Greece still contain asbestos products, which must be removed at some point in the near future. Therefore, suitable disposal sites must be found within Greece, so that the unverified disposal of asbestos waste in municipal waste Landfills is brought to an end. In the present work, an innovative approach to the disposal problem of asbestos wastes in Greece has been examined, through a risk assessment analysis of the inactive asbestos mine of Northern Greece and an evaluation of its suitability as a disposal site for asbestos wastes in the future. According to the research carried out, two areas (Site 1 and Site 2) inside the mine area are suitable for the construction of a disposal site for asbestos wastes. The geological investigations showed that in Site 1 and Site 2 ultrabasic rocks of ophiolite complex were prevalent, which have been intensely serpentinized and converted into the fibrous shape of serpentine (asbestos). Concentrations of hazardous substances such as heavy metals in the soil of Site 1 and Site 2 oscillate at low levels, with the exception of the concentrations of nickel and chrome which are high. The investigative work also included the collection of meteorological data and the monitoring of the water level of the artificial lake, which has developed inside the open mine. The main aim is to safely dispose asbestos wastes inside the mine, to minimize any pollution of the wider vicinity of the mine, as well as to engage in restoration activities.

  12. Study of contaminant transport at an open-tipping waste disposal site.

    Science.gov (United States)

    Ashraf, Muhammad Aqeel; Yusoff, Ismail; Yusof, Mohamad; Alias, Yatimah

    2013-07-01

    Field and laboratory studies were conducted to estimate concentration of potential contaminants from landfill in the underlying groundwater, leachate, and surface water. Samples collected in the vicinity of the landfill were analyzed for physiochemical parameters, organic contaminants, and toxic heavy metals. Water quality results obtained were compared from published data and reports. The results indicate serious groundwater and surface water contamination in and around the waste disposal site. Analysis of the organic samples revealed that the site contains polychlorinated biphenyls and other organo-chlorine chemicals, principally chloro-benzenes. Although the amount of PCB concentration discovered was not extreme, their presence indicates a potentially serious environmental threat. Elevated concentrations of lead, copper, nickel, manganese, cadmium, and cobalt at the downgradient indicate that the contamination plume migrated further from the site, and the distribution of metals and metals containing wastes in the site is nonhomogeneous. These results clearly indicate that materials are poorly contained and are at risk of entering the environment. Therefore, full characterization of the dump contents and the integrity of the site are necessary to evaluate the scope of the problem and to identify suitable remediation options.

  13. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Feo, Giovanni De, E-mail: g.defeo@unisa.it [Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA (Italy); Gisi, Sabino De [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Water Resource Management Lab., via Martiri di Monte Sole 4, 40129 Bologna, BO (Italy)

    2014-11-15

    Highlights: • Wasting land for the siting of hazardous waste landfills must be avoided. • The siting procedure is based on a land use map of potentially suitable areas. • All the waste facilities of the management system are simultaneously considered. • A case study is developed considering two multi-criteria techniques. • An innovative criteria weighting tool (PSW) is used in combination with the AHP. - Abstract: The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a “land use map of potentially suitable areas” for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the “Priority Scale”) in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method.

  14. Assessing Worker and Environmental Chemical Exposure Risks at an e-Waste Recycling and Disposal Site in Accra, Ghana

    Directory of Open Access Journals (Sweden)

    Jack Caravanos

    2011-01-01

    Conclusions. The Agbogbloshie e-waste recycling/disposal site in Accra, Ghana revealed an area with extensive lead contamination in both ambient air and topsoil. Given the urban nature of this site e as well as the large adjacent food distribution market, the potential for human health impact is substantial both to workers and local residents.

  15. 1995 Report on Hanford site land disposal restrictions for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1995-04-01

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order Milestone M-26-01E. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal restricted mixed waste at the Hanford Site. The U.S. Department of Energy, its predecessors, and contractors at the Hanford Site were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 and Atomic Energy Act of 1954. This report covers mixed waste only. The Washington State Department of Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDRs) plan and its annual updates to comply with LDR requirements for radioactive mixed waste. This report is the fifth update of the plan first issued in 1990. Tri-Party Agreement negotiations completed in 1993 and approved in January 1994 changed and added many new milestones. Most of the changes were related to the Tank Waste Remediation System and these changes are incorporated into this report.

  16. Regulatory Framework for Salt Waste Disposal and Tank Closure at the Savannah River Site - 13663

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Steve; Dickert, Ginger [Savannah River Remediation LLC, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01

    The end of the Cold War has left a legacy of approximately 37 million gallons of radioactive waste in the aging waste tanks at the Department of Energy's Savannah River Site (SRS). A robust program is in place to remove waste from these tanks, treat the waste to separate into a relatively small volume of high-level waste and a large volume of low-level waste, and to actively dispose of the low-level waste on-site and close the waste tanks and associated ancillary structures. To support performance-based, risk-informed decision making and to ensure compliance with all regulatory requirements, the U.S. Department of Energy (DOE) and its current and past contractors have worked closely with the South Carolina Department of Health and Environmental Control (SCDHEC), the U.S. Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC) to develop and implement a framework for on-site low-level waste disposal and closure of the SRS waste tanks. The Atomic Energy Act of 1954, as amended, provides DOE the authority to manage defense-related radioactive waste. DOE Order 435.1 and its associated manual and guidance documents detail this radioactive waste management process. The DOE also has a requirement to consult with the NRC in determining that waste that formerly was classified as high-level waste can be safely managed as either low-level waste or transuranic waste. Once DOE makes a determination, NRC then has a responsibility to monitor DOE's actions in coordination with SCDHEC to ensure compliance with the Title 10 Code of Federal Regulations Part 61 (10CFR61), Subpart C performance objectives. The management of hazardous waste substances or components at SRS is regulated by SCDHEC and the EPA. The foundation for the interactions between DOE, SCDHEC and EPA is the SRS Federal Facility Agreement (FFA). Managing this array of requirements and successfully interacting with regulators, consultants and stakeholders is a challenging task but

  17. 1997 Hanford site report on land disposal restrictions for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1997-04-07

    The baseline land disposal restrictions (LDR) plan was prepared in 1990 in accordance with the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tn-Party Agreement) Milestone M-26-00 (Ecology et al, 1989). The text of this milestone is below. ''LDR requirements include limitations on storage of specified hazardous wastes (including mixed wastes). In accordance with approved plans and schedules, the U.S. Department of Energy (DOE) shall develop and implement technologies necessary to achieve full compliance with LDR requirements for mixed wastes at the Hanford Site. LDR plans and schedules shall be developed with consideration of other action plan milestones and will not become effective until approved by the U.S. Environmental Protection Agency (EPA) (or Washington State Department of Ecology [Ecology]) upon authorization to administer LDRs pursuant to Section 3006 of the Resource Conservation and Recovery Act of 1976 (RCRA). Disposal of LDR wastes at any time is prohibited except in accordance with applicable LDR requirements for nonradioactive wastes at all times. The plan will include, but not be limited to, the following: Waste characterization plan; Storage report; Treatment report; Treatment plan; Waste minimization plan; A schedule depicting the events necessary to achieve full compliance with LDR requirements; and A process for establishing interim milestones.

  18. Message development for surface markers at the Hanford Radwaste Disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, M.F.

    1984-12-31

    At the Hanford Reservation in Washington, there are sites which received liquid and solid transuranic wastes from the late 1940`s until 1970. Rockwell Hanford Operations (Rockwell) is investigating the feasibility of several options for the permanent disposal of these wastes. One option is to stabilize the wastes in their present locations and to add barriers to minimize water infiltration and root penetration into the wastes. This report forms part of the project to develop a marking system for transuranic wastes on the Hanford Reservation. The focus of this report is the development of the message system to appear on the surface markers. A logical framework is developed to deduce what is required by the message system. Alternatives for each message component are evaluated and justification is provided for the choice of each component. The components are then laid out on the surface marker to provide a legible, comprehensible message system. The surface markers are tall, standing monoliths which ring the perimeter of each disposal area. Based on the logical framework, it is recommended that three domains of representation -- symbols, pictures, and language -- be used in the message system. The warning symbol chosen for the message system is the radiation trefoil. Two other options were considered, including the warning symbol developed by the Human Interference Task Force for a high-level waste repository. The trefoil was preferred because of the widespread usage and international acceptance which is already enjoys.

  19. Recommended Radiation Protection Practices for Low-Level Waste Disposal Sites

    Energy Technology Data Exchange (ETDEWEB)

    Hadlock, D. E.; Hooker, C. D.; Herrington, W. N.; Gilchrist, R. L.

    1983-12-01

    The United States Nuclear Regulatory Commission contracted with Pacific Northwest Laboratory (PNL) to provide technical assistance in estsblishing operational guidelines, with respect to radiation control programs and methods of minimizing occupational radiation exposure, at Low-Level Waste (LLW) dis- posal sites. The PNL, through site visits, evaluated operations at LLW dis- posal sites to determine the adequacy of current practices in maintaining occupational exposures as low as is reasonably achievable (ALARA). The data sought included the specifics of: ALARA programs, training programs, external exposure control , internal exposure control , respiratory protection, survei 1 - lance, radioactive waste management, facilities and equipment, and external dose analysis. The results of the study indicated the following: The Radiation Protection and ALARA programs at the three commercial LLW disposal sites were observed to be adequate in scope and content compared to similar programs at other types of nuclear facilities. However, it should be noted that there were many areas that could be improved upon to help ensure the health and safety of the occupa- tionally exposed individuals. As a result, radiation protection practices were recommended with related rationales in order to reduce occupational exposures as far below specified radiation limits as is reasonably achievable. In addition, recommendations were developed for achieving occupational exposure ALARA under the Regulatory Requirements issued in 10 CFR Part 61.

  20. Final disposal of spent nuclear fuel in Finnish bedrock - Romuvaara site report

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [Fortum Engineering Oy (Finland); Ahokas, H. [Fintact Oy (Finland); Front, K. [VTT Communities and Infrastructure, Espoo (Finland)] [and others

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Romuvaara. The bedrock of Romuvaara belongs to the Archean basement complex, whose oldest parts date back over 2800 million years. The bedrock consists mainly of migmatitic banded gneisses (tonalite, leucotonalite and mica gneiss), which are cut by granodiorite and metadiabase dykes. The rocks, excluding the metadiabase, have undergone a polyphase Archaean deformation. Altogether 31 bedrock structures (R-structures) have been modelled at the investigation site, most of them representing steeply dipping fracture zones. The rock mass between the fracture zones represents what is termed `intact rock`, which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 1.6 x 10{sup -7} m{sup 2}/s. The corresponding mean of the hydraulic conductivity values for the intact rock measured using a 2 m packer interval is 8 x 10{sup -12} m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found, for both the R-structures and the intact rock. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater of Romuvaara is classified as fresh water and the Total Dissolved Solids (TDS) and chloride contents increase with depth. The chemically

  1. Leptospirosis in man, in wild and in domestic animals at waste disposal sites in Cairo.

    Science.gov (United States)

    Sebek, Z; Sixl, W; Valova, M; Schaffler, R

    1989-01-01

    The authors examined 65 Rattus rattus, 28 pigs, 12 donkeys, 67 goats, 5 sheep, 1 cow and 1 dog as well as 196 inhabitants at two settlements on the waste disposal sites at the periphery of Cairo. Rattus norvegicus were positive in 55.4% for L. ictero-haemorrhagiae, pigs in 14.3% for L. pomona and in 3.6% for L. ictero-haemorrhagiae. 2 out of 12 donkeys were positive for L. pomona, 1 of them for L. pyrogenes and L. icterohaemorrhagiae as well, goats in 1.5% for L. grippotyphosa. Human sera reacted positively in 8.7% of the cases, 7.1% of which with L. bratislava, 1.0% with L. icterohaemorrhagiae and 0.5% with L. grippotyphosa and L. sejroe respectively.

  2. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site

    Science.gov (United States)

    Kassotis, Christopher D.; Iwanowicz, Luke; Akob, Denise M.; Cozzarelli, Isabelle M.; Mumford, Adam; Orem, William H.; Nagel, Susan C.

    2016-01-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby.

  3. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site.

    Science.gov (United States)

    Kassotis, Christopher D; Iwanowicz, Luke R; Akob, Denise M; Cozzarelli, Isabelle M; Mumford, Adam C; Orem, William H; Nagel, Susan C

    2016-07-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby.

  4. Treatment of the liquid phase from the red mud disposal site of the aluminium plant in podgorica

    Directory of Open Access Journals (Sweden)

    Kadović Milena V.

    2004-01-01

    Full Text Available The aim of this paper was to investigate the quality of the liquid phase (water from the red mud disposal site of the Aluminium Plant in Podgorica. Based on theoretical knowledge and experimental results, the water from the red mud disposal site was refined, so that it could sluice in the recipient (Morača River. Refining of the water achieved the following: 1 reduction of environment pollution and 2 reduction of natural water consumption, which contributed to the preservation of a major environmental resource. The technological treatment of water from the disposal site was based on the selection of the optimal reagent for neutralization, separation of the solid products from that process and sluicing of the treated water into the recipient. The results obtained will be useful in the protection of potable well-water located in vicinity, south of the Aluminium Plant in Podgorica.

  5. DEVELOPMENT QUALIFICATION AND DISPOSAL OF AN ALTERNATIVE IMMOBILIZED LOW-ACTIVITY WASTE FORM AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    SAMS TL; EDGE JA; SWANBERG DJ; ROBBINS RA

    2011-01-13

    Demonstrating that a waste form produced by a given immobilization process is chemically and physically durable as well as compliant with disposal facility acceptance criteria is critical to the success of a waste treatment program, and must be pursued in conjunction with the maturation of the waste processing technology. Testing of waste forms produced using differing scales of processing units and classes of feeds (simulants versus actual waste) is the crux of the waste form qualification process. Testing is typically focused on leachability of constituents of concern (COCs), as well as chemical and physical durability of the waste form. A principal challenge regarding testing immobilized low-activity waste (ILAW) forms is the absence of a standard test suite or set of mandatory parameters against which waste forms may be tested, compared, and qualified for acceptance in existing and proposed nuclear waste disposal sites at Hanford and across the Department of Energy (DOE) complex. A coherent and widely applicable compliance strategy to support characterization and disposal of new waste forms is essential to enhance and accelerate the remediation of DOE tank waste. This paper provides a background summary of important entities, regulations, and considerations for nuclear waste form qualification and disposal. Against this backdrop, this paper describes a strategy for meeting and demonstrating compliance with disposal requirements emphasizing the River Protection Project (RPP) Integrated Disposal Facility (IDF) at the Hanford Site and the fluidized bed steam reforming (FBSR) mineralized low-activity waste (LAW) product stream.

  6. Technical Scope and Approach for the 2004 Composite Analysis of Low Level Waste Disposal at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Kincaid, Charles T.; Bryce, Robert W.; Buck, John W.

    2004-07-09

    A composite analysis is required by U.S. Department of Energy (DOE) Manual 435.1-1 to ensure public safety through the management of active and planned low-level radioactive waste disposal facilities associated with the Hanford Site (DOE/HQ-Manual 435.1-1). A Composite Analysis is defined as ''a reasonably conservative assessment of the cumulative impact from active and planned low-level waste disposal facilities, and all other sources from radioactive contamination that could interact with the low-level waste disposal facility to affect the dose to future members of the public''. At the Hanford Site, a composite analysis is required for continued disposal authorization for the immobilized low-activity waste, tank waste vitrification plant melters, low level waste in the 200 East and 200 West Solid Waste Burial Grounds, and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) waste in the Environmental Restoration Disposal Facility. The 2004 Composite Analysis will be a site-wide analysis, considering final remedial actions for the Columbia River corridor and the Central Plateau at the Hanford Site. The river corridor includes waste sites and facilities in each of the 100 Areas as well as the 300, 400, and 600 Areas. The remedial actions for the river corridor are being conducted to meet residential land use standards with the vision of the river corridor being devoted to a combination of recreation and preservation. The ''Central Plateau'' describes the region associated with operations and waste sites of the 200 Areas. DOE is developing a strategy for closure of the Central Plateau area by 2035. At the time of closure, waste management activities will shrink to a Core Zone within the Central Plateau. The Core Zone will contain the majority of Hanford's permanently disposed waste

  7. 1996 state-by-state assessment of low-level radioactive wastes received at commercial disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, R.L.

    1997-09-01

    Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This report provides both national and state-specific disposal data on low-level radioactive waste commercially disposed in the US. Data in this report are categorized according to disposal site, generator category, waste class, volumes, and radionuclide activity. Included in this report are tables showing the distribution of waste by state for 1996 and a comparison of waste volumes and radioactivity by state for 1992 through 1996; also included is a list of all commercial nuclear power reactors in the US as of December 31, 1996. This report distinguishes between low-level radioactive waste shipped directly for disposal by generators and waste that was handled by an intermediary, a reporting change introduced in the 1988 state-by-state report.

  8. A health study of two communities near the Stringfellow Waste Disposal site.

    Science.gov (United States)

    Baker, D B; Greenland, S; Mendlein, J; Harmon, P

    1988-01-01

    A health survey of 2,039 persons in 606 households located near the Stringfellow Hazardous Waste Disposal site, Riverside County, California, and in a reference community was conducted to assess whether rates of adverse health outcomes were elevated among persons living near the site. Data included a household questionnaire, medical records of reported cancers and pregnancies, and birth and death certificates. The study areas appeared similar with respect to mortality, cancer incidence, and pregnancy outcomes. In contrast, rate ratios were greater than 1.5 for 5 of 19 reported diseases, i.e., ear infections, bronchitis, asthma, angina pectoris, and skin rashes. Prevalence odds ratios for 23 symptoms were uniformly greater than 1.0, and 8 symptoms had odds ratios greater than 1.5: blurred vision, pain in ears, daily cough for more than a month, nausea, frequent diarrhea, unsteady when walking, and frequent urination. The apparent broad-based elevation in reported diseases and symptoms may reflect increased perception or recall of conditions by respondents living near the site. These results indicate that future community-based health studies should include medical and psychosocial assessment instruments sufficient to distinguish between changes in health status and effects of resident reporting tendency.

  9. Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Carr, M.D.; Yount, J.C. (eds.)

    1988-12-31

    Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation`s first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey`s continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base.

  10. Possible salt mine and brined cavity sites for radioactive waste disposal in the northeastern southern peninsula of Michigan. [Seven possible sites are considered on the basis of listed criteria

    Energy Technology Data Exchange (ETDEWEB)

    Landes, K.K.; Bourne, H.L.

    1976-05-31

    A reconnaissance report on the possibilities for disposal of radioactive waste covers Michigan only, and is more detailed than an earlier one involving the northeastern states. Revised ''ground rules'' for pinpointing both mine and dissolved salt cavern sites for waste disposal include environmental, geologic, and economic factors. The Michigan basin is a structural bowl of Paleozoic sediments resting on downwarped Precambrian rocks. The center of the bowl is in Clare and Gladwin Counties, a short distance north of the middle of the Southern Peninsula. The strata dip toward this central area, and some stratigraphic sequences, including especially the salt-containing Silurian section, increase considerably in thickness in that direction. Lesser amounts of salt are also present in the north central part of the Lower Peninsula. Michigan has been an oil and gas producing state since 1925 and widespread exploration has had two effects on the selection of waste disposal sites: (1) large areas are leased for oil and gas; and (2) the borehole concentrations, whether producing wells, dry holes, or industrial brine wells that penetrated the salt section, should be avoided. Two types of nuclear waste, low level and high level, can be stored in man-made openings in salt beds. The storage facilities are created by (1) the development of salt mines where the depths are less than 3000 ft, and (2) cavities produced by pumping water into a salt bed, and bringing brine back out. The high level waste disposal must be confined to mines of limited depth, but the low level wastes can be accommodated in brine cavities at any depth. Seven potential prospects have been investigated and are described in detail.

  11. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site

    Energy Technology Data Exchange (ETDEWEB)

    Kassotis, Christopher D., E-mail: christopher.kassotis@duke.edu [Nicholas School of the Environment, Duke University, Durham, NC 27708 (United States); Iwanowicz, Luke R. [U.S. Geological Survey, Leetown Science Center, Fish Health Branch, 11649 Leetown Road, Kearneysville, WV 25430 (United States); Akob, Denise M.; Cozzarelli, Isabelle M.; Mumford, Adam C. [U.S. Geological Survey, National Research Program, 12201 Sunrise Valley Drive, MS 430, Reston, VA 20192 (United States); Orem, William H. [U.S. Geological Survey, Eastern Energy Resources Science Center, 12201 Sunrise Valley Drive, MS 956, Reston, VA 20192 (United States); Nagel, Susan C., E-mail: nagels@health.missouri.edu [Department of Obstetrics, Gynecology and Women' s Health, University of Missouri, Columbia, MO 65211 (United States)

    2016-07-01

    Currently, > 95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby. - Highlights: • Oil and gas wastewater disposal may increase endocrine disrupting activity in water. • Tested EDC activity in surface water near oil and gas wastewater injection site. • Water downstream had significantly

  12. Corrective Action Decision Document/Closure Report for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada (Revision 0) with ROTC 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Mark J

    2007-03-01

    The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation for closure of CAU 137 with no further corrective action. To achieve this, corrective action investigation (CAI) activities were performed from February 28 through August 17, 2006, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites. The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective process: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent. • Provide sufficient information and data to complete appropriate corrective actions. ROTC-1: Downgrade FFACO UR at CAU 137, CAS 07-23-02, Radioactive Waste Disposal Site to an Administrative UR. ROTC-2: Downgrade FFACO UR at CAU 137, CAS 01-08-01, Waste Disposal Site to an Administrative UR.

  13. Native Plant Uptake Model for Radioactive Waste Disposal Areas at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,THERESA J.; WIRTH,SHARON

    1999-09-01

    This report defines and defends the basic framework, methodology, and associated input parameters for modeling plant uptake of radionuclides for use in Performance Assessment (PA) activities of Radioactive Waste Management Sites (RWMS) at the Nevada Test Site (NTS). PAs are used to help determine whether waste disposal configurations meet applicable regulatory standards for the protection of human health, the environment, or both. Plants adapted to the arid climate of the NTS are able to rapidly capture infiltrating moisture. In addition to capturing soil moisture, plant roots absorb nutrients, minerals, and heavy metals, transporting them within the plant to the above-ground biomass. In this fashion, plant uptake affects the movement of radionuclides. The plant uptake model presented reflects rooting characteristics important to plant uptake, biomass turnover rates, and the ability of plants to uptake radionuclides from the soil. Parameters are provided for modeling plant uptake and estimating surface contaminant flux due to plant uptake under both current and potential future climate conditions with increased effective soil moisture. The term ''effective moisture'' is used throughout this report to indicate the soil moisture that is available to plants and is intended to be inclusive of all the variables that control soil moisture at a site (e.g., precipitation, temperature, soil texture, and soil chemistry). Effective moisture is a concept used to simplify a number of complex, interrelated soil processes for which there are too little data to model actual plant available moisture. The PA simulates both the flux of radionuclides across the land surface and the potential dose to humans from that flux. Surface flux is modeled here as the amount of soil contamination that is transferred from the soil by roots and incorporated into aboveground biomass. Movement of contaminants to the surface is the only transport mechanism evaluated with the model

  14. Interaction of Sr-90 with site candidate soil for demonstration disposal facility at Serpong

    Energy Technology Data Exchange (ETDEWEB)

    Setiawan, Budi, E-mail: bravo@batan.go.id [Radwaste Technology Center-National Nuclear Energy Agency, PUSPIPTEK, Serpong-Tangerang 15310 (Indonesia); Mila, Oktri; Safni [Dept. of Chemistry, Fac. of Math. and Nat. Sci., Andalas University, Kampus Limau Manis, Padang-West Sumatra 25163 (Indonesia)

    2014-03-24

    Interaction of radiostrontium (Sr-90) with site candidate soil for demonstration disposal facility to be constructed in the near future at Serpong has been done. This activity is to anticipate the interim storage facility at Serpong nuclear area becomes full off condition, and show to the public how radioactive waste can be well managed with the existing technology. To ensure that the location is save, a reliability study of site candidate soil becomes very importance to be conducted through some experiments consisted some affected parameters such as contact time, effect of ionic strength, and effect of Sr{sup +} ion in solution. Radiostrontium was used as a tracer on the experiments and has role as radionuclide reference in low-level radioactive waste due to its long half-live and it's easy to associate with organism in nature. So, interaction of radiostrontium and soil samples from site becomes important to be studied. Experiment was performed in batch method, and soil sample-solution containing radionuclide was mixed in a 20 ml of PE vial. Ratio of solid: liquid was 10{sup −2} g/ml. Objective of the experiment is to collect the specific characteristics data of radionuclide sorption onto soil from site candidate. Distribution coefficient value was used as indicator where the amount of initial and final activities of radiostrontium in solution was compared. Result showed that equilibrium condition was reached after contact time 10 days with Kd values ranged from 1600-2350 ml/g. Increased in ionic strength in solution made decreased of Kd value into soil sample due to competition of background salt and radiostrontium into soil samples, and increased in Sr ion in solution caused decreased of Kd value in soil sample due to limitation of sorption capacity in soil samples. Fast condition in saturated of metal ion into soil samples was reached due to a simple reaction was occurred.

  15. Qualitative assessment of methane emission inventory from municipal solid waste disposal sites: a case study

    Science.gov (United States)

    Kumar, Sunil; Mondal, A. N.; Gaikwad, S. A.; Devotta, Sukumar; Singh, R. N.

    2004-09-01

    In developing countries like India, urban solid waste (SW) generation is increasing enormously and most of the SWs are disposed off by land filling in low-lying areas, resulting into generation of large quantities of biogas. Methane, the major constituent gas is known to cause global warming due to green house gas (GHG) effect. There is a need to study the ever-increasing contribution of SW to the global GHG effect. To assess the impacts, estimation of GHG emission is must and to avoid misguidance by these emission-data, qualitative assessment of the estimated GHG is a must. In this paper, methane emission is estimated for a particular landfill site, using default methodology and modified triangular methodology. Total methane generation is same for both theoretical methodologies, but the modified triangular method has an upper hand as it provides a time-dependent emission profile that reflects the true pattern of the degradation process. To check the quality of calculated emission-data, extensive sampling is carried out for different seasons in a year. Field results show a different trend as compared to theoretical results, this compels for logical thinking. Each methane emission-data is backed up by the uncertainty associated with it, this further strengthens the quality check of these data. Uncertainty calculation is done using Monte Carlo simulation technique, recommended in IPCC Guideline. In the due course of qualitative assessment of methane emission-data, many site-specific sensitive parameters are discovered and are briefly discussed in this paper.

  16. Corrective Action Investigation Plan for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Wickline, Alfred

    2007-06-01

    Corrective Action Unit 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, consists of seven inactive sites located in the Yucca Flat area and one inactive site in the Pahute Mesa area. The eight CAU 545 sites consist of craters used for mud disposal, surface or buried waste disposed within craters or potential crater areas, and sites where surface or buried waste was disposed. The CAU 545 sites were used to support nuclear testing conducted in the Yucca Flat area during the 1950s through the early 1990s, and in Area 20 in the mid-1970s. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval.

  17. Final disposal of spent nuclear fuel in Finnish bedrock. Olkiluoto site report

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [Fortum Engineering Oy, Vantaa (Finland); Ahokas, H. [Fintact Oy, Helsinki (Finland); Front, K. [VTT Communication and Infrastructure, Espoo (Finland)] [and others

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Olkiluoto. The bedrock of the Olkiluoto site consists of Svecofennian metasediments and platonic rocks, 1800-1900 million years in age. Migmatitic mica gneiss is the most abundant rock type, and is intruded by foliated tonalites and granodiorites and massive coarse-grained granites and pegmatites. Five successive plastic deformation phases have been defined. In total, 30 bedrock structures (R-structures) have been modelled at the site. Most of these represent steeply dipping fracture zones, but several sub-horizontal zones, gently dipping to the SE, have also been identified. The rock mass between the fracture zones represents what is termed `intact rock`, which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 3 x 10{sup -7} m{sup 2}/s. The corresponding mean of the hydraulic conductivity values for the intact rock measured using a 2 m packer interval, is 8 x 10{sup -13} m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found for the intact rock, and there seems to be a parallel decrease in the transmissivity of structures. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater chemistry reflects the

  18. 76 FR 30027 - Land Disposal Restrictions: Site-Specific Treatment Variance for Hazardous Selenium-Bearing Waste...

    Science.gov (United States)

    2011-05-24

    ... Treatment Variance for Hazardous Selenium-Bearing Waste Treatment Issued to Chemical Waste Management in... Direct Final rule pertains to the treatment of a hazardous waste generated by the Owens-Brockway Glass... AGENCY 40 CFR Part 268 Land Disposal Restrictions: Site-Specific Treatment Variance for Hazardous...

  19. 75 FR 22524 - Ocean Dumping; Designation of Ocean Dredged Material Disposal Sites Offshore of the Siuslaw River...

    Science.gov (United States)

    2010-04-29

    ... AGENCY 40 CFR Part 228 Ocean Dumping; Designation of Ocean Dredged Material Disposal Sites Offshore of... according to the ocean dumping regulations at 40 CFR 227.13 and guidance developed by EPA and the Corps. In... acceptable for ocean dumping without further testing. Dredged material which does not meet the criteria of...

  20. Strategy for identifying natural analogs of the long-term performance of low-level waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Chatters, J.C.; Waugh, W.J.; Foley, M.G.; Kincaid, C.T.

    1990-07-01

    The US Department of Energy's Low-Level Waste (LLW) Management Program has asked Pacific Northwest Laboratory (PNL) to explore the feasibility of using natural analogs of anticipated waste site and conditions to help validate predictions of the performance of LLW disposal sites. Current regulations require LLW facilities to control the spread of hazardous substances into the environment for at least the next 500 years. Natural analog studies can provide information about processes affecting waste containment that cannot be fully explored through laboratory experimentation and modeling because of the extended period of required performance. For LLW applications, natural analogs include geochemical systems, pedogenic (soil formation) indicators, proxy climate data, and ecological and archaeological settings that portray long-term changes in disposal site environments and the survivability of proposed waste containment materials and structures. Analog data consist of estimates of performance assessment (PA) model input parameters that define possible future environmental states of waste sites, validation parameters that can be predicted by PA models, and descriptive information that can build public confidence in waste disposal practices. This document describes PNL's overall stategy for identifying analogs for LLW disposal systems, reviews lessons learned from past analogs work, outlines the findings of the workshop, and presents examples of analog studies that workshop participants found to be applicable to LLW performance assessment. The lessons from the high-level waste analogs experience and workshop discussions will be used to develop detailed study plans during FY 1990. 39 refs.

  1. Final disposal of spent nuclear fuel in Finnish bedrock - Kivetty site report

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [Fortum Engineering Oy, Vantaa (Finland); Ahokas, H.; Front, K. [Fintact Oy (Finland)] [and others

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Kivetty. The bedrock of Kivetty belongs to the large Svecofennian granitoid complex of central Finland, about 1880 million years in age. The most common rock type is porphyritic granodiorite, which is cut by younger medium-grained granodiorite and porphyritic or even-grained granite. Minor bodies of gabbro, older than the porphyritic granodiorite, are also present. The granitoids show evidence of two deformation phases. Altogether 29 bedrock 'structures' (R-structures) have been modelled at the investigation site, most of them representing steeply dipping fracture zones. The rock mass between the fracture zones represents what is termed 'intact rock', which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 1.3-10{sup -6} m{sup 2}/s. The corresponding mean of the hydraulic conductivity values for the intact rock, measured using a 2 m packer interval is 4*10{sup -11} m{sup 2}/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found for the intact rock, and there seems to be a parallel decrease in the transmissivity of structures. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater of

  2. Final disposal of spent nuclear fuel in Finnish bedrock. Haestholmen site report

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [Fortum Engineering Oy, Vantaa (Finland); Ahokas, H. [Fintact Oy, Helsinki (Finland); Front, K. [VTT Communities and Infrastructure, Espoo (Finland)

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Haestholmen. The Haestholmen area is located within the anorogenic Wiborg rapakivi granite batholith, about 1630 million years in age, representing one of the youngest rock formations in Finland. Wiborgite, pyterlite, porphyritic rapakivi granite and even-grained rapakivi granite are the rock types present. 25 bedrock structures have been modelled at the site. Most of them are steeply-dipping fracture zones trending NW-SE and NE-SW, but several sub-horizontal zones, mainly dipping to the N-NE and the SW, are also present. The rock mass between the fracture zones represents what is termed `intact rock`, which is typically hard, unweathered and sparsely fractured. The bedrock structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 8 x 10{sup -6} m{sup 2}/s or 1.3 x 10{sup -6} m{sup 2}/s, depending on how structures are defined. The corresponding mean of the hydraulic conductivity values measured for the intact rock using a 2 m packer interval is 1 x 10{sup -12} m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found in the intact rock. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100-200 m of the bedrock than at greater depths. The groundwater chemistry reflects the post-glacial history of the island of Haestholmen, which rose

  3. Estimated PBDE and PBB Congeners in soil from an electronics waste disposal site.

    Science.gov (United States)

    Wang, H-M; Yu, Y-J; Han, M; Yang, S-W; Li, Q; Yang, Y

    2009-12-01

    This study estimated PBDE and PBB congener emissions into the environment from three different e-waste disposal sites that consisted of rude broilers (RB), acid baths (AB) and end-up dumps (ED). Different PBDE and PBB congener profiles were analyzed, and some of their emission sources were discussed. For the examined sites, the levels of SigmaPBB and SigmaPBDE were highest at ED (SigmaPBB 1943.86 ng/g, dw; SigmaPBDE 990.87 ng/g, dw), followed by RB (SigmaPBB 704.58 ng/g, dw; SigmaPBDE 799.27 ng/g, dw) and finally AB (SigmaPBB 108.78 ng/g, dw; SigmaPBDE 171.18 ng/g, dw). PBE-209 (AB 48.67 ng/g, 28.43%; RB 160.23 ng/g, 20.05%; ED 234.12 ng/g, 23.63%) and PBE-203 (AB 51.23 ng/g, 29.93%; RB 130.34 ng/g, 16.31%; ED 93.41 ng/g, 9.43%) exhibited the highest concentrations when compared to the other congeners. Furthermore, high levels of deca-BDE (BDE-209) were observed in AB (48.67 ng/g, 28.43%) and RB sites (160.23 ng/g, 20.05%), which was in accordance with the large amount of these materials in electronics products in China.

  4. Summary and evaluation of hydraulic property data available for the Hanford Site upper basalt confined aquifer system

    Energy Technology Data Exchange (ETDEWEB)

    Spane, F.A. Jr.; Vermeul, V.R.

    1994-09-01

    Pacific Northwest Laboratory, as part of the Hanford Site Ground-Water Surveillance Project, examines the potential for offsite migration of contamination within the upper basalt confined aquifer system. For the past 40 years, hydrologic testing of the upper basalt confined aquifer has been conducted by a number of Hanford Site programs. Hydraulic property estimates are important for evaluating aquifer flow characteristics (i.e., ground-water flow patterns, flow velocity, transport travel time). Presented are the first comprehensive Hanford Site-wide summary of hydraulic properties for the upper basalt confined aquifer system (i.e., the upper Saddle Mountains Basalt). Available hydrologic test data were reevaluated using recently developed diagnostic test analysis methods. A comparison of calculated transmissivity estimates indicates that, for most test results, a general correspondence within a factor of two between reanalysis and previously reported test values was obtained. For a majority of the tests, previously reported values are greater than reanalysis estimates. This overestimation is attributed to a number of factors, including, in many cases, a misapplication of nonleaky confined aquifer analysis methods in previous analysis reports to tests that exhibit leaky confined aquifer response behavior. Results of the test analyses indicate a similar range for transmissivity values for the various hydro-geologic units making up the upper basalt confined aquifer. Approximately 90% of the calculated transmissivity values for upper basalt confined aquifer hydrogeologic units occur within the range of 10{sup 0} to 10{sup 2} m{sup 2}/d, with 65% of the calculated estimate values occurring between 10{sup 1} to 10{sup 2} m{sup 2}d. These summary findings are consistent with the general range of values previously reported for basalt interflow contact zones and sedimentary interbeds within the Saddle Mountains Basalt.

  5. Physical oceanographic processes at candidate dredged-material disposal sites B1B and 1M offshore San Francisco

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, C.R.; Denbo, D.W.; Downing, J.P. (Pacific Northwest Lab., Richland, WA (USA)); Coats, D.A. (Marine Research Specialists, Ventura, CA (USA))

    1990-10-01

    The US Army Corps of Engineers (USACE), San Francisco District, has identified two candidate sites for ocean disposal of material from several dredging projects in San Francisco Bay. The disposal site is to be designated under Section 103 of the Ocean Dumping Act. One of the specific criteria in the Ocean Dumping Act is that the physical environments of the candidate sites be considered. Toward this goal, the USACE requested that the Pacific Northwest Laboratory conduct studies of physical oceanographic and sediment transport processes at the candidate sites. Details of the methods and complete listing or graphical representation of the results are contained in this second volume of the two-volume report. Appendix A describes the methods and results of a pre-disposal bathymetric survey of Site B1B, and provides an analysis of the accuracy and precision of the survey. Appendix B describes the moorings and instruments used to obtain physical oceanographic data at the candidate sites, and also discussed other sources of data used in the analyses. Techniques used to analyze the formation, processed data, and complete results of various analyses are provided in tabular and graphical form. Appendix C provides details of the sediment transport calculations. Appendix D describes the format of the archived current meter data, which is available through the National Oceanographic Data Center. 43 refs., 54 figs., 58 tabs.

  6. Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste: Volume 3, Site evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Waters, R.D.; Gruebel, M.M. [eds.

    1996-03-01

    A team of analysts designed and conducted a performance evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 2 provides details about the site-selection process, the performance-evaluation methodology, and the overall results of the analysis. Volume 3 contains detailed evaluations of the fifteen sites and discussion of the results for each site.

  7. Final disposal of radioactive wastes. Site selection criteria. Technical and economical factors

    Energy Technology Data Exchange (ETDEWEB)

    Granero, J.J. (Consejo de Seguridad Nuclear, Madrid (Spain))

    1984-01-01

    General considerations, geological and socioeconomical criteria for final disposal of radioactive wastes in geological formations are treated. More attention is given to the final disposal of high-level radioactive wastes and different solutions searched abroad which seems of interest for Spain.

  8. Automated system for monitoring groundwater levels at an experimental low-level waste disposal site

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, J.D.; Bogle, M.A.

    1984-06-01

    One of the major problems with disposing of low-level solid wastes in the eastern United States is the potential for water-waste interactions and leachate migration. To monitor groundwater fluctuations and the frequency with which groundwater comes into contact with a group of experimental trenches, work at Oak Ridge National Laboratory's Engineered Test Facility (ETF) has employed a network of water level recorders that feed information from 15 on-site wells to a centralized data recording system. The purpose of this report is to describe the monitoring system being used and to document the computer programs that have been developed to process the data. Included in this report are data based on more than 2 years of water level information for ETF wells 1 through 12 and more than 6 months of data from all 15 wells. The data thus reflect both long-term trends as well as a large number of short-term responses to individual storm events. The system was designed to meet the specific needs of the ETF, but the hardware and computer routines have generic application to a variety of groundwater monitoring situations. 5 references.

  9. PORTSMOUTH ON-SITE DISPOSAL CELL HIGH DENSITY POLYETHYLENE GEOMEMBRANE LONGEVITY

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, M.

    2012-01-31

    It is anticipated that high density polyethylene (HDPE) geomembranes will be utilized within the liner and closure cap of the proposed On-Site Disposal Cell (OSDC) at the Portsmouth Gaseous Diffusion Plant. The likely longevity (i.e. service life) of HDPE geomembranes in OSDC service is evaluated within the following sections of this report: (1) Section 2.0 provides an overview of HDPE geomembranes, (2) Section 3.0 outlines potential HDPE geomembranes degradation mechanisms, (3) Section 4.0 evaluates the applicability of HDPE geomembrane degradation mechanisms to the Portsmouth OSDC, (4) Section 5.0 provides a discussion of the current state of knowledge relative to the longevity (service life) of HDPE geomembranes, including the relation of this knowledge to the Portsmouth OSDC, and (5) Section 6.0 provides summary and conclusions relative to the anticipated service life of HDPE geomembranes in OSDC service. Based upon this evaluation it is anticipated that the service life of HDPE geomembranes in OSDC service would be significantly greater than the 200 year service life assumed for the OSDC closure cap and liner HDPE geomembranes. That is, a 200 year OSDC HDPE geomembrane service life is considered a conservative assumption.

  10. Application of Geographic Information System and Remotesensing in effective solid waste disposal sites selection in Wukro town, Tigray, Ethiopia

    Science.gov (United States)

    Mohammedshum, A. A.; Gebresilassie, M. A.; Rulinda, C. M.; Kahsay, G. H.; Tesfay, M. S.

    2014-11-01

    Identifying solid waste disposal sites and appropriately managing them is a challenging task to many developing countries. This is a critical problem too in Ethiopia in general and in Wukro town in particular. The existing site for Wukro town is not sufficient in its capacity and it is damaging the environment due to its location, and the type of waste dumped, while the surrounding area is being irrigated. Due to the swift expansion and urbanization developments in Wukro town, it badly needs to develop controlled solid waste dumping site to prevent several contamination problems. This study was conducted first, to assess the existing waste management strategies in Wukro town; and second, to find out the potential waste disposal sites for the town, using GIS and Remote Sensing techniques. The study exploited the Multi-Criteria Evaluation (MCE) methods to combine necessary factors considered for dumping site selection. The selected method also uses various geographical data including remote sensing data, with GIS spatial analysis tools. Accordingly, site suitability maps for each of the factors were developed in a GIS environment. Results indicate that 12 dumping sites were appropriate and they were further ranked against their suitability in terms of wind direction, proximity to settlement area and distance from the center of the town. Finally, two sites are the best suitable for dumping site. This study indicated that the application of Geographic Information System and Remote Sensing techniques are efficient and low cost tools to study and select appropriate dumping site so as to facilitate decision making processes.

  11. A correction in the CDM methodological tool for estimating methane emissions from solid waste disposal sites.

    Science.gov (United States)

    Santos, M M O; van Elk, A G P; Romanel, C

    2015-12-01

    Solid waste disposal sites (SWDS) - especially landfills - are a significant source of methane, a greenhouse gas. Although having the potential to be captured and used as a fuel, most of the methane formed in SWDS is emitted to the atmosphere, mainly in developing countries. Methane emissions have to be estimated in national inventories. To help this task the Intergovernmental Panel on Climate Change (IPCC) has published three sets of guidelines. In addition, the Kyoto Protocol established the Clean Development Mechanism (CDM) to assist the developed countries to offset their own greenhouse gas emissions by assisting other countries to achieve sustainable development while reducing emissions. Based on methodologies provided by the IPCC regarding SWDS, the CDM Executive Board has issued a tool to be used by project developers for estimating baseline methane emissions in their project activities - on burning biogas from landfills or on preventing biomass to be landfilled and so avoiding methane emissions. Some inconsistencies in the first two IPCC guidelines have already been pointed out in an Annex of IPCC latest edition, although with hidden details. The CDM tool uses a model for methane estimation that takes on board parameters, factors and assumptions provided in the latest IPCC guidelines, while using in its core equation the one of the second IPCC edition with its shortcoming as well as allowing a misunderstanding of the time variable. Consequences of wrong ex-ante estimation of baseline emissions regarding CDM project activities can be of economical or environmental type. Example of the first type is the overestimation of 18% in an actual project on biogas from landfill in Brazil that harms its developers; of the second type, the overestimation of 35% in a project preventing municipal solid waste from being landfilled in China, which harms the environment, not for the project per se but for the undue generated carbon credits. In a simulated landfill - the same

  12. Disposal Practices of Low and Intermediate Level Radioactive Solid Waste in Northwest Disposal Site%西北处置场低、中放固体废物处置实践

    Institute of Scientific and Technical Information of China (English)

    刘超; 钱海; 翟健; 安蛟龙; 黄卓人

    2011-01-01

    介绍了我国西北处置场的基本情况,西北处置场低、中放固体废物接收、处置的组织机构及管理体系,工艺技术,辐射防护及环境监测,以期为我国放射性废物处置工程提供借鉴和支持。%The basic situation of Northwest Disposal Site is introduced. The organization and management system, disposal technology, radiation protection, environmental monitoring of low- and medium-level radioactive solid waste recept and disposal in Northwest Disposal Site are also presented. It provides reference and support for our radioactive waste disposal works.

  13. RCRA Treatment, Disposal, and Storage Site Locations in Louisiana, Geographic NAD83, EPA (2002) [RCRA_TSD_LA_pt_EPA_2002)

    Data.gov (United States)

    Louisiana Geographic Information Center — RCRA Treatment, Storage, & Disposal (TSD) sites in Louisiana. The universe of sites was determined by Region 6 RCRA in 01/02. This dataset was finalized in 07/02.

  14. Data Validation Package - June 2016 Groundwater and Surface Water Sampling at the Green River, Utah, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [USDOE Office of Legacy Management, Washington, DC (United States); Price, Jeffrey [Navarro Research and Engineering, Inc., Las Vegas, NV (United States)

    2016-10-10

    This event included annual sampling of groundwater and surface water locations at the Green River, Utah, Disposal Site. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for US. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lrnldownloads/sampling-and- analysis-plan-us-department-energy-office-legacy-management-sites). Samples were collected from 15 monitoring wells and two surface locations at the disposal site as specified in the draft 2011 Ground Water Compliance Action Plan for the Green River, Utah, Disposal Site. Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. A duplicate sample was collected from location 0179. One equipment blank was collected during this sampling event. Water levels were measured at all monitoring wells that were sampled. See Attachment 2, Trip Reports for additional details. The analytical data and associated qualifiers can be viewed in environmental database reports and are also available for viewing with dynamic mapping via the GEMS (Geospatial Environmental Mapping System) website at http://gems.lm.doe.gov/#. No issues were identified during the data validation process that requires additional action or follow-up.

  15. Closure Report for Corrective Action Unit 356: Mud Pits and Disposal Sites, Nevada Test Site, Nevada with Errata Sheet

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NV

    2002-11-12

    This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 356, Mud Pits and Disposal Sites, in accordance with the Federal Facility Agreement and Consent Order. This CAU is located in Areas 3 and 20 of the Nevada Test Site (NTS) approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 356 consists of seven Corrective Action Sites (CASs): 03-04-01, Area 3 Change House Septic System; 03-09-01, Mud Pit Spill Over; 03-09-03, Mud Pit; 03-09-04, Mud Pit; 03-09-05, Mud Pit; 20-16-01, Landfill; and 20-22-21, Drums. This CR identifies and rationalizes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office's (NNSA/NV's) recommendation that no further corrective action and closure in place is deemed necessary for CAU 356. This recommendation is based on the results of field investigation/closure activities conducted November 20, 2001, through January 3, 2002, and March 11 to 14, 2002. These activities were conducted in accordance with the Streamlined Approach for Environmental Restoration Plan (SAFER) for CAU 356. For CASs 03-09-01, 03-09-03, 20-16-01, and 22-20-21, analytes detected in soil during the corrective action investigation were evaluated against Preliminary Action Levels (PALs) and it was determined that no Contaminants of Concern (COCs) were present. Therefore, no further action is necessary for the soil at these CASs. For CASs 03-04-01, 03-09-04, and 03-09-05, analytes detected in soil during the corrective action investigation were evaluated against PALs and identifies total petroleum hydrocarbons (TPHs) and radionuclides (i.e., americium-241 and/or plutonium 239/240) as COCs. The nature, extent, and concentration of the TPH and radionuclide COCs were bounded by sampling and shown to be relatively immobile. Therefore, closure in place is recommended for these CASs in CAU 356. Further, use restrictions are not required at this CAU beyond the NTS use restrictions

  16. Performance evaluation testing of wells in the gradient control system at a federally operated Confined Disposal Facility using single well aquifer tests, East Chicago, Indiana

    Science.gov (United States)

    Lampe, David C.; Unthank, Michael D.

    2016-12-08

    The U.S. Geological Survey (USGS) performed tests to evaluate the hydrologic connection between the open interval of the well and the surrounding Calumet aquifer in response to fouling of extraction well pumps onsite. Two rounds of air slug testing were performed on seven monitoring wells and step drawdown and subsequent recovery tests on three extraction wells on a U.S. Army Corps of Engineers Confined Disposal Facility (CDF) in East Chicago, Indiana. The wells were tested in 2014 and again in 2015. The extraction and monitoring wells are part of the gradient control system that establishes an inward gradient around the perimeter of the facility. The testing established a set of protocols that site personnel can use to evaluate onsite well integrity and develop a maintenance procedure to evaluate future well performance.The results of the slug test analysis data indicate that the hydraulic connection of the well screen to the surrounding aquifer material in monitoring wells on the CDF and the reliability of hydraulic conductivity estimates of the surrounding geologic media could be increased by implementing well development maintenance. Repeated air slug tests showed increasing hydraulic conductivity until, in the case of the monitoring wells located outside of the groundwater cutoff wall (MW–4B, MW–11B, MW–14B), the difference in hydraulic conductivity from test to test decreased, indicating the results were approaching the optimal hydraulic connection between the aquifer and the well screen. Hydraulic conductivity values derived from successive tests in monitoring well D40, approximately 0.25 mile south of the CDF, were substantially higher than those derived from wells on the CDF property. Also, values did not vary from test to test like those measured in monitoring wells located on the CDF property, which indicated that a process may be affecting the connectivity of the wells on the CDF property to the Calumet aquifer. Derived hydraulic conductivity

  17. Analysis of Fracture in Cores from the Tuff Confining Unit beneath Yucca Flat, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Lance Prothro

    2008-03-01

    The role fractures play in the movement of groundwater through zeolitic tuffs that form the tuff confining unit (TCU) beneath Yucca Flat, Nevada Test Site, is poorly known. This is an important uncertainty, because beneath most of Yucca Flat the TCU lies between the sources of radionuclide contaminants produced by historic underground nuclear testing and the regional carbonate aquifer. To gain a better understanding of the role fractures play in the movement of groundwater and radionuclides through the TCU beneath Yucca Flat, a fracture analysis focusing on hydraulic properties was performed on conventional cores from four vertical exploratory holes in Area 7 of Yucca Flat that fully penetrate the TCU. The results of this study indicate that the TCU is poorly fractured. Fracture density for all fractures is 0.27 fractures per vertical meter of core. For open fractures, or those observed to have some aperture, the density is only 0.06 fractures per vertical meter of core. Open fractures are characterized by apertures ranging from 0.1 to 10 millimeter, and averaging 1.1 millimeter. Aperture typically occurs as small isolated openings along the fracture, accounting for only 10 percent of the fracture volume, the rest being completely healed by secondary minerals. Zeolite is the most common secondary mineral occurring in 48 percent of the fractures observed.

  18. Data Validation Package October 2016 Groundwater and Surface Water Sampling at the Monticello, Utah, Disposal and Processing Sites January 2017

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Jason [USDOE Office of Legacy Management (LM), Washington, DC (United States); Smith, Fred [Navarro Research and Engineering, Inc., Grand Junction, CO (United States)

    2017-02-01

    Sampling Period: October 10–12, 2016. This semiannual event includes sampling groundwater and surface water at the Monticello Disposal and Processing Sites. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated) and Program Directive MNT-2016-01. Samples were collected from 54 of 64 planned locations (16 of 17 former mill site wells, 15 of 18 downgradient wells, 7 of 9 downgradient permeable reactive barrier wells, 3 of 3 bedrock wells, 4 of 7 seeps and wetlands, and 9 of 10 surface water locations).

  19. Cornell University remote sensing program. [application to waste disposal site selection, study of drainage patterns, and water quality management.

    Science.gov (United States)

    Liang, T.; Mcnair, A. J.; Philipson, W. R.

    1977-01-01

    Aircraft and satellite remote sensing technology were applied in the following areas: (1) evaluation of proposed fly ash disposal sites; (2) development of priorities for drainage improvements; (3) state park analysis for rehabilitation and development; (4) watershed study for water quality planning; and (5) assistance project-landfill site selection. Results are briefly summarized. Other projects conducted include: (1) assessment of vineyard-related problems; (2) LANDSAT analysis for pheasant range management; (3) photo-historic evaluation of Revolutionary War sites; and (4) thermal analysis of building insulation. The objectives, expected benefits and actions, and status of these projects are described.

  20. Morbidity among children living around clinical waste treatment and disposal site in the Northwest region of Cameroon

    Directory of Open Access Journals (Sweden)

    Peter I. K. Mochungong

    2011-03-01

    Full Text Available Clinical waste is ineffectively treated and disposed in Cameroon. Disposal sites have unrestricted access and are located within communities. We hypothesize that vector proliferation and exposure to chronic low-level emissions will increase morbidity in children living around such sites. Self-reported disease frequency questionnaires were used to estimate the frequency of new episodes of intestinal, respiratory and skin infections among exposed children less than 10 years. Data was simultaneously collected for unexposed children of the same age, using the same questionnaire. Data reporting by the parents was done in the first week in each of the 6 months study period. The risk ratios were 3.54 (95% CI, 2.19-5.73, 3.20 (95% CI, 1.34-7.60 and 1.35 (95% CI, 0.75-2.44 for respiratory, intestinal and skin infections respectively. Their respective risk differences were 0.47 (47%, 0.18 (18% and 0.08 (8%. The study revealed that poor treatment and disposal of clinical waste sites enhance morbidity in children living close to such areas. Simple health promotion and intervention programs such as relocating such sites can significantly reduce morbidity.

  1. Preliminary assessment of growth and survival of green alder (Alnus viridis), a potential biological stabilizer on fly ash disposal sites

    Institute of Scientific and Technical Information of China (English)

    Marcin Pietrzykowski; Wojciech Krzaklewski; Bartłomiej Wos´

    2015-01-01

    This paper presents preliminary assessment of seedling survival and growth of green alder (Alnus viridis (Chaix) DC. in Lam. & DC.) planted on fly ash disposal sites. This kind of post-industrial site is extremely hard to biologically stabilize without top-soiling. The experiment started with surface preparation using NPK start-up mineral fertilizer at 60–36–36 kg ha-1 followed by initial stabil-ization through hydro-seeding with biosolids (sewage sludge 4 Mg ha-1 dry mass) and a mixture of grasses (Dactylis glomerata L. and Lolium multiflorum Lam.) (200 kg ha-1). Subsequently, three-years-old green alder seedlings were planted in plots on two substrate variants:the control (directly on combustion waste) and plots with 3 dm3 lignite culm from a nearby mine introduced into the planting pit. Five years of preliminary monitoring show good survival seedling rates and growth parameters (height (h), average increase in height (△h), number of shoots (Lo) and leaf nitrogen supply in the fly ash disposal habitat. Treatment of the site with a combination of lignite culm in planting pits and preliminary surface preparation by hydro-seeding and mineral fertilization had the most positive effect on green alder seedling parameters. The results indicate that it is possible and beneficial to use green alder for biological stabilization on fly ash disposal sites.

  2. Groundwater monitoring plan for the Hanford Site 200 Area Treated Effluent Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    DB Barnett

    2000-05-17

    Seven years of groundwater monitoring at the 200 Area Treated Effluent Disposal Facility (TEDF) have shown that the uppermost aquifer beneath the facility is unaffected by TEDF effluent. Effluent discharges have been well below permitted and expected volumes. Groundwater mounding from TEDF operations predicted by various models has not been observed, and waterlevels in TEDF wells have continued declining with the dissipation of the nearby B Pond System groundwater mound. Analytical results for constituents with enforcement limits indicate that concentrations of all these are below Practical Quantitation Limits, and some have produced no detections. Likewise, other constituents on the permit-required list have produced results that are mostly below sitewide background. Comprehensive geochemical analyses of groundwater from TEDF wells has shown that most constituents are below background levels as calculated by two Hanford Site-wide studies. Additionally, major ion proportions and anomalously low tritium activities suggest that groundwater in the aquifer beneath the TEDF has been sequestered from influences of adjoining portions of the aquifer and any discharge activities. This inference is supported by recent hydrogeologic investigations which indicate an extremely slow rate of groundwater movement beneath the TEDF. Detailed evaluation of TEDF-area hydrogeology and groundwater geochemistry indicate that additional points of compliance for groundwater monitoring would be ineffective for this facility, and would produce ambiguous results. Therefore, the current groundwater monitoring well network is retained for continued monitoring. A quarterly frequency of sampling and analysis is continued for all three TEDF wells. The constituents list is refined to include only those parameters key to discerning subtle changes in groundwater chemistry, those useful in detecting general groundwater quality changes from upgradient sources, or those retained for comparison with end

  3. Water-quality and hydrogeologic data for three phosphate industry waste-disposal sites in central Florida, 1979-80

    Science.gov (United States)

    Miller, Ronald L.; Sutcliffe, Horace

    1982-01-01

    This report is a complilation of geologic, hydrologic, and water-quality data and information on test holes collected in the vicinity of gypsum stack complexes at two phosphate chemical plants and one phosphatic clayey waste disposal pond at a phosphate mine and beneficiation plant in central Florida. The data were collected from September 1979 to October 1980 at thee AMAX Phosphate, Inc., chemical plant, Piney Point; the USS AgriChemicals chemical plant, Bartow; and the International Minerals and Chemical Corporation Clear Springs mine, Bartow. Approximmmtely 5,400 field and laboratory water-quality determinations on water samples were collected from about 78 test holes and 31 surface-water, rainfall, and other sampling sites at phosphate industry beneficiation and chemical plant waste-disposal operations. Maps show locations of sampling sites. (USGS)

  4. Delineation of soil and groundwater contamination using geophysical methods at a waste disposal site in Canakkale, Turkey.

    Science.gov (United States)

    Kaya, M Ali; Ozürlan, Gülçin; Sengül, Ebru

    2007-12-01

    Direct current (DC) resistivity, self potential (SP) and very low frequency electromagnetic (VLF-EM) measurements are carried out to detect the spread of groundwater contamination and to locate possible pathways of leachate plumes, that resulted from an open waste disposal site of Canakkale municipality. There is no proper management of the waste disposal site in which industrial and domestic wastes were improperly dumped. Furthermore, because of the dumpsite is being located at the catchment area borders of a small creek and is being topographically at a high elevation relative to the urban area, the groundwater is expected to be hazardously contaminated. Interpretations of DC resistivity geoelectrical data showed a low resistivity zone (geophysical investigations and the results of previously collected geochemical and hydrochemical measurements.

  5. A studies on characteristics of groundwater system in discontinuous rockmass for evaluation of safety on disposal site of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yeong Hoon; Han, Jeong Sang; Kim, Kyu Sang; Shin, Hyeon Joon; Lee, Chee Hyeong [Yonsei Univ., Seoul (Korea, Republic of)

    1997-07-15

    This study contains the development of numerical model of groundwater system and its application for the evaluation of safety in disposal site of radioactive waste. Through the identification of hydraulic properties, characteristics of discontinuity and selection of discontinuity model around LPG underground storage facility, the application of continuum model and discrete fracture network model was evaluated for the analysis of groundwater flow and solute transport.

  6. Addendum to Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, Marcel P.; Freeman, Eugene J.; Wurstner, Signe K.; Kincaid, Charles T.; Coony, Mike M.; Strenge, Dennis L.; Aaberg, Rosanne L.; Eslinger, Paul W.

    2001-09-28

    This report summarizes efforts to complete an addendum analysis to the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis). This document describes the background and performance objectives of the Composite Analysis and this addendum analysis. The methods used, results, and conclusions for this Addendum analysis are summarized, and recommendations are made for work to be undertaken in anticipation of a second analysis.

  7. Application of the IPCC Waste Model to solid waste disposal sites in tropical countries: case study of Thailand.

    Science.gov (United States)

    Wangyao, Komsilp; Towprayoon, Sirintornthep; Chiemchaisri, Chart; Gheewala, Shabbir H; Nopharatana, Annop

    2010-05-01

    Measurements of landfill methane emission were performed at nine solid waste disposal sites in Thailand, including five managed sanitary landfills (four deep and one shallow landfills) and four unmanaged landfills (three deep and one shallow dumpsites). It was found that methane emissions during the rainy season were about five to six times higher than those during the winter and summer seasons in the case of managed landfills and two to five times higher in the case of unmanaged landfills. Methane emission estimate using the Intergovernmental Panel on Climate Change (IPCC) Waste Model was compared with the actual field measurement from the studied disposal sites with methane correction factors and methane oxidation factors that were obtained by error function analysis with default values of half-life parameters. The methane emissions from the first-order decay model from the IPCC Waste Model yielded fair results compared to field measurements. The best fitting values of methane correction factor were 0.65, 0.20, 0.15, and 0.1 for deep landfills, shallow landfills, deep dumpsites, and shallow dumpsites, respectively. Using these key parameters in the case of Thailand, it was estimated that 89.22 Gg of methane were released from solid waste disposal sites into the atmosphere in 2006.

  8. Analysis and evaluation of a radioactive waste package retrieved from the Farallon Islands 900-meter disposal site

    Energy Technology Data Exchange (ETDEWEB)

    Colombo, P.; Kendig, M.W.

    1990-09-01

    The Environmental Protection Agency (EPA) was given a Congressional mandate to develop criteria and regulations governing the ocean disposal of all forms of waste. The EPA taken an active role both nationally and within the international nuclear regulatory community to develop the effective controls necessary to protect the health and safety of man and the marine environment. The EPA Office of Radiation Programs (ORP) first initiated feasibility studies to determine whether current technologies could be applied toward determining the fate of radioactive waste disposed of in the past. After successfully locating actual radioactive waste packages in formerly used disposal sites, in the United States, the Office of Radiation Programs developed an intensive program of site characterization studies to examine biological, chemical and physical characteristics including evaluations of the concentration and distribution of radionuclides within these sites, and has conducted a performance evaluation of past packaging techniques and materials. Brookhaven National Laboratory (BNL) has performed container corrosion and matrix analysis studies on the recovered radioactive waste packages. This report presents the final results of laboratory analyses performed. 17 refs., 40 figs., 7 tabs.

  9. RESULTS OF TRITIUM TRACKING AND GROUNDWATER MONITORING AT THE HANFORD SITE 200 AREA STATE APPROVED LAND DISPOSAL SITE FY2008

    Energy Technology Data Exchange (ETDEWEB)

    ERB DB

    2008-11-19

    The Hanford Site's 200 Area Effluent Treatment Facility (ETF) processes contaminated aqueous wastes derived from Hanford Site facilities. The treated wastewater occasionally contains tritium, which cannot be removed by the ETF prior to the wastewater being discharged to the 200 Area State-Approved Land Disposal Site (SALDS). During the first 11 months of fiscal year 2008 (FY08) (September 1, 2007, to July 31, 2008), approximately 75.15 million L (19.85 million gal) of water were discharged to the SALDS. Groundwater monitoring for tritium and other constituents, as well as water-level measurements, is required for the SALDS by State Waste Discharge Permit Number ST-4500 (Ecology 2000). The current monitoring network consists of three proximal (compliance) monitoring wells and nine tritium-tracking wells. Quarterly sampling of the proximal wells occurred in October 2007 and in January/February 2008, April 2008, and August 2008. The nine tritium-tracking wells, including groundwater monitoring wells located upgradient and downgradient of the SALDS, were sampled in January through April 2008. Water-level measurements taken in the three proximal SALDS wells indicate that a small groundwater mound is present beneath the facility, which is a result of operational discharges. The mound increased in FY08 due to increased ETF discharges from treating groundwater from extraction wells at the 200-UP-l Operable Unit and the 241-T Tank Farm. Maximum tritium activities increased by an order of magnitude at well 699-48-77A (to 820,000 pCi/L in April 2008) but remained unchanged in the other two proximal wells. The increase was due to higher quantities of tritium in wastewaters that were treated and discharged in FY07 beginning to appear at the proximal wells. The FY08 tritium activities for the other two proximal wells were 68,000 pCi/L at well 699-48-77C (October 2007) and 120,000 pCi/L at well 699-48-77D (October 2007). To date, no indications of a tritium incursion from

  10. Composite analysis for low-level waste disposal in the 200 area plateau of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Kincaid, C.T.; Bergeron, M.P.; Cole, C.R. [and others

    1998-03-01

    This report presents the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis) prepared in response to the U.S. Department of Energy Implementation Plan for the Defense Nuclear Facility Safety Board Recommendation 94-2. The Composite Analysis is a companion document to published analyses of four active or planned low-level waste disposal actions: the solid waste burial grounds in the 200 West Area, the solid waste burial grounds in the 200 East Area, the Environmental Restoration Disposal Facility, and the disposal facilities for immobilized low-activity waste. A single Composite Analysis was prepared for the Hanford Site considering only sources on the 200 Area Plateau. The performance objectives prescribed in U.S. Department of Energy guidance for the Composite Analysis were 100 mrem in a year and examination of a lower dose (30 mrem in a year) to ensure the {open_quotes}as low as reasonably achievable{close_quotes} concept is followed. The 100 mrem in a year limit was the maximum allowable all-pathways dose for 1000 years following Hanford Site closure, which is assumed to occur in 2050. These performance objectives apply to an accessible environment defined as the area between a buffer zone surrounding an exclusive waste management area on the 200 Area Plateau, and the Columbia River. Estimating doses to hypothetical future members of the public for the Composite Analysis was a multistep process involving the estimation or simulation of inventories; waste release to the environment; migration through the vadose zone, groundwater, and atmospheric pathways; and exposure and dose. Doses were estimated for scenarios based on agriculture, residential, industrial, and recreational land use. The radionuclides included in the vadose zone and groundwater pathway analyses of future releases were carbon-14, chlorine-36, selenium-79, technetium-99, iodine-129, and uranium isotopes.

  11. Multidisciplinary geophysical approach to map a disposal site: The Ponza island case study

    Science.gov (United States)

    Sapia, Vincenzo; Baccheschi, Paola; Villani, Fabio; Taroni, Matteo; Marchetti, Marco

    2017-03-01

    Electrical resistivity tomography (ERT) and magnetometric surveys are extensively used for environmental investigations of uncontrolled landfills, where the presence of waste with potential contaminants and metal objects requires a detailed characterization and monitoring of their subsurface location. Capacitively-coupled resistivity (CCR) measurements applied for similar environmental studies are far less used. In this study, we show the results and discuss the advantages of a combined application of ERT, CCR and magnetometric surveys applied to the characterization of the disposal site of Mt. Pagliaro, in the island of Ponza (central Italy). The survey area is located on volcanic deposits, which characterize the low resistive geological bedrock. We acquired four CCR profiles and five ERT profiles in addition to a magnetic survey covering a total area of about 7000 m2. The recovered smooth resistivity models suggest the presence of a shallow resistive layer (ρ > 75 Ωm) of variable thickness (2.0-6.0 m), overlying a relatively low-resistive layer, which we interpret as the electrical response of the volcanic bedrock. This interpretation is supported by few shallow boreholes and field observation in the northern part of the landfill area. The magnetic maps show three suspicious dipolar magnetic anomalies, probably ascribed to the presence of a high concentration of buried ferrous waste. Several small-scale dipolar anomalies have been interpreted as due to the presence of sparse and shallow metal objects within the waste material. Due to the resistivity models' smoothness, to improve the characterization of the interface between the bedrock and the waste material we performed a statistical analysis of the resistivity data. Following the philosophy of the steepest gradient method, we found a significative change in resistivity computed on an averaged depth resistivity function of the ERT data. Accordingly, we classify two distinct units: a) an upper unit, with

  12. ALL-PATHWAYS DOSE ANALYSIS FOR THE PORTSMOUTH ON-SITE WASTE DISPOSAL FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F.; Phifer, M.

    2014-04-10

    A Portsmouth On-Site Waste Disposal Facility (OSWDF) All-Pathways analysis has been conducted that considers the radiological impacts to a resident farmer. It is assumed that the resident farmer utilizes a farm pond contaminated by the OSWDF to irrigate a garden and pasture and water livestock from which food for the resident farmer is obtained, and that the farmer utilizes groundwater from the Berea sandstone aquifer for domestic purposes (i.e. drinking water and showering). As described by FBP 2014b the Hydrologic Evaluation of Landfill Performance (HELP) model (Schroeder et al. 1994) and the Surface Transport Over Multiple Phases (STOMP) model (White and Oostrom 2000, 2006) were used to model the flow and transport from the OSWDF to the Points of Assessment (POAs) associated with the 680-ft elevation sandstone layer (680 SSL) and the Berea sandstone aquifer. From this modeling the activity concentrations radionuclides were projected over time at the POAs. The activity concentrations were utilized as input to a GoldSimTM (GTG 2010) dose model, described herein, in order to project the dose to a resident farmer over time. A base case and five sensitivity cases were analyzed. The sensitivity cases included an evaluation of the impacts of using a conservative inventory, an uncased well to the Berea sandstone aquifer, a low waste zone uranium distribution coefficient (Kd), different transfer factors, and reference person exposure parameters (i.e. at 95 percentile). The maximum base case dose within the 1,000 year assessment period was projected to be 1.5E-14 mrem/yr, and the maximum base case dose at any time less than 10,000 years was projected to be 0.002 mrem/yr. The maximum projected dose of any sensitivity case was approximately 2.6 mrem/yr associated with the use of an uncased well to the Berea sandstone aquifer. This sensitivity case is considered very unlikely because it assumes leakage from the location of greatest concentration in the 680 SSL in to the

  13. Characterization and remediation of soil prior to construction of an on-site disposal facility at Fernald

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A.; Jones, G. [Fluor Daniel Fernald, Inc., Cincinnati, OH (United States). Fernald Environmental Management Project; Janke, R. [Dept. of Energy (United States); Nelson, K. [Jacobs Engineering (United States)

    1998-03-01

    During the production years at the Feed Materials Production Center (FMPC), the soil of the site and the surrounding areas was surficially impacted by airborne contamination. The volume of impacted soil is estimated at 2.2 million cubic yards. During site remediation, this contamination will be excavated, characterized, and disposed of. In 1986 the US Environmental Protection Agency (EPA) and the Department of Energy (DOE) entered into a Federal Facility Compliance Agreement (FFCA) covering environmental impacts associated with the FMPC. A site wide Remedial Investigation/Feasibility Study (RI/FS) was initiated pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act, as amended by the Superfund Amendments and Reauthorization Act (CERCLA). The DOE has completed the RI/FS process and has received approval of the final Records of Decision. The name of the facility was changed to the Fernald Environmental Management Project (FEMP) to emphasize the change in mission to environmental restoration. Remedial actions which address similar scopes of work or types of contaminated media have been grouped into remedial projects for the purpose of managing the remediation of the FEMP. The Soil Characterization and Excavation Project (SCEP) will address the remediation of FEMP soils, certain waste units, at- and below-grade material, and will certify attainment of the final remedial limits (FRLs) for the FEMP. The FEMP will be using an on-site facility for low level radioactive waste disposal. The facility will be an above-ground engineered structure constructed of geological material. The area designated for construction of the base of the on-site disposal facility (OSDF) is referred to as the footprint. Contaminated soil within the footprint must be identified and remediated. Excavation of Phase 1, the first of seven remediation areas, is complete.

  14. Gas production, composition and emission at a modern disposal site receiving waste with a low-organic content

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Fredenslund, Anders Michael; Nedenskov, Jonas

    2011-01-01

    AV Miljø is a modern waste disposal site receiving non-combustible waste with a low-organic content. The objective of the current project was to determine the gas generation, composition, emission, and oxidation in top covers on selected waste cells as well as the total methane (CH4) emission fro...... drainage pipes placed in permeable gravel layers in the bottom of empty cells was likely....... the disposal site. The investigations focused particularly on three waste disposal cells containing shredder waste (cell 1.5.1), mixed industrial waste (cell 2.2.2), and mixed combustible waste (cell 1.3). Laboratory waste incubation experiments as well as gas modeling showed that significant gas generation...... was occurring in all three cells. Field analysis showed that the gas generated in the cell with mixed combustible waste consisted of mainly CH4 (70%) and carbon dioxide (CO2) (29%) whereas the gas generated within the shredder waste, primarily consisted of CH4 (27%) and nitrogen (N2) (71%), containing no CO2...

  15. 1999 Report on Hanford Site land disposal restriction for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    BLACK, D.G.

    1999-03-25

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-011. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility.

  16. 75 FR 19311 - Ocean Dumping; Guam Ocean Dredged Material Disposal Site Designation

    Science.gov (United States)

    2010-04-14

    ... dredged material disposal activities will not unreasonably degrade or endanger human health, welfare, the... specific errors, missing information, or outdated information, and the Final EIS was revised and updated... an appropriate upland location. Mitigation Mitigation for unavoidable resource losses as a result of...

  17. IJER@2014 Page 57 Disposal Criteria of Bhanpur Solid Waste Landfill Site: Investigation and Suggestions

    Directory of Open Access Journals (Sweden)

    Tapas Dasgpta

    2014-03-01

    Full Text Available The solid waste management and design assist waste management officials in developing and encouraging environmentally sound methods for the disposal of "nonhazardous" solid waste. Promulgated under the authority of municipal act, the Municipal Solid Waste Landfill (MSWLF regulation act establish a framework for planning and implementing municipal solid waste landfill programs at the state and local levels. This framework sets minimum standards for protecting human health and the environment, while allowing states to develop more flexible MSWLF criteria. Intension to mitigate or expeditiously remediate potential adverse environmental impacts resulting from municipal landfills. However, other regulations existed prior to the revised MSWLF standards discussed in this module. The promulgation Criteria for Classification of Solid Waste Disposal Facilities and Practices. The established regulatory standards to satisfy the minimum national performance criteria for sanitary landfills governs only those solid waste disposal facilities and practices that do not meet the definition of a MSWLF. Such facilities include waste piles, industrial nonhazardous waste landfills, surface impoundments, and land application units. Environmental Protect Authority (EPA modified address the fact that these non-municipal non-hazardous wastes landfills may receive Conditionally Exempt Small Quantity Generator (CESQG hazardous waste, further clarify that construction and demolition landfills may receive residential lead-based paint waste as Solid Waste Disposal Facilities without for MSWLFs as long as all conditions are met.

  18. Remote Sensing Analysis of the Sierra Blanca (Faskin Ranch) Low-Level Radioactive Waste Disposal Site, Hudspeth County, Texas

    Energy Technology Data Exchange (ETDEWEB)

    LeMone, D. V.; Dodge, R.; Xie, H.; Langford, R. P.; Keller, G. R.

    2002-02-26

    Remote sensing images provide useful physical information, revealing such features as geological structure, vegetation, drainage patterns, and variations in consolidated and unconsolidated lithologies. That technology has been applied to the failed Sierra Blanca (Faskin Ranch) shallow burial low-level radioactive waste disposal site selected by the Texas Low-Level Radioactive Waste Disposal Authority. It has been re-examined using data from LANDSAT satellite series. The comparison of the earlier LANDSAT V (5/20/86) (30-m resolution) with the later new, higher resolution ETM imagery (10/23/99) LANDSAT VII data (15-m resolution) clearly shows the superiority of the LANDSAT VII data. The search for surficial indications of evidence of fatal flaws at the Sierra Blanca site utilizing was not successful, as it had been in the case of the earlier remote sensing analysis of the failed Fort Hancock site utilizing LANDSAT V data. The authors conclude that the tectonic activity at the Sierra Blanca site is much less recent and active than in the previously studied Fort Hancock site. The Sierra Blanca site failed primarily on the further needed documentation concerning a subsurface fault underneath the site and environmental justice issues. The presence of this fault was not revealed using the newer LANDSAT VII data. Despite this fact, it must be remembered that remote sensing provides baseline documentation for determining future physical and financial remediation responsibilities. On the basis of the two sites examined by LANDSAT remote sensing imaging, it is concluded that it is an essential, cost-effective tool that should be utilized not only in site examination but also in all nuclear-related facilities.

  19. Hydrologic evaluation methodology for estimating water movement through the unsaturated zone at commercial low-level radioactive waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, P.D.; Rockhold, M.L.; Nichols, W.E.; Gee, G.W. [Pacific Northwest Lab., Richland, WA (United States)

    1996-01-01

    This report identifies key technical issues related to hydrologic assessment of water flow in the unsaturated zone at low-level radioactive waste (LLW) disposal facilities. In addition, a methodology for incorporating these issues in the performance assessment of proposed LLW disposal facilities is identified and evaluated. The issues discussed fall into four areas: estimating the water balance at a site (i.e., infiltration, runoff, water storage, evapotranspiration, and recharge); analyzing the hydrologic performance of engineered components of a facility; evaluating the application of models to the prediction of facility performance; and estimating the uncertainty in predicted facility performance. To illustrate the application of the methodology, two examples are presented. The first example is of a below ground vault located in a humid environment. The second example looks at a shallow land burial facility located in an arid environment. The examples utilize actual site-specific data and realistic facility designs. The two examples illustrate the issues unique to humid and arid sites as well as the issues common to all LLW sites. Strategies for addressing the analytical difficulties arising in any complex hydrologic evaluation of the unsaturated zone are demonstrated.

  20. AECL strategy for surface-based investigations of potential disposal sites and the development of a geosphere model for a site

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, S.H.; Brown, A.; Davison, C.C.; Gascoyne, M.; Lodha, G.S.; Stevenson, D.R.; Thorne, G.A.; Tomsons, D. [AECL Research, Whiteshell Labs., Pinawa, MB (Canada)

    1994-05-01

    The objective of this report is to summarize AECL`s strategy for surface-based geotechnical site investigations used in screening and evaluating candidate areas and candidate sites for a nuclear fuel waste repository and for the development of geosphere models of sites. The report is one of several prepared by national nuclear fuel waste management programs for the Swedish Nuclear Fuel and Waste Management Co. (SKB) to provide international background on site investigations for SKB`s R and D programme on siting.The scope of the report is limited to surface-based investigations of the geosphere, those done at surface or in boreholes drilled from surface. The report discusses AECL`s investigation strategy and the methods proposed for use in surface-based reconnaissance and detailed site investigations at potential repository sites. Site investigations done for AECL`s Underground Research Laboratory are used to illustrate the approach. The report also discusses AECL`s strategy for developing conceptual and mathematical models of geological conditions at sites and the use of these models in developing a model (Geosphere Model) for use in assessing the performance of the disposal system after a repository is closed. Models based on the site data obtained at the URL are used to illustrate the approach. Finally, the report summarizes the lessons learned from AECL`s R and D program on site investigations and mentions some recent developments in the R and D program. 120 refs, 33 figs, 7 tabs.

  1. Detailed analysis of a RCRA landfill for the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The purpose of this detailed analysis is to provide a preliminary compilation of data, information, and estimated costs associated with a RCRA landfill alternative for UNC Disposal Site. This is in response to Environmental Protection Agency (EPA) comment No. 6 from their review of a {open_quotes}Feasibility Study for the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee.{close_quotes}

  2. Assessment of site conditions for disposal of low- and intermediate-level radioactive wastes: a case study in southern China.

    Science.gov (United States)

    Yi, Shuping; Ma, Haiyi; Zheng, Chunmiao; Zhu, Xiaobin; Wang, Hua'an; Li, Xueshan; Hu, Xueling; Qin, Jianbo

    2012-01-01

    Near surface disposal of low- and intermediate-level radioactive wastes (LILW) requires evaluating the field conditions of the candidate site. However, assessment of the site conditions may be challenging due to the limited prior knowledge of some remote sites, and various multi-disciplinary data requirements at any given site. These situations arise in China as in the rest of the industrialized world, particularly since a regional strategy for LILW disposal has been implemented to protect humans and the environment. This paper presents a demonstration of the site assessment process through a case study focusing mainly on the geologic, hydrogeologic and geochemical characteristics of the candidate site. A joint on-site and laboratory investigation, supplemented by numerical modeling, was implemented in this assessment. Results indicate that no fault is present in the site area, although there are some minor joints and fractures, primarily showing a north-south trend. Most of the joints are filled with quartz deposits and would thus function hydraulically as impervious barriers. Investigation of local hydrologic boundaries has shown that the candidate site represents an essentially isolated hydrogeologic unit, and that little or no groundwater flow occurs across its boundaries on the north or east, or across the hilly areas to the south. Groundwater in the site area is recharged by precipitation and discharges primarily by evapo-transpiration and surface flow through a narrow outlet to the west. Groundwater flows slowly from the hilly area to the foot of the hills and discharges mainly into the inner brooks and marshes. Some groundwater circulates in deeper granite in a slower manner. The vadose zone in the site was investigated specially for their significant capability for restraining the transport of radionuclides. Results indicate that the vadose zone is up to 38m in thickness and is made up of alluvial clay soils and very highly weathered granite. The vadose

  3. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF) and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS.

  4. Scoping evaluation of the technical capabilities of DOE sites for disposal of hazardous metals in mixed low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Gruebel, M.M.; Waters, R.D.; Langkopf, B.S.

    1997-05-01

    A team of analysts designed and conducted a scoping evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of the hazardous metals in mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Eight hazardous metals were evaluated: arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. The analysis considered transport only through the groundwater pathway. The results are reported as site-specific estimates of maximum concentrations of each hazardous metal in treated mixed low-level waste that do not exceed the performance measures established for the analysis. Also reported are site-specific estimates of travel times of each hazardous metal to the point of compliance.

  5. Solid waste disposal site selection with GIS and AHP methodology: a case study in Senirkent-Uluborlu (Isparta) Basin, Turkey.

    Science.gov (United States)

    Sener, Sehnaz; Sener, Erhan; Karagüzel, Remzi

    2011-02-01

    The appropriate site selection for waste disposal is one of the major problems in waste management. Also, many environmental, economical, and political considerations must be adhered to. In this study, landfill site selection is performed using the Geographic Information System (GIS), the Analytical Hierarchy Process (AHP), and the remote sensing methods for the Senirkent-Uluborlu Basin. The basin is located in the Eğirdir Lake catchment area, which is one of the most important fresh water in Turkey. So, waste management must be regulated in the basin. For this aim, ten different criteria (lithology, surface water, aquifer, groundwater depth, land use, lineaments, aspect, elevation, slope, and distance to roads) are examined in relation to landfill site selection. Each criterion was identified and weighted using AHP. Then, each criterion is mapped using the GIS technique, and a suitability map is prepared by overlay analyses. The results indicate that 96.3% of the area in the basin is unsuitable; 1.6%, moderately suitable; and 2.1%, most suitable. Finally, suitable regions in the basin are determined for solid waste landfill disposal and checked in the field. The selected and investigated regions are considered to be suitable for the landfill.

  6. Analysis of multi-temporal landsat satellite images for monitoring land surface temperature of municipal solid waste disposal sites.

    Science.gov (United States)

    Yan, Wai Yeung; Mahendrarajah, Prathees; Shaker, Ahmed; Faisal, Kamil; Luong, Robin; Al-Ahmad, Mohamed

    2014-12-01

    This studypresents a remote sensing application of using time series Landsat satellite images for monitoring the Trail Road and Nepean municipal solid waste (MSW) disposal sites in Ottawa, Ontario, Canada. Currently, the Trail Road landfill is in operation; however, during the 1960s and 1980s, the city relied heavily on the Nepean landfill. More than 400 Landsat satellite images were acquired from the US Geological Survey (USGS) data archive between 1984 and 2011. Atmospheric correction was conducted on the Landsat images in order to derive the landfill sites' land surface temperature (LST). The findings unveil that the average LST of the landfill was always higher than the immediate surrounding vegetation and air temperature by 4 to 10 °C and 5 to 11.5 °C, respectively. During the summer, higher differences of LST between the landfill and its immediate surrounding vegetation were apparent, while minima were mostly found in fall. Furthermore, there was no significant temperature difference between the Nepean landfill (closed) and the Trail Road landfill (active) from 1984 to 2007. Nevertheless, the LST of the Trail Road landfill was much higher than the Nepean by 15 to 20 °C after 2007. This is mainly due to the construction and dumping activities (which were found to be active within the past few years) associated with the expansion of the Trail Road landfill. The study demonstrates that the use of the Landsat data archive can provide additional and viable information for the aid of MSW disposal site monitoring.

  7. Corrective Action Decision Document/Closure Report for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Alfred Wickline

    2008-04-01

    This Corrective Action Decision Document (CADD)/Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, in Areas 2, 3, 9, and 20 of the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (1996, as amended February 2008). Corrective Action Unit 545 is comprised of the following eight Corrective Action Sites (CASs): • 02-09-01, Mud Disposal Area • 03-08-03, Mud Disposal Site • 03-17-01, Waste Consolidation Site 3B • 03-23-02, Waste Disposal Site • 03-23-05, Europium Disposal Site • 03-99-14, Radioactive Material Disposal Area • 09-23-02, U-9y Drilling Mud Disposal Crater • 20-19-01, Waste Disposal Site While all eight CASs are addressed in this CADD/CR, sufficient information was available for the following three CASs; therefore, a field investigation was not conducted at these sites: • For CAS 03-08-03, though the potential for subsidence of the craters was judged to be extremely unlikely, the data quality objective (DQO) meeting participants agreed that sufficient information existed about disposal and releases at the site and that a corrective action of close in place with a use restriction is recommended. Sampling in the craters was not considered necessary. • For CAS 03-23-02, there were no potential releases of hazardous or radioactive contaminants identified. Therefore, the Corrective Action Investigation Plan for CAU 545 concluded that: “Sufficient information exists to conclude that this CAS does not exist as originally identified. Therefore, there is no environmental concern associated with CAS 03-23-02.” This CAS is closed with no further action. • For CAS 03-23-05, existing information about the two buried sources and lead pig was considered to be

  8. LLRW disposal site selection process. Southeast Compact -- State of North Carolina: A combined technical and public information approach

    Energy Technology Data Exchange (ETDEWEB)

    Snider, F.G.; Amick, D.C.; Khoury, S.G. [Ebasco Services Incorporated, Greensboro, NC (United States); Stowe, C.H.; Guichard, P. [NC Low-Level Radioactive Waste Management Authority, Raleigh, NC (United States)

    1989-11-01

    The State of North Carolina has been designated to host the second commercial low level radioactive waste disposal facility for the Southeast Compact. The North Carolina facility is to be operational on January 1, 1993, concurrent with the closing of the present facility in Barnwell, South Carolina. The NC Low Level Radioactive Waste Management Authority and its contractor, Ebasco Services Incorporated, initiated the site selection process in July of 1988. The present schedule calls for the identification of two or more sites for detailed characterization in the latter half of 1989. The site selection process is following two concurrent and parallel paths. The first is the technical site screening process, which is focusing the search for a suitable site by the systematic application of state and federal laws and regulations regarding exclusion and suitability factors. In a parallel effort, the NCLL Radioactive Waste Management Authority has embarked on an extensive public information program. In addition to newsletters, fact sheets, brochures, video tapes, and news releases, a total of six regional meetings and 26 public forums have been held across the state. A total of 4,764 people attended the forums, 1,241 questions were asked, and 243 public statements were made. The combination of a systematic, defensible technical siting process and the concurrent release of information and numerous statewide public meetings and forums is proving to be an effective strategy for the eventual identification of sites that are both technically suitable and publicly acceptable.

  9. Munitions integrity and corrosion features observed during the HUMMA deep-sea munitions disposal site investigations

    Science.gov (United States)

    Silva, Jeff A. K.; Chock, Taylor

    2016-06-01

    An evaluation of the current condition of sea-disposed military munitions observed during the 2009 Hawaii Undersea Military Munitions Assessment Project investigation is presented. The 69 km2 study area is located south of Pearl Harbor, Oahu, Hawaii, and is positioned within a former deep-sea disposal area designated as Hawaii-05 or HI-05 by the United States Department of Defense. HI-05 is known to contain both conventional and chemical munitions that were sea-disposed between 1920 and 1951. Digital images and video reconnaissance logs collected during six remotely operated vehicle and 16 human-occupied vehicle surveys were used to classify the integrity and state of corrosion of the 1842 discarded military munitions (DMM) objects encountered. Of these, 5% (or 90 individual DMM objects) were found to exhibit a mild-moderate degree of corrosion. The majority (66% or 1222 DMM objects) were observed to be significantly corroded, but visually intact on the seafloor. The remaining 29% of DMM encountered were found to be severely corroded and breached, with their contents exposed. Chemical munitions were not identified during the 2009 investigation. In general, identified munitions known to have been constructed with thicker casings were better preserved. Unusual corrosion features were also observed, including what are termed here as 'corrosion skirts' that resembled the flow and cementation of corrosion products at and away from the base of many munitions, and 'corrosion pedestal' features resembling a combination of cemented corrosion products and seafloor sediments that were observed to be supporting munitions above the surface of the seafloor. The origin of these corrosion features could not be determined due to the lack of physical samples collected. However, a microbial-mediated formation hypothesis is presented, based on visual analysis, which can serve as a testable model for future field programs.

  10. Genotoxic monitoring of workers at a hazardous waste disposal site in Mexico.

    Science.gov (United States)

    Gonsebatt, M E; Salazar, A M; Montero, R; Díaz Barriga, F; Yáñez, L; Gómez, H; Ostrosky-Wegman, P

    1995-01-01

    Chromosomal aberration and sister chromatid exchange (SCE) frequencies were determined in lymphocytes cultured from 12 high-risk individuals working at a landfill for hazardous waste disposal. Cell proliferation kinetics (CPK) was also determined. Compared with 7 control individuals, no effects were observed with respect to SCE nor on CPK. However, the workers exhibited significantly higher frequencies of chromatid and chromosomal deletions, the magnitude of which was related with exposure time. This study suggests that when high-risk exposure is suspected, determining biomarkers of genotoxic damage (e.g., chromosomal aberrations), is useful for risk assessments. PMID:7621789

  11. Solution speciation of plutonium and Americium at an Australian legacy radioactive waste disposal site.

    Science.gov (United States)

    Ikeda-Ohno, Atsushi; Harrison, Jennifer J; Thiruvoth, Sangeeth; Wilsher, Kerry; Wong, Henri K Y; Johansen, Mathew P; Waite, T David; Payne, Timothy E

    2014-09-01

    During the 1960s, radioactive waste containing small amounts of plutonium (Pu) and americium (Am) was disposed in shallow trenches at the Little Forest Burial Ground (LFBG), located near the southern suburbs of Sydney, Australia. Because of periodic saturation and overflowing of the former disposal trenches, Pu and Am have been transferred from the buried wastes into the surrounding surface soils. The presence of readily detected amounts of Pu and Am in the trench waters provides a unique opportunity to study their aqueous speciation under environmentally relevant conditions. This study aims to comprehensively investigate the chemical speciation of Pu and Am in the trench water by combining fluoride coprecipitation, solvent extraction, particle size fractionation, and thermochemical modeling. The predominant oxidation states of dissolved Pu and Am species were found to be Pu(IV) and Am(III), and large proportions of both actinides (Pu, 97.7%; Am, 86.8%) were associated with mobile colloids in the submicron size range. On the basis of this information, possible management options are assessed.

  12. Assessment of groundwater quality by unsaturated zone study due to migration of leachate from Abloradjei waste disposal site, Ghana

    Science.gov (United States)

    Egbi, Courage Davidson; Akiti, Tetteh Thomas; Osae, Shiloh; Dampare, Samuel Boakye; Abass, Gibrilla; Adomako, Dickson

    2015-06-01

    Leachate generated by open solid waste disposal sites contains substances likely to contaminate groundwater. The impact of potential contaminants migrating from leachate on groundwater can be quantified by monitoring their concentration and soil properties at specific points in the unsaturated zone. In this study, physical and chemical analyses were carried out on leachate, soil and water samples within the vicinity of the municipal solid waste disposal site at Abloradjei, a suburb of Accra, Ghana. The area has seen a massive increase in population and the residents depend on groundwater as the main source of water supply. Results obtained indicate alkaline pH for leachate and acidic conditions for unsaturated zone water. High EC values were recorded for leachate and unsaturated zone water. Major ions (Ca2+, Na+, Mg2+, K+, NO3 -, SO4 2-, Cl-, PO4 3- were analysed in leachate, unsaturated zone water, soil solution and groundwater while trace metals (Al, Fe, Cu, Zn, Pb) were analysed in both soil and extracted soil solution. Concentrations of major ions were high in all samples indicating possible anthropogenic origin. Mean % gravel, % sand, % clay, bulk density, volumetric water content and porosity were 28.8, 63.93, 6.6, 1 g cm-3, 35 and 62.7 %, respectively. Distribution of trace elements showed Kd variation of Al > Cu > Fe > Pb > Zn in the order of sequential increasing solubility. It was observed that the quality of groundwater is not suitable for drinking.

  13. Assessment of groundwater quality by unsaturated zone study due to migration of leachate from Abloradjei waste disposal site, Ghana

    Science.gov (United States)

    Egbi, Courage Davidson; Akiti, Tetteh Thomas; Osae, Shiloh; Dampare, Samuel Boakye; Abass, Gibrilla; Adomako, Dickson

    2017-05-01

    Leachate generated by open solid waste disposal sites contains substances likely to contaminate groundwater. The impact of potential contaminants migrating from leachate on groundwater can be quantified by monitoring their concentration and soil properties at specific points in the unsaturated zone. In this study, physical and chemical analyses were carried out on leachate, soil and water samples within the vicinity of the municipal solid waste disposal site at Abloradjei, a suburb of Accra, Ghana. The area has seen a massive increase in population and the residents depend on groundwater as the main source of water supply. Results obtained indicate alkaline pH for leachate and acidic conditions for unsaturated zone water. High EC values were recorded for leachate and unsaturated zone water. Major ions (Ca2+, Na+, Mg2+, K+, NO3 -, SO4 2-, Cl-, PO4 3- were analysed in leachate, unsaturated zone water, soil solution and groundwater while trace metals (Al, Fe, Cu, Zn, Pb) were analysed in both soil and extracted soil solution. Concentrations of major ions were high in all samples indicating possible anthropogenic origin. Mean % gravel, % sand, % clay, bulk density, volumetric water content and porosity were 28.8, 63.93, 6.6, 1 g cm-3, 35 and 62.7 %, respectively. Distribution of trace elements showed Kd variation of Al > Cu > Fe > Pb > Zn in the order of sequential increasing solubility. It was observed that the quality of groundwater is not suitable for drinking.

  14. West Hackberry Strategic Petroleum Reserve site brine-disposal monitoring, year 1 report. Volume 1. Executive summary. Final report

    Energy Technology Data Exchange (ETDEWEB)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.)

    1983-02-01

    The physical, chemical and biological attributes are described for: (1) a coastal marine environment centered about a Department of Energy Strategic Petroleum Reserve (SPR) brine disposal site located 11.4 km off the southwest coast of Louisiana; and (2) the lower Calcasieu and Sabine estuarine systems that provide leach waters for the SPR project. During the study period, the daily discharge averaged 529,000 barrels of 216 0/00 brine, representing a loading of 18,000 metric tons of salt per day. The objective of this study are: (1) characterize the environment in terms of physical, chemical and biological attributes; (2) determine if significant adverse changes in ecosystem productivity and stability of the biological community are occurring as a result of brine discharge; and (3) determine the magnitude of any change observed. This report describes the methodology and significant results of the first year's monitoring effort of the West Hackberry brine disposal site. The investigative tasks, presented as separate sections, are: Physical Oceanography, Estuarine Hydrology and Hydrography, Analysis of Discharge Plume, Water and Sediment Quality, Special Pollutant Surveys, Benthos, Nekton, Phytoplankton, Zooplankton and Data Management.

  15. Transuranic advanced disposal systems: preliminary /sup 239/Pu waste-disposal criteria for Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, W.E. Jr.; Aaberg, R.L.; Napier, B.A.; Soldat, J.K.

    1982-09-01

    This report contains the draft results of a study sponsored by the US Department of Energy (DOE) to determine preliminary /sup 239/Pu waste disposal criteria for the Hanford Site. The purpose of this study is to provide a preliminary evaluation of the feasibility of various defense TRU advanced disposal options at the Hanford Site. Advanced waste disposal options include those developed to provide greater confinement than provided by shallow-land burial. They will be used to complement the waste geologic disposal in achieving permanent disposal of selected TRU wastes. An example systems analysis is discussed with assumed performance objectives and Hanford-specific disposal conditions, waste forms, site characteristics, and engineered barriers. Preliminary waste disposal criteria for /sup 239/Pu are determined by applying the Allowable Residual Contamination Level (ARCL) method. This method is based on compliance with a radiation dose rate limit through a site-specific analysis of the potential for radiation exposure to individuals. A 10,000-year environmental performance period is assumed, and the dose rate limit for human intrusion is assumed to be 500 mrem/yr to any exposed individual. Preliminary waste disposal criteria derived by this method for /sup 239/Pu in soils at the Hanford Site are: 0.5 nCi/g in soils between the surface and a depth of 1 m, 2200 nCi/g of soil at a depth of 5 m, and 10,000 nCi/g of soil at depths 10 m and below. These waste disposal criteria are based on exposure scenarios that reflect the dependence of exposure versus burial depth. 5 figures, 7 tables.

  16. CENSUS AND STATISTICAL CHARACTERIZATION OF SOIL AND WATER QUALITY AT ABANDONED AND OTHER CENTRALIZED AND COMMERCIAL DRILLING-FLUID DISPOSAL SITES IN LOUISIANA, NEW MEXICO, OKLAHOMA, AND TEXAS

    Energy Technology Data Exchange (ETDEWEB)

    Alan R. Dutton; H. Seay Nance

    2003-06-01

    Commercial and centralized drilling-fluid disposal (CCDD) sites receive a portion of spent drilling fluids for disposal from oil and gas exploration and production (E&P) operations. Many older and some abandoned sites may have operated under less stringent regulations than are currently enforced. This study provides a census, compilation, and summary of information on active, inactive, and abandoned CCDD sites in Louisiana, New Mexico, Oklahoma, and Texas, intended as a basis for supporting State-funded assessment and remediation of abandoned sites. Closure of abandoned CCDD sites is within the jurisdiction of State regulatory agencies. Sources of data used in this study on abandoned CCDD sites mainly are permit files at State regulatory agencies. Active and inactive sites were included because data on abandoned sites are sparse. Onsite reserve pits at individual wells for disposal of spent drilling fluid are not part of this study. Of 287 CCDD sites in the four States for which we compiled data, 34 had been abandoned whereas 54 were active and 199 were inactive as of January 2002. Most were disposal-pit facilities; five percent were land treatment facilities. A typical disposal-pit facility has fewer than 3 disposal pits or cells, which have a median size of approximately 2 acres each. Data from well-documented sites may be used to predict some conditions at abandoned sites; older abandoned sites might have outlier concentrations for some metal and organic constituents. Groundwater at a significant number of sites had an average chloride concentration that exceeded nonactionable secondary drinking water standard of 250 mg/L, or a total dissolved solids content of >10,000 mg/L, the limiting definition for underground sources of drinking water source, or both. Background data were lacking, however, so we did not determine whether these concentrations in groundwater reflected site operations. Site remediation has not been found necessary to date for most abandoned

  17. 2015 Uranium Mill Tailings Radiation Control Act (UMTRCA) Title ll Annual Report, L-Bar, New Mexico Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Frazier, William [USDOE Office of Legacy Management, Washington, DC (United States); Johnson, Dick [Navarro Research and Engineering, Inc., Las Vegas, NV (United States)

    2015-11-01

    The L-Bar, New Mexico, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title II Disposal Site was inspected on August 18, 2015. The tailings impoundment was in excellent condition. Erosion and vegetation measurements to monitor the condition of the impoundment cover indicated that no erosion is occurring, and perennial vegetation foliar cover at the measurement plots increased substantially compared to previous years due to above-average precipitation for the year. A short segment of the perimeter fence near the site entrance was realigned in spring 2015 because a gully was undermining the fence corner. Loose fence strands at another location were repaired during the inspection, and a section of fence needs to be realigned to avoid areas affected by deep gullies and sediment deposition. Inspectors identified no other maintenance needs or cause for a follow-up inspection. Groundwater monitoring is required every 3 years. The next monitoring event will be in 2016.

  18. Groundwater Monitoring and Tritium-Tracking Plan for the 200 Area State-Approved Land Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    DB Barnett

    2000-08-31

    The 200 Area State-Approved Land Disposal Site (SALDS) is a drainfield which receives treated wastewater, occasionally containing tritium from treatment of Hanford Site liquid wastes at the 200 Area Effluent Treatment Facility (ETF). Since operation of the SALDS began in December 1995, discharges of tritium have totaled {approx}304 Ci, only half of what was originally predicted for tritium quantity through 1999. Total discharge volumes ({approx}2.7E+8 L) have been commensurate with predicted volumes to date. This document reports the results of all tritium analyses in groundwater as determined from the SALDS tritium-tracking network since the first SALDS wells were installed in 1992 through July 1999, and provides interpretation of these results as they relate to SALDS operation and its effect on groundwater. Hydrologic and geochemical information are synthesized to derive a conceptual model, which is in turn used to arrive at an appropriate approach to continued groundwater monitoring at the facility.

  19. GPS monitoring of bedrock stability at Olkiluoto nuclear waste disposal site in Finland from 1996 to 2012

    Science.gov (United States)

    Nyberg, S.; Kallio, U.; Koivula, H.

    2013-09-01

    The Finnish Geodetic Institute has studied crustal deformations at Olkiluoto nuclear waste disposal site since mid-90's. Biannual GPS measurement has been carried out in two local GPS networks. This paper analyses the GPS data processing effects on the coordinate solutions and presents the results of GPS monitoring from 1996 to 2012. The GPS data was processed using Bernese GPS Software 5.0. The GPS data processing and baseline analysis showed a 1.0 mm (max RMS) level agreement of observation and high bedrock stability in the area. Most of the horizontal trends were smaller than 0.1 mm/a. The troposphere estimation strategy had a clear effect on the horizontal trends at some sites. The strain rates were all very small, but we could detect motions near the Olkiluoto permanent station.

  20. An assessment of groundwater quality for agricultural use: a case study from solid waste disposal site SE of Pune, India

    Directory of Open Access Journals (Sweden)

    M. R. G. Sayyed

    2011-12-01

    Full Text Available Groundwater pollution around the improperly constructed landfill areas of the growing cities has always been in the rising trend and hence its effects on the environment warrant a thorough monitoring. The seasonal variations in the quality of groundwater from the dug wells surrounding the solid waste disposal site from the SE of Pune city (India has been assessed by calculating the sodium adsorption ratio (SAR. The results indicate that the groundwater from the wells nearing the waste disposal site show consistent increase in the pollution from monsoon to summer through winter. The study further demonstrates that the wells near the site are severely polluted and the source is mainly the leachates emerging out of the decaying solid wastes. The recurrent addition of the solid waste in the dump site in the coming years would result in further exponential deterioration of the groundwater quality of the dug wells from the area and hence adequate steps are urgently needed to prevent further aggravation of the problem. Based upon the SAR values it is evident that most of the wells from the Hadapsar area have excellent groundwater for irrigation throughout the year; from Manjari area it is excellent to good; the Fursungi area has sub-equal proportions of excellent, good and fair groundwater, while in Mantarwadi, although most of the wells have excellent to good water, few wells have fair to poor quality water for irrigation purpose. In Uruli-Devachi about 50% wells have poor quality of water and hence can not be used for irrigation. Hence this study strongly suggests that most of the abstracted groundwater samples from the study area were suitable for irrigation except from Uruli Devachi area.

  1. NRC Consultation and Monitoring at the Savannah River Site: Focusing Reviews of Two Different Disposal Actions - 12181

    Energy Technology Data Exchange (ETDEWEB)

    Ridge, A. Christianne; Barr, Cynthia S.; Pinkston, Karen E.; Parks, Leah S.; Grossman, Christopher J.; Alexander, George W. [U.S. Nuclear Regulatory Commission (United States)

    2012-07-01

    Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) requires the U.S. Department of Energy (DOE) to consult with the U.S. Nuclear Regulatory Commission (NRC) for certain non-high level waste determinations. The NDAA also requires NRC to monitor DOE's disposal actions related to those determinations. In Fiscal Year 2011, the NRC staff reviewed DOE performance assessments for tank closure at the F-Tank Farm (FTF) Facility and salt waste disposal at the Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) as part of consultation and monitoring, respectively. Differences in inventories, waste forms, and key barriers led to different areas of focus in the NRC reviews of these two activities at the SRS. Because of the key role of chemically reducing grouts in both applications, the evaluation of chemical barriers was significant to both reviews. However, radionuclide solubility in precipitated metal oxides is expected to play a significant role in FTF performance whereas release of several key radionuclides from the SDF is controlled by sorption or precipitation within the cementitious wasteform itself. Similarly, both reviews included an evaluation of physical barriers to flow, but differences in the physical configurations of the waste led to differences in the reviews. For example, NRC's review of the FTF focused on the modeled degradation of carbon steel tank liners while the staff's review of the SDF performance included a detailed evaluation of the physical degradation of the saltstone wasteform and infiltration-limiting closure cap. Because of the long time periods considered (i.e., tens of thousands of years), the NRC reviews of both facilities included detailed evaluation of the engineered chemical and physical barriers. The NRC staff reviews of residual waste disposal in the FTF and salt waste disposal in the SDF focused on physical barriers to flow and chemical barriers to

  2. Three-year summary report of biological monitoring at the Southwest Ocean dredged-material disposal site and additional locations off Grays Harbor, Washington, 1990--1992

    Energy Technology Data Exchange (ETDEWEB)

    Antrim, L.D.; Shreffler, D.K.; Pearson, W.H.; Cullinan, V.I. [Battelle Marine Research Lab., Sequim, WA (United States)

    1992-12-01

    The Grays Harbor Navigation Improvement Project was initiated to improve navigation by widening and deepening the federal channel at Grays Harbor. Dredged-material disposal sites were selected after an extensive review process that included inter-agency agreements, biological surveys, other laboratory and field studies, and preparation of environmental impact statements The Southwest Site, was designated to receive materials dredged during annual maintenance dredging as well as the initial construction phase of the project. The Southwest Site was located, and the disposal operations designed, primarily to avoid impacts to Dungeness crab. The Final Environmental Impact Statement Supplement for the project incorporated a Site Monitoring Plan in which a tiered approach to disposal site monitoring was recommended. Under Tier I of the Site Monitoring Plan, Dungeness crab densities are monitored to confirm that large aggregations of newly settled Dungeness crab have not moved onto the Southwest Site. Tier 2 entails an increased sampling effort to determine whether a change in disposal operations is needed. Four epibenthic surveys using beam trawls were conducted in 1990, 1991, and 1992 at the Southwest Site and North Reference area, where high crab concentrations were found in the spring of 1985. Survey results during these three years prompted no Tier 2 activities. Epibenthic surveys were also conducted at two nearshore sites where construction of sediment berms has been proposed. This work is summarized in an appendix to this report.

  3. Possible salt mine sites for radioactive waste disposal in the northeastern states

    Energy Technology Data Exchange (ETDEWEB)

    Landes, K.K.

    1972-06-30

    The motivation for this investigation is the necessity for finding the safest possible repository for solid atomic plant wastes. It is believed that rooms mined in thick beds of salt would afford the best sanctuary. This is due especially to the impermeability of massive rock salt. This rock has enough plasticity so that it tends to give rather than fracture when disturbed by movements of the earth's crust. In addition, due to water conditions at the time of deposition, the rocks most commonly associated with salt (anhydrite and shale) are likewise relatively impervious. A number of areas have been selected for detailed discussion because of the excellence of the geological and environmental factors. The optimum requirements for a viable waste disposal prospect are described in detail and nine prospects are considered further.

  4. Advanced disposal systems for transuranic waste: Preliminary disposal criteria for Plutonium-239 at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, W.E.; Napier, B.A.; Soldat, J.K.

    1983-01-01

    An evaluation of the feasibility and potential application of advanced disposal systems is being conducted for defense transuranic (TRU) wastes at the Hanford site. The advanced waste disposal options include those developed to provide ''greater confinement'' than provided by shallow-land burial. An example systems analysis is discussed with assumed performance objectives and various Hanford-specific disposal conditions, waste forms, site characteristics, and engineered barriers. Preliminary waste disposal criteria for /sup 239/Pu are determined by applying the allowable residual contamination level (ARCL) method. This method is based on compliance with a radiation dose rate limit through a site specific analysis of the potential for radiation exposure to individuals. A 10,000-year environmental performance period is assumed, and the dose rate limit for human intrusion is assumed to be 500 mrem/yr to any exposed individual. Preliminary waste disposal criteria derived by this method for /sup 239/Pu in soils at the Hanford Site are 0.5 nCi/g in soils between the surface and a depth of 1 m, 2200 nCi/g of soil at a depth of 5 m, and 10,000 nCi/g of soil at depths 10 m and below. These waste disposal criteria are based on exposure scenarios that reflect the dependence of exposure versus burial depth.

  5. Transuranic advanced disposal systems: preliminary /sup 239/Pu waste-disposal criteria for Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, W.E. Jr.; Napier, B.A.; Soldat, J.K.

    1982-08-01

    An evaluation of the feasibility and potential application of advanced disposal systems is being conducted for defense transuranic (TRU) wastes at the Hanford Site. The advanced waste disposal options include those developed to provide greater confinement than provided by shallow-land burial. An example systems analysis is discussed with assumed performance objectives and various Hanford-specific disposal conditions, waste forms, site characteristics, and engineered barriers. Preliminary waste disposal criteria for /sup 239/Pu are determined by applying the Allowable Residual Contamination Level (ARCL) method. This method is based on compliance with a radiation dose rate limit through a site-specific analysis of the potential for radiation exposure to individuals. A 10,000 year environmental performance period is assumed, and the dose rate limit for human intrusion is assumed to be 500 mrem/y to any exposed individual. Preliminary waste disposal criteria derived by this method for /sup 239/Pu in soils at the Hanford Site are: 0.5 nCi/g in soils between the surface and a depth of 1 m, 2200 nCi/g of soil at a depth of 5 m, and 10,000 nCi/g of soil at depths 10 m and below. These waste disposal criteria are based on exposure scenarios that reflect the dependence of exposure versus burial depth. 2 figures, 5 tables.

  6. 1998 report on Hanford Site land disposal restrictions for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1998-04-10

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-01H. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility. The US Department of Energy, its predecessors, and contractors on the Hanford Facility were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid mixed waste. This waste is regulated under authority of both the Resource Conservation and Recovery Act of l976 and the Atomic Energy Act of 1954. This report covers only mixed waste. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into the Tri-Party Agreement to bring the Hanford Facility operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for mixed waste. This report is the eighth update of the plan first issued in 1990. The Tri-Party Agreement requires and the baseline plan and annual update reports provide the following information: (1) Waste Characterization Information -- Provides information about characterizing each LDR mixed waste stream. The sampling and analysis methods and protocols, past characterization results, and, where available, a schedule for providing the characterization information are discussed. (2) Storage Data -- Identifies and describes the mixed waste on the Hanford Facility. Storage data include the Resource Conservation and Recovery Act of 1976 dangerous waste codes, generator process knowledge needed to identify the waste and to make LDR determinations, quantities

  7. Data Validation Package February 2016 Groundwater and Surface Water Sampling at the Tuba City, Arizona, Disposal Site April 2016

    Energy Technology Data Exchange (ETDEWEB)

    Bush, Richard [USDOE Office of Legacy Management, Washington, DC (United States); Lemke, Peter [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-04-01

    The groundwater compliance strategy for the Tuba City, Arizona, Disposal Site is defined in the 1999 Phase I Ground Water Compliance Action Plan for the Tuba City, Arizona, UMTRA Site. Samples are collected and analyzed on a semiannual basis to evaluate the performance of the Phase I remediation system. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). U.S. Environmental Protection Agency (EPA) groundwater standards were exceeded in samples collected from monitoring wells as listed in Table 1. The data from this sampling event are generally consistent with previously obtained values and are acceptable for general use as qualified. Data anomalies are not significant with respect to the known nature and extent of contamination and progress of remedial action at the site. The data from this sampling event will be incorporated into the annual performance evaluation report that will present a comprehensive hydrologic summary and evaluation of groundwater remedial action performance at the Tuba City site through March 2016.

  8. Data Validation Package August 2015 Groundwater and Surface Water Sampling at the Tuba City, Arizona, Disposal Site November 2015

    Energy Technology Data Exchange (ETDEWEB)

    Bush, Richard [USDOE Office of Legacy Management, Washington, DC (United States); Lemke, Peter [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2015-11-01

    The groundwater compliance strategy for the Tuba City, Arizona, Disposal Site is defined in the 1999 Phase I Ground Water Compliance Action Plan for the Tuba City, Arizona, UMTRA Site. Samples are collected and analyzed on a semiannual basis to evaluate the performance of the Phase I remediation system. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). U.S. Environmental Protection Agency (EPA) groundwater standards were exceeded in samples collected from monitoring wells and extraction wells as listed in Table 1. The data from this sampling event are generally consistent with previously obtained values and are acceptable for general use as qualified. Data anomalies are not significant with respect to the known nature and extent of contamination and progress of remedial action at the site. The data from this sampling event will be incorporated into the annual performance evaluation report that will present a comprehensive hydrologic summary and evaluation of groundwater remedial action performance at the Tuba City site through March 2016.

  9. Probability of failure of waste disposals sites in Žirovski vrh uranium mine

    Directory of Open Access Journals (Sweden)

    Tomaž Beguš

    2002-12-01

    Full Text Available The only Uranium mine in Slovenia @irovski vrh was closed in 1990 due to economic reasons. After the closure extensive decommissioning works in the mine and in the surrounding began. In the very beginning after the closure great landslide has been occurred in the mill tailings site and recalculation of stability of existent and alternate sites were performed. In this calculations I used statistical scatter of input variables and calculated probability of failure of sites.

  10. EXECUTIVE SUMMARY OF STATE DATA RELATED TO ABANDONED CENTRALIZED AND COMMERCIAL DRILLING-FLUID DISPOSAL SITES IN LOUISIANA, NEW MEXICO, OKLAHOMA, AND TEXAS

    Energy Technology Data Exchange (ETDEWEB)

    H. Seay Nance

    2003-03-01

    This 2003 Spring Semi-Annual Report contains a summary of the Final Technical Report being prepared for the Soil Remediation Requirements at Commercial and Centralized Drilling-Fluid Disposal (CCDD) Sites project funded by the United States Department of Energy under DOE Award No. DE-AC26-99BC15225. The summary describes (1) the objectives of the investigation, (2) a rationale and methodology of the investigation, (3) sources of data, assessment of data quality, and data availability, (4) examples of well documented centralized and commercial drilling-fluid disposal (CCDD) sites and other sites where drilling fluid was disposed of, and (5) examples of abandoned sites and measures undertaken for their assessment and remediation. The report also includes most of the figures, tables, and appendices that will be included in the final report.

  11. Ash dust co-centration in the vicinity of the ash disposal site depending on the size of the pond (“Water Mirror”

    Directory of Open Access Journals (Sweden)

    Zoran Gršić

    2010-09-01

    Full Text Available Thermal power plants Nikola Tesla “A” and “B” are large sources of ash from their ashes/slag deposit sites. Total sizes of ashes/slag depots are 600ha and 382ha, with active cassettes having dimensions ∼200 ha and ∼130 ha. The active cassettes of the disposal sites are covered by rather large waste ponds, the sizes of vary depending on the working condition of a sluice system and on meteorological conditions. Modeling of ash lifting was attempted using results from the dust lifting research. The relation between sizes of ponds and air dust concentration in the vicinity of ash disposal sites was analyzed. As expected, greater sizes of dried disposal site surfaces in combination with stronger winds gave greater dust emission and greater air dust concentration.

  12. Data Validation Package May and June 2015 Groundwater and Surface Water Sampling at the Bluewater, New Mexico, Disposal Site, August 2015

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Dick [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States); Tsosie, Bernadette [US Department of Energy, Washington, DC (United States)

    2015-08-01

    Groundwater samples were collected from monitoring wells at the Bluewater, New Mexico, Disposal Site to monitor groundwater contaminants as specified in the 1997 Long-Term Surveillance Plan for the DOE Bluewater (UMTRCA Title II) Disposal Site Near Grants, New Mexico (LTSP). Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). Duplicate samples were collected from locations 14(SG) and 21(M). Sampling originally scheduled for the week of May 11, 2015 was interrupted by heavy rainfall and later completed in June.

  13. Alternative Evaluation Study: Methods to Mitigate/Accommodate Subsidence for the Radioactive Waste Management Sites at the Nevada Test Site, Nye County Nevada, with Special Focus on Disposal Cell U-3ax/bl

    Energy Technology Data Exchange (ETDEWEB)

    Barker, L.

    1997-09-01

    An Alternative Evaluation Study is a type of systematic approach to problem identification and solution. An Alternative Evaluation Study was convened August 12-15, 1997, for the purpose of making recommendations concerning closure of Disposal Cell U-3ax/bl and other disposal cells and mitigation/accommodation of waste subsidence at the Radioactive Waste Management Sites at the Nevada Test Site. This report includes results of the Alternative Evaluation Study and specific recommendations.

  14. 78 FR 29687 - Ocean Dumping; Atchafalaya-West Ocean Dredged Material Disposal Site Designation

    Science.gov (United States)

    2013-05-21

    ..., Dallas, Texas 75202-2733. 2. EPA Web site: http://www.epa.gov/region6/water/ecopro/current_action.html.... Existing water quality and ecology of the site as determined by available data or by trend assessment or... James (1988). Neither the IEC (1983) nor the EPA-ERLN (Dettmann and Tracey 1990) water column data...

  15. A Study of the Benthic Macrofauna at the Central Long Island Sound Disposal Site.

    Science.gov (United States)

    1984-05-14

    from the New Haveni Sites Spring, 1980 Occurrence/ No. Species 22 Samples Individuals Phylum PORIFERA 1. PORIFERA sp. 2 2+ Phylum CNIDAP.IA Class...Collected from the New Haven Sites Summner, 1980 Occurrence/ No. SI!ecies 18 Samples Individuals Phylum PORIFERA 1. Hymeniacidon heliophila 1 1+ Phylum

  16. Toxicity tests and sediment chemistry at Site 9 (Neptune Drive Disposal Site) - U.S. Naval Air Station, Brunswick, Maine

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — During a remedial investigation of the U.S. Naval Air Station Superfund Site in Brunswick, Maine (NASB), elevated concentrations of total polycyclic aromatic...

  17. Mechanical environmental transport of actinides and ¹³⁷Cs from an arid radioactive waste disposal site.

    Science.gov (United States)

    Snow, Mathew S; Clark, Sue B; Morrison, Samuel S; Watrous, Matthew G; Olson, John E; Snyder, Darin C

    2015-10-01

    Aeolian and pluvial processes represent important mechanisms for the movement of actinides and fission products at the Earth's surface. Soil samples taken in the early 1970's near a Department of Energy radioactive waste disposal site (the Subsurface Disposal Area, SDA, located in southeastern Idaho) provide a case study for studying the mechanisms and characteristics of environmental actinide and (137)Cs transport in an arid environment. Multi-component mixing models suggest actinide contamination within 2.5 km of the SDA can be described by mixing between 2 distinct SDA end members and regional nuclear weapons fallout. The absence of chemical fractionation between (241)Am and (239+240)Pu with depth for samples beyond the northeastern corner and lack of (241)Am in-growth over time (due to (241)Pu decay) suggest mechanical transport and mixing of discrete contaminated particles under arid conditions. Occasional samples northeast of the SDA (the direction of the prevailing winds) contain anomalously high concentrations of Pu with (240)Pu/(239)Pu isotopic ratios statistically identical to those in the northeastern corner. Taken together, these data suggest flooding resulted in mechanical transport of contaminated particles into the area between the SDA and a flood containment dike in the northeastern corner, following which subsequent contamination spreading in the northeastern direction resulted from wind transport of discrete particles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Impact of a coastal disposal site for inert waste on the physical marine environment, Barcola-Bovedo, Trieste, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Colizza, E. [Istituto di Geologia e Paleontologia, Univ. degli Studi, Trieste (Italy); Fontolan, G. [Istituto di Geologia e Paleontologia, Univ. degli Studi, Trieste (Italy); Brambati, A. [Istituto di Geologia e Paleontologia, Univ. degli Studi, Trieste (Italy)

    1996-06-01

    Sediments in the marine area surrounding the Barcola-Bovedo coastal disposal site for inert wastes show a textural adjustment as a response to the new morphology due to construction of a 150-m-wide x 350-m-long landfill. Relatively coarse-sized deposits were found along the nearshore area facing the central landfill face, while pelitic sediments transported in suspension settle deeper, mainly in the northwestern sector of the study area, according to the cyclonic circulation scheme. Geochemical comparison between disposed material and sea-bottom sediments, normalized taking in account the regional variability of the element contents, shows: (1) Cr concentrations in the coastal samples twice as high as in the offshore ones, with the former characterizing the whole coastal and port area of Trieste, and (2) `anomalous` enrichments of Zn, Cu, and Pb, located mainly in the southern stretch of the investigated area, where dumping work is in progress in order to connect the landfill with the port area. Although the new morphology of the sea bottom is reflected in the grain-size redistribution, the sediments were not altered as far as their geochemical properties are concerned. In contrast, the recent discharge of material in the southern area is easily discernible because of its high heavy-metal content. (orig.)

  19. Development of an integrated strategy for the disposal of solid low level waste at BNFL`s Drigg site

    Energy Technology Data Exchange (ETDEWEB)

    Higson, S.G. [British Nuclear Fuels plc, Risley (United Kingdom)

    1989-11-01

    During the past 12 months, the first phase of a major upgrading of disposal operations at Drigg has been completed. This has involved the introduction of waste containerization and orderly emplacement in open concrete vaults. A further phase over the next few years will involve the introduction of compaction of all suitable waste. While the current upgrade has clearly resulted in a major improvement in the visual impact and management control of the site, the desire to implement such an improvement on a timescale consistent with the short term need for new facilities at Drigg has not allowed sufficient time for a detailed assessment of the full implications of the proposed system. This paper describes the development of the strategy for upgrading the Drigg site, highlights improvements that have been implemented as the project has progressed and outlines major outstanding concerns, particularly in relation to long term site management, that may eventually lead to a requirement for further optimization of the overall strategy. Progress under the Drigg Technical Development Programme is reviewed with specific emphasis on the preliminary results of engineering studies aimed at defining an integrated strategy that will meet the requirements of both acceptable visual impact and long term site stability and safety.

  20. Assessment of land suitability for olive mill wastewater disposal site selection by integrating fuzzy logic, AHP, and WLC in a GIS.

    Science.gov (United States)

    Aydi, Abdelwaheb; Abichou, Tarek; Nasr, Imen Hamdi; Louati, Mourad; Zairi, Moncef

    2016-01-01

    This paper presents a geographic information system-based multi-criteria site selection tool of an olive mill wastewater (OMW) disposal site in Sidi Bouzid Region, Tunisia. The multi-criteria decision framework integrates ten constraints and six factors that relate to environmental and economic concerns, and builds a hierarchy model for OMW disposal site suitability. The methodology is used for preliminary assessment of the most suitable OMW disposal sites by combining fuzzy set theory and analytic hierarchy process (AHP). The fuzzy set theory is used to standardize factors using different fuzzy membership functions while the AHP is used to establish the relative importance of the criteria. The AHP makes pairwise comparisons of relative importance between hierarchy elements grouped by both environmental and economic decision criteria. The OMW disposal site suitability is achieved by applying a weighted linear combination that uses a comparison matrix to aggregate different importance scenarios associated with environmental and economic objectives. Three different scenarios generated by different weights applied to the two objectives. The scenario (a) assigns a weight of 0.75 to the environmental and 0.25 to the economic objective, scenario (b) has equal weights, and scenario (c) features weights of 0.25 and 0.75 for environmental and economic objectives, respectively. The results from this study assign the least suitable OMW disposal site of 2.5 % when environmental and economic objectives are rated equally, while a more suitable OMW disposal site of 1.0 % is generated when the economic objective is rated higher.

  1. Pilot demonstration for containment using in situ soil mixing techniques at a chemical disposal superfund site

    Energy Technology Data Exchange (ETDEWEB)

    Zarlinski, S.J.; Kingham, N.W.; Semenak, R. [Kiber Environmental Services, Inc., Atlanta, GA (United States)

    1997-12-31

    Kiber Environmental Services, Inc. (Kiber), under contract to McLaren-Hart Corporation and the site PRP group, performed technical oversight and on-site sampling and analyses at the confidential site located in Texas. The site consists of 15,000 cubic meters (20,000 cubic yards) of contaminated materials that were to be solidified on-site. The contaminants included heavy metals, PAHs, oil and grease, and volatile organics. Groundwater is less than 1 meter from the surface. Kiber was retained after several unsuccessful efforts to find on-site containment methods that effectively solidified the waste pits while achieving the performance goals. The PRP group then contracted with Kiber to perform the treatability and pilot oversight studies. The full-scale pilot demonstration was performed by Geo-Con. Pilot-scale treatment was performed to evaluate the effectiveness of in situ solidification treatment at achieving the site specific performance criteria, including an unconfined compressive strength of greater than 170 kPa (25 psi) and a permeability of less than 1x10{sup -6} cm/sec. Technical oversight and on-site sampling and analysis were provided to evaluate pilot-scale application of the selected technology and verify treatment effectiveness. The project was divided into several subtasks. First, laboratory treatability testing was conducted to verify that performance specifications were achievable using the proposed reagent formulations. Next, a pilot demonstration was performed by Geo-Con using a Manotowoc 4000 crane equipped with a 1.5-meter diameter auger to evaluate shallow soil mixing. The final task included a comparative study between the performance of test specimens collected using wet sampling techniques versus in situ post-treatment coring.

  2. Comparison of Olkiluoto (Finland) and Forsmark (Sweden) candidate sites for radioactive-waste disposal

    Science.gov (United States)

    Geier, J. E.; Bath, A.; Stephansson, O.; Luukkonen, A.

    2012-12-01

    Site characterizations for deep radioactive-waste repositories consider rock properties, groundwater conditions, and the influences of regional settings and site-specific evolution. We present a comparison of these aspects for two candidate repository sites that have similar rocks and coastal settings, but are 200 km apart on opposite sides of the Gulf of Bothnia. The Olkiluoto site in Finland and the Forsmark site in Sweden are both in hard crystalline rock (migmatite gneiss and metagranite, respectively) with groundwater flow mainly via fractures. Both sites are undergoing licensing for a high-level radioactive-waste repository. The licensing is stepwise in Finland, and operation in both countries will be strictly regulated, but all responsibility lies with the implementers until accepted closure. The comparison reveals many expected similarities but also unexplained differences, which illustrate the complexities of site characterization in fractured crystalline rock. Both sites underwent a similar sequence of hydrologic conditions over the Weichselian and earlier glacial cycles. Hydrogeologically, Forsmark has more conductive upper bedrock, contributing to a very flat water table. Deep bedrock at Olkiluoto is more fractured in the horizontal plane. At repository depth and below, Forsmark likely contains larger volumes of low-conductivity rock. At both sites, the local model is connected to regional-scale boundaries via submarine deformation zones which (especially at Olkiluoto) are poorly characterized. Stress measurements at the two sites have shown that vertical stress is in agreement with the weight of overburden while horizontal stresses differ in magnitude and orientation. Interpreted overcoring stress measurements from Forsmark are almost twice the magnitudes estimated from hydraulic methods. Rock mechanical differences include the possibility that Olkiluoto bedrock is more prone to spalling than Forsmark. Olkiluoto bedrock is more anisotropic in terms of

  3. Corrective Action Investigation Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada: Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2004-05-03

    The general purpose of this Corrective Action Investigation Plan is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technically viable corrective action alternatives (CAAs) for Corrective Action Unit (CAU) 543: Liquid Disposal Units, Nevada Test Site (NTS), Nevada. Located in Areas 6 and 15 on the NTS, CAU 543 is comprised of a total of seven corrective action sites (CASs), one in Area 6 and six in Area 15. The CAS in Area 6 consists of a Decontamination Facility and its components which are associated with decontamination of equipment, vehicles, and materials related to nuclear testing. The six CASs in Area 15 are located at the U.S. Environmental Protection Agency Farm and are related to waste disposal activities at the farm. Sources of possible contamination at Area 6 include potentially contaminated process waste effluent discharged through a process waste system, a sanitary waste stream generated within buildings of the Decon Facility, and radiologically contaminated materials stored within a portion of the facility yard. At Area 15, sources of potential contamination are associated with the dairy operations and the animal tests and experiments involving radionuclide uptake. Identified contaminants of potential concern include volatile organic compounds, semivolatile organic compounds, petroleum hydrocarbons, pesticides, herbicides, polychlorinated biphenyls, metals, and radionuclides. Three corrective action closure alternatives - No Further Action, Close in Place, or Clean Closure - will be recommended for CAU 543 based on an evaluation of all the data quality objective-related data. Field work will be conducted following approval of the plan. The results of the field investigation will support a defensible evaluation of CAAs that will be presented in the Corrective Action Decision Document.

  4. Data Validation Package, July 2016 Groundwater Sampling at the Shirley Basin South, Wyoming, Disposal Site November 2016

    Energy Technology Data Exchange (ETDEWEB)

    Frazier, William [USDOE Office of Legacy Management, Washington, DC (United States); Price, Jeffrey [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-11-01

    Sampling Period: July 14-15, 2016 The 2004 Long-Term Surveillance Plan for the Shirley Basin South (UMTRCA Title II) Disposal Site, Carbon County, Wyoming, requires annual monitoring to verify continued compliance with the pertinent alternate concentration limits (ACLs) and Wyoming Class III (livestock use) groundwater protection standards. Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. Point-of-compliance (POC) wells 19-DC, 5-DC, and 5-SC, and monitoring wells 10-DC, 110-DC, 112-DC, 113-DC, 40-SC, 54-SC, 100-SC, 102-SC, and K.G.S.#3 were sampled. POC well 51-SC and downgradient well 101-SC were dry at the time of sampling. The water level was measured at each sampled well. See Attachment 2, Trip Report for additional details. Sampling and analyses were conducted in accordance with the Sampling and Analysis Plan for the U S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and­ analysis-plan-us-department-energy-office-legacy-management-sites). ACLs are approved for cadmium, chromium, lead, nickel, radium-226, radium-228, selenium, thorium-230, and uranium in site groundwater. Time-concentration graphs of the contaminants of concern in POC wells are included in Attachment 3, Data Presentation. The only ACL exceedance in a POC well was radium-228 in well 5-DC where the concentration was 30.7 picocuries per liter (pCi/L), exceeding the ACL of 25.7 pCi/L. Concentrations of sulfate and total dissolved solids continue to exceed their respective Wyoming Class III groundwater protection standards for livestock use in wells 5-DC, 5-SC, and 54-SC as they have done throughout the sampling history; however, there is no livestock use of the water from these aquifers at the site, and no constituent concentrations exceed groundwater protection standards at the wells near the site boundary.

  5. Revegetation and rock cover for stabilization of inactive uranium mill tailings disposal sites. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Beedlow, P.A.

    1984-05-01

    Guidelines for using vegetation and rock to protect inactive uranium mill tailings from erosion were developed by Pacific Northwest Laboratory as part of the Department of Energy's Uranium Mill Tailings Remedial Action Project (UMTRAP) Technology Development program. Information on soils, climate, and vegetation were collected for 20 inactive tailings sites in the western United States. Sites were grouped according to similarities in climate and vegetation. Soil loss for those sites was characterized using the Universal Soil Loss Equation. Test plots were used to evaluate (1) the interaction between vegetation and sealant barrier systems and (2) the effects of surface rock on soil water and vegetation. Lysimeter and simulation studies were used to direct and support field experiments. 49 references, 17 figures, 16 tables.

  6. Geological and geophysical investigations in the selection and characterization of the disposal site for high-level nuclear waste in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Paulamaki, S.; Paananen, M.; Kuivamaki, A. [Geological Survey of Finland, Espoo (Finland); Wikstrom, L. [Posiva Oy, Olkiluoto (Finland)], e-mail: seppo.paulamaki@gtk.fi

    2011-07-01

    Two power companies, Teollisuuden Voima Oy (TVO) and Fortum Power and Heat Oy, are preparing for the final disposal of spent nuclear fuel deep in the Finnish bedrock. In the initial phase of the site selection process in the late 1970s and early 1980s, the Geological Survey of Finland (GTK) examined the general bedrock factors that would have to be taken into account in connection with final disposal with reference to the international guidelines adapted to Finnish conditions. On the basis of extensive basic research data, it was concluded that it is possible to find a potential disposal site that fulfils the geological safety criteria. In the subsequent site selection survey covering the whole of Finland, carried out by GTK in 1983-1985, 101 potential investigation areas were discovered. Eventually, five areas were selected by TVO for preliminary site investigations: Romuvaara and Veitsivaara in the Archaean basement complex, Kivetty and Syyry in the Proterozoic granitoid area, and Olkiluoto (TVO's NPP site) in the Proterozoic migmatite area. The preliminary site investigations at the selected sites in 1987-1992 comprised deep drillings together with geological, geophysical, hydrogeological and hydrogeochemical investigations. A conceptual geological bedrock model was constructed for each site, including lithology, fracturing, fracture zones and hydrogeological conditions. On the basis of preliminary site investigations, TVO selected Romuvaara, Kivetty and Olkiluoto for detailed site investigations to be carried out during 1993-2000. After the feasibility studies, the island of Haestholmen, where Fortum's Loviisa nuclear power plant is located, was added to the list of potential disposal sites. In the detailed site investigations, additional data on bedrock were gathered, the previous conceptual geological, hydrogeological and hydrogeochemical models were complemented, the rock mechanical properties of the bedrock were examined, and the constructability

  7. Mineralogic Zonation Within the Tuff Confining Unit, Yucca Flat, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Lance Prothro

    2005-09-01

    Recently acquired mineralogic data from drill hole samples in Yucca Flat show that the tuff confining unit (TCU) can be subdivided into three mineralogic zones based on the relative abundances of primary and secondary mineral assemblages. These zones are (1) an upper zone characterized by the abundance of the zeolite mineral clinoptilolite with lesser amounts of felsic and clay minerals; (2) a middle zone with felsic minerals dominant over clinoptilolite and clay minerals; and (3) a basal argillic zone where clay minerals are dominant over felsic minerals and clinoptilolite. Interpretation of the mineralogic data, along with lithologic, stratigraphic, and geophysical data from approximately 500 drill holes, reveals a three-layer mineralogic model for the TCU that shows all three zones are extensive beneath Yucca Flat. The mineralogic model will be used to subdivide the TCU in the Yucca Flat hydrostratigraphic framework model, resulting in a more accurate and versatile framework model. In addition, the identification of the type, quantity, and distribution of minerals within each TCU layer will permit modelers to better predict the spatial distribution and extent of contaminant transport from underground tests in Yucca Flat, at both the level of the hydrologic source term and the corrective action unit.

  8. Alternate particle removal technologies for the Airborne Activity Confinement System at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Brockmann, J.E.; Adkins, C.L.J.; Gelbard, F. [Sandia National Labs., Albuquerque, NM (United States)

    1991-09-01

    This report presents a review of the filtration technologies available for the removal of particulate material from a gas stream. It was undertaken to identify alternate filtration technologies that may be employed in the Airborne Activity Confinement System (AACS) at the Savannah River Plant. This report is organized into six sections: (1) a discussion of the aerosol source term and its definition, (2) a short discussion of particle and gaseous contaminant removal mechanisms, (3) a brief overview of particle removal technologies, (4) a discussion of the existing AACS and its potential shortcomings, (5) an enumeration of issues to be addressed in upgrading the AACS, and, (6) a detailed discussion of the identified technologies. The purpose of this report is to identity available options to the existing particle removal system. This system is in continuous operation during routine operation of the reactor. As will be seen, there are a number of options and the selection of any technology or combination of technologies will depend on the design aerosol source term (yet to be appropriately defined) as well as the flow requirements and configuration. This report does not select a specific technology. It focuses on particulate removal and qualitatively on the removal of radio-iodine and mist elimination. Candidate technologies have been selected from industrial and nuclear gas cleaning applications.

  9. Alternate particle removal technologies for the Airborne Activity Confinement System at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Brockmann, J.E.; Adkins, C.L.J.; Gelbard, F. (Sandia National Labs., Albuquerque, NM (United States))

    1991-09-01

    This report presents a review of the filtration technologies available for the removal of particulate material from a gas stream. It was undertaken to identify alternate filtration technologies that may be employed in the Airborne Activity Confinement System (AACS) at the Savannah River Plant. This report is organized into six sections: (1) a discussion of the aerosol source term and its definition, (2) a short discussion of particle and gaseous contaminant removal mechanisms, (3) a brief overview of particle removal technologies, (4) a discussion of the existing AACS and its potential shortcomings, (5) an enumeration of issues to be addressed in upgrading the AACS, and, (6) a detailed discussion of the identified technologies. The purpose of this report is to identity available options to the existing particle removal system. This system is in continuous operation during routine operation of the reactor. As will be seen, there are a number of options and the selection of any technology or combination of technologies will depend on the design aerosol source term (yet to be appropriately defined) as well as the flow requirements and configuration. This report does not select a specific technology. It focuses on particulate removal and qualitatively on the removal of radio-iodine and mist elimination. Candidate technologies have been selected from industrial and nuclear gas cleaning applications.

  10. Soils, surficial geology, and geomorphology of the Bear Creek Valley Low-Level Waste Disposal Development and Demonstration Program site

    Energy Technology Data Exchange (ETDEWEB)

    Lietzke, D.A.; Lee, S.Y.; Lambert, R.E.

    1988-04-01

    An intensive soil survey was conducted on the proposed Low-Level Waste Disposal Development and Demonstration Program site (LLWDDD) in Bear Creek Valley. Soils on the site were related to the underlying residuum and to the surficial colluvium and alluvium. Within any particular geologic formation, soils were subdivided based mostly on the degree of weathering, as reflected by saprolite weathering and morphologic features of the soils. Degree of weathering was related both to slope shape and gradient and to the joint-fracture system. Erosion classes were also used to make further subdivisions of any particular soil. Deep pits were dug in each of the major Conasauga Group formations (Pumpkin Valley, Rogersville, Maryville, and Nolichucky) for soil and saprolite characterization. Because of the widespread presence of alluvium and colluvium, which are potential sources of fill and final cover material, pits and trenches were dug to characterize the properties of these soils and to try to understand the past geomorphic history of the site. The results of the soil survey investigation indicated that the deeply weathered Pumpkin Valley residuum has good potential for the construction of tumuli or other types of belowground or aboveground burial of prepackaged compacted waste. 11 refs., 30 figs., 3 tabs.

  11. Siting a municipal solid waste disposal facility, part II: the effects of external criteria on the final decision.

    Science.gov (United States)

    Korucu, M Kemal; Karademir, Aykan

    2014-02-01

    The procedure of a multi-criteria decision analysis supported by the geographic information systems was applied to the site selection process of a planning municipal solid waste management practice based on twelve different scenarios. The scenarios included two different decision tree modes and two different weighting models for three different area requirements. The suitability rankings of the suitable sites obtained from the application of the decision procedure for the scenarios were assessed by a factorial experimental design concerning the effect of some external criteria on the final decision of the site selection process. The external criteria used in the factorial experimental design were defined as "Risk perception and approval of stakeholders" and "Visibility". The effects of the presence of these criteria in the decision trees were evaluated in detail. For a quantitative expression of the differentiations observed in the suitability rankings, the ranking data were subjected to ANOVA test after a normalization process. Then the results of these tests were evaluated by Tukey test to measure the effects of external criteria on the final decision. The results of Tukey tests indicated that the involvement of the external criteria into the decision trees produced statistically meaningful differentiations in the suitability rankings. Since the external criteria could cause considerable external costs during the operation of the disposal facilities, the presence of these criteria in the decision tree in addition to the other criteria related to environmental and legislative requisites could prevent subsequent external costs in the first place.

  12. Mineral precipitation and dissolution at two slag-disposal sites in northwestern Indiana, USA

    Science.gov (United States)

    Bayless, E.R.; Schulz, M.S.

    2003-01-01

    Slag is a ubiquitous byproduct of the iron- and steel-refining industries. In northwestern Indiana and northeastern Illinois, slag has been deposited over more than 52 km2 of land surface. Despite the widespread use of slag for fill and construction purposes, little is known about its chemical effects on the environment. Two slagdisposal sites were examined in northwestern Indiana where slag was deposited over the native glacial deposits. At a third site, where slag was not present, background conditions were defined. Samples were collected from cores and drill cuttings and described with scanning electron microscopy and electron microprobe analysis. Ground-water samples were collected and used to assess thermodynamic equilibria between authigenic minerals and existing conditions. Differences in the mineralogy at background and slag-affected sites were apparent. Calcite, dolomite, gypsum, iron oxides, and clay minerals were abundant in native sediments immediately beneath the slag. Mineral features indicated that these minerals precipitated rapidly from slag drainage and co-precipitated minor amounts of non-calcium metals and trace elements. Quartz fragments immediately beneath the slag showed extensive pitting that was not apparent in sediments from the background site, indicating chemical weathering by the hyperalkaline slag drainage. The environmental impacts of slag-related mineral precipitation include disruption of natural ground-water flow patterns and bed-sediment armoring in adjacent surface-water systems. Dissolution of native quartz by the hyperalkaline drainage may cause instability in structures situated over slag fill or in roadways comprised of slag aggregates.

  13. Review of analytical results from the proposed agent disposal facility site, Aberdeen Proving Ground

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, K.L.; Reed, L.L.; Myers, S.W.; Shepard, L.T.; Sydelko, T.G.

    1997-09-01

    Argonne National Laboratory reviewed the analytical results from 57 composite soil samples collected in the Bush River area of Aberdeen Proving Ground, Maryland. A suite of 16 analytical tests involving 11 different SW-846 methods was used to detect a wide range of organic and inorganic contaminants. One method (BTEX) was considered redundant, and two {open_quotes}single-number{close_quotes} methods (TPH and TOX) were found to lack the required specificity to yield unambiguous results, especially in a preliminary investigation. Volatile analytes detected at the site include 1, 1,2,2-tetrachloroethane, trichloroethylene, and tetrachloroethylene, all of which probably represent residual site contamination from past activities. Other volatile analytes detected include toluene, tridecane, methylene chloride, and trichlorofluoromethane. These compounds are probably not associated with site contamination but likely represent cross-contamination or, in the case of tridecane, a naturally occurring material. Semivolatile analytes detected include three different phthalates and low part-per-billion amounts of the pesticide DDT and its degradation product DDE. The pesticide could represent residual site contamination from past activities, and the phthalates are likely due, in part, to cross-contamination during sample handling. A number of high-molecular-weight hydrocarbons and hydrocarbon derivatives were detected and were probably naturally occurring compounds. 4 refs., 1 fig., 8 tabs.

  14. Environmental monitoring at the Barnwell low level radioactive waste disposal site

    Energy Technology Data Exchange (ETDEWEB)

    Ragan, F.A. [South Carolina Dept. of Health and Environmental Control, Columbia, SC (United States)

    1989-11-01

    The Barnwell site has undergone an evolution to achieve the technology which is utilized today. A historical background will be presented along with an overview of present day operations. This paper will emphasize the environmental monitoring program: the types of samples taken, the methods of compiling and analyzing data, modeling, and resulting actions.

  15. 36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.

    Science.gov (United States)

    2010-07-01

    ... treatment plant, septic system waste, or domestic sewage; (vii) Petroleum, including used crankcase oil from... Places, or a road designated as open to public travel; (11) The site will receive less than 5 tons per...; (2) The name and legal addresses of the following: (i) Owners of record of the land; and (ii) Any...

  16. Corrective Action Investigation Plan for Corrective Action Unit 542: Disposal Holes, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Laura Pastor

    2006-05-01

    Corrective Action Unit (CAU) 542 is located in Areas 3, 8, 9, and 20 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 542 is comprised of eight corrective action sites (CASs): (1) 03-20-07, ''UD-3a Disposal Hole''; (2) 03-20-09, ''UD-3b Disposal Hole''; (3) 03-20-10, ''UD-3c Disposal Hole''; (4) 03-20-11, ''UD-3d Disposal Hole''; (5) 06-20-03, ''UD-6 and UD-6s Disposal Holes''; (6) 08-20-01, ''U-8d PS No.1A Injection Well Surface Release''; (7) 09-20-03, ''U-9itsy30 PS No.1A Injection Well Surface Release''; and (8) 20-20-02, ''U-20av PS No.1A Injection Well Surface Release''. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 30, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 542. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the CAI for CAU 542 includes the following

  17. ASSESSMENT OF VEGETATION COVER ON SODA WASTE DISPOSAL SITE AT JANIKOWO, FOLLOWING 13-YEAR-LONG RECLAMATION

    Directory of Open Access Journals (Sweden)

    Kazimierz Henryk Dyguś

    2014-10-01

    Full Text Available The results are presented of vegetation survey on the alkaline and saline soda waste disposal site at Janikowo Soda Plant near Toruń (central Poland. The site was subject to reclamation using diverse techniques including sewage sludge and ash, starting from the year 2000 onwards. The survey was made to evaluate the status of plant succession as well as stability and diversity of vegetation cover. The vegetation was inventoried using the cover-frequency method, on a 10 x 10 m quadrat samples randomly distributed over the reclaimed area. Communities were classified using the Central-European approach by Braun-Blanquet (1964. In 2013, the vegetation was well established and provided a dense cover of the substrate. 108 plant species were found compared to some 5–8 plants which arrived spontaneously until the year 2000. Species richness increased 15 fold since the year when reclamation started. Species of graminoid and Asteraceae families prevailed in most patches of local vegetation. The vegetation cover on sites treated with a mixt of power plant ash and sewage sludge was less stable and less diverse than that on sites where sewage sludge only was applied. Annuals and biennials dominated in the vegetation on ash grounds while more competitive perennials prevailed on sewage sludge substrates. On the latter substrates there develop plant communities classified as an association of smooth meadow grass and common yarrow Poa pratensis-Achillea millefolium, whose species combination closely resembles that of seminatural fresh meadows. On the ash grounds, a variety of associations of ruderal plants were found with dominating Loesel mustard and common mugwort Sisymbrium loeselii-Artemisia vulgaris. Phytoindicatory methods using Ellenberg values have shown that waste substrates contained increased salt concentrations, however, there was no indication of increased heavy metal contents, as no plants tolerating excessive amounts of heavy metals were

  18. WAsP for offshore sites in confined coastal waters - the influence of the sea fetch

    Energy Technology Data Exchange (ETDEWEB)

    Lange, B. [Risoe National Lab., Roskilde (Denmark); Hoejstrup, J. [NEG Micon, Randers (Denmark)

    1999-03-01

    The increasing interest in harvesting wind energy offshore requires reliable tools for the wind resource estimation at these sites. Most commonly used for wind resource predictions on land as well as offshore is the WAsP program. This program has been validated extensively for sites on land and at the coast. However, due to the lack of suitable measurements there is still a need for further validation for offshore sites. New data from ongoing measurements in the Danish Baltic Sea region are available now. The wind resources estimated from these measurements are compared to WAsP-predictions. They are found to agree well. The only deviation found is for two sites with comparable distance to the coast but with a different distribution of land. Here the measurements show slightly different wind resources which are not predicted by WAsP. Wind speed ratios of several pairs of stations are modelled with WAsP for 12 directional sectors and compared with the measurements. Deviations in the directional wind speed predictions were found to be dependent on the corresponding sea fetches: For smaller sea fetches WAsP seems to slightly overpredict the wind speed, while for long fetches of more than 30 km an underprediction is found. (au)

  19. Assessment of Alternatives for Upgrading Navy Solid Waste Disposal Sites. Volume 2.

    Science.gov (United States)

    1981-08-01

    to monitor grout pressures and amounts. As only a few contractors perform this type of work, it is likely that equip- ment mobilization fees...three technolgies are discussed below. Subsurface Drains Subsurface drains are mainly used to collect leachate from a site where the depth to...Studies by Griffin, Cartwright, Shimp, et al.*, rank the various chemical constituents in a municipal leachate according to relative mobility through

  20. Evaluation of geologic materials to limit biological intrusion into low-level radioactive waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Hakonson, T.E.

    1986-02-01

    This report describes the results of a three-year research program to evaluate the performance of selected soil and rock trench cap designs in limiting biological intrusion into simulated waste. The report is divided into three sections including a discussion of background material on biological interactions with waste site trench caps, a presentation of experimental data from field studies conducted at several scales, and a final section on the interpretation and limitations of the data including implications for the user.

  1. Analysis of the technical capabilities of DOE sites for disposal of residuals from the treatment of mixed low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Waters, R.D.; Gruebel, M.M.; Langkopf, B.S.; Kuehne, P.B.

    1997-04-01

    The US Department of Energy (DOE) has stored or expects to generate over the next five years more than 130,000 m{sup 3} of mixed low-level waste (MLLW). Before disposal, MLLW is usually treated to comply with the land disposal restrictions of the Resource Conservation and Recovery Act. Depending on the type of treatment, the original volume of MLLW and the radionuclide concentrations in the waste streams may change. These changes must be taken into account in determining the necessary disposal capacity at a site. Treatment may remove the characteristic in some waste that caused it to be classified as mixed. Treatment of some waste may, by reduction of the mass, increase the concentrations of some transuranic radionuclides sufficiently so that it becomes transuranic waste. In this report, the DOE MLLW streams were analyzed to determine after-treatment volumes and radionuclide concentrations. The waste streams were reclassified as residual MLLW or low-level or transuranic waste resulting from treatment. The volume analysis indicated that about 89,000 m{sup 3} of waste will require disposal as residual MLLW. Fifteen DOE sites were then evaluated to determine their capabilities for hosting disposal facilities for some or all of the residual MLLW. Waste streams associated with about 90% of the total residual MLLW volume are likely to present no significant issues for disposal and require little additional analysis. Future studies should focus on the remaining waste streams that are potentially problematic by examining site-specific waste acceptance criteria, alternative treatment processes, alternative waste forms for disposal, and pending changes in regulatory requirements.

  2. Spatio-temporal evolution of fault networks: implications for deep radioactive waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Hardacre, K.; Scotti, O. [CEA Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire

    2001-07-01

    The objective of this work is to provide estimates of both vertical and lateral propagation rates, on time scales of 100 000 years, for the faults systems known to be present today in the region of Bure, the site of an underground rock laboratory. The project is divided into three parts: 1) literature review (fault growth processes and data), 2) benchmarking against data a numerical code that allows for spontaneous development and growth of faults and 3) application to the Bure site. A brief overview of fault growth processes and observed fault propagation rates shows that non-negligible values (20-50 mm/yrs or roughly 5 km in 100 000 years) can be reached. Preliminary results obtained from two numerical simulations 1) fault growth of a pre-existing weaknesses and 2) fault growth of a spontaneously generated fault system, provide encouraging results with values that are comparable with those observed in nature for the growth of normal fault systems. The application to strike-slip system that characterizes the Bure site is still underway. (authors)

  3. Hydrogeology of a low-level radioactive-waste disposal site near Sheffield, Illinois

    Science.gov (United States)

    Foster, J.B.; Erickson, J.R.; Healy, R.W.

    1984-01-01

    The Sheffield low-level radioactive-waste facility is located on 20 acres of rolling terrain 3 miles southwest of Sheffield, Illinois. The shallow hydrogeologic system is composed of glacial sediments. Pennsylvania shale and mudstone bedrock isolate the regional aquifers below from the hydrogeologic system in the overlying glacial deposits. Pebbly sand underlies 67 percent of the site. Two ground-water flow paths were identified. The primary path conveys ground water from the site to the east through the pebbly-sand unit; a secondary path conveys ground water to the south and east through less permeable material. The pebbly-sand unit provides an underdrain that eliminates the risk of water rising into the trenches. Digital computer model results indicate that the pebbly-sand unit controls ground-water movement. Tritium found migrating in ground water in the southeast corner of the site travels approximately 25 feet per year. A group of water samples from wells which contained the highest tritium concentrations had specific conductivities, alkalinities, hardness, and chloride, sulfate, calcium, and magnesium contents higher than normal for local shallow ground water. (USGS)

  4. Quantum Computation with Neutral Atoms at Addressable Optical Lattice Sites and Atoms in Confined Geometries

    Science.gov (United States)

    2014-10-13

    Félix Riou, Aaron Reinhard, Laura A. Zundel, David S. Weiss. Spontaneous-emission- induced transition rates between atomic states in optical lattices...complementary technique to measure the hyperfine states at each lattice site. We developed a technique to cool atoms so that they are mostly in the vibrational ...28-Feb-2013 Approved for Public Release; Distribution Unlimited Final Report: Quantum Computation with Neutral Atoms at Addressable Optical Lattice

  5. Evapotranspiration Within the Groundwater Model Domain of the Tuba City, Arizona, Disposal Site Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-03-01

    The revised groundwater model includes estimates of evapotranspiration (ET). The types of vegetation and the influences of ET on groundwater hydrology vary within the model domain. Some plant species within the model domain, classified as phreatophytes, survive by extracting groundwater. ET within these plant communities can result in a net discharge of groundwater if ET exceeds precipitation. Other upland desert plants within the model domain survive on meteoric water, potentially limiting groundwater recharge if ET is equivalent to precipitation. For all plant communities within the model domain, excessive livestock grazing or other disturbances can tip the balance to a net groundwater recharge. This task characterized and mapped vegetation within the groundwater model domain at the Tuba City, Arizona, Site, and then applied a remote sensing algorithm to estimate ET for each vegetation type. The task was designed to address five objectives: 1. Characterize and delineate different vegetation or ET zones within the groundwater model domain, focusing on the separation of plant communities with phreatophytes that survive by tapping groundwater and upland plant communities that are dependent on precipitation. 2. Refine a remote sensing method, developed to estimate ET at the Monument Valley site, for application at the Tuba City site. 3. Estimate recent seasonal and annual ET for all vegetation zones, separating phreatophytic and upland plant communities within the Tuba City groundwater model domain. 4. For selected vegetation zones, estimate ET that might be achieved given a scenario of limited livestock grazing. 5. Analyze uncertainty of ET estimates for each vegetation zone and for the entire groundwater model domain.

  6. Application of the Spanish methodological approach for biosphere assessment to a generic high-level waste disposal site.

    Science.gov (United States)

    Agüero, A; Pinedo, P; Simón, I; Cancio, D; Moraleda, M; Trueba, C; Pérez-Sánchez, D

    2008-09-15

    A methodological approach which includes conceptual developments, methodological aspects and software tools have been developed in the Spanish context, based on the BIOMASS "Reference Biospheres Methodology". The biosphere assessments have to be undertaken with the aim of demonstrating compliance with principles and regulations established to limit the possible radiological impact of radioactive waste disposals on human health and on the environment, and to ensure that future generations will not be exposed to higher radiation levels than those that would be acceptable today. The biosphere in the context of high-level waste disposal is defined as the collection of various radionuclide transfer pathways that may result in releases into the surface environment, transport within and between the biosphere receptors, exposure of humans and biota, and the doses/risks associated with such exposures. The assessments need to take into account the complexity of the biosphere, the nature of the radionuclides released and the long timescales considered. It is also necessary to make assumptions related to the habits and lifestyle of the exposed population, human activities in the long term and possible modifications of the biosphere. A summary on the Spanish methodological approach for biosphere assessment are presented here as well as its application in a Spanish generic case study. A reference scenario has been developed based on current conditions at a site located in Central-West Spain, to indicate the potential impact to the actual population. In addition, environmental change has been considered qualitatively through the use of interaction matrices and transition diagrams. Unit source terms of (36)Cl, (79)Se, (99)Tc, (129)I, (135)Cs, (226)Ra, (231)Pa, (238)U, (237)Np and (239)Pu have been taken. Two exposure groups of infants and adults have been chosen for dose calculations. Results are presented and their robustness is evaluated through the use of uncertainty and

  7. Commencement Bay Nearshore/Tideflats Superfund Site, Tacoma, Washington Remedial Investigations. Evaluation of Alternative Dredging Methods and Equipment, Disposal Methods and Sites, and Site Control and Treatment Practices for Contaminated Sediments.

    Science.gov (United States)

    1985-06-01

    Material Disposal in the Ocean, John Wiley & Sons, Inc., New York, New York. Myers, A. C., 1979. "Summer and Winter Burrows of a Mantis Shrimp , Squilla...Deep water is any depth below the influence of storm waves, which will vary between sites. Theoretically, depths are unlimited, although in fact ...Swann, et. al., uses the term in a thermodynamic sense. He classifies the organic compounds by mobility class when in fact his classifica- tion

  8. Data Validation Package April 2016 Groundwater and Surface Water Sampling at the Monticello, Utah, Disposal and Processing Sites August 2016

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Jason [USDOE Office of Legacy Management, Washington, DC (United States); Smith, Fred [Navarro Research and Engineering, Oak Ridge, TN (United States)

    2016-08-01

    This semiannual event includes sampling groundwater and surface water at the Monticello Disposal and Processing Sites. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated) and Program Directive MNT-2016-01. Complete sample sets were collected from 42 of 48 planned locations (9 of 9 former mill site wells, 13 of 13 downgradient wells, 7 of 9 downgradient permeable reactive barrier wells, 4 of 7 seeps and wetlands, and 9 of 10 surface water locations). Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. Locations R6-M3, SW00-01, Seep 1, Seep 2, and Seep 5 were not sampled due to insufficient water availability. A partial sample was collected at location R4-M3 due to insufficient water. All samples from the permeable reactive barrier wells were filtered as specified in the program directive. Duplicate samples were collected from surface water location Sorenson and from monitoring wells 92-07 and RlO-Ml. Water levels were measured at all sampled wells and an additional set of wells. See Attachment2, Trip Report for additional details. The contaminants of concern (COCs) for the Monticello sites are arsenic, manganese, molybdenum, nitrate+ nitrite as nitrogen (nitrate+ nitrite as N), selenium, uranium, and vanadium. Locations with COCs that exceeded remediation goals are listed in Table 1 and Table 2. Time-concentration graphs of the COCs for all groundwater and surface water locations are included in Attachment 3, Data Presentation. An assessment of anomalous data is included in Attachment 4.

  9. Data Validation Package May 2016 Groundwater Sampling at the Sherwood, Washington, Disposal Site August 2016

    Energy Technology Data Exchange (ETDEWEB)

    Kreie, Ken [USDOE Office of Legacy Management, Washington, DC (United States); Traub, David [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-08-04

    The 2001 Long-Term Surveillance Plan (LTSP) for the US. Department of Energy Sherwood Project (UMI'RCA Title II) Reclamation Cell, Wellpinit, Washington, does not require groundwater compliance monitoring at the Sherwood site. However, the LTSP stipulates limited groundwater monitoring for chloride and sulfate (designated indicator parameters) and total dissolved solids (TDS) as a best management practice. Samples were collected from the background well, MW-2B, and the two downgradient wells, MW-4 and MW-10, in accordance with the LTSP. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for US. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). Water levels were measured in all wells prior to sampling and in four piezometers completed in the tailings dam. Time-concentration graphs included in this report indicate that the chloride, sulfate, and TDS concentrations are consistent with historical measurements. The concentrations of chloride and sulfate are well below the State of Washington water quality criteria value of 250 milligrams per liter (mg/L) for both parameters.

  10. Groundwater Monitoring and Tritium-Tracking Plan for the 200 Area State-Approved Land Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D. Brent

    2000-08-31

    The 200 Area State-Approved Land Disposal Site (SALDS) is a drainfield which receives treated wastewater, occasionally containing high levels of tritium from treatment of Hanford Site liquid wastes. Only the SALDS proximal wells (699-48-77A, 699-48-77C, and 699-48-77D) have been affected by tritium from the facility thus far; the highest activity observed (2.1E+6 pCi/L) occurred in well 699-48-77D in February 1998. Analytical results of groundwater geochemistry since groundwater monitoring began at the SALDS indicate that all constituents with permit enforcement limits have been below those limits with the exception of one measurement of total dissolved solids (TDS) in 1996. The revised groundwater monitoring sampling and analysis plan eliminates chloroform, acetone, tetrahydrofuran, benzene, and ammonia as constituents. Replicate field measurements will replace laboratory measurements of pH for compliance purposes. A deep companion well to well 699-51-75 will be monitored for tritium deeper in the uppermost aquifer.

  11. Transport of elemental mercury in the unsaturated zone from a waste disposal site in an arid region

    Science.gov (United States)

    Walvoord, M.A.; Andraski, B.J.; Krabbenhoft, D.P.; Striegl, R.G.

    2008-01-01

    Mercury contained in buried landfill waste may be released via upward emission to the atmosphere or downward leaching to groundwater. Data from the US Geological Survey's Amargosa Desert Research Site (ADRS) in arid southwestern Nevada reveal another potential pathway of Hg release: long-distance (102 m) lateral migration of elemental Hg (Hg0) through the unsaturated zone. Gas collected from multiple depths from two instrumented boreholes that sample the entire 110-m unsaturated zone thickness and are located 100 and 160 m away from the closest waste burial trench exhibit gaseous Hg concentrations of up to 33 and 11 ng m-3, respectively. The vertical distribution of gaseous Hg in the borehole closest to the disposal site shows distinct subsurface peaks in concentration at depths of 1.5 and 24 m that cannot be explained by radial diffusive transport through a heterogeneous layered unsaturated zone. The inability of current models to explain gaseous Hg distribution at the ADRS highlights the need to advance the understanding of gas-phase contaminant transport in unsaturated zones to attain a comprehensive model of landfill Hg release.

  12. Data Validation Package December 2015 Groundwater Sampling at the Ambrosia Lake, New Mexico, Disposal Site March 2016

    Energy Technology Data Exchange (ETDEWEB)

    Tsosie, Bernadette [USDOE Office of Legacy Management, Washington, DC (United States); Johnson, Dick [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-03-01

    The Long-Term Surveillance Plan for the Ambrosia Lake, New Mexico, Disposal Site does not require groundwater monitoring because groundwater in the uppermost aquifer is of limited use, and supplemental standards have been applied to the aquifer. However, at the request of the New Mexico Environment Department, the U.S. Department of Energy conducts annual monitoring at three locations: monitoring wells 0409, 0675, and 0678. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for US. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). Monitoring Well 0409 was not sampled during this event because it was dry. Water levels were measured at each sampled well. One duplicate sample was collected from location 0675. Groundwater samples from the two sampled wells were analyzed for the constituents listed in Table 1. Time-concentration graphs for selected analytes are included in this report. At well 0675, the duplicate results for total dissolved solids and for most metals (magnesium, molybdenum, potassium, selenium, sodium, and uranium) were outside acceptance criteria, which may indicate non-homogeneous conditions at this location. November 2014 results for molybdenum and uranium at well 0675 also were outside acceptance criteria. The well condition will be evaluated prior to the next sampling event.

  13. Terrace Geochemistry at the Shiprock, New Mexico, Disposal Site - WM2017-17232 Initial Phase

    Energy Technology Data Exchange (ETDEWEB)

    Kautsky, Mark [USDOE Office of Legacy Management, Washington, DC (United States); Ranalli, Tony [Navarro Research and Engineering, Oak Ridge, TN (United States); Dander, David [Navarro Research and Engineering, Oak Ridge, TN (United States); Miller, David [Navarro Research and Engineering, Oak Ridge, TN (United States)

    2017-03-08

    The objective of this investigation was to identify and differentiate potential non- mill-related water inputs to a shallow terrace groundwater system through the use of aqueous chemical and isotopic tracers at a former uranium- and vanadium-ore processing facility. Terrace groundwater in the vicinity of the Shiprock, New Mexico, site is hypothesized to be largely anthropogenic because natural rates of recharge in the terrace are likely insufficient to sustain a continuous water table in the terrace alluvial system, as observed in several analogue terrace locations east of the site and in response to post-mill dewatering efforts across the site. The terrace is composed of alluvial sand and gravel and weathered and unweathered Mancos Shale. Terrace groundwater exists and flows in the alluvium and to a much less extent in the Mancos Shale. Historical data established that in both the terrace and floodplain below the terrace, mill-derived uranium and sulfate is found primarily in the alluvium and the upper portion of the weathered Mancos Shale. Groundwater extraction is being conducted in the vicinity of former mill operations and in washes and seeps to dewater the formation and remove contamination, thus eliminating these exposure pathways and minimizing movement to the floodplain. However, past and present contribution of non-mill anthropogenic water sources may be hindering the dewatering effort, resulting in reduced remedy effectiveness. Groundwater source signatures can be determined based on chemical and isotopic ratios and are used to help identify and delineate both mill and non-mill water contributions. Aqueous chemical and isotopic tracers, such as 234U/238U activity ratios and uranium concentrations, δ34S sulfate and sulfate concentrations, tritium concentrations, and δ2Hwater and δ18O water are being used in this Phase I study. The aqueous chemical and isotopic analysis has identified areas on the terrace where groundwater is derived from mill

  14. Results of hydrologic research at a low-level radioactive-waste disposal site near Sheffield, Illinois

    Science.gov (United States)

    Ryan, Barbara J.

    1989-01-01

    Ten years of hydrologic research have been conducted by the U.S. Geological Survey at a commercial low-level radioactive-waste disposal site near Sheffield, Illinois. Research included studies of microclimate, evapotranspiration, and tritium release by plants; runoff and land modification; water movement through a trench cover; water and tritium movement in the unsaturated zone; gases in the unsaturated zone; water and tritium movement in the saturated zone; and water chemistry. Implications specific to each research topic and those based on overlapping research topics are summarized as to their potential effect on the selection, characterization, design, operation, and decommissioning processes of future low-level radioactive-waste disposal sites. Unconsolidated deposits at the site are diverse in lithologic character and are spatially and stratigraphically complex. Thickness of these Quaternary deposits ranges from 3 to 27 meters and averages 17 meters. The unconsolidated deposits overlay 140 meters of Pennsylvanian shale, mudstone, siltstone, and coal. Approximately 90,500 cubic meters of waste were buried from August 1967 through August 1978, in 21 trenches that were constructed in glacial materials by using a cut-and-fill process. Trenches generally were constructed below grade and ranged from 11 to 180 meters long, 2.4 to 21 meters wide, and 2.4 to about 7.9 meters deep. Research on microclimate and evapotranspiration at the site was conducted from July 1982 through June 1984. Continuous measurements were made of precipitation, incoming and reflected solar (shortwave) radiation, incoming and emitted terrestrial (longwave) radiation, horizontal windspeed and direction, wet- and dry-bulb air temperature, barometric pressure, soil-heat fluxes, and soil temperature. Soil-moisture content, for this research phase, was measured approximately biweekly. Evapotranspiration rates were estimated by using three techniques--energy budget, aerodynamic profile, and water

  15. Great Kobuk Sand Dunes, Alaska: A Terrestrial Analog Site for Polar, Topographically Confined Martian Dune Fields

    Science.gov (United States)

    Dinwiddie, C. L.; Hooper, D. M.; Michaels, T. I.; McGinnis, R. N.; Stillman, D.; Bjella, K.; Stothoff, S.; Walter, G. R.; Necsoiu, M.; Grimm, R. E.

    2010-12-01

    Martian dune systems belong to two broad categories: (i) the sprawling north polar erg, rich in and immobilized by seasonal and perennial volatiles; and (ii) isolated low- to high-latitude dune fields confined by topography. While modern dune migration on Mars is nearly imperceptibly slow, recent studies are producing robust evidence for aeolian activity, including bedform modification. Cold-climate terrestrial dunes containing volatile reservoirs provide an important analog to Martian polar dunes because permafrost and seasonal cycles of CO2 and H2O frost mantling are thought to partially decouple Martian polar dunes from atmospheric forcing. The 67°N latitude, 62 km2 Great Kobuk Sand Dunes (GKSD) are a terrestrial analog for polar, intercrater dune fields on Mars. Formative winds affected by complex topography and the presence of volatiles and intercalated snow within the GKSD have direct analogy to factors that impede migration of Martian polar dunes. This system offers the opportunity to study cold-climate, noncoastal, topographically constrained, climbing and reversing barchanoid, transverse, longitudinal, and star dunes. The Kobuk Valley climate is subarctic and semiarid with long, cold winters and brief, warm summers. Niveoaeolian sedimentation occurs within west-facing lee slope catchments. In March 2010, we found the seasonally frozen layer to range in thickness from 1.5 to 4.0 m, and no evidence for shallow permafrost. Instead, using GPR and boreholes, we found a system-wide groundwater aquifer that nearly parallels topography and cuts across steeply dipping bedforms. GPR cannot uniquely detect ice and water; however, a similar analysis of rover-based GPR might be used to detect volatiles in Martian dunes. The perennial volatile reservoir is liquid because of mean annual air temperature, intense solar heating before, during, and after 38 days of continuous summer daylight, high dry sand thermal conductivity, higher wet sand thermal conductivity

  16. Evapotranspiration Dynamics and Effects on Groundwater Recharge and Discharge at the Tuba City, Arizona, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-02-01

    The U.S. Department of Energy Office of Legacy Management is evaluating groundwater flow and contaminant transport at a former uranium mill site near Tuba City, Arizona. We estimated effects of temporal and spatial variability in evapotranspiration (ET) on recharge and discharge within a groundwater model domain (GMD) as part of this evaluation. We used remote sensing algorithms and precipitation (PPT) data to estimate ET and the ET/PPT ratios within the 3531 hectare GMD. For the period from 2000 to 2012, ET and PPT were nearly balanced (129 millimeters per year [mm yr-1] and 130 mm yr-1, respectively; ET/PPT = 0.99). However, seasonal and annual variability in ET and PPT were out of phase, and spatial variability in vegetation differentiated discharge and recharge areas within the GMD. Half of ET occurred during spring and early summer when PPT was low, and about 70% of PPT arriving in fall and winter was discharged as plant transpiration in the spring and summer period. Vegetation type and health had a significant effect on the site water balance. Plant cover and ET were significantly higher (1) during years of lighter compared to years of heavier grazing pressure, and (2) on rangeland protected from grazing compared to rangeland grazed by livestock. Heavy grazing increased groundwater recharge (PPT > ET over the 13-year period). Groundwater discharge (ET > PPT over the 13-year period) was highest in riparian phreatophyte communities but insignificant in desert phreatophyte communities impacted by heavy grazing. Grazing management in desert upland and phreatophyte communities may result in reduced groundwater recharge, increased groundwater discharge, and could be used to influence local groundwater flow.

  17. Evaluation of liners for a uranium-mill tailings disposal site: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Buelt, J.L.; Hale, V.Q.; Barnes, S.M.; Silviera, D.J.

    1981-05-01

    The United States Department of Energy is conducting a program designed to reclaim or stabilize inactive uranium-mill tailings sites. This report presents the status of the Liner Evaluation Program. The purpose of the study was to identify eight prospective lining materials or composites for laboratory testing. The evaluation was performed by 1) reviewing proposed regulatory requirements to define the material performance criteria; 2) reviewing published literature and communicating with industrial and government experts experienced with lining materials and techniques; and 3) characterizing the tailings at three of the sites for calcium concentration, a selection of anions, radionuclides, organic solvents, and acidity levels. The eight materials selected for laboratory testing are: natural soil amended with sodium-saturated montmorillonite (Volclay); locally available clay in conjunction with an asphalt emulsion radon suppression cover; locally available clay in conjunction with a multibarrier radon suppression cover; rubberized asphalt membrane; hydraulic asphalt concrete; chlorosulfonated polyethylene (hypalon) or high-density polyethylene; bentonite, sand and gravel mixture; and catalytic airblown asphalt membrane. The materials will be exposed in test units now being constructed to conditions such as wet/dry cycles, temperature cycles, oxidative environments, ion-exchange elements, etc. The results of the tests will identify the best material for field study. The status report also presents the information gathered during the field studies at Grand Junction, Colorado. Two liners, a bentonite, sand and gravel mixture, and a catalytic airblown asphalt membrane, were installed in a prepared trench and covered with tailings. The liners were instrumented and are being monitored for migration of moisture, radionuclides, and hazardous chemicals. The two liner materials will also be subjected to accelerated laboratory tests for a comparative assessment.

  18. Enhanced detection of groundwater contamination from a leaking waste disposal site by microbial community profiles

    Science.gov (United States)

    Mouser, Paula J.; Rizzo, Donna M.; Druschel, Gregory K.; Morales, Sergio E.; Hayden, Nancy; O'Grady, Patrick; Stevens, Lori

    2010-12-01

    Groundwater biogeochemistry is adversely impacted when municipal solid waste leachate, rich in nutrients and anthropogenic compounds, percolates into the subsurface from leaking landfills. Detecting leachate contamination using statistical techniques is challenging because well strategies or analytical techniques may be insufficient for detecting low levels of groundwater contamination. We sampled profiles of the microbial community from monitoring wells surrounding a leaking landfill using terminal restriction fragment length polymorphism (T-RFLP) targeting the 16S rRNA gene. Results show in situ monitoring of bacteria, archaea, and the family Geobacteraceae improves characterization of groundwater quality. Bacterial T-RFLP profiles showed shifts correlated to known gradients of leachate and effectively detected changes along plume fringes that were not detected using hydrochemical data. Experimental sediment microcosms exposed to leachate-contaminated groundwater revealed a shift from a β-Proteobacteria and Actinobacteria dominated community to one dominated by Firmicutes and δ-Proteobacteria. This shift is consistent with the transition from oxic conditions to an anoxic, iron-reducing environment as a result of landfill leachate-derived contaminants and associated redox conditions. We suggest microbial communities are more sensitive than hydrochemistry data for characterizing low levels of groundwater contamination and thus provide a novel source of information for optimizing detection and long-term monitoring strategies at landfill sites.

  19. Probabilistic Assessment of Radon Transport at the Monticello, Utah Uranium Mill Tailings Disposal Site

    Science.gov (United States)

    Arnold, B. W.; Ho, C. K.; Cochran, J. R.; Taira, R. Y.

    2001-12-01

    One objective of the cover design at the Monticello site is attenuation of the radon emanation from the mill tailings to the atmosphere. The landfill cover acts as a diffusion barrier, allowing time for the decay of the relatively short-lived Rn-222 gas during migration through the pore spaces of the cover soil. The conceptual model of radon migration through the landfill cover is one-dimensional upward transport driven by the difference in concentration in the tailings and the atmosphere. The processes affecting transport are molecular diffusion and radioactive decay. Uncertainty in the radon emanation rate from the tailings, as well as uncertainties in the effective diffusion coefficient and moisture content for individual layers in the landfill cover are assessed for both present and future conditions. Transport of radon gas by diffusion is enhanced at higher moisture content because of the reduced air phase volume in the soil under these conditions. In a competing manner, higher moisture content results in a lower effective diffusion coefficient for radon gas. Multiple realizations of the system and simulations of radon transport were performed using the RAECOM and FRAMES computer programs. Results indicate a very low probability of exceeding the regulatory limit of 20 pCi/m2/s under present conditions and a low probability of exceedence for future conditions. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  20. Investigation of confined placental mosaicism (CPM) at multiple sites in post-delivery placentas derived through intracytoplasmic sperm injection (ICSI).

    Science.gov (United States)

    Minor, Agata; Harmer, Karynn; Peters, Nicole; Yuen, Basil Ho; Ma, Sai

    2006-01-01

    Although earlier studies on pregnancies derived through intracytoplasmic sperm injection (ICSI) reported increased non-mosaic aneuploidy among ICSI children, undetected mosaicism, such as confined placental mosaicism (CPM) has not been evaluated. We investigated the incidence of CPM in post-delivery placentas derived from ICSI, evaluated whether CPM was increased and whether it was a contributing factor to negative pregnancy outcome. [Fifty-one post-delivery placentas were collected from patients who underwent ICSI with a normal or negative pregnancy outcome]. Trophoblast and chorionic stroma from three sites were analyzed by comparative genomic hybridization (CGH) and flow cytometry. Detected abnormalities were confirmed by fluorescence in situ hybridization (FISH). The incidence of CPM in the ICSI population was compared to the general population from published data. We detected three cases of CPM in our study. One abnormality was found by CGH analysis; partial trisomy 7q and a partial monosomy Xp limited to the trophoblast at two sites. The abnormality was associated with a child affected by spina bifida. Two cases of mosaic tetraploidy were observed by flow cytometry in pregnancies with a normal outcome. All three abnormalities were confirmed by FISH analysis. The incidence of CPM in the ICSI study population was 5.88% (3/51), which was not statistically different from published reports in the general population (5.88% (42/714), Chi square, P > 0.05). The post-ICSI population was not at risk for CPM in this study.

  1. PBC Triggers in Water Reservoirs, Coal Mining Areas and Waste Disposal Sites: From Newcastle to New York

    Science.gov (United States)

    Smyk, Daniel; Mytilinaiou, Maria G.; Rigopoulou, Eirini I.; Bogdanos, Dimitrios P.

    2010-01-01

    Various environmental factors have been proposed as triggers of primary biliary cirrhosis (PBC), a progressive autoimmune cholestatic liver disease which is characterised by the destruction of the small intrahepatic bile ducts. Support for their pathogenic role in PBC is provided by epidemiological studies reporting familial clustering and clusters of the disease within a given geographical area. The seminal study by Triger reporting that the great majority of PBC cases in the English city of Sheffield drank water from a specific water reservoir, has been followed by studies reporting disease 'hot spots' within a restricted geographic region of the former coal mining area of Newcastle. The New York study reporting an increased risk and significant clustering of PBC cases near toxic federal waste disposal sites has added strength to the notion that environmental factors, possibly in the form of infectious agents or toxic/chemical environmental factors in areas of contaminated land, water or polluted air may play a key role in the development of the disease. This review discusses the findings of reports investigating environmental factors which may contribute to the cause of primary biliary cirrhosis. PMID:21297253

  2. PBC Triggers in Water Reservoirs, Coal Mining Areas and Waste Disposal Sites: From Newcastle to New York

    Directory of Open Access Journals (Sweden)

    Daniel Smyk

    2010-01-01

    Full Text Available Various environmental factors have been proposed as triggers of primary biliary cirrhosis (PBC, a progressive autoimmune cholestatic liver disease which is characterised by the destruction of the small intrahepatic bile ducts. Support for their pathogenic role in PBC is provided by epidemiological studies reporting familial clustering and clusters of the disease within a given geographical area. The seminal study by Triger reporting that the great majority of PBC cases in the English city of Sheffield drank water from a specific water reservoir, has been followed by studies reporting disease 'hot spots' within a restricted geographic region of the former coal mining area of Newcastle. The New York study reporting an increased risk and significant clustering of PBC cases near toxic federal waste disposal sites has added strength to the notion that environmental factors, possibly in the form of infectious agents or toxic/chemical environmental factors in areas of contaminated land, water or polluted air may play a key role in the development of the disease. This review discusses the findings of reports investigating environmental factors which may contribute to the cause of primary biliary cirrhosis.

  3. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container. type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3). nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.). building concerned. details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting o...

  4. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container; type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3); nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.); building concerned; details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting...

  5. Annual Status Report (FY2008) Composite Analysis of Low-Level Waste Disposal in the Central Plateau at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W. E. [Hanford Site (HNF), Richland, WA (United States)

    2009-12-18

    In accordance with the U.S. Department of Energy (DOE) requirements in DOE 0 435.1, Radioactive to be considered or purposes of Waste Management, and implemented by DOE/RL-2000-292, Maintenance Plan for the Composite Analysis of the Hanford Site, Southeast Washington, the DOE Richland Operations Office has prepared this annual report for fiscal year 2008 of PNNL-1 1800, Composite Analysis for the Low-Level Waste Disposal in the 200-Area Plateau of the Hanford Site, hereafter referred to as the Composite Analysis. The main emphasis of DOE/RL-2000-29 Is to identify additional data and information to enhance the Composite Analysis and the subsequent PNNL- 11800 Addendum, Addendum to Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site, hereafter referred to as the Addendum, and to address secondary issues identified during the review of the Composite Analysis.

  6. Ocean Disposal Sites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 1972, Congress enacted the Marine Protection, Research, and Sanctuaries Act (MPRSA, also known as the Ocean Dumping Act) to prohibit the dumping of material into...

  7. Performance Assessment of a Low-Level Radioactive Waste Disposal Site using GoldSim Integrated Systems Model

    Science.gov (United States)

    Merrell, G.; Singh, A.; Tauxe, J.; Perona, R.; Dornsife, W.; grisak, G. E.; Holt, R. M.

    2011-12-01

    Texas Commission on Environmental Quality has approved licenses for four landfills at the Waste Control Specialists (WCS) site located in Andrews County, West Texas. The site includes a hazardous waste landfill and three landfills for radioactive waste. An updated performance assessment is necessary prior to acceptance of waste at the landfills. The updated performance assessment a) provides for more realistic and flexible dose modeling capabilities, b) addresses all plausible release and accident scenarios as they relate to the performance objectives, c) includes impact of climate and hydrologic scenarios that may impact long-term performance of the landfill, d) addresses impact of cover naturalization and degradation on the landfill, and e) incorporates uncertainty and sensitivity analysis for critical parameters. For the updated performance assessment, WCS has developed an integrated systems level performance assessment model using the GoldSim platform. GoldSim serves as a model for integrating all of the major components of a performance assessment, which include the radionuclide source term, facility design, environmental transport pathways, exposure scenarios, and radiological doses. Unlike many computer models that are based on first principles, GoldSim is a systems level model that can be used to integrate and abstract more complex sub-models into one system. This can then be used to assess the results into a unified model of the disposal system and environment. In this particular application, the GoldSim model consists of a) hydrogeologic model that simulates flow and transport through the Dockum geologic unit that underlies all of the waste facilities, b) waste cells that represent the containment unit and simulate degradation of waste forms, radionuclide leaching, and partitioning into the liquid and vapor phase within the waste unit, c) a cover system model that simulates upward diffusive transport from the underground repository to the atmosphere. In

  8. Technical assistance to Ohio closure sites; Technologies to address leachate from the on-site disposal facility at Fernald Environmental Management Project, Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry

    2002-08-26

    On August 6-7, 2002, a Technical Assistance Team (''Team'') from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with Fernald Environmental Management Project (FEMP) personnel in Ohio to assess approaches to remediating uranium-contaminated leachate from the On-Site Disposal Facility (OSDF). The Team was composed of technical experts from national labs, technology centers, and industry and was assembled in response to a request from the FEMP Aquifer Restoration Project. Dave Brettschneider of Fluor Fernald, Inc., requested that a Team of experts be convened to review technologies for the removal of uranium in both brine ion exchange regeneration solution from the Advanced Wastewater Treatment facility and in the leachate from the OSDF. The Team was asked to identify one or more technologies for bench-scale testing as a cost effective alternative to remove uranium so that the brine regeneration solution from the Advanced Waste Water Treatment facility and the leachate from the OSDF can be discharged without further treatment. The Team was also requested to prepare a recommended development and demonstration plan for the alternative technologies. Finally, the Team was asked to make recommendations on the optimal technical solution for field implementation. The Site's expected outcomes for this effort are schedule acceleration, cost reduction, and better long-term stewardship implementation. To facilitate consideration of the most appropriate technologies, the Team was divided into two groups to consider the brine and the leachate separately, since they represent different sources with different constraints on solutions, e.g., short-term versus very long-term and concentrated versus dilute contaminant matrices. This report focuses on the technologies that are most appropriate for the leachate from the OSDF. Upon arriving at FEMP, project personnel asked the Team to concentrate its efforts on evaluating

  9. Corrective Action Decision Document/Closure Report for Corrective Action Unit 561: Waste Disposal Areas, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Mark Krauss

    2011-08-01

    CAU 561 comprises 10 CASs: (1) 01-19-01, Waste Dump; (2) 02-08-02, Waste Dump and Burn Area; (3) 03-19-02, Debris Pile; (4) 05-62-01, Radioactive Gravel Pile; (5) 12-23-09, Radioactive Waste Dump; (6) 22-19-06, Buried Waste Disposal Site; (7) 23-21-04, Waste Disposal Trenches ; (8) 25-08-02, Waste Dump; (9) 25-23-21, Radioactive Waste Dump; and (10) 25-25-19, Hydrocarbon Stains and Trench. The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure of CAU 561 with no further corrective action. The purpose of the CAI was to fulfill the following data needs as defined during the DQO process: (1) Determine whether COCs are present; (2) If COCs are present, determine their nature and extent; and (3) Provide sufficient information and data to complete appropriate corrective actions. The following contaminants were determined to be present at concentrations exceeding their corresponding FALs: (1) No contamination exceeding FALs was identified at CASs 01-19-01, 03-19-02, 05-62-01, 12-23-09, and 22-19-06. (2) The surface and subsurface soil within the burn area at CAS 02-08-02 contains arsenic and lead above the FALs of 23 milligrams per kilogram (mg/kg) and 800 mg/kg, respectively. The surface and subsurface soil within the burn area also contains melted lead slag (potential source material [PSM]). The soil within the waste piles contains polyaromatic hydrocarbons (PAHs) above the FALs. The contamination within the burn area is spread throughout the area, as it was not feasible to remove all the PSM (melted lead), while at the waste piles, the contamination is confined to the piles. (3) The surface and subsurface soils within Trenches 3 and 5 at CAS 23-21-04 contain arsenic and polychlorinated biphenyls (PCBs) above the FALs of 23 mg/kg and 0.74 mg/kg, respectively. The soil was removed from both trenches, and the soil that remains at this CAS does not contain contamination exceeding the FALs. Lead bricks and

  10. A sediment mesocosm experiment to determine if the remediation of a shoreline waste disposal site in Antarctica caused further environmental impacts.

    Science.gov (United States)

    Stark, Jonathan S; Johnstone, Glenn J; Riddle, Martin J

    2014-12-15

    A shoreline waste disposal site at Casey Station, Antarctica was removed because it was causing impacts in the adjacent marine environment (Brown Bay). We conducted a field experiment to determine whether the excavation created further impacts. Trays of clean, defaunated sediment were deployed at two locations within Brown Bay and two control locations, two years prior to remediation. Trays were sampled one year before, 1month before, 1month after and two years after the excavation. An increase in metals was found at Brown Bay two years after the remediation. However there was little evidence of impacts on sediment assemblages. Communities at each location were different, but differences from before to after the remediation were comparable, indicating there were unlikely to have been further impacts. We demonstrate that abandoned waste disposal sites in hydrologically active places in Antarctica can be removed without creating greater adverse impacts to ecosystems downstream.

  11. Persistent organochlorine pollutants in children working at a waste-disposal site and in young females with high fish consumption in Managua, Nicaragua.

    Science.gov (United States)

    Cuadra, Steven N; Linderholm, Linda; Athanasiadou, Maria; Jakobsson, Kristina

    2006-05-01

    The aim of this study was to assess persistent organochlorine pollutant (POP) levels in serum collected from children (11-15 years old) working and sometimes also living at the municipal waste-disposal site in Managua, located at the shore of Lake Managua, and in nonworking children living both nearby and also far away from the waste-disposal site. The influence of fish consumption was further evaluated by assessing POPs levels in serum from young women (15-24 years old) with markedly different patterns of fish consumption from Lake Managua. 2,2-bis(4-chlorophenyl)-1,1,1-trichloro-ethane (4,4'-DDT) and 2,2-bis(4-chlorophenyl)-1,1-dichloro-ethene (4,4'-DDE), gamma-hexachlorocyclohexane (gamma-HCH), polychlorinated biphenyls, pentachlorophenol, and polychlorobiphenylols were quantified in all samples. In general, the levels observed were higher than those reported in children from developed countries, such as Germany and United States. Toxaphene, aldrin, dieldrin, and beta-HCH could not be identified in any sample. The children working at the waste-disposal site had higher levels of POPs compared with the nonworking reference groups. In children not working, there were also gradients for several POPs, according to vicinity to the waste-disposal site. Moreover, in children, as well as in young women, there were gradients according to fish consumption. The most abundant component was 4,4'-DDE, but at levels still lower than those reported in children from malarious areas with a history of recent or current application of 4,4'-DDT for vector control.

  12. Prediction of Post-Closure Water Balance for Monolithic Soil Covers at Waste Disposal Sites in the Greater Accra Metropolitan Area of Ghana

    OpenAIRE

    Kodwo Beedu Keelson

    2014-01-01

    The Ghana Landfill Guidelines require the provision of a final cover system during landfill closure as a means of minimizing the harmful environmental effects of uncontrolled leachate discharges. However, this technical manual does not provide explicit guidance on the material types or configurations that would be suitable for the different climatic zones in Ghana. The aim of this study was to simulate and predict post-closure landfill cover water balance for waste disposal sites located i...

  13. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 356: Mud Pits and Disposal Sites, Nevada Test Site, Nevada (Revision No. 0, August 2001)

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office (NNSA/NV)

    2001-08-21

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions necessary for the characterization and closure of Corrective Action Unit (CAU) 356, Mud Pits and Disposal Sites, as identified in the Federal Facility Agreement and Consent Order (FFACO). The CAU, located on the Nevada Test Site in Nevada, consists of seven Corrective Action Sites (CASs): CAS 03-04-01, Area 3 Change House Septic System; CAS 03-09-01, Mud Pit Spill Over; CAS 03-09-03, Mud Pit; CAS 03-09-04, Mud Pit; CAS 03-09-05, Mud Pit; CAS 20-16-01, Landfill; CAS 20-22-21, Drums. Sufficient information and process knowledge from historical documentation and investigations are the basis for the development of the phased approach chosen to address the data collection activities prior to implementing the preferred closure alternative for each CAS. The Phase I investigation will determine through collection of environmental samples from targeted populations (i.e., mud/soil cuttings above textural discontinuity) if contaminants of potential concern (COPCs) are present in concentrations exceeding preliminary action levels (PALs) at each of the CASs. If COPCs are present above PALs, a Phase II investigation will be implemented to determine the extent of contamination to support the appropriate corrective action alternative to complete closure of the site. Groundwater impacts from potentially migrating contaminants are not expected due to the depths to groundwater and limiting hydrologic drivers of low precipitation and high evaporation rates. Future land-use scenarios limit future uses to industrial activities; therefore, future residential uses are not considered. Potential exposure routes to site workers from contaminants of concern in septage and soils include oral ingestion, inhalation, or dermal contact (absorption) through in-advertent disturbance of contaminated structures and/or soils. Diesel within drilling muds is expected to be the primary COPC based on process

  14. Integrated Disposal Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the center of the 586-square-mile Hanford Site is the Integrated Disposal Facility, also known as the IDF.This facility is a landfill similar in concept...

  15. Closure Report for Corrective Action Unit 110: Areas 3 RWMS U-3ax/bl Disposal Unit, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Smith

    2001-08-01

    This Closure Report (CR) has been prepared for the Area 3 Radioactive Waste Management Site (RWMS) U-3ax/bl Disposal Unit Corrective Action Unit (CAU) 110 in accordance with the reissued (November 2000) Resource Conservation and Recovery Act (RCRA) Part B operational permit NEV HW009 (Nevada Division of Environmental Protection [NDEP], 2000) and the Federal Facility and Consent Order (FFACO) (NDEP et al., 1996). CAU 110 consists of one Corrective Action Site 03-23-04, described as the U-3ax/bl Subsidence Crater. Certifications of closure are located in Appendix A. The U-3ax/bl is a historic disposal unit within the Area 3 RWMS located on the Nevada Test Site (NTS). The unit, which was formed by excavating the area between two subsidence craters (U-3ax and U-3bl), was operationally closed in 1987. The U-3ax/bl disposal unit was closed under the RCRA, as a hazardous waste landfill. Existing records indicate that, from July 1968 to December 1987, U-3ax/bl received 2.3 x 10{sup 5} cubic meters (m{sup 3}) (8.12 x 10{sup 6} cubic feet [ft{sup 3}]) of waste. NTS atmospheric nuclear device testing generated approximately 95% of the total waste volume disposed of in U-3ax/bl; 80% of the total volume was generated from the Waste Consolidation Project. Area 3 is located in Yucca Flat, within the northeast quadrant of the NTS. The Yucca Flat watershed is a structurally closed basin encompassing an area of approximately 780 square kilometers (300 square miles). The structural geomorphology of Yucca Flat is typical of the Basin and Range Physiographic Province. Yucca Flat lies in one of the most arid regions of the country. Water balance calculations for Area 3 indicate that it is normally in a state of moisture deficit.

  16. Annual Status Report (FY2010) Composite Analysis of Low-Level Waste Disposal in the Central Plateau at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W. E. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2011-01-11

    In accordance with the U.S. Department of Energy (DOE) requirements in DOE O 435.1 Chg 1, Radioactive Waste Management, and implemented by DOE/RL-2000-29, Maintenance Plan for the Composite Analysis of the Hanford Site, Southeast Washington, the DOE Richland Operations Office (DOE-RL), also known as RL, has prepared this annual status report for fiscal year (FY) 2010 of PNNL-11800, Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site, hereafter referred to as the Composite Analysis.

  17. Annual Status Report (FY2009) Composite Analysis of Low-Level Waste Disposal in the Central Plateau at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W. E. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2010-02-10

    In accordance with the U.S. Department of Energy (DOE) requirements in DOE O 435.1, Radioactive Waste Management, and implemented by DOE/RL-2000-29, Maintenance Plan for the Composite Analysis of the Hanford Site, Southeast Washington, the DOE Richland Operations Office has prepared this annual status report for fiscal year (FY) 2009 of PNNL-11800, Composite Analysis for the Low-Level Waste Disposal in the 200-Area Plateau of the Hanford Site, hereafter referred to as the Composite Analysis.

  18. Corrective Action Decision Document/Closure Report for Corrective Action Unit 561: Waste Disposal Areas, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Mark Krauss

    2011-08-01

    CAU 561 comprises 10 CASs: (1) 01-19-01, Waste Dump; (2) 02-08-02, Waste Dump and Burn Area; (3) 03-19-02, Debris Pile; (4) 05-62-01, Radioactive Gravel Pile; (5) 12-23-09, Radioactive Waste Dump; (6) 22-19-06, Buried Waste Disposal Site; (7) 23-21-04, Waste Disposal Trenches ; (8) 25-08-02, Waste Dump; (9) 25-23-21, Radioactive Waste Dump; and (10) 25-25-19, Hydrocarbon Stains and Trench. The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure of CAU 561 with no further corrective action. The purpose of the CAI was to fulfill the following data needs as defined during the DQO process: (1) Determine whether COCs are present; (2) If COCs are present, determine their nature and extent; and (3) Provide sufficient information and data to complete appropriate corrective actions. The following contaminants were determined to be present at concentrations exceeding their corresponding FALs: (1) No contamination exceeding FALs was identified at CASs 01-19-01, 03-19-02, 05-62-01, 12-23-09, and 22-19-06. (2) The surface and subsurface soil within the burn area at CAS 02-08-02 contains arsenic and lead above the FALs of 23 milligrams per kilogram (mg/kg) and 800 mg/kg, respectively. The surface and subsurface soil within the burn area also contains melted lead slag (potential source material [PSM]). The soil within the waste piles contains polyaromatic hydrocarbons (PAHs) above the FALs. The contamination within the burn area is spread throughout the area, as it was not feasible to remove all the PSM (melted lead), while at the waste piles, the contamination is confined to the piles. (3) The surface and subsurface soils within Trenches 3 and 5 at CAS 23-21-04 contain arsenic and polychlorinated biphenyls (PCBs) above the FALs of 23 mg/kg and 0.74 mg/kg, respectively. The soil was removed from both trenches, and the soil that remains at this CAS does not contain contamination exceeding the FALs. Lead bricks and

  19. Modeling field-scale multiple tracer injection at a low-level waste disposal site in fractured rocks: Effect of multiscale heterogeneity and source term uncertainty on conceptual understanding of mass transfer processes

    Science.gov (United States)

    Gwo, Jin-Ping; Jardine, Philip M.; Sanford, William E.

    2005-03-01

    Multiple factors may affect the scale-up of laboratory multi-tracer injection into structured porous media to the field. Under transient flow conditions and with multiscale heterogeneities in the field, previous attempts to scale-up laboratory experiments have not answered definitely the questions about the governing mechanisms and the spatial extent of the influence of small-scale mass transfer processes such as matrix diffusion. The objective of this research is to investigate the effects of multiscale heterogeneity, mechanistic and site model conceptualization, and source term density effect on elucidating and interpreting tracer movement in the field. Tracer release and monitoring information previously obtained in a field campaign of multiple, conservative tracer injection under natural hydraulic gradients at a low-level waste disposal site in eastern Tennessee, United States, is used for the research. A suite of two-pore-domain, or fracture-matrix, groundwater flow and transport models are calibrated and used to conduct model parameter and prediction uncertainty analyses. These efforts are facilitated by a novel nested Latin-hypercube sampling technique. Our results verify, at field scale, a multiple-pore-domain, multiscale mechanistic conceptual model that was used previously to interpret only laboratory observations. The results also suggest that, integrated over the entire field site, mass flux rates attributable to small-scale mass transfer are comparable to that of field-scale solute transport. The uncertainty analyses show that fracture spacing is the most important model parameter and model prediction uncertainty is relatively higher at the interface between the preferred flow path and its parent bedrock. The comparisons of site conceptual models indicate that the effect of matrix diffusion may be confined to the immediate neighborhood of the preferential flow path. Finally, because the relatively large amount of tracer needed for field studies, it is

  20. Estimation of natural ground water recharge for the performance assessment of a low-level waste disposal facility at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, M.L.; Fayer, M.J.; Kincaid, C.T.; Gee, G.W.

    1995-03-01

    In 1994, the Pacific Northwest Laboratory (PNL) initiated the Recharge Task, under the PNL Vitrification Technology Development (PVTD) project, to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a low-level waste (LLW) disposal facility for the US Department of Energy (DOE). The Recharge Task was established to address the issue of ground water recharge in and around the LLW facility and throughout the Hanford Site as it affects the unconfined aquifer under the facility. The objectives of this report are to summarize the current knowledge of natural ground water recharge at the Hanford Site and to outline the work that must be completed in order to provide defensible estimates of recharge for use in the performance assessment of this LLW disposal facility. Recharge studies at the Hanford Site indicate that recharge rates are highly variable, ranging from nearly zero to greater than 100 mm/yr depending on precipitation, vegetative cover, and soil types. Coarse-textured soils without plants yielded the greatest recharge. Finer-textured soils, with or without plants, yielded the least. Lysimeters provided accurate, short-term measurements of recharge as well as water-balance data for the soil-atmosphere interface and root zone. Tracers provided estimates of longer-term average recharge rates in undisturbed settings. Numerical models demonstrated the sensitivity of recharge rates to different processes and forecast recharge rates for different conditions. All of these tools (lysimetry, tracers, and numerical models) are considered vital to the development of defensible estimates of natural ground water recharge rates for the performance assessment of a LLW disposal facility at the Hanford Site.

  1. Postconstruction report of the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Oakley, L.B.; Siberell, J.K.; Voskuil, T.L.

    1993-06-01

    Remedial actions conducted under the auspices of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) were completed at the Y-12 United Nuclear Corporation (UNC) Disposal Site in August 1992. The purpose of this Postconstruction Report is to summarize numerous technical reports and provide CERCLA documentation for completion of the remedial actions. Other CERCLA reports, such as the Feasibility Study for the UNC Disposal Site, provide documentation leading up to the remedial action decision. The remedial action chosen, placement of a modified RCRA cap, was completed successfully, and performance standards were either met or exceeded. This remedial action provided solutions to two environmentally contaminated areas and achieved the goal of minimizing the potential for contamination of the shallow groundwater downgradient of the site, thereby providing protection of human health and the environment. Surveillance and maintenance of the cap will be accomplished to ensure cap integrity, and groundwater monitoring downgradient of the site will continue to confirm the acceptability of the remedial action chosen.

  2. Final disposal of spent fuel in the Finnish bedrock. Scope and requirements for site-specific safety analysis; Kaeytetyn polttoaineen loppusijoitus Suomen kallioperaeaen. Paikkakohtaisen turvallisuusanalyysin edellytykset ja mahdollisuudet

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The report is a summary of the research conducted in the period 1993 to 1996 into safety of spent fuel final disposal. The principal goal of the research in this period, as set in 1993, was to develop a strategy for site-specific safety analysis. At the same time efforts were to be continued to gather data and validate the technical approach for the analysis. The work aimed at having the data needed for the analysis available at the end of year 1998. A safety assessment update, TILA-96, prepared by VTT Energy, is published as a separate report. The assessment is based on the TVO-92 safety analysis, but takes into account the knowledge acquired after 1992 on safety aspects of the disposal system and the data gathered from the site investigations made by TVO and from the beginning of 1996, by Posiva. Since the site investigations are still ongoing and much of the data gathered still pending interpretation, only limited amount of new site-specific information has been available for the present assessment. (172 refs.).

  3. Closure Plan for Corrective Action Unit 110: Area 3 RWMS U-3ax/bl Disposal Unit, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    T. M. Fitzmaurice

    2000-08-01

    This Closure Plan has been prepared for the Area 3 RWMS U-3ax/bl Disposal Unit Corrective Action Unit 110 in accordance with the Federal Facility and Consent Order (Nevada Division of Environmental Protection [NDEP] et al., 1996). The U-3ax/bl is a historic disposal unit within the Area 3 Radioactive Waste Management Site located on the Nevada Test Site (NTS). The unit, which was formed by excavating the area between two subsidence craters (U-3ax and U-3bl), was operationally closed in 1987. The U-3ax/bl disposal unit is scheduled for permanent closure under the Resource Conservation and Recovery Act as a hazardous waste landfill. Existing records indicate that, from July 1968 to December 1987, U-3ax/bl received 2.3 x 10{sup 5} cubic meters (8.12 x 10{sup 6} cubic feet) of waste. NTS nuclear device testing generated approximately 95 percent of the total volume disposed of in U-3ax/bl, the majority of which came from the Waste Consolidation Project (80 percent of the total volume) (Elletson and Johnejack, 1995). Area 3 is located in Yucca Flat, within the northeast quadrant of the NTS. The Yucca Flat watershed is a structurally closed basin encompassing an area of approximately 780 square kilometers (300 square miles). The structural geomorphology of Yucca Flat is typical of the Basin and Range Physiographic Province. Yucca Flat lies in one of the most arid regions of the country. Water balance calculations for Area 3 indicate that it is continuously in a state of moisture deficit. The U-3ax/bl Disposal Unit will be closed in place by installing a Resource Conservation and Recovery Act equivalent cover. Following cover construction a fence will be installed around the cover to prevent accidental damage to the cover. Post-closure monitoring will consist of site inspections to determine the condition of the engineered cover and cover performance monitoring using Time-Domain Reflectometry arrays to monitor moisture migration in the cover. Any identified maintenance and

  4. Plant species potentially suitable for cover on low-level solid nuclear waste disposal sites: a literature review

    Energy Technology Data Exchange (ETDEWEB)

    Brenkert, A.L.; Parr, P.D.; Taylor, F.G.

    1984-09-01

    This report reviews available literature on soil conditions, hydrology, and climatological data and suggests plant species suitable for covering the low-level nuclear waste disposal areas in the White Oak Creek Watershed within the Oak Ridge Reservation. Literature on naturally invading species and secondary succession, on plant species used for reclamation of coal spoils and roadsides, and on horticultural species is reviewed. The potential of plant species to take up, or mine, the waste through deep rooting is assessed. The effects of vegetation cover on the water balance in a watershed are reviewed. Several conclusions are presented concerning the management of vegetation cover on low-level solid waste disposal areas. 163 references, 2 figures, 9 tables.

  5. Landfill gas generation and emission at danish waste disposal sites receiving waste with a low organic waste content

    DEFF Research Database (Denmark)

    Mou, Zishen; Scheutz, Charlotte; Kjeldsen, Peter

    2015-01-01

    two models are multi-phase models, which defines waste fractions into traditional MSW and low-organic waste categories, respectively. Both the LandGEM and the IPCC model estimated significantly larger methane (CH4) generation in comparison to the Afvalzorg model. The Afvalzorg model could better show...... the influence of not only the total disposed waste amount, but also various waste categories, and was found more suitable to estimate LFG generation from landfills receiving low-organic waste. Four major waste categories currently being disposed at Danish landfills (mixed bulky, shredder, dewatered sludge...... results. The LFG generation from four Danish landfills was estimated by the Afvalzorg model using the experimentally based BMP and k values and compared to whole landfill emission rates measured by applying a tracer gas dispersion method. The results showed that the revised modelled LFG generation rates...

  6. San Francisco Deep Ocean Dredged Material Disposal Site (SF-DODS) Monitoring Program. Physical, Chemical, and Benthic Community Monitoring

    Science.gov (United States)

    2003-08-29

    transferred to 80% ethyl alchohol soon after arrival in Woods Hole. 4.2 Laboratory Methods and Data Analysis This section describes the analysis methods...Bioturbation also affects sediment transport by changing the physical properties of sediments and their mechanical behavior (Rhoads and Boyer, 1982...this sample were there following colonization during the previous year, but also were responding to burial by on-going disposal. The mechanisms of

  7. RCRA Part A and Part B Permit Application for Waste Management Activities at the Nevada Test Site: Proposed Mixed Waste Disposal Unit (MWSU)

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2010-07-19

    The proposed Mixed Waste Storage Unit (MWSU) will be located within the Area 5 Radioactive Waste Management Complex (RWMC). Existing facilities at the RWMC will be used to store low-level mixed waste (LLMW). Storage is required to accommodate offsite-generated LLMW shipped to the Nevada Test Site (NTS) for disposal in the new Mixed Waste Disposal Unit (MWDU) currently in the design/build stage. LLMW generated at the NTS (onsite) is currently stored on the Transuranic (TRU) Pad (TP) in Area 5 under a Mutual Consent Agreement (MCA) with the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). When the proposed MWSU is permitted, the U.S. Department of Energy (DOE) will ask that NDEP revoke the MCA and onsite-generated LLMW will fall under the MWSU permit terms and conditions. The unit will also store polychlorinated biphenyl (PCB) waste and friable and non-friable asbestos waste that meets the acceptance criteria in the Waste Analysis Plan (Exhibit 2) for disposal in the MWDU. In addition to Resource Conservation and Recovery Act (RCRA) requirements, the proposed MWSU will also be subject to Department of Energy (DOE) orders and other applicable state and federal regulations. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational RCRA units at the NTS and their respective regulatory status.

  8. Special Analysis for the Disposal of the Lawrence Livermore National Laboratory Low Activity Beta/Gamma Sources Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory J. [National Security Technologies, LLC

    2015-06-01

    This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) Low Activity Beta/Gamma Sources waste stream (BCLALADOEOSRP, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL Low Activity Beta/Gamma Sources waste stream consists of sealed sources that are no longer needed. The LLNL Low Activity Beta/Gamma Sources waste stream required a special analysis because cobalt-60 (60Co), strontium-90 (90Sr), cesium-137 (137Cs), and radium-226 (226Ra) exceeded the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office [NNSA/NFO] 2015). The results indicate that all performance objectives can be met with disposal of the LLNL Low Activity Beta/Gamma Sources in a SLB trench. The LLNL Low Activity Beta/Gamma Sources waste stream is suitable for disposal by SLB at the Area 5 RWMS. However, the activity concentration of 226Ra listed on the waste profile sheet significantly exceeds the action level. Approval of the waste profile sheet could potentially allow the disposal of high activity 226Ra sources. To ensure that the generator does not include large 226Ra sources in this waste stream without additional evaluation, a control is need on the maximum 226Ra inventory. A limit based on the generator’s estimate of the total 226Ra inventory is recommended. The waste stream is recommended for approval with the control that the total 226Ra inventory disposed shall not exceed 5.5E10 Bq (1.5 Ci).

  9. Geologic and hydrologic data collected during 1976-1983 at the Sheffield low-level radioactive waste disposal site and adjacent areas, Sheffield, Illinois

    Science.gov (United States)

    Foster, J.B.; Garklavs, George; Mackey, G.W.

    1984-01-01

    Hydrogeologic studies were conducted at the low-level radioactive-waste disposal site near Sheffield, Illinois, from 1976-84. Data in this report include water levels in wells, lake stages, inorganic, organic, and radiometric chemical analyses of ground and surface water, hydraulic conductivities of glacial materials, grain-size distribution, clay and carbonate mineralogy, and cation exchange capacities of the glacial materials. Also included are results of petrographic analyses, physical measurements of wells, stratigraphy and lithology of cores collected from test wells, and horizontal coordinates of wells.

  10. Chemical Stockpile Disposal Program

    Energy Technology Data Exchange (ETDEWEB)

    Krummel, J.R.; Policastro, A.J.; Olshansky, S.J.; McGinnis, L.D.

    1990-10-01

    As part of the Chemical Stockpile Disposal Program mandated by Public Law 99--145 (Department of Defense Authorization Act), an independent review is presented of the US Army Phase I environmental report for the disposal program at the Umatilla Depot Activity (UMDA) in Hermiston, Oregon. The Phase I report addressed new and additional concerns not incorporated in the final programmatic environmental impact statement (FPEIS). Those concerns were addressed by examining site-specific data for the Umatilla Depot Activity and by recommending the scope and content of a more detailed site-specific study. This independent review evaluates whether the new site-specific data presented in the Phase I report would alter the decision in favor of on-site disposal that was reached in the FPEIS, and whether the recommendations for the scope and content of the site-specific study are adequate. Based on the methods and assumptions presented in the FPEIS, the inclusion of more detailed site-specific data in the Phase I report does not change the decision reached in the FPEIS (which favored on-site disposal at UMDA). It is recommended that alternative assumptions about meteorological conditions be considered and that site-specific data on water, ecological, socioeconomic, and cultural resources; seismicity; and emergency planning and preparedness be considered explicitly in the site-specific EIS decision-making process. 7 refs., 1 fig.

  11. Chemical Stockpile Disposal Program

    Energy Technology Data Exchange (ETDEWEB)

    Krummel, J.R.; Policastro, A.J.; Olshansky, S.J.; McGinnis, L.D.

    1990-10-01

    As part of the Chemical Stockpile Disposal Program mandated by Public Law 99--145 (Department of Defense Authorization Act), an independent review is presented of the US Army Phase I environmental report for the disposal program at the Pine Bluff Arsenal (PBA) in Arkansas. The Phase I report addressed new and additional concerns not incorporated in the final programmatic environmental impact statement (FPEIS). Those concerns were addressed by examining site-specific data for the PBA and by recommending the scope and content of a more detailed site- specific study. This dependent review evaluates whether the new site-specific data presented in the Phase I report would alter the decision in favor of on-site disposal that was reached in the FPEIS, and whether the recommendations for the scope and content of the site-specific study are adequate. Based on the methods and assumptions presented in the FPEIS, the inclusion of more detailed site-specific data in the Phase I report does not change the decision reached in the FPEIS (which favored on-site disposal at PBA). It is recommended that alternative assumptions about meteorological conditions be considered and that site-specific data on water, ecological, socioeconomic, and cultural resources, and emergency planning and preparedness be considered explicitly in the site-specific EIS decision-making process. 13 refs., 1 fig.

  12. Special Analysis for the Disposal of the Neutron Products Incorporated Sealed Source Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory

    2014-08-31

    The purpose of this special analysis (SA) is to determine if the Neutron Products Incorporated (NPI) Sealed Sources waste stream (DRTK000000056, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The NPI Sealed Sources waste stream consists of 850 60Co sealed sources (Duratek [DRTK] 2013). The NPI Sealed Sources waste stream requires a special analysis (SA) because the waste stream 60Co activity concentration exceeds the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  13. Evaluation of Heavy Metals in Solid Waste Disposal Sites in Campinas City, Brazil Using Synchrotron Radiation Total Reflection X-Ray Fluorescence

    Science.gov (United States)

    de Faria, Bruna Fernanda; Moreira, Silvana

    2011-12-01

    The problem of solid waste in most countries is on the rise as a result of rapid population growth, urbanization, industrial development and changes in consumption habits. Amongst the various forms of waste disposals, landfills are today the most viable for the Brazilian reality, both technically and economically. Proper landfill construction practices allow minimizing the effects of the two main sources of pollution from solid waste: landfill gas and slurry. However, minimizing is not synonymous with eliminating; consequently, the landfill alone cannot resolve all the problems with solid waste disposal. The main goal of this work is to evaluate the content of trace elements in samples of groundwater, surface water and slurry arising from local solid waste disposals in the city of Campinas, SP, Brazil. Samples were collected at the Delta, Santa Barbara and Pirelli landfills. At the Delta and Santa Barbara sites, values above the maximum permitted level established by CETESB for Cr, Mn, Fe, Ni and Pb were observed in samples of groundwater, while at the Pirelli site, elements with concentrations above the permitted levels were Mn, Fe, Ba and Pb. At Delta, values above levels permitted by the CONAMA 357 legislation were still observed in surface water samples for Cr, Mn, Fe and Cu, whereas in slurry samples, values above the permitted levels were observed for Cr, Mn, Fe, Ni, Cu, Zn and Pb. Slurry samples were prepared in accordance with two extraction methodologies, EPA 3050B and EPA 200.8. Concentrations of Cr, Ni, Cu and Pb were higher than the limit established by CONAMA 357 for most samples collected at different periods (dry and rainy) and also for the two extraction methodologies employed.

  14. Effects of low-level radioactive-waste disposal on water chemistry in the unsaturated zone at a site near Sheffield, Illinois, 1982-84

    Science.gov (United States)

    Peters, C.A.; Striegl, R.G.; Mills, P.C.; Healy, R.W.

    1992-01-01

    A 1982-84 field study defined the chemistry of water collected from the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois. Chemical data were evaluated to determine the principal naturally occurring geochemical reactions in the unsaturated zone and to evaluate waste-induced effects on pore-water chemistry. Samples of precipitation, unsaturated-zone pore water, and saturated-zone water were analyzed for specific conductance, pH, alkalinity, major cations and anions, dissolved organic carbon, gross alpha and beta radiation, and tritium. Little change in concentration of most major constituents in the unsaturated-zone water was observed with respect to depth or distance from disposal trenches. Tritium and dissolved organic carbon concentrations were, however, dependent on proximity to trenches. The primary reactions, both on- site and off-site, were carbonate and clay dissolution, cation exchange, and the oxidation of pyrite. The major difference between on-site and off-site inorganic water chemistry resulted from the removal of the Roxana Silt and the Radnor Till Member of the Glasford Formation from on-site. Off-site, the Roxana Silt contributed substantial quantities of sodium to solution from montmorillonite dissolution and associated cation-exchange reactions. The Radnor Till Member provided exchange surfaces for magnesium. Precipitation at the site had an ionic composition of calcium zinc sulfate and an average pH of 4.6. Within 0.3 meter of the land surface, infiltrating rain water or snowmelt changed to an ionic canposition of calcium sulfate off-site and calcium bicarbonate on-site and had an average pH of 7.9; below that depth, pH averaged 7.5 and the ionic composition generally was calcium magnesium bicarbonate. Alkalinity and specific conductance differed primarily according to composition of geologic materials. Tritium concentrations ranged from 0.2 (detection limit) to 1,380 nanocuries per liter. The

  15. Assessment of Potential Flood Events and Impacts at INL's Proposed Remote-Handled Low-Level Waste Disposal Facility Sites

    Energy Technology Data Exchange (ETDEWEB)

    A. Jeff Sondrup; Annette L. Schafter

    2010-09-01

    Rates, depths, erosion potential, increased subsurface transport rates, and annual exceedance probability for potential flooding scenarios have been evaluated for the on-site alternatives of Idaho National Laboratory’s proposed remote handled low-level waste disposal facility. The on-site disposal facility is being evaluated in anticipation of the closure of the Radioactive Waste Management Complex at the INL. An assessment of flood impacts are required to meet the Department of Energy’s Low-Level Waste requirements (DOE-O 435.1), its natural phenomena hazards assessment criteria (DOE-STD-1023-95), and the Radioactive Waste Management Manual (DOE M 435.1-1) guidance in addition to being required by the National Environmental Policy Act (NEPA) environmental assessment (EA). Potential sources of water evaluated include those arising from (1) local precipitation events, (2) precipitation events occurring off of the INL (off-site precipitation), and (3) increased flows in the Big Lost River in the event of a Mackay Dam failure. On-site precipitation events include potential snow-melt and rainfall. Extreme rainfall events were evaluated for the potential to create local erosion, particularly of the barrier placed over the disposal facility. Off-site precipitation carried onto the INL by the Big Lost River channel was evaluated for overland migration of water away from the river channel. Off-site precipitation sources evaluated were those occurring in the drainage basin above Mackay Reservoir. In the worst-case scenarios, precipitation occurring above Mackay Dam could exceed the dam’s capacity, leading to overtopping, and eventually complete dam failure. Mackay Dam could also fail during a seismic event or as a result of mechanical piping. Some of the water released during dam failure, and contributing precipitation, has the potential of being carried onto the INL in the Big Lost River channel. Resulting overland flows from these flood sources were evaluated for

  16. Heterotrophic microflora of highly alkaline (pH > 13) brown mud disposal site drainage water near Ziar nad Hronom (Banska Bystrica region, Slovakia).

    Science.gov (United States)

    Stramova, Zuzana; Remenar, Matej; Javorsky, Peter; Pristas, Peter

    2016-03-01

    Brown mud is a waste by-product of alumina production by Bayer process. Due to extensive sodium hydroxide use in the process, brown mud disposal site near Ziar nad Hronom (Banska Bystrica region, Slovakia) and drainage water are ones of the greatest environmental burdens in Slovakia. Drainage water from this landfills has pH value higher than 13, and it contains many heavy metals and elevated salt content. In our experiments, relatively numerous bacterial population was detected in the drainage water with frequency of about 80 cfu/ml using cultivation approach. The alkalitolerant heterotrophic isolates were identified by combination of MALDI-TOF and 16S rDNA analysis. Drainage water population was dominated by Actinobacteria (Microbacterium spp. and Micrococcus spp.) followed by low G + C-content gram-positive bacteria (Bacillus spp.). Two isolates belonged to gram-negative bacteria only, identified as Brevundimonas spp. Phylogenetic and biochemical analyses indicate that nearly half of the bacteria isolated are probably representatives of a new species. Brown mud disposal site is proposed as a source of new bacterial taxa possibly used in bioremediation processes.

  17. Prediction of Post-Closure Water Balance for Monolithic Soil Covers at Waste Disposal Sites in the Greater Accra Metropolitan Area of Ghana

    Directory of Open Access Journals (Sweden)

    Kodwo Beedu Keelson

    2014-04-01

    Full Text Available The Ghana Landfill Guidelines require the provision of a final cover system during landfill closure as a means of minimizing the harmful environmental effects of uncontrolled leachate discharges. However, this technical manual does not provide explicit guidance on the material types or configurations that would be suitable for the different climatic zones in Ghana. The aim of this study was to simulate and predict post-closure landfill cover water balance for waste disposal sites located in the Greater Accra Metropolitan Area using the USGS Thornthwaite monthly water balance computer program. Five different cover soil types were analyzed under using historical climatic data for the metropolis from 1980 to 2001. The maximum annual percolation and evapotranspiration rates for the native soil type were 337 mm and 974 mm respectively. Monthly percolation rates exhibited a seasonal pattern similar to the bimodal precipitation regime whereas monthly evapotranspiration did not. It was also observed that even though soils with a high clay content would be the most suitable option as landfill cover material in the Accra metropolis the maximum thickness of 600 mm recommended in the Ghana Landfill Guidelines do not seem to provide significant reduction in percolation rates into the buried waste mass when the annual rainfall exceeds 700 mm. The findings from this research should provide additional guidance to landfill managers on the specification of cover designs for waste disposal sites with similar climatic conditions.

  18. Climax Granite, Nevada Test Site, as a host for a rock mechanics test facility related to the geologic disposal of high level nuclear wastes

    Energy Technology Data Exchange (ETDEWEB)

    Heuze, F.E.

    1981-02-01

    This document discusses the potential of the Climax pluton, at the Nevada Test Site, as the host for a granite mechanics test facility related to the geologic disposal of high-level nuclear waste. The Climax granitic pluton has been the site of three nuclear weapons effects tests: Hard Hat, Tiny Tot, and Piledriver. Geologic exploration and mapping of the granite body were performed at the occasion of these tests. Currently, it is the site Spent Fuel Test (SFT-C) conducted in the vicinity of and at the same depth as that of the Piledriver drifts. Significant exploration, mapping, and rock mechanics work have been performed and continue at this Piledriver level - the 1400 (ft) level - in the context of SFT-C. Based on our technical discussions, and on the review of the significant geological and rock mechanics work already achieved in the Climax pluton, based also on the ongoing work and the existing access and support, it is concluded that the Climax site offers great opportunities for a rock mechanics test facility. It is not claimed, however, that Climax is the only possible site or the best possible site, since no case has been made for another granite test facility in the United States. 12 figures, 3 tables.

  19. Special Analysis for the Disposal of the Lawrence Livermore National Laboratory EnergyX Macroencapsulated Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory J. [National Security Technologies, LLC

    2015-06-01

    This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) EnergyX Macroencapsulated waste stream (B LAMACRONCAP, Revision 1) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL EnergyX Macroencapsulated waste stream is macroencapsulated mixed waste generated during research laboratory operations and maintenance (LLNL 2015). The LLNL EnergyX Macroencapsulated waste stream required a special analysis due to tritium (3H), cobalt-60 (60Co), cesium-137 (137Cs), and radium-226 (226Ra) exceeding the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office [NNSA/NFO] 2015).The results indicate that all performance objectives can be met with disposal of the waste stream in a SLB trench. Addition of the LLNL EnergyX Macroencapsulated inventory slightly increases multiple performance assessment results, with the largest relative increase occurring for the all-pathways annual total effective dose (TED). The maximum mean and 95th percentile 222Rn flux density remain less than the performance objective throughout the compliance period. The LLNL EnergyX Macroencapsulated waste stream is suitable for disposal by SLB at the Area 5 RWMS. The waste stream is recommended for approval without conditions.

  20. Special Analysis for the Disposal of the INL Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) Waste Stream at the Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory [National Security Technologies, LLC, Las Vegas, NV (United States)

    2017-03-21

    This special analysis (SA) evaluates whether the Idaho National Laboratory (INL) Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) waste stream (INEL167203QR1, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the INL Waste Associated with the Unirradiated LWBR waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The INL Waste Associated with the Unirradiated LWBR waste stream is recommended for acceptance with the condition that the total uranium-233 (233U) inventory be limited to 2.7E13 Bq (7.2E2 Ci).

  1. The new site selection process in Germany. Results of the ''Commission Disposal of High Radioactive Waste''

    Energy Technology Data Exchange (ETDEWEB)

    Brammer, Klaus-Juergen; Weber, Stefan [GNS Gesellschaft fuer Nuklear-Service mbH, Essen (Germany)

    2016-10-15

    After the open exploration of the salt dome Gorleben was suspended for political reasons and in favour of a new selection process in Germany the German Bundestag passed the site selection law mid-2013. It provides a three-phase process, which shall lead to the designation of a site with ''best possible safety'' in particular for highly radioactive waste in the year 2031. Early July 2016 the ''Commission Disposal of High Radioactive Waste'' submitted now its final report. Thus it is up to the legislator to legally implement the commission's recommendations and to clear the path for the start of phase 1 of the selection process.

  2. Results of bulk sediment analysis and bioassay testing on selected sediments from Oakland Inner Harbor and Alcatraz disposal site, San Francisco, California

    Energy Technology Data Exchange (ETDEWEB)

    Word, J Q; Ward, J A; Woodruff, D L

    1990-09-01

    The Battelle/Marine Sciences Laboratory (MSL) was contracted by the US Army Corps of Engineers, San Francisco District, to perform bulk sediment analysis and oyster larvae bioassays (elutriate) on sediments from Inner Oakland Harbor, California. Analysis of sediment characteristics by MSL indicated elevated priority pollutants, PAHs, pesticides, metals, organotins, and oil and grease concentrations, when compared to Alcatraz Island Dredged Material Disposal Site sediment concentrations. Larvae of the Pacific oyster, Crassostrea gigas, were exposed to seawater collected from the Alcatraz Island Site water, and a series of controls using water and sediments collected from Sequim Bay, Washington. Exposure of larvae to the Alcatraz seawater and the 50% and 100% elutriate concentrations from each Oakland sediment resulted in low survival and a high proportion of abnormal larvae compared to Sequim Bay control exposures. MSL identified that field sample collection, preservation, and storage protocols used by Port of Oakland contractors were inconsistent with standard accepted practices. 23 refs., 10 figs., 40 tabs.

  3. Three-Dimensional Geologic Modeling of a Prospective Deep Underground Laboratory Site for High-Level Radioactive Waste Disposal in Korea

    Science.gov (United States)

    Park, J. Y.; Lee, S.; Park, S. U.; Kim, J. M.; Kihm, J. H.

    2014-12-01

    A series of three-dimensional geologic modeling was performed using a geostatistical geologic model GOCAD (ASGA and Paradigm) to characterize quantitatively and to visualize realistically a prospective deep underground laboratory site for high-level radioactive waste disposal in Korea. The necessity of a deep underground laboratory arises from its in-situ conditions for related deep scientific experiments. However, the construction and operation of such a deep underground laboratory take great efforts and expenses owing to its larger depth and thus higher geologic uncertainty. For these reasons, quantitative characterization and realistic visualization of geologic formations and structures of a deep underground laboratory site is crucial before its construction and operation. The study area for the prospective deep underground laboratory site is mainly consists of Precambrian metamorphic rocks as a complex. First, various topographic and geologic data of the study area were collected from literature and boreholes and preliminarily analyzed. Based on the preliminary analysis results, a three-dimensional structural model, which consists of the boundaries between the geologic formations and structures, was established, and a three-dimensional grid model, which consists of hexahedral grid blocks, was produced. Three-dimensional geologic formation model was then established by polymerizing these two models. Finally, a series of three-dimensional lithofacies modeling was performed using the sequential indicator simulation (SIS) and truncated Gaussian simulation (TGS). The volume fractions of metamorphic rocks predicted using the TGS are more similar to the actual data observed in boreholes than those predicted using the SIS. These three-dimensional geologic modeling results can improve a quantitative and realistic understanding of geologic characteristics of the prospective deep underground laboratory site for high-level radioactive waste disposal and thus can provide

  4. Modeling of 3d Space-time Surface of Potential Fields and Hydrogeologic Modeling of Nuclear Waste Disposal Sites

    Science.gov (United States)

    Shestopalov, V.; Bondarenko, Y.; Zayonts, I.; Rudenko, Y.

    Introduction After the Chernobyl Nuclear Power Plant (CNPP) disaster (04.26.1986) a huge amount (over 2000 sq. km) of nuclear wastes appeared within so-called "Cher- nobyl Exclusion Zone" (CEZ). At present there are not enough storage facilities in the Ukraine for safe disposal of nuclear wastes and hazardous chemical wastes. The urgent problem now is safe isolation of these dangerous wastes. According to the developed state program of radioactive waste management, the construction of a na- tional storage facility of nuclear wastes is planned. It is also possible to create regional storage facilities for hazardous chemical wastes. The region of our exploration cov- ers the eastern part of the Korosten Plutone and its slope, reaching the CNPP. 3D Space-Time Surface Imaging of Geophysical Fields. There are only three direct meth- ods of stress field reconstruction in present practice, namely the field investigations based on the large-scale fracturing tests, petrotectonic and optical polarization meth- ods. Unfortunately, all these methods are extremely laborious and need the regular field tests, which is difficult to conduct in the areas of anisotropic rock outcrops. A compilation of magnetic and gravity data covering the CNPP area was carried out as a prelude to an interpretation study. More than thirty map products were generated from magnetic, gravity and geodesy data to prepare the 3D Space-Time Surface Images (3D STSI). Multi-layer topography and geophysic surfaces included: total magnetic intensity, isostatically-corrected Bouguer gravity, aspect and slope, first and second derivatives, vertical and horizontal curvature, histogram characteristics and space cor- relation coefficients between the gradient fields. Many maps shows the first and sec- ond derivatives of the potential fields, with the results of lineament (edge) structure detection superimposed. The lineament or edges of the potential fields are located from maximal gradient in many directions

  5. Final disposal of spent fuel in the Finnish bedrock. Detailed site investigations 1993-1996; Kaeytetyn polttoaineen loppusijoitus Suomen kallioperaeaen. Yksityiskohtaiset sijoituspaikkatutkimukset 1993-1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    Posiva Oy, jointly owned company of Imatran Voima Oy (IVO) and Teollisuuden Voima Oy (TVO), studies the Finnish bedrock for the final disposal of the spent nuclear fuel. The study is in accordance with the decision in principle by Finnish government in 1983 and aims at site selection. The report is the summary of the first stage of the detailed site investigations carried out during the years 1993-1996. The three sites in question, Romuvaara in Kuhmo, Kivetty in Aeaenekoski and Olkiluoto in Eurajoki were selected for the detailed characterization on the basis of the preliminary site investigations at five areas. The interim reporting in 1996 is comprehensive and comprises a series of reports covering different disciplines and sites. The programme for 1993-1996 was divided into three sub-programs: (1) the baseline investigations describing the present conditions in the bedrock, (2) the additional characterization for the acquisition of complementary data, and (3) the investigations for testing the earlier results and hypotheses to build confidence in existing understanding. (refs.).

  6. Management of Animal Carcass Disposal Sites Using a Biochar Permeable Reactive Barrier and Fast Growth Tree (Populus euramericana: A Field Study in Korea

    Directory of Open Access Journals (Sweden)

    Jung-Hwan Yoon

    2017-03-01

    Full Text Available Among many disposal options of animal carcasses due to animal diseases including foot-and-mouth disease (FMD and avian influenza (AI, on-farm burial has been the most frequently used one in Korea. Animal carcasses generate contaminants such as ammonium-N and chloride. This study aimed at testing biochar (BC as a permeable reactive barrier (PRB material in combination with fast growing tree species (Populus euramericana to mitigate groundwater pollution from animal burial sites. For this, a PRB filled with BC was installed and 400 poplar tree (P. euramericana seedlings were planted. Tested BC was obtained from rice husk and its efficiency to mitigate contaminant migration from a burial site of pig carcasses was tested using ammonium-N, chloride, electrical conductivity (EC, and pH as monitoring parameters. Monitoring wells downstream from the burial site were used. Leachates from a monitoring well, three wells inside the burial site close to PRB and three wells outside the burial site close to PRB were sampled and analyzed for ammonium-N, Cl−, EC, and pH for four years from PRB installation. The pH, EC, and ammonium-N of leachate fluctuated during the test period depending on precipitation. pH, EC, and ammonium-N of the leachate samples collected from outside of the burial site close to PRB decreased compared to those from inside of the burial site close to PRB. The concentrations of ammonium-N in the leachate from the monitoring well kept under the threshold value of 10 mg·L−1 for two years from PRB construction. In addition, the growth of poplar plants appeared to be increased via uptaking available N and P released from the burial sites. Achieved results suggest that BC PRBs can be used to in situ mitigate contaminant release from buried animal carcasses.

  7. Special Analysis for the Disposal of the Consolidated Edison Uranium Solidification Project Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2013-01-31

    The purpose of this Special Analysis (SA) is to determine if the Oak Ridge (OR) Consolidated Edison Uranium Solidification Project (CEUSP) uranium-233 (233U) waste stream (DRTK000000050, Revision 0) is acceptable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The CEUSP 233U waste stream requires a special analysis because the concentrations of thorium-229 (229Th), 230Th, 232U, 233U, and 234U exceeded their NNSS Waste Acceptance Criteria action levels. The acceptability of the waste stream is evaluated by determining if performance assessment (PA) modeling provides a reasonable expectation that SLB disposal is protective of human health and the environment. The CEUSP 233U waste stream is a long-lived waste with unique radiological hazards. The SA evaluates the long-term acceptability of the CEUSP 233U waste stream for near-surface disposal as a two tier process. The first tier, which is the usual SA process, uses the approved probabilistic PA model to determine if there is a reasonable expectation that disposal of the CEUSP 233U waste stream can meet the performance objectives of U.S. Department of Energy Manual DOE M 435.1-1, “Radioactive Waste Management,” for a period of 1,000 years (y) after closure. The second tier addresses the acceptability of the OR CEUSP 233U waste stream for near-surface disposal by evaluating long-term site stability and security, by performing extended (i.e., 10,000 and 60,000 y) modeling analyses, and by evaluating the effect of containers and the depth of burial on performance. Tier I results indicate that there is a reasonable expectation of compliance with all performance objectives if the OR CEUSP 233U waste stream is disposed in the Area 5 RWMS SLB disposal units. The maximum mean and 95th percentile PA results are all less than the performance objective for 1,000 y. Monte Carlo uncertainty analysis indicates that there is a high likelihood of

  8. Special Analysis for the Disposal of the Consolidated Edison Uranium Solidification Project Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2013-01-31

    The purpose of this Special Analysis (SA) is to determine if the Oak Ridge (OR) Consolidated Edison Uranium Solidification Project (CEUSP) uranium-233 (233U) waste stream (DRTK000000050, Revision 0) is acceptable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The CEUSP 233U waste stream requires a special analysis because the concentrations of thorium-229 (229Th), 230Th, 232U, 233U, and 234U exceeded their NNSS Waste Acceptance Criteria action levels. The acceptability of the waste stream is evaluated by determining if performance assessment (PA) modeling provides a reasonable expectation that SLB disposal is protective of human health and the environment. The CEUSP 233U waste stream is a long-lived waste with unique radiological hazards. The SA evaluates the long-term acceptability of the CEUSP 233U waste stream for near-surface disposal as a two tier process. The first tier, which is the usual SA process, uses the approved probabilistic PA model to determine if there is a reasonable expectation that disposal of the CEUSP 233U waste stream can meet the performance objectives of U.S. Department of Energy Manual DOE M 435.1-1, “Radioactive Waste Management,” for a period of 1,000 years (y) after closure. The second tier addresses the acceptability of the OR CEUSP 233U waste stream for near-surface disposal by evaluating long-term site stability and security, by performing extended (i.e., 10,000 and 60,000 y) modeling analyses, and by evaluating the effect of containers and the depth of burial on performance. Tier I results indicate that there is a reasonable expectation of compliance with all performance objectives if the OR CEUSP 233U waste stream is disposed in the Area 5 RWMS SLB disposal units. The maximum mean and 95th percentile PA results are all less than the performance objective for 1,000 y. Monte Carlo uncertainty analysis indicates that there is a high likelihood of

  9. Phase Equilibria and Plate-fluid Interfacial Tensions for Four-site Associating Lennard-Jones Fluids Confined in Slit Pores

    Institute of Scientific and Technical Information of China (English)

    FU Dong; YAN Shu-Mei; WANG Xue-Min

    2008-01-01

    The excess Helmholtz free energy functional for four-site associating Lennard-Jones(LJ)fluid was formulated in terms of a modified fundamental measure theory for short-ranged interactions and a first-order mean-spherical approximation theory for long-ranged attraction.Within the framework of density functional theory,the thermodynamic properties including the average density isotherms,density profiles and fractions of not bonded monomers characterizing the coexistences between gas-like and liquid-like phases for capillary condensation,phase equilibria and equilibrium plate-fluid interfacial tensions were investigated.The influences of association energy,fluid-solid interaction and pore width on the inhomogeneous behavior of four-site associating LJ fluids confined in slit pores were discussed.

  10. Retention of aqueous {sup 226}Ra fluxes from a sub-aqueous mill tailings disposal at the Bois Noirs site (Loire, France)

    Energy Technology Data Exchange (ETDEWEB)

    Courbet, Christelle; Simonucci, Caroline; Dauzeres, Alexandre; Matray, Jean-Michel [French Institute for Radiation protection and Nuclear Safety - IRSN, Radiation Protection Division - PRP, Nuclear Waste and Geosphere Department - DGE, SRTG/LETIS, B.P. 17, 92262 Fontenay-Aux-Roses (France); Bassot, Sylvain [French Institute for Radiation protection and Nuclear Safety - IRSN, Radiation Protection Division - PRP, Nuclear Waste and Geosphere Department - DGE, SRTG/LAME, B.P. 17, 92262 Fontenay-Aux-Roses (France); Mangeret, Arnaud [French Institute for Radiation protection and Nuclear Safety - IRSN, Radiation Protection Division - PRP, Nuclear Waste and Geosphere Department - DGE, SEDRAN/BRN, B.P. 17, 92262 Fontenay-Aux-Roses (France)

    2013-07-01

    This study focuses on a sub-aqueous mill tailings disposal site located in France (Bois Noirs) where 1.3 million tons of uranium mill sludge (fine tailings fraction < 50 μm) have been disposed since the 60's in a man-made pond below 4 meters of water maintained artificially by a rock-fill dam. A significant attenuation of aqueous {sup 226}Ra activity is observed in ground waters. This paper presents the preliminary modeling work performed for evaluating the role of water-rock interactions on aqueous {sup 226}Ra attenuation through the dam. This modeling attempt, assuming thermodynamic equilibrium, aims at checking the hydrochemical conceptual model developed in a previous study, in which Ra retention through the dam was assumed to most likely result from sorption onto metallic oxide-hydroxides. A 2D coupled reactive transport model was conceived to test this hypothesis over time and identify the measurements required to verify its consistency over the long term. (authors)

  11. Corrective Action Investigation Plan for Corrective Action Unit 561: Waste Disposal Areas, Nevada Test Site, Nevada with ROTC 1, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Grant Evenson

    2008-07-01

    Corrective Action Unit (CAU) 561 is located in Areas 1, 2, 3, 5, 12, 22, 23, and 25 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 561 is comprised of the 10 corrective action sites (CASs) listed below: • 01-19-01, Waste Dump • 02-08-02, Waste Dump and Burn Area • 03-19-02, Debris Pile • 05-62-01, Radioactive Gravel Pile • 12-23-09, Radioactive Waste Dump • 22-19-06, Buried Waste Disposal Site • 23-21-04, Waste Disposal Trenches • 25-08-02, Waste Dump • 25-23-21, Radioactive Waste Dump • 25-25-19, Hydrocarbon Stains and Trench These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 28, 2008, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 561. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the Corrective Action Investigation for CAU 561 includes the following activities: • Move surface debris and/or materials, as needed, to facilitate sampling. • Conduct radiological surveys

  12. Corrective Action Investigation Plan for Corrective Action Unit 543: Liquid Disposal Units Nevada Test Site, Nevada, Rev. No.: 0 with ROTC 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    David A. Strand

    2004-05-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 543: Liquid Disposal Units, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S Department of Defense (DoD). Corrective Action Unit 543 is located in Area 6 and Area 15 of the NTS, which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Seven corrective action sites (CASs) comprise CAU 543 and are listed below: (1) 06-07-01, Decon Pad; (2) 15-01-03, Aboveground Storage Tank; (3) 15-04-01, Septic Tank; (4) 15-05-01, Leachfield; (5) 15-08-01, Liquid Manure Tank; (6) 15-23-01, Underground Radioactive Material Area; and (7) 15-23-03, Contaminated Sump, Piping. Corrective Action Site 06-07-01, Decon Pad, is located in Area 6 and consists of the Area 6 Decontamination Facility and its components that are associated with decontamination of equipment, vehicles, and materials related to nuclear testing. The six CASs in Area 15 are located at the U.S. Environmental Protection Agency (EPA) Farm and are related to waste disposal activities at the EPA Farm. The EPA Farm was a fully-functional dairy associated with animal experiments conducted at the on-site laboratory. The corrective action investigation (CAI) will include field inspections, video-mole surveys, and sampling of media, where appropriate. Data will also be obtained to support waste management decisions. The CASs within CAU 543 are being investigated because hazardous and/or radioactive constituents may be present at concentrations that could potentially pose a threat to human health and the environment. The seven CASs in CAU 543

  13. Halomonhystera disjuncta - a young-carrying nematode first observed for the Baltic Sea in deep basins within chemical munitions disposal sites

    Science.gov (United States)

    Grzelak, Katarzyna; Kotwicki, Lech

    2016-06-01

    Three deep basins in the Baltic Sea were investigated within the framework of the CHEMSEA project (Chemical Munitions Search & Assessment), which aims to evaluate the ecological impact of chemical warfare agents dumped after World War II. Nematode communities, which comprise the most numerous and diverse organisms in the surveyed areas, were investigated as a key group of benthic fauna. One of the most successful nematode species was morphologically identified as Halomonhystera disjuncta (Bastian, 1865). The presence of this species, which is an active coloniser that is highly resistant to disturbed environments, may indicate that the sediments of these disposal sites are characterised by toxic conditions that are unfavourable for other metazoans. Moreover, ovoviviparous reproductive behaviour in which parents carry their brood internally, which is an important adaptation to harsh environmental conditions, was observed for specimens from Gdansk Deep and Gotland Deep. This reproductive strategy, which is uncommon for marine nematodes, has not previously been reported for nematodes from the Baltic Sea sediment.

  14. Evaluation of isotope migration: land burial. Water chemistry at commercially operated low-level radioactive waste disposal sites. Progress report No. 7, October--December 1977

    Energy Technology Data Exchange (ETDEWEB)

    Colombo, P.; Weiss, A. J.; Francis, A. J.

    1978-01-01

    Trench water samples from the commercial low-level radioactive waste disposal sites at Maxey Flats, Kentucky, and West Valley, New York, were collected, and the bacterial populations were enumerated. The range of bacterial populations in six trench water samples were 400 to 24,000 aerobic and 90 to 15,000 anaerobic bacteria/ml. Most of the bacteria isolated from the anaerobic culture plates were facultative anaerobes, although a few strict anaerobes were also present. Mixed bacterial populations isolated from the trench waters were able to grow anaerobically utilizing the carbon and nitrogen sources present in the trench waters. Trench waters supplemented with mineral salts supported only a modest increase in growth of these bacteria. The results of this study indicate that bacteria are active in the trenches, and the radioactivity and organic compounds present in the trenches are not toxic to these bacteria.

  15. Evaluation of brine disposal from the Bryan Mound Site of the Strategic Petroleum Reserve Program. Final report of predisposal studies. Chapter 4. Appendix 7

    Energy Technology Data Exchange (ETDEWEB)

    Hann, Jr, Roy W.; Randall, Robert E. [eds.

    1981-02-01

    This report describes nekton communities off Freeport, Texas prior to brine disposal based on trawl studies in the period October 1977 to February 1980. Trawling was conducted aboard chartered commercial shrimp trawlers along a transect in depths of 3 to 25 fathoms to describe the general background of nekton communities off Freeport. An array of stations were occupied at the diffuser site in 12 fathoms of water to describe in detail nekton communities near the diffuser. Collections at each station, in general, were made once a month during the day and once a month at night, cruises being about two weeks apart in time. Projected diffuser locations, stations occupied, etc., changed during the course of the project, and the Materials and Methods (Section 4.2) should be consulted for details.

  16. Methodology of site selection for solid municipal waste disposal plants; Metodologia per la localizzazione sul territorio di aree ambientalmente compatibili con impianti di smaltimento rifiuti

    Energy Technology Data Exchange (ETDEWEB)

    Tassoni, E.; Cautilli, F.; Polizzano, C.; Andriola, L. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente

    1997-09-01

    The selection of suitable areas for solid municipal waste disposal plants has a notable importance in relation to the problems linked to the solid municipal waste management. The knowledge of the territory constitutes the fundamental base for the selection of compatible areas, from an environmental point of view. The method developed by ENEA (1995) and applied to the Latina territory (Central Italy) preliminary considers an accurate bibliographic and cartographic search, relative to the geological, presently, hydrogeological characteristics and the use constraints of the territory. The selection of suitable areas has been carried out on the ground of the following criteria: - selection of potentially suitable large areas, carried out overlaying thematic maps (geological, geomorphological, etc.) elaborated for all the examined territory; - selection of ``exclusion`` areas on the ground of use constraints, such as residential areas, water protection zones and so on. At the end of the proceeding phases other main points with territorial and socioeconomic significance have been examined and represented on thematic maps. Because the selected areas have resulted too numerous, it has been necessary to utilize methods to get environmental comparative evaluations of the areas in relation to the solid municipal waste disposal plants. A method, developed by ENEA (1994) and based on the calculus of the ``impacts matrix`` has been used. The application of the described method has allowed to find out the areas with the best degree of compatibility, which could be defined ``first priority`` areas for the final choice of the plants site. The aforesaid classification allows the Local Administrators to select the site in a scientifically correct way, on the ground of the evaluation of environmental characteristics above indicated and of a cost-benefit balance; this latter is presently not included among the objectives of the methodology.

  17. The patterning of test scores of children living in proximity to an inactive toxic waste disposal site who are classified as neurologically impaired

    Energy Technology Data Exchange (ETDEWEB)

    Licata, L.

    1992-01-01

    This study investigated the relationship between the pattern of impairment on test scores of the neurologically impaired children and proximity to an inactive toxic waste disposal site. Subjects (N = 147) were students, ages 6-16, classified as neurologically impaired. Seventy-six who lived within six miles of the site served as the experimental group and 71 who did not live near a site comprised the control group. Research was based on existing data available through the Child Study Team evaluation process. Attention was given to the ACID cluster of the WISC-R, the Arithmetic and Reading subtests on the WRAT, and the Koppitz scores of the Bender Visual Motor Gestalt Test. No significant difference was found between the experimental and control groups. Sex differences within the experimental group were not significant. Time of exposure and patterning of scores in the experimental group were investigated. Time had a significant main effect on WISC-R Arithmetic and Digit Span subtests, the ACID cluster and the Bender Test for the total group. Main effect for sex was significant for the WISC-R Information subtest. An interaction effect was found to be significant on the WRAT Arithmetic subtest WRAT. The longer the girls lived within the site area the lower they scored on the WISC-R Information subtest and the WRAT Arithmetic subtest. The variable exposure (interaction of distance and time) was related to lower scores on the WISC-R Arithmetic and Digit Span subtest. A two-way interaction was found on the WRAT Arithmetic subtest. The longer the females were exposed to the waste site area, the lower they scored on the WRAT Arithmetic subtest. A comparison of those children in the site area from birth and those in the area three years prior to the evaluation was done. A significant main effect was found for the Bender Gestalt.

  18. Application of Remote Sensing and GIS in Landfill (waste Disposal) Site Selection and Environmental Impacts Assessment around Mysore City, Karnataka, India

    Science.gov (United States)

    Basavarajappa, T. H.

    2012-07-01

    Landfill site selection is a complex process involving geological, hydrological, environmental and technical parameters as well as government regulations. As such, it requires the processing of a good amount of geospatial data. Landfill site selection techniques have been analyzed for identifying their suitability. Application of Geographic Information System (GIS) is suitable to find best locations for such installations which use multiple criteria analysis. The use of Artificial intelligence methods, such as expert systems, can also be very helpful in solid waste planning and management. The waste disposal and its pollution around major cities in Karnataka are important problems affecting the environment. The Mysore is one of the major cities in Karnataka. The landfill site selection is the best way to control of pollution from any region. The main aim is to develop geographic information system to study the Landuse/ Landcover, natural drainage system, water bodies, and extents of villages around Mysore city, transportation, topography, geomorphology, lithology, structures, vegetation and forest information for landfill site selection. GIS combines spatial data (maps, aerial photographs, and satellite images) with quantitative, qualitative, and descriptive information database, which can support a wide range of spatial queries. For the Site Selection of an industrial waste and normal daily urban waste of a city town or a village, combining GIS with Analytical Hierarchy Process (AHP) will be more appropriate. This method is innovative because it establishes general indices to quantify overall environmental impact as well as individual indices for specific environmental components (i.e. surface water, groundwater, atmosphere, soil and human health). Since this method requires processing large quantities of spatial data. To automate the processes of establishing composite evaluation criteria, performing multiple criteria analysis and carrying out spatial clustering

  19. Environmental risks of radioactive discharges from a low-level radioactive waste disposal site at Dessel, Belgium.

    Science.gov (United States)

    Batlle, J Vives I; Sweeck, L; Wannijn, J; Vandenhove, H

    2016-10-01

    The potential radiological impact of releases from a low-level radioactive waste (Category A waste) repository in Dessel, Belgium on the local fauna and flora was assessed under a reference scenario for gradual leaching. The potential impact situations for terrestrial and aquatic fauna and flora considered in this study were soil contamination due to irrigation with contaminated groundwater from a well at 70 m from the repository, contamination of the local wetlands receiving the highest radionuclide flux after migration through the aquifer and contamination of the local river receiving the highest radionuclide flux after migration through the aquifer. In addition, an exploratory study was carried out for biota residing in the groundwater. All impact assessments were performed using the Environmental Risk from Ionising Contaminants: Assessment and Management (ERICA) tool. For all scenarios considered, absorbed dose rates to biota were found to be well below the ERICA 10 μGy h(-1) screening value. The highest dose rates were observed for the scenario where soil was irrigated with groundwater from the vicinity of the repository. For biota residing in the groundwater well, a few dose rates were slightly above the screening level but significantly below the dose rates at which the smallest effects are observed for those relevant species or groups of species. Given the conservative nature of the assessment, it can be concluded that manmade radionuclides deposited into the environment by the near surface disposal of category A waste at Dessel do not have a significant radiological impact to wildlife. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Characterization of discontinuities in an argillaceous medium (Tournemire site): key questions related to safety assessment of radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera Nunez, J. [CEA Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire

    2001-07-01

    The safety assessment of deep radioactive waste disposal in argillaceous medium concerns the evaluation of the possibilities and transfer processes through this geological barrier. Generally, this material is characterized by a very low permeability. However, faults and fractures may affect this medium and consequently it is important to analyse the transfer possibilities along these discontinuities. The first phase of this evaluation is the detection or survey of the fractures, and the second one is the evaluation of their hydraulic properties. A discontinuity is not a synonymous of fluid transfer, which in turn may be inhomogeneous along the same fracture. The well-compacted Tournemire argillaceous medium (argilites and marls) is affected by some faults and fractures of natural (tectonic) and artificial (excavation) origin. The natural fractures are of different scales: major regional faults that limit blocks, secondary fault and fractured zones that affect the blocks, and local fractures and micro-fractures. These discontinuities are studied from the surface analyses, transversal boreholes and drifts. Geophysical methods are tested to detect these discontinuities to different scales. The present-day fluids are shown in some fractured sectors that allow us to analyse the possibilities of fluid transfer along these discontinuities. The fracture analyses show that permeability or transmissivity properties may change along the discontinuities. A decametric fluid transfer is shown along some fractures; however, their integration in a larger scale is not yet analysed. It is necessary to understand how the transfer in the near field may be connected to the possible far field transfer, or these transfers are not possible through the argillaceous medium. (author)

  1. A hybrid modeling approach to evaluate the groundwater flow system at the low- and intermediate-level radioactive waste disposal site in Gyeong-Ju, Korea

    Science.gov (United States)

    Ji, Sung-Hoon; Park, Kyung Woo; Lim, Doo-Hyun; Kim, Chunsoo; Kim, Kyung Su; Dershowitz, William

    2012-11-01

    The development and implementation of a hybrid discrete fracture network/equivalent porous medium (DFN/EPM) approach to groundwater flow at the Gyeong-Ju low- and intermediate-level radioactive waste (LILW) disposal site in the Republic of Korea is reported. The geometrical and hydrogeological properties of fractured zones, background fractures and rock matrix were derived from site characterization data and implemented as a DFN. Several DFN realizations, including the deterministic fractured zones and the stochastic background fractures, whose statistical properties were verified by comparison with in-situ fracture and hydraulic test data, were suggested, and they were then upscaled to continuums using a fracture tensor approach for site-scale flow simulations. The upscaled models were evaluated by comparison to in-situ pressure monitoring data, and then used to simulate post-closure hydrogeology for the LILW facility. Simulation results demonstrate the importance of careful characterization and implementation of fractured zones. The study highlighted the importance of reducing uncertainty regarding the properties and variability of natural background fractures, particularly in the immediate vicinity of repository emplacement.

  2. 77 FR 20590 - Ocean Dumping; Designation of Ocean Dredged Material Disposal Sites Offshore of Yaquina Bay, OR

    Science.gov (United States)

    2012-04-05

    ... Sites is expected to be sandy material, while a small amount of material (up to 5% of the material... and minimize any adverse affects to the wave climate. The presence of Yaquina Reef, close to shore at... infaunal and epifaunal community to be dominated by organisms that are adapted to a sandy environment. The...

  3. Annual Status Report (FY2104) Composite Analysis of Low Level Waste Disposal in the Central Plateau at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W. E. [CH2M Hill Plateau Remediation Company, Richland, WA (United States)

    2015-03-24

    In accordance with U.S. Department of Energy requirements in DOE O 435.1 and as implemented by DOE/RL-2009-29, the DOE Richland Operations Office has prepared this annul summary of the Hanford Site Composite Analysis for fiscal year 2014.

  4. Annual Status Report (FY2016) Composite Analysis for Low Level Waste Disposal in the Central Plateau of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Weber, M. C. [INTERA, Inc., Austin, TX (United States); Nichols, W. E. [CH2M Hill Plateau Remediation Company, Richland, WA (United States)

    2017-03-14

    In accordance with U.S. Department of Energy (DOE) requirements in DOE O 435.1 and as implemented by DOE/RL-2009-29, the DOE Richland Operations Office has prepared this annual summary of the Hanford Site Composite Analysis for fiscal year 2016.

  5. Annual Status Report (FY2015) Composite Analysis for Low Level Waste Disposal in the Central Plateau of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W. E. [CH2M Hill Plateau Remediation Company, Richland, WA (United States)

    2016-03-24

    In accordance with U.S. Department of Energy (DOE) requirements in DOE O 435.1, and as implemented by DOE/RL-2000-29, the DOE Richland Operations Office has prepared this annual summary of the Hanford Site Composite Analysis for fiscal year 2015.

  6. Annual Status Report (FY2013 Composite Analysis of Low Level Waste Disposal in the Central Plateau at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W. E. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2014-03-25

    In accordance with U.S. Department of Energy (DOE) requirements in DOE O 435.1, 3 Chg. 11, and as implemented by DOE/RL-2000-29, Rev. 22, the DOE Richland Operations 4 Office (DOE-RL) has prepared this annual summary of the Hanford Site Composite Analysis 5 for fiscal year (FY) 2013.

  7. Melter Disposal Strategic Planning Document

    Energy Technology Data Exchange (ETDEWEB)

    BURBANK, D.A.

    2000-09-25

    This document describes the proposed strategy for disposal of spent and failed melters from the tank waste treatment plant to be built by the Office of River Protection at the Hanford site in Washington. It describes program management activities, disposal and transportation systems, leachate management, permitting, and safety authorization basis approvals needed to execute the strategy.

  8. Corrosion of several components of the in-situ test performed in a deep geological granite disposal site

    Energy Technology Data Exchange (ETDEWEB)

    Madina, Virginia; Azkarate, Inaki; Insausti, Mikel [INASMET, Mikeletegi Pasealekua, 2, 20009-San Sebastian (Spain)

    2004-07-01

    The corrosion damage experienced by different components in a deep geological disposal in a granite formation has been analysed. This in-situ test is part of the Full-scale Engineered Barriers EXperiment project (FEBEX) carried out in Grimsel (Switzerland). Two heaters, simulating the canister and the heat generated, were installed horizontally inside the guide tubes or liners and surrounded by highly compacted bentonite blocks. Coupons of several candidate metals for manufacturing HLW containers were introduced in these bentonite blocks, as well as sensors in order to monitor different physicochemical parameters during the test. The in- situ test began in July 1996 and in June 2002 one of the heaters, a section of the liner, several corrosion coupons and four sensors were extracted. The studied heater is a carbon steel cylinder with welded lids, with a wall thickness of 100 mm and 4.54 m long. The liner consists of a perforated carbon steel tube, 970 mm in diameter and 15 mm thick. Corrosion coupons were made of carbon steel, stainless steel, titanium, copper and cupronickel alloys. Two extensometer type sensors with an outer protection tube made of austenitic stainless steel were also analysed. Visual inspection of the above mentioned components, optical and scanning electron microscope study, together with EDS and XRD analyses of corrosion products, have been performed in order to analyse the corrosion suffered by these components. This has been complemented with the chemical and microbiological characterisation of bentonite samples. Results obtained in the study indicate a slight generalised corrosion for the heater, liner and corrosion coupons. The low humidity content of the bentonite surrounding the liner and the corrosion coupons, is the responsible of this practical absence of corrosion. The sensors studied show, however, an important corrosion damage. The sulphur rich corrosion products, the presence of Sulphate Reducing Bacteria (SRB) in the bentonite

  9. Disposal of radioactive waste

    Science.gov (United States)

    Van Dorp, Frits; Grogan, Helen; McCombie, Charles

    The aim of radioactive and non-radioactive waste management is to protect man and the environment from unacceptable risks. Protection criteria for both should therefore be based on similar considerations. From overall protection criteria, performance criteria for subsystems in waste management can be derived, for example for waste disposal. International developments in this field are summarized. A brief overview of radioactive waste sorts and disposal concepts is given. Currently being implemented are trench disposal and engineered near-surface facilities for low-level wastes. For low-and intermediate-level waste underground facilities are under construction. For high-level waste site selection and investigation is being carried out in several countries. In all countries with nuclear programmes, the predicted performance of waste disposal systems is being assessed in scenario and consequence analyses. The influences of variability and uncertainty of parameter values are increasingly being treated by probabilistic methods. Results of selected performance assessments show that radioactive waste disposal sites can be found and suitable repositories can be designed so that defined radioprotection limits are not exceeded.

  10. Radioactive waste disposal programme and siting regions for geological deep repositories. Executive summary. November 2008; Entsorgungsprogramm und Standortgebiete fuer geologische Tiefenlager. Zusammenfassung. November 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-11-15

    There are radioactive wastes in Switzerland. Since many decades they are produced by the operation of the five nuclear power plants, by medicine, industry and research. Important steps towards the disposal of these wastes are already realized; the corresponding activities are practised. This particularly concerns handling and packaging of the radioactive wastes, their characterization and inventory, as well as the interim storage and the inferred transportations. Preparatory works in the field of scientific research on deep geological repositories have allowed to acquire high level of technical and scientific expertise in that domain. The feasibility of building long-term safe geological repositories in Switzerland was demonstrated for all types of radioactive wastes; the demonstration was accepted by the Federal Council. There is enough knowledge to propose geological siting regions for further works. The financial funds already accumulated guaranty the financing of the dismantling of the power plants as well as building deep geological repositories for the radioactive wastes. The regulations already exist and the organisational arrangements necessary for the fruitful continuation of the works already done have been taken. The programme of the disposal of radioactive wastes also describes the next stages towards the timely realization of the deep repositories as well as the level of the financial needs. The programme is updated every five years, checked by the regulatory bodies and accepted by the Federal Council who reports to the parliament. The process of choosing a site, which will be completed in the next years, is detailed in the conceptual part of the programme for deep geological repositories. The NAGRA proposals are based exclusively on technical and scientific considerations; the global evaluation taking into account also political considerations has to be performed by the authorities and the Federal Council. The programme states that at the beginning of

  11. Special Analysis for the Disposal of the Sandia National Laboratory Classified Macroencapsulated Mixed Waste at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, Louis B. [National Security Technologies, LLC

    2015-12-01

    This special analysis evaluates whether the Sandia National Laboratory (SNL) Classified Macroencapsulated Mixed Waste stream (ASLA000001007, Revision 4) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The SNL Classified Macroencapsulated Mixed Waste stream consists of debris from classified nuclear weapons components (SNL 2015). The SNL Classified Macroencapsulated Mixed Waste stream required a special analysis due to tritium (3H) exceeding the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office [NNSA/NFO] 2015). The SNL Classified Macroencapsulated Mixed Waste stream had no significant effect on the maximum mean and 95th percentile results for the resident air pathway and all-pathways annual total effective dose (TED). The SNL Classified Macroencapsulated Mixed Waste stream increases the mean air pathway and all-pathways annual TED from approximately 100 to 200 years after closure. Addition of the SNL Classified Macroencapsulated Mixed Waste stream inventory shifts the maximum TED to approximately 100 years after closure and increases the TED for several alternative exposure scenarios. The maximum mean and the 95th percentile 222Rn flux density remain less than the performance objective throughout the compliance period. The SNL Classified Macroencapsulated Mixed Waste stream is suitable for disposal by SLB at the Area 5 RWMS. The waste stream is recommended for approval without conditions.

  12. Water-quality data from a landfill-leachate treatment and disposal site, Pinellas County, Florida, January 1979-August 1980

    Science.gov (United States)

    Barr, G.L.; Fernandez, Mario

    1981-01-01

    Water-quality data collected between January 1979 and August 1980 at the landfill leachate treatment site in Pinellas County, Fla., are presented. Data include field and laboratory measurements of physical properties, major chemical constituents , nitrogen and phosphorus species, chemical oxygen demand, trace metals, coliform bacteria, taxonomy of macroinvertebrates and phytoplankton, and chlorophyll analyses. Data were collected as part of a study to determine water-quality changes resulting from aeration and ponding of leachate pumped from landfill burial trenches and for use in determining the rate of movement and quality changes as the leachate migrates through the surficial aquifer. Samples were collected from 81 surficial-aquifer water-quality monitoring wells constructed in January 1975, February 1979, and March 1979, and 8 surface-water quality monitoring sites established in January 1975, February 1978, and November 1978. (USGS)

  13. West Hackberry Strategic Petroleum Reserve site brine-disposal monitoring, Year I report. Volume III. Biological oceanography. Final report

    Energy Technology Data Exchange (ETDEWEB)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.)

    1983-02-01

    The Department of Energy's Strategic Petroleum Reserve Program began discharging brine into the Gulf of Mexico from its West Hackberry site near Cameron, Louisiana in May 1981. The brine originates from underground salt domes being leached with water from the Intracoastal Waterway, making available vast underground storage caverns for crude oil. The effects of brine discharge on aquatic organisms are presented in this volume. The topics covered are: benthos; nekton; phytoplankton; zooplankton; and data management.

  14. Special Analysis for the Disposal of the Idaho National Laboratory Unirradiated Light Water Breeder Reactor Rods and Pellets Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory [NSTec

    2014-08-31

    The purpose of this special analysis (SA) is to determine if the Idaho National Laboratory (INL) Unirradiated Light Water Breeder Reactor (LWBR) Rods and Pellets waste stream (INEL103597TR2, Revision 2) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The INL Unirradiated LWBR Rods and Pellets waste stream consists of 24 containers with unirradiated fabricated rods and pellets composed of uranium oxide (UO2) and thorium oxide (ThO2) fuel in zirconium cladding. The INL Unirradiated LWBR Rods and Pellets waste stream requires an SA because the 229Th, 230Th, 232U, 233U, and 234U activity concentrations exceed the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  15. Plasma confinement

    CERN Document Server

    Hazeltine, R D

    2003-01-01

    Detailed and authoritative, this volume examines the essential physics underlying international research in magnetic confinement fusion. It offers readable, thorough accounts of the fundamental concepts behind methods of confining plasma at or near thermonuclear conditions. Designed for a one- or two-semester graduate-level course in plasma physics, it also represents a valuable reference for professional physicists in controlled fusion and related disciplines.

  16. Data Validation Package - June 2015 Groundwater and Surface Water Sampling at the Green River, Utah, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [USDOE Office of Legacy Management, Washington, DC (United States); Price, Jeffrey [Navarro Research and Engineering, Inc., Las Vegas, NV (United States)

    2015-08-01

    Groundwater samples were collected during the 2015 sampling event from point-of-compliance (POC) wells 0171, 0173, 0176, 0179, 0181, and 0813 to monitor the disposition of contaminants in the middle sandstone unit of the Cedar Mountain Formation. Groundwater samples also were collected from alluvium monitoring wells 0188, 0189, 0192, 0194, and 0707, and basal sandstone monitoring wells 0182, 0184, 0185, and 0588 as a best management practice. Surface locations 0846 and 0847 were sampled to monitor for degradation of water quality in the backwater area of Brown’s Wash and in the Green River immediately downstream of Brown’s Wash. The Green River location 0801 is upstream from the site and is sampled to determine background-threshold values (BTVs). Sampling and analyses were conducted as specified in Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and- analysis-plan-us-department-energy-office-legacy-management-sites). Water levels were measured at each sampled well. The analytical data and associated qualifiers can be viewed in environmental database reports and are also available for viewing with dynamic mapping via the GEMS (Geospatial Environmental Mapping System) website at http://gems.lm.doe.gov/#. All six POC wells are completed in the middle sandstone unit of the Cedar Mountain Formation and are monitored to measure contaminant concentrations for comparison to proposed alternate concentration limits (ACLs), as provided in Table 1. Contaminant concentrations in the POC wells remain below their respective ACLs.

  17. Chromium speciation and fractionation in ground and surface waters in the vicinity of chromite ore processing residue disposal sites.

    Science.gov (United States)

    Farmer, John G; Thomas, Rhodri P; Graham, Margaret C; Geelhoed, Jeanine S; Lumsdon, David G; Paterson, Edward

    2002-04-01

    Chromium concentrations of up to 91 mg l(-1) were found by ICP-OES for ground water from nine boreholes at four landfill sites in an area of S.E. Glasgow/S. Lanarkshire where high-lime chromite ore processing residue (COPR) from a local chemical works had been deposited from 1830 to 1968. Surface water concentrations of up to 6.7 mg l(-1) in a local tributary stream fell to 0.11 mg l(-1) in the River Clyde. Two independent techniques of complexation/colorimetry and speciated isotope dilution mass spectrometry (SIDMS) showed that Cr was predominantly (>90%) in hexavalent form (CrVI) as CrO4(2-), as anticipated at the high pH (7.5-12.5) of the sites. Some differences between the implied and directly determined concentrations of dissolved CrIII, however, appeared related to the total organic carbon (TOC) content. This was most significant for the ground water from one borehole that had the highest TOC concentration of 300 mg l(-1) and at which ultrafiltration produced significant decreases in Cr concentration with decreasing size fractions, e.g. complex. This showed for the main Cr-containing fraction, 100 kDa-0.45 microm, that the Cr was associated with a dark brown band characteristic of organic (humic) matter. Comparison of gel electrophoresis and FTIR results for ultrafilter retentates of ground water from this borehole with those for a borehole at another site where CrVI predominated suggested the influence of carboxylate groups, both in reducing CrVI and in forming soluble CrIII-humic complexes. The implications of this for remediation strategies (especially those based on the addition of organic matter) designed to reduce highly mobile and carcinogenic Cr(VI)O4(2-) to the much less harmful CrIII as insoluble Cr(OH)3 are discussed.

  18. Site-selective fluorescence spectroscopy investigations of LnPO{sub 4} xenotime ceramics for radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, A.; Peters, L. [RWTH Aachen Univ. (Germany). Inst. of Crystallography; Holthausen, J.; Neumeier, S. [Forschungszentrum Juelich (Germany); Huittinen, Nina [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes; Loesch, Henry

    2017-06-01

    Europium incorporation in different LnPO{sub 4} (Ln=Tb, Lu and Gd{sub 1-x}Lu{sub x}) phases crystallizing in the xenotime structure was investigated with site-selective TRLFS, PXRD and Rietveld analyses. Based on recorded emission spectra and diffraction patterns, the formation of three different crystal systems (xenotime, anhydrite, and monazite) could be identified. Aging of the ceramic samples and a second sintering step led to an accumulation of europium in the grain boundaries and on the surface.

  19. Application of a parallel 3-dimensional hydrogeochemistry HPF code to a proposed waste disposal site at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gwo, Jin-Ping [Oak Ridge National Lab., TN (United States); Yeh, Gour-Tsyh [Pennsylvania State Univ., University Park, PA (United States). Dept. of Civil and Environmental Engineering

    1997-02-01

    The objectives of this study are (1) to parallelize a 3-dimensional hydrogeochemistry code and (2) to apply the parallel code to a proposed waste disposal site at the Oak Ridge National Laboratory (ORNL). The 2-dimensional hydrogeochemistry code HYDROGEOCHEM, developed at the Pennsylvania State University for coupled subsurface solute transport and chemical equilibrium processes, was first modified to accommodate 3-dimensional problem domains. A bi-conjugate gradient stabilized linear matrix solver was then incorporated to solve the matrix equation. We chose to parallelize the 3-dimensional code on the Intel Paragons at ORNL by using an HPF (high performance FORTRAN) compiler developed at PGI. The data- and task-parallel algorithms available in the HPF compiler proved to be highly efficient for the geochemistry calculation. This calculation can be easily implemented in HPF formats and is perfectly parallel because the chemical speciation on one finite-element node is virtually independent of those on the others. The parallel code was applied to a subwatershed of the Melton Branch at ORNL. Chemical heterogeneity, in addition to physical heterogeneities of the geological formations, has been identified as one of the major factors that affect the fate and transport of contaminants at ORNL. This study demonstrated an application of the 3-dimensional hydrogeochemistry code on the Melton Branch site. A uranium tailing problem that involved in aqueous complexation and precipitation-dissolution was tested. Performance statistics was collected on the Intel Paragons at ORNL. Implications of these results on the further optimization of the code were discussed.

  20. Off-site source recovery project case study: disposal of high activity cobalt 60 sources at the Nevada test site 2008

    Energy Technology Data Exchange (ETDEWEB)

    Cocina, Frank G [Los Alamos National Laboratory; Stewart, William C [Los Alamos National Laboratory; Wald - Hopkins, Mark [Los Alamos National Laboratory; Hageman, John P [SWRI

    2009-01-01

    The Off-Site Source Recovery Project has been operating at Los Alamos National Laboratory since 1998 to address the U.S. Department of Energy responsibility for collection and management of orphaned or disused radioactive sealed sources which may represent a risk to public health and national security if not properly managed.

  1. ESTIMATED DURATION OF THE SUBSURFACE REDUCTION ENVIRONMENT PRODUCED BY THE SALTSTONE DISPOSAL FACILITY ON THE SAVANNAH RIVER SITE.

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D; Thong Hang, T

    2007-01-22

    The formula for Savannah River Site (SRS) saltstone includes {approx}25 wt% slag to create a reducing environment for mitigating the subsurface transport of several radionuclides, including Tc-99. Based on laboratory measurements and two-dimensional reactive transport calculations, it was estimated that the SRS saltstone waste form will maintain a reducing environment, and therefore its ability to sequester Tc-99, for well over 10,000 years. For example, it was calculated that {approx}16% of the saltstone reduction capacity would be consumed after 213,000 years. For purposes of comparison, a second calculation was presented that was based on entirely different assumptions (direct spectroscopic measurements and diffusion calculations). The results from this latter calculation were near identical to those from this study. Obtaining similar conclusions by two extremely different calculations and sets of assumptions provides additional credence to the conclusion that the saltstone will likely maintain a reducing environment in excess of 10,000 years.

  2. 36 CFR 13.1604 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within...

  3. 36 CFR 13.1008 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...

  4. 36 CFR 13.1118 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site...

  5. 36 CFR 13.1912 - Solid waste disposal.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...

  6. Disposable rabbit

    Science.gov (United States)

    Lewis, Leroy C.; Trammell, David R.

    1986-01-01

    A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.

  7. Disposal rabbit

    Science.gov (United States)

    Lewis, L.C.; Trammell, D.R.

    1983-10-12

    A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.

  8. Assessing doses to terrestrial wildlife at a radioactive waste disposal site: Inter-comparison of modelling approaches

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, M.P., E-mail: mathew.johansen@ansto.gov.au [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW, 2232 (Australia); Barnett, C.L., E-mail: clb@ceh.ac.uk [Centre for Ecology and Hydrology, Lancaster (United Kingdom); Beresford, N.A., E-mail: nab@ceh.ac.uk [Centre for Ecology and Hydrology, Lancaster (United Kingdom); Brown, J.E., E-mail: justin.brown@nrpa.no [Norwegian Radiation Protection Authority, Oesteraas (Norway); Cerne, M., E-mail: marko.cerne@ijs.si [Jozef Stefan Institute, Ljubljana (Slovenia); Howard, B.J., E-mail: bjho@ceh.ac.uk [Centre for Ecology and Hydrology, Lancaster (United Kingdom); Kamboj, S., E-mail: skamboj@anl.gov [Argonne National Laboratory, IL (United States); Keum, D.-K., E-mail: dkkeum@kaeri.re.kr [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Smodis, B. [Jozef Stefan Institute, Ljubljana (Slovenia); Twining, J.R., E-mail: jrt@ansto.gov.au [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW, 2232 (Australia); Vandenhove, H., E-mail: hvandenh@sckcen.be [Belgian Nuclear Research Centre, Mol (Belgium); Vives i Batlle, J., E-mail: jvbatll@sckcen.be [Belgian Nuclear Research Centre, Mol (Belgium); Wood, M.D., E-mail: m.d.wood@salford.ac.uk [University of Salford, Manchester (United Kingdom); Yu, C., E-mail: cyu@anl.gov [Argonne National Laboratory, IL (United States)

    2012-06-15

    Radiological doses to terrestrial wildlife were examined in this model inter-comparison study that emphasised factors causing variability in dose estimation. The study participants used varying modelling approaches and information sources to estimate dose rates and tissue concentrations for a range of biota types exposed to soil contamination at a shallow radionuclide waste burial site in Australia. Results indicated that the dominant factor causing variation in dose rate estimates (up to three orders of magnitude on mean total dose rates) was the soil-to-organism transfer of radionuclides that included variation in transfer parameter values as well as transfer calculation methods. Additional variation was associated with other modelling factors including: how participants conceptualised and modelled the exposure configurations (two orders of magnitude); which progeny to include with the parent radionuclide (typically less than one order of magnitude); and dose calculation parameters, including radiation weighting factors and dose conversion coefficients (typically less than one order of magnitude). Probabilistic approaches to model parameterisation were used to encompass and describe variable model parameters and outcomes. The study confirms the need for continued evaluation of the underlying mechanisms governing soil-to-organism transfer of radionuclides to improve estimation of dose rates to terrestrial wildlife. The exposure pathways and configurations available in most current codes are limited when considering instances where organisms access subsurface contamination through rooting, burrowing, or using different localised waste areas as part of their habitual routines. - Highlights: Black-Right-Pointing-Pointer Assessment of modelled dose rates to terrestrial biota from radionuclides. Black-Right-Pointing-Pointer The substantial variation among current approaches is quantifiable. Black-Right-Pointing-Pointer The dominant variable was soil

  9. Confinement of a bioinspired nonheme Fe(II) complex in 2D hexagonal mesoporous silica with metal site isolation.

    Science.gov (United States)

    Jollet, Véronique; Albela, Belén; Sénéchal-David, Katell; Jégou, Pascale; Kolodziej, Emilie; Sainton, Joëlle; Bonneviot, Laurent; Banse, Frédéric

    2013-08-28

    A mixed amine pyridine polydentate Fe(II) complex was covalently tethered in hexagonal mesoporous silica of the MCM-41 type. Metal site isolation was generated using adsorbed tetramethylammonium cations acting as a patterned silanol protecting mask and trimethylsilylazane as a capping agent. Then, the amine/pyridine ligand bearing a tethering triethoxysilane group was either grafted to such a pretreated silica surface prior to or after complexation to Fe(II). These two synthetic routes, denoted as two-step and one-step, respectively, were also applied to fumed silica for comparison, except that the silanol groups were capped after tethering the metal unit. The coordination of the targeted complex was monitored using UV-visible spectrophotometry and, according to XPS, the best control was achieved inside the channels of the mesoporous silica for the two-step route. For the solid prepared according to the one-step route, tethering of the complex occurred mainly at the entrance of the channel.

  10. Concepts and data-collection techniques used in a study of the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Illinois

    Science.gov (United States)

    Healy, R.W.; DeVries, M.P.; Striegl, R.G.

    1986-01-01

    A study of water and radionuclide movement through the unsaturated zone is being conducted at the low level radioactive waste disposal site near Sheffield, Illinois. Included in the study are detailed investigations of evapotranspiration, movement of water through waste trench covers, and movement of water and radionuclides (dissolved and gaseous) from the trenches. An energy balance/Bowen ratio approach is used to determine evapotranspiration. Precipitation, net radiation, soil-heat flux, air temperature and water vapor content gradients, wind speed, and wind direction are measured. Soil water tension is measured with tensiometers which are connected to pressure transducers. Meteorological sensors and tensiometers which are connected to pressure transducers. Meteorological sensors and tensiometers are monitored with automatic data loggers. Soil moisture contents are measured through small-diameter access tubes with neutron and gamma-ray attenuation gages. Data beneath the trenches are obtained through a 130-meter-long tunnel which extends under four of the trenches. Water samples are obtained with suction lysimeters, and samples of the geologic material are obtained with core tubes. These samples are analyzed for radiometric and inorganic chemistry. Gas samples are obtained from gas piezometers and analyzed for partial pressures of major constituents, Radon-222, tritiated water vapor, and carbon-14 dioxide. (USGS)

  11. The common good accompaniment on the long road to the site selection. The report of the Commission Disposal of Highly Radioactive Waste and the site selection act; Die gemeinwohlorientierte Begleitung auf dem langen Weg zur Standortauswahl. Zum Bericht der Endlager-Kommission und zur Aenderung des StandAG

    Energy Technology Data Exchange (ETDEWEB)

    Feldmann, Ulrike

    2016-10-15

    Almost in time, on 5 July 2016 the 'Commission Disposal of High Radioactive Waste' presented its report according to the German Site Selection Act (for disposal of radioactive waste). On July 20, 2016, the act for reorganisation of the organisational structure in the field of radioactive waste disposal entered into force. The new law raises a number of institutional, organisational and fundamental questions on the way to a final repository for high-level waste. The path continues to appear rocky and long.

  12. Uptake of strontium by chamisa (Chrysothamnus nauseosus) shrub plants growing over a former liquid waste disposal site at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Fresquez, P.R.; Foxx, T.S.; Naranjo, L. Jr. [Los Alamos National Lab., NM (United States). Environment, Safety and Health Div.

    1996-06-01

    A major concern of managers at low-level waste burial site facilities is that plant roots may translocate contaminants up to the soil surface. This study investigates the uptake of strontium ({sup 90}Sr), a biologically mobile element, by chamisa (Chrysothamnus nauseosus), a deep-rooted shrub plant, growing in a former liquid waste disposal site (Solid Waste Management Unit [SWMU] 10-003[c]) at Los Alamos National Laboratory (LANL), Los Alamos, New Mexico. Surface soil samples were also collected from below (understory) and between (interspace) shrub canopies. Both chamisa plants growing over SWMU 10-003(c) contained significantly higher concentrations of {sup 90}Sr than a control plant--one plant, in particular, contained 3.35 x 10{sup 6} Bq kg{sup {minus}1} ash (9.05 x 10{sup 4} pCi g{sup {minus}1} ash) in top-growth material. Similarly, soil surface samples collected underneath and between plants contained {sup 90}Sr concentrations above background and LANL screening action levels (> 218 Bq kg{sup {minus}1} dry [5.90 pCi g{sup {minus}1} dry]); this probably occurred as a result of chamisa plant leaf fall contaminating the soil understory area followed by water and/or winds moving {sup 90}Sr to the soil interspace areas. Although some soil surface migration of {sup 90}Sr from SWMU 10-003(c) has occurred, the level of {sup 90}Sr in sediments collected downstream of SWMU 10-003(c) at the LANL boundary was still within regional (background) concentrations.

  13. Field study for disposal of solid wastes from Advanced Coal Processes: Ohio LIMB Site Assessment. Final report, April 1986--November 1994

    Energy Technology Data Exchange (ETDEWEB)

    Weinberg, A.; Coel, B.J.; Butler, R.D.

    1994-10-01

    New air pollution regulations will require cleaner, more efficient processes for converting coal to electricity, producing solid byproducts or wastes that differ from conventional pulverized-coal combustion ash. Large scale landfill test cells containing byproducts were built at 3 sites and are to be monitored over at least 3 years. This report presents results of a 3-y field test at an ash disposal site in northern Ohio; the field test used ash from a combined lime injection-multistage burner (LIMB) retrofit at the Ohio Edison Edgewater plant. The landfill test cells used LIMB ash wetted only to control dusting in one cell, and LIMB ash wetted to optimize compaction density in the other cell. Both test cells had adequate load-bearing strength for landfill stability but had continuing dimensional instability. Heaving and expansion did not affect the landfill stability but probably contributed to greater permeability to infiltrating water. Leachate migration occurred from the base, but effects on downgradient groundwater were limited to increased chloride concentration in one well. Compressive strength of landfilled ash was adequate to support equipment, although permeability was higher and strength was lower than anticipated. Average moisture content has increased to about 90% (dry weight basis). Significant water infiltration has occurred; the model suggests that as much as 20% of the incident rainfall will pass through and exit as leachate. However, impacts on shallow ground water is minimal. Results of this field study suggest that LIMB ash from combustion of moderate to high sulfur coals will perform acceptably if engineering controls are used to condition and compact the materials, reduce water influx to the landfill, and minimize leachate production. Handling of the ash did not pose serious problems during cell construction; steaming and heat buildup were moderate.

  14. Estimating Groundwater Concentrations from Mass Releases to the Aquifer at Integrated Disposal Facility and Tank Farm Locations Within the Central Plateau of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, Marcel P.; Freeman, Eugene J.

    2005-06-09

    This report summarizes groundwater-related numerical calculations that will support groundwater flow and transport analyses associated with the scheduled 2005 performance assessment of the Integrated Disposal Facility (IDF) at the Hanford Site. The report also provides potential supporting information to other ongoing Hanford Site risk analyses associated with the closure of single-shell tank farms and related actions. The IDF 2005 performance assessment analysis is using well intercept factors (WIFs), as outlined in the 2001 performance assessment of the IDF. The flow and transport analyses applied to these calculations use both a site-wide regional-scale model and a local-scale model of the area near the IDF. The regional-scale model is used to evaluate flow conditions, groundwater transport, and impacts from the IDF in the central part of the Hanford Site, at the core zone boundary around the 200 East and 200 West Areas, and along the Columbia River. The local-scale model is used to evaluate impacts from transport of contaminants to a hypothetical well 100 m downgradient from the IDF boundaries. Analyses similar to the regional-scale analysis of IDF releases are also provided at individual tank farm areas as additional information. To gain insight on how the WIF approach compares with other approaches for estimating groundwater concentrations from mass releases to the unconfined aquifer, groundwater concentrations were estimated with the WIF approach for two hypothetical release scenarios and compared with similar results using a calculational approach (the convolution approach). One release scenario evaluated with both approaches (WIF and convolution) involved a long-term source release from immobilized low-activity waste glass containing 25,550 Ci of technetium-99 near the IDF; another involved a hypothetical shorter-term release of {approx}0.7 Ci of technetium over 600 years from the S-SX tank farm area. In addition, direct simulation results for both release

  15. 40 CFR 229.3 - Transportation and disposal of vessels.

    Science.gov (United States)

    2010-07-01

    ... of these vessels shall take place in a site designated on current nautical charts for the disposal of... week, of the exact coordinates of the disposal site so that it may be marked on appropriate charts....

  16. Amoeboid motion in confined geometry

    CERN Document Server

    Wu, Hao; Hu, Wei-Fan; Farutin, Alexander; Rafaï, Salima; Lai, Ming-Chih; Peyla, Philippe; Misbah, Chaouqi

    2015-01-01

    Cells of the immune system, as well as cancer cells, migrating in confined environment of tissues undergo frequent shape changes (described as amoeboid motion) that enable them to move forward through these porous media without the assistance of adhesion sites. In other words, they perform amoeboid swimming (AS) while using extracellular matrices and cells of tissues as support. We introduce a simple model of AS in a confined geometry solved by means of 2D numerical simulations. We find that confinement promotes AS, unless being so strong that it restricts shape change amplitude. A straight AS trajectory in the channel is found to be unstable, and ample lateral excursions of the swimmer prevail. For weak confinement, these excursions are symmetric, while they become asymmetric at stronger confinement, whereby the swimmer is located closer to one of the two walls. This is a spontaneous symmetry-breaking bifurcation. We find that there exists an optimal confinement for migration. We provide numerical results as...

  17. Comments on conceptual questions concerning the clearance of wastes for disposal on a dump site during the decommissioning and dismantling of the nuclear power plant Obrigheim (KWO); Stellungnahme zu konzeptionellen Fragen der Freigabe zur Beseitigung auf einer Deponie bei Stilllegung und Abbau des Kernkraftwerks Obrigheim (KWO)

    Energy Technology Data Exchange (ETDEWEB)

    Kueppers, Christian

    2015-08-03

    The comments on conceptual questions concerning the clearance of wastes for disposal on a dump site during the decommissioning and dismantling of the nuclear power plant Obrigheim (KWO) cover the following issues: fundamentals of the 10 micro-Sv concept for clearance; specific regulations for the clearance of wastes from the dismantling of KWO for disposal on a dump site; disposal concept at shutdown and dismantling of KWO; measurements and control during clearance for disposal during shutdown and dismantling of KWO; documentation and reports.

  18. Crystalline Confinement

    CERN Document Server

    Banerjee, D; Jiang, F -J; Wiese, U -J

    2013-01-01

    We show that exotic phases arise in generalized lattice gauge theories known as quantum link models in which classical gauge fields are replaced by quantum operators. While these quantum models with discrete variables have a finite-dimensional Hilbert space per link, the continuous gauge symmetry is still exact. An efficient cluster algorithm is used to study these exotic phases. The $(2+1)$-d system is confining at zero temperature with a spontaneously broken translation symmetry. A crystalline phase exhibits confinement via multi-stranded strings between charge-anti-charge pairs. A phase transition between two distinct confined phases is weakly first order and has an emergent spontaneously broken approximate $SO(2)$ global symmetry. The low-energy physics is described by a $(2+1)$-d $\\mathbb{R}P(1)$ effective field theory, perturbed by a dangerously irrelevant $SO(2)$ breaking operator, which prevents the interpretation of the emergent pseudo-Goldstone boson as a dual photon. This model is an ideal candidat...

  19. RCRA Treatment, Disposal, and Storage Site Boundaries in Louisiana, Geographic NAD83, EPA (2002) [RCRA_TSD_LA_poly_EPA_2002)

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a shapefile of RCRA Treatment, Storage, and Disposal facility boundaries developed by PRC Environmental Management, Inc (PRC) per a Work Assignment from the...

  20. Investigation of Comparative Mosquito Breeding in Dredged Material Disposal Sites Used in the Maintenance Dredging of the Atlantic Intra-Coastal Waterway in South Carolina.

    Science.gov (United States)

    1978-01-01

    The possible use of this technique in older disposal areas, which are no longer used for disposal of dredged material, should not be ruled out however...chemistry profiles reported in this study do not rule out the possibility of chemically altering the substrate composi- tion in a manner which makes the...Bionomics and embryology of the inland floodwater mosquito . .. .’. Univ. of Illinois Press. 2 11pp. S Jeane, G. S., II, and R. E. Pine. 1975

  1. The metal-leaching and acid-neutralizing capacity of MSW incinerator ash co-disposed with MSW in landfill sites.

    Science.gov (United States)

    Lo, Huang-Mu; Liao, Yuan-Lung

    2007-04-02

    Municipal solid waste (MSW) incinerator (MSWI) bottom ash and fly ash were used as landfill cover or were co-disposed with MSW to measure their potential metal-releasing and acid-neutralizing capacity (ANC) in landfill sites. Five lysimeters (height 1.2m, diameter 0.2m), simulating landfill conditions, were used in the experiment. Four contained either bottom ash (BA) or fly ash (FA) with BA:MSW ratios of 100 and 200 g L(-1) and FA:MSW ratios of 10 and 20 g L(-1), and the fifth was the control, which contained no ash. The lysimeters were arranged so as to contain four layers, with BA or FA placed on top of MSW within each layer. Each lysimeter was recirculated with 100mL leachate using peristaltic pumps, and 100mL of the leachate was collected weekly to measure the soluble metal concentrations. The results showed that the concentrations of soluble alkali metals measured in the leachate were in the order Ca>K>Na>Mg. In addition, the concentrations of soluble alkali metals of Ca and K collected from the lysimeters containing FA were found to be higher than the concentrations from the lysimeters containing BA. The concentrations of heavy metals (Cd, Cr, Cu, Ni, and Zn) were found to be landfill. Furthermore, heavy metals and trace metals were found in concentrations, which were too low to exert inhibitory effects on anaerobic digestion, and thus they could serve as micronutrients to exert beneficial rather than detrimental effects on landfill biostabilization.

  2. DOSE ASSESSMENTS FROM THE DISPOSAL OF LOW-ACTIVITY WASTES IN RCRA-C DISPOSAL CELLS

    Science.gov (United States)

    Modeling the long-term performance of the RCRA-C disposal cell and potential doses to off-site receptors is used to derive maximum radionuclide specific concentrations in the wastes that would enable these wastes to be disposed of safely using the RCRA-C disposal cell technology....

  3. No confinement without Coulomb confinement

    CERN Document Server

    Zwanziger, D

    2003-01-01

    We compare the physical potential $V_D(R)$ of an external quark-antiquark pair in the representation $D$ of SU(N), to the color-Coulomb potential $V_{\\rm coul}(R)$ which is the instantaneous part of the 44-component of the gluon propagator in Coulomb gauge, $D_{44}(\\vx,t) = V_{\\rm coul}(|\\vx|) \\delta(t)$ + (non-instantaneous). We show that if $V_D(R)$ is confining, $\\lim_{R \\to \\infty}V_D(R) = + \\infty$, then the inequality $V_D(R) \\leq - C_D V_{\\rm coul}(R)$ holds asymptotically at large $R$, where $C_D > 0$ is the Casimir in the representation $D$. This implies that $ - V_{\\rm coul}(R)$ is also confining.

  4. Application of geographic information system as support technique in site selection for radioactive waste disposal; Exemplo da aplicacao de sistema de informacao geografica como tecnica auxiliar na selecao de local para deposito de rejeitos radioativos

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, Alberto A.; Carvalho Filho, Carlos A. de; Aquino Branco, Octavio E. de [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil)

    1997-12-01

    The present work describes an application of Geographic Information System (GIS). This technology was used to select, hypothetically, a site to disposal of radioactive wastes. In this work, the methodology is applied in an area of the Projeto Hidrogeologico do Engenho Nogueira (PROHBEN), located at Pampulha`s region, in Belo Horizonte city. The GIS used the software Idrisi. This software was used to create the Digital Elevation Model, maps of declivity, thickness of unsaturated zone and geology of the region. This database was processed using GIS`s recourses capability to create a vulnerability map of the aquifer, of the region. The site to disposal of radioactive wastes was select using the vulnerability map. (author). 4 refs., 9 figs., 4 tabs.

  5. Modeling Np and Pu transport with a surface complexation model and spatially variant sorption capacities: Implications for reactive transport modeling and performance assessments of nuclear waste disposal sites

    Science.gov (United States)

    Glynn, P.D.

    2003-01-01

    simulation conditions. Functional behaviors that cannot be fit include concentration trend reversals and radionuclide desorption spikes. Other simulation results are fit successfully but the fitted parameters (Kd and dispersivity) vary significantly depending on simulation conditions (e.g. "infiltration" vs. "cleanup" conditions). Notably, an increase in the variance of the specified sorption capacities results in a marked increase in the dispersion of the radionuclides. The results presented have implications for the simulation of radionuclide migration in performance assessments of nuclear waste-disposal sites, for the future monitoring of those sites, and more generally for modeling contaminant transport in ground-water environments. ?? 2003 Published by Elsevier Science Ltd.

  6. Social dimensions of nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Grunwald, Armin [Karlsruhe Institute of Technology, Karlsruhe (Germany). Inst. for Technology Assessment and Systems Analysis

    2015-07-01

    Nuclear waste disposal is a two-faceted challenge: a scientific and technological endeavour, on the one hand, and confronted with social dimensions, on the other. In this paper I will sketch the respective social dimensions and will give a plea for interdisciplinary research approaches. Relevant social dimensions of nuclear waste disposal are concerning safety standards, the disposal 'philosophy', the process of determining the disposal site, and the operation of a waste disposal facility. Overall, cross-cutting issues of justice, responsibility, and fairness are of major importance in all of these fields.

  7. Tritium migration studies at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, R.K.; Weaver, M.O.

    1993-05-01

    Emanation of tritium from waste containers is a commonly known phenomenon. Release of tritium from buried waste packages was anticipated; therefore, a research program was developed to study both the rate of tritium release from buried containers and subsequent migration of tritium through soil. Migration of tritium away from low-level radioactive wastes buried in Area 5 of the Nevada Test Site was studied. Four distinct disposal events were investigated. The oldest burial event studied was a 1976 emplacement of 3.5 million curies of tritium in a shallow land burial trench. In another event, 248 thousand curies of tritium was disposed of in an overpack emplaced 6 m below the floor of a low-level waste disposal pit. Measurement of the emanation rate of tritium out of 55 gallon drums to the overpack was studied, and an annual doubling of the emanation rate over a seven year period, ending in 1990, was found. In a third study, upward tritium migration in the soil, resulting in releases in the atmosphere were observed in a greater confinement disposal test. Releases of tritium to the atmosphere were found to be insignificant. The fourth event consisted of burial of 2.2 million curies of tritium in a greater confinement disposal operation. Emanation of tritium from the buried containers has been increasing since disposal, but no significant migration was found four years following backfilling of the disposal hole.

  8. 重庆市垃圾处理场的邻避效应分析%NIMBY analysis of refuse disposal sites in Chongqing

    Institute of Scientific and Technical Information of China (English)

    张向和; 彭绪亚; 刘峰; 彭莉

    2011-01-01

    In order to analyze the effecting factors about NIMBY (not in my backyard) and compare with the residents' NIMBY reactions for different refuse disposal site (RDS) , ten RDSs and their surrounding residents have been investigated and then the indices for the NIMBY effect are established. The results show that there exist five leading factors which can effect the NIMBY, involving the relative location of RDS, public consciousness, satisfaction degree of the government's behavior, trust of RDS management and satisfaction of compensation. In those factors, the last three ones play an important role in residents' supporting refuse disposal who expect to have monetary compensation with 73 000 RMB per person. What's more, the residents hope to be compensated by settlement buildings or other ways which follow the national policy. According to the study, there would be much strong NIMBY effects in the RDSs of Jiangjin District, Changshou District and Tongxin than that of Dazu County, Changshengqiao and Wanzhou District. Based on analyzing the factors, ten RDSs could be classified into three types of NIMBY, such as public-depended, RDS-depended and government-depended types,and some avoidance measures for different types also be proposed.%为了分析垃圾处理场的主导邻避因子,比较不同垃圾处理场的邻避程度,采用分层抽样法和结构式访谈,调查了重庆市10个垃圾处理场及其周围农户,并构建了邻避指数.结果表明:邻避效应的主要影响因子是垃圾场的相对位置、政府处理满意度、公众"NIMBY(not in my backyard)"意识、垃圾场信任度和赔付满意度.公众对垃圾处理支持度的主要影响因子为补偿满意度、垃圾场信任度和政府处理方式满意度,且期望货币补偿为7.3万元/人,期望补偿方式主要为安置房补偿及按国家政策补偿.江津区、主城同兴、长寿区垃圾处理场邻避效应较大,而大足县、主城长生桥、万州区垃圾处理场

  9. Special Analysis: Disposal Plan for Pit 38 at Technical Area 54, Area G

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B. [Los Alamos National Laboratory; Shuman, Rob [URS Coporation

    2012-06-26

    Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research; environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on- and off-site exposure scenarios. The assessments are based on existing site and disposal facility data, and on assumptions about future rates and methods of waste disposal. The Area G disposal facility consists of Material Disposal Area (MDA) G and the Zone 4 expansion area. To date, disposal operations have been confined to MDA G and are scheduled to continue in that region until MDA G undergoes final closure at the end of 2013. Given its impending closure, efforts have

  10. Evaluation of isotope migration: land burial. Water chemistry at commercially operated low-level radioactive waste disposal sites. Progress report No. 6, July--September 1977. [Maxey Flats, Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Colombo, P.; Weiss, A. J.; Francis, A. J.

    1978-04-01

    A survey of the Maxey Flats, Kentucky, low-level radioactive waste disposal site was conducted to obtain an overview of the radioactivity in the trench waters for the purpose of selecting specific trenches for comprehensive study. Water samples collected from trenches and wells were analyzed for specific conductance, pH, temperature, dissolved organic carbon, tritium, gross alpha, gross beta, and gamma radioactivities. The results indicate that there are large differences in the composition of trench waters at the site. Several trenches, that represent extreme and average values of the major parameters measured, have been tentatively selected for further study. 10 fig, 6 tables.

  11. Real-time 4D ERT monitoring of river water intrusion into a former nuclear disposal site using a transient warping-mesh water table boundary (Invited)

    Science.gov (United States)

    Johnson, T.; Hammond, G. E.; Versteeg, R. J.; Zachara, J. M.

    2013-12-01

    The Hanford 300 Area, located adjacent to the Columbia River in south-central Washington, USA, is the site of former research and uranium fuel rod fabrication facilities. Waste disposal practices at site included discharging between 33 and 59 metric tons of uranium over a 40 year period into shallow infiltration galleries, resulting in persistent uranium contamination within the vadose and saturated zones. Uranium transport from the vadose zone to the saturated zone is intimately linked with water table fluctuations and river water intrusion driven by upstream dam operations. As river stage increases, the water table rises into the vadose zone and mobilizes contaminated pore water. At the same time, river water moves inland into the aquifer, and river water chemistry facilitates further mobilization by enabling uranium desorption from contaminated sediments. As river stage decreases, flow moves toward the river, ultimately discharging contaminated water at the river bed. River water specific conductance at the 300 Area varies around 0.018 S/m whereas groundwater specific conductance varies around 0.043 S/m. This contrast provides the opportunity to monitor groundwater/river water interaction by imaging changes in bulk conductivity within the saturated zone using time-lapse electrical resistivity tomography. Previous efforts have demonstrated this capability, but have also shown that disconnecting regularization constraints at the water table is critical for obtaining meaningful time-lapse images. Because the water table moves with time, the regularization constraints must also be transient to accommodate the water table boundary. This was previously accomplished with 2D time-lapse ERT imaging by using a finely discretized computational mesh within the water table interval, enabling a relatively smooth water table to be defined without modifying the mesh. However, in 3D this approach requires a computational mesh with an untenable number of elements. In order to

  12. Nuclear Waste Disposal Sites, The data layer can be used as a guide for the Federal On Scene Coordinator (FOSC), the Louisiana Oil Spill Coordinator's Office, the Regional Response Team VI (RRT 6), and oil spill response organizations in the event of an oil spill emergency., Published in 2000, 1:24000 (1in=2000ft) scale, Louisiana State University.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Nuclear Waste Disposal Sites dataset, published at 1:24000 (1in=2000ft) scale as of 2000. It is described as 'The data layer can be used as a guide for the...

  13. Sewerage Sludge Disposal and Application Sites, NBC Sewer Overflows; c07uso97; Combined sewer overflow and waste water discharge points managed by the Narragansett bay commission - NBC - in Providence county RI, Published in 1996, 1:4800 (1in=400ft) scale, State of Rhode Island and Providence Plantations.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Sewerage Sludge Disposal and Application Sites dataset, published at 1:4800 (1in=400ft) scale, was produced all or in part from Hardcopy Maps information as of...

  14. Puget Sound Dredged Disposal Analysis (PSDDA). Unconfined, Open-Water Disposal Sites for Dredged Material. Phase 1 (Central Puget Sound). National Environmental Policy Act (NEPA)/State Environmental Policy Act (SEPA)

    Science.gov (United States)

    1988-06-01

    is approximately 350 feet. This area has the lowest bottom currents of any site investigated, but proximity of proposed aquaculture facilities, along...1. Navigation activities 2. Recreational uses 3. Cultural sites 4. Aquaculture facilities 5. Utilities 6. Scientific study areas 7. Point pollution...highest in the spring (10 mg/l) and lowest in the fall (6.2 mg/l). Dissolved oxygen supersaturation is frequent during the time of maximum phytoplankton

  15. Notifications Dated October 2, 2014 Submitted by We Energies to Dispose of Polychlorinated Biphenyl Remediation Waste

    Science.gov (United States)

    Disposal Notifications Dated October 2, 2014 for We Energies and the Utility Solid Waste Group Members’ Risk-Based Approvals to Dispose of Polychlorinated Biphenyl Remediation Waste at the Waste Management Disposal Sites in Menomonee Falls and Franklin, WI

  16. Movement of a tritium plume in shallow groundwater at a legacy low-level radioactive waste disposal site in eastern Australia.

    Science.gov (United States)

    Hughes, C E; Cendón, D I; Harrison, J J; Hankin, S I; Johansen, M P; Payne, T E; Vine, M; Collins, R N; Hoffmann, E L; Loosz, T

    2011-10-01

    Between 1960 and 1968 low-level radioactive waste was buried in a series of shallow trenches near the Lucas Heights facility, south of Sydney, Australia. Groundwater monitoring carried out since the mid 1970s indicates that with the exception of tritium, no radioactivity above typical background levels has been detected outside the immediate vicinity of the trenches. The maximum tritium level detected in ground water was 390 kBq/L and the median value was 5400 Bq/L, decay corrected to the time of disposal. Since 1968, a plume of tritiated water has migrated from the disposal trenches and extends at least 100 m from the source area. Tritium in rainfall is negligible, however leachate from an adjacent and fill represents a significant additional tritium source. Study data indicate variation in concentration levels and plume distribution in response to wet and dry climatic periods and have been used to determine pathways for tritium migration through the subsurface.

  17. Crushing leads to waste disposal savings for FUSRAP

    Energy Technology Data Exchange (ETDEWEB)

    Darby, J. [Department of Energy, Oak Ridge, TN (United States)

    1997-02-01

    In this article the author discusses the application of a rock crusher as a means of implementing cost savings in the remediation of FUSRAP sites. Transportation and offsite disposal costs are at present the biggest cost items in the remediation of FUSRAP sites. If these debris disposal problems can be handled in different manners, then remediation savings are available. Crushing can result in the ability to handle some wastes as soil disposal problems, which have different disposal regulations, thereby permitting cost savings.

  18. Magnetic confinement

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo (ed.)

    2005-07-01

    The Frascati Tokamak Upgrade (FTU) is a compact, high-magnetic-field tokamak capable of operating at density and magnetic field values similar to, or even encompassing, those of International Thermonuclear Experimental Reactor (ITER) and therefore provides a unique opportunity to explore physics issues that are directly relevant to ITER. During 2004 the experimental activities were focussed on fully exploiting the lower hybrid system (for generating and controlling the plasma current) and the electron cyclotron heating system (joint experiment with the Institute of Plasma Physics of the National Research Council, Milan). With all four gyrotrons in operation, full electron cyclotron power was achieved up to a record level of 1.5 MW. By simultaneously injecting lower hybrid waves, to tailor the plasma current radial profile, and electron cyclotron waves, to heat the plasma centre, good confinement regimes with internal transport barriers were obtained at the highest plasma density values ever achieved for this operation regime (n {approx}1.5X10{sup 20}m{sup -3}). Specific studies were devoted to optimising the coupling of lower hybrid waves to the plasma (by real-time control of the plasma position) and to generating current by electron cyclotron current drive. The new scanning CO{sub 2} interferometer (developed by the Reversed Field Experiment Consortium) for high spatial and time resolution (1 cm/50 {mu}s) density profile measurements was extensively used. The Thomson scattering diagnostic was upgraded and enabled observation of scattered signals associated with the Confinement background plasma dynamics. As for theoretical studies on the dynamics of turbulence in plasmas, the transition from Bohm-like scaling to gyro-Bohm scaling of the local plasma diffusivity was demonstrated on the basis of a generalised four wave model (joint collaboration with Princeton Plasma Physics Laboratory and the University of California at Irvine). The transition from weak to strong

  19. Tank Waste Disposal Program redefinition

    Energy Technology Data Exchange (ETDEWEB)

    Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H. [Westinghouse Hanford Co., Richland, WA (United States); Holton, L.K.; Hunter, V.L.; Triplett, M.B. [Pacific Northwest Lab., Richland, WA (United States)

    1991-10-01

    The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

  20. Hazardous Waste Land Disposal Facility Assessment. Volume 1

    Science.gov (United States)

    1988-09-01

    Facilities ( DALF ) at RVA" (USATHANA, 1984) provided the basis for the volume estimates for siting a disposal facility as discussed in Appendix 1.3. The... DALF also addressed on-site disposal options in addition to other technologies. This study supported the on-site disposal option by stating that a...impermeable bedrock do not exist at RMA. The DALF , drawing on the conclusions of the earlier WES 1983 report, recoumended a site in the northeast quarter of

  1. Radioactive characterization of leachates and efflorescences in the neighbouring areas of a phosphogypsum disposal site as a preliminary step before its restoration.

    Science.gov (United States)

    Gázquez, M J; Mantero, J; Mosqueda, F; Bolívar, J P; García-Tenorio, R

    2014-11-01

    After the recent closure of certain phosphoric acid plants located in the South-West of Spain, it has been decided to restore a big extension (more than six hundred hectares) of salt-marshes, where some million tonnes of phosphogypsum (PG), the main by-product generated by these plants, had been disposed of. This PG is characterized by its content of high activity concentrations of several radionuclides from the uranium series, mainly (226)Ra, (210)Pb, and (210)Po and, to a lesser extent, U-isotopes. The PG disposal area can be considered as a potential source of radionuclides into their nearby environment, through the waters which percolate from them and through the efflorescences formed in their surroundings. For this reason, a detailed radioactive characterization of the mentioned waters and efflorescences has been considered essential for a proper planning of the restoration tasks to be applied in the near future in the zone. To this end, U-isotopes, (234)Th, (230)Th, (226)Ra, (210)Pb and (210)Po activity concentrations have been determined by applying both alpha-particle and gamma-ray spectrometric techniques to selected water and efflorescence aliquots collected in the area. The analysis of the obtained results has enabled to obtain information about the geochemical behaviour in the area of the different radionuclides analyzed; and the conclusion to be drawn that, in the restoration plan under preparation, both the prohibition of outflowing waters from the disposal area to the neighbouring salt-marshes, and the removal of all the efflorescences now disseminated in their surroundings are essential.

  2. Impact of corrosion-derived iron on the bentonite buffer within the KBS-3H disposal concept. The Olkiluoto site as case study

    Energy Technology Data Exchange (ETDEWEB)

    Wersin, Paul (National Cooperative for the Disposal of Radioactive Waste, Nagra, Wettingen (Switzerland)); Birgersson, Martin; Olsson, Siv; Karnland, Ola (Clay Technology AB, Lund (Sweden)); Snellman, Margit (Saanio and Riekkola Oy, Helsinki (Finland))

    2008-05-15

    Steel components are unstable in EBS environments. They will corrode to fairly insoluble corrosion products, such as magnetite, and also react with the smectitic matrix of the bentonite buffer. In this study, the impact of reduced iron on the buffer's stability has been assessed within the framework of the KBS-H concept. Our work includes two parts. In the first part, available data from experimental and modelling studies have been compiled and interpreted. In the second part, a relatively simple geochemical modelling exercise on the iron-bentonite interaction in the current KBS-3H disposal system has been performed using Olkiluoto as test case. The iron in this case stems from the perforated supercontainer steel shell foreseen to be emplaced around the buffer material. The iron-bentonite interaction under reducing conditions may involve different processes including sorption, redox and dissolution/precipitation reactions, the details of which are not yet understood. One process to consider is the sorption of corrosion-derived Fe(II). This process is fast and leads to strong binding of Fe(II) at the smectite surface. Whether this sorption reaction is accompanied by a redox and surface precipitation reaction is presently not clear. A further process to consider under very reducing conditions is the reduction of structural Fe(III) in the clay which may destabilise the montmorillonite structure. The process of greatest relevance for the buffer's performance is montmorillonite transformation in contact with reduced iron. This process is very slow and experimentally difficult to investigate. Current data suggest that the transformation process may either lead to a Fe-rich smectite (e.g. saponite) or to a non-swelling clay (berthierine or chlorite). In addition, cementation due to precipitation of iron corrosion products or of SiO{sub 2} resulting from montmorillonite transformation may occur. Physical properties of the buffer may in principle be affected by

  3. Impact of corrosion-derived iron on the bentonite buffer within the KBS-3H disposal concept. The Olkiluoto site as case study

    Energy Technology Data Exchange (ETDEWEB)

    Wersin, Paul (National Cooperative for the Disposal of Radioactive Waste, Nagra, Wettingen (Switzerland)); Birgersson, Martin; Olsson, Siv; Karnland, Ola (Clay Technology AB, Lund (Sweden)); Snellman, Margit (Saanio and Riekkola Oy, Helsinki (Finland))

    2008-05-15

    Steel components are unstable in EBS environments. They will corrode to fairly insoluble corrosion products, such as magnetite, and also react with the smectitic matrix of the bentonite buffer. In this study, the impact of reduced iron on the buffer's stability has been assessed within the framework of the KBS-H concept. Our work includes two parts. In the first part, available data from experimental and modelling studies have been compiled and interpreted. In the second part, a relatively simple geochemical modelling exercise on the iron-bentonite interaction in the current KBS-3H disposal system has been performed using Olkiluoto as test case. The iron in this case stems from the perforated supercontainer steel shell foreseen to be emplaced around the buffer material. The iron-bentonite interaction under reducing conditions may involve different processes including sorption, redox and dissolution/precipitation reactions, the details of which are not yet understood. One process to consider is the sorption of corrosion-derived Fe(II). This process is fast and leads to strong binding of Fe(II) at the smectite surface. Whether this sorption reaction is accompanied by a redox and surface precipitation reaction is presently not clear. A further process to consider under very reducing conditions is the reduction of structural Fe(III) in the clay which may destabilise the montmorillonite structure. The process of greatest relevance for the buffer's performance is montmorillonite transformation in contact with reduced iron. This process is very slow and experimentally difficult to investigate. Current data suggest that the transformation process may either lead to a Fe-rich smectite (e.g. saponite) or to a non-swelling clay (berthierine or chlorite). In addition, cementation due to precipitation of iron corrosion products or of SiO{sub 2} resulting from montmorillonite transformation may occur. Physical properties of the buffer may in principle be affected by

  4. Influence of geochemical processes on transport in porous medium; application to the clogging of confinement barriers in a geological waste disposal; Influence des processus geochimiques sur le transport en milieu poreux; application au colmatage en barrieres de confinement potentielles dans un stockage en formation geologique

    Energy Technology Data Exchange (ETDEWEB)

    Lagneau, V

    2002-07-01

    Three research orientations are currently followed for the future of radioactive wastes. Disposal in deep geological formations is one of these options. The package and the successive barriers are attacked by the in-situ water and start interacting. These reactions lead to modifications of the mineralogical composition of the materials and of their macroscopic properties. While the coupling between transport and geochemistry is widely studied, the feedback of porosity changes is usually neglected. Yet, studying different possible interfaces of a repository reveals that large modifications of porosity are likely to occur. This work, performed at the Ecole des Mines de Paris and Commissariat a l'Energie Atomique, aimed at investigating the effective consequences of taking porosity changes into account in coupled geochemistry-transport models. A simplified theoretic problem was addressed. It highlighted the difficulties of introducing porosity changes. In particular, it pointed out the effect of the several macroscopic relations binding porosity to transport and chemistry. Separately, two series of experiments, on very simple geochemical systems, gave concrete information on clogging systems. Following these results, porosity changes and their feedback on chemistry and transport were inserted in the coupled code HYTEC at the Ecole des Mines de Paris. Complex issues, related to the engineered barrier, were then addressed (concrete-clay interaction). New effects were found, including a decrease in the flux of dissolved species, due to the partial clogging at the interface, a slow down of reacting fronts; some reactions were even found to change directions. (author)

  5. Biotic, temporal and spatial variability of tritium concentrations in transpirate samples collected in the vicinity of a near-surface low-level nuclear waste disposal site and nearby research reactor.

    Science.gov (United States)

    Twining, J R; Hughes, C E; Harrison, J J; Hankin, S; Crawford, J; Johansen, M; Dyer, L

    2011-06-01

    The results of a 21 month sampling program measuring tritium in tree transpirate with respect to local sources are reported. The aim was to assess the potential of tree transpirate to indicate the presence of sub-surface seepage plumes. Transpirate gathered from trees near low-level nuclear waste disposal trenches contained activity concentrations of (3)H that were significantly higher (up to ∼700 Bq L(-1)) than local background levels (0-10 Bq L(-1)). The effects of the waste source declined rapidly with distance to be at background levels within 10s of metres. A research reactor 1.6 km south of the site contributed significant (p nuclear waste site.

  6. 30 CFR 816.89 - Disposal of noncoal mine wastes.

    Science.gov (United States)

    2010-07-01

    ...-approved solid waste disposal area. Disposal sites in the permit area shall be designed and constructed to... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of noncoal mine wastes. 816.89 Section 816.89 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE...

  7. 30 CFR 817.89 - Disposal of noncoal mine wastes.

    Science.gov (United States)

    2010-07-01

    ...-approved solid waste disposal area. Disposal sites in the permit area shall be designed and constructed to... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of noncoal mine wastes. 817.89 Section 817.89 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE...

  8. Treated Effluent Disposal Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Treated non-hazardous and non-radioactive liquid wastes are collected and then disposed of through the systems at the Treated Effluent Disposal Facility (TEDF). More...

  9. Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. III. Molecules with partial charges at bulk phases, confined geometries and interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ghobadi, Ahmadreza F.; Elliott, J. Richard, E-mail: elliot1@uakron.edu [Department of Chemical and Biomolecular Engineering, The University of Akron, Akron Ohio 44325 (United States)

    2014-09-07

    In Paper I [A. F. Ghobadi and J. R. Elliott, J. Chem. Phys. 139(23), 234104 (2013)], we showed that how a third-order Weeks–Chandler–Anderson (WCA) Thermodynamic Perturbation Theory and molecular simulation can be integrated to characterize the repulsive and dispersive contributions to the Helmholtz free energy for realistic molecular conformations. To this end, we focused on n-alkanes to develop a theory for fused and soft chains. In Paper II [A. F. Ghobadi and J. R. Elliott, J. Chem. Phys. 141(2), 024708 (2014)], we adapted the classical Density Functional Theory and studied the microstructure of the realistic molecular fluids in confined geometries and vapor-liquid interfaces. We demonstrated that a detailed consistency between molecular simulation and theory can be achieved for both bulk and inhomogeneous phases. In this paper, we extend the methodology to molecules with partial charges such as carbon dioxide, water, 1-alkanols, nitriles, and ethers. We show that the electrostatic interactions can be captured via an effective association potential in the framework of Statistical Associating Fluid Theory (SAFT). Implementation of the resulting association contribution in assessing the properties of these molecules at confined geometries and interfaces presents satisfactory agreement with molecular simulation and experimental data. For example, the predicted surface tension deviates less than 4% comparing to full potential simulations. Also, the theory, referred to as SAFT-γ WCA, is able to reproduce the specific orientation of hydrophilic head and hydrophobic tail of 1-alkanols at the vapor-liquid interface of water.

  10. Location Allocation of Recycling, Storage and Disposal Sites for Urban Construction Wastes%城市建筑垃圾资源化调蓄处置场选址

    Institute of Scientific and Technical Information of China (English)

    罗丽颖

    2016-01-01

    对城市建筑垃圾处理的现状和流程进行了分析,构建了城市建筑垃圾资源化调蓄处置场选址模型,并以武汉市为例,采用Lingo软件进行编程,求解出以费用最低为目标函数的模型结果,验证了模型的实用性,可为政府和企业提供一定的参考。%In this paper, we analyzed the current status and process of the disposal of urban construction wastes, then built the location model for the recycling, storage and disposal site for the urban construction wastes, and then in the case of Wuhan, used the Lingo program to solve the model which aimed at cost minimization which verified the practicality of the model.

  11. Future intrusion of oxygenated glacial meltwaters into the Fennoscandian shield: a possibility to consider in performance assessments for nuclear-waste disposal sites?: Chapter 6

    Science.gov (United States)

    Glynn, Pierre

    2008-01-01

    Provost et al. (1998) and Glynn and Voss (1999; also published in Glynn et al., 1999) considered the possibility that during future glaciations, oxygenated glacial meltwaters from two- to three-kilometer thick ice sheets could potentially intrude to the 500 m depth of planned nuclear-waste repositories. This possibility has been of concern because of potential negative effects on the stability of the repository engineered environment, and because of the potential mobilization of radionuclides should the oxygenated waters come into contact with the radioactive waste. The above reports argued that given the current state of knowledge, it was hard to discount the possibility that oxygenated waters could penetrate to repository level depth. The reports also suggested that oxidizing conditions might be present in the fractured rock environment for significant amounts of time, on the order of thousands to tens of thousands of years. In some earlier reports, Swedish and Finnish governmental agencies in charge of nuclear-waste disposal had considered the possibility that oxygenated meltwaters might intrude to the repository depth (SKI: 1992; Martinerie et al, 1992; Ahonen and Vieno, 1994). Subsequent to the publication of Provost et al. (1998), Glynn et al. (1999) and Glynn and Voss (1999), the Swedish Nuclear Fuel and Waste Handling Company (SKB) commissioned efforts to examine more thoroughly the possibilities that oxygenated meltwaters might occur under ice-sheet conditions and intrude to the repository depth.

  12. Chemical Clarification Methods for Confined Dredged Material Disposal.

    Science.gov (United States)

    1983-07-01

    SCHEDULE 16. DISTRIBUTION STATEMENT (of this Report) Approvedl for publico release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the...136. Salinity. The salinity of the sediment water and the bottom water used to suspend and transport the dredged material must be mea- sured or

  13. Archaeological mounds as analogs of engineered covers for waste disposal sites: Literature review and progress report. [Appendix contains bibliography and data on archaeological mounds

    Energy Technology Data Exchange (ETDEWEB)

    Chatters, J C; Gard, H A

    1991-09-01

    Closure caps for low-level radioactive waste disposal facilities are typically designed as layered earthen structures, the composition of which is intended to prevent the infiltration of water and the intrusion of the public into waste forms. Federal regulations require that closure caps perform these functions well enough that minimum exposure guidelines will be met for at least 500 years. Short-term experimentation cannot mimic the conditions that will affect closure caps on the scale of centuries, and therefore cannot provide data on the performance of cap designs over long periods of time. Archaeological mounds hundreds to thousands of years old which are closely analogous to closure caps in form, construction details, and intent can be studied to obtain the necessary understanding of design performance. Pacific Northwest Laboratory conducted a review and analysis of archaeological literature on ancient human-made mounds to determine the quality and potential applicability of this information base to assessments of waste facility design performance. A bibliography of over 200 English-language references was assembled on mound structures from the Americas, Europe, and Asia. A sample of these texts was read for data on variables including environmental and geographic setting, condition, design features, construction. Detailed information was obtained on all variables except those relating to physical and hydrological characteristics of the mound matrix, which few texts presented. It is concluded that an extensive amount of literature and data are available on structures closely analogous to closure caps and that this information is a valuable source of data on the long-term performance of mounded structures. Additional study is recommended, including an expanded analysis of design features reported in the literature and field studies of the physical and hydraulic characteristics of different mound designs. 23 refs., 10 figs., 12 tabs.

  14. Total System Performance Assessment - Analyses for Disposal of Commercial and DOE Waste Inventories at Yucca Mountain - Input to Final Environmental Impact Statement and Site Suitability Evaluation, Rev. 00

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2001-09-17

    This Letter Report presents the results of calculations to assess long-term performance of commercial spent nuclear fuel (CSNF), U.S. Department of Energy (DOE) spent nuclear fuel (DSNF), high-level radioactive waste (HLW), and Greater Than Class C (GTCC) radioactive waste and DOE Special Performance Assessment Required (SPAR) radioactive waste at the potential Yucca Mountain repository in Nye County Nevada with respect to the 10,000-year performance period specified in 40 CFR Part 197.30 (66 FR 32074 [DIRS 155216], p. 32134) with regard to radiation-protection standards. The EPA Final Rule 40 CFR Part 197 has three separate standards, individual-protection, human-intrusion, and groundwater-protection standards, all with a compliance timeframe of 10,000 years. These calculations evaluate the dose to receptors for each of these standards. Further, this Letter Report includes the results of simulations to the 1,000,000-year performance period described in 40 CFR Part 197.35 (66 FR 32074 [DIRS 155216], p. 32135) which calls for the calculation of the peak dose to the Reasonably Maximally Exposed Individual (RMEI) that would occur after 10,000 years and within the period of geological stability. In accordance with TSPA-SR the ''period of geologic stability'' is from zero to 1,000,000 years after repository closure. The calculations also present the 5th and 95th percentiles, and the mean and median of the set of probabilistic simulations used to evaluate various disposal scenarios.

  15. 300 Area process sewer piping upgrade and 300 Area treated effluent disposal facility discharge to the City of Richland Sewage System, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The U.S. Department of Energy (DOE) is proposing to upgrade the existing 300 Area Process Sewer System by constructing and operating a new process sewer collection system that would discharge to the 300 Area Treated Effluent Disposal Facility. The DOE is also considering the construction of a tie-line from the TEDF to the 300 Area Sanitary Sewer for discharging the process wastewater to the City of Richland Sewage System. The proposed action is needed because the integrity of the old piping in the existing 300 Area Process Sewer System is questionable and effluents might be entering the soil column from leaking pipes. In addition, the DOE has identified a need to reduce anticipated operating costs at the new TEDF. The 300 Area Process Sewer Piping Upgrade (Project L-070) is estimated to cost approximately $9.9 million. The proposed work would involve the construction and operation of a new process sewer collection system. The new system would discharge the effluents to a collection sump and lift station for the TEDF. The TEDF is designed to treat and discharge the process effluent to the Columbia River. The process waste liquid effluent is currently well below the DOE requirements for radiological secondary containment and is not considered a RCRA hazardous waste or a State of Washington Hazardous Waste Management Act dangerous waste. A National Pollutant Discharge Elimination, System (NPDES) permit has been obtained from the U.S. Environmental Protection Agency for discharge to the Columbia River. The proposed action would upgrade the existing 300 Area Process Sewer System by the construction and operation of a new combined gravity, vacuum, and pressurized process sewer collection system consisting of vacuum collection sumps, pressure pump stations, and buried polyvinyl chloride or similar pipe. Two buildings would also be built to house a main collection station and a satellite collection station.

  16. ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Stephen; Welling, Steven; Bell, Simon

    2003-02-27

    The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information.

  17. Assessment of Preferred Depleted Uranium Disposal Forms

    Energy Technology Data Exchange (ETDEWEB)

    Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

    2000-06-01

    The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

  18. Deep Borehole Disposal Safety Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Freeze, Geoffrey A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Stein, Emily [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Price, Laura L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); MacKinnon, Robert J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Tillman, Jack Bruce [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    This report presents a preliminary safety analysis for the deep borehole disposal (DBD) concept, using a safety case framework. A safety case is an integrated collection of qualitative and quantitative arguments, evidence, and analyses that substantiate the safety, and the level of confidence in the safety, of a geologic repository. This safety case framework for DBD follows the outline of the elements of a safety case, and identifies the types of information that will be required to satisfy these elements. At this very preliminary phase of development, the DBD safety case focuses on the generic feasibility of the DBD concept. It is based on potential system designs, waste forms, engineering, and geologic conditions; however, no specific site or regulatory framework exists. It will progress to a site-specific safety case as the DBD concept advances into a site-specific phase, progressing through consent-based site selection and site investigation and characterization.

  19. The status of LILW disposal facility construction in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Seok; Chung, Myung-Sub; Park, Kyu-Wan [Korea Radioactive Waste Management Corporation (KRMC), 89, Bukseong-ro, Gyeongju-si,, Gyeongsangbuk-do (Korea, Republic of)

    2013-07-01

    In this paper, we discuss the experiences during the construction of the first LILW disposal facility in South Korea. In December 2005, the South Korean Government designated Gyeongju-city as a host city of Low- and Intermediate-Level Radioactive Waste(LILW) disposal site through local referendums held in regions whose local governments had applied to host disposal facility in accordance with the site selection procedures. The LILW disposal facility is being constructed in Bongilri, Yangbuk-myeon, Gyeongju. The official name of the disposal facility is called 'Wolsong Low and Intermediate Level Radioactive Waste Disposal Center (LILW Disposal Center)'. It can dispose of 800,000 drums of radioactive wastes in a site of 2,100,000 square meters. At the first stage, LILW repository of underground silo type with disposal capacity of 100,000 drums is under construction expected to be completed by June of 2014. The Wolsong Low and Intermediate Level Radioactive Waste Disposal Center consists of surface facilities and underground facilities. The surface facilities include a reception and inspection facility, an interim storage facility, a radioactive waste treatment building, and supporting facilities such as main control center, equipment and maintenance shop. The underground facilities consist of a construction tunnel for transport of construction equipment and materials, an operation tunnel for transport of radioactive waste, an entrance shaft for workers, and six silos for final disposal of radioactive waste. As of Dec. 2012, the overall project progress rate is 93.8%. (authors)

  20. Post depositional memory record of mercury in sediment near effluent disposal site of a chlor-alkali plant in Thane Creek-Mumbai Harbour, India

    Digital Repository Service at National Institute of Oceanography (India)

    Ram, A.; Rokade, M.A.; Zingde, M.D.; Borole, D.V.

    from the effluent release site for which sedimentation rate has been established, is discussed in terms of progressive removal of Hg from the effluent after mid-1970s and partial changeover of the manufacturing process from Hg cell to membrane cell...

  1. Spherical diffusion of tritium from a point of release in a uniform unsaturated soil. A deterministic model for tritium migration in an arid disposal site

    Energy Technology Data Exchange (ETDEWEB)

    Smiles, D.E.; Gardner, W.R.; Schulz, R.K. [Univ. of California, Berkeley, CA (United States). Dept. of Environmental Science, Policy and Management

    1993-10-01

    Tritium (Tr), when released as tritiated water at a point in a uniform and relatively dry soil, redistributes in both the liquid and vapor phases. The flux density of Tr in the liquid will exceed that in the vapor phase provided the water content is greater than approximately 15% of the total soil porosity. Thus Tr redistribution must be modeled recognizing transfer ``in parallel`` in both phases. The authors use the diffusion equation cast in spherical coordinates to analyze this problem in order to provide a basis for design of field experiments, and to offer observations on the long term behavior of such systems. The solution of the diffusion equation permits calculation of the evolution of profiles of Tr concentration, within and external to the sphere of released solution, assuming the initial concentration within this sphere to be uniform. The authors also predict the rate of advance of the maximum of Tr as it advances, and attenuates, in the soil. Calculations for the case of 1 million Curies of Tr diluted in 1 liter of water and released at a depth of 20 meters, and 200 meters above the water table, are demonstrated. If the soil has an initial water volume fraction of 0.06 and total porosity of 0.3 they show, for example, that at 5 meters from the point of discharge, the Tr concentration increases to a maximum in 24 years and then slowly declines. That maximum is 1 Curie/liter. The concentration in the gas phase will be 5 orders-of-magnitude less than this. At 60 meters the maximum ever reached in the liquid phase is ca 10{sup {minus}21} Ci/liter; that maximum will be achieved after 408 years. The authors discuss the effects of variation in the volume fractions of water and air originally present in the soil on the effective diffusion coefficient of Tr in soil, consider the effects of a net flux of water in the system, and identify questions to be answered to achieve safe systematic disposal of tritium in the deep unsaturated zone of desert soil.

  2. The disposal of radioactive waste on land

    Energy Technology Data Exchange (ETDEWEB)

    None

    1957-09-01

    A committee of geologists and geophysicists was established by the National Academy of Sciences-National Research Council at the request of the Atomic Energy Commission to consider the possibilities of disposing of high level radioactive wastes in quantity within the continental limits of the United States. The group was charged with assembling the existing geologic information pertinent to disposal, delineating the unanswered problems associated with the disposal schemes proposed, and point out areas of research and development meriting first attention; the committee is to serve as continuing adviser on the geological and geophysical aspects of disposal and the research and development program. The Committee with the cooperation of the Johns Hopkins University organized a conference at Princeton in September 1955. After the Princeton Conference members of the committee inspected disposal installations and made individual studies. Two years consideration of the disposal problems leads to-certain general conclusions. Wastes may be disposed of safely at many sites in the United States but, conversely, there are many large areas in which it is unlikely that disposal sites can be found, for example, the Atlantic Seaboard. Disposal in cavities mined in salt beds and salt domes is suggested as the possibility promising the most practical immediate solution of the problem. In the future the injection of large volumes of dilute liquid waste into porous rock strata at depths in excess of 5,000 feet may become feasible but means of rendering, the waste solutions compatible with the mineral and fluid components of the rock must first be developed. The main difficulties, to the injection method recognized at present are to prevent clogging of pore space as the solutions are pumped into the rock and the prediction or control of the rate and direction of movement.

  3. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents the distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For

  4. The Influence of Drainage Wells Barrier on Reducing the Amount of Major Contaminants Migrating from a Very Large Mine Tailings Disposal Site

    Directory of Open Access Journals (Sweden)

    Duda Robert

    2014-12-01

    its foreground. The efficiency of groundwater protection was determined on the basis of a new approach. In applied method the loads of characteristic and commonly recognizable compounds, i.e. salt (NaCl and gypsum (CaSO4 were calculated, instead their chemical components. The temporal and spatial variability of captured main contaminants loads as well as its causes are discussed. The paper ends with the results of efficiency analyses of the barrier and with respect to the predicted increase in contaminant concentrations in the pulp poured out to the tailings site.

  5. Annual Status Report (Fiscal Year 2012) Composite Analysis of Low-Level Waste Disposal in the Central Plateau at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W. E. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2012-12-27

    In accordance with U.S. Department of Energy (DOE) requirements in DOE O 435.1, Chg. 1,1 and as implemented by DOE/RL-2000-29, Rev. 2,2 the DOE Richland Operations Office (DOE-RL) has prepared this annual summary of the Hanford Site Composite Analysis for fiscal year (FY) 2012, as originally reported in PNNL-118003 and PNNL-11800, Addendum 14 (hereafter these reports are referred to collectively as the Composite Analysis), and to address secondary issues identified during the review of the Composite Analysis.

  6. Disposable Diapers Are OK.

    Science.gov (United States)

    Poore, Patricia

    1992-01-01

    A personal account of measuring the pros and cons of disposable diaper usage leads the author to differentiate between a garbage problem and environmental problem. Concludes the disposable diaper issue is a political and economic issue with a local environmental impact and well within our abilities to manage. (MCO)

  7. Liver histopathology of the southern watersnake, Nerodia fasciata fasciata, following chronic exposure to trace element-contaminated prey from a coal ash disposal site

    Energy Technology Data Exchange (ETDEWEB)

    Ganser, L.R.; Hopkins, W.A.; O' Neil, L.; Hasse, S.; Roe, J.H.; Sever, D.M. [St Marys College, Notre Dame, IN (USA). Dept. of Biology

    2003-03-01

    Previous studies have demonstrated the accumulation of arsenic, cadmium, selenium, strontium, and vanadium in livers of Southern Watersnakes fed fish from a coal-ash contaminated site. Our study is the first to investigate effects of trace element accumulation on cytology of snake liver. Snakes were born in the laboratory and raised for one or two years on diets consisting of varying proportions of contaminated fish. The majority (71%) of snakes fed contaminated prey did not exhibit any differences in liver histology when compared to control snakes fed an uncontaminated diet. In the remaining contaminant-exposed snakes, some aberrations were noted. The most prevalent pathology involved the proliferation of collagen fibers that resulted in narrowing or occlusion of sinusoids and increasing the mass of the intersinsuoidal parenychma. Fibrosis of the liver as a result of chronic injury has been reported previously in reptiles, but this is the first report that links such tissue damage to dietary contamination.

  8. Savannah River Site Waste Isolation Pilot Plant Disposal Program - Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221-HET

    Energy Technology Data Exchange (ETDEWEB)

    Lunsford, G.F.

    2001-01-24

    This document, along with referenced supporting documents provides a defensible and auditable record of acceptable knowledge for one of the waste streams from the FB-Line. This heterogeneous debris transuranic waste stream was generated after January 25, 1990 and before March 20, 1997. The waste was packaged in 55-gallon drums, then shipped to the transuranic waste storage facility in ''E'' area of the Savannah River Site. This acceptable knowledge report includes information relating to the facility's history, configuration, equipment, process operations and waste management practices. Information contained in this report was obtained from numerous sources including: facility safety basis documentation, historical document archives, generator and storage facility waste records and documents, and interviews with cognizant personnel.

  9. West Hackberry Strategic Petroleum Reserve site brine-disposal monitoring, Year I report. Volume II. Physical and chemical oceanography. Final report

    Energy Technology Data Exchange (ETDEWEB)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.)

    1983-02-01

    This project centers around the Strategic Petroleum Site (SPR) known as the West Hackberry salt dome which is located in southwestern Louisiana, and which is designed to store 241 million barrels of crude oil. Oil storage caverns are formed by injecting water into salt deposits, and pumping out the resulting brine. Studies described in this report were designed as follow-on studies to three months of pre-discharge characterization work, and include data collected during the first year of brine leaching operations. The objectives were to: (1) characterize the environment in terms of physical, chemical and biological attributes; (2) determine if significant adverse changes in ecosystem productivity and stability of the biological community are occurring as a result of brine discharge; and (3) determine the magnitude of any change observed. Contents of Volume II include: introduction; physical oceanography; estuarine hydrology and hydrography; analysis of discharge plume; and water and sediment quality.

  10. West Hackberry Strategic Petroleum Reserve site brine-disposal monitoring, Year I report. Volume IV. Bibliography and supporting data for physical oceanography. Final report. [421 references

    Energy Technology Data Exchange (ETDEWEB)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.)

    1983-02-01

    This project centers around the Strategic Petroleum Site (SPR) known as the West Hackberry salt dome which is located in southwestern Louisiana and which is designed to store 241 million barrels of crude oil. Oil storage caverns are formed by injecting water into salt deposits, and pumping out the resulting brine. Studies described in this report were designed as follow-on studies to three months of pre-discharge characterization work, and include data collected during the first year of brine leaching operations. The objectives were to: (1) characterize the environment in terms of physical, chemical and biological attributes; (2) determine if significant adverse changes in ecosystem productivity and stability of the biological community are occurring as a result of brine discharge; and (3) determine the magnitude of any change observed. Volume IV contains the following: bibliography; appendices for supporting data for physical oceanography, and summary of the physical oceanography along the western Louisiana coast.

  11. Geophysical investigations applied to site selection for the radioactive waste disposal; Investigacoes geofisicas aplicadas na selecao de um repositorio de rejeitos radioativos

    Energy Technology Data Exchange (ETDEWEB)

    Saad, Samir; Dornelles, Gerson; Pedrozo, Geraldo Arholdi [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    1993-07-01

    In this work the geophysical exploratory techniques and the results obtained for the selection of a candidate site for the final repository of the radioactive waste containing cesium-137 generated by the Goiania accident occurred in September 1987, are described. The studies were performed in an area of about 100 hectares where is located the present radioactive waste provisional repository. the geophysical investigations using electromagnetic methods (VLF-EM), electric drillings and surface and sub-surface radiometry allowed for the area monitoring and provided the geophysical parameters necessary for understanding the structural and stratigraphic context. Furthermore, they will provide data for the geotechnical, geochemical and hydrogeological investigations as well as for the engineering conceptual project for the repository construction. (author)

  12. 粉煤灰场复垦地肥力状况及对土壤理化性质的影响%Reclaimed Soil Fertility and Its Response to the Physical-Chemical Properties in Fly Ash Disposal Sites

    Institute of Scientific and Technical Information of China (English)

    王长垒; 严家平; 陈孝杨

    2013-01-01

    选择安徽省淮南市上窑镇粉煤灰处置场覆土复垦地为研究区域,测定覆土厚度和土壤剖面各层的容重、pH、含水量、有机质等理化性质,土壤总氮、有效磷、速效钾等养分含量,以及冬小麦抽穗期的生物量,研究粉煤灰处置场复垦土壤理化性质及其与土壤养分的相关性,不同覆土厚度复垦地冬小麦生长的差异性.结果表明,粉煤灰场复垦地土壤总氮含量约0.90 g/kg,有效磷和速效钾含量分别为12~76 mg/kg、114~135 mg/kg,土壤肥力与作物生长状况和自然农业土壤相比差异不显著;除复垦土壤厚度、容重、含水量对有效磷含量影响显著外,其余土壤养分与土壤理化性质和表土厚度的相关性不强.%The reclaimed field of fly ash disposal sites was selected as the research area in Shaoyao,Huainan.The cover soil thickness,some soil physico-chemical properties (bulk density,water content,pH and organic matter),soil nutrients (total nitrogen,available phosphorus and available potassium) and winter wheat biomass in heading stage were determined,and the correlation of the reclaimed soil physico-chemical properties and its nutrient was analyzed in fly ash disposal sites.The winter wheat growth differences were also studied under different coversoil thickness conditions.The results showed that the total nitrogen content was about 900 mg/kg in reclaimed soil of fly ash disposal sites,the content of available phosphorus and available potassium was 12~76mg/kg and 114~135 mg/kg respectively.The soil fertility and crop growth conditions were not significant difference with natural agricultural soils.The available phosphorus content and reclaimed soil bulk density,water content had a significant correlation.In addition,the response relationship between the reclaimed soil fertility and its properties,topsoil thickness was not obvious.

  13. Concept development for HLW disposal research tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Queon, S. K.; Kim, K. S.; Park, J. H.; Jeo, W. J.; Han, P. S. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    In order to dispose high-level radioactive waste in a geological formation, it is necessary to assess the safety of a disposal concept by excavating a research tunnel in the same geological formation as the host rock mass. The design concept of a research tunnel depends on the actual disposal concept, repository geometry, experiments to be carried at the tunnel, and geological conditions. In this study, analysis of the characteristics of the disposal research tunnel, which is planned to be constructed at KAERI site, calculation of the influence of basting impact on neighbor facilities, and computer simuation for mechanical stability analysis using a three-dimensional code, FLAC3D, had been carried out to develop the design concept of the research tunnel.

  14. Process performance of the pilot-scale in situ vitrification of a simulated waste disposal site at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Carter, J.G.; Koegler, S.S.; Bates, S.O.

    1988-06-01

    Process feasibility studies have been successfully performed on three developmental scales to determine the potential for applying in situ vitrification to intermediate-level (low-level) waste placed in seepage pits and trenches at Oak Ridge National Laboratory (ORNL). In the laboratory, testing was performed in crucibles containing a mixture of 50% ORNL soil and 50% limestone. In an engineering-scale test at Pacific Northwest Laboratory a /1/12/-scale simulation of an ORNL waste trench was constructed and vitrified, resulting in a waste product containing soil and limestone concentrations of 68 wt % and 32 wt %, respectively. In the pilot-scale test a /3/8/-scale simulation of the same trench was constructed and vitrified at ORNL, resulting in soil and limestone concentrations of 80% and 20%, respectively, in the waste product. Results of the three scales of testing indicate that the ORNL intermediate-level (low-level) waste sites can be successfully processed by in situ vitrification; the waste form will retain significant quantities of the cesium and strontium. Because cesium-137 and strontium-90 are the major components of the radionuclide inventory in the ORNL seepage pits and trenches, final field process decontamination factors (i.e., losses to the off-gas system relative to the waste inventory) of 1.0 E + 4 are desired to minimize activity buildup in the off-gas system. 17 refs., 34 figs., 13 tabs.

  15. Disposal of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    This report addresses the topic of the mined geologic disposal of spent nuclear fuel from Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR). Although some fuel processing options are identified, most of the information in this report relates to the isolation of spent fuel in the form it is removed from the reactor. The characteristics of the waste management system and research which relate to spent fuel isolation are discussed. The differences between spent fuel and processed HLW which impact the waste isolation system are defined and evaluated for the nature and extent of that impact. What is known and what needs to be determined about spent fuel as a waste form to design a viable waste isolation system is presented. Other waste forms and programs such as geologic exploration, site characterization and licensing which are generic to all waste forms are also discussed. R and D is being carried out to establish the technical information to develop the methods used for disposal of spent fuel. All evidence to date indicates that there is no reason, based on safety considerations, that spent fuel should not be disposed of as a waste.

  16. Granite disposal of U.S. high-level radioactive waste.

    Energy Technology Data Exchange (ETDEWEB)

    Freeze, Geoffrey A.; Mariner, Paul E.; Lee, Joon H.; Hardin, Ernest L.; Goldstein, Barry; Hansen, Francis D.; Price, Ronald H.; Lord, Anna Snider

    2011-08-01

    This report evaluates the feasibility of disposing U.S. high-level radioactive waste in granite several hundred meters below the surface of the earth. The U.S. has many granite formations with positive attributes for permanent disposal. Similar crystalline formations have been extensively studied by international programs, two of which, in Sweden and Finland, are the host rocks of submitted or imminent repository license applications. This report is enabled by the advanced work of the international community to establish functional and operational requirements for disposal of a range of waste forms in granite media. In this report we develop scoping performance analyses, based on the applicable features, events, and processes (FEPs) identified by international investigators, to support generic conclusions regarding post-closure safety. Unlike the safety analyses for disposal in salt, shale/clay, or deep boreholes, the safety analysis for a mined granite repository depends largely on waste package preservation. In crystalline rock, waste packages are preserved by the high mechanical stability of the excavations, the diffusive barrier of the buffer, and favorable chemical conditions. The buffer is preserved by low groundwater fluxes, favorable chemical conditions, backfill, and the rigid confines of the host rock. An added advantage of a mined granite repository is that waste packages would be fairly easy to retrieve, should retrievability be an important objective. The results of the safety analyses performed in this study are consistent with the results of comprehensive safety assessments performed for sites in Sweden, Finland, and Canada. They indicate that a granite repository would satisfy established safety criteria and suggest that a small number of FEPs would largely control the release and transport of radionuclides. In the event the U.S. decides to pursue a potential repository in granite, a detailed evaluation of these FEPs would be needed to inform site

  17. Uncanistered Spent Nuclear fuel Disposal Container System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    N. E. Pettit

    2001-07-13

    The Uncanistered Spent Nuclear Fuel (SNF) Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded with intact uncanistered assemblies and/or individually canistered SNF assemblies and sealed in the surface waste handling facilities, transferred to the underground through the access drifts, and emplaced in emplacement drifts. The Uncanistered SNF Disposal Container provides long-term confinement of the commercial SNF placed inside, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The Uncanistered SNF Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual SNF assembly temperatures after emplacement, limits the introduction of moderator into the disposal container during the criticality control period, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident.

  18. Electrofreezing of confined water

    NARCIS (Netherlands)

    Zangi, R; Mark, AE

    2004-01-01

    We report results from molecular dynamics simulations of the freezing transition of TIP5P water molecules confined between two parallel plates under the influence of a homogeneous external electric field, with magnitude of 5 V/nm, along the lateral direction. For water confined to a thickness of a

  19. Confinement Aquaculture. Final Report.

    Science.gov (United States)

    Delaplaine School District, AR.

    The Delaplaine Agriculture Department Confinement Project, begun in June 1988, conducted a confinement aquaculture program by comparing the growth of channel catfish raised in cages in a pond to channel catfish raised in cages in the Black River, Arkansas. The study developed technology that would decrease costs in the domestication of fish, using…

  20. Department of Energy low-level radioactive waste disposal concepts

    Energy Technology Data Exchange (ETDEWEB)

    Ozaki, C.; Page, L.; Morreale, B.; Owens, C.

    1990-01-01

    The Department of Energy (DOE) manages its low-level waste (LLW), regulated by DOE Order 5820.2A by using an overall systems approach. This systems approach provides an improved and consistent management system for all DOE LLW waste, from generation to disposal. This paper outlines six basic disposal concepts used in the systems approach, discusses issues associated with each of the concepts, and outlines both present and future disposal concepts used at six DOE sites. 3 refs., 9 figs.

  1. Dynamics in geometrical confinement

    CERN Document Server

    Kremer, Friedrich

    2014-01-01

    This book describes the dynamics of low molecular weight and polymeric molecules when they are constrained under conditions of geometrical confinement. It covers geometrical confinement in different dimensionalities: (i) in nanometer thin layers or self supporting films (1-dimensional confinement) (ii) in pores or tubes with nanometric diameters (2-dimensional confinement) (iii) as micelles embedded in matrices (3-dimensional) or as nanodroplets.The dynamics under such conditions have been a much discussed and central topic in the focus of intense worldwide research activities within the last two decades. The present book discusses how the resulting molecular mobility is influenced by the subtle counterbalance between surface effects (typically slowing down molecular dynamics through attractive guest/host interactions) and confinement effects (typically increasing the mobility). It also explains how these influences can be modified and tuned, e.g. through appropriate surface coatings, film thicknesses or pore...

  2. Low-Level Waste Disposal Alternatives Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Carlson; Kay Adler-Flitton; Roy Grant; Joan Connolly; Peggy Hinman; Charles Marcinkiewicz

    2006-09-01

    This report identifies and compares on-site and off-site disposal options for the disposal of contract-handled and remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Potential disposal options are screened for viability by waste type resulting in a short list of options for further consideration. The most crediable option are selected after systematic consideration of cost, schedule constraints, and risk. In order to holistically address the approach for low-level waste disposal, options are compiled into comprehensive disposal schemes, that is, alternative scenarios. Each alternative scenario addresses the disposal path for all low-level waste types over the period of interest. The alternative scenarios are compared and ranked using cost, risk and complexity to arrive at the recommended approach. Schedule alignment with disposal needs is addressed to ensure that all waste types are managed appropriately. The recommended alternative scenario for the disposal of low-level waste based on this analysis is to build a disposal facility at the Idaho National Laboratory Site.

  3. Russian low-level waste disposal program

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, L. [L. Lehman and Associates, Inc., Burnsville, MN (United States)

    1993-03-01

    The strategy for disposal of low-level radioactive waste in Russia differs from that employed in the US. In Russia, there are separate authorities and facilities for wastes generated by nuclear power plants, defense wastes, and hospital/small generator/research wastes. The reactor wastes and the defense wastes are generally processed onsite and disposed of either onsite, or nearby. Treating these waste streams utilizes such volume reduction techniques as compaction and incineration. The Russians also employ methods such as bitumenization, cementation, and vitrification for waste treatment before burial. Shallow land trench burial is the most commonly used technique. Hospital and research waste is centrally regulated by the Moscow Council of Deputies. Plans are made in cooperation with the Ministry of Atomic Energy. Currently the former Soviet Union has a network of low-level disposal sites located near large cities. Fifteen disposal sites are located in the Federal Republic of Russia, six are in the Ukraine, and one is located in each of the remaining 13 republics. Like the US, each republic is in charge of management of the facilities within their borders. The sites are all similarly designed, being modeled after the RADON site near Moscow.

  4. Depleted uranium storage and disposal trade study: Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Hightower, J.R.; Trabalka, J.R.

    2000-02-01

    The objectives of this study were to: identify the most desirable forms for conversion of depleted uranium hexafluoride (DUF6) for extended storage, identify the most desirable forms for conversion of DUF6 for disposal, evaluate the comparative costs for extended storage or disposal of the various forms, review benefits of the proposed plasma conversion process, estimate simplified life-cycle costs (LCCs) for five scenarios that entail either disposal or beneficial reuse, and determine whether an overall optimal form for conversion of DUF6 can be selected given current uncertainty about the endpoints (specific disposal site/technology or reuse options).

  5. BY FRUSTUM CONFINING VESSEL

    Directory of Open Access Journals (Sweden)

    Javad Khazaei

    2016-09-01

    Full Text Available Helical piles are environmentally friendly and economical deep foundations that, due to environmental considerations, are excellent additions to a variety of deep foundation alternatives available to the practitioner. Helical piles performance depends on soil properties, the pile geometry and soil-pile interaction. Helical piles can be a proper alternative in sensitive environmental sites if their bearing capacity is sufficient to support applied loads. The failure capacity of helical piles in this study was measured via an experimental research program that was carried out by Frustum Confining Vessel (FCV. FCV is a frustum chamber by approximately linear increase in vertical and lateral stresses along depth from top to bottom. Due to special geometry and applied bottom pressure, this apparatus is a proper choice to test small model piles which can simulate field stress conditions. Small scale helical piles are made with either single helix or more helixes and installed in fine grained sand with three various densities. Axial loading tests including compression and tension tests were performed to achieve pile ultimate capacity. The results indicate the helical piles behavior depends essentially on pile geometric characteristics, i.e. helix configuration and soil properties. According to the achievements, axial uplift capacity of helical model piles is about equal to usual steel model piles that have the helixes diameter. Helical pile compression bearing capacity is too sufficient to act as a medium pile, thus it can be substituted other piles in special geoenvironmental conditions. The bearing capacity also depends on spacing ratio, S/D, and helixes diameter.

  6. The confining trailing string

    Energy Technology Data Exchange (ETDEWEB)

    Kiritsis, Elias [APC, Université Paris 7, CNRS/IN2P3, CEA/IRFU, Obs. de Paris, Sorbonne Paris Cité,Bâtiment Condorcet, F-75205, Paris Cedex 13 (UMR du CNRS 7164) (France); Theory Group, Physics Department, CERN,CH-1211, Geneva 23 (Switzerland); Crete Center for Theoretical Physics, Department of Physics, University of Crete,71003 Heraklion (Greece); Mazzanti, Liuba [Institute for Theoretical Physics and Spinoza Institute, Utrecht University,3508 TD Utrecht (Netherlands); Nitti, Francesco [APC, Université Paris 7, CNRS/IN2P3, CEA/IRFU, Obs. de Paris, Sorbonne Paris Cité,Bâtiment Condorcet, F-75205, Paris Cedex 13 (UMR du CNRS 7164) (France)

    2014-02-19

    We extend the holographic trailing string picture of a heavy quark to the case of a bulk geometry dual to a confining gauge theory. We compute the classical trailing confining string solution for a static as well as a uniformly moving quark. The trailing string is infinitely extended and approaches a confining horizon, situated at a critical value of the radial coordinate, along one of the space-time directions, breaking boundary rotational invariance. We compute the equations for the fluctuations around the classical solutions, which are used to obtain boundary force correlators controlling the Langevin dynamics of the quark. The imaginary part of the correlators has a non-trivial low-frequency limit, which gives rise to a viscous friction coefficient induced by the confining vacuum. The vacuum correlators are used to define finite-temperature dressed Langevin correlators with an appropriate high-frequency behavior.

  7. The confining trailing string

    CERN Document Server

    Kiritsis, E; Nitti, F

    2014-01-01

    We extend the holographic trailing string picture of a heavy quark to the case of a bulk geometry dual to a confining gauge theory. We compute the classical trailing confining string solution for a static as well as a uniformly moving quark. The trailing string is infinitely extended and approaches a confining horizon, situated at a critical value of the radial coordinate, along one of the space-time directions, breaking boundary rotational invariance. We compute the equations for the fluctuations around the classical solutions, which are used to obtain boundary force correlators controlling the Langevin dynamics of the quark. The imaginary part of the correlators has a non-trivial low-frequency limit, which gives rise to a viscous friction coefficient induced by the confining vacuum. The vacuum correlators are used to define finite-temperature dressed Langevin correlators with an appropriate high-frequency behavior.

  8. Motion of Confined Particles

    CERN Document Server

    Miller, David E

    2016-01-01

    We carry out numerical evaluations of the motion of classical particles in Minkowski Space $\\mathbb{M}^{4}$ which are confined to the inside of a bag. In particular, we analyze the structure of the paths evolving from the breaking of the dilatation symmetry, the conformal symmetry and the combination of both together. The confining forces arise directly from the corresponding nonconserved currents. We demonstrate in our evaluations that these particles under certain initial conditions move toward the interior of the bag.

  9. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-06-17

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage at the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.

  10. Imaging the risks - risking the image: Social impact assessment of the final disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Avolahti, J.; Vira, J. [Posiva Oy, Helsinki (Finland)

    1999-12-01

    who were there on the basis of their work position. Even if the participation was restricted, the interaction programme produced a clear list of priorities for social impact assessment. Of paramount interest on all candidate sites was the study of the impact on local image. Based on a variety of different study approaches different aspects of the possible impact on image were proposed and assessed. The picture obtained can be used to understand the various interrelationships and constituents of the image, but it hardly gives any final explanation of how the image is formed or how precisely the image would look like in reality in future. Even so, the experience obtained from the studies conducted and the discussions undertaken in the context of the EIA strongly suggests that the attempts to confine the nuclear waste issue in discussion of associated safety risks may not bring along real progress in solving the issue. What people think and feel about the nuclear waste disposal is not reducible to a single number of estimated risk.

  11. Report on ''questions of site selection''; Gutachten ''Fragen der Standortauswahl''

    Energy Technology Data Exchange (ETDEWEB)

    Alt, Stefan; Kallenbach-Herbert, Beate; Neles, Julia

    2016-06-03

    The report on radioactive waste site selection questions covers the following issues: excluded options: disposal in space, Antarctic, Greenland or oceans, surface storage without final deep geologic repository; possible alternatives: final disposal in deep boreholes, long-term interim storage, transmutation; central confinement function for radioactive wastes - geologic and/or technical barriers? Final repository monitoring: geo-scientific exclusion criteria, geo-scientific minimum requirements, geo-scientific decision criteria; geo-scientific data: information status and handling of regions with non-sufficient geo-scientific data; scientific planning criteria: basis for definitions concerning the content, procedural aspects; analysis of the socio-economic potential; requirements for the disposal of further radioactive wastes; requirements concerning the containers for final disposal.

  12. Waste disposal package

    Science.gov (United States)

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  13. Nanomaterial disposal by incineration

    Science.gov (United States)

    As nanotechnology-based products enter into widespread use, nanomaterials will end up in disposal waste streams that are ultimately discharged to the environment. One possible end-of-life scenario is incineration. This review attempts to ascertain the potential pathways by which ...

  14. Simulations of Enhanced Confinement

    Science.gov (United States)

    Dorland, W.; Kotschenreuther, M.; Liu, Q. P.; Jones, C. S.; Beer, M. A.; Hammett, G. W.

    1996-11-01

    Most existing tokamaks routinely achieve enhanced confinement regimes. Designs for new, larger tokamaks therefore are typically predicated upon reliable enhanced confinement performance. However, most enhanced confinement regimes rely (to some degree) upon sheared E×B flows to stabilize the turbulence that otherwise limits the confinement. For example, the pedestal H-mode transport barrier is typically attributed to shear stabilization [Biglari, Diamond and Terry, Phys. Fl. B, 2 1 (1990)]. Unfortunately, it is easily shown that sheared E×B stabilization of microinstabilities such as the ITG mode does not scale favorably with machine size. Here, using nonlinear gyrofluid simulations in general geometry, we attempt to quantify the confinement enhancement that can be expected from velocity shear stabilization for conventional reactor plasmas. We also consider other microinstability stabilization mechanisms(See related presentations by Beer, Kotschenreuther, Manickam, and Ramos, this conference.) (strong density peaking, Shafranov shift stabilization, dots) and unconventional reactor configurations.^2 Experimental datasets from JET, DIII-D, C-Mod and TFTR are analyzed, and ITER operation is considered.

  15. Standardization of DOE Disposal Facilities Waste Acceptance Process

    Energy Technology Data Exchange (ETDEWEB)

    SHRADER, T.; MACBETH, P.

    2002-01-01

    On February 25, 2000, the US. Department of Energy (DOE) issued the Record of Decision (ROD) for the Waste Management Programmatic Environmental Impact Statement (WM PEIS) for low-level and mixed low-level wastes (LLW/ MLLW) treatment and disposal. The ROD designated the disposal sites at Hanford and the Nevada Test Site (NTS) to dispose of LLWMLLW from sites without their own disposal facilities. DOE's Richland Operations Office (RL) and the National Nuclear Security Administration's Nevada Operations Office (NV) have been charged with effectively implementing the ROD. To accomplish this task NV and RL, assisted by their operating contractors Bechtel Nevada (BN), Fluor Hanford (FH), and Bechtel Hanford (BH) assembled a task team to systematically map out and evaluate the current waste acceptance processes and develop an integrated, standardized process for the acceptance of LLWMLLW. A structured, systematic, analytical process using the Six Sigma system identified disposal process improvements and quantified the associated efficiency gains to guide changes to be implemented. The review concluded that a unified and integrated Hanford/NTS Waste Acceptance Process would be a benefit to the DOE Complex, particularly the waste generators. The Six Sigma review developed quantitative metrics to address waste acceptance process efficiency improvements, and provides an initial look at development of comparable waste disposal cost models between the two disposal sites to allow quantification of the proposed improvements.

  16. Confined Brownian ratchets.

    Science.gov (United States)

    Malgaretti, Paolo; Pagonabarraga, Ignacio; Rubi, J Miguel

    2013-05-21

    We analyze the dynamics of Brownian ratchets in a confined environment. The motion of the particles is described by a Fick-Jakobs kinetic equation in which the presence of boundaries is modeled by means of an entropic potential. The cases of a flashing ratchet, a two-state model, and a ratchet under the influence of a temperature gradient are analyzed in detail. We show the emergence of a strong cooperativity between the inherent rectification of the ratchet mechanism and the entropic bias of the fluctuations caused by spatial confinement. Net particle transport may take place in situations where none of those mechanisms leads to rectification when acting individually. The combined rectification mechanisms may lead to bidirectional transport and to new routes to segregation phenomena. Confined Brownian ratchets could be used to control transport in mesostructures and to engineer new and more efficient devices for transport at the nanoscale.

  17. Biopolymer organization upon confinement

    Energy Technology Data Exchange (ETDEWEB)

    Marenduzzo, D [SUPA, School of Physics, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ (United Kingdom); Micheletti, C [SISSA, International School for Advanced Studies, CNR-INFM Democritos and Italian Institute of Technology, SISSA Unit via Bonomea, 265, Trieste (Italy); Orlandini, E [Dipartimento di Fisica, Universita di Padova and Sezione INFN Padova, Via Marzolo 8, 35131, Padova (Italy)

    2010-07-21

    Biopolymers in vivo are typically subject to spatial restraints, either as a result of molecular crowding in the cellular medium or of direct spatial confinement. DNA in living organisms provides a prototypical example of a confined biopolymer. Confinement prompts a number of biophysics questions. For instance, how can the high level of packing be compatible with the necessity to access and process the genomic material? What mechanisms can be adopted in vivo to avoid the excessive geometrical and topological entanglement of dense phases of biopolymers? These and other fundamental questions have been addressed in recent years by both experimental and theoretical means. A review of the results, particularly of those obtained by numerical studies, is presented here. The review is mostly devoted to DNA packaging inside bacteriophages, which is the best studied example both experimentally and theoretically. Recent selected biophysical studies of the bacterial genome organization and of chromosome segregation in eukaryotes are also covered. (topical review)

  18. Spin wave confinement

    CERN Document Server

    2008-01-01

    This book presents recent scientific achievements in the investigation of magnetization dynamics in confined magnetic systems. Introduced by Bloch as plane waves of magnetization in unconfined ferromagnets, spin waves currently play an important role in the description of very small magnetic systems ranging from microelements, which form the basis of magnetic sensors, to magnetic nano-contacts. The spin wave confinement effect was experimentally discovered in the 1990s in permalloy microstripes. The diversity of systems where this effect is observed has been steadily growing since then, and

  19. Order, Disorder and Confinement

    CERN Document Server

    D'Elia, M; Pica, C

    2006-01-01

    Studying the order of the chiral transition for $N_f=2$ is of fundamental importance to understand the mechanism of color confinement. We present results of a numerical investigation on the order of the transition by use of a novel strategy in finite size scaling analysis. The specific heat and a number of susceptibilities are compared with the possible critical behaviours. A second order transition in the O(4) and O(2) universality classes are excluded. Substantial evidence emerges for a first order transition. Results are in agreement with those found by studying the scaling properties of a disorder parameter related to the dual superconductivity mechanism of color confinement.

  20. Diaper area and disposable diapers.

    Science.gov (United States)

    Erasala, G N; Romain, C; Merlay, I

    2011-01-01

    Since the 1960s, cloth diapers have been replaced by disposable diapers. The evolution of healthier skin in the diaper area has been demonstrated in parallel to that of disposable diapers. The improvements of disposable diapers--fit, dryness, comfort--have been based on the understanding of factors playing a role in the development of diaper dermatitis.

  1. Geological disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Fourteen papers dealing with disposal of high-level radioactive wastes are presented. These cover disposal in salt deposits, geologic deposits and marine disposal. Also included are papers on nuclear waste characterization, transport, waste processing technology, and safety analysis. All of these papers have been abstracted and indexed. (AT)

  2. Confinement for More Space

    DEFF Research Database (Denmark)

    Kipnusu, Wycliffe K.; Elsayed, Mohamed; Kossack, Wilhelm

    2015-01-01

    Broadband dielectric spectroscopy and positron annihilation lifetime spectroscopy are employed to study the molecular dynamics and effective free volume of 2-ethyl-1-hexanol (2E1H) in the bulk state and when confined in unidirectional nanopores with average diameters of 4, 6, and 8 nm. Enhanced α...

  3. Fractional statistics and confinement

    CERN Document Server

    Gaete, P; Gaete, Patricio; Wotzasek, Clovis

    2004-01-01

    It is shown that a pointlike composite having charge and magnetic moment displays a confining potential for the static interaction while simultaneously obeying fractional statistics in a pure gauge theory in three dimensions, without a Chern-Simons term. This result is distinct from the Maxwell-Chern-Simons theory that shows a screening nature for the potential.

  4. Confinement from Merons

    CERN Document Server

    Lenz, F; Thies, M

    2003-01-01

    It is shown that an effective theory with meron degrees of freedom produces confinement in SU(2) Yang Mills theory. This effective theory is compatible with center symmetry. When the scale is set by the string tension, the action density and topological susceptibility are similar to those arising in lattice QCD.

  5. Options and cost for disposal of NORM waste.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.

    1998-10-22

    Oil field waste containing naturally occurring radioactive material (NORM) is presently disposed of both on the lease site and at off-site commercial disposal facilities. The majority of NORM waste is disposed of through underground injection, most of which presently takes place at a commercial injection facility located in eastern Texas. Several companies offer the service of coming to an operator's site, grinding the NORM waste into a fine particle size, slurrying the waste, and injecting it into the operator's own disposal well. One company is developing a process whereby the radionuclides are dissolved out of the NORM wastes, leaving a nonhazardous oil field waste and a contaminated liquid stream that is injected into the operator's own injection well. Smaller quantities of NORM are disposed of through burial in landfills, encapsulation inside the casing of wells that are being plugged and abandoned, or land spreading. It is difficult to quantify the total cost for disposing of NORM waste. The cost components that must be considered, in addition to the cost of the operation, include analytical costs, transportation costs, container decontamination costs, permitting costs, and long-term liability costs. Current NORM waste disposal costs range from $15/bbl to $420/bbl.

  6. Space disposal of nuclear wastes

    Science.gov (United States)

    Priest, C. C.; Nixon, R. F.; Rice, E. E.

    1980-01-01

    The DOE has been studying several options for nuclear waste disposal, among them space disposal, which NASA has been assessing. Attention is given to space disposal destinations noting that a circular heliocentric orbit about halfway between Earth and Venus is the reference option in space disposal studies. Discussion also covers the waste form, showing that parameters to be considered include high waste loading, high thermal conductivity, thermochemical stability, resistance to leaching, fabrication, resistance to oxidation and to thermal shock. Finally, the Space Shuttle nuclear waste disposal mission profile is presented.

  7. Composite analysis E-area vaults and saltstone disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.R.

    1997-09-01

    This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potential sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public.

  8. Interface-Confined Ferrous Centers for Catalytic Oxidation

    National Research Council Canada - National Science Library

    Qiang Fu; Wei-Xue Li; Yunxi Yao; Hongyang Liu; Hai-Yan Su; Ding Ma; Xiang-Kui Gu; Limin Chen; Zhen Wang; Hui Zhang; Bing Wang; Xinhe Bao

    2010-01-01

    .... On the basis of surface science measurements and density functional calculations, we show that the interface confinement effect can be used to stabilize the CUF sites by taking advantage of strong...

  9. Geomechanical Studies on Granite Intrusions in Alxa Area for High-Level Radioactive Waste Disposal

    Directory of Open Access Journals (Sweden)

    Cheng Cheng

    2016-12-01

    Full Text Available Geological storage is an important concept for high-level radioactive waste (HLW disposal, and detailed studies are required to protect the environment from contamination by radionuclides. This paper presents a series of geomechanical studies on the site selection for HLW disposal in the Alxa area of China. Surface investigation in the field and RQD analyses on the drill cores are carried out to evaluate the rock mass quality. Laboratory uniaxial and triaxial compressive tests on the samples prepared from the drill cores are conducted to estimate the strength properties of the host rock. It is found that the NRG sub-area has massive granite intrusions, and NRG01 cored granite samples show the best rock quality and higher peak strength under various confinements (0–30 MPa. NRG01 granite samples are applied for more detailed laboratory studies considering the effects of strain rate and temperature. It is observed that the increasing strain rate from 1.0 × 10−5–0.6 × 10−2·s−1 can lead to a limited increase on peak strength, but a much more violent failure under uniaxial compressive tests on the NRG01 granite samples, and the temperature increasing from 20 °C–200 °C may result in a slight increase of UCS, as well as more ductile post-peak behavior in the triaxial compressive tests.

  10. COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS

    Energy Technology Data Exchange (ETDEWEB)

    THIELGES, J.R.; CHASTAIN, S.A.

    2007-06-21

    The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized and attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used.

  11. Standardization of DOE Disposal Facilities Waste Acceptance Processes

    Energy Technology Data Exchange (ETDEWEB)

    Shrader, T. A.; Macbeth, P. J.

    2002-02-26

    On February 25, 2000, the U.S. Department of Energy (DOE) issued the Record of Decision (ROD) for the Waste Management Programmatic Environmental Impact Statement (WM PEIS) for low-level and mixed low-level wastes (LLW/ MLLW) treatment and disposal. The ROD designated the disposal sites at Hanford and the Nevada Test Site (NTS) to dispose of LLW/MLLW from sites without their own disposal facilities. DOE's Richland Operations Office (RL) and the National Nuclear Security Administration's Nevada Operations Office (NV) have been charged with effectively implementing the ROD. To accomplish this task NV and RL, assisted by their operating contractors Bechtel Nevada (BN), Fluor Hanford (FH), and Bechtel Hanford (BH) assembled a task team to systematically map out and evaluate the current waste acceptance processes and develop an integrated, standardized process for the acceptance of LLW/MLLW. A structured, systematic, analytical process using the Six Sigma system identified dispos al process improvements and quantified the associated efficiency gains to guide changes to be implemented. The review concluded that a unified and integrated Hanford/NTS Waste Acceptance Process would be a benefit to the DOE Complex, particularly the waste generators. The Six Sigma review developed quantitative metrics to address waste acceptance process efficiency improvements, and provides an initial look at development of comparable waste disposal cost models between the two disposal sites to allow quantification of the proposed improvements.

  12. Totally confined explosive welding

    Science.gov (United States)

    Bement, L. J. (Inventor)

    1978-01-01

    The undesirable by-products of explosive welding are confined and the association noise is reduced by the use of a simple enclosure into which the explosive is placed and in which the explosion occurs. An infrangible enclosure is removably attached to one of the members to be bonded at the point directly opposite the bond area. An explosive is completely confined within the enclosure at a point in close proximity to the member to be bonded and a detonating means is attached to the explosive. The balance of the enclosure, not occupied by explosive, is filled with a shaped material which directs the explosive pressure toward the bond area. A detonator adaptor controls the expansion of the enclosure by the explosive force so that the enclosure at no point experiences a discontinuity in expansion which causes rupture. The use of the technique is practical in the restricted area of a space station.

  13. Topological confinement and superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Al-hassanieh, Dhaled A [Los Alamos National Laboratory; Batista, Cristian D [Los Alamos National Laboratory

    2008-01-01

    We derive a Kondo Lattice model with a correlated conduction band from a two-band Hubbard Hamiltonian. This mapping allows us to describe the emergence of a robust pairing mechanism in a model that only contains repulsive interactions. The mechanism is due to topological confinement and results from the interplay between antiferromagnetism and delocalization. By using Density-Matrix-Renormalization-Group (DMRG) we demonstrate that this mechanism leads to dominant superconducting correlations in aID-system.

  14. Confining gauge fields

    CERN Document Server

    Lenz, F

    2009-01-01

    By superposition of regular gauge instantons or merons, ensembles of gauge fields are constructed which describe the confining phase of SU(2) Yang-Mills theory. Various properties of the Wilson loops, the gluon condensate and the topological susceptibility are found to be in qualitative agreement with phenomenology or results of lattice calculations. Limitations in the application to the glueball spectrum and small size Wilson loops are discussed.

  15. Low level tank waste disposal study

    Energy Technology Data Exchange (ETDEWEB)

    Mullally, J.A.

    1994-09-29

    Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site.

  16. HLW Disposal System Development