WorldWideScience

Sample records for confined stark effect

  1. Quantum confined Stark effect in Gaussian quantum wells: A tight-binding study

    International Nuclear Information System (INIS)

    Ramírez-Morales, A.; Martínez-Orozco, J. C.; Rodríguez-Vargas, I.

    2014-01-01

    The main characteristics of the quantum confined Stark effect (QCSE) are studied theoretically in quantum wells of Gaussian profile. The semi-empirical tight-binding model and the Green function formalism are applied in the numerical calculations. A comparison of the QCSE in quantum wells with different kinds of confining potential is presented

  2. Quantum confined Stark effect in Gaussian quantum wells: A tight-binding study

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez-Morales, A.; Martínez-Orozco, J. C.; Rodríguez-Vargas, I. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad Esquina Con Paseo La Bufa S/N, 98060 Zacatecas, Zac. (Mexico)

    2014-05-15

    The main characteristics of the quantum confined Stark effect (QCSE) are studied theoretically in quantum wells of Gaussian profile. The semi-empirical tight-binding model and the Green function formalism are applied in the numerical calculations. A comparison of the QCSE in quantum wells with different kinds of confining potential is presented.

  3. Quantum-Confined Stark Effect in Ensemble of Colloidal Semiconductor Quantum Dots

    International Nuclear Information System (INIS)

    Zhi-Bing, Wang; Hui-Chao, Zhang; Jia-Yu, Zhang; Su, Huaipeng; Wang, Y. Andrew

    2010-01-01

    The presence of a strong, changing, randomly-oriented, local electric field, which is induced by the photo-ionization that occurs universally in colloidal semiconductor quantum dots (QDs), makes it difficult to observe the quantum-confined Stark effect in ensemble of colloidal QDs. We propose a way to inhibit such a random electric field, and a clear quantum-confined Stark shift is observed directly in close-packed colloidal QDs. Besides the applications in optical switches and modulators, our experimental results indicate how the oscillator strengths of the optical transitions are changed under external electric fields. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  4. Stark effect of optical properties of excitons in a quantum nanorod with parabolic confinement

    Energy Technology Data Exchange (ETDEWEB)

    Lyo, S.K., E-mail: sklyo@uci.edu

    2014-01-15

    We study the quantum Stark effect of optical properties of a quasi-one-dimensional quantum rod with parabolic confinement. Interplays between the competing/cooperative forces from confinement, electron–hole (e–h) attraction, and an external field are examined by studying the binding energy, the oscillator strength, and the root-mean-square (RMS) average of the e–h separation in a nonlinear electric field. In a long rod with weak confinement, the e–h interaction dominates over the confinement effect, yielding an abrupt drop of the exciton binding energy, oscillator strength, and a sudden increase of the RMS average e–h separation as the excitons are dissociated at the threshold field as the field increases. The exciton-dissociation transition is gradual in a short rod, where the confinement force dominates over the e–h attraction. We show that a DC field can induce an optically active excited exciton state in a narrow field range, causing a sharp peak in the oscillator strength and a dip in the RMS average of the e–h separation as the field increases. The Stark effects are also investigated as a function of the linear confinement length (i.e., rod length) at fixed fields. -- Highlights: • Study the dependence of optical properties of nanorods on the rod size and field. • Study the interplay between forces of confinement, Coulomb attraction, and field. • A strong field induces an optically active excited state observed in quantum dots.

  5. Oscillator strength and quantum-confined Stark effect of excitons in a thin PbS quantum disk

    Science.gov (United States)

    Oukerroum, A.; El-Yadri, M.; El Aouami, A.; Feddi, E.; Dujardin, F.; Duque, C. A.; Sadoqi, M.; Long, G.

    2018-01-01

    In this paper, we report a study of the effect of a lateral electric field on a quantum-confined exciton in a thin PbS quantum disk. Our approach was performed in the framework of the effective mass theory and adiabatic approximation. The ground state energy and the stark shift were determined by using a variational method with an adequate trial wavefunction, by investigating a 2D oscillator strength under simultaneous consideration of the geometrical confinement and the electric field strength. Our results showed a strong dependence of the exciton binding and the Stark shift on the disk dimensions in both axial and longitudinal directions. On the other hand, our results also showed that the Stark shift’s dependence on the electric field is not purely quadratic but the linear contribution is also important and cannot be neglected, especially when the confinement gets weaker.

  6. Strong quantum-confined stark effect in germanium quantum-well structures on silicon

    International Nuclear Information System (INIS)

    Kuo, Y.; Lee, Y. K.; Gei, Y.; Ren, S; Roth, J. E.; Miller, D. A.; Harris, J. S.

    2006-01-01

    Silicon is the dominant semiconductor for electronics, but there is now a growing need to integrate such component with optoelectronics for telecommunications and computer interconnections. Silicon-based optical modulators have recently been successfully demonstrated but because the light modulation mechanisms in silicon are relatively weak, long (for example, several millimeters) devices or sophisticated high-quality-factor resonators have been necessary. Thin quantum-well structures made from III-V semiconductors such as GaAs, InP and their alloys exhibit the much stronger Quantum-Confined Stark Effect (QCSE) mechanism, which allows modulator structures with only micrometers of optical path length. Such III-V materials are unfortunately difficult to integrate with silicon electronic devices. Germanium is routinely integrated with silicon in electronics, but previous silicon-germanium structures have also not shown strong modulation effects. Here we report the discovery of the QCSE, at room temperature, in thin germanium quantum-well structures grown on silicon. The QCSE here has strengths comparable to that in III-V materials. Its clarity and strength are particularly surprising because germanium is an indirect gap semiconductor, such semiconductors often display much weak optical effects than direct gap materials (such as the III-V materials typically used for optoelectronics). This discovery is very promising for small, high-speed, low-power optical output devices fully compatible with silicon electronics manufacture. (author)

  7. Electroreflectance investigations of quantum confined Stark effect in GaN quantum wells

    International Nuclear Information System (INIS)

    Drabinska, A; Pakula, K; Baranowski, J M; Wysmolek, A

    2010-01-01

    In this paper we present room temperature electroreflectance studies of GaN quantum wells (QWs) with different well width. The electroreflectance measurements were performed with external voltage applied to the structure therefore it was possible to tune the electric field inside QW up to its completely screening and furthermore even reversing it. The analysis of QW spectral lines showed the Stark shift dependence on applied voltage and well width reaching about 35 meV for highest voltage and widest well width. It was possible to obtain the condition of zero electric field in QW. Both broadening and amplitude of QW lines are minimal for zero electric field and increases for increasing electric field in QW. The energy transition is maximum for zero electric field and for increasing electric field it decreases due to Stark effect. Neither amplitude and broadening parameter nor energy transition does not depend on the direction of electric field. Only parameter that depends on the direction of electric field in QW is phase of the signal. The analysis of Franz-Keldysh oscillations (FKOs) from AlGaN barriers allowed to calculate the real electric field dependence on applied voltage and therefore to obtain the Stark shift dependence on electric field. The Stark shift reached from -12 meV to -35 meV for 450 kV/cm depending on the well width. This conditions were established for highest forward voltages therefore this is the value of electric field and Stark shift caused only by the intrinsic polarization of nitrides.

  8. Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers

    International Nuclear Information System (INIS)

    Zhang, Zi-Hui; Liu, Wei; Ju, Zhengang; Tiam Tan, Swee; Ji, Yun; Kyaw, Zabu; Zhang, Xueliang; Wang, Liancheng; Wei Sun, Xiao; Volkan Demir, Hilmi

    2014-01-01

    InGaN/GaN light-emitting diodes (LEDs) grown along the polar orientations significantly suffer from the quantum confined Stark effect (QCSE) caused by the strong polarization induced electric field in the quantum wells, which is a fundamental problem intrinsic to the III-nitrides. Here, we show that the QCSE is self-screened by the polarization induced bulk charges enabled by designing quantum barriers. The InN composition of the InGaN quantum barrier graded along the growth orientation opportunely generates the polarization induced bulk charges in the quantum barrier, which well compensate the polarization induced interface charges, thus avoiding the electric field in the quantum wells. Consequently, the optical output power and the external quantum efficiency are substantially improved for the LEDs. The ability to self-screen the QCSE using polarization induced bulk charges opens up new possibilities for device engineering of III-nitrides not only in LEDs but also in other optoelectronic devices.

  9. Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zi-Hui; Liu, Wei; Ju, Zhengang; Tiam Tan, Swee; Ji, Yun; Kyaw, Zabu; Zhang, Xueliang; Wang, Liancheng; Wei Sun, Xiao, E-mail: exwsun@ntu.edu.sg, E-mail: volkan@stanfordalumni.org [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Volkan Demir, Hilmi, E-mail: exwsun@ntu.edu.sg, E-mail: volkan@stanfordalumni.org [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Department of Electrical and Electronics, Department of Physics, and UNAM-Institute of Material Science and Nanotechnology, Bilkent University, TR-06800 Ankara (Turkey)

    2014-06-16

    InGaN/GaN light-emitting diodes (LEDs) grown along the polar orientations significantly suffer from the quantum confined Stark effect (QCSE) caused by the strong polarization induced electric field in the quantum wells, which is a fundamental problem intrinsic to the III-nitrides. Here, we show that the QCSE is self-screened by the polarization induced bulk charges enabled by designing quantum barriers. The InN composition of the InGaN quantum barrier graded along the growth orientation opportunely generates the polarization induced bulk charges in the quantum barrier, which well compensate the polarization induced interface charges, thus avoiding the electric field in the quantum wells. Consequently, the optical output power and the external quantum efficiency are substantially improved for the LEDs. The ability to self-screen the QCSE using polarization induced bulk charges opens up new possibilities for device engineering of III-nitrides not only in LEDs but also in other optoelectronic devices.

  10. Quantum-confined Stark effect at 1.3 μm in Ge/Si(0.35)Ge(0.65) quantum-well structure.

    Science.gov (United States)

    Rouifed, Mohamed Said; Chaisakul, Papichaya; Marris-Morini, Delphine; Frigerio, Jacopo; Isella, Giovanni; Chrastina, Daniel; Edmond, Samson; Le Roux, Xavier; Coudevylle, Jean-René; Vivien, Laurent

    2012-10-01

    Room-temperature quantum-confined Stark effect in a Ge/SiGe quantum-well structure is reported at the wavelength of 1.3 μm. The operating wavelength is tuned by the use of strain engineering. Low-energy plasma-enhanced chemical vapor deposition is used to grow 20 periods of strain-compensated quantum wells (8 nm Ge well and 12 nm Si(0.35)Ge(0.65) barrier) on Si(0.21)Ge(0.79) virtual substrate. The fraction of light absorbed per well allows for a strong modulation around 1.3 μm. The half-width at half-maximum of the excitonic peak of only 12 meV allows for a discussion on physical mechanisms limiting the performances of such devices.

  11. Quantum confined Stark effects of single dopant in polarized hemispherical quantum dot: Two-dimensional finite difference approach and Ritz-Hassé variation method

    Science.gov (United States)

    El Harouny, El Hassan; Nakra Mohajer, Soukaina; Ibral, Asmaa; El Khamkhami, Jamal; Assaid, El Mahdi

    2018-05-01

    Eigenvalues equation of hydrogen-like off-center single donor impurity confined in polarized homogeneous hemispherical quantum dot deposited on a wetting layer, capped by insulated matrix and submitted to external uniform electric field is solved in the framework of the effective mass approximation. An infinitely deep potential is used to describe effects of quantum confinement due to conduction band offsets at surfaces where quantum dot and surrounding materials meet. Single donor ground state total and binding energies in presence of electric field are determined via two-dimensional finite difference approach and Ritz-Hassé variation principle. For the latter method, attractive coulomb correlation between electron and ionized single donor is taken into account in the expression of trial wave function. It appears that off-center single dopant binding energy, spatial extension and radial probability density are strongly dependent on hemisphere radius and single dopant position inside quantum dot. Influence of a uniform electric field is also investigated. It shows that Stark effect appears even for very small size dots and that single dopant energy shift is more significant when the single donor is near hemispherical surface.

  12. Nanometer-scale monitoring of quantum-confined Stark effect and emission efficiency droop in multiple GaN/AlN quantum disks in nanowires

    Science.gov (United States)

    Zagonel, L. F.; Tizei, L. H. G.; Vitiello, G. Z.; Jacopin, G.; Rigutti, L.; Tchernycheva, M.; Julien, F. H.; Songmuang, R.; Ostasevicius, T.; de la Peña, F.; Ducati, C.; Midgley, P. A.; Kociak, M.

    2016-05-01

    We report on a detailed study of the intensity dependent optical properties of individual GaN/AlN quantum disks (QDisks) embedded into GaN nanowires (NW). The structural and optical properties of the QDisks were probed by high spatial resolution cathodoluminescence (CL) in a scanning transmission electron microscope (STEM). By exciting the QDisks with a nanometric electron beam at currents spanning over three orders of magnitude, strong nonlinearities (energy shifts) in the light emission are observed. In particular, we find that the amount of energy shift depends on the emission rate and on the QDisk morphology (size, position along the NW and shell thickness). For thick QDisks (>4 nm), the QDisk emission energy is observed to blueshift with the increase of the emission intensity. This is interpreted as a consequence of the increase of carriers density excited by the incident electron beam inside the QDisks, which screens the internal electric field and thus reduces the quantum confined Stark effect (QCSE) present in these QDisks. For thinner QDisks (energy shifts, marking the transition from unscreened to partially screened QCSE. From the threshold value we estimate the lifetime in the unscreened regime. These observations suggest that, counterintuitively, electrons of high energy can behave ultimately as single electron-hole pair generators. In addition, when we increase the current from 1 to 10 pA the light emission efficiency drops by more than one order of magnitude. This reduction of the emission efficiency is a manifestation of the "efficiency droop" as observed in nitride-based 2D light emitting diodes, a phenomenon tentatively attributed to the Auger effect.

  13. Stark effect in finite-barrier quantum wells, wires, and dots

    International Nuclear Information System (INIS)

    Pedersen, Thomas Garm

    2017-01-01

    The properties of confined carriers in low-dimensional nanostructures can be controlled by external electric fields and an important manifestation is the Stark shift of quantized energy levels. Here, a unifying analytic theory for the Stark effect in arbitrary dimensional nanostructures is presented. The crucial role of finite potential barriers is stressed, in particular, for three-dimensional confinement. Applying the theory to CdSe quantum dots, finite barriers are shown to improve significantly the agreement with experiments. (paper)

  14. Independent variations of applied voltage and injection current for controlling the quantum-confined Stark effect in an InGaN/GaN quantum-well light-emitting diode.

    Science.gov (United States)

    Chen, Horng-Shyang; Liu, Zhan Hui; Shih, Pei-Ying; Su, Chia-Ying; Chen, Chih-Yen; Lin, Chun-Han; Yao, Yu-Feng; Kiang, Yean-Woei; Yang, C C

    2014-04-07

    A reverse-biased voltage is applied to either device in the vertical configuration of two light-emitting diodes (LEDs) grown on patterned and flat Si (110) substrates with weak and strong quantum-confined Stark effects (QCSEs), respectively, in the InGaN/GaN quantum wells for independently controlling the applied voltage across and the injection current into the p-i-n junction in the lateral configuration of LED operation. The results show that more carrier supply is needed in the LED of weaker QCSE to produce a carrier screening effect for balancing the potential tilt in increasing the forward-biased voltage, when compared with the LED of stronger QCSE. The small spectral shift range in increasing injection current in the LED of weaker QCSE is attributed not only to the weaker QCSE, but also to its smaller device resistance such that a given increment of applied voltage leads to a larger increment of injection current. From a viewpoint of practical application in LED operation, by applying a reverse-biased voltage in the vertical configuration, the applied voltage and injection current in the lateral configuration can be independently controlled by adjusting the vertical voltage for keeping the emission spectral peak fixed.

  15. Atomic Models for Motional Stark Effects Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Gu, M F; Holcomb, C; Jayakuma, J; Allen, S; Pablant, N A; Burrell, K

    2007-07-26

    We present detailed atomic physics models for motional Stark effects (MSE) diagnostic on magnetic fusion devices. Excitation and ionization cross sections of the hydrogen or deuterium beam traveling in a magnetic field in collisions with electrons, ions, and neutral gas are calculated in the first Born approximation. The density matrices and polarization states of individual Stark-Zeeman components of the Balmer {alpha} line are obtained for both beam into plasma and beam into gas models. A detailed comparison of the model calculations and the MSE polarimetry and spectral intensity measurements obtained at the DIII-D tokamak is carried out. Although our beam into gas models provide a qualitative explanation for the larger {pi}/{sigma} intensity ratios and represent significant improvements over the statistical population models, empirical adjustment factors ranging from 1.0-2.0 must still be applied to individual line intensities to bring the calculations into full agreement with the observations. Nevertheless, we demonstrate that beam into gas measurements can be used successfully as calibration procedures for measuring the magnetic pitch angle through {pi}/{sigma} intensity ratios. The analyses of the filter-scan polarization spectra from the DIII-D MSE polarimetry system indicate unknown channel and time dependent light contaminations in the beam into gas measurements. Such contaminations may be the main reason for the failure of beam into gas calibration on MSE polarimetry systems.

  16. Role of quantum-confined stark effect on bias dependent photoluminescence of N-polar GaN/InGaN multi-quantum disk amber light emitting diodes

    Science.gov (United States)

    Tangi, Malleswararao; Mishra, Pawan; Janjua, Bilal; Prabaswara, Aditya; Zhao, Chao; Priante, Davide; Min, Jung-Wook; Ng, Tien Khee; Ooi, Boon S.

    2018-03-01

    We study the impact of quantum-confined stark effect (QCSE) on bias dependent micro-photoluminescence emission of the quantum disk (Q-disk) based nanowires light emitting diodes (NWs-LED) exhibiting the amber colored emission. The NWs are found to be nitrogen polar (N-polar) verified using KOH wet chemical etching and valence band spectrum analysis of high-resolution X-ray photoelectron spectroscopy. The crystal structure and quality of the NWs were investigated by high-angle annular dark field - scanning transmission electron microscopy. The LEDs were fabricated to acquire the bias dependent micro-photoluminescence spectra. We observe a redshift and a blueshift of the μPL peak in the forward and reverse bias conditions, respectively, with reference to zero bias, which is in contrast to the metal-polar InGaN well-based LEDs in the literature. Such opposite shifts of μPL peak emission observed for N-polar NWs-LEDs, in our study, are due to the change in the direction of the internal piezoelectric field. The quenching of PL intensity, under the reverse bias conditions, is ascribed to the reduction of electron-hole overlap. Furthermore, the blueshift of μPL emission with increasing excitation power reveals the suppression of QCSE resulting from the photo-generated carriers. Thereby, our study confirms the presence of QCSE for NWs-LEDs from both bias and power dependent μPL measurements. Thus, this study serves to understand the QCSE in N-polar InGaN Q-disk NWs-LEDs and other related wide-bandgap nitride nanowires, in general.

  17. Role of quantum-confined stark effect on bias dependent photoluminescence of N-polar GaN/InGaN multi-quantum disk amber light emitting diodes

    KAUST Repository

    Tangi, Malleswararao

    2018-03-09

    We study the impact of quantum-confined stark effect (QCSE) on bias dependent micro-photoluminescence emission of the quantum disk (Q-disk) based nanowires light emitting diodes (NWs-LED) exhibiting the amber colored emission. The NWs are found to be nitrogen polar (N-polar) verified using KOH wet chemical etching and valence band spectrum analysis of high-resolution X-ray photoelectron spectroscopy. The crystal structure and quality of the NWs were investigated by high-angle annular dark field - scanning transmission electron microscopy. The LEDs were fabricated to acquire the bias dependent micro-photoluminescence spectra. We observe a redshift and a blueshift of the μPL peak in the forward and reverse bias conditions, respectively, with reference to zero bias, which is in contrast to the metal-polar InGaN well-based LEDs in the literature. Such opposite shifts of μPL peak emission observed for N-polar NWs-LEDs, in our study, are due to the change in the direction of the internal piezoelectric field. The quenching of PL intensity, under the reverse bias conditions, is ascribed to the reduction of electron-hole overlap. Furthermore, the blueshift of μPL emission with increasing excitation power reveals the suppression of QCSE resulting from the photo-generated carriers. Thereby, our study confirms the presence of QCSE for NWs-LEDs from both bias and power dependent μPL measurements. Thus, this study serves to understand the QCSE in N-polar InGaN Q-disk NWs-LEDs and other related wide-bandgap nitride nanowires, in general.

  18. Stark effect and polarizability of graphene quantum dots

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm

    2017-01-01

    The properties of graphene quantum dots can be manipulated via lateral electric fields. Treating electrons in such structures as confined massless Dirac fermions, we derive an analytical expression for the quadratic Stark shift valid for arbitrary angular momentum and quantum dot size. Moreover, we...

  19. The stark effect in intense field. 2

    International Nuclear Information System (INIS)

    Popov, V.S.; Mur, V.D.; Sergeev, A.V.; Weinberg, V.M.

    1987-01-01

    The problem of hydrogen atom in homogeneous electric field is considered. The Stark shifts and widths of atomic levels are computed by summation of divergent perturbation series and by 1/n-expansion - up to E values comparable with the field on the electron orbit. The results of the calculations are presented for the following sequences of states: |n 1 ,0,0>, |0,n 2 ,0>, |n 1 ,n 1 ,0>, as well as for all states with n=2 and 3 (n is the principal quantum number). The Stark shifts and widths of Rydberg states (with n=15-30) in electric field which exceeds the classical ionization threshold are computed. The results of our calculations agree with experiment

  20. Variable scaling method and Stark effect in hydrogen atom

    International Nuclear Information System (INIS)

    Choudhury, R.K.R.; Ghosh, B.

    1983-09-01

    By relating the Stark effect problem in hydrogen-like atoms to that of the spherical anharmonic oscillator we have found simple formulas for energy eigenvalues for the Stark effect. Matrix elements have been calculated using 0(2,1) algebra technique after Armstrong and then the variable scaling method has been used to find optimal solutions. Our numerical results are compared with those of Hioe and Yoo and also with the results obtained by Lanczos. (author)

  1. Stark--Zeeman effect of metastable hydrogen molecules

    International Nuclear Information System (INIS)

    Kagann, R.H.

    1975-01-01

    The Stark effect of the N = 1 rotational level of orthohydrogen and the N = 2 rotational level of parahydrogen in the metastable c 3 PI/sub u/ electronic state has been measured using the molecular beam magnetic resonance method. The Stark effect of the metastable state is 10,000 times larger than that of the ground electronic state. The Stark effect of parahydrogen was found to be weakly dependent on static magnetic field strength, whereas the Stark effect of orthohydrogen was found to be more strongly dependent on the magnetic field strength. The Stark effect of orthohydrogen has been calculated using second-order perturbation theory with a pure Stark effect perturbation. The magnetic field dependence of the Stark effect was calculated using third-order perturbation theory with a mixed Stark--Zeeman effect double perturbation. A comparison of the experimental and theoretical values of α/sub perpendicular/ provides information on the electronic transition moment connecting the c 3 PI/sub u/ state to the a 3 Σ + /sub g/ state. The transition moment is needed to calculate the radiative lifetimes of the various vibrational levels of the c 3 PI/sub u/ state. The transition moment also enters the calculation of the quenching of this metastable state by an external electric field. There is a disagreement between theoretical predictions and the results of an experiment on the electric field quenching of the metastables. A test of the electronic transition moment may help shed light on this question. The experimental determination of the values of the transition moments allows one to test theory by comparing these values to those obtained by calculations employing ab initio wavefunctions

  2. Valley-selective optical Stark effect probed by Kerr rotation

    Science.gov (United States)

    LaMountain, Trevor; Bergeron, Hadallia; Balla, Itamar; Stanev, Teodor K.; Hersam, Mark C.; Stern, Nathaniel P.

    2018-01-01

    The ability to monitor and control distinct states is at the heart of emerging quantum technologies. The valley pseudospin in transition metal dichalcogenide (TMDC) monolayers is a promising degree of freedom for such control, with the optical Stark effect allowing for valley-selective manipulation of energy levels in WS2 and WSe2 using ultrafast optical pulses. Despite these advances, understanding of valley-sensitive optical Stark shifts in TMDCs has been limited by reflectance-based detection methods where the signal is small and prone to background effects. More sensitive polarization-based spectroscopy is required to better probe ultrafast Stark shifts for all-optical manipulation of valley energy levels. Here, we show time-resolved Kerr rotation to be a more sensitive probe of the valley-selective optical Stark effect in monolayer TMDCs. Compared to the established time-resolved reflectance methods, Kerr rotation is less sensitive to background effects. Kerr rotation provides a fivefold improvement in the signal-to-noise ratio of the Stark effect optical signal and a more precise estimate of the energy shift. This increased sensitivity allows for observation of an optical Stark shift in monolayer MoS2 that exhibits both valley and energy selectivity, demonstrating the promise of this method for investigating this effect in other layered materials and heterostructures.

  3. Measurements of the internal magnetic field using the B-Stark motional Stark effect diagnostic on DIII-D (inivited)

    Energy Technology Data Exchange (ETDEWEB)

    Pablant, N. A. [University of California-San Diego, La Jolla, California 92093 (United States); Burrell, K. H.; Groebner, R. J.; Kaplan, D. H. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Holcomb, C. T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2010-10-15

    Results are presented from the B-Stark diagnostic installed on the DIII-D tokamak. This diagnostic provides measurements of the magnitude and direction of the internal magnetic field. The B-Stark system is a version of a motional Stark effect (MSE) diagnostic based on the relative line intensities and spacing of the Stark split D{sub {alpha}} emission from injected neutral beams. This technique may have advantages over MSE polarimetry based diagnostics in future devices, such as the ITER. The B-Stark diagnostic technique and calibration procedures are discussed. The system is shown to provide accurate measurements of B{sub {theta}}/B{sub T} and |B| over a range of plasma conditions. Measurements have been made with toroidal fields in the range of 1.2-2.1 T, plasma currents in the range 0.5-2.0 MA, densities between 1.7 and 9.0x10{sup 19} m{sup -3}, and neutral beam voltages between 50 and 81 keV. The viewing direction and polarization dependent transmission properties of the collection optics are found using an in situ beam into gas calibration. These results are compared to values found from plasma equilibrium reconstructions and the MSE polarimetry system on DIII-D.

  4. Measurements of the internal magnetic field using the B-Stark motional Stark effect diagnostic on DIII-D (inivited).

    Science.gov (United States)

    Pablant, N A; Burrell, K H; Groebner, R J; Holcomb, C T; Kaplan, D H

    2010-10-01

    Results are presented from the B-Stark diagnostic installed on the DIII-D tokamak. This diagnostic provides measurements of the magnitude and direction of the internal magnetic field. The B-Stark system is a version of a motional Stark effect (MSE) diagnostic based on the relative line intensities and spacing of the Stark split D(α) emission from injected neutral beams. This technique may have advantages over MSE polarimetry based diagnostics in future devices, such as the ITER. The B-Stark diagnostic technique and calibration procedures are discussed. The system is shown to provide accurate measurements of B(θ)/B(T) and ∣B∣ over a range of plasma conditions. Measurements have been made with toroidal fields in the range of 1.2-2.1 T, plasma currents in the range 0.5-2.0 MA, densities between 1.7 and 9.0×10(19) m(-3), and neutral beam voltages between 50 and 81 keV. The viewing direction and polarization dependent transmission properties of the collection optics are found using an in situ beam into gas calibration. These results are compared to values found from plasma equilibrium reconstructions and the MSE polarimetry system on DIII-D.

  5. Stark effect in Rydberg states of helium and barium

    International Nuclear Information System (INIS)

    Lahaije, C.T.W.

    1989-01-01

    This thesis, which deals with the effect of an electric field up to moderate field strengths on atoms with two valence electrons outside closed shells, in casu helium and barium, contains chapter in which the linear Stark effect in the 1 snp 1, 3 p Rydberg states of helium (n around 40) has been studied in a CW laser-atomic beam experiment. The evolution of the angular momentum manifolds into the n-mixing regime was followed and avoided level crossings were observed. Stark manifolds were also calculated by diagonalization of the complete energy matrix in the presence of an electric field. It turned out to be necessary to include up to five n-values in the calculations already at moderate values of the field to reproduce the data within the experimental accuracy (a few MHz), especially in the regime of the avoided crossings. (author). 147 refs.; 30 figs.; 8 tabs

  6. Cross-sectional nanophotoluminescence studies of Stark effects in self-assembled quantum dots

    International Nuclear Information System (INIS)

    Htoon, H.; Keto, J. W.; Baklenov, O.; Holmes, A. L. Jr.; Shih, C. K.

    2000-01-01

    By using a cross-sectional geometry, we show the capability to perform single-dot spectroscopy in self-assembled quantum dots using far-field optics. By using this method, we study the quantum-confined Stark effect in self-assembled quantum dots. For single-stack quantum dots (QDs), we find that the spectra are redshifted with an increase in electric field. For vertically coupled double-stack quantum dots, while most of the QDs are redshifted, some QDs show blueshifted spectra, which can be interpreted as an evidence of coupled QD molecules. (c) 2000 American Institute of Physics

  7. Motional Stark Effect measurements of the local magnetic field in high temperature fusion plasmas

    Science.gov (United States)

    Wolf, R. C.; Bock, A.; Ford, O. P.; Reimer, R.; Burckhart, A.; Dinklage, A.; Hobirk, J.; Howard, J.; Reich, M.; Stober, J.

    2015-10-01

    The utilization of the Motional Stark Effect (MSE) experienced by the neutral hydrogen or deuterium injected into magnetically confined high temperature plasmas is a well established technique to infer the internal magnetic field distribution of fusion experiments. In their rest frame, the neutral atoms experience a Lorentz electric field, EL = v × B, which results in a characteristic line splitting and polarized line emission. The different properties of the Stark multiplet allow inferring, both the magnetic field strength and the orientation of the magnetic field vector. Besides recording the full MSE spectrum, several types of polarimeters have been developed to measure the polarization direction of the Stark line emission. To test physics models of the magnetic field distribution and dynamics, the accuracy requirements are quite demanding. In view of these requirements, the capabilities and issues of the different techniques are discussed, including the influence of the Zeeman Effect and the sensitivity to radial electric fields. A newly developed Imaging MSE system, which has been tested on the ASDEX Upgrade tokamak, is presented. The sensitivity allows to resolve sawtooth oscillations. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  8. Stark effect of excitons in corrugated lateral surface superlattices: effect of centre-of-mass quantization

    International Nuclear Information System (INIS)

    Hong Sun

    1998-11-01

    The quantum confined Stark effect (QCSE) of excitons in GaAs/AlAs corrugated lateral surface superlattices (CLSSLs) is calculated. Blue and red shifts in the exciton energies are predicted for the heavy- and light-excitons in the CLSSLs, respectively, comparing with those in the unmodulated quantum well due to the different effective hole masses in the parallel direction. Sensitive dependence of the QCSE on the hole effective mass in the parallel direction is expected because of the ''centre-of-mass'' quantization (CMQ) induced by the periodic corrugated interfaces of the CLSSLs. The effect of the CMQ on the exciton mini-bands and the localization of the excitons in the CLSSLs is discussed. (author)

  9. Imaging motional Stark effect measurements at ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Ford, O. P.; Burckhart, A.; McDermott, R.; Pütterich, T.; Wolf, R. C. [Max-Planck Institut für Plasmaphysik, Greifswald/Garching (Germany)

    2016-11-15

    This paper presents an overview of results from the Imaging Motional Stark Effect (IMSE) diagnostic obtained during its first measurement campaign at ASDEX Upgrade since installation as a permanent diagnostic. A brief overview of the IMSE technique is given, followed by measurements of a standard H-mode discharge, which are compared to equilibrium reconstructions showing good agreement where expected. The development of special discharges for the calibration of pitch angle is reported and safety factor profile changes during sawteeth crashes are shown, which can be resolved to a few percent due to the high sensitivity at good time resolution of the new IMSE system.

  10. Dynamic Stark broadening as the Dicke narrowing effect

    International Nuclear Information System (INIS)

    Calisti, A.; Mosse, C.; Ferri, S.; Talin, B.; Rosmej, F.; Bureyeva, L. A.; Lisitsa, V. S.

    2010-01-01

    A very fast method to account for charged particle dynamics effects in calculations of spectral line shape emitted by plasmas is presented. This method is based on a formulation of the frequency fluctuation model (FFM), which provides an expression of the dynamic line shape as a functional of the static distribution of frequencies. Thus, the main numerical work rests on the calculation of the quasistatic Stark profile. This method for taking into account ion dynamics allows a very fast and accurate calculation of Stark broadening of atomic hydrogen high-n series emission lines. It is not limited to hydrogen spectra. Results on helium-β and Lyman-α lines emitted by argon in microballoon implosion experiment conditions compared with experimental data and simulation results are also presented. The present approach reduces the computer time by more than 2 orders of magnitude as compared with the original FFM with an improvement of the calculation precision, and it opens broad possibilities for its application in spectral line-shape codes.

  11. Dipole transitions and Stark effect in the charge-dyon system

    International Nuclear Information System (INIS)

    Mardoyan, Levon; Nersessian, Armen; Sarkisyan, Hayk; Yeghikyan, Vahagn

    2007-01-01

    We consider the dipole transitions and the linear and quadratic Stark effects in the MICZ-Kepler system interpreted as a charge-dyon system. We show that while the linear Stark effect in the ground state is proportional to the azimuth quantum number (and to the sign of the monopole number), the quadratic Stark effect in the ground state is independent of the signs of the azimuth and monopole numbers

  12. Improved signal analysis for motional Stark effect data

    International Nuclear Information System (INIS)

    Makowski, M.A.; Allen, S.L.; Ellis, R.; Geer, R.; Jayakumar, R.J.; Moller, J.M.; Rice, B.W.

    2005-01-01

    Nonideal effects in the optical train of the motional Stark effect diagnostic have been modeled using the Mueller matrix formalism. The effects examined are birefringence in the vacuum windows, an imperfect reflective mirror, and signal pollution due to the presence of a circularly polarized light component. Relations for the measured intensity ratio are developed for each case. These relations suggest fitting functions to more accurately model the calibration data. One particular function, termed the tangent offset model, is found to fit the data for all channels better than the currently used tangent slope function. Careful analysis of the calibration data with the fitting functions reveals that a nonideal effect is present in the edge array and is attributed to nonideal performance of a mirror in that system. The result of applying the fitting function to the analysis of our data has been to improve the equilibrium reconstruction

  13. Stark effect measurements on monomers and trimers of reconstituted light-harvesting complex II of plants

    NARCIS (Netherlands)

    Palacios, M.A.; Caffarri, S.; Bassi, R.; Grondelle, van R.; Amerongen, van H.

    2004-01-01

    The electric-field induced absorption changes (Stark effect) of reconstituted light-harvesting complex II (LHCII) in different oligomerisation states - monomers and trimers - with different xanthophyll content have been probed at 77 K. The Stark spectra of the reconstituted control samples,

  14. Ab initio modeling of the motional Stark effect on MAST

    International Nuclear Information System (INIS)

    De Bock, M. F. M.; Conway, N. J.; Walsh, M. J.; Carolan, P. G.; Hawkes, N. C.

    2008-01-01

    A multichord motional Stark effect (MSE) system has recently been built on the MAST tokamak. In MAST the π and σ lines of the MSE spectrum overlap due to the low magnetic field typical for present day spherical tokamaks. Also, the field curvature results in a large change in the pitch angle over the observation volume. The measured polarization angle does not relate to one local pitch angle but to an integration over all pitch angles in the observation volume. The velocity distribution of the neutral beam further complicates the measurement. To take into account volume effects and velocity distribution, an ab initio code was written that simulates the MSE spectrum on MAST. The code is modular and can easily be adjusted for other tokamaks. The code returns the intensity, polarized fraction, and polarization angle as a function of wavelength. Results of the code are presented, showing the effect on depolarization and wavelength dependence of the polarization angle. The code is used to optimize the design and calibration of the MSE diagnostic.

  15. The motional stark effect with laser-induced fluorescence diagnostic

    Science.gov (United States)

    Foley, E. L.; Levinton, F. M.

    2010-05-01

    The motional Stark effect (MSE) diagnostic is the worldwide standard technique for internal magnetic field pitch angle measurements in magnetized plasmas. Traditionally, it is based on using polarimetry to measure the polarization direction of light emitted from a hydrogenic species in a neutral beam. As the beam passes through the magnetized plasma at a high velocity, in its rest frame it perceives a Lorentz electric field. This field causes the H-alpha emission to be split and polarized. A new technique under development adds laser-induced fluorescence (LIF) to a diagnostic neutral beam (DNB) for an MSE measurement that will enable radially resolved magnetic field magnitude as well as pitch angle measurements in even low-field (experiments. An MSE-LIF system will be installed on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory. It will enable reconstructions of the plasma pressure, q-profile and current as well as, in conjunction with the existing MSE system, measurements of radial electric fields.

  16. Real-time motional Stark effect in jet

    International Nuclear Information System (INIS)

    Alves, D.; Stephen, A.; Hawkes, N.; Dalley, S.; Goodyear, A.; Felton, R.; Joffrin, E.; Fernandes, H.

    2004-01-01

    The increasing importance of real-time measurements and control systems in JET experiments, regarding e.g. Internal Transport Barrier (ITB) and q-profile control, has motivated the development of a real-time motional Stark effect (MSE) system. The MSE diagnostic allows the measurement of local magnetic fields in different locations along the neutral beam path providing, therefore, local measurement of the current and q-profiles. Recently in JET, an upgrade of the MSE diagnostic has been implemented, incorporating a totally new system which allows the use of this diagnostic as a real-time control tool as well as an extended data source for off-line analysis. This paper will briefly describe the technical features of the real-time diagnostic with main focus on the system architecture, which consists of a VME crate hosting three PowerPC processor boards and a fast ADC, all connected via Front Panel Data Port (FPDP). The DSP algorithm implements a lockin-amplifier required to demodulate the JET MSE signals. Some applications for the system will be covered such as: feeding the real-time equilibrium reconstruction code (EQUINOX) and allowing the full coverage analysis of the Neutral Beam time window. A brief comparison between the real-time MSE analysis and the off-line analysis will also be presented

  17. Stark shift and g-factor tuning in nanowires with Rashba effect

    Energy Technology Data Exchange (ETDEWEB)

    Alhaddad, Iman; Habanjar, Khulud [Department of Physics, Faculty of Science, Beirut Arab University, P.O. Box 11, 5020 Riad El Solh, 11072809 - Beirut (Lebanon); Sakr, M.R., E-mail: msakr@alexu.edu.eg [Department of Physics, Faculty of Science, Beirut Arab University, P.O. Box 11, 5020 Riad El Solh, 11072809 - Beirut (Lebanon); Department of Physics, Faculty of Science, Alexandria University, Moharram Bek, Alexandria 21511 (Egypt)

    2015-10-15

    We report on the Stark shift of the energy subbands and the possibility of tuning the g-factor of electrons in nanowires subjected to external magnetic field. The electric field is applied along the direction of quantum confinement. Our analysis is based on numerical and perturbation calculations in the weak Rashba regime. For in-plane magnetic fields, the Stark shift is rigid and depends on the square of the electric field. Such rigid shift results in a field independent g-factor. Perpendicular magnetic fields induce a similar Stark shift accompanied by a lateral displacement of the energy spectra that is linear in the electric field. In this case, the g-factor shows square dependence on weak electric fields that varies with the subband index. However, in strong electric fields, the g-factor becomes subband independent and varies linearly with the field. - Highlights: • Energy spectra of electrons in nanowires are calculated in the weak Rashba regime. • For in-plane magnetic field, the Stark shift is rigid and the g-factor cannot be tuned. • Perpendicular magnetic fields add lateral displacement to the Stark shift. • The g-factor can be tuned by external electric field in this case. • The tuning of the g-factor is linear and unique for all subbands at high fields.

  18. Stark shift and g-factor tuning in nanowires with Rashba effect

    International Nuclear Information System (INIS)

    Alhaddad, Iman; Habanjar, Khulud; Sakr, M.R.

    2015-01-01

    We report on the Stark shift of the energy subbands and the possibility of tuning the g-factor of electrons in nanowires subjected to external magnetic field. The electric field is applied along the direction of quantum confinement. Our analysis is based on numerical and perturbation calculations in the weak Rashba regime. For in-plane magnetic fields, the Stark shift is rigid and depends on the square of the electric field. Such rigid shift results in a field independent g-factor. Perpendicular magnetic fields induce a similar Stark shift accompanied by a lateral displacement of the energy spectra that is linear in the electric field. In this case, the g-factor shows square dependence on weak electric fields that varies with the subband index. However, in strong electric fields, the g-factor becomes subband independent and varies linearly with the field. - Highlights: • Energy spectra of electrons in nanowires are calculated in the weak Rashba regime. • For in-plane magnetic field, the Stark shift is rigid and the g-factor cannot be tuned. • Perpendicular magnetic fields add lateral displacement to the Stark shift. • The g-factor can be tuned by external electric field in this case. • The tuning of the g-factor is linear and unique for all subbands at high fields

  19. Semiconductor-metal transition induced by giant Stark effect in blue phosphorene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Peng-Yu; Chen, Shi-Zhang; Zhou, Wu-Xing; Chen, Ke-Qiu, E-mail: keqiuchen@hnu.edu.cn

    2017-06-28

    The electronic structures and transport properties in monolayer blue phosphorene nanoribbons (BPNRs) with transverse electric field have been studied by using density functional theory and nonequilibrium Green's functions method. The results show that the band gaps of BPNRs with both armchair and zigzag edges are linearly decreased with the increasing of the strength of transverse electric field. A semiconductor-metal transition occurs when the electric field strength reaches to 5 V/nm. The Stark coefficient presents a linear dependency on BPNRs widths, and the slopes of both zBPNRs and aBPNRs are 0.41 and 0.54, respectively, which shows a giant Stark effect occurs. Our studies show that the semiconductor-metal transition originates from the giant Stark effect. - Highlights: • The electronic transport in blue phosphorene nanoribbons. • Semiconductor-metal transition can be observed. • The semiconductor-metal transition originates from the giant Stark effect.

  20. Theoretical investigation of stark effect on shallow donor binding energy in InGaN spherical QD-QW

    Energy Technology Data Exchange (ETDEWEB)

    El Ghazi, Haddou, E-mail: hadghazi@gmail.com [Solid State Physics Laboratory, Faculty of Science, Dhar EL Mehrez, BP 1796 Fes-Atlas (Morocco); Mathématiques spéciales, CPGE Kénitra, Chakib Arsalane Street (Morocco); Jorio, Anouar; Zorkani, Izeddine [Solid State Physics Laboratory, Faculty of Science, Dhar EL Mehrez, BP 1796 Fes-Atlas (Morocco)

    2013-08-01

    In this paper, a simultaneous study of electric field and impurity's position effects on the ground-state shallow-donor binding energy in GaN|InGaN|GaN spherical quantum dot-quantum well (SQD-QW) as a function of the ratio of the inner and the outer radius is reported. The calculations are investigated using variational approach within the framework of the effective-mass approximation. The numerical results show that: (i) the binding energy is strongly affected by the external electric field and the SQD-QW dimension, (ii) a critical value of spherical system's radius is obtained constituting the limit of three dimension confinement and spherical thin layer confinement and (iii) the Stark shift increases with increasing electric field and it is more pronounced around the position of the impurity corresponding to the binding energy maxima than in the spherical layer extremities.

  1. Theoretical investigation of stark effect on shallow donor binding energy in InGaN spherical QD-QW

    International Nuclear Information System (INIS)

    El Ghazi, Haddou; Jorio, Anouar; Zorkani, Izeddine

    2013-01-01

    In this paper, a simultaneous study of electric field and impurity's position effects on the ground-state shallow-donor binding energy in GaN|InGaN|GaN spherical quantum dot-quantum well (SQD-QW) as a function of the ratio of the inner and the outer radius is reported. The calculations are investigated using variational approach within the framework of the effective-mass approximation. The numerical results show that: (i) the binding energy is strongly affected by the external electric field and the SQD-QW dimension, (ii) a critical value of spherical system's radius is obtained constituting the limit of three dimension confinement and spherical thin layer confinement and (iii) the Stark shift increases with increasing electric field and it is more pronounced around the position of the impurity corresponding to the binding energy maxima than in the spherical layer extremities

  2. Spectral-Kinetic Coupling and Effect of Microfield Rotation on Stark Broadening in Plasmas

    Directory of Open Access Journals (Sweden)

    Alexander V. Demura

    2014-07-01

    Full Text Available The study deals with two conceptual problems in the theory of Stark broadening by plasmas. One problem is the assumption of the density matrix diagonality in the calculation of spectral line profiles. This assumption is closely related to the definition of zero wave functions basis within which the density matrix is assumed to be diagonal, and obviously violated under the basis change. A consistent use of density matrix in the theoretical scheme inevitably leads to interdependence of atomic kinetics, describing the population of atomic states with the Stark profiles of spectral lines, i.e., to spectral-kinetic coupling. The other problem is connected with the study of the influence of microfield fluctuations on Stark profiles. Here the main results of the perturbative approach to ion dynamics, called the theory of thermal corrections (TTC, are presented, within which the main contribution to effects of ion dynamics is due to microfield fluctuations caused by rotations. In the present study the qualitative behavior of the Stark profiles in the line center within predictions of TTC is confirmed, using non-perturbative computer simulations.

  3. Higher order Stark effect and transition probabilities on hyperfine structure components of hydrogen like atoms

    Energy Technology Data Exchange (ETDEWEB)

    Pal' chikov, V.G. [National Research Institute for Physical-Technical and Radiotechnical Measurements - VNIIFTRI (Russian Federation)], E-mail: vitpal@mail.ru

    2000-08-15

    A quantum-electrodynamical (QED) perturbation theory is developed for hydrogen and hydrogen-like atomic systems with interaction between bound electrons and radiative field being treated as the perturbation. The dependence of the perturbed energy of levels on hyperfine structure (hfs) effects and on the higher-order Stark effect is investigated. Numerical results have been obtained for the transition probability between the hfs components of hydrogen-like bismuth.

  4. Motional stark effect upgrades on DIII-D

    International Nuclear Information System (INIS)

    Rice, B.W.; Nilson, D.G.; Wroblewski, D.

    1994-04-01

    The measurement and control of the plasma current density profile (or q profile) is critical to the advanced tokamak program on DIII-D. A complete understanding of the stability and transport properties of advanced operating regimes requires detail poloidal field measurements over the entire plasma radius from the core to the edge. In support of this effort, the authors have recently completed an upgrade of the existing MSE diagnostic, increasing the number of channels from 8 to 16. A new viewing geometry has been added to the outer edge of the plasma which improves the radial resolution in this region from 10 cm to < 4 cm. This view requires the use of a reflector that has been designed to minimize polarization amplitude and phase effects. Vacuum-compatible polarizers have also been added to the instrument for in-situ calibration. Future use of the MSE diagnostic for feedback control of the q profile will also be discussed

  5. High-frequency Stark effect and two-quantum transitions

    International Nuclear Information System (INIS)

    Hildebrandt, J

    2007-01-01

    A problem which motivated a great deal of work about 20 years ago, namely, satellite lines occurring for atomic emitters undergoing a harmonic perturbation, is revisited. On a theoretical point of view, two photon mechanisms or equivalent are involved to explain those satellites due to high-frequency electric fields. Although today the activity on these problems is rather low, interest in observing such effects in the domain of x-ray spectroscopy exists, namely for hot and dense plasmas. More generally, satellites can be also seen as connected to turbulence diagnostics. This mainly motivates the design of plasmas and improvements of x-ray spectroscopy techniques. However, up to now, attempts to extend the methods of nonlinear spectroscopy to this domain have been rather disappointing. As a promotion for a resurgence of the field, an improved theory, founded on formalisms of nonlinear optics, is developed to suggest a new interpretation of the experiments. Previous publications are modified and an old problem is closed. Hopefully, this will help us to stimulate new applications of two-photon techniques in plasmas

  6. Effective viscosity of confined hydrocarbons

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, V.N.; Persson, B.N.J.

    2012-01-01

    We present molecular dynamics friction calculations for confined hydrocarbon films with molecular lengths from 20 to 1400 carbon atoms. We find that the logarithm of the effective viscosity ηeff for nanometer-thin films depends linearly on the logarithm of the shear rate: log ηeff=C-nlog γ̇, where...

  7. Stark effect-dependent of ground-state donor binding energy in InGaN/GaN parabolic QWW

    International Nuclear Information System (INIS)

    El Ghazi, Haddou; Zorkani, Izeddine; Jorio, Anouar

    2013-01-01

    Using the finite-difference method within the quasi-one-dimensional effective potential model and effective mass approximation, the ground-state binding energy of hydrogenic shallow-donor impurity in wurtzite (WZ) (In,Ga)N/GaN parabolic transversal-section quantum-well wires (PQWWs) subjected to external electric field is investigated. An effective radius of a cylindrical QWW describing the strength of the lateral confinement is introduced. The results show that (i) the position of the largest electron probability density in x–y plane is located at a point and it is pushed along the negative sense by the electric field directed along the positive sense, (ii) the ground-state binding energy is largest for the impurity located at this point and starts to decrease when the impurity is away from this point, (iii) the ground-state binding energy decreases with increase in the external electric field and effective radius, and (iv) the Stark-shift increases with the increase of the external electric field and the effective radius

  8. Influence of the ac Stark effect on stimulated hyper-Raman profiles in sodium vapor

    International Nuclear Information System (INIS)

    Moore, M.A.; Garrett, W.R.; Payne, M.G.

    1988-08-01

    When pumping near the two-photon 3d resonance in pure sodium vapor and observing the backward hyper-Raman emission to the 3p substates, an asymmetry in ratios of 3p/sub 1/2/, 3p/sub 3/2/ associated emissions was observed dependent upon the direction of the initial laser detuning from the resonance. It has been determined that this asymmetry can be attributed to the ac Stark effect induced by the hyper-Raman emission itself. 3 refs., 3 figs

  9. The AC Stark Effect, Time-Dependent Born-Oppenheimer Approximation, and Franck-Condon Factors

    CERN Document Server

    Hagedorn, G A; Jilcott, S W

    2005-01-01

    We study the quantum mechanics of a simple molecular system that is subject to a laser pulse. We model the laser pulse by a classical oscillatory electric field, and we employ the Born--Oppenheimer approximation for the molecule. We compute transition amplitudes to leading order in the laser strength. These amplitudes contain Franck--Condon factors that we compute explicitly to leading order in the Born--Oppenheimer parameter. We also correct an erroneous calculation in the mathematical literature on the AC Stark effect for molecular systems.

  10. The giant Stark effect in armchair-edge phosphorene nanoribbons under a transverse electric field

    Science.gov (United States)

    Zhou, Benliang; Zhou, Benhu; Liu, Pu; Zhou, Guanghui

    2018-01-01

    We study the variation of electronic properties for armchair-edge phosphorene nanoribbons (APNRs) modulated by a transverse electric field. Within the tight-binding model Hamiltonian, and by solving the differential Schrödinger equation, we find that a band gap closure appears at the critical field due to the giant Stark effect for an APNR. The gap closure has no field polarity, and the gap varies quadratically for small fields but becomes linear for larger ones. We attribute the giant Stark effect to the broken edge degeneracy, i.e., the charge redistributions of the conduction band minimum and valence band maximum states localized at opposite edges induced by the field. By combined with the Green's function approach, it is shown that in the presence of the critical field a gap of density of states (DOS) disappears and a high value DOS turns up at the energy position of the band gap closure. Finally, as the field increases, we find the band gap decreases more rapidly and the gap closure occurs at smaller fields for wider ribbons. Both the band gap and DOS variations with the field show an insulator-metal transition induced by a transverse electric field for the APNR. Our results show that wider APNRs are more appreciable to design field-effect transistors.

  11. Magnetic field pitch angle diagnostic using the motional Stark effect (invited)

    International Nuclear Information System (INIS)

    Levinton, F.M.; Gammel, G.M.; Kaita, R.; Kugel, H.W.; Roberts, D.W.

    1990-01-01

    The Stark effect has been employed in a novel technique for obtaining the pitch angle profile and q(r) using polarimetry measurements of the Doppler shifted H α emission from a hydrogen diagnostic neutral beam. As a neutral beam propagates through a plasma, collisions of the beam particles with the background ions and electrons will excite beam atoms, leading to emission of radiation. The motional Stark effect, which arises from the electric field induced in the atom's rest frame due to the beam motion across the magnetic field (E=V beam xB), causes a wavelength splitting of several angstroms and polarization of the emitted radiation. The Δm=±1 transitions, or σ components, from the beam fluorescence are linearly polarized parallel to the direction of the local magnetic field when viewed transverse to the fields. Since the hydrogen beam provides good spatial localization and penetration, the pitch angle can be obtained anywhere in the plasma. A photoelastic modulator (PEM) is used to modulate the linearly polarized light. Depending on the orientation of the PEM, it can measure the sine or cosine of the angle of polarization. Two PEM's are used to measure both components simultaneously. Results of q(r) for both Ohmic and NBI heated discharges have been obtained in the Princeton Beta Experiment (PBX-M) tokamak, with an uncertainty of ∼6% for q(0)

  12. Laser-induced fluorescences due to quadrupole moment transition and Stark effect in a He glow discharge

    International Nuclear Information System (INIS)

    Sakai, Hisashi; Takiyama, Ken; Kimura, Masahiko; Yamasaki, Motokuni; Fujita, Toshiaki; Oda, Toshiatsu; Kawasaki, Ken.

    1993-01-01

    The electric quadrupole moment transition and the Stark effect are investigated in a He hollow cathode discharge with laser-induced fluorescence method. It is shown that the forbidden transition from 2 1 S to 3 1 D in the negative glow is dominantly due to the quadrupole moment transition. This absorption coefficient is obtained from the laser-induced fluorescence intensity measurement in which the collisional transfers are taken into account. The result agrees with the theoretical coefficient. In the cathode dark space the fluorescence due to the Stark effect is also observed. Spatial distribution of the fluorescence is discussed, compared with the electric field distribution in the dark space. (author)

  13. A New Analysis of Stark and Zeeman Effects on Hydrogen Lines in Magnetized DA White Dwarfs

    Directory of Open Access Journals (Sweden)

    Ny Kieu

    2017-11-01

    Full Text Available White dwarfs with magnetic field strengths larger than 10 T are understood to represent more than 10% of the total population of white dwarfs. The presence of such strong magnetic fields is clearly indicated by the Zeeman triplet structure visible on absorption lines. In this work, we discuss the line broadening mechanisms and focus on the sensitivity of hydrogen lines on the magnetic field. We perform new calculations in conditions relevant to magnetized DA stellar atmospheres using models inspired from magnetic fusion plasma spectroscopy. A white dwarf spectrum from the Sloan Digital Sky Survey (SDSS database is analyzed. An effective temperature is provided by an adjustment of the background radiation with a Planck function, and the magnetic field is inferred from absorption lines presenting a Zeeman triplet structure. An order-of-magnitude estimate for the electron density is also performed from Stark broadening analysis.

  14. Stark Broadening and White Dwarfs

    Directory of Open Access Journals (Sweden)

    Dimitrijević Milan S.

    2011-12-01

    Full Text Available White dwarf and pre-white dwarfs are the best types of stars for the application of Stark broadening research results in astrophysics, since in the atmospheres of these stars physical conditions are very favorable for this line broadening mechanism - in hot hydrogen-deficient white dwarfs and pre-white dwarfs Teff = 75 000–180 000 K and log g = 5.5–8 [cgs]. Even for much cooler DA and DB white dwarfs with the typical effective temperatures 10 000-20 000 K, Stark broadening is usually the dominant broadening mechanism. In this review, Stark broadening in white dwarf spectra is considered, and the attention is drawn to the STARK-B database (http://stark-b.obspm.fr/, containing the parameters needed for analysis and synthesis of white dwarf spectra, as well as for the collective efforts to develop the Virtual Atomic and Molecular Data Center.

  15. The Stark effect of 1H and 4He+ in the beam foil source

    International Nuclear Information System (INIS)

    Doobov, M.H.; Hay, H.J.; Sofield, C.J.; Newton, C.S.

    1974-01-01

    The appearance of Stark patterns obtained with a beam-foil source differed from those characteristically obtained from gas discharge sources. In the former source excitation of the hydrogenic ions occurred in a brief time interval ( 14 s) during the passage of a high velocity unidirectional beam of ions which produces non-statistical population distributions for the Stark perturbed states. The relative intensities of Stark perturbed components of the Hsub(β) hydrogen line and the Fsub(α) ionized helium line have been measured in a beam-foil source. In each case an initial population of states of principal quantum number n = 4 due to radiative decay and Stark mixing, and comparing the resultant patterns with the observed patterns. The inferred population distributions indicate that the states of low orbital angular momentum (L) are preferentially populated, and alignment referred to the beam axis is produced such that states with lower z component of L are preferentially populated. (author)

  16. A study of the ac Stark effect in doped photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Haque, I; Singh, Mahi R [Department of Physics and Astronomy, University of Western Ontario, London, ON, N6A 3K7 (Canada)

    2007-04-16

    In this paper we present calculations of level populations and susceptibility for an ensemble of five-level atoms doped in a photonic crystal, using the master equation method. The atoms in the ensemble interact with the crystal which acts as a reservoir and are coupled with two strong pump fields and a weak probe field. It is found that, by manipulating the resonance energy associated with one of the decay channels of the atom, the system can be switched between an inverted and a non-inverted state. We have also observed the ac Stark effect in these atoms and have shown that due to the role played by the band structure of the photonic crystal, it is possible to switch between an absorption state and a non-absorption state of the atomic system. This is a very important finding as techniques of rendering material systems transparent to resonant laser radiation are very desirable in the fabrication of novel optical and photonic devices.

  17. Design of a New Optical System for Alcator C-Mod Motional Stark Effect Diagnostic

    International Nuclear Information System (INIS)

    Ko, Jinseok; Scott, Steve; Bitter, Manfred; Lerner, Scott

    2009-01-01

    The motional Stark effect (MSE) diagnostic on Alcator C-Mod uses an in-vessel optical system (five lenses and three mirrors) to relay polarized light to an external polarimeter because port access limitations on Alcator C-Mod preclude a direct view of the diagnostic beam. The system experiences unacceptable, spurious drifts of order several degrees in measured pitch angle over the course of a run day. Recent experiments illuminated the MSE diagnostic with polarized light of fixed orientation as heat was applied to various optical elements. A large change in measured angle was observed as two particular lenses were heated, indicating that thermal-stress-induced birefringence is a likely cause of the spurious variability. Several new optical designs have been evaluated to eliminate the affected in-vessel lenses and to replace the focusing they provide with curved mirrors; however, ray tracing calculations imply that this method is not feasible. A new approach is under consideration that utilizes in situ calibrations with in-vessel reference polarized light sources. 2008 American Institute of Physics.

  18. Simultaneous influence of Stark effect and excessive line broadening on the Hα line

    Science.gov (United States)

    Cvetanović, Nikola; Ivković, Saša S.; Obradović, Bratislav M.; Kuraica, Milorad M.

    2017-12-01

    The aim of this paper is to study the combined influence of the Stark effect and the excessive Doppler broadening on the Balmer alpha line in hydrogen discharges. Since this line is a good candidate for measuring electric field in various types of discharges with different gas compositions, a simple method for field measurement based on polarization spectroscopy is developed, that includes all the excitation mechanisms. To simultaneously test the flexibility of the fitting procedure and investigate the excessive broadening, we applied the fitting procedure on line profiles obtained at a range of conditions from two different discharges. The range of pressures and voltages was examined in an abnormal glow and in dielectric barrier discharge operating with hydrogen gas. The model fitting function was able to respond and follow the change in the line profile caused by the change of conditions. This procedure can therefore be recommended for electric field measurement. Contribution to the "Topical Issue: Physics of Ionized Gases (SPIG 2016)", edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.

  19. Deflection of atomic beams with isotope separation by optical resonance radiation using stimulated emission and the ac stark effect

    International Nuclear Information System (INIS)

    Bjorkholm, J.E.; Liao, P.F.H.

    1977-01-01

    Improved atomic beam deflection and improved isotope separation, even in vapors, is proposed by substituting the A.C. Stark effect for the baseband chirp of the pushing beam in the prior proposal by I. Nebenzahl et al., Applied Physics Letters, Vol. 25, page 327 (September 1974). The efficiency inherent in re-using the photons as in the Nebenzahl et al proposal is retained; but the external frequency chirpers are avoided. The entire process is performed by two pulses of monochromatic coherent light, thereby avoiding the complication of amplifying frequency-modulated light pulses. The A.C. Stark effect is provided by the second beam of coherent monochromatic light, which is sufficiently intense to chirp the energy levels of the atoms or isotopes of the atomic beam or vapor. Although, in general, the A.C. Stark effect will alter the isotope shift somewhat, it is not eliminated. In fact, the appropriate choice of frequencies of the pushing and chirping beams may even relax the requirements with respect to the isotope absorption line shift for effective separation. That is, it may make the isotope absorption lines more easily resolvable

  20. The importance of the radial electric field (Er) on interpretation of motional Stark effect measurements of the q profile in DIII-D high performance plasmas

    International Nuclear Information System (INIS)

    Rice, B.W.; Lao, L.L.; Burrell, K.H.; Greenfield, C.M.; Lin-Liu, Y.R.

    1997-06-01

    The development of enhanced confinement regimes such as negative central magnetic shear (NCS) and VH-mode illustrates the importance of the q profile and ExB velocity shear in improving stability and confinement in tokamak plasmas. Recently, it was realized that the large values of radial electric field observed in these high performance plasmas, up to 200 kV/m in DIII-D, have an effect on the interpretation of motional Stark effect (MSE) measurements of the q profile. It has also been shown that, with additional MSE measurements, one can extract a direct measurement of E r in addition to the usual poloidal field measurement. During a recent vent on DIII-D, 19 additional MSE channels with new viewing angles were added (for a total of 35 channels) in order to descriminate between the neutral beam v b x B electric field and the plasma E r field. In this paper, the system upgrade will be described and initial measurements demonstrating simultaneous measurement of the q and E r profiles will be presented

  1. Band Structure and Quantum Confined Stark Effect in InN/GaN superlattices

    DEFF Research Database (Denmark)

    Gorczyca, I.; Suski, T.; Christensen, Niels Egede

    2012-01-01

    InN/GaN superlattices offer an important way of band gap engineering in the blue-green range of the spectrum. This approach represents a more controlled method than the band gap tuning in quantum well systems by application of InGaN alloys. The electronic structures of short-period wurtzite InN/G...... wells and barriers one may tune band gaps over a wide spectral range, which provides flexibility in band gap engineering.......InN/GaN superlattices offer an important way of band gap engineering in the blue-green range of the spectrum. This approach represents a more controlled method than the band gap tuning in quantum well systems by application of InGaN alloys. The electronic structures of short-period wurtzite In......N/GaN(0001) superlattices are investigated, and the variation of the band gap with the thicknesses of the well and the barrier is discussed. Superlattices of the form mInN/nGaN with n ≥ m are simulated using band structure calculations in the Local Density Approximation with a semiempirical correction...

  2. Isotope effect on confinement in DT plasmas

    International Nuclear Information System (INIS)

    Fukuyama, A.; Itoh, K.; Itoh, S.; Yagi, M.; Azumi, M.

    1994-03-01

    Isotope effect on the energy confinement time is discussed for the DT plasma. The transport theory which is based on the ballooning mode turbulence is applied. When the DT plasma is produced under the condition of β p >1, the energy confinement time of DT plasma (50% mixture) is expected to be about 1.2 times better than the D plasma with the same operation condition. (author)

  3. Stark effect of the hyperfine structure of ICl in its rovibronic ground state: Towards further molecular cooling

    Science.gov (United States)

    Qing-Hui, Wang; Xu-Ping, Shao; Xiao-Hua, Yang

    2016-01-01

    Hyperfine structures of ICl in its vibronic ground state due to the nuclear spin and electric quadruple interactions are determined by diagonalizing the effective Hamiltonian matrix. Furthermore, the Stark sub-levels are precisely determined as well. The results are helpful for electro-static manipulation (trapping or further cooling) of cold ICl molecules. For example, an electric field of 1000 V/cm can trap ICl molecules less than 637 μK in the lowest hyperfine level. Project supported by the National Natural Science Foundation of China (Grant No. 11034002), the National Basic Research Program of China (Grant No. 2011CB921602), and Qing Lan Project, China.

  4. Measurement of the poloidal magnetic field in the PBX-M tokamak using the motional Stark effect

    International Nuclear Information System (INIS)

    Levinton, F.M.; Fonck, R.J.; Gammel, G.M.; Kaita, R.; Kugel, H.W.; Powell, E.T.; Roberts, D.W.

    1989-05-01

    Polarimetry measurements of the Doppler-shifted H/sub α/ emission from a hydrogen neutral beam on the PBX-M tokamak have been employed in a novel technique for obtaining q(0) and poloidal magnetic field profiles. The electric field from the beam particle motion across the magnetic field (E = V/sub beam/ /times/ B) causes a wavelength splitting of several angstroms, and polarization of the emitted radiation (Stark effect). Viewed transverse to the fields, the emission is linearly polarized with the angle of polarization related to the direction of the magnetic field. 14 refs., 5 figs

  5. Effect of holding period prior to storage on the chemical attributes of Starking Delicious apples during refrigerated storage

    Directory of Open Access Journals (Sweden)

    Aynur Batkan

    2012-06-01

    Full Text Available In this research, the effects of three different holding periods (6, 12 and 24 hours prior to storage on the quality attributes of Starking Delicious apples were investigated during storage of 8 months at 0.5 ± 1.0 ºC. Changes in weight loss, flesh firmness, pH values, soluble dry matter amount, titratable acidity values, ascorbic acid contents, and total and reducing sugar content were determined. According to the results, the holding period showed statistically significant changes in the quality attributes of the apples (p < 0.05.

  6. Direct measurements of safety factor profiles with motional Stark effect for KSTAR tokamak discharges with internal transport barriers

    Science.gov (United States)

    Ko, J.; Chung, J.

    2017-06-01

    The safety factor profile evolutions have been measured from the plasma discharges with the external current drive mechanism such as the multi-ion-source neutral beam injection for the Korea Superconducting Tokamak Advanced Research (KSTAR) for the first time. This measurement has been possible by the newly installed motional Stark effect (MSE) diagnostic system that utilizes the polarized Balmer-alpha emission from the energetic neutral deuterium atoms induced by the Stark effect under the Lorentz electric field. The 25-channel KSTAR MSE diagnostic is based on the conventional photoelastic modulator approach with the spatial and temporal resolutions less than 2 cm (for the most of the channels except 2 to 3 channels inside the magnetic axis) and about 10 ms, respectively. The strong Faraday rotation imposed on the optical elements in the diagnostic system is calibrated out from a separate and well-designed polarization measurement procedure using an in-vessel reference polarizer during the toroidal-field ramp-up phase before the plasma experiment starts. The combination of the non-inductive current drive during the ramp-up and shape control enables the formation of the internal transport barrier where the pitch angle profiles indicate flat or slightly hollow profiles in the safety factor.

  7. Stark shifting two-electron quantum dot

    International Nuclear Information System (INIS)

    Dineykhan, M.; Zhaugasheva, S.A.; Duysebaeva, K.S.

    2003-01-01

    Advances in modern technology make it possible to create semiconducting nano-structures (quantum dot) in which a finite number of electrons are 'captured' in a bounded volume. A quantum dot is associated with a quantum well formed at the interface, between two finite-size semiconductors owing to different positions of the forbidden gaps on the energy scale in these semiconductors. The possibility of monitoring and controlling the properties of quantum dots attracts considerable attention to these objects, as a new elemental basis for future generations of computers. The quantum-mechanical effects and image potential play a significant role in the description of the formation mechanism quantum dot, and determined the confinement potential in a two-electron quantum dot only for the spherical symmetric case. In the present talk, we considered the formation dynamics of two-electron quantum dot with violation of spherical symmetry. So, we have standard Stark potential. The energy spectrum two-electron quantum dot were calculated. Usually Stark interactions determined the tunneling phenomena between quantum dots

  8. Stark resonances in disordered systems

    International Nuclear Information System (INIS)

    Grecchi, V.; Maioli, M.; Modena Univ.; Sacchetti, A.

    1992-01-01

    By slightly restricting the conditions given by Herbst and Howland, we prove the existence of resonances in the Stark effect of disordered systems (and atomic crystals) for large atomic mean distance. In the crystal case the ladders of resonances have the Wannier behavior for small complex field. (orig.)

  9. Measurements with magnetic field in the National Spherical Torus Experiment using the motional Stark effect with laser induced fluorescence diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Foley, E. L.; Levinton, F. M. [Nova Photonics, Inc., Princeton, New Jersey 08540 (United States)

    2013-04-15

    The motional Stark effect with laser-induced fluorescence diagnostic (MSE-LIF) has been installed and tested on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Lab. The MSE-LIF diagnostic will be capable of measuring radially resolved profiles of magnetic field magnitude or pitch angle in NSTX plasmas. The system includes a diagnostic neutral hydrogen beam and a laser which excites the n = 2 to n = 3 transition. A viewing system has been implemented which will support up to 38 channels from the plasma edge to past the magnetic axis. First measurements of MSE-LIF signals in the presence of small applied magnetic fields in neutral gas are reported.

  10. Measurements with magnetic field in the National Spherical Torus Experiment using the motional Stark effect with laser induced fluorescence diagnostic

    Science.gov (United States)

    Foley, E. L.; Levinton, F. M.

    2013-04-01

    The motional Stark effect with laser-induced fluorescence diagnostic (MSE-LIF) has been installed and tested on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Lab. The MSE-LIF diagnostic will be capable of measuring radially resolved profiles of magnetic field magnitude or pitch angle in NSTX plasmas. The system includes a diagnostic neutral hydrogen beam and a laser which excites the n = 2 to n = 3 transition. A viewing system has been implemented which will support up to 38 channels from the plasma edge to past the magnetic axis. First measurements of MSE-LIF signals in the presence of small applied magnetic fields in neutral gas are reported.

  11. Overview of equilibrium reconstruction on DIII-D using new measurements from an expanded motional Stark effect diagnostic

    International Nuclear Information System (INIS)

    Holcomb, C; Makowski, M; Allen, S; Meyer, W; Van Zeeland, M

    2008-01-01

    Motional Stark effect (MSE) measurements constrain equilibrium reconstruction of DIII-D tokamak plasmas using the equilibrium code EFIT. In 2007, two new MSE arrays were brought online, bringing the system to three core arrays, two edge arrays, and 64 total channels. We present the first EFIT reconstructions using this expanded system. Safety factor and E R profiles produced by fitting to data from the two new arrays and one of the other three agree well with independent measurements. Comparison of the data from the three arrays that view the core shows that one of the older arrays is inconsistent with the other two unless the measured calibration factors for this array are adjusted. The required adjustments depend on toroidal field and plasma current direction, and on still other uncertain factors that change as the plasma evolves. We discuss possible sources of calibration error for this array

  12. Effective diffusion of confined active Brownian swimmers

    Science.gov (United States)

    Sandoval, Mario; Dagdug, Leonardo

    2014-11-01

    We find theoretically the effect of confinement and thermal fluctuations, on the diffusivity of a spherical active swimmer moving inside a two-dimensional narrow cavity of general shape. The explicit formulas for the effective diffusion coefficient of a swimmer moving inside two particular cavities are presented. We also compare our analytical results with Brownian Dynamics simulations and we obtain excellent agreement. L.D. thanks Consejo Nacional de Ciencia y Tecnologia (CONACyT) Mexico, for partial support by Grant No. 176452. M. S. thanks CONACyT and Programa de Mejoramiento de Profesorado (PROMEP) for partially funding this work under Grant No. 103.5/13/6732.

  13. A motional Stark effect diagnostic analysis routine for improved resolution of iota in the core of the large helical device.

    Science.gov (United States)

    Dobbins, T J; Ida, K; Suzuki, C; Yoshinuma, M; Kobayashi, T; Suzuki, Y; Yoshida, M

    2017-09-01

    A new Motional Stark Effect (MSE) analysis routine has been developed for improved spatial resolution in the core of the Large Helical Device (LHD). The routine was developed to reduce the dependency of the analysis on the Pfirsch-Schlüter (PS) current in the core. The technique used the change in the polarization angle as a function of flux in order to find the value of diota/dflux at each measurement location. By integrating inwards from the edge, the iota profile can be recovered from this method. This reduces the results' dependency on the PS current because the effect of the PS current on the MSE measurement is almost constant as a function of flux in the core; therefore, the uncertainty in the PS current has a minimal effect on the calculation of the iota profile. In addition, the VMEC database was remapped from flux into r/a space by interpolating in mode space in order to improve the database core resolution. These changes resulted in a much smoother iota profile, conforming more to the physics expectations of standard discharge scenarios in the core of the LHD.

  14. Electric Fields near RF Heating and Current Drive Antennas in Tore Supra Measured with Dynamic Stark Effect Spectroscopy*

    Science.gov (United States)

    Klepper, C. C.; Martin, E. H.; Isler, R. C.; Colas, L.; Hillairet, J.; Marandet, Y.; Lotte, Ph.; Colledani, G.; Martin, V.; Hillis, D. L.; Harris, J. H.; Saoutic, B.

    2011-10-01

    Computational models of the interaction between RF waves and the scrape-off layer plasma near ion cyclotron resonant heating (ICRH) and lower hybrid current drive launch antennas are continuously improving. These models mainly predict the RF electric fields produced in the SOL and, therefore, the best measurement for verification of these models would be a direct measurement of these electric fields. Both types of launch antennas are used on Tore Supra and are designed for high power (up to 4MW/antenna) and long pulse (> > 25s) operation. Direct, non-intrusive measurement of the RF electric fields in the vicinity of these structures is achieved by fitting spectral profiles of deuterium Balmer-alpha and Balmer-beta to a model that includes the dynamic, external-field Stark effect, as well as Zeeman splitting and Doppler broadening mechanisms. The measurements are compared to the mentioned, near-field region, RF antenna models. *Work supported in part by the US DOE under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

  15. Confinement effects and mechanistic aspects for montmorillonite nanopores.

    Science.gov (United States)

    Li, Xiong; Zhu, Chang; Jia, Zengqiang; Yang, Gang

    2018-08-01

    Owing to the ubiquity, critical importance and special properties, confined microenvironments have recently triggered overwhelming interest. In this work, all-atom molecular dynamics simulations have been conducted to address the confinement effects and ion-specific effects for electrolyte solutions within montmorillonite nanopores, where the pore widths vary with a wide range. The adsorption number, structure, dynamics and stability of inner- and outer-sphere metal ions are affected by the change of pore widths (confinement effects), while the extents are significantly dependent on the type of adsorbed species. The type of adsorbed species is, however, not altered by the magnitude of confinement effects, and confinement effects are similar for different electrolyte concentrations. Ion-specific effects are pronounced for all magnitudes of confinement effects (from non- to strong confined conditions), and Hofmeister sequences of outer-sphere species are closely associated with the magnitude of confinement effects while those of inner-sphere species remain consistent. In addition, mechanistic aspects of confinement have been posed using the electrical double layer theories, and the results can be generalized to other confined systems that are ubiquitous in biology, chemistry, geology and nanotechnology. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Observation of the Stark effect in υ+ = 0 Rydberg states of NO: a comparison between predissociating and bound states

    International Nuclear Information System (INIS)

    Jones, N J A; Minns, R S; Patel, R; Fielding, H H

    2008-01-01

    The Stark spectra of Rydberg states of NO below the υ + = 0 ionization limit, with principal quantum numbers n = 25-30, have been investigated in the presence of dc electric fields in the range 0-150 V cm -1 . The Stark states were accessed by two-colour, double-resonance excitation via the υ' = 0, N' = 0 rovibrational state of the A 2 Σ + state. The N( 2 D) atoms produced by predissociation were measured by (2 + 1) resonance-enhanced multiphoton ionization, and compared with pulsed-field ionization spectra of the bound Rydberg state population (Patel et al 2007 J. Phys. B: At. Mol. Opt. Phys. 40 1369)

  17. The effects of ultrasonic pretreatment and structural changes during the osmotic dehydration of the 'Starking' apple (Malus domestica Borkh)

    Energy Technology Data Exchange (ETDEWEB)

    Rosa-Mendoza, M. E.; Fernandez-Munoz, J. L.; Arjona-Roman, J. L.

    2012-11-01

    During the osmotic dehydration (OD) of fruit, the cell membrane displays a high resistance to mass transfer, thereby reducing the dehydration rate. To reduce thermal damage to cell membranes, alternative methods have recently been introduced to reduce the initial moisture content and/or modify the structure of fruit tissue. The aim of this work was to evaluate the effects of an ultrasound (US) pretreatment for OD on the effective diffusion coefficients and to observe the changes in the molecular structure of 'Starking' apple cubes by Fourier-transform infrared spectroscopy (FTIR) during a 3 h process using a 45 dregee Bx sucrose solution at 60 degree centigrade. In the pretreatment step, apple samples were immersed in an ultrasonic bath at 45 kHz for 20 min. The effective diffusion coefficients for water (Dew) and solids (Des) were calculated from the observed osmotic kinetics according to Fick's second law for the transient state. The solids coefficients were higher than the water coefficients in both processes due to the concentration difference (De = 7.7 × 10{sup -}9 and 9.7 × 10{sup -}9 m{sup 2} s{sup -}1 for ODUS). The structural changes were determined by FTIR by measuring the molecular vibration frequency for sucrose. The 1,500-900 cm{sup -}1 region of the infrared spectra was used to monitor the effect of sucrose concentration on fruit structure. We observed that the first bonds formed were C-H and C-O-C stretching (at 920 and 1,129 cm{sup -}1, respectively) in the sucrose skeleton and glycoside bonds among sucrose molecules. The water concentration affected the diffusion coefficient significantly due to its dependence on the physical structure of the food. (Author) 27 refs.

  18. Influence of the dynamic Stark effect on long-term frequency stability of a self-oscillating magnetometer with laser-pumped alkali atoms

    Science.gov (United States)

    Baranov, A. A.; Ermak, S. V.; Kulachenkov, N. K.; Petrenko, M. V.; Sagitov, E. A.; Semenov, V. V.

    2017-11-01

    This paper presents the results of investigation Stark shift effect influence on the long-term stability of a dual scheme of quantum magnetometers. Such scheme allows suppressing Stark shift components when a certain pumping light polarization is applied. As a result, long-term stability of a quantum sensor increases. However, when low-frequency (LF) and microwave fields are attached to a single vapor cell a coherence circulation in hyperfine structure of alkali atoms takes place. Physical origin of this effect is associated with the so called “dressed” atom theory, when atom is “dressed” by LF field. It yields in multiphoton absorption and resonance frequency shift. First estimates for this shift based on density matrix evolution formalism are provided in the paper.

  19. Anisotropic spin–orbit stark effect in cubic semiconductors without an inversion center

    International Nuclear Information System (INIS)

    Alekseev, P. S.

    2015-01-01

    The effect of external electric and magnetic fields on shallow donor levels in a semiconductor of the T d crystallographic class is analyzed. Application of an electric field eliminates the symmetry of the donor potential with respect to space inversion; as a result, corrections from the momentum-odd spin–orbit Dresselhaus term appear in the donor levels. In a strong electric field, such corrections determine the anisotropy of spin splitting of the donor levels relative to the directions of the external fields in the crystallographic coordinate system. Analytic expressions are derived for the spin splitting anisotropy for various relations between the magnitudes of the magnetic and electric fields. The results of this study can be used to determine the Dresselhaus spin–orbit interaction constant by a new method (in experiments on spin splitting of donor levels)

  20. Anisotropic spin–orbit stark effect in cubic semiconductors without an inversion center

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, P. S., E-mail: pavel.alekseev@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)

    2015-09-15

    The effect of external electric and magnetic fields on shallow donor levels in a semiconductor of the T{sub d} crystallographic class is analyzed. Application of an electric field eliminates the symmetry of the donor potential with respect to space inversion; as a result, corrections from the momentum-odd spin–orbit Dresselhaus term appear in the donor levels. In a strong electric field, such corrections determine the anisotropy of spin splitting of the donor levels relative to the directions of the external fields in the crystallographic coordinate system. Analytic expressions are derived for the spin splitting anisotropy for various relations between the magnitudes of the magnetic and electric fields. The results of this study can be used to determine the Dresselhaus spin–orbit interaction constant by a new method (in experiments on spin splitting of donor levels)

  1. Experimental methods in cryogenic spectroscopy: Stark effect measurements in substituted myoglobin

    Science.gov (United States)

    Moran, Bradley M.

    Dawning from well-defined tertiary structure, the active regions of enzymatic proteins exist as specifically tailored electrostatic microenvironments capable of facilitating chemical interaction. The specific influence these charge distributions have on ligand binding dynamics, and their impact on specificity, reactivity, and biological functionality, have yet to be fully understood. A quantitative determination of these intrinsic fields would offer insight towards the mechanistic aspects of protein functionality. This work seeks to investigate the internal molecular electric fields that are present at the oxygen binding site of myoglobin. Experiments are performed at 1 K on samples located within a glassy matrix, using the high-resolution technique spectral hole-burning. The internal electric field distributions can be explored by implementing a unique mathematical treatment for analyzing the effect that externally applied electric fields have on the spectral hole profiles. Precise control of the light field, the temperature, and the externally applied electric field at the site of the sample is crucial. Experimentally, the functionality of custom cryogenic temperature confocal scanning microscope was extended to allow for collection of imaging and spectral data with the ability to modulate the polarization of the light at the sample. Operation of the instrumentation was integrated into a platform allowing for seamless execution of input commands with high temporal inter-instrument resolution for collection of data streams. For the regulated control and cycling of the sample temperature. the thermal characteristics of the research Dewar were theoretically modeled to systematically predict heat flows throughout the system. A high voltage feedthrough for delivering voltages of up to 5000 V to the sample as positioned within the Dewar was developed. The burning of spectral holes with this particular experimental setup is highly repeatable. The quantum mechanical

  2. Orthogonal Electric Field Measurements near the Green Fluorescent Protein Fluorophore through Stark Effect Spectroscopy and pKa Shifts Provide a Unique Benchmark for Electrostatics Models.

    Science.gov (United States)

    Slocum, Joshua D; First, Jeremy T; Webb, Lauren J

    2017-07-20

    Measurement of the magnitude, direction, and functional importance of electric fields in biomolecules has been a long-standing experimental challenge. pK a shifts of titratable residues have been the most widely implemented measurements of the local electrostatic environment around the labile proton, and experimental data sets of pK a shifts in a variety of systems have been used to test and refine computational prediction capabilities of protein electrostatic fields. A more direct and increasingly popular technique to measure electric fields in proteins is Stark effect spectroscopy, where the change in absorption energy of a chromophore relative to a reference state is related to the change in electric field felt by the chromophore. While there are merits to both of these methods and they are both reporters of local electrostatic environment, they are fundamentally different measurements, and to our knowledge there has been no direct comparison of these two approaches in a single protein. We have recently demonstrated that green fluorescent protein (GFP) is an ideal model system for measuring changes in electric fields in a protein interior caused by amino acid mutations using both electronic and vibrational Stark effect chromophores. Here we report the changes in pK a of the GFP fluorophore in response to the same mutations and show that they are in excellent agreement with Stark effect measurements. This agreement in the results of orthogonal experiments reinforces our confidence in the experimental results of both Stark effect and pK a measurements and provides an excellent target data set to benchmark diverse protein electrostatics calculations. We used this experimental data set to test the pK a prediction ability of the adaptive Poisson-Boltzmann solver (APBS) and found that a simple continuum dielectric model of the GFP interior is insufficient to accurately capture the measured pK a and Stark effect shifts. We discuss some of the limitations of this

  3. Possible retardation effects of quark confinement on the meson spectrum

    International Nuclear Information System (INIS)

    Qiao, C.; Huang, H.; Chao, K.

    1996-01-01

    The reduced Bethe-Salpeter equation with scalar confinement and vector gluon exchange is applied to quark-antiquark bound states. The so-called intrinsic flaw of the Salpeter equation with static scalar confinement is investigated. The notorious problem of narrow level spacings is found to be remedied by taking into consideration the retardation effect of scalar confinement. A good fit for the mass spectrum of both heavy and light quarkonium states is then obtained. copyright 1996 The American Physical Society

  4. First prediction of the direct effect of a confined atom on photoionization of the confining fullerene

    International Nuclear Information System (INIS)

    McCune, Matthew A; De, Ruma; Chakraborty, Himadri S; Madjet, Mohamed E

    2010-01-01

    We predict that the confined atom can qualitatively modify the energetic photoionization of some cage levels, even though these levels are of very dominant fullerene character. The effect imposes strong new oscillations in the cross sections which are forbidden to the ionization of empty fullerenes. Results are presented for the AratC 60 endofullerene compound. (fast track communication)

  5. First prediction of the direct effect of a confined atom on photoionization of the confining fullerene

    Energy Technology Data Exchange (ETDEWEB)

    McCune, Matthew A; De, Ruma; Chakraborty, Himadri S [Center for Innovation and Entrepreneurship, Department of Chemistry and Physics, Northwest Missouri State University, Maryville, MO 64468 (United States); Madjet, Mohamed E, E-mail: himadri@nwmissouri.ed [Institute of Chemistry and Biochemistry, Free University, Fabeckstrasse 36a, D-14195 Berlin (Germany)

    2010-09-28

    We predict that the confined atom can qualitatively modify the energetic photoionization of some cage levels, even though these levels are of very dominant fullerene character. The effect imposes strong new oscillations in the cross sections which are forbidden to the ionization of empty fullerenes. Results are presented for the AratC{sub 60} endofullerene compound. (fast track communication)

  6. Effective viscosity of two-dimensional suspensions: Confinement effects

    Science.gov (United States)

    Doyeux, Vincent; Priem, Stephane; Jibuti, Levan; Farutin, Alexander; Ismail, Mourad; Peyla, Philippe

    2016-08-01

    We study the rheology of a sheared two-dimensional (2D) suspension of non-Brownian disks in the presence of walls. Although it is of course possible today with modern computers and powerful algorithms to perform direct numerical simulations that fully account for multiparticle 3D interactions in the presence of walls, the analysis of the simple case of a 2D suspension provides valuable insights and helps in the understanding of 3D results. Due to the direct visualization of the whole 2D flow (the shear plane), we are able to give a clear interpretation of the full hydrodynamics of semidilute confined suspensions. For instance, we examine the role of disk-wall and disk-disk interactions to determine the dissipation of confined sheared suspensions whose effective viscosity depends on the area fraction ϕ of the disks as ηeff=η0[1 +[η ] ϕ +β ϕ2+O (ϕ3) ] . We provide numerical estimates of [η ] and β for a wide range of confinements. As a benchmark for our simulations, we compare the numerical results obtained for [η ] and β for very weak confinements with analytical values [η] ∞ and β∞ obtained for an infinite fluid. If the value [η] ∞=2 is well known in the literature, much less is published on the value of β . Here we analytically calculate with very high precision β∞=3.6 . We also reexamine the 3D case in the light of our 2D results.

  7. Effect of laser peening with glycerol as plasma confinement layer

    Science.gov (United States)

    Tsuyama, Miho; Ehara, Naoya; Yamashita, Kazuma; Heya, Manabu; Nakano, Hitoshi

    2018-03-01

    The effects of controlling the plasma confinement layer on laser peening were investigated by measuring the hardness and residual stress of laser-peened stainless steels. The plasma confinement layer contributes to increasing the pressure of shock waves by suppressing the expansion of the laser-produced plasma. Most previous studies on laser peening have employed water as the plasma confinement layer. In this study, a glycerol solution is used in the context of a large acoustic impedance. It is found that this glycerol solution is superior to water in its ability to confine plasma and that suitable conditions exist for the glycerol solution to act as a plasma confinement layer to achieve efficient laser peening.

  8. Stark shift of impurity doped quantum dots: Role of noise

    Science.gov (United States)

    Arif, Sk. Md.; Bera, Aindrila; Ghosh, Anuja; Ghosh, Manas

    2018-02-01

    Present study makes a punctilious investigation of the profiles of Stark shift (SS) of doped GaAs quantum dot (QD) under the supervision of Gaussian white noise. A few physical parameters have been varied and the consequent variations in the SS profiles have been monitored. The said physical parameters comprise of magnetic field, confinement potential, dopant location, dopant potential, noise strength, aluminium concentration (only for AlxGa1-x As alloy QD), position-dependent effective mass (PDEM), position-dependent dielectric screening function (PDDSF), anisotropy, hydrostatic pressure (HP) and temperature. The SS profiles unfurl interesting features that heavily depend upon the particular physical quantity concerned, presence/absence of noise and the manner (additive/multiplicative) noise enters the system. The study highlights feasible means of maximizing SS of doped QD in presence of noise by suitable adjustment of several control parameters. The study deems importance in view of technological applications of QD devices where noise plays some prominent role.

  9. Study of Stark Effect in n-doped 1.55 μm InN0.92yP1-1.92yBiy/InP MQWs

    Science.gov (United States)

    Bilel, C.; Chakir, K.; Rebey, A.; Alrowaili, Z. A.

    2018-05-01

    The effect of an applied electric field on electronic band structure and optical absorption properties of n-doped InN0.92y P1-1.92y Bi y /InP multiple quantum wells (MQWs) was theoretically studied using a self-consistent calculation combined with the 16-band anti-crossing model. The incorporation of N and Bi atoms into an InP host matrix leads to rapid reduction of the band gap energy covering a large infrared range. The optimization of the well parameters, such as the well/barrier widths, N/Bi compositions and doping density, allowed us to obtain InN0.92y P1-1.92y Bi y /InP MQWs operating at the wavelength 1.55 μm. Application of the electric field causes a red-shift of the fundamental transition energy T 1 accompanied by a significant change in the spatial distribution of confined electron density. The Stark effect on the absorption coefficient of n-doped InN0.92y P1-1.92y Bi y /InP MQWs was investigated. The Bi composition of these MQWs was adjusted for each electric field value in order to maintain the wavelength emission at 1.55 μm.

  10. Stark resonances: asymptotics and distributional Borel sum

    International Nuclear Information System (INIS)

    Caliceti, E.; Grecchi, V.; Maioli, M.

    1993-01-01

    We prove that the Stark effect perturbation theory of a class of bound states uniquely determines the position and the width of the resonances by Distributional Borel Sum. In particular the small field asymptotics of the width is uniquely related to the large order asymptotics of the perturbation coefficients. Similar results apply to all the ''resonances'' of the anharmonic and double well oscillators. (orig.)

  11. New Aspects of Field Entropy Squeezing as an Indicator for Mixed State Entanglement in an Effective Two-Level System with Stark Shift

    Institute of Scientific and Technical Information of China (English)

    S.Abdel-Khalek; M.M.A.Ahmed; A-S F.Obada

    2011-01-01

    We present an effective two-level system in interaction through two-photon processes with a single mode quantized electromagnetic field,initially prepared in a coherent state.Field entropy squeezing as an indicator of the entanglement in a mixed state system is suggested.The temporal evolution of the negativity,Wehrl entropy,Wehrl phase distribution and field entropy squeezing are investigated.The results highlight the important roles played by both the Stark shift parameters and the mixed state setting in the dynamics of the Wehrl entropy,Wehrl phase distribution and field entropy squeezing.%We present an effective two-level system in interaction through two-photon processes with a single mode quantized electromagnetic Reid, initially prepared in a coherent state. Field entropy squeezing as an indicator of the entanglement in a mixed state system is suggested. The temporal evolution of the negativity, Wehrl entropy, Wehrl phase distribution and field entropy squeezing are investigated. The results highlight the important roles played by both the Stark shift parameters and the mixed state setting in the dynamics of the Wehrl entropy, Wehrl phase distribution and field entropy squeezing.

  12. Wannier–Stark electro-optical effect, quasi-guided and photonic modes in 2D macroporous silicon structures with SiO_2 coatings

    International Nuclear Information System (INIS)

    Karachevtseva, L.; Goltviansky, Yu.; Sapelnikova, O.; Lytvynenko, O.; Stronska, O.; Bo, Wang; Kartel, M.

    2016-01-01

    Highlights: • The IR absorption spectra of oxidized macroporous silicon were studied. • The Wannier–Stark electro-optical effect on Si-SiO_2 boundary was confirmed. • An additional electric field of quasi-guided optical modes was evaluated. • The photonic modes and band gaps were measured as peculiarities in absorption spectra. - Abstract: Opportunities to enhance the properties of structured surfaces were demonstrated on 2D macroporous silicon structures with SiO_2 coatings. We investigated the IR light absorption oscillations in macroporous silicon structures with SiO2 coatings 0–800 nm thick. The Wannier–Stark electro-optical effect due to strong electric field on Si-SiO_2boundary and an additional electric field of quasi-guided optical modes were taken into account. The photonic modes and band gaps were also considered as peculiarities in absorbance spectra of macroporous silicon structures with a thick SiO_2 coating. The photonic modes do not coincide with the quasi-guided modes in the silicon matrix and do not appear in absorption spectra of 2D macroporous silicon structures with surface nanocrystals.

  13. Finite size effects on hydrogen bonds in confined water

    International Nuclear Information System (INIS)

    Musat, R.; Renault, J.P.; Le Caer, S.; Pommeret, S.; Candelaresi, M.; Palmer, D.J.; Righini, R.

    2008-01-01

    Femtosecond IR spectroscopy was used to study water confined in 1-50 nm pores. The results show that even large pores induce significant changes (for example excited-state lifetimes) to the hydrogen-bond network, which are independent of pore diameter between 1 and 50 nm. Thus, the changes are not surface-induced but rather finite size effects, and suggest a confinement-induced enhancement of the acidic character of water. (authors)

  14. Topological superconductivity, topological confinement, and the vortex quantum Hall effect

    International Nuclear Information System (INIS)

    Diamantini, M. Cristina; Trugenberger, Carlo A.

    2011-01-01

    Topological matter is characterized by the presence of a topological BF term in its long-distance effective action. Topological defects due to the compactness of the U(1) gauge fields induce quantum phase transitions between topological insulators, topological superconductors, and topological confinement. In conventional superconductivity, because of spontaneous symmetry breaking, the photon acquires a mass due to the Anderson-Higgs mechanism. In this paper we derive the corresponding effective actions for the electromagnetic field in topological superconductors and topological confinement phases. In topological superconductors magnetic flux is confined and the photon acquires a topological mass through the BF mechanism: no symmetry breaking is involved, the ground state has topological order, and the transition is induced by quantum fluctuations. In topological confinement, instead, electric charge is linearly confined and the photon becomes a massive antisymmetric tensor via the Stueckelberg mechanism. Oblique confinement phases arise when the string condensate carries both magnetic and electric flux (dyonic strings). Such phases are characterized by a vortex quantum Hall effect potentially relevant for the dissipationless transport of information stored on vortices.

  15. The effect of ELMs on energy confinement in JET

    International Nuclear Information System (INIS)

    Zhang, W.; Tubbing, B.J.D.; Ward, D.J.

    1998-01-01

    The effect of ELMs on energy confinement in JET has been analysed. ELMs are characterized using D α emission which is decomposed into two components, a baseline level with superimposed pulses due to the ELMs. The analysis of the experimental data shows that the D α baseline, which reflects the neutral pressure at the plasma edge, is an important parameter in determining the energy confinement deterioration. The origin of the D α baseline is either from the neutralization of plasma particles which are expelled by the ELM pulses, or from external gas puffing. An ELM severity parameter, taking into account both the D α baseline and the ELM pulses, is defined. The energy confinement time normalized to the energy confinement time of ELM free phase, τ B /τ H , decreases linearly as the ELM severity increases. The results are independent of divertor configurations. (author)

  16. Stark-shift of impurity fundamental state in a lens shaped quantum dot

    Science.gov (United States)

    Aderras, L.; Bah, A.; Feddi, E.; Dujardin, F.; Duque, C. A.

    2017-05-01

    We calculate the Stark effect and the polarisability of shallow-donor impurity located in the centre of lens shaped quantum dot by a variational method and in the effective-mass approximation. Our theoretical model assumes an infinite confinement to describe the barriers at the dot boundaries and the electric field is considered to be applied in the z-direction. The systematic theoretical investigation contains results with the quantum dot size and the strength of the external field. Our calculations reveal that the interval wherein the polarisability varies depends strongly on the dot size.

  17. Influence of Doppler and 'Stark' effects on the shape of the autoionization peaks in electron energy spectra produced in ion-atom collisions

    International Nuclear Information System (INIS)

    Gleizes, A.; Benoit-Cattin, P.; Bordenave-Montesquieu, A.; Merchez, H.

    1976-01-01

    A detailed study is given of the influence of the Doppler shift and broadening on the spectra of electrons ejected by autoionization in collisions between heavy particles. General formulae have been obtained which permit the validity of results already published by other authors to be discussed. These results have been applied to the spectra of electrons ejected in He + -He collisions at 15 keV. The variation of the width of the autoionization peaks against ejection angle is well explained by Doppler broadening. On the contrary, the shape of these peaks cannot be due to the Doppler effect but rather to the Stark effect which is also studied in various experimental cases; it has been verified that the latter effect disappears in collisions between neutral particles for which symmetric peaks at 15 keV are obtained. (author)

  18. Measurements of the edge current evolution and comparison with neoclassical calculations during MAST H-modes using motional Stark effect

    NARCIS (Netherlands)

    de Bock, M. F. M.; Citrin, J.; Saarelma, S.; Temple, D.; Conway, N. J.; Kirk, A.; Meyer, H.; Michael, C. A.

    2012-01-01

    Edge localized modes (ELMs), that are present in most tokamak H-(high confinement) modes, can cause significant damage to plasma facing components in fusion reactors. Controlling ELMs is considered necessary and hence it is vital to understand the underlying physics. The stability of ELMs is

  19. Measurements of the edge current evolution and comparison with neoclassical calculations during MAST H-modes using motional Stark effect

    NARCIS (Netherlands)

    Bock, de M.F.M.; Citrin, J.; Saarelma, S.; Temple, D.; Conway, N.J.; Kirk, A.; Meyer, H.; Michael, C.A.

    2012-01-01

    Edge localized modes (ELMs), that are present in most tokamak H- (high confinement) modes, can cause significant damage to plasma facing components in fusion reactors. Controlling ELMs is considered necessary and hence it is vital to understand the underlying physics. The stability of ELMs is

  20. Scattering theory for Stark Hamiltonians

    International Nuclear Information System (INIS)

    Jensen, Arne

    1994-01-01

    An introduction to the spectral and scattering theory for Schroedinger operators is given. An abstract short range scattering theory is developed. It is applied to perturbations of the Laplacian. Particular attention is paid to the study of Stark Hamiltonians. The main result is an explanation of the discrepancy between the classical and the quantum scattering theory for one-dimensional Stark Hamiltonians. (author). 47 refs

  1. Study of quantum confinement effects in ZnO nanostructures

    Science.gov (United States)

    Movlarooy, Tayebeh

    2018-03-01

    Motivation to fact that zinc oxide nanowires and nanotubes with successful synthesis and the mechanism of formation, stability and electronic properties have been investigated; in this study the structural, electronic properties and quantum confinement effects of zinc oxide nanotubes and nanowires with different diameters are discussed. The calculations within density functional theory and the pseudo potential approximation are done. The electronic structure and energy gap for Armchair and zigzag ZnO nanotubes with a diameter of about 4 to 55 Angstrom and ZnO nanowires with a diameter range of 4 to 23 Å is calculated. The results revealed that due to the quantum confinement effects, by reducing the diameter of nanowires and nanotubes, the energy gap increases. Zinc oxide semiconductor nanostructures since having direct band gap with size-dependent and quantum confinement effect are recommended as an appropriate candidate for making nanoscale optoelectronic devices.

  2. Mechanical effects of gaseous detonations on a flexible confinement

    International Nuclear Information System (INIS)

    Brossard, J.; Renard, J.

    1981-01-01

    A mathematical model was developed for evaluating the effect of a detonating gaseous mixture on its elastic circular confinement. The data provided by the model were compared with experimental results. The confinement materials investigated include polyvinylchloride and stainless steel. Measurements of transverse and longitudinal deformations of the confinement material at several detonation velocities and for different material properties made it possible to determine the deformation characteristics, taking into account the precursor effect, the oscillations and their frequencies, the deformation ratio, and the dynamic amplifying factors. A certain lack of agreement between the theoretical data obtained with the aid of the model and the experimental results is probably related to simplified assumptions made in the model regarding the pressure distributions and a failure to take into account viscosity effects

  3. Exploiting Confinement Effects to Tune Selectivity in Cyclooctane Metathesis

    KAUST Repository

    Pump, Eva

    2017-08-24

    The mechanism of cyclooctane metathesis using confinement effect strategies in mesoporous silica nanoparticles (MSNs) is discussed by catalytic experiments and density functional theory (DFT) calculations. WMe6 was immobilized inside the pores of a series of MSNs having the same structure but different pore diameters (60, 30 and 25 Å). Experiments in cyclooctane metathesis suggest that confinement effects observed in smaller pores (30 and 25 Å) improve selectivity towards the dimeric cyclohexadecane. In contrast, in larger pores (60 Å) a broad product distribution dominated by ring contracted cycloalkanes was found. The catalytic cycle and potential side reactions occurring at [(≡SiO-)WMe5] were examined with DFT calculations. Analysis of the geometries for the key reaction intermediates allowed to rationalize the impact of a confined environment on the enhanced selectivity towards the dimeric product in smaller pores, while in large pores the ring contracted products are favored.

  4. Quantum confinement effects in low-dimensional systems

    Indian Academy of Sciences (India)

    2015-06-03

    Jun 3, 2015 ... Quantum confinement effects in low-dimensional systems. Figure 5. (a) Various cuts of the three-dimensional data showing energy vs. momen- tum dispersion relations for Ag film of 17 ML thickness on Ge(111). (b) Photo- emission intensity maps along ¯M– ¯ – ¯K direction. (c) Substrate bands replotted ...

  5. Effects of Predamaged Level on Confined HSC Columns

    Directory of Open Access Journals (Sweden)

    Ma Chau-Khun

    2017-01-01

    Full Text Available In the design of repair works for damaged concrete, an accurate and representative stress-strain model is of important. The stress-strain model for damaged high strength concrete (HSC repaired with post-tensioning steel straps confinement yet available, although the confining method has been proven to be effective in improving the performance of non-damaged HSC. A series of experimental test was carried out to investigate the stress-strain relationships of such concrete. A total of 24 HSC cylinders were compressed until certain damaged levels, then repaired by using steel straps. Two important parameters have been identified to have significant effects on the stress-strain relationship of such repaired concrete, namely the confining volumetric ratio and damaged levels. These parameters were incorporated into the development of stressstrain model, which later was shown to correlate well with the experimental results. This paper also has evidenced that existing stressstrain models of damaged concrete are not suitable to be directly applied to the design of repair works using post-tensioning steel straps confinement that produce external lateral stress on damaged columns before subsequent loading applied.

  6. Bounds on quantum confinement effects in metal nanoparticles

    Science.gov (United States)

    Blackman, G. Neal; Genov, Dentcho A.

    2018-03-01

    Quantum size effects on the permittivity of metal nanoparticles are investigated using the quantum box model. Explicit upper and lower bounds are derived for the permittivity and relaxation rates due to quantum confinement effects. These bounds are verified numerically, and the size dependence and frequency dependence of the empirical Drude size parameter is extracted from the model. Results suggest that the common practice of empirically modifying the dielectric function can lead to inaccurate predictions for highly uniform distributions of finite-sized particles.

  7. Geometrical-confinement effects on excitons in quantum disks

    International Nuclear Information System (INIS)

    Song, J.; Ulloa, S.E.

    1995-01-01

    Excitons confined to flat semiconductor quantum dots with elliptical cross sections are considered as we study geometrical effects on exciton binding energy, electron-hole separation, and the resulting linear optical properties. We use numerical matrix diagonalization techniques with appropriately large and optimized basis sets in an effective-mass Hamiltonian approach. The linear optical susceptibilities of GaAs and InAs dots for several different size ratios are discussed and compared to experimental photoluminescence spectra obtained on GaAs/Al x Ga 1-x As and InAs/GaAs quantum dots. For quantum dots of several nm in size, there is a strong blueshift of the luminescence due to geometrical-confinement effects. Also, transition peaks are split and shifted towards higher energy, in comparison with dots with circular cross sections

  8. Vibrational Stark Effect of the Electric-Field Reporter 4-Mercaptobenzonitrile as a Tool for Investigating Electrostatics at Electrode/SAM/Solution Interfaces

    Directory of Open Access Journals (Sweden)

    Peter Hildebrandt

    2012-06-01

    Full Text Available 4-mercaptobenzonitrile (MBN in self-assembled monolayers (SAMs on Au and Ag electrodes was studied by surface enhanced infrared absorption and Raman spectroscopy, to correlate the nitrile stretching frequency with the local electric field exploiting the vibrational Stark effect (VSE. Using MBN SAMs in different metal/SAM interfaces, we sorted out the main factors controlling the nitrile stretching frequency, which comprise, in addition to external electric fields, the metal-MBN bond, the surface potential, and hydrogen bond interactions. On the basis of the linear relationships between the nitrile stretching and the electrode potential, an electrostatic description of the interfacial potential distribution is presented that allows for determining the electric field strengths on the SAM surface, as well as the effective potential of zero-charge of the SAM-coated metal. Comparing this latter quantity with calculated values derived from literature data, we note a very good agreement for Au/MBN but distinct deviations for Ag/MBN which may reflect either the approximations and simplifications of the model or the uncertainty in reported structural parameters for Ag/MBN. The present electrostatic model consistently explains the electric field strengths for MBN SAMs on Ag and Au as well as for thiophenol and mercaptohexanoic acid SAMs with MBN incorporated as a VSE reporter.

  9. Confined space ventilation by shipyard welders: observed use and effectiveness.

    Science.gov (United States)

    Pouzou, Jane G; Warner, Chris; Neitzel, Richard L; Croteau, Gerry A; Yost, Michael G; Seixas, Noah S

    2015-01-01

    Shipbuilding involves intensive welding activities within enclosed and confined spaces, and although ventilation is commonly used in the industry, its use and effectiveness has not been adequately documented. Workers engaged in welding in enclosed or confined spaces in two shipyards were observed for their use of ventilation and monitored for their exposure to particulate matter. The type of ventilation in use, its placement and face velocity, the movement of air within the space, and other ventilation-related parameters were recorded, along with task characteristics such as the type of welding, the welder's position, and the configuration of the space. Mechanical ventilation was present in about two-thirds of the 65 welding scenarios observed, with exhaust ventilation used predominantly in one shipyard and supply blowers predominantly in the other. Welders were observed working in apparent dead-spaces within the room in 53% of the cases, even where ventilation was in use. Respiratory protection was common in the two shipyards, observed in use in 77 and 100% of the cases. Welding method, the proximity of the welder's head to the fume, and air mixing were found to be significantly associated with the welder's exposure, while other characteristics of dilution ventilation did not produce appreciable differences in exposure level. These parameters associated with exposure reduction can be assessed subjectively and are thus good candidates for training on effective ventilation use during hot work in confined spaces. Ventilation used in confined space welding is often inadequate for controlling exposure to welding fume. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  10. Effective viscosity of 2D suspensions - Confinement effects

    Science.gov (United States)

    Peyla, Philippe; Priem, Stephane; Vincent, Doyeux; Farutin, Alexander; Ismail, Mourad

    2014-11-01

    We study the rheology of a sheared 2D suspension of non-Brownian disks in presence of walls. Although, it is of course possible today with modern computers and powerful algorithms to perform direct numerical simulations that fully account for multiparticle 3D interactions, the analysis of the simple case of a 2D suspension, provides valuable insights and helps to understand 3D results. For instance, we examine the role of particle-wall and particle-particle interactions in determining the rheology of confined sheared suspensions. In addition we evaluate the intrinsic viscosity as well as the contribution of hydrodynamic interactions to the dissipation as a function of a wide range of confinements. Thanks to the direct visualisation of the whole 2D Stokes flow, we are able to give a clear interpretation about the rheology of semi-dilute confined suspensions.

  11. Interband Stark effects in InxGa1-xAs/InyAl1-yAs coupled step quantum wells

    International Nuclear Information System (INIS)

    Kim, J.H.; Kim, T.W.; Yoo, K.H.

    2005-01-01

    The effects of an electric field on the interband transitions in In x Ga 1-x As/In y Al 1-y As coupled step quantum wells have been investigated both experimentally and theoretically. A In x Ga 1-x As/In y Al 1-y As coupled step quantum well sample consisted of the two sets of a 50 Aa In 0.53 Ga 0.47 As shallow quantum well and a 50 Aa In 0.65 Ga 0.35 As deep step quantum well bounded by two thick In 0.52 Al 0.48 As barriers separated by a 30 Aa In 0.52 Al 0.48 As embedded potential barrier. The Stark shift of the interband transition energy in the In x Ga 1-x As/In y Al 1-y As coupled step quantum well is larger than that of the single quantum well, and the oscillator strength in the In x Ga 1-x As/In y Al 1-y As coupled step quantum well is larger than that in a coupled rectangular quantum well. These results indicate that In x Ga 1-x As/In y Al 1-y As coupled step quantum wells hold promise for potential applications in optoelectron devices, such as tunable lasers

  12. Rabi oscillations and rapid-passage effects in the molecular-beam CO2-laser Stark spectroscopy of CH3F

    International Nuclear Information System (INIS)

    Adam, A.G.; Gough, T.E.; Isenor, N.R.; Scoles, G.

    1985-01-01

    sub-Doppler molecular-beam laser Stark spectroscopy has been employed to produce high-contrast Rabi oscillations in the ν 3 band of CH 3 F. By varying the intensity of the cw CO 2 laser, up to five complete oscillations were observed before the phenomenon was washed out by rapid-passage effects and damping mechanisms. Besides being useful in clarifying key features of coherent ir molecular-beam spectroscopy, the observation of Rabi oscillations provides one of the most accurate means of directly measuring transition dipole moments. Analysis of the present data on three rovibrational transitions, Q(1,1) -1reverse arrow0, P(1,0) 0reverse arrow0, and R(1,1) 0reverse arrow1, has yielded a rotationless transition dipole moment of 0.21 +- 0.01 D for the ν 3 = 1reverse arrow0 vibration. This result is in agreement with values estimated from both band-intensity and absorption-coefficient data in the literature

  13. Particle confinement and fueling effects on the Maryland spheromak

    International Nuclear Information System (INIS)

    Filuk, A.B.

    1991-01-01

    The spheromak plasma confinement concept provides the opportunity to study the evolution of a nearly force-free magnetic field configuration. The plasma currents and magnetic fields are produced self-consistently, making this type of device attractive as a possible fusion reactor. At present, spheromaks are observed to have poorer particle and magnetic confinement than expected from simple theory. The purpose of this study is to examine the role of plasma density in the decay of spheromaks produced in the Maryland Spheromak experiment. Density measurements are made with an interferometer and Langmuir probe, and results are correlated with those of other plasma diagnostics to understand the sources of plasma, the spheromak formation effects on the density, and the magnitude of particle loss during the spheromak decay. A power and particle balance computer model is constructed and applied to the spheromaks studied in order to assess the impact of high density and particle loss rate on the spheromak decay. The observations and model indicate that the decay of the spheromaks is at present dominated by impurity radiation loss. The model also predicts that high density and short particle confinement time play a critical role in the spheromak power balance when the impurity levels are reduced

  14. Adsorption and catalysis: The effect of confinement on chemical reactions

    International Nuclear Information System (INIS)

    Santiso, Erik E.; George, Aaron M.; Turner, C. Heath; Kostov, Milen K.; Gubbins, Keith E.; Buongiorno-Nardelli, Marco; Sliwinska-Bartkowiak, MaIgorzata

    2005-01-01

    Confinement within porous materials can affect chemical reactions through a host of different effects, including changes in the thermodynamic state of the system due to interactions with the pore walls, selective adsorption, geometrical constraints that affect the reaction mechanism, electronic perturbation due to the substrate, etc. In this work, we present an overview of some of our recent research on some of these effects, on chemical equilibrium, kinetic rates and reaction mechanisms. We also discuss our current and future directions for research in this area

  15. Effect of holding period prior to storage on the chemical attributes of Starking Delicious apples during refrigerated storage Efeito do período que antecede o armazenamento nos atributos químicos de maças Starking Delicious durante o armazenamento refrigerado

    Directory of Open Access Journals (Sweden)

    Aynur Batkan

    2012-06-01

    Full Text Available In this research, the effects of three different holding periods (6, 12 and 24 hours prior to storage on the quality attributes of Starking Delicious apples were investigated during storage of 8 months at 0.5 ± 1.0 ºC. Changes in weight loss, flesh firmness, pH values, soluble dry matter amount, titratable acidity values, ascorbic acid contents, and total and reducing sugar content were determined. According to the results, the holding period showed statistically significant changes in the quality attributes of the apples (p Neste trabalho, os efeitos de três diferentes tempos de espera (6, 12 e 24 horas antes do armazenamento sobre os atributos de qualidade de maçãs tipo Starking Delicious foram investigados durante o armazenamento de 8 meses a 0,5 ± 1,0 ºC. Alterações na perda de peso, firmeza da polpa, valores de pH, quantidade de matéria seca solúvel, valores de acidez titulável, teor de ácido ascórbico e teor de açúcar redutor e total das amostras foram determinadas. De acordo com os resultados da análise, o tempo de espera causou alterações estatisticamente significativas sobre as nos atributos de qualidade das maçãs (p < 0,05.

  16. A new and effective method for thermostatting confined fluids

    DEFF Research Database (Denmark)

    De Luca, Sergio; Billy, Todd; Hansen, Jesper Schmidt

    2014-01-01

    not interact with wall atoms or each other, thus behaving as virtual particles. Their displacements violate the Lindemann criterion for melting, in such a way that the net effect would not amount to an additional confining surface. One advantage over standard techniques is the reduced computational cost......, particularly for large walls, since they can be kept rigid. Another advantage over accepted strategies is the opportunity to freeze complex charged walls such as β-cristobalite. The method furthermore overcomes the problem with polar fluids such as water, as thermalized charged surfaces require higher spring...

  17. The perturbation theory model of a spherical oscillator in electric field and the vibrational stark effect in polyatomic molecular species

    Science.gov (United States)

    Petreska, Irina; Ivanovski, Gjorgji; Pejov, Ljupčo

    2007-04-01

    The effect of external electrostatic fields on the spherical oscillator energy states was studied using stationary perturbation theory. Besides the spherical oscillator with ideal symmetry, also a variety of the deformed systems were considered in which the deformations may be induced by the external fields, but also by the short-range crystal lattice forces. The perturbation theory analysis was carried out using the field-dependent basis functions. Predicted spectral appearances and band splittings due to the deformations and external field influences were shown to be helpful in interpreting the experimental spectra of molecular oscillator possessing subsets of mutually orthogonal triply degenerate normal modes (such as, e.g. tetrahedral species). To verify the results of the perturbation theory treatments, as well as to provide a further illustration of the usefulness of the employed technique, a numerical HF/aug-cc-pVTZ study of the vibrational states of methane molecule in external electrostatic field was performed.

  18. Confinement Effect on Material Properties of RC Beams Under Flexure

    Science.gov (United States)

    Kulkarni, Sumant; Shiyekar, Mukund Ramchandra; Shiyekar, Sandip Mukund

    2017-12-01

    In structural analysis, especially in indeterminate structures, it becomes essential to know the material and geometrical properties of members. The codal provisions recommend elastic properties of concrete and steel and these are fairly accurate enough. The stress-strain curve for concrete cylinder or a cube specimen is plotted. The slope of this curve is modulus of elasticity of plain concrete. Another method of determining modulus of elasticity of concrete is by flexural test of a beam specimen. The modulus of elasticity most commonly used for concrete is secant modulus. The modulus of elasticity of steel is obtained by performing a tension test of steel bar. While performing analysis by any software for high rise building, cross area of plain concrete is taken into consideration whereas effects of reinforcement bars and concrete confined by stirrups are neglected. Present aim of study is to determine elastic properties of reinforced cement concrete beam. Two important stiffness properties such as AE and EI play important role in analysis of high rise RCC building idealized as plane frame. The experimental program consists of testing of beams (model size 150 × 150 × 700 mm) with percentage of reinforcement varying from 0.54 to 1.63% which commensurate with existing Codal provisions of IS:456-2000 for flexural member. The effect of confinement is considered in this study. The experimental results are verified by using 3D finite element techniques.

  19. The effect of the ergodic divertor on electron thermal confinement

    International Nuclear Information System (INIS)

    Harris, G.R.; Capes, H.; Garbet, X.

    1992-06-01

    The thermal confinement within the confinement zone of Tore Supra ohmically heated deuterium plasmas bounded by the ergodic divertor (ED) configuration is studied in a 1 1/2D analysis of the local power balance. Although the edge electron temperature and mean electron density (n e ) are both on average halved with application of the ED, the mean electron thermal diffusivity χ e shows the same density dependence as exhibited by standard ohmic limiter discharges, i.e., an Alcator-like inverse dependence on (n e ) at low density and a saturation at high density. The ion thermal transport at low to medium densities in both limiter and ED discharges is between 10 to 20 times that predicted by neoclassical theory. Comparing ED and limiter plasmas of the same density, a strong plasma decontamination is observed, with a reduction, in Z eff by between 1.0 to 1.5. The effective decoupling of (n e ) and Z eff by the ED and the invariant behaviour of χ e imply that electron thermal transport is only weakly dependent on Z eff in ohmic Tore Supra discharges

  20. Memory effects in the relaxation of a confined granular gas

    Science.gov (United States)

    Brey, J. Javier; de Soria, M. I. García; Maynar, P.; Buzón, V.

    2014-09-01

    The accuracy of a model to describe the horizontal dynamics of a confined quasi-two-dimensional system of inelastic hard spheres is discussed by comparing its predictions for the relaxation of the temperature in a homogenous system with molecular dynamics simulation results for the original system. A reasonably good agreement is found. Next the model is used to investigate the peculiarities of the nonlinear evolution of the temperature when the parameter controlling the energy injection is instantaneously changed while the system was relaxing. This can be considered as a nonequilibrium generalization of the Kovacs effect. It is shown that, in the low-density limit, the effect can be accurately described by using a simple kinetic theory based on the first Sonine approximation for the one-particle distribution function. Some possible experimental implications are indicated.

  1. Quantum confinement effects on superconducting properties of Lead nanocrystals

    Science.gov (United States)

    Aubin, Herve; Moreira, Helena; Mahler, Benoit; Dubertret, Benoit

    2008-03-01

    We developed a new chemical synthesis method for producing large quantities of monodispersed lead (Pb) nanocrystals. They are obtained from the alcohol reduction of a mixture of two lead carboxylates with alkyl chains of different lengths, dissolved in a high temperature solvent. The nanocrystals obtained are protected from oxydation and aggregation by long chain fatty acids and their diameter can be tuned to reach values as low as 10 nm. Our results suggest that monodispersed particules are obtained when nucleation and growth occur at distincts temperatures, possibly as a consequence of different reactivities of the two lead carboxylates used in the solution. Owing to the large quantities of monodispersed particles produced, thermodynamics studies as function of particles diameter become possible. In particular, we will present a study of the effect of quantum confinement on superconducting properties of these Pb particles through SQUID magnetometry measurements.

  2. Water confinement effects on fuel assembly motion and damping

    International Nuclear Information System (INIS)

    Brenneman, B.; Shah, S.J.; Williams, G.T.; Strumpell, J.H.

    2003-01-01

    It has been established by other authors that the accelerations of the water confined by the reactor core baffle plates has a significant effect on the responses of all the fuel assemblies during LOCA or seismic transients. This particular effect is a consequence of the water being essentially incompressible, and thus experiencing the same horizontal accelerations as the imposed baffle plate motions. These horizontal accelerations of the fluid induce lateral pressure gradients that cause horizontal buoyancy forces on any submerged structures. These forces are in the same direction as the baffle accelerations and, for certain frequencies at least, tend to reduce the relative displacements between the fuel and baffle plates. But there is another confinement effect - the imposed baffle plate velocities must also be transmitted to the water. If the fuel assembly grid strips are treated as simple hydro-foils, these horizontal velocity components change the fluid angle of attack on each strip, and thus may induce large horizontal lift forces on each grid in the same direction as the baffle plate velocity. There is a similar horizontal lift due to inclined flow over the rods when axial flow is present. These combined forces appear to always reduce the relative displacements between the fuel and baffle plates for any significant axial flow velocity. Modeling this effect is very simple. It was shown in previous papers that the mechanism for the large fuel assembly damping due to axial flow may be the hydrodynamic forces on the grid strips, and that this is very well represented by discrete viscous dampers at each grid elevation. To include the imposed horizontal water velocity effects, on both the grids and rods, these dampers are simply attached to the baffle plate rather than 'ground'. The large flow-induced damping really acts in a relative reference frame rather than an absolute or inertial reference frame, and thus it becomes a flow-induced coupling between the fuel

  3. Effect of confining pressure on permeability behavior of Beishan granite

    International Nuclear Information System (INIS)

    Ma Like; Li Yunfeng; Zhao Xingguang; Tan Guohuan

    2012-01-01

    By using of the Electro-Hydraulic Servo-controlled Rock Mechanics Testing System (MTS 815.04) in the University of Hong Kong, a series of permeability tests were performed on specimens of Beishan granite at different confining pressures. The result indicates that: (1) there is a decrease of permeability due to progressive closure of initial microcracks and the corresponding volumetric strain is compressive when the confining pressures increase from 2.5 MPa to 15 MPa, (2) when the confining pressures decrease from 15 MPa to 2.5 MPa, there is an increase of permeability in this stage in relation with the volumetric dilation. (authors)

  4. Effects of rigid or adaptive confinement on colloidal self-assembly. Fixed vs. fluctuating number of confined particles

    Energy Technology Data Exchange (ETDEWEB)

    Pȩkalski, J.; Ciach, A. [Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warszawa (Poland); Almarza, N. G. [Instituto de Química Física Rocasolano, CSIC, Serrano 119, E-28006 Madrid (Spain)

    2015-05-28

    The effects of confinement on colloidal self-assembly in the case of fixed number of confined particles are studied in the one dimensional lattice model solved exactly in the grand canonical ensemble (GCE) in Pȩkalski et al. [J. Chem. Phys. 142, 014903 (2015)]. The model considers a pair interaction defined by a short-range attraction plus a longer-range repulsion. We consider thermodynamic states corresponding to self-assembly into clusters. Both fixed and adaptive boundaries are studied. For fixed boundaries, there are particular states in which, for equal average densities, the number of clusters in the GCE is larger than in the canonical ensemble. The dependence of pressure on density has a different form when the system size changes with fixed number of particles and when the number of particles changes with fixed size of the system. In the former case, the pressure has a nonmonotonic dependence on the system size. The anomalous increase of pressure for expanding system is accompanied by formation of a larger number of smaller clusters. In the case of elastic confining surfaces, we observe a bistability, i.e., two significantly different system sizes occur with almost the same probability. The mechanism of the bistability in the closed system is different to that of the case of permeable walls, where the two equilibrium system sizes correspond to a different number of particles.

  5. Stark effect in a hydrogenic atom or ion treated by the phase-integral method with adjoined papers by A. Hökback and P. O. Fröman

    CERN Document Server

    Fröman, Nanny

    2008-01-01

    This book treats the Stark effect of a hydrogenic atom or ion in a homogeneous electric field. It begins with a thorough review of previous work in this field since 1926. After the Schrödinger equation has been separated with respect to time dependence, centre of mass motion and internal motion, followed by a discussion of its eigenfunctions, the exact development in time of the probability amplitude for a decaying state is obtained by means of a formula analogous to the Fock-Krylov theorem. From this formula one obtains by means of the phase-integral approximation generated from a particular

  6. Assessment of ion kinetic effects in shock-driven inertial confinement fusion implosions using fusion burn imaging

    International Nuclear Information System (INIS)

    Rosenberg, M. J.; Séguin, F. H.; Rinderknecht, H. G.; Zylstra, A. B.; Li, C. K.; Sio, H.; Johnson, M. Gatu; Frenje, J. A.; Petrasso, R. D.; Amendt, P. A.; Wilks, S. C.; Pino, J.; Atzeni, S.; Hoffman, N. M.; Kagan, G.; Molvig, K.; Glebov, V. Yu.; Stoeckl, C.; Seka, W.; Marshall, F. J.

    2015-01-01

    The significance and nature of ion kinetic effects in D 3 He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, N K ) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (N K  ∼ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects

  7. Assessment of ion kinetic effects in shock-driven inertial confinement fusion implosions using fusion burn imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, M. J., E-mail: mros@lle.rochester.edu; Séguin, F. H.; Rinderknecht, H. G.; Zylstra, A. B.; Li, C. K.; Sio, H.; Johnson, M. Gatu; Frenje, J. A.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Amendt, P. A.; Wilks, S. C.; Pino, J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Atzeni, S. [Dipartimento SBAI, Università di Roma “La Sapienza” and CNISM, Via A. Scarpa 14-16, I-00161 Roma (Italy); Hoffman, N. M.; Kagan, G.; Molvig, K. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Glebov, V. Yu.; Stoeckl, C.; Seka, W.; Marshall, F. J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); and others

    2015-06-15

    The significance and nature of ion kinetic effects in D{sup 3}He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, N{sub K}) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (N{sub K} ∼ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.

  8. Non-LTE effects in inertial confinement fusion target chambers

    International Nuclear Information System (INIS)

    MacFarlane, J.J.; Moses, G.A.; Peterson, R.R.

    1989-01-01

    In previous studies of transport processes in inertial confinement fusion target chambers, the radiative properties of the background plasma were calculated under the assumption of local thermodynamic equilibrium (LTE). In this paper, the authors present a study of the equation of state and the radiative properties of high temperature, low-to-moderate density ( 21 cm -3 ) plasmas for the determination of the conditions under which non-LTE effects become important and for an assessment of the importance of non-LTE processes in target chambers during high yield inertial fusion target explosions. For this purpose, two-body (radiative and dielectronic) and three-body (collisional) recombination and de-excitation processes are considered in calculating the steady state ionization and excitation populations. The results of this study indicate that non-LTE processes generally become important at temperatures of > or approx. 1, 10 and 100 eV for plasma densities of 10 18 , 10 19 and 10 21 cm -3 , respectively. Radiation hydrodynamic simulations utilizing the equation of state and the opacities for a non-LTE argon plasma were performed to study the response of a background gas to an inertial fusion target explosion. These calculations indicate that non-LTE processes are often the dominant atomic processes in the background plasma and that they can strongly affect the radiative and shock properties as energy is transported away from the point of the target explosion. (author). 22 refs, 10 figs, 1 tab

  9. Making the Tg-Confinement Effect Disappear in Thin Polystyrene Films: Good Physics vs. Inappropriate Analysis

    Science.gov (United States)

    Torkelson, John; Chen, Lawrence

    2013-03-01

    The Tg-confinement effect in polymers was first characterized in supported polystyrene (PS) films by Keddie et al. in 1994. Since then, many researchers have shown that (pseudo-)thermodynamic Tg measurements of supported PS films taken on cooling consistently yield the same qualitative results, with a decrease from bulk Tg beginning at 40-60 nm thickness and becoming very strong below 20 nm thickness. Some quantitative differences have been noted between studies, which may be ascribed to measurement method or the analysis employed. In 2004, we showed that the Tg-confinement effect in PS may be suppressed by adding several wt% of small-molecule diluents such as dioctyl phthalate. Recently, Kremer and co-workers (Macromolecules 2010, 43, 9937) reported that there was no Tg-confinement in supported PS films based on an analysis of the second derivative of ellipsometry data and use of a ninth order polynomial fit. Here, we demonstrate a new method for suppressing the Tg-confinement effect. In particular, PS made by emulsion polymerization yields no Tg-confinement effect as measured by ellipsometry or fluorescence, while PS made by anionic or conventional free radical polymerization yield strong Tg-confinement effects. The difference is hypothesized to result from surfactant in the emulsion polymerized PS. We also show that the absence of the Tg-confinement effect reported by Kremer is due to inappropriate analysis of ellipsometry data and that correct analysis yields Tg-confinement effects.

  10. Shape and 'gap' effects on the behavior of variably confined concrete

    International Nuclear Information System (INIS)

    Harries, Kent A.; Carey, Shawn A.

    2003-01-01

    Factors affecting the behavior of variably confined concrete are presented. The effect of debonding the fiber-reinforced polymer (FRP) jacket to the concrete substrate and providing a gap between the concrete and confining jacket is investigated. A second parameter--the shape of the cross section--is also investigated. An experimental program involving the compression testing of standard cylinders and similarly sized square specimens having external FRP jackets providing passive confinement is presented. Factors affecting jacket efficiency and the appropriateness of factors accounting for specimen shape are determined experimentally and discussed. The provision of a gap affected the axial stress at which the confining jacket was engaged, resulting in a reduced maximum attainable concrete strength. The jacket efficiency was not affected by the provision of the gap. The shape of the specimens was observed to affect the level of confinement generated. Square specimens exhibit lower confinement levels than circular specimens having the same jacket

  11. Effect of an offshore sinkhole perforation in a coastal confined aquifer on submarine groundwater discharge

    Science.gov (United States)

    Fratesi, S.E.; Leonard, V.; Sanford, W.E.

    2007-01-01

    In order to explore submarine groundwater discharge in the vicinity of karst features that penetrate the confining layer of an offshore, partially confined aquifer, we constructed a three-dimensional groundwater model using the SUTRA (Saturated-Unsaturated TRAnsport) variable-density groundwater flow model. We ran a parameter sensitivity analysis, testing the effects of recharge rates, permeabilities of the aquifer and confining layer, and thickness of the confining layer. In all simulations, less than 20% of the freshwater recharge for the entire model exits through the sinkhole. Recirculated seawater usually accounts for 10-30% of the total outflow from the model. Often, the sinkhole lies seaward of the transition zone and acts as a recharge feature for recirculating seawater. The permeability ratio between aquifer and confining layer influences the configuration of the freshwater wedge the most; as confining layer permeability decreases, the wedge lengthens and the fraction of total discharge exiting through the sinkhole increases. Copyright ?? 2007 IAHS Press.

  12. Energy confinement of tokamak plasma with consideration of bootstrap current effect

    International Nuclear Information System (INIS)

    Yuan Ying; Gao Qingdi

    1992-01-01

    Based on the η i -mode induced anomalous transport model of Lee et al., the energy confinement of tokamak plasmas with auxiliary heating is investigated with consideration of bootstrap current effect. The results indicate that energy confinement time increases with plasma current and tokamak major radius, and decreases with heating power, toroidal field and minor radius. This is in reasonable agreement with the Kaye-Goldston empirical scaling law. Bootstrap current always leads to an improvement of energy confinement and the contraction of inversion radius. When γ, the ratio between bootstrap current and total plasma current, is small, the part of energy confinement time contributed from bootstrap current will be about γ/2

  13. O-band quantum-confined Stark effect optical modulator from Ge/Si0.15Ge0.85 quantum wells by well thickness tuning

    International Nuclear Information System (INIS)

    Chaisakul, Papichaya; Marris-Morini, Delphine; Vakarin, Vladyslav; Vivien, Laurent; Frigerio, Jacopo; Chrastina, Daniel; Isella, Giovanni

    2014-01-01

    We report an O-band optical modulator from a Ge/Si 0.15 Ge 0.85 multiple quantum well (MQW). Strong O-band optical modulation in devices commonly operating within E-band wavelength range can be achieved by simply decreasing the quantum well thickness. Both spectral photocurrent and optical transmission studies are performed to evaluate material characteristics and device performance from a surface-illuminated diode and a waveguide modulator, respectively. These results demonstrate the potential of using Ge/Si 0.15 Ge 0.85 MQWs for the realization of future on-chip wavelength-division multiplexing systems with optical modulators operating at different wavelengths over a wide spectral range

  14. Nanoscale Confinement and Fluorescence Effects of Bacterial Light Harvesting Complex LH2 in Mesoporous Silicas

    DEFF Research Database (Denmark)

    Ikemoto, Hideki; Tubasum, Sumera; Pullerits, Tonu

    2013-01-01

    Many key chemical and biochemical reactions, particularly in living cells, take place in confined space at the mesoscopic scale. Towards understanding of physicochemical nature of biomacromolecules confined in nanoscale space, in this work we have elucidated fluorescent effects of a light harvest...

  15. Stark effect investigations of excited cadmium, ytterbium, and thulium I-levels using the methods of double resonance and level crossing

    International Nuclear Information System (INIS)

    Rinkleff, R.H.

    1977-01-01

    Using the method of optical double resonance, the 5s5p 3 P 1 level tensor polarizability of Cadmium has been measured. For this state, various authors have published different results, using different experimental methods. The experimental result presented here is in excellent agreement with the value of Happer, based on level crossing investigations, and agrees well with the theoretical result of Robinson based on a modified Sternheimer approximation, and so gives a reliable value for the tensor polarizability. Furthermore the tensor polarizability of the 6s6p 3 P 1 - level of the even Ytterbium isotopes and the odd Ytterbium 171 nucleus have been measured with the optical double resonance method, and the Stark constant has been calculated based on a given theory and oscillator strengths. Using the methods of optical double resonance and level crossing, the tensor polarizability of 5 excited levels of the Thulium configurations 4f 13 6s6p + 4f 12 5d6s 2 have been measured. From the experimental Stark constants and the angular coefficients of the eigenfunctions calculated by Camus, the radial integrals I(5d, 5p) and I(6p, 5d) are calculated for electric dipole transitions between levels of the configurations 4f 12 5d6s 2 + 4f 13 6s6p and levels of the 4f 12 6p6s 2 + 4f 13 6s5d configurations. The tensor polarizability calculated with these radial integrals show very good agreement with the experimental values. (orig./LH) [de

  16. 8OCB and 8CB Liquid Crystals Confined in Nanoporous Alumina: Effect of Confinement on the Structure and Dynamics.

    Science.gov (United States)

    Selevou, Aristoula; Papamokos, George; Steinhart, Martin; Floudas, George

    2017-08-03

    The effect of oxygen substitution is studied in two homologous compounds of n-cyanobiphenyls with n = 8 in the bulk and under confinement within self-ordered nanoporous alumina (AAO). Oxygen substitution in 8OCB increases the dipole moment and stabilizes the crystalline, smectic, and nematic phases to higher temperatures relative to 8CB. Within their smectic- A (SmA) phase both 8CB and 8OCB behave as weak viscoelastic solids with low shear moduli reflecting the underlying supramolecular defect structure. Dielectric spectroscopy assisted by DFT calculations identified strong dipolar associations within the isotropic phases characterized by a Kirkwood-Fröhlich interaction parameter, g ∼ 0.36. Dielectric spectroscopy further identified a slow process (∼ kHz) of low dielectric strength. The proximity of this process to the rheology time scale suggests as common origin a cooperative relaxation of the defect structure. Confinement alters the phase diagram by stabilizing certain crystalline phases and by reducing the N-I transition temperature in agreement with surface tension effects. However, the N-I transition seems to retain its first order character. Surface treatment with n-decyltrichlorosilane results in destabilization of the SmA phase at the expense of the N phase. This is consistent with a picture of surface anchored LC molecules at the pore walls that stabilize the nematic phase.

  17. Effect of energetic ion loss on ICRF heating efficiency and energy confinement time in heliotrons

    International Nuclear Information System (INIS)

    Murakami, S.; Nakajima, N.; Okamoto, M.; Nuehrenberg, J.

    1999-06-01

    ICRF heating efficiency and the global energy confinement time during ICRF heating are investigated including the effect of energetic ion loss in heliotrons. The approximate formula of ICRF heating efficiency is derived using the results based on Monte Carlo simulations. The global energy confinement time including energetic ion effect can be expressed in terms of ICRF heating power, plasma density, and magnetic field strength in heliotrons. Our results in the CHS plasma show the systematic decrement of the global energy confinement time due to the energetic ion loss from the assumed energy confinement scaling law, which is consistent with the experimental observations. Also we apply our model to the ICRF minority heating in the LHD plasma in two cases of typical magnetic configurations. The clear increment of the global energy confinement time due to the stored energy of energetic tail ions is obtained in the 'orbit improved' configuration, while the decrement is observed in the 'standard' configuration. (author)

  18. DC Stark addressing for quantum memory in Tm:YAG

    Science.gov (United States)

    Gerasimov, Konstantin; Minnegaliev, Mansur; Urmancheev, Ravil; Moiseev, Sergey

    2017-10-01

    We observed a linear DC Stark effect for 3H6 - 3H4 optical transition of Tm3+ ions in Y3Al5O12. We observed that application of electric field pulse suppresses the two-pulse photon echo signal. If we then apply a second electric pulse of opposite polarity the echo signal is restored again, which indicates the linear nature of the observed effect. The effect is present despite the D2 symmetry of the Tm3+ sites that prohibits a linear Stark effect. Experimental data analysis shows that the observed electric field influence can be attributed to defects that break the local crystal field symmetry near Tm3+ ions. Using this effect we demonstrate selective retrieval of light pulses in two-pulse photon echo.

  19. Colour confinement effects in the presence of nuclear matter

    International Nuclear Information System (INIS)

    Rek, Z.J.

    1979-01-01

    A simpleminded picture of the low psub(T) inclusive production on nuclei. The novel point is the conjecture, already investigated in the low psub(T) hadron-nucleon inclusive reactions, attributing the rising of hadron multiplicity to the necessity of the confinement of colour, the important subhadronic degree of freedom in the quancum chromodynamics. The elementary process is then viewed as proceeding in two stages: (a) The colour excitation of both incoming hadron, h → hsub(c) and target nucleon, N → Nsub(c). (b) The so called colour compensating flow. This is the abbreviation of a very complicated phenomenon caused by the necessity of the confinement of colour entering dramatically when both hsub(c) and Nsub(c) are receding from each other. (author)

  20. Effects of confinement in meso-porous silica and carbon nano-structures; Etude des effets de confinement dans la silice mesoporeuse et dans certaines nanostructures carbonees

    Energy Technology Data Exchange (ETDEWEB)

    Leon, V

    2006-07-15

    Physico-chemical properties of materials can be strongly modified by confinement because of the quantum effects that appear at such small length scales and also because of the effects of the confinement itself. The aim of this thesis is to show that both the nature of the confining material and the size of the pores and cavities have a strong impact on the confined material. We first show the effect of the pore size of the host meso-porous silica on the temperature of the solid-solid phase transition of silver selenide, a semiconducting material with enhanced magnetoresistive properties under non-stoichiometric conditions. Narrowing the pores from 20 nm to 2 nm raises the phase transition temperature from 139 C to 146 C. This result can be explained by considering the interaction between the confining and confined materials as a driving force. The effects of confinement are also studied in the case of hydrogen and deuterium inside cavities of organized carbon nano-structures. The effects that appear in the adsorption/desorption cycles are much stronger with carbon nano-horns as the host material than with C60 pea-pods and single-walled carbon nano-tubes. (author)

  1. Effects of confinement on the Rydberg molecule NeH

    International Nuclear Information System (INIS)

    Lo, J M H; Klobukowski, M; Bielinska-Waz, D; Diercksen, G H F; Schreiner, E W S

    2005-01-01

    Ab initio potential energy curves of the Rydberg NeH molecule in the presence of cylindrical spatial confinement were computed by the method of multi-reference configuration interaction with extended basis sets. The influence of the applied potential to the structures and spectra of the ground and excited states of NeH was analysed in terms of perturbation theory. In addition, the phenomenon of field-induced ionization was discussed

  2. Five-hole pitot probe measurements of swirl, confinement and nozzle effects on confined turbulent flow

    Science.gov (United States)

    Lilley, D. G.; Scharrer, G. L.

    1984-01-01

    The results of a time-mean flow characterization of nonswirling and swirling inert flows in a combustor are reported. The five-hole pitot probe technique was used in axisymmetric test sections with expansion ratios of 1 and 1.5. A prominent corner recirculation zone identified in nonswirling expanding flows decreased in size with swirling flows. The presence of a downstream nozzle led to an adverse pressure gradient at the wall and a favorable gradient near the centerline. Reducing the expansion ratio reduced the central recirculation length. No significant effect was introduced in the flowfield by a gradual expansion.

  3. Electronic confining effects in Sierpiński triangle fractals

    Science.gov (United States)

    Wang, Hao; Zhang, Xue; Jiang, Zhuoling; Wang, Yongfeng; Hou, Shimin

    2018-03-01

    Electron confinement in fractal Sierpiński triangles (STs) on Ag(111) is investigated using scanning tunneling spectroscopy and theoretically simulated by employing an improved two-dimensional (2D) multiple scattering theory in which the energy-dependent phase shifts are explicitly calculated from the electrostatic potentials of the molecular building block of STs. Well-defined bound surface states are observed in three kinds of triangular cavities with their sides changing at a scale factor of 2. The decrease in length of the cavities results in an upshift of the resonances that deviates from an expected inverse quadratic dependence on the cavity length due to the less efficient confinement of smaller triangular cavities. Differential conductance maps at some specific biases present a series of alternative bright and dark rounded triangles preserving the symmetry of the boundary. Our improved 2D multiple scattering model reproduces the characteristics of the standing wave patterns and all features in the differential conductance spectra measured in experiments, illustrating that the elastic loss boundary scattering dominates the resonance broadening in these ST quantum corrals. Moreover, the self-similar structure of STs, that a larger central cavity is surrounded by three smaller ones with a half side length, gives rise to interactions of surface states confined in neighboring cavities, which are helpful for the suppression of the linewidth in differential conductance spectra.

  4. Effects of confinement in meso-porous silica and carbon nano-structures

    International Nuclear Information System (INIS)

    Leon, V.

    2006-07-01

    Physico-chemical properties of materials can be strongly modified by confinement because of the quantum effects that appear at such small length scales and also because of the effects of the confinement itself. The aim of this thesis is to show that both the nature of the confining material and the size of the pores and cavities have a strong impact on the confined material. We first show the effect of the pore size of the host meso-porous silica on the temperature of the solid-solid phase transition of silver selenide, a semiconducting material with enhanced magnetoresistive properties under non-stoichiometric conditions. Narrowing the pores from 20 nm to 2 nm raises the phase transition temperature from 139 C to 146 C. This result can be explained by considering the interaction between the confining and confined materials as a driving force. The effects of confinement are also studied in the case of hydrogen and deuterium inside cavities of organized carbon nano-structures. The effects that appear in the adsorption/desorption cycles are much stronger with carbon nano-horns as the host material than with C60 pea-pods and single-walled carbon nano-tubes. (author)

  5. Rydberg State Stark Spectroscopy and Applications to Plasma Diagnostics

    Science.gov (United States)

    1990-03-01

    Bayfield47 provides an excellent review of the AC Stark effect, in which the primary effect is Rabi splitting. Several authors48 , 49, 50 have...purity of the spectrum indicates that the field present is dominantly anisotropic . 53 n:26NEON LINE n=35 0 n= 40 p.- n=45 IL 0 31975 31950 31925 31900...applied (axial) electric field which is anisotropic , so pure polarization spectra can be recorded. The intensity profile of the Am = 0 polarization is

  6. Effects of confinement on the dielectric response of water extends up to mesoscale dimensions

    DEFF Research Database (Denmark)

    De Luca, Sergio; Kannam, Sridhar Kumar; Todd, B.D.

    2016-01-01

    of confined water under the influence of external electric fields along with the dipolar fluctuations at equilibrium. The confinement induces a strong anisotropic effect which is evident up to 100 nm channel width, and may extend to macroscopic dimensions. The root-mean-square fluctuations of the total...... dimensions. Consistent with dipole moment fluctuations, the effect of confinement on the dielectric response also persists up to channel widths considerably beyond 100 nm. When an electric field is applied in the perpendicular direction, the orientational relaxation is 3 orders of magnitude faster than...

  7. Dynamic Stark shift and alignment-to-orientation conversion

    International Nuclear Information System (INIS)

    Kuntz, Matthew C.; Hilborn, Robert C.; Spencer, Alison M.

    2002-01-01

    We have observed alignment-to-orientation conversion in the (5d6p) 1 P state of atomic barium due to the combined effects of a static Zeeman shift and a dynamic Stark shift associated with the electric field of a pulsed laser beam. The measurements yield a value for the frequency-dependent tensor polarizability of the state in reasonable agreement with a simple perturbation theory calculation. With a tunable laser producing the dynamic Stark shift, we can both enhance the magnitude of the effect by tuning close to a resonance and reverse the sign of the orientation by tuning above or below the resonance. This method of producing an oriented atomic state is quite general, and with easily available field strengths can produce large orientations

  8. Effects of Interfacial Translation-rotation Coupling for Confined Ferrofluids

    Science.gov (United States)

    Fang, Angbo

    2011-03-01

    Ferrofluids have wide applications ranging from semiconductor fabrications to biomedical processes. The hydrodynamic spin diffusion theory for ferrofluids has been successful in explaining many experimental data, but it suffers from some fatal flaws. For example, it fails to predict the incorrect flow direction for a ferrofluid confined in a concentric cylinder channel in the presence of a rotating magnetic field. In this work we develop a method to establish the general hydrodynamic boundary conditions (BCs) for micro-polar fluids such as ferrofluids. Through a dynamic generalization of the mesoscopic diffuse interface model, we are able to obtain the surface dissipation functional, in which the interfacial translation-rotation coupling plays a significant role. The generalized hydrodynamic BCs can be obtained straightforwardly by using Onsager's variational approach. The resulted velocity profile and other quantities compares well with the experimental data, strikingly different from traditional theories. The methodology can be applied to study the hydrodynamic behavior of other structured fluids in confined channels or multi-phase flows. The work is supported by a research award made by the King Abdullah University of Science and Technology.

  9. Raman-laser spectroscopy of Wannier-Stark states

    International Nuclear Information System (INIS)

    Tackmann, G.; Pelle, B.; Hilico, A.; Beaufils, Q.; Pereira dos Santos, F.

    2011-01-01

    Raman lasers are used as a spectroscopic probe of the state of atoms confined in a shallow one-dimensional (1D) vertical lattice. For sufficiently long laser pulses, resolved transitions in the bottom band of the lattice between Wannier Stark states corresponding to neighboring wells are observed. Couplings between such states are measured as a function of the lattice laser intensity and compared to theoretical predictions, from which the lattice depth can be extracted. Limits to the linewidth of these transitions are investigated. Transitions to higher bands can also be induced, as well as between transverse states for tilted Raman beams. All these features allow for a precise characterization of the trapping potential and for an efficient control of the atomic external degrees of freedom.

  10. The effect of hexapole and vertical fields on α-particle confinement in heliotron configurations

    International Nuclear Information System (INIS)

    Isaev, M.Yu.; Watanabe, K.Y.; Yokoyama, M.; Yamazaki, K.

    2003-03-01

    Collisionless mono-energetic α-particle confinement in three-dimensional magnetic fields obtained from the magnetic coils of the Large Helical Device (LHD) is calculated. It is found that the inward shift of magnetic axis due to the vertical field improves the α-particle confinement. In contrast to the vertical field, both large positive and negative hexapole fields do not improve the confinement. The study of the β effect and Mercier criterion calculations for different hexapole fields are also presented. (author)

  11. Supersonic Molecular Beam Optical Stark Spectroscopy of MnH.

    Science.gov (United States)

    Gengler, Jamie; Ma, Tongmei; Harrison, Jeremy; Steimle, Timothy

    2006-03-01

    The large moment of inertia, large magnetic moment, and possible large permanent electric dipole moment of manganese monohydride, MnH, makes it a prime candidate for ultra-cold molecule production via Stark deceleration and magnetic trapping. Here we report the first molecular beam production of MnH and the analysis of the Stark effect in the (0,0) A^7 π -- X^ 7σ^+ band. The sample was prepared by laser ablation of solid Mn in an H2 supersonic expansion. The low rotational temperature (MnH and the analysis of T.D. Varberg, J.A. Gray, R.W. Field, and A.J. Merer, J. Mol. Spec. 156, 296-318 (1992). I.E. Gordon, D.R.T. Appadoo, A. Shayesteh, K.A. Walker, and P.F. Bernath, J. Mol. Spec., 229, 145-149 (2005).

  12. Production of H(2s) fast metastable atoms (0.25-3 keV) on a Cs target. Detection of the α Lyman radiation induced by Stark effect: polarisation. Destruction of H(2s) atoms on an IH target

    International Nuclear Information System (INIS)

    Valance, Antoine.

    1974-01-01

    The production, detection and destruction of the 2S1/2 metastable state of the hydrogen atom were studied. The quasi-resonant charge exchange processes between fast protons and cesium target, in the total cross sections for production of metastable H(2s) atoms and radiative H(2p) atoms showed structures hitherto unobserved. The theoretical study is based on calculation of the adiabatic molecular potential terms of the ionic quasi-molecule (CsH) + , taking a Helmann type pseudopotential to describe the electron with respect to the core of the cesium ion. The probabilities of transition towards the output channels are calculated using a stationary state perturbation method. From the data obtained the interferece phenomena of excited quasi-molecular states can be interpreted coherently in slow collision. The probability of transition along the inelastic output channels displays characteristics of a harmonic oscillatory function inversely proportional to the speed of approach of the particles. The frequency of these oscillations depends very slightly on the impact parameter. The theory proposed involves three Σ states. During detection of the metastable ions the Lyman-α radiation induced in the de-excitation electric field by Stark effect present anisotropic features. The degree of polarization measured as a function of the field strength oscillates around a slow decay toward a limit-1 at strong electric field. A theory not accounting for the hyperfine structure of states mixed by Stark effect showed a double oscillatory structure containing the two frequencies correlated to the 2P1/2 and 2P3/2 states from the 2S1/2 state. Finally the results on the electron detachment reaction between fast metastable atoms and hydroiodic acid target have contributed towards research on polarized proton sources [fr

  13. Anisotropic confinement effects in a two-dimensional plasma crystal.

    Science.gov (United States)

    Laut, I; Zhdanov, S K; Räth, C; Thomas, H M; Morfill, G E

    2016-01-01

    The spectral asymmetry of the wave-energy distribution of dust particles during mode-coupling-induced melting, observed for the first time in plasma crystals by Couëdel et al. [Phys. Rev. E 89, 053108 (2014)PLEEE81539-375510.1103/PhysRevE.89.053108], is studied theoretically and by molecular-dynamics simulations. It is shown that an anisotropy of the well confining the microparticles selects the directions of preferred particle motion. The observed differences in intensity of waves of opposed directions are explained by a nonvanishing phonon flux. Anisotropic phonon scattering by defects and Umklapp scattering are proposed as possible reasons for the mean phonon flux.

  14. Effects of low-Z and high-Z impurities on divertor detachment and plasma confinement

    Directory of Open Access Journals (Sweden)

    H.Q. Wang

    2017-08-01

    Full Text Available The impurity-seeded detached divertor is essential for heat exhaust in ITER and other reactor-relevant devices. Dedicated experiments with injection of N2, Ne and Ar have been performed in DIII-D to assess the impact of the different impurities on divertor detachment and confinement. Seeding with N2, Ne and Ar all promote divertor detachment, greatly reducing heat flux near the strike point. The upstream plasma density at the onset of detachment decreases with increasing impurity-puffing flow rates. For all injected impurity species, the confinement and pedestal pressure are correlated with the impurity content and the ratio of separatrix loss power to the l-H transition threshold power. As the divertor plasma approaches detachment, the high-Z impurity seeding tends to degrade the core confinement owing to the increased core radiation. In particular, Ar injection with up to 50% of the injected power radiating in the core cools the pedestal and core plasmas, thus significantly degrading the confinement. As for Ne seeding, medium confinement with H98∼0.8 can be maintained during the detachment phase with the pedestal temperature being reduced by about 50%. In contrast, in the N2 seeded plasmas, radiation is predominately confined in the boundary plasma, which leads to less effect on the confinement and pedestal. In the case of strong N2 gas puffing, the confinement recovers during the detachment, from ∼20% reduction at the onset of the detachment to greater than unity comparable to that before the seeding. The core and pedestal temperatures feature a reduction of 30% from the initial attached phase and remain nearly constant during the detachment phase. The improvement in confinement appears to arise from the increase in pedestal and core density despite the temperature reduction.

  15. Faraday-Shielded dc Stark-Shift-Free Optical Lattice Clock

    Science.gov (United States)

    Beloy, K.; Zhang, X.; McGrew, W. F.; Hinkley, N.; Yoon, T. H.; Nicolodi, D.; Fasano, R. J.; Schäffer, S. A.; Brown, R. C.; Ludlow, A. D.

    2018-05-01

    We demonstrate the absence of a dc Stark shift in an ytterbium optical lattice clock. Stray electric fields are suppressed through the introduction of an in-vacuum Faraday shield. Still, the effectiveness of the shielding must be experimentally assessed. Such diagnostics are accomplished by applying high voltage to six electrodes, which are grounded in normal operation to form part of the Faraday shield. Our measurements place a constraint on the dc Stark shift at the 10-20 level, in units of the clock frequency. Moreover, we discuss a potential source of error in strategies to precisely measure or cancel nonzero dc Stark shifts, attributed to field gradients coupled with the finite spatial extent of the lattice-trapped atoms. With this consideration, we find that Faraday shielding, complemented with experimental validation, provides both a practically appealing and effective solution to the problem of dc Stark shifts in optical lattice clocks.

  16. Counterion effects on nano-confined metal–drug–DNA complexes

    Directory of Open Access Journals (Sweden)

    Nupur Biswas

    2016-01-01

    Full Text Available We have explored morphology of DNA molecules bound with Cu complexes of piroxicam (a non-steroidal anti-inflammatory drug molecules under one-dimensional confinement of thin films and have studied the effect of counterions present in a buffer. X-ray reflectivity at and away from the Cu K absorption edge and atomic force microscopy studies reveal that confinement segregates the drug molecules preferentially in a top layer of the DNA film, and counterions enhance this segregation.

  17. Stark broadening of hydrogen (1961); Sur l'effet stark dans les plasmas d'hydrogene (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Fidone, I [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France)

    1961-07-01

    The effect of electron impacts on the Stark broadening of hydrogen atoms has been considered using a Debye-Huckel potential instead of a cut-off limit for the integrals giving the shift and the half-width. A slight difference results which in a typical case is of the order of 12 - 15 per cent. The simple adiabatic impact approximation has been used. (author) [French] L'effet des chocs electroniques sur l'elargissement Stark des raies d'hydrogene est calcule avec le potentiel de Debye-Huckel au lieu de l'emploi du cut-off pour les integrales qui donnent le deplacement et l'elargissement de la raie. On obtient une faible difference qui, dans un cas typique, est de l'ordre de grandeur de 12 - 15 pour cent. L'approximation adiabatique a ete employee pour decrire les chocs. (auteur)

  18. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    International Nuclear Information System (INIS)

    Kausik, S. S.; Kakati, B.; Saikia, B. K.

    2013-01-01

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10 −4 millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (∼pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains

  19. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kausik, S. S.; Kakati, B.; Saikia, B. K. [Centre of Plasma Physics, Institute for Plasma Research, Sonapur 782 402 (India)

    2013-05-15

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10{sup −4} millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (∼pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  20. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    Science.gov (United States)

    Kausik, S. S.; Kakati, B.; Saikia, B. K.

    2013-05-01

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10-4 millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (˜pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  1. Molecular quantum mechanical gradients within the polarizable embedding approach—Application to the internal vibrational Stark shift of acetophenone

    DEFF Research Database (Denmark)

    List, Nanna Holmgaard; Beerepoot, Maarten; Olsen, Jógvan Magnus Haugaard

    2015-01-01

    for the quantum region, covering (multiconfigurational) self-consistent-field and Kohn–Sham density functional theory. As the first application of the implementation, we consider the internal vibrational Stark effect of the C=O group of acetophenone in different solvents and derive its vibrational linear Stark...

  2. Influence of the nanoparticles agglomeration state in the quantum-confinement effects: Experimental evidences

    Energy Technology Data Exchange (ETDEWEB)

    Lorite, I., E-mail: lorite@physik.uni-leipzig.de [Electroceramic Department, Instituto de Cerámica y Vidrio, CSIC, Kelsen 5, 28049, Madrid (Spain); Division of Superconductivity and Magnetism, Faculty of Physics and Earth Sciences, Linnestrasse 5, D-04103 Leipzig (Germany); Romero, J. J.; Fernandez, J. F. [Electroceramic Department, Instituto de Cerámica y Vidrio, CSIC, Kelsen 5, 28049, Madrid (Spain)

    2015-03-15

    The agglomeration state facilitates particle-particle interaction which produces important effects in the phonon confinement effects at the nanoscale. A partial phonon transmission between close nanoparticles yields a lower momentum conservation relaxation than in a single isolated nanoparticle. It means a larger red shift and broadening of the Raman modes than the expected ones for Raman quantum confinement effects. This particle-particle interaction can drive to error when Raman responses are used to estimate the size of the nanoscaled materials. In this work different corrections are suggested to overtake this source of error.

  3. Influence of the nanoparticles agglomeration state in the quantum-confinement effects: Experimental evidences

    International Nuclear Information System (INIS)

    Lorite, I.; Romero, J. J.; Fernandez, J. F.

    2015-01-01

    The agglomeration state facilitates particle-particle interaction which produces important effects in the phonon confinement effects at the nanoscale. A partial phonon transmission between close nanoparticles yields a lower momentum conservation relaxation than in a single isolated nanoparticle. It means a larger red shift and broadening of the Raman modes than the expected ones for Raman quantum confinement effects. This particle-particle interaction can drive to error when Raman responses are used to estimate the size of the nanoscaled materials. In this work different corrections are suggested to overtake this source of error

  4. The confinement effect in spherical inhomogeneous quantum dots and stability of excitons

    Directory of Open Access Journals (Sweden)

    F. Benhaddou

    2017-06-01

    Full Text Available We investigate in this work the quantum confinement effect of exciton in spherical inhomogeneous quantum dots IQDs. The spherical core is enveloped by two shells. The inner shell is a semiconductor characterized by a small band-gap. The core and the outer shell are the same semiconductor characterized by a large band-gap. So there is a significant gap-offset creating a deep potential well where the excitons are localized and strongly confined. We have adopted the Ritz variational method to calculate numerically the excitonic ground state energy and its binding energy in the strong, moderate and low confinement regimes. The results show that the Ritz variational method is in good agreement with the perturbation method in strong confinement. There is a double confinement effect and dual control. The calculation checks the effective Rydberg R* at the asymptotic limit of bulk semiconductor when the thickness takes very large values. The excitonic binding energy increases, Thus giving the excitons a high stability even at ambient temperature. These nanosystems are promising in several applications: lighting, detection, biological labeling and quantum computing.

  5. Effect of energetic ion loss on ICRF heating efficiency and energy confinement time in heliotrons

    International Nuclear Information System (INIS)

    Murakami, S.; Nakajima, N.; Okamoto, M.; Nuehrenberg, J.

    1999-01-01

    The ICRF heating efficiency and the global energy confinement time during ICRF heating are investigated, including the effect of energetic ion loss in heliotrons. The approximate formula of ICRF heating efficiency is derived using results based on Monte Carlo simulations (Murakami, S., et al., Fusion Eng. Des. 26 (1995) 209). The global energy confinement time including the energetic ion effect can be expressed in heliotrons in terms of ICRF heating power, plasma density and magnetic field strength. Results in plasmas at CHS show a systematic decrease of the global energy confinement time due to energetic ion loss from the assumed energy confinement scaling law, which is consistent with the experimental observations. The model is also applied to ICRF minority heating in LHD plasmas in two cases of typical magnetic configurations. A clear increase of the global energy confinement time due to the stored energy of energetic tail ions is obtained in the 'orbit improved' configuration, while a decrease is observed in the 'standard' configuration. (author)

  6. Effect of Neoclassical Transport Optimization on Energetic Ion Confinement in LHD

    International Nuclear Information System (INIS)

    Murakami, S.; Yamada, H.; Sasao, M.

    2004-01-01

    Confinement of energetic ions from neutral beam injection heating is investigated by changing the magnetic field configuration of the Large Helical Device from a classical heliotron configuration to an optimized neoclassical transport configuration to a level typical of ''advanced stellarators.'' The experimental results show the highest count rate of fast neutral particles not in the optimized configuration but in the inward-shifted one. The GNET simulation results show a relatively good agreement with the experimental results, and they also show a lower energy loss rate in the optimized configuration. This contradiction can be explained by the radial profile of the energetic ions. The relatively good agreement between experimental and simulation results suggest that ripple transport (neoclassical) dominates the energetic ion confinement and that the optimization process is effective in improving confinement in helical systems

  7. Effects of magnetic geometry, fluctuations, and electric fields on confinement in the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Isler, R.C.; Aceto, S.; Baylor, L.R.; Bigelow, T.S.; Bell, G.L.; Bell, J.D.; Carreras, B.A.; Colchin, R.J.; Crume, E.C.; Dominguez, N.; Dory, R.A.; Dunlap, J.L.; Dyer, G.R.; England, A.C.; Gandy, R.F.; Glowienka, J.C.; Hanson, G.R.; Harris, J.H.; Hiroe, S.; Horton, L.D.; Jernigan, T.C.; Ji, H.; Langley, R.A.; Lee, D.K.; Likin, K.M.; Lyon, J.F.; Ma, C.H.; Morimoto, S.; Murakami, M.; Okada, H.; Qualls, A.L.; Rasmussen, D.A.; Rome, J.A.; Sato, M.; Schwelberger, J.G.; Shats, M.G.; Simpkins, J.E.; Thomas, C.E.; Uckan, T.; Wade, M.R.; Wilgen, J.B.; Wing, W.R.; Yamada, H.; Zielinski, J.J.

    1992-01-01

    Recent experiments in the Advanced Toroidal Facility (ATF) [Fusion Technol. 10, 179 (1986)] have been directed toward investigations of the basic physics mechanisms that control confinement in this device. Measurements of the density fluctuations throughout the plasma volume have provided indications for the existence of theoretically predicted dissipative trapped electron and resistive interchange instabilities. These identifications are supported by results of dynamic configuration scans of the magnetic fields during which the magnetic well volume, shear, and fraction of confined trapped particles are changed continuously. The influence of magnetic islands on the global confinement has been studied by deliberately applying error fields which strongly perturb the nested flux-surface geometry, and the effects of electric fields have been investigated by means of biased limiter experiments

  8. Transport hysteresis and hydrogen isotope effect on confinement

    Science.gov (United States)

    Itoh, S.-I.; Itoh, K.

    2018-03-01

    A Gedankenexperiment on hydrogen isotope effect is developed, using the transport model with transport hysteresis. The transport model with hysteresis is applied to case where the modulational electron cyclotron heating is imposed near the mid-radius of the toroidal plasmas. The perturbation propagates either outward or inward, being associated with the clockwise (CW) hysteresis or counter-clockwise (CCW) hysteresis, respectively. The hydrogen isotope effects on the CW and CCW hysteresis are investigated. The local component of turbulence-driven transport is assumed to be the gyro-Bohm diffusion. While the effect of hydrogen mass number is screened in the response of CW hysteresis, it is amplified in CCW hysteresis. This result motivates the experimental studies to compare CW and CCW cases in order to obtain further insight into the physics of hydrogen isotope effects.

  9. Effect of dielectric confinement on optical properties of colloidal nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Rodina, A. V., E-mail: anna.rodina@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation); Efros, Al. L., E-mail: efros@nrl.navy.mil [Naval Research Laboratory (United States)

    2016-03-15

    We review the effects caused by a large difference in the dielectric constants of a semiconductor and its surrounding in colloidal semiconductor nanostructures (NSs) with various shapes, e.g., nanocrystals, nanorods, and nanoplatelets. The difference increases the electron–hole interaction and consequently the exciton binding energy and its oscillator transition strength. On the other hand, this difference reduces the electric field of a photon penetrating the NS (the phenomenon is called the local field effect) and reduces the photon coupling to an exciton. We show that the polarization properties of the individual colloidal NSs as well as of their randomly oriented ensemble are determined both by the anisotropy of the local field effect and by the symmetry of the exciton states participating in optical transitions. The calculations explain the temperature and time dependences of the degree of linear polarization measured in an ensemble of CdSe nanocrystals.

  10. Confining dyon gas with finite-volume effects under control

    Energy Technology Data Exchange (ETDEWEB)

    Bruckmann, Falk [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Dinter, Simon [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Ilgenfritz, Ernst-Michael [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Joint Institute for Nuclear Research, VBLHEP, Dubna (Russian Federation); Maier, Benjamin; Mueller-Preussker, Michael [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Wagner, Marc [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik

    2011-11-15

    As an approach to describe the long-range properties of non-Abelian gauge theories at non-zero temperature Teffects. Therefore, we demonstrate the application of Ewald's summation method to this system. Finite-volume effects are shown to be under control, which is a crucial requirement for numerical studies of interacting dyon ensembles. (orig.)

  11. Confining dyon gas with finite-volume effects under control

    International Nuclear Information System (INIS)

    Bruckmann, Falk; Maier, Benjamin; Mueller-Preussker, Michael; Wagner, Marc; Frankfurt Univ.

    2011-11-01

    As an approach to describe the long-range properties of non-Abelian gauge theories at non-zero temperature T c , we consider a non-interacting ensemble of dyons (magnetic monopoles) with non-trivial holonomy. We show analytically, that the quark-antiquark free energy from the Polyakov loop correlator grows linearly with the distance, and how the string tension scales with the dyon density. In numerical treatments, the long-range tails of the dyon fields cause severe finite-volume effects. Therefore, we demonstrate the application of Ewald's summation method to this system. Finite-volume effects are shown to be under control, which is a crucial requirement for numerical studies of interacting dyon ensembles. (orig.)

  12. The negative phonon confinement effect in nanoscopic sodium nitrite

    Czech Academy of Sciences Publication Activity Database

    Koroleva, E.Yu.; Nuzhnyy, Dmitry; Pokorný, Jan; Kamba, Stanislav; Kumzerov, Y. A.; Vakhrushev, S. B.; Petzelt, Jan

    2009-01-01

    Roč. 20, č. 39 (2009), 395706/1-395706/7 ISSN 0957-4484 R&D Projects: GA AV ČR KJB100100704; GA ČR(CZ) GA202/09/0682 Institutional research plan: CEZ:AV0Z10100520 Keywords : nanocomposite * sodium nitrite * infrared * THz * Raman * phonon * effective medium approach Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.137, year: 2009

  13. Effects of confinement & surface roughness in electrorheological flows

    Science.gov (United States)

    Helal, Ahmed; Telleria, Maria J.; Wang, Julie; Strauss, Marc; Murphy, Mike; McKinley, Gareth; Hosoi, A. E.

    2014-11-01

    Electrorheological (ER) fluids are dielectric suspensions that exhibit a fast, reversible change in rheological properties with the application of an external electric field. Upon the application of the electric field, the material develops a field-dependent yield stress that is typically modeled using a Bingham plastic model. ER fluids are promising for designing small, cheap and rapidly actuated hydraulic devices such as rapidly-switchable valves, where fluid flowing in a microchannel can be arrested by applying an external electric field. In the lubrication limit, for a Bingham plastic fluid, the maximum pressure the channel can hold, before yielding, is a function of the field-dependent yield stress, the length of the channel and the electrode gap. In practice, the finite width of the channel and the surface roughness of the electrodes could affect the maximum yield pressure but a quantitative understanding of these effects is currently lacking. In this study, we experimentally investigate the effects of the channel aspect ratio (width/height) and the effects of electrode roughness on the performance of ER valves. Based on this quantitative analysis, we formulate new performance metrics for ER valves as well as design rules for ER valves that will help guide and optimize future designs.

  14. Strategies for effective management of health and safety in confined site construction

    Directory of Open Access Journals (Sweden)

    John Spillane

    2013-12-01

    Full Text Available Purpose: The overall aim of this research is to identify and catalogue the numerous managerial strategies for effective management of health and safety on a confined, urban, construction site. Design/Methodology/Approach: This is achieved by utilising individual interviews, focus groups discussion on selected case studies of confined construction sites, coupled with a questionnaire survey. Findings: The top five key strategies include (1 Employ safe system of work plans to mitigate personnel health and safety issues; (2 Inform personnel, before starting on-site, of the potential issues using site inductions; (3 Effective communication among site personnel; (4 Draft and implement an effective design site layout prior to starting on-site; and (5 Use of banksman (traffic co-ordinator to segregate personnel from vehicular traffic. Practical Implication: The construction sector is one of the leading industries in accident causation and with the continued development and regeneration of our urban centres, confined site construction is quickly becoming the norm - an environment which only fuels accident creation within the construction sector. Originality/Value: This research aids on-site management that requires direction and assistance in the identification and implementation of key strategies for the management of health and safety, particularly in confined construction site environments.

  15. Gauge invariance of color confinement due to the dual Meissner effect caused by Abelian monopoles

    International Nuclear Information System (INIS)

    Suzuki, Tsuneo; Hasegawa, Masayasu; Ishiguro, Katsuya; Koma, Yoshiaki; Sekido, Toru

    2009-01-01

    The mechanism of non-Abelian color confinement is studied in SU(2) lattice gauge theory in terms of the Abelian fields and monopoles extracted from non-Abelian link variables without adopting gauge fixing. First, the static quark-antiquark potential and force are computed with the Abelian and monopole Polyakov loop correlators, and the resulting string tensions are found to be identical to the non-Abelian string tension. These potentials also show the scaling behavior with respect to the change of lattice spacing. Second, the profile of the color-electric field between a quark and an antiquark is investigated with the Abelian and monopole Wilson loops. The color-electric field is squeezed into a flux tube due to monopole supercurrent with the same Abelian color direction. The parameters corresponding to the penetration and coherence lengths show the scaling behavior, and the ratio of these lengths, i.e., the Ginzburg-Landau parameter, indicates that the vacuum type is near the border of the type 1 and type 2 (dual) superconductors. These results are summarized in which the Abelian fundamental charge defined in an arbitrary color direction is confined inside a hadronic state by the dual Meissner effect. As the color-neutral state in any Abelian color direction corresponds to the physical color-singlet state, this effect explains non-Abelian color confinement and supports the existence of a gauge-invariant mechanism of color confinement due to the dual Meissner effect caused by Abelian monopoles.

  16. Confinement effects on strongly polar alkylcyanobiphenyl liquid crystals probed by dielectric spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Leys, Jan; Glorieux, Christ; Thoen, Jan [Laboratorium voor Akoestiek en Thermische Fysica, Departement Natuurkunde en Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200D-bus 2416, B-3001 Leuven (Belgium)], E-mail: jan.leys@fys.kuleuven.be, E-mail: jan.thoen@fys.kuleuven.be

    2008-06-18

    Dielectric spectroscopy has often been used to study confinement effects in alkylcyanobiphenyl liquid crystals. In this paper, we highlight some of the effects that have been discovered previously and add new data and interpretation. Aerosil nanoparticles form a hydrogen bonded random porous network. In dispersions of alkylcyanobiphenyls with aerosils, an additional slow process arises, that we ascribe to the relaxation of liquid crystal molecules in close interaction with these nanoparticles. Their relaxation is retarded by a hydrogen bond interaction between the cyano group of the liquid crystals and an aerosil surface hydroxyl group. A similar surface process is also observed in Vycor porous glass, a random rigid structure with small pores. A comparison of the temperature dependence of the relaxation times of the surface processes in decylcyanobiphenyl and isopentylcyanobiphenyl is made, both for Vycor and aerosil confinement. In decylcyanobiphenyl, the temperature dependence for the bulk and surface processes is Arrhenius (in a limited temperature range above the melting point), except in Vycor, where it is a Vogel-Fulcher-Tamman dependence (over a much broader temperature range). In bulk and confined isopentylcyanobiphenyl, the molecular processes have a Vogel-Fulcher-Tamman dependence, whereas the surface processes have an Arrhenius one. Another effect is the acceleration of the rotation around the short molecular axis in confinement, and particularly in aerosil dispersions. This is a consequence of the disorder introduced in the liquid crystalline phase. The disorder drives the relaxation time towards a more isotropic value, resulting in an acceleration for the short axis rotation.

  17. Effect of loss cone on confinement in toroidal helical device

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.-I.; Fukuyama, A.; Hanatani, K.

    1988-12-01

    Analytical estimation is given on the loss cone in the toroidal helical devices in the presence of the radial electric field and the modulation of the helical ripple. The minimum energy of particles entering the loss cone is calculated. The modulation is not always effective in reducing the loss in the presence of the radial electric field. The plasma loss due to the loss cone is estimated in the collisionless limit. The radial electric field is estimated in the presence of the loss cone. It is found that the transition to the solution with positive radial electric field, which is necessary to achieve the high-ion-temperature mode, becomes difficult. This difficulty is large for the systems with the small helical ripple. (author)

  18. Anomalous water dynamics at surfaces and interfaces: synergistic effects of confinement and surface interactions

    Science.gov (United States)

    Biswas, Rajib; Bagchi, Biman

    2018-01-01

    In nature, water is often found in contact with surfaces that are extended on the scale of molecule size but small on a macroscopic scale. Examples include lipid bilayers and reverse micelles as well as biomolecules like proteins, DNA and zeolites, to name a few. While the presence of surfaces and interfaces interrupts the continuous hydrogen bond network of liquid water, confinement on a mesoscopic scale introduces new features. Even when extended on a molecular scale, natural and biological surfaces often have features (like charge, hydrophobicity) that vary on the scale of the molecular diameter of water. As a result, many new and exotic features, which are not seen in the bulk, appear in the dynamics of water close to the surface. These different behaviors bear the signature of both water-surface interactions and of confinement. In other words, the altered properties are the result of the synergistic effects of surface-water interactions and confinement. Ultrafast spectroscopy, theoretical modeling and computer simulations together form powerful synergistic approaches towards an understanding of the properties of confined water in such systems as nanocavities, reverse micelles (RMs), water inside and outside biomolecules like proteins and DNA, and also between two hydrophobic walls. We shall review the experimental results and place them in the context of theory and simulations. For water confined within RMs, we discuss the possible interference effects propagating from opposite surfaces. Similar interference is found to give rise to an effective attractive force between two hydrophobic surfaces immersed and kept fixed at a separation of d, with the force showing an exponential dependence on this distance. For protein and DNA hydration, we shall examine a multitude of timescales that arise from frustration effects due to the inherent heterogeneity of these surfaces. We pay particular attention to the role of orientational correlations and modification of the

  19. On the Effect of Confinement on the Structure and Properties of Small-Molecular Organic Semiconductors

    KAUST Repository

    Martin, Jaime; Dyson, Matthew; Reid, Obadiah G.; Li, Ruipeng; Nogales, Aurora; Smilgies, Detlef-M.; Silva, Carlos; Rumbles, Garry; Amassian, Aram; Stingelin, Natalie

    2017-01-01

    Many typical organic optoelectronic devices, such as light-emitting diodes, field-effect transistors, and photovoltaic cells, use an ultrathin active layer where the organic semiconductor is confined within nanoscale dimensions. However, the question of how this spatial constraint impacts the active material is rarely addressed, although it may have a drastic influence on the phase behavior and microstructure of the active layer and hence the final performance. Here, the small-molecule semiconductor p-DTS(FBTTh) is used as a model system to illustrate how sensitive this class of material can be to spatial confinement on device-relevant length scales. It is also shown that this effect can be exploited; it is demonstrated, for instance, that spatial confinement is an efficient tool to direct the crystal orientation and overall texture of p-DTS(FBTTh) structures in a controlled manner, allowing for the manipulation of properties including photoluminescence and charge transport characteristics. This insight should be widely applicable as the temperature/confinement phase diagrams established via differential scanning calorimetry and grazing-incidence X-ray diffraction are used to identify specific processing routes that can be directly extrapolated to other functional organic materials, such as polymeric semiconductors, ferroelectrics or high-refractive-index polymers, to induce desired crystal textures or specific (potentially new) polymorphs.

  20. Opposed-flow Flame Spread Over Solid Fuels in Microgravity: the Effect of Confined Spaces

    Science.gov (United States)

    Wang, Shuangfeng; Hu, Jun; Xiao, Yuan; Ren, Tan; Zhu, Feng

    2015-09-01

    Effects of confined spaces on flame spread over thin solid fuels in a low-speed opposing flow is investigated by combined use of microgravity experiments and computations. The flame behaviors are observed to depend strongly on the height of the flow tunnel. In particular, a non-monotonic trend of flame spread rate versus tunnel height is found, with the fastest flame occurring in the 3 cm high tunnel. The flame length and the total heat release rate from the flame also change with tunnel height, and a faster flame has a larger length and a higher heat release rate. The computation analyses indicate that a confined space modifies the flow around the spreading flame. The confinement restricts the thermal expansion and accelerates the flow in the streamwise direction. Above the flame, the flow deflects back from the tunnel wall. This inward flow pushes the flame towards the fuel surface, and increases oxygen transport into the flame. Such a flow modification explains the variations of flame spread rate and flame length with tunnel height. The present results suggest that the confinement effects on flame behavior in microgravity should be accounted to assess accurately the spacecraft fire hazard.

  1. Quantum mechanical solver for confined heterostructure tunnel field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Verreck, Devin, E-mail: devin.verreck@imec.be; Groeseneken, Guido [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Electrical Engineering, KU Leuven, 3001 Leuven (Belgium); Van de Put, Maarten; Sorée, Bart; Magnus, Wim [imec, Kapeldreef 75, 3001 Leuven (Belgium); Departement of Physics, Universiteit Antwerpen, 2020 Antwerpen (Belgium); Verhulst, Anne S.; Collaert, Nadine; Thean, Aaron [imec, Kapeldreef 75, 3001 Leuven (Belgium); Vandenberghe, William G. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States)

    2014-02-07

    Heterostructure tunnel field-effect transistors (HTFET) are promising candidates for low-power applications in future technology nodes, as they are predicted to offer high on-currents, combined with a sub-60 mV/dec subthreshold swing. However, the effects of important quantum mechanical phenomena like size confinement at the heterojunction are not well understood, due to the theoretical and computational difficulties in modeling realistic heterostructures. We therefore present a ballistic quantum transport formalism, combining a novel envelope function approach for semiconductor heterostructures with the multiband quantum transmitting boundary method, which we extend to 2D potentials. We demonstrate an implementation of a 2-band version of the formalism and apply it to study confinement in realistic heterostructure diodes and p-n-i-n HTFETs. For the diodes, both transmission probabilities and current densities are found to decrease with stronger confinement. For the p-n-i-n HTFETs, the improved gate control is found to counteract the deterioration due to confinement.

  2. Confinement effect of protonation/deprotonation of carboxylic group modified in nanochannel

    International Nuclear Information System (INIS)

    Gao, Hong-Li; Zhang, Hui; Li, Cheng-Yong; Xia, Xing-Hua

    2013-01-01

    Protonation and deprotonation processes are the key step of acid–base reaction and occur in many biological processes. Study on the deprotonation process of molecules and/or functional groups in confined conditions would help us understand the acid–base theory and confinement effect of biomolecules. In this paper, we use a recently established approach to the study of protonation and deprotonation processes of functional groups in porous anodic alumina array nanochannels by measuring the flux of electrochemical active probes (ferricyanide ions) using an Au film electrochemical detector sputtered at the end of nanochannels. The protonation and deprotonation processes of surface functional groups in nanochannels will change the surface charges and in turn modulate the transportation of charged electroactive probes through nanochannels. The titration curve for the deprotonation of carboxylic groups in nanochannel confined conditions is obtained by measuring the current signal of ferricyanide probe flowing through an carboxylic-anchored PAA nanochannels array at different solution pH. Results show that the deprotonation of carboxylic group in nanochannel occurs in one step with a pK 1/2 = 6.2. The present method provides an effective tool to study the deprotonation processes of various functional groups and biomolecules under confined conditions

  3. Effect of crack size on gas leakage characteristics in a confined space

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Kun Hyuk; Ryou, Hong Sun; Yoon, Kee Bong; Lee, Hy Uk; Bang, Joo Won [Chung-Ang University, Seoul (Korea, Republic of); Li, Longnan; Choi, Jin Wook; Kim, Dae Joong [Sogang University, Seoul (Korea, Republic of)

    2016-07-15

    We numerically investigated the influence of crack size on gas leakage characteristics in a confined space. The real scale model of underground Combined cycle power plant (CCPP) was taken for simulating gas leakage characteristics for different crack sizes such as 10 mm, 15 mm and 20 mm. The commercial code of Fluent (v.16.1) was used for three-dimensional simulation. In particular, a risk region showing such a probability of ignition was newly suggested with the concept of Lower flammable limit (LFL) of methane gas used in the present study to characterize the gas propagation and the damage area in space. From the results, the longitudinal and transverse leakage distances were estimated and analyzed for quantitative evaluation of risk area. The crack size was found to have a great impact on the longitudinal leakage distance, showing an increasing tendency with the crack size. In case of a crack size of 20 mm, the longitudinal leakage distance suddenly increased after 180 s, whereas it remained constant after 2 s in the other cases. This is because a confinement effect, which is caused by circulation flows in the whole space, increased the gas concentration near the gas flow released from the crack. The confinement effect is thus closely associated with the released mass flow rate changing with the crack size. This result would be useful in designing the gas detector system for preventing accidents in the confined space as like CCPP.

  4. On the Effect of Confinement on the Structure and Properties of Small-Molecular Organic Semiconductors

    KAUST Repository

    Martín, Jaime

    2017-12-11

    Many typical organic optoelectronic devices, such as light-emitting diodes, field-effect transistors, and photovoltaic cells, use an ultrathin active layer where the organic semiconductor is confined within nanoscale dimensions. However, the question of how this spatial constraint impacts the active material is rarely addressed, although it may have a drastic influence on the phase behavior and microstructure of the active layer and hence the final performance. Here, the small-molecule semiconductor p-DTS(FBTTh) is used as a model system to illustrate how sensitive this class of material can be to spatial confinement on device-relevant length scales. It is also shown that this effect can be exploited; it is demonstrated, for instance, that spatial confinement is an efficient tool to direct the crystal orientation and overall texture of p-DTS(FBTTh) structures in a controlled manner, allowing for the manipulation of properties including photoluminescence and charge transport characteristics. This insight should be widely applicable as the temperature/confinement phase diagrams established via differential scanning calorimetry and grazing-incidence X-ray diffraction are used to identify specific processing routes that can be directly extrapolated to other functional organic materials, such as polymeric semiconductors, ferroelectrics or high-refractive-index polymers, to induce desired crystal textures or specific (potentially new) polymorphs.

  5. Phonon-assisted hopping of an electron on a Wannier-Stark ladder in a strong electric field

    International Nuclear Information System (INIS)

    Emin, D.; Hart, C.F.

    1987-01-01

    With the application of a spatially constant electric field, the degeneracy of electronic energy levels of geometrically equivalent sites of a crystal is generally lifted. As a result, the electric field causes the electronic eigenstates of a one-dimensional periodic chain to become localized. In particular, they are Wannier-Stark states. With sufficiently large electric-field strengths these states become sufficiently well localized that it becomes appropriate to consider electronic transport to occur via a succession of phonon-assisted hops between the localized Wannier-Stark states. In this paper, we present calculations of the drift velocity arising from acoustic- and optical-phonon-assisted hopping motion between Wannier-Stark states. When the intersite electronic transfer energy is sufficiently small so that the Wannier-Stark states are essentially each confined to a single atomic site, the transport reduces to that of a small polaron. In this regime, while the drift velocity initially rises with increasing electric field strength, the drift velocity ultimately falls with increasing electric-field strength at extremely large electric fields. More generally, for common values of the electronic bandwidth and electric field strength, the Wannier-Stark states span many sites. At sufficiently large electric fields, the energy separation between Wannier-Stark states exceeds the energy uncertainty associated with the carrier's interaction with phonons. Then, it is appropriate to treat the electronic transport in terms of phonon-assisted hopping between Wannier-Stark states. The resulting high-field drift velocity falls with increasing field strength in a series of steps. Thus, we find a structured negative differential mobility at large electric fields

  6. Understanding and tuning the quantum-confinement effect and edge magnetism in zigzag graphene nanoribbon.

    Science.gov (United States)

    Huang, Liang Feng; Zhang, Guo Ren; Zheng, Xiao Hong; Gong, Peng Lai; Cao, Teng Fei; Zeng, Zhi

    2013-02-06

    The electronic structure of zigzag graphene nanoribbon (ZGNR) is studied using density functional theory. The mechanisms underlying the quantum-confinement effect and edge magnetism in ZGNR are systematically investigated by combining the simulated results and some useful analytic models. The quantum-confinement effect and the inter-edge superexchange interaction can be tuned by varying the ribbon width, and the spin polarization and direct exchange splitting of the edge states can be tuned by varying their electronic occupations. The two edges of ZGNR can be equally or unequally tuned by charge doping or Li adsorption, respectively. The Li adatom has a site-selective adsorption on ZGNR, and it is a nondestructive and memorable approach to effectively modify the edge states in ZGNR. These systematic understanding and effective tuning of ZGNR electronics presented in this work are helpful for further investigation and application of ZGNR and other magnetic graphene systems.

  7. Confinement and correlation effects in the Xe-C{sub 60} generalized oscillator strengths

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M. Ya. [Racah Institute of Physics, Hebrew University, 91904 Jerusalem (Israel); A. F. Ioffe Physical-Technical Institute, 194021 St. Petersburg (Russian Federation); Chernysheva, L. V. [A. F. Ioffe Physical-Technical Institute, 194021 St. Petersburg (Russian Federation); Dolmatov, V. K. [Department of Physics and Earth Science, University of North Alabama, Florence, Alabama 35632 (United States)

    2011-12-15

    The impact of both confinement and electron correlation on generalized oscillator strengths (GOS's) of endohedral atoms, A-C{sub 60}, is theoretically studied choosing the Xe-C{sub 60} 4d, 5s, and 5p fast electron impact ionization as the case study. Calculations are performed in the transferred to the atom energy region beyond the 4d threshold, {omega}=75-175 eV. The calculation methodology combines the plane-wave Born approximation, Hartree-Fock approximation, and random-phase approximation with exchange in the presence of the C{sub 60} confinement. The confinement is modeled by a spherical {delta}-function-like potential as well as by a square well potential to evaluate the effect of the finite thickness of the C{sub 60} cage on the Xe-C{sub 60} GOS's. Dramatic distortion of the 4d, 5p, and 5s GOS's by the confinement is demonstrated, compared to the free atom. Considerable contributions of multipolar transitions beyond dipole transitions in the calculated GOS's are revealed, in some instances. The vitality of accounting for electron correlation in calculation of the Xe-C{sub 60} 5s and 5p GOS's is shown.

  8. Spatial confinement effects on spectroscopic and morphological studies of nanosecond laser-ablated Zirconium

    Science.gov (United States)

    Hayat, Asma; Bashir, Shazia; Rafique, Muhammad Shahid; Ahmad, Riaz; Akram, Mahreen; Mahmood, Khaliq; Zaheer, Ali

    2017-12-01

    Spatial confinement effects on plasma parameters and surface morphology of laser ablated Zr (Zirconium) are studied by introducing a metallic blocker. Nd:YAG laser at various fluencies ranging from 8 J cm-2 to 32 J cm-2 was employed as an irradiation source. All measurements were performed in the presence of Ar under different pressures. Confinement effects offered by metallic blocker are investigated by placing the blocker at different distances of 6 mm, 8 mm and 10 mm from the target surface. It is revealed from LIBS analysis that both plasma parameters i.e. excitation temperature and electron number density increase with increasing laser fluence due to enhancement in energy deposition. It is also observed that spatial confinement offered by metallic blocker is responsible for the enhancement of both electron temperature and electron number density of Zr plasma. This is true for all laser fluences and pressures of Ar. Maximum values of electron temperature and electron number density without blocker are 12,600 K and 14 × 1017 cm-3 respectively whereas, these values are enhanced to 15,000 K and 21 × 1017 cm-3 in the presence of blocker. The physical mechanisms responsible for the enhancement of Zr plasma parameters are plasma compression, confinement and pronounced collisional excitations due to reflection of shock waves. Scanning Electron Microscope (SEM) analysis was performed to explore the surface morphology of laser ablated Zr. It reveals the formation of cones, cavities and ripples. These features become more distinct and well defined in the presence of blocker due to plasma confinement. The optimum combination of blocker distance, fluence and Ar pressure can identify the suitable conditions for defining the role of plasma parameters for surface structuring.

  9. H{sub {beta}} Stark broadening in cold plasmas with low electron densities calibrated with Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Palomares, J.M., E-mail: j.m.palomares-linares@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Huebner, S.; Carbone, E.A.D.; Vries, N. de; Veldhuizen, E.M. de [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Sola, A.; Gamero, A. [Departamento de Fisica, Universidad de Cordoba, Campus de Rabanales, ed. C-2, 14071 Cordoba (Spain); Mullen, J.J.A.M. van der [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2012-07-15

    In the present work Stark broadening measurements have been carried out on low electron density (n{sub e} < 5{center_dot}10{sup 19} m{sup -3}) and (relatively) low gas temperature (T{sub g} < 1100 K) argon-hydrogen plasma, under low-intermediate pressure conditions (3 mbar-40 mbar). A line fitting procedure is used to separate the effects of the different broadening mechanisms (e.g. Doppler and instrumental broadening) from the Stark broadening. A Stark broadening theory is extrapolated to lower electron density values, below its theoretical validity regime. Thomson scattering measurements are used to calibrate and validate the procedure. The results show an agreement within 20%, what validates the use of this Stark broadening method under such low density conditions. It is also found that Stark broadened profiles cannot be assumed to be purely Lorentzian. Such an assumption would lead to an underestimation of the electron density. This implies that independent information on the gas temperature is needed to find the correct values of n{sub e}. - Highlights: Black-Right-Pointing-Pointer Stark broadening measurements at low density and temperature conditions Black-Right-Pointing-Pointer Calibration with Thomson scattering Black-Right-Pointing-Pointer Indications of the non-Lorentzian shape of the Stark broadening Black-Right-Pointing-Pointer Impossibility of simultaneous diagnostic of gas temperature and electron density.

  10. Molecular Weight Effects on the Glass Transition and Confinement Behavior of Polymer Thin Films.

    Science.gov (United States)

    Xia, Wenjie; Hsu, David D; Keten, Sinan

    2015-08-01

    Nanoscale polymer thin films exhibit strong confinement effects on Tg arising from free surfaces. However, the coupled influence of molecular weight (MW) and surface effects on Tg is not well understood for low MW film systems below the entanglement length. Utilizing atomistically informed coarse-grained molecular dynamics simulations for poly(methyl methacrylate) (PMMA), it is demonstrated that the decrease in free-standing film Tg with respect to bulk is more significant for low MW compared to high MW systems. Investigation of the local interfacial properties reveals that the increase in the local free volume near the free surface is greater for low MW, explaining the MW dependence of Tg -confinement behaviors. These findings corroborate recent experiments on low MW films, and highlight the relationship between nanoconfinement phenomena and local free volume effects arising from free surfaces. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The effect of normobaric hypoxic confinement on metabolism, gut hormones and body composition

    Directory of Open Access Journals (Sweden)

    Igor B. Mekjavic

    2016-06-01

    Full Text Available To assess the effect of normobaric hypoxia on metabolism, gut hormones and body composition, eleven normal weight, aerobically trained ( O2peak: 60.6±9.5 ml·kg-1·min-1 men (73.0±7.7 kg; 23.7±4.0 yrs, BMI 22.2±2.4 kg·m-2 were confined to a normobaric (altitude⋍940m normoxic (NORMOXIA; PIO2⋍133.2 mmHg or normobaric hypoxic (HYPOXIA; PIO was reduced from 105.6 to 97.7 mmHg over 10 days environment for 10 days in a randomized cross-over design. The wash-out period between confinements was 3 weeks. During each 10-day period, subjects avoided strenuous physical activity and were under continuous nutritional control. Before, and at the end of each exposure, subjects completed a meal tolerance test, during which blood glucose, insulin, GLP-1, ghrelin, peptide-YY, adrenaline, noradrenaline, leptin, and gastro-intestinal blood flow and appetite sensations were measured. There was no significant change in body weight in either of the confinements (NORMOXIA: -0.7±0.2 kg; HYPOXIA: -0.9±0.2 kg, but a significant increase in fat mass in NORMOXIA (0.23±0.45 kg, but not in HYPOXIA (0.08±0.08 kg. HYPOXIA confinement increased fasting noradrenaline and decreased energy intake, the latter most likely associated with increased fasting leptin. The majority of all other measured variables/responses were similar in NORMOXIA and HYPOXIA. To conclude, normobaric hypoxic confinement without exercise training results in negative energy balance due to primarily reduced energy intake.

  12. Runge-Lenz wave packet in multichannel Stark photoionization

    International Nuclear Information System (INIS)

    Texier, F.

    2005-01-01

    In a previous slow photoionization experiment, modulations of ionization rings were manifested for Xe in a constant electric field. The present quantum calculation reveals that the modulation is an effect of the multichannel core scattering and of tunneling waves through the Coulomb-Stark potential barrier: the barrier reduces the number of oscillations that is observed relatively to the number of oscillations of the short range wave functions, and the nonhydrogenic core phase shifts modify the position of the ionization rings. We find a hidden difference, in the ionization process, for two close values of the energy depending on the resonance with the barrier. The ionization intensity is interpreted as a Runge-Lenz wave packet; thus, we can relate the quantum modulation to the classical Coulomb-Stark trajectories. The Runge-Lenz wave packet differs from a usual temporal wave packet because its components are eigenstates of the Runge-Lenz vector z projection and its evolution is not temporal but spatial

  13. Stark Broadening of Cr III Spectral Lines: DO White Dwarfs

    Directory of Open Access Journals (Sweden)

    Milan S. Dimitrijević

    2018-04-01

    Full Text Available Using the modified semiempirical method of Dimitrijević and Konjević, Stark widths have been calculated for six Cr III transitions, for an electron density of 10 17 cm ‒ 3 and for temperatures from 5000–80,000 K. Results have been used for the investigation of the influence of Stark broadening on spectral lines in cool DO white dwarf atmospheres. Calculated Stark widths will be implemented in the STARK-B database, which is also a part of the Virtual Atomic and Molecular Data Center (VAMDC.

  14. Quantum confinement effect in cheese like silicon nano structure fabricated by metal induced etching

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Shailendra K., E-mail: phd1211512@iiti.ac.in; Sahu, Gayatri; Sagdeo, Pankaj R.; Kumar, Rajesh [Material Research Laboratory, Discipline of Physics & MSEG, Indian Institute of Technology Indore, Madhya Pradesh-452017 (India)

    2015-08-28

    Quantum confinement effect has been studied in cheese like silicon nano-structures (Ch-SiNS) fabricated by metal induced chemical etching using different etching times. Scanning electron microscopy is used for the morphological study of these Ch-SiNS. A visible photoluminescence (PL) emission is observed from the samples under UV excitation at room temperature due to quantum confinement effect. The average size of Silicon Nanostructures (SiNS) present in the samples has been estimated by bond polarizability model using Raman Spectroscopy from the red-shift observed from SiNSs as compared to its bulk counterpart. The sizes of SiNS present in the samples decreases as etching time increase from 45 to 75 mintunes.

  15. Effects of large-angle Coulomb collisions on inertial confinement fusion plasmas.

    Science.gov (United States)

    Turrell, A E; Sherlock, M; Rose, S J

    2014-06-20

    Large-angle Coulomb collisions affect the rates of energy and momentum exchange in a plasma, and it is expected that their effects will be important in many plasmas of current research interest, including in inertial confinement fusion. Their inclusion is a long-standing problem, and the first fully self-consistent method for calculating their effects is presented. This method is applied to "burn" in the hot fuel in inertial confinement fusion capsules and finds that the yield increases due to an increase in the rate of temperature equilibration between electrons and ions which is not predicted by small-angle collision theories. The equilibration rate increases are 50%-100% for number densities of 10(30)  m(-3) and temperatures around 1 keV.

  16. Effects of microchannel confinement on acoustic vaporisation of ultrasound phase change contrast agents

    Science.gov (United States)

    Lin, Shengtao; Zhang, Ge; Hau Leow, Chee; Tang, Meng-Xing

    2017-09-01

    The sub-micron phase change contrast agent (PCCA) composed of a perfluorocarbon liquid core can be activated into gaseous state and form stable echogenic microbubbles for contrast-enhanced ultrasound imaging. It has shown great promise in imaging microvasculature, tumour microenvironment, and cancer cells. Although PCCAs have been extensively studied for different diagnostic and therapeutic applications, the effect of biologically geometrical confinement on the acoustic vaporisation of PCCAs is still not clear. We have investigated the difference in PCCA-produced ultrasound contrast enhancement after acoustic activation with and without a microvessel confinement on a microchannel phantom. The experimental results indicated more than one-order of magnitude less acoustic vaporisation in a microchannel than that in a free environment taking into account the attenuation effect of the vessel on the microbubble scattering. This may provide an improved understanding in the applications of PCCAs in vivo.

  17. The effects of confining pressure and stress difference on static fatigue of granite

    Science.gov (United States)

    Kranz, R. L.

    1980-01-01

    Samples of Barre granite have been creep tested at room temperature at confining pressures up to 2 kbar. Experimental procedures are described and the results of observations and analysis are presented. It is noted that the effect of pressure is to increase the amount of inelastic deformation the rock can sustain before becoming unstable. It is also shown that this increased deformation is due to longer and more numerous microcracks.

  18. Photoionization cross section in a spherical quantum dot: Effects of some parabolic confining electric potentials

    Directory of Open Access Journals (Sweden)

    M. Tshipa

    2017-12-01

    Full Text Available A theoretical investigation of the effects of spatial variation of confining electric potential on photoionization cross section (PCS in a spherical quantum dot is presented. The potential profiles considered here are the shifted parabolic potential and the inverse lateral shifted parabolic potential compared with the well-studied parabolic potential. The primary findings are that parabolic potential and the inverse lateral shifted parabolic potential blue shift the peaks of the PCS while the shifted parabolic potential causes a red shift.

  19. Density profile effects on confinement and MHD stability of currentless NBI plasmas in Heliotron E

    International Nuclear Information System (INIS)

    Sudo, Shigeru; Zushi, Hideki; Kondo, Katsumi

    1993-01-01

    Density profile effects on confinement and MHD stability of currentless NBI plasmas in Heliotron E are studied. The peaked density profile produced by pellet injection increases the stored energy by 20-30% compared to the gas puffed plasmas which obey the empirical stellarator/heliotron scaling in a moderate density range. In contrast to confinement, the peaked pressure profile tends to destabilize the plasma. By limiter insertion, MHD instability occurs (seems to locate near ι/2π=1) even in case of low β (β 0 ≤1%, where β 0 is the central β value) plasmas. On the other hand, the mode of m/n=3/2 at ι/2π=2/3, seems to be a key parameter to the major MHD instability in case of high β (β 0 ≥2%) plasmas. (author)

  20. Effects of a dynamic confinement on the penetration resistance of ceramics against long rods

    International Nuclear Information System (INIS)

    Malaise, Frederic; Tranchet, Jean-Yves; Collombet, Francis

    2000-01-01

    Adequate confinement of a ceramic block can lead to its impenetrability against long rod penetrators. New ballistic experiments (encapsulated rod experiments) enabling a pressurization of the front face of the ceramic block (dynamic confinement) have been performed and compared to results obtained from standard unconfined configurations (DOP tests). Impenetrability of the ceramic block is obtained with the encapsulated rod configuration. A modeling approach based on a description of the fragmentation process of the ceramic is proposed. In particular, effects of the void content of the fragmented ceramic on its shear resistance are taken into account. Comparisons between Eulerian computation and the experiments show that conditions for rod dwell are linked to immobilizing fragments of ceramic in front of the projectile

  1. Submicron confinement effect on electrical activation of B implanted in Si

    International Nuclear Information System (INIS)

    Bruno, E.; Mirabella, S.; Impellizzeri, G.; Priolo, F.; Giannazzo, F.; Raineri, V.; Napolitani, E.

    2005-01-01

    In this work we studied the effect of B implantation in Si through submicron laterally confined area on B clustering and its electrical activation. For this study, we implanted B 3 keV into a Si wafer grown by Molecular Beam Epitaxy (MBE) through a patterned oxide mask with opening widths down to 0.38 μm. Then, we annealed the sample at 800 deg. C for several times up to 120 min and monitored the 2D carrier profile by quantitative high resolution Scanning Capacitance Microscopy (SCM). We show that by reducing the opening widths, not only the B clustering is strongly reduced, but also the B cluster dissolution is accelerated. This demonstrates the beneficial role of implanted B confinement on the B electrical activation. The above results have a significant impact in the modern Si based electronic device engineering

  2. Confinement effects of shock waves on laser-induced plasma from a graphite target

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Feiling; Liang, Peipei; Yang, Xu; Cai, Hua; Wu, Jiada; Xu, Ning; Ying, Zhifeng; Sun, Jian, E-mail: jsun@fudan.edu.cn [Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China)

    2015-06-15

    The spatial confinement effects of shock waves on the laser-induced plasma (LIP) from a graphite target in air were studied by probe beam deflection (PBD) measurements and optical emission spectroscopy (OES). A clear relationship between the confinement of the LIP by the shock wave and the effects on the LIP emission was observed, and the underlying mechanisms are discussed. PBD monitoring revealed that the laser-ablation induced shock wave could be well analogized to the shock wave generated by a point explosion and would be reflected by a block. OES measurements indicated that the optical emission of the LIP exhibited significant variations with the block placement. A first enhancement and then a fast decay of CN molecular emission as well as a suppression of carbon atomic emission were observed in the presence of the block. The results revealed that the reflected shock wave spatially confined the expansion of the LIP and compressed the LIP after encountering it, pushing back the species of the LIP and changing the density of the LIP species including luminous carbon atoms and CN molecules. It is suggested that the change of the LIP emission is attributed to the density variation of the LIP species due to the compression of the LIP and the reactions occurring in the plasma.

  3. Achieving effective confinement through utilization of non-Newtonian fluid mixture as stemming structure

    Directory of Open Access Journals (Sweden)

    Luís Felipe Gomes Marinho

    Full Text Available Abstract The economics of a mining operation is directly influenced by blasting outcomes, where blasting aims to comminute the rock mass in order to attain smaller grain sizes to be loaded and hauled at a minimum cost for its first processing stage. In order to promote adequate rock breakage, the stemming structure needs to provide proper confinement for the borehole charged with explosives, reflecting the energy released during the detonation in form of shock waves and gases to act throughout the in situ rock mass, enlarging its failures and fractures, and also creating new ones. To build up a stemming column, literature recommends the usage of dry granular materials instead of elements with plastic behavior. However, a study was performed using Gypsum plaster as stemming; a kind of material that exhibits solid-like behavior when it is dry. Following this theory, this test verified improvements regarding confinement effectiveness and energy propagation throughout the rock mass when a non-Newtonian mixture (NNM was applied as stemming; a material that shows a solid-like behavior when is under shear stress. When the stemming arrangement was composed of NNM, it was able to reduce energy and gas losses to the atmosphere, because of the liquid's property of filling voids into the borehole. The NNM yielded high results due to its better confinement effectiveness, a reduction of air overpressure, and an increase of the strain propagation and ground vibration throughout the rock.

  4. Effects of an electric field on the confined hydrogen atom in a parabolic potential well

    International Nuclear Information System (INIS)

    Xie Wenfang

    2009-01-01

    Using the perturbation method, the confined hydrogen atom by a parabolic potential well is investigated. The binding energy of the confined hydrogen atom in a parabolic potential well is calculated as a function of the confined potential radius and as a function of the intensity of an applied electric field. It is shown that the binding energy of the confined hydrogen atom is highly dependent on the confined potential radius and the intensity of an applied electric field.

  5. Science Translator: An Interview with Louisa Stark.

    Science.gov (United States)

    Stark, Louisa A

    2015-07-01

    The Genetics Society of America's Elizabeth W. Jones Award for Excellence in Education recognizes significant and sustained impact on genetics education. The 2015 awardee, Louisa Stark, has made a major impact on global access to genetics education through her work as director of the University of Utah Genetic Science Learning Center. The Center's Learn.Genetics and Teach.Genetics websites are the most widely used online genetic education resources in the world. In 2014, they were visited by 18 million students, educators, scientists, and members of the public. With over 60 million page views annually, Learn.Genetics is among the most used sites on the Web. Copyright © 2015 by the Genetics Society of America.

  6. Stark-like electron transfer between quantum wells

    International Nuclear Information System (INIS)

    Dubovis, S.A.; Voronko, A.N.; Basharov, A.M.

    2008-01-01

    The Stark-like mechanism of electron transfer between two energy subband localized in remote quantum wells is examined theoretically. Estimations of major parameters of the problem in case of delta-function-wells model are adduced. Schematic model allowing experimental study of Stark-like transfer is proposed

  7. Confinement characteristics of the TPE reversed field pinch plasmas and effects of the boundary configuration

    International Nuclear Information System (INIS)

    Yagi, Y.; Maejima, Y.; Zollino, G.

    2001-01-01

    Confinement characteristics of the TPE series reversed field pinch (RFP) machines, TPE-1RM15, TPE-1RM20 and TPE-1RM20mod, at Electrotechnical Laboratory (ETL) are summarized. Especially data are synthesized in respect to the effects of the different boundary structures of the machines, where shell proximity and overlapped poloidal shell gaps by the multi-layered shell structure are featured. Comparison of the experimental results is shown in terms of the characteristics of magnetic fluctuations, global confinement properties in general, operation capability of the improved confinement in high pinch parameter (Q) discharges and locked mode events. Linear growth rate of the unstable modes as a function of the shell distance is numerically simulated. Understandings of RFP plasma physics have also made progress by the most recent intensive experiments on correlation studies between fast electrons and dynamo activities and measurement of the plasma and mode rotation. TPE-1RM20mod was shutdown in December 1996 and new RFP experiment has started in TPE-RX from March 1998. The new machine also succeeds the concept of the shell configuration of the TPE-1RM20. (author)

  8. Electrical charging effects on the sliding friction of a model nano-confined ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Capozza, R.; Vanossi, A. [International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste (Italy); CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste (Italy); Benassi, A. [CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste (Italy); Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Tosatti, E. [International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste (Italy); CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste (Italy); International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34014 Trieste (Italy)

    2015-10-14

    Recent measurements suggest the possibility to exploit ionic liquids (ILs) as smart lubricants for nano-contacts, tuning their tribological and rheological properties by charging the sliding interfaces. Following our earlier theoretical study of charging effects on nanoscale confinement and squeezout of a model IL, we present here molecular dynamics simulations of the frictional and lubrication properties of that model under charging conditions. First, we describe the case when two equally charged plates slide while being held together to a confinement distance of a few molecular layers. The shear sliding stress is found to rise strongly and discontinuously as the number of IL layers decreases stepwise. However, the shear stress shows, within each given number of layers, only a weak dependence upon the precise value of the normal load, a result in agreement with data extracted from recent experiments. We subsequently describe the case of opposite charging of the sliding plates and follow the shear stress when the charging is slowly and adiabatically reversed in the course of time, under fixed load. Despite the fixed load, the number and structure of the confined IL layers change with changing charge, and that in turn drives strong friction variations. The latter involves first of all charging-induced freezing of the IL film, followed by a discharging-induced melting, both made possible by the nanoscale confinement. Another mechanism for charging-induced frictional changes is a shift of the plane of maximum shear from mid-film to the plate-film interface, and vice versa. While these occurrences and results invariably depend upon the parameters of the model IL and upon its specific interaction with the plates, the present study helps identifying a variety of possible behavior, obtained under very simple assumptions, while connecting it to an underlying equilibrium thermodynamics picture.

  9. ac electrokinetic micropumps: The effect of geometrical confinement, Faradaic current injection, and nonlinear surface capacitance

    DEFF Research Database (Denmark)

    Olesen, Laurits Højgaard; Bruus, Henrik; Ajdari, A.

    2006-01-01

    therefore extend the latter theories to account for three experimentally relevant effects: (i) vertical confinement of the pumping channel, (ii) Faradaic currents from electrochemical reactions at the electrodes, and (iii) nonlinear surface capacitance of the Debye layer. We report here that these effects......Recent experiments have demonstrated that ac electrokinetic micropumps permit integrable, local, and fast pumping (velocities similar to mm/s) with low driving voltage of a few volts only. However, they also displayed many quantitative and qualitative discrepancies with existing theories. We...

  10. Strong Quantum Confinement Effects and Chiral Excitons in Bio-Inspired ZnO–Amino Acid Cocrystals

    KAUST Repository

    Muhammed, Madathumpady Abubaker Habeeb; Lamers, Marlene; Baumann, Verena; Dey, Priyanka; Blanch, Adam J.; Polishchuk, Iryna; Kong, Xiang-Tian; Levy, Davide; Urban, Alexander S.; Govorov, Alexander O.; Pokroy, Boaz; Rodrí guez-Ferná ndez, Jessica; Feldmann, Jochen

    2018-01-01

    of amino acid potential barriers within the ZnO crystal lattice. Overall, our findings indicate that biomolecule cocrystallization can be used as a truly bio-inspired means to induce chiral quantum confinement effects in quasi-bulk semiconductors.

  11. Effect of surface hydrophobicity on the dynamics of water at the nanoscale confinement: A molecular dynamics simulation study

    International Nuclear Information System (INIS)

    Choudhury, Niharendu

    2013-01-01

    Highlights: • We present atomistic MD simulation of water confined between two paraffin-like plates. • Effect of plate hydrophobicity on the confined water dynamics is investigated. • Diffusivity of confined water is calculated from mean squared displacements. • Rotational dynamics of the confined water has bimodal nature of relaxation. • Monotonic dependence of translational and rotational dynamics on hydrophobicity. - Abstract: We present detailed molecular dynamics simulations of water in and around a pair of plates immersed in water to investigate the effect of degree of hydrophobicity or hydrophilicity of the plates on dynamics of water confined between the two plates. The nature of the plate has been tuned from hydrophobic to hydrophilic and vice versa by varying plate-water dispersion interaction. Analyses of the translational dynamics as performed by calculating mean squared displacements of the confined water reveal a monotonically decreasing trend of the diffusivity with increasing hydrophilicity of the plates. Orientational dynamics of the confined water also follows the same monotonic trend. Although orientational time constant almost does not change with the increase of plate-water dispersion interaction in the hydrophobic regime corresponding to the smaller plate-water attraction, it changes considerably in the hydrophilic regime corresponding to larger plate-water dispersion interactions

  12. Effect of prepartum exercise, pasture turnout, or total confinement on hoof health.

    Science.gov (United States)

    Black, R A; van Amstel, S R; Krawczel, P D

    2017-10-01

    Lameness is a major welfare concern in the dairy industry, and access to physical activity during the dry period may improve hoof health. The objective of this study was to determine the effects of forced exercise, pasture turnout, or total confinement of dry cows on horn growth and wear and sole thickness. Twenty-nine primiparous and 31 multiparous, pregnant, nonlactating Holstein (n = 58) and Jersey-Holstein crossbred (n = 2) dairy cows were assigned to either total confinement (n = 20), exercise (n = 20), or pasture (n = 20) treatments at dry-off using rolling enrollment from January to November 2015. Cows were managed with a 60-d dry period (58.5 ± 5.4 d) divided into far-off (dry-off to 2 wk before parturition) and close-up periods (2 wk before projected parturition). Cows were housed in a naturally ventilated, 4-row freestall barn at the University of Tennessee's Little River Animal and Environmental Unit (Walland, TN) with concrete flooring and deep-bedded sand freestalls. Cows assigned to confinement remained in the housing pen. Exercise cows were walked for a targeted 1.5 h at 3.25 km/h, 5 times/wk until calving. Pasture cows were turned out for a targeted 1.5 h, 5 times/wk until calving. Hoof growth and wear and sole thickness of the rear hooves were measured on d 2 and 44, relative to dry-off. Data were analyzed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC). Cranial and caudal horn wear was greater for exercise cows than confinement and pasture cows. Exercise cows experienced more equal rates of horn growth and wear cranially. Confined cows tended to increase sole thickness from d 2 to 44, relative to dry-off. Frequent, short duration exercise on concrete did not impair the hoof health of late-gestation dry cows. Further, exercise may improve overall hoof health, potentially improving cow welfare. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Effects of molecular confinement and crowding on horseradish peroxidase kinetics using a nanofluidic gradient mixer.

    Science.gov (United States)

    Wichert, William R A; Han, Donghoon; Bohn, Paul W

    2016-03-07

    The effects of molecular confinement and crowding on enzyme kinetics were studied at length scales and under conditions similar to those found in biological cells. These experiments were carried out using a nanofluidic network of channels constituting a nanofluidic gradient mixer, providing the basis for measuring multiple experimental conditions simultaneously. The 100 nm × 40 μm nanochannels were wet etched directly into borosilicate glass, then annealed and characterized with fluorescein emission prior to kinetic measurements. The nanofluidic gradient mixer was then used to measure the kinetics of the conversion of the horseradish peroxidase (HRP)-catalyzed conversion of non-fluorescent Amplex Red (AR) to the fluorescent product resorufin in the presence of hydrogen peroxide (H2O2). The design of the gradient mixer allows reaction kinetics to be studied under multiple (five) unique solution compositions in a single experiment. To characterize the efficiency of the device the effects of confinement on HRP-catalyzed AR conversion kinetics were studied by varying the starting ratio of AR : H2O2. Equimolar concentrations of Amplex Red and H2O2 yielded the highest reaction rates followed by 2 : 1, 1 : 2, 5 : 1, and finally 1 : 5 [AR] : [H2O2]. Under all conditions, initial reaction velocities were decreased by excess H2O2. Crowding effects on kinetics were studied by increasing solution viscosity in the nanochannels in the range 1.0-1.6 cP with sucrose. Increasing the solution viscosities in these confined geometries decreases the initial reaction velocity at the highest concentration from 3.79 μM min(-1) at 1.00 cP to 0.192 μM min(-1) at 1.59 cP. Variations in reaction velocity are interpreted in the context of models for HRP catalysis and for molecular crowding.

  14. Effects of Confinement on Microstructure and Charge Transport in High Performance Semicrystalline Polymer Semiconductors

    KAUST Repository

    Himmelberger, Scott; Dacuñ a, Javier; Rivnay, Jonathan; Jimison, Leslie H.; McCarthy-Ward, Thomas; Heeney, Martin; McCulloch, Iain; Toney, Michael F.; Salleo, Alberto

    2012-01-01

    The film thickness of one of the most crystalline and highest performing polymer semiconductors, poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b] thiophene) (PBTTT), is varied in order to determine the effects of interfaces and confinement on the microstructure and performance in organic field effect transistors (OFETs). Crystalline texture and overall film crystallinity are found to depend strongly on film thickness and thermal processing. The angular distribution of crystallites narrows upon both a decrease in film thickness and thermal annealing. These changes in the film microstructure are paired with thin-film transistor characterization and shown to be directly correlated with variations in charge carrier mobility. Charge transport is shown to be governed by film crystallinity in films below 20 nm and by crystalline orientation for thicker films. An optimal thickness is found for PBTTT at which the mobility is maximized in unannealed films and where mobility reaches a plateau at its highest value for annealed films. The effects of confinement on the morphology and charge transport properties of poly(2,5-bis(3-tetradecylthiophen-2-yl) thieno[3,2-b]thiophene) (PBTTT) are studied using quantitative X-ray diffraction and field-effect transistor measurements. Polymer crystallinity is found to limit charge transport in the thinnest films while crystalline texture and intergrain connectivity modulate carrier mobility in thicker films. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effects of Confinement on Microstructure and Charge Transport in High Performance Semicrystalline Polymer Semiconductors

    KAUST Repository

    Himmelberger, Scott

    2012-11-23

    The film thickness of one of the most crystalline and highest performing polymer semiconductors, poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b] thiophene) (PBTTT), is varied in order to determine the effects of interfaces and confinement on the microstructure and performance in organic field effect transistors (OFETs). Crystalline texture and overall film crystallinity are found to depend strongly on film thickness and thermal processing. The angular distribution of crystallites narrows upon both a decrease in film thickness and thermal annealing. These changes in the film microstructure are paired with thin-film transistor characterization and shown to be directly correlated with variations in charge carrier mobility. Charge transport is shown to be governed by film crystallinity in films below 20 nm and by crystalline orientation for thicker films. An optimal thickness is found for PBTTT at which the mobility is maximized in unannealed films and where mobility reaches a plateau at its highest value for annealed films. The effects of confinement on the morphology and charge transport properties of poly(2,5-bis(3-tetradecylthiophen-2-yl) thieno[3,2-b]thiophene) (PBTTT) are studied using quantitative X-ray diffraction and field-effect transistor measurements. Polymer crystallinity is found to limit charge transport in the thinnest films while crystalline texture and intergrain connectivity modulate carrier mobility in thicker films. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effects of excitation spectral width on decay profile of weakly confined excitons

    International Nuclear Information System (INIS)

    Kojima, O.; Isu, T.; Ishi-Hayase, J.; Kanno, A.; Katouf, R.; Sasaki, M.; Tsuchiya, M.

    2008-01-01

    We report the effect due to a simultaneous excitation of several exciton states on the radiative decay profiles on the basis of the nonlocal response of weakly confined excitons in GaAs thin films. In the case of excitation of single exciton state, the transient grating signal has two decay components. The fast decay component comes from nonlocal response, and the long-lived component is attributed to free exciton decay. With an increase of excitation spectral width, the nonlocal component becomes small in comparison with the long-lived component, and disappears under irradiation of a femtosecond-pulse laser with broader spectral width. The transient grating spectra clearly indicates the contribution of the weakly confined excitons to the signal, and the exciton line width hardly changes by excitation spectral width. From these results, we concluded that the change of decay profile is attributed not to the many-body effect but to the effect of simultaneous excitation of several exciton states

  17. Confinement effects on the crystalline features of poly(9,9-dioctylfluorene)

    KAUST Repository

    Martin, Jaime

    2016-01-01

    Typical device architectures in polymer-based optoelectronic devices, such as field effect transistors organic light emitting diodes and photovoltaic cells include sub-100 nm semiconducting polymer thin-film active layers, whose microstructure is likely to be subject to finite-size effects. The aim of this study was to investigate effect of the two-dimensional spatial confinement on the internal structure of the semiconducting polymer poly(9,9-dioctylfluorene) (PFO). PFO melts were confined inside the cylindrical nanopores of anodic aluminium oxide (AAO) templates and crystallized via two crystallization strategies, namely, in the presence or in the absence of a surface bulk reservoir located at the template surface. We show that highly textured semiconducting nanowires with tuneable crystal orientation can be thus produced. The results presented here demonstrate the simple fabrication and crystal engineering of ordered arrays of PFO nanowires; a system with potential applications in devices where anisotropic optical properties are required, such as polarized electroluminescence, waveguiding, optical switching and lasing.

  18. Confinement effects on electron and phonon degrees of freedom in nanofilm superconductors: A Green function approach

    Science.gov (United States)

    Saniz, R.; Partoens, B.; Peeters, F. M.

    2013-02-01

    The Green function approach to the Bardeen-Cooper-Schrieffer theory of superconductivity is used to study nanofilms. We go beyond previous models and include effects of confinement on the strength of the electron-phonon coupling as well as on the electronic spectrum and on the phonon modes. Within our approach, we find that in ultrathin films, confinement effects on the electronic screening become very important. Indeed, contrary to what has been advanced in recent years, the sudden increases of the density of states when new bands start to be occupied as the film thickness increases, tend to suppress the critical temperature rather than to enhance it. On the other hand, the increase of the number of phonon modes with increasing number of monolayers in the film leads to an increase in the critical temperature. As a consequence, the superconducting critical parameters in such nanofilms are determined by these two competing effects. Furthermore, in sufficiently thin films, the condensate consists of well-defined subcondensates associated with the occupied bands, each with a distinct coherence length. The subcondensates can interfere constructively or destructively giving rise to an interference pattern in the Cooper pair probability density.

  19. Effects of strain rate and confining pressure on the deformation and failure of shale

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.M. (Schlumberger Cambridge Research (GB)); Sheppard, M.C. (Anadrill/Schlumberger (US)); Houwen, O.H. (Sedco Forex (FR))

    1991-06-01

    Previous work on shale mechanical properties has focused on the slow deformation rates appropriate to wellbore deformation. Deformation of shale under a drill bit occurs at a very high rate, and the failure properties of the rock under these conditions are crucial in determining bit performance and in extracting lithology and pore-pressure information from drilling parameters. Triaxial tests were performed on two nonswelling shales under a wide range of strain rates and confining and pore pressures. At low strain rates, when fluid is relatively free to move within the shale, shale deformation and failure are governed by effective stress or pressure (i.e., total confining pressure minus pore pressure), as is the case for ordinary rock. If the pore pressure in the shale is high, increasing the strain rate beyond about 0.1%/sec causes large increases in the strength and ductility of the shale. Total pressure begins to influence the strength. At high stain rates, the influence of effective pressure decreases, except when it is very low (i.e., when pore pressure is very high); ductility then rises rapidly. This behavior is opposite that expected in ordinary rocks. This paper briefly discusses the reasons for these phenomena and their impact on wellbore and drilling problems.

  20. Modeling of hydrogen Stark line shapes with kinetic theory methods

    Science.gov (United States)

    Rosato, J.; Capes, H.; Stamm, R.

    2012-12-01

    The unified formalism for Stark line shapes is revisited and extended to non-binary interactions between an emitter and the surrounding perturbers. The accuracy of this theory is examined through comparisons with ab initio numerical simulations.

  1. Multiphoton Rabi oscillations between highly excited Stark states of potassium

    International Nuclear Information System (INIS)

    He Yonglin

    2011-01-01

    We have applied a nonperturbative resonant theory to study the Rabi frequency of microwave multiphoton transitions between two Rydberg states of potassium in a static electric field. The Stark electric dipole moments used to calculate the Rabi frequency are determined by the Stark states' wave functions, which are obtained by the diagonalization method. The frequencies of the Rabi oscillations are in good agreement with either experimental ones or ones calculated by the time-dependent close-coupling method and the Floquet theory. Furthermore, we are able to show that the size of avoided crossings between the (n+2)s and (n,3) states can be predicted from the Stark electric dipole moment and the difference of the two Stark states' energy at a given resonance.

  2. Effects of ACTH, capture, and short term confinement on glucocorticoid concentrations in harlequin ducks (Histrionicus histrionicus)

    Science.gov (United States)

    Nilsson, P.B.; Hollmén, Tuula E.; Atkinson, S.; Mashburn, K.L.; Tuomi, P.A.; Esler, Daniel N.; Mulcahy, D.M.; Rizzolo, D.J.

    2008-01-01

    Little is known about baseline concentrations of adrenal hormones and hormonal responses to stress in sea ducks, although significant population declines documented in several species suggest that sea ducks are exposed to increased levels of environmental stress. Such declines have been observed in geographically distinct harlequin duck populations. We performed an adrenocorticotropic hormone (ACTH) challenge to evaluate adrenal function and characterize corticosterone concentrations in captive harlequin ducks and investigated the effects of capture, surgery, and short term confinement on corticosterone concentrations in wild harlequin ducks. Harlequin ducks responded to the ACTH challenge with an average three-fold increase in serum corticosterone concentration approximately 90 min post injection, and a four- to five-fold increase in fecal glucocorticoid concentration 2 to 4 h post injection. Serum corticosterone concentrations in wild harlequin ducks increased within min of capture and elevated levels were found for several hours post capture, indicating that surgery and confinement maintain elevated corticosterone concentrations in this species. Mean corticosterone concentrations in wild harlequin ducks held in temporary captivity were similar to the maximum response levels during the ACTH challenge in captive birds. However, large variation among individuals was observed in responses of wild birds, and we found additional evidence suggesting that corticosterone responses varied between hatch year and after hatch year birds.

  3. Scale Effect of Premixed Methane-Air Combustion in Confined Space Using LES Model

    Directory of Open Access Journals (Sweden)

    Liang Wang

    2015-12-01

    Full Text Available Gas explosion is the most hazardous incident occurring in underground airways. Computational Fluid Dynamics (CFD techniques are sophisticated in simulating explosions in confined spaces; specifically, when testing large-scale gaseous explosions, such as methane explosions in underground mines. The dimensions of a confined space where explosions could occur vary significantly. Thus, the scale effect on explosion parameters is worth investigating. In this paper, the impact of scaling on explosion overpressures is investigated by employing two scaling factors: The Gas-fill Length Scaling Factor (FLSF and the Hydraulic Diameter Scaling Factor (HDSF. The combinations of eight FLSFs and five HDSFs will cover a wide range of space dimensions where flammable gas could accumulate. Experiments were also conducted to evaluate the selected numerical models. The Large Eddy Simulation turbulence model was selected because it shows accuracy compared to the widely used Reynolds’ averaged models for the scenarios investigated in the experiments. Three major conclusions can be drawn: (1 The overpressure increases with both FLSF and HDSF within the deflagration regime; (2 In an explosion duct with a length to diameter ratio greater than 54, detonation is more likely to be triggered for a stoichiometric methane/air mixture; (3 Overpressure increases as an increment hydraulic diameter of a geometry within deflagration regime. A relative error of 7% is found when predicting blast peak overpressure for the base case compared to the experiment; a good agreement for the wave arrival time is also achieved.

  4. Effect of crowding and confinement on first-passage times: A model study

    Science.gov (United States)

    Antoine, C.; Talbot, J.

    2016-06-01

    We study the "color dynamics" of a hard-disk fluid confined in an annulus, as well as the corresponding hard-sphere system in three dimensions, using event-driven simulation in order to explore the effect of confinement and self-crowding on the search for targets. We compute the mean first-passage times (MFPTs) of red particles transiting from the outer to the inner boundary as well as those of blue particles passing from the inner to the outer boundary for different packing fractions and geometries. In the steady state the reaction rate, defined as the rate of collision of red particles with the inner boundary, is inversely proportional to the sum of the MFPTs. The reaction rate is wall mediated (ballistic) at low densities and diffusion controlled at higher densities and displays a maximum at intermediate densities. At moderate to high densities, the presence of layering has a strong influence on the search process. The numerical results for the reaction rate and MFPTs are compared with a ballistic model at low densities and a Smoluchowski approach with uniform diffusivities at higher densities. We discuss the reasons for the limited validity of the theoretical approaches. The maximum in the reaction rate is qualitatively well rendered by a Bosanquet-like approach that interpolates between the two regimes. Finally, we compute the position-dependent diffusivity from the MFPTs and observe that it is out of phase with the radial density.

  5. Effect of pore geometry on the compressibility of a confined simple fluid

    Science.gov (United States)

    Dobrzanski, Christopher D.; Maximov, Max A.; Gor, Gennady Y.

    2018-02-01

    Fluids confined in nanopores exhibit properties different from the properties of the same fluids in bulk; among these properties is the isothermal compressibility or elastic modulus. The modulus of a fluid in nanopores can be extracted from ultrasonic experiments or calculated from molecular simulations. Using Monte Carlo simulations in the grand canonical ensemble, we calculated the modulus for liquid argon at its normal boiling point (87.3 K) adsorbed in model silica pores of two different morphologies and various sizes. For spherical pores, for all the pore sizes (diameters) exceeding 2 nm, we obtained a logarithmic dependence of fluid modulus on the vapor pressure. Calculation of the modulus at saturation showed that the modulus of the fluid in spherical pores is a linear function of the reciprocal pore size. The calculation of the modulus of the fluid in cylindrical pores appeared too scattered to make quantitative conclusions. We performed additional simulations at higher temperature (119.6 K), at which Monte Carlo insertions and removals become more efficient. The results of the simulations at higher temperature confirmed both regularities for cylindrical pores and showed quantitative difference between the fluid moduli in pores of different geometries. Both of the observed regularities for the modulus stem from the Tait-Murnaghan equation applied to the confined fluid. Our results, along with the development of the effective medium theories for nanoporous media, set the groundwork for analysis of the experimentally measured elastic properties of fluid-saturated nanoporous materials.

  6. Effects of confinement and external fields on structure and transport in colloidal dispersions in reduced dimensionality

    International Nuclear Information System (INIS)

    Wilms, D; Virnau, P; Binder, K; Deutschländer, S; Siems, U; Franzrahe, K; Henseler, P; Keim, P; Schwierz, N; Maret, G; Nielaba, P

    2012-01-01

    In this work, we focus on low-dimensional colloidal model systems, via simulation studies and also some complementary experiments, in order to elucidate the interplay between phase behavior, geometric structures and transport properties. In particular, we try to investigate the (nonlinear!) response of these very soft colloidal systems to various perturbations: uniform and uniaxial pressure, laser fields, shear due to moving boundaries and randomly quenched disorder. We study ordering phenomena on surfaces or in monolayers by Monte Carlo computer simulations of binary hard-disk mixtures, the influence of a substrate being modeled by an external potential. Weak external fields allow a controlled tuning of the miscibility of the mixture. We discuss the laser induced de-mixing for the three different possible couplings to the external potential. The structural behavior of hard spheres interacting with repulsive screened Coulomb or dipolar interaction in 2D and 3D narrow constrictions is investigated using Brownian dynamics simulations. Due to misfits between multiples of the lattice parameter and the channel widths, a variety of ordered and disordered lattice structures have been observed. The resulting local lattice structures and defect probabilities are studied for various cross sections. The influence of a self-organized order within the system is reflected in the velocity of the particles and their diffusive behavior. Additionally, in an experimental system of dipolar colloidal particles confined by gravity on a solid substrate we investigate the effect of pinning on the dynamics of a two-dimensional colloidal liquid. This work contains sections reviewing previous work by the authors as well as new, unpublished results. Among the latter are detailed studies of the phase boundaries of the de-mixing regime in binary systems in external light fields, configurations for shear induced effects at structured walls, studies on the effect of confinement on the structures

  7. Stark laws and fair market value exceptions: an introduction.

    Science.gov (United States)

    Siebrasse, Paul B

    2007-01-01

    This article will focus on one aspect of complexity in modern healthcare, namely the implications of Stark laws and other fraud and abuse provisions, including anti-kickback statutes and HIPAA. Also, this article explores the prevalence of fair market value as an exception in the Stark laws and discusses the meanings of those exceptions. Finally, the article explores basic approaches to assessing fair market value, including cost, income, and marketing approaches.

  8. Stark broadening measurements of Xe III spectral lines

    International Nuclear Information System (INIS)

    Pelaez, R J; Cirisan, M; Djurovic, S; Aparicio, J A; Mar, S

    2006-01-01

    This work reports measured Stark widths of doubly ionized xenon lines. Pulsed arc was used as a plasma source. Measured electron densities and temperatures were in the ranges of (0.2 - 1.6) x 10 23 m -3 and 18 300-25 500 K, respectively. Stark halfwidths of lines from 6s-6p, 6s-4f and 5d-6p transitions have been measured and compared with available experimental and theoretical data

  9. Stark widths regularities within spectral series of sodium isoelectronic sequence

    Science.gov (United States)

    Trklja, Nora; Tapalaga, Irinel; Dojčinović, Ivan P.; Purić, Jagoš

    2018-02-01

    Stark widths within spectral series of sodium isoelectronic sequence have been studied. This is a unique approach that includes both neutrals and ions. Two levels of problem are considered: if the required atomic parameters are known, Stark widths can be calculated by some of the known methods (in present paper modified semiempirical formula has been used), but if there is a lack of parameters, regularities enable determination of Stark broadening data. In the framework of regularity research, Stark broadening dependence on environmental conditions and certain atomic parameters has been investigated. The aim of this work is to give a simple model, with minimum of required parameters, which can be used for calculation of Stark broadening data for any chosen transitions within sodium like emitters. Obtained relations were used for predictions of Stark widths for transitions that have not been measured or calculated yet. This system enables fast data processing by using of proposed theoretical model and it provides quality control and verification of obtained results.

  10. Field Effect Optoelectronic Modulation of Quantum-Confined Carriers in Black Phosphorus.

    Science.gov (United States)

    Whitney, William S; Sherrott, Michelle C; Jariwala, Deep; Lin, Wei-Hsiang; Bechtel, Hans A; Rossman, George R; Atwater, Harry A

    2017-01-11

    We report measurements of the infrared optical response of thin black phosphorus under field-effect modulation. We interpret the observed spectral changes as a combination of an ambipolar Burstein-Moss (BM) shift of the absorption edge due to band-filling under gate control, and a quantum confined Franz-Keldysh (QCFK) effect, phenomena that have been proposed theoretically to occur for black phosphorus under an applied electric field. Distinct optical responses are observed depending on the flake thickness and starting carrier concentration. Transmission extinction modulation amplitudes of more than two percent are observed, suggesting the potential for use of black phosphorus as an active material in mid-infrared optoelectronic modulator applications.

  11. Dye Giant Absorption and Light Confinement Effects in Porous Bragg Microcavities

    DEFF Research Database (Denmark)

    Oliva-Ramírez, Manuel; Gil-Rostra, Jorge; Simonsen, Adam C.

    2018-01-01

    This work presents a simple experimental procedure to probe light confinement effects in photonic structures. Two types of porous 1D Bragg microcavities with two resonant peaks in the reflection gap were prepared by physical vapor deposition at oblique angle configurations and then infiltrated...... with dye solutions of increasing concentrations. The unusual position shift and intensity drop of the transmitted resonant peak observed when it was scanned through the dye absorption band have been accounted for by the effect of the light trapped at their optical defect layer. An experimentally observed...... giant absorption of the dye molecules and a strong anomalous dispersion in the refractive index of the solution are claimed as the reasons for the observed variations in the Bragg microcavity resonant feature. Determining the giant absorption of infiltrated dye solutions is proposed as a general...

  12. Quark confinement

    International Nuclear Information System (INIS)

    Joos, H.

    1976-07-01

    The main topics of these lectures are: phenomenological approach to quark confinement, standard Lagrangian of hadrondynamics, Lagrangian field theory and quark confinement, classical soliton solutions in a simple model, quantization of extended systems, colour charge screening and quantization on a lattice and remarks on applications. A survey of the scientific publications listed according to the topics until 26 March 1976 is supplemented. (BJ) [de

  13. Gluon confinement

    International Nuclear Information System (INIS)

    Novello, M.; Lorenci, V.A. de; Elbaz, E.

    1997-02-01

    In this paper we present a new model for a gauge field theory such that self-interacting spin-one particles can be confined in a compact domain. The necessary conditions to produce the confining potential appear already in the properties of the eikonal structure generated by the particular choice of the dynamics. (author)

  14. Utilizing the dynamic stark shift as a probe for dielectric relaxation in photosynthetic reaction centers during charge separation.

    Science.gov (United States)

    Guo, Zhi; Lin, Su; Woodbury, Neal W

    2013-09-26

    In photosynthetic reaction centers, the electric field generated by light-induced charge separation produces electrochromic shifts in the transitions of reaction center pigments. The extent of this Stark shift indirectly reflects the effective field strength at a particular cofactor in the complex. The dynamics of the effective field strength near the two monomeric bacteriochlorophylls (BA and BB) in purple photosynthetic bacterial reaction centers has been explored near physiological temperature by monitoring the time-dependent Stark shift during charge separation (dynamic Stark shift). This dynamic Stark shift was determined through analysis of femtosecond time-resolved absorbance change spectra recorded in wild type reaction centers and in four mutants at position M210. In both wild type and the mutants, the kinetics of the dynamic Stark shift differ from those of electron transfer, though not in the same way. In wild type, the initial electron transfer and the increase in the effective field strength near the active-side monomer bacteriochlorophyll (BA) occur in synchrony, but the two signals diverge on the time scale of electron transfer to the quinone. In contrast, when tyrosine is replaced by aspartic acid at M210, the kinetics of the BA Stark shift and the initial electron transfer differ, but transfer to the quinone coincides with the decay of the Stark shift. This is interpreted in terms of differences in the dynamics of the local dielectric environment between the mutants and the wild type. In wild type, comparison of the Stark shifts associated with BA and BB on the two quasi-symmetric halves of the reaction center structure confirm that the effective dielectric constants near these cofactors are quite different when the reaction center is in the state P(+)QA(-), as previously determined by Steffen et al. at 1.5 K (Steffen, M. A.; et al. Science 1994, 264, 810-816). However, it is not possible to determine from static, low-temperature measurments if the

  15. Molecular aspect ratio and anchoring strength effects in a confined Gay-Berne liquid crystal

    Science.gov (United States)

    Cañeda-Guzmán, E.; Moreno-Razo, J. A.; Díaz-Herrera, E.; Sambriski, E. J.

    2014-04-01

    Phase diagrams for Gay-Berne (GB) fluids were obtained from molecular dynamics simulations for GB(2, 5, 1, 2) (i.e. short mesogens) and GB(3, 5, 1, 2) (i.e. long mesogens), which yield isotropic, nematic, and smectic-B phases. The long-mesogen fluid also yields the smectic-A phase. Ordered phases of the long-mesogen fluid form at higher temperatures and lower densities when compared to those of the short-mesogen fluid. The effect of confinement under weak and strong substrate couplings in slab geometry was investigated. Compared to the bulk, the isotropic-nematic transition does not shift in temprature significantly for the weakly coupled substrate in either mesogen fluid. However, the strongly coupled substrate shifts the transition to lower temperature. Confinement induces marked stratification in the short-mesogen fluid. This effect diminishes with distance from the substrate, yielding bulk-like behaviour in the slab central region. Fluid stratification is very weak for the long-mesogen fluid, but the strongly coupled substrate induces 'smectisation', an ordering effect that decays with distance. Orientation of the fluid on the substrate depends on the mesogen. There is no preferred orientation in a plane parallel to the substrate for the weakly coupled case. In the strongly coupled case, the mesogen orientation mimics that of adjacent fluid layers. Planar anchoring is observed with a broad distribution of orientations in the weakly coupled case. In the strongly coupled case, the distribution leans toward planar orientations for the short-mesogen fluid, while a marginal preference for tilting persists in the long-mesogen fluid.

  16. ZEST: A Fast Code for Simulating Zeeman-Stark Line-Shape Functions

    Directory of Open Access Journals (Sweden)

    Franck Gilleron

    2018-03-01

    Full Text Available We present the ZEST code, dedicated to the calculation of line shapes broadened by Zeeman and Stark effects. As concerns the Stark effect, the model is based on the Standard Lineshape Theory in which ions are treated in the quasi-static approximation, whereas the effects of electrons are represented by weak collisions in the framework of a binary collision relaxation theory. A static magnetic field may be taken into account in the radiator Hamiltonian in the dipole approximation, which leads to additional Zeeman splitting patterns. Ion dynamics effects are implemented using the fast Frequency-Fluctuation Model. For fast calculations, the static ion microfield distribution in the plasma is evaluated using analytic fits of Monte-Carlo simulations, which depend only on the ion-ion coupling parameter and the electron-ion screening factor.

  17. Dynamics in geometrical confinement

    CERN Document Server

    Kremer, Friedrich

    2014-01-01

    This book describes the dynamics of low molecular weight and polymeric molecules when they are constrained under conditions of geometrical confinement. It covers geometrical confinement in different dimensionalities: (i) in nanometer thin layers or self supporting films (1-dimensional confinement) (ii) in pores or tubes with nanometric diameters (2-dimensional confinement) (iii) as micelles embedded in matrices (3-dimensional) or as nanodroplets.The dynamics under such conditions have been a much discussed and central topic in the focus of intense worldwide research activities within the last two decades. The present book discusses how the resulting molecular mobility is influenced by the subtle counterbalance between surface effects (typically slowing down molecular dynamics through attractive guest/host interactions) and confinement effects (typically increasing the mobility). It also explains how these influences can be modified and tuned, e.g. through appropriate surface coatings, film thicknesses or pore...

  18. Effect of quantum confinement on thermoelectric properties of vanadium dioxide nanofilms

    Energy Technology Data Exchange (ETDEWEB)

    Khan, G.R.; Ahmad, Bilal [National Institute of Technology Srinagar, Nanotech Research Lab, Department of Physics, Kashmir (India)

    2017-12-15

    The quantum confinement effect on thermoelectric properties of pristine vanadium dioxide (VO{sub 2}) nanofilms across semiconductor to metal phase transition (SMT) has been demonstrated by studying VO{sub 2} nanofilms of 15 nm thickness in comparison to microfilms of 290 nm thickness synthesized via inorganic sol-gel method casted on glass substrates by spin coating technique. The ebbing of phase transition temperature in nanofilms across SMT was consistent with the results obtained from resistance-temperature hysteresis contour during SMT dynamics of the nanofilms. The temperature dependent Hall and Seebeck measurements revealed that electrons were the charge carriers in the nanofilms and that the value of charge carrier concentration increased as much as 4 orders of magnitude while going across SMT which stood responsible almost entirely for resistance variations. The decline in carrier mobility and escalation in Seebeck coefficient in the low temperature semiconducting region were splendidly witnessed across SMT. (orig.)

  19. Effect of experimentally observed hydrogenic fractionation on inertial confinement fusion ignition target performance

    International Nuclear Information System (INIS)

    McKenty, P. W.; Wittman, M. D.; Harding, D. R.

    2006-01-01

    The need of cryogenic hydrogenic fuels in inertial confinement fusion (ICF) ignition targets has been long been established. Efficient implosion of such targets has mandated keeping the adiabat of the main fuel layer at low levels to ensure drive energies are kept at reasonable minima. The use of cryogenic fuels helps meet this requirement and has therefore become the standard in most ICF ignition designs. To date most theoretical ICF ignition target designs have assumed a homogeneous layer of deuterium-tritium (DT) fuel kept slightly below the triple point. However, recent work has indicated that, as cryogenic fuel layers are formed inside an ICF capsule, isotopic dissociation of the tritium (T), deuterium (D), and DT takes place leading to a 'fractionation' of the final ice layer. This paper will numerically investigate the effects that various scenarios of fractionation have on hot-spot formation, ignition, and burn in ICF ignition target designs

  20. Quantum confinement effect and exciton binding energy of layered perovskite nanoplatelets

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2018-02-01

    Full Text Available We report the preparation of monolayer (n = 1, few-layer (n = 2–5 and 3D (n = ∞ organic lead bromide perovskite nanoplatelets (NPLs by tuning the molar ratio of methylammonium bromide (MABr and hexadecammonium bromide (HABr. The absorption spectrum of the monolayer (HA2PbBr4 perovskite NPLs shows about 138 nm blue shift from that of 3D MAPbBr3 perovskites, which is attributed to strong quantum confinement effect. We further investigate the two-photon photoluminescence (PL of the NPLs and measure the exciton binding energy of monolayer perovskite NPLs using linear absorption and two-photon PL excitation spectroscopy. The exciton binding energy of monolayer perovskite NPLs is about 218 meV, which is far larger than tens of meV in 3D lead halide perovskites.

  1. The effect of system boundaries on the mean free path for confined gases

    Directory of Open Access Journals (Sweden)

    Sooraj K. Prabha

    2013-10-01

    Full Text Available The mean free path of rarefied gases is accurately determined using Molecular Dynamics simulations. The simulations are carried out on isothermal argon gas (Lennard-Jones fluid over a range of rarefaction levels under various confinements (unbounded gas, parallel reflective wall and explicit solid platinum wall bounded gas in a nanoscale domain. The system is also analyzed independently in constitutive sub-systems to calculate the corresponding local mean free paths. Our studies which predominate in the transition regime substantiate the boundary limiting effect on mean free paths owing to the sharp diminution in molecular free paths near the planar boundaries. These studies provide insight to the transport phenomena of rarefied gases through nanochannels which have established their potential in microscale and nanoscale heat transfer applications.

  2. Confinement and electron correlation effects in photoionization of atoms in endohedral anions: Ne-Cz-60

    International Nuclear Information System (INIS)

    Dolmatov, V K; Craven, G T; Keating, D

    2010-01-01

    Trends in resonances, termed confinement resonances, in photoionization of atoms A in endohedral fullerene anions A-C z- 60 are theoretically studied and exemplified by the photoionization of Ne in Ne-C z- 60 . Remarkably, above a particular nl ionization threshold of Ne in neutral Ne-C 60 (I z=0 nl ), confinement resonances in corresponding partial photoionization cross sections σ nl of Ne in any charged Ne-C z- 60 are not affected by a variation in the charge z of the carbon cage, as a general phenomenon. At lower photon energies, ω z=0 nl , the corresponding photoionization cross sections of charged Ne-C z- 60 (i.e., those with z ≠ 0) develop additional, strong, z-dependent resonances, termed Coulomb confinement resonances, as a general occurrence. Furthermore, near the innermost 1s ionization threshold, the 2p photoionization cross section σ 2p of the outermost 2p subshell of thus confined Ne is found to inherit the confinement resonance structure of the 1s photoionization spectrum, via interchannel coupling. As a result, new confinement resonances emerge in the 2p photoionization cross section of the confined Ne atom at photoelectron energies which exceed the 2p threshold by about a thousand eV, i.e., far above where conventional wisdom said they would exist. Thus, the general possibility for confinement resonances to resurrect in photoionization spectra of encapsulated atoms far above thresholds is revealed, as an interesting novel general phenomenon.

  3. The effect of spatial confinement on the noble-gas HArF molecule: structure and electric properties

    International Nuclear Information System (INIS)

    Kozłowska, Justyna; Bartkowiak, Wojciech

    2014-01-01

    Highlights: • The structure and electrical properties of HArF in spatial confinement are analyzed. • Orbital compression leads to decrease of bond lengths in the HArF molecule. • Spatial restriction causes a drop of the molecular (hyper)polarizabilities. • Spatial confinement reduces the electron correlation contribution to μ, α and β. - Abstract: A systematic study on the dipole moment and (hyper)polarizabilities of argon fluorohydride under spatial restriction was performed. Detailed analysis of the confinement induced changes in the structure of HArF is also presented. In order to render the influence of chemical compression on the properties in question a two-dimensional harmonic oscillator potential, mimicking a cylindrical confinement, was applied. Through the comparison of the results obtained for HArF with those of HF the effect of Ar insertion on the above properties was discussed. A hierarchy of ab initio methods including HF, MP2, CCSD and CCSD(T), has been employed to investigate the effect of orbital compression on the electron correlation contribution to the studied electric properties. It was observed that the external confining potential modifies the electronic contributions to the dipole moment and (hyper)polarizabilities of HArF. In particular, the first hyperpolarizability of HArF is remarkably smaller than that of the unconfined HArF molecule

  4. The effect of spatial confinement on the noble-gas HArF molecule: structure and electric properties

    Energy Technology Data Exchange (ETDEWEB)

    Kozłowska, Justyna; Bartkowiak, Wojciech, E-mail: wojciech.bartkowiak@pwr.edu.pl

    2014-09-30

    Highlights: • The structure and electrical properties of HArF in spatial confinement are analyzed. • Orbital compression leads to decrease of bond lengths in the HArF molecule. • Spatial restriction causes a drop of the molecular (hyper)polarizabilities. • Spatial confinement reduces the electron correlation contribution to μ, α and β. - Abstract: A systematic study on the dipole moment and (hyper)polarizabilities of argon fluorohydride under spatial restriction was performed. Detailed analysis of the confinement induced changes in the structure of HArF is also presented. In order to render the influence of chemical compression on the properties in question a two-dimensional harmonic oscillator potential, mimicking a cylindrical confinement, was applied. Through the comparison of the results obtained for HArF with those of HF the effect of Ar insertion on the above properties was discussed. A hierarchy of ab initio methods including HF, MP2, CCSD and CCSD(T), has been employed to investigate the effect of orbital compression on the electron correlation contribution to the studied electric properties. It was observed that the external confining potential modifies the electronic contributions to the dipole moment and (hyper)polarizabilities of HArF. In particular, the first hyperpolarizability of HArF is remarkably smaller than that of the unconfined HArF molecule.

  5. Interband optical absorption in the Wannier-Stark ladder under the electron-LO-phonon resonance condition

    International Nuclear Information System (INIS)

    Govorov, A.O.

    1993-08-01

    Interband optical absorption in the Wannier-Stark ladder in the presence of the electron-LO-phonon resonance is investigated theoretically. The electron-LO-phonon resonance occurs when the energy spacing between adjacent Stark-ladder levels coincides with the LO-phonon energy. We propose a model describing the polaron effect in a superlattice. Calculations show that the absorption line shape is strongly modified due to the polaron effect under the electron-LO-phonon resonance condition. We consider optical phenomena in a normal magnetic field that leads to enhancement of polaron effects. (author). 17 refs, 5 figs

  6. Dynamical chiral symmetry breaking and confinement : its interrelation and effects on the hadron mass spectrum

    International Nuclear Information System (INIS)

    Schröck, M.

    2013-01-01

    Within the framework of this thesis, the interrelation between the two characteristic phenomena of quantum chromodynamics (QCD), i.e., dynamical chiral symmetry breaking and confinement, is investigated. To this end, we apply lattice gauge field theory techniques and adopt a method to artificially restore the dynamically broken chiral symmetry. The low-mode part of the Dirac eigenspectrum is tied to the dynamical breaking of the chiral symmetry according to the Banks--Casher relation. Utilizing two-flavor dynamical lattice gauge field configurations, we construct valence quark propagators that exclude a variable sized part of the low-mode Dirac spectrum, with the aim of using these as an input for meson and baryon interpolating fields. Subsequently, we explore the behavior of ground and excited states of the low-mode truncated hadrons using the variational analysis method. We look for the existence of confined hadron states and extract effective masses where applicable. Moreover, we explore the evolution of the quark wavefunction renormalization function and the renormalization point invariant mass function of the quark propagator under Dirac low-mode truncation in a gauge fixed setting. Motivated by the necessity of fixing the gauge in the aforementioned study of the quark propagator, we also developed a flexible high performance code for lattice gauge fixing, accelerated by graphic processing units (GPUs) using NVIDIA CUDA (Compute Unified Device Architecture). Lastly, more related but unpublished work on the topic is presented. This includes a study of the locality violation of low-mode truncated Dirac operators, a discussion of the possible extension of the low-mode truncation method to the sea quark sector based on a reweighting scheme, as well as the presentation of an alternative way to restore the dynamically broken chiral symmetry. (author) [de

  7. The effects of slit-like confinement on flow-induced polymer deformation

    Science.gov (United States)

    Ghosal, Aishani; Cherayil, Binny J.

    2017-08-01

    This paper is broadly concerned with the dynamics of a polymer confined to a rectangular slit of width D and deformed by a planar elongational flow of strength γ ˙ . It is interested, more specifically, in the nature of the coil-stretch transition that such polymers undergo when the flow strength γ ˙ is varied, and in the degree to which this transition is affected by the presence of restrictive boundaries. These issues are explored within the framework of a finitely extensible Rouse model that includes pre-averaged surface-mediated hydrodynamic interactions. Calculations of the chain's steady-state fractional extension x using this model suggest that different modes of relaxation (which are characterized by an integer p) exert different levels of control on the coil-stretch transition. In particular, the location of the transition (as identified from the graph of x versus the Weissenberg number Wi, a dimensionless parameter defined by the product of γ ˙ and the time constant τp of a relaxation mode p) is found to vary with the choice of τp. In particular, when τ1 is used in the definition of Wi, the x vs. Wi data for different D lie on a single curve, but when τ3 is used instead (with τ3 > τ1) the corresponding data lie on distinct curves. These findings are in close qualitative agreement with a number of experimental results on confinement effects on DNA stretching in electric fields. Similar D-dependent trends are seen in our calculated force vs. Wi data, but force vs. x data are essentially D-independent and lie on a single curve.

  8. Assessment of field-induced quantum confinement in heterogate germanium electron–hole bilayer tunnel field-effect transistor

    International Nuclear Information System (INIS)

    Padilla, J. L.; Alper, C.; Ionescu, A. M.; Gámiz, F.

    2014-01-01

    The analysis of quantum mechanical confinement in recent germanium electron–hole bilayer tunnel field-effect transistors has been shown to substantially affect the band-to-band tunneling (BTBT) mechanism between electron and hole inversion layers that constitutes the operating principle of these devices. The vertical electric field that appears across the intrinsic semiconductor to give rise to the bilayer configuration makes the formerly continuous conduction and valence bands become a discrete set of energy subbands, therefore increasing the effective bandgap close to the gates and reducing the BTBT probabilities. In this letter, we present a simulation approach that shows how the inclusion of quantum confinement and the subsequent modification of the band profile results in the appearance of lateral tunneling to the underlap regions that greatly degrades the subthreshold swing of these devices. To overcome this drawback imposed by confinement, we propose an heterogate configuration that proves to suppress this parasitic tunneling and enhances the device performance.

  9. A three-dimensional cathode matrix with bi-confinement effect of polysulfide for lithium-sulfur battery

    Science.gov (United States)

    Song, Ren-Sheng; Wang, Bo; Ruan, Ting-Ting; Wang, Lei; Luo, Hao; Wang, Fei; Gao, Tian-Tian; Wang, Dian-Long

    2018-01-01

    Soluble polysulfide shuttling is still the main cause of restricting the development of lithium-sulfur (Li-S) battery. Here, we propose a novel three-dimensional reduced graphene oxide@sulfur/nitrogen-doped porous carbon polyhedron/carbon nanotubes (rGO@S/NCP/CNTs) composite with bi-confinement effect of polysulfide as an effective cathode material. In rGO@S/NCP/CNTs, NCP provides physical confinement for sulfur and soluble polysulfide by its abundant micropores and mesopores, while oxygen functional groups of rGO provide strong chemical confinement to soluble polysulfide. Additionally, CNTs with one-dimensional conductivity enable facile transport of electrons. Therefore, the resulting rGO@S/NCP/CNTs composite shows an obvious enhancement in cycling performance for Li-S battery, and reversible capacities up to 738 mAh g-1 and 660 mAh g-1 over 100 and 200 cycles are remained at 0.2 C rate.

  10. Assessment of field-induced quantum confinement in heterogate germanium electron–hole bilayer tunnel field-effect transistor

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, J. L., E-mail: jose.padilladelatorre@epfl.ch; Alper, C.; Ionescu, A. M. [Nanoelectronic Devices Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015 (Switzerland); Gámiz, F. [Departamento de Electrónica y Tecnología de los Computadores, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada (Spain)

    2014-08-25

    The analysis of quantum mechanical confinement in recent germanium electron–hole bilayer tunnel field-effect transistors has been shown to substantially affect the band-to-band tunneling (BTBT) mechanism between electron and hole inversion layers that constitutes the operating principle of these devices. The vertical electric field that appears across the intrinsic semiconductor to give rise to the bilayer configuration makes the formerly continuous conduction and valence bands become a discrete set of energy subbands, therefore increasing the effective bandgap close to the gates and reducing the BTBT probabilities. In this letter, we present a simulation approach that shows how the inclusion of quantum confinement and the subsequent modification of the band profile results in the appearance of lateral tunneling to the underlap regions that greatly degrades the subthreshold swing of these devices. To overcome this drawback imposed by confinement, we propose an heterogate configuration that proves to suppress this parasitic tunneling and enhances the device performance.

  11. Water confinement effects in response of fuel assembly to faulted condition loads

    International Nuclear Information System (INIS)

    Shah, S.J.; Brenneman, B.; Williams, G.T.; Strumpel, J.H.

    2004-01-01

    It has been established by other authors that the accelerations of the water confined by the reactor core baffle plates has a significant effect on the responses of all the fuel assemblies during LOCA (loss of coolant accident) or seismic transients. This particular effect is a consequence of the water being essentially incompressible, and thus experiencing the same horizontal accelerations as the imposed baffle plate motions. These horizontal accelerations of the fluid induce lateral pressure gradients that cause horizontal buoyancy forces on any submerged structures. These forces are in the same direction as the baffle accelerations and, for certain frequencies at least, tend to reduce the relative displacements between the fuel and baffle plates. But there is another confinement effect: the imposed baffle plate velocities must also be transmitted to the water. If the fuel assembly grid strips are treated as simple hydro-foils, these horizontal velocity components change the fluid angle of attack on each strip, and thus may induce large horizontal lift forces on each grid in the same direction as the baffle plate velocity. There is a similar horizontal lift due to inclined flow over the rods when axial flow is present. These combined forces appear to reduce the relative displacements between the fuel and baffle plates for any significant axial flow velocity. Modeling this effect is very simple. It was shown in previous papers that the mechanism for the large fuel assembly damping due to axial flow may be the hydrodynamic forces on the grid strips, and that this is very well represented by discrete viscous dampers at each grid elevation. To include the imposed horizontal water velocity effects, on both the grids and rods, these dampers are simply attached to the baffle plate rather than 'ground'. The large flow-induced damping really acts in a relative reference frame rather than an inertial reference frame, and thus it becomes a flow-induced coupling between the

  12. Plasma confinement

    CERN Document Server

    Hazeltine, R D

    2003-01-01

    Detailed and authoritative, this volume examines the essential physics underlying international research in magnetic confinement fusion. It offers readable, thorough accounts of the fundamental concepts behind methods of confining plasma at or near thermonuclear conditions. Designed for a one- or two-semester graduate-level course in plasma physics, it also represents a valuable reference for professional physicists in controlled fusion and related disciplines.

  13. Effect of the geometry of confining media on the stability and folding rate of α -helix proteins

    Science.gov (United States)

    Wang, Congyue; Piroozan, Nariman; Javidpour, Leili; Sahimi, Muhammad

    2018-05-01

    Protein folding in confined media has attracted wide attention over the past 15 years due to its importance to both in vivo and in vitro applications. It is generally believed that protein stability increases by decreasing the size of the confining medium, if the medium's walls are repulsive, and that the maximum folding temperature in confinement is in a pore whose size D0 is only slightly larger than the smallest dimension of a protein's folded state. Until recently, the stability of proteins in pores with a size very close to that of the folded state has not received the attention it deserves. In a previous paper [L. Javidpour and M. Sahimi, J. Chem. Phys. 135, 125101 (2011)], we showed that, contrary to the current theoretical predictions, the maximum folding temperature occurs in larger pores for smaller α-helices. Moreover, in very tight pores, the free energy surface becomes rough, giving rise to a new barrier for protein folding close to the unfolded state. In contrast to unbounded domains, in small nanopores proteins with an α-helical native state that contain the β structures are entropically stabilized implying that folding rates decrease notably and that the free energy surface becomes rougher. In view of the potential significance of such results to interpretation of many sets of experimental data that could not be explained by the current theories, particularly the reported anomalously low rates of folding and the importance of entropic effects on proteins' misfolded states in highly confined environments, we address the following question in the present paper: To what extent the geometry of a confined medium affects the stability and folding rates of proteins? Using millisecond-long molecular dynamics simulations, we study the problem in three types of confining media, namely, cylindrical and slit pores and spherical cavities. Most importantly, we find that the prediction of the previous theories that the dependence of the maximum folding

  14. Properties of Linear Entropy in k-Photon Jaynes-Cummings Model with Stark Shift and Kerr-Like Medium

    International Nuclear Information System (INIS)

    Liao Qinghong; Wang Yueyuan; Liu Shutian; Ahmad, Muhammad Ashfaq

    2010-01-01

    The time evolution of the linear entropy of an atom in k-photon Jaynes-Cummings model is investigated taking into consideration Stark shift and Kerr-like medium. The effect of both the Stark shift and Kerr-like medium on the linear entropy is analyzed using a numerical technique for the field initially in coherent state and in even coherent state. The results show that the presence of the Kerr-like medium and Stark shift has an important effect on the properties of the entropy and entanglement. It is also shown that the setting of the initial state plays a significant role in the evolution of the linear entropy and entanglement. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  15. Effects of acute temperature change, confinement and housing on plasma corticosterone in water snakes, Nerodia sipedon (Colubridae: Natricinae).

    Science.gov (United States)

    Sykes, Kyle Lea; Klukowski, Matthew

    2009-03-01

    Body temperature affects many aspects of reptilian behavior and physiology, but its effect on hormonal secretion has been little studied, especially in snakes. Major objectives of this study were to determine if acute changes in body temperature during confinement influenced plasma corticosterone levels and if initial body temperatures upon capture in the field were related to baseline corticosterone levels in water snakes (Nerodia sipedon). Water snakes were bled upon capture in the field and after one hour of confinement in a cooled, control, or heated incubator. Since little is known about the potential metabolic changes in response to stress in reptiles, plasma triglyceride levels were also measured. Upon completion of the field study, snakes were housed for 5-8 days without food to determine the effect of chronic stress on both corticosterone and triglyceride levels. Plasma corticosterone concentrations were measured using enzyme-linked immunosorbant assay (ELISA) and plasma triglycerides were determined enzymatically. In the field, experimental alterations of body temperature during confinement had no effect on corticosterone levels. Similarly, there was no correlation between initial body temperature and baseline plasma corticosterone concentrations. However, post-confinement corticosterone levels were approximately three-times greater in females than males. Plasma triglyceride levels were not affected by temperature treatment, confinement, or sex. Compared to field values, both baseline and post-confinement corticosterone levels were elevated after the chronic stress of short-term laboratory housing but triglyceride levels decreased. Overall, these results indicate that sex but not body temperature has a major influence on the adrenocortical stress response in Nerodia sipedon.

  16. Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Michael P.; Chen, Zheng; Ju, Yiguang; Dryer, Frederick L. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2009-04-15

    The effect of nonspherical (i.e. cylindrical) bomb geometry on the evolution of outwardly propagating flames and the determination of laminar flame speeds using the conventional constant-pressure technique is investigated experimentally and theoretically. The cylindrical chamber boundary modifies the propagation rate through the interaction of the wall with the flow induced by thermal expansion across the flame (even with constant pressure), which leads to significant distortion of the flame surface for large flame radii. These departures from the unconfined case, especially the resulting nonzero burned gas velocities, can lead to significant errors in flame speeds calculated using the conventional assumptions, especially for large flame radii. For example, at a flame radius of 0.5 times the wall radius, the flame speed calculated neglecting confinement effects can be low by {proportional_to}15% (even with constant pressure). A methodology to estimate the effect of nonzero burned gas velocities on the measured flame speed in cylindrical chambers is presented. Modeling and experiments indicate that the effect of confinement can be neglected for flame radii less than 0.3 times the wall radius while still achieving acceptable accuracy (within 3%). The methodology is applied to correct the flame speed for nonzero burned gas speeds, in order to extend the range of flame radii useful for flame speed measurements. Under the proposed scaling, the burned gas speed can be well approximated as a function of only flame radius for a given chamber geometry - i.e. the correction function need only be determined once for an apparatus and then it can be used for any mixture. Results indicate that the flow correction can be used to extract flame speeds for flame radii up to 0.5 times the wall radius with somewhat larger, yet still acceptable uncertainties for the cases studied. Flow-corrected burning velocities are measured for hydrogen and syngas mixtures at atmospheric and

  17. Stark broadening of the Hα line of hydrogen at low densities: quantal and semiclassical results

    International Nuclear Information System (INIS)

    Stehle, C.; Feautrier, N.

    1984-01-01

    Stark profiles of the Hα lines of hydrogen are computed at low densities in the 'impact' theory. By a comparison with quantal results, it is shown that a simple semiclassical perturbational approach with appropriate cutoffs is sufficient to give accurate profiles in the line centre. Neglecting the natural broadening and the fine-structure effects, the authors prove that the electronic broadening is negligible and that the profile has a Lorentzian shape. An analytical expression of the half width is given. (author)

  18. Asymmetry of Hβ Stark profiles in T-tube hydrogen plasma

    International Nuclear Information System (INIS)

    Djurovic, S.; Nikolic, D.; Savic, I.; Soerge, S.; Demura, A. V.

    2005-01-01

    The whole Balmer H β line profiles are studied in detail experimentally in the T-tube discharge for the wide range of plasma parameters. Besides the common one, two additional parameters are introduced to characterize the asymmetry behavior of the experimental Stark profiles with the reference point chosen in the center of the line. The experimental data are analyzed and benchmarked versus the simple theoretical model based on the effects of microfield nonuniformity and electron impact shifts

  19. Asymmetry of Stark-broadened Layman lines from laser-produced plasmas

    International Nuclear Information System (INIS)

    Joyce, R.F.; Woltz, L.A.; Hooper, C.F. Jr.

    1986-01-01

    This paper discusses three significant causes of spectral line asymmetry: the ion-quadrupole interaction, the quadratic Stark effect and fine structure splitting that are included in the calculation of Lyman line profiles emitted by highly-ionized hydrogenic radiators in a dense, hot plasma. The line asymmetries are shown to be strongly dependent on the plasma density, indicating that the asymmetry may be of use as a density diagnostic

  20. Effects of a vertical magnetic field on particle confinement in a magnetized plasma torus.

    Science.gov (United States)

    Müller, S H; Fasoli, A; Labit, B; McGrath, M; Podestà, M; Poli, F M

    2004-10-15

    The particle confinement in a magnetized plasma torus with superimposed vertical magnetic field is modeled and measured experimentally. The formation of an equilibrium characterized by a parallel plasma current canceling out the grad B and curvature drifts is described using a two-fluid model. Characteristic response frequencies and relaxation rates are calculated. The predictions for the particle confinement time as a function of the vertical magnetic field are verified in a systematic experimental study on the TORPEX device, including the existence of an optimal vertical field and the anticorrelation between confinement time and density.

  1. Proton irradiation effects in oxide-confined vertical cavity surface emitting laser (VCSEL) diodes

    International Nuclear Information System (INIS)

    Barnes, C.E.; Swift, G.M.; Guertin, S.; Schwank, J.R.; Armendariz, M.G.; Hash, G.L.; Choquette, K.D.

    1999-01-01

    Vertical cavity surface emitting laser (VCSEL) diodes are employed as the emitter portion of opto-couplers that are used in space applications. Proton irradiation studies on VCSELs were performed at the Indiana University cyclotron facility. The beam energy was set at 192 MeV, the beam current was 200 nA that is equivalent to a flux of approximately 1*10 11 protons/cm 2 .s. We conclude that the oxide confined VCSELs examined in this study show more than sufficient radiation hardness for nearly all space applications. The observed proton-induced decreases in light output and the corresponding increases in laser threshold current can be explained in terms of proton-induced displacement damage which introduces non-radiative recombination centers in the active region of the lasers and causes a decrease in laser efficiency. These radiation effects accentuate the detrimental thermal effects observed at high currents. We also note that forward bias annealing is effective in these devices in producing at least partial recovery of the light output, and that this may be a viable hardness assurance technique during a flight mission. (A.C.)

  2. Role of quantum-confined stark effect on bias dependent photoluminescence of N-polar GaN/InGaN multi-quantum disk amber light emitting diodes

    KAUST Repository

    Tangi, Malleswararao; Mishra, Pawan; Janjua, Bilal; Prabaswara, Aditya; Zhao, Chao; Priante, Davide; Min, Jung-Wook; Ng, Tien Khee; Ooi, Boon S.

    2018-01-01

    to be nitrogen polar (N-polar) verified using KOH wet chemical etching and valence band spectrum analysis of high-resolution X-ray photoelectron spectroscopy. The crystal structure and quality of the NWs were investigated by high-angle annular dark field

  3. Confinement and surface effects on the physical properties of rhombohedral-shape hematite (α-Fe_2O_3) nanocrystals

    International Nuclear Information System (INIS)

    Luna, Carlos; Cuan-Guerra, Aída D.; Barriga-Castro, Enrique D.; Núñez, Nuria O.; Mendoza-Reséndez, Raquel

    2016-01-01

    Highlights: • Uniform rhombohedral hematite nanocrystals (RHNCs) have been obtained. • A detailed formation mechanism of these HNCS has been proposed. • Phonon confinement effects were revealed in the RHNCS vibrational bands. • Quantum confinement effects on the optical and electronic properties were found. - Abstract: Morphological, microstructural and vibrational properties of hematite (α-Fe_2O_3) nanocrystals with a rhombohedral shape and rounded edges, obtained by forced hydrolysis of iron(III) solutions under a fast nucleation, have been investigated in detail as a function of aging time. These studies allowed us to propose a detailed formation mechanism and revealed that these nanocrystals are composed of four {104} side facets, two {110} faces at the edges of the long diagonal of the nanocrystals and two {−441} facets as the top and bottom faces. Also, the presence of nanoscopic pores and fissures was evidenced. The vibrational bands of such nanocrystals were shifted to lower frequencies in comparison with bulk hematite ones as the nanocrystal size was reduced due to phonon confinement effects. Also, the indirect and direct transition band gaps displayed interesting dependences on the aging time arising from quantum confinement and surface effects

  4. The effects of geometrical confinement and viscosity ratio on the coalescence of droplet pairs in shear flow

    NARCIS (Netherlands)

    Bruyn, De P.; Chen, Dongju; Moldenaers, P.; Cardinaels, R.M.

    2014-01-01

    The effects of geometrical confinement and viscosity ratio on droplet coalescence in shear flow are experimentally investigated by means of a counter rotating parallel plate device, equipped with a microscope. The ratio of droplet diameter to gap spacing is varied between 0.03 and 0.33 to study both

  5. Proposal for an Experimental Test of the Role of Confining Potentials in the Integral Quantum Hall Effect

    OpenAIRE

    Brueckner, Reinhold

    2000-01-01

    We propose an experiment using a three-gate quantum Hall device to probe the dependence of the integral quantum Hall effect (IQHE) on the shape of the lateral confining potential in edge regions. This shape can, in a certain configuration determine whether or not the IQHE occurs.

  6. Analysis of confinement effects for in-water seismic tests on PWR fuel assemblies

    International Nuclear Information System (INIS)

    Broc, Daniel; Queval, Jean-Claude; Rigaudeau, J.; Viallet, E.

    2001-01-01

    In the framework of a comprehensive program on the seismic behaviour of the PWR reactor cores, tests have been performed on a row of six PWR fuel assemblies, with two confinement configurations in water. Global fluid motion along the row is not allowed in the 'full confinement configuration', and is allowed in the 'lateral confinement configuration'. The seismic test results show that the impact forces at assembly grid levels are significantly smaller with the full confinement. This is due to damping, which is found to be larger in this configuration where the average fluid velocity inside the assembly (around the rods) is itself larger. We present analyses of these phenomena from theoretical and experimental standpoint. This involves both fluid models and structural models of the assembly row. (author)

  7. Confining pressure effects on stress intensity factors: A 3D finite ...

    African Journals Online (AJOL)

    . MRM Aliha, MR Ayatollahi, MMS Mousavi. Abstract. At great depths of earth, fracture in rock masses occurs under the influence of confining pressure. However, most of the previous rock fracture studies deal only with ambient conditions and ...

  8. Effect of shear in the radial electric field on confinement in JET

    Energy Technology Data Exchange (ETDEWEB)

    O` Brien, D P; Balet, B; Deliyanakis, N; Cordey, J G; Stubberfield, P M [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    The role of the radial electric field during enhanced confinement of JET discharges is studied. Results from two series of experiments are presented: beam dominated with the addition of a small amount of ICRH, and ICRH dominated discharges, showing that for high performance ICRH heated discharges which obtain the high confinement regime, there is evidence against the E x B flow stabilisation. 4 refs., 4 figs.

  9. Effect of current profile evolution on plasma-limiter interaction and the energy confinement time

    International Nuclear Information System (INIS)

    Hawryluk, R.J.; Bol, K.; Bretz, N.

    1979-04-01

    Experiments conducted on the PLT tokamak have shown that both plasma-limiter interaction and the gross energy confinement time are functions of the gas influx during the discharge. By suitably controlling the gas influx, it is possible to contract the current channel, decrease impurity radiation from the core of the discharge, and increase the gross energy confinement time, whether the aperture limiters were of tungsten, stainless steel or carbon

  10. Effect of Short-Circuit Pathways on Water Quality in Selected Confined Aquifers (Invited)

    Science.gov (United States)

    McMahon, P. B.

    2010-12-01

    Confined aquifers in the United States generally contain fewer anthropogenic contaminants than unconfined aquifers because confined aquifers often contain water recharged prior to substantial human development and redox conditions are more reducing, which favors degradation of common contaminants like nitrate and chlorinated solvents. Groundwater in a confined part of the High Plains aquifer near York, Nebraska had an adjusted radiocarbon age of about 2,000 years, and groundwater in a confined part of the Floridan aquifer near Tampa, Florida had apparent ages greater than 60 years on the basis of tritium measurements. Yet compounds introduced more recently into the environment (anthropogenic nitrate and volatile organic compounds) were detected in selected public-supply wells completed in both aquifers. Depth-dependent measurements of flow and chemistry in the pumping supply wells, groundwater age dating, numerical modeling of groundwater flow, and other monitoring data indicated that the confined aquifers sampled by the supply wells were connected to contaminated unconfined aquifers by short-circuit pathways. In the High Plains aquifer, the primary pathways appeared to be inactive irrigation wells screened in both the unconfined and confined aquifers. In the Floridan aquifer, the primary pathways were karst sinkholes and conduits. Heavy pumping in both confined systems exacerbated the problem by reducing the potentiometric surface and increasing groundwater velocities, thus enhancing downward gradients and reducing reaction times for processes like denitrification. From a broader perspective, several confined aquifers in the U.S. have experienced large declines in their potentiometric surfaces because of groundwater pumping and this could increase the potential for contamination in those aquifers, particularly where short-circuit pathways connect them to shallower, contaminated sources of water, such as was observed in York and Tampa.

  11. Effectiveness of an antimicrobial treatment scheme in a confined glanders outbreak

    Directory of Open Access Journals (Sweden)

    Saqib Muhammad

    2012-11-01

    Full Text Available Abstract Background Glanders is a contagious and fatal zoonotic disease of solipeds caused by the Gram-negative bacterium Burkholderia (B. mallei. Although regulations call for culling of diseased animals, certain situations e.g. wild life conservation, highly valuable breeding stock, could benefit from effective treatment schemes and post-exposure prophylaxis. Results Twenty three culture positive glanderous horses were successfully treated during a confined outbreak by applying a treatment protocol of 12 weeks duration based on the parenteral administration of enrofloxacin and trimethoprim plus sulfadiazine, followed by the oral administration of doxycycline. Induction of immunosupression in six randomly chosen horses after completion of treatment did not lead to recrudescence of disease. Conclusion This study demonstrates that long term treatment of glanderous horses with a combination of various antibiotics seems to eliminate the agent from the organism. However, more studies are needed to test the effectiveness of this treatment regime on B. mallei strains from different endemic regions. Due to its cost and duration, this treatment can only be an option in certain situations and should not replace the current “testing and culling” policy, in conjunction with adequate compensation to prevent spreading of disease.

  12. Effects of electron-ion temperature equilibration on inertial confinement fusion implosions.

    Science.gov (United States)

    Xu, Barry; Hu, S X

    2011-07-01

    The electron-ion temperature relaxation essentially affects both the laser absorption in coronal plasmas and the hot-spot formation in inertial confinement fusion (ICF). It has recently been reexamined for plasma conditions closely relevant to ICF implosions using either classical molecular-dynamics simulations or analytical methods. To explore the electron-ion temperature equilibration effects on ICF implosion performance, we have examined two Coulomb logarithm models by implementing them into our hydrocodes, and we have carried out hydrosimulations for ICF implosions. Compared to the Lee-More model that is currently used in our standard hydrocodes, the two models predict substantial differences in laser absorption, coronal temperatures, and neutron yields for ICF implosions at the OMEGA Laser Facility [Boehly et al. Opt. Commun. 133, 495 (1997)]. Such effects on the triple-picket direct-drive design at the National Ignition Facility (NIF) have also been explored. Based on the validity of the two models, we have proposed a combined model of the electron-ion temperature-relaxation rate for the overall ICF plasma conditions. The hydrosimulations using the combined model for OMEGA implosions have shown ∼6% more laser absorption, ∼6%-15% higher coronal temperatures, and ∼10% more neutron yield, when compared to the Lee-More model prediction. It is also noticed that the gain for the NIF direct-drive design can be varied by ∼10% among the different electron-ion temperature-relaxation models.

  13. The impacts of the quantum-dot confining potential on the spin-orbit effect.

    Science.gov (United States)

    Li, Rui; Liu, Zhi-Hai; Wu, Yidong; Liu, C S

    2018-05-09

    For a nanowire quantum dot with the confining potential modeled by both the infinite and the finite square wells, we obtain exactly the energy spectrum and the wave functions in the strong spin-orbit coupling regime. We find that regardless of how small the well height is, there are at least two bound states in the finite square well: one has the σ x [Formula: see text] = -1 symmetry and the other has the σ x [Formula: see text] = 1 symmetry. When the well height is slowly tuned from large to small, the position of the maximal probability density of the first excited state moves from the center to x ≠ 0, while the position of the maximal probability density of the ground state is always at the center. A strong enhancement of the spin-orbit effect is demonstrated by tuning the well height. In particular, there exists a critical height [Formula: see text], at which the spin-orbit effect is enhanced to maximal.

  14. Nuclear Quantum Effects in H(+) and OH(-) Diffusion along Confined Water Wires.

    Science.gov (United States)

    Rossi, Mariana; Ceriotti, Michele; Manolopoulos, David E

    2016-08-04

    The diffusion of protons and hydroxide ions along water wires provides an efficient mechanism for charge transport that is exploited by biological membrane channels and shows promise for technological applications such as fuel cells. However, what is lacking for a better control and design of these systems is a thorough theoretical understanding of the diffusion process at the atomic scale. Here we focus on two aspects of this process that are often disregarded because of their high computational cost: the use of first-principles potential energy surfaces and the treatment of the nuclei as quantum particles. We consider proton and hydroxide ions in finite water wires using density functional theory augmented with an apolar cylindrical confining potential. We employ machine learning techniques to identify the charged species, thus obtaining an agnostic definition that takes explicitly into account the delocalization of the charge in the Grotthus-like mechanism. We include nuclear quantum effects (NQEs) through the thermostated ring polymer molecular dynamics method and model finite system size effects by considering Langevin dynamics on the potential of mean force of the charged species, allowing us to extract the same "universal" diffusion coefficient from simulations with different wire sizes. In the classical case, diffusion coefficients depend significantly on the potential energy surface, in particular on how dispersion forces modulate water-water distances. NQEs, however, make the diffusion less sensitive to the underlying potential and geometry of the wire.

  15. Particle size dependent confinement and lattice strain effects in LiFePO4.

    Science.gov (United States)

    Shahid, Raza; Murugavel, Sevi

    2013-11-21

    We report the intrinsic electronic properties of LiFePO4 (LFP) with different particle sizes measured by broad-band impedance spectroscopy and diffuse reflectance spectroscopy. The electronic properties show typical size-dependent effects with decreasing particle size (up to 150 nm). However, at the nanoscale level, we observed an enhancement in the polaronic conductivity about an order of magnitude. We found that the origin of the enhanced electronic conductivity in LFP is due to the significant lattice strain associated with the reduction of particle size. The observed lattice strain component corresponds to the compressive part which leads to a decrease in the hopping length of the polarons. We reproduce nonlinearities in the transport properties of LFP with particle size, to capture the interplay between confinement and lattice strain, and track the effects of strain on the electron-phonon interactions. These results could explain why nano-sized LFP has a better discharge capacity and higher rate capability than the bulk counterpart. We suggest that these new correlations will bring greater insight and better understanding for the optimization of LFP as a cathode material for advanced lithium ion batteries.

  16. Stark widths of Xe II lines in a pulsed plasma

    International Nuclear Information System (INIS)

    Djurovic, S; Pelaez, R J; Cirisan, M; Aparicio, J A; Mar, S

    2006-01-01

    In this paper, we present a review of experimental work on Stark broadening of singly ionized xenon lines. Eighty lines, from close UV to the red region of the spectrum, have been studied. Stark halfwidths were compared with experimental data from the literature and modified semi-empirical calculations. A pulsed arc with 95% of helium and 5% xenon was used as a plasma source for this study. Measured electron densities N e and temperatures T were in the ranges of 0.2-1.6 x 10 23 m -3 and 18 300-25 500 K, respectively

  17. Stark broadening parameters and transition probabilities of persistent lines of Tl II

    Science.gov (United States)

    de Andrés-García, I.; Colón, C.; Fernández-Martínez, F.

    2018-05-01

    The presence of singly ionized thallium in the stellar atmosphere of the chemically peculiar star χ Lupi was reported by Leckrone et al. in 1999 by analysis of its stellar spectrum obtained with the Goddard High Resolution Spectrograph (GHRS) on board the Hubble Space Telescope. Atomic data about the spectral line of 1307.50 Å and about the hyperfine components of the spectral lines of 1321.71 Å and 1908.64 Å were taken from different sources and used to analyse the isotopic abundance of thallium II in the star χ Lupi. From their results the authors concluded that the photosphere of the star presents an anomalous isotopic composition of Tl II. A study of the atomic parameters of Tl II and of the broadening by the Stark effect of its spectral lines (and therefore of the possible overlaps of these lines) can help to clarify the conclusions about the spectral abundance of Tl II in different stars. In this paper we present calculated values of the atomic transition probabilities and Stark broadening parameters for 49 spectral lines of Tl II obtained by using the Cowan code including core polarization effects and the Griem semiempirical approach. Theoretical values of radiative lifetimes for 11 levels (eight with experimental values in the bibliography) are calculated and compared with the experimental values in order to test the quality of our results. Theoretical trends of the Stark width and shift parameters versus the temperature for spectral lines of astrophysical interest are displayed. Trends of our calculated Stark width for the isoelectronic sequence Tl II-Pb III-Bi IV are also displayed.

  18. Observation of confinement effects through liner and nonlinear absorption spectroscopy in cuprous oxide

    Science.gov (United States)

    Sekhar, H.; Rakesh Kumar, Y.; Narayana Rao, D.

    2015-02-01

    Cuprous oxide nano clusters, micro cubes and micro particles were successfully synthesized by reducing copper (II) salt with ascorbic acid in the presence of sodium hydroxide via a co-precipitation method. The X-ray diffraction studies revealed the formation of pure single phase cubic. Raman spectrum shows the inevitable presence of CuO on the surface of the Cu2O powders which may have an impact on the stability of the phase. Transmission electron microscopy (TEM) data revealed that the morphology evolves from nanoclusters to micro cubes and micro particles by increasing the concentration of NaOH. Linear optical measurements show that the absorption peak maximum shifts towards red with changing morphology from nano clusters to micro cubes and micro particles. The nonlinear optical properties were studied using open aperture Z-scan technique with 532 nm, 6 ns laser pulses. Samples exhibited saturable as well as reverse saturable absorption. The results show that the transition from SA to RSA is ascribed to excited-state absorption (ESA) induced by two-photon absorption (TPA) process. Due to confinement effects (enhanced band gap) we observed enhanced nonlinear absorption coefficient (βeff) in the case of nano-clusters compared to their micro-cubes and micro-particles.

  19. Confinement Effects on Host Chain Dynamics in Polymer Nanocomposite Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Kyle J. [Department; Glynos, Emmanouil [Department; Maroulas, Serafeim-Dionysios [Department; Narayanan, Suresh [Advanced; Sakellariou, Georgios [Department; Green, Peter F. [Department; National

    2017-09-06

    Incorporating nanoparticles (NPs) within a polymer host to create polymer nanocomposites (PNCs) while having the effect of increasing the functionality (e.g.: sensing, energy conversion) of these materials, introduces additional complications with regard to the processing-morphology-function behavior. A primary challenge is to understand and control the viscosity of a PNC with decreasing film thickness confinement for nanoscale applications. Using a combination of X-ray photon correlation spectroscopy (XPCS) and X-ray standing wave based resonance enhanced XPCS to study the dynamics of neat poly-2-vinyl pyridine (P2VP) chains and the nanoparticle dynamics, respectively, we identified a new mechanism that dictates the viscosity of PNC films in the nanoscale regime. We show that while the viscosities of neat P2VP films as thin as 50 nm remained the same as the bulk, PNC films containing P2VP brush-coated gold NPs, spaced 50 nm apart, exhibited unprecedented increases in viscosities of over an order of magnitude. For thicker films or more widely separated NPs, the chain dynamics and viscosities were equal to the bulk values. These results -NP proximities and suppression of their dynamics -suggest a new mechanism by which the viscosities of polymeric liquids could be controlled for 2D and 3D nanoscale applications.

  20. Quantum confinement effect of two-dimensional all-inorganic halide perovskites

    KAUST Repository

    Cai, Bo; Li, Xiaoming; Gu, Yu; Harb, Moussab; Li, Jianhai; Xie, Meiqiu; Cao, Fei; Song, Jizhong; Zhang, Shengli; Cavallo, Luigi; Zeng, Haibo

    2017-01-01

    Quantum confinement effect (QCE), an essential physical phenomenon of semiconductors when the size becomes comparable to the exciton Bohr radius, typically results in quite different physical properties of low-dimensional materials from their bulk counterparts and can be exploited to enhance the device performance in various optoelectronic applications. Here, taking CsPbBr3 as an example, we reported QCE in all-inorganic halide perovskite in two-dimensional (2D) nanoplates. Blue shifts in optical absorption and photoluminescence spectra were found to be stronger in thinner nanoplates than that in thicker nanoplates, whose thickness lowered below ∼7 nm. The exciton binding energy results showed similar trend as that obtained for the optical absorption and photoluminescence. Meanwile, the function of integrated intensity and full width at half maximum and temperature also showed similar results, further supporting our conclusions. The results displayed the QCE in all-inorganic halide perovskite nanoplates and helped to design the all-inorganic halide perovskites with desired optical properties.

  1. Effect of grain size on the melting point of confined thin aluminum films

    Energy Technology Data Exchange (ETDEWEB)

    Wejrzanowski, Tomasz; Lewandowska, Malgorzata; Sikorski, Krzysztof; Kurzydlowski, Krzysztof J. [Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw (Poland)

    2014-10-28

    The melting of aluminum thin film was studied by a molecular dynamics (MD) simulation technique. The effect of the grain size and type of confinement was investigated for aluminum film with a constant thickness of 4 nm. The results show that coherent intercrystalline interface suppress the transition of solid aluminum into liquid, while free-surface gives melting point depression. The mechanism of melting of polycrystalline aluminum thin film was investigated. It was found that melting starts at grain boundaries and propagates to grain interiors. The melting point was calculated from the Lindemann index criterion, taking into account only atoms near to grain boundaries. This made it possible to extend melting point calculations to bigger grains, which require a long time (in the MD scale) to be fully molten. The results show that 4 nm thick film of aluminum melts at a temperature lower than the melting point of bulk aluminum (933 K) only when the grain size is reduced to 6 nm.

  2. Quantum confinement effect of two-dimensional all-inorganic halide perovskites

    KAUST Repository

    Cai, Bo

    2017-09-07

    Quantum confinement effect (QCE), an essential physical phenomenon of semiconductors when the size becomes comparable to the exciton Bohr radius, typically results in quite different physical properties of low-dimensional materials from their bulk counterparts and can be exploited to enhance the device performance in various optoelectronic applications. Here, taking CsPbBr3 as an example, we reported QCE in all-inorganic halide perovskite in two-dimensional (2D) nanoplates. Blue shifts in optical absorption and photoluminescence spectra were found to be stronger in thinner nanoplates than that in thicker nanoplates, whose thickness lowered below ∼7 nm. The exciton binding energy results showed similar trend as that obtained for the optical absorption and photoluminescence. Meanwile, the function of integrated intensity and full width at half maximum and temperature also showed similar results, further supporting our conclusions. The results displayed the QCE in all-inorganic halide perovskite nanoplates and helped to design the all-inorganic halide perovskites with desired optical properties.

  3. Effect of charge exchange on ion guns and an application to inertial- electrostatic confinement devices

    International Nuclear Information System (INIS)

    Baxter, D.C.; Stuart, G.W.

    1982-01-01

    In 1967, R. L. Hirsch [J. Appl. Phys. 38, 4522 (1967)] reported neutron production rates of 10 10 neutrons per second from an electrostatic inertial confinement device. The device consisted of six ion guns injecting deuterium or a mixture of deuterium and tritium ions into an evacuated cathode chamber at 30--150 keV. No previous theoretical model for this experiment has adequately explained the observed neutron fluxes. A new model that includes the effects of charge exchange and ionization in the ion guns is analyzed. This model predicts three main features of the observed neutron flux: Neutron output proportional to gun current, neutron production localized at the center of the evacuated chamber, and neutron production decreasing with increasing neutral background gas density. Previous analysis modelled the ion guns as being monoenergetic. In this study, the ion gun output is modelled as a mixture of ions and fast neutrals with energies ranging from zero to the maximum gun energy. Using this theoretical model, a survey of the possible operating parameters indicates that the device was probably operated at or near the most efficient combined values of voltage and background pressure. Applications of the theory to other devices are discussed

  4. Pressure Enhancement in Confined Fluids: Effect of Molecular Shape and Fluid-Wall Interactions.

    Science.gov (United States)

    Srivastava, Deepti; Santiso, Erik E; Gubbins, Keith E

    2017-10-24

    Recently, several experimental and simulation studies have found that phenomena that normally occur at extremely high pressures in a bulk phase can occur in nanophases confined within porous materials at much lower bulk phase pressures, thus providing an alternative route to study high-pressure phenomena. In this work, we examine the effect on the tangential pressure of varying the molecular shape, strength of the fluid-wall interactions, and pore width, for carbon slit-shaped pores. We find that, for multisite molecules, the presence of additional rotational degrees of freedom leads to unique changes in the shape of the tangential pressure profile, especially in larger pores. We show that, due to the direct relationship between the molecular density and the fluid-wall interactions, the latter have a large impact on the pressure tensor. The molecular shape and pore size have a notable impact on the layering of molecules in the pore, greatly influencing both the shape and scale of the tangential pressure profile.

  5. Structure and Barrier Properties of Multinanolayered Biodegradable PLA/PBSA Films: Confinement Effect via Forced Assembly Coextrusion.

    Science.gov (United States)

    Messin, Tiphaine; Follain, Nadège; Guinault, Alain; Sollogoub, Cyrille; Gaucher, Valérie; Delpouve, Nicolas; Marais, Stéphane

    2017-08-30

    Multilayer coextrusion processing was applied to produce 2049-layer film of poly(butylene succinate-co-butylene adipate) (PBSA) confined against poly(lactic acid) (PLA) using forced assembly, where the PBSA layer thickness was about 60 nm. This unique technology allowed to process semicrystalline PBSA as confined polymer and amorphous PLA as confining polymer in a continuous manner. The continuity of PBSA layers within the 80/20 wt % PLA/PBSA layered films was clearly evidenced by atomic force microscopy (AFM). Similar thermal events to the reference films were revealed by thermal studies; indicating no diffusion of polymers during the melt-processing. Mechanical properties were measured for the multilayer film and the obtained results were those expected considering the fraction of each polymer, revealing the absence of delamination in the PLA/PBSA multinanolayer film. The confinement effect induced by PLA led to a slight orientation of the crystals, an increase of the rigid amorphous fraction (RAF) in PBSA with a densification of this fraction without changing film crystallinity. These structural changes allowed to strongly improve the water vapor and gas barrier properties of the PBSA layer into the multilayer film up to two decades in the case of CO 2 gas. By confining the PBSA structure in very thin and continuous layers, it was then possible to improve the barrier performances of a biodegradable system and the resulting barrier properties were successfully correlated to the effect of confinement on the microstructure and the chain segment mobility of the amorphous phase. Such investigation on these multinanolayers of PLA/PBSA with the aim of evidencing relationships between microstructure implying RAF and barrier performances has never been performed yet. Besides, gas and water permeation results have shown that the barrier improvement obtained from the multilayer was mainly due to the reduction of solubility linked to the reduction of the free volume while

  6. Effects of electrode polarization and particle deposition profile on TJ-I plasma confinement

    International Nuclear Information System (INIS)

    Zurro, B.; Tabares, F.; Pardo, C.; Tafalla, D.; Cal, E. de la; Garcia-Castaner, B.; Pedrosa, M.A.; Sanchez, J.; Rodriguez-Yunta, A.

    1991-01-01

    The role of self-created radial electric field on particle confinement in TJ-I plasmas was addressed using plasma rotation data in conjunction with particle confinement times measured by laser ablation. In this paper following the pioneer work of Taylor, we have started to study the influence of a polarized electrode inserted into the plasma on particle confinement and plasma rotation in this ohmically heated tokamak. To have a supportive frame of reference, the confinement time of background particles and their transport into plasma without electrode, has been studied by measuring with space-time resolution the H α emission on varying plasma conditions. These experiments have been carried out in ohmically heated discharges of the TJ-I tokamak (R 0 =30 cm, a=10 cm) which was operated with plasma currents between 20 and 45 kA and a toroidal field ranging from 0.8 to 1.5 T. In this paper, firstly the experimental plasma and specific diagnostics are described, secondly, the parametric dependence of the particle confinement time and radial transport of background plasma is presented and finally, the influence of polarizing an inserted electrode on a particular discharge is given and discussed in the context of other polarization experiments. (author) 7 refs., 4 figs

  7. Existence of the Stark-Wannier quantum resonances

    Energy Technology Data Exchange (ETDEWEB)

    Sacchetti, Andrea, E-mail: andrea.sacchetti@unimore.it [Department of Physics, Computer Sciences and Mathematics, University of Modena e Reggio Emilia, Modena (Italy)

    2014-12-15

    In this paper, we prove the existence of the Stark-Wannier quantum resonances for one-dimensional Schrödinger operators with smooth periodic potential and small external homogeneous electric field. Such a result extends the existence result previously obtained in the case of periodic potentials with a finite number of open gaps.

  8. Rydberg-Stark states of Positronium for atom optics

    International Nuclear Information System (INIS)

    Alonso, A M; Cooper, B S; Deller, A; Hogan, S D; Wall, T E; Cassidy, D B

    2015-01-01

    Positronium atoms were produced in Rydberg states by means of a two-step optical excitation process (1s→2p→nd/ns). The n = 11 Rydberg-Stark manifold has been studied using different laser polarizations providing greater control over the electric dipole moment. (paper)

  9. Phase structure and confinement properties of noncompact gauge theories: Z(N) Wilson loop and effective noncompact model

    International Nuclear Information System (INIS)

    Borisenko, O.A.; Petrov, V.K.; Zinovjev, G.M.; Bohacik, J.

    1997-01-01

    An approach to studying lattice gauge models in the weak-coupling region is proposed. Conceptually, this approach is based on the crucial role of original Z(N) symmetry and of the invariant gauge-group measure. As an example, an effective model from the compact Wilson formulation of SU(2) gauge theory is calculated in d=3 dimensions at zero temperature. The confining properties and the phase structure of the effective model are studied in detail

  10. The effects of convergence ratio on the implosion behavior of DT layered inertial confinement fusion capsules

    Science.gov (United States)

    Haines, Brian M.; Yi, S. A.; Olson, R. E.; Khan, S. F.; Kyrala, G. A.; Zylstra, A. B.; Bradley, P. A.; Peterson, R. R.; Kline, J. L.; Leeper, R. J.; Shah, R. C.

    2017-07-01

    The wetted foam capsule design for inertial confinement fusion capsules, which includes a foam layer wetted with deuterium-tritium liquid, enables layered capsule implosions with a wide range of hot-spot convergence ratios (CR) on the National Ignition Facility. We present a full-scale wetted foam capsule design that demonstrates high gain in one-dimensional simulations. In these simulations, increasing the convergence ratio leads to an improved capsule yield due to higher hot-spot temperatures and increased fuel areal density. High-resolution two-dimensional simulations of this design are presented with detailed and well resolved models for the capsule fill tube, support tent, surface roughness, and predicted asymmetries in the x-ray drive. Our modeling of these asymmetries is validated by comparisons with available experimental data. In 2D simulations of the full-scale wetted foam capsule design, jetting caused by the fill tube is prevented by the expansion of the tungsten-doped shell layer due to preheat. While the impacts of surface roughness and predicted asymmetries in the x-ray drive are enhanced by convergence effects, likely underpredicted in 2D at high CR, simulations predict that the capsule is robust to these features. Nevertheless, the design is highly susceptible to the effects of the capsule support tent, which negates all of the one-dimensional benefits of increasing the convergence ratio. Indeed, when the support tent is included in simulations, the yield decreases as the convergence ratio is increased for CR > 20. Nevertheless, the results suggest that the full-scale wetted foam design has the potential to outperform ice layer capsules given currently achievable levels of asymmetries when fielded at low convergence ratios (CR < 20).

  11. Adapting to confined and isolated environment: Emotional effects and countermeasures in LUNAR PALACE 1

    Science.gov (United States)

    Wang, Ya; Wu, Ruilin

    Most operations in manned spaceflight originate in mental work, and numerous factors in aerospace can cause psychological problems. Among these problems, negative emotions are the most important and critical. Confined isolated environment, limited communication with outside and unpredictable risks may lead to the aggravation and acceleration of depression, anxiety and monotony, which could deteriorate astronauts’ effectiveness and safety.Therefore, the aim of the study is to identify possible change rules over time of emotional states in 90-day isolation period. The experiment is conducted in an analogue space station in Beihang University called LUNAR PALACE 1, which forms 100 percent of carbon and oxygen cycle closed environment, containing one comprehensive cabin and one plant cabin. Three healthy subjects (so called crews) are selected in the research, and they are assigned to tasks every day to imitate astronaut schedule. In order to monitor their emotional states, all crews will complete a questionnaire named profile of mood states (POMS) every week. Considering the limitation of questionnaire survey, we employ another method of automatic analysis. We set a network camera in the staff room (for meal and entertainment) in comprehensive cabin, and the videos will be analyzed through FaceReader, a facial expressions recognition software, to indicate their emotions. In addition, interviews will also be conducted after the experiment isolation period.Previous researches have shown that mission positive impact on crews, support from outside psychologists and surgeons, or surprise presents and favorite foods act well to against negative effects of the Third quarter phenomenon, displacement and other conflictions. Beyond these countermeasures, in LUNAR PALACE 1 we used open network environment to increase crews’ communication with family or friends and provide them digital camera to record their daily life as a kind of recreation.From all these measures, we will

  12. On the Application of Stark Broadening Data Determined with a Semiclassical Perturbation Approach

    Directory of Open Access Journals (Sweden)

    Milan S. Dimitrijević

    2014-08-01

    Full Text Available The significance of Stark broadening data for problems in astrophysics, physics, as well as for technological plasmas is discussed and applications of Stark broadening parameters calculated using a semiclassical perturbation method are analyzed.

  13. Effect of confinement on bond strength of hot-dip galvanized lap splices in concrete structures

    International Nuclear Information System (INIS)

    Fakhran, Mazen

    2004-01-01

    Galvanizing the reinforcing steel is one of the methods used to protect bars against corrosion. Galvanizing is a hot dip process where the reinforcing bars are immersed in an aqueous pre flux solution of zinc ammonium chloride at a controlled temperature between 840 and 850 degrees F. In 2001, a research program was started at AUB to evaluate experimentally the effect of hot dip galvanizing on the bond capacity of tension lap splices anchored in full-scale beam specimens designed to fail in bond splitting mode. The test results indicated that the use of galvanized bars had a negligible effect on bond strength of reinforcement in normal strength. However, galvanizing caused an average of 20 percent decrease in bond strength of reinforcement in high strength concrete. The primary objective of research reported in this thesis, is the need to find a solution to eliminate the bond reduction of galvanized bars in high strength concrete. It is significant to evaluate the positive effect of the addition of transverse reinforcement in the splice region. The hypothesis to be tested is that such transverse reinforcement will insure uniform bond stress distribution over the entire splice region, thus mobilizing all bar lugs along the splice in the stress transfer mechanism between the bar and the surrounding concrete. Such mechanism might reduce the significant decrease in bond strength in high strength concrete due to galvanizing. To achieve this objective, eighteen full-scale beam specimens were tested in positive bending. Each beam was reinforced with bars spliced in a constant moment region at midspam. The splice length was chosen in such a way that the beams failed in bond splitting of the concrete cover in the splice region. The main variables were type of coating (black or galvanized bars), bar size (20, 25 and 32 mm), and amount of transverse reinforcement in the splice region (0, 2 or 4 stirrups). The test results indicated that confinement did not have a significant

  14. Near-wall effects in improved plasma confinement regimes in tokamak FT-2

    International Nuclear Information System (INIS)

    Budnikov, V.N.; D'yachenko, V.V.; Esipov, L.A.

    1997-01-01

    Transition to the regime of improved plasma confinement (H-mode) revealed in experiments on low hybrid heating in tokamak ft-2 is analyzed. Main attention is paid to processes, taking place in near-wall region. The data are correlated with results of experiments in large tokamaks

  15. Assembly of multicomponent nanoframes via the synergistic actions of graphene oxide space confinement effect and oriented cation exchange

    International Nuclear Information System (INIS)

    Liu, Yanguo; Zhao, Yanyan; Sun, Hongyu; Zhang, Beibei; Cao, Sufeng; Xu, Xiaobin; Wang, Zhihong; Arandiyan, Hamidreza

    2015-01-01

    Multicomponent nanoframes (NFs) with a hollow structural character have shown the potential to be applied in many fields. Here we report a novel strategy to synthesize Zn_xCd_1_−_xS NFs via the synergistic actions of the graphene oxide (GO) confinement effect and oriented cation exchange. The obtained samples have been systematically characterized by x-ray diffractometry (XRD), field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray photospectroscopy (XPS) and Raman spectrometry. The results show that the two dimensional space confinement effect induced by GO and the oriented cation exchange reaction are responsible for the formation of the multicomponent NFs. The high photoelectrochemical activity and the low cost of the starting materials will make the multicomponent NFs applicable in photoelectronic and photoelectrocatalytic fields. (paper)

  16. Ductility Analysis of RC Beams Considering the Concrete Confinement Effect Produced by the Shear Reinforcement: a Numerical Approach

    Directory of Open Access Journals (Sweden)

    Caio Gorla Nogueira

    Full Text Available Abstract In this paper, a simplified numerical approach to study the influence of the confinement effect provided by transversal reinforcement on the ductility behavior of RC beams in bending is proposed. A unidimensional FEM mechanical model coupled to the Mazars’ damage model to simulate concrete behavior was adopted to assess ductility curvatures at the ultimate limit state. The confinement effect was incorporated to the numerical model through a calibration process of the damage internal parameters, based on the Least Square Method and an analytical law proposed by Kent and Park (1971. Several numerical analyses were carried out considering different designs of RC beams according to a parametric study varying the neutral axis position, concrete compressive strength and the volumetric transversal reinforcement ratio. The obtained results showed the importance of the amount of transversal reinforcement on the ductility behavior, increasing the ductility factor even for the cases with inappropriate neutral axis position.

  17. The effects of stroke length and Reynolds number on heat transfer to a ducted confined and semi-confined synthetic air jet

    International Nuclear Information System (INIS)

    Rylatt, D I; O'Donovan, T S

    2014-01-01

    Heat transfer to three configurations of ducted jet and un-ducted semiconfined jets is investigated experimentally. The influence of the jet operating parameters, stroke length (L 0 /D) and Reynolds (Re) number on the heat transferred to the jet is of particular interest. Heat transfer distributions to the jet are reported at H/D = 1 for a range of experimental parameters Re (1000 to 4000) and L 0 /D (5 to 20). Secondary and tertiary peaks are discernable in the heat transfer distributions across the range of parameters tested. It is shown that for a fixed Re varying the L 0 /D has little effect on the magnitude of the stagnation region heat transfer but does effect the position and magnitude of the secondary and tertiary peaks in the heat transfer distribution. It is also shown that for a fixed L 0 /D increasing the Re has a significant effect on the magnitude of the stagnation region heat transfer but has little impact on the position of the secondary and tertiary peaks in the heat transfer distributions. Ducting is added to the configuration to improve heat transfer by drawing cold air from a remote location into the jet flow. Ducting is shown to increase stagnation region and area averaged heat transfer across the range of jet parameters tested when compared with an un-ducted jets of equal confinement. Increasing the stroke length from L 0 /D = 5 to 20 for a Reynolds number of 2000 reduces the enhancement in stagnation region heat transfer provided by the ducting from 35% to 10%; the area averaged heat transfer provided by the ducting also changes from a 42% to a 21% enhancement. This is shown to be partly due to relative magnitude of the peaks in heat transfer outwith the stagnation region; at low stroke lengths, the difference in the magnitude of these peaks is large and reduces with increasing L 0 /D. It is also shown that as L 0 /D is increased the stagnation region heat transfer to the un-ducted jets increases while for the ducted jets stagnation region

  18. Resonances of the confined hydrogen atom and the Lamb-Dicke effect in non-relativistic qed

    DEFF Research Database (Denmark)

    Faupin, Jeremy

    2008-01-01

    We study a model describing a system of one dynamical nucleus and one electron confined by their center of mass and interacting with the quantized electromagnetic field. We impose an ultraviolet cutoff and assume that the fine-structure constant is sufficiently small. Using a renormalization grou...... method (based on [3, 4]), we prove that the unperturbed eigenvalues turn into resonances when the nucleus and the electron are coupled to the radiation field. This analysis is related to the Lamb–Dicke effect....

  19. Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose reductase.

    Science.gov (United States)

    Wang, Xianwei; Zhang, John Z H; He, Xiao

    2015-11-14

    Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. In this study, quantum mechanical calculation of protein's internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties.

  20. Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose reductase

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianwei [Center for Optics and Optoelectronics Research, College of Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310023 (China); State Key Laboratory of Precision Spectroscopy, Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062 (China); Zhang, John Z. H.; He, Xiao, E-mail: xiaohe@phy.ecnu.edu.cn [State Key Laboratory of Precision Spectroscopy, Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062 (China); NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062 (China)

    2015-11-14

    Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. In this study, quantum mechanical calculation of protein’s internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties.

  1. Time evolution of the energy confinement time, internal inductance and effective edge safety factor on IR-T1 tokamak

    International Nuclear Information System (INIS)

    Salar Elahi, A; Ghoranneviss, M

    2010-01-01

    An attempt is made to investigate the time evolution of the energy confinement time, internal inductance and effective edge safety factor on IR-T1 tokamak. For this purpose, four magnetic pickup coils were designed, constructed and installed on the outer surface of the IR-T1 and then the Shafranov parameter (asymmetry factor) was obtained from them. On the other hand, also a diamagnetic loop was designed and installed on IR-T1 and poloidal beta was determined from it. Therefore, the internal inductance and effective edge safety factor were measured. Also, the time evolution of the energy confinement time was measured using the diamagnetic loop. Experimental results on IR-T1 show that the maximum energy confinement time (which corresponds to minimum collisions, minimum microinstabilities and minimum transport) is at low values of the effective edge safety factor (2.5 eff (a) i <0.72). The results obtained are in agreement with those obtained with the theoretical approach [1-5].

  2. Effects of quantum confinement and shape on band gap of core/shell quantum dots and nanowires

    Science.gov (United States)

    Gao, Faming

    2011-05-01

    A quantum confinement model for nanocrystals developed is extended to study for the optical gap shifts in core/shell quantum dots and nanowires. The chemical bond properties and gap shifts in the InP/ZnS, CdSe/CdS, CdSe/ZnS, and CdTe/ZnS core/shell quantum dots are calculated in detail. The calculated band gaps are in excellent agreement with experimental values. The effects of structural taping and twinning on quantum confinement of InP and Si nanowires are elucidated. It is found theoretically that a competition between the positive Kubo energy-gap shift and the negative surface energy shift plays the crucial role in the optical gaps of these nanosystems.

  3. Measurements of the internal magnetic field on DIII-D using intensity and spacing of the motional Stark multiplet.

    Science.gov (United States)

    Pablant, N A; Burrell, K H; Groebner, R J; Kaplan, D H; Holcomb, C T

    2008-10-01

    We describe a version of a motional Stark effect (MSE) diagnostic based on the relative line intensities and spacing of Stark split D(alpha) emission from the neutral beams. This system, named B-Stark, has been recently installed on the DIII-D tokamak. To find the magnetic pitch angle, we use the ratio of the intensities of the pi(3) and sigma(1) lines. These lines originate from the same upper level and so are not dependent on the level populations. In future devices, such as ITER, this technique may have advantages over diagnostics based on MSE polarimetry. We have done an optimization of the viewing direction for the available ports on DIII-D to choose the installation location. With this placement, we have a near optimal viewing angle of 59.6 degrees from the vertical direction. All hardware has been installed for one chord, and we have been routinely taking data since January 2007. We fit the spectra using a simple Stark model in which the upper level populations of the D(alpha) transition are treated as free variables. The magnitude and direction of the magnetic field obtained using this diagnostic technique compare well with measurements from MSE polarimetry and EFIT.

  4. Effect of single point defects on the confinement losses of air-guiding photonic bandgap fibers

    Institute of Scientific and Technical Information of China (English)

    Shi Wei-Hua; Zhao Yan; Qian Li-Guo; Chen He-Ming

    2012-01-01

    The confinement losses in air-guiding photonic bandgap fibers (PBGFs) with air hole missing are studied with the full-vector finite-element method.It is confirmed that there are two loss peaks (1.555 and 1.598 μm) if there is a hole missing in the cladding far from the core.The closer to the core the hole missing is,the larger the confinement losses are,and even no mode could propagate in the core.The main power of the fundamental mode leaks from the core to the cladding defect.The quality of PBGFs can be improved through controlling the number and position of defects.

  5. Effect of ELMs on rotation and momentum confinement in H-mode discharges in JET

    DEFF Research Database (Denmark)

    Versloot, T.W.; de Vries, P.C.; Giroud, C.

    2010-01-01

    . An increase in profile peaking of ion temperature and angular frequency is observed. At the same time the plasma confinement is reduced while the ratio of confinement times (Rτ = τE/τ) increases noticeably with ELM frequency. This change could be explained by the relatively larger ELM induced losses......The loss of plasma toroidal angular momentum and thermal energy by edge localized modes (ELMs) has been studied in JET. The analysis shows a consistently larger drop in momentum in comparison with the energy loss associated with the ELMs. This difference originates from the large reduction...... in angular frequency at the plasma edge, observed to penetrate into the plasma up to r/a ~ 0.65 during large type-I ELMs. As a result, the time averaged angular frequency is lowered near the top of the pedestal with increasing ELM frequency, resulting in a significant drop in thermal Mach number at the edge...

  6. Miniature magnetic bottle confined by circularly polarized laser light and measurements of the inverse Faraday effect in plasmas

    International Nuclear Information System (INIS)

    Eliezer, S.; Paiss, Y.; Horovitz, Y.; Henis, Z.

    1997-01-01

    A new concept of hot plasma confinement in a miniature magnetic bottle induced by circularly polarized laser light is suggested. Magnetic fields generated by circularly polarized laser light may be of the order of megagauss, depending on the laser intensity. In this configuration the circularly polarized light is used to obtain confinement of a plasma contained in a good conductor vessel. The confinement in this scheme is supported by the magnetic forces. The Lawson criterion for a DT plasma might be achieved for number density n = 5*10 21 cm -3 and confinement time τ= 20 ns. The laser and plasma parameters required to obtain an energetic gain are calculated. Experiments and preliminary calculations were performed to study the feasibility of the above scheme. Measurements of the axial magnetic field induced by circularly polarized laser light, the so called inverse Faraday effect, and of the absorption of circularly polarized laser light in plasma, are reported. The experiments were performed with a circularly polarized Nd:YAG laser, having a wavelength of 1.06 τm and a pulse duration of 7 ns, in a range of irradiances from 10 9 to 10 14 W/cm 2 . Axial magnetic fields from 500 Gauss to 2 megagauss were measured. Up to 5*10 13 W/cm 3 the results are in agreement with a nonlinear model of the inverse Faraday effect dominated by the ponderomotive force. For the laser irradiance studied here, 9*10 13 - 2.5*10 14 W/cm 2 , the absorption of circularly polarized light was 14% higher relative to the absorption of linear polarized light

  7. Confinement has no effect on visual space perception: The results of the Mars-500 experiment

    Czech Academy of Sciences Publication Activity Database

    Šikl, Radovan; Šimeček, Michal

    2014-01-01

    Roč. 76, č. 2 (2014), s. 438-451 ISSN 1943-3921 R&D Projects: GA ČR(CZ) GAP407/12/2528 Institutional support: RVO:68081740 Keywords : visual space perception * perspective * Mars-500 * size judgment * size constancy * confinement Subject RIV: AN - Psychology Impact factor: 2.168, year: 2014 http://dx.doi.org/10.3758/s13414-013-0594-y

  8. MHD instabilities and their effects on plasma confinement in the large helical device plasmas

    International Nuclear Information System (INIS)

    Toi, K.

    2002-01-01

    MHD stability of NBI heated plasmas and impacts of MHD modes on plasma confinement are intensively studied in the Large Helical Device (LHD). Three characteristic MHD instabilities were observed, that is, (1) pressure driven modes excited in the plasma edge, (2) pressure driven mode in the plasma core, and (3) Alfven eigenmodes (AEs) driven by energetic ions. MHD mode excited in the edge region accompanies multiple satellites, and is called Edge Harmonic Modes (EHMs). EHM sometimes has a bursting character. The bursting EHM transiently decreases the stored energy by about 15 percent. In the plasma core region, m=2/n=1 pressure driven mode is typically destabilized. The mode often induces internal collapse in the higher beta regime more than 1 percent. The internal collapse appreciably affects the global confinement. Energetic ion driven AEs are often detected in NBI-heated LHD plasmas. Particular AE with the frequency 8-10 times larger than TAE-frequency was detected in high beta plasmas more than 2 percent. The AE may be related to helicity-induced AE. Excitation of these three types of MHD instabilities and their impacts on plasma confinement are discussed. (author)

  9. Effect of wetting on nucleation and growth of D2 in confinement

    Science.gov (United States)

    Zepeda-Ruiz, L. A.; Sadigh, B.; Shin, S. J.; Kozioziemski, B. J.; Chernov, A. A.

    2018-04-01

    We have performed a computational study to determine how the wetting of liquid deuterium to the walls of the material influences nucleation. We present the development of a pair-wise interatomic potential that includes zero-point motion of molecular deuterium. Deuterium is used in this study because of its importance to inertial confinement fusion and the potential to generate a superfluid state if the solidification can be suppressed. Our simulations show that wetting dominates undercooling compared to the pore geometries. We observe a transition from heterogeneous nucleation at the confining wall to homogeneous nucleation at the bulk of the liquid (and intermediate cases) as the interaction with the confining wall changes from perfect wetting to non-wetting. When nucleation is heterogeneous, the temperature needed for solidification changes by 4 K with decreasing deuterium-wall interaction, but it remains independent (and equal to the one from bulk samples) when homogeneous nucleation dominates. We find that growth and quality of the resulting microstructure also depends on the magnitude of liquid deuterium-wall interaction strength.

  10. Energy Evolution Mechanism and Confining Pressure Effect of Granite under Triaxial Loading-Unloading Cycles

    Science.gov (United States)

    Wang, Hao; Miao, Sheng-jun

    2018-05-01

    Rock mass undergoes some deformational failure under the action of external loads, a process known to be associated with energy dissipation and release. A triaxial loading-unloading cycle test was conducted on granite in order to investigate the energy evolution pattern of rock mass under the action of external loads. The study results demonstrated: (1) The stress peaks increased by 50% and 22% respectively and the pre-peak weakening became more apparent in the ascending process of the confining pressure from 10MPa to 30MPa; the area enclosed by the hysteresis loop corresponding to 30MPa diminished by nearly 60% than that corresponding to 10MPa, indicating a higher confining pressure prohibits rock mass from plastic deformation and shifts strain toward elastic deformation. (2) In the vicinity of the strength limit, the slope of dissipation energy increased to 1.6 from the original 0.7 and the dissipation energy grew at an accelerating rate, demonstrating stronger propagation and convergence of internal cracks. (3) At a pressure of 70% of the stress peak, the elastic energy of the granite accounted for 88% of its peak value, suggesting the rock mechanical energy from the outside mostly changes into the elastic energy inside the rock, with little energy loss.(4) Prior to test specimen failure, the axial bearing capacity dropped with a decreasing confining pressure in an essentially linear way, and the existence of confirming pressure played a role in stabilizing the axial bearing capacity.

  11. Stark broadening of Ca IV spectral lines of astrophysical interest

    Science.gov (United States)

    Alonso-Medina, A.; Colón, C.

    2014-12-01

    Ca IV emission lines are under the preview of Solar Ultraviolet Measurements of Emitted Radiation device aboard the Solar and Heliospheric Observatory. Also, lines of the Ca IV in planetary nebulae NGC 7027 were detected with the Short Wavelength Spectrometer on board the Infrared Space Observatory. These facts justify an attempt to provide new spectroscopic parameters of Ca IV. There are no theoretical or experimental Stark broadening data for Ca IV. Using the Griem semi-empirical approach and the COWAN code, we report in this paper calculated values of the Stark broadening parameters for 467 lines of Ca IV. They were calculated using a set of wavefunctions obtained by using Hartree-Fock relativistic calculations. These lines arising from 3s23p4ns (n = 4, 5), 3s23p44p, 3s23p4nd (n = 3, 4) configurations. Stark widths and shifts are presented for an electron density of 1017 cm-3 and temperatures T = 10 000, 20 000 and 50 200 K. As these data cannot be compared to others in the literature, we present an analysis of the different regularities of the values presented in this work.

  12. Electric field confinement effect on charge transport in organic field-effect transistors

    NARCIS (Netherlands)

    Li, X.; Kadashchuk, A.; Fishchuk, I.I.; Smaal, W.T.T.; Gelinck, G.H.; Broer, D.J.; Genoe, J.; Heremans, P.; Bässler, H.

    2012-01-01

    While it is known that the charge-carrier mobility in organic semiconductors is only weakly dependent on the electric field at low fields, the experimental mobility in organic field-effect transistors using silylethynyl-substituted pentacene is found to be surprisingly field dependent at low

  13. Organ-confined prostate cancer: effect of prior transrectal biopsy on endorectal MRI and MR spectroscopic imaging

    International Nuclear Information System (INIS)

    Qayyum, Aliya; Coakley, F.V.; Lu, Y.; Olpin, J.D.; Wu, L.; Yeh, B.M.; Carroll, P.R.; Kurhanewicz, J.

    2004-01-01

    Objective: Our aim was to determine the effect of prior transrectal biopsy on endorectal MRI and MR spectroscopic imaging findings in patients with organ-confined prostate cancer. Materials and Methods: Endorectal MRI and MR spectroscopic imaging were performed in 43 patients with biopsy-proven prostate cancer before radical prostatectomy confirming organ-confined disease. For each sextant, two independent reviewers scored the degree of hemorrhage on a scale from 1 to 5 and recorded the presence or absence of capsular irregularity. A spectroscopist recorded the number of spectrally degraded voxels in the peripheral zone. The outcome variables of capsular irregularity and spectral degradation were correlated with the predictor variables of time from biopsy and degree of hemorrhage after biopsy. Results: Capsular irregularity was unrelated to time from biopsy or to degree of hemorrhage. Spectral degradation was inversely related to time from biopsy (p < 0.01); the mean percentage of degraded peripheral zone voxels was 18.5% within 8 weeks of biopsy compared with 7% after 8 weeks. Spectral degradation was unrelated to the degree of hemorrhage. Conclusion: In organ-confined prostate cancer, capsular irregularity can be seen at any time after biopsy and is independent of the degree of hemorrhage, whereas spectral degradation is seen predominantly in the first 8 weeks after biopsy. MRI staging criteria and guidelines for scheduling studies after biopsy may require appropriate modification. (author)

  14. Stark broadening parameter regularities and interpolation and critical evaluation of data for CP star atmospheres research: Stark line shifts

    Science.gov (United States)

    Dimitrijevic, M. S.; Tankosic, D.

    1998-04-01

    In order to find out if regularities and systematic trends found to be apparent among experimental Stark line shifts allow the accurate interpolation of new data and critical evaluation of experimental results, the exceptions to the established regularities are analysed on the basis of critical reviews of experimental data, and reasons for such exceptions are discussed. We found that such exceptions are mostly due to the situations when: (i) the energy gap between atomic energy levels within a supermultiplet is equal or comparable to the energy gap to the nearest perturbing levels; (ii) the most important perturbing level is embedded between the energy levels of the supermultiplet; (iii) the forbidden transitions have influence on Stark line shifts.

  15. Exceptions to the Stark law: practical considerations for surgeons.

    Science.gov (United States)

    Satiani, Bhagwan

    2006-03-01

    The purpose of this study was to provide an understanding of the applicable legislative exceptions to prohibitions under the Stark law, which governs common legitimate business relationships in surgical practice. Stark I and II prohibits all referrals (and claims) for the provision of designated health services for federal reimbursement if a physician or immediate family member has any financial relationship with the entity. Regardless of intent (unlike the antikickback statute), any financial relationship is illegal unless specifically excepted by statute. These exceptions are relevant to ownership, compensation arrangements, or both. The most important ones relevant to surgeons are as follows: physician service exception (services rendered in an intragroup referral); in-office ancillary services exception (office-based vascular laboratory); the whole hospital exception (ownership interest in a hospital or department); lease exception (conditions that must be met for a lease not to be considered illegal); bona fide employment exception (important to academic medical centers); personal services arrangement exception (vascular laboratory medical directorship); physician incentive plans exception (if volume or value of referrals are an issue); hospital-affiliated group practice exception (physician services billed by a hospital); recruitment arrangement exception (inducements by hospitals to relocate); items/services exception (transcription services purchased from a hospital); fair market value exception (covers services provided to health care entities); indirect compensation arrangements (dealings between a hospital and entity owned by physicians); and academic medical centers exception (new phase II rules broaden the definition of academic medical centers and ease the requirement that practice plans be tax-exempt organizations, among other changes. Although expert legal advice is required for navigation through the maze of Stark laws, it is incumbent on surgeons

  16. Smooth interface effects on the confinement properties of GaSb/Al xGa 1- xSb quantum wells

    Science.gov (United States)

    Adib, Artur B.; de Sousa, Jeanlex S.; Farias, Gil A.; Freire, Valder N.

    2000-10-01

    A theoretical investigation on the confinement properties of GaSb/Al xGa 1- xSb single quantum wells (QWs) with smooth interfaces is performed. Error function ( erf)-like interfacial aluminum molar fraction variations in the QWs, from which it is possible to obtain the carriers effective masses and confinement potential profiles, are assumed. It is shown that the existence of smooth interfaces blue shifts considerably the confined carriers and exciton energies, an effect which is stronger in thin QWs.

  17. Effects of free-range and confined housing on joint health in a herd of fattening pigs.

    Science.gov (United States)

    Etterlin, Pernille Engelsen; Ytrehus, Bjørnar; Lundeheim, Nils; Heldmer, Eva; Österberg, Julia; Ekman, Stina

    2014-09-11

    Free-range housing, in which pigs have access to both indoor and outdoor areas, is mandatory in organic pig production in Europe, but little is known about the effects of this housing on joint health in pigs. A high level of joint condemnations at slaughter has been reported in organic free-range pigs in Sweden, compared with pigs raised in conventional confined housing. We hypothesised that biomechanical forces imposed on the joints of pigs that range freely promote the development of osteochondrosis and lead to joint condemnation. We compared the prevalence of osteochondrosis and other joint lesions (e.g. arthritis, traumatic) in the elbow and hock joints of 91 crossbred Hampshire (Yorkshire × Landrace) fattening pigs that were housed in a free-range indoor/outdoor system with that in 45 pigs housed in confined indoor pens. A larger proportion of free-range than confined pigs had osteochondrosis in the elbow joints (69 vs. 50%, p free-range pigs showed moderate or severe lesions (33 vs. 16%, p free-range pigs also showed a higher prevalence of osteochondrosis in the hock joints (83 vs. 62%, p free-range pigs had condemned joints, all of which showed severe osteochondrosis, while no joints of confined pigs were condemned. In this experiment the prevalence of osteochondrosis in the elbow and the hock was higher, and lesions were more severe, in free-range than in confined pigs, suggesting that free-range housing increases the risk of acquiring osteochondrosis. Increased biomechanical stress to vulnerable joint structures may be the mechanism behind this effect, however more studies are needed to verify these results. This study suggests that modification of housing, and breeding for joints that are more adapted to free-range movement may be needed in free-range pig production. Severe osteochondrosis is a cause of joint condemnation, but the condemnation rate at slaughter underestimates the actual frequency of joint lesions and hence is a poor assessment of joint

  18. Effects of ExB velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices

    International Nuclear Information System (INIS)

    Burrell, K.H.

    1996-11-01

    One of the scientific success stories of fusion research over the past decade is the development of the ExB shear stabilization model to explain the formation of transport barriers in magnetic confinement devices. This model was originally developed to explain the transport barrier formed at the plasma edge in tokamaks after the L (low) to H (high) transition. This concept has the universality needed to explain the edge transport barriers seen in limiter and divertor tokamaks, stellarators, and mirror machines. More recently, this model has been applied to explain the further confinement improvement from H (high)-mode to VH (very high)-mode seen in some tokamaks, where the edge transport barrier becomes wider. Most recently, this paradigm has been applied to the core transport barriers formed in plasmas with negative or low magnetic shear in the plasma core. These examples of confinement improvement are of considerable physical interest; it is not often that a system self-organizes to a higher energy state with reduced turbulence and transport when an additional source of free energy is applied to it. The transport decrease that is associated with ExB velocity shear effects also has significant practical consequences for fusion research. The fundamental physics involved in transport reduction is the effect of ExB shear on the growth, radial extent and phase correlation of turbulent eddies in the plasma. The same fundamental transport reduction process can be operational in various portions of the plasma because there are a number ways to change the radial electric field Er. An important theme in this area is the synergistic effect of ExB velocity shear and magnetic shear. Although the ExB velocity shear appears to have an effect on broader classes of microturbulence, magnetic shear can mitigate some potentially harmful effects of ExB velocity shear and facilitate turbulence stabilization

  19. Computational Study of the Effect of Confinement within Microporous Structures on the Activity and Selectivity of Metallocene Catalysts for Ethylene Oligomerization

    KAUST Repository

    Toulhoat, Hervé; Lontsi Fomena, Mireille; de Bruin, Theodorus

    2011-01-01

    The effect of confinement within some zeolitic structures on the activity and selectivity of metallocene catalysts for the ethylene oligomerization has been investigated using grand canonical Monte Carlo simulations (GCMC). The following zeolite

  20. Effect of confinement and starvation on stress parameters in the American lobster (Homarus americanus

    Directory of Open Access Journals (Sweden)

    Edo D'Agaro

    2014-12-01

    Full Text Available The American lobster (Homarus americanus is one of the most important crustacean resources in North America. In Italy and Europe, this fishery product is available throughout the year and it has a high and increasing commercial demand. American lobsters are traditionally marketed live and stocked, without feed, in temperature controlled recirculating systems for several weeks before being sold in the market places. The current Italian legislation does not fix a maximum length of time for the crustacean confinement and specific welfare requirements. In the present research, a 4-week experiment was carried out using 42 adult H. americanus reared in 4 recirculating aquaculture tanks. After one month of confinement, mean glucose, protein and total haemocyte count levels in the hemolymph of H. americanus were stable and similar (P>0.05 to the values observed at the beginning of the experiment. Results of the proximate analysis of the abdominal muscles of H. americanus showed no significant differences in concentrations of crude protein, lipid and ash during the trial. At the end of the experiment, the sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting analysis revealed a marked degradation of the muscle myofibrillar proteins. A number of fragments, possibly from myosin, were evident in the range between 50 and 220 kDa between time t0 and t28. Results of this study show that the main hemolymphatic variables and degradation analysis of the muscle myofibrillar proteins can be used as sensitive indicators of the crustacean stress response to confinement and starvation.

  1. Effects of confinement on rock mass modulus: A synthetic rock mass modelling (SRM study

    Directory of Open Access Journals (Sweden)

    I. Vazaios

    2018-06-01

    Full Text Available The main objective of this paper is to examine the influence of the applied confining stress on the rock mass modulus of moderately jointed rocks (well interlocked undisturbed rock mass with blocks formed by three or less intersecting joints. A synthetic rock mass modelling (SRM approach is employed to determine the mechanical properties of the rock mass. In this approach, the intact body of rock is represented by the discrete element method (DEM-Voronoi grains with the ability of simulating the initiation and propagation of microcracks within the intact part of the model. The geometry of the pre-existing joints is generated by employing discrete fracture network (DFN modelling based on field joint data collected from the Brockville Tunnel using LiDAR scanning. The geometrical characteristics of the simulated joints at a representative sample size are first validated against the field data, and then used to measure the rock quality designation (RQD, joint spacing, areal fracture intensity (P21, and block volumes. These geometrical quantities are used to quantitatively determine a representative range of the geological strength index (GSI. The results show that estimating the GSI using the RQD tends to make a closer estimate of the degree of blockiness that leads to GSI values corresponding to those obtained from direct visual observations of the rock mass conditions in the field. The use of joint spacing and block volume in order to quantify the GSI value range for the studied rock mass suggests a lower range compared to that evaluated in situ. Based on numerical modelling results and laboratory data of rock testing reported in the literature, a semi-empirical equation is proposed that relates the rock mass modulus to confinement as a function of the areal fracture intensity and joint stiffness. Keywords: Synthetic rock mass modelling (SRM, Discrete fracture network (DFN, Rock mass modulus, Geological strength index (GSI, Confinement

  2. Effect of low transverse magnetic field on the confinement strength in a quasi-1D wire

    International Nuclear Information System (INIS)

    Kumar, Sanjeev; Thomas, K. J.; Smith, L. W.; Farrer, I.; Ritchie, D. A.; Jones, G. A. C.; Griffiths, J.; Pepper, M.

    2013-01-01

    Transport measurements in a quasi-one dimensional (1D) quantum wire are reported in the presence of low transverse magnetic field. Differential conductance shows weak quantised plateaus when the 2D electrons are squeezed electrostatically. Application of a small transverse magnetic field (0.2T) enhances the overall degree of quantisation due to the formation of magneto-electric subbands. The results show the role of magnetic field to fine tune the confinement strength in low density wires when interaction gives rise to double row formation

  3. Polymer in a pore: Effect of confinement on the free energy barrier

    Science.gov (United States)

    Kumar, Sanjiv; Kumar, Sanjay

    2018-06-01

    We investigate the transfer of a polymer chain from cis- side to trans- side through two types of pores: cone-shaped channel and flat-channel. Using the exact enumeration technique, we obtain the free energy landscapes of a polymer chain for such systems. We have also calculated the free-energy barrier of a polymer chain attached to the edge of the pore. The model system allows us to calculate the force required to pull polymer from the pore and stall-force to confine polymer within the pore.

  4. Effect of air confinement on thermal contact resistance in nanoscale heat transfer

    Science.gov (United States)

    Pratap, Dheeraj; Islam, Rakibul; Al-Alam, Patricia; Randrianalisoa, Jaona; Trannoy, Nathalie

    2018-03-01

    Here, we report a detailed analysis of thermal contact resistance (R c) of nano-size contact formed between a Wollaston wire thermal probe and the used samples (fused silica and titanium) as a function of air pressure (from 1 Pa to 105 Pa). Moreover, we suggest an analytical model using experimental data to extract R c. We found that for both samples, the thermal contact resistance decreases with increasing air pressure. We also showed that R c strongly depends on the thermal conductivity of materials keeping other parameters the same, such as roughness of the probe and samples, as well as the contact force. We provide a physical explanation of the R c trend with pressure and thermal conductivity of the materials: R c is ascribed to the heat transfer through solid-solid (probe-sample) contact and confined air at nanoscale cavities, due to the rough nature of the materials in contact. The contribution of confined air on heat transfer through the probe sample contact is significant at atmospheric pressure but decreases as the pressure decreases. In vacuum, only the solid-solid contact contributes to R c. In addition, theoretical calculations using the well-known acoustic and diffuse mismatch models showed a high thermal conductivity material that exhibits high heat transmission and consequently low R c, supporting our findings.

  5. Molecular dynamics study of interfacial confinement effects of aqueous NaCl brines in nanoporous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Wander, M. C. F.; Shuford, K. L.

    2010-12-09

    In this paper, studies of aqueous electrolyte solutions in contact with a family of porous carbon geometries using classical molecular dynamics simulations are presented. These simulations provide an atomic scale depiction of ion transport dynamics in different environments to elucidate power of aqueous electrolyte supercapacitors. The electrolyte contains alkali metal and halide ions, which allow for the examination of size trends within specific geometries as well as trends in concentration. The electrode pores are modeled as planar graphite sheets and carbon nanotubes with interstices ranging from one to four nanometers. Ordered layers form parallel to the carbon surface, which facilitates focused ion motion under slightly confining conditions. As a result, the ion’s diffusivities are enhanced in the direction of the slit or pore. Further confining the system leads to decreased ion diffusivities. The ions are fully hydrated in all but the smallest slits and pores with those sizes showing increased ion pairing. There is strong evidence of charge separation perpendicular to the surface at all size scales, concentrations, and ion types, providing a useful baseline for examining differential capacitance behavior and future studies on energy storage. These systems show promise as high-power electrical energy storage devices.

  6. Effect of electric fields and fluctuations on confinement in a bumpy torus

    International Nuclear Information System (INIS)

    Hiroe, S.; Glowienka, J.C.; Hillis, D.L.

    1986-06-01

    In order to understand the relationships between confinement and space potential (electric field) and between confinement and density fluctuations, plasma parameters in the ELMO Bumpy Torus Scale (EBT-S) have been measured systematically for a wide range of operating conditions. Present EBT plasma parameters do not show a strong dependence on the potential profile, but rather exhibit a correlation with the fluctuations. The plasma pressure profile is found to be consistent with the profile anticipated on the basis of the flute stability criterion for a marginally stable plasma. For a heating power of 100 kW, the stored energy density is found to be restricted to the range between 4.5 x 10 13 eV-cm -3 and 7 x 10 13 eV-cm -3 . The lower limit remains constant regardless of heating power and pertains to plasmas lacking an equilibrium and/or stability. The upper limit increases with heating power and is found to result from the onset of instabilities. In between the two limits is a plasma that is in an equilibrium state and is marginally stable. Operational trajectories exist that take the EBT plasma from one limit to the other

  7. Effect of confining walls on the interaction between particles in a nematic liquid crystal

    CERN Document Server

    Fukuda, J I; Yokoyama, H

    2003-01-01

    We investigate theoretically how the confining walls of a nematic cell affect the interaction of particles mediated by the elastic deformation of a nematic liquid crystal. We consider the case where strong homeotropic or planar anchoring is imposed on the flat parallel walls so that the director on the wall surfaces is fixed and uniform alignment is achieved in the bulk. This set-up is more realistic experimentally than any other previous theoretical studies concerning the elastic-deformation-mediated interactions that assume an infinite medium. When the anchoring on the particle surfaces is weak, an exact expression of the interaction between two particles can be obtained. The two-body interaction can be regarded as the interaction between one particle and an infinite array of 'mirror images' of the other particle. We also obtain the 'self-energy' of one particle, the interaction of a particle with confining walls, which is interpreted along the same way as the interaction of one particle with its mirror ima...

  8. Confinement for More Space

    DEFF Research Database (Denmark)

    Kipnusu, Wycliffe K.; Elsayed, Mohamed; Kossack, Wilhelm

    2015-01-01

    Broadband dielectric spectroscopy and positron annihilation lifetime spectroscopy are employed to study the molecular dynamics and effective free volume of 2-ethyl-1-hexanol (2E1H) in the bulk state and when confined in unidirectional nanopores with average diameters of 4, 6, and 8 nm. Enhanced α...

  9. Stark broadening of several Bi IV spectral lines of astrophysical interest

    Science.gov (United States)

    Colón, C.; Moreno-Díaz, C.; de Andrés-García, I.; Alonso-Medina, A.

    2017-09-01

    The presence of spectral lines of bismuth in stellar atmospheres has been reported in different stars. The anomalous values of the spectral intensities of Bi II and Bi III, compared to the theoretical Local Termodinamic Equilibrium (LTE) standards of Bi I/Bi II/Bi III, have been reported in the spectra obtained with the High Resolution Spectrograph of the Hubble/Goddard Space Telescope in the chemically peculiar stars HgMn stars χ Lupi and HR 7775. Spectral lines of 1436.8, 1902.3, 2630.9 and 2936.7 Å of Bi II and 1423.4 Å of Bi III were reported and their relative intensities were measured in these studies Litzén & Wahlgren 2002. These lines are overlapped with spectral lines of 1437.65, 2630.1 and 2937.1 Å of Bi IV. A study of the Stark broadening parameters of Bi IV spectral lines can help to study these overlaps. In this paper, using the Griem semi-empirical approach, we report calculated values of the Stark parameters for 64 spectral lines of Bi IV. The matrix elements used in these calculations have been determined from 17 configurations of Bi IV. They were calculated using the cowan code including core polarization effects. Data are displayed for an electron density of 1017 cm-3 and temperatures T = 10 000-160 000 K. Also calculated radiative lifetimes for 12 levels with experimental lifetime are presented, in order to test the goodness of our calculations. Theoretical trends of the Stark width and shift parameters versus the temperature for spectral lines of astrophysical interest are displayed.

  10. Effects of particle size and confining pressure on breakage factor of rockfill materials using medium triaxial test

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Gupta

    2016-06-01

    Full Text Available Rockfill dams are mostly constructed using blasted rockfill materials obtained by blasting rocks or alluvial rockfill materials collected from the riverbeds. Behaviors of rockfill materials and their characterization significantly depend on breakage factor observed during triaxial loading. In this paper, two modeled rockfill materials are investigated by using medium triaxial cell. Drained triaxial tests are conducted on various sizes of modeled rockfill materials used in the two dams, and test data are analyzed accordingly. Breakage factor of rockfill material is studied and the effects of particle size and confining pressure on breakage factor are investigated using medium triaxial cell as many researchers have already conducted investigation using large triaxial cell.

  11. Confined crystallization, crystalline phase deformation and their effects on the properties of crystalline polymers

    Science.gov (United States)

    Wang, Haopeng

    With the recent advances in processing and catalyst technology, novel morphologies have been created in crystalline polymers and they are expected to substantially impact the properties. To reveal the structure-property relationships of some of these novel polymeric systems becomes the primary focus of this work. In the first part, using an innovative layer-multiplying coextrusion process to obtain assemblies with thousands of polymer nanolayers, dominating "in-plane" lamellar crystals were created when the confined poly(ethylene oxide) (PEO) layers were made progressively thinner. When the thickness was confined to 25 nanometers, the PEO crystallized as single, high-aspect-ratio lamellae that resembled single crystals. This crystallization habit imparted more than two orders of magnitude reduction in the gas permeability. The dramatic decrease in gas permeability was attributed to the reduced diffusion coefficient, because of the increase in gas diffusion path length through the in-plane lamellae. The temperature dependence of lamellar orientation and the crystallization kinetics in the confined nanolayers were also investigated. The novel olefinic block copolymer (OBC) studied in the second part consisted of long crystallizable sequences with low comonomer content alternating with rubbery amorphous blocks with high comonomer content. The crystallizable blocks formed lamellae that organized into space-filling spherulites even when the fraction of crystallizable block was so low that the crystallinity was only 7%. These unusual spherulites were highly elastic and recovered from strains as high as 300%. These "elastic spherulites" imparted higher strain recovery and temperature resistance than the conventional random copolymers that depend on isolated, fringed micellar-like crystals to provide the junctions for the elastomeric network. In the third part, positron annihilation lifetime spectroscopy (PALS) was used to obtain the temperature dependence of the free

  12. Stark-shift induced resonances in multiphoton ionization

    International Nuclear Information System (INIS)

    Potvliege, R M; Vuci, Svetlana

    2006-01-01

    The resonance enhancements marking the ATI spectrum of argon are discussed in the light of a recently compiled map of the quasienergies of this atom. Many of the dressed excited states of interest shift nonponderomotively in complicated ways, but keep an ionization width narrow enough to produce sharp substructures of both low and high ATI peaks through Stark-shift induced resonances. The most prominent enhancement observed in the high-order ATI peaks originates from ionization from the dressed ground state perturbed by the influence of neighbouring resonant dressed states

  13. Influence of the added mass effect and boundary conditions on the dynamic response of submerged and confined structures

    International Nuclear Information System (INIS)

    Valentín, D; Presas, A; Egusquiza, E; Valero, C

    2014-01-01

    The dynamic response of submerged and confined disk-like structures is of interest in the flied of hydraulic machinery, especially in hydraulic turbine runners. This response is difficult to be estimated with accuracy due to the strong influence of the boundary conditions. Small radial gaps as well as short axial distances to rigid surfaces greatly modify the dynamic response because the fact of the added mass and damping effects. Moreover, the effect of the shaft coupling is also important for certain mode-shapes of the structure. In the present study, the influence of the added mass effect and boundary conditions on the dynamic behavior of a submerged disk attached to a shaft is evaluated through experimental tests and structural- acoustic coupling numerical simulations. For the experimentation, a test rig has been developed. It consists of a confined disk attached to a shaft inside a cylindrical container full of water. The disk can be fixed at different axial positions along the shaft. Piezoelectric patches are used to excite the disk and the response is measured with submersible accelerometers. For each configuration tested, the natural frequencies of the disk and the shaft are studied. Numerical results have been compared with experimental results

  14. Quantum confinement effects and source-to-drain tunneling in ultra-scaled double-gate silicon n-MOSFETs

    International Nuclear Information System (INIS)

    Jiang Xiang-Wei; Li Shu-Shen

    2012-01-01

    By using the linear combination of bulk band (LCBB) method incorporated with the top of the barrier splitting (TBS) model, we present a comprehensive study on the quantum confinement effects and the source-to-drain tunneling in the ultra-scaled double-gate (DG) metal—oxide—semiconductor field-effect transistors (MOSFETs). A critical body thickness value of 5 nm is found, below which severe valley splittings among different X valleys for the occupied charge density and the current contributions occur in ultra-thin silicon body structures. It is also found that the tunneling current could be nearly 100% with an ultra-scaled channel length. Different from the previous simulation results, it is found that the source-to-drain tunneling could be effectively suppressed in the ultra-thin body thickness (2.0 nm and below) by the quantum confinement and the tunneling could be suppressed down to below 5% when the channel length approaches 16 nm regardless of the body thickness. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  15. The hydrophobic effect: Molecular dynamics simulations of water confined between extended hydrophobic and hydrophilic surfaces

    DEFF Research Database (Denmark)

    Jensen, Morten Østergaard; Mouritsen, Ole G.; Peters, Günther H.J.

    2004-01-01

    Structural and dynamic properties of water confined between two parallel, extended, either hydrophobic or hydrophilic crystalline surfaces of n-alkane C36H74 or n-alcohol C35H71OH, are studied by molecular dynamics simulations. Electron density profiles, directly compared with corresponding......-correlation functions reveal that water molecules have characteristic diffusive behavior and orientational ordering due to the lack of hydrogen bonding interactions with the surface. These observations suggest that the altered dynamical properties of water in contact with extended hydrophobic surfaces together...... at both surfaces. The ordering is characteristically different between the surfaces and of longer range at the hydrophilic surface. Furthermore, the dynamic properties of water are different at the two surfaces and different from the bulk behavior. In particular, at the hydrophobic surface, time...

  16. Effects induced by ICRF waves on various confinement schemes in Tore Supra

    International Nuclear Information System (INIS)

    Saoutic, B.

    1995-01-01

    The 1993-94 experimental campaign has seen a significant increase of the application of waves in the ion cyclotron range of frequency on Tore Supra. Ion cyclotron resonant heating has been applied to plasmas with strongly radiating layers, pellet-enhanced performance and lower hybrid enhanced performance. Initial experiments on direct coupling of the fast magnetosonic wave to the electrons have demonstrated coupling up to 5 MW to the plasma and have demonstrated an efficient electron heating in these discharges. A significant bootstrap current fraction is observed. This heating scheme leads to a stationary improvement in energy confinement, with implications for the Rebut-Lallia-Watkins local transport model. Finally, preliminary experiments on antenna phasing have shown clear evidence of fast wave current drive. (author) 25 refs.; 9 figs

  17. Far-Field Effects of Large Earthquakes on South Florida's Confined Aquifer

    Science.gov (United States)

    Voss, N. K.; Wdowinski, S.

    2012-12-01

    The similarity between a seismometer and a well hydraulic head record during the passage of a seismic wave has long been documented. This is true even at large distances from earthquake epicenters. South Florida lacks a dense seismic array but does contain a comparably dense network of monitoring wells. The large spatial distribution of deep monitoring wells in South Florida provides an opportunity to study the variance of aquifer response to the passage of seismic waves. We conducted a preliminary study of hydraulic head data, provided by the South Florida Water Management District, from 9 deep wells in South Florida's confined Floridian Aquifer in response to 27 main shock events (January 2010- April 2012) with magnitude 6.9 or greater. Coseismic hydraulic head response was observed in 7 of the 27 events. In order to determine what governs aquifer response to seismic events, earthquake parameters were compared for the 7 positive events. Seismic energy density (SED), an empirical relationship between distance and magnitude, was also used to compare the relative energy between the events at each well site. SED is commonly used as a parameter for establishing thresholds for hydrologic events in the near and intermediate fields. Our analysis yielded a threshold SED for well response in South Florida as 8 x 10-3 J m-3, which is consistent with other studies. Deep earthquakes, with SED above this threshold, did not appear to trigger hydraulic head oscillations. The amplitude of hydraulic head oscillations had no discernable relationship to SED levels. Preliminary results indicate a need for a modification of the SED equation to better accommodate depth in order to be of use in the study of hydrologic response in the far field. We plan to conduct a more comprehensive study incorporating a larger subset (~60) of wells in South Florida in order to further examine the spatial variance of aquifers to the passing of seismic waves as well as better confine the relationship

  18. Propagation of vector solitons in a quasi-resonant medium with stark deformation of quantum states

    Energy Technology Data Exchange (ETDEWEB)

    Sazonov, S. V., E-mail: sazonov.sergei@gmail.com [National Research Centre Kurchatov Institute (Russian Federation); Ustinov, N. V., E-mail: n_ustinov@mail.ru [Moscow State Railway University, Kaliningrad Branch (Russian Federation)

    2012-11-15

    The nonlinear dynamics of a vector two-component optical pulse propagating in quasi-resonance conditions in a medium of nonsymmetric quantum objects is investigated for Stark splitting of quantum energy levels by an external electric field. We consider the case when the ordinary component of the optical pulse induces {sigma} transitions, while the extraordinary component induces the {pi} transition and shifts the frequencies of the allowed transitions due to the dynamic Stark effect. It is found that under Zakharov-Benney resonance conditions, the propagation of the optical pulse is accompanied by generation of an electromagnetic pulse in the terahertz band and is described by the vector generalization of the nonlinear Yajima-Oikawa system. It is shown that this system (as well as its formal generalization with an arbitrary number of optical components) is integrable by the inverse scattering transformation method. The corresponding Darboux transformations are found for obtaining multisoliton solutions. The influence of transverse effects on the propagation of vector solitons is investigated. The conditions under which transverse dynamics leads to self-focusing (defocusing) of solitons are determined.

  19. The Effect of Trail Pheromone and Path Confinement on Learning of Complex Routes in the Ant Lasius niger.

    Science.gov (United States)

    Czaczkes, Tomer J; Weichselgartner, Tobias; Bernadou, Abel; Heinze, Jürgen

    2016-01-01

    Route learning is key to the survival of many central place foragers, such as bees and many ants. For ants which lay pheromone trails, the presence of a trail may act as an important source of information about whether an error has been made. The presence of trail pheromone has been demonstrated to support route learning, and the effect of pheromones on route choice have been reported to persist even after the pheromones have been removed. This could be explained in two ways: the pheromone may constrain the ants onto the correct route, thus preventing errors and aiding learning. Alternatively, the pheromones may act as a 'reassurance', signalling that the learner is on the right path and that learning the path is worthwhile. Here, we disentangle pheromone presence from route confinement in order to test these hypotheses, using the ant Lasius niger as a model. Unexpectedly, we did not find any evidence that pheromones support route learning. Indeed, there was no evidence that ants confined to the correct route learned at all. Thus, while we cannot support the 'reassurance' hypothesis, we can rule out the 'confinement' hypothesis. Other findings, such as a reduction in pheromone deposition in the presence of trail pheromones, are remarkably consistent with previous experiments. As previously reported, ants which make errors on their outward journey upregulate pheromone deposition on their return. Surprisingly, ants which would go on to make an error down-regulate pheromone deposition on their outward journey, hinting at a capacity for ants to gauge the quality of their own memories.

  20. The Effect of Trail Pheromone and Path Confinement on Learning of Complex Routes in the Ant Lasius niger.

    Directory of Open Access Journals (Sweden)

    Tomer J Czaczkes

    Full Text Available Route learning is key to the survival of many central place foragers, such as bees and many ants. For ants which lay pheromone trails, the presence of a trail may act as an important source of information about whether an error has been made. The presence of trail pheromone has been demonstrated to support route learning, and the effect of pheromones on route choice have been reported to persist even after the pheromones have been removed. This could be explained in two ways: the pheromone may constrain the ants onto the correct route, thus preventing errors and aiding learning. Alternatively, the pheromones may act as a 'reassurance', signalling that the learner is on the right path and that learning the path is worthwhile. Here, we disentangle pheromone presence from route confinement in order to test these hypotheses, using the ant Lasius niger as a model. Unexpectedly, we did not find any evidence that pheromones support route learning. Indeed, there was no evidence that ants confined to the correct route learned at all. Thus, while we cannot support the 'reassurance' hypothesis, we can rule out the 'confinement' hypothesis. Other findings, such as a reduction in pheromone deposition in the presence of trail pheromones, are remarkably consistent with previous experiments. As previously reported, ants which make errors on their outward journey upregulate pheromone deposition on their return. Surprisingly, ants which would go on to make an error down-regulate pheromone deposition on their outward journey, hinting at a capacity for ants to gauge the quality of their own memories.

  1. First-principle study of quantum confinement effect on small sized silicon quantum dots using density-functional theory

    International Nuclear Information System (INIS)

    Anas, M. M.; Othman, A. P.; Gopir, G.

    2014-01-01

    Density functional theory (DFT), as a first-principle approach has successfully been implemented to study nanoscale material. Here, DFT by numerical basis-set was used to study the quantum confinement effect as well as electronic properties of silicon quantum dots (Si-QDs) in ground state condition. Selection of quantum dot models were studied intensively before choosing the right structure for simulation. Next, the computational result were used to examine and deduce the electronic properties and its density of state (DOS) for 14 spherical Si-QDs ranging in size up to ∼ 2 nm in diameter. The energy gap was also deduced from the HOMO-LUMO results. The atomistic model of each silicon QDs was constructed by repeating its crystal unit cell of face-centered cubic (FCC) structure, and reconstructed until the spherical shape obtained. The core structure shows tetrahedral (T d ) symmetry structure. It was found that the model need to be passivated, and hence it was noticed that the confinement effect was more pronounced. The model was optimized using Quasi-Newton method for each size of Si-QDs to get relaxed structure before it was simulated. In this model the exchange-correlation potential (V xc ) of the electrons was treated by Local Density Approximation (LDA) functional and Perdew-Zunger (PZ) functional

  2. Effect of micellar collisions and polyvinylpyrrolidone confinement on the electrical conductivity percolation parameters of water/AOT/isooctane reverse micelles

    Science.gov (United States)

    Guettari, Moez; Aferni, Ahmed E. L.; Tajouri, Tahar

    2017-12-01

    The main aim of this paper is the analysis of micellar collisions and polymer confinement effects on the electrical conductivity percolative behavior of water/sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/isooctane reverse micelles. Firstly, we have performed conductance measurements of the system for three AOT to isooctane volume ratio, φm = 0.1 , 0.15 and 0.2 to examine the influence of micellar collisions on the percolation parameters. All the measurements were carried out over the 298.15 K-333.15 K temperature range at a fixed water to AOT molar ratio, W0 = 45 . We have assessed that the rise of micellar collisions frequency enhances the conductance percolation. Secondly, the confinement effect of a water-soluble polymer, polyvinylpyrrolidone (PVP), on the reverse micelles conductance behavior was investigated. Temperature-induced percolation, Tp , have shown a dependence on the polymer concentration, CPVP . It was also observed that for various PVP concentrations, the activation energy of percolation decreases. Finally, the values of the critical exponents determined in the presence and absence of PVP prove that the polymer affects the dynamic of percolation.

  3. Stark shift and photoionization cross section of on-center and off-center donor impurity in a core/shell ellipsoidal quantum dot

    Science.gov (United States)

    Shi, L.; Yan, Z. W.

    2018-04-01

    Within the framework of the effective-mass approximation and by using a variational method, the Stark shift of on-center and off-center donor impurity binding energies and photoionization cross section under a z-direction electric field in a prolate (oblate) core/shell ellipsoidal quantum dot has been studied. We have calculated the Stark shift as a function of the core and shell sizes and shapes, electric field, and impurity position. We also discuss the photoionization cross section as a function of photon energy with different core and shell sizes and shapes, electric field strengths, and impurity positions. The results show that the Stark shift depends strongly on the impurity position, it could be positive or negative. The core and shell sizes and shapes also have a pronounce influence on the Stark shift, and the Stark shift changes with them is non-monotonic, especially when the impurity is located at the -z-axis, the situation will become complicated. In addition, the core and shell sizes and shapes, impurity position, and electric field also have an important influence on the photoionization cross section. In particular, the photoionization cross section will vanish when the impurity is located at center of spherical core with spherical or prolate shell case at zero field.

  4. Magnetic confinement

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo (ed.)

    2005-07-01

    The Frascati Tokamak Upgrade (FTU) is a compact, high-magnetic-field tokamak capable of operating at density and magnetic field values similar to, or even encompassing, those of International Thermonuclear Experimental Reactor (ITER) and therefore provides a unique opportunity to explore physics issues that are directly relevant to ITER. During 2004 the experimental activities were focussed on fully exploiting the lower hybrid system (for generating and controlling the plasma current) and the electron cyclotron heating system (joint experiment with the Institute of Plasma Physics of the National Research Council, Milan). With all four gyrotrons in operation, full electron cyclotron power was achieved up to a record level of 1.5 MW. By simultaneously injecting lower hybrid waves, to tailor the plasma current radial profile, and electron cyclotron waves, to heat the plasma centre, good confinement regimes with internal transport barriers were obtained at the highest plasma density values ever achieved for this operation regime (n {approx}1.5X10{sup 20}m{sup -3}). Specific studies were devoted to optimising the coupling of lower hybrid waves to the plasma (by real-time control of the plasma position) and to generating current by electron cyclotron current drive. The new scanning CO{sub 2} interferometer (developed by the Reversed Field Experiment Consortium) for high spatial and time resolution (1 cm/50 {mu}s) density profile measurements was extensively used. The Thomson scattering diagnostic was upgraded and enabled observation of scattered signals associated with the Confinement background plasma dynamics. As for theoretical studies on the dynamics of turbulence in plasmas, the transition from Bohm-like scaling to gyro-Bohm scaling of the local plasma diffusivity was demonstrated on the basis of a generalised four wave model (joint collaboration with Princeton Plasma Physics Laboratory and the University of California at Irvine). The transition from weak to strong

  5. Magnetic confinement

    International Nuclear Information System (INIS)

    Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo

    2005-01-01

    The Frascati Tokamak Upgrade (FTU) is a compact, high-magnetic-field tokamak capable of operating at density and magnetic field values similar to, or even encompassing, those of International Thermonuclear Experimental Reactor (ITER) and therefore provides a unique opportunity to explore physics issues that are directly relevant to ITER. During 2004 the experimental activities were focussed on fully exploiting the lower hybrid system (for generating and controlling the plasma current) and the electron cyclotron heating system (joint experiment with the Institute of Plasma Physics of the National Research Council, Milan). With all four gyrotrons in operation, full electron cyclotron power was achieved up to a record level of 1.5 MW. By simultaneously injecting lower hybrid waves, to tailor the plasma current radial profile, and electron cyclotron waves, to heat the plasma centre, good confinement regimes with internal transport barriers were obtained at the highest plasma density values ever achieved for this operation regime (n ∼1.5X10 20 m -3 ). Specific studies were devoted to optimising the coupling of lower hybrid waves to the plasma (by real-time control of the plasma position) and to generating current by electron cyclotron current drive. The new scanning CO 2 interferometer (developed by the Reversed Field Experiment Consortium) for high spatial and time resolution (1 cm/50 μs) density profile measurements was extensively used. The Thomson scattering diagnostic was upgraded and enabled observation of scattered signals associated with the Confinement background plasma dynamics. As for theoretical studies on the dynamics of turbulence in plasmas, the transition from Bohm-like scaling to gyro-Bohm scaling of the local plasma diffusivity was demonstrated on the basis of a generalised four wave model (joint collaboration with Princeton Plasma Physics Laboratory and the University of California at Irvine). The transition from weak to strong energetic particle

  6. Stark broadening in cold plasmas with low electron densities calibrated with Thomson scattering

    International Nuclear Information System (INIS)

    Palomares, J.M.; Hübner, S.; Carbone, E.A.D.; Vries, N. de; Veldhuizen, E.M. de; Sola, A.; Gamero, A.; Mullen, J.J.A.M. van der

    2012-01-01

    In the present work Stark broadening measurements have been carried out on low electron density (n e 19 m −3 ) and (relatively) low gas temperature (T g e . - Highlights: ► Stark broadening measurements at low density and temperature conditions ► Calibration with Thomson scattering ► Indications of the non-Lorentzian shape of the Stark broadening ► Impossibility of simultaneous diagnostic of gas temperature and electron density

  7. Stark mapping of H2 Rydberg states in the strong-field regime with dynamical resolution

    International Nuclear Information System (INIS)

    Glab, W.L.; Qin, K.

    1993-01-01

    We have acquired spectra of high Rydberg states of molecular hydrogen in a static external field, in the energy region from below the energy at which field ionization becomes classically possible (E c ) to well above this energy. Simultaneous spectra of ionization and dissociation were acquired, thereby allowing direct information on the excited-state decay dynamics to be obtained. We have found that states with energies below E c undergo field-induced predissociation, while states with energies well above E c decay predominantly by field ionization. Field ionization and dissociation compete effectively as decay channels for states with energies in a restricted region just above E c . Comparison of our ionization spectra to the results of a single-channel quantum-defect theory Stark calculation shows quantitative agreement except near curve crossings, indicating that inclusion of different core rotational state channels will be required to properly account for coupling between the Stark states. Several states in the spectra undergo pronounced changes in their dynamical properties over a narrow range of field values, which we interpret as being due to interference cancellation of the ionization rates for these states

  8. Confinement Effects on Chemical Equilibria: Pentacyano(PyrazineFerrate(II Stability Changes within Nanosized Droplets of Water

    Directory of Open Access Journals (Sweden)

    Teofilo Borunda

    2018-04-01

    Full Text Available Nanoscale confinement is known to impact properties of molecules and we observed changes in the reactivity of an iron coordination complex, pentacyano(pyrazineferrate(II. The confinement of two coordination complexes in a sodium AOT/isooctane reverse micellar (RM water droplet was found to dramatically increase the hydrolysis rate of [Fe(CN5pyz]3− and change the monomer-dimer equilibria between [Fe(CN5pyz]3− and [Fe2(CN10pyz]6−. Combined UV-Vis and 1H-NMR spectra of these complexes in RMs were analyzed and the position of the monomer-dimer equilibrium and the relative reaction times were determined at three different RM sizes. The data show that the hydrolysis rates (loss of pyrazine are dramatically enhanced in RMs over bulk water and increase as the size of the RM decreases. Likewise, the monomer-dimer equilibrium changes to favor the formation of dimer as the RM size decreases. We conclude that the effects of the [Fe(CN5pyz]3− stability is related to its solvation within the RM.

  9. Study on effects of different patterns and cracking for wastes FRP (used banner) wrapping on compressive strength of confined concrete

    Science.gov (United States)

    Syazani Leman, Alif; Shahidan, Shahiron; Azmi, M. A. M.; Syamir Senin, Mohamad; Ali, N.; Abdullah, S. R.; Zuki, S. S. Mohd; Ibrahim, M. H. Wan; Nazri, Fadzli Mohamed

    2017-11-01

    Previous researches have shown that FRP are being introduce into wide variety of civil engineering applications. Fibre Reinforce Concrete (FRP) are also used as repairing method in concrete structures. FRP such as S-glass, AR-glass, E-glass, C-glass, and Aramid Fibre are the common material used in industry. The FRP strips provide the necessary longitudinal and hoop reinforcement. However, there are lots waste materials that can be form as fibre and used in repairing. Banner is a type of waste material fibre that can be used in repairing. In this study, banner will be used as the replacement of the common FRP. The confined concrete (cylinder) of 300mm height and 150mm diameter were cast with M35 grade concrete and tested until it is crack. Next banner are used as the wrapping along the cracking of the concrete with three different pattern that are full wrapping, two band wrapping and cross wrapping using epoxy. Epoxy is a common name for a type of strong adhesive used for sticking things together and covering surface. The objective of this study is to determine the maximum strength and the effect of different patterns wrapping of FRP (banner) on the compressive strength of confined concrete. The results are shows that banner are suitable as a replacement of material for FRP.

  10. Effect of thermal annealing on the emission properties of heterostructures containing a quantum-confined GaAsSb layer

    Energy Technology Data Exchange (ETDEWEB)

    Dikareva, N. V., E-mail: dnat@ro.ru; Vikhrova, O. V.; Zvonkov, B. N. [Lobachevsky State University of Nizhni Novgorod, Physico-Technical Research Institute (Russian Federation); Malekhonova, N. V. [Lobachevsky State University of Nizhni Novgorod (Russian Federation); Nekorkin, S. M. [Lobachevsky State University of Nizhni Novgorod, Physico-Technical Research Institute (Russian Federation); Pirogov, A. V.; Pavlov, D. A. [Lobachevsky State University of Nizhni Novgorod (Russian Federation)

    2015-01-15

    Heterostructures containing single GaAsSb/GaAs quantum wells and bilayer GaAsSb/InGaAs quantum wells are produced by metal-organic vapor-phase epitaxy at atmospheric pressure. The growth temperature of the quantum-confined layers is 500–570°C. The structural quality of the samples and the quality of heterointerfaces of the quantum wells are studied by the high-resolution transmission electron microscopy of cross sections. The emission properties of the heterostructures are studied by photoluminescence measurements. The structures are subjected to thermal annealing under conditions chosen in accordance with the temperature and time of growth of the upper cladding p-InGaP layer during the formation of GaAs/InGaP laser structures with an active region containing quantum-confined GaAsSb layers. It is found that such heat treatment can have a profound effect on the emission properties of the active region, only if a bilayer GaAsSb/InGaAs quantum well is formed.

  11. Effects of Carrier Confinement and Intervalley Scattering on Photoexcited Electron Plasma in Silicon.

    Science.gov (United States)

    Sieradzki, A; Kuznicki, Z T

    2013-01-01

    The ultrafast reflectivity of silicon, excited and probed with femtosecond laser pulses, is studied for different wavelengths and energy densities. The confinement of carriers in a thin surface layer delimited by a nanoscale Si-layered system buried in a Si heavily-doped wafer reduces the critical density of carriers necessary to create the electron plasma by a factor of ten. We performed two types of reflectivity measurements, using either a single beam or two beams. The plasma strongly depends on the photon energy density because of the intervalley scattering of the electrons revealed by two different mechanisms assisted by the electron-phonon interaction. One mechanism leads to a negative differential reflectivity that can be attributed to an induced absorption in X valleys. The other mechanism occurs, when the carrier population is thermalizing and gives rise to a positive differential reflectivity corresponding to Pauli-blocked intervalley gamma to X scattering. These results are important for improving the efficiency of Si light-to-electricity converters, in which there is a possibility of multiplying carriers by nanostructurization of Si.

  12. Stark Broadening of Carbon and Oxygen Lines in Hot DQ White Dwarf Stars: Recent Results and Applications

    Directory of Open Access Journals (Sweden)

    Dufour P.

    2011-12-01

    Full Text Available White dwarf stars are traditionally found to have surface compositions made primarily of hydrogen or helium. However, a new family has recently been uncovered, the so-called hot DQ white dwarfs, which have surface compositions dominated by carbon and oxygen with little or no trace of hydrogen and helium (Dufour et al. 2007, 2008, 2010. Deriving precise atmospheric parameters for these objects (such as the effective temperature and the surface gravity requires detailed modeling of spectral line profiles. Stark broadening parameters are of crucial importance in that context. We present preliminary results from our new generation of model atmospheres including the latest Stark broadening calculations for C II lines and discuss the implications as well as future work that remains to be done.

  13. Quantum confinement effect in Bi anti-dot thin films with tailored pore wall widths and thicknesses

    International Nuclear Information System (INIS)

    Park, Y.; Hirose, Y.; Fukumura, T.; Hasegawa, T.; Nakao, S.; Xu, J.

    2014-01-01

    We investigated quantum confinement effects in Bi anti-dot thin films grown on anodized aluminium oxide templates. The pore wall widths (w Bi ) and thickness (t) of the films were tailored to have values longer or shorter than Fermi wavelength of Bi (λ F  = ∼40 nm). Magnetoresistance measurements revealed a well-defined weak antilocalization effect below 10 K. Coherence lengths (L ϕ ) as functions of temperature were derived from the magnetoresistance vs field curves by assuming the Hikami-Larkin-Nagaoka model. The anti-dot thin film with w Bi and t smaller than λ F showed low dimensional electronic behavior at low temperatures where L ϕ (T) exceed w Bi or t

  14. Quantum confinement effect in Bi anti-dot thin films with tailored pore wall widths and thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y., E-mail: youngok@chem.s.u-tokyo.ac.jp [Department of Chemistry, The University of Tokyo, Bunkyo, Tokyo 113-0033 (Japan); Hirose, Y.; Fukumura, T.; Hasegawa, T. [Department of Chemistry, The University of Tokyo, Bunkyo, Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); CREST, JST, Bunkyo, Tokyo 113-0033 (Japan); Nakao, S. [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); CREST, JST, Bunkyo, Tokyo 113-0033 (Japan); Xu, J. [School of Engineering, Brown University, Providence, Rhode Island 02912 (United States)

    2014-01-13

    We investigated quantum confinement effects in Bi anti-dot thin films grown on anodized aluminium oxide templates. The pore wall widths (w{sub Bi}) and thickness (t) of the films were tailored to have values longer or shorter than Fermi wavelength of Bi (λ{sub F} = ∼40 nm). Magnetoresistance measurements revealed a well-defined weak antilocalization effect below 10 K. Coherence lengths (L{sub ϕ}) as functions of temperature were derived from the magnetoresistance vs field curves by assuming the Hikami-Larkin-Nagaoka model. The anti-dot thin film with w{sub Bi} and t smaller than λ{sub F} showed low dimensional electronic behavior at low temperatures where L{sub ϕ}(T) exceed w{sub Bi} or t.

  15. Stark parameters of some asymmetrical Si II lines

    International Nuclear Information System (INIS)

    Ferhat, B; Azzouz, Y; Redon, R; Ripert, M; Lesage, A

    2012-01-01

    Six lines of SiII are experimentally studied in pulsed plasma generated by Nd :Yag laser breakdown on pure solid silicon target. A set of experimental Stark parameters of asymmetrical lines are measured in temperature range from 14 000 K to 18 000 K (using Boltzmann plot). Calculated values of the electron density (using Griem's formula) vary from 1.7 to 6.1 × 10 23 m −3 . Processed spectral lines are 333.982 nm (3s 2 4p -3s 2 6s) and 397.746 nm, 399.177 nm, 399.801 nm, 401.622 nm (3d' 2 F 0 -4f' 4 G) and (3d' 2 F 0 - 4f' 2 G) of astrophysical interest. Asymmetrical line shapes are synthesized by a sum of two semi-Lorentzian distributions. The obtained fit is in good agreement with the measured spectra.

  16. Comments on confinement criteria

    International Nuclear Information System (INIS)

    Kurak, V.; Schroer, B.; Swieca, J.A.

    1977-01-01

    For a QED 2 model with SU(n) flavour, the nature of the physical states space is more subtle than one expects on the basis of the loop criterion for confinement. One may have colour confinement without confinement of the fundamental flavour representation. Attempts to formulate confinement criteria in which the quark fields play a more fundamental role are discussed [pt

  17. Effect of Electrical Field on Colloidal CdSe/ZnS Quantum Dots

    International Nuclear Information System (INIS)

    Zhi-Bing, Wang; Jia-Yu, Zhang; Yi-Ping, Cui; Yong-Hong, Ye

    2008-01-01

    We fabricate the hybrid films of colloidal CdSe/ZnS quantum dots (QDs) and poly(9-vinylcarbazole) (PVK) sandwiched between two electrodes. The voltage and temperature dependences of the electroluminescence (EL) are measured. The quantum-confined Stark effect of colloidal QDs is clearly observed. To explore the mechanism in the QD EL, hybrid films are fabricated with different concentrations of colloidal QDs. Electrons and holes are proposed to be separately transported in QDs and PVK, respectively

  18. Qualitative quark confinement

    International Nuclear Information System (INIS)

    Jackson, T.L.

    1976-01-01

    The infrared limit in asymptotically free non-abelian gauge theories using recently developed non-perturbative methods which allow derivation of zero momentum theorems for Green's functions and vertices is described. These low-energy theorems are compared to the infrared behavior predicted from the renormalization group equation when the existence of an infrared fixed point is assumed. A set of objects is exhibited whose low energy theorems violate the scaling behavior predicted by the renormalization group. This shows that the assumed fixed point cannot exist and that in the Landau gauge the effective charge becomes infinite in the infrared. Qualitatively this implies that as an attempt is made to separate elementary quanta the interaction between the quanta becomes arbitrarily strong. This indicates at least that the theories studied are capable of color confinement. Results are true only for theories with large numbers of quarks. This opens the possibility that large numbers of quarks are actually necessary for confinement

  19. Implementation of quantum logic gates via Stark-tuned Förster resonance in Rydberg atoms

    Science.gov (United States)

    Huang, Xi-Rong; Hu, Chang-Sheng; Shen, Li-Tuo; Yang, Zhen-Biao; Wu, Huai-Zhi

    2018-02-01

    We present a scheme for implementation of controlled-Z and controlled-NOT gates via rapid adiabatic passage and Stark-tuned Förster resonance. By sweeping the Förster resonance once without passing through it and adiabatically tuning the angle-dependent Rydberg-Rydberg interaction of the dipolar nature, the system can be effectively described by a two-level system with the adiabatic theorem. The single adiabatic passage leads to a gate fidelity as high as 0.999 and a greatly reduced gate operation time. We investigate the scheme by considering an actual atomic level configuration with rubidium atoms, where the fidelity of the controlled-Z gate is still higher than 0.99 under the influence of the Zeeman effect.

  20. Effects of confinement, geometry, inlet velocity profile, and Reynolds number on the asymmetry of opposed-jet flows

    Science.gov (United States)

    Ansari, Abtin; Chen, Kevin K.; Burrell, Robert R.; Egolfopoulos, Fokion N.

    2018-04-01

    The opposed-jet counterflow configuration is widely used to measure fundamental flame properties that are essential targets for validating chemical kinetic models. The main and key assumption of the counterflow configuration in laminar flame experiments is that the flow field is steady and quasi-one-dimensional. In this study, experiments and numerical simulations were carried out to investigate the behavior and controlling parameters of counterflowing isothermal air jets for various nozzle designs, Reynolds numbers, and surrounding geometries. The flow field in the jets' impingement region was analyzed in search of instabilities, asymmetries, and two-dimensional effects that can introduce errors when the data are compared with results of quasi-one-dimensional simulations. The modeling involved transient axisymmetric numerical simulations along with bifurcation analysis, which revealed that when the flow field is confined between walls, local bifurcation occurs, which in turn results in asymmetry, deviation from the one-dimensional assumption, and sensitivity of the flow field structure to boundary conditions and surrounding geometry. Particle image velocimetry was utilized and results revealed that for jets of equal momenta at low Reynolds numbers of the order of 300, the flow field is asymmetric with respect to the middle plane between the nozzles even in the absence of confining walls. The asymmetry was traced to the asymmetric nozzle exit velocity profiles caused by unavoidable imperfections in the nozzle assembly. The asymmetry was not detectable at high Reynolds numbers of the order of 1000 due to the reduced sensitivity of the flow field to boundary conditions. The cases investigated computationally covered a wide range of Reynolds numbers to identify designs that are minimally affected by errors in the experimental procedures or manufacturing imperfections, and the simulations results were used to identify conditions that best conform to the assumptions of

  1. Effect of conductivity variations within the electric double layer on the streaming potential estimation in narrow fluidic confinements.

    Science.gov (United States)

    Das, Siddhartha; Chakraborty, Suman

    2010-07-06

    In this article, we investigate the implications of ionic conductivity variations within the electrical double layer (EDL) on the streaming potential estimation in pressure-driven fluidic transport through narrow confinements. Unlike the traditional considerations, we do not affix the ionic conductivities apriori by employing preset values of dimensionless parameters (such as the Dukhin number) to estimate the streaming potential. Rather, utilizing the Gouy-Chapman-Grahame model for estimating the electric potential and charge density distribution within the Stern layer, we first quantify the Stern layer electrical conductivity as a function of the zeta potential and other pertinent parameters quantifying the interaction of the ionic species with the charged surface. Next, by invoking the Boltzmann model for cationic and anionic distribution within the diffuse layer, we obtain the diffuse layer electrical conductivity. On the basis of these two different conductivities pertaining to the two different portions of the EDL as well as the bulk conductivity, we define two separate Dukhin numbers that turn out to be functions of the dimensionless zeta potential and the channel height to Debye length ratio. We derive analytical expressions for the streaming potential as a function of the fundamental governing parameters, considering the above. The results reveal interesting and significant deviations between the streaming potential predictions from the present considerations against the corresponding predictions from the classical considerations in which electrochemically consistent estimates of variable EDL conductivity are not traditionally accounted for. In particular, it is revealed that the variations of streaming potential with zeta potential are primarily determined by the competing effects of EDL electromigration and ionic advection. Over low and high zeta potential regimes, the Stern layer and diffuse layer conductivities predominantly dictate the streaming

  2. Investigation of effect of stopping supply flow into the cell on the confinement of the radioactive materials under fire accident

    International Nuclear Information System (INIS)

    Abe, Hitoshi; Watanabe, Koji

    1999-03-01

    On November 20th 1997, a fire accident happened at Uranium Enrichment Research Laboratory, Tokai, Japan Atomic Energy Research Institute and ventilation filters in the laboratory clogged. When fire accident occurs in a controlled area, a large quantity of smoke generates in the area and dropping exhaust flow from the area by the clogging of ventilation filters and rising pressure in the area are caused. Moreover, leakage of smoke including radioactive materials from the area by the pressure rising is expected. To prevent the leakage, it is expected that stopping supply flow to the area during a fire accident is effective, however, quantitative evaluation about this effect has not been performed. By using CELVA-1D code, one-dimensional thermofluid analysis code, this effect is evaluated quantitatively by modeling the laboratory and estimating source terms released during the fire accident. As the results, it has been found that the efficiency of confinement of the radioactive materials into the area is preserved in the slightly long period of time in case of stopping supply flow to the area, however, this effect can be neglected in case that scale of fire accident is relatively large. (author)

  3. Stark broadening of the 1640- and 4686-A lines of ionized helium

    International Nuclear Information System (INIS)

    Greene, R.L.

    1976-01-01

    The Stark-broadened profiles of the 1640- and 4686-A lines of ionized helium have been calculated using an approximation to the electron broadening operator in the unified classical-path theory of Smith, Vidal, and Cooper. The approximation is such that the results reproduce the time-ordered impact-theory results in the line center, and the ionized-radiator quasistatic results in the far wings. Sample calculations at n/sub e/ = 10/sup 17/ cm/sup -3/ and T = 40 000 degreeK are found to give significantly more narrow profiles than the corresponding modified-impact-theory results because of a different treatment of the lower-state interaction. Indirect comparison with experiment indicates that the calculated lines are too narrow, but it is expected that the inclusion of neglected effects of ion dynamics and inelastic collisions would improve agreement

  4. Quality Of Starking Apples After Exposure To Gamma Radiation As A Quarantine Treatment

    International Nuclear Information System (INIS)

    Mansour, M.; Mohamad, F.; Al-Bachir, M.

    2004-01-01

    Starking apples approaching physiological maturity were exposed, immediately after harvest, to gamma radiation doses ranging from 100 to 400 Gy. The irradiated fruit were stored for six months in a cold storage facility at 1±1 deg. C and 90±5 % RH. Effects of gamma radiation on weight loss, fruit firmness, pH of fruit juice, fruit taste, color and visible injuries were evaluated. The results showed that gamma irradiation increased weight loss, particularly in the first 45 days of storage. Doses higher than 200 Gy, on the other hand, reduced apple firmness after 45 days of storage while a 400 Gy dose decreased fruit pH immediately after irradiation. (Authors)

  5. Stark tuning and electrical charge state control of single divacancies in silicon carbide

    Science.gov (United States)

    de las Casas, Charles F.; Christle, David J.; Ul Hassan, Jawad; Ohshima, Takeshi; Son, Nguyen T.; Awschalom, David D.

    2017-12-01

    Neutrally charged divacancies in silicon carbide (SiC) are paramagnetic color centers whose long coherence times and near-telecom operating wavelengths make them promising for scalable quantum communication technologies compatible with existing fiber optic networks. However, local strain inhomogeneity can randomly perturb their optical transition frequencies, which degrades the indistinguishability of photons emitted from separate defects and hinders their coupling to optical cavities. Here, we show that electric fields can be used to tune the optical transition frequencies of single neutral divacancy defects in 4H-SiC over a range of several GHz via the DC Stark effect. The same technique can also control the charge state of the defect on microsecond timescales, which we use to stabilize unstable or non-neutral divacancies into their neutral charge state. Using fluorescence-based charge state detection, we show that both 975 nm and 1130 nm excitation can prepare their neutral charge state with near unity efficiency.

  6. Dispersion of γ-Alumina Nano-Sized Spherical Particles in a Calamitic Liquid Crystal. Study and Optimization of the Confinement Effects

    Science.gov (United States)

    Diez-Berart, Sergio; López, David O.; Sebastián, Nerea; de la Fuente, María Rosario; Salud, Josep; Robles-Hernández, Beatriz; Pérez-Jubindo, Miguel Ángel

    2014-01-01

    We report an experimental study on confined systems formed by butyloxybenzylidene octylaniline liquid crystal (4O.8) + γ-alumina nanoparticles. The effects of the confinement in the thermal and dielectric properties of the liquid crystal under different densities of nanoparticles is analyzed by means of high resolution Modulated Differential Scanning Calorimetry (MDSC) and broadband dielectric spectroscopy. First, a drastic depression of the N-I and SmA-N transition temperatures is observed with confinement, the more concentration of nanoparticles the deeper this depression is, driving the nematic range closer to the room temperature. An interesting experimental law is found for both transition temperatures. Second, the change in shape of the heat capacity peaks is quantified by means of the full width half maximum (FWHM). Third, the confinement does not noticeably affect the molecular dynamics. Finally, the combination of nanoparticles and the external applied electric field tends to favor the alignment of the molecules in metallic cells. All these results indicate that the confinement of liquid crystals by means of γ-alumina nanoparticles could be optimum for liquid crystal-based electrooptic devices. PMID:28788528

  7. Confinement dynamics in the reversed field pinch

    International Nuclear Information System (INIS)

    Schoenberg, K.F.

    1988-01-01

    The study of basic transport and confinement dynamics is central to the development of the reversed field pinch (RFP) as a confinement concept. Thus, the goal of RFP research is to understand the connection between processes that sustain the RFP configuration and related transport/confinement properties. Recently, new insights into confinement have emerged from a detailed investigation of RFP electron and ion physics. These insights derive from the recognition that both magnetohydrodynamic (MHD) and electron kinetic effects play an important and strongly coupled role in RFP sustainment and confinement dynamics. In this paper, we summarize the results of these studies on the ZT-40M experiment. 8 refs

  8. Effects of ECRH power and safety factor on laser blow-off injected impurity confinement in TCV

    International Nuclear Information System (INIS)

    Scavino, E; Bakos, J; Weisen, H

    2004-01-01

    Evidence from injection into the TCV device of laser ablated, non-recycling silicon impurities shows that the transport of impurities confinement can be remarkably different from that of energy. The ratio of impurity to energy confinement times ranges from near unity in Ohmic discharges to 5 in the presence of high power ECCD. In Ohmic discharges in deuterium, above a threshold of density and of safety factor near q 95 = 4.5, the impurity confinement time increases abruptly by a factor of 2 and is sometimes accompanied by indefinite retention of non-recycling impurities within the sawtooth mixing radius

  9. Geometric size effect on the extrinsic Gilbert damping in laterally confined magnetic structures

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hyon-Seok [Department of Emerging Materials Science, DGIST, Daegu 42988 (Korea, Republic of); Lee, Kyeong-Dong [Department of Materials Science and Engineering, KAIST, Daejeon 34141 (Korea, Republic of); You, Chun-Yeol [Department of Physics, Inha University, Incheon 22212 (Korea, Republic of); Park, Byong-Guk [Department of Materials Science and Engineering, KAIST, Daejeon 34141 (Korea, Republic of); Hong, Jung-Il, E-mail: jihong@dgist.ac.kr [Department of Emerging Materials Science, DGIST, Daegu 42988 (Korea, Republic of); Research Centre for Emerging Materials, DGIST, Daegu 42988 (Korea, Republic of)

    2016-05-15

    We investigated spin dynamics in micron-length scale patterned thin films using the GPU-based micromagnetic simulation program. Spin precessional motion was induced by a Gaussian-pulse magnetic field. The effective Gilbert damping was examined by tracking the precessional motion of the spins, and we found that the damping constant depends on the size and shape of the pattern as well as the externally applied magnetic field. Additional extrinsic damping generated around the edge region was attributed to the dephasing effect between the fundamental spin wave and other spin wave modes. We find that the effect of extrinsic damping could be eliminated by proper adjustments of sample size, external bias field, position, and area of observation. - Highlights: • GPU based micromagnetic simulation of spin dynamics in the micropatterned ferromagnetic films. • Effect of edge regions of the pattern on the Gilbert damping behaviors. • Guide for the analyses of intrinsic magnetic damping in the micron scale patterned films.

  10. The rose petal effect and the role of advancing water contact angles for drop confinement

    DEFF Research Database (Denmark)

    Mandsberg, Nikolaj Kofoed; Taboryski, Rafael J.

    2017-01-01

    We studied the role of advancing water contact angles on superhydrophobic surfaces that exhibited strong pinning effects as known in nature from rose petals. Textured surfaces were engineered in silicon by lithographical techniques. The textures were comprised of hexagonal microstructures...

  11. Evaluation of Surface Runoff Water in a Freshwater Confined Disposal Facility - Effects of Vegetation

    National Research Council Canada - National Science Library

    Price, R

    2002-01-01

    The U.S. Army Engineer Research and Development Center, Vicksburg, MS, is conducting a series of laboratory and field studies to determine the effectiveness of the Simplified Laboratory Runoff Procedure (SLRP...

  12. High beta plasma confinement and neoclassical effects in a small aspect ratio reversed field pinch

    International Nuclear Information System (INIS)

    Hayase, K.; Sugimoto, H.; Ashida, H.

    2003-01-01

    The high β equilibrium and stability of a reversed field pinch (RFP) configuration with a small aspect ratio are theoretically studied. The equilibrium profile, high beta limit and the bootstrap current effect on those are calculated. The Mercier stable critical β decreases with 1/A, but β∼0.2 is permissible at A=2 with help of edge current profile modification. The effect of bootstrap current is evaluated for various pressure and current profiles and cross-sectional shapes of plasma by a self-consistent neoclassical PRSM equilibrium formulation. The high bootstrap current fraction (F bs ) increases the shear stabilization effect in the core region, which enhances significantly the stability β limit compared with that for the classical equilibrium. These features of small aspect ratio RFP, high β and high F bs , and a possibly easier access to the quasi-single helicity state beside the intrinsic compact structure are attractive for the feasible economical RFP reactor concept. (author)

  13. Confinement and surface effects on the physical properties of rhombohedral-shape hematite (α-Fe{sub 2}O{sub 3}) nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Luna, Carlos, E-mail: carlos.lunacd@uanl.edu.mx [Universidad Autónoma de Nuevo León (UANL), Av. Universidad S/N, San Nicolás de los Garza, Nuevo León 66455 (Mexico); Cuan-Guerra, Aída D. [Universidad Autónoma de Nuevo León (UANL), Av. Universidad S/N, San Nicolás de los Garza, Nuevo León 66455 (Mexico); Barriga-Castro, Enrique D. [Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo No. 140, Saltillo, 25294 Coahuila (Mexico); Núñez, Nuria O. [Instituto de Ciencia de Materiales de Sevilla (ICMS), CSIC-US, Avda. Americo Vespucio n° 49, Isla de la Cartuja, 41092 Sevilla (Spain); Mendoza-Reséndez, Raquel [Universidad Autónoma de Nuevo León (UANL), Av. Universidad S/N, San Nicolás de los Garza, Nuevo León 66455 (Mexico)

    2016-08-15

    Highlights: • Uniform rhombohedral hematite nanocrystals (RHNCs) have been obtained. • A detailed formation mechanism of these HNCS has been proposed. • Phonon confinement effects were revealed in the RHNCS vibrational bands. • Quantum confinement effects on the optical and electronic properties were found. - Abstract: Morphological, microstructural and vibrational properties of hematite (α-Fe{sub 2}O{sub 3}) nanocrystals with a rhombohedral shape and rounded edges, obtained by forced hydrolysis of iron(III) solutions under a fast nucleation, have been investigated in detail as a function of aging time. These studies allowed us to propose a detailed formation mechanism and revealed that these nanocrystals are composed of four {104} side facets, two {110} faces at the edges of the long diagonal of the nanocrystals and two {−441} facets as the top and bottom faces. Also, the presence of nanoscopic pores and fissures was evidenced. The vibrational bands of such nanocrystals were shifted to lower frequencies in comparison with bulk hematite ones as the nanocrystal size was reduced due to phonon confinement effects. Also, the indirect and direct transition band gaps displayed interesting dependences on the aging time arising from quantum confinement and surface effects.

  14. Promoting effect of ethanol on dewetting transition in the confined region of melittin tetramer

    International Nuclear Information System (INIS)

    Ren Xiuping; Zhou Bo; Wang Chunlei

    2012-01-01

    To study the influence of ethanol molecules on the melittin tetramer folding, we investigated the dewetting transition of the melittin tetramer immersed in pure water and 8% aqueous ethanol solution (mass fraction) by the molecular dynamics simulations. We found that the marked dewetting transitions occurred inside a nanoscale channel of the melittin tetramer both in pure water and in aqueous ethanol solution. Also, ethanol molecules promoted this dewetting transition. We attributed this promoting effect to ethanol molecules which prefer to locate at the liquid-vapor interface and decrease the liquid-vapor surface energy. The results provide insight into the effect of ethanol on the water dewetting phenomena. (authors)

  15. The effect of constraint on fuel-coolant interactions in a confined geometry

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.; Corradini, M.L. [Univ. of Wisconsin, Madison, WI (United States)

    1995-09-01

    A Fuel-Coolant Interaction (FCI or vapor explosion) is the phenomena in which a hot liquid rapidly transfers its internal energy into a surrounding colder and more volatile liquid. The energetics of such a complex multi-phase and multi-component phenomenon is partially determined by the surrounding boundary conditions. As one of the boundary conditions, we studied the effect of constraint on FCIs. The WFCI-D series of experiments were performed specifically to observe this effect. The results from these and our previous WFCI tests as well as those of other investigators are compared.

  16. A simple and effective method to keep earthworms confined to open-top mesocosms

    NARCIS (Netherlands)

    Lubbers, I.M.; Groenigen, van J.W.

    2013-01-01

    Earthworms can have a profound effect on a myriad of soil physical, chemical and microbial parameters. To better understand their role in the soil, they are often studied under controlled conditions. However, a persistent problem in such controlled experiments is the ability of earthworms to escape

  17. Quantum-size effects in the energy loss of charged particles interacting with a confined two-dimensional electron gas

    International Nuclear Information System (INIS)

    Borisov, A. G.; Juaristi, J. I.; Muino, R. Diez; Sanchez-Portal, D.; Echenique, P. M.

    2006-01-01

    Time-dependent density-functional theory is used to calculate quantum-size effects in the energy loss of antiprotons interacting with a confined two-dimensional electron gas. The antiprotons follow a trajectory normal to jellium circular clusters of variable size, crossing every cluster at its geometrical center. Analysis of the characteristic time scales that define the process is made. For high-enough velocities, the interaction time between the projectile and the target electrons is shorter than the time needed for the density excitation to travel along the cluster. The finite-size object then behaves as an infinite system, and no quantum-size effects appear in the energy loss. For small velocities, the discretization of levels in the cluster plays a role and the energy loss does depend on the system size. A comparison to results obtained using linear theory of screening is made, and the relative contributions of electron-hole pair and plasmon excitations to the total energy loss are analyzed. This comparison also allows us to show the importance of a nonlinear treatment of the screening in the interaction process

  18. Strong Quantum Confinement Effects and Chiral Excitons in Bio-Inspired ZnO–Amino Acid Cocrystals

    KAUST Repository

    Muhammed, Madathumpady Abubaker Habeeb

    2018-02-20

    Elucidating the underlying principles behind band gap engineering is paramount for the successful implementation of semiconductors in photonic and optoelectronic devices. Recently it has been shown that the band gap of a wide and direct band gap semiconductor, such as ZnO, can be modified upon cocrystallization with amino acids, with the role of the biomolecules remaining unclear. Here, by probing and modeling the light-emitting properties of ZnO-amino acid cocrystals, we identify the amino acids\\' role on this band gap modulation and demonstrate their effective chirality transfer to the interband excitations in ZnO. Our 3D quantum model suggests that the strong band edge emission blue-shift in the cocrystals can be explained by a quasi-periodic distribution of amino acid potential barriers within the ZnO crystal lattice. Overall, our findings indicate that biomolecule cocrystallization can be used as a truly bio-inspired means to induce chiral quantum confinement effects in quasi-bulk semiconductors.

  19. Effects of the Ponderomotive Terms in the Thermal Transport on the Hydrodynamic Flow in Inertial Confinement Fusion Experiments

    Science.gov (United States)

    Goncharov, V. N.; Li, G.

    2004-11-01

    Electron thermal transport is significantly modified by the laser-induced electric fields near the turning point and at the critical surface. It is shown that such modifications lead to an additional limitation in the heat flux in laser-produced plasmas. Furthermore, the ponderomotive terms in the heat flux lead to a steepening in the electron-density profile, which is shown to be a larger effect than the profile modification due to the ponderomotive force [W.L. Kruer, The Physics of Laser--Plasma Interactions, Frontiers in Physics, Vol. 73, edited by D. Pines (Addison-Wesley, Redwood City, CA, 1988)]. To take into account the nonlocal effects, the delocalization model developed in Ref. 2 [G.P. Schurtz, Ph.D. Nicolaï, and M. Busquet, Phys. Plasmas 7, 4238 (2000).] has been applied to conditions relevant to ICF experiments. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-92SF19460.

  20. Suppression of the internal electric field effects in ZnO/Zn0.7Mg0.3O quantum wells by ion-implantation induced intermixing

    International Nuclear Information System (INIS)

    Davis, J A; Dao, L V; Wen, X; Ticknor, C; Hannaford, P; Coleman, V A; Tan, H H; Jagadish, C; Koike, K; Sasa, S; Inoue, M; Yano, M

    2008-01-01

    Strong suppression of the effects caused by the internal electric field in ZnO/ZnMgO quantum wells following ion-implantation and rapid thermal annealing, is revealed by photoluminescence, time-resolved photoluminescence, and band structure calculations. The implantation and annealing induces Zn/Mg intermixing, resulting in graded quantum well interfaces. This reduces the quantum-confined Stark shift and increases electron-hole wavefunction overlap, which significantly reduces the exciton lifetime and increases the oscillator strength

  1. Size scaling effects on the particle density fluctuations in confined plasmas

    International Nuclear Information System (INIS)

    Vazquez, Federico; Markus, Ferenc

    2009-01-01

    In this paper, memory and nonlocal effects on fluctuating mass diffusion are addressed in the context of fusion plasmas. Nonlocal effects are included by considering a diffusivity coefficient depending on the size of the container in the transverse direction to the applied magnetic field. It is obtained by resorting to the general formulation of the extended version of irreversible thermodynamics in terms of the higher order dissipative fluxes. The developed model describes two different types of the particle density time correlation function. Both have been observed in tokamak and nontokamak devices. These two kinds of time correlation function characterize the wave and the diffusive transport mechanisms of particle density perturbations. A transition between them is found, which is controlled by the size of the container. A phase diagram in the (L,2π/k) space describes the relation between the dynamics of particle density fluctuations and the size L of the system together with the oscillating mode k of the correlation function.

  2. Cooling Performance of a Partially-Confined FC-72 Spray: The Effect of Dissolved Air (Postprint)

    Science.gov (United States)

    2007-01-01

    plate FC = FC-72 fluid htr = heater conductive layer int = interface between heater substrate and insulating support post m = measured s = heater... microporous enhanced surface and a plain reference surface, and developed correlations for nucleate boiling and CHF. The results of the experiment...8Rainey, K. N., You, S. M., and Lee, S., “Effect of Pressure, Subcooling, and Dissolved Gas on Pool Boiling Heat Transfer from Microporous Surfaces

  3. Quantum Effects of Magnons Confined in Multilayered CoPd Ferromagnets

    Science.gov (United States)

    Nwokoye, Chidubem; Siddique, Abid; Bennett, Lawrence; Della Torre, Edward; IMR Team

    Quantum entanglement is a unique quantum mechanical effect that arises from the correlation between two or more quantum systems. The fundamental aspects of magnon entanglement has been theoretical studied and the interest in developing technologies that exploits quantum entanglement is growing. We discuss the results of an experimental study of magnon entanglement in multilayered CoPd ferromagnets. Our findings are interesting and will aid in developing novel magnonic devices. Office of Naval Research.

  4. A quantitative analysis of the effect of ELMs on H-mode thermal energy confinement in DIII-D

    International Nuclear Information System (INIS)

    Schissel, D.P.; Osborne, T.H.; Carlstrom, T.N.; Zohm, H.

    1992-06-01

    The desire to reach ignition in future tokamaks the energy confinement time critical parameter. The most promising enhanced (over L-mode) confinement regime is the H-mode, discovered on ASDEX with neutral beam heating, and then confirmed with various auxiliary heating sources on numerous machines. The knowledge of how H-mode τ E depends on different parameters is of chemical importance to the performance predictions for next generation devices. Inter-machine H-mode total and thermal energy confinement (τ th ) scalings, which are being utilized to predict ITER thermal energy confinement, have been created for discharges where the Edge Localized Mode (ELM) instability has not been present. Confinement scaling research hm concentrated on this ELM-free H-mode phase mostly owing to the difficulty of characterizing ELM behavior. To date, long pulse H-mode operation has only been achieved by utilizing ELMs to flush out unpurities and prevent radiative collapse of the discharge. Unfortunately, accompanying the ELMS is a decrease of the plasma stored energy due to the expulsion of particles near the edge of the discharge resulting in a reduction of the steep edge electron density gradient. In order to predict ITER's H-mode τ th in the presence of ELMS, an estimated 25% confinement degradation factor has been applied to the ELM-free predictions. Our work, summarized in this paper, indicates that this 25% reduction factor is too large and instead a value of approximately 15% would be more appropriate

  5. Simple theoretical analysis of the photoemission from quantum confined effective mass superlattices of optoelectronic materials

    Directory of Open Access Journals (Sweden)

    Debashis De

    2011-07-01

    Full Text Available The photoemission from quantum wires and dots of effective mass superlattices of optoelectronic materials was investigated on the basis of newly formulated electron energy spectra, in the presence of external light waves, which controls the transport properties of ultra-small electronic devices under intense radiation. The effect of magnetic quantization on the photoemission from the aforementioned superlattices, together with quantum well superlattices under magnetic quantization, has also been investigated in this regard. It appears, taking HgTe/Hg1−xCdxTe and InxGa1−xAs/InP effective mass superlattices, that the photoemission from these quantized structures is enhanced with increasing photon energy in quantized steps and shows oscillatory dependences with the increasing carrier concentration. In addition, the photoemission decreases with increasing light intensity and wavelength as well as with increasing thickness exhibiting oscillatory spikes. The strong dependence of the photoemission on the light intensity reflects the direct signature of light waves on the carrier energy spectra. The content of this paper finds six different applications in the fields of low dimensional systems in general.

  6. Effect of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal solar cells.

    Science.gov (United States)

    Sahin, Mehmet

    2018-05-23

    In this study, the effects of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal (QDNC) solar cells have been investigated in detail. For this purpose, the conventional, i.e. original, detailed balance model, developed by Shockley and Queisser to calculate an upper limit for the conversion efficiency of silicon p-n junction solar cells, is modified in a simple and effective way to calculate the conversion efficiency of core/shell QDNC solar cells. Since the existing model relies on the gap energy ([Formula: see text]) of the solar cell, it does not make an estimation about the effect of QDNC materials on the efficiency of the solar cells, and gives the same efficiency values for several QDNC solar cells with the same [Formula: see text]. The proposed modification, however, estimates a conversion efficiency in relation to the material properties and also the confinement type of the QDNCs. The results of the modified model show that, in contrast to the original one, the conversion efficiencies of different QDNC solar cells, even if they have the same [Formula: see text], become different depending upon the confinement type and shell material of the core/shell QDNCs, and this is crucial in the design and fabrication of the new generation solar cells to predict the confinement type and also appropriate QDNC materials for better efficiency.

  7. Effect of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal solar cells

    Science.gov (United States)

    Sahin, Mehmet

    2018-05-01

    In this study, the effects of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal (QDNC) solar cells have been investigated in detail. For this purpose, the conventional, i.e. original, detailed balance model, developed by Shockley and Queisser to calculate an upper limit for the conversion efficiency of silicon p–n junction solar cells, is modified in a simple and effective way to calculate the conversion efficiency of core/shell QDNC solar cells. Since the existing model relies on the gap energy () of the solar cell, it does not make an estimation about the effect of QDNC materials on the efficiency of the solar cells, and gives the same efficiency values for several QDNC solar cells with the same . The proposed modification, however, estimates a conversion efficiency in relation to the material properties and also the confinement type of the QDNCs. The results of the modified model show that, in contrast to the original one, the conversion efficiencies of different QDNC solar cells, even if they have the same , become different depending upon the confinement type and shell material of the core/shell QDNCs, and this is crucial in the design and fabrication of the new generation solar cells to predict the confinement type and also appropriate QDNC materials for better efficiency.

  8. Numerical Study of Thermal Radiation Effect on Confined Turbulent Free Triangular Jets

    Directory of Open Access Journals (Sweden)

    Kiyan Parham

    2013-01-01

    Full Text Available The present study investigates the effects of thermal radiation on turbulent free triangular jets. Finite volume method is applied for solving mass, momentum, and energy equations simultaneously. Discrete ordinate method is used to determine radiation transfer equation (RTE. Results are presented in terms of velocity, kinetic energy, and its dissipation rate fields. Results show that thermal radiation speeds the development of velocity on the jet axis and enhances kinetic energy; therefore, when radiation is added to free jet its mixing power, due to extra kinetic energy, increases.

  9. Effect of pointed and diffused air injection on premixed flame confined in a Rijke tube

    Directory of Open Access Journals (Sweden)

    Nilaj N. Deshmukh

    2016-12-01

    Full Text Available The coupling between pressure fluctuations and unsteady heat release in a combustion systems results in acoustic oscillations inside the combustion system. These acoustic oscillations, when grow sufficiently, may cause serious structural damage thereby reducing the lifespan of jet engines, gas turbines, and industrial burners. The aim of the first part of study is to define acoustically stable and unstable regions. The second part is focused on studying the effect of change in pressure field near the flame on the amplitude and frequency of the oscillations of instability. This study is carried out for three-burner positions and equivalence ratio of 0.7 by varying heat supply and total flow rate. The results show two acoustically unstable regions for 0.1 and 0.2 burner positions and only one acoustically unstable region for 0.25 burner position. The effect of pointed injection and diffused injection over a premixed flame on the sound pressure level was studied. The results show for burner position of x/L = 0.2 there is 25 dB suppression is possible using pointed injection at higher total flow rate. The experiment of diffused injection shows sound amplification more than 12 dB was observed.

  10. Confinement Effects on Host Chain Dynamics in Polymer Nanocomposite Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Kyle J. [Department; Glynos, Emmanouil [Department; Maroulas, Serafeim-Dionysios [Department; Narayanan, Suresh [Advanced; Sakellariou, Georgios [Department; Green, Peter F. [Department; National

    2017-09-07

    Incorporating nanoparticles (NPs) within a polymer host to create polymer nanocomposites (PNCs) while having the effect of increasing the functionality (e.g., sensing, energy conversion) of these materials influences other properties. One challenge is to understand the effects of nanoparticles on the viscosity of nanoscale thick polymer films. A new mechanism that contributes to an enhancement of the viscosity of nanoscale thick polymer/nanoparticle films is identified. We show that while the viscosities of neat homopolymer poly(2-vinylpyridine) (P2VP) films as thin as 50 nm remained the same as the bulk, polymer/nanoparticle films containing P2VP brush-coated gold NPs, spaced 50 nm apart, exhibited unprecedented increases in viscosities of over an order of magnitude. For thicker films or more widely separated NPs, the chain dynamics and viscosities were comparable to the bulk values. These results - NP proximities and suppression of their dynamics - suggest a new mechanism by which the viscosities of polymeric liquids could be controlled for nanoscale applications.

  11. Confinement of sows for different periods during lactation: effects on behaviour and lesions of sows and performance of piglets.

    Science.gov (United States)

    Lambertz, C; Petig, M; Elkmann, A; Gauly, M

    2015-08-01

    Alternatives to farrowing crates with continuous confinement of the sow are urgently needed because the animal welfare is negatively impacted. Given the increase of herd sizes, practical experience with loose-housing is needed to force the implementation of these systems in the field. Next to aspects of labour efficiency, detrimental piglet mortality rates that may occur during the first days postpartum (pp) is a major criticism. Therefore, loose-housing after a crating period limited to the first days pp might be a feasible alternative to improve welfare under intensive production conditions. The aim was to investigate the effect of crating sows during lactation for different periods on their behaviour and integument alterations and on piglets' performance. Gilts from a commercial herd were observed from 5 to 26 days pp and housed in farrowing crates (1.85×2.50 m) that could be altered between confinement crates and loose-housing pens. Animals were divided into three groups, that were either crated continuously from birth until weaning (Group A, n=55), until 14 days pp (Group B; n=54) or 7 days pp (Group C, n=59). The behaviour of six randomly selected gilts per group was video recorded from 5 to 26 days pp and analysed by time sampling technique. Lesions on the legs, shoulder and lumbar vertebra were scored on days 7, 14 and 25 pp. Piglets were weighed weekly, causes of losses recorded and weight losses of gilts measured. Not different between groups (P>0.05), animals spent 72 to 76% lying laterally, 14 to 17% lying in abdominal or semi-abdominal position, 9 to 10% standing and 1 to 3% sitting. B-sows were lying longer in week 3 and 4 of lactation compared to A- and C-sows (P0.05), whereas almost 90% of the losses occurred in the first week pp. In conclusion, loose-housing of lactating gilts after a reduced postnatal crating period of 7 days affected neither the activity level of the gilts and lesions on the integument nor pre-weaning mortality. Therefore, it is

  12. Is the effect of alcohol on risk of stroke confined to highly stressed persons?

    DEFF Research Database (Denmark)

    Nielsen, N R; Truelsen, T; Barefoot, J C

    2005-01-01

    BACKGROUND: Psychological stress and alcohol are both suggested as risk factors for stroke. Further, there appears to be a close relation between stress and alcohol consumption. Several experimental studies have found alcohol consumption to reduce the immediate effects of stress in a laboratory...... setting. We aimed to examine whether the association between alcohol and stroke depends on level of self-reported stress in a large prospective cohort. METHODS: The 5,373 men and 6,723 women participating in the second examination of the Copenhagen City Heart Study in 1981-1983 were asked at baseline...... about their self-reported level of stress and their weekly alcohol consumption. The participants were followed-up until 31st of December 1997 during which 880 first ever stroke events occurred. Data were analysed by means of Cox regression modelling. RESULTS: At a high stress level, weekly total...

  13. Effect of confinement on forced convection from a heated sphere in Bingham plastic fluids

    Science.gov (United States)

    Das, Pradipta K.; Gupta, Anoop K.; Nirmalkar, Neelkanth; Chhabra, Raj P.

    2015-05-01

    In this work, the momentum and heat transfer characteristics of a heated sphere in tubes filled with Bingham plastic fluids have been studied. The governing differential equations (continuity, momentum and thermal energy) have been solved numerically over wide ranges of conditions as: Reynolds number, 1 ≤ Re ≤ 100; Prandtl number, 1 ≤ Pr ≤ 100; Bingham number, 0 ≤ Bn ≤ 100 and blockage ratio,0 ≤ λ ≤ 0.5 where λ is defined as the ratio of the sphere to tube diameter. Over this range of conditions, the flow is expected to be axisymmetric and steady. The detailed flow and temperature fields in the vicinity of the surface of the sphere are examined in terms of the streamline and isotherm contours respectively. Further insights are developed in terms of the distribution of the local Nusselt number along the surface of the sphere together with their average values in terms of mean Nusselt number. Finally, the wall effects on drag are present only when the fluid-like region intersects with the boundary wall. However, heat transfer is always influenced by the wall effects. Also, the flow domain is mapped in terms of the yielded- (fluid-like) and unyielded (solid-like) sub-regions. The fluid inertia tends to promote yielding whereas the yield stress counters it. Furthermore, the introduction of even a small degree of yield stress imparts stability to the flow and therefore, the flow remains attached to the surface of the sphere up to much higher values of the Reynolds number than that in Newtonian fluids. The paper is concluded by developing predictive correlations for drag and Nusselt number.

  14. Chernobyl new safe confinement

    International Nuclear Information System (INIS)

    Dodd, L.

    2011-01-01

    The author presents the new safe confinement that will be commissioned at Unit 4 of the Chernobyl NPP in 2015. The confinement will ensure that Chernobyl Unit 4 will be placed in an environmentally safe condition for at least next 100 years. The article highlights the current work status, future perspectives and the feasibility of confinement concept [ru

  15. Geomorphic effects, flood power, and channel competence of a catastrophic flood in confined and unconfined reaches of the upper Lockyer valley, southeast Queensland, Australia

    Science.gov (United States)

    Thompson, Chris; Croke, Jacky

    2013-09-01

    Flooding is a persistent natural hazard, and even modest changes in future climate are believed to lead to large increases in flood magnitude. Previous studies of extreme floods have reported a range of geomorphic responses from negligible change to catastrophic channel change. This paper provides an assessment of the geomorphic effects of a rare, high magnitude event that occurred in the Lockyer valley, southeast Queensland in January 2011. The average return interval of the resulting flood was ~ 2000 years in the upper catchment and decreased to ~ 30 years downstream. A multitemporal LiDAR-derived DEM of Difference (DoD) is used to quantify morphological change in two study reaches with contrasting valley settings (confined and unconfined). Differences in geomorphic response between reaches are examined in the context of changes in flood power, channel competence and degree of valley confinement using a combination of one-dimensional (1-D) and two-dimensional (2-D) hydraulic modelling. Flood power peaked at 9800 W m- 2 along the confined reach and was 2-3 times lower along the unconfined reach. Results from the DoD confirm that the confined reach was net erosional, exporting ~ 287,000 m3 of sediment whilst the unconfined reach was net depositional gaining ~ 209,000 m3 of sediment, 70% of the amount exported from the upstream, confined reach. The major sources of eroded sediment in the confined reach were within channel benches and macrochannel banks resulting in a significant increase of channel width. In the unconfined reach, the benches and floodplains were the major loci for deposition, whilst the inner channel exhibited minor width increases. The presence of high stream power values, and resultant high erosion rates, within the confined reach is a function of the higher energy gradient of the steeper channel that is associated with knickpoint development. Dramatic differences in geomorphic responses were observed between the two adjacent reaches of

  16. Demonstration of Ion Kinetic Effects in Inertial Confinement Fusion Implosions and Investigation of Magnetic Reconnection Using Laser-Produced Plasmas

    Science.gov (United States)

    Rosenberg, M. J.

    2016-10-01

    Shock-driven laser inertial confinement fusion (ICF) implosions have demonstrated the presence of ion kinetic effects in ICF implosions and also have been used as a proton source to probe the strongly driven reconnection of MG magnetic fields in laser-generated plasmas. Ion kinetic effects arise during the shock-convergence phase of ICF implosions when the mean free path for ion-ion collisions (λii) approaches the size of the hot-fuel region (Rfuel) and may impact hot-spot formation and the possibility of ignition. To isolate and study ion kinetic effects, the ratio of N - K =λii /Rfuel was varied in D3He-filled, shock-driven implosions at the Omega Laser Facility and the National Ignition Facility, from hydrodynamic-like conditions (NK 0.01) to strongly kinetic conditions (NK 10). A strong trend of decreasing fusion yields relative to the predictions of hydrodynamic models is observed as NK increases from 0.1 to 10. Hydrodynamics simulations that include basic models of the kinetic effects that are likely to be present in these experiments-namely, ion diffusion and Knudsen-layer reduction of the fusion reactivity-are better able to capture the experimental results. This type of implosion has also been used as a source of monoenergetic 15-MeV protons to image magnetic fields driven to reconnect in laser-produced plasmas at conditions similar to those encountered at the Earth's magnetopause. These experiments demonstrate that for both symmetric and asymmetric magnetic-reconnection configurations, when plasma flows are much stronger than the nominal Alfvén speed, the rate of magnetic-flux annihilation is determined by the flow velocity and is largely insensitive to initial plasma conditions. This work was supported by the Department of Energy Grant Number DENA0001857.

  17. Impact of field-induced quantum confinement on the onset of tunneling field-effect transistors: Experimental verification

    Energy Technology Data Exchange (ETDEWEB)

    Smets, Quentin, E-mail: quentin.smets@imec.be; Verreck, Devin; Heyns, Marc M. [Imec, Kapeldreef 75, 3001 Heverlee (Belgium); KULeuven, 3000 Leuven (Belgium); Verhulst, Anne S.; Martens, Koen; Lin, Han Chung; Kazzi, Salim El; Simoen, Eddy; Collaert, Nadine; Thean, Aaron [Imec, Kapeldreef 75, 3001 Heverlee (Belgium); Raskin, Jean-Pierre [ICTEAM, Université catholique de Louvain, 1348 Louvain-la-Neuve (Belgium)

    2014-11-17

    The Tunneling Field-Effect Transistor (TFET) is a promising device for future low-power logic. Its performance is often predicted using semiclassical simulations, but there is usually a large discrepancy with experimental results. An important reason is that Field-Induced Quantum Confinement (FIQC) is neglected. Quantum mechanical simulations show FIQC delays the onset of Band-To-Band Tunneling (BTBT) with hundreds of millivolts in the promising line-TFET configuration. In this letter, we provide experimental verification of this delayed onset. We accomplish this by developing a method where line-TFET are modeled using highly doped MOS capacitors (MOS-CAP). Using capacitance-voltage measurements, we demonstrate AC inversion by BTBT, which was so far unobserved in MOS-CAP. Good agreement is shown between the experimentally obtained BTBT onset and quantum mechanical predictions, proving the need to include FIQC in all TFET simulations. Finally, we show that highly doped MOS-CAP is promising for characterization of traps deep into the conduction band.

  18. Impact of field-induced quantum confinement on the onset of tunneling field-effect transistors: Experimental verification

    International Nuclear Information System (INIS)

    Smets, Quentin; Verreck, Devin; Heyns, Marc M.; Verhulst, Anne S.; Martens, Koen; Lin, Han Chung; Kazzi, Salim El; Simoen, Eddy; Collaert, Nadine; Thean, Aaron; Raskin, Jean-Pierre

    2014-01-01

    The Tunneling Field-Effect Transistor (TFET) is a promising device for future low-power logic. Its performance is often predicted using semiclassical simulations, but there is usually a large discrepancy with experimental results. An important reason is that Field-Induced Quantum Confinement (FIQC) is neglected. Quantum mechanical simulations show FIQC delays the onset of Band-To-Band Tunneling (BTBT) with hundreds of millivolts in the promising line-TFET configuration. In this letter, we provide experimental verification of this delayed onset. We accomplish this by developing a method where line-TFET are modeled using highly doped MOS capacitors (MOS-CAP). Using capacitance-voltage measurements, we demonstrate AC inversion by BTBT, which was so far unobserved in MOS-CAP. Good agreement is shown between the experimentally obtained BTBT onset and quantum mechanical predictions, proving the need to include FIQC in all TFET simulations. Finally, we show that highly doped MOS-CAP is promising for characterization of traps deep into the conduction band

  19. Effect of the spacer group nature on the optical and electrical properties of confined poly( p-phenylene vinylene) derivatives

    Science.gov (United States)

    Benzarti-Ghédira, Maha; Zahou, Imen; Hrichi, Haikel; Jaballah, Nejmeddine; Ben Chaâbane, Rafik; Majdoub, Mustapha; Ben Ouada, Hafedh

    2015-09-01

    This study is an investigation about the effect of chemical modification on the morphological, optical and electrical properties of semiconducting organic thin films. Two confined poly( p-phenylene vinylene) (PPV)-type polymers containing different spacer groups were studied: P1 has an isopropylidene spacer group and P2 with hexafluoroisopropylidene spacer. The UV-Vis absorption and PL analysis showed a stronger π- π interaction in the P1 film; in P2, the π-stacking is limited by the introduction of a bulky trifluoromethyl (CF3) groups on the spacer units. The P2 exhibits a better film quality as illustrated by the atomic force microscopy. The HOMO and LUMO energy levels and electrochemical band gap of the polymers were determinate by the cyclic voltammetry. The electrical properties of ITO/PPV derivative/Al diodes were investigated by means of current-voltage and show a space-charge-limited current conduction mechanism with higher mobility in the P2 thin layer. The impedance spectra of the devices can be discussed in terms of an equivalent circuit model designed as a parallel resistance ( R p) and capacitance ( C p) network in series with a resistance.

  20. Effect of shock interactions on mixing layer between co-flowing supersonic flows in a confined duct

    Science.gov (United States)

    Rao, S. M. V.; Asano, S.; Imani, I.; Saito, T.

    2018-03-01

    Experiments are conducted to observe the effect of shock interactions on a mixing layer generated between two supersonic streams of Mach number M _{1} = 1.76 and M _{2} = 1.36 in a confined duct. The development of this mixing layer within the duct is observed using high-speed schlieren and static pressure measurements. Two-dimensional, compressible Reynolds averaged Navier-Stokes equations are solved using the k-ω SST turbulence model in Fluent. Further, adverse pressure gradients are imposed by placing inserts of small ( boundary layer thickness) thickness on the walls of the test section. The unmatched pressures cause the mixing layer to bend and lead to the formation of shock structures that interact with the mixing layer. The mixing layer growth rate is found to increase after the shock interaction (nearly doubles). The strongest shock is observed when a wedge insert is placed in the M _{2} flow. This shock interacts with the mixing layer exciting flow modes that produce sinusoidal flapping structures which enhance the mixing layer growth rate to the maximum (by 1.75 times). Shock fluctuations are characterized, and it is observed that the maximum amplitude occurs when a wedge insert is placed in the M _{2} flow.

  1. The effect of attractions on the structure of fused sphere chains confined between surfaces

    International Nuclear Information System (INIS)

    Patra, C.N.; Yethiraj, A.; Curro, J.G.

    1999-01-01

    The effect of attractive interactions on the behavior of polymers between surfaces is studied using Monte Carlo simulations. The molecules are modeled as fused sphere freely rotating chains with fixed bond lengths and bond angles; wall endash fluid and fluid endash fluid site endash site interaction potentials are of the hard sphere plus Yukawa form. For athermal chains the density at the surface (relative to the bulk) is depleted at low densities and enhanced at high densities. The introduction of a fluid endash fluid attraction causes a reduction of site density at the surface, and an introduction of a wall endash fluid attraction causes an enhancement of site density at the surface, compared to when these interactions are absent. When the wall endash fluid and fluid endash fluid attractions are of comparable strength, however, the depletion mechanism due to the fluid endash fluid attraction dominates. The center of mass profiles show the same trends as the site density profiles. Near the surface, the parallel and the perpendicular components of chain dimensions are different, which is explained in terms of a reorientation of chains. copyright 1999 American Institute of Physics. thinsp

  2. Functional Differentiation of Three Pores for Effective Sulfur Confinement in Li-S Battery.

    Science.gov (United States)

    Wang, Qian; Yang, Minghui; Wang, Zhen-Bo; Li, Chao; Gu, Da-Ming

    2018-03-01

    Shuttle effect of the dissolved intermediates is regarded as the primary cause that leads to fast capacity degradation of Li-S battery. Herein, a microporous carbon-coated sulfur composite with novel rambutan shape (R-S@MPC) is synthesized from microporous carbon-coated rambutan-like zinc sulfide (R-ZnS@MPC), via an in situ oxidation process. The R-ZnS is employed as both template and sulfur precursor. The carbon frame of R-S@MPC composite possesses three kinds of pores that are distinctly separated from each other in space and are endowed with the exclusive functions. The central macropore serves as buffer pool to accommodate the dissolved lithium polysulfides (LPSs) and volumetric variation during cycling. The marginal straight-through mesoporous, connected with the central macropore, takes the responsibility of sulfur storage. The micropores, evenly distributed in the outer carbon shell of the as-synthesized R-S@MPC, enable the blockage of LPSs. These pores are expected to perform their respective single function, and collaborate synergistically to suppress the sulfur loss. Therefore, it delivers an outstanding cycling stability, decay rate of 0.013% cycle -1 after 500 cycles at 1 C, when the sulfur loading is kept at 4 mg cm -2 . © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Confinement models for gluons

    International Nuclear Information System (INIS)

    Khadkikar, S.B.; Vinodkumar, P.C.

    1987-04-01

    Confinement model for gluons using a 'colour super current' is formulated. An attempt has been made to derive a suitable dielectric function corresponding to the current confinement model. A simple inhomogeneous dielectric confinement model for gluons is studied for comparison. The model Hamiltonians are second quantized and the glueball states are constructed. The spurious motion of the centre of confinement is accounted for. The results of the current confinement scheme are found to be in good agreement with the experimental candidates for glueballs. (author). 16 refs, 3 tabs

  4. Modified dynamic Stark shift and depopulation rate of an atom inside a Kerr nonlinear blackbody

    International Nuclear Information System (INIS)

    Yin Miao; Cheng Ze

    2009-01-01

    We investigate the dynamic Stark shift and atomic depopulation rate induced by real photons in a Kerr nonlinear blackbody. We found that the dynamic Stark shift and atomic depopulation rate are equally modified by a nonlinear contribution factor and a linear contribution factor under a transition temperature T c . The nonlinear contribution factor depends on the Kerr nonlinear coefficient as well as the absolute temperature. Below T c , the absolute values of the dynamic Stark shift and depopulation rate of a single atomic state (not the ground state) are correspondingly larger than those in a normal blackbody whose interior is filled with a nonabsorbing linear medium. Above T c , the dynamic Stark shift and atomic depopulation rate are correspondingly equal to those in a normal blackbody with a nonabsorbing linear medium in its interior.

  5. Stark width regularities within spectral series of the lithium isoelectronic sequence

    Science.gov (United States)

    Tapalaga, Irinel; Trklja, Nora; Dojčinović, Ivan P.; Purić, Jagoš

    2018-03-01

    Stark width regularities within spectral series of the lithium isoelectronic sequence have been studied in an approach that includes both neutrals and ions. The influence of environmental conditions and certain atomic parameters on the Stark widths of spectral lines has been investigated. This study gives a simple model for the calculation of Stark broadening data for spectral lines within the lithium isoelectronic sequence. The proposed model requires fewer parameters than any other model. The obtained relations were used for predictions of Stark widths for transitions that have not yet been measured or calculated. In the framework of the present research, three algorithms for fast data processing have been made and they enable quality control and provide verification of the theoretically calculated results.

  6. Surface Acoustic Analog of Bloch Oscillations, Wannier-Stark Ladders and Landau-Zener Tunneling

    Science.gov (United States)

    de Lima, M. M.; Kosevich, Yu. A.; Santos, P. V.; Cantarero, A.

    2011-12-01

    In this contribution, we discuss the recent experimental demonstration of Wannier-Stark ladders, Bloch Oscillations and Landau Zener tunneling in a solid by means of surface acoustic waves propagating through perturbed grating structures.

  7. Trapped particle confinement studies in L = 2 torsatrons for additional helical coils, radial electric field and finite beta effect

    International Nuclear Information System (INIS)

    Kato, A.; Nakamura, Y.; Wakatani, M.

    1990-07-01

    L = 2 torsatrons are studied to improve the high energy trapped particle confinement with additional l = 1 and/or l = 3 helical coils. The winding laws are selected in two ways. One is to realize 'σ - optimization' by the additional helical coils, but this approach loses magnetic well region. The other selection is to produce or deepen the magnetic well by the additional helical coils. L=3 helical coils are usable to this end. In this case the improvement of the trapped particle confinement depends on magnetic axis position. Radial electric field producing sheared rotational motion is also considered to improve the trapped particle confinement in a standard l = 2 torsatron. By excluding cancellation between E x B and ΔB drift motion occurred for the parabolic potential profiles, all deeply trapped particles can be confined in the central region. Degradation of the trapped particle confinement by the Shafranov shift is mitigated by shifting the magnetic axis inside in the vacuum configuration. (author)

  8. Size Effect on the Infrared Spectra of Condensed Media under Conditions of 1D, 2D, and 3D Dielectric Confinement

    KAUST Repository

    Shaganov, Igor I.

    2010-10-07

    The effect of dielectric confinement on the peak position of intramolecular and a lattice vibration in the infrared spectra of various condensed media is investigated. Liquid benzene, carbon disulfide, and chloroform, as well as amorphous SiO2 and microcrystalline MgO particles, were characterized in this study. The absorption spectra of organic liquids and aqueous solutions of a silica submicrometer powder were measured under a variety of dielectric confinement configurations using Fourier transform Infrared spectroscopy. A significant shift of the resonant absorption band of liquid mesoparticles has been observed under dielectric confinement, which is in good agreement with model predictions. A corresponding expression for the dielectric loss spectrum of an absorbing composite medium was obtained using a Maxwell-Garnett generalized equation for the cases of one, two, and three-dimensional dielectric confinement in both ordered and disordered thin layers (disks), rods (wires or needles), and spheres of an absorbing medium. The experimental data on peak positions obtained from the infrared spectra of the organic liquids investigated in this work, as well as from the infrared spectra of amorphous quartz spherical particles and rods, are in good agreement with the calculated data. It is shown using simulations of the absorption spectrum of MgO powder that the approach suggested can be applied under certain conditions to the modeling of the spectra of microcrystalline particles of nonspheroidal shape. © 2010 American Chemical Society.

  9. Regularities And Irregularities Of The Stark Parameters For Single Ionized Noble Gases

    Science.gov (United States)

    Peláez, R. J.; Djurovic, S.; Cirišan, M.; Aparicio, J. A.; Mar S.

    2010-07-01

    Spectroscopy of ionized noble gases has a great importance for the laboratory and astrophysical plasmas. Generally, spectra of inert gases are important for many physics areas, for example laser physics, fusion diagnostics, photoelectron spectroscopy, collision physics, astrophysics etc. Stark halfwidths as well as shifts of spectral lines are usually employed for plasma diagnostic purposes. For example atomic data of argon krypton and xenon will be useful for the spectral diagnostic of ITER. In addition, the software used for stellar atmosphere simulation like TMAP, and SMART require a large amount of atomic and spectroscopic data. Availability of these parameters will be useful for a further development of stellar atmosphere and evolution models. Stark parameters data of spectral lines can also be useful for verification of theoretical calculations and investigation of regularities and systematic trends of these parameters within a multiplet, supermultiplet or transition array. In the last years, different trends and regularities of Stark parameters (halwidths and shifts of spectral lines) have been analyzed. The conditions related with atomic structure of the element as well as plasma conditions are responsible for regular or irregular behaviors of the Stark parameters. The absence of very close perturbing levels makes Ne II as a good candidate for analysis of the regularities. Other two considered elements Kr II and Xe II with complex spectra present strong perturbations and in some cases an irregularities in Stark parameters appear. In this work we analyze the influence of the perturbations to Stark parameters within the multiplets.

  10. Finite temperature approach to confinement

    International Nuclear Information System (INIS)

    Gave, E.; Jengo, R.; Omero, C.

    1980-06-01

    The finite temperature treatment of gauge theories, formulated in terms of a gauge invariant variable as in a Polyakov method, is used as a device for obtaining an effective theory where the confinement test takes the form of a correlation function. The formalism is discussed for the abelian CPsup(n-1) model in various dimensionalities and for the pure Yang-Mills theory in the limit of zero temperature. In the latter case a class of vortex like configurations of the effective theory which induce confinement correspond in particular to the instanton solutions. (author)

  11. Quark confinement in a constituent quark model

    International Nuclear Information System (INIS)

    Langfeld, K.; Rho, M.

    1995-01-01

    On the level of an effective quark theory, we define confinement by the absence of quark anti-quark thresholds in correlation function. We then propose a confining Nambu-Jona-Lasinio-type model. The confinement is implemented in analogy to Anderson localization in condensed matter systems. We study the model's phase structure as well as its behavior under extreme conditions, i.e. high temperature and/or high density

  12. Combined confinement system applied to tokamaks

    International Nuclear Information System (INIS)

    Ohkawa, Tihiro

    1986-01-01

    From particle orbit point of view, a tokamak is a combined confinement configuration where a closed toroidal volume is surrounded by an open confinement system like a magnetic mirror. By eliminating a cold halo plasma, the energy loss from the plasma becomes convective. The H-mode in diverted tokamaks is an example. Because of the favorable scaling of the energy confinement time with temperature, the performance of the tokamak may be significantly improved by taking advantage of this effect. (author)

  13. EPR Evidence of Liquid Water in Ice: An Intrinsic Property of Water or a Self-Confinement Effect?

    Science.gov (United States)

    Thangswamy, Muthulakshmi; Maheshwari, Priya; Dutta, Dhanadeep; Rane, Vinayak; Pujari, Pradeep K

    2018-06-01

    Liquid water (LW) existence in pure ice below 273 K has been a controversial aspect primarily because of the lack of experimental evidence. Recently, electron paramagnetic resonance (EPR) has been used to study deeply supercooled water in a rapidly frozen polycrystalline ice. The same technique can also be used to probe the presence of LW in polycrystalline ice that has formed through a more conventional, slow cooling one. In this context, the present study aims to emphasize that in case of an external probe involving techniques such as EPR, the results are influenced by the binary phase (BP) diagram of the probe-water system, which also predicts the existence of LW domains in ice, up to the eutectic point. Here we report the results of our such EPR spin-probe studies on water, which demonstrate that smaller the concentration of the probe stronger is the EPR evidence of liquid domains in polycrystalline ice. We used computer simulations based on stochastic Liouville theory to analyze the lineshapes of the EPR spectra. We show that the presence of the spin probe modifies the BP diagram of water, at very low concentrations of the spin probe. The spin probe thus acts, not like a passive reporter of the behavior of the solvent and its environment, but as an active impurity to influence the solvent. We show that there exists a lower critical concentration, below which BP diagram needs to be modified, by incorporating the effect of confinement of the spin probe. With this approach, we demonstrate that the observed EPR evidence of LW domains in ice can be accounted for by the modified BP diagram of the probe-water system. The present work highlights the importance of taking cognizance of the possibility of spin probes affecting the host systems, when interpreting the EPR (or any other probe based spectroscopic) results of phase transitions of host, as its ignorance may lead to serious misinterpretations.

  14. Molecular-dynamics simulations of crosslinking and confinement effects on structure, segmental mobility and mechanics of filled elastomers

    Science.gov (United States)

    Davris, Theodoros; Lyulin, Alexey V.

    2016-05-01

    The significant drop of the storage modulus under uniaxial deformation (Payne effect) restrains the performance of the elastomer-based composites and the development of possible new applications. In this paper molecular-dynamics (MD) computer simulations using LAMMPS MD package have been performed to study the mechanical properties of a coarse-grained model of this family of nanocomposite materials. Our goal is to provide simulational insights into the viscoelastic properties of filled elastomers, and try to connect the macroscopic mechanics with composite microstructure, the strength of the polymer-filler interactions and the polymer mobility at different scales. To this end we simulate random copolymer films capped between two infinite solid (filler aggregate) walls. We systematically vary the strength of the polymer-substrate adhesion interactions, degree of polymer confinement (film thickness), polymer crosslinking density, and study their influence on the equilibrium and non-equilibrium structure, segmental dynamics, and the mechanical properties of the simulated systems. The glass-transition temperature increases once the mesh size became smaller than the chain radius of gyration; otherwise it remained invariant to mesh-size variations. This increase in the glass-transition temperature was accompanied by a monotonic slowing-down of segmental dynamics on all studied length scales. This observation is attributed to the correspondingly decreased width of the bulk density layer that was obtained in films whose thickness was larger than the end-to-end distance of the bulk polymer chains. To test this hypothesis additional simulations were performed in which the crystalline walls were replaced with amorphous or rough walls.

  15. Effectiveness of a confinement strategy in reducing pack stock impacts at campsites in the Selway-Bitterroot Wilderness, Idaho

    Science.gov (United States)

    David R. Spildie; David N. Cole; Sarah C. Walker

    2000-01-01

    In 1993, a management program was initiated in the Seven Lakes Basin in the Selway-Bitterroot Wilderness to bring high levels of campsite impact into compliance with management standards. The core of the strategy involved confining use, particularly by stock groups, and restoring certain campsites and portions of campsites. In just five years, campsite impacts were...

  16. One-dimensional Confinement Effect on the Self-assembly of Symmetric H-shaped Copolymers in a Thin Film.

    Science.gov (United States)

    Mu, Dan; Li, Jian-Quan; Feng, Sheng-Yu

    2017-10-19

    The self-assembly of a reformed symmetric H-shaped copolymer with four hydrophilic branches and one hydrophobic stem was systematically investigated. The existence of vacancies is vital to regulate the sizes of self-assembled cylinders to be able to form a hexagonal arrangement. With the introduction of horizontal-orientated confinement, a micellar structure is formed through a coalescence mechanism. The short acting distance and large influencing area of the confinement produces numerous small-sized micelles. Additionally, the cycled "contraction-expansion" change helps achieve hexagonal arrangement. In contrast, the introduction of lateral-oriented confinement with long acting distance and small influencing area cannot change the cylindrical structure. Under the fission mechanism, in which the larger cylinder splits into smaller ones, it is quite efficient to generate hierarchical-sized cylinders from larger-sized cylinders in the middle region and smaller-sized cylinders near both walls. The results indicate the possibility of regulating the characteristics of a nanomaterial by tuning the molecular structure of the copolymer and the parameters of the introduced confinement, which are closely related to the self-assembly structure.

  17. Momentum confinement at low torque

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, W M [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Burrell, K H [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); De Grassie, J S [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Budny, R [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Groebner, R J [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Kinsey, J E [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Kramer, G J [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Luce, T C [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Makowski, M A [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Mikkelsen, D [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Nazikian, R [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Petty, C C [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Politzer, P A [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Scott, S D [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Zeeland, M A Van [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Zarnstorff, M C [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States)

    2007-12-15

    Momentum confinement was investigated on DIII-D as a function of applied neutral beam torque at constant normalized beta {beta}{sub N}, by varying the mix of co (parallel to the plasma current) and counter neutral beams. Under balanced neutral beam injection (i.e. zero total torque to the plasma), the plasma maintains a significant rotation in the co-direction. This 'intrinsic' rotation can be modeled as being due to an offset in the applied torque (i.e. an 'anomalous torque'). This anomalous torque appears to have a magnitude comparable to one co neutral beam source. The presence of such an anomalous torque source must be taken into account to obtain meaningful quantities describing momentum transport, such as the global momentum confinement time and local diffusivities. Studies of the mechanical angular momentum in ELMing H-mode plasmas with elevated q{sub min} show that the momentum confinement time improves as the torque is reduced. In hybrid plasmas, the opposite effect is observed, namely that momentum confinement improves at high torque/rotation. GLF23 modeling suggests that the role of E x B shearing is quite different between the two plasmas, which may help to explain the different dependence of the momentum confinement on torque.

  18. Elmo bumpy square plasma confinement device

    Science.gov (United States)

    Owen, L.W.

    1985-01-01

    The invention is an Elmo bumpy type plasma confinement device having a polygonal configuration of closed magnet field lines for improved plasma confinement. In the preferred embodiment, the device is of a square configuration which is referred to as an Elmo bumpy square (EBS). The EBS is formed by four linear magnetic mirror sections each comprising a plurality of axisymmetric assemblies connected in series and linked by 90/sup 0/ sections of a high magnetic field toroidal solenoid type field generating coils. These coils provide corner confinement with a minimum of radial dispersion of the confined plasma to minimize the detrimental effects of the toroidal curvature of the magnetic field. Each corner is formed by a plurality of circular or elliptical coils aligned about the corner radius to provide maximum continuity in the closing of the magnetic field lines about the square configuration confining the plasma within a vacuum vessel located within the various coils forming the square configuration confinement geometry.

  19. Stark interaction of identical particles with the vacuum electromagnetic field as quantum Poisson process suppressing collective spontaneous emission

    International Nuclear Information System (INIS)

    Basharov, A. M.

    2011-01-01

    The effective Hamiltonian describing resonant interaction of an ensemble of identical quantum particles with a photon-free vacuum electromagnetic field has been obtained with allowance for terms of second order in the coupling constant (the Stark interaction) by means of the perturbation theory on the basis of the unitary transformation of the system quantum state. It has been shown that in the Markov approximation the effective Hamiltonian terms of first order in the coupling constant are represented by the quantum Wiener process, whereas terms of second order are expressed by the quantum Poisson process. During the course of the investigation, it was established that the Stark interaction played a significant role in the ensemble dynamics, thus influencing the collective spontaneous decay of the ensemble of an appreciably high number of identical particles. Fundamental effects have been discovered, i.e., the excitation conservation in a sufficiently dense ensemble of identical particles and superradiance suppression in the collective decaying process of an excited ensemble with a determined number of particles.

  20. Tokamak confinement scaling laws

    International Nuclear Information System (INIS)

    Connor, J.

    1998-01-01

    The scaling of energy confinement with engineering parameters, such as plasma current and major radius, is important for establishing the size of an ignited fusion device. Tokamaks exhibit a variety of modes of operation with different confinement properties. At present there is no adequate first principles theory to predict tokamak energy confinement and the empirical scaling method is the preferred approach to designing next step tokamaks. This paper reviews a number of robust theoretical concepts, such as dimensional analysis and stability boundaries, which provide a framework for characterising and understanding tokamak confinement and, therefore, generate more confidence in using empirical laws for extrapolation to future devices. (author)

  1. Correlations In Confined Quantum Plasmas

    International Nuclear Information System (INIS)

    Dufty, J.W.

    2012-01-01

    This is the final report for the project 'Correlations in Confined Quantum Plasmas', NSF-DOE Partnership Grant DE FG02 07ER54946, 8/1/2007 - 7/30/2010. The research was performed in collaboration with a group at Christian Albrechts University (CAU), Kiel, Germany. That collaboration, almost 15 years old, was formalized during the past four years under this NSF-DOE Partnership Grant to support graduate students at the two institutions and to facilitate frequent exchange visits. The research was focused on exploring the frontiers of charged particle physics evolving from new experimental access to unusual states associated with confinement. Particular attention was paid to combined effects of quantum mechanics and confinement. A suite of analytical and numerical tools tailored to the specific inquiry has been developed and employed

  2. Some aspects of geometrical confinement

    Energy Technology Data Exchange (ETDEWEB)

    Novello, M.; De Lorenci, V.A. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Elbaz, E. [Lyon-1 Univ., 69 - Villeurbanne (France)

    1998-04-01

    In this paper we present a toy model for the dynamics of a gauge field theory in such way that spin-one particles can be confined in a compact domain. We show that the property of confinement can be associated to the formation of a null surface identified to a horizon. This is due to the presence of an effective geometry generated by the self-interaction of the gauge field that guides the wave propagation of the field. This phenomenon has a striking analogy to the gravitational black hole in Einstein general theory of relativity, separating two domains of spacetime that can be trespassed only into one direction. (author) 4 refs.

  3. Pellet injection and toroidal confinement

    International Nuclear Information System (INIS)

    1989-12-01

    The proceedings of a technical committee meeting on pellet injection and toroidal confinement, held in Gut Ising, Federal Republic of Germany, 24-26 October, 1988, are given in this report. Most of the major fusion experiments are using pellet injectors; these were reported at this meeting. Studies of confinement, which is favorably affected, impurity transport, radiative energy losses, and affects on the ion temperature gradient instability were given. Studies of pellet ablation and effects on plasma profiles were presented. Finally, several papers described present and proposed injection guns. Refs, figs and tabs

  4. Dynamics and reactivity of confined water

    International Nuclear Information System (INIS)

    Musat, R.

    2008-01-01

    In the context of new sustainable energy sources quest, the nuclear energy remains a key solution. However, with the development of nuclear technology, problems relating to nuclear waste disposal arise; thus, the radiolysis of water in confined media is extremely important with respect to matters related to long time storage of nuclear waste. Studies in model porous media would allow the projection of a confined water radiolysis simulator. A first step in this direction was made by studying the radiolysis of water confined in Vycor and CPG glasses; this study continues the trend set and investigates the effects of confinement in metal materials upon the water radiolysis allowing the understanding of metal - water radiation induced corrosion. A further/complete understanding of the radiolytic process under confinement requires knowledge of the effect of confinement upon the dynamics of confined molecules and on the evolution of the species produced upon ionizing radiation. In this respect, we have used the OH vibrator as a probe of the hydrogen bond network properties and thus investigated the dynamics of confined water using IR time resolved spectroscopy. The evolution of the hydrated electron under confinement was studied on a nano and picosecond time scale using UV pump - visible probe technique and single shot spectroscopy. (author) [fr

  5. Charge transfer, lattice distortion, and quantum confinement effects in Pd, Cu, and Pd-Cu nanoparticles; size and alloying induced modifications in binding energy

    International Nuclear Information System (INIS)

    Sengar, Saurabh K.; Mehta, B. R.; Gupta, Govind

    2011-01-01

    In this letter, effect of size and alloying on the core and valence band shifts of Pd, Cu, and Pd-Cu alloy nanoparticles has been studied. It has been shown that the sign and magnitude of the binding energy shifts is determined by the contributions of different effects; with quantum confinement and lattice distortion effects overlapping for size induced shifts in case of core levels and lattice distortion and charge transfer effects overlapping for alloying induced shifts at smaller sizes. These results are important for understanding gas molecule-solid surface interaction in metal and alloy nanoparticles in terms of valance band positions.

  6. Inertial confinement fusion target

    International Nuclear Information System (INIS)

    Bourdier, A.

    2001-12-01

    A simple, zero-dimensional model describing the temporal behaviour of an imploding-shell, magnetized fuel inertial confinement fusion target is formulated. The addition of a magnetic field to the fuel reduces thermal conduction losses. As a consequence, it might lead to high gains and reduce the driver requirements. This beneficial effect of the magnetic field on thermonuclear gains is confirmed qualitatively by the zero-dimensional model results. Still, the extent of the initial-condition space for which significant gains can occur is not, by far, as large as previously reported. One-dimensional CEA code simulations which confirm this results are also presented. Finally, we suggest to study the approach proposed by Hasegawa. In this scheme, the laser target is not imploded, and the life-time of the plasma can be very much increased. (author)

  7. Femtochemistry of confined water

    Science.gov (United States)

    Douhal, A.; Carranza, M. A.; Sanz, M.; Organero, J. A.; Santos, L.

    In this contribution, we applied ultrafast spectroscopy to study the H-bond network of water confined in nanostructures (Cyclodextrins and Micelles). We examine the effect of caging on ultrafast reaction dynamics and discuss the related processes under different experimental conditions. The results show an ultrafast dynamic giving birth to intermediates of the probe, which show femtosecond and picosecond dynamics leading to the final structure at the excited state. The results show the high sensitivity of the used technique in detecting small of water. This work was supported by the Ministry of Science and Technology (MCYT, Spain) and ``Conserjería de Ciencia y Tecnologia de la JCCM, Spain'' through projects MAT2002-01829 and PAI-02-004.

  8. Unusual large-pitch banding in poly(L-lactic acid): Effects of composition and geometry confinement

    International Nuclear Information System (INIS)

    Woo, Eamor M.; Lugito, Graecia; Hsieh, Ya-Ting; Nurkhamidah, Siti

    2014-01-01

    Lamellar patterns and orientations in blends of two crystalline polymers: poly(ethylene oxide) (PEO) and low-molecular-weight poly(L-lactic acid) (PLLA) were investigated using polarizing light optical microscopy (POM), and atomic and scanning electron microscopy (AFM, SEM). Specific etching off of PEO was used to reveal the complex earlier-grown PLLA lamellae patterns with various PEO content in blends. Banding of extremely long pitch (50 μm) in crystallized PLLA spherulites was induced by two kinetic factors: geometry confinement by top cover and introduction of diluent such as PEO. The mechanisms and correlation among the lamellar assembly, ring bands, and cracks are exemplified. Lamellar patterns and ring-band types in blends were found to vary with respect to not only blend compositions, but also confinement of top-cover

  9. Stress of Rescue Team Members Working in Confined Spaces During a Disaster : Effectiveness of Individual Wireless Communication Devices

    OpenAIRE

    Kitabayashi, Tsukasa; Kudo, Seiko; Kitajima, Maiko; Takamaki, Shizuka; Chiba, Tomohiro; Tachioka, Nobuaki; Kudo, Shungetsu; Kudo, Hiromi

    2016-01-01

    This study evaluated stress experienced by rescue team members during a simulated search and rescue operation in a confined space and determine if wireless communication reduces stress. A total of 57 rescue team members of X prefecture participated. The stress visualization indices were ptyalin (i.e., salivary amylase), salivary cortisol, autonomic nervous system response, visual analog scale, and a short version of the profile of mood states. The subjects were randomized to perform a simulat...

  10. Effects of triangularity on confinement, density limit and profile stiffness of H-modes on ASDEX upgrade

    International Nuclear Information System (INIS)

    Stober, J.; Gruber, O.; Kallenbach, A.; Mertens, V.; Ryter, F.; Staebler, A.; Suttrop, W.; Treutterer, W.

    2000-01-01

    At ASDEX Upgrade the influence of triangularity on the H-mode performance has been studied intensively. It has been found that confinement increases with δ for a fixed line-averaged density. Though confinement decreases with increasing density for all analysed values of δ, H-factors (ITERH-98P) at the Greenwald density could be raised to 1 for the highest δ values achieved so far. The H-mode density limit could be increased by approx. 20%. There is a scatter of about 30% on the confinement data, which is anti-correlated to the average density in the scrape-off layer or the neutral fluxes outside the plasma. For nearly all discharges analysed so far, the temperature profiles are self-similar. This indication of profile stiffness could be verified by changing the heat-flux profile by changing the beam-voltage of the neutral-beam injection (NBI) at high density. At low density, first results indicate a deviation from this stiff behaviour. (author)

  11. Measuring and predicting the dynamic effects of a confined thin metal plate pulse heated into the liquid-vapor regime

    International Nuclear Information System (INIS)

    Baxter, R.C.

    1977-01-01

    The dynamic response of a confined thin layer of lead heated rapidly and uniformly to a supercritical state was investigated. Lead targets 0.025 mm and 0.05 mm thick were contained between a thin titanium tamping layer and a thick layer of fused quartz with several different gap widths between the lead and the confining surfaces. After being heated by an electron beam for about 50 ns, lead specimens expanded to a state of approximately half liquid and half vapor. Measurements of the stress in the quartz and the velocity of the tamper produced by the expanding lead were compared with one dimensional hydrodynamic computer program predictions. Measured and predicted peak stresses in the quartz for no gaps were approximately 12 kilobars and agreed within one kilobar. Peak stresses decreased rapidly with gap size to values, at 0.02 mm gaps, of about one kilobar for the 0.025 mm lead targets and five kilobars for the 0.05 mm targets. These values were confirmed by measurements. Predictions and measurements of tamper velocity (momentum) were within 10% only when the lead and confining walls were in close contact. The observed velocities for even very small gaps were substantially below predictions. These differences are attributed primarily to separation of the liquid and vapor phases during the expansion

  12. Molecular quantum mechanical gradients within the polarizable embedding approach—Application to the internal vibrational Stark shift of acetophenone

    Energy Technology Data Exchange (ETDEWEB)

    List, Nanna Holmgaard, E-mail: nhl@sdu.dk; Jensen, Hans Jørgen Aagaard; Kongsted, Jacob [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense M, Odense DK-5230 Denmark (Denmark); Beerepoot, Maarten T. P.; Gao, Bin; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø–The Arctic University of Norway, N-9037 Tromsø (Norway); Olsen, Jógvan Magnus Haugaard [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense M, Odense DK-5230 Denmark (Denmark); Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland)

    2015-01-21

    We present an implementation of analytical quantum mechanical molecular gradients within the polarizable embedding (PE) model to allow for efficient geometry optimizations and vibrational analysis of molecules embedded in large, geometrically frozen environments. We consider a variational ansatz for the quantum region, covering (multiconfigurational) self-consistent-field and Kohn–Sham density functional theory. As the first application of the implementation, we consider the internal vibrational Stark effect of the C=O group of acetophenone in different solvents and derive its vibrational linear Stark tuning rate using harmonic frequencies calculated from analytical gradients and computed local electric fields. Comparisons to PE calculations employing an enlarged quantum region as well as to a non-polarizable embedding scheme show that the inclusion of mutual polarization between acetophenone and water is essential in order to capture the structural modifications and the associated frequency shifts observed in water. For more apolar solvents, a proper description of dispersion and exchange–repulsion becomes increasingly important, and the quality of the optimized structures relies to a larger extent on the quality of the Lennard-Jones parameters.

  13. Molecular quantum mechanical gradients within the polarizable embedding approach—Application to the internal vibrational Stark shift of acetophenone

    International Nuclear Information System (INIS)

    List, Nanna Holmgaard; Jensen, Hans Jørgen Aagaard; Kongsted, Jacob; Beerepoot, Maarten T. P.; Gao, Bin; Ruud, Kenneth; Olsen, Jógvan Magnus Haugaard

    2015-01-01

    We present an implementation of analytical quantum mechanical molecular gradients within the polarizable embedding (PE) model to allow for efficient geometry optimizations and vibrational analysis of molecules embedded in large, geometrically frozen environments. We consider a variational ansatz for the quantum region, covering (multiconfigurational) self-consistent-field and Kohn–Sham density functional theory. As the first application of the implementation, we consider the internal vibrational Stark effect of the C=O group of acetophenone in different solvents and derive its vibrational linear Stark tuning rate using harmonic frequencies calculated from analytical gradients and computed local electric fields. Comparisons to PE calculations employing an enlarged quantum region as well as to a non-polarizable embedding scheme show that the inclusion of mutual polarization between acetophenone and water is essential in order to capture the structural modifications and the associated frequency shifts observed in water. For more apolar solvents, a proper description of dispersion and exchange–repulsion becomes increasingly important, and the quality of the optimized structures relies to a larger extent on the quality of the Lennard-Jones parameters

  14. Multiple Temperature-Sensing Behavior of Green and Red Upconversion Emissions from Stark Sublevels of Er3+

    Directory of Open Access Journals (Sweden)

    Baosheng Cao

    2015-12-01

    Full Text Available Upconversion luminescence properties from the emissions of Stark sublevels of Er3+ were investigated in Er3+-Yb3+-Mo6+-codoped TiO2 phosphors in this study. According to the energy levels split from Er3+, green and red emissions from the transitions of four coupled energy levels, 2H11/2(I/2H11/2(II, 4S3/2(I/4S3/2(II, 4F9/2(I/4F9/2(II, and 2H11/2(I + 2H11/2(II/4S3/2(I + 4S3/2(II, were observed under 976 nm laser diode excitation. By utilizing the fluorescence intensity ratio (FIR technique, temperature-dependent upconversion emissions from these four coupled energy levels were analyzed at length. The optical temperature-sensing behaviors of sensing sensitivity, measurement error, and operating temperature for the four coupled energy levels are discussed, all of which are closely related to the energy gap of the coupled energy levels, FIR value, and luminescence intensity. Experimental results suggest that Er3+-Yb3+-Mo6+-codoped TiO2 phosphor with four pairs of energy levels coupled by Stark sublevels provides a new and effective route to realize multiple optical temperature-sensing through a wide range of temperatures in an independent system.

  15. Effects of Pathologic Stage on the Learning Curve for Radical Prostatectomy: Evidence That Recurrence in Organ-Confined Cancer Is Largely Related to Inadequate Surgical Technique

    Science.gov (United States)

    Vickers, Andrew J.; Bianco, Fernando J.; Gonen, Mithat; Cronin, Angel M.; Eastham, James A.; Schrag, Deborah; Klein, Eric A.; Reuther, Alwyn M.; Kattan, Michael W.; Pontes, J. Edson; Scardino, Peter T.

    2008-01-01

    Objectives We previously demonstrated that there is a learning curve for open radical prostatectomy. We sought to determine whether the effects of the learning curve are modified by pathologic stage. Methods The study included 7765 eligible prostate cancer patients treated with open radical prostatectomy by one of 72 surgeons. Surgeon experience was coded as the total number of radical prostatectomies conducted by the surgeon prior to a patient’s surgery. Multivariable regression models of survival time were used to evaluate the association between surgeon experience and biochemical recurrence, with adjustment for PSA, stage, and grade. Analyses were conducted separately for patients with organ-confined and locally advanced disease. Results Five-year recurrence-free probability for patients with organ-confined disease approached 100% for the most experienced surgeons. Conversely, the learning curve for patients with locally advanced disease reached a plateau at approximately 70%, suggesting that about a third of these patients cannot be cured by surgery alone. Conclusions Excellent rates of cancer control for patients with organ-confined disease treated by the most experienced surgeons suggest that the primary reason such patients recur is inadequate surgical technique. PMID:18207316

  16. Stark shifts and widths of a hydrogen atom in Debye plasmas

    International Nuclear Information System (INIS)

    Yu, A.C.H.; Ho, Y.K.

    2005-01-01

    A computational scheme has been developed and used to investigate the influence of the plasma environments on modified atomic autoionization for isolated atoms/ions by using the complex coordinate rotation method which is proved to be a very simple and powerful tool to analyze the position and the width of a resonance. The Debye screening potential is employed to describe the effects of the plasma environments. Stark shifts and widths on the ground state of hydrogen are reported for field strength up to F=0.12 a.u. Slater-type basis wave functions are used to describe the system and angular-momentum states up to L=11 are included when the external electric field is turned on. Converged results are obtained by using different maximum angular-momentum states. The modified autoionization for various Debye lengths ranging from infinite to a small value of 0.86 are reported. It has been observed that for a given temperature and under the influence of a given external electric field, the resonance energy and the autoionization width increase for increasing electron density in the plasma. A discussion on the physical implication of our results is made

  17. Theory of coherent Stark nonlinear spectroscopy in a three-level system

    International Nuclear Information System (INIS)

    Loiko, Yurii; Serrat, Carles

    2007-01-01

    Coherent Stark nonlinear spectroscopy (CSNS) is a spectroscopic tool based on the cancellation of the phase sensitivity at frequency 5ω in the ultrafast four-wave mixing (FWM) of two-color pulses with frequencies ω and 3ω. We develop a theory for CSNS in three-level V-type systems, and reveal that the mechanism for the phase sensitivity at 5ω is the quantum interference between the two primary paths in the FWM of the ω and 3ω fields. We find that the cancellation phenomenon occurs when the probability amplitude of one of these two primary pathways becomes equal to zero due to the competition effect between the two allowed transitions in the V-type system. The analytical expressions that describe the phase-sensitivity phenomenon and the conditions for its cancellation have been derived on the basis of perturbation theory, and are confirmed by numerical integration of the density matrix and Maxwell equations. We argue that CSNS can be utilized, in particular, for the investigation of optically dense media

  18. Fractional Stark state selective electric field ionization of very high-n Rydberg states of molecules

    International Nuclear Information System (INIS)

    Dietrich, H.; Mueller-Dethlefs, K.; Baranov, L.Y.

    1996-01-01

    For the first time fractional Stark state selective electric field ionization of very high-n (n approx-gt 250) molecular Rydberg states is observed. An open-quote open-quote offset close-quote close-quote electric pulse selectively ionizes the more fragile open-quote open-quote red close-quote close-quote (down shifted in energy) Stark states. The more resilient open-quote open-quote bluer close-quote close-quote, or up-shifted, ones survive and are shifted down in energy upon application of a second (open-quote open-quote probe close-quote close-quote) pulse of opposite direction (diabatic Stark states close-quote inversion). Hence, even for smaller probe than offset fields ionization is observed. The offset/probe ratio allows one to control spectral peak shapes in zero-kinetic-energy photoelectron spectroscopy. copyright 1995 The American Physical Society

  19. A new questionnaire for measuring quality of life - the Stark QoL.

    Science.gov (United States)

    Hardt, Jochen

    2015-10-26

    The Stark questionnaire measures health-related quality of life (QoL) using pictures almost exclusively. It is supplemented by a minimum of words. It comprises a mental and a physical health component. A German sample of n = 500 subjects, age and gender stratified, filled out the Stark Qol questionnaire along with various other questionnaires via internet. The physical component shows good reliability (Cronbach's alpha = McDonalds Omega = greatest lower bound = .93), the mental component can be improved (Cronbach's alpha = .63, McDonalds Omega = .72, greatest lower bound = .77). Confirmatory factor analysis shows a good fit (Bentlers CFI = .97). Construct validity was proven. The Stark QoL is a promising new development in measuring QoL, it is a short and easy to apply questionnaire. Additionally, it is particularly promising for international research.

  20. Energy dispersion of the electrosubbands in parabolic confining quantum wires: interplay of Rashba, Dresselhaus, lateral spin-orbit interaction and the Zeeman effect

    International Nuclear Information System (INIS)

    Zhang Tongyi; Zhao Wei; Liu Xueming

    2009-01-01

    We have made a thorough theoretical investigation of the interplay of spin-orbit interactions (SOIs) resulting from Rashba, Dresselhaus and the lateral parabolic confining potential on the energy dispersion relation of the spin subbands in a parabolic quantum wire. The influence of an applied external magnetic field is also discussed. We show the interplay of different types of SOI, as well as the Zeeman effect, leads to rather complex and intriguing electrosubbands for different spin branches. The effect of different coupling strengths and different magnetic field strengths is also investigated.

  1. Wave-function analysis of dynamic cancellation of ac Stark shifts in optical lattice clocks by use of pulsed Raman and electromagnetically-induced-transparency techniques

    International Nuclear Information System (INIS)

    Yoon, Tai Hyun

    2007-01-01

    We study analytically the dynamic cancellation of ac Stark shift in the recently proposed pulsed electromagnetically-induced-transparency (EIT-)Raman optical lattice clock based on the wave-function formalism. An explicit expression for the time evolution operator corresponding to the effective two-level interaction Hamiltonian has been obtained in order to explain the atomic phase shift cancellation due to the ac Stark shift induced by the time-separated laser pulses. We present how to determine an optimum value of the common detuning of the driving fields at which the atomic phase shift cancels completely with the parameters for the practical realization of the EIT-Raman optical lattice clock with alkaline-earth-metal atoms

  2. Experimental evidence in favour of the Stark mixing of atomic L-subshell states in the boron impact of Au and Bi

    International Nuclear Information System (INIS)

    Padhi, H.C.; Dhal, B.B.; Nandi, T.; Trautmann, D.

    1995-01-01

    L-subshell ionization of Au and Bi induced by boron impact has been investigated for impact energies ranging from 0.48 to 0.88 MeV/μ. The energy dependence of the measured ionization cross section shows, for the first time, a plateau structure for all three subshells. The plateau structure revealed by previous data for proton and helium impact was for the L 1 subshell only and this had been attributed to the bimodal nature of the 2s electron density. The observed plateau structure for all the three subshells and its occurrence at a somewhat lower energy signifies a considerable amount of Stark mixing of target 2s and 2p atomic wavefunctions. Fresh calculations incorporating the Stark mixing effect in target atomic wavefunctions are necessary to improve agreement with the present data. The existing theories, however, are found to be inadequate. (author)

  3. The Quantum Mechanics of Nano-Confined Water: New Cooperative Effects Revealed with Neutron and X-Ray Compton Scattering

    International Nuclear Information System (INIS)

    Reiter, G F; Deb, Aniruddha

    2014-01-01

    Neutron Compton scattering(NCS) measurements of the momentum distribution of light ions using the Vesuvio instrument at ISIS provide a sensitive local probe of the environment of those ions. NCS measurements of the proton momentum distribution in bulk water show only small deviations from the usual picture of water as a collection of molecules, with the protons covalently bonded to an oxygen and interacting weakly, primarily electrostatically, with nearby molecules. However, a series of measurements of the proton momentum distribution in carbon nanotubes, xerogel, and Nafion show that the proton delocalizes over distances of 0.2-0.3Å when water is confined on the scale of 20Å. This delocalization must be the result of changes in the Born-Oppenheimer surface for the protons, which would imply that there are large deviations in the electron distribution from that of a collection of weakly interacting molecules. This has been observed at Spring-8 using x-ray Compton scattering. The observed deviation in the valence electron momentum distribution from that of bulk water is more than an order of magnitude larger than the change observed in bulk water as the water is heated from just above melting to just below boiling. We conclude that the protons and electrons in nano-confined water are in a qualitatively different ground state from that of bulk water. Since the properties of this state persist at room temperature, and the confinement distance necessary to observe it is comparable to the distance between the elements of biological cells, this state presumably plays a role in the functioning of those cells

  4. Stark shift measurements of Xe II and Xe III spectral lines

    International Nuclear Information System (INIS)

    Cirisan, M; Pelaez, R J; Djurovic, S; Aparicio, J A; Mar, S

    2007-01-01

    Stark shift measurements of singly and doubly ionized Xe spectral lines are presented in this paper. Shifts of 110 Xe II lines and 42 Xe III lines are reported, including a significant number of new results. A low-pressure-pulsed arc with 95% of He and 5% of Xe was used as a plasma source. All measurements were performed under the following plasma conditions: electron density (0.2-1.4) x 10 23 m -3 and electron temperature 18 000-23 000 K. The measured Stark shifts are compared with other experimental and theoretical data

  5. A Riemann-Hilbert approach to the inverse problem for the Stark operator on the line

    Science.gov (United States)

    Its, A.; Sukhanov, V.

    2016-05-01

    The paper is concerned with the inverse scattering problem for the Stark operator on the line with a potential from the Schwartz class. In our study of the inverse problem, we use the Riemann-Hilbert formalism. This allows us to overcome the principal technical difficulties which arise in the more traditional approaches based on the Gel’fand-Levitan-Marchenko equations, and indeed solve the problem. We also produce a complete description of the relevant scattering data (which have not been obtained in the previous works on the Stark operator) and establish the bijection between the Schwartz class potentials and the scattering data.

  6. A Stark-tuned, far-infrared laser for high frequency plasma diagnostics

    International Nuclear Information System (INIS)

    Mansfield, D.K.; Vocaturo, M.; Guttadora, L.; Rockmore, M.; Micai, K.; Krug, P.A.

    1992-03-01

    A Stark-tuned optically pumped far-infrared methanol laser operating at 119 micrometers has been built. The laser is designed to operate at high power while exhibiting a well-separated Stark doublet. At a pump power of 65 Watts and electric field of 1 kV/cm the laser has delivered over 100 mW c.w. while exhibiting a frequency splitting of 34 MHz. These parameters indicate that this laser would be suitable for use in the present generation of modulated interferometers on large thermonuclear plasma devices. The achieved modulation frequency is more than an order of magnitude higher than could be achieved using standard techniques

  7. Atoms confined in a penetrable potential: effect of the atom position on the electric and magnetic responses

    Energy Technology Data Exchange (ETDEWEB)

    Acosta Coden, Diego S; Gomez, Sergio S; Romero, Rodolfo H, E-mail: rhromero@exa.unne.edu.ar [Instituto de Modelado e Innovacion Tecnologica, CONICET and Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400) Corrientes (Argentina)

    2011-02-14

    We report results of the calculation of polarizability and the nuclear magnetic shielding tensors of two-electron atoms confined within an attractive Gaussian potential well. The electric and magnetic responses are obtained within the random phase approximation (RPA) of the polarization propagator. The influence of the depth and range of the potential on the electronic structure is also studied. The dependence of the parallel (along the displacement) and perpendicular components of the polarizability and shielding tensors on the distance of the atom to the centre of the well is calculated and rationalized as a dissociation-type process of the artificial diatomic molecule formed between the Coulomb and the well potentials.

  8. Band-gap-confinement and image-state-recapture effects in the survival of anions scattered from metal surfaces

    International Nuclear Information System (INIS)

    Schmitz, Andrew; Shaw, John; Chakraborty, Himadri S.; Thumm, Uwe

    2010-01-01

    The resonant charge transfer process in the collision of hydrogen anions with metal surfaces is described within a single-active-electron wave-packet propagation method. The ion-survival probability is found to be strongly enhanced at two different surface-specific perpendicular velocities of the ion. It is shown that, while the low-velocity enhancement is induced from a dynamical confinement of the ion level inside the band gap, the high-velocity enhancement is due to electron recapture from transiently populated image states. Results are presented for Li(110), Cu(111), and Pd(111) surfaces.

  9. Atoms confined in a penetrable potential: effect of the atom position on the electric and magnetic responses

    International Nuclear Information System (INIS)

    Acosta Coden, Diego S; Gomez, Sergio S; Romero, Rodolfo H

    2011-01-01

    We report results of the calculation of polarizability and the nuclear magnetic shielding tensors of two-electron atoms confined within an attractive Gaussian potential well. The electric and magnetic responses are obtained within the random phase approximation (RPA) of the polarization propagator. The influence of the depth and range of the potential on the electronic structure is also studied. The dependence of the parallel (along the displacement) and perpendicular components of the polarizability and shielding tensors on the distance of the atom to the centre of the well is calculated and rationalized as a dissociation-type process of the artificial diatomic molecule formed between the Coulomb and the well potentials.

  10. The confinement problem

    International Nuclear Information System (INIS)

    Seiler, E.

    1985-01-01

    Confinement of quarks is sometimes taken as some kind of dogma in the contemporary theory of strong interactions - quantum chromo-dynamics (QCD). Scientists should not be content with that. What is meant by ''permanent confinement'' should be formulated more precisely to see whether the theory has this property or not. The author looks at some possible interpretations of ''confinement'' and their shortcomings and then turns to the most widely used rather pragmatic definition based on the somewhat unphysical notion of infinitely heavy external sources. He describes what is known about the problem and tries to bring into focus some aspects that are insufficiently understood in his opinion

  11. Momentum Confinement at Low Torque

    International Nuclear Information System (INIS)

    Solomon, W.M.; Burrell, K.H.; deGrassie, J.S.; Budny, R.; Groebner, R.J.; Heidbrink, W.W.; Kinsey, J.E.; Kramer, G.J.; Makowski, M.A.; Mikkelsen, D.; Nazikian, R.; Petty, C.C.; Politzer, P.A.; Scott, S.D.; Van Zeeland, M.A.; Zarnstorff, M.C.

    2007-01-01

    Momentum confinement was investigated on DIII-D as a function of applied neutral beam torque at constant normalized β N , by varying the mix of co (parallel to the plasma current) and counter neutral beams. Under balanced neutral beam injection (i.e. zero total torque to the plasma), the plasma maintains a significant rotation in the co-direction. This 'intrinsic' rotation can be modeled as being due to an offset in the applied torque (i.e. an 'anomalous torque'). This anomalous torque appears to have a magnitude comparable to one co-neutral beam source. The presence of such an anomalous torque source must be taken into account to obtain meaningful quantities describing momentum transport, such as the global momentum confinement time and local diffusivities. Studies of the mechanical angular momentum in ELMing H-mode plasmas with elevated q min show that the momentum confinement time improves as the torque is reduced. In hybrid plasmas, the opposite effect is observed, namely that momentum confinement improves at high torque/rotation. The relative importance of E x B shearing between the two is modeled using GLF23 and may suggest a possible explanation.

  12. Rotational cooling of polar molecules by Stark-tuned cavity resonance

    International Nuclear Information System (INIS)

    Ooi, C. H. Raymond

    2003-01-01

    A general scheme for rotational cooling of diatomic heteronuclear molecules is proposed. It uses a superconducting microwave cavity to enhance the spontaneous decay via Purcell effect. Rotational cooling can be induced by sequentially tuning each rotational transition to cavity resonance, starting from the highest transition level to the lowest one using an electric field. Electrostatic multipoles can be used to provide large confinement volume with essentially homogeneous background electric field

  13. Computational Study of the Effect of Confinement within Microporous Structures on the Activity and Selectivity of Metallocene Catalysts for Ethylene Oligomerization

    KAUST Repository

    Toulhoat, Hervé

    2011-03-02

    The effect of confinement within some zeolitic structures on the activity and selectivity of metallocene catalysts for the ethylene oligomerization has been investigated using grand canonical Monte Carlo simulations (GCMC). The following zeolite (host) frameworks displaying different pore sizes, have been studied as solid hosts: mazzite (MAZ), AIPO-8 (AET), UTD-1F (DON), faujasite (FAU), and VPI-5 (VFI). Intermediates and transition states involved in the ethylene trimerization reaction catalyzed by a Ti-based catalyst [(η5-C5H4CMe2C6H 5)TiCl3/MAO] have been used as sorbates (guests). We have demonstrated linear correlations with slope aH,j between the adsorption enthalpy and the molecular volume Vm of the sorbates, each holding for a given microporous host below a host-specific threshold V mmax,j. Beyond this maximal molecular volume, the adsorption vanishes due to steric exclusion. aH,j increases, and Vmmax,j decreases with decreasing host pore size, in line with the confinement concept. We moreover showed that, in the limit of vanishing loading (Henry regime), the enthalpies and entropies of adsorption in a given host are linearly correlated. We have defined a host-specific confinement compensation temperature a j, which refers to a temperature where the stabilizing adsorption enthalpic interactions are canceled out against the loss in entropy. However, calculated aj are much larger than the operating temperatures. With a setup microkinetic model, we predict that the activity and selectivity of the confined Ti-catalyst in ethylene oligomerization can be significantly altered with respect to homogeneous phase conditions, since the adsorption free energies of transition states and intermediates also become functions of aH,j and Vm. We have applied this theory to predict the optimum host pore size to get maximum α-octene production, instead of α-hexene, which is primarily produced in the homogeneous phase. We also predict a significantly increased activity for

  14. Effects of Non-Maxwellian Plasma Species on ICRF Propagation and Absorption in Toroidal Magnetic Confinement Devices

    International Nuclear Information System (INIS)

    Dumont, R.J.; Phillips, C.K.; Smithe, D.N.

    2003-01-01

    Auxiliary heating supplied by externally launched electromagnetic waves is commonly used in toroidal magnetically confined fusion experiments for profile control via localized heating, current drive and perhaps flow shear. In these experiments, the confined plasma is often characterized by the presence of a significant population of non-thermal species arising from neutral beam injection, from acceleration of the particles by the applied waves, or from copious fusion reactions in future devices. Such non-thermal species may alter the wave propagation as well as the wave absorption dynamics in the plasma. Previous studies have treated the corresponding velocity distributions as either equivalent Maxwellians, or else have included realistic distributions only in the finite Larmor radius limit. In this work, the hot plasma dielectric response of the plasma has been generalized to treat arbitrary distribution functions in the non-relativistic limit. The generalized dielectric tensor has been incorporated into a one-dimensional full wave all-orders kinetic field code. Initial comparative studies of ion cyclotron range of frequency wave propagation and heating in plasmas with nonthermal species, represented by realistic distribution functions or by appropriately defined equivalent Maxwellians, have been completed for some specific experiments and are presented

  15. The Effects of NaCl Concentration and Confining Pressure on Mechanical and Acoustic Behaviors of Brine-Saturated Sandstone

    Directory of Open Access Journals (Sweden)

    Yan-Hua Huang

    2018-02-01

    Full Text Available To better understand the mechanical behavior of rock with brine saturation, conventional triaxial experiments were carried out on sandstone for a range of confining pressures (0–60 MPa and NaCl concentrations (0–30%. As the confining pressure and NaCl concentration increased, the triaxial compressive strength, crack damage threshold, Young’s modulus, cohesion, and internal friction angle all increased. Real-time ultrasonic wave and acoustic emission (AE techniques were used to obtain the relationship between acoustic behavior and stress level during the whole triaxial compression process. During the whole deformation process, the evolution of P-wave velocity and accumulated AE count could be divided into four phases. The microstructural characteristics of brine-saturated sandstone, before and after loading, indicated that the strength enhancement mechanism may be attributed to an increase in inter-particle friction resulting from salt crystallisation around the points of contact. The angle of friction increased by more than 86% at maximum NaCl concentration compared to that for distilled water. The NaCl deposition in the pore space resulted in nonlinear strength increases for the brine-saturated sandstone specimens with increasing salinity. The present study is expected to improve the knowledge of the strength and failure mechanisms of sedimentary rock in deep saline aquifers.

  16. Inertial Electrostatic Confinement (IEC) devices

    International Nuclear Information System (INIS)

    Nebel, R.A.; Turner, L.; Tiouririne, T.N.; Barnes, D.C.; Nystrom, W.D.; Bussard, R.W.; Miley, G.H.; Javedani, J.; Yamamoto, Y.

    1994-01-01

    Inertial Electrostatic Confinement (IEC) is one of the earliest plasma confinement concepts, having first been suggested by P. T. Farnsworth in the 1950s. The concept involves a simple apparatus of concentric spherical electrostatic grids or a combination of grids and magnetic fields. An electrostatic structure is formed from the confluence of electron or ion beams. Gridded IEC systems have demonstrated neutron yields as high as 2 * 10 10 neutrons/sec. These systems have considerable potential as small, inexpensive, portable neutron sources for assaying applications. Neutron tomography is also a potential application. Atomic physics effects strongly influence the performance of all of these systems. Important atomic effects include elastic scattering, ionization, excitation, and charge exchange. This paper discusses how an IEC system is influenced by these effects and how to design around them. Theoretical modeling and experimental results are presented

  17. The confining trailing string

    CERN Document Server

    Kiritsis, E; Nitti, F

    2014-01-01

    We extend the holographic trailing string picture of a heavy quark to the case of a bulk geometry dual to a confining gauge theory. We compute the classical trailing confining string solution for a static as well as a uniformly moving quark. The trailing string is infinitely extended and approaches a confining horizon, situated at a critical value of the radial coordinate, along one of the space-time directions, breaking boundary rotational invariance. We compute the equations for the fluctuations around the classical solutions, which are used to obtain boundary force correlators controlling the Langevin dynamics of the quark. The imaginary part of the correlators has a non-trivial low-frequency limit, which gives rise to a viscous friction coefficient induced by the confining vacuum. The vacuum correlators are used to define finite-temperature dressed Langevin correlators with an appropriate high-frequency behavior.

  18. Solitons and confinement

    International Nuclear Information System (INIS)

    Swieca, J.A.

    1976-01-01

    Some aspects of two recent developments in quantum field theory are discussed. First, related with 'extended particles' such as soliton, kink and the 't Hooft monopole. Second, with confinement of particles which are realized in the Schwinger model [pt

  19. Confinement and the Pomeron

    International Nuclear Information System (INIS)

    White, A.R.

    1989-01-01

    The importance of confinement for obtaining a unitary high-energy limit for QCD is discussed. ''Minijets'' are argued to build up non-unitary behavior endash when k T > Λ is imposed. For minijets to mix with low k T Pomeron Field Theory describing confinement, and give consistent asymptotic behavior, new ''quarks'' must enter the theory above the minijet transverse momentum scale. The Critical Pomeron is the resulting high-energy limit. 22 refs

  20. Surface motion and confinement potential for a microwave confined corona

    International Nuclear Information System (INIS)

    Ensley, D.L.

    1979-07-01

    Approximate time dependent solutions for surface velocities and potentials are given for a plane polarized microwave field confining a hot, over-dense plasma corona. Steady state solutions to Poissons' equation can be applied to the time dependent case, provided transit time effects are included. The product of ion pressure and potential wave (surface) velocity gives an average heating rate approx. 7/32 NKT 0 V/sub theta/ directly to the ions

  1. Fusion, magnetic confinement

    International Nuclear Information System (INIS)

    Berk, H.L.

    1992-01-01

    An overview is presented of the principles of magnetic confinement of plasmas for the purpose of achieving controlled fusion conditions. Sec. 1 discusses the different nuclear fusion reactions which can be exploited in prospective fusion reactors and explains why special technologies need to be developed for the supply of tritium or 3 He, the probable fuels. In Sec. 2 the Lawson condition, a criterion that is a measure of the quality of confinement relative to achieving fusion conditions, is explained. In Sec. 3 fluid equations are used to describe plasma confinement. Specific confinement configurations are considered. In Sec. 4 the orbits of particle sin magneti and electric fields are discussed. In Sec. 5 stability considerations are discussed. It is noted that confinement systems usually need to satisfy stability constraints imposed by ideal magnetohydrodynamic (MHD) theory. The paper culminates with a summary of experimental progress in magnetic confinement. Present experiments in tokamaks have reached the point that the conditions necessary to achieve fusion are being satisfied

  2. Hydrostatic pressure and temperature effects on the binding energy and optical absorption of a multilayered quantum dot with a parabolic confinement

    International Nuclear Information System (INIS)

    Ortakaya, Sami; Kirak, Muharrem

    2016-01-01

    The influence of hydrostatic pressure, temperature, and impurity on the electronic and optical properties of spherical core/shell/well/shell (CSWS) nanostructure with parabolic confinement potential is investigated theoretically. The energy levels and wave functions of the structure are calculated by using shooting method within the effective-mass approximation. The numerical results show that the ground state donor binding energy as a function layer thickness very sensitively depends on the magnitude of pressure and temperature. Also, we investigate the probability distributions to understand clearly electronic properties. The obtained results show that the existence of the pressure and temperature has great influence on the electronic and optical properties. (paper)

  3. Stark broadening of resonant Cr II 3d5-3d44p spectral lines in hot stellar atmospheres

    Science.gov (United States)

    Simić, Z.; Dimitrijević, M. S.; Sahal-Bréchot, S.

    2013-07-01

    New Stark broadening parameters of interest for the astrophysical, laboratory and technological plasma modelling, investigations and analysis for nine resonant Cr II multiplets have been determined within the semiclassical perturbation approach. In order to demonstrate one possibility for their usage in astrophysical plasma research, obtained results have been applied to the analysis of the Stark broadening influence on stellar spectral line shapes.

  4. Evaluation of the effect of accounting method, IPCC v. LCA, on grass-based and confinement dairy systems' greenhouse gas emissions.

    Science.gov (United States)

    O'Brien, D; Shalloo, L; Patton, J; Buckley, F; Grainger, C; Wallace, M

    2012-09-01

    Life cycle assessment (LCA) and the Intergovernmental Panel on Climate Change (IPCC) guideline methodology, which are the principal greenhouse gas (GHG) quantification methods, were evaluated in this study using a dairy farm GHG model. The model was applied to estimate GHG emissions from two contrasting dairy systems: a seasonal calving pasture-based dairy farm and a total confinement dairy system. Data used to quantify emissions from these systems originated from a research study carried out over a 1-year period in Ireland. The genetic merit of cows modelled was similar for both systems. Total mixed ration was fed in the Confinement system, whereas grazed grass was mainly fed in the grass-based system. GHG emissions from these systems were quantified per unit of product and area. The results of both methods showed that the dairy system that emitted the lowest GHG emissions per unit area did not necessarily emit the lowest GHG emissions possible for a given level of product. Consequently, a recommendation from this study is that GHG emissions be evaluated per unit of product given the growing affluent human population and increasing demand for dairy products. The IPCC and LCA methods ranked dairy systems' GHG emissions differently. For instance, the IPCC method quantified that the Confinement system reduced GHG emissions per unit of product by 8% compared with the grass-based system, but the LCA approach calculated that the Confinement system increased emissions by 16% when off-farm emissions associated with primary dairy production were included. Thus, GHG emissions should be quantified using approaches that quantify the total GHG emissions associated with the production system, so as to determine whether the dairy system was causing emissions displacement. The IPCC and LCA methods were also used in this study to simulate, through a dairy farm GHG model, what effect management changes within both production systems have on GHG emissions. The findings suggest that

  5. FOCUSED FEASIBILITY STUDY OF PHYTOREMEDIATION ALTERNATIVE FOR THE INDUSTRIAL EXCESS LANDFILL SITE IN STARK COUNTY, OHIO.

    Science.gov (United States)

    Focused feasibility study of phytoremediation alternative for the Industrial Excess Landfill site in Stark County, Ohio. More information can be found on the NPL Fact Sheet for this site at www.epa.gov/region5/superfund/npl/ohio/OHD000377971.htm

  6. The influence of static fields on the dynamic Stark spectra of hydrogen Balmer lines

    International Nuclear Information System (INIS)

    Janssen, G.C.A.M.; Jayakumar, R.; Granneman, E.H.A.

    1981-01-01

    In plasmas atomic-line radiation is influenced by static and high frequency fields. A simple method of calculating the Stark profiles of the Balmer α and β lines for the case of one-dimensional fields is discussed. Using a Holtsmark field for the static component, the resulting profile of Balmer α shows a splitting of the satellites. (author)

  7. Developmental characters of Pseitina iijimae (Jordan and Starks), bothid flat fishes- pisces

    Digital Repository Service at National Institute of Oceanography (India)

    Devi, C.B.L.

    Post larval stages of Psettina iQimae (Jordan and Starks) ranging from 1.8 mm NL to 44.6 mm SL collected during Naga Expedition and International Indian Ocean Expedition (JIOE) are described The characteristics which help to identify larval stages...

  8. Strong quantum confinement effect in Cu{sub 4}SnS{sub 4} quantum dots synthesized via an improved hydrothermal approach

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuehui; Ma, Ligang; Yin, Yan; Qian, Xu; Zhou, Guotai; Gu, Xiaomin [National Laboratory of Solid State Microstructures and Photovoltaic Engineering Center, Department of Physics, Nanjing University, Nanjing (China); Liu, Wenchao, E-mail: wcliu@nju.edu.cn [National Laboratory of Solid State Microstructures and Photovoltaic Engineering Center, Department of Physics, Nanjing University, Nanjing (China); Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials - SICAM, Nanjing Tech University - NanjingTech, Nanjing (China); Wu, Xiaoshan, E-mail: xswu@nju.edu.cn [National Laboratory of Solid State Microstructures and Photovoltaic Engineering Center, Department of Physics, Nanjing University, Nanjing (China); Zhang, Fengming [National Laboratory of Solid State Microstructures and Photovoltaic Engineering Center, Department of Physics, Nanjing University, Nanjing (China)

    2016-07-05

    We developed an improved hydrothermal method with water-oil two-phase reaction system to synthesize size-controllable and oil-soluble Cu{sub 4}SnS{sub 4} (CTS) quantum dots (QDs). The water-oil interface played an important role in controlling nuclei process, growth speed, crystal size and size-distribution of CTS QDs. X-ray diffraction, Raman scattering and transmission electron microscopy studies suggested that the formation and growth mechanism of CTS QDs was revealed to involve three steps. The crystallographic orientation of the CTS nanoprism was analyzed in detail. The blue-shift of absorption edge and broadening of Raman bands were observed due to the quantum confinement effect. The exciton Bohr radius of CTS QDs was calculated to be 3.3–5.8 nm by using the first principle calculation. The size dependence of band-gaps of CTS QDs follows the particle-in-a-box effective-mass model. The ability to fabricate high-quality CTS QDs certainly facilitates the solar cell applications. - Highlights: • We develop an improved hydrothermal method to synthesize monodisperse CTS QDs. • The size can be controlled through controlling the oil/water ratio. • The quantum confinement effect is confirmed by experiments and calculation.

  9. Effects of spatial confinement and layer disorder in photoluminescence of GaAs1-xBix/GaAs heterostructures

    International Nuclear Information System (INIS)

    Mazur, Yu I; Dorogan, V G; Benamara, M; Ware, M E; Salamo, G J; Schmidbauer, M; Tarasov, G G; Johnson, S R; Lu, X; Yu, S-Q; Tiedje, T

    2013-01-01

    The structural and optical properties of a set of high-quality GaAs 1-x Bi x /GaAs quantum well (QW) heterostructures with Bi concentrations ranging from 3.5% to 6.7% are studied. The energies of the excitonic ground state transitions are determined as a function of Bi concentration and spatial confinement. The influence of material disorder on the optical properties of QWs is investigated. It is determined that trap-related luminescence responds differently to temperature changes depending on whether the Bi concentration is more or less than 5%. Below 5% it contributes significantly to the overall photoluminescence line shape whereas above 5%, it is insignificant.

  10. Knudsen and inverse Knudsen layer effect on tail ion distribution and fusion reactivity in inertial confinement fusion targets

    Science.gov (United States)

    McDevitt, C. J.; Tang, X.-Z.; Guo, Z.; Berk, H. L.

    2014-10-01

    A series of reduced models are used to study the fast ion tail in the vicinity of a transition layer between plasmas at disparate temperatures and densities, which is typical of the gas-pusher interface in inertial confinement fusion targets. Emphasis is placed on utilizing progressively more comprehensive models in order to identify the essential physics for computing the fast ion tail at energies comparable to the Gamow peak. The resulting fast ion tail distribution is subsequently used to compute the fusion reactivity as a function of collisionality and temperature. It is found that while the fast ion distribution can be significantly depleted in the hot spot, leading to a reduction of the fusion reactivity in this region, a surplus of fast ions is present in the neighboring cold region. The presence of this fast ion surplus in the neighboring cold region is shown to lead to a partial recovery of the fusion yield lost in the hot spot.

  11. Confinement effect of laser ablation plume in liquids probed by self-absorption of C2 Swan band emission

    International Nuclear Information System (INIS)

    Sakka, Tetsuo; Saito, Kotaro; Ogata, Yukio H.

    2005-01-01

    The (0,0) Swan band of the C 2 molecules in a laser ablation plume produced on the surface of graphite target submerged in water was used as a probe to estimate the density of C 2 molecules in the plume. Observed emission spectra were reproduced excellently by introducing a self-absorption parameter to the theoretical spectral profile expected by a rotational population distribution at a certain temperature. The optical density of the ablation plume as a function of time was determined as a best-fit parameter by the quantitative fitting of the whole spectral profile. The results show high optical densities for the laser ablation plume in water compared with that in air. It is related to the plume confinement or the expansion, which are the important phenomena influencing the characteristics of laser ablation plumes in liquids

  12. Confinement and diffusion in tokamaks

    International Nuclear Information System (INIS)

    McWilliams, R.

    1988-01-01

    The effect of electric field fluctuations on confinement and diffusion in tokamak is discussed. Based on the experimentally determined cross-field turbolent diffusion coefficient, D∼3.7*cT e /eB(δn i /n i ) rms which is also derived by a simple theory, the cross-field diffusion time, tp=a 2 /D, is calculated and compared to experimental results from 51 tokamak for standard Ohmic operation

  13. Thermostating highly confined fluids.

    Science.gov (United States)

    Bernardi, Stefano; Todd, B D; Searles, Debra J

    2010-06-28

    In this work we show how different use of thermostating devices and modeling of walls influence the mechanical and dynamical properties of confined nanofluids. We consider a two dimensional fluid undergoing Couette flow using nonequilibrium molecular dynamics simulations. Because the system is highly inhomogeneous, the density shows strong fluctuations across the channel. We compare the dynamics produced by applying a thermostating device directly to the fluid with that obtained when the wall is thermostated, considering also the effects of using rigid walls. This comparison involves an analysis of the chaoticity of the fluid and evaluation of mechanical properties across the channel. We look at two thermostating devices with either rigid or vibrating atomic walls and compare them with a system only thermostated by conduction through vibrating atomic walls. Sensitive changes are observed in the xy component of the pressure tensor, streaming velocity, and density across the pore and the Lyapunov localization of the fluid. We also find that the fluid slip can be significantly reduced by rigid walls. Our results suggest caution in interpreting the results of systems in which fluid atoms are thermostated and/or wall atoms are constrained to be rigid, such as, for example, water inside carbon nanotubes.

  14. Effect of stress during handling, seawater acclimation, confinement, and induced spawning on plasma ion levels and somatolactin-expressing cells in mature female Liza ramada.

    Science.gov (United States)

    Khalil, Noha A; Hashem, Amal M; Ibrahim, Amal A E; Mousa, Mostafa A

    2012-08-01

    The present experiments were designed to determine the effect of different stress factors; handling, seawater acclimation, confinement, and induced spawning on plasma cortisol, hydro mineral balance as well as changes in size, number and integrated intensity of somatolactin (SL)-expressing cells in Liza ramada mature females confined to fresh water ponds. The plasma levels of cortisol, PO(4)(3-), Na(+), and K(+) were higher, while Ca(2+) and Mg(2+) were lower than controls during transportation without anesthesia. By using clove oil (5 mg L(-1)) as an anesthetic during transportation, the plasma cortisol, PO(4) (3-), Na(+), and K(+) were similar to controls, while Ca(2+) and Mg(2+) were higher. During seawater acclimation, the plasma cortisol and minerals were significantly higher except Na(+) which was lower than controls. In addition, during induction of spawning, the plasma levels of cortisol, PO(4)(3-), Na(+), K(+), and Mg(2+) were significantly higher than controls. The SL-producing cells are located in the pars intermedia (PI) bordering the neurohypophysis. The stress affected the number, size, and immunostaining of SL-expressing cells. During seawater acclimation, the size and the integrated intensity of SL immunoreactivity were lower, but the number of these cells was higher than controls. Furthermore, the number, size, and the integrated intensity of SL immunoreactivity were significantly lower than controls during handling and after spawning, which was opposite to confinement. The response of SL-expressing cells in PI in parallel with changes in cortisol and hydro mineral balance induced by stress support the possible role of SL in the adaptive response of fish to stress. © 2012 WILEY PERIODICALS, INC.

  15. On the harmonic-type and linear-type confinement of a relativistic scalar particle yielded by Lorentz symmetry breaking effects

    Energy Technology Data Exchange (ETDEWEB)

    Bakke, K., E-mail: kbakke@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900, João Pessoa-PB (Brazil); Belich, H., E-mail: belichjr@gmail.com [Departamento de Física e Química, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, 29060-900, Vitória, ES (Brazil)

    2016-10-15

    Based on the Standard Model Extension, we investigate relativistic quantum effects on a scalar particle in backgrounds of the Lorentz symmetry violation defined by a tensor field. We show that harmonic-type and linear-type confining potentials can stem from Lorentz symmetry breaking effects, and thus, relativistic bound state solutions can be achieved. We first analyse a possible scenario of the violation of the Lorentz symmetry that gives rise to a harmonic-type potential. In the following, we analyse another possible scenario of the breaking of the Lorentz symmetry that induces both harmonic-type and linear-type confining potentials. In this second case, we also show that not all values of the parameter associated with the intensity of the electric field are permitted in the search for polynomial solutions to the radial equation, where the possible values of this parameter are determined by the quantum numbers of the system and the parameters associated with the violation of the Lorentz symmetry.

  16. Quantum confinement effects on the thermoelectric figure of merit in Si/Si{sub 1{minus}x}Ge{sub x} system

    Energy Technology Data Exchange (ETDEWEB)

    Sun, X; Dresselhaus, M S; Wang, K L; Tanner, M O

    1997-07-01

    The Si/Si{sub 1{minus}x}Ge{sub x} quantum well system is attractive for high temperature thermoelectric applications and for demonstration of proof-of-principle for enhanced thermoelectric figure of merit Z, since the interfaces and carrier densities can be well controlled in this system. The authors report here theoretical calculations for Z in this system, and results from theoretical modeling of quantum confinement effects in the presence of {delta}-doping within the barrier layers. The {delta}-doping layers are introduced by growing very thin layers of wide band gap materials within the barrier layers in order to increase the effective barrier height within the barriers and thereby reduce the barrier width necessary for the quantum confinement of carriers within the quantum well. The overall figure of merit is thereby enhanced due to the reduced barrier width and hence reduced thermal conductivity, {kappa}. The {delta}-doping should further reduce {kappa} in the barriers by introducing phonon scattering centers within the barrier region. The temperature dependence of Z for Si quantum wells is also discussed.

  17. An expanded genetic code for probing the role of electrostatics in enzyme catalysis by vibrational Stark spectroscopy.

    Science.gov (United States)

    Völler, Jan-Stefan; Biava, Hernan; Hildebrandt, Peter; Budisa, Nediljko

    2017-11-01

    To find experimental validation for electrostatic interactions essential for catalytic reactions represents a challenge due to practical limitations in assessing electric fields within protein structures. This review examines the applications of non-canonical amino acids (ncAAs) as genetically encoded probes for studying the role of electrostatic interactions in enzyme catalysis. ncAAs constitute sensitive spectroscopic probes to detect local electric fields by exploiting the vibrational Stark effect (VSE) and thus have the potential to map the protein electrostatics. Mapping the electrostatics in proteins will improve our understanding of natural catalytic processes and, in beyond, will be helpful for biocatalyst engineering. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Percolating cluster of center vortices and confinement

    International Nuclear Information System (INIS)

    Gliozzi, Ferdinando; Panero, Marco; Provero, Paolo

    2003-01-01

    We study the role of percolating clusters of center vortices in configurations of an Ising gauge theory in 3D. It is known that low energy features of gauge theories can be described in terms of an 'effective string picture', and that confinement properties are associated with topologically non-trivial configurations. We focus our attention upon percolating clusters of center vortices, and present numerical evidence for the fact that these objects play a preminent role in confinement phenomenon, since their removal sweeps off confinement altogether. Moreover, numerical simulations show that the string fluctuations, and in particular the Mischer term, are completely encoded in the percolating cluster

  19. Case studies on recent Stark broadening calculations and STARK-B database development in the framework of the European project VAMDC (Virtual Atomic and Molecular Data Center)

    International Nuclear Information System (INIS)

    Sahal-Brechot, S

    2010-01-01

    Stark broadening theories and calculations have been extensively developed for about 50 years. The theory can now be considered as mature for many applications, especially for accurate spectroscopic diagnostics and modelling. In astrophysics, with the increasing sensitivity of observations and spectral resolution, in all domains of wavelengths from far UV to infrared, it has become possible to develop realistic models of interiors and atmospheres of stars and interpret their evolution and the creation of elements through nuclear reactions. For hot stars, especially white dwarfs, Stark broadening is the dominant collisional line broadening process. This requires the knowledge of numerous profiles, especially for trace elements, which are used as useful probes for modern spectroscopic diagnostics. Hence, calculations based on a simple but enough accurate and fast method, are necessary for obtaining numerous results. Ab initio calculations are a growing domain of development. Nowadays, the access to such data via an on line database becomes crucial. This is the object of STARK-B, which is a collaborative project between the Paris Observatory and the Astronomical Observatory of Belgrade. It is a database of calculated widths and shifts of isolated lines of atoms and ions due to electron and ion collisions. It is devoted to modelling and spectroscopic diagnostics of stellar atmospheres and envelopes. In addition, it is relevant to laboratory plasmas, laser equipments and technological plasmas. It is a part of VAMDC (Virtual Atomic and Molecular Data Centre), which is an European Union funded collaboration between groups involved in the generation and use of atomic and molecular data.

  20. Effects of Polaron and Quantum Confinement on the Nonlinear Optical Properties in a GaAs/Ga1-xAlxAs Quantum Well Wire

    Directory of Open Access Journals (Sweden)

    L. Caroline Sugirtham

    2014-01-01

    Full Text Available The binding energy of a polaron confined in a GaAs/Ga1-xAlxAs quantum well wire is calculated within the framework of the variational technique and Lee-Low Pines approach. The polaron-induced photoionization cross section as a function of normalized photon energy for a on-centre donor impurity in the quantum wire is investigated. The oscillator strength with the geometrical effect is studied taking into account the polaron effects in a GaAs/Ga0.8Al0.2As quantum well wire. The effect of polaron on the third-order susceptibility of third harmonic generation is studied. Our theoretical results are shown to be in good agreement with previous investigations.

  1. ATR confinement leakage determination

    International Nuclear Information System (INIS)

    Kuan, P.; Buescher, B.J.

    1998-01-01

    The air leakage rate from the Advanced Test Reactor (ATR) confinement is an important parameter in estimating hypothesized accidental releases of radiation to the environment. The leakage rate must be determined periodically to assure that the confinement has not degraded with time and such determination is one of the technical safety requirements of ATR operation. This paper reviews the methods of confinement leakage determination and presents an analysis of leakage determination under windy conditions, which can complicate the interpretation of the determined leakage rates. The paper also presents results of analyses of building air exchange under windy conditions. High wind can enhance air exchange and this could increase the release rates of radioisotopes following an accident

  2. Mechanical collapse of confined fluid membrane vesicles.

    Science.gov (United States)

    Rim, Jee E; Purohit, Prashant K; Klug, William S

    2014-11-01

    Compact cylindrical and spherical invaginations are common structural motifs found in cellular and developmental biology. To understand the basic physical mechanisms that produce and maintain such structures, we present here a simple model of vesicles in confinement, in which mechanical equilibrium configurations are computed by energy minimization, balancing the effects of curvature elasticity, contact of the membrane with itself and the confining geometry, and adhesion. For cylindrical confinement, the shape equations are solved both analytically and numerically by finite element analysis. For spherical confinement, axisymmetric configurations are obtained numerically. We find that the geometry of invaginations is controlled by a dimensionless ratio of the adhesion strength to the bending energy of an equal area spherical vesicle. Larger adhesion produces more concentrated curvatures, which are mainly localized to the "neck" region where the invagination breaks away from its confining container. Under spherical confinement, axisymmetric invaginations are approximately spherical. For extreme confinement, multiple invaginations may form, bifurcating along multiple equilibrium branches. The results of the model are useful for understanding the physical mechanisms controlling the structure of lipid membranes of cells and their organelles, and developing tissue membranes.

  3. Confinement of quarks

    International Nuclear Information System (INIS)

    Nambu, J.

    1978-01-01

    Three quark models of hadron structure, which suggest an explanation of quarks confinement mechanism in hadrons are considered. Quark classifications, quark flawors and colours, symmetry model of hadron structure based on the colour theory of strong interaction are discussed. Diagrams of colour combinations of quarks and antiquarks, exchange of gluons, binding quarks in hadron. Quark confinement models based on the field theory, string model rotating and bag model are discussed. Diagrams of the colour charge distribution explaining the phenomena of infrared ''slavery'' and ultraviolet ''freedom'' are given. The models considered explain but some quark properties, creating prerequisites for the development of the consequent theory of hadron structure

  4. Study of the effect of Kaolin in the mortar of cement matrices by confinement of ion exchange resins

    Directory of Open Access Journals (Sweden)

    Labied S.

    2018-01-01

    Full Text Available Radioactive waste arising as a result of nuclear activities should be safely managed from its generation to final disposal in an appropriate conditioned form to reduce the risk of radiation exposure of technical personnel and of the public and to limit contamination of the environment. The immobilization of low and intermediate level radioactive wastes in cementitious matrices is the most commonly used technique to produce inexpensive waste matrix that complies with regulatory requirements in order to protect humans and the environment against nuisance caused by ionizing radiation. Cement based materials are used in radioactive waste management to produce stable waste forms. This matrix constitutes the first build engineering barrier in disposal facilities. In this work, the kaolin is used to enhance the mechanical performance of the matrix of confinement of ion exchange resins by gradually replacing the sand in mortar with kaolin clay. The Kaolin clay sample was a special pure product, sourced from a foreign country. The maximum quantity of resins that can be incorporated into the mortar formulation without the packages losing their strength is 13.915% which results in a better mechanical strength at 6.7686 MPA compression with kaolin.

  5. Flow characteristics and heat transfer performances of a semi-confined impinging array of jets: effect of nozzle geometry

    Energy Technology Data Exchange (ETDEWEB)

    Dano, B.P.E.; Liburdy, J.A. [Oregon State Univ., Corvallis, OR (United States). Dept. of Mechanical Engineering; Kanokjaruvijit, Koonlaya [Imperial College, London (United Kingdom). Dept. of Mechanical Engineering

    2005-02-01

    The flow and heat transfer characteristics of confined jet array impingement with crossflow is investigated. Discrete impingement pressure measurements are used to obtain the jet orifice discharge flow coefficient. Digital particle image velocimetry (DPIV) and flow visualization are used to determine the flow characteristics. Two thermal boundary conditions at the impinging surface are presented: an isothermal surface, and a uniform heat flux, where thermocouple and thermochromic liquid crystal methods were used, respectively, to determine the local heat transfer coefficient. Two nozzle geometries are studied, circular and cusped ellipse. Based on the interaction with the jet impingement at the surface, the crossflow is shown to influence the heat transfer results. The two thermal boundary conditions differ in overall heat transfer correlation with the jet Reynolds number. Detailed velocity data show that the flow development from the cusped ellipse nozzle affects the wall region flow more than the circular nozzle, as influenced by the crossflow interactions. The overall heat transfer for the uniform heat flux boundary condition is found to increase for the cusped ellipse orifice. (Author)

  6. Anomalous response of supported few-layer hexagonal boron nitride to DC electric fields: a confined water effect?

    Science.gov (United States)

    Oliveira, Camilla; Matos, Matheus; Mazzoni, Mário; Chacham, Hélio; Neves, Bernardo

    2013-03-01

    Hexagonal boron nitride (h-BN) is a two-dimensional compound from III-V family, with the atoms of boron and nitrogen arranged in a honeycomb lattice, similar to graphene. Unlike graphene though, h-BN is an insulator material, with a gap larger than 5 eV. Here, we use Electric Force Microscopy (EFM) to study the electrical response of mono and few-layers of h-BN to an electric field applied by the EFM tip. Our results show an anomalous behavior in the dielectric response for h-BN for different bias orientation: for a positive bias applied to the tip, h-BN layers respond with a larger dielectric constant than the dielectric constant of the silicon dioxide substrate; while for a negative bias, the h-BN dielectric constant is smaller than the dielectric constant of the substrate. Based on first-principles calculations, we showed that this anomalous response may be interpreted as a macroscopic consequence of confinement of a thin water layer between h-BN and substrate. These results were confirmed by sample annealing and also also by a comparative analysis with h-BN on a non-polar substrate. All the authors acknowledge financial support from CNPq, Fapemig, Rede Nacional de Pesquisa em Nanotubos de Carbono and INCT-Nano-Carbono.

  7. Random walks and polygons in tight confinement

    International Nuclear Information System (INIS)

    Diao, Y; Ernst, C; Ziegler, U

    2014-01-01

    We discuss the effect of confinement on the topology and geometry of tightly confined random walks and polygons. Here the walks and polygons are confined in a sphere of radius R ≥ 1/2 and the polygons are equilateral with n edges of unit length. We illustrate numerically that for a fixed length of random polygons the knotting probability increases to one as the radius decreases to 1/2. We also demonstrate that for random polygons (walks) the curvature increases to πn (π(n – 1)) as the radius approaches 1/2 and that the torsion decreases to ≈ πn/3 (≈ π(n – 1)/3). In addition we show the effect of length and confinement on the average crossing number of a random polygon

  8. Confined catalysis under two-dimensional materials

    OpenAIRE

    Li, Haobo; Xiao, Jianping; Fu, Qiang; Bao, Xinhe

    2017-01-01

    Small spaces in nanoreactors may have big implications in chemistry, because the chemical nature of molecules and reactions within the nanospaces can be changed significantly due to the nanoconfinement effect. Two-dimensional (2D) nanoreactor formed under 2D materials can provide a well-defined model system to explore the confined catalysis. We demonstrate a general tendency for weakened surface adsorption under the confinement of graphene overlayer, illustrating the feasible modulation of su...

  9. Experimental determination of the Stark broadening of Cu I spectral lines in a plasma of a capillary discharge

    International Nuclear Information System (INIS)

    Sandolache, G.; Zoita, V.; Bauchire, M.; Le Menn, E.; Gentils, F.; Fleurier, C.

    2001-01-01

    Copper lines are frequently observed in various types of plasma device and industrial plasmas and then it is desirable to develop methods of plasma diagnostics using the emission spectrum of copper lines. The aim of this work is to create a database for the neutral copper spectral lines directly usable for the diagnostic of plasmas with metal vapors. An experimental device has been developed to create a metal plasma having the required metrological properties to facilitate the spectroscopic measurements. A capillary discharge technique has been used to create a plasma jet representing a radially symmetric light source. The copper-hydrogen plasma jet was produced by the ablation of the capillary wall consisting of a copper-embedded elastomer. The plasma jet was observed side-on using the high-resolution spectrometers equipped with ICCD detectors. The 2D square matrix ICCD detectors have permitted the observation of cross sections of the plasma jet. The high-speed time resolved camera equipped with interference filters has been used to check the cylindrical shape and the homogeneity of the plasma jet. The electron density of the plasma jet was obtained by using the H α spectral line of the hydrogen component plasma. The temperature was determined by applying the relative intensity method to the measured intensities of the neutral copper spectral lines emitted by the plasma jet. The hydrogen and copper lines were broadened principally by the Stark effect. The measured temperatures were about 15,000 K and the electron density of about 2x10 17 cm -3 . The results of the Stark broadening of the neutral cooper concerned particularly the lines 453.9 nm, 465.1 nm, 515.3 nm and 529.2 nm. (authors)

  10. Trends with coverage and pH in Stark tuning rates for CO on Pt(1 1 1) electrodes

    International Nuclear Information System (INIS)

    Uddin, Jamal; Anderson, Alfred B.

    2013-01-01

    The general understanding of so-called electrochemical Stark tuning rates, that is, the potential dependence of vibrational frequency of CO adsorbed on Pt(1 1 1), has developed over the past thirty years in terms of two semiempirical models. The first is the Fermi level shift model used in non-self-consistent-field one-electron molecular orbital theory. This approach has provided qualitative understanding in terms of Fermi level-dependent variations in σ and π orbital bonding between CO and the electrode surface atoms. The second is the use of self-consistent-field theory with surface charging to create adjustable electric fields. Adsorbed CO then reacts to the field in a classical Stark effect with some small uncharacterized Fermi level shift superimposed. It is now possible, using two-dimensional density functional theory, including electrolyte polarization from surface charging, and the dielectric continuum to approximate solvation energy, to calculate the tuning rate in response to shifts in the Fermi level and electrode potential caused by changing the surface charge density. Here we apply this first principles method to calculate trends in the tuning rate for CO adsorbed on 1-fold Pt(1 1 1) sites with changes in CO(ads) coverage and with changes in electrolyte pH. The tuning rate is calculated to decrease as the coverage is increased and, for high coverage, to increase as the pH is increased. These trends are shown to be in qualitative agreement with the very little existing experimental data for these trends

  11. Protecting embryos from stress: Corticosterone effects and the corticosterone response to capture and confinement during pregnancy in a live-bearing lizard (Hoplodactylus maculatus)

    Science.gov (United States)

    Cree, A.; Tyrrell, C.L.; Preest, M.R.; Thorburn, D.; Guillette, L.J.

    2003-01-01

    Hormones in the embryonic environment, including those of the hypothalamo-pituitary-adrenal (HPA) axis, have profound effects on development in eutherian mammals. However, little is known about their effects in reptiles that have independently evolved viviparity. We investigated whether exogenous corticosterone affected embryonic development in the viviparous gecko Hoplodactylus maculatus, and whether pregnant geckos have a corticosterone response to capture and confinement that is suppressed relative to that in non-pregnant (vitellogenic) females and males. Corticosterone implants (5 mg, slow-release) administered to females in mid-pregnancy caused a large elevation of corticosterone in maternal plasma (P<0.001), probable reductions in embryonic growth and development (P=0.069-0.073), developmental abnormalities and eventual abortions. Cool temperature produced similar reductions in embryonic growth and development (P???0.036 cf. warm controls), but pregnancies were eventually successful. Despite the potentially harmful effects of elevated plasma corticosterone, pregnant females did not suppress their corticosterone response to capture and confinement relative to vitellogenic females, and both groups of females had higher responses than males. Future research should address whether lower maternal doses of corticosterone produce non-lethal effects on development that could contribute to phenotypic plasticity. Corticosterone implants also led to increased basking in pregnant females (P<0.001), and basal corticosterone in wild geckos (independent of reproductive condition) was positively correlated with body temperature (P<0.001). Interactions between temperature and corticosterone may have broad significance to other terrestrial ectotherms, and body temperature should be considered as a variable influencing plasma corticosterone concentrations in all future studies on reptiles. ?? 2003 Elsevier Inc. All rights reserved.

  12. Disorder parameter of confinement

    International Nuclear Information System (INIS)

    Nakamura, N.; Ejiri, S.; Matsubara, Y.; Suzuki, T.

    1996-01-01

    The disorder parameter of confinement-deconfinement phase transition based on the monopole action determined previously in SU(2) QCD are investigated. We construct an operator which corresponds to the order parameter defined in the abelian Higgs model. The operator shows proper behaviors as the disorder parameter in the numerical simulations of finite temperature QCD. (orig.)

  13. On confinement and duality

    Energy Technology Data Exchange (ETDEWEB)

    Strassler, M J [University of Pennsylvania, Philadelphia, PA (United States)

    2002-05-15

    Confinement in four-dimensional gauge theories is considered from several points of view. General features are discussed, and the mechanism of confinement is investigated. Dualities between field theories, and duality between field theory and string theory, are both put to use. In these lectures I have given an overview of some of the key ideas underlying confinement as a property of field theory, and now, of string theory as well. This is a tiny fraction of what field theory (and now string theory) is capable of, and we are still uncovering new features on a monthly basis. In fact, most field theories do not have confinement, for reasons entirely different from those of QCD. Many become nontrivial conformal field theories at low energy. Others become composite, weakly-coupled gauge theories. Dualities of many stripes are found everywhere. Ordinary dimensional analysis in string theory is totally wrong in the regime where it looks like weakly-coupled field theory, and ordinary dimensional analysis in field theory is totally wrong in the regime where it looks like weakly-coupled supergravity.

  14. Bump evolution driven by the x-ray ablation Richtmyer-Meshkov effect in plastic inertial confinement fusion Ablators

    Directory of Open Access Journals (Sweden)

    Loomis Eric

    2013-11-01

    Full Text Available Growth of hydrodynamic instabilities at the interfaces of inertial confinement fusion capsules (ICF due to ablator and fuel non-uniformities are a primary concern for the ICF program. Recently, observed jetting and parasitic mix into the fuel were attributed to isolated defects on the outer surface of the capsule. Strategies for mitigation of these defects exist, however, they require reduced uncertainties in Equation of State (EOS models prior to invoking them. In light of this, we have begun a campaign to measure the growth of isolated defects (bumps due to x-ray ablation Richtmyer-Meshkov in plastic ablators to validate these models. Experiments used hohlraums with radiation temperatures near 70 eV driven by 15 beams from the Omega laser (Laboratory for Laser Energetics, University of Rochester, NY, which sent a ∼1.25Mbar shock into a planar CH target placed over one laser entrance hole. Targets consisted of 2-D arrays of quasi-gaussian bumps (10 microns tall, 34 microns FWHM deposited on the surface facing into the hohlraum. On-axis radiography with a saran (Cl Heα − 2.76keV backlighter was used to measure bump evolution prior to shock breakout. Shock speed measurements were also performed to determine target conditions. Simulations using the LEOS 5310 and SESAME 7592 models required the simulated laser power be turned down to 80 and 88%, respectively to match observed shock speeds. Both LEOS 5310 and SESAME 7592 simulations agreed with measured bump areal densities out to 6 ns where ablative RM oscillations were observed in previous laser-driven experiments, but did not occur in the x-ray driven case. The QEOS model, conversely, over predicted shock speeds and under predicted areal density in the bump.

  15. Can the Stark-Einstein law resolve the measurement problem from an animate perspective?

    Science.gov (United States)

    Thaheld, Fred H

    2015-09-01

    Analysis of the Stark-Einstein law as it applies to the retinal molecule, which is part of the rhodopsin molecule within the rod cells of the retina, reveals that it may provide the solution to the measurement problem from an animate perspective. That it represents a natural boundary where the Schrödinger equation or wave function automatically goes from linear to nonlinear while remaining in a deterministic state. It will be possible in the near future to subject this theory to empirical tests as has been previously proposed. This analysis provides a contrast to the many decades well studied and debated inanimate measurement problem and would represent an addition to the Stark-Einstein law involving information carried by the photon. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Stark broadening in hot, dense laser-produced plasmas

    International Nuclear Information System (INIS)

    Tighe, R.J.; Hooper, C.F. Jr.

    1976-01-01

    Broadened Lyman-α x-ray lines from neon X and argon XVIII radiators, which are immersed in a hot, dense deuterium or deuterium-tritium plasma, are discussed. In particular, these lines are analyzed for several temperature-density cases, characteristic of laser-produced plasmas; special attention paid to the relative importance of ion, electron, and Doppler effects. Static ion microfield distribution functions are tabulated

  17. Observation of asymmetric Stark profiles from plasmas created by a picosecond KrF laser

    International Nuclear Information System (INIS)

    Nam, C.H.; Tighe, W.; Suckewer, S.; Seely, J.F.; Feldman, U.; Woltz, L.A.

    1987-10-01

    High-resolution extreme ultraviolet (XUV) spectra from solid targets irradiated by a picosecond KrF* laser focused to 10 16 W/cm 2 have been recorded. The line profiles of transitions in Li-like fluorine and oxygen are asymmetric and up to 2 A in width. Calculations indicate the presence of transitions of the type 2p-3p and other forbidden Stark components. 11 refs., 6 figs

  18. Observation of interference between stark and electric quadrupole transitions in LIF from He atoms in plasmas

    International Nuclear Information System (INIS)

    Takiyama, K.; Namba, S.; Furukawa, S.; Oda, T.; James, B.W.; Andruczyk, D.

    2004-01-01

    Interference between Stark-induced dipole and electric quadrupole amplitudes was observed in a He hollow cathode plasma with axial magnetic field perpendicular to the sheath electric field E by laser-induced fluorescence (LIF) method. Circularly polarized LIF signals were observed in the sheath region. Spatial profile of the degree of polarization P c showed characteristic features of the interference. Using theoretically calculated P c -E relationship, E-profile was successfully obtained form the measure P c . (author)

  19. Confinement of Reinforced-Concrete Columns with Non-Code Compliant Confining Reinforcement plus Supplemental Pen-Binder

    Directory of Open Access Journals (Sweden)

    Anang Kristianto

    2012-11-01

    Full Text Available One of the important requirements for earthquake resistant building related to confinement is the use of seismic hooks in the hoop or confining reinforcement of reinforced-concrete column elements. However, installation of a confining reinforcement with a 135-degree hook is not easy. Therefore, in practice, many construction workers apply a confining reinforcement with a 90-degreehook (non-code compliant. Based on research and records of recent earthquakes in Indonesia, the use of a non-code compliant confining reinforcement for concrete columns produces structures with poor seismic performance. This paper presents a study that introduces an additional element that is expected to improve the effectiveness of concrete columns confined with a non-code compliant confining reinforcement. The additional element, named a pen-binder, is used to keep the non-code compliant confining reinforcement in place. The effectiveness of this element under pure axial concentric loading was investigatedcomprehensively.The specimens tested in this study were 18 concrete columns,with a cross-section of 170 mm x 170 mm and a height of 480 mm. The main test variables were the material type of the pen-binder, the angle of the hook, and the confining reinforcement configuration.The test results indicate that adding pen-binders can effectively improve the strength and ductility of the column specimens confined with a non-code compliant confining reinforcement

  20. The effect of confinement on the temperature dependence of the excitonic transition energy in GaAs/AlxGa1-xAs quantum wells

    International Nuclear Information System (INIS)

    Silva, M A T da; Morais, R R O; Dias, I F L; Lourenco, S A; Duarte, J L; Laureto, E; Quivy, A A; Silva, E C F da

    2008-01-01

    We determined by means of photoluminescence measurements the dependence on temperature of the transition energy of excitons in GaAs/Al x Ga 1-x As quantum wells with different alloy concentrations (with different barrier heights). Using a fitting procedure, we determined the parameters which describe the behavior of the excitonic transition energy as a function of temperature according to three different theoretical models. We verified that the temperature dependence of the excitonic transition energy does not only depend on the GaAs material but also depends on the barrier material, i.e. on the alloy composition. The effect of confinement on the temperature dependence of the excitonic transition is discussed