WorldWideScience

Sample records for configuration interaction

  1. Industrial requirements for interactive product configurators

    DEFF Research Database (Denmark)

    Queva, Matthieu Stéphane Benoit; Probst, Christian W.; Vikkelsøe, Per

    2009-01-01

    The demand for highly customized products at low cost is driving the industry towards Mass Customization. Interactive product configurators play an essential role in this new trend, and must be able to support more and more complex features. The purpose of this paper is, firstly, to identify...... requirements for modern interactive configurators. Existing modeling and solving technologies for configuration are then reviewed and their limitations discussed. Finally, a proposition for a future product configuration system is described....

  2. Interactive Cost Configuration Over Decision Diagrams

    DEFF Research Database (Denmark)

    Andersen, Henrik Reif; Hadzic, Tarik; Pisinger, David

    2010-01-01

    interaction online. In particular,binary decision diagrams (BDDs) have been successfully used as a compilation target for product and service configuration. In this paper we discuss how to extend BDD-based configuration to scenarios involving cost functions which express user preferences. We first show...... that an efficient, robust and easy to implement extension is possible if the cost function is additive, and feasible solutions are represented using multi-valued decision diagrams (MDDs). We also discuss the effect on MDD size if the cost function is non-additive or if it is encoded explicitly into MDD. We...... then discuss interactive configuration in the presence of multiple cost functions. We prove that even in its simplest form, multiple-cost configuration is NP-hard in the input MDD. However, for solving two-cost configuration we develop a pseudo-polynomial scheme and a fully polynomial approximation scheme...

  3. Co-Configuration in Interaction Work

    DEFF Research Database (Denmark)

    Fischer, Louise Harder; Pries-Heje, Lene

    2015-01-01

    How to increase knowledge workers productivity is still a puzzle. While knowledge work has become increasingly virtual, collaborative and interactive, we still witness challenges in the area of productivity. We challenge the widespread perception of the causal relationship between high autonomy...... and high productivity in knowledge work and the fact that configuration and standardization for improving productivity is logical impossible. With a hermeneutical approach we describe and interpret “what is going on” in two different context of interaction knowledge work. Findings suggests that knowledge...... workers often feel caught in counter-productive practices with technology, due to the autonomous use of Interaction-IT and the challenge of configuring work. We witness different behaviors related to “the autonomy paradox” and we see something interesting happening, when introducing Interaction IT. While...

  4. Kramers Pairs in configuration interaction

    DEFF Research Database (Denmark)

    Avery, John Scales; Avery, James Emil

    2003-01-01

    The theory of symmetry-preserving Kramers pair creation operators is reviewed and formulas for applying these operators to configuration interaction calculations are derived. A new and more general type of symmetry-preserving pair creation operator is proposed and shown to commute with the total ...

  5. Improving the Performance of Interactive Configuration with Regular String Constraints

    DEFF Research Database (Denmark)

    Hansen, Esben Rune; Tiedemann, Peter

    2008-01-01

    A generalization of the problem of interactive configuration has previously been presented in [1]. This generalization utilized decomposition to extend the standard finite domain interactive configuration framework to deal with unbounded string variables and provided features such as prefix auto...

  6. Configuration interaction wave functions: A seniority number approach

    International Nuclear Information System (INIS)

    Alcoba, Diego R.; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E.; Oña, Ofelia B.

    2014-01-01

    This work deals with the configuration interaction method when an N-electron Hamiltonian is projected on Slater determinants which are classified according to their seniority number values. We study the spin features of the wave functions and the size of the matrices required to formulate states of any spin symmetry within this treatment. Correlation energies associated with the wave functions arising from the seniority-based configuration interaction procedure are determined for three types of molecular orbital basis: canonical molecular orbitals, natural orbitals, and the orbitals resulting from minimizing the expectation value of the N-electron seniority number operator. The performance of these bases is analyzed by means of numerical results obtained from selected N-electron systems of several spin symmetries. The comparison of the results highlights the efficiency of the molecular orbital basis which minimizes the mean value of the seniority number for a state, yielding energy values closer to those provided by the full configuration interaction procedure

  7. Configuration interaction wave functions: A seniority number approach

    Energy Technology Data Exchange (ETDEWEB)

    Alcoba, Diego R. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Física de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Torre, Alicia; Lain, Luis, E-mail: qfplapel@lg.ehu.es [Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao (Spain); Massaccesi, Gustavo E. [Departamento de Ciencias Exactas, Ciclo Básico Común, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Oña, Ofelia B. [Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad Nacional de La Plata, CCT La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Diag. 113 y 64 (S/N), Sucursal 4, CC 16, 1900 La Plata (Argentina)

    2014-06-21

    This work deals with the configuration interaction method when an N-electron Hamiltonian is projected on Slater determinants which are classified according to their seniority number values. We study the spin features of the wave functions and the size of the matrices required to formulate states of any spin symmetry within this treatment. Correlation energies associated with the wave functions arising from the seniority-based configuration interaction procedure are determined for three types of molecular orbital basis: canonical molecular orbitals, natural orbitals, and the orbitals resulting from minimizing the expectation value of the N-electron seniority number operator. The performance of these bases is analyzed by means of numerical results obtained from selected N-electron systems of several spin symmetries. The comparison of the results highlights the efficiency of the molecular orbital basis which minimizes the mean value of the seniority number for a state, yielding energy values closer to those provided by the full configuration interaction procedure.

  8. Pushing configuration-interaction to the limit

    DEFF Research Database (Denmark)

    Vogiatzis, Konstantinos D.; Ma, Dongxia; Olsen, Jeppe

    2017-01-01

    A new large-scale parallel multiconfigurational self-consistent field (MCSCF) implementation in the open-source NWChem computational chemistry code is presented. The generalized active space (GAS) approach is used to partition large configuration interaction (CI) vectors and generate a sufficient...

  9. An Activity-Centric Approach to Configuration Work in Distributed Interaction

    DEFF Research Database (Denmark)

    Houben, Steven

    The widespread introduction of new types of computing devices, such as smartphones, tablet computers, large interactive displays or even wearable devices, has led to setups in which users are interacting with a rich ecology of devices. These new device ecologies have the potential to introduce...... and captures the problems and challenges of distributed interaction. Using both empirical data and related work, I argue that configuration work is composed of: curation work, task resumption lag, mobility work, physical handling and articulation work. Using configuration work as a problem description, I...

  10. An Interaction Measure for Control Configuration Selection for Multivariable Bilinear Systems

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza; Stoustrup, Jakob

    2013-01-01

    are needed to be controlled, are nonlinear and linear models are insufficient to describe the behavior of the processes. The focus of this paper is on the problem of control configuration selection for a class of nonlinear systems which is known as bilinear systems. A gramian-based interaction measure...... for control configuration selection of MIMO bilinear processes is described. In general, most of the results on the control configuration selection, which have been proposed so far, can only support linear systems. The proposed gramian-based interaction measure not only supports bilinear processes but also...

  11. Control configuration selection for bilinear systems via generalised Hankel interaction index array

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza; Tahavori, Maryamsadat

    2015-01-01

    configuration selection. It is well known that a suitable control configuration selection is an important prerequisite for a successful industrial control. In this paper the problem of control configuration selection for multiple-input and multiple-output (MIMO) bilinear processes is addressed. First...... way, an iterative method for solving the generalised Sylvester equation is proposed. The generalised cross-gramian is used to form the generalised Hankel interaction index array. The generalised Hankel interaction index array is used for control configuration selection of MIMO bilinear processes. Most......Decentralised and partially decentralised control strategies are very popular in practice. To come up with a suitable decentralised or partially decentralised control structure, it is important to select the appropriate input and output pairs for control design. This procedure is called control...

  12. Configuration interaction in LTE spectra of heavy elements

    International Nuclear Information System (INIS)

    Bar-Shalom, A.; Oreg, J.; Goldstein, W.

    1992-11-01

    We present a method for including the effects of configuration interaction (CI) between relativistic subconfigurations of an electron configuration in the calculation of emission and absorption spectra of plasmas in local thermodynamic equilibrium (LTE). Analytical expressions for the correction to the intensities, owing to Cl, of an unresolved transition array (UTA) and of a supertransition array (STA) are obtained when the correction is small compared to the spin-orbit splitting, bypassing the need to diagonalize energy matrices. These expressions serve as working formulas in the STA model and, in addition, reveal a priori the conditions under which CI effects are significant. Examples of the effect are presented

  13. Using full configuration interaction quantum Monte Carlo in a seniority zero space to investigate the correlation energy equivalence of pair coupled cluster doubles and doubly occupied configuration interaction

    International Nuclear Information System (INIS)

    Shepherd, James J.; Henderson, Thomas M.; Scuseria, Gustavo E.

    2016-01-01

    Over the past few years, pair coupled cluster doubles (pCCD) has shown promise for the description of strong correlation. This promise is related to its apparent ability to match results from doubly occupied configuration interaction (DOCI), even though the latter method has exponential computational cost. Here, by modifying the full configuration interaction quantum Monte Carlo algorithm to sample only the seniority zero sector of Hilbert space, we show that the DOCI and pCCD energies are in agreement for a variety of 2D Hubbard models, including for systems well out of reach for conventional configuration interaction algorithms. Our calculations are aided by the sign problem being much reduced in the seniority zero space compared with the full space. We present evidence for this and then discuss the sign problem in terms of the wave function of the system which appears to have a simplified sign structure.

  14. Configuration mixing in the sdg interacting boson model

    International Nuclear Information System (INIS)

    Bouldjedri, A; Van Isacker, P; Zerguine, S

    2005-01-01

    A wavefunction analysis of the strong-coupling limits of the sdg interacting boson model is presented. The analysis is carried out for two-boson states and allows us to characterize the boson configuration mixing in the different limits. Based on these results and those of a shell-model analysis of the sdg IBM, qualitative conclusions are drawn about the range of applicability of each limit

  15. Configuration mixing in the sdg interacting boson model

    Energy Technology Data Exchange (ETDEWEB)

    Bouldjedri, A [Department of Physics, Faculty of Science, University of Batna, Avenue Boukhelouf M El Hadi, 05000 Batna (Algeria); Van Isacker, P [GANIL, BP 55027, F-14076 Caen cedex 5 (France); Zerguine, S [Department of Physics, Faculty of Science, University of Batna, Avenue Boukhelouf M El Hadi, 05000 Batna (Algeria)

    2005-11-01

    A wavefunction analysis of the strong-coupling limits of the sdg interacting boson model is presented. The analysis is carried out for two-boson states and allows us to characterize the boson configuration mixing in the different limits. Based on these results and those of a shell-model analysis of the sdg IBM, qualitative conclusions are drawn about the range of applicability of each limit.

  16. Convergence of configuration-interaction single-center calculations of positron-atom interactions

    International Nuclear Information System (INIS)

    Mitroy, J.; Bromley, M. W. J.

    2006-01-01

    The configuration interaction (CI) method using orbitals centered on the nucleus has recently been applied to calculate the interactions of positrons interacting with atoms. Computational investigations of the convergence properties of binding energy, phase shift, and annihilation rate with respect to the maximum angular momentum of the orbital basis for the e + Cu and PsH bound states, and the e + -H scattering system were completed. The annihilation rates converge very slowly with angular momentum, and moreover the convergence with radial basis dimension appears to be slower for high angular momentum. A number of methods of completing the partial wave sum are compared; an approach based on a ΔX J =a(J+(1/2)) -n +b(J+(1/2)) -(n+1) form [with n=4 for phase shift (or energy) and n=2 for the annihilation rate] seems to be preferred on considerations of utility and underlying physical justification

  17. A hybrid configuration interaction treatment based on seniority number and excitation schemes

    International Nuclear Information System (INIS)

    Alcoba, Diego R.; Capuzzi, Pablo; Torre, Alicia; Lain, Luis; Oña, Ofelia B.; Van Raemdonck, Mario; Bultinck, Patrick; Van Neck, Dimitri

    2014-01-01

    We present a configuration interaction method in which the Hamiltonian of an N-electron system is projected on Slater determinants selected according to the seniority-number criterion along with the traditional excitation-based procedure. This proposed method is especially useful to describe systems which exhibit dynamic (weak) correlation at determined geometric arrangements (where the excitation-based procedure is more suitable) but show static (strong) correlation at other arrangements (where the seniority-number technique is preferred). The hybrid method amends the shortcomings of both individual determinant selection procedures, yielding correct shapes of potential energy curves with results closer to those provided by the full configuration interaction method

  18. A hybrid configuration interaction treatment based on seniority number and excitation schemes

    Energy Technology Data Exchange (ETDEWEB)

    Alcoba, Diego R.; Capuzzi, Pablo [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Física de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Torre, Alicia; Lain, Luis, E-mail: qfplapel@lg.ehu.es [Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644 E-48080 Bilbao (Spain); Oña, Ofelia B. [Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad Nacional de La Plata, CCT La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Diag. 113 y 64 (S/N), Sucursal 4, CC 16, 1900 La Plata (Argentina); Van Raemdonck, Mario; Bultinck, Patrick [Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 (S3), 9000 Gent (Belgium); Van Neck, Dimitri [Center for Molecular Modelling, Ghent University, Technologiepark 903, 9052 Zwijnaarde (Belgium)

    2014-12-28

    We present a configuration interaction method in which the Hamiltonian of an N-electron system is projected on Slater determinants selected according to the seniority-number criterion along with the traditional excitation-based procedure. This proposed method is especially useful to describe systems which exhibit dynamic (weak) correlation at determined geometric arrangements (where the excitation-based procedure is more suitable) but show static (strong) correlation at other arrangements (where the seniority-number technique is preferred). The hybrid method amends the shortcomings of both individual determinant selection procedures, yielding correct shapes of potential energy curves with results closer to those provided by the full configuration interaction method.

  19. Higher-order resonant electronic recombination as a manifestation of configuration interaction

    International Nuclear Information System (INIS)

    Beilmann, C; Amaro, P; Tashenov, S; Bekker, H; Harman, Z; Crespo López-Urrutia, J R

    2013-01-01

    Theoretical and experimental investigations of higher-order electron–ion recombination resonances including inter-shell excitations are presented for L-shell ions of Kr with the aim of examining details of atomic structure calculations. The particular importance of electron–electron interaction and configuration mixing effects for these recombination processes enables their use for detailed tests of electron correlation effects. A test of the required level of considered mixing configurations is presented and further experiments involving higher-order recombination channels are motivated. (paper)

  20. Configurational energies and effective cluster interactions in substitutionally disordered binary alloys

    International Nuclear Information System (INIS)

    Gonis, A.; Zhang, X.h.; Freeman, A.J.; Turchi, P.; Stocks, G.M.; Nicholson, D.M.

    1987-01-01

    The determination of configurational energies in terms of effective cluster interactions in substitutionally disordered alloys from a knowledge of the alloy electronic structure is examined within the methods of concentration waves (CW) and the generalized perturbation method (GPM), and for the first time within the embedded-cluster method (ECM). It is shown that the ECM provides the exact summation to all orders of the effective cluster interaction expansions obtained in the partially renormalized GPM. The connection between the various methods (CW, GPM, and ECM) is discussed and illustrated by means of numerical calculations for model one-dimensional tight-binding (TB) systems and for TB Hamiltonians chosen to describe Pd-V alloys. These calculations, and the formal considerations presented in the body of the paper, show the complete equivalence of converged GPM summations within specific clusters and the ECM. In addition, it is shown that an exact expansion of the configurational energy can be obtained in terms of fully renormalized effective cluster interactions. In principle, these effective cluster interactions can be used in conjunction with statistical models to determine stable ordered structures at low temperatures and alloy phase diagrams

  1. Parallel implementation and performance optimization of the configuration-interaction method

    Energy Technology Data Exchange (ETDEWEB)

    Shan, H; Williams, S; Johnson, C; McElvain, K; Ormand, WE

    2015-11-20

    The configuration-interaction (CI) method, long a popular approach to describe quantum many-body systems, is cast as a very large sparse matrix eigenpair problem with matrices whose dimension can exceed one billion. Such formulations place high demands on memory capacity and memory bandwidth - - two quantities at a premium today. In this paper, we describe an efficient, scalable implementation, BIGSTICK, which, by factorizing both the basis and the interaction into two levels, can reconstruct the nonzero matrix elements on the fly, reduce the memory requirements by one or two orders of magnitude, and enable researchers to trade reduced resources for increased computational time. We optimize BIGSTICK on two leading HPC platforms - - the Cray XC30 and the IBM Blue Gene/Q. Specifically, we not only develop an empirically-driven load balancing strategy that can evenly distribute the matrix-vector multiplication across 256K threads, we also developed techniques that improve the performance of the Lanczos reorthogonalization. Combined, these optimizations improved performance by 1.3-8× depending on platform and configuration.

  2. Nuclear deformation in the configuration-interaction shell model

    Science.gov (United States)

    Alhassid, Y.; Bertsch, G. F.; Gilbreth, C. N.; Mustonen, M. T.

    2018-02-01

    We review a method that we recently introduced to calculate the finite-temperature distribution of the axial quadrupole operator in the laboratory frame using the auxiliary-field Monte Carlo technique in the framework of the configuration-interaction shell model. We also discuss recent work to determine the probability distribution of the quadrupole shape tensor as a function of intrinsic deformation β,γ by expanding its logarithm in quadrupole invariants. We demonstrate our method for an isotope chain of samarium nuclei whose ground states describe a crossover from spherical to deformed shapes.

  3. The Relationship Between Spatial Configuration and Social Interaction in High-Rise Flats: A Case Study On The Jatinegara Barat in Jakarta.

    Directory of Open Access Journals (Sweden)

    Ridwana Rifan

    2018-01-01

    The results of this study indicate that: (1 the relationship of spatial configuration to social interaction level in Jatinegara Barat flats can be positive or negative. (2 Positive relationships are found on the1st and 2ndfloor areas. High configuration values with high interaction levels are found in shared spaces on the 1st and 2nd floors with characteristics such as open space, large space, and availability of interaction supporting elements, while low configuration values with low interaction levels are found in more confined spaces such as private spaces and narrow corridors. (3 Negative relationships are found in the corridor and shared space in front of the elevator on each typical floors. Shared space in front of the elevator that has high spatial configuration value with large area show a low level of social interaction. While corridor with lower configuration value with the narrow area but have supporting elements such as chairs, mats, and shops have a higher level of social interaction. (4 This study shows that in the case of the relationship between spatial configuration and social interaction, availability of interaction supporting elements has greater influence rather than any other spatial factors.

  4. Decomposition of the configuration-interaction coefficients in the multiconfiguration time-dependent Hartree-Fock method

    Energy Technology Data Exchange (ETDEWEB)

    Lötstedt, Erik, E-mail: lotstedt@chem.s.u-tokyo.ac.jp; Kato, Tsuyoshi; Yamanouchi, Kaoru [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2016-04-21

    An approximate implementation of the multiconfiguration time-dependent Hartree-Fock method is proposed, in which the matrix of configuration-interaction coefficients is decomposed into a product of matrices of smaller dimension. The applicability of this method in which all the configurations are kept in the expansion of the wave function, while the configuration-interaction coefficients are approximately calculated, is discussed by showing the results on three model systems: a one-dimensional model of a beryllium atom, a one-dimensional model of a carbon atom, and a one-dimensional model of a chain of four hydrogen atoms. The time-dependent electronic dynamics induced by a few-cycle, long-wavelength laser pulse is found to be well described at a lower computational cost compared to the standard multiconfiguration time-dependent Hartree-Fock treatment. Drawbacks of the method are also discussed.

  5. Particle-two particle interaction in configuration space

    International Nuclear Information System (INIS)

    Kuzmichev, V.E.

    1982-07-01

    The problem if three indentical particles with zero-range two-particle interaction is considered. An explicit expression for the effective potential between one particle and the remaining two-particle system is obtained in the coordinate representation. It is shown that for arbitrary energies, at small and, for zero energy, at large distances rho between the one particle and centre of mass of the other two particles the diagonal matrix element of the effective potential is attractive and proportional to 1/rho 2 . This property of the effective potenial explains both the Thomas singularity and the Efimov effect. In the case of zero total energy of the system the general form of the solution of the three-particle integral equation is found in configuration space. (orig.)

  6. Resolution-of-identity stochastic time-dependent configuration interaction for dissipative electron dynamics in strong fields.

    Science.gov (United States)

    Klinkusch, Stefan; Tremblay, Jean Christophe

    2016-05-14

    In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.

  7. Resolution-of-identity stochastic time-dependent configuration interaction for dissipative electron dynamics in strong fields

    Energy Technology Data Exchange (ETDEWEB)

    Klinkusch, Stefan; Tremblay, Jean Christophe [Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany)

    2016-05-14

    In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.

  8. Determination of orbitals for use in configuration interaction calculations

    International Nuclear Information System (INIS)

    Dunning, T.H. Jr.; Davidson, E.R.; Ruedenberg, K.; Hinze, J.

    1978-01-01

    For a full configuration interaction (CI) calculation the choice of orbitals is completely irrelevant, i.e., the calculated wavefunction is unaffected by an arbitrary unitary transformation of the orbitals; it depends only on the space spanned by the original basis set. For most chemical systems it is not possible to realistically carry out a full CI calculation, so that specification of the orbital set is important. Even for less-than-full CI calculations, it can be shown, however, that for certain types of calculations the wavefunction is unaffected by restricted transformations among the orbital set. For example, for CI calculations based on a single configuration plus a complete set of excitations of a given type (single, double, etc.), the calculated wavefunction is independent of transformations among the set of occupied orbitals and among the set of virtual orbitals. The wavefunction does, however, depend on transformations which mix the occupied and virtual orbitals

  9. Threshold and channel interaction in cochlear implant users: evaluation of the tripolar electrode configuration.

    Science.gov (United States)

    Bierer, Julie Arenberg

    2007-03-01

    The efficacy of cochlear implants is limited by spatial and temporal interactions among channels. This study explores the spatially restricted tripolar electrode configuration and compares it to bipolar and monopolar stimulation. Measures of threshold and channel interaction were obtained from nine subjects implanted with the Clarion HiFocus-I electrode array. Stimuli were biphasic pulses delivered at 1020 pulses/s. Threshold increased from monopolar to bipolar to tripolar stimulation and was most variable across channels with the tripolar configuration. Channel interaction, quantified by the shift in threshold between single- and two-channel stimulation, occurred for all three configurations but was largest for the monopolar and simultaneous conditions. The threshold shifts with simultaneous tripolar stimulation were slightly smaller than with bipolar and were not as strongly affected by the timing of the two channel stimulation as was monopolar. The subjects' performances on clinical speech tests were correlated with channel-to-channel variability in tripolar threshold, such that greater variability was related to poorer performance. The data suggest that tripolar channels with high thresholds may reveal cochlear regions of low neuron survival or poor electrode placement.

  10. Configuration interaction calculations of positron binding to Be(3P )

    International Nuclear Information System (INIS)

    Bromley, M.W.J.; Mitroy, J.

    2006-01-01

    The configuration interaction method is applied to investigate the possibility of positron binding to the metastable beryllium (1s 2 2s2p 3 P ) state. The largest calculation obtained an estimated energy that was unstable by 0.00014 Hartree with respect to the Ps + Be + (2s) lowest dissociation channel. It is likely that positron binding to parent states with non-zero angular momentum is inhibited by centrifugal barriers

  11. Deterministic alternatives to the full configuration interaction quantum Monte Carlo method for strongly correlated systems

    Science.gov (United States)

    Tubman, Norm; Whaley, Birgitta

    The development of exponential scaling methods has seen great progress in tackling larger systems than previously thought possible. One such technique, full configuration interaction quantum Monte Carlo, allows exact diagonalization through stochastically sampling of determinants. The method derives its utility from the information in the matrix elements of the Hamiltonian, together with a stochastic projected wave function, which are used to explore the important parts of Hilbert space. However, a stochastic representation of the wave function is not required to search Hilbert space efficiently and new deterministic approaches have recently been shown to efficiently find the important parts of determinant space. We shall discuss the technique of Adaptive Sampling Configuration Interaction (ASCI) and the related heat-bath Configuration Interaction approach for ground state and excited state simulations. We will present several applications for strongly correlated Hamiltonians. This work was supported through the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences.

  12. Variational configuration interaction methods and comparison with perturbation theory

    International Nuclear Information System (INIS)

    Pople, J.A.; Seeger, R.; Krishnan, R.

    1977-01-01

    A configuration interaction (CI) procedure which includes all single and double substitutions from an unrestricted Hartree-Fock single determinant is described. This has the feature that Moller-Plesset perturbation results to second and third order are obtained in the first CI iterative cycle. The procedure also avoids the necessity of a full two-electron integral transformation. A simple expression for correcting the final CI energy for lack of size consistency is proposed. Finally, calculations on a series of small molecules are presented to compare these CI methods with perturbation theory

  13. Electric dipole moment of diatomic molecules by configuration interaction. IV.

    Science.gov (United States)

    Green, S.

    1972-01-01

    The theory of basis set dependence in configuration interaction calculations is discussed, taking into account a perturbation model which is valid for small changes in the self-consistent field orbitals. It is found that basis set corrections are essentially additive through first order. It is shown that an error found in a previously published dipole moment calculation by Green (1972) for the metastable first excited state of CO was indeed due to an inadequate basis set as claimed.

  14. Accelerating nuclear configuration interaction calculations through a preconditioned block iterative eigensolver

    Science.gov (United States)

    Shao, Meiyue; Aktulga, H. Metin; Yang, Chao; Ng, Esmond G.; Maris, Pieter; Vary, James P.

    2018-01-01

    We describe a number of recently developed techniques for improving the performance of large-scale nuclear configuration interaction calculations on high performance parallel computers. We show the benefit of using a preconditioned block iterative method to replace the Lanczos algorithm that has traditionally been used to perform this type of computation. The rapid convergence of the block iterative method is achieved by a proper choice of starting guesses of the eigenvectors and the construction of an effective preconditioner. These acceleration techniques take advantage of special structure of the nuclear configuration interaction problem which we discuss in detail. The use of a block method also allows us to improve the concurrency of the computation, and take advantage of the memory hierarchy of modern microprocessors to increase the arithmetic intensity of the computation relative to data movement. We also discuss the implementation details that are critical to achieving high performance on massively parallel multi-core supercomputers, and demonstrate that the new block iterative solver is two to three times faster than the Lanczos based algorithm for problems of moderate sizes on a Cray XC30 system.

  15. Effects of configuration interaction on photoabsorption spectra in the continuum

    International Nuclear Information System (INIS)

    Komninos, Yannis; Nicolaides, Cleanthes A.

    2004-01-01

    It is pointed out that the proper interpretation of a recently published experimental spectrum from the multilaser photoionization of Sr [Eichmann et al., Phys. Rev. Lett. 90, 233004 (2003)] must account for a radiative transition between two autoionizing states. The application of orthonormality selection rules and of configuration-interaction theory involving the continuous spectrum and the quasicontinuum of the upper part of Rydberg series explains quantitatively the appearance, the shape, and the variation of heights of the observed peaks of resonances

  16. CONFIGURATION-INTERACTION IN NI METAL AND NI-ALLOYS AND HIGH-ENERGY SPECTROSCOPY

    NARCIS (Netherlands)

    TANAKA, A; JO, T; SAWATZKY, GA

    We discuss the electronic state of Ni atoms in Ni metal and of Ni impurity in Cu and Au metals from the viewpoint of 3d configuration interaction (CI) using the Anderson impurity model including atomic multiplets. On the basis of the discussion, we give an interpretation for the Ni 2p-core X-ray

  17. Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations. Volume 2: Wind tunnel test force and moment data report

    Science.gov (United States)

    Zilz, D. E.

    1985-01-01

    A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 2 of 2: Wind Tunnel Test Force and Moment Data Report.

  18. Large-scale ab initio configuration interaction calculations for light nuclei

    International Nuclear Information System (INIS)

    Maris, Pieter; Potter, Hugh; Vary, James P; Aktulga, H Metin; Ng, Esmond G; Yang Chao; Caprio, Mark A; Çatalyürek, Ümit V; Saule, Erik; Oryspayev, Dossay; Sosonkina, Masha; Zhou Zheng

    2012-01-01

    In ab-initio Configuration Interaction calculations, the nuclear wavefunction is expanded in Slater determinants of single-nucleon wavefunctions and the many-body Schrodinger equation becomes a large sparse matrix problem. The challenge is to reach numerical convergence to within quantified numerical uncertainties for physical observables using finite truncations of the infinite-dimensional basis space. We discuss strategies for constructing and solving the resulting large sparse matrix eigenvalue problems on current multicore computer architectures. Several of these strategies have been implemented in the code MFDn, a hybrid MPI/OpenMP Fortran code for ab-initio nuclear structure calculations that can scale to 100,000 cores and more. Finally, we will conclude with some recent results for 12 C including emerging collective phenomena such as rotational band structures using SRG evolved chiral N3LO interactions.

  19. Optical spectroscopy and system–bath interactions in molecular aggregates with full configuration interaction Frenkel exciton model

    Energy Technology Data Exchange (ETDEWEB)

    Seibt, Joachim; Sláma, Vladislav; Mančal, Tomáš, E-mail: mancal@karlov.mff.cuni.cz

    2016-12-20

    Highlights: • Standard Frenkel exciton model is extended to include inter-band coupling. • It is formally linked with configuration interaction method of quantum chemistry. • Spectral shifts due to inter-band coupling are found in molecular aggregates. • Effects of peak amplitude redistribution in two-dimensional spectra are found. - Abstract: Standard application of the Frenkel exciton model neglects resonance coupling between collective molecular aggregate states with different number of excitations. These inter-band coupling terms are, however, of the same magnitude as the intra-band coupling between singly excited states. We systematically derive the Frenkel exciton model from quantum chemical considerations, and identify it as a variant of the configuration interaction method. We discuss all non-negligible couplings between collective aggregate states, and provide compact formulae for their calculation. We calculate absorption spectra of molecular aggregate of carotenoids and identify significant band shifts as a result of inter-band coupling. The presence of inter-band coupling terms requires renormalization of the system–bath coupling with respect to standard formulation, but renormalization effects are found to be weak. We present detailed discussion of molecular dimer and calculate its time-resolved two-dimensional Fourier transformed spectra to find weak but noticeable effects of peak amplitude redistribution due to inter-band coupling.

  20. Configuration interaction calculations of positron binding to Be({sup 3}P )

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, M.W.J. [Department of Physics, San Diego State University, San Diego, CA 92182 (United States)]. E-mail: mbromley@physics.sdsu.edu; Mitroy, J. [Faculty of Technology, Charles Darwin University, Darwin, NT 0909 (Australia)]. E-mail: jxm107@rsphysse.anu.edu.au

    2006-06-15

    The configuration interaction method is applied to investigate the possibility of positron binding to the metastable beryllium (1s{sup 2}2s2p {sup 3}P ) state. The largest calculation obtained an estimated energy that was unstable by 0.00014 Hartree with respect to the Ps + Be{sup +}(2s) lowest dissociation channel. It is likely that positron binding to parent states with non-zero angular momentum is inhibited by centrifugal barriers.

  1. Nuclear structure calculations in $^{20}$Ne with No-Core Configuration-Interaction model

    OpenAIRE

    Konieczka, Maciej; Satuła, Wojciech

    2016-01-01

    Negative parity states in $^{20}$Ne and Gamow-Teller strength distribution for the ground-state beta-decay of $^{20}$Na are calculated for the very first time using recently developed No-Core Configuration-Interaction model. The approach is based on multi-reference density functional theory involving isospin and angular-momentum projections. Advantages and shortcomings of the method are briefly discussed.

  2. Configuration Management

    International Nuclear Information System (INIS)

    Morcos, A.; Taylor, H. S.

    1989-01-01

    This paper will briefly discuss the reason for and content of configuration management both for new plants and, when adapted, for older plants. It will then address three types of activities a utility may undertake as part of a nuclear CAM program and with which Sargent and Leyden has been actively involved. The first activity is a methodology for preparing design-basis documentation. The second is the identification of essential data required to be kept by the utility in support of the operation of a nuclear plant. The third activity is a computerized classification system of plant components, allowing ready identification of plant functional and physical characteristics. Plant configuration documentation describes plant components, the ways they arranged to interact, and the ways they are enabled to interact. Configuration management, on the other hand, is more than the control of such documentation. It is a dynamic process for ensuring that a plant configuration meets all relevant requirements for safety and economy, even while the configuration changes and even while the requirements change. Configuration management for a nuclear plant is so complex that it must be implemented in phases and modules. It takes advantage of and integrates existing programs. Managing complexity and streamlining the change process become important additional objectives of configuration management. The example activities fulfill essential goals of an overall CAM program: definition of design baseline, definition of essential plant data, and classification of plant components

  3. Gamow-Teller response in the configuration space of a density-functional-theory-rooted no-core configuration-interaction model

    Science.gov (United States)

    Konieczka, M.; Kortelainen, M.; Satuła, W.

    2018-03-01

    Background: The atomic nucleus is a unique laboratory in which to study fundamental aspects of the electroweak interaction. This includes a question concerning in medium renormalization of the axial-vector current, which still lacks satisfactory explanation. Study of spin-isospin or Gamow-Teller (GT) response may provide valuable information on both the quenching of the axial-vector coupling constant as well as on nuclear structure and nuclear astrophysics. Purpose: We have performed a seminal calculation of the GT response by using the no-core configuration-interaction approach rooted in multireference density functional theory (DFT-NCCI). The model treats properly isospin and rotational symmetries and can be applied to calculate both the nuclear spectra and transition rates in atomic nuclei, irrespectively of their mass and particle-number parity. Methods: The DFT-NCCI calculation proceeds as follows: First, one builds a configuration space by computing relevant, for a given physical problem, (multi)particle-(multi)hole Slater determinants. Next, one applies the isospin and angular-momentum projections and performs the isospin and K mixing in order to construct a model space composed of linearly dependent states of good angular momentum. Eventually, one mixes the projected states by solving the Hill-Wheeler-Griffin equation. Results: The method is applied to compute the GT strength distribution in selected N ≈Z nuclei including the p -shell 8Li and 8Be nuclei and the s d -shell well-deformed nucleus 24Mg. In order to demonstrate a flexibility of the approach we present also a calculation of the superallowed GT β decay in doubly-magic spherical 100Sn and the low-spin spectrum in 100In. Conclusions: It is demonstrated that the DFT-NCCI model is capable of capturing the GT response satisfactorily well by using a relatively small configuration space, exhausting simultaneously the GT sum rule. The model, due to its flexibility and broad range of applicability, may

  4. Nanoscale multireference quantum chemistry: full configuration interaction on graphical processing units.

    Science.gov (United States)

    Fales, B Scott; Levine, Benjamin G

    2015-10-13

    Methods based on a full configuration interaction (FCI) expansion in an active space of orbitals are widely used for modeling chemical phenomena such as bond breaking, multiply excited states, and conical intersections in small-to-medium-sized molecules, but these phenomena occur in systems of all sizes. To scale such calculations up to the nanoscale, we have developed an implementation of FCI in which electron repulsion integral transformation and several of the more expensive steps in σ vector formation are performed on graphical processing unit (GPU) hardware. When applied to a 1.7 × 1.4 × 1.4 nm silicon nanoparticle (Si72H64) described with the polarized, all-electron 6-31G** basis set, our implementation can solve for the ground state of the 16-active-electron/16-active-orbital CASCI Hamiltonian (more than 100,000,000 configurations) in 39 min on a single NVidia K40 GPU.

  5. Electric dipole moment of diatomic molecules by configuration interaction. V - Two states of /2/Sigma/+/ symmetry in CN.

    Science.gov (United States)

    Green, S.

    1972-01-01

    Previous accurate dipole moment calculation techniques are modified to be applicable to higher excited states of symmetry. The self-consistent fields and configuration interactions are calculated for the X(2)Sigma(+) and B(2)Sigma(+) states of CN. Spin hyperfine constants and spin density at the nucleus are considered in the context of one-electron operator properties. The values of the self-consistent field and configuration interaction for the spin density are compared with experimental values for several diatomic molecules.

  6. Mixing of the lowest-lying qqq configurations with JP =1/2- in different hyperfine interaction models

    Science.gov (United States)

    Chen, Jia; An, Chunsheng; Chen, Hong

    2018-02-01

    We investigate mixing of the lowest-lying qqq configurations with JP = 1/2- caused by the hyperfine interactions between quarks mediated by Goldstone Boson Exchange, One Gluon Exchange, and both Goldstone Boson and One Gluon exchange, respectively. The first orbitally excited nucleon, Σ, Λ and Ξ states are considered. Contributions of both the contact term and tensor term are taken into account. Our numerical results show that mixing of the studied configurations in the two employed hyperfine interaction models are very different. Therefore, the present results, which should affect the strong and electromagnetic decays of baryon resonances, may be used to examine the present employed hyperfine interaction models. Supported by National Natural Science Foundation of China (11675131,11645002), Chongqing Natural Science Foundation (cstc2015jcyjA00032) and Fundamental Research Funds for the Central Universities (SWU115020)

  7. Multireference configuration interaction calculations of the first six ionization potentials of the uranium atom

    Energy Technology Data Exchange (ETDEWEB)

    Bross, David H.; Parmar, Payal; Peterson, Kirk A., E-mail: kipeters@wsu.edu [Department of Chemistry, Washington State University, Pullman, Washington 99164-4630 (United States)

    2015-11-14

    The first 6 ionization potentials (IPs) of the uranium atom have been calculated using multireference configuration interaction (MRCI+Q) with extrapolations to the complete basis set limit using new all-electron correlation consistent basis sets. The latter was carried out with the third-order Douglas-Kroll-Hess Hamiltonian. Correlation down through the 5s5p5d electrons has been taken into account, as well as contributions to the IPs due to the Lamb shift. Spin-orbit coupling contributions calculated at the 4-component Kramers restricted configuration interaction level, as well as the Gaunt term computed at the Dirac-Hartree-Fock level, were added to the best scalar relativistic results. The final ionization potentials are expected to be accurate to at least 5 kcal/mol (0.2 eV) and thus more reliable than the current experimental values of IP{sub 3} through IP{sub 6}.

  8. Coupled-Cluster and Configuration-Interaction Calculations for Heavy Nuclei

    International Nuclear Information System (INIS)

    Horoi, M.; Gour, J. R.; Wloch, M.; Lodriguito, M. D.; Brown, B. A.; Piecuch, P.

    2007-01-01

    We compare coupled-cluster (CC) and configuration-interaction (CI) results for 56 Ni obtained in the pf-shell basis, focusing on practical CC approximations that can be applied to systems with dozens or hundreds of correlated fermions. The weight of the reference state and the strength of correlation effects are controlled by the gap between the f 7/2 orbit and the f 5/2 , p 3/2 , p 1/2 orbits. Independent of the gap, the CC method with 1p-1h and 2p-2h clusters and a noniterative treatment of 3p-3h clusters is as accurate as the more demanding CI approach truncated at the 4p-4h level

  9. Watermelon configurations with wall interaction: exact and asymptotic results

    Energy Technology Data Exchange (ETDEWEB)

    Krattenthaler, C [Institut Camille Jordan, Universite Claude Bernard Lyon-I, 21, avenue Claude Bernard, F-69622 Villeurbanne Cedex (France)

    2006-06-15

    We perform an exact and asymptotic analysis of the model of n vicious walkers interacting with a wall via contact potentials, a model introduced by Brak, Essam and Owczarek. More specifically, we study the partition function of watermelon configurations which start on the wall, but may end at arbitrary height, and their mean number of contacts with the wall. We improve and extend the earlier (partially nonrigorous) results by Brak, Essam and Owczarek, providing new exact results, and more precise and more general asymptotic results, in particular full asymptotic expansions for the partition function and the mean number of contacts. Furthermore, we relate this circle of problems to earlier results in the combinatorial and statistical literature.

  10. Watermelon configurations with wall interaction: exact and asymptotic results

    International Nuclear Information System (INIS)

    Krattenthaler, C

    2006-01-01

    We perform an exact and asymptotic analysis of the model of n vicious walkers interacting with a wall via contact potentials, a model introduced by Brak, Essam and Owczarek. More specifically, we study the partition function of watermelon configurations which start on the wall, but may end at arbitrary height, and their mean number of contacts with the wall. We improve and extend the earlier (partially nonrigorous) results by Brak, Essam and Owczarek, providing new exact results, and more precise and more general asymptotic results, in particular full asymptotic expansions for the partition function and the mean number of contacts. Furthermore, we relate this circle of problems to earlier results in the combinatorial and statistical literature

  11. Watermelon configurations with wall interaction: exact and asymptotic results

    Science.gov (United States)

    Krattenthaler, C.

    2006-06-01

    We perform an exact and asymptotic analysis of the model of n vicious walkers interacting with a wall via contact potentials, a model introduced by Brak, Essam and Owczarek. More specifically, we study the partition function of watermelon configurations which start on the wall, but may end at arbitrary height, and their mean number of contacts with the wall. We improve and extend the earlier (partially nonrigorous) results by Brak, Essam and Owczarek, providing new exact results, and more precise and more general asymptotic results, in particular full asymptotic expansions for the partition function and the mean number of contacts. Furthermore, we relate this circle of problems to earlier results in the combinatorial and statistical literature.

  12. Analytic nuclear forces and molecular properties from full configuration interaction quantum Monte Carlo

    International Nuclear Information System (INIS)

    Thomas, Robert E.; Overy, Catherine; Opalka, Daniel; Alavi, Ali; Knowles, Peter J.; Booth, George H.

    2015-01-01

    Unbiased stochastic sampling of the one- and two-body reduced density matrices is achieved in full configuration interaction quantum Monte Carlo with the introduction of a second, “replica” ensemble of walkers, whose population evolves in imaginary time independently from the first and which entails only modest additional computational overheads. The matrices obtained from this approach are shown to be representative of full configuration-interaction quality and hence provide a realistic opportunity to achieve high-quality results for a range of properties whose operators do not necessarily commute with the Hamiltonian. A density-matrix formulated quasi-variational energy estimator having been already proposed and investigated, the present work extends the scope of the theory to take in studies of analytic nuclear forces, molecular dipole moments, and polarisabilities, with extensive comparison to exact results where possible. These new results confirm the suitability of the sampling technique and, where sufficiently large basis sets are available, achieve close agreement with experimental values, expanding the scope of the method to new areas of investigation

  13. High pressure studies of configuration interaction and crystal field effects in Sm2+

    International Nuclear Information System (INIS)

    Shen, Y.; Bray, K.L.

    1998-01-01

    Full text: Divalent rare earth ions are interesting luminescence centres because of the low energy of the excited 4f n-1 5d 1 configuration relative to the 4f n ground configuration. The low energy difference between these two configurations leads to two principle effects which distinguish the luminescence properties of divalent rare earth ions from those of trivalent rare earth ions. First, a significant amount of 5d state mixing into the electronic states of the 4f n configuration occurs and second, the thermal activation barrier to 4f n → 4f n-1 5d 1 crossing is greatly reduced. The first effect introduces opposite parity character into the emitting levels of divalent rare earth ions and acts to shorten lifetimes and increase f-f luminescence intensity, while the second effect acts to enhance thermal quenching of 4f n excited electronic states closest in energy to the 4f n-1 5d 1 configuration. The interaction between the 4f n and 4f n-1 5d 1 configurations and crystal field properties are typically studied by considering the luminescence properties of divalent rare earth ions in a series of host crystals. We are currently developing a new approach, based on high pressure luminescence spectroscopy, for understanding con-figuration interaction and crystal field properties of divalent rare earth ions. The strategy of our approach is to use high pressure as a tool of structural perturbation. By applying hydrostatic pressure to solids, we have an opportunity to continuously vary the nearest neighbour coordination environment of divalent rare earth dopants. Our general goal is to correlate pressure-induced changes in local structure with pressure-induced changes in luminescence properties in an attempt to better understand structure-property-composition relations in solid state luminescent materials. In this paper we present recent results on Sm 2+ in a series of MFCl (M = Sr, Ba, Ca) host lattices. Luminescence spectra and decay properties as a function of

  14. Relativistic configuration-interaction calculations of electric dipole n=2−n=3 transitions for medium-charge Li-like ions

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Banglin, E-mail: banglindeng@yahoo.cn [Department of Applied Physics, Chengdu University of Technology, Chengdu 610059, Sichuan (China); Jiang, Gang [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, Sichuan (China); Zhang, Chuanyu [Department of Applied Physics, Chengdu University of Technology, Chengdu 610059, Sichuan (China)

    2014-09-15

    In this work, the multi-configuration Dirac–Fock and relativistic configuration-interaction methods have been used to calculate the transition wavelengths, electric dipole transition probabilities, line strengths, and absorption oscillator strengths for the 2s–3p, 2p–3s, and 2p–3d transitions in Li-like ions with nuclear charge Z=7–30. Our calculated values are in good agreement with previous experimental and theoretical results. We took the contributions from Breit interaction, finite nuclear mass corrections, and quantum electrodynamics corrections to the initial and final levels into account, and also found that the contributions from Breit interaction, self-energy, and vacuum polarization grow fast with increasing nuclear charge for a fixed configuration. The ratio of the velocity to length form of the transition rate (A{sub v}/A{sub l}) was used to estimate the accuracy of our calculations.

  15. Configuration interaction calculations for the region of 76Ge

    Science.gov (United States)

    Brown, Alex

    2017-09-01

    I will present a short history of the configuration interaction Hamiltonians that have been developed for the (0f5 / 2 , 1p3 / 2 , 1p1 / 2 , 0g9 / 2) (jj 44) model space. This model space is appropriate for the region of nuclei bounded by the nickel isotopes for Z = 28 and the isotones with N = 50 . I will discuss results for the double-beta decay of 76Ge that lies in the jj 44 region. I will show results for the structure of nuclei around 76Ge for some selected data from gamma decay, Gamow-Teller beta decay, charge-exchange reactions, one-nucleon transfer reactions, and two-nucleon transfer reactions. This work was supported by NSF Grant PHY-1404442.

  16. Accelerating Full Configuration Interaction Calculations for Nuclear Structure

    International Nuclear Information System (INIS)

    Yang, Chao; Sternberg, Philip; Maris, Pieter; Ng, Esmond; Sosonkina, Masha; Le, Hung Viet; Vary, James; Yang, Chao

    2008-01-01

    One of the emerging computational approaches in nuclear physics is the full configuration interaction (FCI) method for solving the many-body nuclear Hamiltonian in a sufficiently large single-particle basis space to obtain exact answers - either directly or by extrapolation. The lowest eigenvalues and corresponding eigenvectors for very large, sparse and unstructured nuclear Hamiltonian matrices are obtained and used to evaluate additional experimental quantities. These matrices pose a significant challenge to the design and implementation of efficient and scalable algorithms for obtaining solutions on massively parallel computer systems. In this paper, we describe the computational strategies employed in a state-of-the-art FCI code MFDn (Many Fermion Dynamics - nuclear) as well as techniques we recently developed to enhance the computational efficiency of MFDn. We will demonstrate the current capability of MFDn and report the latest performance improvement we have achieved. We will also outline our future research directions

  17. Spin--orbit configuration-interaction study of valence and Rydberg states of LiBe

    International Nuclear Information System (INIS)

    Marino, M.M.; Ermler, W.C.; Kern, C.W.; Bondybey, V.E.

    1992-01-01

    Ab initio spin--orbit full configuration-interaction calculations in the context of relativistic effective core potentials are reported for the weakly bound metal dimer LiBe, a three-valence-electron system. The effects of basis set on the energies of valence and Rydberg states of the cluster are discussed, as are the effects of configuration space selection on the energy of the latter states. Results at the dissociative limit are compared to the experimental atomic spectra. Potential-energy curves and spectroscopic constants are presented for the ground state and fourteen excited states, which includes the Li and Be 2p valence states, the Li 3s, 3p, 3d, and 4s Rydberg states, as well as three low-lying states of the molecular cation

  18. Simulation of Molten Core-Concrete Interaction in oxide/metal stratified configuration with the TOLBIAC-ICB code

    International Nuclear Information System (INIS)

    Tourniaire, B.; Spindler, B.

    2005-01-01

    The frame of this work is the validation of the TOLBIAC-ICB code which is devoted to the simulation of Molten Core-Concrete Interaction (MCCI) for reactor safety analysis. Attention focuses here on the validation of TOLBIAC-ICB in configurations expected to be representative of the long term phase of MCCI i.e. during an interaction between an oxide/metal stratified corium melt and a concrete structure. Up to now the BETA tests performed at the Forschungszentrum Karlsruhe (FzK) are the only tests available to study such kind of interaction. The BETA tests are first described and the operating conditions are reminded. The TOLBIAC-ICB code is then briefly described, with emphasis on the models used for stratified configurations. The results of the simulations are discussed. A sensitivity study is also performed with the power generated in the oxide layer instead of the metal layer as in the test. This last calculation shows that the large axial ablation observed in the tests is probably due to the peculiar configuration of the test with input power in the bottom metal layer. Since in the reactor case the residual power would be mainly concentrated in the upper oxide layer, the conclusions of the BETA tests for the reactor applications, in term of axial ablation, must be derived with caution. (author)

  19. Contextual interactions in grating plaid configurations are explained by natural image statistics and neural modeling

    Directory of Open Access Journals (Sweden)

    Udo Alexander Ernst

    2016-10-01

    Full Text Available Processing natural scenes requires the visual system to integrate local features into global object descriptions. To achieve coherent representations, the human brain uses statistical dependencies to guide weighting of local feature conjunctions. Pairwise interactions among feature detectors in early visual areas may form the early substrate of these local feature bindings. To investigate local interaction structures in visual cortex, we combined psychophysical experiments with computational modeling and natural scene analysis. We first measured contrast thresholds for 2x2 grating patch arrangements (plaids, which differed in spatial frequency composition (low, high or mixed, number of grating patch co-alignments (0, 1 or 2, and inter-patch distances (1° and 2° of visual angle. Contrast thresholds for the different configurations were compared to the prediction of probability summation (PS among detector families tuned to the four retinal positions. For 1° distance the thresholds for all configurations were larger than predicted by PS, indicating inhibitory interactions. For 2° distance, thresholds were significantly lower compared to PS when the plaids were homogeneous in spatial frequency and orientation, but not when spatial frequencies were mixed or there was at least one misalignment. Next, we constructed a neural population model with horizontal laminar structure, which reproduced the detection thresholds after adaptation of connection weights. Consistent with prior work, contextual interactions were medium-range inhibition and long-range, orientation-specific excitation. However, inclusion of orientation-specific, inhibitory interactions between populations with different spatial frequency preferences were crucial for explaining detection thresholds. Finally, for all plaid configurations we computed their likelihood of occurrence in natural images. The likelihoods turned out to be inversely related to the detection thresholds obtained

  20. Configuration interaction in charge exchange spectra of tin and xenon

    Science.gov (United States)

    D'Arcy, R.; Morris, O.; Ohashi, H.; Suda, S.; Tanuma, H.; Fujioka, S.; Nishimura, H.; Nishihara, K.; Suzuki, C.; Kato, T.; Koike, F.; O'Sullivan, G.

    2011-06-01

    Charge-state-specific extreme ultraviolet spectra from both tin ions and xenon ions have been recorded at Tokyo Metropolitan University. The electron cyclotron resonance source spectra were produced from charge exchange collisions between the ions and rare gas target atoms. To identify unknown spectral lines of tin and xenon, atomic structure calculations were performed for Sn14+-Sn17+ and Xe16+-Xe20+ using the Hartree-Fock configuration interaction code of Cowan (1981 The Theory of Atomic Structure and Spectra (Berkeley, CA: University of California Press)). The energies of the capture states involved in the single-electron process that occurs in these slow collisions were estimated using the classical over-barrier model.

  1. Non-orthogonal configuration interaction for the calculation of multielectron excited states

    Energy Technology Data Exchange (ETDEWEB)

    Sundstrom, Eric J., E-mail: eric.jon.sundstrom@berkeley.edu; Head-Gordon, Martin [Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2014-03-21

    We apply Non-orthogonal Configuration Interaction (NOCI) to molecular systems where multielectron excitations, in this case double excitations, play a substantial role: the linear polyenes and β-carotene. We demonstrate that NOCI when applied to systems with extended conjugation, provides a qualitatively correct wavefunction at a fraction of the cost of many other multireference treatments. We also present a new extension to this method allowing for purification of higher-order spin states by utilizing Generalized Hartree-Fock Slater determinants and the details for computing 〈S{sup 2}〉 for the ground and excited states.

  2. Critical comparison between equation of motion-Green's function methods and configuration interaction methods: analysis of methods and applications

    International Nuclear Information System (INIS)

    Freed, K.F.; Herman, M.F.; Yeager, D.L.

    1980-01-01

    A description is provided of the common conceptual origins of many-body equations of motion and Green's function methods in Liouville operator formulations of the quantum mechanics of atomic and molecular electronic structure. Numerical evidence is provided to show the inadequacies of the traditional strictly perturbative approaches to these methods. Nonperturbative methods are introduced by analogy with techniques developed for handling large configuration interaction calculations and by evaluating individual matrix elements to higher accuracy. The important role of higher excitations is exhibited by the numerical calculations, and explicit comparisons are made between converged equations of motion and configuration interaction calculations for systems where a fundamental theorem requires the equality of the energy differences produced by these different approaches. (Auth.)

  3. Electronic spectra of DyF studied by four-component relativistic configuration interaction methods

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Shigeyoshi, E-mail: syamamot@lets.chukyo-u.ac.jp [School of International Liberal Studies, Chukyo University, 101-2 Yagoto-Honmachi, Showa-ku, Nagoya 466-8666 (Japan); Tatewaki, Hiroshi [Institute of Advanced Studies in Artificial Intelligence, Chukyo University, Toyota 470-0393 (Japan); Graduate School of Natural Sciences, Nagoya City University, Aichi 467-8501 (Japan)

    2015-03-07

    The electronic states of the DyF molecule below 3.0 eV are studied using 4-component relativistic CI methods. Spinors generated by the average-of-configuration Hartree-Fock method with the Dirac-Coulomb Hamiltonian were used in CI calculations by the KRCI (Kramers-restricted configuration interaction) program. The CI reference space was generated by distributing 11 electrons among the 11 Kramers pairs composed mainly of Dy [4f], [6s], [6p] atomic spinors, and double excitations are allowed from this space to the virtual molecular spinors. The CI calculations indicate that the ground state has the dominant configuration (4f{sup 9})(6s{sup 2})(Ω = 7.5). Above this ground state, 4 low-lying excited states (Ω = 8.5, 7.5, 7.5, 7.5) are found with dominant configurations (4f{sup 10})(6s). These results are consistent with the experimental studies of McCarthy et al. Above these 5 states, 2 states were observed at T{sub 0} = 2.39 eV, 2.52 eV by McCarthy et al. and were named as [19.3]8.5 and [20.3]8.5. McCarthy et al. proposed that both states have dominant configurations (4f{sup 9})(6s)(6p), but these configurations are not consistent with the large R{sub e}’s (∼3.9 a.u.) estimated from the observed rotational constants. The present CI calculations provide near-degenerate states of (4f{sup 10})(6p{sub 3/2,1/2}), (4f{sup 10})(6p{sub 3/2,3/2}), and (4f{sup 9})(6s)(6p{sub 3/2,1/2}) at around 3 eV. The former two states have larger R{sub e} (3.88 a.u.) than the third, so that it is reasonable to assign (4f{sup 10})(6p{sub 3/2,1/2}) to [19.3]8.5 and (4f{sup 10})(6p{sub 3/2,3/2}) to [20.3]8.5.

  4. Understanding and improving the efficiency of full configuration interaction quantum Monte Carlo.

    Science.gov (United States)

    Vigor, W A; Spencer, J S; Bearpark, M J; Thom, A J W

    2016-03-07

    Within full configuration interaction quantum Monte Carlo, we investigate how the statistical error behaves as a function of the parameters which control the stochastic sampling. We define the inefficiency as a measure of the statistical error per particle sampling the space and per time step and show there is a sizeable parameter regime where this is minimised. We find that this inefficiency increases sublinearly with Hilbert space size and can be reduced by localising the canonical Hartree-Fock molecular orbitals, suggesting that the choice of basis impacts the method beyond that of the sign problem.

  5. Understanding and improving the efficiency of full configuration interaction quantum Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Vigor, W. A.; Bearpark, M. J. [Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Spencer, J. S. [Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Thom, A. J. W. [Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2016-03-07

    Within full configuration interaction quantum Monte Carlo, we investigate how the statistical error behaves as a function of the parameters which control the stochastic sampling. We define the inefficiency as a measure of the statistical error per particle sampling the space and per time step and show there is a sizeable parameter regime where this is minimised. We find that this inefficiency increases sublinearly with Hilbert space size and can be reduced by localising the canonical Hartree–Fock molecular orbitals, suggesting that the choice of basis impacts the method beyond that of the sign problem.

  6. Relativistic configuration-interaction calculation of the correlation energies of heliumlike ions. Revision 1

    International Nuclear Information System (INIS)

    Cheng, K.T.; Chen, M.H.; Johnson, W.R.

    1994-04-01

    A new relativistic configuration-interaction (CI) method using B-spline basis functions has been developed to study the correlation energies of two-electron heliumlike ions. Based on the relativistic no-pair Hamiltonian, the CI equation leads to a symmetric eigenvalue problem involving large, dense matrices. Davidson's method is used to obtain the lowest few eigenenergies and eigenfunctions. Results on transition energies and finite structure splittings for heliumlike ions are in very good agreement with experiment throughout the periodic table

  7. Interaction potentials for multiquark states from instantons and other background gauge field configurations

    International Nuclear Information System (INIS)

    Warner, R.C.; Joshi, G.C.

    1979-01-01

    A simple rule is presented for calculating the contributions to the interaction potentials between constituent particles for a family of multiquark states, due to the presence of a semi-classical gauge field configuration which exists in a single SU(2) subgroup of colour SU(3). In multiquark states beyond the baryon many-body potential terms are found. The static (Wilson loop) limit is sufficient to elucidate the dependence of the potential on the colour structure of the multiquark state

  8. Large-scale parallel configuration interaction. I. Nonrelativisticand scalar-relativistic general active space implementationwith application to (Rb-Ba)+

    DEFF Research Database (Denmark)

    Knecht, Stefan; Jensen, Hans Jørgen Aagaard; Fleig, Timo

    2008-01-01

    We present a parallel implementation of a string-driven general active space configuration interaction program for nonrelativistic and scalar-relativistic electronic-structure calculations. The code has been modularly incorporated in the DIRAC quantum chemistry program package. The implementation...

  9. A sparse matrix based full-configuration interaction algorithm

    International Nuclear Information System (INIS)

    Rolik, Zoltan; Szabados, Agnes; Surjan, Peter R.

    2008-01-01

    We present an algorithm related to the full-configuration interaction (FCI) method that makes complete use of the sparse nature of the coefficient vector representing the many-electron wave function in a determinantal basis. Main achievements of the presented sparse FCI (SFCI) algorithm are (i) development of an iteration procedure that avoids the storage of FCI size vectors; (ii) development of an efficient algorithm to evaluate the effect of the Hamiltonian when both the initial and the product vectors are sparse. As a result of point (i) large disk operations can be skipped which otherwise may be a bottleneck of the procedure. At point (ii) we progress by adopting the implementation of the linear transformation by Olsen et al. [J. Chem Phys. 89, 2185 (1988)] for the sparse case, getting the algorithm applicable to larger systems and faster at the same time. The error of a SFCI calculation depends only on the dropout thresholds for the sparse vectors, and can be tuned by controlling the amount of system memory passed to the procedure. The algorithm permits to perform FCI calculations on single node workstations for systems previously accessible only by supercomputers

  10. Configuration interaction calculations and excitation rates of X-ray and EUV transitions in sulfurlike manganese

    Energy Technology Data Exchange (ETDEWEB)

    El-Maaref, A.A., E-mail: ahmed.maaref@azhar.edu.eg; Saddeek, Y.B.; Abou halaka, M.M.

    2017-02-15

    Highlights: • Fine-structure calculations of sulfurlike Mn have been performed using configuration interaction technique, CI. • The relativistic effects, Breit-Pauli Hameltonian, have been correlated to the CI calculations. • Excitation rates by electron impact of the Mn X ion have been evaluated up to ionization potential. - Abstract: Fine-structure calculations of energies and transition parameters have been performed using the configuration interaction technique (CI) as implemented in CIV3 code for sulfurlike manganese, Mn X. The calculations are executed in an intermediate coupling scheme using the Breit-Pauli Hamiltonian. As well as, energy levels and oscillator strengths are calculated using LANL code, where the calculations by LANL have been used to estimate the accuracy of the present CI calculations. The calculated energy levels, oscillator strengths, and lifetimes are in reasonable agreement with the published experimental and theoretical values. Electron impact excitation rates of the transitions emit soft X-ray and extreme ultraviolet (EUV) wavelengths have been evaluated. The level population densities are calculated using the collisional radiative model (CRM), as well. The collisional excitation rates and collision strengths have been calculated in the electron temperature range ≤ the ionization potential, ∼1–250 eV.

  11. Benchmarks for electronically excited states: Time-dependent density functional theory and density functional theory based multireference configuration interaction

    DEFF Research Database (Denmark)

    Silva-Junior, Mario R.; Schreiber, Marko; Sauer, Stephan P. A.

    2008-01-01

    Time-dependent density functional theory (TD-DFT) and DFT-based multireference configuration interaction (DFT/MRCI) calculations are reported for a recently proposed benchmark set of 28 medium-sized organic molecules. Vertical excitation energies, oscillator strengths, and excited-state dipole...

  12. Criticality in the configuration-mixed interacting boson model: (1) U(5)-Q(χ)Q(χ) mixing

    International Nuclear Information System (INIS)

    Hellemans, V.; Van Isacker, P.; De Baerdemacker, S.; Heyde, K.

    2007-01-01

    The case of U(5)-Q(χ)Q(χ) mixing in the configuration-mixed interacting boson model is studied in its mean-field approximation. Phase diagrams with analytical and numerical solutions are constructed and discussed. Indications for first-order and second-order shape phase transitions can be obtained from binding energies and from critical exponents, respectively

  13. Fish-robot interactions in a free-swimming environment: Effects of speed and configuration of robots on live fish

    Science.gov (United States)

    Butail, Sachit; Polverino, Giovanni; Phamduy, Paul; Del Sette, Fausto; Porfiri, Maurizio

    2014-03-01

    We explore fish-robot interactions in a comprehensive set of experiments designed to highlight the effects of speed and configuration of bioinspired robots on live zebrafish. The robot design and movement is inspired by salient features of attraction in zebrafish and includes enhanced coloration, aspect ratio of a fertile female, and carangiform/subcarangiformlocomotion. The robots are autonomously controlled to swim in circular trajectories in the presence of live fish. Our results indicate that robot configuration significantly affects both the fish distance to the robots and the time spent near them.

  14. Global characteristics of atomic spectra and their use for the analysis of spectra. IV. Configuration interaction effects

    International Nuclear Information System (INIS)

    Kucas, S.; Jonauskas, V.; Karazija, R.

    1997-01-01

    For pt.III see ibid., vol.52, p.639, 1995. Changes of the moments of atomic spectrum due to configuration interaction (CI), the CI strength, the average shift of the energy of a level due to its interaction with all levels of distant configuration and other global characteristics of CI effects in atoms are systematised and their expressions presented. The results of the calculation of those characteristics for the energy level spectra of the 3s3p 3 + 3s 2 3p3d configurations in Si isoelectronic series, 3p 5 3d N + 3p 6 3d N-2 4p + 3p 6 3d N-2 4f (N = 5, 6, 7, 8) in Cr, Mn, Fe and Co isoelectronic series, ns 2 np N + np N+2 at n = 2 - 5 and N = 2 - 4 in neutral atoms as well as for the characteristic emission spectra corresponding to the 3p 5 3d 9 + 3d 7 4p → 3d 8 transitions as well as for the Auger M 4.3 N 1 N 2.3 spectra in Kr and N 4.5 O 1 O 2.3 in Xe are given and compared with the same characteristics of the more complete experimental spectra. (orig.)

  15. Network configuration of global R&D networks

    DEFF Research Database (Denmark)

    Hansen, Zaza Nadja Lee; Srai, Jagjit Singh

    2011-01-01

    , network configuration of global R&D has tended to focus on strategic elements with limited attention given operational effectiveness, or to interfaces with downstream manufacturing operations. Within OM literature, the drivers of configuration of global networks within, engineering, production, supply...... to R&D networks emerged, e.g. product features were more prominent in R&D networks. Furthermore, the study has shown extensive interaction with other operations, including many downstream manufacturing operations. By extending the OM configuration concepts to the configuration of R&D networks......Companies are increasingly globalising their R&D activities, both within the firms and with external partners, with consequent implications for their interaction with manufacturing operations. Previous research in R&D networks has focused on coordination, governance and support elements. However...

  16. Communication: An adaptive configuration interaction approach for strongly correlated electrons with tunable accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Schriber, Jeffrey B.; Evangelista, Francesco A. [Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322 (United States)

    2016-04-28

    We introduce a new procedure for iterative selection of determinant spaces capable of describing highly correlated systems. This adaptive configuration interaction (ACI) determines an optimal basis by an iterative procedure in which the determinant space is expanded and coarse grained until self-consistency. Two importance criteria control the selection process and tune the ACI to a user-defined level of accuracy. The ACI is shown to yield potential energy curves of N{sub 2} with nearly constant errors, and it predicts singlet-triplet splittings of acenes up to decacene that are in good agreement with the density matrix renormalization group.

  17. Relativistic configuration interaction treatment of generalized oscillator strength for krypton

    International Nuclear Information System (INIS)

    Wang Huangchun; Qu Yizhi; Liu Chunhua

    2007-01-01

    A fully relativistic configuration interaction method is developed to investigate the transition energies and general oscillator strengths of the lower lying states of krypton, for both optically allowed and optically forbidden transitions. The calculated results are in agreement with the recent experimental measurements. The calculated transition energies for the 5s and 5s' transitions are 9.970 and 10.717 eV, which agree with the experimental data of 10.033 and 10.643 eV. The calculated oscillator strengths are 0.211 and 0.170, comparable with the experimental results 0.214(±0.012) and 0.194 (±0.012), respectively. The momentum transfer positions (K 2 in a.u.) of the minimum and maximum GOSs in the 4s 2 4p 6 →4s 2 4p 5 (5s + 5s') transitions are 1.105 and 2.225, comparable with the measurements results 1.24 and 2.97. (authors)

  18. Relativistic Configuration Interaction Treatment of Generalized Oscillator Strength for Krypton

    Institute of Scientific and Technical Information of China (English)

    WANG Huang-Chun; QU Yi-Zhi; LIU Chun-Hua

    2007-01-01

    A fully relativistic configuration interaction method is developed to investigate the transition energies and general oscillator strengths of the lower lying states of krypton, for both optically allowed and optically forbidden transitions. The calculated results are in agreement with the recent experimental measurements. The calculated transition energies for the 5s and 5s' transitions are 9.970 and 10.717eV, which agree with the experimental data of 10.033 and 10.643 eV. The calculated oscillator strengths are 0.211 and 0.170, comparable with the experimental results 0.214(±0.012) and 0.194 (±0.012), respectively. The momentum transfer positions ( K2 in a.u.) of the minimum and maximum GOSs in the 4s24p6 → 4s24p5 (5s + 5s') transitions are 1.105 and 2.225, comparable with the measurements results 1.24 and 2.97 [Phys. Rev. A 67 (2003) 062708].

  19. Symmetries of cluster configurations

    International Nuclear Information System (INIS)

    Kramer, P.

    1975-01-01

    A deeper understanding of clustering phenomena in nuclei must encompass at least two interrelated aspects of the subject: (A) Given a system of A nucleons with two-body interactions, what are the relevant and persistent modes of clustering involved. What is the nature of the correlated nucleon groups which form the clusters, and what is their mutual interaction. (B) Given the cluster modes and their interaction, what systematic patterns of nuclear structure and reactions emerge from it. Are there, for example, families of states which share the same ''cluster parents''. Which cluster modes are compatible or exclude each other. What quantum numbers could characterize cluster configurations. There is no doubt that we can learn a good deal from the experimentalists who have discovered many of the features relevant to aspect (B). Symmetries specific to cluster configurations which can throw some light on both aspects of clustering are discussed

  20. Adaptive vibrational configuration interaction (A-VCI): A posteriori error estimation to efficiently compute anharmonic IR spectra

    Science.gov (United States)

    Garnier, Romain; Odunlami, Marc; Le Bris, Vincent; Bégué, Didier; Baraille, Isabelle; Coulaud, Olivier

    2016-05-01

    A new variational algorithm called adaptive vibrational configuration interaction (A-VCI) intended for the resolution of the vibrational Schrödinger equation was developed. The main advantage of this approach is to efficiently reduce the dimension of the active space generated into the configuration interaction (CI) process. Here, we assume that the Hamiltonian writes as a sum of products of operators. This adaptive algorithm was developed with the use of three correlated conditions, i.e., a suitable starting space, a criterion for convergence, and a procedure to expand the approximate space. The velocity of the algorithm was increased with the use of a posteriori error estimator (residue) to select the most relevant direction to increase the space. Two examples have been selected for benchmark. In the case of H2CO, we mainly study the performance of A-VCI algorithm: comparison with the variation-perturbation method, choice of the initial space, and residual contributions. For CH3CN, we compare the A-VCI results with a computed reference spectrum using the same potential energy surface and for an active space reduced by about 90%.

  1. Positron-attachment to small molecules: Vibrational enhancement of positron affinities with configuration interaction level of multi-component molecular orbital approach

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, Masanori [Quantum Chemistry Division, Graduate School of NanoBioScience, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama 236-0027 (Japan)

    2015-12-31

    To theoretically demonstrate the binding of a positron to small polarized molecules, we have calculated the vibrational averaged positron affinity (PA) values along the local vibrational contribution with the configuration interaction level of multi-component molecular orbital method. This method can take the electron-positron correlation contribution into account through single electronic - single positronic excitation configurations. The PA values are enhanced by including the local vibrational contribution from vertical PA values due to the anharmonicity of the potential.

  2. Leadership Class Configuration Interaction Code - Status and Opportunities

    Science.gov (United States)

    Vary, James

    2011-10-01

    With support from SciDAC-UNEDF (www.unedf.org) nuclear theorists have developed and are continuously improving a Leadership Class Configuration Interaction Code (LCCI) for forefront nuclear structure calculations. The aim of this project is to make state-of-the-art nuclear structure tools available to the entire community of researchers including graduate students. The project includes codes such as NuShellX, MFDn and BIGSTICK that run a range of computers from laptops to leadership class supercomputers. Codes, scripts, test cases and documentation have been assembled, are under continuous development and are scheduled for release to the entire research community in November 2011. A covering script that accesses the appropriate code and supporting files is under development. In addition, a Data Base Management System (DBMS) that records key information from large production runs and archived results of those runs has been developed (http://nuclear.physics.iastate.edu/info/) and will be released. Following an outline of the project, the code structure, capabilities, the DBMS and current efforts, I will suggest a path forward that would benefit greatly from a significant partnership between researchers who use the codes, code developers and the National Nuclear Data efforts. This research is supported in part by DOE under grant DE-FG02-87ER40371 and grant DE-FC02-09ER41582 (SciDAC-UNEDF).

  3. An excited-state approach within full configuration interaction quantum Monte Carlo

    International Nuclear Information System (INIS)

    Blunt, N. S.; Smart, Simon D.; Booth, George H.; Alavi, Ali

    2015-01-01

    We present a new approach to calculate excited states with the full configuration interaction quantum Monte Carlo (FCIQMC) method. The approach uses a Gram-Schmidt procedure, instantaneously applied to the stochastically evolving distributions of walkers, to orthogonalize higher energy states against lower energy ones. It can thus be used to study several of the lowest-energy states of a system within the same symmetry. This additional step is particularly simple and computationally inexpensive, requiring only a small change to the underlying FCIQMC algorithm. No trial wave functions or partitioning of the space is needed. The approach should allow excited states to be studied for systems similar to those accessible to the ground-state method due to a comparable computational cost. As a first application, we consider the carbon dimer in basis sets up to quadruple-zeta quality and compare to existing results where available

  4. A full-configuration-interaction nuclear orbital approach and application for small doped He clusters

    Energy Technology Data Exchange (ETDEWEB)

    Lara-Castells, M. P. de, E-mail: delara@iff.csic.es; Aguirre, N. F., E-mail: delara@iff.csic.es; Delgado-Barrio, G., E-mail: delara@iff.csic.es; Villarreal, P., E-mail: delara@iff.csic.es [Instituto de Física Fundamental (CSIC), Serrano 123, 28006 Madrid (Spain); Mitrushchenkov, A. O. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France)

    2015-01-22

    An efficient full-configuration-interaction 'nuclear orbital' treatment was developed as a benchmark quantum-chemistry-like method to calculate, ground and excited, fermionic 'solvent' wave-functions and applied to {sup 3}He{sub N} clusters with atomic or molecular impurities [J. Chem. Phys. (Communication) 125, 221101 (2006)]. The main difficulty in handling doped {sup 3}He{sub N} clusters lies in the Fermi-Dirac nuclear statistics, the wide amplitudes of the He-dopant and He-He motions, and the hard-core He-He interaction at short distances. This paper overviews the theoretical approach and its recent applications to energetic, structural and spectroscopic aspects of different dopant-{sup 3}He{sub N} clusters. Preliminary results by using the latest version of the FCI-NO computational implementation, to bosonic Cl{sub 2}(X)-({sup 4}He){sub N} clusters, are also shown.

  5. Large-dimension configuration-interaction calculations of positron binding to the group-II atoms

    International Nuclear Information System (INIS)

    Bromley, M. W. J.; Mitroy, J.

    2006-01-01

    The configuration-interaction (CI) method is applied to the calculation of the structures of a number of positron binding systems, including e + Be, e + Mg, e + Ca, and e + Sr. These calculations were carried out in orbital spaces containing about 200 electron and 200 positron orbitals up to l=12. Despite the very large dimensions, the binding energy and annihilation rate converge slowly with l, and the final values do contain an appreciable correction obtained by extrapolating the calculation to the l→∞ limit. The binding energies were 0.00317 hartree for e + Be, 0.0170 hartree for e + Mg, 0.0189 hartree for e + Ca, and 0.0131 hartree for e + Sr

  6. A configural dominant account of contextual cueing: Configural cues are stronger than colour cues.

    Science.gov (United States)

    Kunar, Melina A; John, Rebecca; Sweetman, Hollie

    2014-01-01

    Previous work has shown that reaction times to find a target in displays that have been repeated are faster than those for displays that have never been seen before. This learning effect, termed "contextual cueing" (CC), has been shown using contexts such as the configuration of the distractors in the display and the background colour. However, it is not clear how these two contexts interact to facilitate search. We investigated this here by comparing the strengths of these two cues when they appeared together. In Experiment 1, participants searched for a target that was cued by both colour and distractor configural cues, compared with when the target was only predicted by configural information. The results showed that the addition of a colour cue did not increase contextual cueing. In Experiment 2, participants searched for a target that was cued by both colour and distractor configuration compared with when the target was only cued by colour. The results showed that adding a predictive configural cue led to a stronger CC benefit. Experiments 3 and 4 tested the disruptive effects of removing either a learned colour cue or a learned configural cue and whether there was cue competition when colour and configural cues were presented together. Removing the configural cue was more disruptive to CC than removing colour, and configural learning was shown to overshadow the learning of colour cues. The data support a configural dominant account of CC, where configural cues act as the stronger cue in comparison to colour when they are presented together.

  7. Improving the iterative Linear Interaction Energy approach using automated recognition of configurational transitions.

    Science.gov (United States)

    Vosmeer, C Ruben; Kooi, Derk P; Capoferri, Luigi; Terpstra, Margreet M; Vermeulen, Nico P E; Geerke, Daan P

    2016-01-01

    Recently an iterative method was proposed to enhance the accuracy and efficiency of ligand-protein binding affinity prediction through linear interaction energy (LIE) theory. For ligand binding to flexible Cytochrome P450s (CYPs), this method was shown to decrease the root-mean-square error and standard deviation of error prediction by combining interaction energies of simulations starting from different conformations. Thereby, different parts of protein-ligand conformational space are sampled in parallel simulations. The iterative LIE framework relies on the assumption that separate simulations explore different local parts of phase space, and do not show transitions to other parts of configurational space that are already covered in parallel simulations. In this work, a method is proposed to (automatically) detect such transitions during the simulations that are performed to construct LIE models and to predict binding affinities. Using noise-canceling techniques and splines to fit time series of the raw data for the interaction energies, transitions during simulation between different parts of phase space are identified. Boolean selection criteria are then applied to determine which parts of the interaction energy trajectories are to be used as input for the LIE calculations. Here we show that this filtering approach benefits the predictive quality of our previous CYP 2D6-aryloxypropanolamine LIE model. In addition, an analysis is performed of the gain in computational efficiency that can be obtained from monitoring simulations using the proposed filtering method and by prematurely terminating simulations accordingly.

  8. Magnetization reversal in magnetic dot arrays: Nearest-neighbor interactions and global configurational anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Van de Wiele, Ben [Department of Electrical Energy, Systems and Automation, Ghent University, Technologiepark 913, B-9052 Ghent-Zwijnaarde (Belgium); Fin, Samuele [Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, 44122 Ferrara (Italy); Pancaldi, Matteo [CIC nanoGUNE, E-20018 Donostia-San Sebastian (Spain); Vavassori, Paolo [CIC nanoGUNE, E-20018 Donostia-San Sebastian (Spain); IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao (Spain); Sarella, Anandakumar [Physics Department, Mount Holyoke College, 211 Kendade, 50 College St., South Hadley, Massachusetts 01075 (United States); Bisero, Diego [Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, 44122 Ferrara (Italy); CNISM, Unità di Ferrara, 44122 Ferrara (Italy)

    2016-05-28

    Various proposals for future magnetic memories, data processing devices, and sensors rely on a precise control of the magnetization ground state and magnetization reversal process in periodically patterned media. In finite dot arrays, such control is hampered by the magnetostatic interactions between the nanomagnets, leading to the non-uniform magnetization state distributions throughout the sample while reversing. In this paper, we evidence how during reversal typical geometric arrangements of dots in an identical magnetization state appear that originate in the dominance of either Global Configurational Anisotropy or Nearest-Neighbor Magnetostatic interactions, which depends on the fields at which the magnetization reversal sets in. Based on our findings, we propose design rules to obtain the uniform magnetization state distributions throughout the array, and also suggest future research directions to achieve non-uniform state distributions of interest, e.g., when aiming at guiding spin wave edge-modes through dot arrays. Our insights are based on the Magneto-Optical Kerr Effect and Magnetic Force Microscopy measurements as well as the extensive micromagnetic simulations.

  9. Lessons Learned in Designing User-configurable Modular Robotics

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop

    2013-01-01

    User-configurable robotics allows users to easily configure robotic systems to perform task-fulfilling behaviors as desired by the users. With a user configurable robotic system, the user can easily modify the physical and func-tional aspect in terms of hardware and software components of a robotic...... with the semi-autonomous com-ponents of the user-configurable robotic system in interaction with the given environment. Components constituting such a user-configurable robotic system can be characterized as modules in a modular robotic system. Several factors in the definition and implementation...

  10. The 3d8-(3d74p + 3p53d9) transitions in Br X: A striking case of configuration interaction

    International Nuclear Information System (INIS)

    Kleef, T.A.M. van; Uylings, P.H.M.; Ryabtsev, A.N.; Podobedova, L.I.; Joshi, Y.N.

    1988-01-01

    The spectrum of nine times ionized bromine (Br X) was photographed in the 90-120 A wavelength region on a variety of grazing incidence spectrographs using an open spark and a triggered spark as light sources. The analysis of the 3d 8 -(3d 7 4p + 3p 5 3d 9 ) transitions has resulted in establishing all 9 levels of the 3d 8 configuration, all 12 levels of the 3p 5 3d 9 configuration and 99 out of 110 levels of the 3d 7 4p configuration. The excitation probability of the 3p inner-shell electron increases with nuclear charge and in Br X is comparable with the excitation probability of the optical electrons resulting in a very strong configuration interaction between the 3p 5 3d 9 and 3d 7 4p configurations. Parametric calculations treating these configurations as one super configuration support the analysis. Two hundred and thirty two lines have been classified in this spectrum. (orig.)

  11. Distinct configurations of protein complexes and biochemical pathways revealed by epistatic interaction network motifs

    LENUS (Irish Health Repository)

    Casey, Fergal

    2011-08-22

    Abstract Background Gene and protein interactions are commonly represented as networks, with the genes or proteins comprising the nodes and the relationship between them as edges. Motifs, or small local configurations of edges and nodes that arise repeatedly, can be used to simplify the interpretation of networks. Results We examined triplet motifs in a network of quantitative epistatic genetic relationships, and found a non-random distribution of particular motif classes. Individual motif classes were found to be associated with different functional properties, suggestive of an underlying biological significance. These associations were apparent not only for motif classes, but for individual positions within the motifs. As expected, NNN (all negative) motifs were strongly associated with previously reported genetic (i.e. synthetic lethal) interactions, while PPP (all positive) motifs were associated with protein complexes. The two other motif classes (NNP: a positive interaction spanned by two negative interactions, and NPP: a negative spanned by two positives) showed very distinct functional associations, with physical interactions dominating for the former but alternative enrichments, typical of biochemical pathways, dominating for the latter. Conclusion We present a model showing how NNP motifs can be used to recognize supportive relationships between protein complexes, while NPP motifs often identify opposing or regulatory behaviour between a gene and an associated pathway. The ability to use motifs to point toward underlying biological organizational themes is likely to be increasingly important as more extensive epistasis mapping projects in higher organisms begin.

  12. The benefits of ITER for the portfolio of fusion configurations

    International Nuclear Information System (INIS)

    Goldston, R.J.

    2002-01-01

    Recent plasma science challenges are 1) what limits the pressure in plasmas? (macroscopic stability), 2) how do hot particles and plasma waves interact in the non-linear regime? (wave-particle interactions), 3) what causes plasma transport? (microscopic turbulence and transport) and 4) how can high-temperature plasma and material surface co-exist? (plasma-material interactions). This fusion plasma science is addressed using a 'Portfolio' of configurations, like Stellarator, Tokamak, Spherical Torus, Reversed Field Pinch, Spheromak, and Field Reversed Configuration. Namely, the scientific results from one configuration benefit progress in others. Recent example of this effort can be found in NCSX, NSTX and RFP. ITER will provide very significant benefits to the development of the full fusion portfolio; macroscopic stability, wave-particle interactions, microturbulence and transport, plasma-material interactions, and technical demonstration of an integrated fusion system. (author)

  13. The benefits of ITER for the portfolio of fusion configurations

    Energy Technology Data Exchange (ETDEWEB)

    Goldston, R.J. [Princeton Plasma Physics Lab., NJ (United States)

    2002-10-01

    Recent plasma science challenges are 1) what limits the pressure in plasmas? (macroscopic stability), 2) how do hot particles and plasma waves interact in the non-linear regime? (wave-particle interactions), 3) what causes plasma transport? (microscopic turbulence and transport) and 4) how can high-temperature plasma and material surface co-exist? (plasma-material interactions). This fusion plasma science is addressed using a 'Portfolio' of configurations, like Stellarator, Tokamak, Spherical Torus, Reversed Field Pinch, Spheromak, and Field Reversed Configuration. Namely, the scientific results from one configuration benefit progress in others. Recent example of this effort can be found in NCSX, NSTX and RFP. ITER will provide very significant benefits to the development of the full fusion portfolio; macroscopic stability, wave-particle interactions, microturbulence and transport, plasma-material interactions, and technical demonstration of an integrated fusion system. (author)

  14. Spin-flip configuration interaction singles with exact spin-projection: Theory and applications to strongly correlated systems.

    Science.gov (United States)

    Tsuchimochi, Takashi

    2015-10-14

    Spin-flip approaches capture static correlation with the same computational scaling as the ordinary single reference methods. Here, we extend spin-flip configuration interaction singles (SFCIS) by projecting out intrinsic spin-contamination to make it spin-complete, rather than by explicitly complementing it with spin-coupled configurations. We give a general formalism of spin-projection for SFCIS, applicable to any spin states. The proposed method is viewed as a natural unification of SFCIS and spin-projected CIS to achieve a better qualitative accuracy at a low computational cost. While our wave function ansatz is more compact than previously proposed spin-complete SF approaches, it successfully offers more general static correlation beyond biradicals without sacrificing good quantum numbers. It is also shown that our method is invariant with respect to open-shell orbital rotations, due to the uniqueness of spin-projection. We will report benchmark calculations to demonstrate its qualitative performance on strongly correlated systems, including conical intersections that appear both in ground-excited and excited-excited degeneracies.

  15. Gauge-Invariant Formulation of Time-Dependent Configuration Interaction Singles Method

    Directory of Open Access Journals (Sweden)

    Takeshi Sato

    2018-03-01

    Full Text Available We propose a gauge-invariant formulation of the channel orbital-based time-dependent configuration interaction singles (TDCIS method [Phys. Rev. A, 74, 043420 (2006], one of the powerful ab initio methods to investigate electron dynamics in atoms and molecules subject to an external laser field. In the present formulation, we derive the equations of motion (EOMs in the velocity gauge using gauge-transformed time-dependent, not fixed, orbitals that are equivalent to the conventional EOMs in the length gauge using fixed orbitals. The new velocity-gauge EOMs avoid the use of the length-gauge dipole operator, which diverges at large distance, and allows us to exploit computational advantages of the velocity-gauge treatment over the length-gauge one, e.g., a faster convergence in simulations with intense and long-wavelength lasers, and the feasibility of exterior complex scaling as an absorbing boundary. The reformulated TDCIS method is applied to an exactly solvable model of one-dimensional helium atom in an intense laser field to numerically demonstrate the gauge invariance. We also discuss the consistent method for evaluating the time derivative of an observable, which is relevant, e.g., in simulating high-harmonic generation.

  16. Isotope shift and configuration interaction in U I

    International Nuclear Information System (INIS)

    King, W.H.

    1979-01-01

    Recent calculations by Rajnak and Fred (J. Opt. Soc. Am.; 67:1314 (1977)) show that the transitions studied by Gagne et al (J. Opt. Soc. Am.; 66:1415 (1976)) have upper levels of mixed configurations. The amount of mixing and the probability of mass shifts due to 5f electrons is discussed. (author)

  17. Comparison of fully internally and strongly contracted multireference configuration interaction procedures

    Science.gov (United States)

    Sivalingam, Kantharuban; Krupicka, Martin; Auer, Alexander A.; Neese, Frank

    2016-08-01

    Multireference (MR) methods occupy an important class of approaches in quantum chemistry. In many instances, for example, in studying complex magnetic properties of transition metal complexes, they are actually the only physically satisfactory choice. In traditional MR approaches, single and double excitations are performed with respect to all reference configurations (or configuration state functions, CSFs), which leads to an explosive increase of computational cost for larger reference spaces. This can be avoided by the internal contraction scheme proposed by Meyer and Siegbahn, which effectively reduces the number of wavefunction parameters to their single-reference counterpart. The "fully internally contracted" scheme (FIC) is well known from the popular CASPT2 approach. An even shorter expansion of the wavefunction is possible with the "strong contraction" (SC) scheme proposed by Angeli and Malrieu in their NEVPT2 approach. Promising multireference configuration interaction formulations (MRCI) employing internal contraction and strong contraction have been reported by several authors. In this work, we report on the implementation of the FIC-MRCI and SC-MRCI methodologies, using a computer assisted implementation strategy. The methods are benchmarked against the traditional uncontracted MRCI approach for ground and excited states of small molecules (N2, O2, CO, CO+, OH, CH, and CN). For ground states, the comparison includes the "partially internally contracted" MRCI based on the Celani-Werner ansatz (PC-MRCI). For the three contraction schemes, the average errors range from 2% to 6% of the uncontracted MRCI correlation energies. Excitation energies are reproduced with ˜0.2 eV accuracy. In most cases, the agreement is better than 0.2 eV, even in cases with very large differential correlation contributions as exemplified for the d-d and ligand-to-metal charge transfer transitions of a Cu [NH 3 ] 4 2 + model complex. The benchmark is supplemented with the

  18. Criticality in the configuration-mixed interacting boson model (1) $U(5)-\\hat{Q}(\\chi)\\cdot\\hat{Q}(\\chi)$ mixing

    CERN Document Server

    Hellemans, V; De Baerdemacker, S; Heyde, K

    2008-01-01

    The case of U(5)--$\\hat{Q}(\\chi)\\cdot\\hat{Q}(\\chi)$ mixing in the configuration-mixed Interacting Boson Model is studied in its mean-field approximation. Phase diagrams with analytical and numerical solutions are constructed and discussed. Indications for first-order and second-order shape phase transitions can be obtained from binding energies and from critical exponents, respectively.

  19. Fast vibrational configuration interaction using generalized curvilinear coordinates and self-consistent basis.

    Science.gov (United States)

    Scribano, Yohann; Lauvergnat, David M; Benoit, David M

    2010-09-07

    In this paper, we couple a numerical kinetic-energy operator approach to the direct-vibrational self-consistent field (VSCF)/vibrational configuration interaction (VCI) method for the calculation of vibrational anharmonic frequencies. By combining this with fast-VSCF, an efficient direct evaluation of the ab initio potential-energy surface (PES), we introduce a general formalism for the computation of vibrational bound states of molecular systems exhibiting large-amplitude motion such as methyl-group torsion. We validate our approach on an analytical two-dimensional model and apply it to the methanol molecule. We show that curvilinear coordinates lead to a significant improvement in the VSCF/VCI description of the torsional frequency in methanol, even for a simple two-mode coupling expansion of the PES. Moreover, we demonstrate that a curvilinear formulation of the fast-VSCF/VCI scheme improves its speed by a factor of two and its accuracy by a factor of 3.

  20. Configuration interaction effect on open M shell Fe and Ni LTE spectral opacities, Rosseland and Planck means

    International Nuclear Information System (INIS)

    Gilles, D; Busquet, M; Gilleron, F; Pain, J-C; Klapisch, M

    2016-01-01

    We have recently shown that iron and nickel open M-shell opacity spectra, up to Δn = 2 are very sensitive to Configuration Interaction (CI) treatments at temperature around 15 eV and for various densities. To do so we had compared extensive CI calculations obtained with two opacity codes HULLAC-v9 and SCO-RCG. In this work we extend these comparisons to a first evaluation of CI effects on Rosseland and Planck means. (paper)

  1. Large-scale parallel configuration interaction. II. Two- and four-component double-group general active space implementation with application to BiH

    DEFF Research Database (Denmark)

    Knecht, Stefan; Jensen, Hans Jørgen Aagaard; Fleig, Timo

    2010-01-01

    We present a parallel implementation of a large-scale relativistic double-group configuration interaction CIprogram. It is applicable with a large variety of two- and four-component Hamiltonians. The parallel algorithm is based on a distributed data model in combination with a static load balanci...

  2. Evaluation of the Stillinger-Weber classical interaction potential for tetragonal semiconductors in nonideal atomic configurations

    International Nuclear Information System (INIS)

    Dodson, B.W.

    1986-01-01

    A classical potential incorporating two- and three-body interaction terms has recently been introduced by Stillinger and Weber (SW) for simulation of the liquefaction transition of silicon. The equilibrium mechanical properties of this potential are determined and found to agree well with experimental values. The potential also seems to be adequate for problems involving computation of defect energies, such as the stability of strained-layer superlattice interfaces. However, inadequate treatment of configurations with low coordination number makes modeling of the epitaxial growth of (111) silicon impossible. Simple modifications of the SW potential form do allow for (111) epitaxial growth, but the earliest stages of growth then become unphysical

  3. Calculations of configurations of doubly ionized copper (Cu III)

    International Nuclear Information System (INIS)

    Sugar, J.; Martin, W.C.

    1976-01-01

    The energy levels belonging to the configurations 3d 7 4s 2 and 3d 8 nl (nl = 4s, 5s, 4p, 5p, 4d, 5d, 4f, and 5g) have been calculated. The radial energy integrals were treated as parameters and adjusted to give a least-squares fit to the observed levels. Two- and three-body effective electrostatic interactions for equivalent electrons were included, as well as two-body effective interactions for inequivalent electrons. Strong configuration interaction between 3d 7 4s 2 and 3d 8 4d was taken into account. Values of the parameters are given for all the above configurations, and the calculated levels are given for all except 3d 8 4s and 3d 8 4p (for which essentially equivalent results have been published). Leading eigenvector percentages are given in appropriate coupling schemes

  4. Configuring the development space for conceptualization

    DEFF Research Database (Denmark)

    Brønnum, Louise; Clausen, Christian

    2013-01-01

    This paper addresses issues of conceptualization in the early stages of concept development noted as the Front End of Innovation [FEI]. We examine this particular development space as a socio technical space where a diversity of technological knowledge, user perspectives and organizational agendas...... meet and interact. Based on a case study from an industrial medical company, the paper addresses and analyses the configuration of the development space in a number of projects aiming to take up user oriented perspectives in their activities. It presents insights on how the FEI was orchestrated...... and staged and how different elements and objects contributed to the configuration of the space in order to make it perform in a certain way. The analysis points at the importance of the configuration processes and indicate how these configurations often may act as more or less hidden limitations on concept...

  5. Interaction of ICRF power and edge plasma in Tore Supra ergodic divertor configuration

    International Nuclear Information System (INIS)

    Nguyen, F.; Grosman, A.; Basiuk, V.; Fraboulet, D.; Beaumont, B.; Becoulet, A.; Ghendrih, Ph.; Ladurelle, L.; Meslin, B.

    2000-01-01

    The coupling of ICRF power to plasma is a crucial problem in Tore Supra for high power and long pulse operations and depends greatly on the edge parameters, in particular on the edge density. Conversely, the behaviour of the bulk plasma is related to the edge conditions and the injection of RF power also induces major modifications on the edge plasma. Moreover, the Ergodic Divertor (ED) of Tore Supra imposes a complex configuration at the edge due to the presence of the magnetic perturbation. Several diagnostics are available to study the interaction of ICRF power with the edge plasma: Langmuir probes on the ED modules, infra red (IR) cameras, charge exchange neutral analysers. In minority heating scheme, the edge density is very sensitive to any perturbation in the high recycling regime which is always found in the ED configuration for relevant plasma parameters. Partially detached regimes, with or without inhomogeneities of density and temperature induced by the flux tubes of the laminar layer, are obtained for high resistance coupling values. The coupling is then not very robust and feedback control or antenna automatic matching techniques are developed. In fast wave electron heating scheme with ED, various fast wave absorption mechanisms (minority heating, Mode Conversion, Alfven resonance) are present at the plasma edge due to the large size of the plasma. The ICRF coupling is difficult due to the low fast wave direct electron damping, even with high hydrogen minority scheme. An increase of the injected ICRF power could improve this situation

  6. Photoabsorption in sodium clusters: first principles configuration interaction calculations

    Science.gov (United States)

    Priya, Pradip Kumar; Rai, Deepak Kumar; Shukla, Alok

    2017-05-01

    We present systematic and comprehensive correlated-electron calculations of the linear photoabsorption spectra of small neutral closed- and open-shell sodium clusters (Nan, n = 2 - 6), as well as closed-shell cation clusters (Nan+, n = 3, 5). We have employed the configuration interaction (CI) methodology at the full CI (FCI) and quadruple CI (QCI) levels to compute the ground, and the low-lying excited states of the clusters. For most clusters, besides the minimum energy structures, we also consider their energetically close isomers. The photoabsorption spectra were computed under the electric-dipole approximation, employing the dipole-matrix elements connecting the ground state with the excited states of each isomer. Our calculations were tested rigorously for convergence with respect to the basis set, as well as with respect to the size of the active orbital space employed in the CI calculations. These calculations reveal that as far as electron-correlation effects are concerned, core excitations play an important role in determining the optimized ground state geometries of various clusters, thereby requiring all-electron correlated calculations. But, when it comes to low-lying optical excitations, only valence electron correlation effects play an important role, and excellent agreement with the experimental results is obtained within the frozen-core approximation. For the case of Na6, the largest cluster studied in this work, we also discuss the possibility of occurrence of plasmonic resonance in the optical absorption spectrum. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-70728-3

  7. Robust and Efficient Spin Purification for Determinantal Configuration Interaction.

    Science.gov (United States)

    Fales, B Scott; Hohenstein, Edward G; Levine, Benjamin G

    2017-09-12

    The limited precision of floating point arithmetic can lead to the qualitative and even catastrophic failure of quantum chemical algorithms, especially when high accuracy solutions are sought. For example, numerical errors accumulated while solving for determinantal configuration interaction wave functions via Davidson diagonalization may lead to spin contamination in the trial subspace. This spin contamination may cause the procedure to converge to roots with undesired ⟨Ŝ 2 ⟩, wasting computer time in the best case and leading to incorrect conclusions in the worst. In hopes of finding a suitable remedy, we investigate five purification schemes for ensuring that the eigenvectors have the desired ⟨Ŝ 2 ⟩. These schemes are based on projection, penalty, and iterative approaches. All of these schemes rely on a direct, graphics processing unit-accelerated algorithm for calculating the S 2 c matrix-vector product. We assess the computational cost and convergence behavior of these methods by application to several benchmark systems and find that the first-order spin penalty method is the optimal choice, though first-order and Löwdin projection approaches also provide fast convergence to the desired spin state. Finally, to demonstrate the utility of these approaches, we computed the lowest several excited states of an open-shell silver cluster (Ag 19 ) using the state-averaged complete active space self-consistent field method, where spin purification was required to ensure spin stability of the CI vector coefficients. Several low-lying states with significant multiply excited character are predicted, suggesting the value of a multireference approach for modeling plasmonic nanomaterials.

  8. Control of divertor configuration in JT-60

    International Nuclear Information System (INIS)

    Yoshino, R.; Kukuchi, M.; Ninomiya, H.; Yoshida, H.; Tsuji, S.; Hosogane, N.; Seki, S.

    1985-01-01

    The control algorithm of JT-60 divertor configuration is presented. JT-60 has five types of poloidal magnetic field coil with each power supply in order to regulate the control objectives mentioned above. However, if one controls each objective by each coil current independently, there must inevitably occur large interaction between control objectives. Because the relation between control objectives and coil currents is complicated. This situation may be the same with a fusion reactor device. For making it possible to control each objective independently without causing large interaction, the authors adopt the noninteracting control algorithm. Hence, this report demonstrates the availability of this method to the control of JT-60 divertor configuration

  9. Multireference configuration interaction treatment of potential energy surfaces: symmetric dissociation of H/sub 2/O in a double-zeta basis

    Energy Technology Data Exchange (ETDEWEB)

    Brown, F B; Shavitt, I; Shepard, R

    1984-03-23

    Multiconfiguration self-consistent fields (SCF) and multireference configurational interaction (CI) calculations have been performed for the H/sub 2/O molecule in a double-zeta basis for four symmetric geometries, for comparison with full CI results. Unlike single-reference results, the energy errors are almost independent of geometry, allowing unbiased treatments of potential energy surfaces. 35 references, 1 figure, 2 tables.

  10. On the performance of atomic natural orbital basis sets: A full configuration interaction study

    International Nuclear Information System (INIS)

    Illas, F.; Ricart, J.M.; Rubio, J.; Bagus, P.S.

    1990-01-01

    The performance of atomic natural orbital (ANO) basis sets has been studied by comparing self-consistant field (SCF) and full configuration interaction (CI) results obtained for the first row atoms and hydrides. The ANO results have been compared with those obtained using a segmented basis set containing the same number of contracted basis functions. The total energies obtained with the ANO basis sets are always lower than the one obtained by using the segmented one. However, for the hydrides, differential electronic correlation energy obtained with the ANO basis set may be smaller than the one recovered with the segmented set. We relate this poorer differential correlation energy for the ANO basis set to the fact that only one contracted d function is used for the ANO and segmented basis sets

  11. A deterministic alternative to the full configuration interaction quantum Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Tubman, Norm M.; Lee, Joonho; Takeshita, Tyler Y.; Head-Gordon, Martin; Whaley, K. Birgitta [University of California, Berkeley, Berkeley, California 94720 (United States)

    2016-07-28

    Development of exponentially scaling methods has seen great progress in tackling larger systems than previously thought possible. One such technique, full configuration interaction quantum Monte Carlo, is a useful algorithm that allows exact diagonalization through stochastically sampling determinants. The method derives its utility from the information in the matrix elements of the Hamiltonian, along with a stochastic projected wave function, to find the important parts of Hilbert space. However, the stochastic representation of the wave function is not required to search Hilbert space efficiently, and here we describe a highly efficient deterministic method that can achieve chemical accuracy for a wide range of systems, including the difficult Cr{sub 2} molecule. We demonstrate for systems like Cr{sub 2} that such calculations can be performed in just a few cpu hours which makes it one of the most efficient and accurate methods that can attain chemical accuracy for strongly correlated systems. In addition our method also allows efficient calculation of excited state energies, which we illustrate with benchmark results for the excited states of C{sub 2}.

  12. Simulations of two sedimenting-interacting spheres with different sizes and initial configurations using immersed boundary method

    Science.gov (United States)

    Liao, Chuan-Chieh; Hsiao, Wen-Wei; Lin, Ting-Yu; Lin, Chao-An

    2015-06-01

    Numerical investigations are carried out for the drafting, kissing and tumbling (DKT) phenomenon of two freely falling spheres within a long container by using an immersed-boundary method. The method is first validated with flows induced by a sphere settling under gravity in a small container for which experimental data are available. The hydrodynamic interactions of two spheres are then studied with different sizes and initial configurations. When a regular sphere is placed below the larger one, the duration of kissing decreases in pace with the increase in diameter ratio. On the other hand, the time duration of the kissing stage increases in tandem with the increase in diameter ratio as the large sphere is placed below the regular one, and there is no DKT interactions beyond threshold diameter ratio. Also, the gap between homogeneous spheres remains constant at the terminal velocity, whereas the gaps between the inhomogeneous spheres increase due to the differential terminal velocity.

  13. Density matrix-based time-dependent configuration interaction approach to ultrafast spin-flip dynamics

    Science.gov (United States)

    Wang, Huihui; Bokarev, Sergey I.; Aziz, Saadullah G.; Kühn, Oliver

    2017-08-01

    Recent developments in attosecond spectroscopy yield access to the correlated motion of electrons on their intrinsic timescales. Spin-flip dynamics is usually considered in the context of valence electronic states, where spin-orbit coupling is weak and processes related to the electron spin are usually driven by nuclear motion. However, for core-excited states, where the core-hole has a nonzero angular momentum, spin-orbit coupling is strong enough to drive spin-flips on a much shorter timescale. Using density matrix-based time-dependent restricted active space configuration interaction including spin-orbit coupling, we address an unprecedentedly short spin-crossover for the example of L-edge (2p→3d) excited states of a prototypical Fe(II) complex. This process occurs on a timescale, which is faster than that of Auger decay (∼4 fs) treated here explicitly. Modest variations of carrier frequency and pulse duration can lead to substantial changes in the spin-state yield, suggesting its control by soft X-ray light.

  14. Laser-induced electron dynamics including photoionization: A heuristic model within time-dependent configuration interaction theory.

    Science.gov (United States)

    Klinkusch, Stefan; Saalfrank, Peter; Klamroth, Tillmann

    2009-09-21

    We report simulations of laser-pulse driven many-electron dynamics by means of a simple, heuristic extension of the time-dependent configuration interaction singles (TD-CIS) approach. The extension allows for the treatment of ionizing states as nonstationary states with a finite, energy-dependent lifetime to account for above-threshold ionization losses in laser-driven many-electron dynamics. The extended TD-CIS method is applied to the following specific examples: (i) state-to-state transitions in the LiCN molecule which correspond to intramolecular charge transfer, (ii) creation of electronic wave packets in LiCN including wave packet analysis by pump-probe spectroscopy, and, finally, (iii) the effect of ionization on the dynamic polarizability of H(2) when calculated nonperturbatively by TD-CIS.

  15. Control Configuration Selection for Multivariable Descriptor Systems

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza; Stoustrup, Jakob

    2012-01-01

    Control configuration selection is the procedure of choosing the appropriate input and output pairs for the design of SISO (or block) controllers. This step is an important prerequisite for a successful industrial control strategy. In industrial practices it is often the case that the system, whi...... is that it can be used to propose a richer sparse or block diagonal controller structure. The interaction measure is used for control configuration selection of the linearized CSTR model with descriptor from....

  16. Photochemistry of ethylene: A multireference configuration interaction investigation of the excited-state energy surfaces

    International Nuclear Information System (INIS)

    Barbatti, M.; Paier, J.; Lischka, H.

    2004-01-01

    Multireference configuration interaction with singles and doubles (MR-CISD) calculations have been performed for the optimization of conical intersections and stationary points on the ethylene excited-state energy surfaces using recently developed methods for the computation of analytic gradients and nonadiabatic coupling terms. Basis set dependence and the effect of various choices of reference spaces for the MR-CISD calculations have been investigated. The crossing seam between the S 0 and S 1 states has been explored in detail. This seam connects all conical intersections presently known for ethylene. Major emphasis has been laid on the hydrogen-migration path. Starting in the V state of twisted-orthogonal ethylene, a barrierless path to ethylidene was found. The feasibility of ethylidene formation will be important for the explanation of the relative yield of cis and trans H 2 elimination

  17. Integrating configuration workflows with project management system

    International Nuclear Information System (INIS)

    Nilsen, Dimitri; Weber, Pavel

    2014-01-01

    The complexity of the heterogeneous computing resources, services and recurring infrastructure changes at the GridKa WLCG Tier-1 computing center require a structured approach to configuration management and optimization of interplay between functional components of the whole system. A set of tools deployed at GridKa, including Puppet, Redmine, Foreman, SVN and Icinga, provides the administrative environment giving the possibility to define and develop configuration workflows, reduce the administrative effort and improve sustainable operation of the whole computing center. In this presentation we discuss the developed configuration scenarios implemented at GridKa, which we use for host installation, service deployment, change management procedures, service retirement etc. The integration of Puppet with a project management tool like Redmine provides us with the opportunity to track problem issues, organize tasks and automate these workflows. The interaction between Puppet and Redmine results in automatic updates of the issues related to the executed workflow performed by different system components. The extensive configuration workflows require collaboration and interaction between different departments like network, security, production etc. at GridKa. Redmine plugins developed at GridKa and integrated in its administrative environment provide an effective way of collaboration within the GridKa team. We present the structural overview of the software components, their connections, communication protocols and show a few working examples of the workflows and their automation.

  18. Neutron star equilibrium configurations within a fully relativistic theory with strong, weak, electromagnetic, and gravitational interactions

    International Nuclear Information System (INIS)

    Belvedere, Riccardo; Pugliese, Daniela; Rueda, Jorge A.; Ruffini, Remo; Xue, She-Sheng

    2012-01-01

    We formulate the equations of equilibrium of neutron stars taking into account strong, weak, electromagnetic, and gravitational interactions within the framework of general relativity. The nuclear interactions are described by the exchange of the σ, ω, and ρ virtual mesons. The equilibrium conditions are given by our recently developed theoretical framework based on the Einstein–Maxwell–Thomas–Fermi equations along with the constancy of the general relativistic Fermi energies of particles, the “Klein potentials”, throughout the configuration. The equations are solved numerically in the case of zero temperatures and for selected parameterizations of the nuclear models. The solutions lead to a new structure of the star: a positively charged core at supranuclear densities surrounded by an electronic distribution of thickness ∼ℏ/(m e c)∼10 2 ℏ/(m π c) of opposite charge, as well as a neutral crust at lower densities. Inside the core there is a Coulomb potential well of depth ∼m π c 2 /e. The constancy of the Klein potentials in the transition from the core to the crust, imposes the presence of an overcritical electric field ∼(m π /m e ) 2 E c , the critical field being E c =m e 2 c 3 /(eℏ). The electron chemical potential and the density decrease, in the boundary interface, until values μ e crust e core and ρ crust core . For each central density, an entire family of core–crust interface boundaries and, correspondingly, an entire family of crusts with different mass and thickness, exist. The configuration with ρ crust =ρ drip ∼4.3×10 11 gcm −3 separates neutron stars with and without inner crust. We present here the novel neutron star mass–radius for the especial case ρ crust =ρ drip and compare and contrast it with the one obtained from the traditional Tolman–Oppenheimer–Volkoff treatment.

  19. Rabi like angular splitting in Surface Plasmon Polariton - Exciton interaction in ATR configuration

    Science.gov (United States)

    Hassan, Heba; Abdallah, T.; Negm, S.; Talaat, H.

    2018-05-01

    We have studied the coupling of propagating Surface Plasmon Polaritons (SPP) on silver films and excitons in CdS quantum dots (QDs). We employed the Kretschmann-Raether configuration of the attenuated total reflection (ATR) to propagate the SPP on silver film of thickness 47.5 nm at three different wavelengths. The CdS QD have been chemically synthesized with particular size such that its exciton of energy would resonate with SPP. High resolution transmission electron microscopy (HRTEM) and scan tunneling microscopy (STM) were used to measure the corresponding QDs size and confirm its shape. Further confirmation of the size has been performed by the effective mass approximation (EMA) model utilizing the band gap of the prepared QDs. The band gaps have been measured through UV-vis absorption spectra as well as scan tunneling spectroscopy (STS). The coupling has been observed as two branching dips in the ATR spectra indicating Rabi like splitting. To the best of our knowledge, this is the first time that Rabi interaction is directly observed in an ATR angular spectra. This observation is attributed to the use a high resolution angular scan (±0.005°), in addition to the Doppler width of the laser line as well as the energy distribution of the excitons. The effect of three different linker molecules (TOPO, HDA), (Pyridine) and (Tri-butylamine) as surface ligands, on SPP-Exciton interaction has been examined.

  20. Exponentially more precise quantum simulation of fermions in the configuration interaction representation

    Science.gov (United States)

    Babbush, Ryan; Berry, Dominic W.; Sanders, Yuval R.; Kivlichan, Ian D.; Scherer, Artur; Wei, Annie Y.; Love, Peter J.; Aspuru-Guzik, Alán

    2018-01-01

    We present a quantum algorithm for the simulation of molecular systems that is asymptotically more efficient than all previous algorithms in the literature in terms of the main problem parameters. As in Babbush et al (2016 New Journal of Physics 18, 033032), we employ a recently developed technique for simulating Hamiltonian evolution using a truncated Taylor series to obtain logarithmic scaling with the inverse of the desired precision. The algorithm of this paper involves simulation under an oracle for the sparse, first-quantized representation of the molecular Hamiltonian known as the configuration interaction (CI) matrix. We construct and query the CI matrix oracle to allow for on-the-fly computation of molecular integrals in a way that is exponentially more efficient than classical numerical methods. Whereas second-quantized representations of the wavefunction require \\widetilde{{ O }}(N) qubits, where N is the number of single-particle spin-orbitals, the CI matrix representation requires \\widetilde{{ O }}(η ) qubits, where η \\ll N is the number of electrons in the molecule of interest. We show that the gate count of our algorithm scales at most as \\widetilde{{ O }}({η }2{N}3t).

  1. Two-electron states of a group-V donor in silicon from atomistic full configuration interactions

    Science.gov (United States)

    Tankasala, Archana; Salfi, Joseph; Bocquel, Juanita; Voisin, Benoit; Usman, Muhammad; Klimeck, Gerhard; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.; Rogge, Sven; Rahman, Rajib

    2018-05-01

    Two-electron states bound to donors in silicon are important for both two-qubit gates and spin readout. We present a full configuration interaction technique in the atomistic tight-binding basis to capture multielectron exchange and correlation effects taking into account the full band structure of silicon and the atomic-scale granularity of a nanoscale device. Excited s -like states of A1 symmetry are found to strongly influence the charging energy of a negative donor center. We apply the technique on subsurface dopants subjected to gate electric fields and show that bound triplet states appear in the spectrum as a result of decreased charging energy. The exchange energy, obtained for the two-electron states in various confinement regimes, may enable engineering electrical control of spins in donor-dot hybrid qubits.

  2. Evaluation of Early Ground Control Station Configurations for Interacting with a UAS Traffic Management (UTM) System

    Science.gov (United States)

    Dao, Arik-Quang V.; Martin, Lynne; Mohlenbrink, Christoph; Bienert, Nancy; Wolte, Cynthia; Gomez, Ashley; Claudatos, Lauren; Mercer, Joey

    2017-01-01

    The purpose of this paper is to report on a human factors evaluation of ground control station design concepts for interacting with an unmanned traffic management system. The data collected for this paper comes from recent field tests for NASA's Unmanned Traffic Management (UTM) project, and covers the following topics; workload, situation awareness, as well as flight crew communication, coordination, and procedures. The goal of this evaluation was to determine if the various software implementations for interacting with the UTM system can be described and classified into design concepts to provide guidance for the development of future UTM interfaces. We begin with a brief description of NASA's UTM project, followed by a description of the test range configuration related to a second development phase. We identified (post hoc) two classes in which the ground control stations could be grouped. This grouping was based on level of display integration. The analysis was exploratory and informal. It was conducted to compare ground stations across those two classes and against the aforementioned topics. Herein, we discuss the results.

  3. A High Performance Block Eigensolver for Nuclear Configuration Interaction Calculations

    International Nuclear Information System (INIS)

    Aktulga, Hasan Metin; Afibuzzaman, Md.; Williams, Samuel; Buluc, Aydin; Shao, Meiyue

    2017-01-01

    As on-node parallelism increases and the performance gap between the processor and the memory system widens, achieving high performance in large-scale scientific applications requires an architecture-aware design of algorithms and solvers. We focus on the eigenvalue problem arising in nuclear Configuration Interaction (CI) calculations, where a few extreme eigenpairs of a sparse symmetric matrix are needed. Here, we consider a block iterative eigensolver whose main computational kernels are the multiplication of a sparse matrix with multiple vectors (SpMM), and tall-skinny matrix operations. We then present techniques to significantly improve the SpMM and the transpose operation SpMM T by using the compressed sparse blocks (CSB) format. We achieve 3-4× speedup on the requisite operations over good implementations with the commonly used compressed sparse row (CSR) format. We develop a performance model that allows us to correctly estimate the performance of our SpMM kernel implementations, and we identify cache bandwidth as a potential performance bottleneck beyond DRAM. We also analyze and optimize the performance of LOBPCG kernels (inner product and linear combinations on multiple vectors) and show up to 15× speedup over using high performance BLAS libraries for these operations. The resulting high performance LOBPCG solver achieves 1.4× to 1.8× speedup over the existing Lanczos solver on a series of CI computations on high-end multicore architectures (Intel Xeons). We also analyze the performance of our techniques on an Intel Xeon Phi Knights Corner (KNC) processor.

  4. Spectral distributions of mixed configurations of identical nucleons in the seniority scheme II. Configuration-seniority scheme

    International Nuclear Information System (INIS)

    Quesne, C.; Spitz, S.

    1978-01-01

    Configuration-seniority spectral distributions as well as fixed seniority and fixed total seniority and parity distributions are studied in detail for mixed configurations of identitical nucleons. The decomposition of any (1+2) -body Hamiltonian into irreducible tensors with respect to the unitary and symplectic groups in each subshell is obtained. Group theoretical methods based on the Wigner-Eckart theorem for the higher unitary groups are used to get analytical expressions for the partial widths of configuration-seniority distributions. During this derivation, various isoscalar factors for the chain SU (2Ω) is contained inSp (2Ω) are determined. Numerical calculations of centroid energies, partial widths, and mixing parameters are performed in the Sn and Pb nuclei with a surface delta and a gaussian interactions. Average ordinary and total seniority breaking is studied. Total seniority space truncations in the ground state region are discussed in the Pb nuclei in connections with various approximation schemes

  5. The Periodic Table as a Mnemonic Device for Writing Electronic Configurations.

    Science.gov (United States)

    Mabrouk, Suzanne T.

    2003-01-01

    Presents an interactive method for using the periodic table as an effective mnemonic for writing electronic configurations. Discusses the intrinsic relevance of configurations to chemistry by building upon past analogies. Addresses pertinent background information, describes the hands-on method, and demonstrates its use. Transforms the traditional…

  6. Unbiased reduced density matrices and electronic properties from full configuration interaction quantum Monte Carlo

    International Nuclear Information System (INIS)

    Overy, Catherine; Blunt, N. S.; Shepherd, James J.; Booth, George H.; Cleland, Deidre; Alavi, Ali

    2014-01-01

    Properties that are necessarily formulated within pure (symmetric) expectation values are difficult to calculate for projector quantum Monte Carlo approaches, but are critical in order to compute many of the important observable properties of electronic systems. Here, we investigate an approach for the sampling of unbiased reduced density matrices within the full configuration interaction quantum Monte Carlo dynamic, which requires only small computational overheads. This is achieved via an independent replica population of walkers in the dynamic, sampled alongside the original population. The resulting reduced density matrices are free from systematic error (beyond those present via constraints on the dynamic itself) and can be used to compute a variety of expectation values and properties, with rapid convergence to an exact limit. A quasi-variational energy estimate derived from these density matrices is proposed as an accurate alternative to the projected estimator for multiconfigurational wavefunctions, while its variational property could potentially lend itself to accurate extrapolation approaches in larger systems

  7. Interaction of Fast Ions with Global Plasma Modes in the C-2 Field Reversed Configuration Experiment

    Science.gov (United States)

    Smirnov, Artem; Dettrick, Sean; Clary, Ryan; Korepanov, Sergey; Thompson, Matthew; Trask, Erik; Tuszewski, Michel

    2012-10-01

    A high-confinement operating regime [1] with plasma lifetimes significantly exceeding past empirical scaling laws was recently obtained by combining plasma gun edge biasing and tangential Neutral Beam Injection (NBI) in the C-2 field-reversed configuration (FRC) experiment [2, 3]. We present experimental and computational results on the interaction of fast ions with the n=2 rotational and n=1 wobble modes in the C-2 FRC. It is found that the n=2 mode is similar to quadrupole magnetic fields in its detrimental effect on the fast ion transport due to symmetry breaking. The plasma gun generates an inward radial electric field, thus stabilizing the n=2 rotational instability without applying the quadrupole magnetic fields. The resultant FRCs are nearly axisymmetric, which enables fast ion confinement. The NBI further suppresses the n=2 mode, improves the plasma confinement characteristics, and increases the plasma configuration lifetime [4]. The n=1 wobble mode has relatively little effect on the fast ion transport, likely due to the approximate axisymmetry about the displaced plasma column. [4pt] [1] M. Tuszewski et al., Phys. Rev. Lett. 108, 255008 (2012).[0pt] [2] M. Binderbauer et al., Phys. Rev. Lett. 105, 045003 (2010).[0pt] [3] H.Y. Guo et al., Phys. Plasmas 18, 056110 (2011).[0pt] [4] M. Tuszewski et al., Phys. Plasmas 19, 056108 (2012)

  8. A Configuration Model of Organizational Culture

    Directory of Open Access Journals (Sweden)

    Daniel Dauber

    2012-01-01

    Full Text Available The article proposes a configuration model of organizational culture, which explores dynamic relationships between organizational culture, strategy, structure, and operations of an organization (internal environment and maps interactions with the external environment (task and legitimization environment. A major feature of the configuration model constitutes its well-defined processes, which connect the elements of the model systematically to each other, such as single- and double-loop learning, operationalization of strategies, legitimization management, and so on. The model is grounded in a large review of literature in different research areas and builds on widely recognized models in the field of organization and culture theory. It constitutes a response to the call for new models, which are able to explain and facilitate the exploration of the empirical complexity that organizations face today. The configuration model of organizational culture is of particular interest to scholars who investigate into cultural phenomena and change over time.

  9. Optimizing Sparse Matrix-Multiple Vectors Multiplication for Nuclear Configuration Interaction Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Aktulga, Hasan Metin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Buluc, Aydin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yang, Chao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-14

    Obtaining highly accurate predictions on the properties of light atomic nuclei using the configuration interaction (CI) approach requires computing a few extremal Eigen pairs of the many-body nuclear Hamiltonian matrix. In the Many-body Fermion Dynamics for nuclei (MFDn) code, a block Eigen solver is used for this purpose. Due to the large size of the sparse matrices involved, a significant fraction of the time spent on the Eigen value computations is associated with the multiplication of a sparse matrix (and the transpose of that matrix) with multiple vectors (SpMM and SpMM-T). Existing implementations of SpMM and SpMM-T significantly underperform expectations. Thus, in this paper, we present and analyze optimized implementations of SpMM and SpMM-T. We base our implementation on the compressed sparse blocks (CSB) matrix format and target systems with multi-core architectures. We develop a performance model that allows us to understand and estimate the performance characteristics of our SpMM kernel implementations, and demonstrate the efficiency of our implementation on a series of real-world matrices extracted from MFDn. In particular, we obtain 3-4 speedup on the requisite operations over good implementations based on the commonly used compressed sparse row (CSR) matrix format. The improvements in the SpMM kernel suggest we may attain roughly a 40% speed up in the overall execution time of the block Eigen solver used in MFDn.

  10. Interactive effects of size, contrast, intensity and configuration of background objects in evoking disruptive camouflage in cuttlefish.

    Science.gov (United States)

    Chiao, Chuan-Chin; Chubb, Charles; Hanlon, Roger T

    2007-07-01

    Disruptive body coloration is a primary camouflage tactic of cuttlefish. Because rapid changeable coloration of cephalopods is guided visually, we can present different visual backgrounds (e.g., computer-generated, two-dimensional prints) and video record the animal's response by describing and grading its body pattern. We showed previously that strength of cuttlefish disruptive patterning depends on the size, contrast, and density of discrete light elements on a homogeneous dark background. Here we report five experiments on the interactions of these and other features. Results show that Weber contrast of light background elements is--in combination with element size--a powerful determinant of disruptive response strength. Furthermore, the strength of disruptive patterning decreases with increasing mean substrate intensity (with other factors held constant). Interestingly, when element size, Weber contrast and mean substrate intensity are kept constant, strength of disruptive patterning depends on the configuration of clusters of small light elements. This study highlights the interactions of multiple features of natural microhabitats that directly influence which camouflage pattern a cuttlefish will choose.

  11. Ab initio/interpolated quantum dynamics on coupled electronic states with full configuration interaction wave functions

    International Nuclear Information System (INIS)

    Thompson, K.; Martinez, T.J.

    1999-01-01

    We present a new approach to first-principles molecular dynamics that combines a general and flexible interpolation method with ab initio evaluation of the potential energy surface. This hybrid approach extends significantly the domain of applicability of ab initio molecular dynamics. Use of interpolation significantly reduces the computational effort associated with the dynamics over most of the time scale of interest, while regions where potential energy surfaces are difficult to interpolate, for example near conical intersections, are treated by direct solution of the electronic Schroedinger equation during the dynamics. We demonstrate the concept through application to the nonadiabatic dynamics of collisional electronic quenching of Li(2p). Full configuration interaction is used to describe the wave functions of the ground and excited electronic states. The hybrid approach agrees well with full ab initio multiple spawning dynamics, while being more than an order of magnitude faster. copyright 1999 American Institute of Physics

  12. Hylleraas-Configuration Interaction study of the 1S ground state of the negative Li ion.

    Science.gov (United States)

    Sims, James S

    2017-12-28

    In a previous work Sims and Hagstrom [J. Chem. Phys. 140, 224312 (2014)] reported Hylleraas-Configuration Interaction (Hy-CI) method variational calculations for the neutral atom and positive ion 1 S ground states of the beryllium isoelectronic sequence. The Li - ion, nominally the first member of this series, has a decidedly different electronic structure. This paper reports the results of a large, comparable calculation for the Li - ground state to explore how well the Hy-CI method can represent the more diffuse L shell of Li - which is representative of the Be(2sns) excited states as well. The best non-relativistic energy obtained was -7.500 776 596 hartree, indicating that 10 - 20 nh accuracy is attainable in Hy-CI and that convergence of the r 12 r 34 double cusp is fast and that this correlation type can be accurately represented within the Hy-CI model.

  13. Nanomechanics modeling of carbon nanotubes interacting with surfaces in various configurations

    Science.gov (United States)

    Wu, Yu-Chiao

    Carbon nanotubes (CNTs) have been widely used as potential components in reported nanoelectromechanical (NEM) devices due to their excellent mechanical and electrical properties. This thesis models the experiments by the continuum mechanics in two distinct scenarios. In the first situation, measurements are made of CNT configurations after manipulations. Modeling is then used to determine the interfacial properties during the manipulation which led to the observed configuration. This technique is used to determine the shear stress between a SWNT bundle and other materials. During manipulation, a SWNT bundle slipped on two micro-cantilevers. According to the slack due to the slippage after testing and the device configuration, the shear stress between a SWNT bundle and other materials can be determined. In another model, the work of adhesion was determined on two accidentally fabricated devices. Through the configuration of two SWNT adhered bundles and the force-distance curves measured by an atomic force microscope (AFM), modeling was used to determine the work of adhesion between two bundles and the shear stress at the SWNT-substrate interface. In the second situation, modeling is used in a more traditional fashion to make theoretical predictions as to how a device will operate. Using this technique, the actuation mechanism of a single-trench SWNT-based switch was investigated. During the actuation, the deflection-induced tension causes the SWNT bundle to slip on both platforms and to be partially peeled from two side recessed electrodes. These effects produce a slack which reduces the threshold voltages subsequent to the first actuation. The result shows excellent agreement between the theory and the measurement. Furthermore, the operation of a double-trenched SWNT-based switch was investigated. A slack is produced in the 1st actuated trench region by the slip and peeling effects. This slack reduces the 2nd actuation voltage in the neighbor trench. Finally, the

  14. Relativistic configuration interaction calculation on the ground and excited states of iridium monoxide

    International Nuclear Information System (INIS)

    Suo, Bingbing; Yu, Yan-Mei; Han, Huixian

    2015-01-01

    We present the fully relativistic multi-reference configuration interaction calculations of the ground and low-lying excited electronic states of IrO for individual spin-orbit component. The lowest-lying state is calculated for Ω = 1/2, 3/2, 5/2, and 7/2 in order to clarify the ground state of IrO. Our calculation suggests that the ground state is of Ω = 1/2, which is highly mixed with 4 Σ − and 2 Π states in Λ − S notation. The two low-lying states 5/2 and 7/2 are nearly degenerate with the ground state and locate only 234 and 260 cm −1 above, respectively. The equilibrium bond length 1.712 Å and the harmonic vibrational frequency 903 cm −1 of the 5/2 state are close to the experimental measurement of 1.724 Å and 909 cm −1 , which suggests that the 5/2 state should be the low-lying state that contributes to the experimental spectra. Moreover, the electronic states that give rise to the observed transition bands are assigned for Ω = 5/2 and 7/2 in terms of the obtained excited energies and oscillator strengths

  15. Seniority and orbital symmetry as tools for establishing a full configuration interaction hierarchy.

    Science.gov (United States)

    Bytautas, Laimutis; Henderson, Thomas M; Jiménez-Hoyos, Carlos A; Ellis, Jason K; Scuseria, Gustavo E

    2011-07-28

    We explore the concept of seniority number (defined as the number of unpaired electrons in a determinant) when applied to the problem of electron correlation in atomic and molecular systems. Although seniority is a good quantum number only for certain model Hamiltonians (such as the pairing Hamiltonian), we show that it provides a useful partitioning of the electronic full configuration interaction (FCI) wave function into rapidly convergent Hilbert subspaces whose weight diminishes as its seniority number increases. The primary focus of this study is the adequate description of static correlation effects. The examples considered are the ground states of the helium, beryllium, and neon atoms, the symmetric dissociation of the N(2) and CO(2) molecules, as well as the symmetric dissociation of an H(8) hydrogen chain. It is found that the symmetry constraints that are normally placed on the spatial orbitals greatly affect the convergence rate of the FCI expansion. The energy relevance of the seniority zero sector (determinants with all paired electrons) increases dramatically if orbitals of broken spatial symmetry (as those commonly used for Hubbard Hamiltonian studies) are allowed in the wave function construction. © 2011 American Institute of Physics

  16. Local random configuration-tree theory for string repetition and facilitated dynamics of glass

    Science.gov (United States)

    Lam, Chi-Hang

    2018-02-01

    We derive a microscopic theory of glassy dynamics based on the transport of voids by micro-string motions, each of which involves particles arranged in a line hopping simultaneously displacing one another. Disorder is modeled by a random energy landscape quenched in the configuration space of distinguishable particles, but transient in the physical space as expected for glassy fluids. We study the evolution of local regions with m coupled voids. At a low temperature, energetically accessible local particle configurations can be organized into a random tree with nodes and edges denoting configurations and micro-string propagations respectively. Such trees defined in the configuration space naturally describe systems defined in two- or three-dimensional physical space. A micro-string propagation initiated by a void can facilitate similar motions by other voids via perturbing the random energy landscape, realizing path interactions between voids or equivalently string interactions. We obtain explicit expressions of the particle diffusion coefficient and a particle return probability. Under our approximation, as temperature decreases, random trees of energetically accessible configurations exhibit a sequence of percolation transitions in the configuration space, with local regions containing fewer coupled voids entering the non-percolating immobile phase first. Dynamics is dominated by coupled voids of an optimal group size, which increases as temperature decreases. Comparison with a distinguishable-particle lattice model (DPLM) of glass shows very good quantitative agreements using only two adjustable parameters related to typical energy fluctuations and the interaction range of the micro-strings.

  17. Interactive baby feeding bottle

    NARCIS (Netherlands)

    2013-01-01

    An interactive baby bottle with an electronic unit is disclosed. The electronic unit comprises a sensor unit configured to sense the heart beat of a person bottle feeding a baby and an actuator unit configured to transmit the sensed heart beat to the baby. The disclosed interactive baby bottle can

  18. Compensation of the long-range beam-beam interactions as a path towards new configurations for the high luminosity LHC

    Directory of Open Access Journals (Sweden)

    Stéphane Fartoukh

    2015-12-01

    Full Text Available Colliding bunch trains in a circular collider demands a certain crossing angle in order to separate the two beams transversely after the collision. The magnitude of this crossing angle is a complicated function of the bunch charge, the number of long-range beam-beam interactions, of β^{*} and type of optics (flat or round, and possible compensation or additive effects between several low-β insertions in the ring depending on the orientation of the crossing plane at each interaction point. About 15 years ago, the use of current bearing wires was proposed at CERN in order to mitigate the long-range beam-beam effects [J. P. Koutchouk, CERN Report No. LHC-Project-Note 223, 2000], therefore offering the possibility to minimize the crossing angle with all the beneficial effects this might have: on the luminosity performance by reducing the need for crab-cavities or lowering their voltage, on the required aperture of the final focus magnets, on the strength of the orbit corrector involved in the crossing bumps, and finally on the heat load and radiation dose deposited in the final focus quadrupoles. In this paper, a semianalytical approach is developed for the compensation of the long-range beam-beam interactions with current wires. This reveals the possibility of achieving optimal correction through a careful adjustment of the aspect ratio of the β functions at the wire position. We consider the baseline luminosity upgrade plan of the Large Hadron Collider (HL-LHC project, and compare it to alternative scenarios, or so-called “configurations,” where modifications are applied to optics, crossing angle, or orientation of the crossing plane in the two low-β insertions of the ring. For all these configurations, the beneficial impact of beam-beam compensation devices is then demonstrated on the tune footprint, the dynamical aperture, and/or the frequency map analysis of the nonlinear beam dynamics as the main figures of merit.

  19. Configurational Information as Potentially Negative Entropy: The Triple Helix Model

    Directory of Open Access Journals (Sweden)

    Loet Leydesdorff

    2008-10-01

    Full Text Available Configurational information is generated when three or more sources of variance interact. The variations not only disturb each other relationally, but by selecting upon each other, they are also positioned in a configuration. A configuration can be stabilized and/or globalized. Different stabilizations can be considered as second-order variation, and globalization as a second-order selection. The positive manifestations and the negative selections operate upon one another by adding and reducing uncertainty, respectively. Reduction of uncertainty in a configuration can be measured in bits of information. The variables can also be considered as dimensions of the probabilistic entropy in the system(s under study. The configurational information then provides us with a measure of synergy within a complex system. For example, the knowledge base of an economy can be considered as such a synergy in the otherwise virtual (that is, fourth dimension of a regime

  20. Conceptualizing Embedded Configuration

    DEFF Research Database (Denmark)

    Oddsson, Gudmundur Valur; Hvam, Lars; Lysgaard, Ole

    2006-01-01

    and services. The general idea can be named embedded configuration. In this article we intend to conceptualize embedded configuration, what it is and is not. The difference between embedded configuration, sales configuration and embedded software is explained. We will look at what is needed to make embedded...... configuration systems. That will include requirements to product modelling techniques. An example with consumer electronics will illuminate the elements of embedded configuration in settings that most can relate to. The question of where embedded configuration would be relevant is discussed, and the current...

  1. A configural dominant account of contextual cueing : configural cues are stronger than colour cues

    OpenAIRE

    Kunar, Melina A.; Johnston, Rebecca; Sweetman, Hollie

    2013-01-01

    Previous work has shown that reaction times to find a target in displays that have been repeated are faster than those for displays that have never been seen before. This learning effect, termed “contextual cueing” (CC), has been shown using contexts such as the configuration of the distractors in the display and the background colour. However, it is not clear how these two contexts interact to facilitate search. We investigated this here by comparing the strengths of these two cues when they...

  2. Loop-driven graphical unitary group approach to the electron correlation problem, including configuration interaction energy gradients

    International Nuclear Information System (INIS)

    Brooks, B.R.

    1979-09-01

    The Graphical Unitary Group Approach (GUGA) was cast into an extraordinarily powerful form by restructuring the Hamiltonian in terms of loop types. This restructuring allows the adoption of the loop-driven formulation which illuminates vast numbers of previously unappreciated relationships between otherwise distinct Hamiltonian matrix elements. The theoretical/methodological contributions made here include the development of the loop-driven formula generation algorithm, a solution of the upper walk problem used to develop a loop breakdown algorithm, the restriction of configuration space employed to the multireference interacting space, and the restructuring of the Hamiltonian in terms of loop types. Several other developments are presented and discussed. Among these developments are the use of new segment coefficients, improvements in the loop-driven algorithm, implicit generation of loops wholly within the external space adapted within the framework of the loop-driven methodology, and comparisons of the diagonalization tape method to the direct method. It is also shown how it is possible to implement the GUGA method without the time-consuming full (m 5 ) four-index transformation. A particularly promising new direction presented here involves the use of the GUGA methodology to obtain one-electron and two-electron density matrices. Once these are known, analytical gradients (first derivatives) of the CI potential energy are easily obtained. Several test calculations are examined in detail to illustrate the unique features of the method. Also included is a calculation on the asymmetric 2 1 A' state of SO 2 with 23,613 configurations to demonstrate methods for the diagonalization of very large matrices on a minicomputer. 6 figures, 6 tables

  3. Software configuration management

    International Nuclear Information System (INIS)

    Arribas Peces, E.; Martin Faraldo, P.

    1993-01-01

    Software Configuration Management is directed towards identifying system configuration at specific points of its life cycle, so as to control changes to the configuration and to maintain the integrity and traceability of the configuration throughout its life. SCM functions and tasks are presented in the paper

  4. Vortex configuration in the presence of local magnetic field and locally applied stress

    Energy Technology Data Exchange (ETDEWEB)

    Wissberg, Shai; Kremen, Anna; Shperber, Yishai; Kalisky, Beena, E-mail: beena@biu.ac.il

    2017-02-15

    Highlights: • We discuss different ways to determine vortex configuration using a scanning SQUID. • We determined the vortex configuration by approaching the sample during cooling. • We observed an accumulation of vortices when contact was made with the sample. • We show how we can manipulate local vortex configuration using contact. - Abstract: Vortex configuration is determined by the repulsive interaction, which becomes dominant with increasing vortex density, by the pinning potential, and by other considerations such as the local magnetic fields, currents flowing in the sample, or as we showed recently, by local stress applied on the sample. In this work we describe different ways to control vortex configuration using scanning SQUID microscopy.

  5. Vortex configuration in the presence of local magnetic field and locally applied stress

    International Nuclear Information System (INIS)

    Wissberg, Shai; Kremen, Anna; Shperber, Yishai; Kalisky, Beena

    2017-01-01

    Highlights: • We discuss different ways to determine vortex configuration using a scanning SQUID. • We determined the vortex configuration by approaching the sample during cooling. • We observed an accumulation of vortices when contact was made with the sample. • We show how we can manipulate local vortex configuration using contact. - Abstract: Vortex configuration is determined by the repulsive interaction, which becomes dominant with increasing vortex density, by the pinning potential, and by other considerations such as the local magnetic fields, currents flowing in the sample, or as we showed recently, by local stress applied on the sample. In this work we describe different ways to control vortex configuration using scanning SQUID microscopy.

  6. Valence configurations in 214Rn

    International Nuclear Information System (INIS)

    Dracoulis, G.D.; Byrne, A.P.; Stuchbery, A.E.; Bark, R.A.; Poletti, A.R.

    1987-01-01

    Excited states of 214 Rn, up to spins of ≅ 24 ℎ have been studied using γ-ray and electron spectroscopy following the 208 Pb( 9 Be,3n) 214 Rn reaction. The level scheme (which differs substantially from earlier work) is compared with the results of a semi-empirical shell model calculation. The availability of high-spin orbitals for the four valence protons and two valence neutrons, and the effect of the attractive proton-neutron interaction, leads to the prediction of high-spin states at an unusually low excitation energy. Experimentally, the high level density leads to difficulties in the level scheme assignments at high spin. Nevertheless, configuration assignments, supported by transition strengths deduced from the measured lifetimes (in the nanosecond region) are suggested for the main yrast states. The decay properties also suggest that configuration mixing is important. The possibility of a gradual transition to octupole deformation, implied by the decay properties of the 11 - and 10 + yrast states is also discussed. (orig.)

  7. Shapes of nuclear configurations in a cranked harmonic oscillator model

    International Nuclear Information System (INIS)

    Troudet, T.; Arvieu, R.

    1980-05-01

    The shapes of nuclear configurations are calculated using Slater determinants built with cranked harmonic oscillator single particle states. The nuclear forces role is played by a volume conservation condition (of the potential or of the density) in a first part. In a second part, we have used the finite range, density dependent interaction of Cogny. A very simple classification of configurations emerges in the first part, the relevant parameter being the equatorial eccentricity of the nuclear density. A critical equatorial eccentricity is obtained which governs the accession to the case for which the nucleus is oblate and symmetric around its axis of rotation. Nuclear configurations calculated in the second part observe remarkably well these behaviors

  8. Configuration-interaction relativistic-many-body-perturbation-theory calculations of photoionization cross sections from quasicontinuum oscillator strengths

    International Nuclear Information System (INIS)

    Savukov, I. M.; Filin, D. V.

    2014-01-01

    Many applications are in need of accurate photoionization cross sections, especially in the case of complex atoms. Configuration-interaction relativistic-many-body-perturbation theory (CI-RMBPT) has been successful in predicting atomic energies, matrix elements between discrete states, and other properties, which is quite promising, but it has not been applied to photoionization problems owing to extra complications arising from continuum states. In this paper a method that will allow the conversion of discrete CI-(R)MPBT oscillator strengths (OS) to photoionization cross sections with minimal modifications of the codes is introduced and CI-RMBPT cross sections of Ne, Ar, Kr, and Xe are calculated. A consistent agreement with experiment is found. RMBPT corrections are particularly significant for Ar, Kr, and Xe and improve agreement with experimental results compared to the particle-hole CI method. As a result, the demonstrated conversion method can be applied to CI-RMBPT photoionization calculations for a large number of multivalence atoms and ions

  9. Isobar configurations in nuclei and short range correlations

    CERN Document Server

    Weber, H J

    1979-01-01

    Recent results on short range correlations and isobar configurations are reviewed, and in particular a unitary version of the isobar model, coupling constants and rho -meson transition potentials, a comparison with experiments, the CERN N*-knockout from /sup 4/He, QCD and the NN interaction of short range. (42 refs).

  10. An atomistic geometrical model of the B-DNA configuration for DNA-radiation interaction simulations

    Science.gov (United States)

    Bernal, M. A.; Sikansi, D.; Cavalcante, F.; Incerti, S.; Champion, C.; Ivanchenko, V.; Francis, Z.

    2013-12-01

    In this paper, an atomistic geometrical model for the B-DNA configuration is explained. This model accounts for five organization levels of the DNA, up to the 30 nm chromatin fiber. However, fragments of this fiber can be used to construct the whole genome. The algorithm developed in this work is capable to determine which is the closest atom with respect to an arbitrary point in space. It can be used in any application in which a DNA geometrical model is needed, for instance, in investigations related to the effects of ionizing radiations on the human genetic material. Successful consistency checks were carried out to test the proposed model. Catalogue identifier: AEPZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEPZ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1245 No. of bytes in distributed program, including test data, etc.: 6574 Distribution format: tar.gz Programming language: FORTRAN. Computer: Any. Operating system: Multi-platform. RAM: 2 Gb Classification: 3. Nature of problem: The Monte Carlo method is used to simulate the interaction of ionizing radiation with the human genetic material in order to determine DNA damage yields per unit absorbed dose. To accomplish this task, an algorithm to determine if a given energy deposition lies within a given target is needed. This target can be an atom or any other structure of the genetic material. Solution method: This is a stand-alone subroutine describing an atomic-resolution geometrical model of the B-DNA configuration. It is able to determine the closest atom to an arbitrary point in space. This model accounts for five organization levels of the human genetic material, from the nucleotide pair up to the 30 nm chromatin fiber. This subroutine carries out a series of coordinate transformations

  11. Software control and system configuration management - A process that works

    Science.gov (United States)

    Petersen, K. L.; Flores, C., Jr.

    1983-01-01

    A comprehensive software control and system configuration management process for flight-crucial digital control systems of advanced aircraft has been developed and refined to insure efficient flight system development and safe flight operations. Because of the highly complex interactions among the hardware, software, and system elements of state-of-the-art digital flight control system designs, a systems-wide approach to configuration control and management has been used. Specific procedures are implemented to govern discrepancy reporting and reconciliation, software and hardware change control, systems verification and validation testing, and formal documentation requirements. An active and knowledgeable configuration control board reviews and approves all flight system configuration modifications and revalidation tests. This flexible process has proved effective during the development and flight testing of several research aircraft and remotely piloted research vehicles with digital flight control systems that ranged from relatively simple to highly complex, integrated mechanizations.

  12. Software control and system configuration management: A systems-wide approach

    Science.gov (United States)

    Petersen, K. L.; Flores, C., Jr.

    1984-01-01

    A comprehensive software control and system configuration management process for flight-crucial digital control systems of advanced aircraft has been developed and refined to insure efficient flight system development and safe flight operations. Because of the highly complex interactions among the hardware, software, and system elements of state-of-the-art digital flight control system designs, a systems-wide approach to configuration control and management has been used. Specific procedures are implemented to govern discrepancy reporting and reconciliation, software and hardware change control, systems verification and validation testing, and formal documentation requirements. An active and knowledgeable configuration control board reviews and approves all flight system configuration modifications and revalidation tests. This flexible process has proved effective during the development and flight testing of several research aircraft and remotely piloted research vehicles with digital flight control systems that ranged from relatively simple to highly complex, integrated mechanizations.

  13. MAP, MAC, and vortex-rings configurations in the Weinberg-Salam model

    Science.gov (United States)

    Teh, Rosy; Ng, Ban-Loong; Wong, Khai-Ming

    2015-11-01

    We report on the presence of new axially symmetric monopoles, antimonopoles and vortex-rings solutions of the SU(2)×U(1) Weinberg-Salam model of electromagnetic and weak interactions. When the ϕ-winding number n = 1, and 2, the configurations are monopole-antimonopole pair (MAP) and monopole-antimonopole chain (MAC) with poles of alternating sign magnetic charge arranged along the z-axis. Vortex-rings start to appear from the MAP and MAC configurations when the winding number n = 3. The MAP configurations possess zero net magnetic charge whereas the MAC configurations possess net magnetic charge of 4 πn / e. In the MAP configurations, the monopole-antimonopole pair is bounded by the Z0 field flux string and there is an electromagnetic current loop encircling it. The monopole and antimonopole possess magnetic charges ± 4πn/e sin2θW respectively. In the MAC configurations there is no string connecting the monopole and the adjacent antimonopole and they possess magnetic charges ± 4 πn/e respectively. The MAC configurations possess infinite total energy and zero magnetic dipole moment whereas the MAP configurations which are actually sphalerons possess finite total energy and magnetic dipole moment. The configurations were investigated for varying values of Higgs self-coupling constant 0 ≤ λ ≤ 40 at Weinberg angle θW = π/4.

  14. CONFIGURATION GENERATOR MODEL

    International Nuclear Information System (INIS)

    Alsaed, A.

    2004-01-01

    ''The Disposal Criticality Analysis Methodology Topical Report'' prescribes an approach to the methodology for performing postclosure criticality analyses within the monitored geologic repository at Yucca Mountain, Nevada. An essential component of the methodology is the ''Configuration Generator Model for In-Package Criticality'' that provides a tool to evaluate the probabilities of degraded configurations achieving a critical state. The configuration generator model is a risk-informed, performance-based process for evaluating the criticality potential of degraded configurations in the monitored geologic repository. The method uses event tree methods to define configuration classes derived from criticality scenarios and to identify configuration class characteristics (parameters, ranges, etc.). The probabilities of achieving the various configuration classes are derived in part from probability density functions for degradation parameters. The NRC has issued ''Safety Evaluation Report for Disposal Criticality Analysis Methodology Topical Report, Revision 0''. That report contained 28 open items that required resolution through additional documentation. Of the 28 open items, numbers 5, 6, 9, 10, 18, and 19 were concerned with a previously proposed software approach to the configuration generator methodology and, in particular, the k eff regression analysis associated with the methodology. However, the use of a k eff regression analysis is not part of the current configuration generator methodology and, thus, the referenced open items are no longer considered applicable and will not be further addressed

  15. New developments in multireference and complete configuration interaction calculations

    International Nuclear Information System (INIS)

    Knowles, P.J.; Werner, H.J.

    1987-01-01

    Some recently developed techniques for the calculation of Hamiltonian matrix elements in molecular electronic structure calculations are described. These techniques allow the very rapid calculation, in any desired order, of one particle coupling coefficients between spin symmetry adapted basis functions of arbitrary structure. The matrix elements that are required, for either internally contracted multireference CI calculations, or full CI calculations, are then obtainable from suitable summations over resolutions of the identity, which has been shown previously to be rather efficient; this is especially true on vector computers, since all arithmetic can be formulated as matrix multiplications. These ideas have culminated in the preparation of a new multireference CI program which is capable of handling very large numbers of reference configurations. Application of the new techniques to full CI calculations are also presented

  16. Wavefunction and energy of the 1s22sns configuration in a beryllium atom

    International Nuclear Information System (INIS)

    Huang Shizhong; Ma Kun; Yu Jiaming; Liu Fen

    2008-01-01

    A new set of trial functions for 1s 2 2sns configurations in a beryllium atom is suggested. A Mathematica program based on the variational method is developed to calculate the wavefunctions and energies of 1s 2 2sns (n = 3–6) configurations in a beryllium atom. Non-relativistic energy, polarization correction and relativistic correction which include mass correction, one-and two-body Darwin corrections, spin-spin contact interaction and orbit-orbit interaction, are calculated respectively. The results are in good agreement with experimental data. (atomic and molecular physics)

  17. A Two-Bladed Teetering Hub configuration for the DTU 10 MW RWT: loads considerations

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Aagaard Madsen, Helge; Rasmussen, Flemming

    2014-01-01

    study on an alternative downwind two-bladed rotor configuration. The study is based on a model representative of next generation multi-MW wind turbines: the DTU 10-MW Reference Wind Turbine (RWT). As a first design iteration, the aerodynamic characteristics of the original rotor are maintained......As the size of wind turbine rotors continuously grows, the need for innovative solutions that would yield to lighter rotor configurations becomes more urgent. Traditional wind turbine designs have favored the classic three-bladed upwind rotor configuration. This work presents instead a concept...... in load variations, and hence in fatigue damage, affects the turbine blades, shaft and tower, and originates from the aerodynamic unbalance on the rotor, as well as from aeroelastic interaction with the tower frequency. To mitigate the load amplification caused by the interaction between the tower...

  18. Qualtiy Issues in Project configured Supply Chains

    DEFF Research Database (Denmark)

    Koch, Christian; Larsen, Casper Schultz

    by configuration by project. In such a setting creating value for the customers and the enterprises becomes dependent of the ability to organise and coordinate in the supply chains. That the configuration is not always successful can be demonstrated by studying the emergence of failures occurring in the supply...... observation period. These were compiled and analysed. The economic consequences are calculated to be 8% of the production costs. The analysis of relations in the supply chain both show relations to materials and knowledge chains and their interaction. Most of the failures were generated in the knowledge...... stream and then occasionally transform into the material stream. The paper proposes initiatives to strengthen partnerships in supply chains and especially at engineer to order production. The contradiction between the permanent enterprise organisation potentially capable of handling purchasing...

  19. Analysis of the half-projected Hartree--Fock function: density matrix, natural orbitals, and configuration interaction equivalence

    International Nuclear Information System (INIS)

    Smeyers, Y.G.; Delgado-Barrio, G.

    1976-01-01

    The half-projected Hartree--Fock function for singlet states (HPHF) is analyzed in terms of natural electronic configurations. For this purpose the HPHF spinless density matrix and its natural orbitals are first deduced. It is found that the HPHF function does not contain any contribution from odd-times excited configurations. It is seen in addition, in the case of the singlet ground states, this function is approximately equivalent to two closed-shell configurations, although the nature of the excited one depends on the nuclear geometry. An example is given in the case of the LiH ground state. Finally, the application of this model for studying systems of more than two atoms is criticized

  20. Onset of pseudo-thermal equilibrium within configurations and super-configurations

    International Nuclear Information System (INIS)

    Busquet, Michel

    2006-01-01

    Level populations within a configuration and configuration populations within super-configuration or within one ion are shown to follow a Boltzmann law at some effective temperature different from the actual electron temperature (as it would be when Griem criterion is valid). Origin of this pseudo-thermal equilibrium is discussed and basis of a model are presented

  1. Onset of pseudo-thermal equilibrium within configurations and super-configurations

    Energy Technology Data Exchange (ETDEWEB)

    Busquet, Michel [ARTEP Inc., 2922 Excelsior Springs Court, Elicott City, MD 21042 (United States)]. E-mail: busquet@this.nrl.navy.mil

    2006-05-15

    Level populations within a configuration and configuration populations within super-configuration or within one ion are shown to follow a Boltzmann law at some effective temperature different from the actual electron temperature (as it would be when Griem criterion is valid). Origin of this pseudo-thermal equilibrium is discussed and basis of a model are presented.

  2. Operational Dynamic Configuration Analysis

    Science.gov (United States)

    Lai, Chok Fung; Zelinski, Shannon

    2010-01-01

    Sectors may combine or split within areas of specialization in response to changing traffic patterns. This method of managing capacity and controller workload could be made more flexible by dynamically modifying sector boundaries. Much work has been done on methods for dynamically creating new sector boundaries [1-5]. Many assessments of dynamic configuration methods assume the current day baseline configuration remains fixed [6-7]. A challenging question is how to select a dynamic configuration baseline to assess potential benefits of proposed dynamic configuration concepts. Bloem used operational sector reconfigurations as a baseline [8]. The main difficulty is that operational reconfiguration data is noisy. Reconfigurations often occur frequently to accommodate staff training or breaks, or to complete a more complicated reconfiguration through a rapid sequence of simpler reconfigurations. Gupta quantified a few aspects of airspace boundary changes from this data [9]. Most of these metrics are unique to sector combining operations and not applicable to more flexible dynamic configuration concepts. To better understand what sort of reconfigurations are acceptable or beneficial, more configuration change metrics should be developed and their distribution in current practice should be computed. This paper proposes a method to select a simple sequence of configurations among operational configurations to serve as a dynamic configuration baseline for future dynamic configuration concept assessments. New configuration change metrics are applied to the operational data to establish current day thresholds for these metrics. These thresholds are then corroborated, refined, or dismissed based on airspace practitioner feedback. The dynamic configuration baseline selection method uses a k-means clustering algorithm to select the sequence of configurations and trigger times from a given day of operational sector combination data. The clustering algorithm selects a simplified

  3. Characterization of the equilibrium configuration for modulated beams in a plasma wakefield accelerator

    CERN Document Server

    Martorelli, Roberto

    2016-01-01

    We analyze the equilibrium configuration for a modulated beam with sharp boundaries exposed to the fields self-generated by the interaction with a plasma. Through a semi-analytical approach we show the presence of multiple equilibrium configurations and we determine the one more suitable for wakefield excitation. Once pointed out the absence of confinement for the front of the beam and the consequently divergence driven by the emittance, we study the evolution of the equilibrium configuration while propagating in the plasma, discarding all the others time-dependencies. We show the onset of a rigid backward drift of the equilibrium configuration and we provide an explanation in the increasing length of the first bunch.

  4. Ansible configuration management

    CERN Document Server

    Hall, Daniel

    2013-01-01

    Ansible Configuration Management"" is a step-by-step tutorial that teaches the use of Ansible for configuring Linux machines.This book is intended for anyone looking to understand the basics of Ansible. It is expected that you will have some experience of how to set up and configure Linux machines. In parts of the book we cover configuration files of BIND, MySQL, and other Linux daemons, therefore a working knowledge of these would be helpful but are certainly not required.

  5. Quantum communication in spin star configuration

    International Nuclear Information System (INIS)

    Deng Hongliang; Fang Ximing

    2008-01-01

    This paper considers a generalized spin star system which can be solved exactly, with the central spin-½ system embedded in an outer ring of N spin-½ particles(denoted as spin bath). In this model, in addition to the central-outer interaction, each pair of nearest neighbour of the bath interacts within themselves. The general expressions of the eigenstates as well as the eigenvalues of the model are derived with the use of the symmetries of system. It analyses the quantum state transfer and the dynamical behaviour of entanglement created during quantum communication. It also analyses the efficiency of the configuration regarded as quantum phase covariant clone or decoherence model. Some interesting results are discovered concerning the properties of quantum communication in this model

  6. Risk-based configuration control

    International Nuclear Information System (INIS)

    Szikszai, T.

    1997-01-01

    The presentation discusses the following issues: The Configuration Control; The Risk-based Configuration Control (during power operation mode, and during shutdown mode). PSA requirements. Use of Risk-based Configuration Control System. Configuration Management (basic elements, benefits, information requirements)

  7. Light-matter interaction in the strong coupling regime: configurations, conditions, and applications.

    Science.gov (United States)

    Dovzhenko, D S; Ryabchuk, S V; Rakovich, Yu P; Nabiev, I R

    2018-02-22

    Resonance interaction between a molecular transition and a confined electromagnetic field can reach the coupling regime where coherent exchange of energy between light and matter becomes reversible. In this case, two new hybrid states separated in energy are formed instead of independent eigenstates, which is known as Rabi splitting. This modification of the energy spectra of the system offers new possibilities for controlled impact on various fundamental properties of coupled matter (such as the rate of chemical reactions and the conductivity of organic semiconductors). To date, the strong coupling regime has been demonstrated in many configurations under different ambient conditions. However, there is still no comprehensive approach to determining parameters for achieving the strong coupling regime for a wide range of practical applications. In this review, a detailed analysis of various systems and corresponding conditions for reaching strong coupling is carried out and their advantages and disadvantages, as well as the prospects for application, are considered. The review also summarizes recent experiments in which the strong coupling regime has led to new interesting results, such as the possibility of collective strong coupling between X-rays and matter excitation in a periodic array of Fe isotopes, which extends the applications of quantum optics; a strong amplification of the Raman scattering signal from a coupled system, which can be used in surface-enhanced and tip-enhanced Raman spectroscopy; and more efficient second-harmonic generation from the low polaritonic state, which is promising for nonlinear optics. The results reviewed demonstrate great potential for further practical applications of strong coupling in the fields of photonics (low-threshold lasers), quantum communications (switches), and biophysics (molecular fingerprinting).

  8. New Advancements in the Study of the Uniform Electron Gas with Full Configuration Interaction Quantum Monte Carlo

    Science.gov (United States)

    Ruggeri, Michele; Luo, Hongjun; Alavi, Ali

    Full Configuration Interaction Quantum Monte Carlo (FCIQMC) is able to give remarkably accurate results in the study of atoms and molecules. The study of the uniform electron gas (UEG) on the other hand has proven to be much harder, particularly in the low density regime. The source of this difficulty comes from the strong interparticle correlations that arise at low density, and essentially forbid the study of the electron gas in proximity of Wigner crystallization. We extend a previous study on the three dimensional electron gas computing the energy of a fully polarized gas for N=27 electrons at high and medium density (rS = 0 . 5 to 5 . 0). We show that even when dealing with a polarized UEG the computational cost of the study of systems with rS > 5 . 0 is prohibitive; in order to deal with correlations and to extend the density range that to be studied we introduce a basis of localized states and an effective transcorrelated Hamiltonian.

  9. The Influence of Green Supply Chain Integration on Firm Performance: A Contingency and Configuration Perspective

    Directory of Open Access Journals (Sweden)

    Yongtao Song

    2017-05-01

    Full Text Available This study investigates the impacts of three dimensions of green supply chain integration (GSCI on operational and financial performance, from both a contingency and a configuration perspective. From the contingency perspective, we used hierarchical regression to determine the impacts of individual GSCI dimensions (green internal, customer and supplier integration and their interactions on firm performance. From the configuration perspective, we used cluster analysis to develop patterns of GSCI, which were analyzed in terms of GSCI strength and balance. Analysis of variance was used to examine the relationship between GSCI pattern and firm performance. We used data collected from manufacturing firms in Shanxi, Shandong, Beijing, Guangdong and Jiangsu to test hypotheses. The findings from both the contingency and configuration perspective indicate that GSCI was related to both operational and financial performance. Furthermore, the interaction between green internal integration and green customer integration was positively related to both operational and financial performance, while the interaction between green internal integration and green supplier integration was negatively related to financial performance. The interaction between green customer integration and green supplier integration was positively related to financial performance.

  10. BPHZ renormalization in configuration space for the A4-model

    Science.gov (United States)

    Pottel, Steffen

    2018-02-01

    Recent developments for BPHZ renormalization performed in configuration space are reviewed and applied to the model of a scalar quantum field with quartic self-interaction. An extension of the results regarding the short-distance expansion and the Zimmermann identity is shown for a normal product, which is quadratic in the field operator. The realization of the equation of motion is computed for the interacting field and the relation to parametric differential equations is indicated.

  11. Molecular dynamics simulation of equilibrium configurations of plasmas containing multi-species dusts

    International Nuclear Information System (INIS)

    Liu, Yanhong; Chew, Lock Yue

    2007-01-01

    Equilibrium configurations of dusty plasmas with grains of different sizes, which interact through a screened Coulomb force field and confined by a two-dimensional quadratic potential, are studied using molecular dynamics simulation. The system configuration depends on the sizes, masses and charges of the grain species as well as the screening strength of the background plasma. The consideration of the grain size has established a different equilibrium configuration relative to that of point grains. In the new configurations, grains of different species separate into different shells, with the grains of larger mass and charge located away from the system center, forming a shell that surrounds the grains of smaller mass and charge at the system center. This configuration occurs beyond a critical grain radius, and its structure and size are determined by the competing effects between the inter-grain electrostatic repulsive force, the screening effect of the plasma and the mass-dependent confinement force of the quadratic potential

  12. Ab initio calculation of diffusion barriers for Cu adatom hopping on Cu(1 0 0) surface and evolution of atomic configurations

    Science.gov (United States)

    Zhang, Wei; Gan, Jie; Li, Qian; Gao, Kun; Sun, Jian; Xu, Ning; Ying, Zhifeng; Wu, Jiada

    2011-06-01

    The self-diffusion dynamics of Cu adatoms on Cu(1 0 0) surface has been studied based on the calculation of the energy barriers for various hopping events using lattice-gas based approach and a modified model. To simplify the description of the interactions and the calculation of the energy barrier, a three-tier hierarchy of description of atomic configurations was conceived in which the active adatom and its nearest atoms were chosen to constitute basic configuration and taken as a whole to study many-body interactions of the atoms in various atomic configurations, whereas the impacts of the next nearest atoms on the diffusion of the active adatom were considered as multi-site interactions. Besides the simple hopping of single adatoms, the movements of dimers and trimers as the results of multiple hopping events have also been examined. Taking into account the hopping events of all adatoms, the stability of atomic configurations has been examined and the evolution of atomic configurations has also been analyzed.

  13. Ab initio calculation of diffusion barriers for Cu adatom hopping on Cu(1 0 0) surface and evolution of atomic configurations

    International Nuclear Information System (INIS)

    Zhang Wei; Gan Jie; Li Qian; Gao Kun; Sun Jian; Xu Ning; Ying Zhifeng; Wu Jiada

    2011-01-01

    The self-diffusion dynamics of Cu adatoms on Cu(1 0 0) surface has been studied based on the calculation of the energy barriers for various hopping events using lattice-gas based approach and a modified model. To simplify the description of the interactions and the calculation of the energy barrier, a three-tier hierarchy of description of atomic configurations was conceived in which the active adatom and its nearest atoms were chosen to constitute basic configuration and taken as a whole to study many-body interactions of the atoms in various atomic configurations, whereas the impacts of the next nearest atoms on the diffusion of the active adatom were considered as multi-site interactions. Besides the simple hopping of single adatoms, the movements of dimers and trimers as the results of multiple hopping events have also been examined. Taking into account the hopping events of all adatoms, the stability of atomic configurations has been examined and the evolution of atomic configurations has also been analyzed.

  14. Vortex configuration and vortex-vortex interaction in nano-structured superconductors

    International Nuclear Information System (INIS)

    Kato, Masaru; Niwa, Yuhei; Suematsu, Hisataka; Ishida, Takekazu

    2012-01-01

    We study the vortex structures and quasi-particle structures in nano-structured superconductors. We used the Bogoliubov-de Gennes equation and the finite element method and obtained stable magnetic flux structures and the quasi-particle states. We found the vortex configurations are affected by the interference of the quasi-particle bound states around the vortices. In order to clarify the interference between the quasi-particle wave-functions around two vortices we have developed a numerical method using the elliptic coordinates and the Mathieu functions. We apply this method to two singly quantized vortex state in a conventional s-wave superconductor and a pair of half-quantum vortices in a chiral p-wave superconductor.

  15. MCSA Windows Server 2012 R2 installation and configuration study guide exam 70-410

    CERN Document Server

    Panek, William

    2015-01-01

    Master Windows Server installation and configuration withhands-on practice and interactive study aids for the MCSA: WindowsServer 2012 R2 exam 70-410 MCSA: Windows Server 2012 R2 Installation and ConfigurationStudy Guide: Exam 70-410 provides complete preparationfor exam 70-410: Installing and Configuring Windows Server 2012 R2.With comprehensive coverage of all exam topics and plenty ofhands-on practice, this self-paced guide is the ideal resource forthose preparing for the MCSA on Windows Server 2012 R2. Real-worldscenarios demonstrate how the lessons are applied in everydaysettings. Reader

  16. Multi-configuration time-dependent density-functional theory based on range separation

    DEFF Research Database (Denmark)

    Fromager, E.; Knecht, S.; Jensen, Hans Jørgen Aagaard

    2013-01-01

    Multi-configuration range-separated density-functional theory is extended to the time-dependent regime. An exact variational formulation is derived. The approximation, which consists in combining a long-range Multi-Configuration- Self-Consistent Field (MCSCF) treatment with an adiabatic short...... (srGGA) approximations. As expected, when modeling long-range interactions with the MCSCF model instead of the adiabatic Buijse-Baerends density-matrix functional as recently proposed by Pernal [J. Chem. Phys. 136, 184105 (2012)10.1063/1.4712019], the description of both the 1D doubly-excited state...

  17. Asymmetrical Polyhedral Configuration of Giant Vesicles Induced by Orderly Array of Encapsulated Colloidal Particles.

    Science.gov (United States)

    Natsume, Yuno; Toyota, Taro

    2016-01-01

    Giant vesicles (GVs) encapsulating colloidal particles by a specific volume fraction show a characteristic configuration under a hypertonic condition. Several flat faces were formed in GV membrane with orderly array of inner particles. GV shape changed from the spherical to the asymmetrical polyhedral configuration. This shape deformation was derived by entropic interaction between inner particles and GV membrane. Because a part of inner particles became to form an ordered phase in the region neighboring the GV membrane, free volume for the other part of particles increased. Giant vesicles encapsulating colloidal particles were useful for the model of "crowding effect" which is the entropic interaction in the cell.

  18. Computational methods for stellerator configurations

    International Nuclear Information System (INIS)

    Betancourt, O.

    1992-01-01

    This project had two main objectives. The first one was to continue to develop computational methods for the study of three dimensional magnetic confinement configurations. The second one was to collaborate and interact with researchers in the field who can use these techniques to study and design fusion experiments. The first objective has been achieved with the development of the spectral code BETAS and the formulation of a new variational approach for the study of magnetic island formation in a self consistent fashion. The code can compute the correct island width corresponding to the saturated island, a result shown by comparing the computed island with the results of unstable tearing modes in Tokamaks and with experimental results in the IMS Stellarator. In addition to studying three dimensional nonlinear effects in Tokamaks configurations, these self consistent computed island equilibria will be used to study transport effects due to magnetic island formation and to nonlinearly bifurcated equilibria. The second objective was achieved through direct collaboration with Steve Hirshman at Oak Ridge, D. Anderson and R. Talmage at Wisconsin as well as through participation in the Sherwood and APS meetings

  19. Improved superposition schemes for approximate multi-caloron configurations

    International Nuclear Information System (INIS)

    Gerhold, P.; Ilgenfritz, E.-M.; Mueller-Preussker, M.

    2007-01-01

    Two improved superposition schemes for the construction of approximate multi-caloron-anti-caloron configurations, using exact single (anti-)caloron gauge fields as underlying building blocks, are introduced in this paper. The first improvement deals with possible monopole-Dirac string interactions between different calorons with non-trivial holonomy. The second one, based on the ADHM formalism, improves the (anti-)selfduality in the case of small caloron separations. It conforms with Shuryak's well-known ratio-ansatz when applied to instantons. Both superposition techniques provide a higher degree of (anti-)selfduality than the widely used sum-ansatz, which simply adds the (anti)caloron vector potentials in an appropriate gauge. Furthermore, the improved configurations (when discretized onto a lattice) are characterized by a higher stability when they are exposed to lattice cooling techniques

  20. HLT configuration management system

    CERN Document Server

    Daponte, Vincenzo

    2015-01-01

    The CMS High Level Trigger (HLT) is implemented running a streamlined version of the CMS offline reconstruction software running on thousands of CPUs. The CMS software is written mostly in C++, using Python as its configuration language through an embedded CPython interpreter. The configuration of each process is made up of hundreds of modules, organized in sequences and paths. As an example, the HLT configurations used for 2011 data taking comprised over 2200 different modules, organized in more than 400 independent trigger paths. The complexity of the HLT configurations and the large number of configuration produced require the design of a suitable data management system. The present work describes the designed solution to manage the considerable number of configurations developed and to assist the editing of new configurations. The system is required to be remotely accessible and OS-independent as well as easly maintainable easy to use. To meet these requirements a three-layers architecture has been choose...

  1. Simulation of steam explosion in stratified melt-coolant configuration

    International Nuclear Information System (INIS)

    Leskovar, Matjaž; Centrih, Vasilij; Uršič, Mitja

    2016-01-01

    Highlights: • Strong steam explosions may develop spontaneously in stratified configurations. • Considerable melt-coolant premixed layer formed in subcooled water with hot melts. • Analysis with MC3D code provided insight into stratified steam explosion phenomenon. • Up to 25% of poured melt was mixed with water and available for steam explosion. • Better instrumented experiments needed to determine dominant mixing process. - Abstract: A steam explosion is an energetic fuel coolant interaction process, which may occur during a severe reactor accident when the molten core comes into contact with the coolant water. In nuclear reactor safety analyses steam explosions are primarily considered in melt jet-coolant pool configurations where sufficiently deep coolant pool conditions provide complete jet breakup and efficient premixture formation. Stratified melt-coolant configurations, i.e. a molten melt layer below a coolant layer, were up to now believed as being unable to generate strong explosive interactions. Based on the hypothesis that there are no interfacial instabilities in a stratified configuration it was assumed that the amount of melt in the premixture is insufficient to produce strong explosions. However, the recently performed experiments in the PULiMS and SES (KTH, Sweden) facilities with oxidic corium simulants revealed that strong steam explosions may develop spontaneously also in stratified melt-coolant configurations, where with high temperature melts and subcooled water conditions a considerable melt-coolant premixed layer is formed. In the article, the performed study of steam explosions in a stratified melt-coolant configuration in PULiMS like conditions is presented. The goal of this analytical work is to supplement the experimental activities within the PULiMS research program by addressing the key questions, especially regarding the explosivity of the formed premixed layer and the mechanisms responsible for the melt-water mixing. To

  2. Configuration by Modularisation

    DEFF Research Database (Denmark)

    Riitahuhta, Asko; Andreasen, Mogens Myrup

    1998-01-01

    Globally operating companies have realized that locally customized products and services are today the prerequisite for the success. The capability or the paradigm to act locally in global markets is called Mass Customization [Victor 1997]. The prerequisite for Mass Customization is Configuration...... Management and i Configuration Management the most important means is Modularisation.The goal of this paper is to show Configuration Management as a contribution to the Mass Customisation and Modularisation as a contribution to the industrialisation of the design area [Andreasen 1997]. A basic model...... for the creation of a structured product family is presented and examples are given. The concepts of a novel Dynamic Modularisation method, Metrics for Modularisation and Design for Configurability are presented....

  3. Reference frame for Product Configuration

    DEFF Research Database (Denmark)

    Ladeby, Klaes Rohde; Oddsson, Gudmundur Valur

    2011-01-01

    a reference frame for configuration that permits 1) a more precise understanding of a configuration system, 2) a understanding of how the configuration system relate to other systems, and 3) a definition of the basic concepts in configuration. The total configuration system, together with the definition...

  4. Software configuration management

    CERN Document Server

    Keyes, Jessica

    2004-01-01

    Software Configuration Management discusses the framework from a standards viewpoint, using the original DoD MIL-STD-973 and EIA-649 standards to describe the elements of configuration management within a software engineering perspective. Divided into two parts, the first section is composed of 14 chapters that explain every facet of configuration management related to software engineering. The second section consists of 25 appendices that contain many valuable real world CM templates.

  5. Charge transfer dynamics from adsorbates to surfaces with single active electron and configuration interaction based approaches

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Raghunathan, E-mail: r.ramakrishnan@unibas.ch [Institute of Physical Chemistry, National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel (Switzerland); Nest, Mathias [Theoretische Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching (Germany)

    2015-01-13

    Highlights: • We model electron dynamics across cyano alkanethiolates attached to gold cluster. • We present electron transfer time scales from TD-DFT and TD-CI based simulations. • Both DFT and CI methods qualitatively predict the trend in time scales. • TD-CI predicts the experimental relative time scale very accurately. - Abstract: We employ wavepacket simulations based on many-body time-dependent configuration interaction (TD-CI), and single active electron theories, to predict the ultrafast molecule/metal electron transfer time scales, in cyano alkanethiolates bonded to model gold clusters. The initial states represent two excited states where a valence electron is promoted to one of the two virtual π{sup ∗} molecular orbitals localized on the cyanide fragment. The ratio of the two time scales indicate the efficiency of one charge transfer channel over the other. In both our one-and many-electron simulations, this ratio agree qualitatively with each other as well as with the previously reported experimental time scales (Blobner et al., 2012), measured for a macroscopic metal surface. We study the effect of cluster size and the description of electron correlation on the charge transfer process.

  6. Chemical interactions and configurational disorder in silicate melts

    Directory of Open Access Journals (Sweden)

    G. Ottonello

    2005-06-01

    Full Text Available The Thermodynamics of quasi-chemical and polymeric models are briefly reviewed. It is shown that the two classes are mutually consistent, and that opportune conversion of the existing quasi-chemical parameterization of binary interactions in MO-SiO2 joins to polymeric models may be afforded without substantial loss of precision. It is then shown that polymeric models are extremely useful in deciphering the structural and reactive properties of silicate melts and glasses. They not only allow the Lux-Flood character of the dissolved oxides to be established, but also discriminate subordinate strain energy contributions to the Gibbs free energy of mixing from the dominant chemical interaction terms. This discrimination means that important information on the short-, medium- and long-range periodicity of this class of substances can be retrieved from thermodynamic analysis. Lastly, it is suggested that an important step forward in deciphering the complex topology of the inhomogeneity ranges observed at high SiO2 content can be performed by applying SCMF theory and, particularly, Matsen-Schick spectral analysis, hitherto applied only to rubberlike materials.

  7. Electronic excitation of molecules in solution calculated using the symmetry-adapted cluster–configuration interaction method in the polarizable continuum model

    International Nuclear Information System (INIS)

    Fukuda, Ryoichi; Ehara, Masahiro

    2015-01-01

    The effects from solvent environment are specific to the electronic states; therefore, a computational scheme for solvent effects consistent with the electronic states is necessary to discuss electronic excitation of molecules in solution. The PCM (polarizable continuum model) SAC (symmetry-adapted cluster) and SAC-CI (configuration interaction) methods are developed for such purposes. The PCM SAC-CI adopts the state-specific (SS) solvation scheme where solvent effects are self-consistently considered for every ground and excited states. For efficient computations of many excited states, we develop a perturbative approximation for the PCM SAC-CI method, which is called corrected linear response (cLR) scheme. Our test calculations show that the cLR PCM SAC-CI is a very good approximation of the SS PCM SAC-CI method for polar and nonpolar solvents

  8. Formal Verification Method for Configuration of Integrated Modular Avionics System Using MARTE

    Directory of Open Access Journals (Sweden)

    Lisong Wang

    2018-01-01

    Full Text Available The configuration information of Integrated Modular Avionics (IMA system includes almost all details of whole system architecture, which is used to configure the hardware interfaces, operating system, and interactions among applications to make an IMA system work correctly and reliably. It is very important to ensure the correctness and integrity of the configuration in the IMA system design phase. In this paper, we focus on modelling and verification of configuration information of IMA/ARINC653 system based on MARTE (Modelling and Analysis for Real-time and Embedded Systems. Firstly, we define semantic mapping from key concepts of configuration (such as modules, partitions, memory, process, and communications to components of MARTE element and propose a method for model transformation between XML-formatted configuration information and MARTE models. Then we present a formal verification framework for ARINC653 system configuration based on theorem proof techniques, including construction of corresponding REAL theorems according to the semantics of those key components of configuration information and formal verification of theorems for the properties of IMA, such as time constraints, spatial isolation, and health monitoring. After that, a special issue of schedulability analysis of ARINC653 system is studied. We design a hierarchical scheduling strategy with consideration of characters of the ARINC653 system, and a scheduling analyzer MAST-2 is used to implement hierarchical schedule analysis. Lastly, we design a prototype tool, called Configuration Checker for ARINC653 (CC653, and two case studies show that the methods proposed in this paper are feasible and efficient.

  9. Elastic interaction of a crack with a microcrack array. I - Formulation of the problem and general form of the solution. II - Elastic solution for two crack configurations (piecewise constant and linear approximations)

    Science.gov (United States)

    Chudnovsky, A.; Dolgopolsky, A.; Kachanov, M.

    1987-01-01

    The elastic interactions of a two-dimensional configuration consisting of a crack with an array of microcracks located near the tip are studied. The general form of the solution is based on the potential representations and approximations of tractions on the microcracks by polynomials. In the second part, the technique is applied to two simple two-dimensional configurations involving one and two microcracks. The problems of stress shielding and stress amplification (the reduction or increase of the effective stress intensity factor due to the presence of microcracks) are discussed, and the refinements introduced by higher order polynomial approximations are illustrated.

  10. MICROCONTROLLER PIN CONFIGURATION TOOL

    OpenAIRE

    Bhaskar Joshi; F. Mohammed Rizwan; Dr. Rajashree Shettar

    2012-01-01

    Configuring the micro controller with large number of pins is tedious. Latest Infine on microcontroller contains more than 200 pins and each pin has classes of signals. Therefore the complexity of the microcontroller is growing. It evolves looking into thousands of pages of user manual. For a user it will take days to configure the microcontroller with the peripherals. We need an automated tool to configure the microcontroller so that the user can configure the microcontroller without having ...

  11. Specificity of molecular interactions in transient protein-protein interaction interfaces.

    Science.gov (United States)

    Cho, Kyu-il; Lee, KiYoung; Lee, Kwang H; Kim, Dongsup; Lee, Doheon

    2006-11-15

    antibody-antigen complexes, the sign is somewhat ambiguous. From the evolutionary perspective, while protease-inhibitors and sig-naling proteins have optimized their interfaces to suit their biological functions, antibody-antigen interactions are the happenstance, implying that antibody-antigen complexes do not show distinctive interaction types. Persistent interaction types such as pi...pi, amide-carbonyl, and hydroxyl-carbonyl interaction, are also investigated. Analyzing the structural orientations of the pi...pi stacking interactions, we find that herringbone shape is a major configuration in transient protein-protein interfaces. This result is different from that of protein core, where parallel-displaced configurations are the major configuration. We also analyze overall trend of amide-carbonyl and hydroxyl-carbonyl interactions. It is noticeable that nearly 82% of the interfaces have at least one hydroxyl-carbonyl interactions. (c) 2006 Wiley-Liss, Inc.

  12. Amino Acid Interaction (INTAA) web server.

    Science.gov (United States)

    Galgonek, Jakub; Vymetal, Jirí; Jakubec, David; Vondrášek, Jirí

    2017-07-03

    Large biomolecules-proteins and nucleic acids-are composed of building blocks which define their identity, properties and binding capabilities. In order to shed light on the energetic side of interactions of amino acids between themselves and with deoxyribonucleotides, we present the Amino Acid Interaction web server (http://bioinfo.uochb.cas.cz/INTAA/). INTAA offers the calculation of the residue Interaction Energy Matrix for any protein structure (deposited in Protein Data Bank or submitted by the user) and a comprehensive analysis of the interfaces in protein-DNA complexes. The Interaction Energy Matrix web application aims to identify key residues within protein structures which contribute significantly to the stability of the protein. The application provides an interactive user interface enhanced by 3D structure viewer for efficient visualization of pairwise and net interaction energies of individual amino acids, side chains and backbones. The protein-DNA interaction analysis part of the web server allows the user to view the relative abundance of various configurations of amino acid-deoxyribonucleotide pairs found at the protein-DNA interface and the interaction energies corresponding to these configurations calculated using a molecular mechanical force field. The effects of the sugar-phosphate moiety and of the dielectric properties of the solvent on the interaction energies can be studied for the various configurations. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Gas/liquid flow configurations

    International Nuclear Information System (INIS)

    Bonin, Jacques; Fitremann, J.-M.

    1978-01-01

    Prediction of flow configurations (morphology) for gas/liquid or liquid/vapour mixtures is an important industrial problem which is not yet fully understood. The ''Flow Configurations'' Seminar of Societe Hydrotechnique de France has framed recommendations for investigation of potential industrial applications for flow configurations [fr

  14. Configuration management at NEK

    International Nuclear Information System (INIS)

    Podhraski, M.

    1999-01-01

    Configuration Management (CM) objectives at NEK are to ensure consistency between Design Requirements, Physical Plant Configuration and Configuration Information. Software applications, supporting Design Change, Work Control and Document Control Processes, are integrated in one module-oriented Management Information System (MIS). Master Equipment Component List (MECL) database is central MIS module. Through a combination of centralized database and process migrated activities it is ensured that the CM principles and requirements (accurate, current design data matching plant's physical configuration while complying to applicable requirements), are followed and fulfilled.(author)

  15. Competition between intermolecular interaction and configuration entropy as the structure-determining factor for inclusion compounds

    Energy Technology Data Exchange (ETDEWEB)

    Subbotin, O.; Belosludov, V.; Adamova, T. [Russian Academy of Science, Novosibirsk (Russian Federation). Nikolaev Inst. of Inorganic Chemistry; Belosludov, R.; Kawazoe, Y. [Tohoku Univ., Aoba-ku, Sendai (Japan). Inst. for Materials Research; Kudoh, J.I. [Tohoku Univ., Aoba-ku, Sendai (Japan). Center for Northeast Asia Studies

    2008-07-01

    This paper presented a newly developed method to accurately predict the thermodynamic properties of clathrate hydrates, particularly their structural phase transitions under pressure. The method is based on the theory of Van-der-Waals and Platteeuw with some modifications that include the influence of guest molecules on the host lattice. The model was used to explain the exception from the established rule that small guest molecules form structure s1 and large molecules form structure s2 hydrates. In this study, the thermodynamic properties of argon (Ar) hydrate and methane hydrate, each in both cubic structure s1 and s2 were modelled. The model showed that two competing factors play a role in the formation of inclusions, notably the intermolecular interaction of guest molecules with water molecules, and the configuration entropy. Competition of these 2 factors determines the structure of hydrate formed at different pressures. The model provides an accurate description of the thermodynamic properties of gas hydrates and how they behave under pressure. For the argon hydrates, the structural phase transition from structure s2 to s1 at high pressure was predicted, while methane hydrates were predicted to be metastable in the s2 structure. The model can be used for other inclusion compounds with the same type of composition such as clathrate silicon, zeolites, and inclusion compounds of semiconductor elements. 17 refs., 5 figs.

  16. Patterns in the Pythagorean Configuration and Some Extensions: The Power of Interactive Geometry Software

    Science.gov (United States)

    Contreras, José

    2015-01-01

    In this paper I describe classroom experiences with pre-service secondary mathematics teachers (PSMTs) investigating and extending patterns embedded in the Pythagorean configuration. This geometric figure is a fruitful source of mathematical tasks to help students, including PSMTs, further develop habits of mind such as visualization,…

  17. A new approach to configurable primary data collection.

    Science.gov (United States)

    Stanek, J; Babkin, E; Zubov, M

    2016-09-01

    The formats, semantics and operational rules of data processing tasks in genomics (and health in general) are highly divergent and can rapidly change. In such an environment, the problem of consistent transformation and loading of heterogeneous input data to various target repositories becomes a critical success factor. The objective of the project was to design a new conceptual approach to configurable data transformation, de-identification, and submission of health and genomic data sets. Main motivation was to facilitate automated or human-driven data uploading, as well as consolidation of heterogeneous sources in large genomic or health projects. Modern methods of on-demand specialization of generic software components were applied. For specification of input-output data and required data collection activities, we propose a simple data model of flat tables as well as a domain-oriented graphical interface and portable representation of transformations in XML. Using such methods, the prototype of the Configurable Data Collection System (CDCS) was implemented in Java programming language with Swing graphical interfaces. The core logic of transformations was implemented as a library of reusable plugins. The solution is implemented as a software prototype for a configurable service-oriented system for semi-automatic data collection, transformation, sanitization and safe uploading to heterogeneous data repositories-CDCS. To address the dynamic nature of data schemas and data collection processes, the CDCS prototype facilitates interactive, user-driven configuration of the data collection process and extends basic functionality with a wide range of third-party plugins. Notably, our solution also allows for the reduction of manual data entry for data originally missing in the output data sets. First experiments and feedback from domain experts confirm the prototype is flexible, configurable and extensible; runs well on data owner's systems; and is not dependent on

  18. Application of Configurators in Networks

    DEFF Research Database (Denmark)

    Malis, Martin; Hvam, Lars

    2003-01-01

    Shorter lead-time, improved quality of product specifications and better communication with customers and suppliers are benefits derived from the application of configurators. Configurators are knowledge-based IT-systems that can be applied to deal with product knowledge and to support different...... processes in a company. Traditionally, configurators have been used as an internal tool. In this paper focus will be on the application of configurators in a network of companies, and a procedure for developing product configurators in a network of companies will be presented. The aim is to present...... a structured guideline, tools and methods on how to successfully develop configurators in a network perspective. Findings presented in this paper are supported by research in a case company. The results from the empirical work show a huge potential for the application of configurators in networks of companies....

  19. Analytic derivative couplings for spin-flip configuration interaction singles and spin-flip time-dependent density functional theory

    International Nuclear Information System (INIS)

    Zhang, Xing; Herbert, John M.

    2014-01-01

    We revisit the calculation of analytic derivative couplings for configuration interaction singles (CIS), and derive and implement these couplings for its spin-flip variant for the first time. Our algorithm is closely related to the CIS analytic energy gradient algorithm and should be straightforward to implement in any quantum chemistry code that has CIS analytic energy gradients. The additional cost of evaluating the derivative couplings is small in comparison to the cost of evaluating the gradients for the two electronic states in question. Incorporation of an exchange-correlation term provides an ad hoc extension of this formalism to time-dependent density functional theory within the Tamm-Dancoff approximation, without the need to invoke quadratic response theory or evaluate third derivatives of the exchange-correlation functional. Application to several different conical intersections in ethylene demonstrates that minimum-energy crossing points along conical seams can be located at substantially reduced cost when analytic derivative couplings are employed, as compared to use of a branching-plane updating algorithm that does not require these couplings. Application to H 3 near its D 3h geometry demonstrates that correct topology is obtained in the vicinity of a conical intersection involving a degenerate ground state

  20. High-precision, systematic study of hyperfine structure in the 4f/sup N/6s2 configuration of the neutral rare earths

    International Nuclear Information System (INIS)

    Childs, W.J.; Goodman, L.S.; Pfeufer, V.

    1983-01-01

    Although the hyperfine structure (hfs) of many-electron atoms has been studied intensively in recent years, it is still difficult to distinguish between the competing effects of relativity and configuration interaction. The 4f/sup N/6s 2 configuration of the neutral rare earths is of particular interest because (a) the low-lying terms are relatively free of configuration interaction, and (b) trends can be examined systematically as one proceeds through the long 4f-shell. The procedure is to deduce, from the measured hfs constants of low levels, the underlying hyperfine radial integrals for comparison with ab initio predictions. Since some of these integrals are extremely sensitive to any configuration interaction and others are not, it is possible to determine both the extent and type of configuration interaction present in some cases. Prior to the start of the present research no precise hfs information existed for the entire second half of the 4f shell of the rare earths. The present measurements were designed both to provide such data and to make possible a systematic study of the hfs throughout the 4f shell. The atomic-beam, laser-rf, double-resonance method was used for the measurements. With this technique, the occurrence of a radiofrequency transition between atomic hfs levels is detected by noting an increase in the laser-induced fluorescence

  1. Simulator configuration maintenance

    International Nuclear Information System (INIS)

    2006-01-01

    Requirements and recommendations of this section defines NPP personnel activity aimed to the provision of the simulator configuration compliance with the current configuration of the power-generating unit-prototype, standard and technical requirements and describe a monitoring procedure for a set of simulator software and hardware, training, organizational and technical documents

  2. Evaluation of Sensor Configurations for Robotic Surgical Instruments.

    Science.gov (United States)

    Gómez-de-Gabriel, Jesús M; Harwin, William

    2015-10-27

    Designing surgical instruments for robotic-assisted minimally-invasive surgery (RAMIS) is challenging due to constraints on the number and type of sensors imposed by considerations such as space or the need for sterilization. A new method for evaluating the usability of virtual teleoperated surgical instruments based on virtual sensors is presented. This method uses virtual prototyping of the surgical instrument with a dual physical interaction, which allows testing of different sensor configurations in a real environment. Moreover, the proposed approach has been applied to the evaluation of prototypes of a two-finger grasper for lump detection by remote pinching. In this example, the usability of a set of five different sensor configurations, with a different number of force sensors, is evaluated in terms of quantitative and qualitative measures in clinical experiments with 23 volunteers. As a result, the smallest number of force sensors needed in the surgical instrument that ensures the usability of the device can be determined. The details of the experimental setup are also included.

  3. Optimizing the Configuration of Sensor Networks to Detect Intruders.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Nathanael J. K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nozick, Linda Karen [Cornell Univ., Ithaca, NY (United States); Xu, Ningxiong [Cornell Univ., Ithaca, NY (United States)

    2015-03-01

    This paper focuses on optimizing the selection and configuration of detection technologies to protect a target of interest. The ability of an intruder to simply reach the target is assumed to be sufficient to consider the security system a failure. To address this problem, we develop a game theoretic model of the strategic interactions between the system owner and a knowledgeable intruder. A decomposition-based exact method is used to solve the resultant model.

  4. Numerical Investigations on the Aerodynamic Performance of Wind Turbine:Downwind Versus Upwind Configuration

    Institute of Scientific and Technical Information of China (English)

    Hu Zhou; Decheng Wan

    2015-01-01

    Although the upwind configuration is more popular in the field of wind energy, the downwind one is a promising type for the offshore wind energy due to its special advantages. Different configurations have different aerodynamic performance and it is important to predict the performance of both downwind and upwind configurations accurately for designing and developing more reliable wind turbines. In this paper, a numerical investigation on the aerodynamic performance of National Renewable Energy Laboratory (NREL) phase VI wind turbine in downwind and upwind configurations is presented. The open source toolbox OpenFOAM coupled with arbitrary mesh interface (AMI) method is applied to tackle rotating problems of wind turbines. Two 3D numerical models of NREL phase VI wind turbine with downwind and upwind configurations under four typical working conditions of incoming wind velocities are set up for the study of different unsteady characteristics of the downwind and upwind configurations, respectively. Numerical results of wake vortex structure, time histories of thrust, pressure distribution on the blade and limiting streamlines which can be used to identify points of separation in a 3D flow are presented. It can be concluded that thrust reduction due to blade-tower interaction is small for upwind wind turbines but relatively large for downwind wind turbines and attention should be paid to the vibration at a certain frequency induced by the cyclic reduction for both configurations. The results and conclusions are helpful to analyze the different aerodynamic performance of wind turbines between downwind and upwind configurations, providing useful references for practical design of wind turbine.

  5. Remembering facial configurations.

    Science.gov (United States)

    Bruce, V; Doyle, T; Dench, N; Burton, M

    1991-02-01

    Eight experiments are reported showing that subjects can remember rather subtle aspects of the configuration of facial features to which they have earlier been exposed. Subjects saw several slightly different configurations (formed by altering the relative placement of internal features of the face) of each of ten different faces, and they were asked to rate the apparent age and masculinity-femininity of each. Afterwards, subjects were asked to select from pairs of faces the configuration which was identical to one previously rated. Subjects responded strongly to the central or "prototypical" configuration of each studied face where this was included as one member of each test pair, whether or not it had been studied (Experiments 1, 2 and 4). Subjects were also quite accurate at recognizing one of the previously encountered extremes of the series of configurations that had been rated (Experiment 3), but when unseen prototypes were paired with seen exemplars subjects' performance was at chance (Experiment 5). Prototype learning of face patterns was shown to be stronger than that for house patterns, though both classes of patterns were affected equally by inversion (Experiment 6). The final two experiments demonstrated that preferences for the prototype could be affected by instructions at study and by whether different exemplars of the same face were shown consecutively or distributed through the study series. The discussion examines the implications of these results for theories of the representation of faces and for instance-based models of memory.

  6. Vortex lattices in different configurations of periodic pinning line-arrays

    International Nuclear Information System (INIS)

    Lima, Clessio Leao S.; Cabral, Leonardo R.E.; Souza Silva, Clecio C. de; Aguiar, J. Albino

    2006-01-01

    The vortex lattice (VL) ground-state configurations are found using Monte Carlo (MC) simulated annealing with a local molecular dynamics (MD) in the London limit. We study the field dependence of the melting temperature for commensurate and incommensurate vortex lattices interacting with different periodic arrays of pinning. We also investigated the proliferation of topological defects and its dependence on the periodic pinning array symmetry and temperature

  7. A unix configuration engine

    International Nuclear Information System (INIS)

    Burgess, M.

    1994-06-01

    A high level description language is presented for the purpose of automatically configuring large heterogeneous networked unix environments, based on class-oriented abstractions. The configuration engine is portable and easily extensible

  8. Configuration management theory, practice, and application

    CERN Document Server

    Quigley, Jon M

    2015-01-01

    Configuration Management: Theory, Practice, and Application details a comprehensive approach to configuration management from a variety of product development perspectives, including embedded and IT. It provides authoritative advice on how to extend products for a variety of markets due to configuration options. The book also describes the importance of configuration management to other parts of the organization. It supplies an overview of configuration management and its process elements to provide readers with a contextual understanding of the theory, practice, and application of CM. Explaining what a configuration item is and what it implies, the book illustrates the interplay of configuration and data management with all enterprise resources during each phase of a product lifecycle. It also demonstrates the interrelationship of CM to functional resources. Shedding light on current practice, the book describes CM baselines, configuration identification, management baseline changes, and acceptance criteria ...

  9. Integration, Configuration and Coordination: from Project to Reality, at CERN

    CERN Document Server

    Barberan Marin, Maria; Bernardini, Marzia; Birtwistle, Thomas; Chemli, Samy; Corso, Jean-Pierre; Coupard, Julie; Foraz, Katy; Grillot, Serge; Muttoni, Yvon; Perrot, Anne-Laure

    2016-01-01

    The rigorous process in place at CERN to approve and follow-up the implementation of any modification of the LHC machine and its Injectors is presented in this paper. Our methodology implies the support of three teams, in charge of the configuration management, the scheduling and safety coordination, and the 3D integration studies. At each stage of the project the support of the three teams evolves, to provide the adequate support in the preparation phase and during the technical stops and long shutdowns. The formal roles and the processes used to govern the interaction of the Integration, Configuration and Coordination teams, and their relation to the project teams during the preparation and implementation phases, for activities to be performed in LHC and its injector chain are described and discussed.

  10. Feedback control of plasma configuration in JT-60

    International Nuclear Information System (INIS)

    Ninomiya, Hiromasa; Kikuchi, Mitsuru; Yoshino, Ryuji; Hosogane, Nobuyuki; Kimura, Toyoaki; Kurihara, Kenichi; Takahashi, Minoru; Hayashi, Kazuo.

    1986-08-01

    Plasma current, plasma position (center of the outermost magnetic surface), decay index n index and width of the divertor throat are feedback controlled by using 5 kinds of poloidal field coils in JT-60. 5 control commands are calculated in a feedback control computer in each 1 msec. These feedback control functions are checked in ohmically heated plasma. The control characteristics of the plasma are well understood by the simplified control analysis and are consistent with the precise matrix transfer function analysis in the frequency domain and the simulation analysis which include the effects of eddy currents, delay time elements and mutual interactions between controllers. The usefulness of these analyses is experimentally confirmed. Each controlled variable is well feedback controlled to the command and the experimentally realized equilibrium configuration is checked by the well calibrated magnetic probes. Fast boundary identification code is used for the identification of the equilibrium and results are consistent with the precalculated plasma equilibria. By using this feedback control system of the plasma configuration and the equilibrium identification method, we have obtained the stable limiter and divertor configuration. The maximum parameters obtained during OH(I) experimental period are plasma current I p = 1.8 MA, the effective safety factor q eff e = 5.7 x 10 19 m -3 (Murakami parameter of 4.5) and the pulse length of 5 ∼ 10 sec. (author)

  11. Elemental representation and configural mappings: combining elemental and configural theories of associative learning.

    Science.gov (United States)

    McLaren, I P L; Forrest, C L; McLaren, R P

    2012-09-01

    In this article, we present our first attempt at combining an elemental theory designed to model representation development in an associative system (based on McLaren, Kaye, & Mackintosh, 1989) with a configural theory that models associative learning and memory (McLaren, 1993). After considering the possible advantages of such a combination (and some possible pitfalls), we offer a hybrid model that allows both components to produce the phenomena that they are capable of without introducing unwanted interactions. We then successfully apply the model to a range of phenomena, including latent inhibition, perceptual learning, the Espinet effect, and first- and second-order retrospective revaluation. In some cases, we present new data for comparison with our model's predictions. In all cases, the model replicates the pattern observed in our experimental results. We conclude that this line of development is a promising one for arriving at general theories of associative learning and memory.

  12. Example of software configuration management model

    International Nuclear Information System (INIS)

    Roth, P.

    2006-01-01

    Software configuration management is the mechanism used to track and control software changes and may include the following actions: A tracking system should be established for any changes made to the existing software configuration. Requirement of the configuration management system are the following: - Backup the different software configuration; - Record the details (the date, the subject, the filenames, the supporting documents, the tests, ...) of the changes introduced in the new configuration; - Document all the differences between the different versions. Configuration management allows simultaneous exploitation of one specific version and development of the next version. Minor correction can be perform in the current exploitation version

  13. Configuration studies of LHD plasmas

    International Nuclear Information System (INIS)

    Okamoto, M.

    1997-01-01

    Configuration studies are performed on the plasmas of The Large Helical Device (LHD), the construction of which is almost completed at the National Institute for Fusion Science. The LHD has flexibility as an experimental device and can have various configurations by changing the poloidal magnetic fields, the pitch of the helical coils (pitch parameter), and the ratio of currents flowing in the two helical coils. Characteristics of the plasma are investigated for the standard configuration, the change in the pitch parameter, and the helical axis configuration

  14. Configuration studies of LHD plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Masao

    1997-03-01

    Configuration studies are performed on the plasmas of The Large Helical Device (LHD), the construction of which is almost completed at the National Institute for Fusion Science. The LHD has flexibility as an experimental device and can have various configurations by changing the poloidal magnetic fields, the pitch of the helical coils (pitch parameter), and the ratio of currents flowing in the two helical coils. Characteristics of the plasma are investigated for the standard configuration, the change in the pitch parameter, and the helical axis configuration. (author)

  15. Term structure of 4d-electron configurations and calculated spectrum in Sn-isonuclear sequence

    International Nuclear Information System (INIS)

    Al-Rabban, Moza M.

    2006-01-01

    Theoretical calculations of term structure are carried out for the ground configurations 4d w , of atomic ions in the Sn isonuclear sequence. Atomic computations are performed to give a detailed account of the transitions in Sn +6 to Sn +13 ions. The spectrum is calculated for the most important excited configurations 4p 5 4d n+1 , 4d n-1 4f 1 , and 4d n-1 5p 1 with respect to the ground configuration 4d n , with n=8-1, respectively. The importance of 4p-4d, 4d-4f, and 4d-5p transitions is stressed, as well as the need for the configuration-interaction CI treatment of the Δn=0 transitions. In the region of importance for extreme ultraviolet (EUV) lithography around 13.4nm, the strongest lines were expected to be 4d n -4p 5 4d n+1 and 4d n -4d n-1 4f 1

  16. Parallel multireference configuration interaction calculations on mini-beta-carotenes and beta-carotene.

    Science.gov (United States)

    Kleinschmidt, Martin; Marian, Christel M; Waletzke, Mirko; Grimme, Stefan

    2009-01-28

    We present a parallelized version of a direct selecting multireference configuration interaction (MRCI) code [S. Grimme and M. Waletzke, J. Chem. Phys. 111, 5645 (1999)]. The program can be run either in ab initio mode or as semiempirical procedure combined with density functional theory (DFT/MRCI). We have investigated the efficiency of the parallelization in case studies on carotenoids and porphyrins. The performance is found to depend heavily on the cluster architecture. While the speed-up on the older Intel Netburst technology is close to linear for up to 12-16 processes, our results indicate that it is not favorable to use all cores of modern Intel Dual Core or Quad Core processors simultaneously for memory intensive tasks. Due to saturation of the memory bandwidth, we recommend to run less demanding tasks on the latter architectures in parallel to two (Dual Core) or four (Quad Core) MRCI processes per node. The DFT/MRCI branch has been employed to study the low-lying singlet and triplet states of mini-n-beta-carotenes (n=3, 5, 7, 9) and beta-carotene (n=11) at the geometries of the ground state, the first excited triplet state, and the optically bright singlet state. The order of states depends heavily on the conjugation length and the nuclear geometry. The (1)B(u) (+) state constitutes the S(1) state in the vertical absorption spectrum of mini-3-beta-carotene but switches order with the 2 (1)A(g) (-) state upon excited state relaxation. In the longer carotenes, near degeneracy or even root flipping between the (1)B(u) (+) and (1)B(u) (-) states is observed whereas the 3 (1)A(g) (-) state is found to remain energetically above the optically bright (1)B(u) (+) state at all nuclear geometries investigated here. The DFT/MRCI method is seen to underestimate the absolute excitation energies of the longer mini-beta-carotenes but the energy gaps between the excited states are reproduced well. In addition to singlet data, triplet-triplet absorption energies are

  17. Parallel multireference configuration interaction calculations on mini-β-carotenes and β-carotene

    Science.gov (United States)

    Kleinschmidt, Martin; Marian, Christel M.; Waletzke, Mirko; Grimme, Stefan

    2009-01-01

    We present a parallelized version of a direct selecting multireference configuration interaction (MRCI) code [S. Grimme and M. Waletzke, J. Chem. Phys. 111, 5645 (1999)]. The program can be run either in ab initio mode or as semiempirical procedure combined with density functional theory (DFT/MRCI). We have investigated the efficiency of the parallelization in case studies on carotenoids and porphyrins. The performance is found to depend heavily on the cluster architecture. While the speed-up on the older Intel Netburst technology is close to linear for up to 12-16 processes, our results indicate that it is not favorable to use all cores of modern Intel Dual Core or Quad Core processors simultaneously for memory intensive tasks. Due to saturation of the memory bandwidth, we recommend to run less demanding tasks on the latter architectures in parallel to two (Dual Core) or four (Quad Core) MRCI processes per node. The DFT/MRCI branch has been employed to study the low-lying singlet and triplet states of mini-n-β-carotenes (n =3, 5, 7, 9) and β-carotene (n =11) at the geometries of the ground state, the first excited triplet state, and the optically bright singlet state. The order of states depends heavily on the conjugation length and the nuclear geometry. The B1u+ state constitutes the S1 state in the vertical absorption spectrum of mini-3-β-carotene but switches order with the 2 A1g- state upon excited state relaxation. In the longer carotenes, near degeneracy or even root flipping between the B1u+ and B1u- states is observed whereas the 3 A1g- state is found to remain energetically above the optically bright B1u+ state at all nuclear geometries investigated here. The DFT/MRCI method is seen to underestimate the absolute excitation energies of the longer mini-β-carotenes but the energy gaps between the excited states are reproduced well. In addition to singlet data, triplet-triplet absorption energies are presented. For β-carotene, where these transition

  18. Dissecting the role of distinct OCT4-SOX2 heterodimer configurations in pluripotency

    Science.gov (United States)

    Tapia, Natalia; MacCarthy, Caitlin; Esch, Daniel; Gabriele Marthaler, Adele; Tiemann, Ulf; Araúzo-Bravo, Marcos J.; Jauch, Ralf; Cojocaru, Vlad; Schöler, Hans R.

    2015-01-01

    The transcription factors OCT4 and SOX2 are required for generating induced pluripotent stem cells (iPSCs) and for maintaining embryonic stem cells (ESCs). OCT4 and SOX2 associate and bind to DNA in different configurations depending on the arrangement of their individual DNA binding elements. Here we have investigated the role of the different OCT4-SOX2-DNA assemblies in regulating and inducing pluripotency. To this end, we have generated SOX2 mutants that interfere with specific OCT4-SOX2 heterodimer configurations and assessed their ability to generate iPSCs and to rescue ESC self-renewal. Our results demonstrate that the OCT4-SOX2 configuration that dimerizes on a Hoxb1-like composite, a canonical element with juxtaposed individual binding sites, plays a more critical role in the induction and maintenance of pluripotency than any other OCT4-SOX2 configuration. Overall, the results of this study provide new insight into the protein interactions required to establish a de novo pluripotent network and to maintain a true pluripotent cell fate. PMID:26314899

  19. The configuration of residential area in urban structure of the palace in Siak Sri Indrapura - Riau

    Science.gov (United States)

    Rijal, Muhammad

    2018-05-01

    This article is part of major research in describing the configuration of waterfront residential area in urban space structure of the palace and related to the Malay Kingdom in the waterside of the Strait of Malacca. This research aimed to identify the configuration of riverfront residential area in Siak Sri Indrapura City based on physical and non-physical aspects. The method used in this research was qualitative rationalistic referring to the components of urban design theory. The results of the research showed that the spatial configuration in Siak Sri Indrapura City is linear and related to the past events and socio-cultural and socio-economic interaction of the society.

  20. Six-quark configurations in the NN system correlated with experiment

    International Nuclear Information System (INIS)

    Gorovoy, V.S.; Obukhovskij, I.T.

    1996-01-01

    The nucleon-nucleon interaction at short range is analyzed in terms of six-quark configuration. It is shown that in low partial waves L = 0, 1 system has a two-channel character: the N N channel and the inner six-quark state (bag) with specific color-spin structure. It is shown that polarization observables could be a good tool for investigation of a quark structure of the deuteron [ru

  1. Business Model Process Configurations

    DEFF Research Database (Denmark)

    Taran, Yariv; Nielsen, Christian; Thomsen, Peter

    2015-01-01

    , by developing (inductively) an ontological classification framework, in view of the BM process configurations typology developed. Design/methodology/approach – Given the inconsistencies found in the business model studies (e.g. definitions, configurations, classifications) we adopted the analytical induction...

  2. Creeping gaseous flows through elastic tube and annulus micro-configurations

    Science.gov (United States)

    Elbaz, Shai; Jacob, Hila; Gat, Amir

    2016-11-01

    Gaseous flows in elastic micro-configurations is relevant to biological systems (e.g. alveolar ducts in the lungs) as well as to applications such as gas actuated soft micro-robots. We here examine the effect of low-Mach-number compressibility on creeping gaseous axial flows through linearly elastic tube and annulus micro-configurations. For steady flows, the leading-order effects of elasticity on the pressure distribution and mass-flux are obtained. For transient flow in a tube with small deformations, elastic effects are shown to be negligible in leading order due to compressibility. We then examine transient flows in annular configurations where the deformation is significant compared with the gap between the inner and outer cylinders defining the annulus. Both compressibility and elasticity are obtained as dominant terms interacting with viscosity. For a sudden flux impulse, the governing non-linear leading order diffusion equation is initially approximated by a porous-medium-equation of order 2.5 for the pressure square. However, as the fluid expand and the pressure decreases, the governing equation degenerates to a porous-medium-equation of order 2 for the pressure.

  3. Depletion interactions in lyotropic nematics

    NARCIS (Netherlands)

    Schoot, van der P.P.A.M.

    2000-01-01

    A theoretical study of depletion interactions between pairs of small, globular colloids dispersed in a lyotropic nematic of hard, rodlike particles is presented. We find that both the strength and range of the interaction crucially depends on the configuration of the spheres relative to the nematic

  4. Theoretical studies on CH+ ion molecule using configuration interaction method and its spectroscopic properties

    International Nuclear Information System (INIS)

    Machado, F.B.C.

    1985-01-01

    The use of the configuration (CI) method for the calculation of very accurate potential energy curves and dipole moment functions, and then their use in the comprehension of spectroscopic properties of diatomic molecules is presented. The spectroscopic properties of CH + and CD + such as: vibrational levels, spectroscopic constants, averaged dipole moments for all vibrational levels, radiative transition probabilities for emission and absorption, and radiative lifetimes are verificated. (M.J.C.) [pt

  5. Knowledge Based Product Configuration - a documentatio tool for configuration projects

    DEFF Research Database (Denmark)

    Hvam, Lars; Malis, Martin

    2003-01-01

    . A lot of knowledge isput into these systems and many domain experts are involved. This calls for an effective documentation system in order to structure this knowledge in a way that fits to the systems. Standard configuration systems do not support this kind of documentation. The chapter deals...... with the development of a Lotus Notes application that serves as a knowledge based documentation tool for configuration projects. A prototype has been developed and tested empirically in an industrial case-company. It has proved to be a succes....

  6. Viscous Design of TCA Configuration

    Science.gov (United States)

    Krist, Steven E.; Bauer, Steven X. S.; Campbell, Richard L.

    1999-01-01

    The goal in this effort is to redesign the baseline TCA configuration for improved performance at both supersonic and transonic cruise. Viscous analyses are conducted with OVERFLOW, a Navier-Stokes code for overset grids, using PEGSUS to compute the interpolations between overset grids. Viscous designs are conducted with OVERDISC, a script which couples OVERFLOW with the Constrained Direct Iterative Surface Curvature (CDISC) inverse design method. The successful execution of any computational fluid dynamics (CFD) based aerodynamic design method for complex configurations requires an efficient method for regenerating the computational grids to account for modifications to the configuration shape. The first section of this presentation deals with the automated regridding procedure used to generate overset grids for the fuselage/wing/diverter/nacelle configurations analysed in this effort. The second section outlines the procedures utilized to conduct OVERDISC inverse designs. The third section briefly covers the work conducted by Dick Campbell, in which a dual-point design at Mach 2.4 and 0.9 was attempted using OVERDISC; the initial configuration from which this design effort was started is an early version of the optimized shape for the TCA configuration developed by the Boeing Commercial Airplane Group (BCAG), which eventually evolved into the NCV design. The final section presents results from application of the Natural Flow Wing design philosophy to the TCA configuration.

  7. Reactor Configuration Development for ARIES-CS

    International Nuclear Information System (INIS)

    Ku LP

    2005-01-01

    New compact, quasi-axially symmetric stellarator configurations have been developed as part of the ARIES-CS reactor studies. These new configurations have good plasma confinement and transport properties, including low losses of α particles and good integrity of flux surfaces at high β. We summarize the recent progress by showcasing two attractive classes of configurations--configurations with judiciously chosen rotational transforms to avoid undesirable effects of low order resonances on the flux surface integrity and configurations with very small aspect ratios (∼2.5) that have excellent quasi-axisymmetry and low field ripples

  8. Evaluation of Sensor Configurations for Robotic Surgical Instruments

    Directory of Open Access Journals (Sweden)

    Jesús M. Gómez-de-Gabriel

    2015-10-01

    Full Text Available Designing surgical instruments for robotic-assisted minimally-invasive surgery (RAMIS is challenging due to constraints on the number and type of sensors imposed by considerations such as space or the need for sterilization. A new method for evaluating the usability of virtual teleoperated surgical instruments based on virtual sensors is presented. This method uses virtual prototyping of the surgical instrument with a dual physical interaction, which allows testing of different sensor configurations in a real environment. Moreover, the proposed approach has been applied to the evaluation of prototypes of a two-finger grasper for lump detection by remote pinching. In this example, the usability of a set of five different sensor configurations, with a different number of force sensors, is evaluated in terms of quantitative and qualitative measures in clinical experiments with 23 volunteers. As a result, the smallest number of force sensors needed in the surgical instrument that ensures the usability of the device can be determined. The details of the experimental setup are also included.

  9. Evaluation of Sensor Configurations for Robotic Surgical Instruments

    Science.gov (United States)

    Gómez-de-Gabriel, Jesús M.; Harwin, William

    2015-01-01

    Designing surgical instruments for robotic-assisted minimally-invasive surgery (RAMIS) is challenging due to constraints on the number and type of sensors imposed by considerations such as space or the need for sterilization. A new method for evaluating the usability of virtual teleoperated surgical instruments based on virtual sensors is presented. This method uses virtual prototyping of the surgical instrument with a dual physical interaction, which allows testing of different sensor configurations in a real environment. Moreover, the proposed approach has been applied to the evaluation of prototypes of a two-finger grasper for lump detection by remote pinching. In this example, the usability of a set of five different sensor configurations, with a different number of force sensors, is evaluated in terms of quantitative and qualitative measures in clinical experiments with 23 volunteers. As a result, the smallest number of force sensors needed in the surgical instrument that ensures the usability of the device can be determined. The details of the experimental setup are also included. PMID:26516863

  10. Pairing interaction method in crystal field theory

    International Nuclear Information System (INIS)

    Dushin, R.B.

    1989-01-01

    Expressions, permitting to describe matrix elements of secular equation for metal-ligand pairs via parameters of the method of pairing interactions, genealogical coefficients and Clebsch-Gordan coefficients, are given. The expressions are applicable to any level or term of f n and d n configurations matrix elements for the terms of the maximum multiplicity of f n and d n configurations and also for the main levels of f n configurations are tabulated

  11. Device configuration-management system

    International Nuclear Information System (INIS)

    Nowell, D.M.

    1981-01-01

    The Fusion Chamber System, a major component of the Magnetic Fusion Test Facility, contains several hundred devices which report status to the Supervisory Control and Diagnostic System for control and monitoring purposes. To manage the large number of diversity of devices represented, a device configuration management system was required and developed. Key components of this software tool include the MFTF Data Base; a configuration editor; and a tree structure defining the relationships between the subsystem devices. This paper will describe how the configuration system easily accomodates recognizing new devices, restructuring existing devices, and modifying device profile information

  12. Tank waste remediation system configuration management plan

    International Nuclear Information System (INIS)

    Vann, J.M.

    1998-01-01

    The configuration management program for the Tank Waste Remediation System (TWRS) Project Mission supports management of the project baseline by providing the mechanisms to identify, document, and control the functional and physical characteristics of the products. This document is one of the tools used to develop and control the mission and work. It is an integrated approach for control of technical, cost, schedule, and administrative information necessary to manage the configurations for the TWRS Project Mission. Configuration management focuses on five principal activities: configuration management system management, configuration identification, configuration status accounting, change control, and configuration management assessments. TWRS Project personnel must execute work in a controlled fashion. Work must be performed by verbatim use of authorized and released technical information and documentation. Application of configuration management will be consistently applied across all TWRS Project activities and assessed accordingly. The Project Hanford Management Contract (PHMC) configuration management requirements are prescribed in HNF-MP-013, Configuration Management Plan (FDH 1997a). This TWRS Configuration Management Plan (CMP) implements those requirements and supersedes the Tank Waste Remediation System Configuration Management Program Plan described in Vann, 1996. HNF-SD-WM-CM-014, Tank Waste Remediation System Configuration Management Implementation Plan (Vann, 1997) will be revised to implement the requirements of this plan. This plan provides the responsibilities, actions and tools necessary to implement the requirements as defined in the above referenced documents

  13. The LHCb configuration database

    CERN Document Server

    Abadie, Lana; Gaspar, Clara; Jacobsson, Richard; Jost, Beat; Neufeld, Niko

    2005-01-01

    The Experiment Control System (ECS) will handle the monitoring, configuration and operation of all the LHCb experimental equipment. All parameters required to configure electronics equipment under the control of the ECS will reside in a configuration database. The database will contain two kinds of information: 1.\tConfiguration properties about devices such as hardware addresses, geographical location, and operational parameters associated with particular running modes (dynamic properties). 2.\tConnectivity between devices : this consists of describing the output and input connections of a device (static properties). The representation of these data using tables must be complete so that it can provide all the required information to the ECS and must cater for all the subsystems. The design should also guarantee a fast response time, even if a query results in a large volume of data being loaded from the database into the ECS. To fulfil these constraints, we apply the following methodology: Determine from the d...

  14. Pair creation by dynamic field configurations

    International Nuclear Information System (INIS)

    Aoyama, H.

    1982-01-01

    This thesis deals with the dynamics of the classical configuration of a quantum field unstable due to pair creation. The effective action method is developed first to treat such problems for a simple two-field model. Physical quantities such as pair creation probabilities are related to a complex function called the effective configuration, which is defined to minimize the effective action. Unitarity of the S-matrix is verified at the lowest order of the weak-field approximation. At the same order, the real valued vacuum expectation value of the quantum field, named the real configuration, is constructed in terms of the effective configuration. An integro-differential equation for the real configuration is given and is used to show that the real configuration is causal, while the effective configuration is not. Two practical applications of the effective action method are discussed. The first deals with pair creation in an anisotropic universe, and the real geometry is given in terms of the effective geometry in the samll anisotropy limit. The second deals with expanding vacuum bubbles. Corresponding to three possible situations, three kinds of field equations of each of the effective configuration and the real configuration are obtained. The behavior of the bubble is also studied by a semi-classical method, and one of the three situations is suggested to be plausible

  15. Tensor representation techniques for full configuration interaction: A Fock space approach using the canonical product format.

    Science.gov (United States)

    Böhm, Karl-Heinz; Auer, Alexander A; Espig, Mike

    2016-06-28

    In this proof-of-principle study, we apply tensor decomposition techniques to the Full Configuration Interaction (FCI) wavefunction in order to approximate the wavefunction parameters efficiently and to reduce the overall computational effort. For this purpose, the wavefunction ansatz is formulated in an occupation number vector representation that ensures antisymmetry. If the canonical product format tensor decomposition is then applied, the Hamiltonian and the wavefunction can be cast into a multilinear product form. As a consequence, the number of wavefunction parameters does not scale to the power of the number of particles (or orbitals) but depends on the rank of the approximation and linearly on the number of particles. The degree of approximation can be controlled by a single threshold for the rank reduction procedure required in the algorithm. We demonstrate that using this approximation, the FCI Hamiltonian matrix can be stored with N(5) scaling. The error of the approximation that is introduced is below Millihartree for a threshold of ϵ = 10(-4) and no convergence problems are observed solving the FCI equations iteratively in the new format. While promising conceptually, all effort of the algorithm is shifted to the required rank reduction procedure after the contraction of the Hamiltonian with the coefficient tensor. At the current state, this crucial step is the bottleneck of our approach and even for an optimistic estimate, the algorithm scales beyond N(10) and future work has to be directed towards reduction-free algorithms.

  16. Configuration management

    International Nuclear Information System (INIS)

    Beavers, R.R.; Sumiec, K.F.

    1989-01-01

    Increasing regulatory and industry attention has been focused on properly controlling electrical design changes. These changes can be controlled by using configuration management techniques. Typically, there are ongoing modifications to various process systems or additions due to new requirements at every power plant. Proper control of these changes requires that an organized method be used to ensure that all important parameters of the electrical auxiliary systems are analyzed and that these parameters are evaluated accurately. This process, commonly referred to as configuration management, is becoming more important on both fossil and nuclear plants. Recent NRC- and utility-initiated inspections have identified problems due to incomplete analysis of changes to electrical auxiliary systems at nuclear stations

  17. Computational parametric study of an impinging jet in a cross-flow configuration for electronics cooling applications

    International Nuclear Information System (INIS)

    Larraona, Gorka S.; Rivas, Alejandro; Antón, Raúl; Ramos, Juan Carlos; Pastor, Ignacio; Moshfegh, Bahram

    2013-01-01

    A parametric study based on design of experiments (DoE) techniques was carried out by computational simulation in order to evaluate the effect that design parameters have on heat transfer and pressure loss of an impinging jet in a cross-flow configuration. The main effects of each parameter and the interactions between parameters were analyzed in detail through the Response Surface Methodology (RSM). Additionally, the potential of the impinging jet in a cross-flow configuration was assessed by calculating the optimal values of the parameters and comparing the cooling efficiency of the resulting configuration with the efficiency of the conventional cross-flow configuration. It was found that the degree to which the average heat transfer coefficient is enhanced as the result of adding an impinging jet depends on the height of the cooled component. Specifically, it was found that the higher the component, the more significant the enhancement. -- Highlights: ► Five design parameters of an impinging jet in a cross-flow (IJCF) have been considered. ► Channel and jet velocities are found to be the most influential parameters. ► Significant interactions exist between some of the parameters. ► Larger cooling efficiency is achieved with the IJCF compared to the cross-flow solely. ► The enhancement obtained with the IJCF depends on the height of the component

  18. Experimental and theoretical study of the hyperfine structure in the lower configurations in 45Sc II

    International Nuclear Information System (INIS)

    Villemoes, P.; van Leeuwen, R.; Arnesen, A.; Heijkenskjoeld, F.; Kastberg, A.; Larsson, M.O.; Kotochigova, S.A.

    1992-01-01

    We have measured the hyperfine structure (hfs) of 12 levels in the configurations 3d4s, 3d 2 , and 3d4p in singly ionized scandium by collinear fast-ion-beam--laser spectroscopy. The hfs of the four levels in the configuration 3d4s has to our knowledge not been measured before. From these levels the ions were excited to levels in the 3d4p configuration by the frequency-doubled output of a ring dye laser with an intracavity mounted LiIO 3 crystal. Levels in the 3d 2 configuration were excited to levels in the 3d4p configuration with visible laser light. The resulting magnetic dipole (A) and electric quadrupole (B) hfs constants are analyzed in Sandars-Beck effective-operator formalism. The multiconfiguration Dirac-Fock method has been used to calculate the hfs constants for levels in the configurations 3d4s, 3d5s, 3d6s, 3d 2 , and 3d4p. Within the framework of the configuration-interaction method, an approach is presented for the calculation of the core polarization, which uses a virtual basis set localized inside the core. For all levels, this approach gives better results compared to previously published calculations

  19. Influence of changes in the valence electronic configuration on the structure of L-X-ray spectra of molybdenum

    International Nuclear Information System (INIS)

    Polasik, M; Koziol, K; Slabkowska, K; Czarnota, M; Pajek, M

    2009-01-01

    Extensive multiconfiguration Dirac-Fock (MCDF) calculations with the inclusion of the transverse (Breit) interaction and QED corrections have been carried out on molybdenum to explain the dependence of the structure of Lα 1,2 and Lβ 1 lines on the changes in configurations of the valence electrons belonging to two different configuration types: three open-shell 4d 6-r 5s r (r = 2,1,0) configurations and one closed-shell 4d 4 3/2 5s 2 configuration. It has been found that the MCDF predictions for open-shell valence configurations (4d 4 5s 2 , 4d 5 5s 1 , 4d 6 5s 0 ) much better reproduce observed structure of Lα 1,2 lines in X-ray spectra of molybdenum than closed-shell 4d 4 3/2 5s 2 valence configuration. The influence of changes in the valence electronic configuration on the structure of L-X-ray spectra of molybdenum is noticeable. Moreover, the observation of the shapes of L-X-ray spectra seems to be very good method to investigate the changes of the valence electronic configuration caused by the chemical environment.

  20. Valence ionized states of iron pentacarbonyl and eta5-cyclopentadienyl cobalt dicarbonyl studied by symmetry-adapted cluster-configuration interaction calculation and collision-energy resolved Penning ionization electron spectroscopy.

    Science.gov (United States)

    Fukuda, Ryoichi; Ehara, Masahiro; Nakatsuji, Hiroshi; Kishimoto, Naoki; Ohno, Koichi

    2010-02-28

    Valence ionized states of iron pentacarbonyl Fe(CO)(5) and eta(5)-cyclopentadienyl cobalt dicarbonyl Co(eta(5)-C(5)H(5))(CO)(2) have been studied by ultraviolet photoelectron spectroscopy, two-dimensional Penning ionization electron spectroscopy (2D-PIES), and symmetry-adapted cluster-configuration interaction calculations. Theory provided reliable assignments for the complex ionization spectra of these molecules, which have metal-carbonyl bonds. Theoretical ionization energies agreed well with experimental observations and the calculated wave functions could explain the relative intensities of PIES spectra. The collision-energy dependence of partial ionization cross sections (CEDPICS) was obtained by 2D-PIES. To interpret these CEDPICS, the interaction potentials between the molecules and a Li atom were examined in several coordinates by calculations. The relation between the slope of the CEDPICS and the electronic structure of the ionized states, such as molecular symmetry and the spatial distribution of ionizing orbitals, was analyzed. In Fe(CO)(5), an attractive interaction was obtained for the equatorial CO, while the interaction for the axial CO direction was repulsive. For Co(eta(5)-C(5)H(5))(CO)(2), the interaction potential in the direction of both Co-C-O and Co-Cp ring was attractive. These anisotropic interactions and ionizing orbital distributions consistently explain the relative slopes of the CEDPICS.

  1. In-memory interconnect protocol configuration registers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kevin Y.; Roberts, David A.

    2017-09-19

    Systems, apparatuses, and methods for moving the interconnect protocol configuration registers into the main memory space of a node. The region of memory used for storing the interconnect protocol configuration registers may also be made cacheable to reduce the latency of accesses to the interconnect protocol configuration registers. Interconnect protocol configuration registers which are used during a startup routine may be prefetched into the host's cache to make the startup routine more efficient. The interconnect protocol configuration registers for various interconnect protocols may include one or more of device capability tables, memory-side statistics (e.g., to support two-level memory data mapping decisions), advanced memory and interconnect features such as repair resources and routing tables, prefetching hints, error correcting code (ECC) bits, lists of device capabilities, set and store base address, capability, device ID, status, configuration, capabilities, and other settings.

  2. In-memory interconnect protocol configuration registers

    Science.gov (United States)

    Cheng, Kevin Y.; Roberts, David A.

    2017-09-19

    Systems, apparatuses, and methods for moving the interconnect protocol configuration registers into the main memory space of a node. The region of memory used for storing the interconnect protocol configuration registers may also be made cacheable to reduce the latency of accesses to the interconnect protocol configuration registers. Interconnect protocol configuration registers which are used during a startup routine may be prefetched into the host's cache to make the startup routine more efficient. The interconnect protocol configuration registers for various interconnect protocols may include one or more of device capability tables, memory-side statistics (e.g., to support two-level memory data mapping decisions), advanced memory and interconnect features such as repair resources and routing tables, prefetching hints, error correcting code (ECC) bits, lists of device capabilities, set and store base address, capability, device ID, status, configuration, capabilities, and other settings.

  3. The analysis of the 3d8, 3d74p and 3p53d9 configurations of Se IX

    International Nuclear Information System (INIS)

    Kleef, T.A.M. van; Uylings, P.; Joshi, Y.N.; Podobedova, L.I.; Ryabtsev, A.N.

    1984-01-01

    The ninth spectrum of selenium (Se IX) was photographed in the region 100-140 A on a variety of grazing incidence spectrographs using a triggered spark or an open spark as sources. On the basis of these measurements all levels of the 3d 8 configuration, 11 out of 12 levels of the 3p 5 3d 9 configuration and 95 out of 110 levels of the 3d 7 4p configuration have been established. A strong configuration interaction exists between the two odd configurations. Least-squares-fit and Hartree-Fock parameter calculations support the analysis. Two hundred and twenty-five (225) lines have been classified in Se IX. (orig.)

  4. Configuration Control Office

    CERN Multimedia

    Beltramello, O

    In order to enable Technical Coordination to manage the detector configuration and to be aware of all changes in this configuration, a baseline of the envelopes has been created in April 2001. Fifteen system and multi-system envelope drawings have been approved and baselined. An EDMS file is associated with each approved envelope, which provides a list of the current known unsolved conflicts related to the envelope and a list of remaining drawing inconsistencies to be corrected. The envelope status with the associated drawings and EDMS file can be found on the web at this adress: http://atlasinfo.cern.ch/Atlas/TCOORD/Activities/Installation/Configuration/ Any modification in the baseline has to be requested via the Engineering Change Requests. The procedure can be found under: http://atlasinfo.cern.ch/Atlas/TCOORD/Activities/TcOffice/Quality/ECR/ TC will review all the systems envelopes in the near future and manage conflict resolution with the collaboration of the systems.

  5. A non-JKL density matrix functional for intergeminal correlation between closed-shell geminals from analysis of natural orbital configuration interaction expansions.

    Science.gov (United States)

    van Meer, R; Gritsenko, O V; Baerends, E J

    2018-03-14

    Almost all functionals that are currently used in density matrix functional theory have been created by some a priori ansatz that generates approximations to the second-order reduced density matrix (2RDM). In this paper, a more consistent approach is used: we analyze the 2RDMs (in the natural orbital basis) of rather accurate multi-reference configuration interaction expansions for several small molecules (CH 4 , NH 3 , H 2 O, FH, and N 2 ) and use the knowledge gained to generate new functionals. The analysis shows that a geminal-like structure is present in the 2RDMs, even though no geminal theory has been applied from the onset. It is also shown that the leading non-geminal dynamical correlation contributions are generated by a specific set of double excitations. The corresponding determinants give rise to non-JKL (non Coulomb/Exchange like) multipole-multipole dispersive attractive terms between geminals. Due to the proximity of the geminals, these dispersion terms are large and cannot be omitted, proving pure JKL functionals to be essentially deficient. A second correction emerges from the observation that the "normal" geminal-like exchange between geminals breaks down when one breaks multiple bonds. This problem can be fixed by doubling the exchange between bond broken geminals, effectively restoring the often physically correct high-spin configurations on the bond broken fragments. Both of these corrections have been added to the commonly used antisymmetrized product of strongly orthogonal geminals functional. The resulting non-JKL functional Extended Löwdin-Shull Dynamical-Multibond is capable of reproducing complete active space self-consistent field curves, in which one active orbital is used for each valence electron.

  6. A non-JKL density matrix functional for intergeminal correlation between closed-shell geminals from analysis of natural orbital configuration interaction expansions

    Science.gov (United States)

    van Meer, R.; Gritsenko, O. V.; Baerends, E. J.

    2018-03-01

    Almost all functionals that are currently used in density matrix functional theory have been created by some a priori ansatz that generates approximations to the second-order reduced density matrix (2RDM). In this paper, a more consistent approach is used: we analyze the 2RDMs (in the natural orbital basis) of rather accurate multi-reference configuration interaction expansions for several small molecules (CH4, NH3, H2O, FH, and N2) and use the knowledge gained to generate new functionals. The analysis shows that a geminal-like structure is present in the 2RDMs, even though no geminal theory has been applied from the onset. It is also shown that the leading non-geminal dynamical correlation contributions are generated by a specific set of double excitations. The corresponding determinants give rise to non-JKL (non Coulomb/Exchange like) multipole-multipole dispersive attractive terms between geminals. Due to the proximity of the geminals, these dispersion terms are large and cannot be omitted, proving pure JKL functionals to be essentially deficient. A second correction emerges from the observation that the "normal" geminal-like exchange between geminals breaks down when one breaks multiple bonds. This problem can be fixed by doubling the exchange between bond broken geminals, effectively restoring the often physically correct high-spin configurations on the bond broken fragments. Both of these corrections have been added to the commonly used antisymmetrized product of strongly orthogonal geminals functional. The resulting non-JKL functional Extended Löwdin-Shull Dynamical-Multibond is capable of reproducing complete active space self-consistent field curves, in which one active orbital is used for each valence electron.

  7. PIV Logon Configuration Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Glen Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-04

    This document details the configurations and enhancements implemented to support the usage of federal Personal Identity Verification (PIV) Card for logon on unclassified networks. The guidance is a reference implementation of the configurations and enhancements deployed at the Los Alamos National Laboratory (LANL) by Network and Infrastructure Engineering – Core Services (NIE-CS).

  8. Interactive ultrasonic field simulations for complex non-destructive testing configurations

    International Nuclear Information System (INIS)

    Chouh, Hamza

    2016-01-01

    In order to fulfill increasing reliability and safety requirements, non-destructive testing techniques are constantly evolving and so does their complexity. Consequently, simulation is an essential part of their design. We developed a tool for the simulation of the ultrasonic field radiated by any planar probes into non-destructive testing configurations involving meshed geometries without prominent edges, isotropic and anisotropic, homogeneous and heterogeneous materials, and wave trajectories that can include reflections and transmissions. We approximate the ultrasonic wave fronts by using polynomial interpolators that are local to ultrasonic ray pencils. They are obtained using a surface research algorithm based on pencil tracing and successive subdivisions. Their interpolators enable the computation of the necessary quantities for the impulse responses on each point of a sampling of the transducer surface that fulfills the Shannon criterion. By doing so, we can compute a global impulse response which, when convolved with the excitation signal of the transducer, results in the ultrasonic field. The usage of task parallelism and of SIMD instructions on the most computationally expensive steps yields an important performance boost. Finally, we developed a tool for progressive visualization of field images. It benefits from an image reconstruction technique and schedules field computations in order to accelerate convergence towards the final image. (author) [fr

  9. The electronic states of 1,2,3-triazole studied by vacuum ultraviolet photoabsorption and ultraviolet photoelectron spectroscopy, and a comparison with ab initio configuration interaction methods

    DEFF Research Database (Denmark)

    Palmer, Michael H.; Hoffmann, Søren Vrønning; Jones, Nykola C.

    2011-01-01

    The Rydberg states in the vacuum ultraviolet photoabsorption spectrum of 1,2,3-triazole have been measured and analyzed with the aid of comparison to the UV valence photoelectron ionizations and the results of ab initio configuration interaction (CI) calculations. Calculated electronic ionization...... and excitation energies for singlet, triplet valence, and Rydberg states were obtained using multireference multiroot CI procedures with an aug-cc-pVTZ [5s3p3d1f] basis set and a set of Rydberg [4s3p3d3f] functions. Adiabatic excitation energies obtained for several electronic states using coupled...... are the excitations consistent with an f-series....

  10. Offshore Vendors’ Software Development Team Configurations

    DEFF Research Database (Denmark)

    Chakraborty, Suranjan; Sarker, Saonee; Rai, Sudhanshu

    2012-01-01

    This research uses configuration theory and data collected from a major IT vendor organization to examine primary configurations of distributed teams in a global off-shoring context. The study indicates that off-shoring vendor organizations typically deploy three different types of configurations...

  11. Interactive flow field around two Savonius turbines

    Energy Technology Data Exchange (ETDEWEB)

    Shigetomi, Akinari; Murai, Yuichi; Tasaka, Yuji; Takeda, Yasushi [Laboratory for Flow Control, Division of Energy and Environmental System, Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628 (Japan)

    2011-02-15

    The use of a Savonius type of vertical axis wind turbine is expanding in urban environments as a result of its ability to withstand turbulence as well as its relatively quiet operation. In the past, single turbine performance has been investigated primarily for determining the optimum blade configuration. In contrast, combining multiple Savonius turbines in the horizontal plane produces extra power in particular configurations. This results from the interaction between the two flow fields around individual turbines. To understand quantitatively the interaction mechanism, we measured the flow field around two Savonius turbines in close configurations using particle image velocimetry. The phase-averaged flow fields with respect to the rotation angle of the turbines revealed two types of power-improvement interactions. One comes from the Magnus effect that bends the main stream behind the turbine to provide additional rotation of the downstream turbine. The other is obtained from the periodic coupling of local flow between the two turbines, which is associated with vortex shedding and cyclic pressure fluctuations. Use of this knowledge will assist the design of packaged installations of multiple Savonius turbines. (author)

  12. Comparison between four dissimilar solar panel configurations

    Science.gov (United States)

    Suleiman, K.; Ali, U. A.; Yusuf, Ibrahim; Koko, A. D.; Bala, S. I.

    2017-12-01

    Several studies on photovoltaic systems focused on how it operates and energy required in operating it. Little attention is paid on its configurations, modeling of mean time to system failure, availability, cost benefit and comparisons of parallel and series-parallel designs. In this research work, four system configurations were studied. Configuration I consists of two sub-components arranged in parallel with 24 V each, configuration II consists of four sub-components arranged logically in parallel with 12 V each, configuration III consists of four sub-components arranged in series-parallel with 8 V each, and configuration IV has six sub-components with 6 V each arranged in series-parallel. Comparative analysis was made using Chapman Kolmogorov's method. The derivation for explicit expression of mean time to system failure, steady state availability and cost benefit analysis were performed, based on the comparison. Ranking method was used to determine the optimal configuration of the systems. The results of analytical and numerical solutions of system availability and mean time to system failure were determined and it was found that configuration I is the optimal configuration.

  13. Configuration Management Plan for K Basins

    International Nuclear Information System (INIS)

    Weir, W.R.; Laney, T.

    1995-01-01

    This plan describes a configuration management program for K Basins that establishes the systems, processes, and responsibilities necessary for implementation. The K Basins configuration management plan provides the methodology to establish, upgrade, reconstitute, and maintain the technical consistency among the requirements, physical configuration, and documentation. The technical consistency afforded by this plan ensures accurate technical information necessary to achieve the mission objectives that provide for the safe, economic, and environmentally sound management of K Basins and the stored material. The configuration management program architecture presented in this plan is based on the functional model established in the DOE Standard, DOE-STD-1073-93, open-quotes Guide for Operational Configuration Management Programclose quotes

  14. On the interaction between the ground- and s-bands in the CHFB model

    International Nuclear Information System (INIS)

    Haakansson, H.B.

    1980-01-01

    The interaction between the ground configuration and the first excited 2 qp (s-) configuration in the isub 13/2 CHFB model is eliminated in order to investigate how the interaction is built up by the different terms in the Hamiltonian. The changes of sign of the interaction can be understood from the particle number projected wave functions. Oscillations are still present after projection. (author)

  15. A configurable component-based software system for magnetic field measurements

    Energy Technology Data Exchange (ETDEWEB)

    Nogiec, J.M.; DiMarco, J.; Kotelnikov, S.; Trombly-Freytag, K.; Walbridge, D.; Tartaglia, M.; /Fermilab

    2005-09-01

    A new software system to test accelerator magnets has been developed at Fermilab. The magnetic measurement technique involved employs a single stretched wire to measure alignment parameters and magnetic field strength. The software for the system is built on top of a flexible component-based framework, which allows for easy reconfiguration and runtime modification. Various user interface, data acquisition, analysis, and data persistence components can be configured to form different measurement systems that are tailored to specific requirements (e.g., involving magnet type or test stand). The system can also be configured with various measurement sequences or tests, each of them controlled by a dedicated script. It is capable of working interactively as well as executing a preselected sequence of tests. Each test can be parameterized to fit the specific magnet type or test stand requirements. The system has been designed with portability in mind and is capable of working on various platforms, such as Linux, Solaris, and Windows. It can be configured to use a local data acquisition subsystem or a remote data acquisition computer, such as a VME processor running VxWorks. All hardware-oriented components have been developed with a simulation option that allows for running and testing measurements in the absence of data acquisition hardware.

  16. Intersystem-crossing and phosphorescence rates in fac-Ir{sup III}(ppy){sub 3}: A theoretical study involving multi-reference configuration interaction wavefunctions

    Energy Technology Data Exchange (ETDEWEB)

    Kleinschmidt, Martin; Marian, Christel M., E-mail: Christel.Marian@hhu.de [Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf (Germany); Wüllen, Christoph van [Fachbereich Chemie and Forschungszentrum OPTIMAS, Technical University of Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern (Germany)

    2015-03-07

    We have employed combined density functional theory and multi-reference configuration interaction methods including spin–orbit coupling (SOC) effects to investigate the photophysics of the green phosphorescent emitter fac-tris-(2-phenylpyridine)iridium (fac-Ir(ppy){sub 3}). A critical evaluation of our quantum chemical approaches shows that a perturbational treatment of SOC is the method of choice for computing the UV/Vis spectrum of this heavy transition metal complex while multi-reference spin–orbit configuration interaction is preferable for calculating the phosphorescence rates. The particular choice of the spin–orbit interaction operator is found to be of minor importance. Intersystem crossing (ISC) rates have been determined by Fourier transformation of the time correlation function of the transition including Dushinsky rotations. In the electronic ground state, fac-Ir(ppy){sub 3} is C{sub 3} symmetric. The calculated UV/Vis spectrum is in excellent agreement with experiment. The effect of SOC is particularly pronounced for the metal-to-ligand charge transfer (MLCT) band in the visible region of the absorption spectrum which does not only extend its spectral onset towards longer wavelengths but also experiences a blue shift of its maximum. Pseudo-Jahn-Teller interaction leads to asymmetric coordinate displacements in the lowest MLCT states. Substantial electronic SOC and a small energy gap make ISC an ultrafast process in fac-Ir(ppy){sub 3}. For the S{sub 1}↝T{sub 1} non-radiative transition, we compute a rate constant of k{sub ISC} = 6.9 × 10{sup 12} s{sup −1} which exceeds the rate constant of radiative decay to the electronic ground state by more than six orders of magnitude, in agreement with the experimental observation of a subpicosecond ISC process and a triplet quantum yield close to unity. As a consequence of the geometric distortion in the T{sub 1} state, the T{sub 1} → S{sub 0} transition densities are localized on one of the

  17. Configurable Input Devices for 3D Interaction using Optical Tracking

    NARCIS (Netherlands)

    A.J. van Rhijn (Arjen)

    2007-01-01

    textabstractThree-dimensional interaction with virtual objects is one of the aspects that needs to be addressed in order to increase the usability and usefulness of virtual reality. Human beings have difficulties understanding 3D spatial relationships and manipulating 3D user interfaces, which

  18. Configurable input devices for 3D interaction using optical tracking

    NARCIS (Netherlands)

    Rhijn, van A.J.

    2007-01-01

    Three-dimensional interaction with virtual objects is one of the aspects that needs to be addressed in order to increase the usability and usefulness of virtual reality. Human beings have difficulties understanding 3D spatial relationships and manipulating 3D user interfaces, which require the

  19. Risk-based configuration control system: Analysis and approaches

    International Nuclear Information System (INIS)

    Samanta, P.K.; Kim, I.S.; Vesely, W.E.; Lofgren, E.V.

    1989-01-01

    This paper presents an evaluation of the configuration risks associated with the operation of a nuclear power plant and the approaches to control these risks using risk-based configuration control considerations. In that context, the actual and maximum potential configuration risks at a plant are analyzed and the alternative types criteria for a risk-based configuration control systems are described. The risk-based configuration calculations which are studied here focus on the core-melt frequency impacts from given plant configurations. By calculating the core-melt frequency for given configurations, the configurations which cause large core-melt frequency increases can be identified and controlled. The duration time in which the configuration can exist can then be limited or the core-melt frequency level associated with the configuration can be reduced by various actions. Furthermore, maintenances and tests can be scheduled to avoid the configurations which cause large core-melt frequency increases. Present technical specifications do not control many of these configurations which can cause large core-melt frequency increases but instead focus on many risk-unimportant allowed outage times. Hence, risk-based configuration management can be effectively used to reduce core-melt frequency associated risks at a plant and at the same time can provide flexibility in plant operation. The alternative strategies for controlling the core-melt frequency and other risk contributions include: (1) controlling the increased risk level which is associated with the configuration; (2) controlling the individual configuration risk which is associated with a given duration of a configuration; (3) controlling the time period configuration risk from configurations which occur in a time period

  20. System of ispFlash configuration

    International Nuclear Information System (INIS)

    Bourrion, Olivier

    2003-01-01

    The aim of this module is to allow the use of FPGA components instead of EPLD components which for an equivalent or even inferior capacity are more expensive. For instance, the idea is to replace CPLD components having 512 macro-cells by one FPGA spartan II of Xilinx. However, due to the configuration's volatility, one configuration means is needed to put under voltage. A solution appears to be the using of a high capacity Flash memory coupled to a CPLD of small size to comply with the FPGA configuration protocol; also, one has to provide an in situ configuration means for this memory. Obviously, a product having an equivalent functionality already exists, since Xilinx and ALTERA supply PROMs of serial configuration. Unfortunately, they are expensive and a dealer is implied while the FLASH, the small CPLD and the FPGA spartan II are currently available. In conclusion, by using this assembly, which requires a small supplementary surface and a delay of upmost 240 ms (for the largest FPGA 1 Mbit), one obtains a solution cheaper and more performing than an EPLD of high capacity

  1. The electronic states of 1,2,4-triazoles: A study of 1H- and1-methyl-1,2,4-triazole by vacuum ultraviolet photoabsorption and ultraviolet photoelectron spectroscopy and a comparison with ab initio configuration interaction computations

    DEFF Research Database (Denmark)

    Palmer, Michael H.; Camp, Philip J.; Hoffmann, Søren Vrønning

    2012-01-01

    The first vacuum ultraviolet absorption spectrum of a 1,2,4-triazole has been obtained and analyzed in detail, with assistance from both an enhanced UV photoelectron spectroscopic study and ab initio multi-reference multi-root configuration interaction procedures. For both 1H- and 1-methyl-1,2...

  2. Observed benefits from product configuration systems

    DEFF Research Database (Denmark)

    Hvam, Lars; Haug, Anders; Mortensen, Niels Henrik

    2013-01-01

    This article presents a study of the benefits obtained from applying product configuration systems based on a case study in four industry companies. The impacts are described according to main objectives in literature for imple-menting product configuration systems: lead time in the specification...... affected by the use of product configu-ration systems e.g. increased sales, decrease in the number of SKU's, improved ability to introduce new products, and cost reductions.......This article presents a study of the benefits obtained from applying product configuration systems based on a case study in four industry companies. The impacts are described according to main objectives in literature for imple-menting product configuration systems: lead time in the specification...... processes, on-time delivery of the specifica-tions, and resource consumption for making specifications, quality of specifications, optimization of products and services, and other observations. The purpose of the study is partly to identify specific impacts observed from implementing product configuration...

  3. Configurations and level structure of 219Rn

    International Nuclear Information System (INIS)

    Sheline, R.K.; Liang, C.F.; Paris, P.

    1998-01-01

    The level structure of 219 Rn has been studied using the alpha decay of 223 Ra and coincident gamma rays. While only modest changes are required in the level structure, and only above 342.8 keV, severe changes are required throughout the level scheme in the spin assigments. These changes allow the assignment of two sets of anomalous bands with K=5/2 ± and K=3/2 ± . The K=5/2 ± bands have configurations intermediate between the reflection asymmetric configuration and the g 9/2 shell model configuration, while the K=3/2 ± bands have configurations intermediate between the mixed reflection asymmetric configuration and the i 11/2 shell model configuration. Comparison of the systematics of 219 Rn with neighboring isotones, isobars, and isotopes shows clearly the collapse of the quadrupole-octupole-type configurations into the less degenerate shell model configurations. copyright 1998 The American Physical Society

  4. Evolution of the Configuration Database Design

    International Nuclear Information System (INIS)

    Salnikov, A.

    2006-01-01

    The BABAR experiment at SLAC successfully collects physics data since 1999. One of the major parts of its on-line system is the configuration database which provides other parts of the system with the configuration data necessary for data taking. Originally the configuration database was implemented in the Objectivity/DB ODBMS. Recently BABAR performed a successful migration of its event store from Objectivity/DB to ROOT and this prompted a complete phase-out of the Objectivity/DB in all other BABAR databases. It required the complete redesign of the configuration database to hide any implementation details and to support multiple storage technologies. In this paper we describe the process of the migration of the configuration database, its new design, implementation strategy and details

  5. Study of operational risk-based configuration control

    Energy Technology Data Exchange (ETDEWEB)

    Vesely, W E [Science Applications International Corp., Dublin, OH (United States); Samanta, P K; Kim, I S [Brookhaven National Lab., Upton, NY (United States)

    1991-08-01

    This report studies aspects of a risk-based configuration control system to detect and control plant configurations from a risk perspective. Configuration control, as the term is used here, is the management of component configurations to achieve specific objectives. One important objective is to control risk and safety. Another is to operate efficiently and make effective use of available resources. PSA-based evaluations are performed to study configuration to core-melt frequency and core-melt probability for two plants. Some equipment configurations can cause large core-melt frequency and there are a number of such configurations that are not currently controlled by technical specifications. However, the expected frequency of occurrence of the impacting configurations is small and the core-melt probability contributions are also generally small. The insights from this evaluation are used to develop the framework for an effective risk-based configuration control system. The focal points of such a system and the requirements for tools development for implementing the system are defined. The requirements of risk models needed for the system, and the uses of plant-specific data are also discussed. 18 refs., 25 figs., 10 tabs.

  6. Multireference configuration interaction study on spectroscopic properties of low-lying electronic states of As2 molecule

    International Nuclear Information System (INIS)

    Wang Jie-Min; Liu Qiang

    2013-01-01

    The potential energy curves (PECs) of four electronic states (X 1 Σ g + , e 3 Δ u , a 3 Σ u − , and d 3 Π g ) of an As 2 molecule are investigated employing the complete active space self-consistent field (CASSCF) method followed by the valence internally contracted multireference configuration interaction (MRCI) approach in conjunction with the correlation-consistent aug-cc-pV5Z basis set. The effect on PECs by the relativistic correction is taken into account. The way to consider the relativistic correction is to employ the second-order Douglas-Kroll Hamiltonian approximation. The correction is made at the level of a cc-pV5Z basis set. The PECs of the electronic states involved are extrapolated to the complete basis set limit. With the PECs, the spectroscopic parameters (T e , R e , ω e , ω e x e , ω e y e , α e , β e , γ e , and B e ) of these electronic states are determined and compared in detail with those reported in the literature. Excellent agreement is found between the present results and the experimental data. The first 40 vibrational states are studied for each electronic state when the rotational quantum number J equals zero. In addition, the vibrational levels, inertial rotation and centrifugal distortion constants of d 3 Π g electronic state are reported which are in excellent agreement with the available measurements. Comparison with the experimental data shows that the present results are both reliable and accurate. (atomic and molecular physics)

  7. Evolving shape coexistence in the lead isotopes: The geometry of configuration mixing in nuclei

    International Nuclear Information System (INIS)

    Frank, Alejandro; Isacker, Piet van; Vargas, Carlos E.

    2004-01-01

    A matrix coherent-state approach is applied to the interacting boson model (IBM) with configuration mixing to describe the evolving geometry of neutron-deficient Pb isotopes. It is found that for small mixing with parameters determined previously, the potential energy surface of 186 Pb has three minima, which correspond to spherical, oblate, and prolate shapes, in agreement with recent measurements and mean-field calculations. Away from midshell, in the heavier Pb isotopes, no deformed minima occur. Our analysis suggests that the configuration-mixing IBM, used in conjunction with a matrix coherent-state method, may be a reliable tool for the study of geometric aspects of shape coexistence in nuclei

  8. Analyzing Visibility Configurations.

    Science.gov (United States)

    Dachsbacher, C

    2011-04-01

    Many algorithms, such as level of detail rendering and occlusion culling methods, make decisions based on the degree of visibility of an object, but do not analyze the distribution, or structure, of the visible and occluded regions across surfaces. We present an efficient method to classify different visibility configurations and show how this can be used on top of existing methods based on visibility determination. We adapt co-occurrence matrices for visibility analysis and generalize them to operate on clusters of triangular surfaces instead of pixels. We employ machine learning techniques to reliably classify the thus extracted feature vectors. Our method allows perceptually motivated level of detail methods for real-time rendering applications by detecting configurations with expected visual masking. We exemplify the versatility of our method with an analysis of area light visibility configurations in ray tracing and an area-to-area visibility analysis suitable for hierarchical radiosity refinement. Initial results demonstrate the robustness, simplicity, and performance of our method in synthetic scenes, as well as real applications.

  9. Risk-based configuration control system: Analysis and approaches

    International Nuclear Information System (INIS)

    Samanta, P.K.; Kim, I.S.; Lofgren, E.V.; Vesely, W.E.

    1990-01-01

    This paper presents an analysis of risks associated with component outage configurations during power operation of a nuclear power plant and discusses approaches and strategies for developing a risk-based configuration control system. A configuration, as used here, is a set of component states. The objective of risk-based configuration control is to detect and control plant configurations using a risk-perspective. The configuration contributions to core-melt frequency and core-melt probability are studied for two plants. Large core-melt frequency can be caused by configurations and there are a number of such configurations that are not currently controlled by technical specifications. However, the expected frequency of occurrence of the impacting configurations is small and the actual core-melt probability contributions are also generally small. Effective strategies and criteria for controlling configuration risks are presented. Such control strategies take into consideration the risks associated with configurations, the nature and characteristics of the configuration risks, and also the practical considerations such as adequate repair times and/or options to transfer to low risk configurations. Alternative types of criteria are discussed that are not overly restrictive to result in unnecessary plant shutdown, but rather motivates effective test and maintenance practices that control risk-significant configurations to allow continued operation with an adequate margin to meet challenges to safety

  10. Risk-based configuration control system: Analysis and approaches

    International Nuclear Information System (INIS)

    Samanta, P.K.; Vesely, W.E.; Kim, I.S.; Lofgren, E.V.

    1989-01-01

    This paper presents an analysis of risks associated with component outage configurations during power operation of a nuclear power plant and discusses approaches and strategies for developing a risk-based configuration control system. A configuration, as used here, is a set of component states. The objective of risk-based configuration control is to detect and control plant configurations using a risk-perspective. The configuration contributions to core-melt frequency and core-melt probability are studied for two plants. Large core-melt frequency can be caused by configurations and there are a number of such configurations that are not currently controlled by technical specifications. However, the expected frequency of occurrence of the impacting configurations is small and the actual core-melt probability contributions are also generally small. Effective strategies and criteria for controlling configuration risks are presented. Such control strategies take into consideration the risks associated with configurations, the nature and characteristics of the configuration risks, and also the practical considerations such as adequate repair times and/or options to transfer to low risk configurations. Alternative types of criteria are discussed that are not overly restrictive to result in unnecessary plant shutdown, but rather motivates effective tests and maintenance practices that control; risk-significant configurations to allow continued operation with an adequate margin to meet challenges to safety. 3 refs., 7 figs., 2 tabs

  11. The influence of R and S configurations of a series of amphetamine derivatives on quantitative structure–activity relationship models

    International Nuclear Information System (INIS)

    Fresqui, Maíra A.C.; Ferreira, Márcia M.C.; Trsic, Milan

    2013-01-01

    Highlights: ► The QSAR model is not dependent of ligand conformation. ► Amphetamines were analyzed by quantum chemical, steric and hydrophobic descriptors. ► CHELPG atomic charges on the benzene ring are one of the most important descriptors. ► The PLS models built were extensively validated. ► Manual docking supports the QSAR results by pi–pi stacking interactions. - Abstract: Chiral molecules need special attention in drug design. In this sense, the R and S configurations of a series of thirty-four amphetamines were evaluated by quantitative structure–activity relationship (QSAR). This class of compounds has antidepressant, anti-Parkinson and anti-Alzheimer effects against the enzyme monoamine oxidase A (MAO A). A set of thirty-eight descriptors, including electronic, steric and hydrophobic ones, were calculated. Variable selection was performed through the correlation coefficients followed by the ordered predictor selection (OPS) algorithm. Six descriptors (CHELPG atomic charges C3, C4 and C5, electrophilicity, molecular surface area and log P) were selected for both configurations and a satisfactory model was obtained by PLS regression with three latent variables with R 2 = 0.73 and Q 2 = 0.60, with external predictability Q 2 = 0.68, and R 2 = 0.76 and Q 2 = 0.67 with external predictability Q 2 = 0.50, for R and S configurations, respectively. To confirm the robustness of each model, leave-N-out cross validation (LNO) was carried out and the y-randomization test was used to check if these models present chance correlation. Moreover, both automated or a manual molecular docking indicate that the reaction of ligands with the enzyme occurs via pi–pi stacking interaction with Tyr407, inclined face-to-face interaction with Tyr444, while aromatic hydrogen–hydrogen interactions with Tyr197 are preferable for R instead of S configurations.

  12. Supply chain configuration concepts, solutions, and applications

    CERN Document Server

    Chandra, Charu

    2016-01-01

    This book discusses the models and tools available for solving configuration problems, emphasizes the value of model integration to obtain comprehensive and robust configuration decisions, proposes solutions for supply chain configuration in the presence of stochastic and dynamic factors, and illustrates application of the techniques discussed in applied studies. It is divided into four parts, which are devoted to defining the supply chain configuration problem and identifying key issues, describing solutions to various problems identified, proposing technologies for enabling supply chain confirmations, and discussing applied supply chain configuration problems. Its distinguishing features are: an explicit focus on the configuration problem an in-depth coverage of configuration models an emphasis on model integration and application of information modeling techniques in decision-making New to this edition is Part II: Technologies, which introduces readers to various technologies being utilized for supply chai...

  13. Interaction, coalescence, and collapse of localized patterns in a quasi-one-dimensional system of interacting particles

    Science.gov (United States)

    Dessup, Tommy; Coste, Christophe; Saint Jean, Michel

    2017-01-01

    We study the path toward equilibrium of pairs of solitary wave envelopes (bubbles) that modulate a regular zigzag pattern in an annular channel. We evidence that bubble pairs are metastable states, which spontaneously evolve toward a stable single bubble. We exhibit the concept of topological frustration of a bubble pair. A configuration is frustrated when the particles between the two bubbles are not organized in a modulated staggered row. For a nonfrustrated (NF) bubble pair configuration, the bubbles interaction is attractive, whereas it is repulsive for a frustrated (F) configuration. We describe a model of interacting solitary wave that provides all qualitative characteristics of the interaction force: It is attractive for NF systems and repulsive for F systems and decreases exponentially with the bubbles distance. Moreover, for NF systems, the bubbles come closer and eventually merge as a single bubble, in a coalescence process. We also evidence a collapse process, in which one bubble shrinks in favor of the other one, overcoming an energetic barrier in phase space. This process is relevant for both NF systems and F systems. In NF systems, the coalescence prevails at low temperature, whereas thermally activated jumps make the collapse prevail at high temperature. In F systems, the path toward equilibrium involves a collapse process regardless of the temperature.

  14. Records of Migration in the Exoplanet Configurations

    Science.gov (United States)

    Michtchenko, Tatiana A.; Rodriguez Colucci, A.; Tadeu Dos Santos, M.

    2013-05-01

    Abstract (2,250 Maximum Characters): When compared to our Solar System, many exoplanet systems exhibit quite unusual planet configurations; some of these are hot Jupiters, which orbit their central stars with periods of a few days, others are resonant systems composed of two or more planets with commensurable orbital periods. It has been suggested that these configurations can be the result of a migration processes originated by tidal interactions of the planets with disks and central stars. The process known as planet migration occurs due to dissipative forces which affect the planetary semi-major axes and cause the planets to move towards to, or away from, the central star. In this talk, we present possible signatures of planet migration in the distribution of the hot Jupiters and resonant exoplanet pairs. For this task, we develop a semi-analytical model to describe the evolution of the migrating planetary pair, based on the fundamental concepts of conservative and dissipative dynamics of the three-body problem. Our approach is based on an analysis of the energy and the orbital angular momentum exchange between the two-planet system and an external medium; thus no specific kind of dissipative forces needs to be invoked. We show that, under assumption that dissipation is weak and slow, the evolutionary routes of the migrating planets are traced by the stationary solutions of the conservative problem (Birkhoff, Dynamical systems, 1966). The ultimate convergence and the evolution of the system along one of these modes of motion are determined uniquely by the condition that the dissipation rate is sufficiently smaller than the roper frequencies of the system. We show that it is possible to reassemble the starting configurations and migration history of the systems on the basis of their final states, and consequently to constrain the parameters of the physical processes involved.

  15. The Broader Spectrum of Magnetic Configurations for Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Prager, S C [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Ryutov, D D [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2012-09-15

    Over the decades, a large array of magnetic configurations has been studied, producing a huge amount of fusion plasma science. As configurations are developed, information and techniques learned through one configuration influence the development of other configurations. In this way, configurations evolve unexpectedly in response to new information. Configurations that were at a pause can become unstuck by new discoveries, and configurations that appeared promising for fusion energy can become unattractive as new limits are uncovered. The plasma science of fusion energy is sufficiently complex that, as we approach ever closer to practical fusion power, the need for potential contributions of broad research of multiple magnetic configurations remains strong. (author)

  16. National Ignition Facility Configuration Management Plan

    International Nuclear Information System (INIS)

    Cabral, S G; Moore, T L

    2002-01-01

    This Configuration Management Plan (CMP) describes the technical and administrative management process for controlling the National Ignition Facility (NIF) Project configuration. The complexity of the NIF Project (i.e., participation by multiple national laboratories and subcontractors involved in the development, fabrication, installation, and testing of NIF hardware and software, as well as construction and testing of Project facilities) requires implementation of the comprehensive configuration management program defined in this plan. A logical schematic illustrating how the plan functions is provided in Figure 1. A summary of the process is provided in Section 4.0, Configuration Change Control. Detailed procedures that make up the overall process are referenced. This CMP is consistent with guidance for managing a project's configuration provided in Department of Energy (DOE) Order 430.1, Guide PMG 10, ''Project Execution and Engineering Management Planning''. Configuration management is a formal discipline comprised of the following four elements: (1) Identification--defines the functional and physical characteristics of a Project and uniquely identifies the defining requirements. This includes selection of components of the end product(s) subject to control and selection of the documents that define the project and components. (2) Change management--provides a systematic method for managing changes to the project and its physical and functional configuration to ensure that all changes are properly identified, assessed, reviewed, approved, implemented, tested, and documented. (3) Data management--ensures that necessary information on the project and its end product(s) is systematically recorded and disseminated for decision-making and other uses. Identifies, stores and controls, tracks status, retrieves, and distributes documents. (4) Assessments and validation--ensures that the planned configuration requirements match actual physical configurations and

  17. Metrics for measuring distances in configuration spaces

    International Nuclear Information System (INIS)

    Sadeghi, Ali; Ghasemi, S. Alireza; Schaefer, Bastian; Mohr, Stephan; Goedecker, Stefan; Lill, Markus A.

    2013-01-01

    In order to characterize molecular structures we introduce configurational fingerprint vectors which are counterparts of quantities used experimentally to identify structures. The Euclidean distance between the configurational fingerprint vectors satisfies the properties of a metric and can therefore safely be used to measure dissimilarities between configurations in the high dimensional configuration space. In particular we show that these metrics are a perfect and computationally cheap replacement for the root-mean-square distance (RMSD) when one has to decide whether two noise contaminated configurations are identical or not. We introduce a Monte Carlo approach to obtain the global minimum of the RMSD between configurations, which is obtained from a global minimization over all translations, rotations, and permutations of atomic indices

  18. Intellectual Model-Based Configuration Management Conception

    Directory of Open Access Journals (Sweden)

    Bartusevics Arturs

    2014-07-01

    Full Text Available Software configuration management is one of the most important disciplines within the software development project, which helps control the software evolution process and allows including into the end project only tested and validated changes. To achieve this, software management completes certain tasks. Concrete tools are used for technical implementation of tasks, such as version control systems, servers of continuous integration, compilers, etc. A correct configuration management process usually requires several tools, which mutually exchange information by generating various kinds of transfers. When it comes to introducing the configuration management process, often there are situations when tool installation is started, yet at that given moment there is no general picture of the total process. The article offers a model-based configuration management concept, which foresees the development of an abstract model for the configuration management process that later is transformed to lower abstraction level models and tools are indicated to support the technical process. A solution of this kind allows a more rational introduction and configuration of tools

  19. Stable configurations in social networks

    Science.gov (United States)

    Bronski, Jared C.; DeVille, Lee; Ferguson, Timothy; Livesay, Michael

    2018-06-01

    We present and analyze a model of opinion formation on an arbitrary network whose dynamics comes from a global energy function. We study the global and local minimizers of this energy, which we call stable opinion configurations, and describe the global minimizers under certain assumptions on the friendship graph. We show a surprising result that the number of stable configurations is not necessarily monotone in the strength of connection in the social network, i.e. the model sometimes supports more stable configurations when the interpersonal connections are made stronger.

  20. Configuration mixing for spin-isospin modes

    International Nuclear Information System (INIS)

    Ichimura, Munetake

    2005-01-01

    Development of theories of configuration mixing is reviewed, concentrating on their application to spin-isospin modes, especially to the Gamow-Teller transitions. This talk is divided into three historical stages, the first order configuration mixing as the first stage, the second order configuration mixing as the second stage, and the delta-isobar-hole mixing as the third stage

  1. Configuration Management Plan for the Tank Farm Contractor

    International Nuclear Information System (INIS)

    WEIR, W.R.

    2000-01-01

    The Configuration Management Plan for the Tank Farm Contractor describes configuration management the contractor uses to manage and integrate its technical baseline with the programmatic and functional operations to perform work. The Configuration Management Plan for the Tank Farm Contractor supports the management of the project baseline by providing the mechanisms to identify, document, and control the technical characteristics of the products, processes, and structures, systems, and components (SSC). This plan is one of the tools used to identify and provide controls for the technical baseline of the Tank Farm Contractor (TFC). The configuration management plan is listed in the management process documents for TFC as depicted in Attachment 1, TFC Document Structure. The configuration management plan is an integrated approach for control of technical, schedule, cost, and administrative processes necessary to manage the mission of the TFC. Configuration management encompasses the five functional elements of: (1) configuration management administration, (2) configuration identification, (3) configuration status accounting, (4) change control, and (5 ) configuration management assessments

  2. Configuration Management Plan for the Tank Farm Contractor

    Energy Technology Data Exchange (ETDEWEB)

    WEIR, W.R.

    2000-04-21

    The Configuration Management Plan for the Tank Farm Contractor describes configuration management the contractor uses to manage and integrate its technical baseline with the programmatic and functional operations to perform work. The Configuration Management Plan for the Tank Farm Contractor supports the management of the project baseline by providing the mechanisms to identify, document, and control the technical characteristics of the products, processes, and structures, systems, and components (SSC). This plan is one of the tools used to identify and provide controls for the technical baseline of the Tank Farm Contractor (TFC). The configuration management plan is listed in the management process documents for TFC as depicted in Attachment 1, TFC Document Structure. The configuration management plan is an integrated approach for control of technical, schedule, cost, and administrative processes necessary to manage the mission of the TFC. Configuration management encompasses the five functional elements of: (1) configuration management administration, (2) configuration identification, (3) configuration status accounting, (4) change control, and (5 ) configuration management assessments.

  3. Equations for effective nuclear fields taking account of 2p2h configurations

    International Nuclear Information System (INIS)

    Kamerdzhiev, S.P.

    1977-01-01

    Equations taking into account 1p1h and 2p2h configurations were obta+ned by means of effective fields in the nucleus. The consideration is restricted by the even-even Fermi system only with particle-hole interaction and by the first order with respect to an external field, which corresponds to the case of an even-even nucleus without pairing in a weak external field. The principal results of the investigation are as follows: a set of equations for effective fields V 2 and V 4 is obtained by the Green function method; the solutxon of the set makes it possible to consider 1p1h and 2p2h configurations consecutively and dispense with the Hartree-Fock self-consistence. The equations for V 2 and V 4 can be used to obtain quantum equations taking into account 2p2h configurations and their effect on 1p1h states. Allowance for integration regions far removed from the Fermi surface results in the appearance of the V 4 0 seed portion in the V 4 effective field. Taking into account 2p2h configurations at V 4 0 not equal to 0 changes the form of the seed multipole operator of a nucleus; a new term appears in the expression for transition probability. As a rule, the V 4 0 value was neglected in investigations dealing with the 2p2h configuration

  4. Exercise in Configurable Products using Creo parametric

    DEFF Research Database (Denmark)

    Christensen, Georg Kronborg

    2017-01-01

    Family tables is a long know method with ProEngineer/Creo parametric to make families of products – like families of bolts and roller bearings. Configurable Products expand these possibilities in two major ways: First it makes configurable assemblies possible where one topologically different com...... been available as: configurable assemblies in earlier versions of Creo) An example of a practical application of configurable products is shown below where an outdoor Play/Exercise system is transferred from AutoCAD 2D to a 3D configurable product in Creo 3.0....

  5. Configuration management: Phase II implementation guidance

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    Configuration management (CM) is essential to maintaining an acceptable level of risk to the public, workers, environment, or mission success. It is a set of activities and techniques used to maintain consistency among physical and functional configuration, applicable requirements, and key documents. This document provides guidance for continuing the implementation of CM in a phased and graded manner. It describes a cost-effective approach to documented consistency with requirements, with early emphasis on items most important to safety and environmental protection. It is intended to help responsible line managers and configuration management staff personnel in meeting the Energy Systems configuration management policy standard.

  6. Geometry of coexistence in the interacting boson model

    International Nuclear Information System (INIS)

    Van Isacker, P.; Frank, A.; Vargas, C.E.

    2004-01-01

    The Interacting Boson Model (IBM) with configuration mixing is applied to describe the phenomenon of coexistence in nuclei. The analysis suggests that the IBM with configuration mixing, used in conjunction with a (matrix) coherent-state method, may be a reliable tool for the study of geometric aspects of shape coexistence in nuclei

  7. An open-source framework for analyzing N-electron dynamics. II. Hybrid density functional theory/configuration interaction methodology.

    Science.gov (United States)

    Hermann, Gunter; Pohl, Vincent; Tremblay, Jean Christophe

    2017-10-30

    In this contribution, we extend our framework for analyzing and visualizing correlated many-electron dynamics to non-variational, highly scalable electronic structure method. Specifically, an explicitly time-dependent electronic wave packet is written as a linear combination of N-electron wave functions at the configuration interaction singles (CIS) level, which are obtained from a reference time-dependent density functional theory (TDDFT) calculation. The procedure is implemented in the open-source Python program detCI@ORBKIT, which extends the capabilities of our recently published post-processing toolbox (Hermann et al., J. Comput. Chem. 2016, 37, 1511). From the output of standard quantum chemistry packages using atom-centered Gaussian-type basis functions, the framework exploits the multideterminental structure of the hybrid TDDFT/CIS wave packet to compute fundamental one-electron quantities such as difference electronic densities, transient electronic flux densities, and transition dipole moments. The hybrid scheme is benchmarked against wave function data for the laser-driven state selective excitation in LiH. It is shown that all features of the electron dynamics are in good quantitative agreement with the higher-level method provided a judicious choice of functional is made. Broadband excitation of a medium-sized organic chromophore further demonstrates the scalability of the method. In addition, the time-dependent flux densities unravel the mechanistic details of the simulated charge migration process at a glance. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Multi level configuration of ETO products

    DEFF Research Database (Denmark)

    Petersen, Thomas Ditlev; Jørgensen, Kaj Asbjørn; Hvolby, Hans-Henrik

    2007-01-01

    The paper introduces and defines central concepts related to multi level configuration and analyzes which challenges an engineer to order company must deal with to be able to realize a multi level configuration system. It is argued that high flexibility can be achieved and focus can be directed...... in certain business processes if a multi level configuration system is realized....

  9. Field observations into the environmental soul: spatial configuration and social life for people experiencing dementia.

    Science.gov (United States)

    Ferdous, Farhana; Moore, Keith Diaz

    2015-03-01

    This article focuses on the important, facilitating role architectural design plays in social interaction within long-term care facilities (LTCFs) serving people with dementia. Here, we apply space syntax, a set of theories and techniques for the analysis of spatial configurations, as an objective measure of environmental characteristics. Almost 150 rounds of behavioral observations were collected in the social spaces of 3 LTCFs. Using the visibility and proximity metrics of space syntax, the locations of occurrence of various social activities in relation to the furniture and spatial layout on architectural floor plans have been identified. The results did not confirm the space syntax hypothesis that spaces with greater visibility and proximity promote more social interaction. Further analysis revealed that when in settings with better visibility and accessibility, the residents were more likely to engage in low levels of interaction. High-level social interactions actually were more likely to occur in settings providing greater privacy (eg, less visibility and accessibility). The findings suggest an important nuance that architectural configuration factors impact not only the likelihood but also the type of conversations likely to occur in certain locations. This would have implications for both design and staff training on how best to utilize social spaces for therapeutic effect, particularly within the context of person-centered care. © The Author(s) 2014.

  10. Stirling Engine Configuration Selection

    Directory of Open Access Journals (Sweden)

    Jose Egas

    2018-03-01

    Full Text Available Unlike internal combustion engines, Stirling engines can be designed to work with many drive mechanisms based on the three primary configurations, alpha, beta and gamma. Hundreds of different combinations of configuration and mechanical drives have been proposed. Few succeed beyond prototypes. A reason for poor success is the use of inappropriate configuration and drive mechanisms, which leads to low power to weight ratio and reduced economic viability. The large number of options, the lack of an objective comparison method, and the absence of a selection criteria force designers to make random choices. In this article, the pressure—volume diagrams and compression ratios of machines of equal dimensions, using the main (alpha, beta and gamma crank based configurations as well as rhombic drive and Ross yoke mechanisms, are obtained. The existence of a direct relation between the optimum compression ratio and the temperature ratio is derived from the ideal Stirling cycle, and the usability of an empirical low temperature difference compression ratio equation for high temperature difference applications is tested using experimental data. It is shown that each machine has a different compression ratio, making it more or less suitable for a specific application, depending on the temperature difference reachable.

  11. A Software Configuration Management Course

    DEFF Research Database (Denmark)

    Asklund, U.; Bendix, Lars Gotfred

    2003-01-01

    Software Configuration Management has been a big success in research and creation of tools. There are also many vendors in the market of selling courses to companies. However, in the education sector Software Configuration Management has still not quite made it - at least not into the university...... curriculum. It is either not taught at all or is just a minor part of a general course in software engineering. In this paper, we report on our experience with giving a full course entirely dedicated to Software Configuration Management topics and start a discussion of what ideally should be the goal...

  12. Communicating knowledge: Making embedded configuration work

    DEFF Research Database (Denmark)

    Oddsson, Gudmundur Valur; Hvam, Lars

    2007-01-01

    A lot of systems are assembled from near-independent mechatronic subsystems that have to be configured to match each other. An example of such systems are e.g. home entertainment systems, where TV, DVD and Receiver are matched to form an overall system, and compilation of pumps and controllers...... to form fresh water supply systems. Sometimes an external knowledge system keeps track of how each subsystem has to be configured, but the actual configuration is often done manually. Installing and maintaining those kinds of systems can be a tedious task and often requires repetitive labour. The idea...... is to “split-up” the product knowledge and encapsulate it into each subsystem. Then, when the subsystems are assembled, the configuration of each subsystem can either be done automatically or with minimum input. The concept could be called: embedded configuration. This article will try to connect three aspects...

  13. Theoretical studies of molecular interactions

    Energy Technology Data Exchange (ETDEWEB)

    Lester, W.A. Jr. [Univ. of California, Berkeley (United States)

    1993-12-01

    This research program is directed at extending fundamental knowledge of atoms and molecules including their electronic structure, mutual interaction, collision dynamics, and interaction with radiation. The approach combines the use of ab initio methods--Hartree-Fock (HF) multiconfiguration HF, configuration interaction, and the recently developed quantum Monte Carlo (MC)--to describe electronic structure, intermolecular interactions, and other properties, with various methods of characterizing inelastic and reaction collision processes, and photodissociation dynamics. Present activity is focused on the development and application of the QMC method, surface catalyzed reactions, and reorientation cross sections.

  14. The choice of optimal Discrete Interaction Approximation to the kinetic integral for ocean waves

    Directory of Open Access Journals (Sweden)

    V. G. Polnikov

    2003-01-01

    Full Text Available A lot of discrete configurations for the four-wave nonlinear interaction processes have been calculated and tested by the method proposed earlier in the frame of the concept of Fast Discrete Interaction Approximation to the Hasselmann's kinetic integral (Polnikov and Farina, 2002. It was found that there are several simple configurations, which are more efficient than the one proposed originally in Hasselmann et al. (1985. Finally, the optimal multiple Discrete Interaction Approximation (DIA to the kinetic integral for deep-water waves was found. Wave spectrum features have been intercompared for a number of different configurations of DIA, applied to a long-time solution of kinetic equation. On the basis of this intercomparison the better efficiency of the configurations proposed was confirmed. Certain recommendations were given for implementation of new approximations to the wave forecast practice.

  15. Controlling the high frequency response of H{sub 2} by ultra-short tailored laser pulses: A time-dependent configuration interaction study

    Energy Technology Data Exchange (ETDEWEB)

    Schönborn, Jan Boyke; Saalfrank, Peter; Klamroth, Tillmann, E-mail: klamroth@uni-potsdam.de [Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm (Germany)

    2016-01-28

    We combine the stochastic pulse optimization (SPO) scheme with the time-dependent configuration interaction singles method in order to control the high frequency response of a simple molecular model system to a tailored femtosecond laser pulse. For this purpose, we use H{sub 2} treated in the fixed nuclei approximation. The SPO scheme, as similar genetic algorithms, is especially suited to control highly non-linear processes, which we consider here in the context of high harmonic generation. Here, we will demonstrate that SPO can be used to realize a “non-harmonic” response of H{sub 2} to a laser pulse. Specifically, we will show how adding low intensity side frequencies to the dominant carrier frequency of the laser pulse and stochastically optimizing their contribution can create a high-frequency spectral signal of significant intensity, not harmonic to the carrier frequency. At the same time, it is possible to suppress the harmonic signals in the same spectral region, although the carrier frequency is kept dominant during the optimization.

  16. Shock/shock interactions between bodies and wings

    Directory of Open Access Journals (Sweden)

    Gaoxiang XIANG

    2018-02-01

    Full Text Available This paper examines the Shock/Shock Interactions (SSI between the body and wing of aircraft in supersonic flows. The body is simplified to a flat wedge and the wing is assumed to be a sharp wing. The theoretical spatial dimension reduction method, which transforms the 3D problem into a 2D one, is used to analyze the SSI between the body and wing. The temperature and pressure behind the Mach stem induced by the wing and body are obtained, and the wave configurations in the corner are determined. Numerical validations are conducted by solving the inviscid Euler equations in 3D with a Non-oscillatory and Non-free-parameters Dissipative (NND finite difference scheme. Good agreements between the theoretical and numerical results are obtained. Additionally, the effects of the wedge angle and sweep angle on wave configurations and flow field are considered numerically and theoretically. The influences of wedge angle are significant, whereas the effects of sweep angle on wave configurations are negligible. This paper provides useful information for the design and thermal protection of aircraft in supersonic and hypersonic flows. Keywords: Body and wing, Flow field, Hypersonic flow, Shock/shock interaction, Wave configurations

  17. Microscopic theory taking into account 2p2h configurations in the magic nuclei. General comparison with other aprroaches

    International Nuclear Information System (INIS)

    Kamerdzhiev, S.P.

    1982-01-01

    The purposes of the given review are as follows: 1) brief description of subsequent method for accoUntancy of 2p2h-configurations of the nucleus in the second order by quasiparticle-phonon interaction; the method uses Green functions and it represents specification of microscopic model of 2p2h-configuration accountancy; 2) obtaining the basic results of already existing approaches from the obtained analytical expressions. Accountancy of 2p2h-configurations of magic nuclei is necessary for improvement of microscopic description of multipole giant resonances (MGR). An equation for the effective field in a nucleus induced by an external field is obtained. An expression for polarization operator determining probabilities of nucleus transitions from the ground state to the excited one is obtained graphically. Derivation of the described equation for apex of the effective field and expressions for polarization operator which besides 1p1h-configurations account for 2p2h-configurations are the basic results of the paper

  18. Simultaneous EEG–fMRI: evaluating the effect of the cabling configuration on the gradient artefact

    International Nuclear Information System (INIS)

    Chowdhury, M E H; Mullinger, Karen J; Bowtell, Richard

    2015-01-01

    EEG recordings made in combined EEG–fMRI studies are corrupted by gradient artefacts (GAs) resulting from the interaction of the EEG system with the time-varying magnetic field gradients used in MRI. The dominant contribution to the GA arises from interaction with the leads of the EEG cap and the human head, but artefacts are also produced in the cables used to connect the EEG cap to the amplifier. The aim of this study is to measure the effects of the connecting cable configuration on the characteristics of the GA. We measured the GA produced on two different cable configurations (a ribbon cable and a cable consisting of wires that are twisted together to form a cylindrical bundle) by gradient pulses applied on three orthogonal axes and also characterized the effect of each cable configuration on the GA generated by a multi-slice echo planar imaging sequence, as employed in typical EEG–fMRI studies. The results demonstrate that the cabling that connects the EEG cap to the amplifier can make a significant contribution to the GA recorded during EEG–fMRI studies. In particular, we demonstrate that the GA generated by a ribbon cable is larger than that produced using a twisted cable arrangement and that changes in the GA resulting from variation in the cable position are also greater for the ribbon cable. (note)

  19. Simultaneous EEG-fMRI: evaluating the effect of the cabling configuration on the gradient artefact

    Science.gov (United States)

    Chowdhury, M. E. H.; Mullinger, Karen J.; Bowtell, Richard

    2015-06-01

    EEG recordings made in combined EEG-fMRI studies are corrupted by gradient artefacts (GAs) resulting from the interaction of the EEG system with the time-varying magnetic field gradients used in MRI. The dominant contribution to the GA arises from interaction with the leads of the EEG cap and the human head, but artefacts are also produced in the cables used to connect the EEG cap to the amplifier. The aim of this study is to measure the effects of the connecting cable configuration on the characteristics of the GA. We measured the GA produced on two different cable configurations (a ribbon cable and a cable consisting of wires that are twisted together to form a cylindrical bundle) by gradient pulses applied on three orthogonal axes and also characterized the effect of each cable configuration on the GA generated by a multi-slice echo planar imaging sequence, as employed in typical EEG-fMRI studies. The results demonstrate that the cabling that connects the EEG cap to the amplifier can make a significant contribution to the GA recorded during EEG-fMRI studies. In particular, we demonstrate that the GA generated by a ribbon cable is larger than that produced using a twisted cable arrangement and that changes in the GA resulting from variation in the cable position are also greater for the ribbon cable.

  20. Data-efficient performance learning for configurable systems

    DEFF Research Database (Denmark)

    Guo, Jianmei; Yang, Dingyu; Siegmund, Norbert

    2017-01-01

    results on 10 real-world configurable systems demonstrate the effectiveness and practicality of DECART. In particular, DECART achieves a prediction accuracy of 90% or higher based on a small sample, whose size is linear in the number of features. In addition, we propose a sample quality metric......Many software systems today are configurable, offering customization of functionality by feature selection. Understanding how performance varies in terms of feature selection is key for selecting appropriate configurations that meet a set of given requirements. Due to a huge configuration space...... and the possibly high cost of performance measurement, it is usually not feasible to explore the entire configuration space of a configurable system exhaustively. It is thus a major challenge to accurately predict performance based on a small sample of measured system variants. To address this challenge, we...

  1. Prediction of Protein Configurational Entropy (Popcoen).

    Science.gov (United States)

    Goethe, Martin; Gleixner, Jan; Fita, Ignacio; Rubi, J Miguel

    2018-03-13

    A knowledge-based method for configurational entropy prediction of proteins is presented; this methodology is extremely fast, compared to previous approaches, because it does not involve any type of configurational sampling. Instead, the configurational entropy of a query fold is estimated by evaluating an artificial neural network, which was trained on molecular-dynamics simulations of ∼1000 proteins. The predicted entropy can be incorporated into a large class of protein software based on cost-function minimization/evaluation, in which configurational entropy is currently neglected for performance reasons. Software of this type is used for all major protein tasks such as structure predictions, proteins design, NMR and X-ray refinement, docking, and mutation effect predictions. Integrating the predicted entropy can yield a significant accuracy increase as we show exemplarily for native-state identification with the prominent protein software FoldX. The method has been termed Popcoen for Prediction of Protein Configurational Entropy. An implementation is freely available at http://fmc.ub.edu/popcoen/ .

  2. Dynamic airspace configuration by genetic algorithm

    Directory of Open Access Journals (Sweden)

    Marina Sergeeva

    2017-06-01

    Full Text Available With the continuous air traffic growth and limits of resources, there is a need for reducing the congestion of the airspace systems. Nowadays, several projects are launched, aimed at modernizing the global air transportation system and air traffic management. In recent years, special interest has been paid to the solution of the dynamic airspace configuration problem. Airspace sector configurations need to be dynamically adjusted to provide maximum efficiency and flexibility in response to changing weather and traffic conditions. The main objective of this work is to automatically adapt the airspace configurations according to the evolution of traffic. In order to reach this objective, the airspace is considered to be divided into predefined 3D airspace blocks which have to be grouped or ungrouped depending on the traffic situation. The airspace structure is represented as a graph and each airspace configuration is created using a graph partitioning technique. We optimize airspace configurations using a genetic algorithm. The developed algorithm generates a sequence of sector configurations for one day of operation with the minimized controller workload. The overall methodology is implemented and successfully tested with air traffic data taken for one day and for several different airspace control areas of Europe.

  3. Toward risk-based control of nuclear power plant configurations

    International Nuclear Information System (INIS)

    Samanta, P.K.; Veseley, W.E.; Kim, I.S.

    1992-01-01

    This paper presents an evaluation of the configuration risks associated with the operation of a nuclear power plant and the approaches to control these risks using risk-based configuration control considerations. In that context, the actual and maximum potential configuration risks at a plant are analyzed and the alternative types criteria for a risk-based configuration control systems are described. The risk-based configuration calculations which are studied here focus on the core-melt frequency impacts from given plant configurations, the configurations which cause large core-melt frequency increases can be identified and controlled. The duration time in which the configuration can exist can then be limited or the core-melt frequency level associated with the configuration can be reduced by various actions. Futhermore, maintenances and tests can be scheduled to avoid the configurations which cause large core-melt frequency increases. Present technical specifications do not control many of these configurations which can cause large core-melt frequency increases but instead focus on many risk-unimportant allowed outage times. Hence, risk-based configuration management can be effectively used to reduce core-melt frequency associated risks at a plant and at the same time can provide flexibility in plant operation. The alternative strategies for controlling the core-melt frequency and other risk contributions include: (1) controlling the increased risk level which is associated with the configuration; (2) controlling the individual configuration risk which is associated with a given duration of a configuration; (3) controlling the time period configuration risk from configurations which occur in a time period. (orig.)

  4. Contrast configuration influences grouping in apparent motion.

    Science.gov (United States)

    Ma-Wyatt, Anna; Clifford, Colin W G; Wenderoth, Peter

    2005-01-01

    We investigated whether the same principles that influence grouping in static displays also influence grouping in apparent motion. Using the Ternus display, we found that the proportion of group motion reports was influenced by changes in contrast configuration. Subjects made judgments of completion of these same configurations in a static display. Generally, contrast configurations that induced a high proportion of group motion responses were judged as more 'complete' in static displays. Using a stereo display, we then tested whether stereo information and T-junction information were critical for this increase in group motion. Perceived grouping was consistently higher for same contrast polarity configurations than for opposite contrast polarity configurations, regardless of the presence of stereo information or explicit T-junctions. Thus, while grouping in static and moving displays showed a similar dependence on contrast configuration, motion grouping showed little dependence on stereo or T-junction information.

  5. Gravitational collapse of dark energy field configurations and supermassive black hole formation

    International Nuclear Information System (INIS)

    Jhalani, V.; Kharkwal, H.; Singh, A.

    2016-01-01

    Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-time and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.

  6. Gravitational collapse of dark energy field configurations and supermassive black hole formation

    Energy Technology Data Exchange (ETDEWEB)

    Jhalani, V.; Kharkwal, H.; Singh, A., E-mail: anupamsingh.iitk@gmail.com [L. N. Mittal Institute of Information Technology, Physics Department (India)

    2016-11-15

    Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-time and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.

  7. High-Fidelity Multidisciplinary Design Optimization of Aircraft Configurations

    Science.gov (United States)

    Martins, Joaquim R. R. A.; Kenway, Gaetan K. W.; Burdette, David; Jonsson, Eirikur; Kennedy, Graeme J.

    2017-01-01

    To evaluate new airframe technologies we need design tools based on high-fidelity models that consider multidisciplinary interactions early in the design process. The overarching goal of this NRA is to develop tools that enable high-fidelity multidisciplinary design optimization of aircraft configurations, and to apply these tools to the design of high aspect ratio flexible wings. We develop a geometry engine that is capable of quickly generating conventional and unconventional aircraft configurations including the internal structure. This geometry engine features adjoint derivative computation for efficient gradient-based optimization. We also added overset capability to a computational fluid dynamics solver, complete with an adjoint implementation and semiautomatic mesh generation. We also developed an approach to constraining buffet and started the development of an approach for constraining utter. On the applications side, we developed a new common high-fidelity model for aeroelastic studies of high aspect ratio wings. We performed optimal design trade-o s between fuel burn and aircraft weight for metal, conventional composite, and carbon nanotube composite wings. We also assessed a continuous morphing trailing edge technology applied to high aspect ratio wings. This research resulted in the publication of 26 manuscripts so far, and the developed methodologies were used in two other NRAs. 1

  8. Configuration Database for BaBar On-line

    International Nuclear Information System (INIS)

    Salnikov, Andrei

    2003-01-01

    The configuration database is one of the vital systems in the BaBar on-line system. It provides services for the different parts of the data acquisition system and control system, which require run-time parameters. The original design and implementation of the configuration database played a significant role in the successful BaBar operations since the beginning of experiment. Recent additions to the design of the configuration database provide better means for the management of data and add new tools to simplify main configuration tasks. We describe the design of the configuration database, its implementation with the Objectivity/DB object-oriented database, and our experience collected during the years of operation

  9. Computer software configuration management

    International Nuclear Information System (INIS)

    Pelletier, G.

    1987-08-01

    This report reviews the basic elements of software configuration management (SCM) as defined by military and industry standards. Several software configuration management standards are evaluated given the requirements of the nuclear industry. A survey is included of available automated tools for supporting SCM activities. Some information is given on the experience of establishing and using SCM plans of other organizations that manage critical software. The report concludes with recommendations of practices that would be most appropriate for the nuclear power industry in Canada

  10. Configurational isomerism in polyoxovanadates

    Energy Technology Data Exchange (ETDEWEB)

    Mahnke, Lisa K.; Naether, Christian; Bensch, Wolfgang [Institut fuer Anorganische Chemie, Christian-Albrechts-Universitaet, Kiel (Germany); Kondinski, Aleksandar; Van Leusen, Jan; Monakhov, Kirill Yu.; Koegerler, Paul [Institut fuer Anorganische Chemie, RWTH Aachen University (Germany); Warzok, Ulrike; Schalley, Christoph A. [Institut fuer Chemie und Biochemie, Freie Universitaet Berlin (Germany)

    2018-03-05

    A water-soluble derivative of the polyoxovanadate {V_1_5E_6O_4_2} (E=semimetal) archetype enables the study of cluster shell rearrangements driven by supramolecular interactions. A reaction unique to E=Sb, induced exclusively by ligand metathesis in peripheral [Ni(ethylenediamine){sub 3}]{sup 2+} counterions, results in the formation of the metastable α{sub 1}* configurational isomer of the {V_1_4Sb_8O_4_2} cluster type. Contrary to all other polyoxovanadate shell architectures, this isomer comprises an inward-oriented vanadyl group and is ca. 50 and 12 kJ mol{sup -1} higher in energy than the previously isolated α and β isomers, respectively. We discuss this unexpected reaction in light of supramolecular Sb-O..V and Sb-O..Sb contacts manifested in {V_1_4Sb_8O_4_2}{sub 2} dimers detected in the solid state. ESI MS experiments confirm the stability of these dimers also in solution and in the gas phase. DFT calculations indicate that other, as of yet elusive isomers of {V_1_4Sb_8}, might be accessible as well. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Atomic simulations for configurations and solid-liquid interface of Li-Fe and Li-Cu icosahedra

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jianyu, E-mail: hnieyjy@aliyun.com [Hunan Institute of Engineering (China); Hu, Wangyu [Hunan University, College of Materials Science and Engineering (China); Dai, Xiongying [Hunan Institute of Engineering, College of Science (China)

    2017-04-15

    The melting point of Li is lower than that of Fe (or Cu); thus, solid-liquid interfaces can be easily formed on Li-Fe and Li-Cu nanoalloys. In this work, the configurations and solid-liquid interfaces of Li-Fe and Li-Cu icosahedra are studied using Monte Carlo and molecular dynamics methods. The atomic interactions are described by the analytic embedded-atom method. The dependence of composition, temperature, and nanoparticle size on the configurations and thermal stabilities of nanoalloys is discussed. The behavior of the Li-Fe and Li-Cu nanoalloys in segregation, configuration, and thermal stability is investigated. A different behavior of surface segregation of Li atoms is observed for the two types of nanoalloys. The interface between the Li and Fe atoms is clear. Mixing of Li with Cu at larger nanoparticle sizes is found because of low heat of formation in the system. The configurations of the Li-Fe and Li-Cu nanoalloys are related to the competition between surface segregation and alloying. The thermal stability of Li in the two types of nanoalloys is enhanced by the support of the Fe (or Cu) solid substrate.

  12. Double exchange model on triangular lattice: Non-coplanar spin configuration and phase transition near quarter filling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, G.P., E-mail: bugubird_zhang@hotmail.com [Department of Physics, Renmin University of China, Beijing 100872 (China); Zhang, Jian [3M Company, 3M Corporate Headquarters, 3M Center, St. Paul, MN 55144-1000 (United States); Zhang, Qi-Li [Data Center for High Energy Density Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Zhou, Jiang-Tao [College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Shangguan, M.H. [Department of Physics, Renmin University of China, Beijing 100872 (China)

    2013-05-15

    Unconventional anomalous Hall effect in frustrated pyrochlore oxides is originated from spin chirality of non-coplanar localized spins, which can also be induced by the competition between ferromagnetic (FM) double exchange interaction J{sub H} and antiferromagnetic superexchange interaction J{sub AF}. Here truncated polynomial expansion method and Monte Carlo simulation are adopted to investigate the above model on two-dimensional triangular lattice. We discuss the influence of the range of FM-type spin–spin correlation and strong electron–spin correlation on the truncation error of spin–spin correlation near quarter filling. Two peaks of the probability distribution of spin–spin correlation in non-coplanar spin configuration clearly show that non-coplanar spin configuration is an intermediate phase between FM and 120° spin phase. Near quarter filling, there is a phase transition from FM into non-coplanar and further into 120° spin phase when J{sub AF} continually increases. Finally the effect of temperature on the magnetic structure is discussed.

  13. Optimal sensor configuration for complex systems

    DEFF Research Database (Denmark)

    Sadegh, Payman; Spall, J. C.

    1998-01-01

    configuration is based on maximizing the overall sensor response while minimizing the correlation among the sensor outputs. The procedure for sensor configuration is based on simultaneous perturbation stochastic approximation (SPSA). SPSA avoids the need for detailed modeling of the sensor response by simply......Considers the problem of sensor configuration for complex systems. Our approach involves definition of an appropriate optimality criterion or performance measure, and description of an efficient and practical algorithm for achieving the optimality objective. The criterion for optimal sensor...... relying on observed responses as obtained by limited experimentation with test sensor configurations. We illustrate the approach with the optimal placement of acoustic sensors for signal detection in structures. This includes both a computer simulation study for an aluminum plate, and real...

  14. Configuration affects parallel stent grafting results.

    Science.gov (United States)

    Tanious, Adam; Wooster, Mathew; Armstrong, Paul A; Zwiebel, Bruce; Grundy, Shane; Back, Martin R; Shames, Murray L

    2018-05-01

    A number of adjunctive "off-the-shelf" procedures have been described to treat complex aortic diseases. Our goal was to evaluate parallel stent graft configurations and to determine an optimal formula for these procedures. This is a retrospective review of all patients at a single medical center treated with parallel stent grafts from January 2010 to September 2015. Outcomes were evaluated on the basis of parallel graft orientation, type, and main body device. Primary end points included parallel stent graft compromise and overall endovascular aneurysm repair (EVAR) compromise. There were 78 patients treated with a total of 144 parallel stents for a variety of pathologic processes. There was a significant correlation between main body oversizing and snorkel compromise (P = .0195) and overall procedural complication (P = .0019) but not with endoleak rates. Patients were organized into the following oversizing groups for further analysis: 0% to 10%, 10% to 20%, and >20%. Those oversized into the 0% to 10% group had the highest rate of overall EVAR complication (73%; P = .0003). There were no significant correlations between any one particular configuration and overall procedural complication. There was also no significant correlation between total number of parallel stents employed and overall complication. Composite EVAR configuration had no significant correlation with individual snorkel compromise, endoleak, or overall EVAR or procedural complication. The configuration most prone to individual snorkel compromise and overall EVAR complication was a four-stent configuration with two stents in an antegrade position and two stents in a retrograde position (60% complication rate). The configuration most prone to endoleak was one or two stents in retrograde position (33% endoleak rate), followed by three stents in an all-antegrade position (25%). There was a significant correlation between individual stent configuration and stent compromise (P = .0385), with 31

  15. A combined DFT and restricted open-shell configuration interaction method including spin-orbit coupling: Application to transition metal L-edge X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Roemelt, Michael; Maganas, Dimitrios; Neese, Frank [Max-Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Muelheim an der Ruhr (Germany); DeBeer, Serena [Max-Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Muelheim an der Ruhr (Germany); Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 (United States)

    2013-05-28

    A novel restricted-open-shell configuration interaction with singles (ROCIS) approach for the calculation of transition metal L-edge X-ray absorption spectra is introduced. In this method, one first calculates the ground state and a number of excited states of the non-relativistic Hamiltonian. By construction, the total spin is a good quantum number in each of these states. For a ground state with total spin S excited states with spin S Prime = S, S - 1, and S + 1 are constructed. Using Wigner-Eckart algebra, all magnetic sublevels with M{sub S}= S, Horizontal-Ellipsis , -S for each multiplet of spin S are obtained. The spin-orbit operator is represented by a mean-field approximation to the full Breit-Pauli spin-orbit operator and is diagonalized over this N-particle basis. This is equivalent to a quasi-degenerate treatment of the spin-orbit interaction to all orders. Importantly, the excitation space spans all of the molecular multiplets that arise from the atomic Russell-Saunders terms. Hence, the method represents a rigorous first-principles approach to the complicated low-symmetry molecular multiplet problem met in L-edge X-ray absorption spectroscopy. In order to gain computational efficiency, as well as additional accuracy, the excitation space is restricted to single excitations and the configuration interaction matrix is slightly parameterized in order to account for dynamic correlation effects in an average way. To this end, it is advantageous to employ Kohn-Sham rather than Hartree-Fock orbitals thus defining the density functional theory/ROCIS method. However, the method can also be used in an entirely non-empirical fashion. Only three global empirical parameters are introduced and have been determined here for future application of the method to any system containing any transition metal. The three parameters were carefully calibrated using the L-edge X-ray absorption spectroscopy spectra of a test set of coordination complexes containing first row

  16. The LHCb configuration database

    CERN Document Server

    Abadie, L; Van Herwijnen, Eric; Jacobsson, R; Jost, B; Neufeld, N

    2005-01-01

    The aim of the LHCb configuration database is to store information about all the controllable devices of the detector. The experiment's control system (that uses PVSS ) will configure, start up and monitor the detector from the information in the configuration database. The database will contain devices with their properties, connectivity and hierarchy. The ability to store and rapidly retrieve huge amounts of data, and the navigability between devices are important requirements. We have collected use cases to ensure the completeness of the design. Using the entity relationship modelling technique we describe the use cases as classes with attributes and links. We designed the schema for the tables using relational diagrams. This methodology has been applied to the TFC (switches) and DAQ system. Other parts of the detector will follow later. The database has been implemented using Oracle to benefit from central CERN database support. The project also foresees the creation of tools to populate, maintain, and co...

  17. Multireference configuration interaction theory using cumulant reconstruction with internal contraction of density matrix renormalization group wave function.

    Science.gov (United States)

    Saitow, Masaaki; Kurashige, Yuki; Yanai, Takeshi

    2013-07-28

    We report development of the multireference configuration interaction (MRCI) method that can use active space scalable to much larger size references than has previously been possible. The recent development of the density matrix renormalization group (DMRG) method in multireference quantum chemistry offers the ability to describe static correlation in a large active space. The present MRCI method provides a critical correction to the DMRG reference by including high-level dynamic correlation through the CI treatment. When the DMRG and MRCI theories are combined (DMRG-MRCI), the full internal contraction of the reference in the MRCI ansatz, including contraction of semi-internal states, plays a central role. However, it is thought to involve formidable complexity because of the presence of the five-particle rank reduced-density matrix (RDM) in the Hamiltonian matrix elements. To address this complexity, we express the Hamiltonian matrix using commutators, which allows the five-particle rank RDM to be canceled out without any approximation. Then we introduce an approximation to the four-particle rank RDM by using a cumulant reconstruction from lower-particle rank RDMs. A computer-aided approach is employed to derive the exceedingly complex equations of the MRCI in tensor-contracted form and to implement them into an efficient parallel computer code. This approach extends to the size-consistency-corrected variants of MRCI, such as the MRCI+Q, MR-ACPF, and MR-AQCC methods. We demonstrate the capability of the DMRG-MRCI method in several benchmark applications, including the evaluation of single-triplet gap of free-base porphyrin using 24 active orbitals.

  18. The configuration-driven table CI method and comparison with integral-driven CI procedures

    International Nuclear Information System (INIS)

    Buenker, R.J.

    1980-01-01

    A new configuration-driven CI algorithm is outlined which eliminates the need for explicit comparison of pairs of Slater determinants through the use of a series of compact tables. In this scheme each pair of configurations is either shown to be non-interacting or to fall into one of nine cases, each of which is characterized fully once certain orbital permutations are determined. The program is divided into three parts: a case structure analysis step including integral label generation, a sort of the required electron repulsion integrals, and finally a procedure in which the foregoing information is combined with tabulated directions for the evaluation of the necessary Hamiltonian matrix elements over spin-adapted functions. Timing improvements of up to more than a factor of four have been achieved with the new algorithm

  19. The Ragnarok Architectural Software Configuration Management Model

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak

    1999-01-01

    The architecture is the fundamental framework for designing and implementing large scale software, and the ability to trace and control its evolution is essential. However, many traditional software configuration management tools view 'software' merely as a set of files, not as an architecture....... This introduces an unfortunate impedance mismatch between the design domain (architecture level) and configuration management domain (file level.) This paper presents a software configuration management model that allows tight version control and configuration management of the architecture of a software system...

  20. Observation-Driven Configuration of Complex Software Systems

    Science.gov (United States)

    Sage, Aled

    2010-06-01

    The ever-increasing complexity of software systems makes them hard to comprehend, predict and tune due to emergent properties and non-deterministic behaviour. Complexity arises from the size of software systems and the wide variety of possible operating environments: the increasing choice of platforms and communication policies leads to ever more complex performance characteristics. In addition, software systems exhibit different behaviour under different workloads. Many software systems are designed to be configurable so that policies can be chosen to meet the needs of various stakeholders. For complex software systems it can be difficult to accurately predict the effects of a change and to know which configuration is most appropriate. This thesis demonstrates that it is useful to run automated experiments that measure a selection of system configurations. Experiments can find configurations that meet the stakeholders' needs, find interesting behavioural characteristics, and help produce predictive models of the system's behaviour. The design and use of ACT (Automated Configuration Tool) for running such experiments is described, in combination a number of search strategies for deciding on the configurations to measure. Design Of Experiments (DOE) is discussed, with emphasis on Taguchi Methods. These statistical methods have been used extensively in manufacturing, but have not previously been used for configuring software systems. The novel contribution here is an industrial case study, applying the combination of ACT and Taguchi Methods to DC-Directory, a product from Data Connection Ltd (DCL). The case study investigated the applicability of Taguchi Methods for configuring complex software systems. Taguchi Methods were found to be useful for modelling and configuring DC- Directory, making them a valuable addition to the techniques available to system administrators and developers.

  1. Diatomic interaction potential theory applications

    CERN Document Server

    Goodisman, Jerry

    2013-01-01

    Diatomic Interaction Potential Theory, Volume 2: Applications discusses the variety of applicable theoretical material and approaches in the calculations for diatomic systems in their ground states. The volume covers the descriptions and illustrations of modern calculations. Chapter I discusses the calculation of the interaction potential for large and small values of the internuclear distance R (separated and united atom limits). Chapter II covers the methods used for intermediate values of R, which in principle means any values of R. The Hartree-Fock and configuration interaction schemes des

  2. Generation of Astron-Spherator configuration

    International Nuclear Information System (INIS)

    Narihara, Kazumichi; Hasegawa, Mitsuru; Tomita, Yukihiro; Tsuzuki, Tetsuya; Sato, Kuninori; Mohri, Akihiro.

    1983-01-01

    It was experimentally demonstrated that Astron-Spherator configuration is formed by injecting a pulsed relativistic electron beam in a toroidal device SPAC-VI with external toroidal and vertical magnetic fields. A plasma is confined in the extended magnetic region produced by a slender core of current carrying energetic electrons. This configuration continued for 40 ms without fatal instabilities. (author)

  3. Oxygen configurations in silica

    International Nuclear Information System (INIS)

    Chelikowsky, James R.; Chadi, D. J.; Binggeli, N.

    2000-01-01

    We propose a transition state for oxygen in silica. This state is produced by the insertion of an oxygen molecule into the Si-O-Si bond, i.e., it consists of producing a Si-O-O-O-Si bond. This state allows molecular oxygen diffusion in silica without breaking the molecular O 2 bond and it is energetically more stable than a peroxy configuration. This configuration may allow for exchange of molecular oxygen with the oxygen in the silica framework. (c) 2000 The American Physical Society

  4. Instance-specific algorithm configuration

    CERN Document Server

    Malitsky, Yuri

    2014-01-01

    This book presents a modular and expandable technique in the rapidly emerging research area of automatic configuration and selection of the best algorithm for the instance at hand. The author presents the basic model behind ISAC and then details a number of modifications and practical applications. In particular, he addresses automated feature generation, offline algorithm configuration for portfolio generation, algorithm selection, adaptive solvers, online tuning, and parallelization.    The author's related thesis was honorably mentioned (runner-up) for the ACP Dissertation Award in 2014,

  5. The influence of R and S configurations of a series of amphetamine derivatives on quantitative structure-activity relationship models

    Energy Technology Data Exchange (ETDEWEB)

    Fresqui, Maira A.C., E-mail: maira@iqsc.usp.br [Institute of Chemistry of Sao Carlos, University of Sao Paulo, Av. Trabalhador Sao-carlense, 400, POB 780, 13560-970 Sao Carlos, SP (Brazil); Ferreira, Marcia M.C., E-mail: marcia@iqm.unicamp.br [Institute of Chemistry, University of Campinas - UNICAMP, POB 6154, 13083-970 Campinas, SP (Brazil); Trsic, Milan, E-mail: cra612@gmail.com [Institute of Chemistry of Sao Carlos, University of Sao Paulo, Av. Trabalhador Sao-carlense, 400, POB 780, 13560-970 Sao Carlos, SP (Brazil)

    2013-01-08

    Highlights: Black-Right-Pointing-Pointer The QSAR model is not dependent of ligand conformation. Black-Right-Pointing-Pointer Amphetamines were analyzed by quantum chemical, steric and hydrophobic descriptors. Black-Right-Pointing-Pointer CHELPG atomic charges on the benzene ring are one of the most important descriptors. Black-Right-Pointing-Pointer The PLS models built were extensively validated. Black-Right-Pointing-Pointer Manual docking supports the QSAR results by pi-pi stacking interactions. - Abstract: Chiral molecules need special attention in drug design. In this sense, the R and S configurations of a series of thirty-four amphetamines were evaluated by quantitative structure-activity relationship (QSAR). This class of compounds has antidepressant, anti-Parkinson and anti-Alzheimer effects against the enzyme monoamine oxidase A (MAO A). A set of thirty-eight descriptors, including electronic, steric and hydrophobic ones, were calculated. Variable selection was performed through the correlation coefficients followed by the ordered predictor selection (OPS) algorithm. Six descriptors (CHELPG atomic charges C3, C4 and C5, electrophilicity, molecular surface area and log P) were selected for both configurations and a satisfactory model was obtained by PLS regression with three latent variables with R{sup 2} = 0.73 and Q{sup 2} = 0.60, with external predictability Q{sup 2} = 0.68, and R{sup 2} = 0.76 and Q{sup 2} = 0.67 with external predictability Q{sup 2} = 0.50, for R and S configurations, respectively. To confirm the robustness of each model, leave-N-out cross validation (LNO) was carried out and the y-randomization test was used to check if these models present chance correlation. Moreover, both automated or a manual molecular docking indicate that the reaction of ligands with the enzyme occurs via pi-pi stacking interaction with Tyr407, inclined face-to-face interaction with Tyr444, while aromatic hydrogen-hydrogen interactions with Tyr197 are preferable

  6. A Precise Method for Cloth Configuration Parsing Applied to Single-Arm Flattening

    Directory of Open Access Journals (Sweden)

    Li Sun

    2016-04-01

    Full Text Available In this paper, we investigate the contribution that visual perception affords to a robotic manipulation task in which a crumpled garment is flattened by eliminating visually detected wrinkles. In order to explore and validate visually guided clothing manipulation in a repeatable and controlled environment, we have developed a hand-eye interactive virtual robot manipulation system that incorporates a clothing simulator to close the effector-garment-visual sensing interaction loop. We present the technical details and compare the performance of two different methods for detecting, representing and interpreting wrinkles within clothing surfaces captured in high-resolution depth maps. The first method we present relies upon a clustering-based method for localizing and parametrizing wrinkles, while the second method adopts a more advanced geometry-based approach in which shape-topology analysis underpins the identification of the cloth configuration (i.e., maps wrinkles. Having interpreted the state of the cloth configuration by means of either of these methods, a heuristic-based flattening strategy is then executed to infer the appropriate forces, their directions and gripper contact locations that must be applied to the cloth in order to flatten the perceived wrinkles. A greedy approach, which attempts to flatten the largest detected wrinkle for each perception-iteration cycle, has been successfully adopted in this work. We present the results of our heuristic-based flattening methodology which relies upon clustering-based and geometry-based features respectively. Our experiments indicate that geometry-based features have the potential to provide a greater degree of clothing configuration understanding and, as a consequence, improve flattening performance. The results of experiments using a real robot (as opposed to simulated robot also confirm our proposition that a more effective visual perception system can advance the performance of cloth

  7. Windows PowerShell desired state configuration revealed

    CERN Document Server

    Chaganti, Ravikanth

    2014-01-01

    Desired State Configuration (DSC) is a powerful new configuration management platform that makes it easier than ever to perform cross-platform configuration management of your infrastructure, whether on-premise or in the cloud. DSC provides the management platform and Application Programming Interface (API) that can be used with any programming language. Windows PowerShell Desired State Configuration Revealed will take you through this new technology from start to finish and demonstrates the DSC interfaces through Windows PowerShell. DSC allows you to manage target devices by simply declarin

  8. Strategies and criteria for risk-based configuration control

    International Nuclear Information System (INIS)

    Samanta, P.K.; Kim, I.S.; Vesely, W.E.

    1991-01-01

    A configuration, as used here, is a set of component operability or statuses that define the state of a nuclear power plant. Risk-based configuration control is the management of component configurations using a risk perspective to control risk and assure safety. If the component configurations that have high risk implications do not occur then the risk from the operation of nuclear power plants would be minimal. The control of component configurations, i.e., the management of component statuses, so that the risk from components being unavailable is minimized, becomes difficult because the status of a standby safety system component is often not apparent unless it is tested. In this paper, we discuss the strategies and criteria for risk-based configuration control in nuclear power plants. In developing these strategies and criteria, the primary objective is to obtain more direct risk control but the added benefit is the effective use of plant resources. Implementation of such approaches can result in replacement/modification of parts of Technical Specifications. Specifically, the risk impact or safety impact of a configuration depends upon four factors: (1) The configuration components which are simultaneously down (i.e., inoperable); (2) the backup components which are known to be up (i.e., operable); (3) the duration of time the configuration exists (the outage time); and (4) the frequency at which the configuration occurs. Risk-based configuration control involves managing these factors using risk analyses and risk insights. In this paper, we discuss each of the factors and illustrate how they can be controlled. The information and the tools needed in implementing configuration control are also discussed. The risk-based calculation requirements in achieving the control are also delineated. 4 refs., 4 figs., 1 tab

  9. Optimal sensor configuration for complex systems

    DEFF Research Database (Denmark)

    Sadegh, Payman; Spall, J. C.

    1998-01-01

    . The procedure for sensor configuration is based on the simultaneous perturbation stochastic approximation (SPSA) algorithm. SPSA avoids the need for detailed modeling of the sensor response by simply relying on the observed responses obtained by limited experimentation with test sensor configurations. We......The paper considers the problem of sensor configuration for complex systems with the aim of maximizing the useful information about certain quantities of interest. Our approach involves: 1) definition of an appropriate optimality criterion or performance measure; and 2) description of an efficient...... and practical algorithm for achieving the optimality objective. The criterion for optimal sensor configuration is based on maximizing the overall sensor response while minimizing the correlation among the sensor outputs, so as to minimize the redundant information being provided by the multiple sensors...

  10. Fuel control device for various gas turbine configurations

    Energy Technology Data Exchange (ETDEWEB)

    Stearns, C F; Tutherly, H W

    1980-09-29

    The hydromechanic fuel control device can be adapted for various engine configurations as for example turbofan-, turbopro-, and turboshaft engines by providing those elements which are common for all engine configurations in the main housing and a detachable block for each individual configuration with all control elements and flow channels necessary for the respective configuration.

  11. Equilibrium: three-dimensional configurations

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    This chapter considers toroidal MHD configurations that are inherently three-dimensional. The motivation for investigation such complicated equilibria is that they possess the potential for providing toroidal confinement without the need of a net toroidal current. This leads to a number of advantages with respect to fusion power generation. First, the attractive feature of steady-state operation becomes more feasible since such configurations no longer require a toroidal current transformer. Second, with zero net current, one potentially dangerous class of MHD instabilities, the current-driven kink modes, is eliminated. Finally, three-dimensional configurations possess nondegenerate flux surfaces even in the absence of plasma pressure and plasma current. Although there is an enormous range of possible three-dimensional equilibria, the configurations of interest are accurately described as axisymmetric tori with superimposed helical fields; furthermore, they possess no net toroidal current. Instead, two different and less obvious restoring forces are developed: the helical sideband force and the toroidal dipole current force. Each is discussed in detail in Chapter 7. A detailed discussion of the parallel current constraint, including its physical significance, is given in section 7.2. A general analysis of helical sideband equilibria, along with a detailed description of the Elmo bumpy torus, is presented in sections 7.3 and 7.4. A general description of toroidal dipole-current equilibria, including a detailed discussion of stellarators, heliotrons, and torsatrons, is given in sections 7.5 and 7.6

  12. Tensor contraction engine: Abstraction and automated parallel implementation of configuration-interaction, coupled-cluster, and many-body perturbation theories

    International Nuclear Information System (INIS)

    Hirata, So

    2003-01-01

    We develop a symbolic manipulation program and program generator (Tensor Contraction Engine or TCE) that automatically derives the working equations of a well-defined model of second-quantized many-electron theories and synthesizes efficient parallel computer programs on the basis of these equations. Provided an ansatz of a many-electron theory model, TCE performs valid contractions of creation and annihilation operators according to Wick's theorem, consolidates identical terms, and reduces the expressions into the form of multiple tensor contractions acted by permutation operators. Subsequently, it determines the binary contraction order for each multiple tensor contraction with the minimal operation and memory cost, factorizes common binary contractions (defines intermediate tensors), and identifies reusable intermediates. The resulting ordered list of binary tensor contractions, additions, and index permutations is translated into an optimized program that is combined with the NWChem and UTChem computational chemistry software packages. The programs synthesized by TCE take advantage of spin symmetry, Abelian point-group symmetry, and index permutation symmetry at every stage of calculations to minimize the number of arithmetic operations and storage requirement, adjust the peak local memory usage by index range tiling, and support parallel I/O interfaces and dynamic load balancing for parallel executions. We demonstrate the utility of TCE through automatic derivation and implementation of parallel programs for various models of configuration-interaction theory (CISD, CISDT, CISDTQ), many-body perturbation theory[MBPT(2), MBPT(3), MBPT(4)], and coupled-cluster theory (LCCD, CCD, LCCSD, CCSD, QCISD, CCSDT, and CCSDTQ)

  13. Electronic spectra of azaindole and its excited state mixing: A symmetry-adapted cluster configuration interaction study

    Energy Technology Data Exchange (ETDEWEB)

    Arulmozhiraja, Sundaram, E-mail: raja@cat.hokudai.ac.jp; Coote, Michelle L. [ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, The Australian National University, Canberra, 2601 ACT (Australia); Hasegawa, Jun-ya [Institute for Catalysis, Hokkaido University, Kita 21, Nishi 10, Kita-Ku, Sapporo 001-0021 (Japan)

    2015-11-28

    Electronic structures of azaindole were studied using symmetry-adapted cluster configuration interaction theory utilizing Dunning’s cc-pVTZ basis set augmented with appropriate Rydberg spd functions on carbon and nitrogen atoms. The results obtained in the present study show good agreement with the available experimental values. Importantly, and contrary to previous theoretical studies, the excitation energy calculated for the important n–π{sup ∗} state agrees well with the experimental value. A recent study by Pratt and co-workers concluded that significant mixing of π-π{sup ∗} and n-π{sup ∗} states leads to major change in the magnitude and direction of the dipole moment of the upper state vibrational level in the 0,0 + 280 cm{sup −1} band in the S{sub 1}←S{sub 0} transition when compared to that of the zero-point level of the S{sub 1} state. The present study, however, shows that all the four lowest lying excited states, {sup 1}L{sub b} π-π{sup ∗}, {sup 1}L{sub a} π-π{sup ∗}, n-π{sup ∗}, and π-σ{sup ∗}, cross each other in one way or another, and hence, significant state mixing between them is likely. The upper state vibrational level in the 0,0 + 280 cm{sup −1} band in the S{sub 1}←S{sub 0} transition benefits from this four-state mixing and this can explain the change in magnitude and direction of the dipole moment of the S{sub 1} excited vibrational level. This multistate mixing, and especially the involvement of π-σ{sup ∗} state in mixing, could also provide a route for hydrogen atom detachment reactions. The electronic spectra of benzimidazole, a closely related system, were also investigated in the present study.

  14. Configurational entropy of glueball states

    Energy Technology Data Exchange (ETDEWEB)

    Bernardini, Alex E., E-mail: alexeb@ufscar.br [Departamento de Física, Universidade Federal de São Carlos, PO Box 676, 13565-905, São Carlos, SP (Brazil); Braga, Nelson R.F., E-mail: braga@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, RJ 21941-972 (Brazil); Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [CMCC, Universidade Federal do ABC, UFABC, 09210-580, Santo André (Brazil)

    2017-02-10

    The configurational entropy of glueball states is calculated using a holographic description. Glueball states are represented by a supergravity dual picture, consisting of a 5-dimensional graviton–dilaton action of a dynamical holographic AdS/QCD model. The configurational entropy is studied as a function of the glueball spin and of the mass, providing information about the stability of the glueball states.

  15. Development of Simulator Configuration Tool

    International Nuclear Information System (INIS)

    Nedrelid, Olav; Pettersen, Geir

    1996-01-01

    The main objective of the development of a Simulator Configuration Tool (SCT) is to achieve faster and more efficient production of dynamic simulators. Through application of versatile graphical interfaces, the simulator builder should be able to configure different types of simulators including full-scope process simulators. The SCT should be able to serve different simulator environments. The configuration tool communicates with simulator execution environments through a TCP/IP-based interface, Communication with a Model Server System developed at Institutt for energiteknikk has been established and used as test case. The system consists of OSF/Motif dialogues for operations requiring textual input, list selections etc., and uses the Picasso-3 User Interface Management System to handle presentation of static and dynamic graphical information. (author)

  16. BAYESIAN IMAGE RESTORATION, USING CONFIGURATIONS

    Directory of Open Access Journals (Sweden)

    Thordis Linda Thorarinsdottir

    2011-05-01

    Full Text Available In this paper, we develop a Bayesian procedure for removing noise from images that can be viewed as noisy realisations of random sets in the plane. The procedure utilises recent advances in configuration theory for noise free random sets, where the probabilities of observing the different boundary configurations are expressed in terms of the mean normal measure of the random set. These probabilities are used as prior probabilities in a Bayesian image restoration approach. Estimation of the remaining parameters in the model is outlined for salt and pepper noise. The inference in the model is discussed in detail for 3 X 3 and 5 X 5 configurations and examples of the performance of the procedure are given.

  17. Liquid-liquid mixing by gas injection in a pool configuration

    International Nuclear Information System (INIS)

    Corradini, M.L.

    1994-02-01

    An experimental apparatus was designed and constructed to study the mixing process of two immiscible liquids, in a pool configuration, by bottom gas injection. The apparatus consisted of a vertical pyrex conduit of 15.2 centimeters of internal diameter. To the lower part of the conduit was attached a porous plate through which the gas was injected. The experiments were photographically recorded. The pictures were digitized and a method was developed to quantify the mixing region thickness. This method requires knowledge of the void fraction, for each liquid, as a function of the superficial gas velocity. Because of this, void fraction was measured for the bubbly and churn flow regimes, in a pool configuration for every liquid. A new correlation, based on the drift flux model, is proposed for void fraction as a function of superficial gas velocity. It has been observed that mixing can start either in bubbly or churn flow regimes, depending on the liquid pair properties. Three mechanistic models were derived to aid in correlating the data, two for bubbly flow and one for churn flow. A transition region between these two flow regimes, was deduced, but not directly measured. A set of correlations was developed from the models and it is proposed to be implemented in current codes that model Molten Core Concrete Interactions (MCCI). The implications that the present work has on MCCI have been described. It can be deduced that mixing between the oxidic and the metallic phases will occur during the interaction

  18. Combining the Complete Active Space Self-Consistent Field Method and the Full Configuration Interaction Quantum Monte Carlo within a Super-CI Framework, with Application to Challenging Metal-Porphyrins.

    Science.gov (United States)

    Li Manni, Giovanni; Smart, Simon D; Alavi, Ali

    2016-03-08

    A novel stochastic Complete Active Space Self-Consistent Field (CASSCF) method has been developed and implemented in the Molcas software package. A two-step procedure is used, in which the CAS configuration interaction secular equations are solved stochastically with the Full Configuration Interaction Quantum Monte Carlo (FCIQMC) approach, while orbital rotations are performed using an approximated form of the Super-CI method. This new method does not suffer from the strong combinatorial limitations of standard MCSCF implementations using direct schemes and can handle active spaces well in excess of those accessible to traditional CASSCF approaches. The density matrix formulation of the Super-CI method makes this step independent of the size of the CI expansion, depending exclusively on one- and two-body density matrices with indices restricted to the relatively small number of active orbitals. No sigma vectors need to be stored in memory for the FCIQMC eigensolver--a substantial gain in comparison to implementations using the Davidson method, which require three or more vectors of the size of the CI expansion. Further, no orbital Hessian is computed, circumventing limitations on basis set expansions. Like the parent FCIQMC method, the present technique is scalable on massively parallel architectures. We present in this report the method and its application to the free-base porphyrin, Mg(II) porphyrin, and Fe(II) porphyrin. In the present study, active spaces up to 32 electrons and 29 orbitals in orbital expansions containing up to 916 contracted functions are treated with modest computational resources. Results are quite promising even without accounting for the correlation outside the active space. The systems here presented clearly demonstrate that large CASSCF calculations are possible via FCIQMC-CASSCF without limitations on basis set size.

  19. Tank waste remediation system configuration management implementation plan

    International Nuclear Information System (INIS)

    Vann, J.M.

    1998-01-01

    The Tank Waste Remediation System (TWRS) Configuration Management Implementation Plan describes the actions that will be taken by Project Hanford Management Contract Team to implement the TWRS Configuration Management program defined in HNF 1900, TWRS Configuration Management Plan. Over the next 25 years, the TWRS Project will transition from a safe storage mission to an aggressive retrieval, storage, and disposal mission in which substantial Engineering, Construction, and Operations activities must be performed. This mission, as defined, will require a consolidated configuration management approach to engineering, design, construction, as-building, and operating in accordance with the technical baselines that emerge from the life cycles. This Configuration Management Implementation Plan addresses the actions that will be taken to strengthen the TWRS Configuration Management program

  20. International Space Station Configuration Analysis and Integration

    Science.gov (United States)

    Anchondo, Rebekah

    2016-01-01

    Ambitious engineering projects, such as NASA's International Space Station (ISS), require dependable modeling, analysis, visualization, and robotics to ensure that complex mission strategies are carried out cost effectively, sustainably, and safely. Learn how Booz Allen Hamilton's Modeling, Analysis, Visualization, and Robotics Integration Center (MAVRIC) team performs engineering analysis of the ISS Configuration based primarily on the use of 3D CAD models. To support mission planning and execution, the team tracks the configuration of ISS and maintains configuration requirements to ensure operational goals are met. The MAVRIC team performs multi-disciplinary integration and trade studies to ensure future configurations meet stakeholder needs.

  1. Improving motorcycle conspicuity through innovative headlight configurations.

    Science.gov (United States)

    Ranchet, Maud; Cavallo, Viola; Dang, Nguyen-Thong; Vienne, Fabrice

    2016-09-01

    Most motorcycle crashes involve another vehicle that violated the motorcycle's right-of-way at an intersection. Two kinds of perceptual failures of other road users are often the cause of such accidents: motorcycle-detection failures and motion-perception errors. The aim of this study is to investigate the effect of different headlight configurations on motorcycle detectability when the motorcycle is in visual competition with cars. Three innovative headlight configurations were tested: (1) standard yellow (central yellow headlight), (2) vertical white (one white light on the motorcyclist's helmet and two white lights on the fork in addition to the central white headlight), and (3) vertical yellow (same configuration as (2) with yellow lights instead of white). These three headlight configurations were evaluated in comparison to the standard configuration (central white headlight) in three environments containing visual distractors formed by car lights: (1) daytime running lights (DRLs), (2) low beams, or (3) DRLs and low beams. Video clips of computer-generated traffic situations were displayed briefly (250ms) to 57 drivers. The results revealed a beneficial effect of standard yellow configuration and the vertical yellow configuration on motorcycle detectability. However, this effect was modulated by the car-DRL environment. Findings and practical recommendations are discussed with regard to possible applications for motorcycles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Projective configurations in projectivegeometrical drawings

    Directory of Open Access Journals (Sweden)

    Ivashchenko Andrey Viktorovich

    2015-05-01

    Full Text Available The article focuses on the optimization of the earlier discussed computer method of obtaining new forms of polyhedra based on projective geometry drawings (trace Diagrams.While working on getting new multifaceted forms by projective geometry methods based on the well-known models of polyhedra on the first stage of the work it is required to calculate the parameters of projective geometry drawings, and then to build them. This is an often used apparatus of analytical geometry. According to it, at first the parameters of the polyhedron (core system of planes are calculated, then we obtain the equation of the plane of the face of the polyhedron, and finally we obtain the equations of lines the next plane faces on the selected curve plane. At each stage of application such a method requires the use of the algorithms of floating point arithmetic, on the one hand, leads to some loss of accuracy of the results and, on the other hand, the large amount of computer time to perform these operations in comparison with integer arithmetic operations.The proposed method is based on the laws existing between the lines that make up the drawing - the known configurations of projective geometry (complete quadrilaterals, configuration of Desargues, Pappus et al..The authors discussed in detail the analysis procedure of projective geometry drawing and the presence of full quadrilaterals, Desargues and Pappus configurations in it.Since the composition of these configurations is invariant with respect to projective change of the original nucleus, knowing them, you can avoid the calculations when solving the equations for finding direct projective geometry drawing analytically, getting them on the basis of belonging to a particular configuration. So you can get a definite advantage in accuracy of the results, and in the cost of computer time. Finding these basic configurations significantly enriches the set of methods and the use of projective geometry drawings.

  3. Communication constraints, indexical countermeasures, and crew configuration effects in simulated space-dwelling groups

    Science.gov (United States)

    Hienz, Robert D.; Brady, Joseph V.; Hursh, Steven R.; Banner, Michele J.; Gasior, Eric D.; Spence, Kevin R.

    2007-02-01

    Previous research with groups of individually isolated crews communicating and problem-solving in a distributed interactive simulation environment has shown that the functional interchangeability of available communication channels can serve as an effective countermeasure to communication constraints. The present report extends these findings by investigating crew performance effects and psychosocial adaptation following: (1) the loss of all communication channels, and (2) changes in crew configuration. Three-person crews participated in a simulated planetary exploration mission that required identification, collection, and analysis of geologic samples. Results showed that crews developed and employed discrete navigation system operations that served as functionally effective communication signals (i.e., “indexical” or “deictic” cues) in generating appropriate crewmember responses and maintaining performance effectiveness in the absence of normal communication channels. Additionally, changes in crew configuration impacted both performance effectiveness and psychosocial adaptation.

  4. Moderator Configuration Options for ESS

    DEFF Research Database (Denmark)

    Zanini, L.; Batkov, K.; Klinkby, Esben Bryndt

    2016-01-01

    The current, still evolving status of the design and the optimization work for the moderator configuration for the European Spallation Source is described. The moderator design has been strongly driven by the low-dimensional moderator concept recently proposed for use in spallation neutron sources...... or reactors. Quasi-two dimensional, disc- or tube-shaped moderators,can provide strong brightness increase (factor of 3 or more) with respect to volume para-H2moderators, which constitute the reference, state-of-the-art technology for high-intensity coupled moderators. In the design process other, more...... conventional, principles were also considered,such as the importance of moderator positioning, of the premoderator, and beam extraction considerations. Different design and configuration options are evaluated and compared with the reference volume moderator configuration described in the ESS Technical Design...

  5. Even zinc isotopes in the interacting boson model

    Energy Technology Data Exchange (ETDEWEB)

    Druce, C.H.; McCullen, J.D.; Duval, P.D.; Barrett, B.R. (Arizona Univ., Tucson (USA). Dept. of Physics)

    1982-11-01

    The interacting boson model is applied to the even zinc isotopes /sup 62/Zn-/sup 72/Zn. Two boson configurations are used to account for the behaviour of excited O/sup +/ states; one is the usual particle boson configuration and the other a configuration representing proton excitation from the /sup 56/Ni core. The parameter variation in the model is constrained as much as possible to agree with calculations from a non-degenerate multi-shell fermion basis for the bosons. Energy levels, quadrupole moments and B(E2) values are calculated. Values obtained compare favourably with experiment and with other calculations.

  6. Configuration Management for Wendelstein 7-X

    International Nuclear Information System (INIS)

    Brakel, R.; Eeten, P.v.; Hartmann, D.A.; Henkelmann, K.; Knauer, J.; Mueller, K.; Okkenga-Wolf, A.; Wenzel, U.

    2009-01-01

    A complex system like the large superconducting Wendelstein 7-X stellarator necessitates a dedicated organizational structure which assures permanent consistency between the requirements of its system specification and the performance attributes of all its components throughout its life time. This includes well-defined processes and centrally coordinated information structures. For this purposes the department Configuration Management (CM) has recently been established at W7-X. The detailed tasks of CM for W7-X are oriented along common CM standards and comprise configuration identification, change management, configuration status accounting and configuration verification. While the assembly of W7-X is proceeding some components are still under procurement or even under design. Thus design changes and non-conformances may have a direct impact on the assembly process. Highest priority has therefore been assigned to efficient control of change and non-conformance processes which might delay the assembly schedule.

  7. Absolute Configuration of Andrographolide and Its Proliferation of Osteoblast Cell Lines

    Science.gov (United States)

    Chantrapromma, S.; Boonnak, N.; Pitakpornpreecha, T.; Yordthong, T.; Chidan Kumar, C. S.; Fun, H. K.

    2018-05-01

    Andrographolide, C20H30O5, is a labdane diterpenoid which was isolated from the leave of Andrographis paniculata. Its crystal structure is determined by single crystal X-ray diffraction: monoclinic, sp. gr. P21, Z = 2. Absolute configuration is determined by the refinement of the Flack parameter to 0.21(19). In the crystal, molecules are linked by O-H···O hydrogen bonds and C-H···O interactions into two dimensional network parallel to the (001) plane. Its proliferation of osteoblast cell lines is reported.

  8. Long-distance configuration of FPGA based on serial communication

    International Nuclear Information System (INIS)

    Liu Xiang; Song Kezhu; Zhang Sifeng

    2010-01-01

    To solve FPGA configuration in some nuclear electronics, which works in radioactivity environment, the article introduces a way of long-distance configuration with PC and CPLD, based on serial communication. Taking CYCLONE series FPGA and EPCS configuration chip from ALTERA for example, and using the AS configuration mode, we described our design from the aspects of basic theory, hardware connection, software function and communication protocol. With this design, we could configure several FPGAs in the distance of 100 meters, or we could configure on FPGA in the distance of 150 meters. (authors)

  9. Atom localization with double-cascade configuration

    International Nuclear Information System (INIS)

    Gordeev, Maksim Yu; Rozhdestvensky, Yuri V; Efremova, Ekaterina A

    2016-01-01

    We investigate the one-dimensional (1D) and two-dimensional (2D) atom localization of a four-level system in a double-cascade configuration. We demonstrate the possibility of 1D localization in the field of a standing wave, 2D localization in the field of two standing waves and 2D localization only in the field of running waves by using different configurations of driven waves on transitions. In addition, for each configuration we reached a high-precision atom localization in one of the states at scales much smaller than the wavelength of the incident optical radiation. (paper)

  10. Design of a holographic waveguide with L configuration

    Science.gov (United States)

    Xiang, Guangxin-Xin; Li, Wen-Qiang

    2016-10-01

    In order to decrease the complexity to design and manufacture the turning grating of the configuration with one reflecting surface, an L-shape two-dimension extended configuration with single plate is given in the paper. This configuration consists of one specular reflecting surface and three holographic gratings two in which periods and the groove orientations are totally same, which makes gratings design and fabrication easier. According to the calculation and analysis to the optical path of configuration, the dimension of the turning grating is no larger than 40mm×30mm. The simulation result demonstrates the display configuration is reasonable and correct and can realize the display effect with 30°×30° field of view and Φ30mm large exit pupil. This configuration can be applied to an Augmented Reality Display (AR) or a Head-Mounted Display (HMD).

  11. Configuration Fuzzing for Software Vulnerability Detection.

    Science.gov (United States)

    Dai, Huning; Murphy, Christian; Kaiser, Gail

    2010-02-15

    Many software security vulnerabilities only reveal themselves under certain conditions, i.e., particular configurations of the software together with its particular runtime environment. One approach to detecting these vulnerabilities is fuzz testing, which feeds a range of randomly modified inputs to a software application while monitoring it for failures. However, typical fuzz testing makes no guarantees regarding the syntactic and semantic validity of the input, or of how much of the input space will be explored. To address these problems, in this paper we present a new testing methodology called configuration fuzzing. Configuration fuzzing is a technique whereby the configuration of the running application is randomly modified at certain execution points, in order to check for vulnerabilities that only arise in certain conditions. As the application runs in the deployment environment, this testing technique continuously fuzzes the configuration and checks "security invariants" that, if violated, indicate a vulnerability; however, the fuzzing is performed in a duplicated copy of the original process, so that it does not affect the state of the running application. In addition to discussing the approach and describing a prototype framework for implementation, we also present the results of a case study to demonstrate the approach's efficiency.

  12. Developing a Frame of Reference for understanding configuration systems

    DEFF Research Database (Denmark)

    Ladeby, Klaes Rohde; Edwards, Kasper

    2008-01-01

    This paper uses the theory of technical systems to develop a frame of reference of product configuration systems. Following a definition of the configuration task, product model and product configuration system the theory of technical systems are presented. Configuration systems are then related...

  13. TWRS authorization basis configuration control summary

    International Nuclear Information System (INIS)

    Mendoza, D.P.

    1997-01-01

    This document was developed to define the Authorization Basis management functional requirements for configuration control, to evaluate the management control systems currently in place, and identify any additional controls that may be required until the TWRS [Tank Waste Remediation System] Configuration Management system is fully in place

  14. Deformed configurations, band structures and spectroscopic ...

    Indian Academy of Sciences (India)

    2014-03-20

    Mar 20, 2014 ... The deformed configurations and rotational band structures in =50 Ge and Se nuclei are studied by deformed Hartree–Fock with quadrupole constraint and angular momentum projection. Apart from the `almost' spherical HF solution, a well-deformed configuration occurs at low excitation. A deformed ...

  15. SRP [Salt Repository Project] configuration management plan

    International Nuclear Information System (INIS)

    1987-01-01

    This configuration management plan describes the organization, policies, and procedures that will be used on the Salt Repository Project (SRP) to implement the configuration management disciplines and controls. Configuration management is a part of baseline management. Baseline management is defined in the SRP Baseline Procedures Notebook and also includes cost and schedule baselines. Configuration management is a discipline applying technical and administrative direction and surveillance to identify and document the functional and physical characteristics of an item, to control changes to those characteristics, to record and report change processing and implementation status, and to audit the results. Configuration management is designed as a project management tool to determine and control baselines, and ensure and document all components of a project interface both physically and functionally. The purpose is to ensure that the product acquired satisfies the project's technical and operational requirements, and that the technical requirements are clearly defined and controlled throughout the development and acquisition process. 5 figs

  16. Measuring multi-configurational character by orbital entanglement

    Science.gov (United States)

    Stein, Christopher J.; Reiher, Markus

    2017-09-01

    One of the most critical tasks at the very beginning of a quantum chemical investigation is the choice of either a multi- or single-configurational method. Naturally, many proposals exist to define a suitable diagnostic of the multi-configurational character for various types of wave functions in order to assist this crucial decision. Here, we present a new orbital-entanglement-based multi-configurational diagnostic termed Zs(1). The correspondence of orbital entanglement and static (or non-dynamic) electron correlation permits the definition of such a diagnostic. We chose our diagnostic to meet important requirements such as well-defined limits for pure single-configurational and multi-configurational wave functions. The Zs(1) diagnostic can be evaluated from a partially converged, but qualitatively correct, and therefore inexpensive density matrix renormalisation group wave function as in our recently presented automated active orbital selection protocol. Its robustness and the fact that it can be evaluated at low cost make this diagnostic a practical tool for routine applications.

  17. Driving spin transition at interface: Role of adsorption configurations

    Science.gov (United States)

    Zhang, Yachao

    2018-01-01

    A clear insight into the electrical manipulation of molecular spins at interface is crucial to the design of molecule-based spintronic devices. Here we report on the electrically driven spin transition in manganocene physisorbed on a metallic surface in two different adsorption configurations predicted by ab initio techniques, including a Hubbard-U correction at the manganese site and accounting for the long-range van der Waals interactions. We show that the application of an electric field at the interface induces a high-spin to low-spin transition in the flat-lying manganocene, while it could hardly alter the high-spin ground state of the standing-up molecule. This phenomenon cannot be explained by either the molecule-metal charge transfer or the local electron correlation effects. We demonstrate a linear dependence of the intra-molecular spin-state splitting on the energy difference between crystal-field splitting and on-site Coulomb repulsion. After considering the molecule-surface binding energy shifts upon spin transition, we reproduce the obtained spin-state energetics. We find that the configuration-dependent responses of the spin-transition originate from the binding energy shifts instead of the variation of the local ligand field. Through these analyses, we obtain an intuitive understanding of the effects of molecule-surface contact on spin-crossover under electrical bias.

  18. Ansible configuration management

    CERN Document Server

    Hall, Daniel

    2015-01-01

    This book is intended for anyone who wants to learn Ansible starting from the basics. Some experience of how to set up and configure Linux machines and a working knowledge of BIND, MySQL, and other Linux daemons is expected.

  19. Case studies in configuration control for redundant robots

    Science.gov (United States)

    Seraji, H.; Lee, T.; Colbaugh, R.; Glass, K.

    1989-01-01

    A simple approach to configuration control of redundant robots is presented. The redundancy is utilized to control the robot configuration directly in task space, where the task will be performed. A number of task-related kinematic functions are defined and combined with the end-effector coordinates to form a set of configuration variables. An adaptive control scheme is then utilized to ensure that the configuration variables track the desired reference trajectories as closely as possible. Simulation results are presented to illustrate the control scheme. The scheme has also been implemented for direct online control of a PUMA industrial robot, and experimental results are presented. The simulation and experimental results validate the configuration control scheme for performing various realistic tasks.

  20. Strong enhancement of transport by interaction on contact links

    DEFF Research Database (Denmark)

    Bohr, Dan; Schmitteckert, P.

    2007-01-01

    Strong repulsive interactions within a one-dimensional Fermi system in a two-probe configuration normally lead to a reduced off-resonance conductance. We show that if the repulsive interaction extends to the contact regions, a strong increase of the conductance may occur, even for systems where o...

  1. Ab initio configuration interaction description of excitation energy transfer between closely packed molecules

    International Nuclear Information System (INIS)

    Fink, R.F.; Pfister, J.; Schneider, A.; Zhao, H.; Engels, B.

    2008-01-01

    We present new, generally applicable protocols for the computation of the coupling parameter, J, of excitation energy transfer with quantum chemical ab initio methods. The protocols allow to select the degree of approximation and computational demand such that they are applicable for realistic systems and still allow to control the quality of the approach. We demonstrate the capabilities of the different protocols using the CO dimer as a first example. Correlation effects are found to scale J by a factor of about 0.7 which is in good agreement to earlier results obtained for the ethene dimer. The various levels of the protocol allow to assess the influence of ionic configurations and the polarisation within the dimer. Further, the interplay between the Foerster and Dexter contribution to J is investigated. The computations also show error compensation within approximations that are widely used for extended systems as in particular the transition density cube method

  2. Ab initio configuration interaction description of excitation energy transfer between closely packed molecules

    Energy Technology Data Exchange (ETDEWEB)

    Fink, R.F. [University of Wuerzburg, Institute of Organic Chemistry, Am Hubland, D-97074 Wuerzburg (Germany)], E-mail: reinhold.fink@rub.de; Pfister, J.; Schneider, A.; Zhao, H.; Engels, B. [University of Wuerzburg, Institute of Organic Chemistry, Am Hubland, D-97074 Wuerzburg (Germany)

    2008-01-29

    We present new, generally applicable protocols for the computation of the coupling parameter, J, of excitation energy transfer with quantum chemical ab initio methods. The protocols allow to select the degree of approximation and computational demand such that they are applicable for realistic systems and still allow to control the quality of the approach. We demonstrate the capabilities of the different protocols using the CO dimer as a first example. Correlation effects are found to scale J by a factor of about 0.7 which is in good agreement to earlier results obtained for the ethene dimer. The various levels of the protocol allow to assess the influence of ionic configurations and the polarisation within the dimer. Further, the interplay between the Foerster and Dexter contribution to J is investigated. The computations also show error compensation within approximations that are widely used for extended systems as in particular the transition density cube method.

  3. A PBOM configuration and management method based on templates

    Science.gov (United States)

    Guo, Kai; Qiao, Lihong; Qie, Yifan

    2018-03-01

    The design of Process Bill of Materials (PBOM) holds a hinge position in the process of product development. The requirements of PBOM configuration design and management for complex products are analysed in this paper, which include the reuse technique of configuration procedure and urgent management need of huge quantity of product family PBOM data. Based on the analysis, the function framework of PBOM configuration and management has been established. Configuration templates and modules are defined in the framework to support the customization and the reuse of configuration process. The configuration process of a detection sensor PBOM is shown as an illustration case in the end. The rapid and agile PBOM configuration and management can be achieved utilizing template-based method, which has a vital significance to improve the development efficiency for complex products.

  4. NASA HERMeS Hall Thruster Electrical Configuration Characterization

    Science.gov (United States)

    Peterson, Peter; Kamhawi, Hani; Huang, Wensheng; Yim, John; Herman, Daniel; Williams, George; Gilland, James; Hofer, Richard

    2016-01-01

    NASAs Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Technology Demonstration Unit-1 (TDU-1) Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight ready propulsion system. Part of the technology maturation was to test the TDU-1 thruster in several ground based electrical configurations to assess the thruster robustness and suitability to successful in-space operation. The ground based electrical configuration testing has recently been demonstrated as an important step in understanding and assessing how a Hall thruster may operate differently in space compared to ground based testing, and to determine the best configuration to conduct development and qualification testing. This presentation will cover the electrical configuration testing of the TDU-1 HERMeS Hall thruster in NASA Glenn Research Centers Vacuum Facility 5. The three electrical configurations examined are the thruster body tied to facility ground, thruster floating, and finally the thruster body electrically tied to cathode common. The TDU-1 HERMeS was configured with two different exit plane boundary conditions, dielectric and conducting, to examine the influence on the electrical configuration characterization.

  5. Experimental research on crossing shock wave boundary layer interactions

    Science.gov (United States)

    Settles, G. S.; Garrison, T. J.

    1994-10-01

    An experimental research effort of the Penn State Gas Dynamics Laboratory on the subject of crossing shock wave boundary layer interactions is reported. This three year study was supported by AFOSR Grant 89-0315. A variety of experimental techniques were employed to study the above phenomena including planar laser scattering flowfield visualization, kerosene lampblack surface flow visualization, laser-interferometer skin friction surveys, wall static pressure measurements, and flowfield five-hole probe surveys. For a model configuration producing two intersecting shock waves, measurements were made for a range of oblique shock strengths at freestream Mach numbers of 3.0 and 3.85. Additionally, measurements were made at Mach 3.85 for a configuration producing three intersecting waves. The combined experimental dataset was used to formulate the first detailed flowfield models of the crossing-shock and triple-shock wave/boundary layer interactions. The structure of these interactions was found to be similar over a broad range of interaction strengths and is dominated by a large, separated, viscous flow region.

  6. Experiences with Architectural Software Configuration Management in Ragnarok

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak

    1998-01-01

    This paper describes a model, denoted architectural software configuration management, that minimises the gap between software design and configuration management by allowing developers to do configuration- and version control of the abstractions and hierarchy in a software architecture. The model...... emphasises traceability and reproducibility by unifying the concepts version and bound configuration. Experiences with such a model, implemented in a prototype “Ragnarok”, from three real-life, small- to medium-sized, software development projects are reported. The conclusion is that the presented model...

  7. Ladder Ising spin configurations. Pt. 1. Heat capacity

    International Nuclear Information System (INIS)

    Mejdani, R.; Lambros, A.

    1996-01-01

    We consider a ladder Ising spin model (with two coupled Ising spin chains), characterized by two couplings (interchain and intrachain couplings), to study in detail, in an analytical way, its thermal behaviour and particularly the variation of the specific heat versus temperature, the ratio of interaction constants, and the magnetic field. It is interesting that when the competition between interchain and intrachain interactions is strong the specific heat exhibits a double peak and when the competition is not so strong the specific heat has a single peak. Further, without entering into details, we give, in a numerical way, some similar results for more complicated ladder configurations (with more than two linear Ising chains). The spin-1/2 ladders or systems of spin chains may be realized in nature by vanadyl pyrophosphate ((VO) 2 P 2 O 7 ) or similar materials. All these intermediate systems are today important to gain further insight into the physics of one-dimensional spin chains and two-dimensional high-T c spin systems, both of which have shown interesting and unusual magnetic and superconducting properties. It is plausible that experimental and theoretical studies of ladders may lead to other interesting physical phenomena. (orig.)

  8. Partition Function and Configurational Entropy in Non-Equilibrium States: A New Theoretical Model

    Directory of Open Access Journals (Sweden)

    Akira Takada

    2018-03-01

    Full Text Available A new model of non-equilibrium thermodynamic states has been investigated on the basis of the fact that all thermodynamic variables can be derived from partition functions. We have thus attempted to define partition functions for non-equilibrium conditions by introducing the concept of pseudo-temperature distributions. These pseudo-temperatures are configurational in origin and distinct from kinetic (phonon temperatures because they refer to the particular fragments of the system with specific energies. This definition allows thermodynamic states to be described either for equilibrium or non-equilibrium conditions. In addition; a new formulation of an extended canonical partition function; internal energy and entropy are derived from this new temperature definition. With this new model; computational experiments are performed on simple non-interacting systems to investigate cooling and two distinct relaxational effects in terms of the time profiles of the partition function; internal energy and configurational entropy.

  9. A new approach for ATLAS Athena job configuration

    CERN Document Server

    Lampl, Walter; The ATLAS collaboration

    2018-01-01

    The offline software framework of the ATLAS experiment (Athena) consists of many small components of various types like Algorithm, Tool or Service. To assemble these components into an executable application for event processing, a dedicated configuration step is necessary. The configuration of a particular job depends on the workflow (simulation, reconstruction, high-level trigger, overlay, calibration, analysis ...) and the input data (real or simulated data, beam-energy, ...) leading to a large number of possible configurations. The configuration step is done by executing python code. The resulting configuration depends on optionally pre-set flags as well as meta-data about the data to be processed that is found by peeking into the input file and even into databases. For the python configuration code, there is almost no structure enforced, leaving the full power of python to the user. While this approach did work, it also proved to be error prone and complicated to use. It also leads to jobs containing mor...

  10. Dynamic configuration of the CMS Data Acquisition cluster

    CERN Document Server

    Bauer, Gerry; Biery, Kurt; Boyer, Vincent; Branson, James; Cano, Eric; Cheung, Harry; Ciganek, Marek; Cittolin, Sergio; Coarasa, Jose Antonio; Deldicque, Christian; Dusinberre, Elizabeth; Erhan, Samim; Fortes Rodrigues, Fabiana; Gigi, Dominique; Glege, Frank; Gomez-Reino, Robert; Gutleber, Johannes; Hatton, Derek; Laurens, Jean-Francois; Lopez Perez, Juan Antonio; Meijers, Frans; Meschi, Emilio; Meyer, Andreas; Mommsen, Remigius K; Moser, Roland; O'Dell, Vivian; Oh, Alexander; Orsini, Luciano; Patras, Vaios; Paus, Christoph; Petrucci, Andrea; Pieri, Marco; Racz, Attila; Sakulin, Hannes; Sani, Matteo; Schieferdecker, Philipp; Schwick, Christoph; Shpakov, Dennis; Simon, Sean; Sumorok, Konstanty; Zanetti, Marco

    2010-01-01

    The CMS Data Acquisition cluster, which runs around 10000 applications, is configured dynamically at run time. XML configuration documents determine what applications are executed on each node and over what networks these applications communicate. Through this mechanism the DAQ System may be adapted to the required performance, partitioned in order to perform (test-) runs in parallel, or re-structured in case of hardware faults. This paper presents the CMS DAQ Configurator tool, which is used to generate comprehensive configurations of the CMS DAQ system based on a high-level description given by the user. Using a database of configuration templates and a database containing a detailed model of hardware modules, data and control links, nodes and the network topology, the tool automatically determines which applications are needed, on which nodes they should run, and over which networks the event traffic will flow. The tool computes application parameters and generates the XML configuration documents as well a...

  11. Bayesian image restoration, using configurations

    OpenAIRE

    Thorarinsdottir, Thordis

    2006-01-01

    In this paper, we develop a Bayesian procedure for removing noise from images that can be viewed as noisy realisations of random sets in the plane. The procedure utilises recent advances in configuration theory for noise free random sets, where the probabilities of observing the different boundary configurations are expressed in terms of the mean normal measure of the random set. These probabilities are used as prior probabilities in a Bayesian image restoration approach. Estimation of the re...

  12. Ab initio configuration interaction study on the energetics and electronic structure of the 1-52Σ+ and 1-32Π states of CS+

    International Nuclear Information System (INIS)

    Honjou, Nobumitsu

    2006-01-01

    The energetics and electronic structure of the 1-5 2 Σ + and 1-3 2 Π states of CS + at and around the equilibrium internuclear distance R e for the CS X 1 Σ + state are studied by carrying out ab initio configuration interaction (CI) calculations. The spectroscopic constants of T e , ω e , and R e for the 1-4 2 Σ + , 1 2 Π, and 3 2 Π states are evaluated from the CI potential energy curves (PECs). The avoided crossing between the 2-3 2 Σ + PECs causes the 3 2 Σ + minimum and explains the observed high intensities for the photoionization from the CS X 1 Σ + state to both the 2-3 2 Σ + states. The avoided crossing between the 3-4 2 Σ + PECs produces the 3 2 Σ + maximum and 4 2 Σ + well minimum. The avoided crossing between the 2-3 2 Π PECs results in the 3 2 Π minimum and a small minimum spacing (0.14 eV) between the PECs

  13. Some Aspects of Process Computers Configuration Control in Nuclear Power Plant Krsko - Process Computer Signal Configuration Database (PCSCDB)

    International Nuclear Information System (INIS)

    Mandic, D.; Kocnar, R.; Sucic, B.

    2002-01-01

    During the operation of NEK and other nuclear power plants it has been recognized that certain issues related to the usage of digital equipment and associated software in NPP technological process protection, control and monitoring, is not adequately addressed in the existing programs and procedures. The term and the process of Process Computers Configuration Control joins three 10CFR50 Appendix B quality requirements of Process Computers application in NPP: Design Control, Document Control and Identification and Control of Materials, Parts and Components. This paper describes Process Computer Signal Configuration Database (PCSCDB), that was developed and implemented in order to resolve some aspects of Process Computer Configuration Control related to the signals or database points that exist in the life cycle of different Process Computer Systems (PCS) in Nuclear Power Plant Krsko. PCSCDB is controlled, master database, related to the definition and description of the configurable database points associated with all Process Computer Systems in NEK. PCSCDB holds attributes related to the configuration of addressable and configurable real time database points and attributes related to the signal life cycle references and history data such as: Input/Output signals, Manually Input database points, Program constants, Setpoints, Calculated (by application program or SCADA calculation tools) database points, Control Flags (example: enable / disable certain program feature) Signal acquisition design references to the DCM (Document Control Module Application software for document control within Management Information System - MIS) and MECL (Master Equipment and Component List MIS Application software for identification and configuration control of plant equipment and components) Usage of particular database point in particular application software packages, and in the man-machine interface features (display mimics, printout reports, ...) Signals history (EEAR Engineering

  14. Status Configurations, Military Service and Higher Education.

    Science.gov (United States)

    Wang, Lin; Elder, Glen H; Spence, Naomi J

    2012-12-01

    The U.S. Armed Forces offer educational and training benefits as incentives for service. This study investigates the influence of status configurations on military enlistment and their link to greater educational opportunity. Three statuses (socioeconomic status of origin, cognitive ability and academic performance) have particular relevance for life course options. We hypothesize that young men with inconsistent statuses are more likely to enlist than men with consistent status profiles, and that military service improves access to college for certain configurations. Analyses of the National Longitudinal Study of Adolescent Health (Add Health) show (1. that several status configurations markedly increased the likelihood of military enlistment and (2. within status configurations, recruits were generally more likely to enroll in higher education than nonveterans, with associate degrees being more likely.

  15. Exotic configurations for gauge theory strings

    International Nuclear Information System (INIS)

    Yajnik, U.A.

    1987-01-01

    This paper discusses a class of string configurations occuring in nonabelian gauge theories, which are such that a component of the charged scalar field responsible for the string has a nonvanishing expectation value in the core of the string. A systematic procedure is given for setting up the ansatz for such configurations. (orig.)

  16. Overview of Java application configuration frameworks

    OpenAIRE

    Denisov, Victor

    2013-01-01

    This paper reviews three major application configuration frameworks for Java-based applications: java.util.Properties, Apache Commons Configuration and Preferences API. Basic functionality of each framework is illustrated with code examples. Pros and cons of each framework are described in moderate detail. Suggestions are made about typical use cases for each framework.

  17. Energy savings in distillation via identification of useful configurations

    Science.gov (United States)

    Shah, Vishesh Hemanshu

    Recent market and environmental forces require the rapid development of better and cheaper separation process solutions. Especially for multicomponent mixtures, there are several feasible separation process solutions differing significantly in cost and energy consumption in spite of carrying out the same overall process. Therefore a systematic method to identify and design optimal multicomponent separation sequences is needed instead of relying on the inventive activity of a few experienced engineers. Even for a commonly perceived "mature" technology such as distillation, until recently there has been an absence of systematic methods to (i) elucidate all possible separation configurations and to (ii) identify energy efficient candidates. This research aims to address these needs. In this work, we focus on the continuous distillation of non-azeotropic mixtures into n distinct composition final product streams. We develop a computationally efficient and easy-to-use mathematical framework to generate all the basic distillation configurations that use exactly (n-1) distillation columns to carry out this n-component separation. We extend the framework to generate all the additional distillation configurations with thermal coupling. We observe that the search space of distillation configurations grows very rapidly as the number of product streams increases. For instance, for a mixture to be separated into 4 product streams, we can choose from 18 basic configurations and 134 additional configurations with thermal coupling; while for a mixture to be separated into 8 product streams, we can choose from 15,767,207 basic configurations and 29,006,926,681 additional configurations with thermal coupling. The next challenge for a process engineer is to be able to quickly prune the search space to a handful of attractive energy efficient candidates that can be studied in greater detail. To this effect, we develop a quick screening optimization tool that identifies configurations

  18. Visualization of the CMS python configuration system

    International Nuclear Information System (INIS)

    Erdmann, M; Fischer, R; Klimkovich, T; Mueller, G; Steggemann, J; Hegner, B; Hinzmann, A

    2010-01-01

    The job configuration system of the CMS experiment is based on the Python programming language. Software modules and their order of execution are both represented by Python objects. In order to investigate and verify configuration parameters and dependencies naturally appearing in modular software, CMS employs a graphical tool. This tool visualizes the configuration objects, their dependencies, and the information flow. Furthermore it can be used for documentation purposes. The underlying software concepts as well as the visualization are presented.

  19. Visualization of the CMS python configuration system

    Energy Technology Data Exchange (ETDEWEB)

    Erdmann, M; Fischer, R; Klimkovich, T; Mueller, G; Steggemann, J [RWTH Aachen University, Physikalisches Institut 3A, 52062 Aachen (Germany); Hegner, B [CERN, CH-1211 Geneva 23 (Switzerland); Hinzmann, A, E-mail: andreas.hinzmann@cern.c

    2010-04-01

    The job configuration system of the CMS experiment is based on the Python programming language. Software modules and their order of execution are both represented by Python objects. In order to investigate and verify configuration parameters and dependencies naturally appearing in modular software, CMS employs a graphical tool. This tool visualizes the configuration objects, their dependencies, and the information flow. Furthermore it can be used for documentation purposes. The underlying software concepts as well as the visualization are presented.

  20. Environmental restoration project configuration control

    International Nuclear Information System (INIS)

    Hutterman, L.L.

    1991-01-01

    This paper provides an overview of the approach that Westinghouse Idaho Nuclear Company, Inc. (WINCO) is using for the implementation of the configuration control requirements for a major system acquisition under the guidance of US Department of Energy (DOE) Order 4700.1, open-quotes Project Management System,close quotes for environmental restoration. The two major features of the WINCO environmental restoration approach relate to (1) the product and (2) the maintenance of the baseline for many sites in different phases at the same time. Historically, a project has typically produced a product. Environmental restoration in some ways produces no typical project product. Essentially, what is produced and what configuration control management is exercised on is one of the following: (1) the development of clean dirt, (2) the documentation to support clean dirt, or (3) the track record of each of the sites. It is the latter approach that this paper deals with. This approach is unique in that there are four baselines [cost, schedule, scope, and technical (the track record product)] rather than the typical three. This is essential in configuration management due to the lack of a uniquely identifiable product for each site. Essentially, the philosophy behind the four-part configuration controls allows the technical baseline to fulfill the function typically met by the identifiable product

  1. Configuring Airspace Sectors with Approximate Dynamic Programming

    Science.gov (United States)

    Bloem, Michael; Gupta, Pramod

    2010-01-01

    In response to changing traffic and staffing conditions, supervisors dynamically configure airspace sectors by assigning them to control positions. A finite horizon airspace sector configuration problem models this supervisor decision. The problem is to select an airspace configuration at each time step while considering a workload cost, a reconfiguration cost, and a constraint on the number of control positions at each time step. Three algorithms for this problem are proposed and evaluated: a myopic heuristic, an exact dynamic programming algorithm, and a rollouts approximate dynamic programming algorithm. On problem instances from current operations with only dozens of possible configurations, an exact dynamic programming solution gives the optimal cost value. The rollouts algorithm achieves costs within 2% of optimal for these instances, on average. For larger problem instances that are representative of future operations and have thousands of possible configurations, excessive computation time prohibits the use of exact dynamic programming. On such problem instances, the rollouts algorithm reduces the cost achieved by the heuristic by more than 15% on average with an acceptable computation time.

  2. Evaluating the fermionic determinant of dynamical configurations

    International Nuclear Information System (INIS)

    Hasenfratz, Anna; Alexandru, Andrei

    2002-01-01

    We propose and study an improved method to calculate the fermionic determinant of dynamical configurations. The evaluation or at least stochastic estimation of the ratios of fermionic determinants is essential for a recently proposed updating method of smeared link dynamical fermions. This update creates a sequence of configurations by changing a subset of the gauge links by a pure gauge heat bath or over-relaxation step. The acceptance of the proposed configuration depends on the ratio of the fermionic determinants on the new and original configurations. We study this ratio as a function of the number of links that are changed in the heat bath update. We find that even when every link of a given direction and parity of a 10 fm 4 configuration is updated, the average of the determinant ratio is still close to one and with the improved stochastic estimator the proposed change is accepted with about 20% probability. This improvement suggests that the new updating technique can be efficient even on large lattices and could provide an updating method for dynamical overlap actions

  3. A numerical investigation of the functionality of coronary bifurcation lesions with respect to lesion configuration and stenosis severity.

    Science.gov (United States)

    Pagiatakis, Catherine; Tardif, Jean-Claude; L'Allier, Philippe L; Mongrain, Rosaire

    2015-09-18

    The intervention of coronary bifurcation lesions is associated with higher rates of peri- and post-procedural clinical events compared to the treatment of isolated lesions. Overall, the factors that influence the dynamics of these types of configurations are still not well understood. A geometric multiscale model, consisting of a 3D representation of the left main coronary artery bifurcation and a 0D representation of the rest of the cardiovascular system, was developed. Computational fluid dynamics simulations of the 3D domain were executed by implementing the multiscale algorithm, in order to characterize the functionality of different multilesional configurations as a function of stenosis severity. The investigation found that coronary branch steal has a significant impact on the functionality of the disease and can render a two-lesion configuration more severe compared to a three-lesion configuration. As a result of the complexity of this phenomenon, it was also suggested that certain lesion configurations could result in false negatives in diagnosis when employing a pullback pressure recording across the tandem lesions. In conclusion, this study showed that coronary bifurcation lesions are subject to intricate haemodynamic interactions which render the characterization of their functionality complex and could have significant clinical implications with regards to their diagnosis and prognosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effects of landscape composition and configuration on pollination in a native herb: a field experiment.

    Science.gov (United States)

    Ekroos, Johan; Jakobsson, Anna; Wideen, Joel; Herbertsson, Lina; Rundlöf, Maj; Smith, Henrik G

    2015-10-01

    Bumble bee abundance in agricultural landscapes is known to decrease with increasing distance from seminatural grasslands, but whether the pollination of bumble-bee-pollinated wild plants shows a similar pattern is less well known. In addition, the relative effects of landscape composition (landscape heterogeneity) and landscape configuration (distance from seminatural grassland) on wild plant pollination, and the interaction between these landscape effects, have not been studied using landscape-level replication. We performed a field experiment to disentangle these landscape effects on the pollination of a native herb, the sticky catchfly (Lychnis viscaria), while accounting for the proportion of oilseed rape across landscapes and the local abundance of bee forage flowers. We measured pollen limitation (the degree to which seed set is pollen-limited), seed set, and seed set stability using potted plants placed in landscapes that differed in heterogeneity (composition) and distance from seminatural grassland (configuration). Pollen limitation and seed set in individual plants did not respond to landscape composition, landscape configuration, or proportion of oilseed rape. Instead, seed set increased with increasing local bee forage flower cover. However, we found within-plant variability in pollen limitation and seed set to increase with increasing distance from seminatural pasture. Our results suggest that average within-plant levels of pollen limitation and seed set respond less swiftly than the within-plant variability in pollen limitation and seed set to changes in landscape configuration. Although landscape effects on pollination were less important than predicted, we conclude that landscape configuration and local habitat characteristics play larger roles than landscape composition in the pollination of L. viscaria.

  5. Hanford Environmental Information System Configuration Management Plan

    International Nuclear Information System (INIS)

    1996-06-01

    The Hanford Environmental Information System (HEIS) Configuration Management Plan establishes the software and data configuration control requirements for the HEIS and project-related databases maintained within the Environmental Restoration Contractor's data management department

  6. New Classes of Quasi-Axisymmetric Stellarator Configurations

    International Nuclear Information System (INIS)

    Ku LP

    2005-01-01

    We have identified and developed new classes of quasi-axially symmetric configurations which have attractive properties from the standpoint of both near-term physics experiments and long-term power producing reactors. These new configurations were developed as a result of surveying the aspect ratio-rotational transform space to identify regions endowed with particularly interesting features. These include configurations with very small aspect ratios (∼2.5) having superior quasi-symmetry and energetic particle confinement characteristics, and configurations with strongly negative global magnetic shear from externally supplied rotational transforms so that the overall rotational transform, when combined with the transform from bootstrap currents at finite plasma pressures, will yield a small but positive shear, making the avoidance of low order rational surfaces at a given operating beta possible. Additionally, we have found configurations with NCSX-like characteristics but with the biased components in the magnetic spectrum that allow us to improve the confinement of energetic particles. For each new class of configurations, we have designed coils as well to ensure that the new configurations are realizable and engineering-wise feasible. The coil designs typically have coil aspect ratios R/Δ min (C-P) (le) 6 and coil separation ratios R/Δ min (C-C) (le) 10, where R is the plasma major radius, Δ min (C-P) and Δ min (C-C) are the minimum coil to plasma and coil to coil separations, respectively. These coil properties allow power producing reactors be designed with major radii less than 9 meters for DT plasmas with a full breeding blanket. The good quasi-axisymmetry limits the energy loss of α particles to below 10%

  7. Configuration Studies and Recommendations for the ILC Damping Rings

    International Nuclear Information System (INIS)

    Wolski, Andrzej; Gao, Jie; Guiducci, Susanna

    2006-01-01

    We describe the results of studies comparing different options for the baseline configuration of the ILC damping rings. The principal configuration decisions apply to the circumference, beam energy, lattice type, and technology options for key components, including the injection/extraction kickers and the damping wigglers. To arrive at our recommended configuration, we performed detailed studies of a range of lattices representing a variety of different configuration options; these lattices are described in Chapter 2. The results of the various studies are reported in chapters covering issues of beam dynamics, technical subsystems, costs, and commissioning, reliability and upgrade ability. Our detailed recommendations for the baseline configuration are given in Chapter 7, where we also outline further research and development that is needed before a machine using our recommended configuration can be built and operated successfully. In the same chapter, we suggest possible alternatives to the baseline configuration

  8. Bose and Fermi walk configurations on planar graphs

    International Nuclear Information System (INIS)

    Arrowsmith, D K; Bhatti, F M; Essam, J W

    2012-01-01

    The number, f C n (H), of n-walk configurations of type C is investigated on certain two-rooted directed planar graphs H which will be always realized as plane graphs in R 2 . C may be Bose or Fermi as defined by Inui and Katori. Both types of configuration are collections of non-crossing walks which follow the directed paths between the roots of the plane graph H. In the case of configurations of Fermi type each walk may be included only once. The number f Bose n (H) is shown to be a polynomial in n of degree n max − 1 where n max is the maximum number of walks in a Fermi configuration. The coefficient of the highest power of n in this polynomial is simply related to the number of maximal Fermi walk configurations. It is also shown that n max = c(H) + 1 where c(H) is the number of finite faces on H. Extension of these results to multi-rooted graphs is also discussed. When H is the union of paths between two sites of the directed square lattice subject to various boundary conditions Kreweras showed that the number of Bose configurations is equal to the number of n-element multi-chains on segments of Young’s lattice. He expressed this number as a determinant the elements of which are polynomials in n. We evaluate this determinant by the method of LU decomposition in the case of ‘watermelon’ configurations above a wall. In this case the polynomial is a product of linear factors but on introducing a second wall the polynomial does not completely factorize but has a factor which is the number of watermelon configurations on the largest rectangular subgraph. The number of two-rooted ‘star’ configurations is found to be the product of the numbers of watermelon configurations on the three rectangular subgraphs into which it may be partitioned. (paper)

  9. A configurable CDS for the production laboratory

    CERN Document Server

    Meek, Irish

    2003-01-01

    Various aspects of a configurable chromatography data system (CDS) for the production laboratory are discussed. The Atlas CDS can be configured extensively to fit the production laboratory work flow and meet the needs of analysts. The CDS can also be configured to automatically create a sample sequence with the required number of injections and download methods to the dedicated instrument. The Atlas Quick Start wizard offers uses quick way of generating a sequence from a predefined template and starting a run. (Edited abstract).

  10. Configurations of Leadership Practices in Hospital Units

    DEFF Research Database (Denmark)

    Meier, Ninna

    2015-01-01

    configurations of leadership practices varied in four different clinical settings, thus contributing with contextual accounts of leadership as practice, and suggested “configurations of practice” as a way to carve out similarities and differences in leadership practices across settings....... and interviews with ten interdisciplinary clinical managers. Findings: – Comparing leadership as configurations of practices across four different clinical settings, the author shows how flexible and often shared leadership practices were embedded in and central to the core clinical work in all units studied...

  11. The version control service for ATLAS data acquisition configuration filesDAQ ; configuration ; OKS ; XML

    CERN Document Server

    Soloviev, Igor; The ATLAS collaboration

    2012-01-01

    To configure data taking session the ATLAS systems and detectors store more than 160 MBytes of data acquisition related configuration information in OKS XML files. The total number of the files exceeds 1300 and they are updated by many system experts. In the past from time to time after such updates we had experienced problems caused by XML syntax errors or inconsistent state of files from a point of view of the overall ATLAS configuration. It was not always possible to know who made a modification causing problems or how to go back to a previous version of the modified file. Few years ago a special service addressing these issues has been implemented and deployed on ATLAS Point-1. It excludes direct write access to XML files stored in a central database repository. Instead, for an update the files are copied into a user repository, validated after modifications and committed using a version control system. The system's callback updates the central repository. Also, it keeps track of all modifications providi...

  12. Configuration monitoring tool for large-scale distributed computing

    International Nuclear Information System (INIS)

    Wu, Y.; Graham, G.; Lu, X.; Afaq, A.; Kim, B.J.; Fisk, I.

    2004-01-01

    The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) at CERN will likely use a grid system to achieve much of its offline processing need. Given the heterogeneous and dynamic nature of grid systems, it is desirable to have in place a configuration monitor. The configuration monitoring tool is built using the Globus toolkit and web services. It consists of an information provider for the Globus MDS, a relational database for keeping track of the current and old configurations, and client interfaces to query and administer the configuration system. The Grid Security Infrastructure (GSI), together with EDG Java Security packages, are used for secure authentication and transparent access to the configuration information across the CMS grid. This work has been prototyped and tested using US-CMS grid resources

  13. Configuration monitoring tool for large-scale distributed computing

    CERN Document Server

    Wu, Y; Fisk, I; Graham, G; Kim, B J; Lü, X

    2004-01-01

    The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) at CERN will likely use a grid system to achieve much of its offline processing need. Given the heterogeneous and dynamic nature of grid systems, it is desirable to have in place a configuration monitor. The configuration monitoring tool is built using the Globus toolkit and web services. It consists of an information provider for the Globus MDS, a relational database for keeping track of the current and old configurations, and client interfaces to query and administer the configuration system. The Grid Security Infrastructure (GSI), together with EDG Java Security packages, are used for secure authentication and transparent access to the configuration information across the CMS grid. This work has been prototyped and tested using US-CMS grid resources.

  14. Low emittance configuration for spear

    International Nuclear Information System (INIS)

    Blumberg, L.N.; Harris, J.; Stege, R.; Cerino, J.; Hettel, R.; Hofmann, A.; Liu, R.Z.; Wiedemann, H.; Winick, H.

    1985-01-01

    The quality of synchrotron radiation beams from SPEAR, in particular the brilliance of undulator radiation, can be improved significantly by reducing the emittance of the stored electron beam. A reduction of the horizontal emittance by a factor of 3.5 to a value of 130 nanometer-radians (nm-r) at 3 GeV has been achieved by using stronger focussing, mainly in the horizontal plane. The low emittance configuration also reduces the dispersion and vertical beta functions in the straight sections, making them more suitable for wigglers. The higher betatron tunes lead to a larger phase advance between the two kickers, which has to be corrected during injection by shunting current from some quadrupoles. The configuration was optimized within SPEAR hardware limitations and tested for dynamic aperture with the tracking program PATRICIA. After implementation of this scheme, beam was successfully injected and accumulated. The measured emittance of the stored beam was in agreement with calculations. Presently the configuration is being made operational

  15. An approach for the development of visual configuration systems

    DEFF Research Database (Denmark)

    Hvam, Lars; Ladeby, Klaes Rohde

    2007-01-01

    How can a visual configuration system be developed to support the specification process' in companies that manufacture customer tailored products? This article focuses on how visual configuration systems can be developed. The approach for developing visual configuration systems has been developed...... by Centre for Product Modelling (CPM) at The Technical University of Denmark. The approach is based on experiences from a visualization project in co-operation between CPM and the global provider of power protection American Power Conversion (APC). The visual configuration system was developed in 2001...... of the product in the visual configuration system....

  16. Status Configurations, Military Service and Higher Education

    Science.gov (United States)

    Wang, Lin; Elder, Glen H.; Spence, Naomi J.

    2012-01-01

    The U.S. Armed Forces offer educational and training benefits as incentives for service. This study investigates the influence of status configurations on military enlistment and their link to greater educational opportunity. Three statuses (socioeconomic status of origin, cognitive ability and academic performance) have particular relevance for life course options. We hypothesize that young men with inconsistent statuses are more likely to enlist than men with consistent status profiles, and that military service improves access to college for certain configurations. Analyses of the National Longitudinal Study of Adolescent Health (Add Health) show (1. that several status configurations markedly increased the likelihood of military enlistment and (2. within status configurations, recruits were generally more likely to enroll in higher education than nonveterans, with associate degrees being more likely. PMID:24511161

  17. Computational strong-field quantum dynamics. Intense light-matter interactions

    International Nuclear Information System (INIS)

    Bauer, Dieter

    2017-01-01

    This graduate textbook introduces the computational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time dependent Schroedinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach.

  18. Computational strong-field quantum dynamics. Intense light-matter interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Dieter (ed.) [Rostock Univ. (Germany). Inst. fuer Physik

    2017-09-01

    This graduate textbook introduces the computational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time dependent Schroedinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach.

  19. Computational strong-field quantum dynamics intense light-matter interactions

    CERN Document Server

    2017-01-01

    This graduate textbook introduces the computational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time-dependent Schrödinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi-configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach.

  20. Configuration Management Automation (CMA) -

    Data.gov (United States)

    Department of Transportation — Configuration Management Automation (CMA) will provide an automated, integrated enterprise solution to support CM of FAA NAS and Non-NAS assets and investments. CMA...

  1. MCSCF wave functions for excited states of polar molecules - Application to BeO. [Multi-Configuration Self-Consistent Field

    Science.gov (United States)

    Bauschlicher, C. W., Jr.; Yarkony, D. R.

    1980-01-01

    A previously reported multi-configuration self-consistent field (MCSCF) algorithm based on the generalized Brillouin theorem is extended in order to treat the excited states of polar molecules. In particular, the algorithm takes into account the proper treatment of nonorthogonality in the space of single excitations and invokes, when necessary, a constrained optimization procedure to prevent the variational collapse of excited states. In addition, a configuration selection scheme (suitable for use in conjunction with extended configuration interaction methods) is proposed for the MCSCF procedure. The algorithm is used to study the low-lying singlet states of BeO, a system which has not previously been studied using an MCSCF procedure. MCSCF wave functions are obtained for three 1 Sigma + and two 1 Pi states. The 1 Sigma + results are juxtaposed with comparable results for MgO in order to assess the generality of the description presented here.

  2. A multitude of rotational bands in {sup 163}Er and their mutual interaction

    Energy Technology Data Exchange (ETDEWEB)

    Bosetti, P.; Leoni, S.; Bracco, A. [Univ. of Milan (Italy)] [and others

    1996-12-31

    Using the {sup 150}Nd({sup 18}O, 5n){sup 163}Er reaction a multitude of rotational bands have been established with firm spin and parity assignments in {sup 163}Er. In 16 out of {approximately} 23 band crossings E2 cross-band transitions have been observed. The interaction strength varies between {approximately} 1 and {approximately} 50 keV. These interactions sample a variety of the lowest (multi)-quasiparticle configurations. Some of the band configurations, in particular those with high K-values, can be rather well established. Quite complicated changes in the wavefunctions must occur at these crossings, and, to explain the observed interaction strengths, one may have to invoke coupling to various vibrational degrees of freedom, in addition to possible residual neutron-proton interactions.

  3. Binary scission configurations in fission of light actinides

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuki, Tsutomu [Tohoku Univ., Sendai (Japan). Lab. of Nuclear Science; Nagame, Y.; Nishinaka, I.; Tsukada, K.; Ikezoe, H.; Tanikawa, M.; Zhao, Y.L.; Sueki, K.; Nakahara, H.

    1997-07-01

    Mass and kinetic energy distributions of fission fragments have been accurately measured by a double velocity time-of-flight technique in the 13 MeV proton-induced fissions of {sup 232}Th and {sup 238}U. A binary structure is observed in total kinetic energy distributions in the fragments with mass number around A=130 for both the fissions, indicating that there are at least two kinds of scission configurations. A correlation between the scission configurations and mass yield distributions reveals that elongated scission configurations are associated with the symmetric mass distribution and compact scission configurations with the asymmetric mass distribution. (author)

  4. The self-consistent multiparticle-multihole configuration mixing. Motivations, state of the art and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Pillet, N.; Dupuis, M.; Hupin, G.; Berger, J.F. [DAM, CEA, Arpajon (France); Robin, C. [Western Michigan University, Department of Physics, Kalamazoo, MI (United States)

    2017-03-15

    The main objective of this paper is to review the state of the art of the multiparticle-multihole configuration mixing approach which was proposed and implemented using the Gogny interaction ∝ 10 years ago. Various theoretical aspects are re-analyzed when a Hamiltonian description is chosen: the link with exact many-body theories, the impact of truncations in the multiconfigurational space, the importance of defining single-particle orbitals which are consistent with the correlations introduced in the many-body wave function, the role of the self-consistency, and more practically the numerical convergence algorithm. Several applications done with the phenomenological effective Gogny interaction are discussed. Finally, future directions to extend and generalize the method are discussed. (orig.)

  5. The self-consistent multiparticle-multihole configuration mixing. Motivations, state of the art and perspectives

    Science.gov (United States)

    Pillet, N.; Robin, C.; Dupuis, M.; Hupin, G.; Berger, J.-F.

    2017-03-01

    The main objective of this paper is to review the state of the art of the multiparticle-multihole configuration mixing approach which was proposed and implemented using the Gogny interaction ˜ 10 years ago. Various theoretical aspects are re-analyzed when a Hamiltonian description is chosen: the link with exact many-body theories, the impact of truncations in the multiconfigurational space, the importance of defining single-particle orbitals which are consistent with the correlations introduced in the many-body wave function, the role of the self-consistency, and more practically the numerical convergence algorithm. Several applications done with the phenomenological effective Gogny interaction are discussed. Finally, future directions to extend and generalize the method are discussed.

  6. The self-consistent multiparticle-multihole configuration mixing. Motivations, state of the art and perspectives

    International Nuclear Information System (INIS)

    Pillet, N.; Dupuis, M.; Hupin, G.; Berger, J.F.; Robin, C.

    2017-01-01

    The main objective of this paper is to review the state of the art of the multiparticle-multihole configuration mixing approach which was proposed and implemented using the Gogny interaction ∝ 10 years ago. Various theoretical aspects are re-analyzed when a Hamiltonian description is chosen: the link with exact many-body theories, the impact of truncations in the multiconfigurational space, the importance of defining single-particle orbitals which are consistent with the correlations introduced in the many-body wave function, the role of the self-consistency, and more practically the numerical convergence algorithm. Several applications done with the phenomenological effective Gogny interaction are discussed. Finally, future directions to extend and generalize the method are discussed. (orig.)

  7. Techno-economic analysis of biofuel production considering logistic configurations.

    Science.gov (United States)

    Li, Qi; Hu, Guiping

    2016-04-01

    In the study, a techno-economic analysis method considering logistic configurations is proposed. The economic feasibility of a low temperature biomass gasification pathway and an integrated pathway with fast pyrolysis and bio-oil gasification are evaluated and compared with the proposed method in Iowa. The results show that both pathways are profitable, biomass gasification pathway could achieve an Internal Rate of Return (IRR) of 10.00% by building a single biorefinery and integrated bio-oil gasification pathway could achieve an IRR of 3.32% by applying decentralized supply chain structure. A Monte-Carlo simulation considering interactions among parameters is also proposed and conducted, which indicates that both pathways are at high risk currently. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Upgrades to the ISIS moderator configuration

    International Nuclear Information System (INIS)

    Taylor, A.D.

    1989-01-01

    The current ISIS moderator configuration, was designed in 1980 to provide a flexible set of beams for a hypothetical instrument suite. The use of fluid moderators at three different temperatures offering six faces to the instruments, has proved to be effective. In this paper we discuss an upgrade of these moderators in the light of the current and projected instrument configuration. (author)

  9. Motion-insensitive rapid configuration relaxometry.

    Science.gov (United States)

    Nguyen, Damien; Bieri, Oliver

    2017-08-01

    Triple echo steady state (TESS) uses the lowest steady state configuration modes for rapid relaxometry. Due to its unbalanced gradient scheme, however, TESS is inherently motion-sensitive. The purpose of this work is to merge TESS with a balanced acquisition scheme for motion-insensitive rapid configuration relaxometry, termed MIRACLE. The lowest order steady state free precession (SSFP) configurations are retrieved by Fourier transformation of the frequency response of N frequency-shifted balanced SSFP (bSSFP) scans and subsequently processed for relaxometry, as proposed with TESS. Accuracy of MIRACLE is evaluated from simulations, phantom studies as well as in vivo brain and cartilage imaging at 3T. Simulations and phantom results revealed no conceptual flaw, and artifact-free configuration imaging was achieved in vivo. Overall, relaxometry results were accurate in phantoms and in good agreement for cartilage and for T2 in the brain, but apparent low T1 values were observed for brain white matter; reflecting asymmetries in the bSSFP profile. Rapid T1 and T2 mapping with MIRACLE offers analogous properties as TESS while successfully mitigating its motion-sensitivity. As a result of the Fourier transformation, relaxometry becomes sensitive to the voxel frequency distribution, which may contain useful physiologic information, such as structural brain integrity. © 2016 International Society for Magnetic Resonance in Medicine. Magn Reson Med 78:518-526, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  10. Energy landscape of all-atom protein-protein interactions revealed by multiscale enhanced sampling.

    Directory of Open Access Journals (Sweden)

    Kei Moritsugu

    2014-10-01

    Full Text Available Protein-protein interactions are regulated by a subtle balance of complicated atomic interactions and solvation at the interface. To understand such an elusive phenomenon, it is necessary to thoroughly survey the large configurational space from the stable complex structure to the dissociated states using the all-atom model in explicit solvent and to delineate the energy landscape of protein-protein interactions. In this study, we carried out a multiscale enhanced sampling (MSES simulation of the formation of a barnase-barstar complex, which is a protein complex characterized by an extraordinary tight and fast binding, to determine the energy landscape of atomistic protein-protein interactions. The MSES adopts a multicopy and multiscale scheme to enable for the enhanced sampling of the all-atom model of large proteins including explicit solvent. During the 100-ns MSES simulation of the barnase-barstar system, we observed the association-dissociation processes of the atomistic protein complex in solution several times, which contained not only the native complex structure but also fully non-native configurations. The sampled distributions suggest that a large variety of non-native states went downhill to the stable complex structure, like a fast folding on a funnel-like potential. This funnel landscape is attributed to dominant configurations in the early stage of the association process characterized by near-native orientations, which will accelerate the native inter-molecular interactions. These configurations are guided mostly by the shape complementarity between barnase and barstar, and lead to the fast formation of the final complex structure along the downhill energy landscape.

  11. Spectral analysis of 5s25p2(6p+6d+7s) configurations of Ba VI

    International Nuclear Information System (INIS)

    Sharma, M.K.; Tauheed, A.; Rahimullah, K.

    2014-01-01

    The sixth spectrum of barium (Ba VI) has been investigated with the aid of experimental recordings made on a 3-m normal incidence vacuum spectrograph of Antigonish laboratory (Canada) in the wavelength region 300–2080 Å using triggered spark as an excitation source. The spectral analysis has been extended considerably to include new configuration the 5s 2 5p 2 6p in odd parity matrix and the 5s 2 5p 2 6d and 5s 2 5p 2 7s configurations in even parity matrix. Previously reported levels of the ground configuration (5s 2 5p 3 ) and three lowest excited configurations the 5s5p 4 , 5s 2 5p 2 5d and 5s 2 5p 2 6s have been confirmed and the two unknown levels of the 5s 2 5p 2 5d configuration with J=9/2, have now been established through the identification of transitions from the 5s 2 5p 2 6p levels. All twenty one levels of the 5s 2 5p 2 6p configuration and twenty nine levels out of thirty six of the 5s 2 5p 2 6d and 5s 2 5p 2 7s configurations have now been established. Hartree–Fock calculations involving configuration interactions support the analyses. The accuracy of our wavelength measurement is ±0.005 Å for sharp lines. - Highlights: • The spectrum of Ba was recorded on a 3-m spectrograph with triggered spark source. • Atomic transitions for Ba VI were identified to established new energy levels. • CI calculations with relativistic corrections were made for theoretical predictions. • Weighted oscillator strength (gf) and transition probabilities (gA) were calculated

  12. Interaction of silicene with amino acid analogues—from physical to chemical adsorption in gas and solvated phases

    Science.gov (United States)

    Jagvaral, Yesukhei; He, Haiying; Pandey, Ravindra

    2018-01-01

    Silicene is an emerging 2D material, and an understanding of its interaction with amino acids, the basic building blocks of protein, is of fundamental importance. In this paper, we investigate the nature of adsorption of amino-acid analogues on silicene employing density functional theory and an implicit solvation model. Amino acid analogues are defined as CH3-R molecules, where R is the functional group of the amino acid side chain. The calculated results find three distinct groups within the amino-acid analogues considered: (i) group I, which includes MeCH3 and MeSH, interacts with silicene via the van der Waals dispersive terms leading to physisorbed configurations; (ii) group II strongly interacts with silicene forming Si-O/N chemical bonds in the chemisorbed configurations; and (iii) group III, which consists of the phenyl group, interacts with silicene via π-π interactions leading to physisorbed configurations. The results show that the lateral chains of the amino acids intrinsically determine the interactions between protein and silicene at the interface under the given physiological conditions.

  13. Stability, diffusion and interactions of nonlinear excitations in a many body system

    Science.gov (United States)

    Coste, Christophe; Jean, Michel Saint; Dessup, Tommy

    2017-04-01

    When repelling particles are confined in a quasi-one-dimensional trap by a transverse potential, a configurational phase transition happens. All particles are aligned along the trap axis at large confinement, but below a critical transverse confinement they adopt a staggered row configuration (zigzag phase). This zigzag transition is a subcritical pitchfork bifurcation in extended systems and in systems with cyclic boundary conditions in the longitudinal direction. Among many evidences, phase coexistence is exhibited by localized nonlinear patterns made of a zigzag phase embedded in otherwise aligned particles. We give the normal form at the bifurcation and we show that these patterns can be described as solitary wave envelopes that we call bubbles. They are stable in a large temperature range and can diffuse as quasi-particles, with a diffusion coefficient that may be deduced from the normal form. The potential energy of a bubble is found to be lower than that of the homogeneous bifurcated phase, which explains their stability. We observe also metastable states, that are pairs of solitary wave envelopes which spontaneously evolve toward a stable single bubble. We evidence a strong effect of the discreteness of the underlying particles system and introduce the concept of topological frustration of a bubble pair. A configuration is frustrated when the particles between the two bubbles are not organized in a modulated staggered row. For a nonfrustrated (NF) bubble pair configuration, the bubbles interaction is attractive so that the bubbles come closer and eventually merge as a single bubble. In contrast, the bubbles interaction is found to be repulsive for a frustrated (F) configuration. We describe a model of interacting solitary wave that provides all qualitative characteristics of the interaction force: it is attractive for NF-systems, repulsive for F-systems, and decreases exponentially with the bubbles distance.

  14. Automated allocation and configuration of dual stack IP networks

    OpenAIRE

    Daniels, Wilfried; Vanbrabant, Bart; Hughes, Danny; Joosen, Wouter

    2013-01-01

    The manual configuration and management of a modern network infrastructure is an increasingly complex task. This complexity is caused by factors including heterogeneity, a high degree of change and dependencies between configuration parameters. Due to increasing complexity, manual configuration has become time consuming and error prone. This paper proposes an automatic configuration tool for dual stack IP networks that addresses these issues by using high level abstractions to model the netwo...

  15. A Framework for Constraint-Programming based Configuration

    DEFF Research Database (Denmark)

    Queva, Matthieu Stéphane Benoit

    Product configuration systems play an important role in the development of Mass Customisation, allowing the companies to reduce their costs while offering highly customised products. Such systems are often based on a configuration model, representing the product knowledge necessary to perform...

  16. Distinct Adsorption Configurations and Self-Assembly Characteristics of Fibrinogen on Chemically Uniform and Alternating Surfaces including Block Copolymer Nanodomains

    Science.gov (United States)

    2015-01-01

    Understanding protein–surface interactions is crucial to solid-state biomedical applications whose functionality is directly correlated with the precise control of the adsorption configuration, surface packing, loading density, and bioactivity of protein molecules. Because of the small dimensions and highly amphiphilic nature of proteins, investigation of protein adsorption performed on nanoscale topology can shed light on subprotein-level interaction preferences. In this study, we examine the adsorption and assembly behavior of a highly elongated protein, fibrinogen, on both chemically uniform (as-is and buffered HF-treated SiO2/Si, and homopolymers of polystyrene and poly(methyl methacrylate)) and varying (polystyrene-block-poly(methyl methacrylate)) surfaces. By focusing on high-resolution imaging of individual protein molecules whose configurations are influenced by protein–surface rather than protein–protein interactions, fibrinogen conformations characteristic to each surface are identified and statistically analyzed for structural similarities/differences in key protein domains. By exploiting block copolymer nanodomains whose repeat distance is commensurate with the length of the individual protein, we determine that fibrinogen exhibits a more neutral tendency for interaction with both polystyrene and poly(methyl methacrylate) blocks relative to the case of common globular proteins. Factors affecting fibrinogen–polymer interactions are discussed in terms of hydrophobic and electrostatic interactions. In addition, assembly and packing attributes of fibrinogen are determined at different loading conditions. Primary orientations of fibrinogen and its rearrangements with respect to the underlying diblock nanodomains associated with different surface coverage are explained by pertinent protein interaction mechanisms. On the basis of two-dimensional stacking behavior, a protein assembly model is proposed for the formation of an extended fibrinogen network

  17. Effects of landscape composition and configuration on pollination in a native herb : a field experiment

    OpenAIRE

    Ekroos, Johan; Jakobsson, Anna; Wideen, Joel; Herbertsson, Lina; Rundlof, Maj; Smith, Henrik G.

    2015-01-01

    Bumble bee abundance in agricultural landscapes is known to decrease with increasing distance from seminatural grasslands, but whether the pollination of bumble-bee-pollinated wild plants shows a similar pattern is less well known. In addition, the relative effects of landscape composition (landscape heterogeneity) and landscape configuration (distance from seminatural grassland) on wild plant pollination, and the interaction between these landscape effects, have not been studied using landsc...

  18. Dynamics and configurations of galaxy triplets

    International Nuclear Information System (INIS)

    Anosova, J.P.; Orlov, V.V.; Chernin, A.D.; Ivanov, A.V.; Kiseleva, L.G.

    1990-01-01

    The purpose is to infer the probable dynamical states of galaxy triplets by the observed data on their configurations. Two methods are proposed for describing the distributions of the triplet configuration parameters characterizing a tendency to alignment and hierarchy: (1) obtaining a representative sample of configurations and determining its statistical parameters (moments and percentages); and (2) dividing the region of possible configurations of triple systems (Agekian and Anosova, 1967) into a set of segments and finding the probabilities for the configurations to find themselves in each of them. Both these methods allow representation of the data by numerical simulations as well as observations. The effect of projection was studied. It rather overestimates the alignment and hierarchy of the triple systems. Among the parameters of interest there are found some parameters that are least sensitive to projection effects. The samples consist of simulated galaxy triplets (with hidden mass) as well as of 46 probably physical triple galaxies (Karachentseva et al., 1979). The observed triples as well as numerical models show a tendency to alignment. The triple galaxies do not show any tendency to hierarchy (formation of the temporary binaries), but this tendency may be present for simulated triplets without significant dark matter. The significant hidden mass (of order ten times the total mass of a triplet) decreases the probability of forming a binary and so weakens the hierarchy. Small galaxy groups consisting of 3 to 7 members are probably the most prevalent types of galaxy aggregate (Gorbatsky, 1987). Galaxy triplets are the simplest groups, but dynamically nontrivial ones

  19. Experiment Simulation Configurations Used in DUNE CDR

    Energy Technology Data Exchange (ETDEWEB)

    Alion, T. [Univ. of South Carolina, Columbia, SC (United States); Black, J. J. [Univ. of Warwick, Coventry (United Kingdom); Bashyal, A. [Oregon State Univ., Corvallis, OR (United States); Bass, M. [Univ. of Oxford (United Kingdom); Bishai, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cherdack, D. [Colorado State Univ., Fort Collins, CO (United States); Diwan, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Djurcic, Z. [Argonne National Lab. (ANL), Argonne, IL (United States); Evans, J. [Univ. of Manchester (United Kingdom); Fernandez-Martinez, E. [Madrid Autonama Univ. (Spain); Fields, L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Fleming, B. [Yale Univ., New Haven, CT (United States); Gran, R. [Univ. of Minnesota, Duluth, MN (United States); Guenette, R. [Univ. of Oxford (United Kingdom); Hewes, J. [Univ. of Manchester (United Kingdom); Hogan, M. [Colorado State Univ., Fort Collins, CO (United States); Hylen, J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Junk, T. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Kohn, S. [Univ. of California, Berkeley, CA (United States); LeBrun, P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lundberg, B. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Marchionni, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Morris, C. [Univ. of California, Berkeley, CA (United States); Papadimitriou, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Rameika, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Rucinski, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Soldner-Rembold, S. [Univ. of Manchester (United Kingdom); Sorel, M. [Spanish National Research Council (CSIC), Valencia (Spain). Univ. of Valencia (UV), Inst. de Fisica Corpuscular; Urheim, J. [Indiana Univ., Bloomington, IN (United States); Viren, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Whitehead, L. [Univ. of Houston, TX (United States); Wilson, R. [Colorado State Univ., Fort Collins, CO (United States); Worcester, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zeller, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-06-30

    The LBNF/DUNE CDR describes the proposed physics program and experimental design at the conceptual design phase. Volume 2, entitled The Physics Program for DUNE at LBNF, outlines the scientific objectives and describes the physics studies that the DUNE collaboration will perform to address these objectives. The long-baseline physics sensitivity calculations presented in the DUNE CDR rely upon simulation of the neutrino beam line, simulation of neutrino interactions in the far detector, and a parameterized analysis of detector performance and systematic uncertainty. The purpose of this posting is to provide the results of these simulations to the community to facilitate phenomenological studies of long-baseline oscillation at LBNF/DUNE. Additionally, this posting includes GDML of the DUNE single-phase far detector for use in simulations. DUNE welcomes those interested in performing this work as members of the collaboration, but also recognizes the benefit of making these configurations readily available to the wider community.

  20. CASE-BASED PRODUCT CONFIGURATION AND REUSE IN MASS CUSTOMIZATION

    Institute of Scientific and Technical Information of China (English)

    Wang Shiwei; Tan Jianrong; Zhang Shuyou; Wang Xin; He Chenqi

    2004-01-01

    The increasing complexity and size of configuration knowledge bases requires the provision of advanced methods supporting the development of the actual configuration process and design reuse.A new framework to find a feasible and practical product configuration method is presented in mass customization.The basic idea of the approach is to integrate case-based reasoning (CBR) with a constraint satisfaction problem(CSP).The similarity measure between a crisp and range is also given,which is common in case retrieves.Based on the configuration model,a product platform and customer needs,case adaptation is carried out with the repair-based algorithm.Lastly,the methodology in the elevator configuration design domain is tested.

  1. 47 CFR 22.923 - Cellular system configuration.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Cellular system configuration. 22.923 Section... MOBILE SERVICES Cellular Radiotelephone Service § 22.923 Cellular system configuration. Mobile stations... directly or through cellular repeaters. Auxiliary test stations may communicate with base or mobile...

  2. Dual-reflector configuration in varied line-space grating displacement sensor

    International Nuclear Information System (INIS)

    Liu Zhengkun; Xu Xiangdong; Fu Shaojun; Zhou Qin; Liu Bin

    2008-01-01

    A method to improve the accuracy of the wavelength encoding varied line-space grating displacement sensor is presented. Based on the detailed analysis of the measured displacement errors from the single-mirror configuration sensor, a dual-reflector configuration is used to replace the previous configuration, and greatly decreases its errors. Experiments are conducted in order to make comparison of the two configurations. The results show that the measured displacement error of the sensor with dual-reflector configuration is lower than 0.03 mm in full scale (0 to 50 mm), only about 10% of the sensor with single-mirror configuration

  3. Fuel-coolant interactions in a shock-tube geometry

    International Nuclear Information System (INIS)

    Segev, A.; Henry, R.E.; Bankoff, S.G.

    1978-01-01

    Thermal interactions were studied in a shock tube configuration using different pairs of liquids. Large pressures were obtained for systems of water-Wood's metal and butanol-Wood's metal. Different types of interactions were observed, depending on the hot liquid temperature. It was found that thehydrodynamic component alone may account for the measured pressure in the lower temperature range. A combination of thermal and hydrodynamic interactions accounts for the pressures at high temperatures. Experiments with water and molten salt (LiCl + KCl) produced small scale explosions. All interactions were suppressed when driving pressure increased. (author)

  4. Mechanical configuration and maintenance

    International Nuclear Information System (INIS)

    Brown, T.G.; Casini, G.; Churakov, G.F.

    1982-01-01

    The INTOR engineering design has been strongly influenced by considerations for assembly and maintenance. A maintenance philosophy was established at the outset of the conceptual design to insure that the tokamak configuration would be developed to accommodate maintenance requirements. The main features of the INTOR design are summarized in this paper with primary emphasis on the impact of maintenance considerations. The most apparent configuration design feature is the access provided for torus maintenance. Particular attention was given to the size and location of superconducting magnets and the location of vacuum boundaries. All of the poloidal field (PF) coils are placed outside of the bore of the toroidal field (TF) coils and located above and below an access opening between adjacent TF coils through which torus sectors are removed. A magnet structural configuration consisting of mechanically attached reinforcing members has been designed which facilitates the open access space for torus sector removal. For impurity control, a single null poloidal divertor was selected over a double null design in order to maintain sufficient access for pumping and maintenance of the collector. A double null divertor was found to severely limit access to the torus with the addition of divertor collectors and pumping at the top. For this reason, a single null concept was selected in spite of the more difficult design problems associated with the required asymmetric PF system and higher particle loadings

  5. Configurational entropy in brane-world models

    Energy Technology Data Exchange (ETDEWEB)

    Correa, R.A.C. [CCNH, Universidade Federal do ABC, Santo Andre, SP (Brazil); Rocha, Roldao da [CMCC, Universidade Federal do ABC, Santo Andre, SP (Brazil); International School for Advanced Studies (SISSA), Trieste (Italy)

    2015-11-15

    In this work we investigate the entropic information on thick brane-world scenarios and its consequences. The brane-world entropic information is studied for the sine-Gordon model and hence the brane-world entropic information measure is shown to be an accurate way for providing the most suitable range for the bulk AdS curvature, in particular from the informational content of physical solutions. Besides, the brane-world configurational entropy is employed to demonstrate a high organisational degree in the structure of the configuration of the system, for large values of a parameter of the sine-Gordon model but the one related to the AdS curvature. The Gleiser and Stamatopoulos procedure is finally applied in order to achieve a precise correlation between the energy of the system and the brane-world configurational entropy. (orig.)

  6. Configurational entropy in brane-world models

    Energy Technology Data Exchange (ETDEWEB)

    Correa, R. A. C., E-mail: fis04132@gmail.com [CCNH, Universidade Federal do ABC, 09210-580, Santo André, SP (Brazil); Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [CMCC, Universidade Federal do ABC, 09210-580, Santo André, SP (Brazil); International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste (Italy)

    2015-11-02

    In this work we investigate the entropic information on thick brane-world scenarios and its consequences. The brane-world entropic information is studied for the sine-Gordon model and hence the brane-world entropic information measure is shown to be an accurate way for providing the most suitable range for the bulk AdS curvature, in particular from the informational content of physical solutions. Besides, the brane-world configurational entropy is employed to demonstrate a high organisational degree in the structure of the configuration of the system, for large values of a parameter of the sine-Gordon model but the one related to the AdS curvature. The Gleiser and Stamatopoulos procedure is finally applied in order to achieve a precise correlation between the energy of the system and the brane-world configurational entropy.

  7. Configurational entropy in brane-world models

    International Nuclear Information System (INIS)

    Correa, R. A. C.; Rocha, Roldão da

    2015-01-01

    In this work we investigate the entropic information on thick brane-world scenarios and its consequences. The brane-world entropic information is studied for the sine-Gordon model and hence the brane-world entropic information measure is shown to be an accurate way for providing the most suitable range for the bulk AdS curvature, in particular from the informational content of physical solutions. Besides, the brane-world configurational entropy is employed to demonstrate a high organisational degree in the structure of the configuration of the system, for large values of a parameter of the sine-Gordon model but the one related to the AdS curvature. The Gleiser and Stamatopoulos procedure is finally applied in order to achieve a precise correlation between the energy of the system and the brane-world configurational entropy

  8. Dependability Analysis Methods For Configurable Software

    International Nuclear Information System (INIS)

    Dahll, Gustav; Pulkkinen, Urho

    1996-01-01

    Configurable software systems are systems which are built up by standard software components in the same way as a hardware system is built up by standard hardware components. Such systems are often used in the control of NPPs, also in safety related applications. A reliability analysis of such systems is therefore necessary. This report discusses what configurable software is, and what is particular with respect to reliability assessment of such software. Two very commonly used techniques in traditional reliability analysis, viz. failure mode, effect and criticality analysis (FMECA) and fault tree analysis are investigated. A real example is used to illustrate the discussed methods. Various aspects relevant to the assessment of the software reliability in such systems are discussed. Finally some models for quantitative software reliability assessment applicable on configurable software systems are described. (author)

  9. Synthesis and configurational analysis of phosphonate cavitands

    NARCIS (Netherlands)

    Jacopozzi, Paola; Dalcanale, Enrico; Spera, Silvia; Chrisstoffels, L.A.J.; Reinhoudt, David; Lippmann, Tino; Mann, Gerhard

    1998-01-01

    Synthesis, separation and configurational analysis of phosphonated and partially phosphonated cavitands derived from resorcinarenes are described. The configuration of all diastereomers has been elucidated by their 1H, 31P NMR spectra and 13C relaxation times. In all cases the course of the bridging

  10. Improving the quotation process with product configuration

    DEFF Research Database (Denmark)

    Hvam, Lars; Christensen, Simon Pape

    2006-01-01

    How can product configuration support the process of engineering highly complex industrial products? This article describes how an IT-based product configuration system was developed to support the process of mak-ing budget quotations. The article is based on a research project carried out...

  11. Configuration of Web services as parametric design

    NARCIS (Netherlands)

    Ten Teije, Annette; Van Harmelen, Frank; Wielinga, Bob

    2004-01-01

    The configuration of Web services is particularly hard given the heterogeneous, unreliable and open nature of the Web. Furthermore, such composite Web services are likely to be complex services, that will require adaptation for each specific use. Current approaches to Web service configuration are

  12. 40 CFR 205.55-3 - Configuration identification.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Configuration identification. 205.55-3 Section 205.55-3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Medium and Heavy Trucks § 205.55-3 Configuration...

  13. Creation and Annihilation of Skyrmions in the Frustrated Magnets with Competing Exchange Interactions.

    Science.gov (United States)

    Hu, Yong; Chi, Xiaodan; Li, Xuesi; Liu, Yan; Du, An

    2017-11-22

    In triangular-lattice magnets, the coexistence of third-neighbor antiferromagnetic and nearest-neighbor ferromagnetic exchange interactions can induce rich magnetic phases including noncoplanar skyrmion crystals. Based on Monte Carlo simulation, we studied the dependence of magnetic phase transition on exchange interaction strength. Under the consideration of uniaxial anisotropy and magnetic field both perpendicular to the film plane, a large antiferromagnetic exchange interaction induces a high frustration. When the value of antiferromagnetic exchange interaction is one and a half times larger than the ferromagnetic one, a magnetic phase composed of canting spin stripes, never observed in the chiral magnets, forms. Interestingly, different canting spin stripes along three 120 degree propagation directions may coexist randomly in a magnetic phase, attesting that the canting spin stripes are three-fold degenerate states akin to helices and the multiple state of canting spin stripes is a circular configuration with zero skyrmion charge number. Moreover, skyrmions and antiskyrmions can be observed simultaneously in the configuration at the low temperature nearly close to 0 K, and their configuration and diameter properties are discussed. Finally, the mechanisms of skyrmion creation and annihilation are properly interpreted by comparing exchange and Zeeman energy terms.

  14. Configuration management plan for Machine Interface Test System (MITS)

    International Nuclear Information System (INIS)

    O'Neill, C.K.

    1980-01-01

    The discipline required by this plan will apply from the establishment of a configuration baseline until completion of the final test in the MITS. The plan applies to configured items of hardware and software as well as to the specifications and drawings for these items. The plan encompasses establishment of the facility baseline, interface definition, classes of change, change control, change paper, organizational responsibilities and relationships, test configuration (as opposed to facility), and configuration data retention

  15. Design Of Cooling Configuration For Military Aeroengine V-Gutter

    Directory of Open Access Journals (Sweden)

    Batchu Suresh

    2017-07-01

    Full Text Available Military aircraft engines employ afterburner system for increasing the thrust required during combat and take-off flight conditions. V-gutter is employed for stabilisation of the flame during reheat. For fifth generation aero engine the gas temperature at the start of the afterburner is be-yond the allowable material limits of the V-gutter so it is required to cool the V-gutter to obtain acceptable creep life. The design of cooling configuration for the given source pressure is worked out for different rib configurations to obtain the allowable metal temperature with minimum coolant mass flow.1D network analysis is used to estimate the cooling mass flow and metal temperature for design flight condition. CFD analysis is carried out for four cooling configurations with different rib orientations. Out of four configurations one configuration is selected for the best cooling configuration.

  16. Energy analysis of thermal energy storages with grid configurations

    International Nuclear Information System (INIS)

    Rezaie, Behnaz; Reddy, Bale V.; Rosen, Marc A.

    2014-01-01

    Highlights: • Grid configurations of TESs are developed and assessed. • Characteristics of various configurations of TESs are developed as functions of properties. • Functions for the discharge temperature and the discharge energy of the TES are developed. - Abstract: In some thermal networks like district energy systems, there can exist conditions, depending on space availability, economics, project requirements, insulation, storing media type and other issues, for which it may be advantageous to utilize several thermal energy storages (TESs) instead of one. Here, various configurations for multiple TESs are proposed and investigated. Significant parameters for a TES, or a set of TESs, include discharging temperature and recovered energy. First, one TES is modeled to determine the final temperature, energy recovery, and energy efficiency. Next, characteristics for various grid configurations of multiple TESs are developed as functions of TES characteristics (e.g., charging and discharging temperatures and energy quantities). Series, parallel and comprehensive grid TES configurations are considered. In the parallel configuration, the TESs behave independently. This suggests that the TES can consist of different storage media types and sizes, and that there is no restriction on initial temperature of the TES. In the series configuration, the situation is different because the TESs are connected directly or indirectly through a heat exchanger. If there is no heat exchanger between the TESs, the TES storage media should be the same, because the outlet of one TES in the series is the inlet to the next. The initial temperature of the second TES must be smaller than the discharge temperature of the first. There is no restriction on the TES size for series configurations. The general grid configuration is observed to exhibit characteristics of both series and parallel configurations

  17. Comparison of Rolling Moment Characteristics During Roll Oscillations for a Low and a High Aspect Ratio Configuration

    Science.gov (United States)

    Brandon, Jay M.; Foster, John V.; Shah, Gautam H.; Gato, William; Wilborn, James E.

    2004-01-01

    Improvements in testing and modeling of nonlinear and unsteady aerodynamic effects for flight dynamics predictions of vehicle performance is critical to enable the design and implementation of new, innovative vehicle concepts. Any configuration which exhibits significant flow separation, nonlinear aerodynamics, control interactions or attempts maneuvering through one or more conditions such as these is, at present, a challenge to test, model or predict flight dynamic responses prior to flight. Even in flight test experiments, adequate models are not available to study and characterize the complex nonlinear and time-dependent flow effects occurring during portions of the maneuvering envelope. Traditionally, airplane designs have been conducted to avoid these areas of the flight envelope. Better understanding and characterization of these flight regimes may not only reduce risk and cost of flight test development programs, but also may pave the way for exploitation of those characteristics that increase airplane capabilities. One of the hurdles is that the nonlinear/unsteady effects appear to be configuration dependent. This paper compares some of the dynamic aerodynamic stability characteristics of two very different configurations - representative of a fighter and a transport airplane - during dynamic body-axis roll wind tunnel tests. The fighter model shows significant effects of oscillation frequency which are not as apparent for the transport configuration.

  18. Avoided crossings, conical intersections, and low-lying excited states with a single reference method: the restricted active space spin-flip configuration interaction approach.

    Science.gov (United States)

    Casanova, David

    2012-08-28

    The restricted active space spin-flip CI (RASCI-SF) performance is tested in the electronic structure computation of the ground and the lowest electronically excited states in the presence of near-degeneracies. The feasibility of the method is demonstrated by analyzing the avoided crossing between the ionic and neutral singlet states of LiF along the molecular dissociation. The two potential energy surfaces (PESs) are explored by means of the energies of computed adiabatic and approximated diabatic states, dipole moments, and natural orbital electronic occupancies of both states. The RASCI-SF methodology is also used to study the ground and first excited singlet surface crossing involved in the double bond isomerization of ethylene, as a model case. The two-dimensional PESs of the ground (S(0)) and excited (S(1)) states are calculated for the complete configuration space of torsion and pyramidalization molecular distortions. The parameters that define the state energetics in the vicinity of the S(0)/S(1) conical intersection region are compared to complete active space self-consistent field (CASSCF) results. These examples show that it is possible to describe strongly correlated electronic states using a single reference methodology without the need to expand the wavefunction to high levels of collective excitations. Finally, RASCI is also examined in the electronic structure characterization of the ground and 2(1)A(g)(-), 1(1)B(u)(+), 1(1)B(u)(-), and 1(3)B(u)(-) states of all-trans polyenes with two to seven double bonds and beyond. Transition energies are compared to configuration interaction singles, time-dependent density functional theory (TDDFT), CASSCF, and its second-order perturbation correction calculations, and to experimental data. The capability of RASCI-SF to describe the nature and properties of each electronic state is discussed in detail. This example is also used to expose the properties of different truncations of the RASCI wavefunction and to

  19. Experiments in interactive panoramic cinema

    Science.gov (United States)

    Fisher, Scott S.; Anderson, Steve; Ruiz, Susana; Naimark, Michael; Hoberman, Perry; Bolas, Mark; Weinberg, Richard

    2005-03-01

    For most of the past 100 years, cinema has been the premier medium for defining and expressing relations to the visible world. However, cinematic spectacles delivered in darkened theaters are predicated on a denial of both the body and the physical surroundings of the spectators who are watching it. To overcome these deficiencies, filmmakers have historically turned to narrative, seducing audiences with compelling stories and providing realistic characters with whom to identify. This paper describes several research projects in interactive panoramic cinema that attempt to sidestep the narrative preoccupations of conventional cinema and instead are based on notions of space, movement and embodied spectatorship rather than traditional storytelling. Example projects include interactive works developed with the use of a unique 360 degree camera and editing system, and also development of panoramic imagery for a large projection environment with 14 screens on 3 adjacent walls in a 5-4-5 configuration with observations and findings from an experiment projecting panoramic video on 12 of the 14, in a 4-4-4 270 degree configuration.

  20. Configuration and Data Management Process and the System Safety Professional

    Science.gov (United States)

    Shivers, Charles Herbert; Parker, Nelson C. (Technical Monitor)

    2001-01-01

    This article presents a discussion of the configuration management (CM) and the Data Management (DM) functions and provides a perspective of the importance of configuration and data management processes to the success of system safety activities. The article addresses the basic requirements of configuration and data management generally based on NASA configuration and data management policies and practices, although the concepts are likely to represent processes of any public or private organization's well-designed configuration and data management program.

  1. Mass relations for two-dimensional classical configurations

    International Nuclear Information System (INIS)

    Tataru-Mihai, P.

    1980-01-01

    Using the two-dimensional sigma-nonlinear models as a framework mass relations for classical configurations of instanton/soliton type are derived. Our results suggest an interesting differential-geometric interpretation of the mass of a classical configuration in terms of the topological characteristics of an associated manifold. (orig.)

  2. Microsoft System Center Configuration Manager advanced deployment

    CERN Document Server

    Coupland, Martyn

    2014-01-01

    If you are an experienced Configuration Manager administrator looking to advance your career or get more from your current environment, then this book is ideal for you. Prior experience of deploying and managing a Configuration Manager site would be helpful in following the examples throughout this book.

  3. Complexity of Configurators Relative to Integrations and Field of Application

    DEFF Research Database (Denmark)

    Kristjansdottir, Katrin; Shafiee, Sara; Battistello, Loris

    . Moreover, configurators are commonly integrated to various IT systems within companies. The complexity of configurators is an important factor when it comes to performance, development and maintenance of the systems. A direct comparison of the complexity based on the different application...... integrations to other IT systems. The research method adopted in the paper is based on a survey followed with interviews where the unit of analysis is based on operating configurators within a company.......Configurators are applied widely to automate the specification processes at companies. The literature describes the industrial application of configurators supporting both sales and engineering processes, where configurators supporting the engineering processes are described more challenging...

  4. Combinatorics of RNA-RNA interaction

    DEFF Research Database (Denmark)

    Li, Thomas J X; Reidys, Christian

    2012-01-01

    RNA-RNA binding is an important phenomenon observed for many classes of non-coding RNAs and plays a crucial role in a number of regulatory processes. Recently several MFE folding algorithms for predicting the joint structure of two interacting RNA molecules have been proposed. Here joint structure...... means that in a diagram representation the intramolecular bonds of each partner are pseudoknot-free, that the intermolecular binding pairs are noncrossing, and that there is no so-called "zigzag" configuration. This paper presents the combinatorics of RNA interaction structures including...

  5. Space shuttle configuration accounting functional design specification

    Science.gov (United States)

    1974-01-01

    An analysis is presented of the requirements for an on-line automated system which must be capable of tracking the status of requirements and engineering changes and of providing accurate and timely records. The functional design specification provides the definition, description, and character length of the required data elements and the interrelationship of data elements to adequately track, display, and report the status of active configuration changes. As changes to the space shuttle program levels II and III configuration are proposed, evaluated, and dispositioned, it is the function of the configuration management office to maintain records regarding changes to the baseline and to track and report the status of those changes. The configuration accounting system will consist of a combination of computers, computer terminals, software, and procedures, all of which are designed to store, retrieve, display, and process information required to track proposed and proved engineering changes to maintain baseline documentation of the space shuttle program levels II and III.

  6. Configurable Web Warehouses construction through BPM Systems

    Directory of Open Access Journals (Sweden)

    Andrea Delgado

    2016-08-01

    Full Text Available The process of building Data Warehouses (DW is well known with well defined stages but at the same time, mostly carried out manually by IT people in conjunction with business people. Web Warehouses (WW are DW whose data sources are taken from the web. We define a flexible WW, which can be configured accordingly to different domains, through the selection of the web sources and the definition of data processing characteristics. A Business Process Management (BPM System allows modeling and executing Business Processes (BPs providing support for the automation of processes. To support the process of building flexible WW we propose a two BPs level: a configuration process to support the selection of web sources and the definition of schemas and mappings, and a feeding process which takes the defined configuration and loads the data into the WW. In this paper we present a proof of concept of both processes, with focus on the configuration process and the defined data.

  7. Analysis of magnetic-dipole transitions in tungsten plasmas using detailed and configuration-average descriptions

    Science.gov (United States)

    Na, Xieyu; Poirier, Michel

    2017-06-01

    This paper is devoted to the analysis of transition arrays of magnetic-dipole (M1) type in highly charged ions. Such transitions play a significant role in highly ionized plasmas, for instance in the tungsten plasma present in tokamak devices. Using formulas recently published and their implementation in the Flexible Atomic Code for M1-transition array shifts and widths, absorption and emission spectra arising from transitions inside the 3*n complex of highly-charged tungsten ions are analyzed. A comparison of magnetic-dipole transitions with electric-dipole (E1) transitions shows that, while the latter are better described by transition array formulas, M1 absorption and emission structures reveal some insufficiency of these formulas. It is demonstrated that the detailed spectra account for significantly richer structures than those predicted by the transition array formalism. This is due to the fact that M1 transitions may occur between levels inside the same relativistic configuration, while such inner configuration transitions are not accounted for by the currently available averaging expression. In addition, because of configuration interaction, transition processes involving more than one electron jump, such as 3p1/23d5/2 → 3p3/23d3/2, are possible but not accounted for in the transition array formulas. These missing transitions are collected in pseudo-arrays using a post-processing method described in this paper. The relative influence of inner- and inter-configuration transitions is carefully analyzed in cases of tungsten ions with net charge around 50. The need for an additional theoretical development is emphasized.

  8. Lepton-photon interactions in external background fields

    Energy Technology Data Exchange (ETDEWEB)

    Akal, Ibrahim [Theory Group, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg (Germany); Moortgat-Pick, Gudrid [II. Institute for Theoretical Physics, University of Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany)

    2016-07-01

    We investigate lepton-photon interactions in a class of generalized external background fields with periodic plane-wave character. Considering the full interaction with the background, S-matrix elements are calculated exactly. We apply those general expressions to interaction schemes like Compton scattering in specific field configurations, as for instance provided in modern laser facilities, or in high intense regions of future linear colliders. Results are extended to the case of frontal colliding high-energy field photons with leptons such that new insights beyond the usual soft terms become accessible.

  9. Buyer–supplier interaction in business-to-business services : A typology test using case research

    NARCIS (Netherlands)

    van der Valk, W.; Wynstra, F.

    2012-01-01

    We empirically test a theory specifying distinct ideal interaction patterns for four business-to-business service types, which differ with regard to how they are used by the buying company. The ideal interaction patterns are conceptualised as configurations of five different interaction dimensions:

  10. Buyer-supplier interaction in business-to-business services : a typology test using case research

    NARCIS (Netherlands)

    Valk, van der W.; Wynstra, J.Y.F.

    2012-01-01

    We empirically test a theory specifying distinct ideal interaction patterns for four business-to-business service types, which differ with regard to how they are used by the buying company. The ideal interaction patterns are conceptualised as configurations of five different interaction dimensions:

  11. In-target rare nuclei production rates with EURISOL single-stage configuration

    CERN Document Server

    Chabod, S P; Ene, D; Doré, D; Blideanu, V; David, J.-Ch; Ridikas, D

    2010-01-01

    We conducted calculations of exotic nuclei production rates for 320 configurations of EURISOL (European Isotope Separation On-Line Radioactive Ion Beam Facility) direct spallation targets. The nuclei yields were evaluated using neutron generation-transport codes, completed with evolution calculations to account for nuclei decays and low energy neutron interactions. The yields were optimized for 11 selected elements (Li, Be, Ne, Mg, Ar, Ni, Ga, Kr, Sn, Hg, Fr) and 23 of their isotopes, as function of the target compositions and geometries as well as the incident proton beam energies. For the considered elements, we evaluated the yield distributions as functions of the charge and mass numbers using two different spallation models.

  12. Core mechanics and configuration behavior of advanced LMFBR core restraint concepts

    International Nuclear Information System (INIS)

    Fox, J.N.; Wei, B.C.

    1978-02-01

    Core restraint systems in LMFBRs maintain control of core mechanics and configuration behavior. Core restraint design is complex due to the close spacing between adjacent components, flux and temperature gradients, and irradiation-induced material property effects. Since the core assemblies interact with each other and transmit loads directly to the core restraint structural members, the core assemblies themselves are an integral part of the core restraint system. This paper presents an assessment of several advanced core restraint system and core assembly concepts relative to the expected performance of currently accepted designs. A recommended order for the development of the advanced concepts is also presented

  13. CONFU: Configuration Fuzzing Testing Framework for Software Vulnerability Detection.

    Science.gov (United States)

    Dai, Huning; Murphy, Christian; Kaiser, Gail

    2010-01-01

    Many software security vulnerabilities only reveal themselves under certain conditions, i.e., particular configurations and inputs together with a certain runtime environment. One approach to detecting these vulnerabilities is fuzz testing. However, typical fuzz testing makes no guarantees regarding the syntactic and semantic validity of the input, or of how much of the input space will be explored. To address these problems, we present a new testing methodology called Configuration Fuzzing. Configuration Fuzzing is a technique whereby the configuration of the running application is mutated at certain execution points, in order to check for vulnerabilities that only arise in certain conditions. As the application runs in the deployment environment, this testing technique continuously fuzzes the configuration and checks "security invariants" that, if violated, indicate a vulnerability. We discuss the approach and introduce a prototype framework called ConFu (CONfiguration FUzzing testing framework) for implementation. We also present the results of case studies that demonstrate the approach's feasibility and evaluate its performance.

  14. Nucleon-nucleon interaction in the soliton bag model

    International Nuclear Information System (INIS)

    Schuh, A.

    1985-01-01

    In the framework of the Soliton Bag Model introduced by Friedberg and Lee we treat S-wave nucleon-nucleon scattering. Our system consists of six quarks and the nontopological soliton field which represents an average colorfree interaction between the quarks and yields their (relative) confinement. The dynamical problem is treated by means of the Generator coordinate Method (GCM) where the total wave function is the weighted sum over static configurations of prescribed bag deformation. The static configurations needed for the GCM ansatz are generated starting from a potential well of prescribed deformation wherein we solve the Dirac equation for the quarks. The single particle quark orbitals are properly coupled with respect to orbital, color, spin, and isospin quantum numbers to form a totally antisymmetric 6-quark state. A mean field solution for the soliton field is then calculated and turned into a quantum mechanical state by a coherent state approximation. Since these static configurations are only to be seen as wave function generators for the GCM no selfconsistency between quark and soliton solution is enforced. With these configurations we then evaluate the norm and Hamiltonian kernels appearing in the GCM treatment. The Hill-Wheeler integral equation for the weight functions is transformed into a Schroedinger-type differential equation by an expansion into symmetric moments of up to second order. This equation is brought into a form where we can identify the interaction potential unambiguously. We find an intermediate range attraction of about 120 MeV and no attraction in the vicinity of the spherically symmetric shape of the system, in contradiction to the naive adiabatic potentials widely used in quark models for the nucleon-nucleon interaction up to now. (orig./HSI) [de

  15. Design of materials configurations for enhanced phononic and electronic properties

    Science.gov (United States)

    Daraio, Chiara

    The discovery of novel nonlinear dynamic and electronic phenomena is presented for the specific cases of granular materials and carbon nanotubes. This research was conducted for designing and constructing optimized macro-, micro- and nano-scale structural configurations of materials, and for studying their phononic and electronic behavior. Variation of composite arrangements of granular elements with different elastic properties in a linear chain-of-sphere, Y-junction or 3-D configurations led to a variety of novel phononic phenomena and interesting physical properties, which can be potentially useful for security, communications, mechanical and biomedical engineering applications. Mechanical and electronic properties of carbon nanotubes with different atomic arrangements and microstructures were also investigated. Electronic properties of Y-junction configured carbon nanotubes exhibit an exciting transistor switch behavior which is not seen in linear configuration nanotubes. Strongly nonlinear materials were designed and fabricated using novel and innovative concepts. Due to their unique strongly nonlinear and anisotropic nature, novel wave phenomena have been discovered. Specifically, violations of Snell's law were detected and a new mechanism of wave interaction with interfaces between NTPCs (Nonlinear Tunable Phononic Crystals) was established. Polymer-based systems were tested for the first time, and the tunability of the solitary waves speed was demonstrated. New materials with transformed signal propagation speed in the manageable range of 10-100 m/s and signal amplitude typical for audible speech have been developed. The enhancing of the mitigation of solitary and shock waves in 1-D chains were demonstrated and a new protective medium was designed for practical applications. 1-D, 2-D and 3-D strongly nonlinear system have been investigated providing a broad impact on the whole area of strongly nonlinear wave dynamics and creating experimental basis for new

  16. Phases of a stack of membranes in a large number of dimensions of configuration space

    Science.gov (United States)

    Borelli, M. E.; Kleinert, H.

    2001-05-01

    The phase diagram of a stack of tensionless membranes with nonlinear curvature energy and vertical harmonic interaction is calculated exactly in a large number of dimensions of configuration space. At low temperatures, the system forms a lamellar phase with spontaneously broken translational symmetry in the vertical direction. At a critical temperature, the stack disorders vertically in a meltinglike transition. The critical temperature is determined as a function of the interlayer separation l.

  17. Non-disruptive MHD dynamics in inward-shifted LHD configurations

    International Nuclear Information System (INIS)

    Miura, H.; Ichiguchi, K.; Nakajima, N.; Hayashi, T.; Carreras, B.A.

    2005-01-01

    Two kinds of nonlinear simulations are conducted to study behaviors of the pressure-driven modes in the Large Helical Device (LHD) plasma with the vacuum magnetic axis located at R ax =3.6 m (so called inward-shifted configuration). One is the three-field reduced magnetohydrodynamic (RMHD) simulations. The other is the direct numerical simulations (DNS) of fully three-dimensional (3D) compressible MHD equations. The RMHD results suggest that the plasma behavior depends on the strength of the interaction between the unstable modes with different helicity. Similar plasma behaviors are also obtained in the DNS. In addition to some basic coincidence between RMHD and DNS, substantial toroidal flow generation is observed in the DNS. It is shown that toroidal flow can become stronger than the poloidal flow. (author)

  18. Non-disruptive MHD dynamics in inward-shifted LHD configurations

    International Nuclear Information System (INIS)

    Miura, H.; Ichiguchi, K.; Nakajima, N.; Hayashi, T.; Carreras, B.A.

    2005-01-01

    Two kinds of nonlinear simulations are conducted to study behaviors of the pressure-driven modes in the Large Helical Device (LHD) plasma with the vacuum magnetic axis located at R ax = 3.6m (so called inward-shifted configuration). One is the three-field reduced magnetohydrodynamic (RMHD) simulations. The other is the direct numerical simulations (DNS) of fully three-dimensional (3D) compressible MHD equations. The RMHD results suggest that the plasma behavior depends on the strength of the interaction between the unstable modes with different helicity. Similar plasma behaviors are also obtained in the DNS. In addition to some basic coincidence between RMHD and DNS, substantial toroidal flow generation is observed in the DNS. It is shown that toroidal flow can become stronger than the poloidal flow. (author)

  19. Gaussian-2 theory: Use of higher level correlation methods, quadratic configuration interaction geometries, and second-order Moller--Plesset zero-point energies

    International Nuclear Information System (INIS)

    Curtiss, L.A.; Raghavachari, K.; Pople, J.A.

    1995-01-01

    The performance of Gaussian-2 theory is investigated when higher level theoretical methods are included for correlation effects, geometries, and zero-point energies. A higher level of correlation treatment is examined using Brueckner doubles [BD(T)] and coupled cluster [CCSD(T)] methods rather than quadratic configuration interaction [QCISD(T)]. The use of geometries optimized at the QCISD level rather than the second-order Moller--Plesset level (MP2) and the use of scaled MP2 zero-point energies rather than scaled Hartree--Fock (HF) zero-point energies have also been examined. The set of 125 energies used for validation of G2 theory [J. Chem. Phys. 94, 7221 (1991)] is used to test out these variations of G2 theory. Inclusion of higher levels of correlation treatment has little effect except in the cases of multiply-bonded systems. In these cases better agreement is obtained in some cases and poorer agreement in others so that there is no improvement in overall performance. The use of QCISD geometries yields significantly better agreement with experiment for several cases including the ionization potentials of CS and O 2 , electron affinity of CN, and dissociation energies of N 2 , O 2 , CN, and SO 2 . This leads to a slightly better agreement with experiment overall. The MP2 zero-point energies gives no overall improvement. These methods may be useful for specific systems

  20. Distance between configurations in Markov chain Monte Carlo simulations

    Science.gov (United States)

    Fukuma, Masafumi; Matsumoto, Nobuyuki; Umeda, Naoya

    2017-12-01

    For a given Markov chain Monte Carlo algorithm we introduce a distance between two configurations that quantifies the difficulty of transition from one configuration to the other configuration. We argue that the distance takes a universal form for the class of algorithms which generate local moves in the configuration space. We explicitly calculate the distance for the Langevin algorithm, and show that it certainly has desired and expected properties as distance. We further show that the distance for a multimodal distribution gets dramatically reduced from a large value by the introduction of a tempering method. We also argue that, when the original distribution is highly multimodal with large number of degenerate vacua, an anti-de Sitter-like geometry naturally emerges in the extended configuration space.

  1. Straining and wrinkling processes during turbulence-premixed flame interaction measured using temporally-resolved diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Adam M.; Driscoll, James F. [Department of Aerospace Engineering, The University of Michigan, Ann Arbor, MI 48109 (United States)

    2009-12-15

    The dynamical processes of flame surface straining and wrinkling that occur as turbulence interacts with a premixed flame were measured using cinema-stereoscopic PIV (CS-PIV) and orthogonal-plane cinema-stereoscopic PIV (OPCS-PIV). These diagnostics provided temporally resolved measurements of turbulence-flame interaction at frame rates of up to 3 kHz and spatial resolutions as small as 280{mu} m. Previous descriptions of flame straining and wrinkling have typically been derived based on a canonical interaction between a pair of counter-rotating vortices and a planar flame surface. However, it was found that this configuration did not properly represent real turbulence-flame interaction. Interactions resembling the canonical configuration were observed in less than 10% of the recorded frames. Instead, straining and wrinkling were generally caused more geometrically complex turbulence, consisting of large groups of structures that could be multiply curved and intertwined. The effect of the interaction was highly dependent on the interaction geometry. Furthermore, even when the turbulence did exist in the canonical geometry, the straining and wrinkling of the flame surface were not well characterized by the vortical structures. A new mechanistic description of the turbulence-flame interaction was therefore identified and confirmed by the measurements. In this description, flame surface straining is caused by coherent structures of fluid-dynamic strain-rate (strain-rate structures). The role of vortical structures is to curve existing flame surface, creating wrinkles. By simultaneously considering both forms of turbulent structure, turbulence-flame interactions in both the canonical configuration and more complex geometries could be understood. (author)

  2. A Managerial Perspective on Common Identity-based and Common Bond-based Groups in Non-governmental Organizations. Patterns of Interaction, Attachment and Social Network Configuration

    Directory of Open Access Journals (Sweden)

    Elena - Mădălina VĂTĂMĂNESCU

    2014-10-01

    Full Text Available The paper approaches the common identity and common bond theories in analyzing the group patterns of interaction, their causes, processes and outcomes from a managerial perspective. The distinction between identity and bond referred to people’s different reasons for being in a group, stressing out whether they like the group as a whole — identity-based attachment, or they like individuals in the group — bond-based attachment.  While members of the common identity groups reported feeling more attached to their group as a whole than to their fellow group members and tended to perceive others in the group as interchangeable, in bond-based attachment, people felt connected to each other and less to the group as a whole, loyalty or attraction to the group stemming from their attraction primarily to certain members in the group. At this level, the main question concerned with the particularities of common identity-based or common bond-based groups regarding social interaction, the participatory architecture of the group, the levels of personal and work engagement in acting like a cohesive group. In order to address pertinently this issue, the current work was focused on a qualitative research which comprised in-depth (semi-structured interviews with several project coordinators from non-governmental organizations (NGOs. Also, to make the investigation more complex and clear, the research relied on the social network analysis which was indicative of the group dynamics and configuration, highlighting the differences between common identity-based and common bond-based groups.

  3. Drupal 8 configuration management

    CERN Document Server

    Borchert, Stefan

    2015-01-01

    Drupal 8 Configuration Management is intended for people who use Drupal 8 to build websites, whether you are a hobbyist using Drupal for the first time, a long-time Drupal site builder, or a professional web developer.

  4. Adsorption configurations of two nitrogen atoms on graphene

    International Nuclear Information System (INIS)

    Rani, Babita; Jindal, V. K.; Dharamvir, Keya

    2014-01-01

    We present calculations for different possible configurations of two nitrogen adatoms on graphene using the code VASP, based on Density Functional Theory (DFT). Two N atoms adsorbed on the graphene sheet can share a bond in two ways. They take positions either just above two adjacent carbon atoms or they form a bridge across opposite bonds of a hexagon in the graphene sheet. Both these configurations result into structural distortion of the sheet. Another stable configuration involving two N atoms consists of an N 2 molecule which is physisorbed at a distance 3.69 Å on the graphene sheet. Two N atoms can also be adsorbed on alternate bridge sites of neighbouring hexagons of graphene. This configuration again leads to distortion of the sheet in perpendicular direction

  5. Simple configuration in the capture state and the general picture of nuclear state complications

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1974-01-01

    Main concepts of a model for describing fragmentation, based on taking into account the interaction between quasiparticles and phonons are presented. Results on fragmentation of one-quasiparticle states calculations are given. General concepts of an approach based on operator form of wave function of high-excitation state are presented, and contribution of individual simple configurations to wave functions of neutron resonances is evaluated. The cases, for which the valent neutron model can be used, are shown. The structure of compound-states is discussed

  6. Configurational entropy of anti-de Sitter black holes

    International Nuclear Information System (INIS)

    Braga, Nelson R.F.; Rocha, Roldão da

    2017-01-01

    Recent studies indicate that the configurational entropy is an useful tool to investigate the stability and (or) the relative dominance of states for diverse physical systems. Recent examples comprise the connection between the variation of this quantity and the relative fraction of light mesons and glueballs observed in hadronic processes. Here we develop a technique for defining a configurational entropy for an AdS-Schwarzschild black hole. The achieved result corroborates consistency with the Hawking–Page phase transition. Namely, the dominance of the black hole configurational entropy will be shown to increase with the temperature. In order to verify the consistency of the new procedure developed here, we also consider the case of black holes in flat space-time. For such a black hole, it is known that evaporation leads to instability. The configurational entropy obtained for the flat space case is thoroughly consistent with the physical expectation. In fact, we show that the smaller the black holes, the more unstable they are. So, the configurational entropy furnishes a reliable measure for stability of black holes.

  7. Configurational entropy of anti-de Sitter black holes

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Nelson R.F., E-mail: braga@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, RJ 21941-972 (Brazil); Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC – UFABC, 09210-580, Santo André (Brazil)

    2017-04-10

    Recent studies indicate that the configurational entropy is an useful tool to investigate the stability and (or) the relative dominance of states for diverse physical systems. Recent examples comprise the connection between the variation of this quantity and the relative fraction of light mesons and glueballs observed in hadronic processes. Here we develop a technique for defining a configurational entropy for an AdS-Schwarzschild black hole. The achieved result corroborates consistency with the Hawking–Page phase transition. Namely, the dominance of the black hole configurational entropy will be shown to increase with the temperature. In order to verify the consistency of the new procedure developed here, we also consider the case of black holes in flat space-time. For such a black hole, it is known that evaporation leads to instability. The configurational entropy obtained for the flat space case is thoroughly consistent with the physical expectation. In fact, we show that the smaller the black holes, the more unstable they are. So, the configurational entropy furnishes a reliable measure for stability of black holes.

  8. Strain-modified RKKY interaction in carbon nanotubes

    DEFF Research Database (Denmark)

    Gorman, P. D.; Duffy, J. M.; Power, Stephen R.

    2015-01-01

    been shown that the interaction range depends on the conformation of the magnetic dopants in both graphene and nanotubes. Here we examine the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in carbon nanotubes in the presence of uniaxial strain for a range of different impurity configurations. We show......For low-dimensionalmetallic structures, such as nanotubes, the exchange coupling between localized magnetic dopants is predicted to decay slowly with separation. The long-range character of this interaction plays a significant role in determining the magnetic order of the system. It has previously...... that strain is capable of amplifying or attenuating the RKKY interaction, significantly increasing certain interaction ranges, and acting as a switch: effectively turning on or off the interaction. We argue that uniaxial strain can be employed to significantly manipulate magnetic interactions in carbon...

  9. Configuration Management Process Assessment Strategy

    Science.gov (United States)

    Henry, Thad

    2014-01-01

    Purpose: To propose a strategy for assessing the development and effectiveness of configuration management systems within Programs, Projects, and Design Activities performed by technical organizations and their supporting development contractors. Scope: Various entities CM Systems will be assessed dependent on Project Scope (DDT&E), Support Services and Acquisition Agreements. Approach: Model based structured against assessing organizations CM requirements including best practices maturity criteria. The model is tailored to the entity being assessed dependent on their CM system. The assessment approach provides objective feedback to Engineering and Project Management of the observed CM system maturity state versus the ideal state of the configuration management processes and outcomes(system). center dot Identifies strengths and risks versus audit gotcha's (findings/observations). center dot Used "recursively and iteratively" throughout program lifecycle at select points of need. (Typical assessments timing is Post PDR/Post CDR) center dot Ideal state criteria and maturity targets are reviewed with the assessed entity prior to an assessment (Tailoring) and is dependent on the assessed phase of the CM system. center dot Supports exit success criteria for Preliminary and Critical Design Reviews. center dot Gives a comprehensive CM system assessment which ultimately supports configuration verification activities.*

  10. RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)

    2015-12-15

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  11. Configuration management of the EU DEMO conceptual design data

    Energy Technology Data Exchange (ETDEWEB)

    Meszaros, Botond; Shannon, Mark [EUROfusion Consortium, PPPT Department, Garching, Boltzmannstr. 2 (Germany); Marzullo, Domenico [CREATE, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli (Italy); Woodley, Colin; Rowe, Steve [CCFE, Culham Science Centre, Oxfordshire OX14 3DB, Abingdon (United Kingdom); Di Gironimo, Giuseppe [CREATE, University of Naples Federico II, P.le Tecchio 80, 80125 Napoli (Italy)

    2016-11-01

    Highlights: • Description of the selection of the DEMO Product Data Management tool. • Introduction of the DEMO configuration management philosophy for the CAD design data. • Description of the enabling tools and systems of the configuration management. - Abstract: The EUROfusion Consortium is setting up – as part of the EU Fusion Roadmap – the framework for the implementation of the (pre)conceptual design phase of the DEMO reactor. Configuration management needs have been identified as one of the key elements of this framework and is the topic of this paper, in particular the configuration of the CAD design data. The desire is to keep the definition and layout of the corresponding systems “light weight” and relatively easy to manage, whilst simultaneously providing a level of detail in the definition of the design configuration that is fit for the purpose of a conceptual design. This paper aims to describe the steps followed during the definition of the configuration management system of the DEMO design data in terms of (i) the identification of the appropriate product data management system, (ii) the description of the philosophy of the configuration management of the design data, and (iii) the introduction of the most important enabling processes.

  12. Configuration management of the EU DEMO conceptual design data

    International Nuclear Information System (INIS)

    Meszaros, Botond; Shannon, Mark; Marzullo, Domenico; Woodley, Colin; Rowe, Steve; Di Gironimo, Giuseppe

    2016-01-01

    Highlights: • Description of the selection of the DEMO Product Data Management tool. • Introduction of the DEMO configuration management philosophy for the CAD design data. • Description of the enabling tools and systems of the configuration management. - Abstract: The EUROfusion Consortium is setting up – as part of the EU Fusion Roadmap – the framework for the implementation of the (pre)conceptual design phase of the DEMO reactor. Configuration management needs have been identified as one of the key elements of this framework and is the topic of this paper, in particular the configuration of the CAD design data. The desire is to keep the definition and layout of the corresponding systems “light weight” and relatively easy to manage, whilst simultaneously providing a level of detail in the definition of the design configuration that is fit for the purpose of a conceptual design. This paper aims to describe the steps followed during the definition of the configuration management system of the DEMO design data in terms of (i) the identification of the appropriate product data management system, (ii) the description of the philosophy of the configuration management of the design data, and (iii) the introduction of the most important enabling processes.

  13. Discharge breakdown in the EXTRAP configuration

    International Nuclear Information System (INIS)

    Drake, J.R.

    1982-02-01

    The breakdown of a discharge in a linear EXTRAP configuration has been studied experimentally. In this configuration the breakdown occurs along the zero B-field line, which is the axis of the linear octupole magnetic field, between the anode and cathode which constitute the ends of the linear device. Breakdown could be described by a modified Townsend criterion which included additional electron losses due to the presence of the B-field transverse to the discharge. (author)

  14. Benzofuranoid and bicyclooctanoid neolignans:absolute configuration

    International Nuclear Information System (INIS)

    Alvarenga, M.A. de; Giesbrecht, A.M.; Gottlieb, O.R.; Yoshida, M.

    1977-01-01

    The naturally occuring benzofuranoid and bicyclo (3,2,1) octanoid neolignans have their relative configurations established by 1 H and 13 C NMR, inclusively with aid of the solvent shift technique. Interconversion of the benzofuranoid type compounds, as well as for a benzofuranoid to a bicyclooctanoid derivate, make ORD correlations, ultimately with (2S, 3S) - and (2R,3R)-2,3- dihydrobenzofurans, possible, and led to the absolute configurations of both series of neolignans [pt

  15. Product Configuration Systems - Implications for Product Innovation and Development

    DEFF Research Database (Denmark)

    Edwards, Kasper; Pedersen, Jørgen Lindgaard

    2004-01-01

    configurations. However, costs are but one parameter on which firms compete and firms must continually innovate new and develop existing products. This paper presents original empirical insights on implementation and use of product configuration systems in a number of Danish industrial firms. The paper discusses...... the organisational changes associated with PCS and how this affects product innovation and development. The paper begins by introducing product configuration systems, which are then placed in context to the firm as a process technology which coordinate different processes: product development, order acquisition......Product Configuration Systems (PCS) is a step in the direction of mass customization in the sense that PCS allows a firm to significantly lower the unit cost of configuration. Thus PCS is a valuable technology for lowering operating costs while retaining a high number of possible product...

  16. Configuration Design of Detector Shielding for Gamma Prompt Analysis

    International Nuclear Information System (INIS)

    Elin-Nuraini; Darsono; Elisabeth

    2000-01-01

    Configuration on design of detector shielding for gamma prompt analysishas been performed. The aim of this design is to obtain effective shieldingmaterial and configuration that able to protect the detector for fastneutron. The result shown that detector shielding configuration that obtainedby configuration of water and concrete, would be able to absorb fast neutronup to 99.5 %. The neutron flux that passed through shielding configuration is2.4 x 10 3 n/cm 2 dt, in the detector position of 60 cm (forward neutron beamdirection) on the X axis and 30 cm (side ward neutron beam direction) on theZ axis of target. On this position (60,30) counting result was 104358 for Pbcollimator and 246652 for PVC collimator. From examination result shown thatthe weight of silicon is in order 175 gram. (author)

  17. CMS Configuration Editor: GUI based application for user analysis job definition

    CERN Document Server

    De Cosa, Annapaola

    2010-01-01

    We present the user interface and the software architecture of the Configuration Editor that is used by CMS physicists to configure their physics analysis tasks. Analysis workflows typically involve execution of a sequence of algorithms, and these are implemented as software modules that are integrated within the CMS software framework (CMSSW). In particular, a set of common analysis tools is provided in the so-called CMS Physics Analysis Toolkit (PAT) and these need to be steered and configured during the execution of an analysis job. The Python scripting language is used to define the job configuration that drives the analysis workflow. Configuring analysis jobs can be quite a challenging task, particularly for newcomers, and therefore a graphical tool, called the Configuration Editor, has been developed to facilitate the creation and inspection of these configuration files. Typically, a user-defined analysis workflow can be produced starting from a standard configuration file, applying and configuring PAT ...

  18. Analysis of three idealized reactor configurations: plate, pin, and homogeneous

    International Nuclear Information System (INIS)

    McKnight, R.D.

    1983-01-01

    Detailed Monte Carlo calculations have been performed for three distinct configurations of an idealized fast critical assembly. This idealized assembly was based on the LMFBR benchmark critical assembly ZPR-6/7. In the first configuration, the entire core was loaded with the plate unit cell of ZPR-6/7. In the second configuration, the entire core was loaded with the ZPR sodium-filled pin calandria. The actual ZPR pin calandria are loaded with mixed (U,Pu) oxide pins which closely match the composition of the ZPR-6/7 plate unit cell. For the present study, slight adjustments were made in the atom concentrations and the length of the pin calandria in order to make the core boundaries and average composition for the pin-cell configuration identical to those of the plate-cell configuration. In the third configuration, the core was homogeneous, again with identical core boundaries and average composition as the plate and pin configurations

  19. Numerical study of spherical Torus MHD equilibrium configuration

    International Nuclear Information System (INIS)

    Cheng Faying; Dong Jiaqi; Wang Aike

    2003-01-01

    Tokamak equilibrium code SWEQU has been modified so that it can be used for the MHD equilibrium study of low aspect ratio device. Evolution of plasma configuration in start-up phase and double-null divertor configuration in steady-state phase has been simulated using the modified code. Results show that the new code can be used not only to obtain the equilibrium configuration of spherical Torus in steady-state phase, but also to simulate the evolution of plasma in the start-up phase

  20. Superposition of configurations in semiempirical calculation of iron group ion spectra

    International Nuclear Information System (INIS)

    Kantseryavichyus, A.Yu.; Ramonas, A.A.

    1976-01-01

    The energy spectra of ions from the iron group in the dsup(N), dsup(N)s, dsup(N)p configurations are studied. A semiempirical method is used in which the effective hamiltonian contains configuration superposition. The sdsup(N+1), psup(4)dsup(N+2) quasidegenerated configurations, as well as configurations which differ by one electron are taken as correction configurations. It follows from the calculations that the most important role among the quasidegenerate configurations is played by the sdsup(N+1) correctional configuration. When it is taken into account, the introduction of the psup(4)dsup(N+2) correctional configuration practically does not affect the results. Account of the dsup(N-1)s configuration in the second order of the perturbation theory is equivalent to that of sdsup(N+1) in the sense that it results in the identical mean square deviation. As follows from the comparison of the results of the approximate and complete account of the configuration superposition, in many cases one can be satisfied with its approximate and complete account of the configuration superposition, in many cases one can be satisfied with its approximate version. The results are presented in the form of tables including the values of empirical parameters, radial integrals, mean square errors, etc

  1. Symmetry-adapted configurational modelling of fractional site occupancy in solids

    Energy Technology Data Exchange (ETDEWEB)

    Grau-Crespo, R [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Hamad, S [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Catlow, C R A [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Leeuw, N H de [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2007-06-27

    A methodology is presented, which reduces the number of site-occupancy configurations to be calculated when modelling site disorder in solids, by taking advantage of the crystal symmetry of the lattice. Within this approach, two configurations are considered equivalent when they are related by an isometric operation; a trial list of possible isometric transformations is provided by the group of symmetry operators in the parent structure, which is used to generate all configurations via atomic substitutions. We have adapted the equations for configurational statistics to operate in the reduced configurational space of the independent configurations. Each configuration in this space is characterized by its reduced energy, which includes not only its energy but also a contribution from its degeneracy in the complete configurational space, via an entropic term. The new computer program SOD (site-occupancy disorder) is presented, which performs this analysis in systems with arbitrary symmetry and any size of supercell. As a case study we use the distribution of cations in iron antimony oxide FeSbO{sub 4}, where we also introduce some general considerations for the modelling of site-occupancy disorder in paramagnetic systems.

  2. DICOM supported sofware configuration by XML files

    International Nuclear Information System (INIS)

    LucenaG, Bioing Fabian M; Valdez D, Andres E; Gomez, Maria E; Nasisi, Oscar H

    2007-01-01

    A method for the configuration of informatics systems that provide support to DICOM standards using XML files is proposed. The difference with other proposals is base on that this system does not code the information of a DICOM objects file, but codes the standard itself in an XML file. The development itself is the format for the XML files mentioned, in order that they can support what DICOM normalizes for multiple languages. In this way, the same configuration file (or files) can be use in different systems. Jointly the XML configuration file generated, we wrote also a set of CSS and XSL files. So the same file can be visualized in a standard browser, as a query system of DICOM standard, emerging use, that did not was a main objective but brings a great utility and versatility. We exposed also some uses examples of the configuration file mainly in relation with the load of DICOM information objects. Finally, at the conclusions we show the utility that the system has already provided when the edition of DICOM standard changes from 2006 to 2007

  3. Holistic processing of face configurations and components.

    Science.gov (United States)

    Hayward, William G; Crookes, Kate; Chu, Ming Hon; Favelle, Simone K; Rhodes, Gillian

    2016-10-01

    Although many researchers agree that faces are processed holistically, we know relatively little about what information holistic processing captures from a face. Most studies that assess the nature of holistic processing do so with changes to the face affecting many different aspects of face information (e.g., different identities). Does holistic processing affect every aspect of a face? We used the composite task, a common means of examining the strength of holistic processing, with participants making same-different judgments about configuration changes or component changes to 1 portion of a face. Configuration changes involved changes in spatial position of the eyes, whereas component changes involved lightening or darkening the eyebrows. Composites were either aligned or misaligned, and were presented either upright or inverted. Both configuration judgments and component judgments showed evidence of holistic processing, and in both cases it was strongest for upright face composites. These results suggest that holistic processing captures a broad range of information about the face, including both configuration-based and component-based information. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  4. On configurational forces for gradient-enhanced inelasticity

    Science.gov (United States)

    Floros, Dimosthenis; Larsson, Fredrik; Runesson, Kenneth

    2018-04-01

    In this paper we discuss how configurational forces can be computed in an efficient and robust manner when a constitutive continuum model of gradient-enhanced viscoplasticity is adopted, whereby a suitably tailored mixed variational formulation in terms of displacements and micro-stresses is used. It is demonstrated that such a formulation produces sufficient regularity to overcome numerical difficulties that are notorious for a local constitutive model. In particular, no nodal smoothing of the internal variable fields is required. Moreover, the pathological mesh sensitivity that has been reported in the literature for a standard local model is no longer present. Numerical results in terms of configurational forces are shown for (1) a smooth interface and (2) a discrete edge crack. The corresponding configurational forces are computed for different values of the intrinsic length parameter. It is concluded that the convergence of the computed configurational forces with mesh refinement depends strongly on this parameter value. Moreover, the convergence behavior for the limit situation of rate-independent plasticity is unaffected by the relaxation time parameter.

  5. Spectroscopy of heavy nuclei by configuration mixing of symmetry restored mean-field states: shape coexistence in neutron-deficient Pb isotopes

    International Nuclear Information System (INIS)

    Bender, M.; Heenen, P.H.; Bonche, P.; Duguet, T.

    2003-01-01

    We study shape coexistence and low-energy excitation spectra in neutron-deficient Pb isotopes using configuration mixing of angular-momentum and particle-number projected self-consistent mean-field states. The same Skyrme interaction SLy6 is used everywhere in connection with a density-dependent zero-range pairing force. (orig.)

  6. Driving reconnection in sheared magnetic configurations with forced fluctuations

    Science.gov (United States)

    Pongkitiwanichakul, Peera; Makwana, Kirit D.; Ruffolo, David

    2018-02-01

    We investigate reconnection of magnetic field lines in sheared magnetic field configurations due to fluctuations driven by random forcing by means of numerical simulations. The simulations are performed with an incompressible, pseudo-spectral magnetohydrodynamics code in 2D where we take thick, resistively decaying, current-sheet like sheared magnetic configurations which do not reconnect spontaneously. We describe and test the forcing that is introduced in the momentum equation to drive fluctuations. It is found that the forcing does not change the rate of decay; however, it adds and removes energy faster in the presence of the magnetic shear structure compared to when it has decayed away. We observe that such a forcing can induce magnetic reconnection due to field line wandering leading to the formation of magnetic islands and O-points. These reconnecting field lines spread out as the current sheet decays with time. A semi-empirical formula is derived which reasonably explains the formation and spread of O-points. We find that reconnection spreads faster with stronger forcing and longer correlation time of forcing, while the wavenumber of forcing does not have a significant effect. When the field line wandering becomes large enough, the neighboring current sheets with opposite polarity start interacting, and then the magnetic field is rapidly annihilated. This work is useful to understand how forced fluctuations can drive reconnection in large scale current structures in space and astrophysical plasmas that are not susceptible to reconnection.

  7. Modelling Configuration Knowledge in Heterogeneous Product Families

    DEFF Research Database (Denmark)

    Queva, Matthieu Stéphane Benoit; Männistö, Tomi; Ricci, Laurent

    2011-01-01

    Product configuration systems play an important role in the development of Mass Customisation. The configuration of complex product families may nowadays involve multiple design disciplines, e.g. hardware, software and services. In this paper, we present a conceptual approach for modelling...... the variability in such heterogeneous product families. Our approach is based on a framework that aims to cater for the different stakeholders involved in the modelling and management of the product family. The modelling approach is centred around the concepts of views, types and constraints and is illustrated...... by a motivation example. Furthermore, as a proof of concept, a prototype has been implemented for configuring a non-trivial heterogeneous product family....

  8. A MAGNETOHYDRODYNAMIC MODEL FOCUSED ON THE CONFIGURATION OF MAGNETIC FIELD RESPONSIBLE FOR A SOLAR PENUMBRAL MICROJET

    International Nuclear Information System (INIS)

    Magara, T.

    2010-01-01

    In order to understand the configuration of magnetic field producing a solar penumbral microjet that was recently discovered by Hinode, we performed a magnetohydrodynamic simulation reproducing a dynamic process of how that configuration is formed in a modeled solar penumbral region. A horizontal magnetic flux tube representing a penumbral filament is placed in a stratified atmosphere containing the background magnetic field that is directed in a relatively vertical direction. Between the flux tube and the background field there forms the intermediate region in which the magnetic field has a transitional configuration, and the simulation shows that in the intermediate region magnetic reconnection occurs to produce a clear jet-like structure as suggested by observations. The result that a continuous distribution of magnetic field in three-dimensional space gives birth to the intermediate region producing a jet presents a new view about the mechanism of a penumbral microjet, compared to a simplistic view that two field lines, one of which represents a penumbral filament and the other the background field, interact together to produce a jet. We also discuss the role of the intermediate region in protecting the structure of a penumbral filament subject to microjets.

  9. Some aspects of configuration management at Nuclear Power Plant Krsko

    International Nuclear Information System (INIS)

    Heruc, Z.; Podhraski, M.

    2000-01-01

    Configuration Management (CM) objectives at Neck are to ensure consistency between Design Requirements, Physical Plant Configuration and Configuration Information. Software applications, supporting Design Change, Work Control and Document Control Processes, are integrated in one module-oriented Management Information System (MIS). From configuration management perspective, Master Equipment Component List (MECL) database is the central MIS module. Through a combination of a centralized database and process migrated activities (modifications, plant operation, maintenance, document control etc.), it is encored that the CM principles and requirements (accurate, current design dana matching plant's physical configuration while complying to applicable requirements), are followed and fulfilled. (author)

  10. Analysis of the 4d7 (4f + 6p) and 4p54d9 configurations of Sn VII, Sb VIII and Te IX

    International Nuclear Information System (INIS)

    Azarov, V.I.; Joshi, Y.N.; Churilov, S.S.; Ryabtsev, A.N.

    1994-01-01

    The spectra of tin, antimony and tellerium were photographed in the 120-200 A region on 10.7 m and 3 m grazing incidence spectrographs using a triggered spark source. The 4d 8 -4d 7 (4f + 6p) + 4p 5 4d 9 transitions of Sn VII, Sb VIII and Te IX were investigated. In the Sn VII spectrum 109 new lines were classified in the 152-192 A region and 34 new levels were established, in the Sb VIII spectrum 78 new lines were classified in the 138-158 A region and 21 new levels were established, and in the Te IX 76 new lines were classified in the 121-139 A region and 21 new levels were established. Strong configuration interaction among the 4d 7 (np + mf), and 4p 5 4d 9 (n = 5, 6; m = 4, 5) configurations was observed. Least-squares-fitting (LSF) parametric calculations involving configuration interaction were carried out to interpret the observed spectra. (orig.)

  11. Mastering System Center 2012 Configuration Manager

    CERN Document Server

    Rachui, Steve; Martinez, Santos; Daalmans, Peter

    2012-01-01

    Expert coverage of Microsoft's highly anticipated network software deployment tool The latest version of System Center Configuration Manager (SCCM) is a dramatic update of its predecessor Configuration Manager 2007, and this book offers intermediate-to-advanced coverage of how the new SCCM boasts a simplified hierarchy, role-based security, a new console, flexible application deployment, and mobile management. You'll explore planning and installation, migrating from SCCM 2007, deploying software and operating systems, security, monitoring and troubleshooting, and automating and customizing SCC

  12. Particle transort in field-reversed configurations

    Energy Technology Data Exchange (ETDEWEB)

    Tuszewski, M.; Linford, R.K.; Lipson, J.; Sgro, A.G.

    1981-01-01

    A field reversed configuration (FRC) is a compact toroid that contains no toroidal field. These plasmas are observed to be grossly stable for about 10-100 ..mu..sec. The lifetimes appear limited by an n = 2 rotational instability which may be caused by particle loss. Particle transport is therefore an important issue for these configurations. We investigate particle loss with a steady-state, 1-D model which approximates the experimental observation of elongated FRC equilibrium with about constant separatrix radius.

  13. TWRS configuration management requirement source document

    International Nuclear Information System (INIS)

    Vann, J.M.

    1997-01-01

    The TWRS Configuration Management (CM) Requirement Source document prescribes CM as a basic product life-cycle function by which work and activities are conducted or accomplished. This document serves as the requirements basis for the TWRS CM program. The objective of the TWRS CM program is to establish consistency among requirements, physical/functional configuration, information, and documentation for TWRS and TWRS products, and to maintain this consistency throughout the life-cycle of TWRS and the product, particularly as changes are being made

  14. Effects of 2p-2h configurations on low-energy dipole states in neutron-rich N=80, 82 and 84 isotones

    Directory of Open Access Journals (Sweden)

    Arsenyev N. N.

    2016-01-01

    Full Text Available Starting from the Skyrme interaction SLy4 we study the effects of phonon-phonon coupling on the low-energy electric dipole response in 130−134Sn, 132−136Te and 134−138Xe. Our calculations are performed within the finite-rank separable approximation, which enables one to perform quasiparticle random phase approximation calculations in very large two-quasiparticle configuration spaces. A dependence of the pygmy dipole resonance strengths on the neutron skin thickness is found. The inclusion of the two-phonon configurations gives a considerable contribution to the low-lying strength.

  15. An XML-based configuration system for MAST PCS

    International Nuclear Information System (INIS)

    Storrs, J.; McArdle, G.

    2008-01-01

    MAST PCS, a port of General Atomics' generic Plasma Control System, is a large software system comprising many source files in C and IDL. Application parameters can affect multiple source files in complex ways, making code development and maintenance difficult. The MAST PCS configuration system aims to make the task of the application developer easier, through the use of XML-based configuration files and a configuration tool which processes them. It is presented here as an example of a useful technique with wide application

  16. CONFIGURATION OF CULTURAL NORMS IN TRADITIONAL RICE PLANTING RITUAL DISCOURSE THE TRADITIONAL FARMING COMMUNITY OF BAYAN, NORTH LOMBOK

    Directory of Open Access Journals (Sweden)

    I Made Netra

    2015-01-01

    Full Text Available This is the study of traditional rice planting ritual discourse of the traditional farming community of Bayan, North Lombok in an ethno-pragmatic perspective.  It is specifically aimed at describing the cultural norms and their meaning configurations.  The theory used in the study is the cultural scripts developed by Wierzbicka (2002a considering that cultural norms constitute rules and regulations in social interaction practices. They can be investigated from the use of grammatical aspects of language and linguistic routines which are context-bound. They can be configured by paraphrasing in simple and mini language using single space. The results of the study showed that there were some cultural norms found on the traditional rice planting ritual discourse of the traditional farming community of Bayan, North Lombok. They included: (1 asserting thought and hope, (2 respecting other entities, (3 apologizing, (4 promising, and (5 giving advice. The configuration of these cultural norms was in accordance with the understanding of local cultural scripts and wisdom in terms of rituals of the local farming system. The configuration is constructed in low-level script with components of “when” and “if”. It contains the aspects of thinking, speaking, and doing. It is derived from the semantic primes of both evaluation and perception.

  17. Configuring Symantec AntiVirus

    CERN Document Server

    Shimonski, Robert

    2003-01-01

    This is the only book that will teach system administrators how to configure, deploy, and troubleshoot Symantec Enterprise Edition in an enterprise network. The book will reflect Symantec''s philosophy of "Centralized Antivirus Management." For the same reasons that Symantec bundled together these previously separate products, the book will provide system administrators with a holistic approach to defending their networks from malicious viruses. This book will also serve as a Study Guide for those pursuing Symantec Product Specialist Certifications.Configuring Symantec AntiVirus Enterprise Edition contains step-by-step instructions on how to Design, implement and leverage the Symantec Suite of products in the enterprise.ØFirst book published on market leading product and fast-growing certification. Despite the popularity of Symantec''s products and Symantec Product Specialist certifications, there are no other books published or announced.ØLess expensive substitute for costly on-sight training. Symantec off...

  18. Calculation of Configurational Entropy in Complex Landscapes

    Directory of Open Access Journals (Sweden)

    Samuel A Cushman

    2018-04-01

    Full Text Available Entropy and the second law of thermodynamics are fundamental concepts that underlie all natural processes and patterns. Recent research has shown how the entropy of a landscape mosaic can be calculated using the Boltzmann equation, with the entropy of a lattice mosaic equal to the logarithm of the number of ways a lattice with a given dimensionality and number of classes can be arranged to produce the same total amount of edge between cells of different classes. However, that work seemed to also suggest that the feasibility of applying this method to real landscapes was limited due to intractably large numbers of possible arrangements of raster cells in large landscapes. Here I extend that work by showing that: (1 the proportion of arrangements rather than the number with a given amount of edge length provides a means to calculate unbiased relative configurational entropy, obviating the need to compute all possible configurations of a landscape lattice; (2 the edge lengths of randomized landscape mosaics are normally distributed, following the central limit theorem; and (3 given this normal distribution it is possible to fit parametric probability density functions to estimate the expected proportion of randomized configurations that have any given edge length, enabling the calculation of configurational entropy on any landscape regardless of size or number of classes. I evaluate the boundary limits (4 for this normal approximation for small landscapes with a small proportion of a minority class and show it holds under all realistic landscape conditions. I further (5 demonstrate that this relationship holds for a sample of real landscapes that vary in size, patch richness, and evenness of area in each cover type, and (6 I show that the mean and standard deviation of the normally distributed edge lengths can be predicted nearly perfectly as a function of the size, patch richness and diversity of a landscape. Finally, (7 I show that the

  19. A low emittance configuration for spear

    International Nuclear Information System (INIS)

    Blumberg, L.N.; Cerino, J.; Harris, J.; Hettel, R.; Hofmann, A.; Liu, R.Z.; Stego, R.; Wiedemann, H.; Winick, H.

    1985-01-01

    The quality of synchrotron radiation beams from SPEAR, in particular the brilliance of undulator radiation, can be improved significantly by reducing the emittance of the stored electron beam. A reduction of the horizontal emittance by a factor of 3.5 to a value of 130 nanometer-radians (nm-r) at 3 GeV has been achieved by using stronger focussing, mainly in the horizontal plane. The low emittance configuration also reduces the dispersion and vertical beta functions in the straight sections, making them more suitable for wigglers. The higher betatron tunes lead to a larger phase advance between the two kickers, which has to be corrected during injection by shunting current from some quadrupoles. The configuration was optimized within SPEAR hardware limitations and tested for dynamic aperture with the tracking program PATRICIA. After implementation of this scheme, beam was successfully injected and accumulated. The measured emittance of the stored beam was in agreement with calculations. Presently the configuration is being made operational

  20. Model-Driven Configuration of SELinux Policies

    Science.gov (United States)

    Agreiter, Berthold; Breu, Ruth

    The need for access control in computer systems is inherent. However, the complexity to configure such systems is constantly increasing which affects the overall security of a system negatively. We think that it is important to define security requirements on a non-technical level while taking the application domain into respect in order to have a clear and separated view on security configuration (i.e. unblurred by technical details). On the other hand, security functionality has to be tightly integrated with the system and its development process in order to provide comprehensive means of enforcement. In this paper, we propose a systematic approach based on model-driven security configuration to leverage existing operating system security mechanisms (SELinux) for realising access control. We use UML models and develop a UML profile to satisfy these needs. Our goal is to exploit a comprehensive protection mechanism while rendering its security policy manageable by a domain specialist.