WorldWideScience

Sample records for cone volcanoes southern

  1. Geomorphologic Analysis of Drainage Basins in Damavand Volcano Cone, Iran

    Science.gov (United States)

    Zareinejad, M.

    2011-12-01

    Damavand volcanic cone is located in the center of the Alborz chain, in the southern Caspian Sea in Iran. Damavand is a dormant volcano in Iran. It is not only the country's highest peak but also the highest mountain on the Middle East; its elevation is 5619 m. The main purpose of this paper is recognition and appraisement of drainage basins in Damavand cone from geomorphic point of view. Water causes erosion in nature in different forms and creates diverse forms on the earth surface depending on the manner of its appearance in nature. Although water is itself a former factor, it flows under morphological effect of earth surface. The difference of earth surface topography and as a result water movement on it, cause the formation of sub-basins. Identification of region drainage basins is considered as one of the requirements for Damavand cone morphometric. Thereupon, five drainage basins were identified in this research by relying on main criteria including topographic contours with 10 m intervals, drainage system, DEM map, slope map, aspect map and satellite images. (Fig 1) Area, perimeter, height classification for classifying morphological landforms in different levels, hypsometric calculations, drainage density, etc. were then calculated by using ArcGIS software. (Table 1) Damavand cone, with a height more than 5,000 meters from the sea surface, has very hard pass slopes and our purpose in this paper is to identify the effect of drainage basins conditions in the region on erosion and the formation of morphological landforms by using SPOT, ASTER, satellite images as well as papering of data in GIS environment.

  2. The southern cone petroleum market

    International Nuclear Information System (INIS)

    Pisani, W.

    1992-01-01

    The Argentine oil sector has been moving strongly toward complete deregulation since 1989. Price controls on byproducts has been lifted, old petroleum contracts became into concessions, and the state oil company, YPF, is under process of privatization. In this context, the international companies scouting for opportunities can find an important menu of potential investments But here remain some problems connected with this deregulation, too. The lack of a reference crude and product market price is one of them. This paper focuses how to overcome this trouble with the establishment of an institutional market for crude and products, not only for Argentina but also for the entire Southern Cone Region (Argentina, Bolivia, Brazil, Chile, Paraguay and Uruguay), inquiring into the benefits of its creation

  3. Mud Volcanoes - Analogs to Martian Cones and Domes (by the Thousands!)

    Science.gov (United States)

    Allen, Carlton C.; Oehler, Dorothy

    2010-01-01

    Mud volcanoes are mounds formed by low temperature slurries of gas, liquid, sediments and rock that erupt to the surface from depths of meters to kilometers. They are common on Earth, with estimates of thousands onshore and tens of thousands offshore. Mud volcanoes occur in basins with rapidly-deposited accumulations of fine-grained sediments. Such settings are ideal for concentration and preservation of organic materials, and mud volcanoes typically occur in sedimentary basins that are rich in organic biosignatures. Domes and cones, cited as possible mud volcanoes by previous authors, are common on the northern plains of Mars. Our analysis of selected regions in southern Acidalia Planitia has revealed over 18,000 such features, and we estimate that more than 40,000 occur across the area. These domes and cones strongly resemble terrestrial mud volcanoes in size, shape, morphology, associated flow structures and geologic setting. Geologic and mineralogic arguments rule out alternative formation mechanisms involving lava, ice and impacts. We are studying terrestrial mud volcanoes from onshore and submarine locations. The largest concentration of onshore features is in Azerbaijan, near the western edge of the Caspian Sea. These features are typically hundreds of meters to several kilometers in diameter, and tens to hundreds of meters in height. Satellite images show spatial densities of 20 to 40 eruptive centers per 1000 square km. Many of the features remain active, and fresh mud flows as long as several kilometers are common. A large field of submarine mud volcanoes is located in the Gulf of Cadiz, off the Atlantic coasts of Morocco and Spain. High-resolution sonar bathymetry reveals numerous km-scale mud volcanoes, hundreds of meters in height. Seismic profiles demonstrate that the mud erupts from depths of several hundred meters. These submarine mud volcanoes are the closest morphologic analogs yet found to the features in Acidalia Planitia. We are also conducting

  4. Cone and Seed Maturation of Southern Pines

    Science.gov (United States)

    James P. Barnett

    1976-01-01

    If slightly reduced yields and viability are acceptable, loblolly and slash cone collections can begin 2 to 3 weeks before maturity if the cones are stored before processing. Longleaf(P. palestris Mill.) pine cones should be collected only when mature, as storage decreased germination of seeds from immature cones. Biochemical analyses to determine reducing sugar...

  5. Transition from phreatic to phreatomagmatic explosive activity of Zhupanovsky volcano (Kamchatka) in 2013-2016 due to volcanic cone collapse

    Science.gov (United States)

    Gorbach, Natalia; Plechova, Anastasiya; Portnyagin, Maxim

    2017-04-01

    Zhupanovsky volcano, situated 70 km north from Petropavlovsk-Kamchatsky city, resumed its activity in October 2013 [3]. In 2014 and in the first half of 2015, episodic explosions with ash plumes rising up to 6-8 km above sea level occurred on Priemish cone - one of four cones on the Zhupanovsky volcanic edifice [1]. In July 2015 after a series of seismic and explosive events, the southern sector of the active cone collapsed. The landslide and lahar deposits resulted from the collapse formed a large field on the volcano slopes [2]. In November 2015 and January-March 2016, a series of powerful explosions took place sending ash up to 8-10 km above sea level. No pure magmatic, effusive or extrusive, activity has been observed on Zhupanovsky in 2013-2016. We have studied the composition, morphology and textural features of ash particles produced by the largest explosive events of Zhupanovsky in the period from October 2013 to March 2016. The main components of the ash were found to be hydrothermally altered particles and lithics, likely originated by the defragmentation of rocks composing the volcanic edifice. Juvenile glass fragments occur in very subordinate quantities. The maximum amount of glass particles (up to 7%) was found in the ash erupted in January-March 2016, after the cone collapse. We suggest that the phreatic to phreatomagmatic explosive activity of Zhupanovsky volcano in 2013-2016 was initially caused by the intrusion of a new magma batch under the volcano. The intrusion and associated degassing of magma led to heating, overpressure and instability in the hydrothermal system of the volcano, causing episodic, predominantly phreatic explosions. Decompression of the shallow magmatic and hydrothermal system of the volcano due to the cone collapse in July 2015 facilitated a larger involvement of the magmatic component in the eruption and more powerful explosions. [1] Girina O.A. et al., 2016 Geophysical Research Abstracts Vol. 18, EGU2016-2101, doi: 10

  6. Submarine Hydrothermal Activity and Gold-Rich Mineralization at Brothers Volcano, Southern Kermadec Arc, New Zealand

    Science.gov (United States)

    de Ronde, C. E.; Massoth, G. J.; Christenson, B. W.; Butterfield, D. A.; Ishibashi, J.; Hannington, M. D.; Ditchburn, B. G.; Embley, R. W.; Lupton, J. E.; Kamenetsky, D.; Reyes, A. G.; Lahr, J.; Takai, K.

    2006-12-01

    Brothers volcano is one of several hydrothermally active volcanoes that occur along the Kermadec active arc front, NE of New Zealand. It forms an elongate edifice 13 km long by 8 km across that strikes NW-SE. The volcano has a caldera with a basal diameter of ~3 km and a floor at 1,850 m below sea level, surrounded by 290 to 530 m high walls. A volcanic cone of dacite rises 350 m from the caldera floor and partially coalesces with the southern caldera wall. Three hydrothermal sites have been located; on the NW caldera wall, on the SE caldera wall, and on the dacite cone. The NW caldera vent site is a long-term hydrothermal system that is today dominated by evolved seawater but has had episodic injections of magmatic fluid. The SE caldera site represents the main upflow of a relatively well-established magmatic-hydrothermal system on the seafloor where sulfide-rich chimneys are extant. The cone site is a nascent magmatic-hydrothermal system where crack zones localize upwelling acidic waters. Each of these different vent sites represent diverse parts of an evolving hydrothermal system, any one of which may be typical of submarine volcanic arcs. Hydrothermal venting is today occurring at the NW caldera and cone sites. The former is characterized by high-temperature (up to 302°C) venting with pH down to 2.8, low Mg and SO4 values, Cl between 510 and 760 mM, elevated Si and increasing Fe and Mn values with increasing Cl concentrations, consistent with a mostly Cl-enriched endmember. By contrast, vent fluids from the cone site are gas-rich (up to 220 mM total gas), have temperatures 30 ppm) zones in some chimneys formed over a short period of time, coincident with pulses of magmatic fluid into the hydrothermal system.

  7. Persistent growth of a young andesite lava cone: Bagana volcano, Papua New Guinea

    Science.gov (United States)

    Wadge, G.; McCormick Kilbride, B. T.; Edmonds, M.; Johnson, R. W.

    2018-05-01

    Bagana, an andesite lava cone on Bougainville Island, Papua New Guinea, is thought to be a very young central volcano. We have tested this idea by estimating the volumes of lava extruded over different time intervals (1-, 2-, 3-, 9-, 15-, 70-years) using digital elevation models (DEMs), mainly created from satellite data. Our results show that the long-term extrusion rate at Bagana, measured over years to decades, has remained at about 1.0 m3 s-1. We present models of the total edifice volume, and show that, if our measured extrusion rates are representative, the volcano could have been built in only 300 years. It could also possibly have been built at a slower rate during a longer, earlier period of growth. Six kilometres NNW of Bagana, an andesite-dacite volcano, Billy Mitchell, had a large, caldera-forming plinian eruption 437 years ago. We consider the possibility that, as a result of this eruption, the magma supply was diverted from Billy Mitchell to Bagana. It seems that Bagana is a rare example of a very youthful, polygenetic, andesite volcano. The characteristics of such a volcano, based on the example of Bagana, are: a preponderance of lava products over pyroclastic products, a high rate of lava extrusion maintained for decades, a very high rate of SO2 emission, evidence of magma batch fractionation and location in a trans-tensional setting at the end of an arc segment above a very steeply dipping and rapidly converging subduction zone.

  8. Subsurface architecture of Las Bombas volcano circular structure (Southern Mendoza, Argentina) from geophysical studies

    Science.gov (United States)

    Prezzi, Claudia; Risso, Corina; Orgeira, María Julia; Nullo, Francisco; Sigismondi, Mario E.; Margonari, Liliana

    2017-08-01

    The Plio-Pleistocene Llancanelo volcanic field is located in the south-eastern region of the province of Mendoza, Argentina. This wide back-arc lava plateau, with hundreds of monogenetic pyroclastic cones, covers a large area behind the active Andean volcanic arc. Here we focus on the northern Llancanelo volcanic field, particularly in Las Bombas volcano. Las Bombas volcano is an eroded, but still recognizable, scoria cone located in a circular depression surrounded by a basaltic lava flow, suggesting that Las Bombas volcano was there when the lava flow field formed and, therefore, the lava flow engulfed it completely. While this explanation seems reasonable, the common presence of similar landforms in this part of the field justifies the need to establish correctly the stratigraphic relationship between lava flow fields and these circular depressions. The main purpose of this research is to investigate Las Bombas volcano 3D subsurface architecture by means of geophysical methods. We carried out a paleomagnetic study and detailed topographic, magnetic and gravimetric land surveys. Magnetic anomalies of normal and reverse polarity and paleomagnetic results point to the occurrence of two different volcanic episodes. A circular low Bouguer anomaly was detected beneath Las Bombas scoria cone indicating the existence of a mass deficit. A 3D forward gravity model was constructed, which suggests that the mass deficit would be related to the presence of fracture zones below Las Bombas volcano cone, due to sudden degassing of younger magma beneath it, or to a single phreatomagmatic explosion. Our results provide new and detailed information about Las Bombas volcano subsurface architecture.

  9. The 2000 AD eruption of Copahue Volcano, Southern Andes

    OpenAIRE

    Naranjo, José Antonio; Polanco, Edmundo

    2004-01-01

    Although all historic eruptions of the Copahue volcano (37°45'S-71°10.2'W, 3,001 m a.s.l.) have been of low magnitude, the largest (VEI=2) and longest eruptive cycle occurred from July to October 2000. Phreatic phases characterized the main events as a former acid crater lake was blown up. Low altitude columns were deviated by low altitude winds in variable directions, but slightly predominant to the NNE. The presence of the El Agrio caldera depression to the east of Copahue volcano may have ...

  10. Tectonic geomorphology and volcano-tectonic interaction in the eastern boundary of the Southern Cascades (Hat Creek Graben region, California, USA

    Directory of Open Access Journals (Sweden)

    Engielle Mae Raot-raot Paguican

    2016-07-01

    Full Text Available The eastern boundary of the Southern Cascades (Hat Creek Graben region, California, USA, is an extensively faulted volcanic corridor between the Cascade Range and Modoc Plateau. The east-west extending region is in the transition zone between the convergence and subduction of the Gorda Plate underneath the North American Plate; north-south shortening within the Klamath Mountain region; and transcurrent movement in the Walker Lane. We describe the geomorphological and tectonic features, their alignment and distribution, in order to understand the tectonic geomorphology and volcano-tectonic relationships. One outcome of the work is a more refined morpho-structural description that will affect future hazard assessment in the area.A database of volcanic centers and structures was created from interpretations of topographic models generated from satellite images. Volcanic centers in the region were classified by morphological type into cones, sub-cones, shields and massifs. A second classification by height separated the bigger and smaller edifices and revealed an evolutionary trend. Poisson Nearest Neighbor analysis shows that bigger volcanoes are spatially dispersed while smaller ones are clustered. Using volcano centroid locations, about 90 lineaments consisting of at least three centers within 6km of one another were found, revealing that preferential north-northwest directed pathways control the transport of magma from the source to the surface, consistent with the strikes of the major fault systems. Most of the volcano crater openings are perpendicular to the maximum horizontal stress, expected for extensional environments with dominant normal regional faults. These results imply that the extension of the Hat Creek Graben region and impingement of the Walker Lane is accommodated mostly by extensional faults and partly by the intrusions that formed the volcanoes. Early in the history of a volcano or volcano cluster, melt produced at depth in the

  11. Volcanoes

    Science.gov (United States)

    ... rock, steam, poisonous gases, and ash reach the Earth's surface when a volcano erupts. An eruption can also cause earthquakes, mudflows and flash floods, rock falls and landslides, acid rain, fires, and even tsunamis. Volcanic gas ...

  12. Geomorphology and petrography of the Angeles lava flow and the Monte de la Cruz cinder cone, Barva Volcano, Costa Rica

    International Nuclear Information System (INIS)

    Rojas, Vanessa; Barahona, Dione; Alvarado, Guillermo E

    2017-01-01

    A geomorphological and pretrographic study was carried out at the lava flow Angeles and the Monte de la Cruz cone in the foothills of the Volcan Barva in Costa Rica. The 1967 aerial photographs at scale 1: 17,000 and 1: 13,000, 1992 at scale 1: 60,000 and TERRA 1997 at scale 1: 40,000 were used for the photogeological study, supplemented with the analysis of the eastern sector of the Hoja Topografica Barva (1: 50 000) of the Instituto Geografico Nacional (IGN) and other topographic maps at different scales (1: 25 000 and 1: 10 000), in addition to the digital elevation models developed through Sistemas de Informacion Geografica (SIG). The information extracted from the wells of the Sistema Nacional de Aguas Subterraneas, Riego y Avenamiento (SENARA) for underground control was reinterpreted. In the field work thicknesses were measured and an estimation of the volumes, dimensions of the cast and other associated geoforms was made. Likewise, 9 samples of rock were selected for the elaboration of thin sections and for their respective petrographic analysis, which allowed to define the main lava flow units and their possible flows. As a result of the volcanic activity of the cone, two flow units of the Angeles wash were identified, the Lower Angels unit and the Superior Angels unit. Petrographically, Angeles Inferior was reciprocated with an andesitic vesical basaltic lava with a porphyritic to slightly glomeroporphyric hypocrystalline texture, with plagioclase, clinopyroxene, orthopyroxene, olivine and opaque phenocrysts. On the other hand, Superior Angeles has been vesicular andesitic with a hypocrystalline texture, glomeroporfiritica to serial glomeroporfiritica, with plagioclase, clinopyroxene, orthopyroxene, olivine and opaque phenocrysts. Morphologically, kipukas and levees were observed. Regionally, it was observed that the Monte de la Cruz cone, along with other smaller satellite cones, are aligned N19 O W along 8.5 km, evidencing an origin associated with a

  13. Managing the effects of accelerated glacial melting on volcanic collapse and debris flows: Planchon-Peteroa Volcano, Southern Andes

    Science.gov (United States)

    Tormey, Daniel

    2010-11-01

    Glaciated mountains are among the most sensitive environments to climatic changes, and recent work has shown that large-scale glacial melting, including at the end of the Pleistocene, caused a significant increase in the incidence of large volcanic sector collapse and debris flows on then-active volcanoes. With current accelerated rates of glacial melting, glaciated active volcanoes are at an increasing risk of sector collapse, debris flow and landslide. These catastrophic events are Earth's most damaging erosion phenomenon, causing extensive property damage and loss of life. This paper illustrates these effects in well-studied settings, focusing on the end-Pleistocene to Holocene glaciovolcanic growth and destruction of the cone of the active volcano Planchon-Peteroa in the Andean Southern Volcanic Zone at latitude 35° 15' S, along the border between Chile and Argentina. The development of the volcano over the last 14,000 years illustrates how glacial melting and magmatic activity can trigger landslides and sector collapses. Planchon had a large sector collapse that produced a highly mobile and erosive debris avalanche 11,000 years BP, and other slope instabilities during the end-Pleistocene/early Holocene deglaciation. The summit amphitheater left after the sector collapse was subject to alternating periods of glaciation and melting-induced lake formation. Breaching of the moraine dams then formed lahars and landslides originating at the western edge of the summit amphitheater, and the deposits are preserved along the western flank of the volcano. Deep incision of moraine deposits further down the western slope of the volcano indicates that the lahars and landslides were water-rich and had high erosive power. As illustrated by Planchon-Peteroa, the interplay among glacial growth and melting, magmatic activity, and slope stability is complex, but must be accounted for in volcanic hazard assessment. Planchon-Peteroa currently has the southernmost temperate zone

  14. The 2011-2012 eruption of Cordón Caulle volcano (Southern Andes): Evolution, crisis management and current hazards

    Science.gov (United States)

    Silva Parejas, C.; Lara, L. E.; Bertin, D.; Amigo, A.; Orozco, G.

    2012-04-01

    A new kind of integrated approach was for first time achieved during the eruptive crisis of Cordón Caulle volcano (Southern Andes, 40.59°S, 72.12°W) in Chile. The monitoring network of SERNAGEOMIN around the volcano detected the increasing precursory seismicity, alerting the imminence of an eruption about 5 hours before its onset, on June 4, 2011. In addition, SERNAGEOMIN generated daily forecasts of tephra dispersal and fall (ASHFALL advection-diffusion model), and prepared simulations of areas affected by the possible occurrence of lahars and pyroclastic flows. Models were improved with observed effects on the field and satellite imagery, resulting in a good correlation. The information was timely supplied to the authorities as well as recommendations in order to better precise the vulnerable areas. Eruption has initially occurred from a couple of overlapped cones located along the eastern fault scarp of the Pleistocene-Holocene extensional graben of Cordón Caulle. Eruptive products have virtually the same bulk composition as those of the historical 1921 and 1960 eruptions, corresponding to phenocryst-poor rhyodacites (67-70 % SiO2). During the first eruptive stage, a ca. 15-km strong Plinian column lasting 27 hours emitted 0.2-0.4 km3 of magma (DRE). Thick tephra deposits have been accumulated in Chile and Argentina, whereas fine particles and aerosols dispersion disrupted air navigation across the Southern Hemisphere. The second ongoing eruptive stage, which started in mid-June, has been characterized by lava emission already covering a total area comparable to the 1960 lava flows with a total estimated volume Argentina until the end of the year. Main current hazards at Cordón Caulle volcano are fine tephra fallout, secondary lahars, minor explosions and lava flow front collapse. Even if this case can be considered successful from the point of view of eruption forecast and hazard assessment, a new protocol of volcanic alerts has been recently signed

  15. Public Transportation System at the Southern Cone: New projects

    Directory of Open Access Journals (Sweden)

    Mariana Schweitzer

    2002-07-01

    Full Text Available In the context of the international restructuration of the economy and the regional integration process, according to the claim of accelerating the trade circulation, there is emerging a kind of transporting subestructure project with different characteristics from other times, which are producing a new territorial configuration.The present study has the objective to analyze the evolution of the transportation system in the South Cone and, in the context of the integration process and the economic restructuration, the new demans and which are the transformations of the involved territories since the concretion of this new actions. It is analyzed the regional transportation system related to the territory estructuration in those countries integrating the Mercosur (Argentina, Brasil, Uruguay and Paraguay, as well as in the associated nations (Bolivia and Chile.Based on the relief and diagnosis of the situation, and considering those new projects, we make a reflection about the tendency to reconcentrate the subestructure and the inversions, with the following territorial inequality that gets deeper and reproduces the territorial fragmentation in regions that receive the new projects obeying to external goals without considering the global impact in the territories’ group.

  16. Lava flows and cinder cones at Barren Island volcano, India (2005-2017): a spatio-temporal analysis using satellite images

    Science.gov (United States)

    Martha, Tapas R.; Roy, Priyom; Vinod Kumar, K.

    2018-02-01

    Barren Island volcano erupted during January-February 2017. Located near the Andaman trench and over a subduction zone, it is the only active volcano in India. It comprises a prominent caldera within which there is a polygenetic intra-caldera cinder cone system, with a record of eruptive events which date back to eighteenth century (1787-1832). Major eruptions occurred in 1991, 1994-1995, 2005 and, since 2008, the volcano has been showing near continuous activity with periodic eruptions. We used coarse spatial resolution "fire" products (Band I4) from Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite to detect days of eruption during the January-February 2017 period. Moderate spatial resolution (23.5 m) short-wavelength infrared (SWIR) data of Resourcesat-2 Linear Imaging Self Scanning Sensor-III available for specific days during this period were used to verify signatures of volcanic eruption. Thermal infrared band data from the Landsat series over the 2005-2017 periods were used to estimate the brightness temperature and location of the active vent within the polygenetic cinder cone field. High-spatial resolution images (1-5.8 m) in the visible bands (Resourcesat-2 LISS-IV, Cartosat-1 and 2) were used to delineate the changes in overall morphology of the volcano and to identify an inner crater ring fault, new paths of lava flow and the formation of a new cinder cone on the old crater. These multi-temporal data sets show significant changes in the paths of lava flows from 2005 to 2017. The observations also document periodic shifts in the location of effusive vents. Morphogenetic changes in recent eruptive phases of the Barren Island volcano were successfully delineated using a combination of multi-temporal and multi-resolution satellite images in visible, SWIR and thermal infrared regions of the electromagnetic spectrum.

  17. Ilchulbong tuff cone, Jeju Island, Korea, revisited: A compound monogenetic volcano involving multiple magma batches, shifting vents, and discrete eruptive phases

    Science.gov (United States)

    Sohn, Y.; Brenna, M.; Smith, I. E.; Nemeth, K.; White, J. D.; Murtagh, R.; Jeon, Y.; Kwon, C.; Cronin, S. J.

    2010-12-01

    Ilchulbong (Sunrise Peak) tuff cone is a UNESCO World Heritage site that owes its scientific importance to the outstanding coastal exposures that surround it. It is also one of the classic sites that provided the sedimentary evidence for the primary pyroclastic processes that occur during phreatomagmatic basaltic eruptions. It has been long considered, based on the cone morphology, that this classic cone was produced via eruption from a single vent site. Reanalysis of the detailed sedimentary sequence has now revealed that two subtle paraconformities occur in this deposition sequence, one representing a significant time break of perhaps days to weeks or months, during which erosion and compaction of the lower cone occurred, the conduit cooled and solidified and a subsequent resumption of eruption took place in a new vent location. Detailed geochemical study of the juvenile clasts through this cone reveals that three separate alkali basaltic magma batches were erupted, the first and third erupted may be genetically related, with the latter showing evidence for longer periods of shallow-level fractionation. The second magma batch erupted was generated in a different mantle source area. Reconstructing the eruption sequence, the lower Ilchulbong cone was formed by eruption of magma 1. Cessation of eruption was accompanied by erosion to generate a volcano-wide unconformity, associated with reworked deposits in the lower cone flanks. The eruption resumed with magma 2 that, due to the cooled earlier conduit, was forced to erupt in a new site to the west of the initial vent. This formed the middle cone sequence over the initially formed structure. The third magma batch erupted with little or no interval after magma 2 from the same vent location, associated with cone instability and slumping, and making up the deposits of the upper cone. These results demonstrate how critical the examination for sedimentary evidence for time breaks in such eruption sequences is for

  18. Does infrastructure provision hinder energy integration? The case of natural gas in the southern cone

    Energy Technology Data Exchange (ETDEWEB)

    Navajas, Fernando

    2010-09-15

    This paper uses evidence on policies, markets and private transactions to discuss the experience of natural gas infrastructure integration in the Southern Cone of Latin America. The argument is that contracts on international exchanges supported by infrastructure may become incomplete due to contingencies related to policy-induced price distortions not anticipated at the moment of writing. Beyond regulatory risk mitigation, it calls for back-up contract provisions designed to cope with aggregate imbalances and for some supranational coordination related to information about market conditions and on energy planning dialogues that test consistency and stress situations in markets where exports originate.

  19. Southern Cone

    International Development Research Centre (IDRC) Digital Library (Canada)

    Cathy Egan

    democratic political movements, purges of university faculties — and the terrifying phenomenon of disappearances. ... the 1973 coup; in 1980, more than 500 professors were fired from Chilean universities in a single semester. The coercive ... library facilities, teach, and extend scholarships. From 1978 to 1986 the program ...

  20. Coupled geohazards at Southern Andes (Copahue-Lanín volcanoes): Chile's GEO supersite proposal

    Science.gov (United States)

    Lara, Luis E.; Cordova, Loreto

    2017-04-01

    Southern Andes are a young and active mountain belt where volcanism and tectonic processes (and those related to the hydrometeorological conditions controlled by this geological setting) pose a significant threat to the growing communities nearby. This proposal focus on a ca. 200 km long segment of the Southern Andes where 9 stratovolcanoes and 2 distributed volcanic fields are located, just along a tectonic corridor defined by the northern segment of the Liquiñe-Ofqui Faul System (LOFS), a long-lived active strike-slip fault running for 1200 km. Volcanoes in this area take part of the central province of the Andean Southern Volcanic Zone (37-41°S), particularly the northermost portion that is limited at the south by an Andean tranverse fault (Lanalhue Fault, which define the Villarrica-Lanin volcanic chain) and run along the horse-tail array of the LOFS to the north. Most of the stravolcanoes are atop of the LOFS main branch with only 3 exceptions (Callaqui, Tolhuaca and Lanín) 15-20 km away, but related to transverse faults. Hazards in the segment derive from the activity of some of the most active volcanoes in South America (e.g., Villarrica, Llaima), others with long-lasting weak activity (e.g., Copahue) or some volcanoes with low frequency but high magnitude eruptions in the geological record. Only since the beggining of the 20th century 80 eruptions have been recorded in this area. In addition, activity of the LOFS has been detected prior to some eruptions and coeval with some others (e.g., Lonquimay 1989). A strong two-way coupling between tectonics and volcanism has been proposed for the segment but only recently detected by geophysical techniques or numerical modelling. Tectonic triggered landslides are frequent in this region together with debris flows at erupting ice-covered volcanoes or stream headed at high altitude basins. The latter scenario seems to be worst at present because of global climate change. Ground-based monitoring networks for both

  1. Convergence of gas and electricity markets in the Southern Cone of Latin America

    International Nuclear Information System (INIS)

    Offant, P.; Giorno, D.

    2002-01-01

    Around the world, the growing use of natural gas for electric power generation is leading to an increasing inter-dependency between gas and power markets. This phenomenon, generally known as convergence, has tremendous implications for governments, regulatory agencies, energy companies and consumers. Countries of the Southern Cone of Latin America, which have been precursors in creating competitive electricity markets and opening their power sector to private investments, and which are increasingly relying on natural gas to expand their power generation base, provide a valuable example of how the gas-power convergence process develops in a de-regulated environment, with a beneficial impact for the consumer. This paper provides an overview of the past, present and potential status of the convergence process between the gas and power markets in the Southern Cone of Latin America, and addresses the challenges and opportunities arising from this process. Taking into account a recent slowdown in the regional convergence process, it offers in closing remarks alternative tools to re-dynamize such process. (authors)

  2. Natural gas markets integration in the Southern Cone: analysis of interests and stakeholders; Perspectivas para a integracao gasifera no Cone Sul: uma analise dos principais interesses e interessados

    Energy Technology Data Exchange (ETDEWEB)

    Villas Boas, Marina Vieira [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    Natural gas has been recently gaining importance in the world energy mix especially because of its economical and environmental advantages but also because of technological and geopolitical issues. In the Southern Cone, natural gas demand shall maintain its upward trend in the next years mainly due to its use in power generation. This region owns significant natural gas reserves and, at the same time, a growing and with high potential market. In this scenario, natural gas markets integration is seen simultaneously as an opportunity and a necessity as it can contribute to demand and production interconnection, price competitiveness and security of supply. Nevertheless, there are important barriers to the consolidation of natural gas market integration in the Southern Cone region that have to be overcome. For the natural gas markets integration to be a sustainable project it is necessary to identify the major stakeholders and their interests and pursue a balance between them. (author)

  3. Quaternary volcano-tectonic activity in the Soddo region, western margin of the Southern Main Ethiopian Rift

    NARCIS (Netherlands)

    Corti, G.; Sani, F.; Philippon, M.; Sokoutis, D.; Willingshofer, E.; Molin, P.

    We present an analysis of the distribution, timing, and characteristics of the volcano-tectonic activity on the western margin of the Southern Main Ethiopian Rift in the Soddo area (latitudes between ~7°10'N and ~6°30'N). The margin is characterized by the presence of numerous normal faults, with

  4. Ecology of rodent-associated hantaviruses in the Southern Cone of South America: Argentina, Chile, Paraguay, and Uruguay.

    Science.gov (United States)

    Palma, R Eduardo; Polop, Jaime J; Owen, Robert D; Mills, James N

    2012-04-01

    Thirteen hantavirus genotypes, associated with at least 12 sigmodontine reservoir rodents, have been recognized in the four countries that represent the Southern Cone of South America. Host-virus relationships are not as well defined as in North America; several Southern Cone hantaviruses appear to share a common host and some viruses do not occur throughout the range of their host. Although hantavirus-host relationships in the Southern Cone are less strictly concordant with the single-host-single-virus pattern reported elsewhere, recent studies suggest that much of the ambiguity may result from an incomplete understanding of host and hantavirus systematics. Although some Southern Cone host species are habitat generalists, some sympatric species are habitat specialists, helping to explain how some strict host-virus pairings may be maintained. In some cases, host population densities were higher in peridomestic habitats and prevalence of hantavirus infection was higher in host populations in peridomestic habitats. Seasonal and multiyear patterns in climate and human disturbance affect host population densities, prevalence of infection, and disease risk to humans. Unusually high hantavirus antibody prevalence in indigenous human populations may be associated with frequent and close contact with host rodents. Ongoing studies are improving our understanding of hantavirus-host ecology and providing tools that may predict human risk.

  5. Arrival of Paleo-Indians to the southern cone of South America: new clues from mitogenomes.

    Directory of Open Access Journals (Sweden)

    Michelle de Saint Pierre

    Full Text Available With analyses of entire mitogenomes, studies of Native American mitochondrial DNA (MTDNA variation have entered the final phase of phylogenetic refinement: the dissection of the founding haplogroups into clades that arose in America during and after human arrival and spread. Ages and geographic distributions of these clades could provide novel clues on the colonization processes of the different regions of the double continent. As for the Southern Cone of South America, this approach has recently allowed the identification of two local clades (D1g and D1j whose age estimates agree with the dating of the earliest archaeological sites in South America, indicating that Paleo-Indians might have reached that region from Beringia in less than 2000 years. In this study, we sequenced 46 mitogenomes belonging to two additional clades, termed B2i2 (former B2l and C1b13, which were recently identified on the basis of mtDNA control-region data and whose geographical distributions appear to be restricted to Chile and Argentina. We confirm that their mutational motifs most likely arose in the Southern Cone region. However, the age estimate for B2i2 and C1b13 (11-13,000 years appears to be younger than those of other local clades. The difference could reflect the different evolutionary origins of the distinct South American-specific sub-haplogroups, with some being already present, at different times and locations, at the very front of the expansion wave in South America, and others originating later in situ, when the tribalization process had already begun. A delayed origin of a few thousand years in one of the locally derived populations, possibly in the central part of Chile, would have limited the geographical and ethnic diffusion of B2i2 and explain the present-day occurrence that appears to be mainly confined to the Tehuelche and Araucanian-speaking groups.

  6. Magnetotelluric survey of Ischia resurgent caldera (Southern Italy): inference for volcano-tectonics and dynamic

    Science.gov (United States)

    Carlino, S.; Di Giuseppe, M. G.; Troiano, A.

    2017-12-01

    The island of Ischia (located in the Bay of Naples) represents a peculiar case of well-exposed caldera that has experienced a large (>800m) and rapid resurgence, until recent time. It gives us the possibility for a better understanding of caldera resurgence process, by integrating the available geological information with new geophysical data of the deeper structures associated to the resurgence. To this aim, a magnetotelluric survey of the island, has been performed along two main profiles of the central-western sector, obtaining the first electrical resistivity map down to a depth of 3km. The resurgence is tough to be associated to a shallow magma intrusion, which also produced a vigorous hot fluids circulation with high geothermal gradients (>150°Ckm-1) in the southern and western sector. The interpretation of resistivity variations allow us to recognize the main volcano-tectonic features of central-western part of the island, along the two profiles, such as the presence of a possible very shallow magmatic intrusion to a depth of about 1km, the tectonic structures bordering the resurgent area and the occurrence of large thermal anomaly of the western sector. All these data are fundamental for the assessment of volcano-dynamic of the island and associated hazard. Furthermore, this study show a not common example of a large resurgence that is likely generated by a laccolith intrusion. This process is generally associated to the arrival of fresh magma into the system that, in turn, may imply imminent eruption and high volcanic hazard.

  7. A Late Holocene explosive mafic eruption of Villarrica volcano, Southern Andes: The Chaimilla deposit

    Science.gov (United States)

    Costantini, L.; Pioli, L.; Bonadonna, C.; Clavero, J.; Longchamp, C.

    2011-03-01

    arrival of new magma (represented in the deposit by P1 clasts) into a small, outgassed magma body which was accumulated at shallow level (mainly represented by P2 clasts). A new Chaimilla-type eruption could significantly affect the communities that have recently developed around Villarrica volcano and subsist mainly on tourism and forestry. As a result, a better understanding of the dynamics and evolution of the Chaimilla eruption is necessary for the identification of potential hazard scenarios at Villarrica volcano and, ultimately, for the risk mitigation of this populated area of Southern Chile.

  8. The Arrival of Homo sapiens into the Southern Cone at 14,000 Years Ago.

    Directory of Open Access Journals (Sweden)

    Gustavo G Politis

    Full Text Available The Arroyo Seco 2 site contains a rich archaeological record, exceptional for South America, to explain the expansion of Homo sapiens into the Americas and their interaction with extinct Pleistocene mammals. The following paper provides a detailed overview of material remains found in the earliest cultural episodes at this multi-component site, dated between ca. 12,170 14C yrs B.P. (ca. 14,064 cal yrs B.P. and 11,180 14C yrs B.P. (ca. 13,068 cal yrs B.P.. Evidence of early occupations includes the presence of lithic tools, a concentration of Pleistocene species remains, human-induced fractured animal bones, and a selection of skeletal parts of extinct fauna. The occurrence of hunter-gatherers in the Southern Cone at ca. 14,000 cal yrs B.P. is added to the growing list of American sites that indicate a human occupation earlier than the Clovis dispersal episode, but posterior to the onset of the deglaciation of the Last Glacial Maximum (LGM in the North America.

  9. The Arrival of Homo sapiens into the Southern Cone at 14,000 Years Ago.

    Science.gov (United States)

    Politis, Gustavo G; Gutiérrez, María A; Rafuse, Daniel J; Blasi, Adriana

    The Arroyo Seco 2 site contains a rich archaeological record, exceptional for South America, to explain the expansion of Homo sapiens into the Americas and their interaction with extinct Pleistocene mammals. The following paper provides a detailed overview of material remains found in the earliest cultural episodes at this multi-component site, dated between ca. 12,170 14C yrs B.P. (ca. 14,064 cal yrs B.P.) and 11,180 14C yrs B.P. (ca. 13,068 cal yrs B.P.). Evidence of early occupations includes the presence of lithic tools, a concentration of Pleistocene species remains, human-induced fractured animal bones, and a selection of skeletal parts of extinct fauna. The occurrence of hunter-gatherers in the Southern Cone at ca. 14,000 cal yrs B.P. is added to the growing list of American sites that indicate a human occupation earlier than the Clovis dispersal episode, but posterior to the onset of the deglaciation of the Last Glacial Maximum (LGM) in the North America.

  10. Dynamics of an unusual cone-building trachyte eruption at Pu`u Wa`awa`a, Hualālai volcano, Hawai`i

    Science.gov (United States)

    Shea, Thomas; Leonhardi, Tanis; Giachetti, Thomas; Lindoo, Amanda; Larsen, Jessica; Sinton, John; Parsons, Elliott

    2017-04-01

    The Pu`u Wa`awa`a pyroclastic cone and Pu`u Anahulu lava flow are two prominent monogenetic eruptive features assumed to result from a single eruption during the trachyte-dominated early post-shield stage of Hualālai volcano (Hawaíi). Púu Wa`awa`a is composed of complex repetitions of crudely cross-stratified units rich in dark dense clasts, which reversely grade into coarser pumice-rich units. Pyroclasts from the cone are extremely diverse texturally, ranging from glassy obsidian to vesicular scoria or pumice, in addition to fully crystalline end-members. The >100-m thick Pu`u Anahulu flow is, in contrast, entirely holocrystalline. Using field observations coupled with whole rock analyses, this study aimed to test whether the Pu`u Wa`awa`a tephra and Pu`u Anahulu lava flows originated from the same eruption, as had been previously assumed. Crystal and vesicle textures are characterized along with the volatile contents of interstitial glasses to determine the origin of textural variability within Pu`u Wáawáa trachytes (e.g., magma mixing vs. degassing origin). We find that (1) the two eruptions likely originated from distinct vents and magma reservoirs, despite their proximity and similar age, (2) the textural diversity of pyroclasts forming Pu`u Wa`awa`a can be fully explained by variable magma degassing and outgassing within the conduit, (3) the Pu`u Wa`awa`a cone was constructed during explosions transitional in style between violent Strombolian and Vulcanian, involving the formation of a large cone and with repeated disruption of conduit plugs, but without production of large pyroclastic density currents (PDCs), and (4) the contrasting eruption styles of Hawaiian trachytes (flow-, cone-, and PDC-forming) are probably related to differences in the outgassing capacity of the magmas prior to reaching the surface and not in intrinsic compositional or temperature properties. These results further highlight that trachytes are "kinetically faster" magmas compared

  11. Eruptive and Geomorphic Processes at the Lathrop Wells Scoria Cone

    International Nuclear Information System (INIS)

    G. Valentine; D.J. Krier; F.V. Perry; G. Heiken

    2006-01-01

    The ∼80 ka Lathrop Wells volcano (southern Nevada, U.S.A.) preserves evidence for a range of explosive processes and emplacement mechanisms of pyroclastic deposits and lava fields in a small-volume basaltic center. Early cone building by Strombolian bursts was accompanied by development of a fan-like lava field reaching ∼800 m distance from the cone, built upon a gently sloping surface. Lava flows carried rafts of cone deposits, which provide indirect evidence for cone facies in lieu of direct exposures in the active quarry. Subsequent activity was of a violent Strombolian nature, with many episodes of sustained eruption columns up to a few km in height. These deposited layers of scoria lapilli and ash in different directions depending upon wind direction at the time of a given episode, reaching up to ∼20 km from the vent, and also produced the bulk of the scoria cone. Lava effusion migrated from south to north around the eastern base of the cone as accumulation of lavas successively reversed the topography at the base of the cone. Late lavas were emplaced during violent Strombolian activity and continued for some time after explosive eruptions had waned. Volumes of the eruptive products are: fallout--0.07 km 3 , scoria cone--0.02 km 3 , and lavas--0.03 km 3 . Shallow-derived xenolith concentrations suggest an upper bound on average conduit diameter of ∼21 m in the uppermost 335 m beneath the volcano. The volcano was constructed over a period of at least seven months with cone building occurring only during part of that time, based upon analogy with historical eruptions. Post-eruptive geomorphic evolution varied for the three main surface types that were produced by volcanic activity: (1) scoria cone, (2) low relief surfaces (including lavas) with abundant pyroclastic material, and (3) lavas with little pyroclastic material. The role of these different initial textures must be accounted for in estimating relative ages of volcanic surfaces, and failure to

  12. Eruptive and Geomorphic Processes at the Lathrop Wells Scoria Cone

    Energy Technology Data Exchange (ETDEWEB)

    G. Valentine; D.J. Krier; F.V. Perry; G. Heiken

    2006-08-03

    The {approx}80 ka Lathrop Wells volcano (southern Nevada, U.S.A.) preserves evidence for a range of explosive processes and emplacement mechanisms of pyroclastic deposits and lava fields in a small-volume basaltic center. Early cone building by Strombolian bursts was accompanied by development of a fan-like lava field reaching {approx}800 m distance from the cone, built upon a gently sloping surface. Lava flows carried rafts of cone deposits, which provide indirect evidence for cone facies in lieu of direct exposures in the active quarry. Subsequent activity was of a violent Strombolian nature, with many episodes of sustained eruption columns up to a few km in height. These deposited layers of scoria lapilli and ash in different directions depending upon wind direction at the time of a given episode, reaching up to {approx}20 km from the vent, and also produced the bulk of the scoria cone. Lava effusion migrated from south to north around the eastern base of the cone as accumulation of lavas successively reversed the topography at the base of the cone. Late lavas were emplaced during violent Strombolian activity and continued for some time after explosive eruptions had waned. Volumes of the eruptive products are: fallout--0.07 km{sup 3}, scoria cone--0.02 km{sup 3}, and lavas--0.03 km{sup 3}. Shallow-derived xenolith concentrations suggest an upper bound on average conduit diameter of {approx}21 m in the uppermost 335 m beneath the volcano. The volcano was constructed over a period of at least seven months with cone building occurring only during part of that time, based upon analogy with historical eruptions. Post-eruptive geomorphic evolution varied for the three main surface types that were produced by volcanic activity: (1) scoria cone, (2) low relief surfaces (including lavas) with abundant pyroclastic material, and (3) lavas with little pyroclastic material. The role of these different initial textures must be accounted for in estimating relative ages of

  13. Biogeochemical interactions among the arsenic, iron, humic substances, and microbes in mud volcanoes in southern Taiwan.

    Science.gov (United States)

    Liu, Chia-Chuan; Maity, Jyoti Prakash; Jean, Jiin-Shuh; Sracek, Ondra; Kar, Sandeep; Li, Zhaohui; Bundschuh, Jochen; Chen, Chien-Yen; Lu, Hsueh-Yu

    2011-01-01

    Fluid and mud samples collected from Hsiaokunshui (HKS), Wushanting (WST), Yenshuikeng (YSK), Kunshuiping (KSP), Liyushan (LYS), and Sinyangnyuhu (SYNH) mud volcanoes of southwestern Taiwan were characterized for major ions, humic substances (HS) and trace elements concentrations. The relationship between the release of arsenic (As) and activities of sulfate-reducing bacteria has been assessed to understand relevant geochemical processes in the mud volcanoes. Arsenic (0.02-0.06 mg/L) and humic substances (4.13 × 10(-4) to 1.64 × 10(-3) mM) in the fluids of mud volcanoes showed a positive correlation (r = 0.99, p volcano. Arsenic and iron in mud sediments formed two separate groups i) high As, but low Fe in HKS, WST, and SYNH; and ii) low As, but high Fe in the YSK, KSP, and LYS mud volcanoes. The Eh(S.H.E.) values of the mud volcano liquids were characterized by mild to strongly reducing conditions. The HKS, SYNH, and WST mud volcanoes (near the Chishan Fault) belongs to strong reducing environment (-33 to -116 mV), whereas the LYS, YSK, and KSP mud volcanoes located near the coastal plain are under mild reducing environment (-11 to 172 mV). At low Eh values mud volcanoes, saturation index (SI) values of poorly crystalline phases such as amorphous ferric hydroxide indicate understaturation, whereas saturation is reached in relatively high Eh(S.H.E.) values mud volcanoes. Arsenic contents in sediments are low, presumably due to its release to fluids (As/Fe ratio in YSK, KSP, and LYS sediment: 4.86 × 10(-4)-6.20 × 10(-4)). At low Eh(S.H.E.) values (mild to strong reducing environment), arsenic may co-precipitate with sulfides as a consequence of sulfate reduction (As/Fe ratios in WST, HKS, and SYNH sediments: 0.42-0.69).

  14. Petro-geochemical constraints on the source and evolution of magmas at El Misti volcano (Peru)

    OpenAIRE

    Rivera, M.; Martin, H.; Le Pennec, Jean-Luc; Thouret, J. C.; Gourgaud, A.; Gerbe, M. C.

    2017-01-01

    El Misti volcano, a large and hazardous edifice of the Andean Central Volcanic Zone (CVZ) of southern Peru, consists of four main growth stages. Misti 1 (>112 ka) is an old stratovolcano partly concealed by two younger stratocones (Misti 2, 112-40 ka; Misti 3, 38-11 ka), capped in turn by a recent summit cone (Misti 4,

  15. Development and territory A view from the soy-ization of the Latin American Southern Cone

    Directory of Open Access Journals (Sweden)

    Mabel Manzanal

    2017-07-01

    Full Text Available In this article we will realize a critical analysis about the relationship between development and territory from the advance of the soy-ization in the Latin-American Southern Cone. The work begins with a chronological framework and an interpretation of the stages in which the issue of development and territory became a state policy. In this analysis we consider that the issue of development and territory and its recurring presence in the public policy has to do with the construction of hegemony through the discourse production, explicit through proposals, options, actions and instruments aimed at dealing with the social problem of unequal development (regarding spacial, economical, social o even institutional matters. From this interpretation we analyze he commodity expansion and the consolidation of an accumulative model that is more concentrated and regressive, and which produces a grater and growing inequality. This is an economical concentration that benefits a privileged minority whereas the rights of the unprotected and precarious sectors of the rural and urban area are humiliated. This work questions the hegemonic cultural context which makes the current consequences of the territory production and the capital valuation (linked to the extractivism and the refocusing of the south-American economies distant and incomprehensible for the majority of the population who ignore, minimize or disdain the deepening of the inequality and the social marginalization; the environmental political, economic, social and institutional consequences – nowadays or in the future – of the commodities advance; and the persecution, oppression and discrimination of the numerous parties.

  16. The 2012-2014 eruptive cycle of Copahue Volcano, Southern Andes. Magmatic-Hydrothermal system interaction and manifestations.

    Science.gov (United States)

    Morales, Sergio; Alarcón, Alex; Basualto, Daniel; Bengoa, Cintia; Bertín, Daniel; Cardona, Carlos; Córdova, Maria; Franco, Luis; Gil, Fernando; Hernandez, Erasmo; Lara, Luis; Lazo, Jonathan; Mardones, Cristian; Medina, Roxana; Peña, Paola; Quijada, Jonathan; San Martín, Juan; Valderrama, Oscar

    2015-04-01

    Copahue Volcano (COPV), in Southern Andes of Chile, is an andesitic-basaltic stratovolcano, which is located on the western margin of Caviahue Caldera. The COPV have a NE-trending fissure with 9 aligned vents, being El Agrio the main currently active vent, with ca. 400 m in diameter. The COPV is placed into an extensive hydrothermal system which has modulated its recent 2012-2014 eruptive activity, with small phreatic to phreatomagmatic eruptions and isolated weak strombolian episodes and formation of crater lakes inside the main crater. Since 2012, the Southern Andes Volcano Observatory (OVDAS) carried out the real-time monitoring with seismic broadband stations, GPS, infrasound sensors and webcams. In this work, we report pre, sin, and post-eruptive seismic activity of the last two main eruptions (Dec, 2012 and Oct, 2014) both with different seismic precursors and superficial activity, showing the second one a particularly appearance of seismic quiescence episodes preceding explosive activity, as an indicator of interaction between magmatic-hydrothermal systems. The first episode, in late 2012, was characterized by a low frequency (0.3-0.4 Hz and 1.0-1.5 Hz) continuous tremor which increased gradually from background noise level amplitude to values of reduced displacement (DR), close to 50 cm2 at the peak of the eruption, reaching an eruptive column of ~1.5 km height. After few months of recording low energy seismicity, a sequence of low frequency, repetitive and low energy seismic events arose, with a frequency of occurrence up to 300 events/hour. Also, the VLP earthquakes were added to the record probably associated with magma intrusion into a deep magmatic chamber during all stages of eruptive process, joined to the record of VT seismicity during the same period, which is located throughout the Caviahue Caldera area. Both kind of seismic patterns were again recorded in October 2014, being the precursor of the new eruptive cycle at this time as well as the

  17. Timing of maximum glacial extent and deglaciation from HualcaHualca volcano (southern Peru), obtained with cosmogenic 36Cl.

    Science.gov (United States)

    Alcalá, Jesus; Palacios, David; Vazquez, Lorenzo; Juan Zamorano, Jose

    2015-04-01

    Andean glacial deposits are key records of climate fluctuations in the southern hemisphere. During the last decades, in situ cosmogenic nuclides have provided fresh and significant dates to determine past glacier behavior in this region. But still there are many important discrepancies such as the impact of Last Glacial Maximum or the influence of Late Glacial climatic events on glacial mass balances. Furthermore, glacial chronologies from many sites are still missing, such as HualcaHualca (15° 43' S; 71° 52' W; 6,025 masl), a high volcano of the Peruvian Andes located 70 km northwest of Arequipa. The goal of this study is to establish the age of the Maximum Glacier Extent (MGE) and deglaciation at HualcaHualca volcano. To achieve this objetive, we focused in four valleys (Huayuray, Pujro Huayjo, Mollebaya and Mucurca) characterized by a well-preserved sequence of moraines and roches moutonnées. The method is based on geomorphological analysis supported by cosmogenic 36Cl surface exposure dating. 36Cl ages have been estimated with the CHLOE calculator and were compared with other central Andean glacial chronologies as well as paleoclimatological proxies. In Huayuray valley, exposure ages indicates that MGE occurred ~ 18 - 16 ka. Later, the ice mass gradually retreated but this process was interrupted by at least two readvances; the last one has been dated at ~ 12 ka. In the other hand, 36Cl result reflects a MGE age of ~ 13 ka in Mollebaya valley. Also, two samples obtained in Pujro-Huayjo and Mucurca valleys associated with MGE have an exposure age of 10-9 ka, but likely are moraine boulders affected by exhumation or erosion processes. Deglaciation in HualcaHualca volcano began abruptly ~ 11.5 ka ago according to a 36Cl age from a polished and striated bedrock in Pujro Huayjo valley, presumably as a result of reduced precipitation as well as a global increase of temperatures. The glacier evolution at HualcaHualca volcano presents a high correlation with

  18. Geological and environmental controls on the change of eruptive style (phreatomagmatic to Strombolian-effusive) of Late Pleistocene El Caracol tuff cone and its comparison with adjacent volcanoes around the Zacapu basin (Michoacán, México)

    Science.gov (United States)

    Kshirsagar, Pooja; Siebe, Claus; Guilbaud, Marie Noëlle; Salinas, Sergio

    2016-05-01

    The 28,300 year BP (cal 32,300 BP) El Caracol tuff cone complex is one of the few phreatomagmatic volcanoes in the scoria-cone dominated Plio-Quaternary Michoacán-Guanajuato Volcanic Field (MGVF). It displays a shallow circular crater of ~ 1 km in diameter that is filled with several meter-thick lava flows and is located between two NE-SW trending normal faults dipping NW. It lies directly on top of Pliocene lavas of the San Lorenzo shield volcano that forms part of a tectonic horst (topographic high) separating the Zacapu lake basin (1980 m) in the south from the Río Angulo river valley (1760 m) to the north. Detailed study of the tephra sequence indicates that the eruption occurred in two stages: 1) Weak phreatomagmatic, in which about 0.1-0.5 km3 dense rock equivalent (DRE) of magma was issued within ~ 1 to 3 months at the rate of 4-40 m3/s, and 2) purely magmatic (Strombolian-effusive) during which the vent shifted slightly its position toward the NW, forming a small scoria cone (~ 100 m high) on the crater rim of the tuff cone. From this scoria cone lava flows were issued, first into the tuff cone crater occupying its bottom, and subsequently toward the NW, down the outer flank of the tuff cone and into the plain, where they reached a distance of ~ 3.5 km. During this stage ~ 0.6 km3 DRE of magma was produced at the rate of ~ 4 m3/s in a period of ~ 5 months. Although El Caracol displays many features that are characteristic for a phreatomagmatic vent, its morphology, types of deposits, and its complex process of formation makes it strikingly different from the more typical case of the ~ 21,000 year BP (cal 25,300 BP) Alberca de Guadalupe maar volcano, situated not far at the SE margin of the Zacapu basin. The latter was solely phreatomagmatic during the course of its eruption and is formed in its entirety by surge and fallout breccias consisting largely of xenolithic material. In contrast, at El Caracol the hydrogeological environment (namely the low

  19. Kinematics and age of Early Tertiary trench parallel volcano-tectonic lineaments in southern Mexico: Tectonic implications

    Science.gov (United States)

    Martini, M.; Ferrari, L.; Lopez Martinez, M.; Cerca Martinez, M.; Serrano Duran, L.

    2007-05-01

    We present new geological, structural, and geochronological data that constrain the timing and geometry of Early Tertiary strike slip deformation in southwestern Mexico and its relation with the concurrent magmatic activity. Geologic mapping in Guerrero and Michoacan States documented two regional WNW trending volcano-tectonic lineaments sub parallel to the present trench. The southernmost lineament runs for ~140 km from San Miguel Totolapan area (NW Guerrero) to Sanchiqueo (SE Michoacan), and passes through Ciudad Altamirano. Its southeastern part is marked by the alignment of at least eleven silicic to intermediate major domes as well as by the course of the Balsas River. The northwestern part of the lineament is characterized by ductile left lateral shear zones in Early Tertiary plutonic rocks observed in the Rio Chiquito valley. Domes near Ciudad Altamirano are unaffected by ductile shearing and yielded a ~42 Ma 40Ar/39Ar age, setting a minimum age for this deformation. The northern volcano-tectonic lineament runs for ~190 km between the areas of Huitzuco in northern Guerrero and the southern part of the Tzitzio fold in eastern Michoacan. The Huautla, Tilzapotla, Taxco, La Goleta and Nanchititla silicic centers (all in the range 37-34 Ma) are emplaced along this lineament, which continues to the WNW trough a mafic dike swarm exposed north of Tiquicheo (37-35 Ma) and the Purungueo subvolcanic body (~42 Ma). These rocks, unaffected by ductile shearing, give a minimum age of deformation similar to the southern Totolapan-Sanquicheo lineament. Post ~42 Ma deformation is essentially brittle and is characterized by several left lateral and right lateral transcurrent faults with typical Riedel patterns. Other trench-parallel left lateral shear zones active in pre-Oligocene times were recently reported in western Oaxaca. The recognizing of Early Tertiary trench-parallel and left-lateral ductile shearing in internal areas of southern Mexico suggest a field of widely

  20. Initial H2O content and conditions of parent magma origin for Gorely volcano (Southern Kamchatka) estimated by trace element thermobarometry

    Science.gov (United States)

    Nazarova, D. P.; Portnyagin, M. V.; Krasheninnikov, S. P.; Mironov, N. L.; Sobolev, A. V.

    2017-01-01

    The formation conditions of the parental magmas of Gorely volcano, which is located behind a volcanic front in Southern Kamchatka, have been evaluated using the modern methods of micro-element thermobarometry. These magmas contained 1.7 ± 0.8 (2σ) wt % of H2O, the majority (82%) of which has been lost from inclusions. They crystallized at 1121 ± 17°C and an oxygen fugacity of ΔQFM 1.2 ± 0.2, and could have been produced by about 11% melting of an enriched MORB source (E-DMM) at a temperature of about 1270°C, and a pressure of about 1.5 GPa. A distinctive feature of Gorely volcano, compared with frontal volcanoes of Kamchatka, is the unusually high temperature (925 ± 20°C) of formation of the subduction component corresponding to the region of existence of water-bearing melts.

  1. Volcanoes in Eruption - Set 1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The word volcano is used to refer to the opening from which molten rock and gas issue from Earth's interior onto the surface, and also to the cone, hill, or mountain...

  2. Volcanoes in Eruption - Set 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The word volcano is used to refer to the opening from which molten rock and gas issue from Earth's interior onto the surface, and also to the cone, hill, or mountain...

  3. Long-term monitoring on a closed-conduit volcano: A 25 year long time-series of temperatures recorded at La Fossa cone (Vulcano Island, Italy), ranging from 250 °C to 520 °C

    Science.gov (United States)

    Diliberto, Iole Serena

    2017-10-01

    The longest record of temperature data from an active volcano in southern Italy is presented. The dataset comes from continuous monitoring of fumarole temperatures from the La Fossa cone of Vulcano (Aeolian Islands) running from 1991 to 2016. The discussion includes an empirical approach, based on a large number of direct measurements. At Vulcano Island, geochemical monitoring of the uprising fluids allows detection of the surface effects of perturbation in the state variables of the buried hydrothermal and magmatic systems. The presented datasets show that fumaroles' changing temperatures, which are related to surface heat flow, are useful indicators. Over the past 25 years, the combined effects of runoff and chemo-physical alterations were negligible on the output temperature of the earliest monitored fumaroles. The maximum recorded variation was 298 °C (measured in the ground very close to the steaming vents, at a depth of 0.5 m). Repetition of output temperature values occurred after 19 years in the same position; the time variations suggest a cyclic characteristic, although more years are needed to register the complete cyclic modulation. A combination of minor cyclical variations has also been registered in the fumarole output. The minor cycles appeared in this long series of data after 1995, and they can be interpreted as one of the surface effects of temporary departures from a stationary state assumed for the system feeding the La Fossa area. In this sector of the Mediterranean area, the steady state pressure field, as well as the steady state temperature gradients, can be perturbed either by magmatism or by seismo-tectonic processes related to regional dynamics. This long-term monitoring allowed comparisons of many temperature subsets with other validated geochemical and geophysical data series and highlighted common source mechanisms accounting for endogenous processes. Changes in the magma source and/or seismo-tectonic activity have been the primary

  4. The presence of immigrants from Southern-Cone countries to Brazil

    OpenAIRE

    Sala, Gabriela Adriana; Carvalho, José Alberto Magno de

    2008-01-01

    Neste artigo são estimados os saldos migratórios dos nascidos na Argentina, Bolívia, Chile, Paraguai e Uruguai, correspondentes às décadas de 80 e 90 para o total do Brasil e para os estados brasileiros que concentravam maior proporção de pessoas provenientes dos países mencionados. Também são analisados alguns fatores que poderiam ter incidido nas mudanças do volume e da composição da população imigrante do Cone Sul, entre 1980 e 2000.En este artículo son estimados los saldos migratorios de ...

  5. Estimating Cone and Seed Production and Monitoring Pest Damage in Southern Pine Seed Orchards

    Science.gov (United States)

    Carl W. Fatzinger; H. David Muse; Thomas Miller; Helen T. Bhattacharyya

    1988-01-01

    Field sampling procedures and computer programs are described for monitoring seed production and pest damage in southern pine seed orchards. The system estimates total orchard yields of female strobili and seeds, quantifies pest damage, determines times of year when losses occur, and produces life tables for female strobili. An example is included to illustrate the...

  6. Rates of volcanic CO2 degassing from airborne determinations of SO2 Emission rates and plume CO2SO2: test study at Pu′u ′O′o Cone, Kilauea Volcano, Hawaii

    Science.gov (United States)

    Gerlach, Terrence M.; McGee, Kenneth A.; Sutton, A. Jefferson; Elias, Tamar

    1998-01-01

    We present an airborne method that eliminates or minimizes several disadvantages of the customary plume cross-section sampling method for determining volcanic CO2 emission rates. A LI-COR CO2analyzer system (LICOR), a Fourier transform infrared spectrometer system (FTIR), and a correlation spectrometer (COSPEC) were used to constrain the plume CO2/SO2 and the SO2 emission rate. The method yielded a CO2 emission rate of 300 td−1 (metric tons per day) for Pu′u ′O′o cone, Kilauea volcano, on 19 September 1995. The CO2/SO2 of 0.20 determined from airborne LICOR and FTIR plume measurements agreed with the CO2/SO2 of 204 ground-based samples collected from vents over a 14-year period since the Pu′u ′O′o eruption began in January 1983.

  7. Digital Geologic Map Database of Medicine Lake Volcano, Northern California

    Science.gov (United States)

    Ramsey, D. W.; Donnelly-Nolan, J. M.; Felger, T. J.

    2010-12-01

    Medicine Lake volcano, located in the southern Cascades ~55 km east-northeast of Mount Shasta, is a large rear-arc, shield-shaped volcano with an eruptive history spanning nearly 500 k.y. Geologic mapping of Medicine Lake volcano has been digitally compiled as a spatial database in ArcGIS. Within the database, coverage feature classes have been created representing geologic lines (contacts, faults, lava tubes, etc.), geologic unit polygons, and volcanic vent location points. The database can be queried to determine the spatial distributions of different rock types, geologic units, and other geologic and geomorphic features. These data, in turn, can be used to better understand the evolution, growth, and potential hazards of this large, rear-arc Cascades volcano. Queries of the database reveal that the total area covered by lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, is about 2,200 km2, encompassing all or parts of 27 U.S. Geological Survey 1:24,000-scale topographic quadrangles. The maximum extent of these lavas is about 80 km north-south by 45 km east-west. Occupying the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of the volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 2,440 m. Approximately 250 geologic units have been mapped, only half a dozen of which are thin surficial units such as alluvium. These volcanic units mostly represent eruptive events, each commonly including a vent (dome, cinder cone, spatter cone, etc.) and its associated lava flow. Some cinder cones have not been matched to lava flows, as the corresponding flows are probably buried, and some flows cannot be correlated with vents. The largest individual units on the map are all basaltic in composition, including the late Pleistocene basalt of Yellowjacket Butte (296 km2 exposed), the largest unit on the

  8. Seismicity preliminary results in a geothermal and volcano activity area: study case Liquiñe-Ofqui fault system in Southern Andes, Chile

    Science.gov (United States)

    Estay, N. P.; Yáñez Morroni, G.; Crempien, J. G. F.; Roquer, T.

    2017-12-01

    Fluid transport through the crust takes place in domains with high permeability. For this reason, fault damage zones are a main feature where fluids may circulate unimpeded, since they have much larger permeability than normal country rocks. With the location of earthquakes, it is possible to infer fault geometry and stress field of the crust, therefore we can determine potential places where fluid circualtion is taking place. With that purpose, we installed a seismic network in an active volcanic-geothermal system, the Liquiñe-Ofqui Fault System (LOFS), located in Puyuhuapi, Southern Andes (44°-45°S). This allowed to link epicentral seismicity, focal mechanisms and surface expression of fluid circulation (hot-springs and volcanos). The LOFS is composed by two NS-striking dextral master faults, and several secondary NE-striking dextral and normal faults. Surface manifestation of fluid circulation in Puyuhuapi area are: 1) six hot-springs, most of them spatially associated with different mapped faults; 2) seven minor eruptive centers aligned over a 10-km-along one of the master NS-striking fault, and; 3) the Melimouyu strato-volcano without any spatial relationship with mapped faults. The network consists of 6 short period seismometers (S31f-2.0a sensor of IESE, with natural frequency of 2Hz), that were installed between July 2016 and August 2017; also 4 permanent broad-band seismometers (Guralp 6TD/ CD 24 sensor) which belong to the Volcano Observatory of Southern Andes (OVDAS). Preliminary results show a correlation between seismicity and surface manifestation of fluid circulation. Seismicity has a heterogeneous distribution: most of the earthquake are concentrated is the master NS-striking fault with fluid circulation manifestations; however along the segments without surface manifestation of fluids do not have seismicity. These results suggest that fluid circulation mostly occur in areas with high seismicity, and thus, the increment in fluid pressure enhances

  9. Chagas disease: current epidemiological trends after the interruption of vectorial and transfusional transmission in the Southern Cone countries.

    Science.gov (United States)

    Moncayo, Alvaro

    2003-07-01

    Chagas disease, named after Carlos Chagas who first described it in 1909, exists only on the American Continent. It is caused by a parasite, Trypanosoma cruzi, transmitted to humans by blood-sucking triatomine bugs and by blood transfusion. Chagas disease has two successive phases, acute and chronic. The acute phase lasts 6 to 8 weeks. After several years of starting the chronic phase, 20% to 35% of the infected individuals, depending on the geographical area will develop irreversible lesions of the autonomous nervous system in the heart, esophagus, colon and the peripheral nervous system. Data on the prevalence and distribution of Chagas disease improved in quality during the 1980's as a result of the demographically representative cross-sectional studies carried out in countries where accurate information was not available. A group of experts met in Bras lia in 1979 and devised standard protocols to carry out countrywide prevalence studies on human T. cruzi infection and triatomine house infestation. Thanks to a coordinated multi-country program in the Southern Cone countries the transmission of Chagas disease by vectors and by blood transfusion has been interrupted in Uruguay in1997, in Chile in 1999, and in 8 of the 12 endemic states of Brazil in 2000 and so the incidence of new infections by T. cruzi in the whole continent has decreased by 70%. Similar control multi-country initiatives have been launched in the Andean countries and in Central America and rapid progress has been recorded to ensure the interruption of the transmission of Chagas disease by 2005 as requested by a Resolution of the World Health Assembly approved in 1998. The cost-benefit analysis of the investments of the vector control program in Brazil indicate that there are savings of US$17 in medical care and disabilities for each dollar spent on prevention, showing that the program is a health investment with good return. Since the inception in 1979 of the Steering Committee on Chagas Disease

  10. Hydrogeologic controls and geochemical indicators of groundwater movement in the Niles Cone and southern East Bay Plain groundwater subbasins, Alameda County, California

    Science.gov (United States)

    Teague, Nicholas F.; Izbicki, John A.; Borchers, Jim; Kulongoski, Justin T.; Jurgens, Bryant C.

    2018-02-01

    Beginning in the 1970s, Alameda County Water District began infiltrating imported water through ponds in repurposed gravel quarries at the Quarry Lakes Regional Park, in the Niles Cone groundwater subbasin, to recharge groundwater and to minimize intrusion of saline, San Francisco Bay water into freshwater aquifers. Hydraulic connection between distinct aquifers underlying Quarry Lakes allows water to recharge the upper aquifer system to depths of 400 feet below land surface, and the Deep aquifer to depths of more than 650 feet. Previous studies of the Niles Cone and southern East Bay Plain groundwater subbasins suggested that these two subbasins may be hydraulically connected. Characterization of storage capacities and hydraulic properties of the complex aquifers and the structural and stratigraphic controls on groundwater movement aids in optimal storage and recovery of recharged water and provides information on the ability of aquifers shared by different water management agencies to fulfill competing storage and extraction demands. The movement of recharge water through the Niles Cone groundwater subbasin from Quarry Lakes and the possible hydraulic connection between the Niles Cone and the southern East Bay Plain groundwater subbasins were investigated using interferometric synthetic aperture radar (InSAR), water-chemistry, and isotopic data, including tritium/helium-3, helium-4, and carbon-14 age-dating techniques.InSAR data collected during refilling of the Quarry Lakes recharge ponds show corresponding ground-surface displacement. Maximum uplift was about 0.8 inches, reasonable for elastic expansion of sedimentary materials experiencing an increase in hydraulic head that resulted from pond refilling. Sodium concentrations increase while calcium and magnesium concentrations in groundwater decrease along groundwater flowpaths from the Niles Cone groundwater subbasin through the Deep aquifer to the northwest toward the southern East Bay Plain groundwater

  11. Volatile emissions from Cascade cinder cone eruptions: Implications for future hazard assessments in the Central and Southern Cascades

    Science.gov (United States)

    Walsh, L. K.; Wallace, P. J.; Cashman, K. V.

    2012-12-01

    An abundance of hazardous effects including ash fall out, basaltic lava flows and poisonous volcanic gas have been documented at active volcanic centers (e.g. Auckland Volcanic Field, New Zealand; Bebbington and Cronin 2011) and have been inferred using tools such as geologic mapping and geochemical analyses for prehistoric eruptions (e.g. Cerro Negro, Nicaragua; Hill et al. 1995; McKnight and Williams 1997). The Cascades volcanic history is also dominated by prehistoric eruptions; however the associated hazards have yet to be studied in-depth. Short recurrence rates of cinder cone volcanism (1x10-5 to 5x10-4 events/yr; Smid et al. 2009) likely intensify the probability of human experience with cinder cone hazards. Hence, it is important to understand the effects that cinder cone volcanism can have on communities near the Cascades. In this study, we estimate volatile fluxes of prehistoric Cascade cinder cone eruptions by analyzing olivine-hosted melt inclusions and rapidly quenched tephra matrix glass. The melt inclusions provide pre-eruptive volatile concentrations whereas tephra groundmass glass provides post-eruptive volatile concentrations. By comparing initial and final concentrations we can determine the amounts of sulfur, chlorine and fluorine released into the atmosphere. We have analyzed S, Cl and F concentrations in melt inclusions from cinder cones in the Central Oregon Cascades (Collier Cone, Yapoah Crater, Four-in-One Fissure, Garrison Butte) and in Northern California near Mt. Lassen (Cinder Cone, Basalt of Old Railroad Grade, Basalt of Highway 44). Analyses of volatiles in melt inclusions and matrix glasses were done using the Cameca SX100 electron microprobe at the University of Oregon. Melt inclusions and matrix glass were run under 15kV, 50nA, and 10μm-beam conditions. For F analyses, a use of an LTAP crystal and relatively long counting times (160 sec. on peak) resulted in good analytical precision. Preliminary results for melt inclusions from

  12. Volcano-tectonic interactions at Sabancaya and other Peruvian volcanoes revealed by InSAR and seismicity

    Science.gov (United States)

    Jay, J.; Pritchard, M. E.; Aron, F.; Delgado, F.; Macedo, O.; Aguilar, V.

    2013-12-01

    An InSAR survey of all 13 Holocene volcanoes in the Andean Central Volcanic Zone of Peru reveals previously undocumented surface deformation that is occasionally accompanied by seismic activity. Our survey utilizes SAR data spanning from 1992 to the present from the ERS-1, ERS-2, and Envisat satellites, as well as selected data from the TerraSAR-X satellite. We find that the recent unrest at Sabancaya volcano (heightened seismicity since 22 February 2013 and increased fumarolic output) has been accompanied by surface deformation. We also find two distinct deformation episodes near Sabancaya that are likely associated with an earthquake swarm in February 2013 and a M6 normal fault earthquake that occurred on 17 July 2013. Preliminary modeling suggests that faulting from the observed seismic moment can account for nearly all of the observed deformation and thus we have not yet found clear evidence for recent magma intrusion. We also document an earlier episode of deformation that occurred between December 2002 and September 2003 which may be associated with a M5.3 earthquake that occurred on 13 December 2002 on the Solarpampa fault, a large EW-striking normal fault located about 25 km northwest of Sabancaya volcano. All of the deformation episodes between 2002 and 2013 are spatially distinct from the inflation seen near Sabancaya from 1992 to 1997. In addition to the activity at Sabancaya, we also observe deformation near Coropuna volcano, in the Andagua Valley, and in the region between Ticsani and Tutupaca volcanoes. InSAR images reveal surface deformation that is possibly related to an earthquake swarm near Coropuna and Sabancaya volcanoes in December 2001. We also find persistent deformation in the scoria cone and lava field along the Andagua Valley, located 40 km east of Corpuna. An earthquake swarm near Ticsani volcano in 2005 produced surface deformation centered northwest of the volcano and was accompanied by a north-south elongated subsidence signal to the

  13. MEMÓRIA, GÊNERO E REPRESSÃO POLÍTICA NO CONE SUL (1984-1991MEMORY, GENDER AND POLITICAL REPRESSION IN THE SOUTHERN CONE (1984-1991

    Directory of Open Access Journals (Sweden)

    Mariana Joffily

    2010-05-01

    Full Text Available Esse  artigo analisa, sob uma perspectiva de gênero, os informes de violações aos  Direitos Humanos conhecidos como Nunca  más, redigidos no momento de transição das ditaduras militares para a  democracia na Argentina (1984, no Brasil (1985, no Uruguai (1989 e no Chile  (1991. Os Nunca más, a despeito da  diferença das condições em que foram elaborados, permaneceram em seus  respectivos países como marcos interpretativos do passado ditatorial, uma  “memória emblemática”, extensamente documentada e assentada sobre uma  preocupação de veracidade. A análise dos desses informes é efetuada tendo como  foco as possíveis diferenciações de gênero da repressão política. Palavras-Chave: Ditadura militar. Gênero. Repressão política.  Tortura. Cone Sul. Abstract This  article examines, from a gender perspective, the reports on human rights  violations, known as Nunca Más,  written at the time of transition from military dictatorship to democracy in  Argentina (1984, Brazil (1985, Uruguay (1989 and  Chile (1991. The Nunca más, despite the different conditions in which they have been  developed, remained in their respective countries as interpretative frameworks  of the past dictatorship, an "iconic memory", extensively documented  and settled on a concern for accuracy. The analysis of those reports is made  focusing on possible gender differences of political repression. Keywords: Military  dictatorship.  Political repression. Torture. Southern Cone.

  14. Flank tectonics of Martian volcanoes

    International Nuclear Information System (INIS)

    Thomas, P.J.; Squyres, S.W.; Carr, M.H.

    1990-01-01

    On the flanks of Olympus Mons is a series of terraces, concentrically distributed around the caldera. Their morphology and location suggest that they could be thrust faults caused by compressional failure of the cone. In an attempt to understand the mechanism of faulting and the possible influences of the interior structure of Olympus Mons, the authors have constructed a numerical model for elastic stresses within a Martian volcano. In the absence of internal pressurization, the middle slopes of the cone are subjected to compressional stress, appropriate to the formation of thrust faults. These stresses for Olympus Mons are ∼250 MPa. If a vacant magma chamber is contained within the cone, the region of maximum compressional stress is extended toward the base of the cone. If the magma chamber is pressurized, extensional stresses occur at the summit and on the upper slopes of the cone. For a filled but unpressurized magma chamber, the observed positions of the faults agree well with the calculated region of high compressional stress. Three other volcanoes on Mars, Ascraeus Mons, Arsia Mons, and Pavonis Mons, possess similar terraces. Extending the analysis to other Martian volcanoes, they find that only these three and Olympus Mons have flank stresses that exceed the compressional failure strength of basalt, lending support to the view that the terraces on all four are thrust faults

  15. Hawaii's volcanoes revealed

    Science.gov (United States)

    Eakins, Barry W.; Robinson, Joel E.; Kanamatsu, Toshiya; Naka, Jiro; Smith, John R.; Takahashi, Eiichi; Clague, David A.

    2003-01-01

    Hawaiian volcanoes typically evolve in four stages as volcanism waxes and wanes: (1) early alkalic, when volcanism originates on the deep sea floor; (2) shield, when roughly 95 percent of a volcano's volume is emplaced; (3) post-shield alkalic, when small-volume eruptions build scattered cones that thinly cap the shield-stage lavas; and (4) rejuvenated, when lavas of distinct chemistry erupt following a lengthy period of erosion and volcanic quiescence. During the early alkalic and shield stages, two or more elongate rift zones may develop as flanks of the volcano separate. Mantle-derived magma rises through a vertical conduit and is temporarily stored in a shallow summit reservoir from which magma may erupt within the summit region or be injected laterally into the rift zones. The ongoing activity at Kilauea's Pu?u ?O?o cone that began in January 1983 is one such rift-zone eruption. The rift zones commonly extend deep underwater, producing submarine eruptions of bulbous pillow lava. Once a volcano has grown above sea level, subaerial eruptions produce lava flows of jagged, clinkery ?a?a or smooth, ropy pahoehoe. If the flows reach the ocean they are rapidly quenched by seawater and shatter, producing a steep blanket of unstable volcanic sediment that mantles the upper submarine slopes. Above sea level then, the volcanoes develop the classic shield profile of gentle lava-flow slopes, whereas below sea level slopes are substantially steeper. While the volcanoes grow rapidly during the shield stage, they may also collapse catastrophically, generating giant landslides and tsunami, or fail more gradually, forming slumps. Deformation and seismicity along Kilauea's south flank indicate that slumping is occurring there today. Loading of the underlying Pacific Plate by the growing volcanic edifices causes subsidence, forming deep basins at the base of the volcanoes. Once volcanism wanes and lava flows no longer reach the ocean, the volcano continues to submerge, while

  16. A remote sensing assessment of the impact of the 2010 Maule, Chile earthquake (Mw 8.8) on the volcanoes of the southern Andes

    Science.gov (United States)

    Pritchard, M. E.; Welch, M.; Jay, J.; Button, N.

    2011-12-01

    There are tantalizing, but controversial, indications that great earthquakes affect arc-wide volcanic activity. For example, analysis of historic eruptions at volcanoes of the southern Andes has shown that 3-4 eruptions were likely seismically triggered by Mw > 8 earthquakes in the Chile subduction zone -- particularly the 1906 and 1960 earthquakes (e.g., Watt et al., 2009). However, the 27 February 2010 Mw 8.8 Maule, Chile earthquake that ruptured the subduction zone between the 1960 and 1906 earthquakes does not appear to have triggered 3-4 volcanic eruptions in the same area in the 12 months after the event. In an effort to understand the relation between a large earthquake and volcanic unrest, we use a variety of satellite instruments to look for more subtle (i.e., not leading to eruption), but detectable change in thermal or deformation activity at the volcanoes of the southern Andes after the Maule earthquake and its aftershocks. For all of the volcanoes in the catalog of the Smithsonian Institution (approximately 80), we use nighttime MODIS and ASTER data to assess the thermal activity and ALOS InSAR data to characterize the surface deformation before and after the earthquake. The ALOS InSAR data are not ideal for detecting changes in deformation before and after the earthquake because of the small number of acquisitions in austral summer as well as ionospheric and tropospheric artifacts. We estimate that we could detect deformation > 5 cm/year. Similarly, the ASTER and MODIS data suffer respectively from poor temporal and spatial resolution of thermal anomalies. We update previous InSAR work that identified at least 8 areas of volcanic deformation in the southern Andes related to eruptive processes, subsidence of past lava flows, or surface uplift not associated with an eruption (Fournier et al., 2010). Of greatest interest are the two volcanic areas with the largest deformation signals between 2007-2008 (both > 15 cm/yr in the radar line of sight): Laguna

  17. Cold knife cone biopsy

    Science.gov (United States)

    ... biopsy; Pap smear - cone biopsy; HPV - cone biopsy; Human papilloma virus - cone biopsy; Cervix - cone biopsy; Colposcopy - cone biopsy Images Female reproductive anatomy Cold cone biopsy Cold cone removal References Baggish ...

  18. Assessment of pre-crisis and syn-crisis seismic hazard at Campi Flegrei and Mt. Vesuvius volcanoes, Campania, southern Italy

    Science.gov (United States)

    Convertito, Vincenzo; Zollo, Aldo

    2011-08-01

    In this study, we address the issue of short-term to medium-term probabilistic seismic hazard analysis for two volcanic areas, Campi Flegrei caldera and Mt. Vesuvius in the Campania region of southern Italy. Two different phases of the volcanic activity are considered. The first, which we term the pre-crisis phase, concerns the present quiescent state of the volcanoes that is characterized by low-to-moderate seismicity. The second phase, syn-crisis, concerns the unrest phase that can potentially lead to eruption. For the Campi Flegrei case study, we analyzed the pattern of seismicity during the 1982-1984 ground uplift episode (bradyseism). For Mt. Vesuvius, two different time-evolutionary models for seismicity were adopted, corresponding to different ways in which the volcano might erupt. We performed a site-specific analysis, linked with the hazard map, to investigate the effects of input parameters, in terms of source geometry, mean activity rate, periods of data collection, and return periods, for the syn-crisis phase. The analysis in the present study of the pre-crisis phase allowed a comparison of the results of probabilistic seismic hazard analysis for the two study areas with those provided in the Italian national hazard map. For the Mt. Vesuvius area in particular, the results show that the hazard can be greater than that reported in the national hazard map when information at a local scale is used. For the syn-crisis phase, the main result is that the data recorded during the early months of the unrest phase are substantially representative of the seismic hazard during the whole duration of the crisis.

  19. The violent Strombolian eruption of 10 ka Pelado shield volcano, Sierra Chichinautzin, Central Mexico

    Science.gov (United States)

    Lorenzo-Merino, A.; Guilbaud, M.-N.; Roberge, J.

    2018-03-01

    Pelado volcano is a typical example of an andesitic Mexican shield with a summital scoria cone. It erupted ca. 10 ka in the central part of an elevated plateau in what is today the southern part of Mexico City. The volcano forms a roughly circular, 10-km wide lava shield with two summital cones, surrounded by up to 2.7-m thick tephra deposits preserved up to a distance of 3 km beyond the shield. New cartographic, stratigraphic, granulometric, and componentry data indicate that Pelado volcano was the product of a single, continuous eruption marked by three stages. In the early stage, a > 1.5-km long fissure opened and was active with mild explosive activity. Intermediate and late stages were mostly effusive and associated with the formation of a 250-m high lava shield. Nevertheless, during these stages, the emission of lava alternated and/or coexisted with highly explosive events that deposited a widespread tephra blanket. In the intermediate stage, multiple vents were active along the fissure, but activity was centered at the main cone during the late stage. The final activity was purely effusive. The volcano emitted > 0.9 km3 dense-rock equivalent (DRE) of tephra and up to 5.6 km3 DRE of lavas. Pelado shares various features with documented "violent Strombolian" eruptions, including a high fragmentation index, large dispersal area, occurrence of plate tephra, high eruptive column, and simultaneous explosive and effusive activity. Our results suggest that the associated hazards (mostly tephra fallout and emplacement of lava) would seriously affect areas located up to 25 km from the vent for fallout and 5 km from the vent for lava, an important issue for large cities built near or on potentially active zones, such as Mexico City.

  20. Southern Cone Initiative for the elimination of domestic populations of Triatoma infestans and the interruption of transfusion Chagas disease: historical aspects, present situation, and perspectives

    Directory of Open Access Journals (Sweden)

    João Carlos Pinto Dias

    2007-10-01

    Full Text Available Created in 1991 by the governments of Argentina, Bolivia, Brazil, Chile, Paraguay, and Uruguay, the Southern Cone Initiative (SCI has been extremely important for Chagas disease control in this region. Its basic objective was to reach the interruption of this disease, chiefly by means of the elimination of the principal vector Triatoma infestans and by the selection of safe donors in the regional blood banks. After a summarized historic of SCI, the text shows the advance of technical and operative activities, emphasizing some factors for the initiative success, as well as some difficulties and constraints. The future of SCI will depend of the continuity of the actions and of political priority. Scientific community has been highly responsible for this initiative and its maintenance. At the side of this, national and international efforts must be involved and reinforced to assure the accomplishment of the final targets of SCI. Very specially, the Pan American Health Organization has cooperated with the Initiative in all its moments and activities,being the most important catalytic and technical factor for SCI success.

  1. Multiple Active Volcanoes in the Northeast Lau Basin

    Science.gov (United States)

    Baker, E. T.; Resing, J. A.; Lupton, J. E.; Walker, S. L.; Embley, R. W.; Rubin, K. H.; Buck, N.; de Ronde, C. E.; Arculus, R. J.

    2010-12-01

    The northeast Lau Basin occupies a complex geological area between the Tafua arc front, the E-W trending Tonga Trench, and the Northeast Lau Spreading Center. These boundaries create multiple zones of extension and thus provide abundant opportunities for magma to invade the crust. The 25-km-long chain of “Mata” volcanoes lies near the center of this area, separated from both the arc front and the spreading ridge. In 2008 we discovered hydrothermal venting on the largest and most southerly of these volcanoes, W and E Mata. In 2010 we visited the 7 smaller volcanoes that form a 15-km-long arcuate sweep to the north from W and E Mata (the “North Matas”). We also revisited W and E Mata. Over each volcano we conducted CTD tows to map plumes and collect water samples. Based on the CTD results, camera tows searched for seafloor sources on three volcanoes. The N Mata volcanoes, extending from Mata Taha (1) in the south to Mata Fitu (7) in the north, lie within a prominent gap in the shallow bathymetry along the southern border of the Tonga trench. Northward from E Mata the Mata volcanoes degrade from large symmetrical cones to smaller and blocky volcanic edifices. Summit depths range from 1165 m (W Mata) to 2670 m (Mata Nima (5)). The most active volcano in the chain is the erupting W Mata, with an intense plume that extended 250 m above the summit. Hydrothermal temperature anomalies (Δθ, corrected for hydrographic masking effects) reached ˜1.7°C, with light-scattering values as high as 2-5 ΔNTU. The 2010 surveys now show that 6 of the 7 N Mata volcanoes are also hydrothermally active. Along the N Matas, Δθ and ΔNTU signals ranged from robust to weak, but distinct oxidation-reduction potential (aka Eh) anomalies confirmed active venting in each case. The most concentrated plumes were found near Mata Ua (2) and Mata Fitu (7), with Δθ and ΔNTU maxima of 0.1-0.17°C and 0.3, respectively. Despite the variability in plume strength, however, ΔNTU/Δθ ratios

  2. Interdisciplinary studies of eruption at Chaiten Volcano, Chile

    Science.gov (United States)

    John S. Pallister; Jon J. Major; Thomas C. Pierson; Richard P. Hoblitt; Jacob B. Lowenstern; John C. Eichelberger; Lara. Luis; Hugo Moreno; Jorge Munoz; Jonathan M. Castro; Andres Iroume; Andrea Andreoli; Julia Jones; Fred Swanson; Charlie Crisafulli

    2010-01-01

    There was keen interest within the volcanology community when the first large eruption of high-silica rhyolite since that of Alaska's Novarupta volcano in 1912 began on 1 May 2008 at Chaiten volcano, southern Chile, a 3-kilometer-diameter caldera volcano with a prehistoric record of rhyolite eruptions. Vigorous explosions occurred through 8 May 2008, after which...

  3. The foot and mouth disease network in the southern cone of South America: an example of regional governance.

    Science.gov (United States)

    Corrales Irrazábal, H A

    2012-08-01

    The fact that foot and mouth disease is highly contagious, easily spread and of major commercial importance makes it a redoubtable challenge for animal health in South American countries and the world over. A number of factors impact directly on the effectiveness of national programmes to eradicate foot and mouth disease. Therefore, in order to meet the challenges posed by today's globalised world, it is of the utmost importance that national level eradication programmes be considered state policies and that they be the subject of broad political agreement at the highest level and consolidated as regional programmes between national Veterinary Services. The programmes, agreements and technical cooperation projects established jointly by Member Countries of the Southern Common Market (MERCOSUR) were a key factor in building management capacity to control foot and mouth disease in the area. Another key factor has been a partnership with one of the most sensitive sectors--the private production sector. Its active and responsible participation in operational functions has done much to strengthen and ensure the competitive development of South American countries and consolidate their role as global beef exporters. However, to prevent further outbreaks it is essential to maintain and reinforce the structure of national programmes and to have strong and highly trained Veterinary Services and sufficient funding to ensure efficient and sustainable plans. These plans must enable Veterinary Services, by means of good governance, to implement effective measures in the areas of animal health and international trade in animals and animal products/by-products, thereby achieving rapid and more equitable social and economic development.

  4. Tales of volcanoes and El-Nino southern oscillations with the oxygen isotope anomaly of sulfate aerosol.

    Science.gov (United States)

    Shaheen, Robina; Abauanza, Mariana; Jackson, Teresa L; McCabe, Justin; Savarino, Joel; Thiemens, Mark H

    2013-10-29

    The ability of sulfate aerosols to reflect solar radiation and simultaneously act as cloud condensation nuclei renders them central players in the global climate system. The oxidation of S(IV) compounds and their transport as stable S(VI) in the Earth's system are intricately linked to planetary scale processes, and precise characterization of the overall process requires a detailed understanding of the linkage between climate dynamics and the chemistry leading to the product sulfate. This paper reports a high-resolution, 22-y (1980-2002) record of the oxygen-triple isotopic composition of sulfate (SO4) aerosols retrieved from a snow pit at the South Pole. Observed variation in the O-isotopic anomaly of SO4 aerosol is linked to the ozone variation in the tropical upper troposphere/lower stratosphere via the Ozone El-Niño Southern Oscillations (ENSO) Index (OEI). Higher (17)O values (3.3‰, 4.5‰, and 4.2‰) were observed during the three largest ENSO events of the past 2 decades. Volcanic events inject significant quantities of SO4 aerosol into the stratosphere, which are known to affect ENSO strength by modulating stratospheric ozone levels (OEI = 6 and (17)O = 3.3‰, OEI = 11 and (17)O = 4.5‰) and normal oxidative pathways. Our high-resolution data indicated that (17)O of sulfate aerosols can record extreme phases of naturally occurring climate cycles, such as ENSOs, which couple variations in the ozone levels in the atmosphere and the hydrosphere via temperature driven changes in relative humidity levels. A longer term, higher resolution oxygen-triple isotope analysis of sulfate aerosols from ice cores, encompassing more ENSO periods, is required to reconstruct paleo-ENSO events and paleotropical ozone variations.

  5. What Are Volcano Hazards?

    Science.gov (United States)

    ... Sheet 002-97 Revised March 2008 What Are Volcano Hazards? Volcanoes give rise to numerous geologic and ... as far as 15 miles from the volcano. Volcano Landslides A landslide or debris avalanche is a ...

  6. PENGELOLAAN SUNGAI BERBASIS MASYARAKAT LOKAL DI DAERAH LERENG SELATAN GUNUNGAPI MERAPI (River Management Based on Local Community in the Southern Slope of Marapi Volcano

    Directory of Open Access Journals (Sweden)

    Darmakusuma Darmanto

    2013-07-01

    Full Text Available ABSTRAK Dalam kehidupan manusia, ternyata ada hubungan yang saling terkait antara manusia dengan sungai. Manusia memerlukan sungai untuk mendukung keperluan dan aktivitasnya, sebaliknya keberadaan sungai juga dapat dipengaruhi oleh aktivitas manusia. Dalam memanfaatkan dan memelihara sungai tidak terlepas dari pemanfaatan air di dalam sungai dan alur sungainya. Dalam memgelola sungai tidak terpisahkan antara pengelolaan air sungai dan alur sungainya. Hal tersebut juga tergantung dari karakteristik sungai dan kondisi sosial budaya masyarakat. Penelitian yang dilakukan di lereng selatan Gunungapi Merapi dengan cara survei di lapangan. Data dikumpulkan dengan observasi lapangan dan wawancara dengan masyarakat. Selanjutnya dikuti dengan analisis data secara deskriptif kualitatif. Sungai sungai besar di daerah penelitian telah dikelola oleh pemerintah, sedangkan masyarakat lebih berperan kepada pemanfaatan dan pemeliharaan sungai kecil. Berbagai penggunaan dilakukan terhadap sungai-sungai kecil, untuk keperluan rumah tangga, irigasi dan perikanan. Teknik pengambilan dan pemanfaatan air dilakukan dengan cara sederhana dengan beaya yang relatif murah, tetapi tetap mengedepankan azas kebersamaan dan keadilan. Pemeliharaan terhadap alur sungai terhadap kerusakkan lingkungan dilakukan berdasarkan atas kesadaran untuk keberlangsungan lingkungan dengan yang dilakukan secara perorangan dan berkelompok. Dalam pemeliharaan dikedepankan asas kegotongroyongan tanpa mengabaikan budaya masyarakat setempat. ABSTRACT In human life, there was a relationship between human activities with rivers. Humans need rivers to support their need and their activities; otherwise the existence of rivers can also be affected by human activities. The management of river cannot be separated from managing water in the river and its channels. It also depends on rivers characteristics as well as social and culture of the community. This research was conducted in the southern slopes of

  7. Unzipping of the volcano arc, Japan

    Science.gov (United States)

    Stern, R.J.; Smoot, N.C.; Rubin, M.

    1984-01-01

    A working hypothesis for the recent evolution of the southern Volcano Arc, Japan, is presented which calls upon a northward-progressing sundering of the arc in response to a northward-propagating back-arc basin extensional regime. This model appears to explain several localized and recent changes in the tectonic and magrnatic evolution of the Volcano Arc. Most important among these changes is the unusual composition of Iwo Jima volcanic rocks. This contrasts with normal arc tholeiites typical of the rest of the Izu-Volcano-Mariana and other primitive arcs in having alkaline tendencies, high concentrations of light REE and other incompatible elements, and relatively high silica contents. In spite of such fractionated characteristics, these lavas appear to be very early manifestations of a new volcanic and tectonic cycle in the southern Volcano Arc. These alkaline characteristics and indications of strong regional uplift are consistent with the recent development of an early stage of inter-arc basin rifting in the southern Volcano Arc. New bathymetric data are presented in support of this model which indicate: 1. (1) structural elements of the Mariana Trough extend north to the southern Volcano Arc. 2. (2) both the Mariana Trough and frontal arc shoal rapidly northwards as the Volcano Arc is approached. 3. (3) rugged bathymetry associated with the rifted Mariana Trough is replaced just south of Iwo Jima by the development of a huge dome (50-75 km diameter) centered around Iwo Jima. Such uplifted domes are the immediate precursors of rifts in other environments, and it appears that a similar situation may now exist in the southern Volcano Arc. The present distribution of unrifted Volcano Arc to the north and rifted Mariana Arc to the south is interpreted not as a stable tectonic configuration but as representing a tectonic "snapshot" of an arc in the process of being rifted to form a back-arc basin. ?? 1984.

  8. El proyecto subregional cono sur de control y vigilancia de la hidatidosis The southern cone sub-regional project on cystic echinococosis control and surveillance

    Directory of Open Access Journals (Sweden)

    Pilar Irabedra

    2010-12-01

    Full Text Available El Proyecto Subregional Cono Sur de Control y Vigilancia de la Hidatidosis: Argentina, Brasil, Chile y Uruguay, es una herramienta conjunta y colaborativa de los países para promover la implantación o el fortalecimiento de los programas de control. Se hace una descripción de los antecedentes, de los aspectos institucionales que regulan su organicidad y funcionamiento y de las líneas de acción definidas en el proyecto técnico operativo. Se destaca los logros obtenidos a través de los Proyectos de Cooperación Técnica entre Países así como el desarrollo de enfoques integrales e innovadores y la formación de recursos humanos de los programas de control. Algunos de los desafíos futuros son: lograr la sustentabilidad del Proyecto, implementar los grupos técnicos de análisis y evaluación a solicitud de los países, mejorar los sistemas de información regionales, continuar las actividades de capacitación y entrenamiento de recursos humanos y la expansión y fortalecimiento de la cooperación técnica entre países.Southern Cone Sub-Regional Project on Cystic Echinococcosis Control and Surveillance: Argentina, Brasil, Chile and Uruguay, is a joint and collaborative tool with the aim of promoting the implementation or the strengthening of programs for disease control. The paper describes the background, the institutional aspects that regulates the structure and functions, as well as the guidelines defined in the technical and operational project. The article emphasize the achievements through Projects of Technical Cooperation among Countries, and the development of integrated and innovative approaches for prevention and control of the disease and training of human resources of the control programs. Some of the challenges are: to achieve the sustainability of the project, implementation of technical groups for analysis and assessment at request of the countries, improvement of the regional information systems, to continue training human

  9. Design of a New Sensor for Determination of the Effects of Tractor Field Usage in Southern Spain: Soil Sinkage and Alterations in the Cone Index and Dry Bulk Density

    Directory of Open Access Journals (Sweden)

    Diego L. Valera

    2012-10-01

    Full Text Available Variations in sinkage and cone index are of crucial importance when planning fieldwork, and for determining the trafficability of farm machinery. Many studies have highlighted the link between higher values of these parameters and dramatic decreases in crop yield. Variations in the dry bulk density and cone index of clayey soil in Southern Spain were measured following each of five successive passes over the same land with the three types of tractor most widely used in the area (tracked, two-wheel drive and four-wheel drive. In addition, sinkage (rut depth of the running gear was measured using a laser microrelief profile meter. This device, which integrates three sensors, was specifically designed for these experiments, as was an electrical penetrometer to determine the cone index, and both instruments proved reliable and accurate in the field. The main goal of this study was to design, manufacture and test these new devices. The first pass caused most soil alteration when compared to successive passes for all types of tractor tested and soil conditions prevailing during the tests. (Heavier four-wheel drive tractors were found to cause greater soil damage (sinkage, cone index and dry bulk density than two-wheel drive and track tractors. There was no statistically significant difference between the two latter types. The greatest alterations were recorded in the top 10 cm of the soil. The results show that soil compaction should be avoided as much as possible. This can be achieved by ensuring that tractors always travel along the same tracks, especially in the wet season. At present these aspects are not considered by farmers in this area.

  10. Numerical modeling of magma-tectonic interactions at Pacaya Volcano, Guatemala

    Science.gov (United States)

    Wauthier, C.

    2017-12-01

    Pacaya Volcano is composed of several volcanic cones located along the southern rim of the Amatitlan caldera, approximately 25 km south of Guatemala City. It is a basaltic volcano located in the Central American Volcanic Arc. The shallow magma plumbing system at Pacaya likely includes at least three magma reservoirs: a very shallow ( 0.2-0.4 km depth) reservoir located below and possibly within the MacKenney cone, a 4 km deep reservoir located northwest of the summit, and a shallow dike-like conduit below the summit which fed the recent flank eruptions. Pacaya's western flank is slipping in a stick-slip fashion, and the instability seems associated with larger volume eruptions. Flank instability phases indeed occurred in 2010 and 2014 in coincidence with major intrusive and eruptive phases, suggesting a positive feedback between the flank motion and major intrusions. Simple analytical models are insufficient to fit the geodetic observations and model the flank processes and their mechanical interactions with the magmatic system. Here, numerical modeling approaches are used to characterize the 2014 flank deformation episode and magma-tectonic interactions.

  11. Magma paths at Piton de la Fournaise Volcano

    OpenAIRE

    Michon , Laurent; Ferrazzini , Valérie; Di Muro , Andrea

    2016-01-01

    International audience; Several patterns of magma paths have been proposed since the 1980s for Piton de la Fournaise volcano. Given the significant differences, which are presented here, we propose a reappraisal of the magma intrusion paths using a 17-years-long database of volcano-tectonic seismic events and a detailed mapping of the scoria cones. At the edifice scale, the magma propagates along two N120 trending rift zones. They are wide, linear, spotted by small to large scoria cones and r...

  12. Characteristics and management of the 2006-2008 volcanic crisis at the Ubinas volcano (Peru)

    Science.gov (United States)

    Rivera, Marco; Thouret, Jean-Claude; Mariño, Jersy; Berolatti, Rossemary; Fuentes, José

    2010-12-01

    Ubinas volcano is located 75 km East of Arequipa and ca. 5000 people are living within 12 km from the summit. This composite cone is considered the most active volcano in southern Peru owing to its 24 low to moderate magnitude (VEI 1-3) eruptions in the past 500 years. The onset of the most recent eruptive episode occurred on 27 March 2006, following 8 months of heightened fumarolic activity. Vulcanian explosions occurred between 14 April 2006 and September 2007, at a time ejecting blocks up to 40 cm in diameter to distances of 2 km. Ash columns commonly rose to 3.5 km above the caldera rim and dispersed fine ash and aerosols to distances of 80 km between April 2006 and April 2007. Until April 2007, the total volume of ash was estimated at 0.004 km 3, suggesting that the volume of fresh magma was small. Ash fallout has affected residents, livestock, water supplies, and crop cultivation within an area of ca. 100 km 2 around the volcano. Continuous degassing and intermittent mild vulcanian explosions lasted until the end of 2008. Shortly after the initial explosions on mid April 2006 that spread ash fallout within 7 km of the volcano, an integrated Scientific Committee including three Peruvian institutes affiliated to the Regional Committee of Civil Defense for Moquegua, aided by members of the international cooperation, worked together to: i) elaborate and publish volcanic hazard maps; ii) inform and educate the population; and iii) advise regional authorities in regard to the management of the volcanic crisis and the preparation of contingency plans. Although the 2006-2008 volcanic crisis has been moderate, its management has been a difficult task even though less than 5000 people now live around the Ubinas volcano. However, the successful management has provided experience and skills to the scientific community. This volcanic crisis was not the first one that Peru has experienced but the 2006-2008 experience is the first long-lasting crisis that the Peruvian civil

  13. 30 years in the life of an active submarine volcano: The evolution of Kick-`em-Jenny and implications for hazard in the southern Caribbean

    Science.gov (United States)

    Allen, R. W.; Berry, C.; Henstock, T.; Collier, J.; Dondin, F. J. Y.; Latchman, J. L.; Robertson, R. E. A.

    2017-12-01

    Effective monitoring is an essential part of the process of identifying and mitigating volcanic hazards. In the submarine environment this task is made all the more difficult with observations typically limited to land-based seismic networks and infrequent shipboard surveys. Since announcing itself to the world in 1939, the Kick-`em-Jenny (KeJ) volcano, 8km off of the north coast of Grenada, has been the source of 13 episodes of T-phase recordings. These distinctive seismic signals, often coincident with heightened seismicity, have been interpreted as extrusive eruptions with a mean recurrence interval of 5-6 years. Visual confirmation of these episodes is rare and many would be unknown without the seismic evidence. By conducting new bathymetric surveys in 2016 and 2017 and reprocessing 3 further legacy data sets spanning more than 30 years and several such events we are able to present a clearer picture of the development of KeJ through time. The final bathymetric grids produced have a cell size of just 5m and, for the more modern surveys, a vertical accuracy on the order of 1m. These grids easily demonstrate the correlation between T-phase episodes and morphological changes at the volcano's edifice. In the time-period of observation we document a clear construction deficit at KeJ with only 5.75x106m3 of material added through constructive volcanism, while 5 times this amount is lost through landslides and volcanic dome collapse. The peak depth of KeJ now sits at 196m b.s.l., the lowest recorded since 1966. Limited recent magma production means that KeJ may be susceptible to larger eruptions with longer repeat times than those covered in our study. These larger eruptions would pose a more significant local hazard than the small scale volcanic events observed in recent decades. We conclude that T-phase recordings are likely to have a more varied origin than previously discussed, and are unlikely to be solely the result of extrusive submarine eruptions. This

  14. Morphometric analysis of cinder cones on Tenerife (Canary Islands, Spain): results and applications

    International Nuclear Information System (INIS)

    Doniz Paez, F. J.

    2009-01-01

    This paper applied morphometric to the cinder cones of Tenerife. The technical morphometric allows to establish simple models of morphology, and size to the most frequent volcanoes of Tenerife's mafic volcanism. The obtained classification allow to distinguish four morphological types of scoria cones and three size groups, which is also extended to other volcanic regions. (Author) 5 refs.

  15. Geologic map of Medicine Lake volcano, northern California

    Science.gov (United States)

    Donnelly-Nolan, Julie M.

    2011-01-01

    Medicine Lake volcano forms a broad, seemingly nondescript highland, as viewed from any angle on the ground. Seen from an airplane, however, treeless lava flows are scattered across the surface of this potentially active volcanic edifice. Lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, cover more than 2,000 km2 east of the main axis of the Cascade Range in northern California. Across the Cascade Range axis to the west-southwest is Mount Shasta, its towering volcanic neighbor, whose stratocone shape contrasts with the broad shield shape of Medicine Lake volcano. Hidden in the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of Medicine Lake volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 8,000 ft (2,440 m). The maximum extent of lavas from this half-million-year-old volcano is about 80 km north-south by 45 km east-west. In postglacial time, 17 eruptions have added approximately 7.5 km3 to its total estimated volume of 600 km3, and it is considered to be the largest by volume among volcanoes of the Cascades arc. The volcano has erupted nine times in the past 5,200 years, a rate more frequent than has been documented at all other Cascades arc volcanoes except Mount St. Helens.

  16. Geomorphological classification of post-caldera volcanoes in the Buyan-Bratan caldera, North Bali, Indonesia

    Science.gov (United States)

    Okuno, Mitsuru; Harijoko, Agung; Wayan Warmada, I.; Watanabe, Koichiro; Nakamura, Toshio; Taguchi, Sachihiro; Kobayashi, Tetsuo

    2017-12-01

    A landform of the post-caldera volcanoes (Lesung, Tapak, Sengayang, Pohen, and Adeng) in the Buyan-Bratan caldera on the island of Bali, Indonesia can be classified by topographic interpretation. The Tapak volcano has three craters, aligned from north to south. Lava effused from the central crater has flowed downward to the northwest, separating the Tamblingan and Buyan Lakes. This lava also covers the tip of the lava flow from the Lesung volcano. Therefore, it is a product of the latest post-caldera volcano eruption. The Lesung volcano also has two craters, with a gully developing on the pyroclastic cone from the northern slope to the western slope. Lava from the south crater has flowed down the western flank, beyond the caldera rim. Lava distributed on the eastern side from the south also surrounds the Sengayang volcano. The Adeng volcano is surrounded by debris avalanche deposits from the Pohen volcano. Based on these topographic relationships, Sengayang volcano appears to be the oldest of the post-caldera volcanoes, followed by the Adeng, Pohen, Lesung, and Tapak volcanoes. Coarse-grained scoria falls around this area are intercalated with two foreign tephras: the Samalas tephra (1257 A.D.) from Lombok Island and the Penelokan tephra (ca. 5.5 kBP) from the Batur caldera. The source of these scoria falls is estimated to be either the Tapak or Lesung volcano, implying that at least two volcanoes have erupted during the Holocene period.

  17. Subsidence of Surtsey volcano, 1967-1991

    Science.gov (United States)

    Moore, J.G.; Jakobsson, S.; Holmjarn, J.

    1992-01-01

    The Surtsey marine volcano was built on the southern insular shelf of Iceland, along the seaward extension of the east volcanic zone, during episodic explosive and effusive activity from 1963 to 1967. A 1600-m-long, east-west line of 42 bench marks was established across the island shortly after volcanic activity stopped. From 1967 to 1991 a series of leveling surveys measured the relative elevation of the original bench marks, as well as additional bench marks installed in 1979, 1982 and 1985. Concurrent measurements were made of water levels in a pit dug on the north coast, in a drill hole, and along the coastline exposed to the open ocean. These surveys indicate that the dominant vertical movement of Surtsey is a general subsidence of about 1.1??0.3 m during the 24-year period of observations. The rate of subsidence decreased from 15-20 cm/year for 1967-1968 to 1-2 cm/year in 1991. Greatest subsidence is centered about the eastern vent area. Through 1970, subsidence was locally greatest where the lava plain is thinnest, adjacent to the flanks of the eastern tephra cone. From 1982 onward, the region closest to the hydrothermal zone, which is best developed in the vicinity of the eastern vent, began showing less subsidence relative to the rest of the surveyed bench marks. The general subsidence of the island probably results from compaction of the volcanic material comprising Surtsey, compaction of the sea-floor sediments underlying the island, and possibly downwarping of the lithosphere due to the laod of Surtsey. The more localized early downwarping near the eastern tephra cone is apparently due to greater compaction of tephra relative to lava. The later diminished local subsidence near the hydrothermal zone is probably due to a minor volume increase caused by hydrous alteration of glassy tephra. However, this volume increase is concentrated at depth beneath the bottom of the 176-m-deep cased drillhole. ?? 1992 Springer-Verlag.

  18. A presença de imigrantes de países do Cone Sul no Brasil: medidas e reflexões La presencia de inmigrantes de países del Cono Sur en Brasil: medidas y reflexiones The presence of immigrants from Southern-Cone countries to Brazil

    Directory of Open Access Journals (Sweden)

    Gabriela Adriana Sala

    2008-12-01

    Full Text Available Neste artigo são estimados os saldos migratórios dos nascidos na Argentina, Bolívia, Chile, Paraguai e Uruguai, correspondentes às décadas de 80 e 90 para o total do Brasil e para os estados brasileiros que concentravam maior proporção de pessoas provenientes dos países mencionados. Também são analisados alguns fatores que poderiam ter incidido nas mudanças do volume e da composição da população imigrante do Cone Sul, entre 1980 e 2000.En este artículo son estimados los saldos migratorios de los nacidos en Argentina, Bolivia, Chile, Paraguay y Uruguay, correspondientes a las décadas de los ochenta y noventa en Brasil, como un todo, y en los estados brasileños que concentraban mayor proporción de personas provenientes de los países mencionados. También son analizados algunos factores que podrían haber incidido en los cambios en el volumen y en la composición de la población inmigrante del Cono Sur, entre 1980 y 2000.This article estimates migratory balances of persons born in Argentina, Bolivia, Chile, Paraguay and Uruguay in the 1980s and 1990s and who migrated to Brazil. Statistics were developed for Brazil as a whole and for the Brazilian states that have the highest proportions of populations of these immigrants. Factors that may have affected the changes in volume and composition shown by immigrants from Southern Cone countries between 1980 and 2000 are also analyzed.

  19. Postshield stage transitional volcanism on Mahukona Volcano, Hawaii

    Science.gov (United States)

    Clague, D.A.; Calvert, A.T.

    2009-01-01

    Age spectra from 40Ar/39Ar incremental heating experiments yield ages of 298??25 ka and 310??31 ka for transitional composition lavas from two cones on submarine Mahukona Volcano, Hawaii. These ages are younger than the inferred end of the tholeiitic shield stage and indicate that the volcano had entered the postshield alkalic stage before going extinct. Previously reported elevated helium isotopic ratios of lavas from one of these cones were incorrectly interpreted to indicate eruption during a preshield alkalic stage. Consequently, high helium isotopic ratios are a poor indicator of eruptive stage, as they occur in preshield, shield, and postshield stage lavas. Loihi Seamount and Kilauea are the only known Hawaiian volcanoes where the volume of preshield alkalic stage lavas can be estimated. ?? Springer-Verlag 2008.

  20. Global Volcano Locations Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC maintains a database of over 1,500 volcano locations obtained from the Smithsonian Institution Global Volcanism Program, Volcanoes of the World publication. The...

  1. A Scientific Excursion: Volcanoes.

    Science.gov (United States)

    Olds, Henry, Jr.

    1983-01-01

    Reviews an educationally valuable and reasonably well-designed simulation of volcanic activity in an imaginary land. VOLCANOES creates an excellent context for learning information about volcanoes and for developing skills and practicing methods needed to study behavior of volcanoes. (Author/JN)

  2. Geology of El Chichon volcano, Chiapas, Mexico

    Science.gov (United States)

    Duffield, Wendell A.; Tilling, Robert I.; Canul, Rene

    1984-03-01

    The (pre-1982) 850-m-high andesitic stratovolcano El Chichón, active during Pleistocene and Holocene time, is located in rugged, densely forested terrain in northcentral Chiapas, México. The nearest neighboring Holocene volcanoes are 275 km and 200 km to the southeast and northwest, respectively. El Chichón is built on Tertiary siltstone and sandstone, underlain by Cretaceous dolomitic limestone; a 4-km-deep bore hole near the east base of the volcano penetrated this limestone and continued 770 m into a sequence of Jurassic or Cretaceous evaporitic anhydrite and halite. The basement rocks are folded into generally northwest-trending anticlines and synclines. El Chichón is built over a small dome-like structure superposed on a syncline, and this structure may reflect cumulative deformation related to growth of a crustal magma reservoir beneath the volcano. The cone of El Chichón consists almost entirely of pyroclastic rocks. The pre-1982 cone is marked by a 1200-m-diameter (explosion?) crater on the southwest flank and a 1600-m-diameter crater apparently of similar origin at the summit, a lava dome partly fills each crater. The timing of cone and dome growth is poorly known. Field evidence indicates that the flank dome is older than the summit dome, and K-Ar ages from samples high on the cone suggest that the flank dome is older than about 276,000 years. At least three pyroclastic eruptions have occurred during the past 1250 radiocarbon years. Nearly all of the pyroclastic and dome rocks are moderately to highly porphyritic andesite, with plagioclase, hornblende and clinopyroxene the most common phenocrysts. Geologists who mapped El Chichón in 1980 and 1981 warned that the volcano posed a substantial hazard to the surrounding region. This warning was proven to be prophetic by violent eruptions that occurred in March and April of 1982. These eruptions blasted away nearly all of the summit dome, blanketed the surrounding region with tephra, and sent pyroclastic

  3. The role of post-collisional strike-slip tectonics in the geological evolution of the late Neoproterozoic volcano-sedimentary Guaratubinha Basin, southern Brazil

    Science.gov (United States)

    Barão, Leonardo M.; Trzaskos, Barbara; Vesely, Fernando F.; de Castro, Luís Gustavo; Ferreira, Francisco J. F.; Vasconcellos, Eleonora M. G.; Barbosa, Tiago C.

    2017-12-01

    The Guaratubinha Basin is a late Neoproterozoic volcano-sedimentary basin included in the transitional-stage basins of the South American Platform. The aim of this study is to investigate its tectonic evolution through a detailed structural analysis based on remote sensing and field data. The structural and aerogeophysics data indicate that at least three major deformational events affected the basin. Event E1 caused the activation of the two main basin-bounding fault zones, the Guaratubinha Master Fault and the Guaricana Shear Zone. These structures, oriented N20-45E, are associated with well-defined right-lateral to oblique vertical faults, conjugate normal faults and vertical flow structures. Progressive transtensional deformation along the two main fault systems was the main mechanism for basin formation and the deposition of thick coarse-grained deposits close to basin-borders. The continuous opening of the basin provided intense intermediate and acid magmatism as well as deposition of volcaniclastic sediments. Event E2 characterizes generalized compression, recorded as minor thrust faults with tectonic transport toward the northwest and left-lateral activation of the NNE-SSW Palmital Shear Zone. Event E3 is related to the Mesozoic tectonism associated with the South Atlantic opening, which generated diabase dykes and predominantly right-lateral strike-slip faults oriented N10-50W. Its rhomboidal geometry with long axis parallel to major Precambrian shear zones, the main presence of high-angle, strike-slip or oblique faults, the asymmetric distribution of geological units and field evidence for concomitant Neoproterozoic magmatism and strike-slip movements are consistent with pull-apart basins reported in the literature.

  4. Southern cone energy network coal gasification for SNG production and pipeline system. Feasibility study. Volume 1. Executive summary. Export trade information

    International Nuclear Information System (INIS)

    1992-01-01

    The Executive Summary document summarizes the study report on the economic and technical feasibility of gasifying coal to produce a substitute natural gas (SNG) for distribution to the industrial areas of Southern Brazil. The report includes data surveys, technology assessments, process evaluations, and conceptual designs and analyses. The study contributes to the Brazilian Government efforts to investigate feasible crude oil substitution programs that will meet the nation's energy needs by utilizing domestic resources, thereby reducing the severe negative impact of foreign crude oil importation on Brazil's balance of payments

  5. Volcano seismology

    Science.gov (United States)

    Chouet, B.

    2003-01-01

    A fundamental goal of volcano seismology is to understand active magmatic systems, to characterize the configuration of such systems, and to determine the extent and evolution of source regions of magmatic energy. Such understanding is critical to our assessment of eruptive behavior and its hazardous impacts. With the emergence of portable broadband seismic instrumentation, availability of digital networks with wide dynamic range, and development of new powerful analysis techniques, rapid progress is being made toward a synthesis of high-quality seismic data to develop a coherent model of eruption mechanics. Examples of recent advances are: (1) high-resolution tomography to image subsurface volcanic structures at scales of a few hundred meters; (2) use of small-aperture seismic antennas to map the spatio-temporal properties of long-period (LP) seismicity; (3) moment tensor inversions of very-long-period (VLP) data to derive the source geometry and mass-transport budget of magmatic fluids; (4) spectral analyses of LP events to determine the acoustic properties of magmatic and associated hydrothermal fluids; and (5) experimental modeling of the source dynamics of volcanic tremor. These promising advances provide new insights into the mechanical properties of volcanic fluids and subvolcanic mass-transport dynamics. As new seismic methods refine our understanding of seismic sources, and geochemical methods better constrain mass balance and magma behavior, we face new challenges in elucidating the physico-chemical processes that cause volcanic unrest and its seismic and gas-discharge manifestations. Much work remains to be done toward a synthesis of seismological, geochemical, and petrological observations into an integrated model of volcanic behavior. Future important goals must include: (1) interpreting the key types of magma movement, degassing and boiling events that produce characteristic seismic phenomena; (2) characterizing multiphase fluids in subvolcanic

  6. The eruptive chronology of the Ampato-Sabancaya volcanic complex (Southern Peru)

    Science.gov (United States)

    Samaniego, Pablo; Rivera, Marco; Mariño, Jersy; Guillou, Hervé; Liorzou, Céline; Zerathe, Swann; Delgado, Rosmery; Valderrama, Patricio; Scao, Vincent

    2016-09-01

    We have reconstructed the eruptive chronology of the Ampato-Sabancaya volcanic complex (Southern Peru) on the basis of extensive fieldwork, and a large dataset of geochronological (40K-40Ar, 14C and 3He) and geochemical (major and trace element) data. This volcanic complex is composed of two successive edifices that have experienced discontinuous volcanic activity from Middle Pleistocene to Holocene times. The Ampato compound volcano consists of a basal edifice constructed over at least two cone-building stages dated at 450-400 ka and 230-200 ka. After a period of quiescence, the Ampato Upper edifice was constructed firstly during an effusive stage (80-70 ka), and then by the formation of three successive peaks: the Northern, Southern (40-20 ka) and Central cones (20-10 ka). The Southern peak, which is the biggest, experienced large explosive phases, resulting in deposits such as the Corinta plinian fallout. During the Holocene, eruptive activity migrated to the NE and constructed the mostly effusive Sabancaya edifice. This cone comprised many andesitic and dacitic blocky lava flows and a young terminal cone, mostly composed of pyroclastic material. Most samples from the Ampato-Sabancaya define a broad high-K magmatic trend composed of andesites and dacites with a mineral assemblage of plagioclase, amphibole, biotite, ortho- and clino-pyroxene, and Fe-Ti oxides. A secondary trend also exists, corresponding to rare dacitic explosive eruptions (i.e. Corinta fallout and flow deposits). Both magmatic trends are derived by fractional crystallisation involving an amphibole-rich cumulate with variable amounts of upper crustal assimilation. A marked change in the overall eruptive rate has been identified between Ampato ( 0.1 km3/ka) and Sabancaya (0.6-1.7 km3/ka). This abrupt change demonstrates that eruptive rates have not been homogeneous throughout the volcano's history. Based on tephrochronologic studies, the Late Holocene Sabancaya activity is characterised by strong

  7. Os efeitos da transnacionalização sobre a governança regional: o caso da conflituosa implantação da indústria de celulose no cone sul da América The effects of transnationalization on regional governance: the case of the conflictive cellulose industry implementation in the southern cone of America

    Directory of Open Access Journals (Sweden)

    Deisy Ventura

    2009-12-01

    Full Text Available O presente artigo pretende cotejar os efeitos da implantação da indústria de celulose no Cone Sul da América a partir dos casos envolvendo, de um lado, Argentina e Uruguai e, de outro, o Brasil, no que diz respeito à permeabilidade entre marcos regulatórios, à justaposição de âmbitos de solução de conflitos e ao papel dos movimentos sociais. A partir da análise dos referidos processos, são apontados os impactos da globalização econômica em termos de flexibilização e desregulamentação da legislação nacional, limitação dos instrumentos regulatórios regionais, inadequação das instituições político-jurídicas para a resolução dos conflitos e ineficácia da sociedade civil perante estes. Sustenta-se, nesta base, a necessidade de internacionalização dos movimentos sociais no sentido de fazer face à permeabilidade entre pulsões regulatórias transnacionais orientadas por e para o mercado.The present article intends to compare the effects of the cellulose industry implementation in the Southern Cone of America in the cases that involved, on the one hand, Argentina and Uruguay and, on the other, Brazil, concerning the permeability among regulatory sets, juxtaposition of conflict resolution ambits and the social movements' roles. Parting from the analysis of these processes, the impacts of economic globalization are pointed out in terms of the flexibilization and deregulation of national legislation, limitation of regional regulatory instruments, inadequacy of politico-legal institutions to the solution of conflicts and inefficacy of social movements in facing them. Based on it, the need for the internationalization of the social movements is affirmed in order to face the permeability of transnational regulatory impulses oriented by and to the market.

  8. Volcanoes: Nature's Caldrons Challenge Geochemists.

    Science.gov (United States)

    Zurer, Pamela S.

    1984-01-01

    Reviews various topics and research studies on the geology of volcanoes. Areas examined include volcanoes and weather, plate margins, origins of magma, magma evolution, United States Geological Survey (USGS) volcano hazards program, USGS volcano observatories, volcanic gases, potassium-argon dating activities, and volcano monitoring strategies.…

  9. Quotient normed cones

    Indian Academy of Sciences (India)

    general setting of the space CL(X, Y ) of all continuous linear mappings from a normed cone (X, p) to a normed cone (Y, q), extending several well-known results related to open continuous linear mappings between normed linear spaces. Keywords. Normed cone; extended quasi-metric; continuous linear mapping; bicom-.

  10. Mud Volcanoes of Trinidad as Astrobiological Analogs for Martian Environments

    Directory of Open Access Journals (Sweden)

    Riad Hosein

    2014-10-01

    Full Text Available Eleven onshore mud volcanoes in the southern region of Trinidad have been studied as analog habitats for possible microbial life on Mars. The profiles of the 11 mud volcanoes are presented in terms of their physical, chemical, mineralogical, and soil properties. The mud volcanoes sampled all emitted methane gas consistently at 3% volume. The average pH for the mud volcanic soil was 7.98. The average Cation Exchange Capacity (CEC was found to be 2.16 kg/mol, and the average Percentage Water Content was 34.5%. Samples from three of the volcanoes, (i Digity; (ii Piparo and (iii Devil’s Woodyard were used to culture bacterial colonies under anaerobic conditions indicating possible presence of methanogenic microorganisms. The Trinidad mud volcanoes can serve as analogs for the Martian environment due to similar geological features found extensively on Mars in Acidalia Planitia and the Arabia Terra region.

  11. Mud Volcanoes of Trinidad as Astrobiological Analogs for Martian Environments

    Science.gov (United States)

    Hosein, Riad; Haque, Shirin; Beckles, Denise M.

    2014-01-01

    Eleven onshore mud volcanoes in the southern region of Trinidad have been studied as analog habitats for possible microbial life on Mars. The profiles of the 11 mud volcanoes are presented in terms of their physical, chemical, mineralogical, and soil properties. The mud volcanoes sampled all emitted methane gas consistently at 3% volume. The average pH for the mud volcanic soil was 7.98. The average Cation Exchange Capacity (CEC) was found to be 2.16 kg/mol, and the average Percentage Water Content was 34.5%. Samples from three of the volcanoes, (i) Digity; (ii) Piparo and (iii) Devil’s Woodyard were used to culture bacterial colonies under anaerobic conditions indicating possible presence of methanogenic microorganisms. The Trinidad mud volcanoes can serve as analogs for the Martian environment due to similar geological features found extensively on Mars in Acidalia Planitia and the Arabia Terra region. PMID:25370529

  12. Mud volcanoes of trinidad as astrobiological analogs for martian environments.

    Science.gov (United States)

    Hosein, Riad; Haque, Shirin; Beckles, Denise M

    2014-10-13

    Eleven onshore mud volcanoes in the southern region of Trinidad have been studied as analog habitats for possible microbial life on Mars. The profiles of the 11 mud volcanoes are presented in terms of their physical, chemical, mineralogical, and soil properties. The mud volcanoes sampled all emitted methane gas consistently at 3% volume. The average pH for the mud volcanic soil was 7.98. The average Cation Exchange Capacity (CEC) was found to be 2.16 kg/mol, and the average Percentage Water Content was 34.5%. Samples from three of the volcanoes, (i) Digity; (ii) Piparo and (iii) Devil's Woodyard were used to culture bacterial colonies under anaerobic conditions indicating possible presence of methanogenic microorganisms. The Trinidad mud volcanoes can serve as analogs for the Martian environment due to similar geological features found extensively on Mars in Acidalia Planitia and the Arabia Terra region.

  13. Volcanoes: observations and impact

    Science.gov (United States)

    Thurber, Clifford; Prejean, Stephanie G.

    2012-01-01

    Volcanoes are critical geologic hazards that challenge our ability to make long-term forecasts of their eruptive behaviors. They also have direct and indirect impacts on human lives and society. As is the case with many geologic phenomena, the time scales over which volcanoes evolve greatly exceed that of a human lifetime. On the other hand, the time scale over which a volcano can move from inactivity to eruption can be rather short: months, weeks, days, and even hours. Thus, scientific study and monitoring of volcanoes is essential to mitigate risk. There are thousands of volcanoes on Earth, and it is impractical to study and implement ground-based monitoring at them all. Fortunately, there are other effective means for volcano monitoring, including increasing capabilities for satellite-based technologies.

  14. Cinder cones of Mount Slamet, Central Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Igan S. SutawIdjaja

    2014-06-01

    Full Text Available http://dx.doi.org/10.17014/ijog.vol4no1.20096The Mount Slamet volcanic field in Central Java, Indonesia, contains thirty five cinder cones within an area of 90 sq. km in the east flank of the volcano. The cinder cones occur singly or in small groups, with diameter of the base ranges from 130 - 750 m and the height is around 250 m. Within the volcanic field, the cinder cones are spread over the volcanic area at the distance of 4 to 14 km from the eruption center of the Slamet Volcano. They are concentrated within latitudes 7°11’00” - 7°16’00” S,, and longitudes 109°15’00” - 109°18’00” E. The density of the cinder cones is about 1.5 cones/km2. Most of the cinder cones lie on the Tertiary sedimentary rocks along the NW-trending fault system and on radial fractures. The structural pattern may be related to the radial faults in this region. The cone surfaces are commonly blanketed by Slamet air-falls and lava flows. The deposits consist of poorly bedded, very coarse-grained, occasionally overlain by oxidized scoria, and large-sized of ballistic bombs and blocks. There are various kind of volcanic bombs originating from scoriae ballistic rock fragments. The other kind of volcanic bombs are breadcrust bomb, almond seed or contorted shape. All of the cinder cones have undergone degradation, which can be observed from the characters of gully density and surface morphology. By using Porter parameters, Hco is equal to 0.25 Wco, whilst Wcr is equal to 0.40 Wco. The Hco/Wco ratio is higher than Hco = 0.2 Wco reference line. A radiometric dating using K-Ar method carried out on a scoria bomb yields the age of 0.042 + 0.020 Ma.  

  15. Determinants and geographical variation in the distribution of depression in the Southern cone of Latin America: A population-based survey in four cities in Argentina, Chile and Uruguay.

    Science.gov (United States)

    Daray, F M; Rubinstein, A L; Gutierrez, L; Lanas, F; Mores, N; Calandrelli, M; Poggio, R; Ponzo, J; Irazola, V E

    2017-10-01

    Depression is one of the major contributors to the global burden of diseases; however, population-based data in South America are limited. We conducted a population-based cross sectional study with 7524 participants, aged 35-74 years old, recruited between February 2010 and December 2011 from randomly selected samples in 4 cities (Bariloche and Marcos Paz, Argentina; Temuco, Chile; and Pando-Barros Blancos, Uruguay). Major Depressive Episode (MDE) was assessed using the Patient Health Questionnaire (PHQ) - 9. The overall prevalence of MDE was 14.6% (95% CI: 13.6, 15.6). However, there was a geographical variability of up to 3.7 folds between different cities being 5.6% (95% CI: 4.6, 6.7) in Marcos Paz, Argentina; 9.5% (95% CI: 8.2, 10.9) in Bariloche, Argentina; 18.1% (95% CI: 16.3, 20.0) in Temuco, Chile, and 18.2 (95% CI: 16.3, 20.2) in Pando-Barros Blancos, Uruguay. The multivariate model showed that, adjusted by location, being female, being between 35 and 44 years old, having experienced at least one stressful life event, currently smoking, and having a history of chronic medical diseases were independently associated with an increased risk of MDE, while having higher education and being married or living with a partner reduced the risk of MDE. These results are representative of the selected cities included in the study. As such extrapolation to the general populations of Argentina, Chile, and Uruguay should be done with caution CONCLUSIONS: This study showed a high prevalence and variability of MDE in the Southern Cone of Latin America. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Geophysical investigations of magma plumbing systems at Cerro Negro volcano, Nicaragua

    OpenAIRE

    MacQueen, Patricia Grace

    2013-01-01

    Cerro Negro near Léon, Nicaragua is a very young (163 years), relatively small basaltic cinder cone volcano that has been unusually active during its short lifespan (recurrence interval 6-7 years), presenting a significant hazard to nearby communities. Previous studies have raised several questions as to the proper classification of Cerro Negro and its relation to neighboring Las Pilas-El Hoyo volcano. Analysis of Bouguer gravity data collected at Cerro Negro has revealed connected positive d...

  17. Inside the volcano: The how and why of Thrihnukagigur volcano, Iceland

    Science.gov (United States)

    LaFemina, Peter; Hudak, Michael; Feineman, Maureen; Geirsson, Halldor; Normandeau, Jim; Furman, Tanya

    2015-04-01

    The Thrihnukagigur volcano, located in the Brennisteinsfjöll fissure swarm on the Reykjanes Peninsula, Iceland, offers a unique exposure of the upper magmatic plumbing system of a monogenetic volcano. The volcano formed during a dike-fed strombolian eruption ~3500 BP with flow-back leaving an evacuated conduit, elongated parallel to the regional maximum horizontal stress. At least two vents were formed above the dike, as well as several small hornitos south-southwest of the main vent. In addition to the evacuated conduit, a cave exists 120 m below the vent. The cave exposes stacked lava flows and a buried cinder cone. The unconsolidated tephra of the cone is cross-cut by a NNE-trending dike, which runs across the ceiling of this cave to the vent that produced lava and tephra during the ~3500 BP fissure eruption. We present geochemical, petrologic and geologic observations, including a high-resolution three-dimensional scan of the system that indicate the dike intersected, eroded and assimilated unconsolidated tephra from the buried cinder cone, thus excavating a region along the dike, allowing for future slumping and cave formation. Two petrographically distinct populations of plagioclase phenocrysts are present in the system: a population of smaller (maximum length 1 mm) acicular phenocrysts and a population of larger (maximum length 10 mm) tabular phenocrysts that is commonly broken and displays disequilibrium sieve textures. The acicular plagioclase crystals are present in the dike and lavas while the tabular crystals are in these units and the buried tephra. An intrusion that appears not to have interacted with the tephra has only acicular plagioclase. This suggests that a magma crystallizing a single acicular population of plagioclase intruded the cinder cone and rapidly assimilated the tephra, incorporating the tabular population of phenocrysts from the cone. Petrographic thin-sections of lavas sampled near the vent show undigested fragments of tephra from

  18. Laboratory volcano geodesy

    Science.gov (United States)

    Færøvik Johannessen, Rikke; Galland, Olivier; Mair, Karen

    2014-05-01

    Magma transport in volcanic plumbing systems induces surface deformation, which can be monitored by geodetic techniques, such as GPS and InSAR. These geodetic signals are commonly analyzed through geodetic models in order to constrain the shape of, and the pressure in, magma plumbing systems. These models, however, suffer critical limitations: (1) the modelled magma conduit shapes cannot be compared with the real conduits, so the geodetic models cannot be tested nor validated; (2) the modelled conduits only exhibit shapes that are too simplistic; (3) most geodetic models only account for elasticity of the host rock, whereas substantial plastic deformation is known to occur. To overcome these limitations, one needs to use a physical system, in which (1) both surface deformation and the shape of, and pressure in, the underlying conduit are known, and (2) the mechanical properties of the host material are controlled and well known. In this contribution, we present novel quantitative laboratory results of shallow magma emplacement. Fine-grained silica flour represents the brittle crust, and low viscosity vegetable oil is an analogue for the magma. The melting temperature of the oil is 31°C; the oil solidifies in the models after the end of the experiments. At the time of injection the oil temperature is 50°C. The oil is pumped from a reservoir using a volumetric pump into the silica flour through a circular inlet at the bottom of a 40x40 cm square box. The silica flour is cohesive, such that oil intrudes it by fracturing it, and produces typical sheet intrusions (dykes, cone sheets, etc.). During oil intrusion, the model surface deforms, mostly by doming. These movements are measured by an advanced photogrammetry method, which uses 4 synchronized fixed cameras that periodically image the surface of the model from different angles. We apply particle tracking method to compute the 3D ground deformation pattern through time. After solidification of the oil, the

  19. Visions of Volcanoes

    Directory of Open Access Journals (Sweden)

    David M. Pyle

    2017-12-01

    Full Text Available The long nineteenth century marked an important transition in the understanding of the nature of combustion and fire, and of volcanoes and the interior of the earth. It was also a period when dramatic eruptions of Vesuvius lit up the night skies of Naples, providing ample opportunities for travellers, natural philosophers, and early geologists to get up close to the glowing lavas of an active volcano. This article explores written and visual representations of volcanoes and volcanic activity during the period, with the particular perspective of writers from the non-volcanic regions of northern Europe. I explore how the language of ‘fire’ was used in both first-hand and fictionalized accounts of peoples’ interactions with volcanoes and experiences of volcanic phenomena, and see how the routine or implicit linkage of ‘fire’ with ‘combustion’ as an explanation for the deep forces at play within and beneath volcanoes slowly changed as the formal scientific study of volcanoes developed. I show how Vesuvius was used as a ‘model’ volcano in science and literature and how, later, following devastating eruptions in Indonesia and the Caribbean, volcanoes took on a new dimension as contemporary agents of death and destruction.

  20. A Controversial Source for a 1.2-1.5 km3 Debris Avalanche Deposit in Northern Ecuador: A Case Study of Cubilche Volcano

    Science.gov (United States)

    Mulas, M.; Bowman, L.; Roverato, M.; Larrea Marquez, P.; Casado, I.

    2017-12-01

    Debris avalanche deposits (DAD) are common products of catastrophic volcanic edifice collapses. These failure events leave peculiar horseshoe-shaped scars on the summits of stratovolcanoes. Cubilche Volcano (3826 masl), located S of the city of Ibarra (Imbabura Province) and E of the dormant Imbabura volcano, displays a distinct horseshoe-shaped scar towards the N. This post-collapse edifice that we name "Old Cubilche Volcano" (OCV) hosts an additional edifice, "Young Cubilche Volcano" (YCV), which partially covers the southern flank of OCV. Knowledge of Cubilche is critical because of its close proximity to the provincial capital of Ibarra. In fact, Imbabura edifice was built over the northwestern slope of OCV and partially covered it. The studied DAD (unknown age) has been recently linked to Imbabura Volcano as a product of its northwestern sector collapse (LePennec et al., 2011). Alternatively, previous work proposed that the DAD, covering 80 km2 and reaching >13 km distance with an estimated volume of 1.6 km3, was the product of the older OCV (Ruiz, 2003). To constrain the source of the DAD, detailed fieldwork with granulometric, petrological, and geochemical analyses of the deposit was conducted. Preliminary data points to Cubilche as the most likely source for this DAD in accordance with Ruiz (2003). The shaded relief image of the present day OCV shows that the morphology of the volcano is well-preserved on its southern, eastern, and western flanks. This allows the reconstruction of the morphology of OCV prior to the collapse through interpolation of elevation and altitude data of the preserved flanks. A DEM of the present day topography (12m horizontal resolution) obtained from TanDEM-X data was used for extrapolating the morphology. This methodology shows that the post-collapse base of the amphitheater was reconstructed by removing the relief of the present day YCV. The reconstructed topography of OCV shows that it could have been a symmetric cone, reaching

  1. Berkeley Lighting Cone

    Energy Technology Data Exchange (ETDEWEB)

    Lask, Kathleen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gadgil, Ashok [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-10-24

    A lighting cone is a simple metal cone placed on the fuel bed of a stove during ignition to act as a chimney, increasing the draft through the fuel bed. Many stoves tend to be difficult to light due to poor draft through the fuel bed, so lighting cones are used in various parts of the world as an inexpensive accessory to help with ignition.

  2. HYPOCENTER DISTRIBUTION OF LOW FREQUENCY EVENT AT PAPANDAYAN VOLCANO

    Directory of Open Access Journals (Sweden)

    Muhammad Mifta Hasan

    2016-10-01

    Full Text Available Papandayan volcano is a stratovolcano with irregular cone-shaped has eight craters around the peak. The most active crater in Papandayan is a Mas crater. Distribution of relocated event calculated using Geiger Adaptive Damping Algorithm (GAD shows that the epicenter of the event centered below Mas crater with maximum rms 0.114. While depth of the hypocenter range between 0-2 km and 5-6 km due to activity of steam and gas.

  3. A porous flow model for the geometrical form of volcanoes - Critical comments

    Science.gov (United States)

    Wadge, G.; Francis, P.

    1982-01-01

    A critical evaluation is presented of the assumptions on which the mathematical model for the geometrical form of a volcano arising from the flow of magma in a porous medium of Lacey et al. (1981) is based. The lack of evidence for an equipotential surface or its equivalent in volcanoes prior to eruption is pointed out, and the preference of volcanic eruptions for low ground is attributed to the local stress field produced by topographic loading rather than a rising magma table. Other difficulties with the model involve the neglect of the surface flow of lava under gravity away from the vent, and the use of the Dupuit approximation for unconfined flow and the assumption of essentially horizontal magma flow. Comparisons of model predictions with the shapes of actual volcanoes reveal the model not to fit lava shield volcanoes, for which the cone represents the solidification of small lava flows, and to provide a poor fit to composite central volcanoes.

  4. Detection and follow-up of chronic obstructive pulmonary disease (COPD and risk factors in the Southern Cone of Latin America. the pulmonary risk in South America (PRISA study

    Directory of Open Access Journals (Sweden)

    Olivera Héctor

    2011-06-01

    Full Text Available Abstract Background The World Health Organization has estimated that by 2030, chronic obstructive pulmonary disease will be the third leading cause of death worldwide. Most knowledge of chronic obstructive pulmonary disease is based on studies performed in Europe or North America and little is known about the prevalence, patient characteristics and change in lung function over time in patients in developing countries, such as those of Latin America. This lack of knowledge is in sharp contrast to the high levels of tobacco consumption and exposure to biomass fuels exhibited in Latin America, both major risk factors for the development of chronic obstructive pulmonary disease. Studies have also demonstrated that most Latin American physicians frequently do not follow international chronic obstructive pulmonary disease diagnostic and treatment guidelines. The PRISA Study will expand the current knowledge regarding chronic obstructive pulmonary disease and risk factors in Argentina, Chile and Uruguay to inform policy makers and health professionals on the best policies and practices to address this condition. Methods/Design PRISA is an observational, prospective cohort study with at least four years of follow-up. In the first year, PRISA has employed a randomized three-staged stratified cluster sampling strategy to identify 6,000 subjects from Marcos Paz and Bariloche, Argentina, Temuco, Chile, and Canelones, Uruguay. Information, such as comorbidities, socioeconomic status and tobacco and biomass exposure, will be collected and spirometry, anthropometric measurements, blood sampling and electrocardiogram will be performed. In year four, subjects will have repeat measurements taken. Discussion There is no longitudinal data on chronic obstructive pulmonary disease incidence and risk factors in the southern cone of Latin America, therefore this population-based prospective cohort study will fill knowledge gaps in the prevalence and incidence of

  5. Counternarcotic Efforts in the Southern Cone: Argentina

    Science.gov (United States)

    1990-06-15

    Corrientes , and in this case* the source is Brazil. Some marijuana is smuggled from Chile through Mendoza and Neuquen provinces. The transportation method...34 3, States in the early 1960’s promoted as part of the Alliance for Progress program the "antifoco" theory which vms eagerly accepted and incorporated

  6. Southern Cone Countries Primary Healthcare Study | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Researchers will undertake a literature review, documentary analysis, key informant interviews, focal group discussions with leading stakeholders, and surveys of PHC users and professionals. The idea is to identify opportunities for and limits to using PHC as a strategy to achieve more integrated and universal health care.

  7. Counternarcotic Efforts in the Southern Cone: Chile

    Science.gov (United States)

    1990-06-30

    within its scope is drug trafficking. -. The Ministry of Health. The Instituto de Salud Publica (National Institute of Public Heath, part of the...Instituto de Salud Publica ) issued a writen reply to a questionaire. Additional information on health matters was provided by Dr. Roberto Laihacar, psychiatrist of the Military Hospital in Santiago. 37

  8. Geology and Geochemistry of Magmatic Rocks from the Southern Part of the Kyushu-Palau Ridge in the Philippine Sea

    Science.gov (United States)

    Lelikov, E. P.; Sedin, V. T.; Pugachev, A. A.

    2018-03-01

    The paper reports the results of a geochemical study of volcanogenic rocks from the southern part of the Kyushu-Palau Ridge. Volcanic structures, such as plateaulike rises, mountain massifs, and single volcanoes, are the major relief-forming elements of the southern part of the Kyushu-Palau Ridge. They are divided into three types according to the features of the relief and geological structure: shield, cone-shaped, and dome-shaped volcanoes. The ridge was formed on oceanic crust in the Late Mesozoic and underwent several stages of evolution with different significance and application of forces (tension and compression). Change in the geodynamic conditions during the geological evolution of the ridge mostly determined the composition of volcanic rocks of deep-mantle nature. Most of the ridge was formed by the Early Paleogene under geodynamic conditions close to the formation of oceanic islands (shield volcanoes) under tension. The island arc formed on the oceanic basement in the compression mode in the Late Eocene-Early Oligocene. Dome-shaped volcanic edifices composed of alkaline volcanic rocks were formed in the Late Oligocene-Early Miocene under tension. Based on the new geochemical data, detailed characteristics of volcanic rocks making up the shield, cone-shape, and dome-shape stratovolcanoes resulting in the features of these volcanic edifices are given for the first time. Continuous volcanism (with an age from the Cretaceous to the Late Miocene and composition from oceanic tholeiite to calc-alkaline volcanites of the island arc type) resulting in growth of the Earth's crust beneath the Kyushu-Palau Ridge was the major factor in the formation this ridge.

  9. Volcano hazards in the San Salvador region, El Salvador

    Science.gov (United States)

    Major, J.J.; Schilling, S.P.; Sofield, D.J.; Escobar, C.D.; Pullinger, C.R.

    2001-01-01

    San Salvador volcano is one of many volcanoes along the volcanic arc in El Salvador (figure 1). This volcano, having a volume of about 110 cubic kilometers, towers above San Salvador, the country’s capital and largest city. The city has a population of approximately 2 million, and a population density of about 2100 people per square kilometer. The city of San Salvador and other communities have gradually encroached onto the lower flanks of the volcano, increasing the risk that even small events may have serious societal consequences. San Salvador volcano has not erupted for more than 80 years, but it has a long history of repeated, and sometimes violent, eruptions. The volcano is composed of remnants of multiple eruptive centers, and these remnants are commonly referred to by several names. The central part of the volcano, which contains a large circular crater, is known as El Boquerón, and it rises to an altitude of about 1890 meters. El Picacho, the prominent peak of highest elevation (1960 meters altitude) to the northeast of the crater, and El Jabali, the peak to the northwest of the crater, represent remnants of an older, larger edifice. The volcano has erupted several times during the past 70,000 years from vents central to the volcano as well as from smaller vents and fissures on its flanks [1] (numerals in brackets refer to end notes in the report). In addition, several small cinder cones and explosion craters are located within 10 kilometers of the volcano. Since about 1200 A.D., eruptions have occurred almost exclusively along, or a few kilometers beyond, the northwest flank of the volcano, and have consisted primarily of small explosions and emplacement of lava flows. However, San Salvador volcano has erupted violently and explosively in the past, even as recently as 800 years ago. When such eruptions occur again, substantial population and infrastructure will be at risk. Volcanic eruptions are not the only events that present a risk to local

  10. Diffuse Emission of Carbon Dioxide From Irazú Volcano, Costa Rica, Central America

    Science.gov (United States)

    Galindo, I.; Melian, G.; Ramirez, C.; Salazar, J.; Hernandez, P.; Perez, N.; Fernandez, M.; Notsu, K.

    2001-12-01

    Irazú (3,432 m) is a stratovolcano situated 50 Km east of San José, the capital of Costa Rica. Major geomorphological features at Irazú are five craters (Main Crater, Diego de La Haya, Playa Hermosa, La Laguna and El Piroclástico), and at least 10 satellitic cones which are located on its southern flank. Its eruptive history is known from 1723. Since then, have ocurred at least 23 eruptions. All known Holocene eruptions have been explosive. The focus of eruptions at the summit crater complex has migrated to the west towards the historically active crater from 1963 to 1965. Diffuse degassing studies are becoming an additional geochemical tool for volcanic surveillance. The purpose of this study is to evaluate the spatial distribution of diffuse CO2 emission as well as CO2 efflux from Irazú volcano. A soil CO2 flux survey of 201 sampling sites was carried out at the summit of Irazú volcano in March 2001. Sampling site distribution covered an area of 3.5 Km2. Soil CO2 efflux measurements were performed by means of a portable NDIR sensor LICOR-800. Soil CO2 efflux values ranged from non-detectable values to 316.1 gm-2d-1 Statistical-graphical analysis of the data showed three overlapping geochemical populations. The background mean is 3 gm-2d-1 and represents 91.3 % of the total data. Peak group showed a mean of 18 gm-2d-1 and represented 1.2 % of the data. Anomalous CO2 flux values are mainly detected in the South sector of the main crater, where landslides have previously occurred. Diffuse CO2 degassing rate of the study area yields 44.2 td-1.

  11. Cook Inlet and Kenai Peninsula, Alaska ESI: VOLCANOS (Volcano Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains the locations of volcanos in Cook Inlet and Kenai Peninsula, Alaska. Vector points in the data set represent the location of the volcanos....

  12. Volcano morphometry and volume scaling on Venus

    Science.gov (United States)

    Garvin, J. B.; Williams, R. S., Jr.

    1994-01-01

    A broad variety of volcanic edifices have been observed on Venus. They ranged in size from the limits of resolution of the Magellan SAR (i.e., hundreds of meters) to landforms over 500 km in basal diameter. One of the key questions pertaining to volcanism on Venus concerns the volume eruption rate or VER, which is linked to crustal productivity over time. While less than 3 percent of the surface area of Venus is manifested as discrete edifices larger than 50 km in diameter, a substantial component of the total crustal volume of the planet over the past 0.5 Ga is related to isolated volcanoes, which are certainly more easily studied than the relatively diffusely defined plains volcanic flow units. Thus, we have focused our efforts on constraining the volume productivity of major volcanic edifices larger than 100 km in basal diameter. Our approach takes advantage of the topographic data returned by Magellan, as well as our database of morphometric statistics for the 20 best known lava shields of Iceland, plus Mauna Loa of Hawaii. As part of this investigation, we have quantified the detailed morphometry of nearly 50 intermediate to large scale edifices, with particular attention to their shape systematics. We found that a set of venusian edifices which include Maat, Sapas, Tepev, Sif, Gula, a feature at 46 deg S, 215 deg E, as well as the shield-like structure at 10 deg N, 275 deg E are broadly representative of the approx. 400 volcanic landforms larger than 50 km. The cross-sectional shapes of these 7 representative edifices range from flattened cones (i.e., Sif) similar to classic terrestrial lava shields such as Mauna Loa and Skjaldbreidur, to rather dome-like structures which include Maat and Sapas. The majority of these larger volcanoes surveyed as part of our study displayed cross-sectional topographies with paraboloidal shaped, in sharp contrast with the cone-like appearance of most simple terrestrial lava shields. In order to more fully explore the

  13. Darwin's triggering mechanism of volcano eruptions

    Science.gov (United States)

    Galiev, Shamil

    2010-05-01

    Charles Darwin wrote that ‘… the elevation of many hundred square miles of territory near Concepcion is part of the same phenomenon, with that splashing up, if I may so call it, of volcanic matter through the orifices in the Cordillera at the moment of the shock;…' and ‘…a power, I may remark, which acts in paroxysmal upheavals like that of Concepcion, and in great volcanic eruptions,…'. Darwin reports that ‘…several of the great chimneys in the Cordillera of central Chile commenced a fresh period of activity ….' In particular, Darwin reported on four-simultaneous large eruptions from the following volcanoes: Robinson Crusoe, Minchinmavida, Cerro Yanteles and Peteroa (we cite the Darwin's sentences following his The Voyage of the Beagle and researchspace. auckland. ac. nz/handle/2292/4474). Let us consider these eruptions taking into account the volcano shape and the conduit. Three of the volcanoes (Minchinmavida (2404 m), Cerro Yanteles (2050 m), and Peteroa (3603 m)) are stratovolcanos and are formed of symmetrical cones with steep sides. Robinson Crusoe (922 m) is a shield volcano and is formed of a cone with gently sloping sides. They are not very active. We may surmise, that their vents had a sealing plug (vent fill) in 1835. All these volcanoes are conical. These common features are important for Darwin's triggering model, which is discussed below. The vent fill material, usually, has high level of porosity and a very low tensile strength and can easily be fragmented by tension waves. The action of a severe earthquake on the volcano base may be compared with a nuclear blast explosion of the base. It is known, that after a underground nuclear explosion the vertical motion and the surface fractures in a tope of mountains were observed. The same is related to the propagation of waves in conical elements. After the explosive load of the base. the tip may break and fly off at high velocity. Analogous phenomenon may be generated as a result of a

  14. Space Radar Image of Colombian Volcano

    Science.gov (United States)

    1999-01-01

    This is a radar image of a little known volcano in northern Colombia. The image was acquired on orbit 80 of space shuttle Endeavour on April 14, 1994, by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). The volcano near the center of the image is located at 5.6 degrees north latitude, 75.0 degrees west longitude, about 100 kilometers (65 miles) southeast of Medellin, Colombia. The conspicuous dark spot is a lake at the bottom of an approximately 3-kilometer-wide (1.9-mile) volcanic collapse depression or caldera. A cone-shaped peak on the bottom left (northeast rim) of the caldera appears to have been the source for a flow of material into the caldera. This is the northern-most known volcano in South America and because of its youthful appearance, should be considered dormant rather than extinct. The volcano's existence confirms a fracture zone proposed in 1985 as the northern boundary of volcanism in the Andes. The SIR-C/X-SAR image reveals another, older caldera further south in Colombia, along another proposed fracture zone. Although relatively conspicuous, these volcanoes have escaped widespread recognition because of frequent cloud cover that hinders remote sensing imaging in visible wavelengths. Four separate volcanoes in the Northern Andes nations ofColombia and Ecuador have been active during the last 10 years, killing more than 25,000 people, including scientists who were monitoring the volcanic activity. Detection and monitoring of volcanoes from space provides a safe way to investigate volcanism. The recognition of previously unknown volcanoes is important for hazard evaluations because a number of major eruptions this century have occurred at mountains that were not previously recognized as volcanoes. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of

  15. Progress in light cone physics

    International Nuclear Information System (INIS)

    Preparata, G.

    1973-01-01

    A very brief review is given of the progress made in the physics of the light cone in the past year. Included are the light cone expansion, gauge invariance and the consequences of precocious scaling near threshold, the light cone description of the muon pair experiment, light cone expansions, and the assessment and exploitation of analyticity properties in both mass and energy of light cone amplitudes. (U.S.)

  16. Cones for dental radiography

    Energy Technology Data Exchange (ETDEWEB)

    Butler, M J [National Radiological Protection Board, Harwell (UK)

    1977-04-01

    Dental radiographic techniques are summarized. The advantages and disadvantages of the use of both the conventional plastic pointer cone and the open-ended cylinders or divergent cones favoured both by the ICRP (Protection against Ionizing Radiation from External Sources, Oxford, Pergamon Press, 1973, ICRP Publication 15), and in the Code of Practice for the Protection of Persons against Ionizing Radiation arising from Medical and Dental Use (1972, 3rd edition, London, HMSO) are discussed. The use of the word 'should' in these recommendations to signify a desirable requirement, not an essential one, is noted. This wording is currently of interest both nationally and internationally in relation to regulations, standards and notes for guidance. The National Radiological Protection Board (NRPB) has been reviewing the position, and has concluded that open-ended cones have disadvantages which may sometimes outweigh their advantages. Although open-ended cones are preferable under some circumstances, the recommendation that they should be used ought not to be followed without an understanding of the issues involved. The hazards associated with the use of interchangeable cones are considered. The NRPB now proposes that the requirement for the replacement of pointer cones (for both new and existing equipment) should be withdrawn.

  17. Estructura, concentración y transformaciones en los medios del Cono Sur latinoamericano Structure, Concentration and Changes of the Media System in the Southern Cone of Latin America

    Directory of Open Access Journals (Sweden)

    Guillermo Néstor Mastrini

    2011-03-01

    property at the hands of multinational firms and the crisis of the current regulatory frameworks are the main frameworks for understanding the transformation of the media in the Southern Cone of Latin America. The processes of change identified to describe and analyze the evolution of Brazilian, Argentine, Chilean and Uruguayan media in recent years could not have been achieved without the collaboration of different governments and the radical transformations in the management and ownership patterns of these media.

  18. Volcanoes: Coming Up from Under.

    Science.gov (United States)

    Science and Children, 1980

    1980-01-01

    Provides specific information about the eruption of Mt. St. Helens in March 1980. Also discusses how volcanoes are formed and how they are monitored. Words associated with volcanoes are listed and defined. (CS)

  19. Petro-geochemical constraints on the source and evolution of magmas at El Misti volcano (Peru)

    Science.gov (United States)

    Rivera, Marco; Martin, Hervé; Le Pennec, Jean-Luc; Thouret, Jean-Claude; Gourgaud, Alain; Gerbe, Marie-Christine

    2017-01-01

    El Misti volcano, a large and hazardous edifice of the Andean Central Volcanic Zone (CVZ) of southern Peru, consists of four main growth stages. Misti 1 (> 112 ka) is an old stratovolcano partly concealed by two younger stratocones (Misti 2, 112-40 ka; Misti 3, 38-11 ka), capped in turn by a recent summit cone (Misti 4, Peru. Geochemical evidence indicates that magmatic evolution is mostly controlled by Assimilation-Fractional Crystallisation (AFC) mechanisms. Modelling reveals a mass-assimilated/mass-fractionated ratio (ρ) ≤ 2.2, which suggests an assimilated crust fraction below 14 wt.% on average. Our isotopic data clearly identify the Proterozoic "Charcani gneiss" basement as the main contaminant. Both contamination and assimilation processes peaked at 30 wt.%, during the Misti 3 stage when rhyolites were generated. We ascribe the general depletion in HREE and Y and elevated La/Yb and Sr/Y ratios in El Misti samples to the enrichment of the mantle wedge source of the parental magmas by a felsic melt of adakitic composition and hydrous fluids. Our work highlights that El Misti's magmatic system has remained relatively homogeneous since at least 0.12 Ma, with a marked influence of the contaminating crust in the Late Pleistocene Misti 3 stage, which resulted in highly explosive eruptions. Andesitic-dacitic compositions are dominant in the Holocene and historical Misti 4 stage, and are expected for future volcanic events at El Misti.

  20. Organizational changes at Earthquakes & Volcanoes

    Science.gov (United States)

    Gordon, David W.

    1992-01-01

    Primary responsibility for the preparation of Earthquakes & Volcanoes within the Geological Survey has shifted from the Office of Scientific Publications to the Office of Earthquakes, Volcanoes, and Engineering (OEVE). As a consequence of this reorganization, Henry Spall has stepepd down as Science Editor for Earthquakes & Volcanoes(E&V).

  1. Preliminary volcano-hazard assessment for the Katmai volcanic cluster, Alaska

    Science.gov (United States)

    Fierstein, Judy; Hildreth, Wes

    2000-01-01

    The world’s largest volcanic eruption of the 20th century broke out at Novarupta (fig. 1) in June 1912, filling with hot ash what came to be called the Valley of Ten Thousand Smokes and spreading downwind more fallout than all other historical Alaskan eruptions combined. Although almost all the magma vented at Novarupta, most of it had been stored beneath Mount Katmai 10 km away, which collapsed during the eruption. Airborne ash from the 3-day event blanketed all of southern Alaska, and its gritty fallout was reported as far away as Dawson, Ketchikan, and Puget Sound (fig. 21). Volcanic dust and sulfurous aerosol were detected within days over Wisconsin and Virginia; within 2 weeks over California, Europe, and North Africa; and in latter-day ice cores recently drilled on the Greenland ice cap. There were no aircraft in Alaska in 1912—fortunately! Corrosive acid aerosols damage aircraft, and ingestion of volcanic ash can cause abrupt jet-engine failure. Today, more than 200 flights a day transport 20,000 people and a fortune in cargo within range of dozens of restless volcanoes in the North Pacific. Air routes from the Far East to Europe and North America pass over and near Alaska, many flights refueling in Anchorage. Had this been so in 1912, every airport from Dillingham to Dawson and from Fairbanks to Seattle would have been enveloped in ash, leaving pilots no safe option but to turn back or find refuge at an Aleutian airstrip west of the ash cloud. Downwind dust and aerosol could have disrupted air traffic anywhere within a broad swath across Canada and the Midwest, perhaps even to the Atlantic coast. The great eruption of 1912 focused scientific attention on Novarupta, and subsequent research there has taught us much about the processes and hazards associated with such large explosive events (Fierstein and Hildreth, 1992). Moreover, work in the last decade has identified no fewer than 20 discrete volcanic vents within 15 km of Novarupta (Hildreth and others

  2. Stratigraphic architecture of hydromagmatic volcanoes that have undergone vent migration: a review of Korean case studies

    Science.gov (United States)

    Sohn, Y.

    2011-12-01

    Recent studies show that the architecture of hydromagmatic volcanoes is far more complex than formerly expected. A number of external factors, such as paleohydrology and tectonics, in addition to magmatic processes are thought to play a role in controlling the overall characteristics and architecture of these volcanoes. One of the main consequences of these controls is the migration of the active vent during eruption. Case studies of hydromagmatic volcanoes in Korea show that those volcanoes that have undergone vent migration are characterized by superposition or juxtaposition of multiple rim deposits of partial tuff rings and/or tuff cones that have contrasting lithofacies characteristics, bed attitudes, and paleoflow directions. Various causes of vent migration are inferred from these volcanoes. Large-scale collapse of fragile substrate is interpreted to have caused vent migration in the Early Pleistocene volcanoes of Jeju Island, which were built upon still unconsolidated continental shelf sediments. Late Pleistocene to Holocene volcanoes, which were built upon a stack of rigid, shield-forming lava flows, lack features due to large-scale substrate collapse and have generally simple and circular morphologies either of a tuff ring or of a tuff cone. However, ~600 m shift of the eruptive center is inferred from one of these volcanoes (Ilchulbong tuff cone). The vent migration in this volcano is interpreted to have occurred because the eruption was sourced by multiple magma batches with significant eruptive pauses in between. The Yangpori diatreme in a Miocene terrestrial half-graben basin in SE Korea is interpreted to be a subsurface equivalent of a hydromagmatic volcano that has undergone vent migration. The vent migration here is inferred to have had both vertical and lateral components and have been caused by an abrupt tectonic activity near the basin margin. In all these cases, rimbeds or diatreme fills derived from different source vents are bounded by either

  3. Mud Volcanoes as Exploration Targets on Mars

    Science.gov (United States)

    Allen, Carlton C.; Oehler, Dorothy Z.

    2010-01-01

    Tens of thousands of high-albedo mounds occur across the southern part of the Acidalia impact basin on Mars. These structures have geologic, physical, mineralogic, and morphologic characteristics consistent with an origin from a sedimentary process similar to terrestrial mud volcanism. The potential for mud volcanism in the Northern Plains of Mars has been recognized for some time, with candidate mud volcanoes reported from Utopia, Isidis, northern Borealis, Scandia, and the Chryse-Acidalia region. We have proposed that the profusion of mounds in Acidalia is a consequence of this basin's unique geologic setting as the depocenter for the tune fraction of sediments delivered by the outflow channels from the highlands.

  4. The diversity of mud volcanoes in the landscape of Azerbaijan

    Science.gov (United States)

    Rashidov, Tofig

    2014-05-01

    on surface, often of plane-conical shape, rising for 5 to 400 m and more over the country (for example, mud volcano Toragay, 400 m height). The base diameter is from 100 m to 3-4 km and more. Like the magmatic ones, the mud volcanoes are crowned with crater of convex-plane or deeply-seated shape. In Azerbaijan there are all types of mud volcanoes: active, extinct, buried, submarine, island, abundantly oil seeping. According to their morphology they are defined into cone-shaped, dome-shaped, ridge-shaped, plateau-shaped. The crater shapes are also various: conical, convex-plane, shield-shaped, deeply-seated, caldera-like. The most complete morphological classification was given in "Atlas of mud volcanoes of Azerbaijan" (Yakubov et al., 1971). Recently (Aliyev Ad. et al., 2003) it was proposed a quite new morphological classification of mud volcanoes of Azerbaijan. For the first time the mud volcanic manifestations had been defined. Volcanoes are ranged according to morphological signs, crater shape and type of activity.

  5. Volcano-ice interactions on Mars

    International Nuclear Information System (INIS)

    Allen, C.C.

    1979-01-01

    Central volcanic eruptions beneath terrestrial glaciers have built steep-sided, flat-topped mountains composed of pillow lava, glassy tuff, capping flows, and cones of basalt. Subglacial fissure eruptions produced ridges of similar compostion. In some places the products from a number of subglacial vents have combined to form widespread deposits. The morphologies of these subglacial volcanoes are distinctive enough to allow their recognition at the resolutions characteristic of Viking orbiter imagery. Analogs to terrestrial subglacial volcanoes have been identified on the northern plains and near the south polar cap of Mars. The polar feature provides probable evidence of volcanic eruptions beneath polar ice. A mixed unit of rock and ice is postulated to have overlain portions of the northern plains, with eruptions into this ground ice having produced mountains and ridges analogous to those in Iceland. Subsequent breakdown of this unit due to ice melting revealed the volcanic features. Estimated heights of these landforms indicate that the ice-rich unit once ranged from approximately 100 to 1200 m thick

  6. Geology, petrology and geochemistry of the dome complex of Huequi volcano, southern Chile Geología, petrología y geoquímica de los domos volcánicos del volcán Huequi, Chile meridional

    Directory of Open Access Journals (Sweden)

    Sebastian F.L Watt

    2011-07-01

    Full Text Available Huequi, a little-known volcano in the southern part of the Andean southern volcanic zone (SSVZ, shows a regionally unusual eruption style, mineralogy and geochemistry. The volcano comprises multiple highly-eroded lava domes. Past eruptions were accompanied by relatively minor explosive activity, most recently from 1890-1920. The rocks erupted by Huequi range from basaltic andesite to dacite, and are highly distinctive when compared to other volcanoes of the SSVZ, being K-poor and Al-rich, and containing euhedral hornblende phenocrysts. Overall compositions suggest a notably water-rich magma source, evolving through high levels of fractionation and subsequent degassing to produce highly porphyritic dome-forming andesites. The ultimate causes of water-rich magmas at this point in the arc remain unclear.El volcán Huequi es poco conocido, que se ubica en la provincia sur de la zona Volcánica Sur de los Andes (ZVSS. Sus tipos de erupción y características mineralógicas y geoquímicas son poco comunes a nivel regional. El volcán presenta múltiples domos poco erosionados. Las erupciones estuvieron acompañadas por una actividad explosiva secundaria, siendo las más recientes las ocurridas entre los años 1890 y 1920. Los magmas del Huequi son de composición andesítico-basáltica a dacítica. Si se las compara con rocas eruptadas por otros centros volcánicos de la ZVSS de los Andes, las del Huequi se caracterizan por ser pobres en K, ricas en Al y por presentar fenocristales euhedrales de anfíbola. Las composiciones totales sugieren una fuente magmática rica en H2O, que se desarrolla a través de niveles de cristalización fraccionada y desgasificación subsecuente, que producen domos volcánicos andesíticos altamente porfíricos. Sin embargo, la causa última que genera magmas ricos en H2O, en esta parte de los Andes, sigue aún sin explicación.

  7. Anatomy of a volcano

    NARCIS (Netherlands)

    Hooper, A.; Wassink, J.

    2011-01-01

    The Icelandic volcano Eyjafjallajökull caused major disruption in European airspace last year. According to his co-author, Freysteinn Sigmundsson, the reconstruction published in Nature six months later by aerospace engineering researcher, Dr Andy Hooper, opens up a new direction in volcanology. “We

  8. Spying on volcanoes

    Science.gov (United States)

    Watson, Matthew

    2017-07-01

    Active volcanoes can be incredibly dangerous, especially to those who live nearby, but how do you get close enough to observe one in action? Matthew Watson explains how artificial drones are providing volcanologists with insights that could one day save human lives

  9. Geology of kilauea volcano

    Science.gov (United States)

    Moore, R.B.; Trusdell, F.A.

    1993-01-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower cast rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. ?? 1993.

  10. Tremor Source Location at Okmok Volcano

    Science.gov (United States)

    Reyes, C. G.; McNutt, S. R.

    2007-12-01

    Initial results using an amplitude-based tremor location program have located several active tremor episodes under Cone A, a vent within Okmok volcano's 10 km caldera. Okmok is an andesite volcano occupying the north-eastern half of Umnak Island, in the Aleutian islands. Okmok is defined by a ~2000 y.b.p. caldera that contains multiple cinder cones. Cone A, the youngest of these, extruded lava in 1997 covering the caldera floor. Since April 2003, continuous seismic data have been recorded from eight vertical short-period stations (L4-C's) installed at distances from Cone A ranging from 2 km to 31 km. In 2004 four additional 3- component broadband stations were added, co-located with continuous GPS stations. InSAR and GPS measurements of post-eruption deformation show that Okmok experienced several periods of rapid inflation (Mann and Freymueller, 2002), from the center of the 10 km diameter caldera. While there are few locatable VT earthquakes, there has been nearly continuous low-level tremor with stronger amplitude bursts occurring at variable rates and durations. The character of occurrence remained relatively constant over the course of days to weeks until the signal ceased in mid 2005. Within any day, tremor behavior remains fairly consistent, with bursts closely resembling each other, suggesting a single main process or source location. The tremor is composed of irregular waves with a broad range of frequencies, though most energy resides between ~2 Hz and 6 Hz. Attempts to locate the tremor using traditional arrival time methods fail because the signal is emergent, with envelopes too ragged to correlate on time scales that hold much hope for a location. Instead, focus was shifted to the amplitude ratios at various stations. Candidates for the tremor source include the center of inflation and Cone A, 3 km to the south-west. For all dates on record, data were band pass filtered between 1 and 5 Hz, then evaluated in 20.48 second windows (N=2048, sampling rate

  11. Edifice growth, deformation and rift zone development in basaltic setting: Insights from Piton de la Fournaise shield volcano (Réunion Island)

    Science.gov (United States)

    Michon, Laurent; Cayol, Valérie; Letourneur, Ludovic; Peltier, Aline; Villeneuve, Nicolas; Staudacher, Thomas

    2009-07-01

    The overall morphology of basaltic volcanoes mainly depends on their eruptive activity (effusive vs. explosive), the geometry of the rift zones and the characteristics of both endogenous and exogenous growth processes. The origin of the steep geometry of the central cone of Piton de la Fournaise volcano, which is unusual for a basaltic effusive volcano, and its deformation are examined with a combination of a detailed morphological analysis, field observations, GPS data from the Piton de la Fournaise Volcano Observatory and numerical models. The new caldera walls formed during the April 2007 summit collapse reveal that the steep cone is composed of a pyroclastic core, inherited from an earlier explosive phase, overlapped by a pile of thin lava flows. This suggests that exogenous processes played a major role in the building of the steep central cone. Magma injections into the cone, which mainly occur along the N25-30 and N120 rift zones, lead to an asymmetric outward inflation concentrated in the cone's eastern half. This endogenous growth progressively tilts the southeast and east flanks of the cone, and induces the development of a dense network of flank fractures. Finally, it is proposed that intrusions along the N120 rift zone are encouraged by stresses induced by magma injections along the N25-30 rift zone.

  12. Comparison with Offshore and Onshore Mud Volcanoes in the Southwestern Taiwan

    Science.gov (United States)

    Chen, Y. H.; Su, C. C.; Chen, T. T.; Liu, C. S.; Paull, C. K.; Caress, D. W.; Gwiazda, R.; Lundsten, E. M.; Hsu, H. H.

    2017-12-01

    The offshore area southwest (SW) of Taiwan is on the convergent boundary between the Eurasian and Philippine Sea plates. The plate convergence manifests in this unique geological setting as a fold-and-thrust-belt. Multi-channel seismic profiles, and bathymetry and gravity anomaly data collected from Taiwan offshore to the SW show the presence of a large amount of mud volcanoes and diapirs with NE-SW orientations. In the absence of comprehensive sampling and detailed geochemistry data from submarine mud volcanoes, the relation between onshore and offshore mud volcanoes remains ambiguous. During two MBARI and IONTU joint cruises conducted in 2017 we collected high-resolution multibeam bathymetry data (1-m-resolution) and chirp sub-bottom profiles with an autonomous underwater vehicle (AUV) from submarine Mud Volcano III (MV3), and obtained precisely located samples and video observations with a remotely operated vehicle (ROV). MV3 is an active submarine mud volcano at 465 m water depth offshore SW Taiwan. This cone-shape mud volcano is almost 780 m wide, 150 m high, with 8° slopes, and a 30 m wide mound on the top. Several linear features are observed in the southwest of the mound, and these features are interpreted as a series of marks caused by rolling rocks that erupted from the top of MV3. We collected three rocks and push cores from MV3 and its top with the ROV, in order to compare their chemical and mineralogical composition to that of samples collected from mud volcanoes along the Chishan fault. The surface and X-radiography imaging, 210Pb chronology, grain size and X-ray diffractometer analyses were conducted to compare geochemical and sedimentary properties of offshore and onshore mud volcanoes. The results indicate that the offshore and onshore mud volcanoes have similar characteristics. We suggest that offshore and onshore mud volcanoes of SW Taiwan are no different in the source of their materials and their mechanism of creation and evolution.

  13. Basaltic cannibalism at Thrihnukagigur volcano, Iceland

    Science.gov (United States)

    Hudak, M. R.; Feineman, M. D.; La Femina, P. C.; Geirsson, H.

    2014-12-01

    Magmatic assimilation of felsic continental crust is a well-documented, relatively common phenomenon. The extent to which basaltic crust is assimilated by magmas, on the other hand, is not well known. Basaltic cannibalism, or the wholesale incorporation of basaltic crustal material into a basaltic magma, is thought to be uncommon because basalt requires more energy than higher silica rocks to melt. Basaltic materials that are unconsolidated, poorly crystalline, or palagonitized may be more easily ingested than fully crystallized massive basalt, thus allowing basaltic cannibalism to occur. Thrihnukagigur volcano, SW Iceland, offers a unique exposure of a buried cinder cone within its evacuated conduit, 100 m below the main vent. The unconsolidated tephra is cross-cut by a NNE-trending dike, which runs across the ceiling of this cave to a vent that produced lava and tephra during the ~4 Ka fissure eruption. Preliminary petrographic and laser ablation inductively coupled mass spectrometry (LA-ICP-MS) analyses indicate that there are two populations of plagioclase present in the system - Population One is stubby (aspect ratio 2.1), subhedral to euhedral, and has much higher Ba/Sr ratios. Population One crystals are observed in the cinder cone, dike, and surface lavas, whereas Population Two crystals are observed only in the dike and surface lavas. This suggests that a magma crystallizing a single elongate population of plagioclase intruded the cinder cone and rapidly assimilated the tephra, incorporating the stubbier population of phenocrysts. This conceptual model for basaltic cannibalism is supported by field observations of large-scale erosion upward into the tephra, which is coated by magma flow-back indicating that magma was involved in the thermal etching. While the unique exposure at Thrihnukagigur makes it an exceptional place to investigate basaltic cannibalism, we suggest that it is not limited to this volcanic system. Rather it is a process that likely

  14. CONE BIOPSY IN PREGNANCY*

    African Journals Online (AJOL)

    1 Mei 1971. S.-A. TYDSKRIF VIR OBSTETRIE EN GINEKOLOGIE. CONE BIOPSY ... of the abnormal cervix in pregnancy is also no longer in question following the .... the concept of cancer prophylaxis to the majority of women, many of whom ...

  15. Ardnamurchan 3D cone-sheet architecture explained by a single elongate magma chamber.

    Science.gov (United States)

    Burchardt, Steffi; Troll, Valentin R; Mathieu, Lucie; Emeleus, Henry C; Donaldson, Colin H

    2013-10-08

    The Palaeogene Ardnamurchan central igneous complex, NW Scotland, was a defining place for the development of the classic concepts of cone-sheet and ring-dyke emplacement and has thus fundamentally influenced our thinking on subvolcanic structures. We have used the available structural information on Ardnamurchan to project the underlying three-dimensional (3D) cone-sheet structure. Here we show that a single elongate magma chamber likely acted as the source of the cone-sheet swarm(s) instead of the traditionally accepted model of three successive centres. This proposal is supported by the ridge-like morphology of the Ardnamurchan volcano and is consistent with the depth and elongation of the gravity anomaly underlying the peninsula. Our model challenges the traditional model of cone-sheet emplacement at Ardnamurchan that involves successive but independent centres in favour of a more dynamical one that involves a single, but elongate and progressively evolving magma chamber system.

  16. II Fórum do "Grupo de Estudos do Fim da Vida do Cone Sul": definições, recomendações e ações integradas para cuidados paliativos na unidade de terapia intensiva de adultos e pediátrica II Forum of the "End of Life Study Group of the Southern Cone of America": palliative care definitions, recommendations and integrated actions for intensive care and pediatric intensive care units

    Directory of Open Access Journals (Sweden)

    Rachel Duarte Moritz

    2011-03-01

    Full Text Available Cuidado paliativo é uma forma de abordagem que visa a melhoria da qualidade de vida de pacientes e seus familiares que enfrentam doenças ameaçadoras à vida, através da prevenção, da identificação e do tratamento precoces dos sintomas de sofrimento físico, psíquico, espiritual e social. Todo paciente criticamente enfermo deve receber cuidados paliativos desde a internação, o que torna de primordial importância a educação e o treinamento dos intensivistas para a implantação destes cuidados nas unidades de terapia intensiva, tanto para atendimento de adultos como pediátrico. Em continuidade aos planos da Câmara Técnica de Terminalidade e Cuidados Paliativos da Associação de Medicina Intensiva Brasileira e, levando em consideração o conceito previamente apontado, foi realizado em outubro de 2010, durante o Congresso Brasileiro de Terapia Intensiva, o IIºForum do "Grupo de Estudos do Fim da Vida do Cone Sul", com o objetivo de elaborar recomendações pertinentes aos cuidados paliativos a serem prestados aos pacientes críticamente enfermos.Palliative care is aimed to improve the quality of life of both patients and their family members during the course of life-threatening diseases through the prevention, early identification and treatment of the symptoms of physical, psychological, spiritual and social suffering. Palliative care should be provided to every critically ill patient; this requirement renders the training of intensive care practitioners and education initiatives fundamental. Continuing the Technical Council on End of Life and Palliative Care of the Brazilian Association of Intensive Medicine activities and considering previously established concepts, the II Forum of the End of Life Study Group of the Southern Cone of America was conducted in October 2010. The forum aimed to develop palliative care recommendations for critically ill patients.

  17. Multidisciplinary study (CO2 flux, ERT, self-potential, permeability and structural surveys) in Fondi di Baia, Astroni and Agnano volcanoes: insights for the structural architecture of the Campi Flegrei caldera (southern Italy)

    Science.gov (United States)

    Isaia, Roberto; Carapezza, Maria Luisa; Conti, Eric; Giulia Di Giuseppe, Maria; Lucchetti, Carlo; Prinzi, Ernesto; Ranaldi, Massimo; Tarchini, Luca; Tramparulo, Francesco; Troiano, Antonio; Vitale, Stefano; Cascella, Enrico; Castello, Nicola; Cicatiello, Alessandro; Maiolino, Marco; Puzio, Domenico; Tazza, Lucia; Villani, Roberto

    2017-04-01

    Recent volcanism at Campi Flegrei caldera produced more than 70 eruptions in the last 15 ka formed different volcanic edifices. The vent distribution was related to the main volcano-tectonic structure active in the caldera along which also concentrated part of the present hydrothermal and fumarolic activity, such as in the Solfatara area. In order to define the role of major faults in the Campi Flegrei Caldera, we analyzed some volcanic craters (Fondi di Baia and Astroni) and the Agnano caldera, by means of different geochemical and geophysical technics including CO2 flux, electrical resistivity (ERT), self-potential and permeability surveys. We provided some ERT profiles and different maps of geochemical and geophysical features. Major fault planes were identified comparing ERT imaging with alignments of anomalies in maps. The results can improve the knowledge on the present state of these volcanoes actually not fully monitored though included in the area with high probability of future vent opening within the Campi Flegrei caldera.

  18. Geology of Kilauea volcano

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.B. (Geological Survey, Denver, CO (United States). Federal Center); Trusdell, F.A. (Geological Survey, Hawaii National Park, HI (United States). Hawaiian Volcano Observatory)

    1993-08-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.

  19. Catalogue of Icelandic Volcanoes

    Science.gov (United States)

    Ilyinskaya, Evgenia; Larsen, Gudrún; Gudmundsson, Magnús T.; Vogfjörd, Kristin; Jonsson, Trausti; Oddsson, Björn; Reynisson, Vidir; Pagneux, Emmanuel; Barsotti, Sara; Karlsdóttir, Sigrún; Bergsveinsson, Sölvi; Oddsdóttir, Thorarna

    2017-04-01

    The Catalogue of Icelandic Volcanoes (CIV) is a newly developed open-access web resource (http://icelandicvolcanoes.is) intended to serve as an official source of information about volcanoes in Iceland for the public and decision makers. CIV contains text and graphic information on all 32 active volcanic systems in Iceland, as well as real-time data from monitoring systems in a format that enables non-specialists to understand the volcanic activity status. The CIV data portal contains scientific data on all eruptions since Eyjafjallajökull 2010 and is an unprecedented endeavour in making volcanological data open and easy to access. CIV forms a part of an integrated volcanic risk assessment project in Iceland GOSVÁ (commenced in 2012), as well as being part of the European Union funded effort FUTUREVOLC (2012-2016) on establishing an Icelandic volcano supersite. The supersite concept implies integration of space and ground based observations for improved monitoring and evaluation of volcanic hazards, and open data policy. This work is a collaboration of the Icelandic Meteorological Office, the Institute of Earth Sciences at the University of Iceland, and the Civil Protection Department of the National Commissioner of the Iceland Police, with contributions from a large number of specialists in Iceland and elsewhere.

  20. Ejecta evolution during cone impact

    KAUST Repository

    Marston, Jeremy

    2014-07-07

    We present findings from an experimental investigation into the impact of solid cone-shaped bodies onto liquid pools. Using a variety of cone angles and liquid physical properties, we show that the ejecta formed during the impact exhibits self-similarity for all impact speeds for very low surface tension liquids, whilst for high-surface tension liquids similarity is only achieved at high impact speeds. We find that the ejecta tip can detach from the cone and that this phenomenon can be attributed to the air entrainment phenomenon. We analyse of a range of cone angles, including some ogive cones, and impact speeds in terms of the spatiotemporal evolution of the ejecta tip. Using superhydrophobic cones, we also examine the entry of cones which entrain an air layer.

  1. Cone Algorithm of Spinning Vehicles under Dynamic Coning Environment

    Directory of Open Access Journals (Sweden)

    Shuang-biao Zhang

    2015-01-01

    Full Text Available Due to the fact that attitude error of vehicles has an intense trend of divergence when vehicles undergo worsening coning environment, in this paper, the model of dynamic coning environment is derived firstly. Then, through investigation of the effect on Euler attitude algorithm for the equivalency of traditional attitude algorithm, it is found that attitude error is actually the roll angle error including drifting error and oscillating error, which is induced directly by dynamic coning environment and further affects the pitch angle and yaw angle through transferring. Based on definition of the cone frame and cone attitude, a cone algorithm is proposed by rotation relationship to calculate cone attitude, and the relationship between cone attitude and Euler attitude of spinning vehicle is established. Through numerical simulations with different conditions of dynamic coning environment, it is shown that the induced error of Euler attitude fluctuates by the variation of precession and nutation, especially by that of nutation, and the oscillating frequency of roll angle error is twice that of pitch angle error and yaw angle error. In addition, the rotation angle is more competent to describe the spinning process of vehicles under coning environment than Euler angle gamma, and the real pitch angle and yaw angle are calculated finally.

  2. Light cone thermodynamics

    Science.gov (United States)

    De Lorenzo, Tommaso; Perez, Alejandro

    2018-02-01

    We show that null surfaces defined by the outgoing and infalling wave fronts emanating from and arriving at a sphere in Minkowski spacetime have thermodynamical properties that are in strict formal correspondence with those of black hole horizons in curved spacetimes. Such null surfaces, made of pieces of light cones, are bifurcate conformal Killing horizons for suitable conformally stationary observers. They can be extremal and nonextremal depending on the radius of the shining sphere. Such conformal Killing horizons have a constant light cone (conformal) temperature, given by the standard expression in terms of the generalization of surface gravity for conformal Killing horizons. Exchanges of conformally invariant energy across the horizon are described by a first law where entropy changes are given by 1 /(4 ℓp2) of the changes of a geometric quantity with the meaning of horizon area in a suitable conformal frame. These conformal horizons satisfy the zeroth to the third laws of thermodynamics in an appropriate way. In the extremal case they become light cones associated with a single event; these have vanishing temperature as well as vanishing entropy.

  3. Antarctic volcanoes: A remote but significant hazard

    Science.gov (United States)

    Geyer, Adelina; Martí, Alex; Folch, Arnau; Giralt, Santiago

    2017-04-01

    Ash emitted during explosive volcanic eruptions can be dispersed over massive areas of the globe, posing a threat to both human health and infrastructures, such as the air traffic. Some of the last eruptions occurred during this decade (e.g. 14/04/2010 - Eyjafjallajökull, Iceland; 24/05/2011-Grímsvötn, Iceland; 05/06/2011-Puyehue-Cordón Caulle, Chile) have strongly affected the air traffic in different areas of the world, leading to economic losses of billions of euros. From the tens of volcanoes located in Antarctica, at least nine are known to be active and five of them have reported volcanic activity in historical times. However, until now, no attention has been paid to the possible social, economical and environmental consequences of an eruption that would occur on high southern latitudes, perhaps because it is considered that its impacts would be minor or local, and mainly restricted to the practically inhabited Antarctic continent. We show here, as a case study and using climate models, how volcanic ash emitted during a regular eruption of one of the most active volcanoes in Antarctica, Deception Island (South Shetland Islands), could reach the African continent as well as Australia and South America. The volcanic cloud could strongly affect the air traffic not only in the region and at high southern latitudes, but also the flights connecting Africa, South America and Oceania. Results obtained are crucial to understand the patterns of volcanic ash distribution at high southern latitudes with obvious implications for tephrostratigraphical and chronological studies that provide valuable isochrones with which to synchronize palaeoclimate records. This research was partially funded by the MINECO grants VOLCLIMA (CGL2015-72629-EXP)and POSVOLDEC(CTM2016-79617-P)(AEI/FEDER, UE), the Ramón y Cajal research program (RYC-2012-11024) and the NEMOH European project (REA grant 34 agreement n° 289976).

  4. Cone rod dystrophies

    Science.gov (United States)

    Hamel, Christian P

    2007-01-01

    Cone rod dystrophies (CRDs) (prevalence 1/40,000) are inherited retinal dystrophies that belong to the group of pigmentary retinopathies. CRDs are characterized by retinal pigment deposits visible on fundus examination, predominantly localized to the macular region. In contrast to typical retinitis pigmentosa (RP), also called the rod cone dystrophies (RCDs) resulting from the primary loss in rod photoreceptors and later followed by the secondary loss in cone photoreceptors, CRDs reflect the opposite sequence of events. CRD is characterized by primary cone involvement, or, sometimes, by concomitant loss of both cones and rods that explains the predominant symptoms of CRDs: decreased visual acuity, color vision defects, photoaversion and decreased sensitivity in the central visual field, later followed by progressive loss in peripheral vision and night blindness. The clinical course of CRDs is generally more severe and rapid than that of RCDs, leading to earlier legal blindness and disability. At end stage, however, CRDs do not differ from RCDs. CRDs are most frequently non syndromic, but they may also be part of several syndromes, such as Bardet Biedl syndrome and Spinocerebellar Ataxia Type 7 (SCA7). Non syndromic CRDs are genetically heterogeneous (ten cloned genes and three loci have been identified so far). The four major causative genes involved in the pathogenesis of CRDs are ABCA4 (which causes Stargardt disease and also 30 to 60% of autosomal recessive CRDs), CRX and GUCY2D (which are responsible for many reported cases of autosomal dominant CRDs), and RPGR (which causes about 2/3 of X-linked RP and also an undetermined percentage of X-linked CRDs). It is likely that highly deleterious mutations in genes that otherwise cause RP or macular dystrophy may also lead to CRDs. The diagnosis of CRDs is based on clinical history, fundus examination and electroretinogram. Molecular diagnosis can be made for some genes, genetic counseling is always advised. Currently

  5. Cone rod dystrophies

    Directory of Open Access Journals (Sweden)

    Hamel Christian P

    2007-02-01

    Full Text Available Abstract Cone rod dystrophies (CRDs (prevalence 1/40,000 are inherited retinal dystrophies that belong to the group of pigmentary retinopathies. CRDs are characterized by retinal pigment deposits visible on fundus examination, predominantly localized to the macular region. In contrast to typical retinitis pigmentosa (RP, also called the rod cone dystrophies (RCDs resulting from the primary loss in rod photoreceptors and later followed by the secondary loss in cone photoreceptors, CRDs reflect the opposite sequence of events. CRD is characterized by primary cone involvement, or, sometimes, by concomitant loss of both cones and rods that explains the predominant symptoms of CRDs: decreased visual acuity, color vision defects, photoaversion and decreased sensitivity in the central visual field, later followed by progressive loss in peripheral vision and night blindness. The clinical course of CRDs is generally more severe and rapid than that of RCDs, leading to earlier legal blindness and disability. At end stage, however, CRDs do not differ from RCDs. CRDs are most frequently non syndromic, but they may also be part of several syndromes, such as Bardet Biedl syndrome and Spinocerebellar Ataxia Type 7 (SCA7. Non syndromic CRDs are genetically heterogeneous (ten cloned genes and three loci have been identified so far. The four major causative genes involved in the pathogenesis of CRDs are ABCA4 (which causes Stargardt disease and also 30 to 60% of autosomal recessive CRDs, CRX and GUCY2D (which are responsible for many reported cases of autosomal dominant CRDs, and RPGR (which causes about 2/3 of X-linked RP and also an undetermined percentage of X-linked CRDs. It is likely that highly deleterious mutations in genes that otherwise cause RP or macular dystrophy may also lead to CRDs. The diagnosis of CRDs is based on clinical history, fundus examination and electroretinogram. Molecular diagnosis can be made for some genes, genetic counseling is

  6. Ruiz Volcano: Preliminary report

    Science.gov (United States)

    Ruiz Volcano, Colombia (4.88°N, 75.32°W). All times are local (= GMT -5 hours).An explosive eruption on November 13, 1985, melted ice and snow in the summit area, generating lahars that flowed tens of kilometers down flank river valleys, killing more than 20,000 people. This is history's fourth largest single-eruption death toll, behind only Tambora in 1815 (92,000), Krakatau in 1883 (36,000), and Mount Pelée in May 1902 (28,000). The following briefly summarizes the very preliminary and inevitably conflicting information that had been received by press time.

  7. Determining Volcanic Deformation at San Miguel Volcano, El Salvador by Integrating Radar Interferometry and Seismic Analyses

    Science.gov (United States)

    Schiek, C. G.; Hurtado, J. M.; Velasco, A. A.; Buckley, S. M.; Escobar, D.

    2008-12-01

    From the early 1900's to the present day, San Miguel volcano has experienced many small eruptions and several periods of heightened seismic activity, making it one of the most active volcanoes in the El Salvadoran volcanic chain. Prior to 1969, the volcano experienced many explosive eruptions with Volcano Explosivity Indices (VEI) of 2. Since then, eruptions have decreased in intensity to an average VEI of 1. Eruptions mostly consist of phreatic explosions and central vent eruptions. Due to the explosive nature of this volcano, it is important to study the origins of the volcanism and its relationship to surface deformation and earthquake activity. We analyze these interactions by integrating interferometric synthetic aperture radar (InSAR) results with earthquake source location data from a ten-month (March 2007-January 2008) seismic deployment. The InSAR results show a maximum of 7 cm of volcanic inflation from March 2007 to mid-October 2007. During this time, seismic activity increased to a Real-time Seismic-Amplitude Measurement (RSAM) value of >400. Normal RSAM values for this volcano are earthquakes that occurred between March 2007 and January 2008 suggests a fault zone through the center of the San Miguel volcanic cone. This fault zone is most likely where dyke propagation is occurring. Source mechanisms will be determined for the earthquakes associated with this fault zone, and they will be compared to the InSAR deformation field to determine if the mid-October seismic activity and observed surface deformation are compatible.

  8. Monitoring quiescent volcanoes by diffuse He degassing: case study Teide volcano

    Science.gov (United States)

    Pérez, Nemesio M.; Melián, Gladys; Asensio-Ramos, María; Padrón, Eleazar; Hernández, Pedro A.; Barrancos, José; Padilla, Germán; Rodríguez, Fátima; Calvo, David; Alonso, Mar

    2016-04-01

    Tenerife (2,034 km2), the largest of the Canary Islands, is the only island that has developed a central volcanic complex (Teide-Pico Viejo stratovolcanoes), characterized by the eruption of differentiated magmas. This central volcanic complex has been built in the intersection of the three major volcanic rift-zones of Tenerife, where most of the historical volcanic activity has taken place. The existence of a volcanic-hydrothermal system beneath Teide volcano is suggested by the occurrence of a weak fumarolic system, steamy ground and high rates of diffuse CO2 degassing all around the summit cone of Teide (Pérez et al., 2013). Diffuse emission studies of non-reactive and/or highly mobile gases such as helium have recently provided promising results to detect changes in the magmatic gas component at surface related to volcanic unrest episodes (Padrón et al., 2013). The geochemical properties of He minimize the interaction of this noble gas on its movement toward the earth's surface, and its isotopic composition is not affected by subsequent chemical reactions. It is highly mobile, chemically inert, physically stable, non-biogenic, sparingly soluble in water under ambient conditions, almost non-adsorbable, and highly diffusive with a diffusion coefficient ˜10 times that of CO2. As part of the geochemical monitoring program for the volcanic surveillance of Teide volcano, yearly surveys of diffuse He emission through the surface of the summit cone of Teide volcano have been performed since 2006. Soil He emission rate was measured yearly at ˜130 sampling sites selected in the surface environment of the summit cone of Teide volcano (Tenerife, Canary Islands), covering an area of ˜0.5 km2, assuming that He emission is governed by convection and diffusion. The distribution of the sampling sites was carefully chosen to homogeneously cover the target area, allowing the computation of the total He emission by sequential Gaussian simulation (sGs). Nine surveys have been

  9. Null cone superspace supergravity

    International Nuclear Information System (INIS)

    Downes-Martin, S.G.

    1980-03-01

    The null cone formalism is used to derive a 2(N-1) parameter family of constraints for O(N) extended superspace supergravity. The invariance groups of these constraints is analysed and is found to be [subgroup U submanifold] contains GL(4,R) for N = 1, the submanifold being eliminated for N > 1. The invariance group defines non-Weyl rotations on the superbein which combine to form Weyl transformations on the supertangent space metric. The invariance of the supergravity Lagrangian under these transformations is discussed. (Auth.)

  10. Climbing in the high volcanoes of central Mexico

    Science.gov (United States)

    Secor, R. J.

    1984-01-01

    A chain of volcanoes extends across central Mexico along the 19th parallel, a line just south of Mexico City. The westernmost of these peaks is Nevado de Colima at 4,636 feet above sea level. A subsidiary summit of Nevado de Colima is Volcan de Colima, locally called Fuego (fire) it still emits sulphurous fumes and an occasional plume of smoke since its disastrous eruption in 1941. Parictuin, now dormant, was born in the fall of 1943 when a cornfield suddenly erupted. Within 18 months, the cone grew more than 1,700 feet. Nevado de Toluca is a 15,433-foot volcanic peak south of the city of Toluca. Just southeast of Mexico City are two high volcanoes that are permanently covered by snow: Iztaccihuatl (17,342 fet) and Popocatepetl (17,887 feet) Further east is the third highest mountain in North America: 18,700-foot Citlateptl, or El Pico de Orizaba. North of these high peaks are two volcanoes, 14, 436-foot La Malinche and Cofre de Perote at 14,048 feet. This range of mountains is known variously as the Cordillera de Anahuac, the Sierra Volcanica Transversal, or the Cordillera Neovolcanica. 

  11. Postglacial eruptive history and geochemistry of Semisopochnoi volcano, western Aleutian Islands, Alaska

    Science.gov (United States)

    Coombs, Michelle L.; Larsen, Jessica F.; Neal, Christina A.

    2018-02-14

    Semisopochnoi Island, located in the Rat Islands group of the western Aleutian Islands and Aleutian volcanic arc, is a roughly circular island composed of scattered volcanic vents, the prominent caldera of Semisopochnoi volcano, and older, ancestral volcanic rocks. The oldest rocks on the island are gently radially dipping lavas that are the remnants of a shield volcano and of Ragged Top, which is an eroded stratocone southeast of the current caldera. None of these oldest rocks have been dated, but they all are likely Pleistocene in age. Anvil Peak, to the caldera’s north, has the morphology of a young stratocone and is latest Pleistocene to early Holocene in age. The oldest recognized Holocene deposits are those of the caldera-forming eruption, which produced the 7- by 6-km caldera in the center of the island, left nonwelded ignimbrite in valleys below the edifice, and left welded ignimbrite high on its flanks. The caldera-forming eruption produced rocks showing a range of intermediate whole-rock compositions throughout the eruption sequence, although a majority of clasts analyzed form a fairly tight cluster on SiO2-variation diagrams at 62.9 to 63.4 weight percent SiO2. This clustering of compositions at about 63 weight percent SiO2 includes black, dense, obsidian-like clasts, as well as tan, variably oxidized, highly inflated pumice clasts. The best estimate for the timing of the eruption is from a soil dated at 6,920±60 14C years before present underlying a thin facies of the ignimbrite deposit on the island’s north coast. Shortly after the caldera-forming eruption, two scoria cones on the northwest flank of the volcano outside the caldera, Ringworm crater and Threequarter Cone, simultaneously erupted small volumes of andesite.The oldest intracaldera lavas, on the floor of the caldera, are andesitic to dacitic, but are mostly covered by younger lavas and tephras. These intracaldera lavas include the basaltic andesites of small Windy cone, as well as the

  12. Eruptive viscosity and volcano morphology

    International Nuclear Information System (INIS)

    Posin, S.B.; Greeley, R.

    1988-01-01

    Terrestrial central volcanoes formed predominantly from lava flows were classified as shields, stratovolcanoes, and domes. Shield volcanoes tend to be large in areal extent, have convex slopes, and are characterized by their resemblance to inverted hellenic war shields. Stratovolcanoes have concave slopes, whereas domes are smaller and have gentle convex slopes near the vent that increase near the perimeter. In addition to these differences in morphology, several other variations were observed. The most important is composition: shield volcanoes tend to be basaltic, stratovolcanoes tend to be andesitic, and domes tend to be dacitic. However, important exceptions include Fuji, Pico, Mayon, Izalco, and Fuego which have stratovolcano morphologies but are composed of basaltic lavas. Similarly, Ribkwo is a Kenyan shield volcano composed of trachyte and Suswa and Kilombe are shields composed of phonolite. These exceptions indicate that eruptive conditions, rather than composition, may be the primary factors that determine volcano morphology. The objective of this study is to determine the relationships, if any, between eruptive conditions (viscosity, erupted volume, and effusion rate) and effusive volcano morphology. Moreover, it is the goal of this study to incorporate these relationships into a model to predict the eruptive conditions of extraterrestrial (Martian) volcanoes based on their morphology

  13. The holographic entropy cone

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Ning [Institute for Quantum Information and Matter, California Institute of Technology,Pasadena, CA 91125 (United States); Walter Burke Institute for Theoretical Physics, California Institute of Technology,452-48, Pasadena, CA 91125 (United States); Nezami, Sepehr [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States); Ooguri, Hirosi [Walter Burke Institute for Theoretical Physics, California Institute of Technology,452-48, Pasadena, CA 91125 (United States); Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo,Kashiwa 277-8583 (Japan); Stoica, Bogdan [Walter Burke Institute for Theoretical Physics, California Institute of Technology,452-48, Pasadena, CA 91125 (United States); Sully, James [Theory Group, SLAC National Accelerator Laboratory, Stanford University,Menlo Park, CA 94025 (United States); Walter, Michael [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States)

    2015-09-21

    We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phase space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.

  14. The holographic entropy cone

    International Nuclear Information System (INIS)

    Bao, Ning; Nezami, Sepehr; Ooguri, Hirosi; Stoica, Bogdan; Sully, James; Walter, Michael

    2015-01-01

    We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phase space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.

  15. Soufriere Hills Volcano

    Science.gov (United States)

    2002-01-01

    In this ASTER image of Soufriere Hills Volcano on Montserrat in the Caribbean, continued eruptive activity is evident by the extensive smoke and ash plume streaming towards the west-southwest. Significant eruptive activity began in 1995, forcing the authorities to evacuate more than 7,000 of the island's original population of 11,000. The primary risk now is to the northern part of the island and to the airport. Small rockfalls and pyroclastic flows (ash, rock and hot gases) are common at this time due to continued growth of the dome at the volcano's summit.This image was acquired on October 29, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA

  16. Review on resonance cone fields

    International Nuclear Information System (INIS)

    Ohnuma, Toshiro.

    1980-02-01

    Resonance cone fields and lower hybrid heating are reviewed in this report. The resonance cone fields were reported by Fisher and Gould, and they proposed the use of the measurement of resonance cones and structure as a diagnostic tool to determine the plasma density and electron temperature in magnetoplasma. After the resonance cone, a wave-like disturbance persists. Ohnuma et al. have measured bending, reflection and ducting of resonance cones in detail. The thermal modes in inhomogeneous magnetoplasma were seen. The reflection of thermal mode near an electron plasma frequency layer and an insulating plate has been observed. The non-linear effects of resonance cones is reported. Monochromatic electron beam produces the noise of broad band whistler mode. Lower hybrid waves have been the subject of propagation from the edge of plasma to the lower hybrid layer. Linear lower hybrid waves were studied. The lower hybrid and ion acoustic waves radiated from a point source were observed. The parametric decay of finite-extent, cold electron plasma waves was studied. The lower hybrid cone radiated from a point source going along magnetic field lines was observed. Several experimental data on the lower hybrid heating in tokamak devices have been reported. The theories on resonance cones and lower hybrid waves are introduced in this report. (Kato, T.)

  17. Plate Tearing by a Cone

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup

    1997-01-01

    The present paper is concerned with steady-state plate tearing by a cone. This is a scenario where a cone is forced through a ductile metal plate with a constant lateral tip penetration in a motion in the plane of the plate. The considered process could be an idealisaton of the damage, which...... as for the out-of-plane reaction force....

  18. Pollen cone anatomy of Classostrobus crossii sp. nov. (Cheirolepidiaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Rothwell, Gar W.; Mapes, Gene [Department of Environmental and Plant Biology, Ohio University, Athens OH 45701 (United States); Hilton, Jason [Department of Earth Sciences, School of Geography, Earth and Environmental Sciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Hollingworth, Neville T. [Centre for Ecology and Hydrology, Winfrith Technology Centre, Winfrith Newburgh, Dorchester, Dorset, DT2 8ZD (United Kingdom)

    2007-01-02

    Discovery of a permineralized fossil cone in Mesozoic deposits of southern England provides an opportunity to document the first detailed evidence of internal pollen cone anatomy for the extinct conifer family Cheirolepidiaceae. The specimen, described here as Classostrobus crossii sp. nov., occurs in a calcareous nodule recovered from Middle Jurassic marine sediments of the Lower Callovian Sigaloceras calloviense biozone, Kellaways, near Cirencester, England. The cone is 2.0 cm long and 1.8 cm wide. Sporophylls diverge helically from the axis. Each sporophyll displays a narrow stalk and a distal lamina approx. 11 mm long that tapers to a pointed tip. There is also a basal keel that bends inward at the bottom and sides to form a shallow pocket. A single vascular bundle diverges from the cone axis, extends distally into the sporophyll stalk at the contact of two distinctly different histological zones, and further expands into the distal lamina as transfusion tracheids. Several pollen sacs are attached abaxially at the juncture of the sporophyll stalk and keel. Pollen is roughly spheroidal, 26-35 {mu}m in diameter, with unequal polar caps separated by a striated belt with a subequatorial furrow. This specimen helps clarify the range of variation in the morphology of Mesozoic conifer pollen cones. (author)

  19. Hydrothermal Alteration and Seawater Exchange at Surtsey Volcano, Iceland: New results from 1979 Surtsey Drill Core.

    Science.gov (United States)

    Rhodes, M.; Bryce, J. G.; Jercinovic, M. J.; Fahnestock, M. F.; Jackson, M. D.

    2017-12-01

    The archetypal volcano Surtsey erupted spectacularly out of the North Atlantic Ocean from November 1963 to June 1967, on the southern submarine extension of the E. Icelandic Rift Zone. Twelve years later, in 1979, the eastern cone (Surtur I) was drilled to a depth of 181 m to document the growth of the volcano and the interaction of basaltic tephra with seawater [1]. The present study is a pilot project for the International Continental Drilling Project on Surtsey, SUSTAIN, starting in August, 2017. The overall intent is to document the nature, extent and rates of hydrothermal and seawater reaction with tephra over the past 50 years. This work builds on the 1979 drilling studies through new electron microprobe and laser ablation (LA- ICPMS) analyses to document varying degrees of palagonitic alteration of volcanic glass and primary phases to form authigenic minerals (smectite, zeolites, Al-tobermorite, anhydrite) in the intervening 12 years since the eruption. Combined with modal data and inferred phase densities, the data documents the mass balance of major and trace elements among the phases and the relationship of these changes to core depth, temperature and porosity. Although hydrothermal alteration is extensive, especially in the hotter submarine intervals from 60 to 120 m, detailed whole-rock major, trace and isotopic data (Sr, Nd, Pb), show that, apart from hydration and oxidation, there is only modest exchange of elements between tephra and seawater, or hydrothermal fluids, in the upper 140 m of the core prior to 1979. Below 140 m, in a cooler zone of coarse, more porous tephra, extensive exchange of elements, involving hydrothermal introduction of sulfur and growth of anhydrite, is associated with the loss of Ca, K, Rb, Sr and addition of MgO and Na and seawater isotopic signatures. It is surely no coincidence that this zone of elemental and isotopic exchange supports active microbial colonies [2]. Our results serve as an important baseline for the 2017

  20. Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Founded in 1912 at the edge of the caldera of Kīlauea Volcano, HVO was the vision of Thomas A. Jaggar, Jr., a geologist from the Massachusetts Institute of Technology, whose studies of natural disasters around the world had convinced him that systematic, continuous observations of seismic and volcanic activity were needed to better understand—and potentially predict—earthquakes and volcanic eruptions. Jaggar summarized the aim of HVO by stating that “the work should be humanitarian” and have the goals of developing “prediction and methods of protecting life and property on the basis of sound scientific achievement.” These goals align well with those of the USGS, whose mission is to serve the Nation by providing reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage natural resources; and enhance and protect our quality of life.

  1. Volcanoes, Third Edition

    Science.gov (United States)

    Nye, Christopher J.

    It takes confidence to title a smallish book merely “Volcanoes” because of the impliction that the myriad facets of volcanism—chemistry, physics, geology, meteorology, hazard mitigation, and more—have been identified and addressed to some nontrivial level of detail. Robert and Barbara Decker have visited these different facets seamlessly in Volcanoes, Third Edition. The seamlessness comes from a broad overarching, interdisciplinary, professional understanding of volcanism combined with an exceptionally smooth translation of scientific jargon into plain language.The result is a book which will be informative to a very broad audience, from reasonably educated nongeologists (my mother loves it) to geology undergraduates through professional volcanologists. I bet that even the most senior professional volcanologists will learn at least a few things from this book and will find at least a few provocative discussions of subjects they know.

  2. QCD on the light cone

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1992-09-01

    The quantization of gauge theory at fixed light-cone time τ = t - z/c provides new perspectives for solving non-perturbative problems in quantum chromodynamics. The light-cone Fock state expansion provides both a precise definition of the relativistic wavefunctions of hadrons as bound-states of quarks and gluons and a general calculus for predicting QCD processes at the amplitude level. Applications to exclusive processes and weak decay amplitudes are discussed. The problem of computing the hadronic spectrum and the corresponding light-cone wavefunctions of QCD in one space and one time dimension has been successfully reduced to the diagonalization of a discrete representation of the light-cone Hamiltonian. The problems confronting the solution of gauge theories in 3 + 1 dimensions in the light-cone quantization formalism,, including zero modes and non-perturbative renormalization, are reviewed

  3. SUBMARINE VOLCANO CHARACTERISTICS IN SABANG WATERS

    Directory of Open Access Journals (Sweden)

    Hananto Kurnio

    2017-07-01

    Full Text Available The aim of the study is to understand the characteristics of a volcano occurred in marine environment, as Weh Island where Sabang City located is still demonstrated its volcanic cone morphology either through satellite imagery or bathymetric map. Methods used were marine geology, marine geophysics and oceanography. Results show that surface volcanism (sea depth less than 50 m take place as fumaroles, solfataras, hot ground, hot spring, hot mud pool and alteration in the vicinities of seafloor and coastal area vents. Seismic records also showed acoustic turbidity in the sea water column due to gas bubblings produced by seafloor fumaroles. Geochemical analyses show that seafloor samples in the vicinities of active and non-active fumarole vent are abundances with rare earth elements (REE. These were interpreted that the fumarole bring along REE through its gases and deposited on the surrounding seafloor surface. Co-existence between active fault of Sumatra and current volcanism produce hydrothermal mineralization in fault zone as observed in Serui and Pria Laot-middle of Weh Island which both are controlled by normal faults and graben.

  4. Volcano warning systems: Chapter 67

    Science.gov (United States)

    Gregg, Chris E.; Houghton, Bruce F.; Ewert, John W.

    2015-01-01

    Messages conveying volcano alert level such as Watches and Warnings are designed to provide people with risk information before, during, and after eruptions. Information is communicated to people from volcano observatories and emergency management agencies and from informal sources and social and environmental cues. Any individual or agency can be both a message sender and a recipient and multiple messages received from multiple sources is the norm in a volcanic crisis. Significant challenges to developing effective warning systems for volcanic hazards stem from the great diversity in unrest, eruption, and post-eruption processes and the rapidly advancing digital technologies that people use to seek real-time risk information. Challenges also involve the need to invest resources before unrest to help people develop shared mental models of important risk factors. Two populations of people are the target of volcano notifications–ground- and aviation-based populations, and volcano warning systems must address both distinctly different populations.

  5. A dynamical analysis of the seismic activity of Villarrica volcano (Chile) during September-October 2000

    Energy Technology Data Exchange (ETDEWEB)

    Tarraga, Marta [Departamento de Volcanologia. Museo Nacional de Ciencias Naturales, CSIC, Madrid (Spain)], E-mail: martat@mncn.csic.es; Carniel, Roberto [Dipartimento di Georisorse e Territorio, Universita di Udine, Via Cotonificio 114, 33100 Udine (Italy)], E-mail: roberto.carniel@uniud.it; Ortiz, Ramon; Garcia, Alicia [Departamento de Volcanologia. Museo Nacional de Ciencias Naturales, CSIC, Madrid (Spain); Moreno, Hugo [Observatorio Volcanologico de los Andes del Sur (OVDAS), Servicio Nacional de Geologia y Mineria de Chile (SERNAGEOMIN), Temuco, IX Region (Chile)

    2008-09-15

    Although Villarrica volcano in Chile is one of the most active in the southern Andes, the literature studying its seismic activity is relatively scarce. An interesting problem recently tackled is the possibility for a regional tectonic event to trigger a change in the volcanic activity of this basaltic to basaltic-andesitic volcano, which is in turn reflected in the time evolution of the properly volcanic seismicity, especially in the form of a continuous volcanic tremor. In this work, we conduct a spectral, dynamical and statistical analysis of the tremor recorded during September and October 2000, in order to characterize the anomalous behaviour of the volcano following a tectonic event recorded on 20th September 2000. The observed dynamical transitions are compared with remote sensing and visual observations describing the changes in the eruptive style of the volcano.

  6. A dynamical analysis of the seismic activity of Villarrica volcano (Chile) during September-October 2000

    International Nuclear Information System (INIS)

    Tarraga, Marta; Carniel, Roberto; Ortiz, Ramon; Garcia, Alicia; Moreno, Hugo

    2008-01-01

    Although Villarrica volcano in Chile is one of the most active in the southern Andes, the literature studying its seismic activity is relatively scarce. An interesting problem recently tackled is the possibility for a regional tectonic event to trigger a change in the volcanic activity of this basaltic to basaltic-andesitic volcano, which is in turn reflected in the time evolution of the properly volcanic seismicity, especially in the form of a continuous volcanic tremor. In this work, we conduct a spectral, dynamical and statistical analysis of the tremor recorded during September and October 2000, in order to characterize the anomalous behaviour of the volcano following a tectonic event recorded on 20th September 2000. The observed dynamical transitions are compared with remote sensing and visual observations describing the changes in the eruptive style of the volcano

  7. GLACIERS OF THE KORYAK VOLCANO

    Directory of Open Access Journals (Sweden)

    T. M. Manevich

    2012-01-01

    Full Text Available The paper presents main glaciological characteristics of present-day glaciers located on the Koryaksky volcano. The results of fieldwork (2008–2009 and high-resolution satellite image analysis let us to specify and complete information on modern glacial complex of Koryaksky volcano. Now there are seven glaciers with total area 8.36 km2. Three of them advance, two are in stationary state and one degrades. Moreover, the paper describes the new crater glacier.

  8. Radon emanometry in active volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, J.L.; Monnin, M. (CNRS, IN2P3, BP45/F63170 Aubiere (France)); Cejudo, J. (Instituto Nacional de Investigaciones Nucleares, Mexico City)

    1984-01-01

    Radon emission measurements from active volcanoes has, since 1981, been continuously measured at monitoring stations in Mexico and in Costa Rica. Counting of etched alpha tracks on cellulose nitrate LR-115 detectors give varying results at the several stations. Radon emanation at Chichon, where an explosive eruption occurred in 1982, fell down. Radon detection at the active volcano in Colima shows a pattern of very low emission. At the Costa Rica stations located at Poas, Arenal and Irazu, the radon emanation shows regularity.

  9. Discovery of siderite in marine sediment: Source and effect of violent gas venting at the Tsanyao Mud Volcano, offshore SW Taiwan

    Science.gov (United States)

    Tseng, Y.; Lin, S.; Hsieh, I. C.; Lien, K. L.

    2016-12-01

    Tsanyao mud volcano is a 400 meters high, 5 kilometers in diameter, a center crater of 50 meters width activing venting mud diapir. The gigantic size of mud volcano indicate massive transportation of material, i.e., gas, fluid, and breccia from deep to the sea floor in building up the mud volcano. The mud volcano is located at the upper slope of the accretionary wedge with a surrounding water depth of about xx m, offshore Southwestern Taiwan. On shore, a series of active mud volcanos also exist in a trend similar to those found offshore. In order to understand sources of gas, fluid, solid materials and the effect of gas migration and associate authigenic mineral formation, we have obtained multibeam bathymetry, water column echo sounding, together with sediment XRD and SEM and pore water composition of methane, sulfide, sulfate, chloride, potassium, lithium, boron, and water O-18 at the study mud volcano. We have observed more than 30 flares around the main cone within a perimeter of 10 square miles. δ13C values of methane in the pore water ranged from -30 to -50 ‰. The lower C13 ratios, together with high C2+/C1 ratios demonstrated that vent gas is mostly thermogenic in origin. Higher thermal gradient and water temperature indicated that cone top is unfavorable for gas-hydrate formation, however, gas hydrate may exist at a deeper part of the mud volcano system. High concentration of sulfide presence right near the sulfate-methane interface, a result of anoxic methane oxidation. However, low concentrations of pyrite in sediments indicated that AOM did not favor pyrite formation at depth. In addition, abundant siderite were found in the sediments collected in the mud volcano cone. Rapid consumption of sulfate through AOM reaction generated a condition favor the siderite fomation, instead of the typical pyrite formation commonly observed.

  10. Sources of Magmatic Volatiles Discharging from Subduction Zone Volcanoes

    Science.gov (United States)

    Fischer, T.

    2001-05-01

    Subduction zones are locations of extensive element transfer from the Earth's mantle to the atmosphere and hydrosphere. This element transfer is significant because it can, in some fashion, instigate melt production in the mantle wedge. Aqueous fluids are thought to be the major agent of element transfer during the subduction zone process. Volatile discharges from passively degassing subduction zone volcanoes should in principle, provide some information on the ultimate source of magmatic volatiles in terms of the mantle, the crust and the subducting slab. The overall flux of volatiles from degassing volcanoes should be balanced by the amount of volatiles released from the mantle wedge, the slab and the crust. Kudryavy Volcano, Kurile Islands, has been passively degassing at 900C fumarole temperatures for at least 40 years. Extensive gas sampling at this basaltic andesite cone and application of CO2/3He, N2/3He systematics in combination with C and N- isotopes indicates that 80% of the CO2 and approximately 60% of the N 2 are contributed from a sedimentary source. The mantle wedge contribution for both volatiles is, with 12% and 17% less significant. Direct volatile flux measurements from the volcano using the COSPEC technique in combination with direct gas sampling allows for the calculation of the 3He flux from the volcano. Since 3He is mainly released from the astenospheric mantle, the amount of mantle supplying the 3He flux can be determined if initial He concentrations of the mantle melts are known. The non-mantle flux of CO2 and N2 can be calculated in similar fashion. The amount of non-mantle CO2 and N2 discharging from Kudryavy is balanced by the amount of CO2 and N2 subducted below Kudryavy assuming a zone of melting constrained by the average spacing of the volcanoes along the Kurile arc. The volatile budget for Kudryavy is balanced because the volatile flux from the volcano is relatively small (75 t/day (416 Mmol/a) SO2, 360 Mmol/a of non-mantle CO2 and

  11. Ordered cones and approximation

    CERN Document Server

    Keimel, Klaus

    1992-01-01

    This book presents a unified approach to Korovkin-type approximation theorems. It includes classical material on the approximation of real-valuedfunctions as well as recent and new results on set-valued functions and stochastic processes, and on weighted approximation. The results are notonly of qualitative nature, but include quantitative bounds on the order of approximation. The book is addressed to researchers in functional analysis and approximation theory as well as to those that want to applythese methods in other fields. It is largely self- contained, but the readershould have a solid background in abstract functional analysis. The unified approach is based on a new notion of locally convex ordered cones that are not embeddable in vector spaces but allow Hahn-Banach type separation and extension theorems. This concept seems to be of independent interest.

  12. Vertical Motions of Oceanic Volcanoes

    Science.gov (United States)

    Clague, D. A.; Moore, J. G.

    2006-12-01

    Oceanic volcanoes offer abundant evidence of changes in their elevations through time. Their large-scale motions begin with a period of rapid subsidence lasting hundreds of thousands of years caused by isostatic compensation of the added mass of the volcano on the ocean lithosphere. The response is within thousands of years and lasts as long as the active volcano keeps adding mass on the ocean floor. Downward flexure caused by volcanic loading creates troughs around the growing volcanoes that eventually fill with sediment. Seismic surveys show that the overall depression of the old ocean floor beneath Hawaiian volcanoes such as Mauna Loa is about 10 km. This gross subsidence means that the drowned shorelines only record a small part of the total subsidence the islands experienced. In Hawaii, this history is recorded by long-term tide-gauge data, the depth in drill holes of subaerial lava flows and soil horizons, former shorelines presently located below sea level. Offshore Hawaii, a series of at least 7 drowned reefs and terraces record subsidence of about 1325 m during the last half million years. Older sequences of drowned reefs and terraces define the early rapid phase of subsidence of Maui, Molokai, Lanai, Oahu, Kauai, and Niihau. Volcanic islands, such as Maui, tip down toward the next younger volcano as it begins rapid growth and subsidence. Such tipping results in drowned reefs on Haleakala as deep as 2400 m where they are tipped towards Hawaii. Flat-topped volcanoes on submarine rift zones also record this tipping towards the next younger volcano. This early rapid subsidence phase is followed by a period of slow subsidence lasting for millions of years caused by thermal contraction of the aging ocean lithosphere beneath the volcano. The well-known evolution along the Hawaiian chain from high to low volcanic island, to coral island, and to guyot is due to this process. This history of rapid and then slow subsidence is interrupted by a period of minor uplift

  13. Chiliques volcano, Chile

    Science.gov (United States)

    2002-01-01

    A January 6, 2002 ASTER nighttime thermal infrared image of Chiliques volcano in Chile shows a hot spot in the summit crater and several others along the upper flanks of the edifice, indicating new volcanic activity. Examination of an earlier nighttime thermal infrared image from May 24,2000 showed no thermal anomaly. Chiliques volcano was previously thought to be dormant. Rising to an elevation of 5778 m, Chiliques is a simple stratovolcano with a 500-m-diameter circular summit crater. This mountain is one of the most important high altitude ceremonial centers of the Incas. It is rarely visited due to its difficult accessibility. Climbing to the summit along Inca trails, numerous ruins are encountered; at the summit there are a series of constructions used for rituals. There is a beautiful lagoon in the crater that is almost always frozen.The daytime image was acquired on November 19, 2000 and was created by displaying ASTER bands 1,2 and 3 in blue, green and red. The nighttime image was acquired January 6, 2002, and is a color-coded display of a single thermal infrared band. The hottest areas are white, and colder areas are darker shades of red. Both images cover an area of 7.5 x 7.5 km, and are centered at 23.6 degrees south latitude, 67.6 degrees west longitude.Both images cover an area of 7.5 x 7.5 km, and are centered at 23.6 degrees south latitude, 67.6 degrees west longitude.These images were acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U

  14. Cone penetrometer testing (CPT) for groundwater contamination

    International Nuclear Information System (INIS)

    Jordan, J.E.; Van Pelt, R.S.

    1993-01-01

    Over the past decade, researchers at the Savannah River Site (SRS) and elsewhere have greatly advanced the knowledge of waste site characterization technologies. As a result, many of the techniques used in the past to investigate waste sites have been replaced by newer technologies, designed to provide greater protection for human health and the environment, greater access to suspected zones of contamination, and more accurate information of subsurface conditions. Determining the most environmentally sound method of assessing a waste unit is a major component of the SRS environmental restoration program. In an effort to understand the distribution and migration of contaminants in the groundwater system, the cone penetrometer investigation of the A/M-Area Southern Sector was implemented. The program incorporated a phased approach toward characterization by first using the CPT to delineate the plume boundary, followed by installing groundwater monitoring wells. The study provided the additional hydrogeologic information necessary to better understand the nature and extent of the contaminant plume (Fig. 1) and the hydrogeologic system in the Southem Sector. This data is essential for the optimal layout of the planned groundwater monitoring well network and recovery system to remediate the aquifers in the area. A number of other test locations were selected in the area during this study for lithologic calibration of the tool and to collect confirmation water samples from the aquifer. Cone penetrometer testing and hydrocone sampling, were performed at 17 sites (Fig. 2). The hydrocone, a tool modification to the CPT, was used to collect four groundwater samples from confined aquifers. These samples were analyzed by SRS laboratories. Elevated levels of chlorinated compounds were detected from these samples and have aided in further delineating the southern sector contaminant plume

  15. Recent Inflation of Kilauea Volcano

    Science.gov (United States)

    Miklius, A.; Poland, M.; Desmarais, E.; Sutton, A.; Orr, T.; Okubo, P.

    2006-12-01

    Over the last three years, geodetic monitoring networks and satellite radar interferometry have recorded substantial inflation of Kilauea's magma system, while the Pu`u `O`o eruption on the east rift zone has continued unabated. Combined with the approximate doubling of carbon dioxide emission rates at the summit during this period, these observations indicate that the magma supply rate to the volcano has increased. Since late 2003, the summit area has risen over 20 cm, and a 2.5 km-long GPS baseline across the summit area has extended almost half a meter. The center of inflation has been variable, with maximum uplift shifting from an area near the center of the caldera to the southeastern part of the caldera in 2004-2005. In 2006, the locus of inflation shifted again, to the location of the long-term magma reservoir in the southern part of the caldera - the same area that had subsided more than 1.5 meters during the last 23 years of the ongoing eruption. In addition, the southwest rift zone reversed its long-term trend of subsidence and began uplifting in early 2006. The east rift zone has shown slightly accelerated rates of extension, but with a year-long hiatus following the January 2005 south flank aseismic slip event. Inflation rates have varied greatly. Accelerated rates of extension and uplift in early 2005 and 2006 were also associated with increased seismicity. Seismicity occurred not only at inflation centers, but was also triggered on the normal faulting area northwest of the caldera and the strike-slip faulting area in the upper east rift zone. In early 2006, at about the time that we started recording uplift on the southwest rift zone, the rate of earthquakes extending from the summit into the southwest rift zone at least quadrupled. The most recent previous episode of inflation at Kilauea, in 2002, may have resulted from reduced lava- transport capacity, as it was associated with decreased outflow at the eruption site. In contrast, eruption volumes

  16. The 2008 Eruption of Chaitén Volcano, Chile and National Volcano-Monitoring Programs in the U.S. and Chile

    Science.gov (United States)

    Ewert, J. W.; Lara, L. E.; Moreno, H.

    2008-12-01

    Chaitén volcano, southern Chile, began erupting on 2 May 2008. The eruption produced 3 Plinian eruption pulses between May 2 and 8. Between Plinian phases the volcano emitted a constant column of ash to approximately 10 km, gradually diminishing to approximately 3 km by the end of June. The eruption of Chaitén was remarkable on several counts--it was the first rhyolite eruption on the planet since Novarupta (Katmai) erupted in 1912, and Chaitén had apparently lain dormant for approximately 9300 years. Though Chaitén is located in a generally sparsely populated region, the eruption had widespread impacts. More than 5000 people had to be quickly evacuated from proximal areas and aviation in southern South America was disrupted for weeks. Within 10 days secondary lahars had overrun much of the town of Chaitén complicating the prospects of the townspeople to return to their homes. Prior to the eruption onset, the nearest real-time seismic station was 300 km distant, and earthquakes were not felt by local citizens until approximately 30 hours before the eruption onset. No other signs of unrest were noted. Owing to the lack of near-field monitoring, and the nighttime eruption onset, there was initial confusion about which volcano was erupting: Chaitén or nearby Michinmahuida. Lack of monitoring systems at Chaitén meant that warning time for the public at risk was extremely short, and owing to the nature of the eruption and the physical geography of the area, it was very difficult to install monitoring instruments to track its progress after the eruption started. The lack of geophysical monitoring also means that an important data set on precursory behavior for silicic systems was not collected. With more than 120 Pleistocene to Holocene-age volcanoes within its continental territory, Chile is one of the more volcanically active countries in the world. The eruption of Chaitén has catalyzed the creation of a new program within the Servicio Nacional de Geología y

  17. Plate Tearing by a Cone

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup

    1998-01-01

    The present paper is concerned with steady-state plate tearing by a cone. This is a scenario where a cone is forced through a ductile metal plate with a constant lateral tip penetration in a motion in the plane of the plate. The considered process could be an idealisation of the damage, which...... as for the out-of-plane reaction force. (C) 1998 Elsevier Science Ltd. All rights reserved....

  18. Light cone approach

    International Nuclear Information System (INIS)

    Brodsky, Stan

    1993-01-01

    One of the most challenging problems in theoretical high energy physics is to compute the bound state structure of the proton and other hadrons from quantum chromodynamics (QCD), the field theory of quarks and gluons. The goal is not only to calculate the spectrum of hadrons masses from first principles, but also to derive the momentum and spin distributions of the quarks and gluons which control high energy hadron interactions. One approach to these difficult calculations is to simulate QCD on an artificial lattice. Recently, several new methods based on ''light-cone'' quantization have been proposed as alternatives to lattice theory for solving non-perturbative problems in QCD and other field theories. The basic idea is a generalization of Heisenberg's pioneer matrix formulation of quantum mechanics: if one could numerically diagonalize the matrix of the Hamiltonian representing the underlying QCD interaction, then the resulting eigenvalues would give the hadron spectrum, while the corresponding eigenstates would describe each hadron in terms of its quark and gluon degrees of freedom

  19. Global Volcano Mortality Risks and Distribution

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Volcano Mortality Risks and Distribution is a 2.5 minute grid representing global volcano mortality risks. The data set was constructed using historical...

  20. Bulk rock composition and geochemistry of olivine-hosted melt inclusions in the Grey Porri Tuff and selected lavas of the Monte dei Porri volcano, Salina, Aeolian Islands, southern Italy

    Science.gov (United States)

    Doherty, Angela L.; Bodnar, Robert J.; De Vivo, Benedetto; Bohrson, Wendy A.; Belkin, Harvey E.; Messina, Antonia; Tracy, Robert J.

    2012-01-01

    The Aeolian Islands are an arcuate chain of submarine seamounts and volcanic islands, lying just north of Sicily in southern Italy. The second largest of the islands, Salina, exhibits a wide range of compositional variation in its erupted products, from basaltic lavas to rhyolitic pumice. The Monte dei Porri eruptions occurred between 60 ka and 30 ka, following a period of approximately 60,000 years of repose. The bulk rock composition of the Monte dei Porri products range from basaltic-andesite scoria to andesitic pumice in the Grey Porri Tuff (GPT), with the Monte dei Porri lavas having basaltic-andesite compositions. The typical mineral assemblage of the GPT is calcic plagioclase, clinopyroxene (augite), olivine (Fo72−84) and orthopyroxene (enstatite) ± amphibole and Ti-Fe oxides. The lava units show a similar mineral assemblage, but contain lower Fo olivines (Fo57−78). The lava units also contain numerous glomerocrysts, including an unusual variety that contains quartz, K-feldspar and mica. Melt inclusions (MI) are ubiquitous in all mineral phases from all units of the Monte dei Porri eruptions; however, only data from olivine-hosted MI in the GPT are reported here. Compositions of MI in the GPT are typically basaltic (average SiO2 of 49.8 wt %) in the pumices and basaltic-andesite (average SiO2 of 55.6 wt %) in the scoriae and show a bimodal distribution in most compositional discrimination plots. The compositions of most of the MI in the scoriae overlap with bulk rock compositions of the lavas. Petrological and geochemical evidence suggest that mixing of one or more magmas and/or crustal assimilation played a role in the evolution of the Monte dei Porri magmatic system, especially the GPT. Analyses of the more evolved mineral phases are required to better constrain the evolution of the magma.

  1. Global Volcano Model

    Science.gov (United States)

    Sparks, R. S. J.; Loughlin, S. C.; Cottrell, E.; Valentine, G.; Newhall, C.; Jolly, G.; Papale, P.; Takarada, S.; Crosweller, S.; Nayembil, M.; Arora, B.; Lowndes, J.; Connor, C.; Eichelberger, J.; Nadim, F.; Smolka, A.; Michel, G.; Muir-Wood, R.; Horwell, C.

    2012-04-01

    Over 600 million people live close enough to active volcanoes to be affected when they erupt. Volcanic eruptions cause loss of life, significant economic losses and severe disruption to people's lives, as highlighted by the recent eruption of Mount Merapi in Indonesia. The eruption of Eyjafjallajökull, Iceland in 2010 illustrated the potential of even small eruptions to have major impact on the modern world through disruption of complex critical infrastructure and business. The effects in the developing world on economic growth and development can be severe. There is evidence that large eruptions can cause a change in the earth's climate for several years afterwards. Aside from meteor impact and possibly an extreme solar event, very large magnitude explosive volcanic eruptions may be the only natural hazard that could cause a global catastrophe. GVM is a growing international collaboration that aims to create a sustainable, accessible information platform on volcanic hazard and risk. We are designing and developing an integrated database system of volcanic hazards, vulnerability and exposure with internationally agreed metadata standards. GVM will establish methodologies for analysis of the data (eg vulnerability indices) to inform risk assessment, develop complementary hazards models and create relevant hazards and risk assessment tools. GVM will develop the capability to anticipate future volcanism and its consequences. NERC is funding the start-up of this initiative for three years from November 2011. GVM builds directly on the VOGRIPA project started as part of the GRIP (Global Risk Identification Programme) in 2004 under the auspices of the World Bank and UN. Major international initiatives and partners such as the Smithsonian Institution - Global Volcanism Program, State University of New York at Buffalo - VHub, Earth Observatory of Singapore - WOVOdat and many others underpin GVM.

  2. Relative chronology of Martian volcanoes

    International Nuclear Information System (INIS)

    Landheim, R.; Barlow, N.G.

    1991-01-01

    Impact cratering is one of the major geological processes that has affected the Martian surface throughout the planet's history. The frequency of craters within particular size ranges provides information about the formation ages and obliterative episodes of Martian geologic units. The Barlow chronology was extended by measuring small craters on the volcanoes and a number of standard terrain units. Inclusions of smaller craters in units previously analyzed by Barlow allowed for a more direct comparison between the size-frequency distribution data for volcanoes and established chronology. During this study, 11,486 craters were mapped and identified in the 1.5 to 8 km diameter range in selected regions of Mars. The results are summarized in this three page report and give a more precise estimate of the relative chronology of the Martian volcanoes. Also, the results of this study lend further support to the increasing evidence that volcanism has been a dominant geologic force throughout Martian history

  3. Systematic radon survey over active volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, J.L.; Monnin, M.; Garcia Vindas, J.R. [Centre National de la Recherche Cientifique, Montpellier (France). Lab. GBE; Ricard, L.P.; Staudacher, T. [Observatoire Volcanologique Du Pitou de la Fournaise, La Plaine des Cafres (France)

    1999-08-01

    Data obtained since 1993 on Costa Rica volcanos are presented and radon anomalies recorded before the eruption of the Irazu volcano (December 8, 1994) are discussed. The Piton de la Fournaise volcano is inactive since mid 1992. The influence of the external parameters on the radon behaviour is studied and the type of perturbations induced on short-term measurements are individuate.

  4. Variability in Morphology and Thermophysical Properties of Pitted Cones in Acidalia Planitia and Cydonia Mensae

    Science.gov (United States)

    Farrand, W. H.; Gaddis, L. R.; Blundell, S.

    2004-01-01

    The northern plains of Mars contain a number of unique landforms and are unique in terms of their topography and composition . Much of the speculation about the northern plains centers on whether there was ever a northern ocean, and if there was, was it long-lived or ephemeral? The northern plains also hosts the Vastitas Borealis Formation which has been variously interpreted as the residue from a northern ocean , and pre-existing material reworked by cold-weather processes . In this work we examine a set of unusual features resident on the northern plains, the pitted cones originally recognized in Viking data . Our focus is on the pitted cones in Acidalia and Cydonia regions. The pitted cones of the northern plains have been hypothesized as being equivalent to terrestrial cinder cones , rootless cones , pingos , and mud volcanoes . To examine the Acidalia and Cydonia regions, multispectral data from the Mars Odyssey THEMIS, gridded topography from Mars Global Surveyor (MGS) MOLA, images from MGS MOC, and mineralogic and thermal inertia information from MGS TES have been assembled in a Geographic Information System. Analysis of MOC Narrow Angle camera images

  5. Potential ash impact from Antarctic volcanoes: Insights from Deception Island's most recent eruption.

    Science.gov (United States)

    Geyer, A; Marti, A; Giralt, S; Folch, A

    2017-11-28

    Ash emitted during explosive volcanic eruptions may disperse over vast areas of the globe posing a threat to human health and infrastructures and causing significant disruption to air traffic. In Antarctica, at least five volcanoes have reported historic activity. However, no attention has been paid to the potential socio-economic and environmental consequences of an ash-forming eruption occurring at high southern latitudes. This work shows how ash from Antarctic volcanoes may pose a higher threat than previously believed. As a case study, we evaluate the potential impacts of ash for a given eruption scenario from Deception Island, one of the most active volcanoes in Antarctica. Numerical simulations using the novel MMB-MONARCH-ASH model demonstrate that volcanic ash emitted from Antarctic volcanoes could potentially encircle the globe, leading to significant consequences for global aviation safety. Results obtained recall the need for performing proper hazard assessment on Antarctic volcanoes, and are crucial for understanding the patterns of ash distribution at high southern latitudes with strong implications for tephrostratigraphy, which is pivotal to synchronize palaeoclimatic records.

  6. Multiphase modelling of mud volcanoes

    Science.gov (United States)

    Colucci, Simone; de'Michieli Vitturi, Mattia; Clarke, Amanda B.

    2015-04-01

    Mud volcanism is a worldwide phenomenon, classically considered as the surface expression of piercement structures rooted in deep-seated over-pressured sediments in compressional tectonic settings. The release of fluids at mud volcanoes during repeated explosive episodes has been documented at numerous sites and the outflows resemble the eruption of basaltic magma. As magma, the material erupted from a mud volcano becomes more fluid and degasses while rising and decompressing. The release of those gases from mud volcanism is estimated to be a significant contributor both to fluid flux from the lithosphere to the hydrosphere, and to the atmospheric budget of some greenhouse gases, particularly methane. For these reasons, we simulated the fluid dynamics of mud volcanoes using a newly-developed compressible multiphase and multidimensional transient solver in the OpenFOAM framework, taking into account the multicomponent nature (CH4, CO2, H2O) of the fluid mixture, the gas exsolution during the ascent and the associated changes in the constitutive properties of the phases. The numerical model has been tested with conditions representative of the LUSI, a mud volcano that has been erupting since May 2006 in the densely populated Sidoarjo regency (East Java, Indonesia), forcing the evacuation of 40,000 people and destroying industry, farmland, and over 10,000 homes. The activity of LUSI mud volcano has been well documented (Vanderkluysen et al., 2014) and here we present a comparison of observed gas fluxes and mud extrusion rates with the outcomes of numerical simulations. Vanderkluysen, L.; Burton, M. R.; Clarke, A. B.; Hartnett, H. E. & Smekens, J.-F. Composition and flux of explosive gas release at LUSI mud volcano (East Java, Indonesia) Geochem. Geophys. Geosyst., Wiley-Blackwell, 2014, 15, 2932-2946

  7. Muon imaging of volcanoes with Cherenkov telescopes

    Science.gov (United States)

    Carbone, Daniele; Catalano, Osvaldo; Cusumano, Giancarlo; Del Santo, Melania; La Parola, Valentina; La Rosa, Giovanni; Maccarone, Maria Concetta; Mineo, Teresa; Pareschi, Giovanni; Sottile, Giuseppe; Zuccarello, Luciano

    2017-04-01

    La Nave (southern flank of Mt. Etna, Italy; 1740m a.s.l.), in the framework of ASTRI, a flagship project of the Italian Ministry of Education, University and Research, led by the Italian National Institute of Astrophysics (INAF). This offers the opportunity to test the use of a Cherenkov telescope for imaging volcanic structures. Starting from this know-how, we plan to develop a new prototype of Cherenkov detector with suitable characteristics for installation in the summit zone of Etna volcano (around 3000m a.s.l.).

  8. Alaska volcanoes guidebook for teachers

    Science.gov (United States)

    Adleman, Jennifer N.

    2011-01-01

    Alaska’s volcanoes, like its abundant glaciers, charismatic wildlife, and wild expanses inspire and ignite scientific curiosity and generate an ever-growing source of questions for students in Alaska and throughout the world. Alaska is home to more than 140 volcanoes, which have been active over the last 2 million years. About 90 of these volcanoes have been active within the last 10,000 years and more than 50 of these have been active since about 1700. The volcanoes in Alaska make up well over three-quarters of volcanoes in the United States that have erupted in the last 200 years. In fact, Alaska’s volcanoes erupt so frequently that it is almost guaranteed that an Alaskan will experience a volcanic eruption in his or her lifetime, and it is likely they will experience more than one. It is hard to imagine a better place for students to explore active volcanism and to understand volcanic hazards, phenomena, and global impacts. Previously developed teachers’ guidebooks with an emphasis on the volcanoes in Hawaii Volcanoes National Park (Mattox, 1994) and Mount Rainier National Park in the Cascade Range (Driedger and others, 2005) provide place-based resources and activities for use in other volcanic regions in the United States. Along the lines of this tradition, this guidebook serves to provide locally relevant and useful resources and activities for the exploration of numerous and truly unique volcanic landscapes in Alaska. This guidebook provides supplemental teaching materials to be used by Alaskan students who will be inspired to become educated and prepared for inevitable future volcanic activity in Alaska. The lessons and activities in this guidebook are meant to supplement and enhance existing science content already being taught in grade levels 6–12. Correlations with Alaska State Science Standards and Grade Level Expectations adopted by the Alaska State Department of Education and Early Development (2006) for grades six through eleven are listed at

  9. Radioactive emanations in fumarole gases of a series of volcanoes in Kamchatka

    International Nuclear Information System (INIS)

    Adamchuk, Yu.V.; Firstov, P.P.

    1986-01-01

    The results of measurements of volume activity of emanations in fumarole gases of a series of acting volcanoes in Kamchatka during 1980-1983 are presented. The value of radon concentration in Avachinski volcano fumaroles equal ∼ 2 emanes did not change substantially as compared with the data for 1966. The highest activity (11.5±0.4 emanes) is registered in the Bezymyannyj volcano fumaroles. The emanation site survey of fumarole fields of the second cone of the Great fractured Tolbachinski eruption (GFTE) revealed the narrowly localized zone of radioactive emanation emissions. The radon emission in the above zone in 1981 constitutes (2.3 ± 0.4)x10 -6 Ci/s. Using this estimation, time (34-42 days) and average rate (2.5-3.0 m/h) of depth gases hoisting from magmatic focus are calculated as well as filtration rock characteristics in the narrowly localized near-mouth zone of the second cone of GCTE North outburst in the post eruptive period: permeability coefficient (0.1-4.3 darci), porosity (3-15 %) and mean value of cracks and pores opening (0.6-2.0)x10 -3 cm). The found characteristic values proved to be compared with parameters of crushing zone near epicenters of underground nuclear explosions

  10. Foveal cone spacing and cone photopigment density difference: objective measurements in the same subjects.

    Science.gov (United States)

    Marcos, S; Tornow, R P; Elsner, A E; Navarro, R

    1997-07-01

    Foveal cone spacing was measured in vivo using an objective technique: ocular speckle interferometry. Cone packing density was computed from cone spacing data. Foveal cone photopigment density difference was measured in the same subjects using retinal densitometry with a scanning laser ophthalmoscope. Both the cone packing density and cone photopigment density difference decreased sharply with increasing retinal eccentricity. From the comparison of both sets of measurements, the computed amounts of photopigment per cone increased slightly with increasing retinal eccentricity. Consistent with previous results, decreases in cone outer segment length are over-compensated by an increase in the outer segment area, at least in retinal eccentricities up to 1 deg.

  11. Evolution of Rajabasa Volcano in Kalianda Area and Its Vicinity, South Lampung Regency

    Directory of Open Access Journals (Sweden)

    Sutikno Bronto

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v7i1.132Rajabasa Volcano (± 1281 m and Lampung Tuff, located in the South Lampung Regency, is the main point in order to understand the evolution of Quaternary volcanism in the area. A remote sensing analysis and field geologic work are the methods of the study. The volcanism began with the construction period of the Pre-Rajabasa composite cone which was followed by the destruction period of the cone to form the Pre-Rajabasa Caldera having ca. 25 km in diameter. The present Rajabasa Volcano, along with cones of flank eruptions and monogenesis, has appeared in the Pre-Rajabasa Caldera depression. Those volcanic activities are considered as the second construction period. During the first and the second construction periods, basaltic to andesitic lava flows, pyroclastic breccias, and tuffs were erupted. The Rajabasa eruption points moved in WNW - ESE direction, which were possibly controlled by a subsurface weak zone. The Pre-Rajabasa Caldera erupted voluminous Lampung Tuffs having rhyolite in composition, and they are considered as a combination of pyroclastic falls, flows, and surges, or pyroclastic density currents.

  12. What Happened to Our Volcano?

    Science.gov (United States)

    Mangiante, Elaine Silva

    2006-01-01

    In this article, the author presents an investigative approach to "understanding Earth changes." The author states that students were familiar with earthquakes and volcanoes in other regions of the world but never considered how the land beneath their feet had experienced changes over time. Here, their geology unit helped them understand…

  13. Air-cooled volcanoes ? New insights on convective airflow process within Miyakejima and Piton de la Fournaise volcanoes

    Science.gov (United States)

    Antoine, R.; Geshi, N.; Kurita, K.; Aoki, Y.; Ichihara, M.; Staudacher, T.; Bachelery, P.

    2012-04-01

    Subsurface airflow in the unsaturated zone of the soil has been extensively investigated in a variety of disciplines such as mining, nuclear waste or agriculture science. In volcanology, the recent discovery of subsurface airflow close to the terminal cone of Piton de La Fournaise volcano (La Réunion Island, France) provides for the first time insights into the convective behavior of air within the unsaturated layer [1]. The characteristics of the aerothermal system, its occurrence in other volcanoes, its ability to transport heat during quiescent periods and the perturbation of this system before eruptions are the key questions we want to address following this discovery. In this study, we present observations of subsurface convective airflow within opened fractures located at the summit of Miyakejima and Piton de la Fournaise volcanoes from anemometric and temperature data. Two anemometers and thermocouples were placed at the surface and at the center of the fracture at two-meter depth during a diurnal cycle. Six thermocouples also measured the temperature at 1 meter-depth, on a profile set perpendicularly to the fracture. Finally, a thermal camera was used to make punctual measurements of the surface temperature of the fracture. At Miyakejima, two surveys were realized in winter 2010 and summer 2011. During the winter, mild air exit was detected from the fracture with a central vertical velocity of 20 to 50 cm/s. The temperature of the site was constant during the diurnal cycle (~ 22°C), leading to a maximum temperature contrast of 15°C between the fracture and the atmosphere just before sunrise. During summer, a different hydrodynamic behavior was observed: Air inflow was detected during the whole diurnal cycle with a mean velocity of 20 cm/s. The temperature of the fracture followed the temperature of the atmosphere at 2 meters-depth. In the case of Piton de la Fournaise volcano, the same convective behavior was observed at two different fractures during

  14. Mutnovsky and Gorely Volcanoes, Kamchatka as Planetary Analogue Sites

    Science.gov (United States)

    Evdokimova, N.; Izbekov, P. E.; Krupskaya, V.; Muratov, A.

    2016-12-01

    Recent advances in Mars studies suggest that volcanic rocks, which dominated Martian surface in the past, have been exposed to alteration processes in a water-bearing environment during Noachian, before 3.7 Gy. Active volcanoes on Earth are natural laboratories, where volcanic processes and their associated products can be studied directly. This is particularly important for studying of alteration of juvenile volcanic products in aqueous environment because of the transient nature of some of the alteration products, as well as the environment itself. Terrestrial analogues help us to better understand processes on Mars; they are particularly useful as a test sites for preparation to future Mars missions. In this presentation we describe planetary analogue sites at Mutnovsky and Gorely Volcanoes in Kamchatka, which might be helpful for comparative studies and preparation to future Mars missions. Mutnovsky and Gorely Volcanoes are located 75 km south of Petropavlovsk-Kamchatsky, in the southern part of the Kamchatka Peninsula, Russia. The modern volcanic landscape in the area was shaped in Holocene (recent 10,000 years) through intermittent eruption of magmas ranging in composition from basalts to dacites and rhyodacites, with basaltic andesite lavas dominating in the modern relief. Two localities could be of a particular interest: (1) Mutnovsky NW thermal field featuring processes of active hydrothermal alteration of lavas of basaltic andesite and (2) dry lake at the bottom of Gorely caldera featuring products of mechanical disintegration of basaltic andesite lavas by eolian processes with short seasonal sedimentation in aqueous environment.

  15. Morphometry of terrestrial shield volcanoes

    Science.gov (United States)

    Grosse, Pablo; Kervyn, Matthieu

    2018-03-01

    Shield volcanoes are described as low-angle edifices built primarily by the accumulation of successive lava flows. This generic view of shield volcano morphology is based on a limited number of monogenetic shields from Iceland and Mexico, and a small set of large oceanic islands (Hawaii, Galápagos). Here, the morphometry of 158 monogenetic and polygenetic shield volcanoes is analyzed quantitatively from 90-meter resolution SRTM DEMs using the MORVOLC algorithm. An additional set of 24 lava-dominated 'shield-like' volcanoes, considered so far as stratovolcanoes, are documented for comparison. Results show that there is a large variation in shield size (volumes from 0.1 to > 1000 km3), profile shape (height/basal width (H/WB) ratios mostly from 0.01 to 0.1), flank slope gradients (average slopes mostly from 1° to 15°), elongation and summit truncation. Although there is no clear-cut morphometric difference between shield volcanoes and stratovolcanoes, an approximate threshold can be drawn at 12° average slope and 0.10 H/WB ratio. Principal component analysis of the obtained database enables to identify four key morphometric descriptors: size, steepness, plan shape and truncation. Hierarchical cluster analysis of these descriptors results in 12 end-member shield types, with intermediate cases defining a continuum of morphologies. The shield types can be linked in terms of growth stages and shape evolution, related to (1) magma composition and rheology, effusion rate and lava/pyroclast ratio, which will condition edifice steepness; (2) spatial distribution of vents, in turn related to the magmatic feeding system and the tectonic framework, which will control edifice plan shape; and (3) caldera formation, which will condition edifice truncation.

  16. Iridium emissions from Hawaiian volcanoes

    International Nuclear Information System (INIS)

    Finnegan, D.L.; Zoller, W.H.; Miller, T.M.

    1988-01-01

    Particle and gas samples were collected at Mauna Loa volcano during and after its eruption in March and April, 1984 and at Kilauea volcano in 1983, 1984, and 1985 during various phases of its ongoing activity. In the last two Kilauea sampling missions, samples were collected during eruptive activity. The samples were collected using a filterpack system consisting of a Teflon particle filter followed by a series of 4 base-treated Whatman filters. The samples were analyzed by INAA for over 40 elements. As previously reported in the literature, Ir was first detected on particle filters at the Mauna Loa Observatory and later from non-erupting high temperature vents at Kilauea. Since that time Ir was found in samples collected at Kilauea and Mauna Loa during fountaining activity as well as after eruptive activity. Enrichment factors for Ir in the volcanic fumes range from 10,000 to 100,000 relative to BHVO. Charcoal impregnated filters following a particle filter were collected to see if a significant amount of the Ir was in the gas phase during sample collection. Iridium was found on charcoal filters collected close to the vent, no Ir was found on the charcoal filters. This indicates that all of the Ir is in particulate form very soon after its release. Ratios of Ir to F and Cl were calculated for the samples from Mauna Loa and Kilauea collected during fountaining activity. The implications for the KT Ir anomaly are still unclear though as Ir was not found at volcanoes other than those at Hawaii. Further investigations are needed at other volcanoes to ascertain if basaltic volcanoes other than hot spots have Ir enrichments in their fumes

  17. Iridium emissions from Hawaiian volcanoes

    Science.gov (United States)

    Finnegan, D. L.; Zoller, W. H.; Miller, T. M.

    1988-01-01

    Particle and gas samples were collected at Mauna Loa volcano during and after its eruption in March and April, 1984 and at Kilauea volcano in 1983, 1984, and 1985 during various phases of its ongoing activity. In the last two Kilauea sampling missions, samples were collected during eruptive activity. The samples were collected using a filterpack system consisting of a Teflon particle filter followed by a series of 4 base-treated Whatman filters. The samples were analyzed by INAA for over 40 elements. As previously reported in the literature, Ir was first detected on particle filters at the Mauna Loa Observatory and later from non-erupting high temperature vents at Kilauea. Since that time Ir was found in samples collected at Kilauea and Mauna Loa during fountaining activity as well as after eruptive activity. Enrichment factors for Ir in the volcanic fumes range from 10,000 to 100,000 relative to BHVO. Charcoal impregnated filters following a particle filter were collected to see if a significant amount of the Ir was in the gas phase during sample collection. Iridium was found on charcoal filters collected close to the vent, no Ir was found on the charcoal filters. This indicates that all of the Ir is in particulate form very soon after its release. Ratios of Ir to F and Cl were calculated for the samples from Mauna Loa and Kilauea collected during fountaining activity. The implications for the KT Ir anomaly are still unclear though as Ir was not found at volcanoes other than those at Hawaii. Further investigations are needed at other volcanoes to ascertain if basaltic volcanoes other than hot spots have Ir enrichments in their fumes.

  18. Late Pleistocene-Holocene cataclysmic eruptions at Nevado de Toluca and Jocotitlan volcanoes, central Mexico

    Science.gov (United States)

    Macias, J.L.; Garcia, P.A.; Arce, J.L.; Siebe, C.; Espindola, J.M.; Komorowski, J.C.; Scott, K.

    1997-01-01

    This field guide describes a five day trip to examine deposits of Late Pleistocene-Holocene cataclysmic eruptions at Nevado de Toluca and Jocotitlan volcanoes in central Mexico. We will discuss the stratigraphy, petrology, and sedimentological characteristics of these deposits which provide insights into the eruptive history, type of volcanic activity, and transport and emplacement mechanisms of pyroclastic materials. These parameters will allow us to discuss the kinds of hazards and the risk that they pose to populations around these volcanoes. The area to be visited is tectonically complex thus we will also discuss the location of the volcanoes with respect to the tectonic environment. The first four days of the field trip will be dedicated to Nevado de Toluca Volcano (19 degrees 09'N; 99 degrees 45'W) located at 23 km. southwest of the City of Toluca, and is the fourth highest peak in the country, reaching an elevation of 4,680 meters above sea level (m.a.s.l.). Nevado de Toluca is an andesitic-dacitic stratovolcano, composed of a central vent excavated upon the remains of older craters destroyed by former events. Bloomfield and Valastro, (1974, 1977) concluded that the last cycle of activity occurred nearly equal 11,600 yr. ago. For this reason Nevado de Toluca has been considered an extinct volcano. Our studies, however, indicate that Nevado de Toluca has had at least two episodes of cone destruction by sector collapse as well as several explosive episodes including plinian eruptions and dome-destruction events. These eruptions occurred during the Pleistocene but a very young eruption characterized by surge and ash flows occurred ca. 3,300 yr. BP. This new knowledge of the volcano's eruptive history makes the evaluation of its present state of activity and the geological hazards necessary. This is important because the area is densely populated and large cities such as Toluca and Mexico are located in its proximity.

  19. Sedimentology, eruptive mechanism and facies architecture of basaltic scoria cones from the Auckland Volcanic Field (New Zealand)

    Science.gov (United States)

    Kereszturi, Gábor; Németh, Károly

    2016-09-01

    Scoria cones are a common type of basaltic to andesitic small-volume volcanoes (e.g. 10- 1-10- 5 km3) that results from gas-bubble driven explosive eruptive styles. Although they are small in volume, they can produce complex eruptions, involving multiple eruptive styles. Eight scoria cones from the Quaternary Auckland Volcanic Field in New Zealand were selected to define the eruptive style variability from their volcanic facies architecture. The reconstruction of their eruptive and pyroclastic transport mechanisms was established on the basis of study of their volcanic sedimentology, stratigraphy, and measurement of their pyroclast density, porosity, Scanning Electron Microscopy, 2D particle morphology analysis and Visible and Near Visible Infrared Spectroscopy. Collection of these data allowed defining three end-member types of scoria cones inferred to be constructed from lava-fountaining, transitional fountaining and Strombolian type, and explosive Strombolian type. Using the physical and field-based characteristics of scoriaceous samples a simple generalised facies model of basaltic scoria cones for the AVF is developed that can be extended to other scoria cones elsewhere. The typical AVF scoria cone has an initial phreatomagmatic phases that might reduce the volume of magma available for subsequent scoria cone forming eruptions. This inferred to have the main reason to have decreased cone volumes recognised from Auckland in comparison to other volcanic fields evolved dominantly in dry eruptive condition (e.g. no external water influence). It suggests that such subtle eruptive style variations through a scoria cone evolution need to be integrated into the hazard assessment of a potentially active volcanic field such as that in Auckland.

  20. Carbonate Cements from the Sverrefjell and Sigurdfjell Volcanoes, Svalbard Norway: Analogs for Martian Carbonates

    Science.gov (United States)

    Blake, D. F.; Treiman, A. H.; Morris, R.; Bish, D.; Amundsen, H.E.F.; Steele, A.

    2011-01-01

    The Sverrefjell and Sigurdfjell volcanic complexes erupted at 1Ma on Svalbard, Norway. Sverrefjell is a cone of cinders, pillow lavas and dikes; Sigurdfjell is elongate in outcrop and may represent a fissure eruption [1]. The lavas of both volcanos were volatile rich. The volcanos erupted under ice and were subsequently dissected by glaciation (glacial eratics are present on most of Sverrefjell, even on its summit). Eruption beneath an ice sheet is inferred, based on the presence of pillow lavas from near sea level to 1000 m above sea level. Sverrefjell contains the largest fraction of ultramafic xenoliths of any volcanic complex in the world, in places accounting for as much as 50% of the volume of the outcrop. The Sverrefjell and Sigurdfell volcanos contain carbonate cements of several varieties: (1) Amundsen [2] reported Mg-Fe-rich carbonate in sub-mm globules in basalts and ultramafic xenoliths from the volcanos. These globules are the best terrestrial analogs to the carbonate globules in the Mars meteorite ALH84001 [3]. (2) Thick (1-3 cm) coatings of carbonate cement drape the walls of vertical volcanic pipes or conduits on the flanks and near the present summit of Sverrefjell. Similar occurrences are found on Sigurdfjell. (3) Breccia-filled pipes or vents occur on Sverrefjell and Siggurdfjell in which the breccia fragments are cemented by carbonate. The fragments themselves commonly contain carbonate globules similar to those found in the basalts and ultramafic xenoliths.

  1. DOS cones along atomic chains

    Science.gov (United States)

    Kwapiński, Tomasz

    2017-03-01

    The electron transport properties of a linear atomic chain are studied theoretically within the tight-binding Hamiltonian and the Green’s function method. Variations of the local density of states (DOS) along the chain are investigated. They are crucial in scanning tunnelling experiments and give important insight into the electron transport mechanism and charge distribution inside chains. It is found that depending on the chain parity the local DOS at the Fermi level can form cone-like structures (DOS cones) along the chain. The general condition for the local DOS oscillations is obtained and the linear behaviour of the local density function is confirmed analytically. DOS cones are characterized by a linear decay towards the chain which is in contrast to the propagation properties of charge density waves, end states and Friedel oscillations in one-dimensional systems. We find that DOS cones can appear due to non-resonant electron transport, the spin-orbit scattering or for chains fabricated on a substrate with localized electrons. It is also shown that for imperfect chains (e.g. with a reduced coupling strength between two neighboring sites) a diamond-like structure of the local DOS along the chain appears.

  2. DOS cones along atomic chains

    International Nuclear Information System (INIS)

    Kwapiński, Tomasz

    2017-01-01

    The electron transport properties of a linear atomic chain are studied theoretically within the tight-binding Hamiltonian and the Green’s function method. Variations of the local density of states (DOS) along the chain are investigated. They are crucial in scanning tunnelling experiments and give important insight into the electron transport mechanism and charge distribution inside chains. It is found that depending on the chain parity the local DOS at the Fermi level can form cone-like structures (DOS cones) along the chain. The general condition for the local DOS oscillations is obtained and the linear behaviour of the local density function is confirmed analytically. DOS cones are characterized by a linear decay towards the chain which is in contrast to the propagation properties of charge density waves, end states and Friedel oscillations in one-dimensional systems. We find that DOS cones can appear due to non-resonant electron transport, the spin–orbit scattering or for chains fabricated on a substrate with localized electrons. It is also shown that for imperfect chains (e.g. with a reduced coupling strength between two neighboring sites) a diamond-like structure of the local DOS along the chain appears. (paper)

  3. Ejecta evolution during cone impact

    KAUST Repository

    Marston, Jeremy; Thoroddsen, Sigurdur T

    2014-01-01

    -similarity for all impact speeds for very low surface tension liquids, whilst for high-surface tension liquids similarity is only achieved at high impact speeds. We find that the ejecta tip can detach from the cone and that this phenomenon can be attributed

  4. Rapid mixing and short storage timescale in the magma dynamics of a steady-state volcano

    Science.gov (United States)

    Petrone, Chiara Maria; Braschi, Eleonora; Francalanci, Lorella; Casalini, Martina; Tommasini, Simone

    2018-06-01

    Steady-state volcanic activity implies equilibrium between the rate of magma replenishment and eruption of compositionally homogeneous magmas, lasting for tens to thousands of years in an open conduit system. The Present-day activity of Stromboli volcano (Aeolian Islands, Southern Italy) has long been recognised as typical of a steady-state volcano, with a shallow magmatic reservoir (highly porphyritic or hp-magma) continuously refilled by more mafic magma (with low phenocryst content or lp-magma) at a constant rate and accompanied by mixing, crystallisation and eruption. Our aim is to clarify the timescale and dynamics of the plumbing system at the establishment of the Present-day steady-state activity (volcanoes.

  5. Interdisciplinary Studies of Eruption at Chaitén Volcano, Chile

    Science.gov (United States)

    Pallister, John S.; Major, Jon J.; Pierson, Thomas C.; Hoblitt, Richard P.; Lowenstern, Jacob B.; Eichelberger, John C.; Lara, Luis; Moreno, Hugo; Muñoz, Jorge; Castro, Jonathan M.; Iroumé, Andrés; Andreoli, Andrea; Jones, Julia; Swanson, Fred; Crisafulli, Charlie

    2010-10-01

    High-silica rhyolite magma fuels Earth's largest and most explosive eruptions. Recurrence intervals for such highly explosive eruptions are in the 100- to 100,000­year time range, and there have been few direct observations of such eruptions and their immediate impacts. Consequently, there was keen interest within the volcanology community when the first large eruption of high-silica rhyolite since that of Alaska's Novarupta volcano in 1912 began on 1 May 2008 at Chaitén volcano, southern Chile, a 3-kilometer­diameter caldera volcano with a prehistoric record of rhyolite eruptions [Naranjo and Stern, 2004; Servicio Nacional de Geología y Minería (SERNAGEOMIN), 2008; Carn et al., 2009; Castro and Dingwell, 2009; Lara, 2009; Muñoz et al., 2009]. Vigorous explosions occurred through 8 May 2008, after which explosive activity waned and a new lava dome was extruded.

  6. Hanford waste tank cone penetrometer

    International Nuclear Information System (INIS)

    Seda, R.Y.

    1995-12-01

    A new tool is being developed to characterize tank waste at the Hanford Reservation. This tool, known as the cone penetrometer, is capable of obtaining chemical and physical properties in situ. For the past 50 years, this tool has been used extensively in soil applications and now has been modified for usage in Hanford Underground Storage tanks. These modifications include development of new ''waste'' data models as well as hardware design changes to accommodate the hazardous and radioactive environment of the tanks. The modified cone penetrometer is scheduled to be deployed at Hanford by Fall 1996. At Hanford, the cone penetrometer will be used as an instrumented pipe which measures chemical and physical properties as it pushes through tank waste. Physical data, such as tank waste stratification and mechanical properties, is obtained through three sensors measuring tip pressure, sleeve friction and pore pressure. Chemical data, such as chemical speciation, is measured using a Raman spectroscopy sensor. The sensor package contains other instrumentation as well, including a tip and side temperature sensor, tank bottom detection and an inclinometer. Once the cone penetrometer has reached the bottom of the tank, a moisture probe will be inserted into the pipe. This probe is used to measure waste moisture content, water level, waste surface moisture and tank temperature. This paper discusses the development of this new measurement system. Data from the cone penetrometer will aid in the selection of sampling tools, waste tank retrieval process, and addressing various tank safety issues. This paper will explore various waste models as well as the challenges associated with tank environment

  7. Aleutian Islands Coastal Resources Inventory and Environmental Sensitivity Maps: VOLCANOS (Volcano Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains point locations of active volcanoes as compiled by Motyka et al., 1993. Eighty-nine volcanoes with eruptive phases in the Quaternary are...

  8. Development research in the Southern Cone | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-01-05

    Jan 5, 2011 ... In Chile alone, some 3 000 social scientists left the country after the 1973 coup; in 1980, more than 500 professors were fired from Chilean universities in a single semester. The coercive suppression of social science research menaced lives and livelihoods — and undercut the region's prospects for future ...

  9. Remote Triggering of Microearthquakes in the Piton de la Fournaise and Changbaishan Volcanoes

    Science.gov (United States)

    Li, C.; Liu, G.; Peng, Z.; Brenguier, F.; Dufek, J.

    2015-12-01

    Large earthquakes are capable of triggering seismic, aseismic and hydrological responses at long-range distances. In particular, recent studies have shown that microearthquakes are mostly triggered in volcanic/geothermal regions. However, it is still not clear how widespread the phenomenon is, and whether there are any causal links between large earthquakes and subsequent volcanic unrest/eruptions. In this study we conduct a systematic search for remotely triggered activity at the Piton de la Fournaise (PdlF) and Changbaishan (CBS) volcanoes. The PdlF is a shield volcano located on the east-southern part of the Reunion Island in Indian Ocean. It is one of the most active volcanoes around the world. The CBS volcano is an intraplate stratovolcano on the border between China and North Korea, and it was active with a major eruption around 1100 years ago and has been since dormant from AD 1903, however, it showed signals of unrest recently. We choose these regions because they are well instrumented and spatially close to recent large earthquakes, such as the 2004/12/26 Mw9.1 Sumatra, 2011/03/11 Mw9.0 Tohoku, and the 2012/04/11 Mw8.6 Indian Ocean Earthquakes. By examining continuous waveforms a few hours before and after many earthquakes since 2000, we find many cases of remote triggering around the CBS volcano. In comparison, we only identify a few cases of remotely triggered seismicity around the PdlF volcano, including the 2004 Sumatra earthquake. Notably, the 2012 Indian Ocean earthquake and its M8.2 aftershock did not trigger any clear increase of seismicity, at least during their surface waves. Our next step is to apply a waveform matching method to automatically detect volcano-seismicity in both regions, and then use them to better understand potential interactions between large earthquakes and volcanic activities.

  10. NMNAT1 variants cause cone and cone-rod dystrophy.

    Science.gov (United States)

    Nash, Benjamin M; Symes, Richard; Goel, Himanshu; Dinger, Marcel E; Bennetts, Bruce; Grigg, John R; Jamieson, Robyn V

    2018-03-01

    Cone and cone-rod dystrophies (CD and CRD, respectively) are degenerative retinal diseases that predominantly affect the cone photoreceptors. The underlying disease gene is not known in approximately 75% of autosomal recessive cases. Variants in NMNAT1 cause a severe, early-onset retinal dystrophy called Leber congenital amaurosis (LCA). We report two patients where clinical phenotyping indicated diagnoses of CD and CRD, respectively. NMNAT1 variants were identified, with Case 1 showing an extremely rare homozygous variant c.[271G > A] p.(Glu91Lys) and Case 2 compound heterozygous variants c.[53 A > G];[769G > A] p.(Asn18Ser);(Glu257Lys). The detailed variant analysis, in combination with the observation of an associated macular atrophy phenotype, indicated that these variants were disease-causing. This report demonstrates that the variants in NMNAT1 may cause CD or CRD associated with macular atrophy. Genetic investigations of the patients with CD or CRD should include NMNAT1 in the genes examined.

  11. Vocanic Deformations During Repose Interval Revealed by GPS Measurements, Batur Volcano, Indonesia

    Science.gov (United States)

    Nishimae, K.; Fujii, N.; Kimata, F.; Murase, M.; Suganda, O. K.; Abidin, H. Z.

    2005-12-01

    Batur volcano is located north west of Bali Island in Indonesia.This volcano has two calderas with more than 10 km in diameter. Recent eruptions with lava flow occurred in 1963 and 1974. No effusion of lava has been observed since 1990, although steam explosions occurred August 1994, November 1997 and June 1998.This suggests that magmatic activity of this volcano would keep its high level since 1994.GPS observation network of this volcano has been kept by Institute Technology of Bandung (ITB) and Volcano Survey of Indonesia (VSI).The network was consisted of 10 observation points at the beginning in 1999, and now it becomes 23 observation points. We have made GPS campaign observations about five times from 2003 to 2005. Each campaign observation consisted of a couple of days of measurements for each observation point. In order to keep the quality of data as high as possible, observations have been made at least 12 hours of continuous data for each point. In this report, results of two campaign observations (December 2004 and July 2005) are used for the analysis. The data thus obtained are fitted to the Mogi source (i.e. a point source model) to locate the depth and amount of volume changes for 7 months. Location of the Mogi source was obtained about 4km southeast of the summit of central cone, and 3km depth with deflation volume change of 1.3_~106 m3 for about 7months. For the period from 1999 to 2004, estimated volume change suggests a continuous deflation throughout this period, although the reliability of data was not so high. Continuous deflations might be likely after the last effusive eruption in 1974, would suggest that shallow part of magma beneath the central cone would probably be drained down to further deep, or shrinkage of magma associated with the cooling or solidification. Further data are obviously needed to discriminate the mechanisms of the deformation process during the repose period in this volcano.

  12. The Volcanic Hazards Assessment Support System for the Online Hazard Assessment and Risk Mitigation of Quaternary Volcanoes in the World

    Directory of Open Access Journals (Sweden)

    Shinji Takarada

    2017-12-01

    Full Text Available Volcanic hazards assessment tools are essential for risk mitigation of volcanic activities. A number of offline volcanic hazard assessment tools have been provided, but in most cases, they require relatively complex installation procedure and usage. This situation causes limited usage of volcanic hazard assessment tools among volcanologists and volcanic hazards communities. In addition, volcanic eruption chronology and detailed database of each volcano in the world are essential key information for volcanic hazard assessment, but most of them are isolated and not connected to and with each other. The Volcanic Hazard Assessment Support System aims to implement a user-friendly, WebGIS-based, open-access online system for potential hazards assessment and risk-mitigation of Quaternary volcanoes in the world. The users can get up-to-date information such as eruption chronology and geophysical monitoring data of a specific volcano using the direct link system to major volcano databases on the system. Currently, the system provides 3 simple, powerful and notable deterministic modeling simulation codes of volcanic processes, such as Energy Cone, Titan2D and Tephra2. The system provides deterministic tools because probabilistic assessment tools are normally much more computationally demanding. By using the volcano hazard assessment system, the area that would be affected by volcanic eruptions in any location near the volcano can be estimated using numerical simulations. The system is being implemented using the ASTER Global DEM covering 2790 Quaternary volcanoes in the world. The system can be used to evaluate volcanic hazards and move this toward risk-potential by overlaying the estimated distribution of volcanic gravity flows or tephra falls on major roads, houses and evacuation areas using the GIS-enabled systems. The system is developed for all users in the world who need volcanic hazards assessment tools.

  13. Polyhedral combinatorics of UPGMA cones

    OpenAIRE

    Davidson, Ruth; Sullivant, Seth

    2013-01-01

    Distance-based methods such as UPGMA (Unweighted Pair Group Method with Arithmetic Mean) continue to play a significant role in phylogenetic research. We use polyhedral combinatorics to analyze the natural subdivision of the positive orthant induced by classifying the input vectors according to tree topologies returned by the algorithm. The partition lattice informs the study of UPGMA trees. We give a closed form for the extreme rays of UPGMA cones on n taxa, and compute the normalized volume...

  14. Liouville action in cone gauge

    International Nuclear Information System (INIS)

    Zamolodchikov, A.B.

    1989-01-01

    The effective action of the conformally invariant field theory in the curved background space is considered in the light cone gauge. The effective potential in the classical background stress is defined as the Legendre transform of the Liouville action. This potential is tightly connected with the sl(2) current algebra. The series of the covariant differential operators is constructed and the anomalies of their determinants are reduced to this effective potential. 7 refs

  15. Cardiac cone-beam CT

    International Nuclear Information System (INIS)

    Manzke, Robert

    2005-01-01

    This doctoral thesis addresses imaging of the heart with retrospectively gated helical cone-beam computed tomography (CT). A thorough review of the CT reconstruction literature is presented in combination with a historic overview of cardiac CT imaging and a brief introduction to other cardiac imaging modalities. The thesis includes a comprehensive chapter about the theory of CT reconstruction, familiarizing the reader with the problem of cone-beam reconstruction. The anatomic and dynamic properties of the heart are outlined and techniques to derive the gating information are reviewed. With the extended cardiac reconstruction (ECR) framework, a new approach is presented for the heart-rate-adaptive gated helical cardiac cone-beam CT reconstruction. Reconstruction assessment criteria such as the temporal resolution, the homogeneity in terms of the cardiac phase, and the smoothness at cycle-to-cycle transitions are developed. Several reconstruction optimization approaches are described: An approach for the heart-rate-adaptive optimization of the temporal resolution is presented. Streak artifacts at cycle-to-cycle transitions can be minimized by using an improved cardiac weighting scheme. The optimal quiescent cardiac phase for the reconstruction can be determined automatically with the motion map technique. Results for all optimization procedures applied to ECR are presented and discussed based on patient and phantom data. The ECR algorithm is analyzed for larger detector arrays of future cone-beam systems throughout an extensive simulation study based on a four-dimensional cardiac CT phantom. The results of the scientific work are summarized and an outlook proposing future directions is given. The presented thesis is available for public download at www.cardiac-ct.net

  16. Prescriptionless light-cone integrals

    International Nuclear Information System (INIS)

    Suzuki, A.T.; Schmidt, A.G.M.

    2000-01-01

    Perturbative quantum gauge field theory as seen within the perspective of physical gauge choices such as the light-cone gauge entails the emergence of troublesome poles of the type (k.n) -α in the Feynman integrals. These come from the boson field propagator, where α=1,2,.. and n μ is the external arbitrary four-vector that defines the gauge properly. This becomes an additional hurdle in the computation of Feynman diagrams, since any graph containing internal boson lines will inevitably produce integrands with denominators bearing the characteristic gauge-fixing factor. How one deals with them has been the subject of research over decades, and several prescriptions have been suggested and tried in the course of time, with failures and successes. However, a more recent development at this fronteer which applies the negative dimensional technique to compute light-cone Feynman integrals shows that we can altogether dispense with prescriptions to perform the calculations. An additional bonus comes to us attached to this new technique, in that not only it renders the light-cone prescriptionless but, by the very nature of it, it can also dispense with decomposition formulas or partial fractioning tricks used in the standard approach to separate pole products of the type (k.n) -α [(k-p).n] -β (β=1,2,..). In this work we demonstrate how all this can be done. (orig.)

  17. Light-cone quantization of quantum chromodynamics

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Pauli, H.C.

    1991-06-01

    We discuss the light-cone quantization of gauge theories from two perspectives: as a calculational tool for representing hadrons as QCD bound-states of relativistic quarks and gluons, and also as a novel method for simulating quantum field theory on a computer. The light-cone Fock state expansion of wavefunctions at fixed light cone time provides a precise definition of the parton model and a general calculus for hadronic matrix elements. We present several new applications of light-cone Fock methods, including calculations of exclusive weak decays of heavy hadrons, and intrinsic heavy-quark contributions to structure functions. A general nonperturbative method for numerically solving quantum field theories, ''discretized light-cone quantization,'' is outlined and applied to several gauge theories, including QCD in one space and one time dimension, and quantum electrodynamics in physical space-time at large coupling strength. The DLCQ method is invariant under the large class of light-cone Lorentz transformations, and it can be formulated such at ultraviolet regularization is independent of the momentum space discretization. Both the bound-state spectrum and the corresponding relativistic light-cone wavefunctions can be obtained by matrix diagonalization and related techniques. We also discuss the construction of the light-cone Fock basis, the structure of the light-cone vacuum, and outline the renormalization techniques required for solving gauge theories within the light-cone Hamiltonian formalism

  18. Light-cone quantization of quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J. (Stanford Linear Accelerator Center, Menlo Park, CA (USA)); Pauli, H.C. (Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany, F.R.))

    1991-06-01

    We discuss the light-cone quantization of gauge theories from two perspectives: as a calculational tool for representing hadrons as QCD bound-states of relativistic quarks and gluons, and also as a novel method for simulating quantum field theory on a computer. The light-cone Fock state expansion of wavefunctions at fixed light cone time provides a precise definition of the parton model and a general calculus for hadronic matrix elements. We present several new applications of light-cone Fock methods, including calculations of exclusive weak decays of heavy hadrons, and intrinsic heavy-quark contributions to structure functions. A general nonperturbative method for numerically solving quantum field theories, discretized light-cone quantization,'' is outlined and applied to several gauge theories, including QCD in one space and one time dimension, and quantum electrodynamics in physical space-time at large coupling strength. The DLCQ method is invariant under the large class of light-cone Lorentz transformations, and it can be formulated such at ultraviolet regularization is independent of the momentum space discretization. Both the bound-state spectrum and the corresponding relativistic light-cone wavefunctions can be obtained by matrix diagonalization and related techniques. We also discuss the construction of the light-cone Fock basis, the structure of the light-cone vacuum, and outline the renormalization techniques required for solving gauge theories within the light-cone Hamiltonian formalism.

  19. K-Ar ages of the Hiruzen volcano group and the Daisen volcano

    International Nuclear Information System (INIS)

    Tsukui, Masashi; Nishido, Hirotsugu; Nagao, Keisuke.

    1985-01-01

    Seventeen volcanic rocks of the Hiruzen volcano group and the Daisen volcano, in southwest Japan, were dated by the K-Ar method to clarify the age of volcanic activity in this region and the evolution of these composite volcanoes. The eruption ages of the Hiruzen volcano group were revealed to be about 0.9 Ma to 0.5 Ma, those of the Daisen volcano to be about 1 Ma to very recent. These results are consistent with geological and paleomagnetic data of previous workers. Effusion of lavas in the area was especially vigorous at 0.5+-0.1 Ma. It was generally considered that the Hiruzen volcano group had erupted during latest Pliocene to early Quaternary and it is older than the Daisen volcano, mainly from their topographic features. However, their overlapping eruption ages and petrographical similarities of the lavas of the Hiruzen volcano group and the Daisen volcano suggest that they may be included in the Daisen volcano in a broad sense. The aphyric andesite, whose eruption age had been correlated to Wakurayama andesite (6.34+-0.19 Ma) in Matsue city and thought to be the basement of the Daisen volcano, was dated to be 0.46+-0.04 Ma. It indicates that petrographically similar aphyric andesite erupted sporadically at different time and space in the San'in district. (author)

  20. Geomorphometric variability of "monogenetic" volcanic cones: Evidence from Mauna Kea, Lanzarote and experimental cones

    Science.gov (United States)

    Kervyn, M.; Ernst, G. G. J.; Carracedo, J.-C.; Jacobs, P.

    2012-01-01

    Volcanic cones are the most common volcanic constructs on Earth. Their shape can be quantified using two morphometric ratios: the crater/cone base ratio (W cr/W co) and the cone height/width ratio (H co/W co). The average values for these ratios obtained over entire cone fields have been explained by the repose angle of loose granular material (i.e. scoria) controlling cone slopes. The observed variability in these ratios between individual cones has been attributed to the effect of erosional processes or contrasting eruptive conditions on cone morphometry. Using a GIS-based approach, high spatial resolution Digital Elevation Models and airphotos, two new geomorphometry datasets for cone fields at Mauna Kea (Hawaii, USA) and Lanzarote (Canary Islands, Spain) are extracted and analyzed here. The key observation in these datasets is the great variability in morphometric ratios, even for simple-shape and well-preserved cones. Simple analog experiments are presented to analyze factors influencing the morphometric ratios. The formation of a crater is simulated within an analog cone (i.e. a sand pile) by opening a drainage conduit at the cone base. Results from experiments show that variability in the morphometric ratios can be attributed to variations in the width, height and horizontal offset of the drainage point relative to the cone symmetry axis, to the dip of the underlying slope or to the influence of a small proportion of fine cohesive material. GIS analysis and analog experiments, together with specific examples of cones documented in the field, suggest that the morphometric ratios for well-preserved volcanic cones are controlled by a combination of 1) the intrinsic cone material properties, 2) time-dependent eruption conditions, 3) the local setting, and 4) the method used to estimate the cone height. Implications for interpreting cone morphometry solely as either an age or as an eruption condition indicator are highlighted.

  1. Geoflicks Reviewed--Films about Hawaiian Volcanoes.

    Science.gov (United States)

    Bykerk-Kauffman, Ann

    1994-01-01

    Reviews 11 films on volcanic eruptions in the United States. Films are given a one- to five-star rating and the film's year, length, source and price are listed. Top films include "Inside Hawaiian Volcanoes" and "Kilauea: Close up of an Active Volcano." (AIM)

  2. Orographic Flow over an Active Volcano

    Science.gov (United States)

    Poulidis, Alexandros-Panagiotis; Renfrew, Ian; Matthews, Adrian

    2014-05-01

    Orographic flows over and around an isolated volcano are studied through a series of numerical model experiments. The volcano top has a heated surface, so can be thought of as "active" but not erupting. A series of simulations with different atmospheric conditions and using both idealised and realistic configurations of the Weather Research and Forecast (WRF) model have been carried out. The study is based on the Soufriere Hills volcano, located on the island of Montserrat in the Caribbean. This is a dome-building volcano, leading to a sharp increase in the surface skin temperature at the top of the volcano - up to tens of degrees higher than ambient values. The majority of the simulations use an idealised topography, in order for the results to have general applicability to similar-sized volcanoes located in the tropics. The model is initialised with idealised atmospheric soundings, representative of qualitatively different atmospheric conditions from the rainy season in the tropics. The simulations reveal significant changes to the orographic flow response, depending upon the size of the temperature anomaly and the atmospheric conditions. The flow regime and characteristic features such as gravity waves, orographic clouds and orographic rainfall patterns can all be qualitatively changed by the surface heating anomaly. Orographic rainfall over the volcano can be significantly enhanced with increased temperature anomaly. The implications for the eruptive behaviour of the volcano and resulting secondary volcanic hazards will also be discussed.

  3. Geologic field-trip guide to Mount Shasta Volcano, northern California

    Science.gov (United States)

    Christiansen, Robert L.; Calvert, Andrew T.; Grove, Timothy L.

    2017-08-18

    The southern part of the Cascades Arc formed in two distinct, extended periods of activity: “High Cascades” volcanoes erupted during about the past 6 million years and were built on a wider platform of Tertiary volcanoes and shallow plutons as old as about 30 Ma, generally called the “Western Cascades.” For the most part, the Shasta segment (for example, Hildreth, 2007; segment 4 of Guffanti and Weaver, 1988) of the arc forms a distinct, fairly narrow axis of short-lived small- to moderate-sized High Cascades volcanoes that erupted lavas, mainly of basaltic-andesite or low-silica-andesite compositions. Western Cascades rocks crop out only sparsely in the Shasta segment; almost all of the following descriptions are of High Cascades features except for a few unusual localities where older, Western Cascades rocks are exposed to view along the route of the field trip.The High Cascades arc axis in this segment of the arc is mainly a relatively narrow band of either monogenetic or short-lived shield volcanoes. The belt generally averages about 15 km wide and traverses the length of the Shasta segment, roughly 100 km between about the Klamath River drainage on the north, near the Oregon-California border, and the McCloud River drainage on the south (fig. 1). Superposed across this axis are two major long-lived stratovolcanoes and the large rear-arc Medicine Lake volcano. One of the stratovolcanoes, the Rainbow Mountain volcano of about 1.5–0.8 Ma, straddles the arc near the midpoint of the Shasta segment. The other, Mount Shasta itself, which ranges from about 700 ka to 0 ka, lies distinctly west of the High Cascades axis. It is notable that Mount Shasta and Medicine Lake volcanoes, although volcanologically and petrologically quite different, span about the same range of ages and bracket the High Cascades axis on the west and east, respectively.The field trip begins near the southern end of the Shasta segment, where the Lassen Volcanic Center field trip leaves

  4. Estimating volume of deposits associated with landslides on volcanic landscapes in the SW flank of the volcano Pico de Orizaba, Puebla-Veracruz

    Directory of Open Access Journals (Sweden)

    Gabriel Legorreta Paulín

    2017-03-01

    Full Text Available Landslides that occur along river systems are very common and have the potential to cause harm to human, to its infrastructure or affect their socio-economic activity. This dynamic is magnified in territories where morphological contrasts are very marked; as in the border between the mountains and subhorizontal land. This is especially true for volcanic terrains where volcanic activity can trigger voluminous landslides along stream systems by sector and flank collapse and where high seasonal rainfall on terrains covered by poorly consolidated materials produces small but hazardous landslides and debris flows that occur continually along stream systems during the volcanic repose periods. Those type of landslides can deliver volumes of hundreds and millions cubic meters that create a potentially hazardous situation for people and property down the valleys. The study of landslides in volcanic terrains through a Geographic Information System (GIS and under a geomorphological criterion, have allowed to develop a comprehensive methodology linked to the development of multi-temporal inventory, with susceptibility and volume estimation of displaced material. The aim of this research is to develop a method (protocol for landslide susceptibility and landslide volume assessment of potentially unstable volcanic landscapes in order to be helpful in mitigating landslide damages to human settlements. Pico de Orizaba volcano is the highest volcano in Mexico. The volcano has been affected by large flank collapse landslides throughout its geological history. These events have partially destroyed the cone as it happened in Bezymianny volcano and St. Elena volcano. In this volcano, the risk associated with landslide and debris flows, is increased by the growing of human settlements along the hillslopes and by the subsistence agriculture, and deforestation. This situation is favored by a volcanic calm that has lasted 147 years, approximate. These conditions create a

  5. g-Weak Contraction in Ordered Cone Rectangular Metric Spaces

    Directory of Open Access Journals (Sweden)

    S. K. Malhotra

    2013-01-01

    Full Text Available We prove some common fixed-point theorems for the ordered g-weak contractions in cone rectangular metric spaces without assuming the normality of cone. Our results generalize some recent results from cone metric and cone rectangular metric spaces into ordered cone rectangular metric spaces. Examples are provided which illustrate the results.

  6. Catalog of earthquake hypocenters at Redoubt Volcano and Mt. Spurr, Alaska: October 12, 1989 - December 31, 1990

    Science.gov (United States)

    Power, John A.; March, Gail D.; Lahr, John C.; Jolly, Arthur D.; Cruse, Gina R.

    1993-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska, Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, began a program of seismic monitoring at potentially active volcanoes in the Cook Inlet region in 1988. Seismic monitoring of this area was previously accomplished by two independent seismic networks operated by the U.S. Geological Survey (Northern Cook Inlet) and the Geophysical Institute (Southern Cook Inlet). In 1989 the AVO seismic program consisted of three small-aperture networks of six, five, and six stations on Mt. Spurr, Redoubt Volcano, and Augustine Volcano respectively. Thirty-five other stations were operated in the Cook Inlet region as part of the AVO program. During 1990 six additional stations were added to the Redoubt network in response to eruptive activity, and three stations were installed at Iliamna Volcano. The principal objectives of the AVO program have been the seismic surveillance of the Cook Inlet volcanoes and the investigation of seismic processes associated with active volcanism.

  7. 10,000 Years of explosive eruptions of Merapi Volcano, Central Java: archaeological and modern implications

    Science.gov (United States)

    Newhall, C.G.; Bronto, S.; Alloway, B.; Banks, N.G.; Bahar, I.; Del Marmol, M.A.; Hadisantono, R.D.; Holcomb, R.T.; McGeehin, J.; Miksic, J.N.; Rubin, M.; Sayudi, S.D.; Sukhyar, R.; Andreastuti, Supriyati; Tilling, R.I.; Torley, R.; Trimble, D.; Wirakusumah, A.D.

    2000-01-01

    Stratigraphy and radiocarbon dating of pyroclastic deposits at Merapi Volcano, Central Java, reveals ~10,000 years of explosive eruptions. Highlights include: (1) Construction of an Old Merapi stratovolcano to the height of the present cone or slightly higher. Our oldest age for an explosive eruption is 9630±60 14C y B.P.; construction of Old Merapi certainly began earlier. (2) Collapse(s) of Old Merapi that left a somma rim high on its eastern slope and sent one or more debris avalanche(s) down its southern and western flanks. Impoundment of Kali Progo to form an early Lake Borobudur at ~3400 14C y B.P. hints at a possible early collapse of Merapi. The latest somma-forming collapse occurred ~1900 14C y B.P. The current cone, New Merapi, began to grow soon thereafter. (3) Several large and many small Buddhist and Hindu temples were constructed in Central Java between 732 and ~900 A.D. (roughly, 1400-1000 14C y B.P.). Explosive Merapi eruptions occurred before, during and after temple construction. Some temples were destroyed and (or) buried soon after their construction, and we suspect that this destruction contributed to an abrupt shift of power and organized society to East Java in 928 A.D. Other temples sites, though, were occupied by "caretakers" for several centuries longer. (4) A partial collapse of New Merapi occurred 14C y B.P. Eruptions ~700-800 14C y B.P. (12-14th century A.D.) deposited ash on the floors of (still-occupied?) Candi Sambisari and Candi Kedulan. We speculate but cannot prove that these eruptions were triggered by (the same?) partial collapse of New Merapi, and that the eruptions, in turn, ended "caretaker" occupation at Candi Sambisari and Candi Kedulan. A new or raised Lake Borobudur also existed during part or all of the 12-14th centuries, probably impounded by deposits from Merapi. (5) Relatively benign lava-dome extrusion and dome-collapse pyroclastic flows have dominated activity of the 20th century, but explosive eruptions much

  8. Compositional variations revealed by ASTER image analysis of the Viedma Volcano, southern Andes Volcanic Zone Variaciones composicionales reveladas mediante análisis de imágenes ASTER del volcán Viedma, Zona Volcánica Andina Austral

    Directory of Open Access Journals (Sweden)

    Chiaki Kobayashi

    2010-07-01

    Full Text Available We conducted a lithological mapping of the Viedma volcano, one of five volcanoes in the Andean Austral Volcanic Zone (AVZ, using remote sensing techniques. We used data of the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER sensor which is highly effective in geological research, to understand build-up processes and to deduce compositional variation of the Viedma volcano emerging from the South Patagonian ice field. The volcanic edifice was divided into bright parts that mainly compose the eastern flank of the volcano and dark parts at the central crater area based on the observation in visible and near infrared ranges. The SiO2 concentration was cal-culated using the bands in the visible and thermal infrared regions. The dark part and the bright part have approximately 51 wt% and 63 wt% average SiO2 content respectively, indicating that the exposures of the Viedma volcano have a wide variation in SiO2 concentration. Although, according to other authors, ejecta from the Viedma volcano have 64-66 wt% SiO2 and other AV Z volcanoes are essentially monolithologic dacite/andesite volcanoes, the edifice of the Viedma volcano appears to be composed mostly of basalts or older rocks/basement with low silica contents.Mediante el uso de técnica de sensoría remota se ha desarrollado un mapeo litológico del volcán Viedma, uno de los cinco volcanes de la Zona Volcánica Andina Austral (ZVA. Para este efecto, se ha utilizado el radiómetro ‘Advanced Spaceborne Thermal Emission and Reflection’ (ASTER que es muy efectivo en investigación geológica, para entender los procesos que han controlado la estructura y deducir las variaciones composi-cionales del volcán Viedma, que sobresale levemente de la superficie del campo de hielo Patagónico Sur. Sobre la base de la observación en el intervalo del espectro visible e infrarrojo cercano, en el edificio se distinguen partes brillantes que corresponden al flanco oriental del volcán y

  9. Late Holocene volcanism at Medicine Lake Volcano, northern California Cascades

    Science.gov (United States)

    Donnelly-Nolan, Julie M.; Champion, Duane E.; Grove, Timothy L.

    2016-05-23

    Late Holocene volcanism at Medicine Lake volcano in the southern Cascades arc exhibited widespread and compositionally diverse magmatism ranging from basalt to rhyolite. Nine well-characterized eruptions have taken place at this very large rear-arc volcano since 5,200 years ago, an eruptive frequency greater than nearly all other Cascade volcanoes. The lavas are widely distributed, scattered over an area of ~300 km2 across the >2,000-km2 volcano. The eruptions are radiocarbon dated and the ages are also constrained by paleomagnetic data that provide strong evidence that the volcanic activity occurred in three distinct episodes at ~1 ka, ~3 ka, and ~5 ka. The ~1-ka final episode produced a variety of compositions including west- and north-flank mafic flows interspersed in time with fissure rhyolites erupted tangential to the volcano’s central caldera, including the youngest and most spectacular lava flow at the volcano, the ~950-yr-old compositionally zoned Glass Mountain flow. At ~3 ka, a north-flank basalt eruption was followed by an andesite eruption 27 km farther south that contains quenched basalt inclusions. The ~5-ka episode produced two caldera-focused dacitic eruptions. Quenched magmatic inclusions record evidence of intrusions that did not independently reach the surface. The inclusions are present in five andesitic, dacitic, and rhyolitic host lavas, and were erupted in each of the three episodes. Compositional and mineralogic evidence from mafic lavas and inclusions indicate that both tholeiitic (dry) and calcalkaline (wet) parental magmas were present. Petrologic evidence records the operation of complex, multi-stage processes including fractional crystallization, crustal assimilation, and magma mixing. Experimental evidence suggests that magmas were stored at 3 to 6 km depth prior to eruption, and that both wet and dry parental magmas were involved in generating the more silicic magmas. The broad distribution of eruptive events and the relative

  10. The 2014 eruptions of Pavlof Volcano, Alaska

    Science.gov (United States)

    Waythomas, Christopher F.; Haney, Matthew M.; Wallace, Kristi; Cameron, Cheryl E.; Schneider, David J.

    2017-12-22

    Pavlof Volcano is one of the most frequently active volcanoes in the Aleutian Island arc, having erupted more than 40 times since observations were first recorded in the early 1800s . The volcano is located on the Alaska Peninsula (lat 55.4173° N, long 161.8937° W), near Izembek National Wildlife Refuge. The towns and villages closest to the volcano are Cold Bay, Nelson Lagoon, Sand Point, and King Cove, which are all within 90 kilometers (km) of the volcano (fig. 1). Pavlof is a symmetrically shaped stratocone that is 2,518 meters (m) high, and has about 2,300 m of relief. The volcano supports a cover of glacial ice and perennial snow roughly 2 to 4 cubic kilometers (km3) in volume, which is mantled by variable amounts of tephra fall, rockfall debris, and pyroclastic-flow deposits produced during historical eruptions. Typical Pavlof eruptions are characterized by moderate amounts of ash emission, lava fountaining, spatter-fed lava flows, explosions, and the accumulation of unstable mounds of spatter on the upper flanks of the volcano. The accumulation and subsequent collapse of spatter piles on the upper flanks of the volcano creates hot granular avalanches, which erode and melt snow and ice, and thereby generate watery debris-flow and hyperconcentrated-flow lahars. Seismic instruments were first installed on Pavlof Volcano in the early 1970s, and since then eruptive episodes have been better characterized and specific processes have been documented with greater certainty. The application of remote sensing techniques, including the use of infrasound data, has also aided the study of more recent eruptions. Although Pavlof Volcano is located in a remote part of Alaska, it is visible from Cold Bay, Sand Point, and Nelson Lagoon, making distal observations of eruptive activity possible, weather permitting. A busy air-travel corridor that is utilized by a numerous transcontinental and regional air carriers passes near Pavlof Volcano. The frequency of air travel

  11. Energy integration in south cone

    International Nuclear Information System (INIS)

    Ribeiro, M.A.K.

    1990-01-01

    The economic development of a geo-political region is directly related to the energy resources available to its productive system. The analysis carried out in this paper focus a region limited by Paraguay, Uruguay, the Argentina north and the Brazilian south, the core of the so called South Cone. The region has a diversified energy matrix that assures strong connections between the countries. The main resources available are hydroelectric but the approach gives a strong emphasis in coal and natural gas. The outlined model of a self sustained development of the region can be used as the foundation of the independent economic development of South America. (author)

  12. Seawave Slot-Cone Generator

    DEFF Research Database (Denmark)

    Vicinanza, Diego; Margheritini, Lucia; Contestabile, Pasquale

    2009-01-01

    This paper discusses a new type of Wave Energy Converter (WEC) named Seawave Slot-Cone Generator (SSG). The SSG is a WEC of the overtopping type. The structure consists of a number of reservoirs one on the top of each others above the mean water level in which the water of incoming waves is store...... on sloping walls constituting the structure. The research is intended to be of direct use to engineers analyzing design and stability of this peculiar kind of coastal structure....

  13. Exploring Geology on the World-Wide Web--Volcanoes and Volcanism.

    Science.gov (United States)

    Schimmrich, Steven Henry; Gore, Pamela J. W.

    1996-01-01

    Focuses on sites on the World Wide Web that offer information about volcanoes. Web sites are classified into areas of Global Volcano Information, Volcanoes in Hawaii, Volcanoes in Alaska, Volcanoes in the Cascades, European and Icelandic Volcanoes, Extraterrestrial Volcanism, Volcanic Ash and Weather, and Volcano Resource Directories. Suggestions…

  14. Geophysical Investigations of Magma Plumbing Systems at Cerro Negro Volcano, Nicaragua

    Science.gov (United States)

    MacQueen, Patricia Grace

    Cerro Negro near Leon, Nicaragua is a very young (163 years), relatively small basaltic cinder cone volcano that has been unusually active during its short lifespan (recurrence interval 6--7 years), presenting a significant hazard to nearby communities. Previous studies have raised several questions as to the proper classification of Cerro Negro and its relation to neighboring Las Pilas-El Hoyo volcano. Analysis of Bouguer gravity data collected at Cerro Negro has revealed connected positive density anomalies beneath Cerro Negro and Las Pilas-El Hoyo. These findings suggest that eruptions at Cerro Negro may be tapping a large magma reservoir beneath Las Pilas-El Hoyo, implying that Cerro Negro should be considered the newest vent on the Las Pilas-El Hoyo volcanic complex. As such, it is possible that the intensity of volcanic hazards at Cerro Negro may eventually increase in the future to resemble those pertaining to a stratovolcano. Keywords: Cerro Negro; Las Pilas-El Hoyo; Bouguer gravity; magmatic plumbing systems; potential fields; volcano.

  15. Geophysical Exploration on the Structure of Volcanoes: Two Case Histories

    Energy Technology Data Exchange (ETDEWEB)

    Furumoto, A. S.

    1974-01-01

    Geophysical methods of exploration were used to determine the internal structure of Koolau Volcano in Hawaii and of Rabaul Volcano in New Guinea. By use of gravity and seismic data the central vent or plug of Koolau Volcano was outlined. Magnetic data seem to indicate that the central plug is still above the Curie Point. If so, the amount of heat energy available is tremendous. As for Rabaul Volcano, it is located in a region characterized by numerous block faulting. The volcano is only a part of a large block that has subsided. Possible geothermal areas exist near the volcano but better potential areas may exist away from the volcano.

  16. Volcanic Hazards Associated with the NE Sector of Tacaná Volcano, Guatemala.

    Science.gov (United States)

    Hughes, S. R.; Saucedo, R.; Macias, J.; Arce, J.; Garcia-Palomo, A.; Mora, J.; Scolamacchia, T.

    2003-12-01

    Tacaná volcano, with a height of 4,030 m above sea level, straddles the southern Mexico/Guatemala border. Last active in 1986, when there was a small phreatic event with a duration of a few days, this volcano presents an impending hazard to over 250,000 people. The NE sector of the volcano reveals the violent volcanic history of Tacaná that may be indicative of a serious potential risk to the area. Its earliest pyroclastic history appears to consist of fall, flow, and surge deposits, together with lavas, that have formed megablocks within a series of old debris avalanche deposits. This sector collapse event is overlain by a sequence of pumice fall and ash flow deposits, of which the youngest, less-altered pumice fall deposit shows a minimum thickness of > 4 m, with a dispersal axis trending toward the NE. A second debris avalanche deposit, separated from the above deposits by a paleosoil, is dominated by megablocks of lava and scoriaceous dome material. The current topography around the northeastern flank of the volcano is determined by a third, and most recent debris avalanche deposit, a thick (> 20 m) sequence of six block and ash flows dated at around 16,000 years BP, each separated by 1-10 cm thick ash cloud surge deposit, together with secondary lahar deposits. These are followed by a at least 4 lava flows that extend 2 km down the flank of the volcano. It appears that the most recent pyroclastic event at Tacaná is also recorded in this sector of the volcano: above the block and ash flows occurs a > 1 m thick ash flow unit that can be seen at least 5 km from the vent. Lastly, the Santa Maria Ash fall deposit, produced in 1902, has capped most of the deposits at Tacaná.

  17. Instrumentation Recommendations for Volcano Monitoring at U.S. Volcanoes Under the National Volcano Early Warning System

    Science.gov (United States)

    Moran, Seth C.; Freymueller, Jeff T.; LaHusen, Richard G.; McGee, Kenneth A.; Poland, Michael P.; Power, John A.; Schmidt, David A.; Schneider, David J.; Stephens, George; Werner, Cynthia A.; White, Randall A.

    2008-01-01

    As magma moves toward the surface, it interacts with anything in its path: hydrothermal systems, cooling magma bodies from previous eruptions, and (or) the surrounding 'country rock'. Magma also undergoes significant changes in its physical properties as pressure and temperature conditions change along its path. These interactions and changes lead to a range of geophysical and geochemical phenomena. The goal of volcano monitoring is to detect and correctly interpret such phenomena in order to provide early and accurate warnings of impending eruptions. Given the well-documented hazards posed by volcanoes to both ground-based populations (for example, Blong, 1984; Scott, 1989) and aviation (for example, Neal and others, 1997; Miller and Casadevall, 2000), volcano monitoring is critical for public safety and hazard mitigation. Only with adequate monitoring systems in place can volcano observatories provide accurate and timely forecasts and alerts of possible eruptive activity. At most U.S. volcanoes, observatories traditionally have employed a two-component approach to volcano monitoring: (1) install instrumentation sufficient to detect unrest at volcanic systems likely to erupt in the not-too-distant future; and (2) once unrest is detected, install any instrumentation needed for eruption prediction and monitoring. This reactive approach is problematic, however, for two reasons. 1. At many volcanoes, rapid installation of new ground-1. based instruments is difficult or impossible. Factors that complicate rapid response include (a) eruptions that are preceded by short (hours to days) precursory sequences of geophysical and (or) geochemical activity, as occurred at Mount Redoubt (Alaska) in 1989 (24 hours), Anatahan (Mariana Islands) in 2003 (6 hours), and Mount St. Helens (Washington) in 1980 and 2004 (7 and 8 days, respectively); (b) inclement weather conditions, which may prohibit installation of new equipment for days, weeks, or even months, particularly at

  18. High precision relocation of earthquakes at Iliamna Volcano, Alaska

    Science.gov (United States)

    Statz-Boyer, P.; Thurber, C.; Pesicek, J.; Prejean, S.

    2009-01-01

    In August 1996, a period of elevated seismicity commenced beneath Iliamna Volcano, Alaska. This activity lasted until early 1997, consisted of over 3000 earthquakes, and was accompanied by elevated emissions of volcanic gases. No eruption occurred and seismicity returned to background levels where it has remained since. We use waveform alignment with bispectrum-verified cross-correlation and double-difference methods to relocate over 2000 earthquakes from 1996 to 2005 with high precision (~ 100??m). The results of this analysis greatly clarify the distribution of seismic activity, revealing distinct features previously hidden by location scatter. A set of linear earthquake clusters diverges upward and southward from the main group of earthquakes. The events in these linear clusters show a clear southward migration with time. We suggest that these earthquakes represent either a response to degassing of the magma body, circulation of fluids due to exsolution from magma or heating of ground water, or possibly the intrusion of new dikes beneath Iliamna's southern flank. In addition, we speculate that the deeper, somewhat diffuse cluster of seismicity near and south of Iliamna's summit indicates the presence of an underlying magma body between about 2 and 4??km depth below sea level, based on similar features found previously at several other Alaskan volcanoes. ?? 2009 Elsevier B.V.

  19. The anatomy of an andesite volcano: A time-stratigraphic study of andesite petrogenesis and crustal evolution at Ruapehu volcano, New Zealand

    DEFF Research Database (Denmark)

    Price, R.C.; Gamble, J.A.; Smith, I.E.M.

    2012-01-01

    Ruapehu, New Zealand’s largest active andesite volcano is located at the southern tip of the Taupo Volcanic Zone (TVZ), the main locus of subduction-related volcanism in the North Island. Geophysical data indicate that crustal thickness transitions from ... Ruapehu. The volcano is built on a basement of Mesozoic metagreywacke and geophysical evidence together with xenoliths contained in lavas indicates that this is underlain by oceanic, meta-igneous lower crust. The present-day Ruapehu edifice has been constructed by a series of eruptive events that produced...... and andesite. Dacite also occurs but only one basalt flow has been identified. There have been progressive changes in the minor and trace element chemistry and isotopic composition of Ruapehu eruptives over time. In comparison with rocks from younger formations, Te Herenga eruptives have lower K2O abundances...

  20. The "Mud-volcanoes route" (Emilia Apennines, northern Italy)

    Science.gov (United States)

    Coratza, Paola; Castaldini, Doriano

    2016-04-01

    In the present paper the "Mud-volcanoes route" (MVR), an itinerary unfolds across the districts of Viano, Sassuolo, Fiorano Modenese and Maranello, in which part of the Emilia mud volcanoes fields are located, is presented. The Mud-volanoes route represents an emotional journey that connects places and excellences through the geological phenomenon of mud volcanoes, known with the local name "Salse". The Mud Volcanoes are created by the surfacing of salt water and mud mixed with gaseous and liquid hydrocarbons along faults and fractures of the ground. The name "Salsa"- from Latin salsus - results from the"salt" content of these muddy waters, ancient heritage of the sea that about a million years ago was occupying the current Po Plain. The "Salse" may take the shape of a cone or a level-pool according to the density of the mud. The Salse of Nirano, in the district of Fiorano Modenese, is one of the most important in Italy and among the most complex in Europe. Less extensive but equally charming and spectacular, are the "Salse" located in the districts of Maranello (locality Puianello), Sassuolo (locality Montegibbio) and Viano (locality Casola Querciola and Regnano). These fascinating lunar landscapes have always attracted the interest of researchers and tourist.The presence on the MVR territory of ancient settlements, Roman furnaces and mansions, fortification systems and castles, besides historic and rural buildings, proves the lasting bond between this land and its men. In these places, where the culture of good food has become a resource, we can find wine cellars, dairy farms and Balsamic vinegar factories that enable us to appreciate unique worldwide products. This land gave also birth to some personalities who created unique worldwide famous values, such as the myth of the Ferrrari, the ceramic industry and the mechatronics. The MVR is represented in a leaflet containing, short explanation, photos and a map in which are located areas with mud volcanoes, castles

  1. Volcanoes

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  2. Common processes at unique volcanoes – a volcanological conundrum

    OpenAIRE

    Katharine eCashman; Juliet eBiggs

    2014-01-01

    An emerging challenge in modern volcanology is the apparent contradiction between the perception that every volcano is unique, and classification systems based on commonalities among volcano morphology and eruptive style. On the one hand, detailed studies of individual volcanoes show that a single volcano often exhibits similar patterns of behavior over multiple eruptive episodes; this observation has led to the idea that each volcano has its own distinctive pattern of behavior (or “personali...

  3. Volcano-Hydrothermal Systems of the Kuril Island Arc (Russia): Geochemistry of the Thermal Waters and Gases.

    Science.gov (United States)

    Kalacheva, E.; Taran, Y.; Voloshina, E.; Kotenko, T.; Tarasov, K.

    2017-12-01

    More than 30 active volcanoes with historical eruptions are known on 20 main islands composing the Kuril Arc. Eight islands - Paramushir, Shiashkotan, Rasshua, Ushishir, Ketoy, Urup, Iturup and Kunashir - are characterized by hydrothermal activity, complementary to the fumarole activity in the craters and volcano slopes. At Paramushir, Shiashkotan, Iturup and Kunashir most of thermal manifestations are acidic to ultra-acidic hot springs associated with hydrothermal aquifers inside volcano edifices. The most powerful of them is the ultra-acid hydrothermal system of Ebeko volcano (Paramushir island) with more than 80 t/day of the chloride output and pH of springs of 1.5. At the summit part of the Ebeko volcano there are 12 thermal fields with the total thermal area exceeding 1 km2. The measured temperatures of fumaroles are from 98º C to 500ºC. Another type of hydrothermal activity are the wide spread coastal hot and neutral springs situated as a rule within the tide zone. Four groups of this type of thermal manifestation were found on the western shore of Shiashkotan island. It have Na-Ca-Cl-SO4 composition with temperatures 50-80°C and TDS 7-8 g/L. Coastal neutral springs were found also on Russhua, Uturup and Kunashir islands. Ushishir volcano-hydrothermal system in the middle of the arc is formed by the absorption of magmatic gases by seawater. In the crater of the Pallas cone (Ketoy island) there is a small Glazok lake with acid SO4 water and pH=2.4, TDS=2g/L, T=12oC. Ketoy volcano on the same island hosts a high temperature hydrothermal system with unusual boiling Ca-Na-SO4 neutral springs and steam vents. Mendeleev and Golovnin volcanoes on Kunashir Island are the southernmost of the Kuril arc. Mendeleev edifice is a centre of a large thermal area with many manifestations of different types including steam vents, acid springs and neutral coastal springs. In a 4.2x4 km wide caldera of Golovnin volcano there are two lakes with acid Cl-SO4 water and numerous

  4. Linking space observations to volcano observatories in Latin America: Results from the CEOS DRM Volcano Pilot

    Science.gov (United States)

    Delgado, F.; Pritchard, M. E.; Biggs, J.; Arnold, D. W. D.; Poland, M. P.; Ebmeier, S. K.; Wauthier, C.; Wnuk, K.; Parker, A. L.; Amelug, F.; Sansosti, E.; Mothes, P. A.; Macedo, O.; Lara, L.; Zoffoli, S.; Aguilar, V.

    2015-12-01

    Within Latin American, about 315 volcanoes that have been active in the Holocene, but according to the United Nations Global Assessment of Risk 2015 report (GAR15) 202 of these volcanoes have no seismic, deformation or gas monitoring. Following the 2012 Santorini Report on satellite Earth Observation and Geohazards, the Committee on Earth Observation Satellites (CEOS) has developed a 3-year pilot project to demonstrate how satellite observations can be used to monitor large numbers of volcanoes cost-effectively, particularly in areas with scarce instrumentation and/or difficult access. The pilot aims to improve disaster risk management (DRM) by working directly with the volcano observatories that are governmentally responsible for volcano monitoring, and the project is possible thanks to data provided at no cost by international space agencies (ESA, CSA, ASI, DLR, JAXA, NASA, CNES). Here we highlight several examples of how satellite observations have been used by volcano observatories during the last 18 months to monitor volcanoes and respond to crises -- for example the 2013-2014 unrest episode at Cerro Negro/Chiles (Ecuador-Colombia border); the 2015 eruptions of Villarrica and Calbuco volcanoes, Chile; the 2013-present unrest and eruptions at Sabancaya and Ubinas volcanoes, Peru; the 2015 unrest at Guallatiri volcano, Chile; and the 2012-present rapid uplift at Cordon Caulle, Chile. Our primary tool is measurements of ground deformation made by Interferometric Synthetic Aperture Radar (InSAR) but thermal and outgassing data have been used in a few cases. InSAR data have helped to determine the alert level at these volcanoes, served as an independent check on ground sensors, guided the deployment of ground instruments, and aided situational awareness. We will describe several lessons learned about the type of data products and information that are most needed by the volcano observatories in different countries.

  5. Cone calorimeter tests of wood composites

    Science.gov (United States)

    Robert H. White; Kuma Sumathipala

    2013-01-01

    The cone calorimeter is widely used for the determination of the heat release rate (HRR) of building products and other materials. As part of an effort to increase the availability of cone calorimeter data on wood products, the U.S. Forest Products Laboratory and the American Wood Council conducted this study on composite wood products in cooperation with the Composite...

  6. Cone Penetrometer N Factor Determination Testing Results

    Energy Technology Data Exchange (ETDEWEB)

    Follett, Jordan R.

    2014-03-05

    This document contains the results of testing activities to determine the empirical 'N Factor' for the cone penetrometer in kaolin clay simulant. The N Factor is used to releate resistance measurements taken with the cone penetrometer to shear strength.

  7. Cone penetrometer demonstration standard startup review checklist

    International Nuclear Information System (INIS)

    KRIEG, S.A.

    1998-01-01

    Startup readiness for the Cone Penetrometer Demonstration in AX Tank Farm will be verified through the application of a Standard Startup Review Checklist. This is a listing of those items essential to demonstrating readiness to start the Cone Penetrometer Demonstration in AX Tank Farm

  8. Volatile-induced magma differentiation in the plumbing system of Mt. Etna volcano (Italy): evidence from glass in tephra of the 2001 eruption

    Science.gov (United States)

    Ferlito, Carmelo; Viccaro, Marco; Cristofolini, Renato

    2008-02-01

    Mount Etna volcano was shaken during the summer 2001 by one of the most singular eruptive episodes of the last centuries. For about 3 weeks, several eruptive fractures developed, emitting lava flows and tephra that significantly modified the landscape of the southern flank of the volcano. This event stimulated the attention of the scientific community especially for the simultaneous emission of petrologically distinct magmas, recognized as coming from different segments of the plumbing system. A stratigraphically controlled sampling of tephra layers was performed at the most active vents of the eruption, in particular at the 2,100 m (CAL) and at the 2,550 m (LAG) scoria cones. Detailed scanning electron microscope and energy dispersive x-ray spectrometer (SEM-EDS) analyses performed on glasses found in tephra and comparison with lava whole rock compositions indicate an anomalous increase in Ti, Fe, P, and particularly of K and Cl in the upper layers of the LAG sequence. Mass balance and thermodynamic calculations have shown that this enrichment cannot be accounted for by “classical” differentiation processes, such as crystal fractionation and magma mixing. The analysis of petrological features of the magmas involved in the event, integrated with the volcanological evolution, has evidenced the role played by volatiles in controlling the magmatic evolution within the crustal portion of the plumbing system. Volatiles, constituted of H2O, CO2, and Cl-complexes, originated from a deeply seated magma body (DBM). Their upward migration occurred through a fracture network possibly developed by the seismic swarms during the period preceding the event. In the upper portion of the plumbing system, a shallower residing magma body (ABT) had chemical and physical conditions to receive migrating volatiles, which hence dissolved the mobilized elements producing the observed selective enrichment. This volatile-induced differentiation involved exclusively the lowest erupted

  9. Hydrothermal systems and volcano geochemistry

    Science.gov (United States)

    Fournier, R.O.

    2007-01-01

    The upward intrusion of magma from deeper to shallower levels beneath volcanoes obviously plays an important role in their surface deformation. This chapter will examine less obvious roles that hydrothermal processes might play in volcanic deformation. Emphasis will be placed on the effect that the transition from brittle to plastic behavior of rocks is likely to have on magma degassing and hydrothermal processes, and on the likely chemical variations in brine and gas compositions that occur as a result of movement of aqueous-rich fluids from plastic into brittle rock at different depths. To a great extent, the model of hydrothermal processes in sub-volcanic systems that is presented here is inferential, based in part on information obtained from deep drilling for geothermal resources, and in part on the study of ore deposits that are thought to have formed in volcanic and shallow plutonic environments.

  10. Double Dirac cones in phononic crystals

    KAUST Repository

    Li, Yan

    2014-07-07

    A double Dirac cone is realized at the center of the Brillouin zone of a two-dimensional phononic crystal (PC) consisting of a triangular array of core-shell-structure cylinders in water. The double Dirac cone is induced by the accidental degeneracy of two double-degenerate Bloch states. Using a perturbation method, we demonstrate that the double Dirac cone is composed of two identical and overlapping Dirac cones whose linear slopes can also be accurately predicted from the method. Because the double Dirac cone occurs at a relatively low frequency, a slab of the PC can be mapped onto a slab of zero refractive index material by using a standard retrieval method. Total transmission without phase change and energy tunneling at the double Dirac point frequency are unambiguously demonstrated by two examples. Potential applications can be expected in diverse fields such as acoustic wave manipulations and energy flow control.

  11. Double Dirac cones in phononic crystals

    KAUST Repository

    Li, Yan; Wu, Ying; Mei, Jun

    2014-01-01

    A double Dirac cone is realized at the center of the Brillouin zone of a two-dimensional phononic crystal (PC) consisting of a triangular array of core-shell-structure cylinders in water. The double Dirac cone is induced by the accidental degeneracy of two double-degenerate Bloch states. Using a perturbation method, we demonstrate that the double Dirac cone is composed of two identical and overlapping Dirac cones whose linear slopes can also be accurately predicted from the method. Because the double Dirac cone occurs at a relatively low frequency, a slab of the PC can be mapped onto a slab of zero refractive index material by using a standard retrieval method. Total transmission without phase change and energy tunneling at the double Dirac point frequency are unambiguously demonstrated by two examples. Potential applications can be expected in diverse fields such as acoustic wave manipulations and energy flow control.

  12. Integration of ground-based laser scanner and aerial digital photogrammetry for topographic modelling of Vesuvio volcano

    Science.gov (United States)

    Pesci, Arianna; Fabris, Massimo; Conforti, Dario; Loddo, Fabiana; Baldi, Paolo; Anzidei, Marco

    2007-05-01

    This work deals with the integration of different surveying methodologies for the definition of very accurate Digital Terrain Models (DTM) and/or Digital Surface Models (DSM): in particular, the aerial digital photogrammetry and the terrestrial laser scanning were used to survey the Vesuvio volcano, allowing the total coverage of the internal cone and surroundings (the whole surveyed area was about 3 km × 3 km). The possibility to reach a very high precision, especially from the laser scanner data set, allowed a detailed description of the morphology of the volcano. The comparisons of models obtained in repeated surveys allow a detailed map of residuals providing a data set that can be used for detailed studies of the morphological evolution. Moreover, the reflectivity information, highly correlated to materials properties, allows for the measurement and quantification of some morphological variations in areas where structural discontinuities and displacements are present.

  13. VIDEOGRAMMETRIC RECONSTRUCTION APPLIED TO VOLCANOLOGY: PERSPECTIVES FOR A NEW MEASUREMENT TECHNIQUE IN VOLCANO MONITORING

    Directory of Open Access Journals (Sweden)

    Emmanuelle Cecchi

    2011-05-01

    Full Text Available This article deals with videogrammetric reconstruction of volcanic structures. As a first step, the method is tested in laboratory. The objective is to reconstruct small sand and plaster cones, analogous to volcanoes, that deform with time. The initial stage consists in modelling the sensor (internal parameters and calculating its orientation and position in space, using a multi-view calibration method. In practice two sets of views are taken: a first one around a calibration target and a second one around the studied object. Both sets are combined in the calibration software to simultaneously compute the internal parameters modelling the sensor, and the external parameters giving the spatial location of each view around the cone. Following this first stage, a N-view reconstruction process is carried out. The principle is as follows: an initial 3D model of the cone is created and then iteratively deformed to fit the real object. The deformation of the meshed model is based on a texture coherence criterion. At present, this reconstruction method and its precision are being validated at laboratory scale. The objective will be then to follow analogue model deformation with time using successive reconstructions. In the future, the method will be applied to real volcanic structures. Modifications of the initial code will certainly be required, however excellent reconstruction accuracy, valuable simplicity and flexibility of the technique are expected, compared to classic stereophotogrammetric techniques used in volcanology.

  14. Lahar hazards at Mombacho Volcano, Nicaragua

    Science.gov (United States)

    Vallance, J.W.; Schilling, S.P.; Devoli, G.

    2001-01-01

    Mombacho volcano, at 1,350 meters, is situated on the shores of Lake Nicaragua and about 12 kilometers south of Granada, a city of about 90,000 inhabitants. Many more people live a few kilometers southeast of Granada in 'las Isletas de Granada and the nearby 'Peninsula de Aseses. These areas are formed of deposits of a large debris avalanche (a fast moving avalanche of rock and debris) from Mombacho. Several smaller towns with population, in the range of 5,000 to 12,000 inhabitants are to the northwest and the southwest of Mombacho volcano. Though the volcano has apparently not been active in historical time, or about the last 500 years, it has the potential to produce landslides and debris flows (watery flows of mud, rock, and debris -- also known as lahars when they occur on a volcano) that could inundate these nearby populated areas. -- Vallance, et.al., 2001

  15. Analysis of volcano rocks by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Sitek, J.; Dekan, J.

    2012-01-01

    In this work we have analysed the basalt rock from Mount Ba tur volcano situated on the Island of Bali in Indonesia.We compared our results with composition of basalt rocks from some other places on the Earth. (authors)

  16. Moessbauer Spectroscopy study of Quimsachata Volcano materials

    International Nuclear Information System (INIS)

    Dominguez, A.G.B.

    1988-01-01

    It has been studied volcanic lava from Quimsachata Volcano in Pem. Moessbauer Spectroscopy, X-ray diffraction, electronic and optical microscopy allowed the identification of different mineralogical phases. (A.C.AS.) [pt

  17. Lahar hazards at Agua volcano, Guatemala

    Science.gov (United States)

    Schilling, S.P.; Vallance, J.W.; Matías, O.; Howell, M.M.

    2001-01-01

    At 3760 m, Agua volcano towers more than 3500 m above the Pacific coastal plain to the south and 2000 m above the Guatemalan highlands to the north. The volcano is within 5 to 10 kilometers (km) of Antigua, Guatemala and several other large towns situated on its northern apron. These towns have a combined population of nearly 100,000. It is within about 20 km of Escuintla (population, ca. 100,000) to the south. Though the volcano has not been active in historical time, or about the last 500 years, it has the potential to produce debris flows (watery flows of mud, rock, and debris—also known as lahars when they occur on a volcano) that could inundate these nearby populated areas.

  18. Multidisciplinary research for the safe fruition of an active geosite: the Salse di Nirano mud volcanoes (Northern Apennines, Italy)

    Science.gov (United States)

    Coratza, Paola; Albarello, Dario; Cipriani, Anna; Cantucci, Barbara; Castaldini, Doriano; Conventi, Marzia; Dadomo, Andrea; De Nardo, Maria Teresa; Macini, Paolo; Martinelli, Giovanni; Mesini, Ezio; Papazzoni, Cesare Andrea; Quartieri, Simona; Ricci, Tullio; Santagata, Tommaso; Sciarra, Alessandra; Vezzalini, Giovanna

    2017-04-01

    Mud volcanoes are emissions of cold mud due to the ascent to the surface of salty and muddy waters mixed with gaseous (methane) and, in minor part, fluid hydrocarbons (petroleum veils) along faults and fractures. In the Northern Apennines mud volcanoes are closely linked to the active tectonic compression associated with thrusts of regional importance. They are mostly cone-shaped and show variable geometry and size, ranging from one to few metres, and are located in 19 sites in the northwestern part of the Apennines. Particularly noteworthy is the Nirano mud volcano field, located in the Fiorano Modenese district, which, with a surface area of approximately 75,000 m2, is one of the best developed and largest mud volcano field of the entire Italian territory and among the largest in Europe; it is thus protected as natural reserve (Salse di Nirano) since 1982. The Nirano mud volcanoes are found at the bottom of an elliptical depression, interpreted as a collapse-like structure (caldera) that may have developed in response to the deflation of a shallow mud chamber triggered by several ejections and evacuation of fluid sediments. There are several individual or multiple cones within the field of the mud volcanoes of Nirano, with a rather discontinuous activity; apparatuses become dormant or even extinct whereas new vents can appear in other spots. In the research here presented about 50 vents have been mapped and few of them appeared in May 2016. The mud volcanoes of the region have been known since a long time and have always aroused great interest due to their outstanding scenic value, and, in the past the mud volcano emissions have been used in many ways. Beside their cultural value, the mud volcanoes of the study area represent a tourist attractiveness as testified by the increasing number of visitors (e.g. about 70,000 visitors in 2015 in the Salse di Nirano Natural Reserve). Numerous initiatives, targeted at various potential users, have been developed in the

  19. The dispersal of ash during explosive eruptions from central volcanoes and calderas: an underestimated hazard for the central Mediterranean area

    Energy Technology Data Exchange (ETDEWEB)

    Sulpizio, Roberto [CIRISIVU, c/o Dipartimento Geomineralogico, via Orabona 4, 70125, Bari (Italy); Caron, Benoit; Zanchetta, Giovanni; Santacroce, Roberto [Dipartimento di Scienze della Terra, via S. Maria 53, 56126, Pisa (Italy); Giaccio, Biagio [Istituto di Geologia Ambientale e Geoingegneria, CNR, Via Bolognola 7, 00138 Rome (Italy); Paterne, Martine [LSCE, Laboratoire Mixte CEA-CNRS-UVSQ, Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex (France); Siani, Giuseppe [IDES-UMR 8148, Universite Paris-XI, 91405 Orsay Cedex (France)], E-mail: r.sulpizio@geomin.uniba.it

    2008-10-01

    The central Mediterranean area comprises some of the most active volcanoes of the northern hemisphere. Some of their names recall myths or events in human history: Somma-Vesuvius, Etna, Stromboli, Vulcano, Ischia and Campi Flegrei. These volcanoes are still active today, and produce both effusive and explosive eruptions. In particular, explosive eruptions can produce and disperse large amount of volcanic ash, which pose a threat to environment, economy and human health over a large part of the Mediterranean area. We present and discuss data of ash dispersal from some explosive eruptions of southern Italy volcanoes, which dispersed centimetre -thick ash blankets hundred of kilometres from the source, irrespective of the more limited dispersal of the respective coarse grained fallout and PDC deposits. The collected data also highlight the major role played by lower atmosphere winds in dispersal of ash from weak plumes and ash clouds that accompany PDC emplacement.

  20. Crust-Mantle Interactions at Pico de Orizaba (Citlaltepetl) Volcano, Mexico.

    Science.gov (United States)

    Schaaf, P.; Carrasco, G.

    2006-12-01

    Pico de Orizaba (Citlaltepetl) volcano constitutes the easternmost and highest stratovolcano of the subduction- related Plio-Quaternary Trans-Mexican Volcanic Belt (TMVB). The volcano can be divided into three main constructional stages. Its activity started during the mid-Pleistocene. The present cone was built on the remnants of the ancestral buildings by eruption of amphibole-two pyroxene dacitic lava flows, the most recent of which was erupted in the seventeenth century. The volcano is surrounded to the SW by monogenetic Quaternary cindercones and maars. All representative units were sampled in this work for geochemical and isotopic purposes, including a small quartzitic xenolith found in the basaltic monogenetic suite. Volcanic products of the stratocone are quite heterogeneous and range from calc-alkaline basaltic andesites to dome rhyolites, also displayed by a wide range of SiO2 and MgO (72.6-53.2 and 7.0-0.3 wt. %, respectively). In comparison to other TMVB stratovolcanoes (e.g., Colima, Nevado de Toluca), Pico de Orizaba shows similar 87Sr/86Sr ratios (0.7037-0.7048) but considerably more evolved Nd-Pb isotopic ratios (eNd: -1.8 to + 1.4; 206Pb/204Pb: 18.61-18.78). Elevated LILE concentrations and depleted HFSE witness the importance of slab- derived aqueous fluids and metasomatic reactions between the subducting lithosphere and overlying mantle wedge. On the other hand, Pico de Orizaba volcano shows additionally high crustal contributions of a source with depleted Sr and enriched Nd and Pb isotopic signatures, best explained by considerable assimilation of the local Grenvillian basement in magma generation processes. In contrast to Popocatépetl volcano with a high-level magma reservoir emplacement (7-8 km) and obvious interaction with the carbonate-dominated shallow basement rocks (e.g. elevated 87Sr/86Sr ratios and CO2 in gas plumes), this effect cannot be observed at Pico de Orizaba volcano, although a regional Cretaceous limestone basement is also

  1. Dirac cones in isogonal hexagonal metallic structures

    Science.gov (United States)

    Wang, Kang

    2018-03-01

    A honeycomb hexagonal metallic lattice is equivalent to a triangular atomic one and cannot create Dirac cones in its electromagnetic wave spectrum. We study in this work the low-frequency electromagnetic band structures in isogonal hexagonal metallic lattices that are directly related to the honeycomb one and show that such structures can create Dirac cones. The band formation can be described by a tight-binding model that allows investigating, in terms of correlations between local resonance modes, the condition for the Dirac cones and the consequence of the third structure tile sustaining an extra resonance mode in the unit cell that induces band shifts and thus nonlinear deformation of the Dirac cones following the wave vectors departing from the Dirac points. We show further that, under structure deformation, the deformations of the Dirac cones result from two different correlation mechanisms, both reinforced by the lattice's metallic nature, which directly affects the resonance mode correlations. The isogonal structures provide new degrees of freedom for tuning the Dirac cones, allowing adjustment of the cone shape by modulating the structure tiles at the local scale without modifying the lattice periodicity and symmetry.

  2. Cone penetrometer moisture probe acceptance test report

    International Nuclear Information System (INIS)

    Barnes, G.A.

    1996-01-01

    This Acceptance Test Report (ATR) documents the results of WHC-SD-WM-ATP-146 (Prototype Cone Penetrometer Moisture Probe Acceptance Test Procedure) and WHC-SD-WM-ATP-145 (Cone Penetrometer Moisture Probe Acceptance Test Procedure). The master copy of WHC-SD-WM-ATP-145 can be found in Appendix A and the master copy of WHC-SD-WM-ATP-146 can be found in Appendix B. Also included with this report is a matrix showing design criteria of the cone penetrometer moisture probe and the verification method used (Appendix C)

  3. Demise of light cone field theory

    International Nuclear Information System (INIS)

    Hagen, C.R.

    1977-01-01

    It is shown that the massive spin one-half field is noncovariant in two dimensional light cone coordinates. It is shown that spin one-half is noncovariant in four dimensions as well. It is concluded that since the case of the spin one-half field is an absolute necessity if one is to build a world containing fermions. It seems safe to infer that light cone quantization cannot be useful in the quark binding problem as currently conceived. It is suggested that further work on light cone quantization be focused solely upon the questions of consistency as discussed rather than on applications to model building. 9 references

  4. Direct seeding of pitch pine in southern New Jersey

    Science.gov (United States)

    S. Little; C. B. Cranmer; H. A. Somes

    1958-01-01

    There is not enough pine reproduction in the woodlands of southern New Jersey. This increasingly important problem, which plagues the state's Pine Region, is especially severe where seed sources for natural regeneration are poor. In some of these areas, pulpwood cuttings have removed all pines large enough to bear many cones. In other areas, wildfires have killed...

  5. Correlation Between Cone Penetration Rate And Measured Cone Penetration Parameters In Silty Soils

    DEFF Research Database (Denmark)

    Poulsen, Rikke; Nielsen, Benjaminn Nordahl; Ibsen, Lars Bo

    2013-01-01

    This paper shows, how a change in cone penetration rate affects the cone penetration measurements, hence the cone resistance, pore pressure, and sleeve friction in silty soil. The standard rate of penetration is 20 mm/s, and it is generally accepted that undrained penetration occurs in clay while...... drained penetration occurs in sand. When lowering the penetration rate, the soil pore water starts to dissipate and a change in the drainage condition is seen. In intermediate soils such as silty soils, the standard cone penetration rate may result in a drainage condition that could be undrained......, partially or fully drained. However, lowering the penetration rate in silty soils has a great significance because of the soil permeability, and only a small change in penetration rate will result in changed cone penetration measurements. In this paper, analyses will be done on data from 15 field cone...

  6. The Massive Compound Cofre de Perote Shield Volcano: a Volcanological Oddity in the Eastern Mexican Volcanic Belt

    Science.gov (United States)

    Siebert, L.; Carrasco-Nunez, G.; Diaz-Castellon, R.; Rodriguez, J. L.

    2007-12-01

    Cofre de Perote volcano anchors the northern end of the easternmost of several volcanic chains orthogonal to the E-W trend of the Mexican Volcanic Belt (MVB). Its structure, geochemistry, and volcanic history diverge significantly from that of the large dominantly andesitic stratovolcanoes that have been the major focus of research efforts in the MVB. Andesitic-trachyandesitic to dacitic-trachydacitic effusive activity has predominated at Cofre de Perote, forming a massive low-angle compound shield volcano that dwarfs the more typical smaller shield volcanoes of the central and western MVB. The 4282-m-high volcano overlooking Xalapa, the capital city of the State of Veracruz, has a diameter of about 30 km and rises more than 3000 m above the coastal plain to the east. Repeated edifice collapse has left massive horseshoe-shaped scarps that truncate the eastern side of the edifice. Five major evolutionary stages characterize the growth of this compound volcano: 1) emplacement of a multiple-vent dome complex forming the basal structure of Cofre de Perote around 1.9-1.3 Ma; 2) construction of the basal part of the compound shield volcano from at least two main upper-edifice vents at about 400 ka; 3) effusion of the summit dome-like lavas through multiple vents at ca. 240 ka; 4) eruption of a large number of geochemically diverse, alkaline and calc-alkaline Pleistocene-to-Holocene monogenetic cones (likely related to regional volcanism) through the flanks of the Cofre de Perote edifice; 5) late-stage, large-volume edifice collapse on at least two occasions (ca. 40 ka and ca. 10 ka), producing long-runout debris avalanches that traveled to the east. An undated tephra layer from Cofre de Perote overlies deposits likely of the youngest collapse. Cofre de Perote is one of several volcanoes in the roughly N-S-trending chain that has undergone major edifice collapse. As with Citlaltepetl (Pico de Orizaba) and Las Cumbres volcanoes, Cofre de Perote was constructed at the

  7. A model for calculating eruptive volumes for monogenetic volcanoes — Implication for the Quaternary Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Kereszturi, Gábor; Németh, Károly; Cronin, Shane J.; Agustín-Flores, Javier; Smith, Ian E. M.; Lindsay, Jan

    2013-10-01

    Monogenetic basaltic volcanism is characterised by a complex array of behaviours in the spatial distribution of magma output and also temporal variability in magma flux and eruptive frequency. Investigating this in detail is hindered by the difficulty in evaluating ages of volcanic events as well as volumes erupted in each volcano. Eruptive volumes are an important input parameter for volcanic hazard assessment and may control eruptive scenarios, especially transitions between explosive and effusive behaviour and the length of eruptions. Erosion, superposition and lack of exposure limit the accuracy of volume determination, even for very young volcanoes. In this study, a systematic volume estimation model is developed and applied to the Auckland Volcanic Field in New Zealand. In this model, a basaltic monogenetic volcano is categorised in six parts. Subsurface portions of volcanoes, such as diatremes beneath phreatomagmatic volcanoes, or crater infills, are approximated by geometrical considerations, based on exposed analogue volcanoes. Positive volcanic landforms, such as scoria/spatter cones, tephras rings and lava flow, were defined by using a Light Detection and Ranging (LiDAR) survey-based Digital Surface Model (DSM). Finally, the distal tephra associated with explosive eruptions was approximated using published relationships that relate original crater size to ejecta volumes. Considering only those parts with high reliability, the overall magma output (converted to Dense Rock Equivalent) for the post-250 ka active Auckland Volcanic Field in New Zealand is a minimum of 1.704 km3. This is made up of 1.329 km3 in lava flows, 0.067 km3 in phreatomagmatic crater lava infills, 0.090 km3 within tephra/tuff rings, 0.112 km3 inside crater lava infills, and 0.104 km3 within scoria cones. Using the minimum eruptive volumes, the spatial and temporal magma fluxes are estimated at 0.005 km3/km2 and 0.007 km3/ka. The temporal-volumetric evolution of Auckland is

  8. Geophysical data collection using an interactive personal computer system. Part 1. ; Experimental monitoring of Suwanosejima volcano

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, M. (Kyoto Univerdity, Kyoto (Japan). Disaster Prevention Reserach Institute)

    1991-10-15

    In the article, a computer-communication system was developed in order to collect geophysical data from remote volcanos via a public telephpne network. This system is composed of a host presonal computer at an observatory and several personal computers as terminals at remote stations. Each terminal acquires geophysical data, such as seismic, intrasonic, and ground deformation date. These gara are stored in the terminals temporarily, and transmitted to the host computer upon command from host computer. Experimental monitoring was conducted between Sakurajima Volcanological Observatory and several statins in the Satsunan Islands and southern Kyushu. The seismic and eruptive activities of Suwanosejima volcano were monitored by this system. Consequently, earthquakes and air-shocks accompanied by the explosive activity were observed. B-type earthquakes occurred prio to the relatively prolonged eruptive activity. Intermittent occurrences of volcanic tremors were also clearly recognized from the change in mean amplitubes of seismic waves. 7 refs., 10 figs., 2 tabs.

  9. Mach cones in space and laboratory dusty magnetoplasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.; Shukla, P.K

    2004-07-01

    We present a rigorous theoretical investigation on the possibility for the formation of Mach cones in both space and laboratory dusty magnetoplasmas. We find the parametric regimes for which different types of Mach cones, such as dust acoustic Mach cones, dust magneto-acoustic Mach cones, oscillonic Mach cones, etc. are formed in space and laboratory dusty magnetoplasmas. We also identify the basic features of such different classes of Mach cones (viz. dust- acoustic, dust magneto-acoustic, oscillonic Mach cones, etc.), and clearly explain how they are relevant to space and laboratory dusty manetoplasmas. (author)

  10. Genetics Home Reference: cone-rod dystrophy

    Science.gov (United States)

    ... common cause of autosomal recessive cone-rod dystrophy , accounting for 30 to 60 percent of cases. At ... dystrophy play essential roles in the structure and function of specialized light receptor cells (photoreceptors) in the ...

  11. Perturbation theory in light-cone gauge

    International Nuclear Information System (INIS)

    Vianello, Eliana

    2000-01-01

    Perturbation calculations are presented for the light-cone gauge Schwinger model. Eigenstates can be calculated perturbatively but the perturbation theory is nonstandard. We hope to extend the work to QCD 2 to resolve some outstanding issues in those theories

  12. Modified superstring in light cone gauge

    International Nuclear Information System (INIS)

    Kamimura, Kiyoshi; Tatewaki, Machiko.

    1988-01-01

    We analyze the covariant superstring theory proposed by Siegel in light cone gauge. The physical states are the direct product of those of Green-Schwarz Superstring and the additional internal space spanned by light cone spinors. At clasical level, there is no difference among observables in Siegel's modified Superstring theory (SMST) and Green-Schwarz's one (GSST). However SMST can not be quantized with additional constraints as the physical state conditions. (author)

  13. Effects of Volcanoes on the Natural Environment

    Science.gov (United States)

    Mouginis-Mark, Peter J.

    2005-01-01

    The primary focus of this project has been on the development of techniques to study the thermal and gas output of volcanoes, and to explore our options for the collection of vegetation and soil data to enable us to assess the impact of this volcanic activity on the environment. We originally selected several volcanoes that have persistent gas emissions and/or magma production. The investigation took an integrated look at the environmental effects of a volcano. Through their persistent activity, basaltic volcanoes such as Kilauea (Hawaii) and Masaya (Nicaragua) contribute significant amounts of sulfur dioxide and other gases to the lower atmosphere. Although primarily local rather than regional in its impact, the continuous nature of these eruptions means that they can have a major impact on the troposphere for years to decades. Since mid-1986, Kilauea has emitted about 2,000 tonnes of sulfur dioxide per day, while between 1995 and 2000 Masaya has emotted about 1,000 to 1,500 tonnes per day (Duffel1 et al., 2001; Delmelle et al., 2002; Sutton and Elias, 2002). These emissions have a significant effect on the local environment. The volcanic smog ("vog" ) that is produced affects the health of local residents, impacts the local ecology via acid rain deposition and the generation of acidic soils, and is a concern to local air traffic due to reduced visibility. Much of the work that was conducted under this NASA project was focused on the development of field validation techniques of volcano degassing and thermal output that could then be correlated with satellite observations. In this way, we strove to develop methods by which not only our study volcanoes, but also volcanoes in general worldwide (Wright and Flynn, 2004; Wright et al., 2004). Thus volcanoes could be routinely monitored for their effects on the environment. The selected volcanoes were: Kilauea (Hawaii; 19.425 N, 155.292 W); Masaya (Nicaragua; 11.984 N, 86.161 W); and Pods (Costa Rica; 10.2OoN, 84.233 W).

  14. Design of a trichromatic cone array.

    Directory of Open Access Journals (Sweden)

    Patrick Garrigan

    2010-02-01

    Full Text Available Cones with peak sensitivity to light at long (L, medium (M and short (S wavelengths are unequal in number on the human retina: S cones are rare (<10% while increasing in fraction from center to periphery, and the L/M cone proportions are highly variable between individuals. What optical properties of the eye, and statistical properties of natural scenes, might drive this organization? We found that the spatial-chromatic structure of natural scenes was largely symmetric between the L, M and S sensitivity bands. Given this symmetry, short wavelength attenuation by ocular media gave L/M cones a modest signal-to-noise advantage, which was amplified, especially in the denser central retina, by long-wavelength accommodation of the lens. Meanwhile, total information represented by the cone mosaic remained relatively insensitive to L/M proportions. Thus, the observed cone array design along with a long-wavelength accommodated lens provides a selective advantage: it is maximally informative.

  15. Volcanoes in the Classroom--an Explosive Learning Experience.

    Science.gov (United States)

    Thompson, Susan A.; Thompson, Keith S.

    1996-01-01

    Presents a unit on volcanoes for third- and fourth-grade students. Includes demonstrations; video presentations; building a volcano model; and inviting a scientist, preferably a vulcanologist, to share his or her expertise with students. (JRH)

  16. Volcanostratigraphic Approach for Evaluation of Geothermal Potential in Galunggung Volcano

    Science.gov (United States)

    Ramadhan, Q. S.; Sianipar, J. Y.; Pratopo, A. K.

    2016-09-01

    he geothermal systems in Indonesia are primarily associated with volcanoes. There are over 100 volcanoes located on Sumatra, Java, and in the eastern part of Indonesia. Volcanostratigraphy is one of the methods that is used in the early stage for the exploration of volcanic geothermal system to identify the characteristics of the volcano. The stratigraphy of Galunggung Volcano is identified based on 1:100.000 scale topographic map of Tasikmalaya sheet, 1:50.000 scale topographic map and also geological map. The schematic flowchart for evaluation of geothermal exploration is used to interpret and evaluate geothermal potential in volcanic regions. Volcanostratigraphy study has been done on Galunggung Volcano and Talaga Bodas Volcano, West Java, Indonesia. Based on the interpretation of topographic map and analysis of the dimension, rock composition, age and stress regime, we conclude that both Galunggung Volcano and Talaga Bodas Volcano have a geothermal resource potential that deserve further investigation.

  17. A geochemical study on mud volcanoes in the Junggar Basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Nakada, Ryoichi, E-mail: ryo-nakada@hiroshima-u.ac.jp [Department of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Takahashi, Yoshio [Department of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Tsunogai, Urumu [Division of Earth and Planetary Sciences, Graduate School of Science, Hokkaido University, Kita-10 Nishi-8, Kita-ku, Sapporo 060-0810 (Japan); Zheng Guodong [Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, 382 West Donggang Road, Lanzhou 730000 (China); Shimizu, Hiroshi [Department of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Hattori, Keiko H. [Department of Earth Science, University of Ottawa, Ottawa, ON, K1N 6N5 (Canada)

    2011-07-15

    Highlights: > Gases released from Xinjiang mud volcanoes are dominated by thermogenic origin. > Secondary microbial activities occurring closer to the surface dramatically changed the {delta}{sup 13}C{sub CO2}. > The water-rock interaction occurred at deeper level than gas and petroleum reservoir. - Abstract: A comprehensive study was performed to characterize, for the first time, the mud, water, and gases released from onshore mud volcanoes located in the southern margin of the Junggar Basin, northwestern China. Chemical compositions of mud, along with the geology of the basin, suggest that a source of the mud is Mesozoic or Cenozoic shale. Oxygen and H isotope compositions of the released water suggest a local meteoric origin. Combined with the positive Eu anomalies of the water, a large {sup 18}O shift of the water suggests extensive interaction with rocks. Gases discharged from the mud volcanoes are predominantly thermogenic hydrocarbons, and the high {delta}{sup 13}C values (>+20 per mille VPDB) for CO{sub 2} gases and dissolved carbonate in muddy water suggest secondary methanogenesis with CO{sub 2} reduction after oil biodegradation. The enrichments of Eu and {sup 18}O in water and the low thermal gradient of the area suggest that the water-rock interactions possibly occur deeper than 3670 {+-} 200 m. On the other hand, considering the relationship to the petroleum reservoir around the mud volcanoes, the depth of the gases can be derived from about 3600 m, a depth that is greater than that generally estimated for reservoirs whose gas is characterized by {sup 13}C-enriched CO{sub 2}. Oil biodegradation with CO{sub 2} reduction likely occurs at a shallower depth along the seepage system of the mud volcano. The results contribute to the worldwide data set of gas genesis in mud volcanoes. Moreover, they further support the concept that most terrestrial mud volcanoes release thermogenic gas produced in very deep sediments and may be early indicators of oil

  18. Chloride currents in cones modify feedback from horizontal cells to cones in goldfish retina

    Science.gov (United States)

    Endeman, Duco; Fahrenfort, Iris; Sjoerdsma, Trijntje; Steijaert, Marvin; ten Eikelder, Huub; Kamermans, Maarten

    2012-01-01

    In neuronal systems, excitation and inhibition must be well balanced to ensure reliable information transfer. The cone/horizontal cell (HC) interaction in the retina is an example of this. Because natural scenes encompass an enormous intensity range both in temporal and spatial domains, the balance between excitation and inhibition in the outer retina needs to be adaptable. How this is achieved is unknown. Using electrophysiological techniques in the isolated retina of the goldfish, it was found that opening Ca2+-dependent Cl− channels in recorded cones reduced the size of feedback responses measured in both cones and HCs. Furthermore, we show that cones express Cl− channels that are gated by GABA released from HCs. Similar to activation of ICl(Ca), opening of these GABA-gated Cl− channels reduced the size of light-induced feedback responses both in cones and HCs. Conversely, application of picrotoxin, a blocker of GABAA and GABAC receptors, had the opposite effect. In addition, reducing GABA release from HCs by blocking GABA transporters also led to an increase in the size of feedback. Because the independent manipulation of Ca2+-dependent Cl− currents in individual cones yielded results comparable to bath-applied GABA, it was concluded that activation of either Cl− current by itself is sufficient to reduce the size of HC feedback. However, additional effects of GABA on outer retinal processing cannot be excluded. These results can be accounted for by an ephaptic feedback model in which a cone Cl− current shunts the current flow in the synaptic cleft. The Ca2+-dependent Cl− current might be essential to set the initial balance between the feedforward and the feedback signals active in the cone HC synapse. It prevents that strong feedback from HCs to cones flood the cone with Ca2+. Modulation of the feedback strength by GABA might play a role during light/dark adaptation, adjusting the amount of negative feedback to the signal to noise ratio of the

  19. Emission of gas and atmospheric dispersion of SO2 during the December 2013 eruption at San Miguel volcano (El Salvador)

    Science.gov (United States)

    Salerno, Giuseppe G.; Granieri, Domenico; Liuzzo, Marco; La Spina, Alessandro; Giuffrida, Giovanni B.; Caltabiano, Tommaso; Giudice, Gaetano; Gutierrez, Eduardo; Montalvo, Francisco; Burton, Michael; Papale, Paolo

    2016-04-01

    y Recursos Naturales (MARN) of El Salvador and by a network of geophysical and geochemical stations established on the volcano by the Italian Istituto Nazionale di Geofisica e Vulcanologia (INGV), immediately after the December 2013 eruption, on the request of MARN. During the eruption, SO2 emissions increased from a background level of ~330 t d-1 to 2200 t d-1, dropping after the eruption to an average level of 680 t d-1. Wind measurements and SO2 fluxes during the pre-, syn- and post-eruptive stages were used to model SO2 dispersion around the volcano. Air SO2 concentration exceeds the dangerous threshold of 5 ppm in the crater region, and in some middle sectors of the highly visited volcanic cone.

  20. Volcano Trial Case on GEP: Systematically processing EO data

    OpenAIRE

    Baumann, Andreas Bruno Graziano

    2017-01-01

    Volcanoes can be found all over the world; on land and below water surface. Even nowadays not all volcanoes are known. About 600 erupted in geologically recent times and about 50-70 volcanoes are currently active. Volcanoes can cause earthquakes; throw out blasts and tephras; release (toxic) gases; lava can flow relatively slow down the slopes; mass movements like debris avalanches, and landslides can cause tsunamis; and fast and hot pyroclastic surge, flows, and lahars can travel fast down ...

  1. Spectral characteristics of light sources for S-cone stimulation.

    Science.gov (United States)

    Schlegelmilch, F; Nolte, R; Schellhorn, K; Husar, P; Henning, G; Tornow, R P

    2002-11-01

    Electrophysiological investigations of the short-wavelength sensitive pathway of the human eye require the use of a suitable light source as a S-cone stimulator. Different light sources with their spectral distribution properties were investigated and compared with the ideal S-cone stimulator. First, the theoretical background of the calculation of relative cone energy absorption from the spectral distribution function of the light source is summarized. From the results of the calculation, the photometric properties of the ideal S-cone stimulator will be derived. The calculation procedure was applied to virtual light sources (computer generated spectral distribution functions with different medium wavelengths and spectrum widths) and to real light sources (blue and green light emitting diodes, blue phosphor of CRT-monitor, multimedia projector, LCD monitor and notebook display). The calculated relative cone absorbencies are compared to the conditions of an ideal S-cone stimulator. Monochromatic light sources with wavelengths of less than 456 nm are close to the conditions of an ideal S-cone stimulator. Spectrum widths up to 21 nm do not affect the S-cone activation significantly (S-cone activation change < 0.2%). Blue light emitting diodes with peak wavelength at 448 nm and spectrum bandwidth of 25 nm are very useful for S-cone stimulation (S-cone activation approximately 95%). A suitable display for S-cone stimulation is the Trinitron computer monitor (S-cone activation approximately 87%). The multimedia projector has a S-cone activation up to 91%, but their spectral distribution properties depends on the selected intensity. LCD monitor and notebook displays have a lower S-cone activation (< or = 74%). Carefully selecting the blue light source for S-cone stimulation can reduce the unwanted L-and M-cone activation down to 4% for M-cones and 1.5% for L-cones.

  2. Volcano Geodesy: Recent developments and future challenges

    Science.gov (United States)

    Fernandez, Jose F.; Pepe, Antonio; Poland, Michael; Sigmundsson, Freysteinn

    2017-01-01

    Ascent of magma through Earth's crust is normally associated with, among other effects, ground deformation and gravity changes. Geodesy is thus a valuable tool for monitoring and hazards assessment during volcanic unrest, and it provides valuable data for exploring the geometry and volume of magma plumbing systems. Recent decades have seen an explosion in the quality and quantity of volcano geodetic data. New datasets (some made possible by regional and global scientific initiatives), as well as new analysis methods and modeling practices, have resulted in important changes to our understanding of the geodetic characteristics of active volcanism and magmatic processes, from the scale of individual eruptive vents to global compilations of volcano deformation. Here, we describe some of the recent developments in volcano geodesy, both in terms of data and interpretive tools, and discuss the role of international initiatives in meeting future challenges for the field.

  3. Soil radon response around an active volcano

    International Nuclear Information System (INIS)

    Segovia, N.; Valdes, C.; Pena, P.; Mena, M.; Tamez, E.

    2001-01-01

    Soil radon behavior related to the volcanic eruptive period 1997-1999 of Popocatepetl volcano has been studied as a function of the volcanic activity. Since the volcano is located 60 km from Mexico City, the risk associated with an explosive eruptive phase is high and an intense surveillance program has been implemented. Previous studies in this particular volcano showed soil radon pulses preceding the initial phase of the eruption. The radon survey was performed with LR-115 track detectors at a shallow depth and the effect of the soil moisture during the rainy season has been observed on the detectors response. In the present state of the volcanic activity the soil radon behavior has shown more stability than in previous eruptive stages

  4. Predicting the Timing and Location of the next Hawaiian Volcano

    Science.gov (United States)

    Russo, Joseph; Mattox, Stephen; Kildau, Nicole

    2010-01-01

    The wealth of geologic data on Hawaiian volcanoes makes them ideal for study by middle school students. In this paper the authors use existing data on the age and location of Hawaiian volcanoes to predict the location of the next Hawaiian volcano and when it will begin to grow on the floor of the Pacific Ocean. An inquiry-based lesson is also…

  5. How Do Volcanoes Affect Human Life? Integrated Unit.

    Science.gov (United States)

    Dayton, Rebecca; Edwards, Carrie; Sisler, Michelle

    This packet contains a unit on teaching about volcanoes. The following question is addressed: How do volcanoes affect human life? The unit covers approximately three weeks of instruction and strives to present volcanoes in an holistic form. The five subject areas of art, language arts, mathematics, science, and social studies are integrated into…

  6. Living with Volcanoes: Year Eleven Teaching Resource Unit.

    Science.gov (United States)

    Le Heron, Kiri; Andrews, Jill; Hooks, Stacey; Larnder, Michele; Le Heron, Richard

    2000-01-01

    Presents a unit on volcanoes and experiences with volcanoes that helps students develop geography skills. Focuses on four volcanoes: (1) Rangitoto Island; (2) Lake Pupuke; (3) Mount Smart; and (4) One Tree Hill. Includes an answer sheet and resources to use with the unit. (CMK)

  7. Volcanoes muon imaging using Cherenkov telescopes

    International Nuclear Information System (INIS)

    Catalano, O.; Del Santo, M.; Mineo, T.; Cusumano, G.; Maccarone, M.C.; Pareschi, G.

    2016-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  8. Volcanoes muon imaging using Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, O. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Del Santo, M., E-mail: melania@ifc.inaf.it [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Mineo, T.; Cusumano, G.; Maccarone, M.C. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Pareschi, G. [INAF Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807, Merate (Italy)

    2016-01-21

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  9. Petrogenesis of andesites and dacites of White Island volcano, Bay of Plenty, New Zealand, in the light of new geochemical and isotopic data

    International Nuclear Information System (INIS)

    Graham, I.J.; Cole, J.W.

    1991-01-01

    White Island volcano comprises three main lava types: (1) silicic andesite, forming Western Cone and a tholoid at Troup Head, (2) dacite forming the Central Cone, and (3) mafic-silicic andesite erupted in March 1977 from the currently active crater. All lavas are calc-alkalic and medium-K orogenic types. The older andesites of Western Cone and Troup Head were probably formed from chemically dissimilar parental magmas by processes of assimilation and fractional crystallisation (AFC). Andesite blocks and bombs ejected during phreatomagmatic activity in March 1977 are geochemically primitive having high Mg-numbers, high Cr and Ni contents, and containing forsteritic olivine. They cannot be derived from magmatic compositions similar to known basaltic lavas of Taupo Volcanic Zone, and it is possible that the blocks are hybrid magmas resulting from mixing of a high Mg basalt parent and Central Cone dacite. The bombs appear to be fractionated derivatives. Central Cone dacites may also be AFC derivatives of a common parent to the 1977 lavas, in which substantial chemical diffusion has occurred. Their earlier eruption might represent unloading of a zoned magma chamber. (author). 49 refs., 8 figs., 3 tabs

  10. Clinical Course, Genetic Etiology, and Visual Outcome in Cone and Cone-Rod Dystrophy

    NARCIS (Netherlands)

    Thiadens, Alberta A. H. J.; Phan, T. My Lan; Zekveld-Vroon, Renate C.; Leroy, Bart P.; van den Born, L. Ingeborgh; Hoyng, Carel B.; Klaver, Caroline C. W.; Roosing, Susanne; Pott, Jan-Willem R.; van Schooneveld, Mary J.; van Moll-Ramirez, Norka; van Genderen, Maria M.; Boon, Camiel J. F.; den Hollander, Anneke I.; Bergen, Arthur A. B.; De Baere, Elfride; Cremers, Frans P. M.; Lotery, Andrew J.

    Objective: To evaluate the clinical course, genetic etiology, and visual prognosis in patients with cone dystrophy (CD) and cone-rod dystrophy (CRD). Design: Clinic-based, longitudinal, multicenter study. Participants: Consecutive probands with CD (N = 98), CRD (N = 83), and affected relatives (N =

  11. Volcano geodesy in the Cascade arc, USA

    Science.gov (United States)

    Poland, Michael; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Benjamin

    2017-01-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  12. The origin of the Hawaiian Volcano Observatory

    International Nuclear Information System (INIS)

    Dvorak, John

    2011-01-01

    I first stepped through the doorway of the Hawaiian Volcano Observatory in 1976, and I was impressed by what I saw: A dozen people working out of a stone-and-metal building perched at the edge of a high cliff with a spectacular view of a vast volcanic plain. Their primary purpose was to monitor the island's two active volcanoes, Kilauea and Mauna Loa. I joined them, working for six weeks as a volunteer and then, years later, as a staff scientist. That gave me several chances to ask how the observatory had started.

  13. Volcano geodesy in the Cascade arc, USA

    Science.gov (United States)

    Poland, Michael P.; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Ben

    2017-08-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  14. Volcanology and volcano sedimentology of Sahand region

    International Nuclear Information System (INIS)

    Moine Vaziri, H.; Amine Sobhani, E.

    1977-01-01

    There was no volcano in Precambrian and Mesozoic eras in Iran, but in most place of Iran during the next eras volcanic rocks with green series and Dacites were seen. By the recent survey in Sahand mountain in NW of Iran volcanography, determination of rocks and the age of layers were estimated. The deposits of Precambrian as sediment rocks are also seen in the same area. All of volcanic periods in this place were studied; their extrusive rocks, their petrography and the result of their analytical chemistry were discussed. Finally volcano sedimentology of Sahand mountain were described

  15. The origin of the Hawaiian Volcano Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Dvorak, John [University of Hawaii' s Institute for Astronomy (United States)

    2011-05-15

    I first stepped through the doorway of the Hawaiian Volcano Observatory in 1976, and I was impressed by what I saw: A dozen people working out of a stone-and-metal building perched at the edge of a high cliff with a spectacular view of a vast volcanic plain. Their primary purpose was to monitor the island's two active volcanoes, Kilauea and Mauna Loa. I joined them, working for six weeks as a volunteer and then, years later, as a staff scientist. That gave me several chances to ask how the observatory had started.

  16. Investigating the subsurface connection beneath Cerro Negro volcano and the El Hoyo Complex, Nicaragua

    Science.gov (United States)

    Venugopal, Swetha; Moune, Séverine; Williams-Jones, Glyn

    2016-10-01

    Cerro Negro, the youngest volcano along the Central American Volcanic Belt (CAVB), is a polygenetic cinder cone with relatively frequent basaltic eruptions. The neighbouring El Hoyo complex, of which Las Pilas is the dominant edifice, is a much larger and older complex with milder and less frequent eruptions. Previous studies have suggested a deep link beneath these two closely spaced volcanoes (McKnight, 1995; MacQueen, 2013). Melt inclusions were collected from various tephra samples in order to determine whether a connection exists and to delineate the features of this link. Major, volatile, and trace elemental compositions reveal a distinct geochemical continuum with Cerro Negro defining the primitive endmember and El Hoyo representing the evolved endmember. Magmatic conditions at the time of melt inclusion entrapment were estimated with major and volatile contents: 2.4 kbar and 1170 °C for Cerro Negro melts and 1.3 kbar and 1130 °C for El Hoyo melts with an overall oxygen fugacity at the NNO buffer. Trace element contents are distinct and suggest Cerro Negro magmas fractionally crystallise while El Hoyo magmas are a mix between primitive Cerro Negro melts and residual and evolved El Hoyo magma. Modelling of end member compositions with alphaMELTS confirms the unique nature of El Hoyo magmas as resulting from incremental mixing between Cerro Negro and residual evolved magma at 4 km depth. Combining all available literature data, this study presents a model of the interconnected subsurface plumbing system. This model considers the modern day analogue of the Lemptégy cinder cones in Massif Central, France and incorporates structurally controlled dykes. The main implications of this study are the classification of Cerro Negro as the newest conduit within the El Hoyo Complex as well as the potential re-activation of the El Hoyo edifice.

  17. Strain engineering of Dirac cones in graphyne

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gaoxue; Kumar, Ashok; Pandey, Ravindra, E-mail: pandey@mtu.edu [Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States); Si, Mingsu [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2014-05-26

    6,6,12-graphyne, one of the two-dimensional carbon allotropes with the rectangular lattice structure, has two kinds of non-equivalent anisotropic Dirac cones in the first Brillouin zone. We show that Dirac cones can be tuned independently by the uniaxial compressive strain applied to graphyne, which induces n-type and p-type self-doping effect, by shifting the energy of the Dirac cones in the opposite directions. On the other hand, application of the tensile strain results into a transition from gapless to finite gap system for the monolayer. For the AB-stacked bilayer, the results predict tunability of Dirac-cones by in-plane strains as well as the strain applied perpendicular to the plane. The group velocities of the Dirac cones show enhancement in the resistance anisotropy for bilayer relative to the case of monolayer. Such tunable and direction-dependent electronic properties predicted for 6,6,12-graphyne make it to be competitive for the next-generation electronic devices at nanoscale.

  18. CRALBP supports the mammalian retinal visual cycle and cone vision

    OpenAIRE

    Xue, Yunlu; Shen, Susan Q.; Jui, Jonathan; Rupp, Alan C.; Byrne, Leah C.; Hattar, Samer; Flannery, John G.; Corbo, Joseph C.; Kefalov, Vladimir J.

    2015-01-01

    Mutations in the cellular retinaldehyde-binding protein (CRALBP, encoded by RLBP1) can lead to severe cone photoreceptor-mediated vision loss in patients. It is not known how CRALBP supports cone function or how altered CRALBP leads to cone dysfunction. Here, we determined that deletion of Rlbp1 in mice impairs the retinal visual cycle. Mice lacking CRALBP exhibited M-opsin mislocalization, M-cone loss, and impaired cone-driven visual behavior and light responses. Additionally, M-cone dark ad...

  19. Growth and degradation of Hawaiian volcanoes: Chapter 3 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Clague, David A.; Sherrod, David R.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    The 19 known shield volcanoes of the main Hawaiian Islands—15 now emergent, 3 submerged, and 1 newly born and still submarine—lie at the southeast end of a long-lived hot spot chain. As the Pacific Plate of the Earth’s lithosphere moves slowly northwestward over the Hawaiian hot spot, volcanoes are successively born above it, evolve as they drift away from it, and eventually die and subside beneath the ocean surface.

  20. MARINE CONGLOMERATE AND REEF MEGACLASTS AT MAURITUS ISLAND: Evidences of a tsunami generated by a flank collapse of the PITON DE LA Fournaise volcano, Reunion Island?

    Directory of Open Access Journals (Sweden)

    R. Paris

    2014-05-01

    Full Text Available Tsunamis related to volcano flank collapse are typically a high-magnitude, low frequency hazard for which evaluation and mitigation are difficult to address. In this short communication, we present field evidences of a large tsunami along the southern coast of Mauritius Island ca. 4400 years ago. Tsunami deposits described include both marine conglomerates and coral boulders up to 90 m3 (> 100 tons. The most probable origin of the tsunami is a flank collapse of Piton de la Fournaise volcano, Réunion Island.

  1. Microbial biodiversity of Tang and Pirgal mud volcanoes and evaluation of bio-emulsifier and bio-demulsifier activities of Capnophile bacteria

    Directory of Open Access Journals (Sweden)

    Yasaman Parsia

    2017-12-01

    Full Text Available The data presented in this article is related to the Master thesis; entitled “Survey Aerobic Microbial Diversity Mud Volcanoes in Chabahar and Khash Ports in Southern Iran” by the first author of this article, year 2011, Islamic Azad University, Iran (reference number (Parsia, 2011 [1] of this article. This article shows microbial biodiversity and evaluates bio-emulsifier and bio-demulsifier abilities of capnophile isolates, in order to introduce a superior isolate for the Microbial Enhanced Oil Recovery (MEOR process in the petrochemical industry. Keywords: Mud volcanoes, Biodiversity, Bio-emulsification, Bio-demulsification, Petrochemistry

  2. Two magma bodies beneath the summit of Kilauea Volcano unveiled by isotopically distinct melt deliveries from the mantle

    Science.gov (United States)

    Pietruszka, Aaron J.; Heaton, Daniel E.; Marske, Jared P.; Garcia, Michael O.

    2015-01-01

    The summit magma storage reservoir of Kīlauea Volcano is one of the most important components of the magmatic plumbing system of this frequently active basaltic shield-building volcano. Here we use new high-precision Pb isotopic analyses of Kīlauea summit lavas—from 1959 to the active Halema‘uma‘u lava lake—to infer the number, size, and interconnectedness of magma bodies within the volcano's summit reservoir. From 1971 to 1982, the 206Pb/204Pb ratios of the lavas define two separate magma mixing trends that correlate with differences in vent location and/or pre-eruptive magma temperature. These relationships, which contrast with a single magma mixing trend for lavas from 1959 to 1968, indicate that Kīlauea summit eruptions since at least 1971 were supplied from two distinct magma bodies. The locations of these magma bodies are inferred to coincide with two major deformation centers identified by geodetic monitoring of the volcano's summit region: (1) the main locus of the summit reservoir ∼2–4 km below the southern rim of Kīlauea Caldera and (2) a shallower magma body 4 km3 of lava erupted), must therefore be sustained by a nearly continuous supply of new melt from the mantle. The model results show that a minimum of four compositionally distinct, mantle-derived magma batches were delivered to the volcano (at least three directly to the summit reservoir) since 1959. These melt inputs correlate with the initiation of energetic (1959 Kīlauea Iki) and/or sustained (1969–1974 Mauna Ulu, 1983-present Pu‘u ‘Ō‘ō and 2008-present Halema‘uma‘u) eruptions. Thus, Kīlauea's eruptive behavior is partly tied to the delivery of new magma batches from the volcano's source region within the Hawaiian mantle plume.

  3. Mechanical coupling between earthquakes and volcanoes inferred from stress transfer models: evidence from Vesuvio, Etna and Alban Hills (Italy)

    Science.gov (United States)

    Cocco, M.; Feuillet, N.; Nostro, C.; Musumeci, C.

    2003-04-01

    We investigate the mechanical interactions between tectonic faults and volcanic sources through elastic stress transfer and discuss the results of several applications to Italian active volcanoes. We first present the stress modeling results that point out a two-way coupling between Vesuvius eruptions and historical earthquakes in Southern Apennines, which allow us to provide a physical interpretation of their statistical correlation. Therefore, we explore the elastic stress interaction between historical eruptions at the Etna volcano and the largest earthquakes in Eastern Sicily and Calabria. We show that the large 1693 seismic event caused an increase of compressive stress along the rift zone, which can be associated to the lack of flank eruptions of the Etna volcano for about 70 years after the earthquake. Moreover, the largest Etna eruptions preceded by few decades the large 1693 seismic event. Our modeling results clearly suggest that all these catastrophic events are tectonically coupled. We also investigate the effect of elastic stress perturbations on the instrumental seismicity caused by magma inflation at depth both at the Etna and at the Alban Hills volcanoes. In particular, we model the seismicity pattern at the Alban Hills volcano (central Italy) during a seismic swarm occurred in 1989-90 and we interpret it in terms of Coulomb stress changes caused by magmatic processes in an extensional tectonic stress field. We verify that the earthquakes occur in areas of Coulomb stress increase and that their faulting mechanisms are consistent with the stress perturbation induced by the volcanic source. Our results suggest a link between faults and volcanic sources, which we interpret as a tectonic coupling explaining the seismicity in a large area surrounding the volcanoes.

  4. Volcano stratigraphy interpretation of Mamuju area based on Landsat-8 imagery analysis

    International Nuclear Information System (INIS)

    Frederikus Dian Indrastomo; I Gde Sukadana; Dhatu Kamajati; Asep Saepuloh; Agus Handoyo Harsolumakso

    2015-01-01

    Mamuju and its surrounding area are constructed mainly by volcanic rocks. Volcanoclastic sedimentary rocks and limestones are laid above the volcanic rocks. Volcanic activities create some unique morphologies such as craters, lava domes, and pyroclastic flow paths as their volcanic products. These products are identified from their circular features characters on Landsat-8 imagery. Geometric and atmospheric corrections had been done, a visual interpretation on Landsat-8 imagery was conducted to identify structure, geomorphology, and geological condition of the area. Regional geological structures show trend to southeast – northwest direction which is affects the formation of Adang volcano. Geomorphology of the area are classified into 16 geomorphology units based on their genetic aspects, i.e Sumare fault block ridge, Mamuju cuesta ridge, Adang eruption crater, Labuhan Ranau eruption crater, Sumare eruption crater, Ampalas volcanic cone, Adang lava dome, Labuhan Ranau intrusion hill, Adang pyroclastic flow ridge, Sumare pyroclastic flow ridge, Adang volcanic remnant hills, Malunda volcanic remnant hills, Talaya volcanic remnant hills, Tapalang karst hills, Mamuju alluvium plains, and Karampuang reef terrace plains. Based on the Landsat-8 imagery interpretation result and field confirmation, the geology of Mamuju area is divided into volcanic rocks and sedimentary rocks. There are two groups of volcanic rocks; Talaya complex and Mamuju complex. The Talaya complex consists of Mambi, Malunda, and Kalukku volcanic rocks with andesitic composition, while Mamuju complex consist of Botteng, Ahu, Tapalang, Adang, Ampalas, Sumare, and Labuhan Ranau volcanic rocks with andesite to leucitic basalt composition. The volcano stratigraphy of Mamuju area was constructed based on its structure, geomorphology and lithology distribution analysis. Volcano stratigraphy of Mamuju area is classified into Khuluk Talaya and Khuluk Mamuju. The Khuluk Talaya consists of Gumuk Mambi, Gumuk

  5. Rangitoto Volcano Drilling Project: Life of a Small 'Monogenetic' Basaltic Shield in the Auckland Volcanic Field

    Science.gov (United States)

    Shane, P. A. R.; Linnell, T.; Lindsay, J. M.; Smith, I. E.; Augustinus, P. M.; Cronin, S. J.

    2014-12-01

    Rangitoto is a small basaltic shield volcano representing the most recent and most voluminous episode of volcanism in the Auckland Volcanic Field, New Zealand. Auckland City is built on the field, and hence, Rangitoto's importance in hazard-risk modelling. The symmetrical edifice, ~6 km wide and 260 m high, has volume of 1.78 km3. It comprises summit scoria cones and a lava field. However, the lack of deep erosion dissection has prevented the development of an eruptive stratigraphy. Previous studies suggested construction in a relatively short interval at 550-500 yrs BP. However, microscopic tephra have been interpreted as evidence of intermittent activity from 1498 +/- 140 to 504 +/- 6 yrs BP, a longevity of 1000 years. A 150-m-deep hole was drilled through the edifice in February 2014 to obtain a continuous core record. The result is an unparalleled stratigraphy of the evolution of a small shield volcano. The upper 128 m of core comprises at least 27 lava flows with thicknesses in the range 0.3-15 m, representing the main shield-building phase. Underlying marine sediments are interbedded with 8 m of pyroclastic lapilli, and a thin lava flow, representing the explosive phreatomagmatic birth of the volcano. Preliminary geochemical analyses reveal suite of relatively uniform transitional basalts (MgO = 8.1 to 9.7 wt %). However, 4 compositional groups are distinguished that were erupted in sequential order. High-MgO magmas were erupted first, followed by a two more heterogeneous groups displaying differentiation trends with time. Finally, distinct low-MgO basalts were erupted. Each magma type appears to represent a new magma batch. The core places the magma types in a time series, which can be correlated to the surface lava field. Hence, allowing a geometrical reconstruction of the shield growth. Additional petrologic investigations are providing insight to magmatic ascent processes, while radiocarbon and paleomagnetic secular variation studies will reveal the

  6. Rain-triggered lahars following the 2010 eruption of Merapi volcano, Indonesia: A major risk

    Science.gov (United States)

    de Bélizal, Edouard; Lavigne, Franck; Hadmoko, Danang Sri; Degeai, Jean-Philippe; Dipayana, Gilang Aria; Mutaqin, Bachtiar Wahyu; Marfai, Muh Aris; Coquet, Marie; Mauff, Baptiste Le; Robin, Anne-Kyria; Vidal, Céline; Cholik, Noer; Aisyah, Nurnaning

    2013-07-01

    The 2010 VEI 4 eruption of Merapi volcano deposited roughly ten times the volume of pyroclastic materials of the 1994 and 2006 eruptions, and is recognized as one of the most intense eruption since 1872. However, as the eruptive phase is now over, another threat endangers local communities: rain-triggered lahars. Previous papers on lahars at Merapi presented lahar-related risk following small-scale dome-collapse PDCs. Thus the aim of this study is to provide new insights on lahar-related risk following a large scale VEI 4 eruption. The paper highlights the high number of events (240) during the 2010-2011 rainy season (October 2010-May 2011). The frequency of the 2010-2011 lahars is also the most important ever recorded at Merapi. Lahars occurred in almost all drainages located under the active cone, with runout distances exceeding 15 km. The geomorphic impacts of lahars on the distal slope of the volcano are then explained as they directly threaten houses and infrastructures: creation of large corridors, avulsions, riverbank erosion and riverbed downcutting are detailed through local scale examples. Related damage is also studied: 860 houses damaged, 14 sabo-dams and 21 bridges destroyed. Sedimentological characteristics of volcaniclastic sediments in lahar corridors are presented, with emphasis on the resource in building material that they represent for local communities. Risk studies should not forget that thousands of people are exposing themselves to lahar hazard when they quarry volcaniclastic sediment on lahar corridors. Finally, the efficient community-based crisis management is explained, and shows how local people organize themselves to manage the risk: 3 fatalities were reported, although lahars reached densely populated areas. To summarize, this study provides an update of lahar risk issues at Merapi, with emphasis on the distal slope of the volcano where lahars had not occurred for 40 years, and where lahar corridors were rapidly formed.

  7. Volcaniclastic dykes tell on fracturing, explosive eruption and lateral collapse at Stromboli volcano (Italy)

    Science.gov (United States)

    Vezzoli, Luigina; Corazzato, Claudia

    2016-05-01

    In the upper part of the Stromboli volcano, in the Le Croci and Bastimento areas, two dyke-like bodies of volcanic breccia up to two-metre thick crosscut and intrude the products of Vancori and Neostromboli volcanoes. We describe the lithofacies association of these unusual volcaniclastic dykes, interpret the setting of dyke-forming fractures and the emplacement mechanism of internal deposits, and discuss their probable relationships with the explosive eruption and major lateral collapse events that occurred at the end of the Neostromboli period. The dyke volcaniclastic deposits contain juvenile magmatic fragments (pyroclasts) suggesting a primary volcanic origin. Their petrographic characteristics are coincident with the Neostromboli products. The architecture of the infilling deposits comprises symmetrically-nested volcaniclastic units, separated by sub-vertical boundaries, which are parallel to the dyke margins. The volcanic units are composed of distinctive lithofacies. The more external facies is composed of fine and coarse ash showing sub-vertical laminations, parallel to the contact wall. The central facies comprises stratified, lithic-rich breccia and lapilli-tuff, whose stratification is sub-horizontal and convolute, discordant to the dyke margins. Only at Le Croci dyke, the final unit shows a massive tuff-breccia facies. The volcaniclastic dykes experienced a polyphasic geological evolution comprising three stages. The first phase consisted in fracturing, explosive intrusion related to magma rising and upward injection of magmatic fluids and pyroclasts. The second phase recorded the dilation of fractures and their role as pyroclastic conduits in an explosive eruption possibly coeval with the lateral collapse of the Neostromboli lava cone. Finally, in the third phase, the immediately post-eruption mass-flow remobilization of pyroclastic deposits took place on the volcano slopes.

  8. Respiratory correlated cone beam CT

    International Nuclear Information System (INIS)

    Sonke, Jan-Jakob; Zijp, Lambert; Remeijer, Peter; Herk, Marcel van

    2005-01-01

    A cone beam computed tomography (CBCT) scanner integrated with a linear accelerator is a powerful tool for image guided radiotherapy. Respiratory motion, however, induces artifacts in CBCT, while the respiratory correlated procedures, developed to reduce motion artifacts in axial and helical CT are not suitable for such CBCT scanners. We have developed an alternative respiratory correlated procedure for CBCT and evaluated its performance. This respiratory correlated CBCT procedure consists of retrospective sorting in projection space, yielding subsets of projections that each corresponds to a certain breathing phase. Subsequently, these subsets are reconstructed into a four-dimensional (4D) CBCT dataset. The breathing signal, required for respiratory correlation, was directly extracted from the 2D projection data, removing the need for an additional respiratory monitor system. Due to the reduced number of projections per phase, the contrast-to-noise ratio in a 4D scan reduced by a factor 2.6-3.7 compared to a 3D scan based on all projections. Projection data of a spherical phantom moving with a 3 and 5 s period with and without simulated breathing irregularities were acquired and reconstructed into 3D and 4D CBCT datasets. The positional deviations of the phantoms center of gravity between 4D CBCT and fluoroscopy were small: 0.13±0.09 mm for the regular motion and 0.39±0.24 mm for the irregular motion. Motion artifacts, clearly present in the 3D CBCT datasets, were substantially reduced in the 4D datasets, even in the presence of breathing irregularities, such that the shape of the moving structures could be identified more accurately. Moreover, the 4D CBCT dataset provided information on the 3D trajectory of the moving structures, absent in the 3D data. Considerable breathing irregularities, however, substantially reduces the image quality. Data presented for three different lung cancer patients were in line with the results obtained from the phantom study. In

  9. Carbonate assimilation at Merapi volcano, Java Indonesia

    DEFF Research Database (Denmark)

    Chadwick, J.P; Troll, V.R; Ginibre,, C.

    2007-01-01

    Recent basaltic andesite lavas from Merapi volcano contain abundant, complexly zoned, plagioclase phenocrysts, analysed here for their petrographic textures, major element composition and Sr isotope composition. Anorthite (An) content in individual crystals can vary by as much as 55 mol% (An40^95...

  10. Probing magma reservoirs to improve volcano forecasts

    Science.gov (United States)

    Lowenstern, Jacob B.; Sisson, Thomas W.; Hurwitz, Shaul

    2017-01-01

    When it comes to forecasting eruptions, volcano observatories rely mostly on real-time signals from earthquakes, ground deformation, and gas discharge, combined with probabilistic assessments based on past behavior [Sparks and Cashman, 2017]. There is comparatively less reliance on geophysical and petrological understanding of subsurface magma reservoirs.

  11. Biological Studies on a Live Volcano.

    Science.gov (United States)

    Zipko, Stephen J.

    1992-01-01

    Describes scientific research on an Earthwatch expedition to study Arenal, one of the world's most active volcanoes, in north central Costa Rica. The purpose of the two-week project was to monitor and understand the past and ongoing development of a small, geologically young, highly active stratovolcano in a tropical, high-rainfall environment.…

  12. Of volcanoes, saints, trash, and frogs

    DEFF Research Database (Denmark)

    Andersen, Astrid Oberborbeck

    , at the same time as political elections and economic hardship. During one year of ethnographic fieldwork volcanoes, saints, trash and frogs were among the nonhuman entities referred to in conversations and engaged with when responding to the changes that trouble the world and everyday life of Arequipans...

  13. Geophysical monitoring of the Purace volcano, Colombia

    Directory of Open Access Journals (Sweden)

    M. Arcila

    1996-06-01

    Full Text Available Located in the extreme northwestern part of the Los Coconucos volcanic chain in the Central Cordillera, the Purace is one of Colombia's most active volcanoes. Recent geological studies indicate an eruptive history of mainly explosive behavior which was marked most recently by a minor ash eruption in 1977. Techniques used to forecast the renewal of activity of volcanoes after a long period of quiescence include the monitoring of seismicity and ground deformation near the volcano. As a first approach toward the monitoring of the Purace volcano, Southwest Seismological Observatory (OSSO, located in the city of Cali, set up one seismic station in 1986. Beginning in June 1991, the seismic signals have also been transmitted to the Colombian Geological Survey (INGEOMINAS at the Volcanological and Seismological Observatory (OVS-UOP, located in the city of Popayan. Two more seismic stations were installed early in 1994 forming a minimum seismic network and a geodetic monitoring program for ground deformation studies was established and conducted by INGEOMINAS.

  14. Muons reveal the interior of volcanoes

    CERN Multimedia

    Francesco Poppi

    2010-01-01

    The MU-RAY project has the very challenging aim of providing a “muon X-ray” of the Vesuvius volcano (Italy) using a detector that records the muons hitting it after traversing the rock structures of the volcano. This technique was used for the first time in 1971 by the Nobel Prize-winner Louis Alvarez, who was searching for unknown burial chambers in the Chephren pyramid.   The location of the muon detector on the slopes of the Vesuvius volcano. Like X-ray scans of the human body, muon radiography allows researchers to obtain an image of the internal structures of the upper levels of volcanoes. Although such an image cannot help to predict ‘when’ an eruption might occur, it can, if combined with other observations, help to foresee ‘how’ it could develop and serves as a powerful tool for the study of geological structures. Muons come from the interaction of cosmic rays with the Earth's atmosphere. They are able to traverse layers of ro...

  15. Stratigraphy and eruption ages of deposits at the southeast side of Nishiyama volcano, Hachijo island during the last 2,500 years; Hachijojima, Nishiyama kazan nantoroku ni okeru saikin 2,500 nenkan no funshutsubutsu no sojo to funka nendai

    Energy Technology Data Exchange (ETDEWEB)

    Sugihara, S.; Shimada, S. [Meiji University, Tokyo (Japan)

    1998-10-25

    The Nishiyama volcano of the Hachijo island is a stratovolcano whose volcanic activity started approximately 10,000 years ago. Among the lateral volcanos surrounding the cone-shaped mountain, there is a Kandoyama tuff cone formed by a phreatomagmatic eruption at the southeastern base of the Nishiyama volcano. It is known that Kandoyama`s latest eruption is not older than 4,000 years. In this report, the stratigraphy of eruptive deposits and the types of eruptions involving Nishiyama after Kandoyama formation are clarified. Also, the history of Nishiyama` eruption is discussed, for which a study is made about the stratigraphic relationship between its eruption and the results of {sup 14}C dating or the eruption remainders, corresponding terrestrial episodes recorded in ancient literature usable for eruption dating, etc. The conclusion is summarized below. The eruptive deposits are to be supposedly dated at a period after the completion of caldera aggradation. At the southeastern base of Nishiyama, the eruption of 1605 is to immediately follow the eruption of approximately 1,100 years ago, and no eruption so active as to cause the outflow of lava is noticed therebetween. It is inferred that the Nishiyama volcano erupts once in a period of 300-700 years. 44 refs., 11 figs., 2 tabs.

  16. False Color Image of Volcano Sapas Mons

    Science.gov (United States)

    1991-01-01

    This false-color image shows the volcano Sapas Mons, which is located in the broad equatorial rise called Atla Regio (8 degrees north latitude and 188 degrees east longitude). The area shown is approximately 650 kilometers (404 miles) on a side. Sapas Mons measures about 400 kilometers (248 miles) across and 1.5 kilometers (0.9 mile) high. Its flanks show numerous overlapping lava flows. The dark flows on the lower right are thought to be smoother than the brighter ones near the central part of the volcano. Many of the flows appear to have been erupted along the flanks of the volcano rather than from the summit. This type of flank eruption is common on large volcanoes on Earth, such as the Hawaiian volcanoes. The summit area has two flat-topped mesas, whose smooth tops give a relatively dark appearance in the radar image. Also seen near the summit are groups of pits, some as large as one kilometer (0.6 mile) across. These are thought to have formed when underground chambers of magma were drained through other subsurface tubes and lead to a collapse at the surface. A 20 kilometer-diameter (12-mile diameter) impact crater northeast of the volcano is partially buried by the lava flows. Little was known about Atla Regio prior to Magellan. The new data, acquired in February 1991, show the region to be composed of at least five large volcanoes such as Sapas Mons, which are commonly linked by complex systems of fractures or rift zones. If comparable to similar features on Earth, Atla Regio probably formed when large volumes of molten rock upwelled from areas within the interior of Venus known as'hot spots.' Magellan is a NASA spacecraft mission to map the surface of Venus with imaging radar. The basic scientific instrument is a synthetic aperture radar, or SAR, which can look through the thick clouds perpetually shielding the surface of Venus. Magellan is in orbit around Venus which completes one turn around its axis in 243 Earth days. That period of time, one Venus day

  17. Hazard maps of Colima volcano, Mexico

    Science.gov (United States)

    Suarez-Plascencia, C.; Nunez-Cornu, F. J.; Escudero Ayala, C. R.

    2011-12-01

    Colima volcano, also known as Volcan de Fuego (19° 30.696 N, 103° 37.026 W), is located on the border between the states of Jalisco and Colima and is the most active volcano in Mexico. Began its current eruptive process in February 1991, in February 10, 1999 the biggest explosion since 1913 occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching attitudes between 4,500 and 9,000 m.a.s.l., further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events ash emissions were generated in all directions reaching distances up to 100 km, slightly affected nearby villages as Tuxpan, Tonila, Zapotlán, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During the 2005 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano due to low population density and low socio-economic activities at the time. Shows the updating of the volcanic hazard maps published in 2001, where we identify whit SPOT satellite imagery and Google Earth, change in the land use on the slope of volcano, the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano, the population inhabiting the area is approximately 517,000 people, and growing at an annual rate of 4.77%, also the region that has shown an increased in the vulnerability for the development of economic activities, supported by the construction of highways, natural gas pipelines and electrical infrastructure that connect to the Port of Manzanillo to Guadalajara city. The update the hazard maps are: a) Exclusion areas and moderate hazard for explosive events

  18. Dynamics of diffuse carbon dioxide emissions from Cumbre Vieja volcano, La Palma, Canary Islands

    Science.gov (United States)

    Padrón, Eleazar; Pérez, Nemesio M.; Rodríguez, Fátima; Melián, Gladys; Hernández, Pedro A.; Sumino, Hirochika; Padilla, Germán; Barrancos, José; Dionis, Samara; Notsu, Kenji; Calvo, David

    2015-04-01

    We report herein the results of 13 soil CO2 efflux surveys at Cumbre Vieja volcano, La Palma Island, the most active basaltic volcano in the Canary Islands. The CO2 efflux measurements were undertaken using the accumulation chamber method between 2001 and 2013 to constrain the total CO2 output from the studied area and to evaluate occasional CO2 efflux surveys as a volcanic surveillance tool for Cumbre Vieja. Soil CO2 efflux values ranged from non-detectable up to 2442 g m-2 days-1, with the highest values observed in the south, where the last volcanic eruption took place (Teneguía, 1971). Isotopic analyses of soil gas carbon dioxide suggest an organic origin as the main contribution to the CO2 efflux, with a very small magmatic gas component observed at the southern part of the volcano. Total biogenic and magmatic combined CO2 emission rates showed a high temporal variability, ranging between 320 and 1544 t days-1 and averaging 1147 t days-1 over the 220-km2 region. Two significant increases in the CO2 emission observed in 2011 and 2013 were likely caused by an enhanced magmatic endogenous contribution revealed by significant changes in the 3He/4He ratio in a CO2-rich cold spring. The relatively stable emission rate presented in this work defines the background CO2 emission range for Cumbre Vieja during a volcanic quiescence period.

  19. Mauna Kea volcano's ongoing 18-year swarm

    Science.gov (United States)

    Wech, A.; Thelen, W. A.

    2017-12-01

    Mauna Kea is a large postshield-stage volcano that forms the highest peak on Hawaii Island. The 4,205-meter high volcano erupted most recently between 6,000 and 4,500 years ago and exhibits relatively low rates of seismicity, which are mostly tectonic in origin resulting from lithospheric flexure under the weight of the volcano. Here we identify deep repeating earthquakes occurring beneath the summit of Mauna Kea. These earthquakes, which are not part of the Hawaiian Volcano Observatory's regional network catalog, were initially detected through a systematic search for coherent seismicity using envelope cross-correlation, and subsequent analysis revealed the presence of a long-term, ongoing swarm. The events have energy concentrated at 2-7 Hz, and can be seen in filtered waveforms dating back to the earliest continuous data from a single station archived at IRIS from November 1999. We use a single-station (3 component) match-filter analysis to create a catalog of the repeating earthquakes for the past 18 years. Using two templates created through phase-weighted stacking of thousands of sta/lta-triggers, we find hundreds of thousands of M1.3-1.6 earthquakes repeating every 7-12 minutes throughout this entire time period, with many smaller events occurring in between. The earthquakes occur at 28-31 km depth directly beneath the summit within a conspicuous gap in seismicity surrounding the flanks of the volcano. Magnitudes and periodicity are remarkably stable long-term, but do exhibit slight variability and occasionally display higher variability on shorter time scales. Network geometry precludes obtaining a reliable focal mechanism, but we interpret the frequency content and hypocenters to infer a volcanic source distinct from the regional tectonic seismicity responding to the load of the island. In this model, the earthquakes may result from the slow, persistent degassing of a relic magma chamber at depth.

  20. Geochemical studies on island arc volcanoes

    International Nuclear Information System (INIS)

    Notsu, Kenji

    1998-01-01

    This paper summarizes advances in three topics of geochemical studies on island arc volcanoes, which I and my colleagues have been investigating. First one is strontium isotope studies of arc volcanic rocks mainly from Japanese island arcs. We have shown that the precise spatial distribution of the 87 Sr/ 86 Sr ratio reflects natures of the subduction structure and slab-mantle interaction. Based on the 87 Sr/ 86 Sr ratio of volcanic rocks in the northern Kanto district, where two plates subduct concurrently with different directions, the existence of an aseismic portion of the Philippine Sea plate ahead of the seismic one was suggested. Second one is geochemical monitoring of active arc volcanoes. 3 He/ 4 He ratio of volcanic volatiles was shown to be a good indicator to monitor the behavior of magma: ascent and drain-back of magma result in increase and decrease in the ratio, respectively. In the case of 1986 eruptions of Izu-Oshima volcano, the ratio began to increase two months after big eruptions, reaching the maximum and decreased. Such delayed response is explained in terms of travelling time of magmatic helium from the vent area to the observation site along the underground steam flow. Third one is remote observation of volcanic gas chemistry of arc volcanoes, using an infrared absorption spectroscopy. During Unzen eruptions starting in 1990, absorption features of SO 2 and HCl of volcanic gas were detected from the observation station at 1.3 km distance. This was the first ground-based remote detection of HCl in volcanic gas. In the recent work at Aso volcano, we could identify 5 species (CO, COS, CO 2 , SO 2 and HCl) simultaneously in the volcanic plume spectra. (author)

  1. Volcanic geology and eruption frequency, lower east rift zone of Kilauea volcano, Hawaii

    Science.gov (United States)

    Moore, Richard B.

    1992-08-01

    Detailed geologic mapping and radiocarbon dating of tholeiitic basalts covering about 275 km2 on the lower east rift zone (LERZ) and adjoining flanks of Kilauea volcano, Hawaii, show that at least 112 separate eruptions have occurred during the past 2360 years. Eruptive products include spatter ramparts and cones, a shield, two extensive lithic-rich tuff deposits, aa and pahoehoe flows, and three littoral cones. Areal coverage, number of eruptions and average dormant interval estimates in years for the five age groups assigned are: (I) historic, i.e. A D 1790 and younger: 25%, 5, 42.75; (II) 200 400 years old: 50%, 15, 14.3: (III) 400 750 years old: 20%, 54, 6.6; (IV) 750 1500 years old: 5%, 37, 20.8; (V) 1500 3000 years old: LERZ during the past 1500 years. Estimated volumes of the exposed products of individual eruptions range from a few tens of cubic meters for older units in small kipukas to as much as 0.4 km3 for the heiheiahulu shield. The average dormant interval has been about 13.6 years during the past 1500 years. The most recent eruption occurred in 1961, and the area may be overdue for its next eruption. However, eruptive activity will not resume on the LERZ until either the dike feeding the current eruption on the middle east rift zone extends farther down rift, or a new dike, unrelated to the current eruption, extends into the LERZ.

  2. Understanding the cone scale in Cupressaceae: insights from seed-cone teratology in Glyptostrobus pensilis.

    Science.gov (United States)

    Dörken, Veit Martin; Rudall, Paula J

    2018-01-01

    Both wild-type and teratological seed cones are described in the monoecious conifer Glyptostrobus pensilis and compared with those of other Cupressaceae sensu lato and other conifers. Some Cupressaceae apparently possess a proliferation of axillary structures in their cone scales. In our interpretation, in Glyptostrobus each bract of both typical and atypical seed cones bears two descending accessory shoots, interpreted here as seed scales (ovuliferous scales). The primary seed scale is fertile and forms the ovules, the second is sterile and forms characteristic tooth-like structures. The bract and the two axillary seed scales are each supplied with a single distinct vascular bundle that enters the cone axis as a separate strand; this vasculature also characterises the descending accessory short shoots in the vegetative parts of the crown. In wild-type seed cones, the fertile seed scale is reduced to its ovules, and the ovules are always axillary. In contrast, the ovules of some of the teratological seed cones examined were located at the centre of the cone scale. An additional tissue found on the upper surface of the sterile lower seed scale is here interpreted as the axis of the fertile seed scale. Thus, the central position of the ovules can be explained by recaulescent fusion of the upper fertile and lower sterile seed scales. In several teratological cone scales, the ovules were enveloped by an additional sterile tissue that is uniseriate and represents an epidermal outgrowth of the fertile seed scale. Close to the ovules, the epidermis was detached from lower tissue and surrounded the ovule completely, except at the micropyle. These teratological features are potentially significant in understanding seed-cone homologies among extant conifers.

  3. Understanding the cone scale in Cupressaceae: insights from seed-cone teratology in Glyptostrobus pensilis

    Directory of Open Access Journals (Sweden)

    Veit Martin Dörken

    2018-06-01

    Full Text Available Both wild-type and teratological seed cones are described in the monoecious conifer Glyptostrobus pensilis and compared with those of other Cupressaceae sensu lato and other conifers. Some Cupressaceae apparently possess a proliferation of axillary structures in their cone scales. In our interpretation, in Glyptostrobus each bract of both typical and atypical seed cones bears two descending accessory shoots, interpreted here as seed scales (ovuliferous scales. The primary seed scale is fertile and forms the ovules, the second is sterile and forms characteristic tooth-like structures. The bract and the two axillary seed scales are each supplied with a single distinct vascular bundle that enters the cone axis as a separate strand; this vasculature also characterises the descending accessory short shoots in the vegetative parts of the crown. In wild-type seed cones, the fertile seed scale is reduced to its ovules, and the ovules are always axillary. In contrast, the ovules of some of the teratological seed cones examined were located at the centre of the cone scale. An additional tissue found on the upper surface of the sterile lower seed scale is here interpreted as the axis of the fertile seed scale. Thus, the central position of the ovules can be explained by recaulescent fusion of the upper fertile and lower sterile seed scales. In several teratological cone scales, the ovules were enveloped by an additional sterile tissue that is uniseriate and represents an epidermal outgrowth of the fertile seed scale. Close to the ovules, the epidermis was detached from lower tissue and surrounded the ovule completely, except at the micropyle. These teratological features are potentially significant in understanding seed-cone homologies among extant conifers.

  4. Resonance in a Cone-Topped Tube

    Directory of Open Access Journals (Sweden)

    Angus Cheng-Huan Chia

    2011-06-01

    Full Text Available The relationship between ratio of the upper opening diameter of a cone-topped cylinder to the cylinder diameter,and the ratio of the length of the air column to resonant period was examined. Plastic cones with upper openings ranging from 1.3 cm to 3.6 cm and tuning forks with frequencies ranging from 261.6 Hz to 523.3 Hz were used. The transition from a standing wave in a cylindrical column to a Helmholtz-type resonance in a resonant cavity with a narrow opening was observed.

  5. Cone-based Electrical Resistivity Tomography

    Science.gov (United States)

    Pidlisecky, A.; Knight, R.; Haber, E.

    2005-05-01

    Determining the 3D spatial distribution of subsurface properties is a critical part of managing the clean-up of contaminated sites. Most standard hydrologic methods sample small regions immediately adjacent to wells or testing devices. This provides data which are not representative of the entire region of interest. Furthermore, at many contaminated sites invasive methods are not acceptable, due to the risks associated with contacting and spreading the contaminants. To address these issues, we have developed a minimally invasive technology that provides information about the 3D distribution of electrical conductivity. This new technique, cone-based electrical resistivity tomography (C-bert), involves placing several permanent current electrodes in the subsurface and using electrodes mounted on a cone penetrometer to measure the resultant potential field while advancing the cone into the subsurface. In addition to potential field measurements, we obtain the standard suite of cone-penetration measurements, including high resolution resistivity logs; these data can then be used to constrain the inversion of the potential field data. A major challenge of working with these data is that the cone penetrometer is highly conductive, and thus presents a large local perturbation around the measurement location. As the cone is very small (approximately 30mm in diameter) with respect to the total model space, explicitly modeling the cone is computationally demanding. We developed a method for solving the forward model that reduces computational time by an order of magnitude. This solution method, iteratively determined boundary conditions, makes it possible to correct for the cone effect before inversion of the data. Results from synthetic experiments suggest that the C-bert method of data acquisition can result in high quality electrical conductivity images of the subsurface. We tested the practicality of this technique by performing a field test of the C-bert system to image

  6. Critical condition for the transformation from Taylor cone to cone-jet

    International Nuclear Information System (INIS)

    Wei Cheng; Zhao Yang; Gang Tie-Qiang; Chen Li-Jie

    2014-01-01

    An energy method is proposed to investigate the critical transformation condition from a Taylor cone to a cone-jet. Based on the kinetic theorem, the system power allocation and the electrohydrodynamics stability are discussed. The numerical results indicate that the energy of the liquid cone tip experiences a maximum value during the transformation. With the proposed jetting energy, we give the critical transformation condition under which the derivative of jetting energy with respect to the surface area is greater than or equal to the energy required to form a unit of new liquid surface

  7. Jordan's algebra of a facially homogeneous autopolar cone

    International Nuclear Information System (INIS)

    Bellissard, Jean; Iochum, Bruno

    1979-01-01

    It is shown that a Jordan-Banach algebra with predual may be canonically associated with a facially homogeneous autopolar cone. This construction generalizes the case where a trace vector exists in the cone [fr

  8. Intense Seismic Activity at Chiles and Cerro Negro Volcanoes on the Colombia-Ecuador Border

    Science.gov (United States)

    Torres, R. A.; Cadena, O.; Gomez, D.; Ruiz, M. C.; Prejean, S. G.; Lyons, J. J.; White, R. A.

    2015-12-01

    The region of Chiles and Cerro Negro volcanoes, located on the Colombian-Ecuadorian border, has experienced an ongoing seismic swarm beginning in Aug. 2013. Based on concern for local residents and authorities, a cooperative broadband monitoring network was installed by the Servicio Geológico Colombiano in Colombia and the Instituto Geofísico of the Escuela Politécnica Nacional in Ecuador. Since November 2013 more than 538,000 earthquakes were recorded; although since May 2015 the seismicity has decreased significantly to an average of 70 events per day. Three large earthquake swarms with increasing energy occurred in Aug.-Oct. 2013, March-May 2014, and Sept.-Dec. 2014. By the end of 2014, roughly 400 earthquakes greater than M 3 had occurred with a maximum rate of 8000 earthquakes per day. The largest earthquake was a 5.6 ML on Oct. 20, 2014. This event produced an InSAR coseismic deformation of ~23 cm (S. Ebmeier, personal communication). Most events are typical brittle failure volcano-tectonic (VT) earthquakes that are located in a cluster beneath the southern flank of Chiles volcano, with depths between 1.5 and 10 km. Although the great majority of earthquakes are VT, some low-frequency (LF, ~0.5 Hz) and very-low-frequency (VLF) events have occurred. Particle motion analysis suggests that the VLF source migrated with time. While a VLF on Oct. 15, 2014 was located south of Chiles volcano, near the InSAR source, the VLF registered on Feb. 14, 2015 was likely located very close to Chiles Volcano. We infer that magma intrusion and resulting fluid exsolution at depths greater than 5 km are driving seismicity in the Chiles-Cerro Negro region. However earthquakes are failing in a manner consistent with regional tectonics. Relative relocations reveal a structure consistent with mapped regional faults. Thus seismicity is likely controlled by an interaction of magmatic and tectonic processes. Because the regional stress field is highly compressional and the volcanoes

  9. Subsurface architecture of two tropical alpine desert cinder cones that hold water

    Science.gov (United States)

    Leopold, Matthias; Morelli, Amanda; Schorghofer, Norbert

    2016-06-01

    Basaltic lava is generally porous and cannot hold water to form lakes. Here we investigate two impermeable cinder cones in the alpine desert of Maunakea volcano, Hawaii. We present the results of the first ever geophysical survey of the area around Lake Waiau, the highest lake on the Hawaiian Islands, and establish the existence of a second body of standing water in a nearby cinder cone, Pu`upōhaku (~4000 m above sea level), which has a sporadic pond of water. Based on unpublished field notes from Alfred Woodcock (*1905-†2005) spanning the years 1966-1977, more recent observations, and our own geophysical survey using electric resistivity tomography, we find that perched groundwater resides in the crater perennially to a depth of 2.5 m below the surface. Hence, Pu`upōhaku crater hosts a previously unrecognized permanent body of water, the highest on the Hawaiian Islands. Nearby Lake Waiau is also perched within a cinder cone known as Pu`uwaiau. Among other hypotheses, permafrost or a massive block of lava were discussed as a possible cause for perching the water table. Based on our results, ground temperatures are too high and specific electric resistivity values too low to be consistent with either ice-rich permafrost or massive rock. Fine-grained material such as ash and its clay-rich weathering products are likely the impermeable material that explains the perched water table at both study sites. At Pu`uwaiau we discovered a layer of high conductivity that may constitute a significant water reservoir outside of the lake and further be responsible for perching the water toward the lake.

  10. A spaceborne inventory of volcanic activity in Antarctica and southern oceans, 2000-10

    Science.gov (United States)

    Patrick, Matthew R.; Smellie, John L.

    2015-01-01

    Of the more than twenty historically active volcanoes in Antarctica and the sub-Antarctic region only two, to our knowledge, host any ground-based monitoring instruments. Moreover, because of their remoteness, most of the volcanoes are seldom visited, thus relegating the monitoring of volcanism in this region almost entirely to satellites. In this study, high temporal resolution satellite data from the Hawaii Institute of Geophysics and Planetology's MODVOLC system using MODIS (Moderate Resolution Imaging Spectroradiometer) are complemented with high spatial resolution data (ASTER, or Advanced Spaceborne Thermal Emission and Reflection Radiometer, and similar sensors) to document volcanic activity throughout the region during the period 2000–10. Five volcanoes were observed in eruption (Mount Erebus, Mount Belinda, Mount Michael, Heard Island and McDonald Island), which were predominantly low-level and effusive in nature. Mount Belinda produced tephra, building a cinder cone in addition to an extensive lava field. Five volcanoes exhibited detectable thermal, and presumed fumarolic, activity (Deception, Zavodovski, Candlemas, Bristol, and Bellingshausen islands). A minor eruption reported at Marion Island was not detected in our survey due to its small size. This study also discovered a new active vent on Mount Michael, tracked dramatic vent enlargement on Heard Island, and provides an improved picture of the morphology of some of the volcanoes.

  11. Integrity of the cone photoreceptor mosaic in oligocone trichromacy

    DEFF Research Database (Denmark)

    Michaelides, Michel; Rha, Jungtae; Dees, Elise W

    2011-01-01

    Oligocone trichromacy (OT) is an unusual cone dysfunction syndrome characterized by reduced visual acuity, mild photophobia, reduced amplitude of the cone electroretinogram with normal rod responses, normal fundus appearance, and normal or near-normal color vision. It has been proposed that these...... that these patients have a reduced number of normal functioning cones (oligocone). This paper has sought to evaluate the integrity of the cone photoreceptor mosaic in four patients previously described as having OT....

  12. Pleistocene cohesive debris flows at Nevado de Toluca Volcano, central Mexico

    Science.gov (United States)

    Capra, L.; Macías, J. L.

    2000-10-01

    During the Pleistocene, intense hydrothermal alteration promoted a flank failure of the southern portion of Nevado de Toluca volcano. This event produced a debris avalanche that transformed into a cohesive debris flow (Pilcaya deposit) owing to water saturation and weakness of the altered pre-avalanche rocks. The Pilcaya debris flow traveled along a narrow tectonic depression up to a distance of 40 km and then spread over a flat plain reaching up to 55 km from the volcano summit. This transition zone corresponds with a sudden break in slope from 5 to 0.5° that caused a rapid reduction in velocity and thickening of the flow that consequently reduced its competence to transport large particles. The resulting deposit thickens from 15 to 40 m, and contains boulders up to 15 m in diameter that form hummocky morphology close to the transitional zone. Sometime after the emplacement of the Pilcaya debris flow, heavy rains and superficial drainage contributed to remobilize the upper portions of the deposit causing two secondary lahars. These debris flows called El Mogote, traveled up to 75 km from the volcano. The edifice collapse generated lahars with a total volume of 2.8 km3 that devastated an approximate area of 250 km2. The area versus volume plot for both deposits shows that the magnitude of the event is comparable to other cohesive debris flows such as the Teteltzingo lahar (Pico de Orizaba, Mexico) and the Osceola mudflow (Mount Rainier, Wa). The Pilcaya debris flow represents additional evidence of debris flow transformed from a flank failure, a potentially devastating phenomenon that could threaten distant areas from the volcano previously considered without risk.

  13. Pre-eruptive conditions of the ~31 ka rhyolitic magma of Tlaloc volcano, Sierra Nevada Volcanic Range, Central Mexico

    Science.gov (United States)

    Macias, J.; Arce, J.; Rueda, H.; Gardner, J.

    2008-12-01

    Tlaloc volcano is located at the northern tip of the Sierra Nevada Volcanic Range in Central Mexico. This Pleistocene to Recent volcanic range consists from north to south of Tlaloc-Telapón-Teyotl-Iztaccíhuatl-and- Popocatépetl volcanoes. While andesitic to barely dacitic volcanism dominates the southern part of the range (i.e. Popocatépetl and Iztaccíhuatl); dacitic and rare rhyolithic volcanism (i.e. Telapón, Tlaloc) dominates the northern end. The known locus of rhyolitic magmatism took place at Tlaloc volcano with a Plinian-Subplinian eruption that occurred 31 ka ago. The eruption emplaced the so-called multilayered fallout and pumiceous pyroclastic flows (~2 km3 DRE). The deposit consists of 95% vol. of juvenile particles (pumice + crystals) and minor altered lithics 5% vol. The mineral association of the pumice fragments (74-76 % wt. SiO2) consists of quartz + plagioclase + sanidine + biotite and rare oxides set in a glassy groundmass with voids. Melt inclusions in quartz phenocrysts suggest that prior to the eruption the rhyolitic contain ~7% of H2O and Nevado de Toluca volcano (~6 km) some 50 km to the southwest.

  14. Common processes at unique volcanoes – a volcanological conundrum

    Directory of Open Access Journals (Sweden)

    Katharine eCashman

    2014-11-01

    Full Text Available An emerging challenge in modern volcanology is the apparent contradiction between the perception that every volcano is unique, and classification systems based on commonalities among volcano morphology and eruptive style. On the one hand, detailed studies of individual volcanoes show that a single volcano often exhibits similar patterns of behaviour over multiple eruptive episodes; this observation has led to the idea that each volcano has its own distinctive pattern of behaviour (or personality. In contrast, volcano classification schemes define eruption styles referenced to type volcanoes (e.g. Plinian, Strombolian, Vulcanian; this approach implicitly assumes that common processes underpin volcanic activity and can be used to predict the nature, extent and ensuing hazards of individual volcanoes. Actual volcanic eruptions, however, often include multiple styles, and type volcanoes may experience atypical eruptions (e.g., violent explosive eruptions of Kilauea, Hawaii1. The volcanological community is thus left with a fundamental conundrum that pits the uniqueness of individual volcanic systems against generalization of common processes. Addressing this challenge represents a major challenge to volcano research.

  15. Continuous monitoring of volcanoes with borehole strainmeters

    Science.gov (United States)

    Linde, Alan T.; Sacks, Selwyn

    Monitoring of volcanoes using various physical techniques has the potential to provide important information about the shape, size and location of the underlying magma bodies. Volcanoes erupt when the pressure in a magma chamber some kilometers below the surface overcomes the strength of the intervening rock, resulting in detectable deformations of the surrounding crust. Seismic activity may accompany and precede eruptions and, from the patterns of earthquake locations, inferences may be made about the location of magma and its movement. Ground deformation near volcanoes provides more direct evidence on these, but continuous monitoring of such deformation is necessary for all the important aspects of an eruption to be recorded. Sacks-Evertson borehole strainmeters have recorded strain changes associated with eruptions of Hekla, Iceland and Izu-Oshima, Japan. Those data have made possible well-constrained models of the geometry of the magma reservoirs and of the changes in their geometry during the eruption. The Hekla eruption produced clear changes in strain at the nearest instrument (15 km from the volcano) starting about 30 minutes before the surface breakout. The borehole instrument on Oshima showed an unequivocal increase in the amplitude of the solid earth tides beginning some years before the eruption. Deformational changes, detected by a borehole strainmeter and a very long baseline tiltmeter, and corresponding to the remote triggered seismicity at Long Valley, California in the several days immediately following the Landers earthquake are indicative of pressure changes in the magma body under Long Valley, raising the question of whether such transients are of more general importance in the eruption process. We extrapolate the experience with borehole strainmeters to estimate what could be learned from an installation of a small network of such instruments on Mauna Loa. Since the process of conduit formation from the magma sources in Mauna Loa and other

  16. Analog Experiment for rootless cone eruption

    Science.gov (United States)

    Noguchi, R.; Hamada, A.; Suzuki, A.; Kurita, K.

    2017-09-01

    Rootless cone is a unique geomorphological landmark to specify igneous origin of investigated terrane, which is formed by magma-water interaction. To understand its formation mechanism we conducted analog experiment for heat-induced vesiculation by using hot syrup and sodium bicarbonate solution.

  17. Chloride equilibrium potential in salamander cones

    Directory of Open Access Journals (Sweden)

    Bryson Eric J

    2004-12-01

    Full Text Available Abstract Background GABAergic inhibition and effects of intracellular chloride ions on calcium channel activity have been proposed to regulate neurotransmission from photoreceptors. To assess the impact of these and other chloride-dependent mechanisms on release from cones, the chloride equilibrium potential (ECl was determined in red-sensitive, large single cones from the tiger salamander retinal slice. Results Whole cell recordings were done using gramicidin perforated patch techniques to maintain endogenous Cl- levels. Membrane potentials were corrected for liquid junction potentials. Cone resting potentials were found to average -46 mV. To measure ECl, we applied long depolarizing steps to activate the calcium-activated chloride current (ICl(Ca and then determined the reversal potential for the current component that was inhibited by the Cl- channel blocker, niflumic acid. With this method, ECl was found to average -46 mV. In a complementary approach, we used a Cl-sensitive dye, MEQ, to measure the Cl- flux produced by depolarization with elevated concentrations of K+. The membrane potentials produced by the various high K+ solutions were measured in separate current clamp experiments. Consistent with electrophysiological experiments, MEQ fluorescence measurements indicated that ECl was below -36 mV. Conclusions The results of this study indicate that ECl is close to the dark resting potential. This will minimize the impact of chloride-dependent presynaptic mechanisms in cone terminals involving GABAa receptors, glutamate transporters and ICl(Ca.

  18. Cone beam computed tomography in veterinary dentistry

    NARCIS (Netherlands)

    van Thielen, B.; Siguenza, F.; Hassan, B.

    2012-01-01

    The purpose of this study was to assess the feasibility of cone beam computed tomography (CBCT) in imaging dogs and cats for diagnostic dental veterinary applications. CBCT scans of heads of six dogs and two cats were made. Dental panoramic and multi-planar reformatted (MPR) para-sagittal

  19. Geology and geochemistry of Pelagatos, Cerro del Agua, and Dos Cerros monogenetic volcanoes in the Sierra Chichinautzin Volcanic Field, south of México City

    Science.gov (United States)

    Agustín-Flores, Javier; Siebe, Claus; Guilbaud, Marie-Noëlle

    2011-04-01

    This study focuses on the geology and geochemistry of three closely-spaced monogenetic volcanoes that are located in the NE sector of the Sierra Chichinautzin Volcanic Field near México City. Pelagatos (3020 m.a.s.l.) is a small scoria cone (0.0017 km 3) with lava flows (0.036 km 3) that covered an area of 4.9 km 2. Cerro del Agua scoria cone (3480 m.a.s.l., 0.028 km 3) produced several lava flows (0.24 km 3) covering an area of 17.6 km 2. Dos Cerros is a lava shield which covers an area of 80.3 km 2 and is crowned by two scoria cones: Tezpomayo (3080 m.a.s.l., 0.022 km 3) and La Ninfa (3000 m.a.s.l., 0.032 km 3). The eruptions of Cerro del Agua and Pelagatos occurred between 2500 and 14,000 yr BP. The Dos Cerros eruption took place close to 14,000 yr BP as constrained by radiocarbon dating. Rocks from these three volcanoes are olivine-hypersthene normative basaltic andesites and andesites with porphyritic, aphanitic, and glomeroporphyritic textures. Their mineral assemblages include olivine, clinopyroxene, and orthopyroxene phenocrysts (≤ 10 vol.%) embedded in a trachytic groundmass which consists mainly of plagioclase microlites and glass. Pelagatos rocks also present quartz xenocrysts. Due to their high Cr and Ni contents, and high Mg#s, Pelagatos rocks are considered to be derived from primitive magmas, hence the importance of this volcano for understanding petrogenetic processes in this region. Major and trace element abundances and petrography of products from these volcanoes indicate a certain degree of crystal fractionation during ascent to the surface. However, the magmas that formed the volcanoes evolved independently from each other and are not cogenetically related. REE, HFSE, LILE, and isotopic (Sr, Nd, and Pb) compositions point towards a heterogeneous mantle source that has been metasomatized by aqueous/melt phases from the subducted Cocos slab. There is no clear evidence of important crustal contributions in the compositions of Pelagatos and

  20. Case of Unilateral Peripheral Cone Dysfunction

    Directory of Open Access Journals (Sweden)

    Yujin Mochizuki

    2012-05-01

    Full Text Available Purpose: Peripheral cone dystrophy is a subgroup of cone dystrophy, and only 4 cases have been reported. We present a patient with unilateral peripheral cone dysfunction and report the functional changes determined by electrophysiological tests and ultrastructural changes determined by spectral domain optical coherence tomography (SD-OCT. Case: A 34-year-old woman complained of blurred vision in both eyes. Our examination showed that her visual acuity was 0.05 OD and 0.2 OS. A relative afferent pupillary defect was present in her right eye. The results of slit-lamp examination, ophthalmoscopy, and fluorescein angiography were normal except for pallor of the right optic disc. SD-OCT showed a diffuse thinning of the retina in the posterior pole of the right eye. A severe constriction of the visual fields was found in both eyes but more in the right eye. The photopic full-field electroretinograms (ERGs were reduced in the right eye but normal in the left eye. The multifocal ERGs were severely reduced throughout the visual field except in the central area of the right eye. The multifocal ERGs from the left eye were normal. The pattern visual evoked responses were within the normal range in both eyes. She had a 5-year history of sniffing paint thinner. Results: Although the visual dysfunction was initially suspected to be due to psychological problems from the results of subjective tests, objective tests indicated a peripheral cone dysfunction in the right eye. The pathophysiological mechanism and the relationship with thinner sniffing were not determined. Conclusions: Our findings indicate that peripheral cone dysfunction can occur unilaterally. Electrophysiology and SD-OCT are valuable tests to perform to determine the pathogenesis of unusual ocular findings objectively.

  1. Silicic magma generation at Askja volcano, Iceland

    Science.gov (United States)

    Sigmarsson, O.

    2009-04-01

    Rate of magma differentiation is an important parameter for hazard assessment at active volcanoes. However, estimates of these rates depend on proper understanding of the underlying magmatic processes and magma generation. Differences in isotope ratios of O, Th and B between silicic and in contemporaneous basaltic magmas have been used to emphasize their origin by partial melting of hydrothermally altered metabasaltic crust in the rift-zones favoured by a strong geothermal gradient. An alternative model for the origin of silicic magmas in the Iceland has been proposed based on U-series results. Young mantle-derived mafic protolith is thought to be metasomatized and partially melted to form the silicic end-member. However, this model underestimates the compositional variations of the hydrothermally-altered basaltic crust. New data on U-Th disequilibria and O-isotopes in basalts and dacites from Askja volcano reveal a strong correlation between (230Th/232Th) and delta 18O. The 1875 AD dacite has the lowest Th- and O isotope ratios (0.94 and -0.24 per mille, respectively) whereas tephra of evolved basaltic composition, erupted 2 months earlier, has significantly higher values (1.03 and 2.8 per mille, respectively). Highest values are observed in the most recent basalts (erupted in 1920 and 1961) inside the Askja caldera complex and out on the associated fissure swarm (Sveinagja basalt). This correlation also holds for older magma such as an early Holocene dacites, which eruption may have been provoked by rapid glacier thinning. Silicic magmas at Askja volcano thus bear geochemical signatures that are best explained by partial melting of extensively hydrothermally altered crust and that the silicic magma source has remained constant during the Holocene at least. Once these silicic magmas are formed they appear to erupt rapidly rather than mixing and mingling with the incoming basalt heat-source that explains lack of icelandites and the bi-modal volcanism at Askja

  2. Decision Analysis Tools for Volcano Observatories

    Science.gov (United States)

    Hincks, T. H.; Aspinall, W.; Woo, G.

    2005-12-01

    Staff at volcano observatories are predominantly engaged in scientific activities related to volcano monitoring and instrumentation, data acquisition and analysis. Accordingly, the academic education and professional training of observatory staff tend to focus on these scientific functions. From time to time, however, staff may be called upon to provide decision support to government officials responsible for civil protection. Recognizing that Earth scientists may have limited technical familiarity with formal decision analysis methods, specialist software tools that assist decision support in a crisis should be welcome. A review is given of two software tools that have been under development recently. The first is for probabilistic risk assessment of human and economic loss from volcanic eruptions, and is of practical use in short and medium-term risk-informed planning of exclusion zones, post-disaster response, etc. A multiple branch event-tree architecture for the software, together with a formalism for ascribing probabilities to branches, have been developed within the context of the European Community EXPLORIS project. The second software tool utilizes the principles of the Bayesian Belief Network (BBN) for evidence-based assessment of volcanic state and probabilistic threat evaluation. This is of practical application in short-term volcano hazard forecasting and real-time crisis management, including the difficult challenge of deciding when an eruption is over. An open-source BBN library is the software foundation for this tool, which is capable of combining synoptically different strands of observational data from diverse monitoring sources. A conceptual vision is presented of the practical deployment of these decision analysis tools in a future volcano observatory environment. Summary retrospective analyses are given of previous volcanic crises to illustrate the hazard and risk insights gained from use of these tools.

  3. Long-term contraction of pyroclastic flow deposits at Augustine Volcano using InSAR

    Science.gov (United States)

    McAlpin, D. B.; Meyer, F. J.; Lu, Z.; Beget, J. E.

    2013-12-01

    Augustine Island is a small, 8x11 km island in South Central Alaska's lower Cook Inlet. It is approximately 280 km southwest of Anchorage, and occupied entirely by its namesake Augustine Volcano. The volcano's nearly symmetrical central cone reaches an altitude of 1260 m, and the surrounding island is composed almost entirely of volcanic deposits. It is the youngest and most frequently active volcano in the lower Cook Inlet, with at least seven known eruptions since the beginning of written records in 1812. Its two most recent eruptions occurred during March-August 1986, and January-March 2006 The 1986 and 2006 Augustine eruptions produced significant pyroclastic flow deposits (PFDs) on the island, both which have been well mapped by previous studies. Subsidence of material deposited by these pyroclastic flows has been measured by InSAR data, and can be attributed to at least four processes: (1) initial, granular settling; (2) thermal contraction; (3) loading of 1986 PFDs from overlying 2006 deposits; and (4) continuing subsidence of 1986 PFDs buried beneath 2006 flows. For this paper, SAR data for PFDs from Augustine Volcano were obtained from 1992 through 2005, from 2006-2007, and from 2007-2011. These time frames provided InSAR data for long-term periods after both 1986 and 2006 eruptions. From time-series analysis of these datasets, deformation rates of 1986 PFDs and 2006 PFDs were determined, and corrections applied where newer deposits were emplaced over old deposits. The combination of data sets analyzed in this study enabled, for the first time, an analysis of long and short term subsidence rates of volcanic deposits emplaced by the two eruptive episodes. The generated deformation time series provides insight into the significance and duration of the initial settling period and allows us to study the thermal regime and heat loss of the PFDs. To extract quantitative information about thermal properties and composition of the PFDs, we measured the thickness

  4. Volatile Contents in Mafic Magmas from two Aleutian volcanoes: Augustine and Makushin

    Science.gov (United States)

    Zimmer, M. M.; Plank, T.; Hauri, E. H.; Nye, C.; Faust Larsen, J.; Kelemen, P. B.

    2004-12-01

    There are several competing theories for the origin of tholeiitic (TH) vs. calc-alkaline (CA) fractionation trends in arc magmas. One relates to water (TH-dry magma, CA-wet magma), another to pressure (TH-low pressure crystallization, CA-high pressure), and a third to primary magma composition (TH-low Si/Fe#, CA-hi Si/Fe#) These theories have been difficult to test without quantitative measures of the water contents and pressures of crystallization of arc magmas. We are in the process of studying several Aleutian arc tephra suites (phenocrysts and melt inclusions) with the aim of obtaining volatile element concentrations (by SIMS), major and trace element concentrations and thermobarometric data (by EMP and laser-ICPMS). We report preliminary results on olivine-hosted melt inclusions from Augustine and Makushin volcanoes that support the role of water in calc-alkaline fractionation. Basaltic melt inclusions from Augustine, a low-K2O, calc-alkaline volcano, are hosted in Fo80-82 olivine. The inclusions yield high water contents, up to 5 wt%, and contain 60-90 ppm CO2, 3000-4500 ppm S, and 3000-6000 ppm Cl. Inclusions record vapor-saturation pressures near 2 kbar. Cl/K2O ratios in Augustine inclusions (ave. 1.9) are among the highest documented in an arc setting, and likely record a Cl- and H2O- rich fluid from the subducting plate. High water contents in Augustine primary melts may have contributed to the strong calc-alkaline trend observed at this volcano. Basaltic melt inclusions from Pakushin, a medium-K2O, tholeiitic cone on the flanks of Makushin volcano, are hosted in Fo80-86 olivine. These inclusions have low water contents (pressures (high sulfur (2000-4000 ppm) and Cl (>2000 ppm) in Pakushin melt inclusions, however, indicate that degassing was minimal. The low water contents and low vapor saturation pressures recorded in Pakushin melt inclusions are consistent with development of its tholeiitic trend, but we cannot distinguish whether the low water

  5. Geothermal Exploration of Newberry Volcano, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Waibel, Albert F. [Columbia Geoscience, Pasco, WA (United States); Frone, Zachary S. [Southern Methodist Univ., Dallas, TX (United States); Blackwell, David D. [Southern Methodist Univ., Dallas, TX (United States)

    2014-12-01

    Davenport Newberry (Davenport) has completed 8 years of exploration for geothermal energy on Newberry Volcano in central Oregon. Two deep exploration test wells were drilled by Davenport on the west flank of the volcano, one intersected a hydrothermal system; the other intersected isolated fractures with no hydrothermal interconnection. Both holes have bottom-hole temperatures near or above 315°C (600°F). Subsequent to deep test drilling an expanded exploration and evaluation program was initiated. These efforts have included reprocessing existing data, executing multiple geological, geophysical, geochemical programs, deep exploration test well drilling and shallow well drilling. The efforts over the last three years have been made possible through a DOE Innovative Exploration Technology (IET) Grant 109, designed to facilitate innovative geothermal exploration techniques. The combined results of the last 8 years have led to a better understanding of the history and complexity of Newberry Volcano and improved the design and interpretation of geophysical exploration techniques with regard to blind geothermal resources in volcanic terrain.

  6. Electrical structure of Newberry Volcano, Oregon

    Science.gov (United States)

    Fitterman, D.V.; Stanley, W.D.; Bisdorf, R.J.

    1988-01-01

    From the interpretation of magnetotelluric, transient electromagnetic, and Schlumberger resistivity soundings, the electrical structure of Newberry Volcano in central Oregon is found to consist of four units. From the surface downward, the geoelectrical units are 1) very resistive, young, unaltered volcanic rock, (2) a conductive layer of older volcanic material composed of altered tuffs, 3) a thick resistive layer thought to be in part intrusive rocks, and 4) a lower-crustal conductor. This model is similar to the regional geoelectrical structure found throughout the Cascade Range. Inside the caldera, the conductive second layer corresponds to the steep temperature gradient and alteration minerals observed in the USGS Newberry 2 test-hole. Drill hole information on the south and north flanks of the volcano (test holes GEO N-1 and GEO N-3, respectively) indicates that outside the caldera the conductor is due to alteration minerals (primarily smectite) and not high-temperature pore fluids. On the flanks of Newberry the conductor is generally deeper than inside the caldera, and it deepens with distance from the summit. A notable exception to this pattern is seen just west of the caldera rim, where the conductive zone is shallower than at other flank locations. The volcano sits atop a rise in the resistive layer, interpreted to be due to intrusive rocks. -from Authors

  7. Monitoring active volcanoes: The geochemical approach

    Directory of Open Access Journals (Sweden)

    Takeshi Ohba

    2011-06-01

    Full Text Available

    The geochemical surveillance of an active volcano aims to recognize possible signals that are related to changes in volcanic activity. Indeed, as a consequence of the magma rising inside the volcanic "plumbing system" and/or the refilling with new batches of magma, the dissolved volatiles in the magma are progressively released as a function of their relative solubilities. When approaching the surface, these fluids that are discharged during magma degassing can interact with shallow aquifers and/or can be released along the main volcano-tectonic structures. Under these conditions, the following main degassing processes represent strategic sites to be monitored.

    The main purpose of this special volume is to collect papers that cover a wide range of topics in volcanic fluid geochemistry, which include geochemical characterization and geochemical monitoring of active volcanoes using different techniques and at different sites. Moreover, part of this volume has been dedicated to the new geochemistry tools.

  8. Evidence of episodic long-lived eruptions in the Yuma, Ginsburg, Jesús Baraza and Tasyo mud volcanoes, Gulf of Cádiz

    Science.gov (United States)

    Toyos, María H.; Medialdea, Teresa; León, Ricardo; Somoza, Luis; González, Francisco Javier; Meléndez, Nieves

    2016-06-01

    High-resolution single channel and multichannel seismic reflection profiles and multibeam bathymetric and backscatter data collected during several cruises over the period 1999 to 2007 have enabled characterising not only the seabed morphology but also the subsurface structural elements of the Yuma, Ginsburg, Jesús Baraza and Tasyo mud volcanoes (MVs) in the Gulf of Cádiz at 1,050-1,250 m water depth. These MVs vary strongly in morphology and size. The data reveal elongated cone-shaped edifices, rimmed depressions, and scarps interpreted as flank failures developed by collapse, faulting, compaction and gravitational processes. MV architecture is characterised by both extrusive and intrusive complexes, comprising stacked edifices (including seabed cones and up to four buried bicones) underlain by chaotic vertical zones and downward-tapering cones suggesting feeder systems. These intrusive structures represent the upper layer of the feeder system linking the fluid mud sources with the constructional edifices. The overall architecture is interpreted to be the result of successive events of mud extrusion and outbuilding alternating with periods of dormancy. Each mud extrusion phase is connected with the development of an edifice, represented by a seabed cone or a buried bicone. In all four MVs, the stacked edifices and the intrusive complexes penetrate Late Miocene-Quaternary units and are rooted in the Gulf of Cádiz wedge emplaced during the late Tortonian. Major phases of mud extrusion and outbuilding took place since the Late Pliocene, even though in the Yuma and Jesús Baraza MVs mud volcanism started in the Late Miocene shortly after the emplacement of the Gulf of Cádiz wedge. This study shows that fluid venting in the eastern sector of the Gulf of Cádiz promoted the outbuilding of large long-lived mud volcanoes active since the Late Miocene, and which have been reactivated repeatedly until recent times.

  9. Nanoscale volcanoes: accretion of matter at ion-sculpted nanopores.

    Science.gov (United States)

    Mitsui, Toshiyuki; Stein, Derek; Kim, Young-Rok; Hoogerheide, David; Golovchenko, J A

    2006-01-27

    We demonstrate the formation of nanoscale volcano-like structures induced by ion-beam irradiation of nanoscale pores in freestanding silicon nitride membranes. Accreted matter is delivered to the volcanoes from micrometer distances along the surface. Volcano formation accompanies nanopore shrinking and depends on geometrical factors and the presence of a conducting layer on the membrane's back surface. We argue that surface electric fields play an important role in accounting for the experimental observations.

  10. CRALBP supports the mammalian retinal visual cycle and cone vision.

    Science.gov (United States)

    Xue, Yunlu; Shen, Susan Q; Jui, Jonathan; Rupp, Alan C; Byrne, Leah C; Hattar, Samer; Flannery, John G; Corbo, Joseph C; Kefalov, Vladimir J

    2015-02-01

    Mutations in the cellular retinaldehyde-binding protein (CRALBP, encoded by RLBP1) can lead to severe cone photoreceptor-mediated vision loss in patients. It is not known how CRALBP supports cone function or how altered CRALBP leads to cone dysfunction. Here, we determined that deletion of Rlbp1 in mice impairs the retinal visual cycle. Mice lacking CRALBP exhibited M-opsin mislocalization, M-cone loss, and impaired cone-driven visual behavior and light responses. Additionally, M-cone dark adaptation was largely suppressed in CRALBP-deficient animals. While rearing CRALBP-deficient mice in the dark prevented the deterioration of cone function, it did not rescue cone dark adaptation. Adeno-associated virus-mediated restoration of CRALBP expression specifically in Müller cells, but not retinal pigment epithelial (RPE) cells, rescued the retinal visual cycle and M-cone sensitivity in knockout mice. Our results identify Müller cell CRALBP as a key component of the retinal visual cycle and demonstrate that this pathway is important for maintaining normal cone-driven vision and accelerating cone dark adaptation.

  11. Use of RI-cone penetrometer in clay foundations

    International Nuclear Information System (INIS)

    Mimura, Mamoru; Shibata, Toru; Shrivastava, A.K.

    1993-01-01

    RI cone penetrometer tests are carried out at four different sites. The foundation grounds discussed here mainly consist of clayey materials. The measured results by RI cone penetrometers are shown for Kyobashi, Hachirougata, Kurihama and Kinkai Bay site. According to comparison of water content and density profiles by RI cone measurement with the conventional testing results, RI cone penetrometers are proved to be versatile tools for site investigation. Settlement assessment by RI cone penetrometer is also discussed by exemplifying the embankment at Kinkai Bay site. Elasto-vis-coplastic finite element analysis correspondingly performed strongly supports the RI cone based assessment. Repeated use of RI cone penetrometer with the advance of construction enables us to assess the consolidation process of the clay foundation. (author)

  12. Efficient inversion of volcano deformation based on finite element models : An application to Kilauea volcano, Hawaii

    Science.gov (United States)

    Charco, María; González, Pablo J.; Galán del Sastre, Pedro

    2017-04-01

    The Kilauea volcano (Hawaii, USA) is one of the most active volcanoes world-wide and therefore one of the better monitored volcanoes around the world. Its complex system provides a unique opportunity to investigate the dynamics of magma transport and supply. Geodetic techniques, as Interferometric Synthetic Aperture Radar (InSAR) are being extensively used to monitor ground deformation at volcanic areas. The quantitative interpretation of such surface ground deformation measurements using geodetic data requires both, physical modelling to simulate the observed signals and inversion approaches to estimate the magmatic source parameters. Here, we use synthetic aperture radar data from Sentinel-1 radar interferometry satellite mission to image volcano deformation sources during the inflation along Kilauea's Southwest Rift Zone in April-May 2015. We propose a Finite Element Model (FEM) for the calculation of Green functions in a mechanically heterogeneous domain. The key aspect of the methodology lies in applying the reciprocity relationship of the Green functions between the station and the source for efficient numerical inversions. The search for the best-fitting magmatic (point) source(s) is generally conducted for an array of 3-D locations extending below a predefined volume region. However, our approach allows to reduce the total number of Green functions to the number of the observation points by using the, above mentioned, reciprocity relationship. This new methodology is able to accurately represent magmatic processes using physical models capable of simulating volcano deformation in non-uniform material properties distribution domains, which eventually will lead to better description of the status of the volcano.

  13. The critical role of volcano monitoring in risk reduction

    Directory of Open Access Journals (Sweden)

    R. I. Tilling

    2008-01-01

    Full Text Available Data from volcano-monitoring studies constitute the only scientifically valid basis for short-term forecasts of a future eruption, or of possible changes during an ongoing eruption. Thus, in any effective hazards-mitigation program, a basic strategy in reducing volcano risk is the initiation or augmentation of volcano monitoring at historically active volcanoes and also at geologically young, but presently dormant, volcanoes with potential for reactivation. Beginning with the 1980s, substantial progress in volcano-monitoring techniques and networks – ground-based as well space-based – has been achieved. Although some geochemical monitoring techniques (e.g., remote measurement of volcanic gas emissions are being increasingly applied and show considerable promise, seismic and geodetic methods to date remain the techniques of choice and are the most widely used. Availability of comprehensive volcano-monitoring data was a decisive factor in the successful scientific and governmental responses to the reawakening of Mount St. elens (Washington, USA in 1980 and, more recently, to the powerful explosive eruptions at Mount Pinatubo (Luzon, Philippines in 1991. However, even with the ever-improving state-of-the-art in volcano monitoring and predictive capability, the Mount St. Helens and Pinatubo case histories unfortunately still represent the exceptions, rather than the rule, in successfully forecasting the most likely outcome of volcano unrest.

  14. Volcano-Monitoring Instrumentation in the United States, 2008

    Science.gov (United States)

    Guffanti, Marianne; Diefenbach, Angela K.; Ewert, John W.; Ramsey, David W.; Cervelli, Peter F.; Schilling, Steven P.

    2010-01-01

    The United States is one of the most volcanically active countries in the world. According to the global volcanism database of the Smithsonian Institution, the United States (including its Commonwealth of the Northern Mariana Islands) is home to about 170 volcanoes that are in an eruptive phase, have erupted in historical time, or have not erupted recently but are young enough (eruptions within the past 10,000 years) to be capable of reawakening. From 1980 through 2008, 30 of these volcanoes erupted, several repeatedly. Volcano monitoring in the United States is carried out by the U.S. Geological Survey (USGS) Volcano Hazards Program, which operates a system of five volcano observatories-Alaska Volcano Observatory (AVO), Cascades Volcano Observatory (CVO), Hawaiian Volcano Observatory (HVO), Long Valley Observatory (LVO), and Yellowstone Volcano Observatory (YVO). The observatories issue public alerts about conditions and hazards at U.S. volcanoes in support of the USGS mandate under P.L. 93-288 (Stafford Act) to provide timely warnings of potential volcanic disasters to the affected populace and civil authorities. To make efficient use of the Nation's scientific resources, the volcano observatories operate in partnership with universities and other governmental agencies through various formal agreements. The Consortium of U.S. Volcano Observatories (CUSVO) was established in 2001 to promote scientific cooperation among the Federal, academic, and State agencies involved in observatory operations. Other groups also contribute to volcano monitoring by sponsoring long-term installation of geophysical instruments at some volcanoes for specific research projects. This report describes a database of information about permanently installed ground-based instruments used by the U.S. volcano observatories to monitor volcanic activity (unrest and eruptions). The purposes of this Volcano-Monitoring Instrumentation Database (VMID) are to (1) document the Nation's existing

  15. Volcanic sulfur dioxide index and volcanic explosivity index inferred from eruptive volume of volcanoes in Jeju Island, Korea: application to volcanic hazard mitigation

    Science.gov (United States)

    Ko, Bokyun; Yun, Sung-Hyo

    2016-04-01

    Jeju Island located in the southwestern part of Korea Peninsula is a volcanic island composed of lavaflows, pyroclasts, and around 450 monogenetic volcanoes. The volcanic activity of the island commenced with phreatomagmatic eruptions under subaqueous condition ca. 1.8-2.0 Ma and lasted until ca. 1,000 year BP. For evaluating volcanic activity of the most recently erupted volcanoes with reported age, volcanic explosivity index (VEI) and volcanic sulfur dioxide index (VSI) of three volcanoes (Ilchulbong tuff cone, Songaksan tuff ring, and Biyangdo scoria cone) are inferred from their eruptive volumes. The quantity of eruptive materials such as tuff, lavaflow, scoria, and so on, is calculated using a model developed in Auckland Volcanic Field which has similar volcanic setting to the island. The eruptive volumes of them are 11,911,534 m3, 24,987,557 m3, and 9,652,025 m3, which correspond to VEI of 3, 3, and 2, respectively. According to the correlation between VEI and VSI, the average quantity of SO2 emission during an eruption with VEI of 3 is 2-8 × 103 kiloton considering that the island was formed under intraplate tectonic setting. Jeju Island was regarded as an extinct volcano, however, several studies have recently reported some volcanic eruption ages within 10,000 year BP owing to the development in age dating technique. Thus, the island is a dormant volcano potentially implying high probability to erupt again in the future. The volcanoes might have explosive eruptions (vulcanian to plinian) with the possibility that SO2 emitted by the eruption reaches stratosphere causing climate change due to backscattering incoming solar radiation, increase in cloud reflectivity, etc. Consequently, recommencement of volcanic eruption in the island is able to result in serious volcanic hazard and this study provides fundamental and important data for volcanic hazard mitigation of East Asia as well as the island. ACKNOWLEDGMENTS: This research was supported by a grant [MPSS

  16. Overview for geologic field-trip guides to Mount Mazama, Crater Lake Caldera, and Newberry Volcano, Oregon

    Science.gov (United States)

    Bacon, Charles R.; Donnelly-Nolan, Julie M.; Jensen, Robert A.; Wright, Heather M.

    2017-08-16

    These field-trip guides were written for the occasion of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) quadrennial scientific assembly in Portland, Oregon, in August 2017. The guide to Mount Mazama and Crater Lake caldera is an updated and expanded version of the guide (Bacon, 1989) for part of an earlier IAVCEI trip to the southern Cascade Range. The guide to Newberry Volcano describes the stops included in the 2017 field trip. Crater Lake and Newberry are the two best-preserved and most recent calderas in the Cascades Volcanic Arc. Although located in different settings in the arc, with Crater Lake on the arc axis and Newberry in the rear-arc, both volcanoes are located at the intersection of the arc and the northwest corner region of the extensional Basin and Range Province.

  17. Data assimilation strategies for volcano geodesy

    Science.gov (United States)

    Zhan, Yan; Gregg, Patricia M.

    2017-09-01

    Ground deformation observed using near-real time geodetic methods, such as InSAR and GPS, can provide critical information about the evolution of a magma chamber prior to volcanic eruption. Rapid advancement in numerical modeling capabilities has resulted in a number of finite element models targeted at better understanding the connection between surface uplift associated with magma chamber pressurization and the potential for volcanic eruption. Robust model-data fusion techniques are necessary to take full advantage of the numerical models and the volcano monitoring observations currently available. In this study, we develop a 3D data assimilation framework using the Ensemble Kalman Filter (EnKF) approach in order to combine geodetic observations of surface deformation with geodynamic models to investigate volcanic unrest. The EnKF sequential assimilation method utilizes disparate data sets as they become available to update geodynamic models of magma reservoir evolution. While the EnKF has been widely applied in hydrologic and climate modeling, the adaptation for volcano monitoring is in its initial stages. As such, our investigation focuses on conducting a series of sensitivity tests to optimize the EnKF for volcano applications and on developing specific strategies for assimilation of geodetic data. Our numerical experiments illustrate that the EnKF is able to adapt well to the spatial limitations posed by GPS data and the temporal limitations of InSAR, and that specific strategies can be adopted to enhance EnKF performance to improve model forecasts. Specifically, our numerical experiments indicate that: (1) incorporating additional iterations of the EnKF analysis step is more efficient than increasing the number of ensemble members; (2) the accuracy of the EnKF results are not affected by initial parameter assumptions; (3) GPS observations near the center of uplift improve the quality of model forecasts; (4) occasionally shifting continuous GPS stations to

  18. Holocene tephrostratigraphy of southern Chiloé Continental (Andean southern volcanic zone; ~43°S), Chile

    Science.gov (United States)

    Lachowycz, S.; Smith, V. C.; Pyle, D. M.; Mather, T. A.

    2012-12-01

    The eruptive history of the volcanoes in the southern part of the Andean Southern Volcanic Zone (42.5-45°S) is very poorly constrained: only several late Quaternary eruptions have been identified, mostly from study of sparse roadcuts [1]. In this study, we further constrain the Holocene explosive eruption history around 43°S by identifying and analysing tephra layers preserved in a ~3.25m long peat core from Cuesta Moraga [2], ~35km east of Yanteles volcano. Cryptotephra was extracted following the method of [3], in addition to macrotephra; owing to the vicinity of the sampling site to the tephra sources, cryptotephra was found throughout the core stratigraphy, but was sufficiently variable in concentration that discrete layers were identifiable and attributed to specific eruptions. Chemical analysis of the glass by electron microprobe shows that the tephra layers originate from a number of volcanoes in the region. This new tephrostratigraphy improves our knowledge of the important history of explosive volcanism in this area, potentially tying the tephrostratigraphies of surrounding areas (e.g., [4]) and allowing improved evaluation of regional volcanic risk. [1] Naranjo, J.A.., and C. R. Stern, 2004. Holocene tephrochronology of the southernmost part (42°30'-45°S) of the Andean Southern Volcanic Zone. Revista geológica de Chile, 31, pp. 225-240. [2] Heusser, C.J., et al., 1992. Paleoecology of late Quaterary deposits in Chiloé Continental, Chile. Revista Chilena de Historia Natural, 65, pp. 235-245. [3] Blockley, S.P.E., et al., 2005. A new and less destructive laboratory procedure for the physical separation of distal glass tephra shards from sediments. Quaternary Science Reviews, 24, pp. 1952-1960. [4] Watt, S.F.L., et al., 2011. Holocene tephrochronology of the Hualaihue region (Andean southern volcanic zone, ~42°S), southern Chile. Quaternary International, 246, pp. 324-343.

  19. Emissions of Fe(II) and its kinetic of oxidation at Tagoro submarine volcano, El Hierro (Canary Islands)

    Science.gov (United States)

    González-Dávila, M.; Santana-González, C.; Santana-Casiano, J. M.

    2017-12-01

    The eruptive process that took place in October 2011 in the submarine volcano Tagoro off the Island of El Hierro (Canary Island) and the subsequent degasification stage, five months later, have increased the concentration of TdFe(II) (Total dissolved iron(II)) in the waters nearest to the volcanic edifice. In order to detect any variation in concentrations of TdFe(II) due to hydrothermal emissions, three cruises were carried out two years after the eruptive process in October 2013, March 2014, May 2015, March 2016 and November 2016. The results from these cruises confirmed important positive anomalies in TdFe(II), which coincided with negatives anomalies in pHF,is (pH in free scale, at in situ conditions) located in the proximity of the main cone. Maximum values in TdFe(II) both at the surface, associated to chlorophyll a maximum, and at the sea bottom, were also observed, showing the important influence of organic complexation and particle re-suspension processes. Temporal variability studies were carried out over periods ranging from hours to days in the stations located over the main and two secondary cones in the volcanic edifice with positive anomalies in TdFe(II) concentrations and negative anomalies in pHF,is values. Observations showed an important variability in both pHF,is and TdFe(II) concentrations, which indicated the volcanic area was affected by a degasification process that remained in the volcano after the eruptive phase had ceased. Fe(II) oxidation kinetic studies were also undertaken in order to analyze the effects of the seawater properties in the proximities of the volcano on the oxidation rate constants and t1/2 (half-life time) of ferrous iron. The increased TdFe(II) concentrations and the low associated pHF,is values acted as an important fertilization event in the seawater around the Tagoro volcano at the Island of El Hierro providing optimal conditions for the regeneration of the area.

  20. Structure and evolution of an active resurgent dome evidenced by geophysical investigations: The Yenkahe dome-Yasur volcano system (Siwi caldera, Vanuatu)

    Science.gov (United States)

    Brothelande, E.; Lénat, J.-F.; Chaput, M.; Gailler, L.; Finizola, A.; Dumont, S.; Peltier, A.; Bachèlery, P.; Barde-Cabusson, S.; Byrdina, S.; Menny, P.; Colonge, J.; Douillet, G. A.; Letort, J.; Letourneur, L.; Merle, O.; Di Gangi, F.; Nakedau, D.; Garaebiti, E.

    2016-08-01

    In this contribution, we focus on one of the most active resurgences on Earth, that of the Yenkahe dome in the Siwi caldera (Tanna Island, Vanuatu), which is associated with the persistently active Yasur volcano. Gravity and magnetic surveys have been carried out over the past few years in the area, as well as electrical methods including electrical resistivity tomography (ERT), time domain electro-magnetics (TDEM) and self-potential (SP). These investigations were completed by thermometry, CO2 soil gas measurements, field observations and sampling. This multi-method approach allows geological structures within the caldera to be identified, as well as associated hydrothermal features. The global structure of the caldera is deduced from gravity data, which shows the caldera rim as a high density structure. Large lava fields, emplaced before and after the onset of resurgence, are evidenced by combined gravity, magnetic and resistivity signals. In the middle of the caldera, the Yenkahe dome apparently results from a combination of volcanic and tectonic events, showing that lava extrusion and resurgence have been operating simultaneously or alternately during the Siwi caldera post-collapse history. There is a clear distinction between the western and eastern parts of the dome. The western part is older and records the growth of an initial volcanic cone and the formation of a small caldera. This small caldera (paleo-Yasur caldera), partially filled with lava flows, is the present-day focus of volcanic activity and associated fluid circulation and alteration. The eastern part of the dome is presumably younger, and is characterized by intense, extensive hydrothermal alteration and activity. Its northern part is covered by lava flow piles and exhibits a shallow hydrothermal zone in ERT. The southern part has hydrothermal alteration and activity extending at least down to the base of the resurgent dome. This part of the dome is built up of low cohesion rock and is thus

  1. On Krasnoselskii's Cone Fixed Point Theorem

    Directory of Open Access Journals (Sweden)

    Man Kam Kwong

    2008-04-01

    Full Text Available In recent years, the Krasnoselskii fixed point theorem for cone maps and its many generalizations have been successfully applied to establish the existence of multiple solutions in the study of boundary value problems of various types. In the first part of this paper, we revisit the Krasnoselskii theorem, in a more topological perspective, and show that it can be deduced in an elementary way from the classical Brouwer-Schauder theorem. This viewpoint also leads to a topology-theoretic generalization of the theorem. In the second part of the paper, we extend the cone theorem in a different direction using the notion of retraction and show that a stronger form of the often cited Leggett-Williams theorem is a special case of this extension.

  2. Basic principle of cone beam computed tomography

    International Nuclear Information System (INIS)

    Choi, Yong Suk; Kim, Gyu Tae; Hwang, Eui Hwan

    2006-01-01

    The use of computed tomography for dental procedures has increased recently. Cone beam computed tomography(CBCT) systems have been designed for imaging hard tissues of the dentomaxillofacial region. CBCT is capable of providing high resolution in images of high diagnostic quality. This technology allows for 3-dimensional representation of the dentomaxillofacial skeleton with minimal distortion, but at lower equipment cost, simpler image acquisition and lower patient dose. Because this technology produces images with isotropic sub-millimeter spatial resolution, it is ideally suited for dedicated dentomaxillofacial imaging. In this paper, we provide a brief overview of cone beam scanning technology and compare it with the fan beam scanning used in conventional CT and the basic principles of currently available CBCT systems

  3. Hadronic wavefunctions in light-cone quantization

    International Nuclear Information System (INIS)

    Hyer, T.

    1994-05-01

    The analysis of light-cone wavefunctions seems the most promising theoretical approach to a detailed understanding of the structure of relativistic bound states, particularly hadrons. However, there are numerous complications in this approach. Most importantly, the light-cone approach sacrifices manifest rotational invariance in exchange for the elimination of negative-energy states. The requirement of rotational invariance of the full theory places important constraints on proposed light-cone wavefunctions, whether they are modelled or extracted from some numerical procedure. A formulation of the consequences of the hidden rotational symmetry has been sought for some time; it is presented in Chapter 2. In lattice gauge theory or heavy-quark effective theory, much of the focus is on the extraction of numerical values of operators which are related to the hadronic wavefunction. These operators are to some extent interdependent, with relations induced by fundamental constraints on the underlying wavefunction. The consequences of the requirement of unitarity are explored in Chapter 3, and are found to have startling phenomenological relevance. To test model light-cone wavefunctions, experimental predictions must be made. The reliability of perturbative QCD as a tool for making such predictions has been questioned. In Chapter 4, the author presents a computation of the rates for nucleon-antinucleon annihilation, improving the reliability of the perturbative computation by taking into account the Sudakov suppression of exclusive processes at large transverse impact parameter. In Chapter 5, he develops the analysis of semiexclusive production. This work focuses on processes in which a single isolated meson is produced perturbatively and recoils against a wide hadronizing system. At energies above about 10 GeV, semiexclusive processes are shown to be the most sensitive experimental probes of hadronic structure

  4. Development of a Motorized Digital Cone Penetrometer

    OpenAIRE

    Chung, Sun–Ok; Cho, Jin–Woong; Yamakawa, Takeo; 山川, 武夫

    2012-01-01

    Quantification and management of variability in soil strength, or soil compaction, is an important issue in countries such as Korea and Japan where typical field sizes are small, but tractor mounted on–the–go sensors that have been developed in USA and European countries are not practical. Therefore, hand–operated digital penetrometers have been widely used in Asian countries, but maintaining standard penetration rate and angle would be difficult. In this study, a motorized digital cone penet...

  5. Variability of silver fir (Abies alba Mill. cones – variability of cone parameters

    Directory of Open Access Journals (Sweden)

    Aniszewska Monika

    2016-09-01

    Full Text Available This study aimed at determining the shape of closed silver fir cones from the Jawor Forest District (Wroclaw, based purely on measurements of their length and thickness. Using these two parameters, the most accurate estimations were achieved with a fourth-degree polynomial fitting function. We then calculated the cones’ surface area and volume in three different ways: 1 Using the fourth-degree polynomial shape estimation, 2 Introducing indicators of compliance (k1, k2, k3 to calculate the volume and then comparing it to its actual value as measured in a pitcher filled with water, 3 Comparing the surface area of the cones as calculated with the polynomial function to the value obtained from ratios of indicators of compliance (ratios k4 and k5. We found that the calculated surface area and volume were substantially higher than the corresponding measured values. Test values of cone volume and surface area as calculated by our model were 8% and 5% lower, respectively, compared to direct measurements. We also determined the fir cones apparent density to be 0.8 g·cm-3on average. The gathered data on cone surface area, volume and bulk density is a valuable tool for optimizing the thermal peeling process in mill cabinets to acquire high quality seeds.

  6. The NLO jet vertex in the small-cone approximation for kt and cone algorithms

    International Nuclear Information System (INIS)

    Colferai, D.; Niccoli, A.

    2015-01-01

    We determine the jet vertex for Mueller-Navelet jets and forward jets in the small-cone approximation for two particular choices of jet algoritms: the kt algorithm and the cone algorithm. These choices are motivated by the extensive use of such algorithms in the phenomenology of jets. The differences with the original calculations of the small-cone jet vertex by Ivanov and Papa, which is found to be equivalent to a formerly algorithm proposed by Furman, are shown at both analytic and numerical level, and turn out to be sizeable. A detailed numerical study of the error introduced by the small-cone approximation is also presented, for various observables of phenomenological interest. For values of the jet “radius” R=0.5, the use of the small-cone approximation amounts to an error of about 5% at the level of cross section, while it reduces to less than 2% for ratios of distributions such as those involved in the measure of the azimuthal decorrelation of dijets.

  7. The NLO jet vertex in the small-cone approximation for kt and cone algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Colferai, D.; Niccoli, A. [Dipartimento di Fisica e Astronomia, Università di Firenze and INFN, Sezione di Firenze, 50019 Sesto Fiorentino (Italy)

    2015-04-15

    We determine the jet vertex for Mueller-Navelet jets and forward jets in the small-cone approximation for two particular choices of jet algoritms: the kt algorithm and the cone algorithm. These choices are motivated by the extensive use of such algorithms in the phenomenology of jets. The differences with the original calculations of the small-cone jet vertex by Ivanov and Papa, which is found to be equivalent to a formerly algorithm proposed by Furman, are shown at both analytic and numerical level, and turn out to be sizeable. A detailed numerical study of the error introduced by the small-cone approximation is also presented, for various observables of phenomenological interest. For values of the jet “radius” R=0.5, the use of the small-cone approximation amounts to an error of about 5% at the level of cross section, while it reduces to less than 2% for ratios of distributions such as those involved in the measure of the azimuthal decorrelation of dijets.

  8. Tephrostratigraphy of Changbaishan volcano, northeast China, since the mid-Holocene

    Science.gov (United States)

    Sun, Chunqing; Liu, Jiaqi; You, Haitao; Nemeth, Karoly

    2017-12-01

    A detailed tephrostratigraphy of an active volcano is essential for evaluating its eruptive history, forecasting future eruptions and correlation with distal tephra records. Changbaishan volcano is known for its Millennium eruption (ME, AD 940s; VEI 7) and the ME tephra has been detected in Greenland ice cores ∼9000 km from the vent. However, the pre-Millennium (pre-ME) and post-Millennium (post-ME) eruptions are still poorly characterized. In this study, we present a detailed late Holocene eruptive sequence of Changbaishan volcano based on single glass shard compositions from tephra samples collected from around the caldera rim and flanks. Tephra ages are constrained by optically stimulated luminescence (OSL) and AMS 14C dates. Tephra from the mid-Holocene pre-ME eruption can be divided into two pyroclastic fall subunits, and it cannot be correlated with any known Changbaishan-sourced tephra recorded in the Japan Sea based on major element composition of glass shards, such as the B-J (Baegdusan-Japan Basin) and B-V (Baegdusan-Vladivostok-oki) tephras. ME pyroclastic fall deposits from the caldera rims and volcanic flanks can be correlated to the juvenile pumice lapilli or blocks within the pyroclastic density current (PDC) deposits deposited in the valleys around the volcano based on glass shard compositions. Our results indicate that the glass shard compositions of proximal ME tephra are more varied than previously thought and can be correlated with distal ME tephra. In addition, widely-dispersed mafic scoria was ejected by the ME Plinian column and deposited on the western and southern summits and the eastern flank of the volcano. Data for glass from post-ME eruptions, such as the historically-documented AD 1403, AD 1668 and AD 1702 eruptions, are reported here for the first time. Except for the ME, other Holocene eruptions, including pre-ME and post-ME eruptions, had the potential to form widely-distributed tephra layers around northeast Asia, and our dataset

  9. Fumarole/plume and diffuse CO2 emission from Sierra Negra volcano, Galapagos archipelago

    Science.gov (United States)

    Padron, E.; Hernandez Perez, P. A.; Perez, N.; Theofilos, T.; Melian, G.; Barrancos, J.; Virgil, G.; Sumino, H.; Notsu, K.

    2009-12-01

    The active shield-volcano Sierra Negra is part of the Galapagos hotspot. Sierra Negra is the largest shield volcano of Isabela Island, hosting a 10 km diameter caldera. Ten historic eruptions have occurred and some involved a frequently visited east caldera rim fissure zone called Volcan Chico. The last volcanic event occurred in October 2005 and lasted for about a week, covering approximately twenty percent of the eastern caldera floor. Sierra Negra volcano has experienced some significant changes in the chemical composition of its volcanic gas discharges after the 2005 eruption. This volcanic event produced an important SO2 degassing that depleted the magmatic content of this gas. Not significant changes in the MORB and plume-type helium contribution were observed after the 2005 eruption, with a 65.5 % of MORB and 35.5 % of plume contribution. In 2006 a visible and diffuse gas emission study was performed at the summit of Sierra Negra volcano, Galapagos, to evaluate degassing rate from this volcanic system. Diffuse degassing at Sierra Negra was mainly confined in three different DDS: Volcan Chico, the southern inner margin of the caldera, and Mina Azufral. These areas showed also visible degassing, which indicates highly fractured areas where volcano-hydrothermal fluids migrate towards surface. A total fumarole/plume SO2 emission of 11 ± 2 td-1 was calculated by mini-DOAS ground-based measurements at Mina Azufral fumarolic area. Molar ratios of major volcanic gas components were also measured in-situ at Mina Azufral with a portable multisensor. The results showed H2S/SO2, CO2/SO2 and H2O/SO2 molar ratios of 0.41, 52.2 and 867.9, respectively. Multiplying the observed SO2 emission rate times the observed (gas)i/SO2 mass ratio we have estimated other volatiles emission rates. The results showed that H2O, CO2 and H2S emission rates from Sierra Negra are 562, 394, and 2.4 t d-1, respectively. The estimated total output of diffuse CO2 emission from the summit of

  10. Linking geochemical processes in mud volcanoes with arsenic mobilization driven by organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chia-Chuan; Kar, Sandeep [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China); Jean, Jiin-Shuh, E-mail: jiinshuh@mail.ncku.edu.tw [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China); Wang, Chung-Ho [Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan (China); Lee, Yao-Chang [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Sracek, Ondra [OPV s.r.o. (Groundwater Protection Ltd.), Bělohorská 31, 169 00 Praha 6 (Czech Republic); Department of Geology, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc (Czech Republic); Li, Zhaohui [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China); Department of Geosciences, University of Wisconsin – Parkside, Kenosha, WI 53144 (United States); Bundschuh, Jochen [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China); Faculty of Engineering and Surveying and National Centre for Engineering in Agriculture, The University of Southern Queensland, Toowoomba (Australia); Yang, Huai-Jen [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China); Chen, Chien-Yen [Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan (China)

    2013-11-15

    Highlights: ► Study represents geochemical characteristics and their spatial variability among six mud volcanoes of southern Taiwan. ► Anoxic mud volcanic fluids containing high NaCl imply connate water as the possible source. ► δ{sup 18}O-rich fluids is associated with silicate and carbonate mineral released through water–rock interaction. ► High As content in mud and its sequential extraction showed mostly adsorbed As on organic and sulphidic phases. ► Organic matter specially humic acid showed redox dependence and it may play an important role in binding and mobility of arsenic. -- Abstract: The present study deals with geochemical characterization of mud fluids and sediments collected from Kunshuiping (KSP), Liyushan (LYS), Wushanting (WST), Sinyangnyuhu (SYNH), Hsiaokunshui (HKS) and Yenshuikeng (YSK) mud volcanoes in southwestern Taiwan. Chemical constituents (cations, anions, trace elements, organic carbon, humic acid, and stable isotopes) in both fluids and mud were analyzed to investigate the geochemical processes and spatial variability among the mud volcanoes under consideration. Analytical results suggested that the anoxic mud volcanic fluids are highly saline, implying connate water as the probable source. The isotopic signature indicated that δ{sup 18}O-rich fluids may be associated with silicate and carbonate mineral released through water–rock interaction, along with dehydration of clay minerals. Considerable amounts of arsenic in mud irrespective of fluid composition suggested possible release through biogeochemical processes in the subsurface environment. Sequential extraction of As from the mud indicated that As was mostly present in organic and sulphidic phases, and adsorbed on amorphous Mn oxyhydroxides. Volcanic mud and fluids are rich in organic matter (in terms of organic carbon), and the presence of humic acid in mud has implications for the binding of arsenic. Functional groups of humic acid also showed variable sources of

  11. Laboratory Modelling of Volcano Plumbing Systems: a review

    Science.gov (United States)

    Galland, Olivier; Holohan, Eoghan P.; van Wyk de Vries, Benjamin; Burchardt, Steffi

    2015-04-01

    Earth scientists have, since the XIX century, tried to replicate or model geological processes in controlled laboratory experiments. In particular, laboratory modelling has been used study the development of volcanic plumbing systems, which sets the stage for volcanic eruptions. Volcanic plumbing systems involve complex processes that act at length scales of microns to thousands of kilometres and at time scales from milliseconds to billions of years, and laboratory models appear very suitable to address them. This contribution reviews laboratory models dedicated to study the dynamics of volcano plumbing systems (Galland et al., Accepted). The foundation of laboratory models is the choice of relevant model materials, both for rock and magma. We outline a broad range of suitable model materials used in the literature. These materials exhibit very diverse rheological behaviours, so their careful choice is a crucial first step for the proper experiment design. The second step is model scaling, which successively calls upon: (1) the principle of dimensional analysis, and (2) the principle of similarity. The dimensional analysis aims to identify the dimensionless physical parameters that govern the underlying processes. The principle of similarity states that "a laboratory model is equivalent to his geological analogue if the dimensionless parameters identified in the dimensional analysis are identical, even if the values of the governing dimensional parameters differ greatly" (Barenblatt, 2003). The application of these two steps ensures a solid understanding and geological relevance of the laboratory models. In addition, this procedure shows that laboratory models are not designed to exactly mimic a given geological system, but to understand underlying generic processes, either individually or in combination, and to identify or demonstrate physical laws that govern these processes. From this perspective, we review the numerous applications of laboratory models to

  12. Preliminary Volcano-Hazard Assessment for Gareloi Volcano, Gareloi Island, Alaska

    Science.gov (United States)

    Coombs, Michelle L.; McGimsey, Robert G.; Browne, Brandon L.

    2008-01-01

    Gareloi Volcano (178.794 degrees W and 51.790 degrees N) is located on Gareloi Island in the Delarof Islands group of the Aleutian Islands, about 2,000 kilometers west-southwest of Anchorage and about 150 kilometers west of Adak, the westernmost community in Alaska. This small (about 8x10 kilometer) volcano has been one of the most active in the Aleutians since its discovery by the Bering expedition in the 1740s, though because of its remote location, observations have been scant and many smaller eruptions may have gone unrecorded. Eruptions of Gareloi commonly produce ash clouds and lava flows. Scars on the flanks of the volcano and debris-avalanche deposits on the adjacent seafloor indicate that the volcano has produced large landslides in the past, possibly causing tsunamis. Such events are infrequent, occurring at most every few thousand years. The primary hazard from Gareloi is airborne clouds of ash that could affect aircraft. In this report, we summarize and describe the major volcanic hazards associated with Gareloi.

  13. Volcano art at Hawai`i Volcanoes National Park—A science perspective

    Science.gov (United States)

    Gaddis, Ben; Kauahikaua, James P.

    2018-03-26

    Long before landscape photography became common, artists sketched and painted scenes of faraway places for the masses. Throughout the 19th century, scientific expeditions to Hawaiʻi routinely employed artists to depict images for the people back home who had funded the exploration and for those with an interest in the newly discovered lands. In Hawaiʻi, artists portrayed the broad variety of people, plant and animal life, and landscapes, but a feature of singular interest was the volcanoes. Painters of early Hawaiian volcano landscapes created art that formed a cohesive body of work known as the “Volcano School” (Forbes, 1992). Jules Tavernier, Charles Furneaux, and D. Howard Hitchcock were probably the best known artists of this school, and their paintings can be found in galleries around the world. Their dramatic paintings were recognized as fine art but were also strong advertisements for tourists to visit Hawaiʻi. Many of these masterpieces are preserved in the Museum and Archive Collection of Hawaiʻi Volcanoes National Park, and in this report we have taken the opportunity to match the artwork with the approximate date and volcanological context of the scene.

  14. Evolution of deep crustal magma structures beneath Mount Baekdu volcano (MBV) intraplate volcano in northeast Asia

    Science.gov (United States)

    Rhie, J.; Kim, S.; Tkalcic, H.; Baag, S. Y.

    2017-12-01

    Heterogeneous features of magmatic structures beneath intraplate volcanoes are attributed to interactions between the ascending magma and lithospheric structures. Here, we investigate the evolution of crustal magmatic stuructures beneath Mount Baekdu volcano (MBV), which is one of the largest continental intraplate volcanoes in northeast Asia. The result of our seismic imaging shows that the deeper Moho depth ( 40 km) and relatively higher shear wave velocities (>3.8 km/s) at middle-to-lower crustal depths beneath the volcano. In addition, the pattern at the bottom of our model shows that the lithosphere beneath the MBV is shallower (interpret the observations as a compositional double layering of mafic underplating and a overlying cooled felsic structure due to fractional crystallization of asthenosphere origin magma. To achieve enhanced vertical and horizontal model coverage, we apply two approaches in this work, including (1) a grid-search based phase velocity measurement using real-coherency of ambient noise data and (2) a transdimensional Bayesian joint inversion using multiple ambient noise dispersion data.

  15. Understanding cyclic seismicity and ground deformation patterns at volcanoes: Intriguing lessons from Tungurahua volcano, Ecuador

    Science.gov (United States)

    Neuberg, Jürgen W.; Collinson, Amy S. D.; Mothes, Patricia A.; Ruiz, Mario C.; Aguaiza, Santiago

    2018-01-01

    Cyclic seismicity and ground deformation patterns are observed on many volcanoes worldwide where seismic swarms and the tilt of the volcanic flanks provide sensitive tools to assess the state of volcanic activity. Ground deformation at active volcanoes is often interpreted as pressure changes in a magmatic reservoir, and tilt is simply translated accordingly into inflation and deflation of such a reservoir. Tilt data recorded by an instrument in the summit area of Tungurahua volcano in Ecuador, however, show an intriguing and unexpected behaviour on several occasions: prior to a Vulcanian explosion when a pressurisation of the system would be expected, the tilt signal declines significantly, hence indicating depressurisation. At the same time, seismicity increases drastically. Envisaging that such a pattern could carry the potential to forecast Vulcanian explosions on Tungurahua, we use numerical modelling and reproduce the observed tilt patterns in both space and time. We demonstrate that the tilt signal can be more easily explained as caused by shear stress due to viscous flow resistance, rather than by pressurisation of the magmatic plumbing system. In general, our numerical models prove that if magma shear viscosity and ascent rate are high enough, the resulting shear stress is sufficient to generate a tilt signal as observed on Tungurahua. Furthermore, we address the interdependence of tilt and seismicity through shear stress partitioning and suggest that a joint interpretation of tilt and seismicity can shed new light on the eruption potential of silicic volcanoes.

  16. Volcano monitoring with an infrared camera: first insights from Villarrica Volcano

    Science.gov (United States)

    Rosas Sotomayor, Florencia; Amigo Ramos, Alvaro; Velasquez Vargas, Gabriela; Medina, Roxana; Thomas, Helen; Prata, Fred; Geoffroy, Carolina

    2015-04-01

    This contribution focuses on the first trials of the, almost 24/7 monitoring of Villarrica volcano with an infrared camera. Results must be compared with other SO2 remote sensing instruments such as DOAS and UV-camera, for the ''day'' measurements. Infrared remote sensing of volcanic emissions is a fast and safe method to obtain gas abundances in volcanic plumes, in particular when the access to the vent is difficult, during volcanic crisis and at night time. In recent years, a ground-based infrared camera (Nicair) has been developed by Nicarnica Aviation, which quantifies SO2 and ash on volcanic plumes, based on the infrared radiance at specific wavelengths through the application of filters. Three Nicair1 (first model) have been acquired by the Geological Survey of Chile in order to study degassing of active volcanoes. Several trials with the instruments have been performed in northern Chilean volcanoes, and have proven that the intervals of retrieved SO2 concentration and fluxes are as expected. Measurements were also performed at Villarrica volcano, and a location to install a ''fixed'' camera, at 8km from the crater, was discovered here. It is a coffee house with electrical power, wifi network, polite and committed owners and a full view of the volcano summit. The first measurements are being made and processed in order to have full day and week of SO2 emissions, analyze data transfer and storage, improve the remote control of the instrument and notebook in case of breakdown, web-cam/GoPro support, and the goal of the project: which is to implement a fixed station to monitor and study the Villarrica volcano with a Nicair1 integrating and comparing these results with other remote sensing instruments. This works also looks upon the strengthen of bonds with the community by developing teaching material and giving talks to communicate volcanic hazards and other geoscience topics to the people who live "just around the corner" from one of the most active volcanoes

  17. Imaging magma plumbing beneath Askja volcano, Iceland

    Science.gov (United States)

    Greenfield, Tim; White, Robert S.

    2015-04-01

    Volcanoes during repose periods are not commonly monitored by dense instrumentation networks and so activity during periods of unrest is difficult to put in context. We have operated a dense seismic network of 3-component, broadband instruments around Askja, a large central volcano in the Northern Volcanic Zone, Iceland, since 2006. Askja last erupted in 1961, with a relatively small basaltic lava flow. Since 1975 the central caldera has been subsiding and there has been no indication of volcanic activity. Despite this, Askja has been one of the more seismically active volcanoes in Iceland. The majority of these events are due to an extensive geothermal area within the caldera and tectonically induced earthquakes to the northeast which are not related to the magma plumbing system. More intriguing are the less numerous deeper earthquakes at 12-24km depth, situated in three distinct areas within the volcanic system. These earthquakes often show a frequency content which is lower than the shallower activity, but they still show strong P and S wave arrivals indicative of brittle failure, despite their location being well below the brittle-ductile boundary, which, in Askja is ~7km bsl. These earthquakes indicate the presence of melt moving or degassing at depth while the volcano is not inflating, as only high strain rates or increased pore fluid pressures would cause brittle fracture in what is normally an aseismic region in the ductile zone. The lower frequency content must be the result of a slower source time function as earthquakes which are both high frequency and low frequency come from the same cluster, thereby discounting a highly attenuating lower crust. To image the plumbing system beneath Askja, local and regional earthquakes have been used as sources to solve for the velocity structure beneath the volcano. Travel-time tables were created using a finite difference technique and the residuals were used to solve simultaneously for both the earthquake locations

  18. Light-cone observables and gauge-invariance in the geodesic light-cone formalism

    Energy Technology Data Exchange (ETDEWEB)

    Scaccabarozzi, Fulvio; Yoo, Jaiyul, E-mail: fulvio@physik.uzh.ch, E-mail: jyoo@physik.uzh.ch [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich (Switzerland)

    2017-06-01

    The remarkable properties of the geodesic light-cone (GLC) coordinates allow analytic expressions for the light-cone observables, providing a new non-perturbative way for calculating the effects of inhomogeneities in our Universe. However, the gauge-invariance of these expressions in the GLC formalism has not been shown explicitly. Here we provide this missing part of the GLC formalism by proving the gauge-invariance of the GLC expressions for the light-cone observables, such as the observed redshift, the luminosity distance, and the physical area and volume of the observed sources. Our study provides a new insight on the properties of the GLC coordinates and it complements the previous work by the GLC collaboration, leading to a comprehensive description of light propagation in the GLC representation.

  19. A cone-beam reconstruction algorithm using shift-variant filtering and cone-beam backprojection

    International Nuclear Information System (INIS)

    Defrise, M.; Clack, R.

    1994-01-01

    An exact inversion formula written in the form of shift-variant filtered-backprojection (FBP) is given for reconstruction from cone-beam data taken from any orbit satisfying Tuy's sufficiency conditions. The method is based on a result of Grangeat, involving the derivative of the three-dimensional (3-D) Radon transform, but unlike Grangeat's algorithm, no 3D rebinning step is required. Data redundancy, which occurs when several cone-beam projections supply the same values in the Radon domain, is handled using an elegant weighting function and without discarding data. The algorithm is expressed in a convenient cone-beam detector reference frame, and a specific example for the case of a dual orthogonal circular orbit is presented. When the method is applied to a single circular orbit, it is shown to be equivalent to the well-known algorithm of Feldkamp et al

  20. Mineralogical and geochemical study of mud volcanoes in north ...

    African Journals Online (AJOL)

    The gulf of Cadiz is one of the most interesting areas to study mud volcanoes and structures related to cold fluid seeps since their discovery in 1999. In this study, we present results from gravity cores collected from Ginsburg and Meknes mud volcanoes and from circular structure located in the gulf of Cadiz (North Atlantic ...

  1. Fuego Volcano eruption (Guatemala, 1974): evidence of a tertiary fragmentation?

    International Nuclear Information System (INIS)

    Brenes-Andre, Jose

    2014-01-01

    Values for mode and dispersion calculated from SFT were analyzed using the SFT (Sequential Fragmentation/Transport) model to Fuego Volcano eruption (Guatemala, 1974). Analysis results have showed that the ideas initially proposed for Irazu, can be applied to Fuego Volcano. Experimental evidence was found corroborating the existence of tertiary fragmentations. (author) [es

  2. 36 CFR 7.25 - Hawaii Volcanoes National Park.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Hawaii Volcanoes National Park. 7.25 Section 7.25 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.25 Hawaii Volcanoes National Park. (a...

  3. Using Google Earth to Study the Basic Characteristics of Volcanoes

    Science.gov (United States)

    Schipper, Stacia; Mattox, Stephen

    2010-01-01

    Landforms, natural hazards, and the change in the Earth over time are common material in state and national standards. Volcanoes exemplify these standards and readily capture the interest and imagination of students. With a minimum of training, students can recognize erupted materials and types of volcanoes; in turn, students can relate these…

  4. Volcano ecology: Disturbance characteristics and assembly of biological communities

    Science.gov (United States)

    Volcanic eruptions are powerful expressions of Earth’s geophysical forces which have shaped and influenced ecological systems since the earliest days of life. The study of the interactions of volcanoes and ecosystems, termed volcano ecology, focuses on the ecological responses of organisms and biolo...

  5. Copahue volcano and its regional magmatic setting

    Science.gov (United States)

    Varekamp, J C; Zareski, J E; Camfield, L M; Todd, Erin

    2016-01-01

    Copahue volcano (Province of Neuquen, Argentina) has produced lavas and strombolian deposits over several 100,000s of years, building a rounded volcano with a 3 km elevation. The products are mainly basaltic andesites, with the 2000–2012 eruptive products the most mafic. The geochemistry of Copahue products is compared with those of the main Andes arc (Llaima, Callaqui, Tolhuaca), the older Caviahue volcano directly east of Copahue, and the back arc volcanics of the Loncopue graben. The Caviahue rocks resemble the main Andes arc suite, whereas the Copahue rocks are characterized by lower Fe and Ti contents and higher incompatible element concentrations. The rocks have negative Nb-Ta anomalies, modest enrichments in radiogenic Sr and Pb isotope ratios and slightly depleted Nd isotope ratios. The combined trace element and isotopic data indicate that Copahue magmas formed in a relatively dry mantle environment, with melting of a subducted sediment residue. The back arc basalts show a wide variation in isotopic composition, have similar water contents as the Copahue magmas and show evidence for a subducted sedimentary component in their source regions. The low 206Pb/204Pb of some backarc lava flows suggests the presence of a second endmember with an EM1 flavor in its source. The overall magma genesis is explained within the context of a subducted slab with sediment that gradually looses water, water-mobile elements, and then switches to sediment melt extracts deeper down in the subduction zone. With the change in element extraction mechanism with depth comes a depletion and fractionation of the subducted complex that is reflected in the isotope and trace element signatures of the products from the main arc to Copahue to the back arc basalts.

  6. Isotopic evolution of Mauna Loa volcano

    International Nuclear Information System (INIS)

    Kurz, M.D.; Kammer, D.P.

    1991-01-01

    In an effort to understand the temporal helium isotopic variations in Mauna Loa volcano, we have measured helium, strontium and lead isotopes in a suite of Mauna Loa lavas that span most of the subaerial eruptive history of the volcano. The lavas range in age from historical flows to Ninole basalt which are thought to be several hundred thousand years old. Most of the samples younger than 30 ka in age (Kau Basalt) are radiocarbon-dated flows, while the samples older than 30 ka are stratigraphically controlled (Kahuku and Ninole Basalt). The data reveal a striking change in the geochemistry of the lavas approximately 10 ka before present. The lavas older than 10 ka are characterized by high 3 He/ 4 He (≅ 16-20 times atmospheric), higher 206 Pb/ 204 Pb (≅ 18.2), and lower 87 Sr/ 86 Sr(≅ 0.70365) ratios than the younger Kau samples (having He, Pb and Sr ratios of approximately 8.5 x atmospheric, 18.1 and 0.70390, respectively). The historical lavas are distinct in having intermediate Sr and Pb isotopic compositions with 3 He/ 4 He ratios similar to the other young Kau basalt (≅ 8.5 x atmospheric). The isotopic variations are on a shorter time scale (100 to 10,000 years) than has previously been observed for Hawaiian volcanoes, and demonstrate the importance of geochronology and stratigraphy to geochemical studies. The data show consistency between all three isotope systems, which suggests that the variations are not related to magma chamber degassing processes, and that helium is not decoupled from the other isotopes. However, the complex temporal evolution suggests that three distinct mantle sources are required to explain the isotopic data. Most of the Mauna Loa isotopic variations could be explained by mixing between a plume type source, similar to Loihi, and an asthenospheric source with helium isotopic composition close to MORB and elevated Sr isotopic values. (orig./WL)

  7. Monte Carlo Volcano Seismic Moment Tensors

    Science.gov (United States)

    Waite, G. P.; Brill, K. A.; Lanza, F.

    2015-12-01

    Inverse modeling of volcano seismic sources can provide insight into the geometry and dynamics of volcanic conduits. But given the logistical challenges of working on an active volcano, seismic networks are typically deficient in spatial and temporal coverage; this potentially leads to large errors in source models. In addition, uncertainties in the centroid location and moment-tensor components, including volumetric components, are difficult to constrain from the linear inversion results, which leads to a poor understanding of the model space. In this study, we employ a nonlinear inversion using a Monte Carlo scheme with the objective of defining robustly resolved elements of model space. The model space is randomized by centroid location and moment tensor eigenvectors. Point sources densely sample the summit area and moment tensors are constrained to a randomly chosen geometry within the inversion; Green's functions for the random moment tensors are all calculated from modeled single forces, making the nonlinear inversion computationally reasonable. We apply this method to very-long-period (VLP) seismic events that accompany minor eruptions at Fuego volcano, Guatemala. The library of single force Green's functions is computed with a 3D finite-difference modeling algorithm through a homogeneous velocity-density model that includes topography, for a 3D grid of nodes, spaced 40 m apart, within the summit region. The homogenous velocity and density model is justified by long wavelength of VLP data. The nonlinear inversion reveals well resolved model features and informs the interpretation through a better understanding of the possible models. This approach can also be used to evaluate possible station geometries in order to optimize networks prior to deployment.

  8. Southern blotting.

    Science.gov (United States)

    Brown, T

    2001-05-01

    Southern blotting is the transfer of DNA fragments from an electrophoresis gel to a membrane support (the properties and advantages of the different types of membrane, transfer buffer, and transfer method are discussed in detail), resulting in immobilization of the DNA fragments, so the membrane carries a semipermanent reproduction of the banding pattern of the gel. After immobilization, the DNA can be subjected to hybridization analysis, enabling bands with sequence similarity to a labeled probe to be identified. This appendix describes Southern blotting via upward capillary transfer of DNA from an agarose gel onto a nylon or nitrocellulose membrane, using a high-salt transfer buffer to promote binding of DNA to the membrane. With the high-salt buffer, the DNA becomes bound to the membrane during transfer but not permanently immobilized. Immobilization is achieved by UV irradiation (for nylon) or baking (for nitrocellulose). A Support Protocol describes how to calibrate a UV transilluminator for optimal UV irradiation of a nylon membrane. An alternate protocol details transfer using nylon membranes and an alkaline buffer, and is primarily used with positively charged nylon membranes. The advantage of this combination is that no post-transfer immobilization step is required, as the positively charged membrane binds DNA irreversibly under alkaline transfer conditions. The method can also be used with neutral nylon membranes but less DNA will be retained. A second alternate protocol describes a transfer method based on a different transfer-stack setup. The traditional method of upward capillary transfer of DNA from gel to membrane described in the first basic and alternate protocols has certain disadvantages, notably the fact that the gel can become crushed by the weighted filter papers and paper towels that are laid on top of it. This slows down the blotting process and may reduce the amount of DNA that can be transferred. The downward capillary method described in

  9. The deep structure of Axial Volcano

    Science.gov (United States)

    West, Michael Edwin

    The subsurface structure of Axial Volcano, near the intersection of the Juan de Fuca Ridge and the Cobb-Eickelberg seamount chain in the northeast Pacific, is imaged from an active source seismic experiment. At a depth of 2.25 to 3.5 km beneath Axial lies an 8 km x 12 km region of very low seismic velocities that can only be explained by the presence of magma. In the center of this magma storage chamber at 2--3.5 km below sea floor, the crust is at least 10--20% melt. At depths of 4--5 km there is evidence of additional low concentrations of magma (a few percent) over a larger area. In total, 5--11 km3 of magma are stored in the mid-crust beneath Axial. This is more melt than has been positively identified under any basaltic volcano on Earth. It is also far more than the 0.1--0.2 km3 emplaced during the 1998 eruption. The implied residence time in the magma reservoir of a few hundred to a few thousand years agrees with geochemical trends which suggest prolonged storage and mixing of magmas. The large volume of melt bolsters previous observations that Axial provides much of the material to create crust along its 50 km rift zones. A high velocity ring-shaped feature sits above the magma chamber just outside the caldera walls. This feature is believed to be the result of repeated dike injections from the magma body to the surface during the construction of the volcanic edifice. A rapid change in crustal thickness from 8 to 11 km within 15 km of the caldera implies focused delivery of melt from the mantle. The high flux of magma suggests that melting occurs deeper in the mantle than along the nearby ridge. Melt supply to the volcano is not connected to any plumbing system associated with the adjacent segments of the Juan de Fuca Ridge. This suggests that, despite Axial's proximity to the ridge, the Cobb hot spot currently drives the supply of melt to the volcano.

  10. Cataloging tremor at Kilauea Volcano, Hawaii

    Science.gov (United States)

    Thelen, W. A.; Wech, A.

    2013-12-01

    Tremor is a ubiquitous seismic feature on Kilauea volcano, which emanates from at least three distinct sources. At depth, intermittent tremor and earthquakes thought to be associated with the underlying plumbing system of Kilauea (Aki and Koyanagi, 1981) occurs approximately 40 km below and 40 km SW of the summit. At the summit of the volcano, nearly continuous tremor is recorded close to a persistently degassing lava lake, which has been present since 2008. Much of this tremor is correlated with spattering at the lake surface, but tremor also occurs in the absence of spattering, and was observed at the summit of the volcano prior to the appearance of the lava lake, predominately in association with inflation/deflation events. The third known source of tremor is in the area of Pu`u `O`o, a vent that has been active since 1983. The exact source location and depth is poorly constrained for each of these sources. Consistently tracking the occurrence and location of tremor in these areas through time will improve our understanding of the plumbing geometry beneath Kilauea volcano and help identify precursory patterns in tremor leading to changes in eruptive activity. The continuous and emergent nature of tremor precludes the use of traditional earthquake techniques for automatic detection and location of seismicity. We implement the method of Wech and Creager (2008) to both detect and localize tremor seismicity in the three regions described above. The technique uses an envelope cross-correlation method in 5-minute windows that maximizes tremor signal coherency among seismic stations. The catalog is currently being built in near-realtime, with plans to extend the analysis to the past as time and continuous data availability permits. This automated detection and localization method has relatively poor depth constraints due to the construction of the envelope function. Nevertheless, the epicenters distinguish activity among the different source regions and serve as

  11. Degassing Processes at Persistently Active Explosive Volcanoes

    Science.gov (United States)

    Smekens, Jean-Francois

    Among volcanic gases, sulfur dioxide (SO2) is by far the most commonly measured. More than a monitoring proxy for volcanic degassing, SO 2 has the potential to alter climate patterns. Persistently active explosive volcanoes are characterized by short explosive bursts, which often occur at periodic intervals numerous times per day, spanning years to decades. SO 2 emissions at those volcanoes are poorly constrained, in large part because the current satellite monitoring techniques are unable to detect or quantify plumes of low concentration in the troposphere. Eruption plumes also often show high concentrations of ash and/or aerosols, which further inhibit the detection methods. In this work I focus on quantifying volcanic gas emissions at persistently active explosive volcanoes and their variations over short timescales (minutes to hours), in order to document their contribution to natural SO2 flux as well as investigate the physical processes that control their behavior. In order to make these measurements, I first develop and assemble a UV ground-based instrument, and validate it against an independently measured source of SO2 at a coal-burning power plant in Arizona. I establish a measurement protocol and demonstrate that the instrument measures SO 2 fluxes with Indonesia), a volcano that has been producing cycles of repeated explosions with periods of minutes to hours for the past several decades. Semeru produces an average of 21-71 tons of SO2 per day, amounting to a yearly output of 8-26 Mt. Using the Semeru data, along with a 1-D transient numerical model of magma ascent, I test the validity of a model in which a viscous plug at the top of the conduit produces cycles of eruption and gas release. I find that it can be a valid hypothesis to explain the observed patterns of degassing at Semeru. Periodic behavior in such a system occurs for a very narrow range of conditions, for which the mass balance between magma flux and open-system gas escape repeatedly

  12. Galactic Super-volcano in Action

    Science.gov (United States)

    2010-08-01

    A galactic "super-volcano" in the massive galaxy M87 is erupting and blasting gas outwards, as witnessed by NASA's Chandra X-ray Observatory and NSF's Very Large Array. The cosmic volcano is being driven by a giant black hole in the galaxy's center and preventing hundreds of millions of new stars from forming. Astronomers studying this black hole and its effects have been struck by the remarkable similarities between it and a volcano in Iceland that made headlines earlier this year. At a distance of about 50 million light years, M87 is relatively close to Earth and lies at the center of the Virgo cluster, which contains thousands of galaxies. M87's location, coupled with long observations over Chandra's lifetime, has made it an excellent subject for investigations of how a massive black hole impacts its environment. "Our results show in great detail that supermassive black holes have a surprisingly good control over the evolution of the galaxies in which they live," said Norbert Werner of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University and the SLAC National Accelerator Laboratory, who led one of two papers describing the study. "And it doesn't stop there. The black hole's reach extends ever farther into the entire cluster, similar to how one small volcano can affect practically an entire hemisphere on Earth." The cluster surrounding M87 is filled with hot gas glowing in X-ray light, which is detected by Chandra. As this gas cools, it can fall toward the galaxy's center where it should continue to cool even faster and form new stars. However, radio observations with the Very Large Array suggest that in M87 jets of very energetic particles produced by the black hole interrupt this process. These jets lift up the relatively cool gas near the center of the galaxy and produce shock waves in the galaxy's atmosphere because of their supersonic speed. The scientists involved in this research have found the interaction of this cosmic

  13. Measurements of radon and chemical elements: Popocatepetl volcano

    International Nuclear Information System (INIS)

    Pena, P.; Segovia, N.; Lopez, B.; Reyes, A.V.; Armienta, M.A.; Valdes, C.; Mena, M.; Seidel, J.L.; Monnin, M.

    2002-01-01

    The Popocatepetl volcano is a higher risk volcano located at 60 Km from Mexico City. Radon measurements on soil in two fixed seasons located in the north slope of volcano were carried out. Moreover the radon content, major chemical elements and tracks in water samples of three springs was studied. The radon of soil was determined with solid detectors of nuclear tracks (DSTN). The radon in subterranean water was evaluated through the liquid scintillation method and it was corroborated with an Alpha Guard equipment. The major chemical elements were determined with conventional chemical methods and the track elements were measured using an Icp-Ms equipment. The radon on soil levels were lower, indicating a moderate diffusion of the gas across the slope of the volcano. The radon in subterranean water shown few changes in relation with the active scene of the volcano. The major chemical elements and tracks showed a stable behavior during the sampling period. (Author)

  14. Tsunamis generated by eruptions from mount st. Augustine volcano, alaska.

    Science.gov (United States)

    Kienle, J; Kowalik, Z; Murty, T S

    1987-06-12

    During an eruption of the Alaskan volcano Mount St. Augustine in the spring of 1986, there was concern about the possibility that a tsunami might be generated by the collapse of a portion of the volcano into the shallow water of Cook Inlet. A similar edifice collapse of the volcano and ensuing sea wave occurred during an eruption in 1883. Other sea waves resulting in great loss of life and property have been generated by the eruption of coastal volcanos around the world. Although Mount St. Augustine remained intact during this eruptive cycle, a possible recurrence of the 1883 events spurred a numerical simulation of the 1883 sea wave. This simulation, which yielded a forecast of potential wave heights and travel times, was based on a method that could be applied generally to other coastal volcanos.

  15. Establishment, test and evaluation of a prototype volcano surveillance system

    Science.gov (United States)

    Ward, P. L.; Eaton, J. P.; Endo, E.; Harlow, D.; Marquez, D.; Allen, R.

    1973-01-01

    A volcano-surveillance system utilizing 23 multilevel earthquake counters and 6 biaxial borehole tiltmeters is being installed and tested on 15 volcanoes in 4 States and 4 foreign countries. The purpose of this system is to give early warning when apparently dormant volcanoes are becoming active. The data are relayed through the ERTS-Data Collection System to Menlo Park for analysis. Installation was completed in 1972 on the volcanoes St. Augustine and Iliamna in Alaska, Kilauea in Hawaii, Baker, Rainier and St. Helens in Washington, Lassen in California, and at a site near Reykjavik, Iceland. Installation continues and should be completed in April 1973 on the volcanoes Santiaguito, Fuego, Agua and Pacaya in Guatemala, Izalco in El Salvador and San Cristobal, Telica and Cerro Negro in Nicaragua.

  16. How seed orchard culture affects seed quality: experience with the southern pines

    Science.gov (United States)

    James P. Barnett

    1996-01-01

    Tree improvement programs have influenced significantly the quality of southern pine seeds produced when compared to collections from native stands. Seed orchard management practices such as fertilization can increase seed size and reduce seed dormancy. These result in the need for less complex pregermination treatments. Repeated cone collections from the same clones...

  17. Techniques for optimizing nanotips derived from frozen taylor cones

    Science.gov (United States)

    Hirsch, Gregory

    2017-12-05

    Optimization techniques are disclosed for producing sharp and stable tips/nanotips relying on liquid Taylor cones created from electrically conductive materials with high melting points. A wire substrate of such a material with a preform end in the shape of a regular or concave cone, is first melted with a focused laser beam. Under the influence of a high positive potential, a Taylor cone in a liquid/molten state is formed at that end. The cone is then quenched upon cessation of the laser power, thus freezing the Taylor cone. The tip of the frozen Taylor cone is reheated by the laser to allow its precise localized melting and shaping. Tips thus obtained yield desirable end-forms suitable as electron field emission sources for a variety of applications. In-situ regeneration of the tip is readily accomplished. These tips can also be employed as regenerable bright ion sources using field ionization/desorption of introduced chemical species.

  18. Translating Volcano Hazards Research in the Cascades Into Community Preparedness

    Science.gov (United States)

    Ewert, J. W.; Driedger, C. L.

    2015-12-01

    Research by the science community into volcanic histories and physical processes at Cascade volcanoes in the states of Washington, Oregon, and California has been ongoing for over a century. Eruptions in the 20th century at Lassen Peak and Mount St. Helen demonstrated the active nature of Cascade volcanoes; the 1980 eruption of Mount St. Helens was a defining moment in modern volcanology. The first modern volcano hazards assessments were produced by the USGS for some Cascade volcanoes in the 1960s. A rich scientific literature exists, much of which addresses hazards at these active volcanoes. That said community awareness, planning, and preparation for eruptions generally do not occur as a result of a hazard analyses published in scientific papers, but by direct communication with scientists. Relative to other natural hazards, volcanic eruptions (or large earthquakes, or tsunami) are outside common experience, and the public and many public officials are often surprised to learn of the impacts volcanic eruptions could have on their communities. In the 1980s, the USGS recognized that effective hazard communication and preparedness is a multi-faceted, long-term undertaking and began working with federal, state, and local stakeholders to build awareness and foster community action about volcano hazards. Activities included forming volcano-specific workgroups to develop coordination plans for volcano emergencies; a concerted public outreach campaign; curriculum development and teacher training; technical training for emergency managers and first responders; and development of hazard information that is accessible to non-specialists. Outcomes include broader ownership of volcano hazards as evidenced by bi-national exchanges of emergency managers, community planners, and first responders; development by stakeholders of websites focused on volcano hazards mitigation; and execution of table-top and functional exercises, including evacuation drills by local communities.

  19. JWFront: Wavefronts and Light Cones for Kerr Spacetimes

    Science.gov (United States)

    Frutos Alfaro, Francisco; Grave, Frank; Müller, Thomas; Adis, Daria

    2015-04-01

    JWFront visualizes wavefronts and light cones in general relativity. The interactive front-end allows users to enter the initial position values and choose the values for mass and angular momentum per unit mass. The wavefront animations are available in 2D and 3D; the light cones are visualized using the coordinate systems (t, x, y) or (t, z, x). JWFront can be easily modified to simulate wavefronts and light cones for other spacetime by providing the Christoffel symbols in the program.

  20. Preparation of Au cone for fast ignition target

    International Nuclear Information System (INIS)

    Du Kai; Zhou Lan; Zhang Lin; Wan Xiaobo; Xiao Jiang

    2005-01-01

    Cone-shell target is typically used for the fast ignition experiments of inertial confinement fusion. In order to fabricate cone-shell target the Au cones with different angles were produced by electroplating and precise machining. The Au electroplating process was introduced in the paper, and the dependence of coating quality on the parameters, such as composition, temperature, pH of electroplating bath, current density and tip effect, were discussed. (author)

  1. Feedback-induced glutamate spillover enhances negative feedback from horizontal cells to cones

    NARCIS (Netherlands)

    Vroman, Rozan; Kamermans, M.

    2015-01-01

    KEY POINTS: In the retina, horizontal cells feed back negatively to cone photoreceptors. Glutamate released from cones can spill over to neighbouring cones. Here we show that cone glutamate release induced by negative feedback can also spill over to neighbouring cones. This glutamate activates the

  2. Feedback-induced glutamate spillover enhances negative feedback from horizontal cells to cones

    NARCIS (Netherlands)

    Vroman, Rozan; Kamermans, Maarten

    2015-01-01

    In the retina, horizontal cells feed back negatively to cone photoreceptors. Glutamate released from cones can spill over to neighbouring cones. Here we show that cone glutamate release induced by negative feedback can also spill over to neighbouring cones. This glutamate activates the glutamate

  3. A mineralogical and granulometric study of Cayambe volcano debris avalanche deposit

    Science.gov (United States)

    Detienne, M.; Delmelle, P.; Guevara, A.; Samaniego, P.; Bustillos, J.; Sonnet, P.; Opfergelt, S.

    2013-12-01

    Volcano flank/sector collapse represents one of the most catastrophic volcanic hazards. Various volcanic and non-volcanic processes are known to decrease the stability of a volcanic cone, eventually precipitating its gravitational failure. Among them, hydrothermal alteration of volcanic rocks leading to clay mineral formation is recognized as having a large negative impact on rock strength properties. Furthermore, the presence of hydrothermal clays in the collapsing mass influences the behavior of the associated volcanic debris avalanche. In particular, clay-containing debris avalanches seem to travel farther and spread more widely than avalanches of similar volume but which do not incorporate hydrothermally-altered materials. However, the relationship between hydrothermal alteration, flank collapse and debris avalanche behavior is not well understood. The objective of this study is to better determine the volume and composition of hydrothermal clay minerals in the poorly characterized debris avalanche deposit (DAD) of Cayambe composite volcano, located in a densely populated area ~70 km northeast of Quito, Ecuador. Cayambe DAD originated from a sector collapse, which occurred less than 200 ka ago. The DAD is 10-20 m thick and has an estimated total volume of ~0.85 Km3. The H/L ratio (where H is the vertical drop and L is the travel distance of the avalanche) for Cayambe DAD is ~0.095, suggesting a high mobility. In the medial-distal zone, at 9-20 km from its source, the DAD consists of an unstratified and unsorted matrix supporting millimetric to metric clasts. It has a matrix facies (i.e. rich in particles DAD behaved as a cohesive debris flow. Analysis of 13 matrix samples reveals a large variability in particle size distribution. This may reflect poor mixing of the collapsed material during transport. The clay fraction content in the matrix ranges from 15 to 30 wt.%, and does not show a relationship with the sample position in the DAD. Mineralogical

  4. Analysis of gas jetting and fumarole acoustics at Aso Volcano, Japan

    Science.gov (United States)

    McKee, Kathleen; Fee, David; Yokoo, Akihiko; Matoza, Robin S.; Kim, Keehoon

    2017-06-01

    The gas-thrust region of a large volcanic eruption column is predominately a momentum-driven, fluid flow process that perturbs the atmosphere and produces sound akin to noise from jet and rocket engines, termed ;jet noise;. We aim to enhance understanding of large-scale volcanic jets by studying an accessible, less hazardous fumarolic jet. We characterize the acoustic signature of 2.5-meter wide vigorously jetting fumarole at Aso Volcano, Japan using a 5-element infrasound array located on the nearby crater. The fumarole opened on 13 July 2015 on the southwest flank of the partially collapsed pyroclastic cone within Aso Volcano's Naka-dake crater and had persistent gas jetting, which produced significant audible jet noise. The array was 220 m from the fumarole and 57.6° from the vertical jet axis, a recording angle not typically feasible in volcanic environments. Array processing is performed to distinguish fumarolic jet noise from wind. Highly correlated periods are characterized by sustained, low-amplitude signal with a 7-10 Hz spectral peak. Finite difference time domain method numerical modeling suggests the influence of topography near the vent and along the propagation path significantly affects the spectral content, complicating comparisons with laboratory jet noise. The fumarolic jet has a low estimated Mach number (0.3 to 0.4) and measured temperature of 260 °C. The Strouhal number for infrasound from volcanic jet flows and geysers is not known; thus we assume a peak Strouhal number of 0.19 based on pure-air laboratory jet experiments. This assumption leads to an estimated exit velocity of the fumarole of 79 to 132 m/s. Using published gas composition data from 2003 to 2009, the fumarolic vent area estimated from thermal infrared images, and estimated jet velocity, we estimate total volatile flux at 160-270 kg/s (14,000-23,000 t/d).

  5. TWO-DIMENSIONAL SIMULATIONS OF EXPLOSIVE ERUPTIONS OF KICK-EM JENNY AND OTHER SUBMARINE VOLCANOS

    Directory of Open Access Journals (Sweden)

    Galen Gisler

    2006-01-01

    Full Text Available Kick-em Jenny, in the Eastern Caribbean, is a submerged volcanic cone that has erupted a dozen or more times since its discovery in 1939. The most likely hazard posed by this volcano is to shipping in the immediate vicinity (through volcanic missiles or loss-of-buoyancy, but it is of interest to estimate upper limits on tsunamis that might be produced by a catastrophic explosive eruption. To this end, we have performed two-dimensional simulations of such an event in a geometry resembling that of Kick-em Jenny with our SAGE adaptive mesh Eulerian multifluid compressible hydrocode. We use realistic equations of state for air, water, and basalt, and follow the event from the initial explosive eruption, through the generation of a transient water cavity and the propagation of waves away from the site. We find that even for extremely catastrophic explosive eruptions, tsunamis from Kick-em Jenny are unlikely to pose significant danger to nearby islands. For comparison, we have also performed simulations of explosive eruptions at the much larger shield volcano Vailulu'u in the Samoan chain, where the greater energy available can produce a more impressive wave. In general, however, we conclude that explosive eruptions do not couple well to water waves. The waves that are produced from such events are turbulent and highly dissipative, and don't propagate well. This is consistent with what we have found previously in simulations of asteroid-impact generated tsunamis. Non-explosive events, however, such as landslides or gas hydrate releases, do couple well to waves, and our simulations of tsunamis generated by sub- aerial and sub-aqueous landslides demonstrate this.

  6. Asymmetrical structure, hydrothermal system and edifice stability: The case of Ubinas volcano, Peru, revealed by geophysical surveys

    Science.gov (United States)

    Gonzales, Katherine; Finizola, Anthony; Lénat, Jean-François; Macedo, Orlando; Ramos, Domingo; Thouret, Jean-Claude; Fournier, Nicolas; Cruz, Vicentina; Pistre, Karine

    2014-04-01

    plays a major role in the geometry of the hydrothermal systems. Another case of asymmetrical composite cone edifice, built on a steep topography, is observed on El Misti volcano (situated 70 km west of Ubinas), which exhibits a similar SP pattern. These types of edifices have a high potential of spreading and sliding along the slope owing to the thicker accumulation of low cohesion and hydrothermally altered volcanic products.

  7. Plasma microinstabilities driven by loss-cone distributions

    International Nuclear Information System (INIS)

    Summers, D.; Thorne, R.M.

    1995-01-01

    Electromagnetic and electrostatic instabilities driven by loss-cone particle distributions have been invoked to explain a variety of plasma phenomena observed in space and in the laboratory. In this paper we analyse how the loss-cone feature (as determined by the loss-cone index or indices) influences the growth of such instabilities in a fully ionized, homogeneous, hot plasma in a uniform magnetic field. Specifically, we consider three loss-cone distributions: a generalized Lorentzian (kappa) loss-cone distribution, the Dory-Guest-Harris distribution and the Ashour-Abdalla-Kennel distribution (involving a subtracted Maxwellian). Our findings are common to all three distributions. We find that, for parallel propagation, electromagnetic instabilities are only affected by the loss-cone indices in terms of their occurrence in the temperature anisotropy. However, for oblique propagation, even including propagation at small angles to the ambient magnetic field, the loss-cone indices do independently affect the growth of instabilities for electromagnetic waves, in contrast to certain claims in the literature. For electrostatic waves such that 1/2(κ perpendicular to ρ L σ 2 L σ is the Larmor radius for particle species σ, we find that the loss-cone indices only enter the dispersion equation via the temperature anisotropy, and so in this case the loss-cone feature and perpendicular effective thermal speed do not independently affect wave growth. (Author)

  8. Identifying Dirac cones in carbon allotropes with square symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jinying [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Huang, Huaqing; Duan, Wenhui [Department of Physics, Tsinghua University, Beijing 100084 (China); Liu, Zhirong, E-mail: LiuZhiRong@pku.edu.cn [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); State Key Laboratory for Structural Chemistry of Unstable and Stable Species and Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing 100871 (China)

    2013-11-14

    A theoretical study is conducted to search for Dirac cones in two-dimensional carbon allotropes with square symmetry. By enumerating the carbon atoms in a unit cell up to 12, an allotrope with octatomic rings is recognized to possess Dirac cones under a simple tight-binding approach. The obtained Dirac cones are accompanied by flat bands at the Fermi level, and the resulting massless Dirac-Weyl fermions are chiral particles with a pseudospin of S = 1, rather than the conventional S = 1/2 of graphene. The spin-1 Dirac cones are also predicted to exist in hexagonal graphene antidot lattices.

  9. Integrity of the cone photoreceptor mosaic in oligocone trichromacy

    DEFF Research Database (Denmark)

    Michaelides, Michel; Rha, Jungtae; Dees, Elise W

    2011-01-01

    Oligocone trichromacy (OT) is an unusual cone dysfunction syndrome characterized by reduced visual acuity, mild photophobia, reduced amplitude of the cone electroretinogram with normal rod responses, normal fundus appearance, and normal or near-normal color vision. It has been proposed that these......Oligocone trichromacy (OT) is an unusual cone dysfunction syndrome characterized by reduced visual acuity, mild photophobia, reduced amplitude of the cone electroretinogram with normal rod responses, normal fundus appearance, and normal or near-normal color vision. It has been proposed...

  10. Conical Refraction: new observations and a dual cone model.

    Science.gov (United States)

    Sokolovskii, G S; Carnegie, D J; Kalkandjiev, T K; Rafailov, E U

    2013-05-06

    We propose a paraxial dual-cone model of conical refraction involving the interference of two cones of light behind the exit face of the crystal. The supporting experiment is based on beam selecting elements breaking down the conically refracted beam into two separate hollow cones which are symmetrical with one another. The shape of these cones of light is a product of a 'competition' between the divergence caused by the conical refraction and the convergence due to the focusing by the lens. The developed mathematical description of the conical refraction demonstrates an excellent agreement with experiment.

  11. The Large-Scale Debris Avalanche From The Tancitaro Volcano (Mexico): Characterization And Modeling

    Science.gov (United States)

    Morelli, S.; Gigli, G.; Falorni, G.; Garduno Monroy, V. H.; Arreygue, E.

    2008-12-01

    The Tancitaro is an andesitic-dacitic stratovolcano located in the Michoacán Guanajuato volcanic field within the west-central portion of the trans-Mexican Volcanic Belt. The volcanism in this area is characterized by two composite volcanoes, the highest of which is the Tancitaro volcanic edifice (3840 m), some low angle lava cones and more than 1,000 monogenetic cinder cones. The distribution of the cinder cones is controlled by NE-SW active faults, although there are also additional faults with NNW-SSE trends along which some cones are aligned. The Tancitaro stratovolcano is located at the intersection of the tectonical structures that originate these alignments. All this geological activity has contributed to the gravitational instability of the volcano, leading to a huge sector collapse which produced the investigated debris avalanche. The collapse structure is an east-facing horseshoe-shaped crater (4 km wide and 5.3 km long), related with a large fan that was deposited within the Tepalcatepec depression. The deposit starts only 7 km downslope from the failure scar, it is 66 km long and covers an area of approximately 1155 km2. The landslide magnitude is about 20 km3 and it was firstly determined by the reconstruction of the paleo-edifice using a GIS software and then validated by the observation of significant outcrops. The fan was primarily formed by the deposit of this huge debris avalanche and subsequently by debris flow and fluvial deposits. Field investigations on the fan area highlighted the presence of two texturally distinct parts, which are referred to the 'block facies' and the 'matrix facies'. The first sedimentary structure is responsible for the typical hummock morphologies in the proximal area, as seen in many other debris avalanche deposits. Instead in the distal zones, the deposit is made up by the 'mixed block and matrix facies'. Blocks and megablocks, some of which are characterized by a jigsaw puzzle texture, gradually decrease in size

  12. The Quaternary calc-alkaline volcanism of the Patagonian Andes close to the Chile triple junction: geochemistry and petrogenesis of volcanic rocks from the Cay and Maca volcanoes (˜45°S, Chile)

    Science.gov (United States)

    D'Orazio, M.; Innocenti, F.; Manetti, P.; Tamponi, M.; Tonarini, S.; González-Ferrán, O.; Lahsen, A.; Omarini, R.

    2003-08-01

    Major- and trace-element, Sr-Nd isotopes, and mineral chemistry data were obtained for a collection of volcanic rock samples erupted by the Cay and Maca Quaternary volcanoes, Patagonian Andes (˜45°S, Chile). Cay and Maca are two large, adjacent stratovolcanoes that rise from the Chiloe block at the southern end of the southern volcanic zone (SVZ) of the Andes. Samples from the two volcanoes are typical medium-K, calc-alkaline rocks that form two roughly continuous, largely overlapping series from subalkaline basalt to dacite. The overall geochemistry of the samples studied is very similar to that observed for most volcanoes from the southern SVZ. The narrow range of Sr-Nd isotope compositions ( 87Sr/ 86Sr=0.70389-0.70431 and 143Nd/ 144Nd=0.51277-0.51284) and the major- and trace-element distributions indicate that the Cay and Maca magmas differentiated by crystal fractionation without significant contribution by crustal contamination. This is in accordance with the thin (Maca magmas is investigated by means of the relative concentration of fluid mobile (e.g. Ba) and fluid immobile (e.g. Nb, Ta, Zr, Y) elements and other relevant trace-element ratios (e.g. Sr/Y). The results indicate that small amounts (Maca volcanoes and that, despite the very young age (Maca magma sources to the northern edge of the slab window generated by the subduction of the Chile ridge under the South American plate, we did not find any geochemical evidence for a contribution of a subslab asthenospheric mantle. However, this mantle has been used to explain the peculiar geochemical features (e.g. the mild alkalinity and relatively low ratios between large ion lithophile and high field strength elements) of the Hudson volcano, which is located even closer to the slab window than the Cay and Maca volcanoes are.

  13. Cone photoreceptor structure in patients with x-linked cone dysfunction and red-green color vision deficiency

    DEFF Research Database (Denmark)

    Patterson, Emily J.; Wilk, Melissa; Langlo, Christopher S.

    2016-01-01

    encoded by exon 4, and two with a novel insertion in exon 2. Foveal cone structure and retinal thickness was disrupted to a variable degree, even among related individuals with the same L/M array. CONCLUSIONS. Our findings provide a direct link between disruption of the cone mosaic and L/ M opsin variants......PURPOSE. Mutations in the coding sequence of the L and M opsin genes are often associated with X-linked cone dysfunction (such as Bornholm Eye Disease, BED), though the exact color vision phenotype associated with these disorders is variable. We examined individuals with L/ M opsin gene mutations...... to clarify the link between color vision deficiency and cone dysfunction.  METHODS. We recruited 17 males for imaging. The thickness and integrity of the photoreceptor layers were evaluated using spectral-domain optical coherence tomography. Cone density was measured using high-resolution images of the cone...

  14. Geologic field-trip guide to Medicine Lake Volcano, northern California, including Lava Beds National Monument

    Science.gov (United States)

    Donnelly-Nolan, Julie M.; Grove, Timothy L.

    2017-08-17

    Medicine Lake volcano is among the very best places in the United States to see and walk on a variety of well-exposed young lava flows that range in composition from basalt to rhyolite. This field-trip guide to the volcano and to Lava Beds National Monument, which occupies part of the north flank, directs visitors to a wide range of lava flow compositions and volcanic phenomena, many of them well exposed and Holocene in age. The writing of the guide was prompted by a field trip to the California Cascades Arc organized in conjunction with the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) quadrennial meeting in Portland, Oregon, in August of 2017. This report is one of a group of three guides describing the three major volcanic centers of the southern Cascades Volcanic Arc. The guides describing the Mount Shasta and Lassen Volcanic Center parts of the trip share an introduction, written as an overview to the IAVCEI field trip. However, this guide to Medicine Lake volcano has descriptions of many more stops than are included in the 2017 field trip. The 23 stops described here feature a range of compositions and volcanic phenomena. Many other stops are possible and some have been previously described, but these 23 have been selected to highlight the variety of volcanic phenomena at this rear-arc center, the range of compositions, and for the practical reason that they are readily accessible. Open ground cracks, various vent features, tuffs, lava-tube caves, evidence for glaciation, and lava flows that contain inclusions and show visible evidence of compositional zonation are described and visited along the route.

  15. Looking for Larvae Above an Erupting Submarine Volcano, NW Rota-1, Mariana Arc

    Science.gov (United States)

    Beaulieu, S.; Hanson, M.; Tunnicliffe, V.; Chadwick, W. W., Jr.; Breuer, E. R.

    2016-02-01

    In 2009 the first marine protected areas for deep-sea hydrothermal vents in U.S. waters were established as part of the Volcanic Unit of the Marianas Trench Marine National Monument. In this region, hydrothermal vents are located along the Mariana Arc and back-arc spreading center. In particular hydrothermal vents are located near the summit of NW Rota-1, an active submarine volcano on the Mariana Arc which was erupting between 2003 and 2010 and ceased as of 2014. NW Rota-1 experienced a massive landslide in late 2009, decimating the habitat on the southern side of the volcano. This project looked at zooplankton tow samples taken from the water column above NW Rota-1 in 2010, searching for larvae which have the potential to recolonize the sea floor after such a major disturbance. Samples were sorted in entirety into coarse taxa, and then larvae were removed for DNA barcoding. Overall zooplankton composition was dominated by copepods, ostracods, and chaetognaths, the majority of which are pelagic organisms. Comparatively few larvae of benthic invertebrates were found, but shrimp, gastropod, barnacle, and polychaete larvae did appear in low numbers in the samples. Species-level identification obtained via genetic barcoding will allow for these larvae to be matched to species known to inhabit the benthic communities at NW Rota-1. Identified larvae will give insight into the organisms which can re-colonize the seafloor vent communities after a disturbance such as the 2009 landslide. Communities at hydrothermal vents at other submarine volcanoes in the Monument may act as sources for these larvae, but connectivity in this region of complex topography is unknown. As the microinvertebrate biodiversity in the Monument has yet to be fully characterized, our project also provides an opportunity to better describe both the zooplankton and benthic community composition in this area of the Monument.

  16. Late Pleistocene flank collapse of Zempoala volcano (Central Mexico) and the role of fault reactivation

    Science.gov (United States)

    Arce, José Luis; Macías, Rodolfo; García Palomo, Armando; Capra, Lucia; Macías, José Luis; Layer, Paul; Rueda, Hernando

    2008-11-01

    Zempoala is an extinct Pleistocene (˜ 0.7-0.8 Ma) stratovolcano that together with La Corona volcano (˜ 0.9 Ma) forms the southern end of the Sierra de las Cruces volcanic range, Central Mexico. The volcano consists of andesitic and dacitic lava flows and domes, as well as pyroclastic and epiclastic sequences, and has had a complex history with several flank collapses. One of these collapses occurred during the late Pleistocene on the S-SE flank of the volcano and produced the Zempoala debris avalanche deposit. This collapse could have been triggered by the reactivation of two normal fault systems (E-W and NE-SW), although magmatic activity cannot be absolutely excluded. The debris avalanche traveled 60 km to the south, covers an area of 600 km 2 and has a total volume of 6 km 3, with a calculated Heim coefficient (H/L) of 0.03. Based on the textural characteristics of the deposit we recognized three zones: proximal, axial, and lateral distal zone. The proximal zone consists of debris avalanche blocks that develop a hummocky topography; the axial zone corresponds with the main debris avalanche deposit made of large clasts set in a sandy matrix, which transformed to a debris flow in the lateral distal portion. The deposit is heterolithologic in composition, with dacitic and andesitic fragments from the old edifice that decrease in volume as bulking of exotic clasts from the substratum increase. Several cities (Cuernavaca, Jojutla de Juárez, Alpuyeca) with associated industrial, agricultural, and tourism activities have been built on the deposit, which pose in evidence the possible impact in case of a new event with such characteristics, since the area is still tectonically active.

  17. Light-cone quantization and QCD phenomenology

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Robertson, D.G.

    1995-01-01

    In principle, quantum chromodynamics provides a fundamental description of hadronic and nuclear structure and dynamics in terms of their elementary quark and gluon degrees of freedom. In practice, the direct application of QCD to reactions involving the structure of hadrons is extremely complex because of the interplay of nonperturbative effects such as color confinement and multi-quark coherence. A crucial tool in analyzing such phenomena is the use of relativistic light-cone quantum mechanics and Fock state methods to provide tractable and consistent treatments of relativistic many-body systems. In this article we present an overview of this formalism applied to QCD, focusing in particular on applications to the final states in deep inelastic lepton scattering that will be relevant for the proposed European Laboratory for Electrons (ELFE), HERMES, HERA, SLAC, and CEBAF. We begin with a brief introduction to light-cone field theory, stressing how it many allow the derivation of a constituent picture, analogous to the constituent quark model, from QCD. We then discuss several applications of the light-cone Fock state formalism to QCD phenomenology. The Fock state representation includes all quantum fluctuations of the hadron wavefunction, including far off-shell configurations such as intrinsic charm and, in the case of nuclei, hidden color. In some applications, such as exclusive processes at large momentum transfer, one can make first-principle predictions using factorization theorems which separate the hard perturbative dynamics from the nonpertubative physics associated with hadron binding. The Fock state components of the hadron with small transverse size, which dominate hard exclusive reactions, have small color dipole moments and thus diminished hadronic interactions. Thus QCD predicts minimal absorptive corrections, i.e., color transparency for quasi-elastic exclusive reactions in nuclear targets at large momentum transfer

  18. Three-dimensional stochastic adjustment of volcano geodetic network in Arenal volcano, Costa Rica

    Science.gov (United States)

    Muller, C.; van der Laat, R.; Cattin, P.-H.; Del Potro, R.

    2009-04-01

    Volcano geodetic networks are a key instrument to understanding magmatic processes and, thus, forecasting potentially hazardous activity. These networks are extensively used on volcanoes worldwide and generally comprise a number of different traditional and modern geodetic surveying techniques such as levelling, distances, triangulation and GNSS. However, in most cases, data from the different methodologies are surveyed, adjusted and analysed independently. Experience shows that the problem with this procedure is the mismatch between the excellent correlation of position values within a single technique and the low cross-correlation of such values within different techniques or when the same network is surveyed shortly after using the same technique. Moreover one different independent network for each geodetic surveying technique strongly increase logistics and thus the cost of each measurement campaign. It is therefore important to develop geodetic networks which combine the different geodetic surveying technique, and to adjust geodetic data together in order to better quantify the uncertainties associated to the measured displacements. In order to overcome the lack of inter-methodology data integration, the Geomatic Institute of the University of Applied Sciences of Western Switzerland (HEIG-VD) has developed a methodology which uses a 3D stochastic adjustment software of redundant geodetic networks, TRINET+. The methodology consists of using each geodetic measurement technique for its strengths relative to other methodologies. Also, the combination of the measurements in a single network allows more cost-effective surveying. The geodetic data are thereafter adjusted and analysed in the same referential frame. The adjustment methodology is based on the least mean square method and links the data with the geometry. Trinet+ also allows to run a priori simulations of the network, hence testing the quality and resolution to be expected for a determined network even

  19. Unearthing The Eruptive Personality Of El Salvador's Santa Ana (Ilamatepec) Volcano Though In-depth Stratigraphic Analysis Of Pre-1904 Deposits

    Science.gov (United States)

    Gallant, E.; Martinez-Hackert, B.

    2011-12-01

    The Santa Ana (Ilamatepec) volcano (2384 m) in densely populated El Salvador Central America presents serious volcanic hazard potential. The volcano is a prevalent part of every day life in El Salvador; the sugarcane and coffee belt of the country are to its Southern and Western flanks, recreational areas lies to its East, and second and third largest cities of El Salvador exist within its 25 km radius. Understanding the eruptive characteristics and history is imperative due to the volcano's relative size (the highest in the country) and it's explosive, composite nature. Historical records indicate at least 9 potential VEI 3 eruptions since 1521 AD. The volcano's relative inaccessibility and potential hazards do not promote a vast reservoir of research activity, as can be seen in the scarcity of published papers on topics prior to the 1904 eruption. This research represents the first steps towards creating a comprehensive stratigraphic record of the crater and characterizing its eruptive history, with an eventual goal of recreating the volcanic structure prior to its collapse. Samples of pre-1904 eruptive material were taken from the southern wall of an E-W oriented fluvial gully located within the SSW of the tertiary crater. These were analyzed using thin sections and optical microscopy, grain size distribution techniques, and scanning electron microscopy. The 15-layer sequence indicates an explosive history characterized by intense phreatomagmatic phases, plinian, sub-plinian and basaltic/andesitic composition strombolian activity. Another poster within the session will discuss an older sequence within the walls of the secondary crater. Further detailed studies will be required to gain a better understanding of the characteristics of Santa Ana Volcano.

  20. Resistivity characterisation of Hakone volcano, Central Japan, by three-dimensional magnetotelluric inversion

    Science.gov (United States)

    Yoshimura, Ryokei; Ogawa, Yasuo; Yukutake, Yohei; Kanda, Wataru; Komori, Shogo; Hase, Hideaki; Goto, Tada-nori; Honda, Ryou; Harada, Masatake; Yamazaki, Tomoya; Kamo, Masato; Kawasaki, Shingo; Higa, Tetsuya; Suzuki, Takeshi; Yasuda, Yojiro; Tani, Masanori; Usui, Yoshiya

    2018-04-01

    On 29 June 2015, a small phreatic eruption occurred at Hakone volcano, Central Japan, forming several vents in the Owakudani geothermal area on the northern slope of the central cones. Intense earthquake swarm activity and geodetic signals corresponding to the 2015 eruption were also observed within the Hakone caldera. To complement these observations and to characterise the shallow resistivity structure of Hakone caldera, we carried out a three-dimensional inversion of magnetotelluric measurement data acquired at 64 sites across the region. We utilised an unstructured tetrahedral mesh for the inversion code of the edge-based finite element method to account for the steep topography of the region during the inversion process. The main features of the best-fit three-dimensional model are a bell-shaped conductor, the bottom of which shows good agreement with the upper limit of seismicity, beneath the central cones and the Owakudani geothermal area, and several buried bowl-shaped conductive zones beneath the Gora and Kojiri areas. We infer that the main bell-shaped conductor represents a hydrothermally altered zone that acts as a cap or seal to resist the upwelling of volcanic fluids. Enhanced volcanic activity may cause volcanic fluids to pass through the resistive body surrounded by the altered zone and thus promote brittle failure within the resistive body. The overlapping locations of the bowl-shaped conductors, the buried caldera structures and the presence of sodium-chloride-rich hot springs indicate that the conductors represent porous media saturated by high-salinity hot spring waters. The linear clusters of earthquake swarms beneath the Kojiri area may indicate several weak zones that formed due to these structural contrasts.[Figure not available: see fulltext.

  1. Chloride currents in cones modify feedback from horizontal cells to cones in goldfish retina

    NARCIS (Netherlands)

    Endeman, Duco; Fahrenfort, Iris; Sjoerdsma, Trijntje; Steijaert, Marvin; ten Eikelder, Huub; Kamermans, Maarten

    2012-01-01

    In neuronal systems, excitation and inhibition must be well balanced to ensure reliable information transfer. The cone/horizontal cell (HC) interaction in the retina is an example of this. Because natural scenes encompass an enormous intensity range both in temporal and spatial domains, the balance

  2. Basic principles of cone beam computed tomography.

    Science.gov (United States)

    Abramovitch, Kenneth; Rice, Dwight D

    2014-07-01

    At the end of the millennium, cone-beam computed tomography (CBCT) heralded a new dental technology for the next century. Owing to the dramatic and positive impact of CBCT on implant dentistry and orthognathic/orthodontic patient care, additional applications for this technology soon evolved. New software programs were developed to improve the applicability of, and access to, CBCT for dental patients. Improved, rapid, and cost-effective computer technology, combined with the ability of software engineers to develop multiple dental imaging applications for CBCT with broad diagnostic capability, have played a large part in the rapid incorporation of CBCT technology into dentistry. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Cone penetrometer: Innovative technology summary report

    International Nuclear Information System (INIS)

    1996-04-01

    Cone penetrometer technology (CPT) provides cost-effective, real-time data for use in the characterization of the subsurface. Recent innovations in this baseline technology allow for improved access to the subsurface for environmental restoration applications. The technology has been improved by both industry and government agencies and is constantly advancing due to research efforts. The U.S. Department of Energy (DOE) Office of Science and Technology (formerly Technology Development) has contributed significantly to these efforts. This report focuses on the advancements made in conjunction with DOE's support but recognizes Department of Defense (DOD) and industry efforts

  4. Development and degeneration of cone bipolar cells are independent of cone photoreceptors in a mouse model of retinitis pigmentosa.

    Directory of Open Access Journals (Sweden)

    Miao Chen

    Full Text Available Retinal photoreceptors die during retinal synaptogenesis in a portion of retinal degeneration. Whether cone bipolar cells establish regular retinal mosaics and mature morphologies, and resist degeneration are not completely understood. To explore these issues, we backcrossed a transgenic mouse expressing enhanced green fluorescent protein (EGFP in one subset of cone bipolar cells (type 7 into rd1 mice, a classic mouse model of retinal degeneration, to examine the development and survival of cone bipolar cells in a background of retinal degeneration. Our data revealed that both the development and degeneration of cone bipolar cells are independent of the normal activity of cone photoreceptors. We found that type 7 cone bipolar cells achieved a uniform tiling of the retinal surface and developed normal dendritic and axonal arbors without the influence of cone photoreceptor innervation. On the other hand, degeneration of type 7 cone bipolar cells, contrary to our belief of central-to-peripheral progression, was spatially uniform across the retina independent of the spatiotemporal pattern of cone degeneration. The results have important implications for the design of more effective therapies to restore vision in retinal degeneration.

  5. Morphological analysis of Nevado de Toluca volcano (Mexico): new insights into the structure and evolution of an andesitic to dacitic stratovolcano

    Science.gov (United States)

    Norini, Gianluca; Groppelli, Gianluca; Capra, Lucia; De Beni, Emanuela

    2004-09-01

    We present a morphological analysis of Nevado de Toluca volcano located 80 km WSW of Mexico City based on digital elevation model study, where slope and aspect maps have been generated and analysed. Aerial photograph and satellite image observations improve the morphological analysis. The synoptic view which is offered by this analysis allowed for recognition and localization of the main volcanic and tectonic features of the area. On the basis of digital elevation model value distribution and surface textures, five morphological domains were defined. The most interesting domain, south of the crater, reflects the occurrence of an ancient complex volcano distinct from the adjacent areas. Interaction between the volcanic and volcano-tectonic evolution and the basement produced the other domains. Single volcanic edifices, like lava domes and scoria cones, and eruptive fractures were recognized. Finally, flank collapse scarps opened to the east and to the north were identified and four relevant morphostructural lineaments and their possible role in the Nevado de Toluca geological and structural evolution are discussed.

  6. When probabilistic seismic hazard climbs volcanoes: the Mt. Etna case, Italy - Part 2: Computational implementation and first results

    Science.gov (United States)

    Peruzza, Laura; Azzaro, Raffaele; Gee, Robin; D'Amico, Salvatore; Langer, Horst; Lombardo, Giuseppe; Pace, Bruno; Pagani, Marco; Panzera, Francesco; Ordaz, Mario; Suarez, Miguel Leonardo; Tusa, Giuseppina

    2017-11-01

    This paper describes the model implementation and presents results of a probabilistic seismic hazard assessment (PSHA) for the Mt. Etna volcanic region in Sicily, Italy, considering local volcano-tectonic earthquakes. Working in a volcanic region presents new challenges not typically faced in standard PSHA, which are broadly due to the nature of the local volcano-tectonic earthquakes, the cone shape of the volcano and the attenuation properties of seismic waves in the volcanic region. These have been accounted for through the development of a seismic source model that integrates data from different disciplines (historical and instrumental earthquake datasets, tectonic data, etc.; presented in Part 1, by Azzaro et al., 2017) and through the development and software implementation of original tools for the computation, such as a new ground-motion prediction equation and magnitude-scaling relationship specifically derived for this volcanic area, and the capability to account for the surficial topography in the hazard calculation, which influences source-to-site distances. Hazard calculations have been carried out after updating the most recent releases of two widely used PSHA software packages (CRISIS, as in Ordaz et al., 2013; the OpenQuake engine, as in Pagani et al., 2014). Results are computed for short- to mid-term exposure times (10 % probability of exceedance in 5 and 30 years, Poisson and time dependent) and spectral amplitudes of engineering interest. A preliminary exploration of the impact of site-specific response is also presented for the densely inhabited Etna's eastern flank, and the change in expected ground motion is finally commented on. These results do not account for M > 6 regional seismogenic sources which control the hazard at long return periods. However, by focusing on the impact of M risk reduction.

  7. Volcano Park Mosenberg near Bettenfeld / Eifel: A new concept of geological renaturation

    Science.gov (United States)

    Koziol, Martin; Kuhn, Nikolaus J.

    2013-04-01

    Mining of the lava deposited in the area of the Mosenberg volcano near the village of Bettenfeld in the Eifel ended in 1993. The German mining law calls for an operating plan for a closed mine. In many cases, the mines are simply backfilled and planted. Such filling hides many interesting geological outcrops forever. Geological outcrops are windows into the earth, they tell us fascinating stories about the origin and evolution of the rocks and landscape. Mining the Mosenberg exposed volcanic chimneys filled with solid basalt, lapilli beds of different grain sizes and scoria welded into cinder layers, offering a perfect and large cross-section through a cinder cone. The unique sight at the closed mine at the Mosenberg volcano group was, together with the Meerfeld maar, included in the 2006 list of the 80 best "Geotopes of Germany". In 2000, the community of Bettenfeld, the municipality of Manderscheid and the Maarmuseum Manderscheid started discussions on how to enable access to these pits and open them to geotourism. The "GeoRoute Vulkaneifel around Manderscheid"as well as the "Eifel" and "Lieser" hiking trails pass nearby the former lava mine which facilitated the connection of the outcrops to existing tourism routes. Eventually, the relocation of the "GeoRoute" into the pit and the development of safe pathways there to make the lava pit safe and accessible for visitors, combined with geological information boards was developed. The term of "renaturation" was redefined in the project for the first time and implemented as "Geological renaturation". Subsequently, funds from the European Union and the State of Rhineland-Palatine to support the development of the pit were sought. In 2009, the European Union and the State of Rhineland-Palatinate granted supported for the project as part of their structural development programs (LEADER / PAUL). Their contribution consisted of half of the construction cost. The other half was covered by the municipality of Manderscheid

  8. The eruption of Mount Pagan volcano, Mariana Islands, 15 May 1981

    Science.gov (United States)

    Banks, N.G.; Koyanagi, R.Y.; Sinton, J.M.; Honma, K.T.

    1984-01-01

    A major explosive eruption occurred 15 May 1981 at Mount Pagan Volcano, the larger of two historic eruptive centers on Pagan Island, Mariana Islands. The eruption was preceded by increased numbers of locally felt earthquakes beginning in late March or early April and by new ground cracks, new sublimates, and increased gas emissions. A swarm of felt earthquakes began at 0745h (local time = UCT+10 hours) 15 May, and at 0915 h, closely following a loud sonic boom, a strong plinian column issued from the volcano. The high-altitude ash cloud (at least 13.5 km) travelled south-southeast, but ash and scoria deposits were thickest (> 2 m) in the NW sector of the island because of the prevailing low-altitude southeasterly winds. The early activity of 15 May probably involved magmatic eruption along a fissure system oriented about N10??E. However, the eruption became hydromagmatic, possibly within minutes, and was largely restricted to three long-lived vents. The northernmost of these built a substantial new scoria-ash cinder cone. Flows and air-fall deposits, consisting almost entirely of juvenile material, exceeded 105 ?? 106 m3 in volume (75 ?? 106 m3 of magma) on land and at least 70-100 ?? 606 m3 at sea. An unknown volume was carried away by stratospheric winds. Lithic blocks and juvenile bombs as large as 1 m in diameter were thrown more than 2 km from the summit, and evidence for base-surge was observed in restricted corridors as low as 200 m elevation on the north and south slopes of the volcano. Neither of these events resulted in serious injuries to the 54 residents of the island, nor did the eruption produce serious chemical hazards in their water supply. Weak eruptions occurred during the ensuing month, and some of these were monitored by ground observations, seismic monitoring, and deformation studies. Precursory seismicity and possibly deformation occurred with some of the observed eruptions. More vigorous eruptions were reported by visiting residents in late

  9. A realistic inversion algorithm for magnetic anomaly data: the Mt. Amiata volcano test

    Directory of Open Access Journals (Sweden)

    C. Carmisciano

    2003-06-01

    Full Text Available The aim of this work is the formulation of a 3D model of the Mt. Amiata volcanic complex (Southern Tuscany by means of geomagnetic data. This work is shown not only as a real test to check the validity of the inversion algorithm, but also to add information about the structure of the volcanic complex. First, we outline briefly the theory of geomagnetic data inversion and we introduce the approach adopted. Then we show the 3D model of the Amiata volcano built from the inversion, and we compare it with the available geological information. The most important consideration regards the surface distribution of the magnetization that is in good agreement with rock samples from this area. Moreover, the recovered model orientation recall the extension of the lava flows, and as a last proof of validity, the source appears to be contained inside of the topographic contour level. The credibility of the inversion procedure drives the interpretation even for the deepest part of the volcano. The geomagnetic signal appears suppressed at a depth of about 2 km, but the most striking consequence is that sub-vertical structures are found even in different positions from the conduits shown in the geologic sections. The results are thus in good agreement with the information obtained from other data, but showing features that had not been identified, stressing the informative power of the geomagnetic signal when a meaningful inversion algorithm is used.

  10. Chemical compositions of lavas from Myoko volcano group

    International Nuclear Information System (INIS)

    Hasenaka, Toshiaki; Yoshida, Takeyoshi; Hayatsu, Kenji.

    1995-01-01

    In the volcanic rocks produced in island arc and continental margin arc, the phenomena of magma mixing is observed considerably generally. The research on these phenomena has been carried out also in Japan, and the periodically refilled magma chamber model has been proposed. In this report, the results of the photon activation analysis for the volcanic rock samples of Myoko volcano, for which the magma chamber model that the supply of basalt magma is periodically received was proposed, and of which the age of eruption and the stratigraphy are clearly known, are shown, and the above model is examined together with the published data of fluorescent X-ray analysis and others. The history of activities and the rate of magma extrusion of Myoko volcano group are described. The modal compositions of the volcanic rock samples of Myoko and Kurohime volcanos, for which photon activation analysis was carried out, are shown and discussed. The results of the analysis of the chemical composition of 39 volcanic rock samples from Myoko, Kurohime and Iizuna volcanos are shown. The primary magma in Myoko volcano group, the crystallization differentiation depth and moisture content of magma in Myoko and Kurohime volcanos, the presumption of Felsic and Mafic end-members in R type andesite in Myoko volcano group, and the change of magma composition with lapse of time are described. (K.I.)

  11. Chemical compositions of lavas from Myoko volcano group

    Energy Technology Data Exchange (ETDEWEB)

    Hasenaka, Toshiaki; Yoshida, Takeyoshi [Tohoku Univ., Sendai (Japan). Faculty of Science; Hayatsu, Kenji

    1995-08-01

    In the volcanic rocks produced in island arc and continental margin arc, the phenomena of magma mixing is observed considerably generally. The research on these phenomena has been carried out also in Japan, and the periodically refilled magma chamber model has been proposed. In this report, the results of the photon activation analysis for the volcanic rock samples of Myoko volcano, for which the magma chamber model that the supply of basalt magma is periodically received was proposed, and of which the age of eruption and the stratigraphy are clearly known, are shown, and the above model is examined together with the published data of fluorescent X-ray analysis and others. The history of activities and the rate of magma extrusion of Myoko volcano group are described. The modal compositions of the volcanic rock samples of Myoko and Kurohime volcanos, for which photon activation analysis was carried out, are shown and discussed. The results of the analysis of the chemical composition of 39 volcanic rock samples from Myoko, Kurohime and Iizuna volcanos are shown. The primary magma in Myoko volcano group, the crystallization differentiation depth and moisture content of magma in Myoko and Kurohime volcanos, the presumption of Felsic and Mafic end-members in R type andesite in Myoko volcano group, and the change of magma composition with lapse of time are described. (K.I.)

  12. SAR interferometry applications on active volcanoes. State of the art and perspectives for volcano monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Puglisi, G.; Coltelli, M. [Istituto Nazionale di Geofisica e Vulcanologia, Catania (Italy)

    2001-02-01

    In this paper the application of the Synthetic Aperture Radar Interferometry (INSAR) on volcanology is analysed. Since it is not a real novelty among the different applications of INSAR in Earth Observation activities, at the beginning of this paper it is analysed the state of the art of the researches in this field. During the discussion, the point of view of volcanologists is favoured because it is considered that the first applications were often badly aimed. Consequently, the initial INSAR performances in volcanology were overrated with respect to the real capabilities of this technique. This fact lead to discover some unexpected limitations in INSAR usage in volcano monitoring, but, at the same time, spurred on scientists to overcome these drawbacks. The results achieved recently allow to better apply SAR to volcanology; in the paper a possible operative work-plan aimed at introducing INSAR in the volcano monitoring system is presented.

  13. Geologic Map of the Summit Region of Kilauea Volcano, Hawaii

    Science.gov (United States)

    Neal, Christina A.; Lockwood, John P.

    2003-01-01

    This report consists of a large map sheet and a pamphlet. The map shows the geology, some photographs, description of map units, and correlation of map units. The pamphlet gives the full text about the geologic map. The area covered by this map includes parts of four U.S. Geological Survey 7.5' topographic quadrangles (Kilauea Crater, Volcano, Ka`u Desert, and Makaopuhi). It encompasses the summit, upper rift zones, and Koa`e Fault System of Kilauea Volcano and a part of the adjacent, southeast flank of Mauna Loa Volcano. The map is dominated by products of eruptions from Kilauea Volcano, the southernmost of the five volcanoes on the Island of Hawai`i and one of the world's most active volcanoes. At its summit (1,243 m) is Kilauea Crater, a 3 km-by-5 km collapse caldera that formed, possibly over several centuries, between about 200 and 500 years ago. Radiating away from the summit caldera are two linear zones of intrusion and eruption, the east and the southwest rift zones. Repeated subaerial eruptions from the summit and rift zones have built a gently sloping, elongate shield volcano covering approximately 1,500 km2. Much of the volcano lies under water; the east rift zone extends 110 km from the summit to a depth of more than 5,000 m below sea level; whereas the southwest rift zone has a more limited submarine continuation. South of the summit caldera, mostly north-facing normal faults and open fractures of the Koa`e Fault System extend between the two rift zones. The Koa`e Fault System is interpreted as a tear-away structure that accommodates southward movement of Kilauea's flank in response to distension of the volcano perpendicular to the rift zones.

  14. Mount Meager Volcano, Canada: a Case Study for Landslides on Glaciated Volcanoes

    Science.gov (United States)

    Roberti, G. L.; Ward, B. C.; van Wyk de Vries, B.; Falorni, G.; Perotti, L.; Clague, J. J.

    2015-12-01

    Mount Meager is a strato-volcano massif in the Northern Cascade Volcanic Arc (Canada) that erupted in 2350 BP, the most recent in Canada. To study the stability of the Massif an international research project between France ( Blaise Pascal University), Italy (University of Turin) and Canada (Simon Fraser University) and private companies (TRE - sensing the planet) has been created. A complex history of glacial loading and unloading, combined with weak, hydrothermally altered rocks has resulted in a long record of catastrophic landslides. The most recent, in 2010 is the third largest (50 x 106 m3) historical landslide in Canada. Mount Meager is a perfect natural laboratory for gravity and topographic processes such as landslide activity, permafrost and glacial dynamics, erosion, alteration and uplift on volcanoes. Research is aided by a rich archive of aerial photos of the Massif (1940s up to 2006): complete coverage approximately every 10 years. This data set has been processed and multi-temporal, high resolution Orthophoto and DSMs (Digital Surface Models) have been produced. On these digital products, with the support on field work, glacial retreat and landslide activity have been tracked and mapped. This has allowed for the inventory of unstable areas, the identification of lava flows and domes, and the general improvement on the geologic knowledge of the massif. InSAR data have been used to monitor the deformation of the pre-2010 failure slope. It will also be used to monitor other unstable slopes that potentially can evolve to catastrophic collapses of up to 1 km3 in volume, endangering local communities downstream the volcano. Mount Meager is definitively an exceptional site for studying the dynamics of a glaciated, uplifted volcano. The methodologies proposed can be applied to other volcanic areas with high erosion rates such as Alaska, Cascades, and the Andes.

  15. 3D electrical conductivity tomography of volcanoes

    Science.gov (United States)

    Soueid Ahmed, A.; Revil, A.; Byrdina, S.; Coperey, A.; Gailler, L.; Grobbe, N.; Viveiros, F.; Silva, C.; Jougnot, D.; Ghorbani, A.; Hogg, C.; Kiyan, D.; Rath, V.; Heap, M. J.; Grandis, H.; Humaida, H.

    2018-05-01

    Electrical conductivity tomography is a well-established galvanometric method for imaging the subsurface electrical conductivity distribution. We characterize the conductivity distribution of a set of volcanic structures that are different in terms of activity and morphology. For that purpose, we developed a large-scale inversion code named ECT-3D aimed at handling complex topographical effects like those encountered in volcanic areas. In addition, ECT-3D offers the possibility of using as input data the two components of the electrical field recorded at independent stations. Without prior information, a Gauss-Newton method with roughness constraints is used to solve the inverse problem. The roughening operator used to impose constraints is computed on unstructured tetrahedral elements to map complex geometries. We first benchmark ECT-3D on two synthetic tests. A first test using the topography of Mt. St Helens volcano (Washington, USA) demonstrates that we can successfully reconstruct the electrical conductivity field of an edifice marked by a strong topography and strong variations in the resistivity distribution. A second case study is used to demonstrate the versatility of the code in using the two components of the electrical field recorded on independent stations along the ground surface. Then, we apply our code to real data sets recorded at (i) a thermally active area of Yellowstone caldera (Wyoming, USA), (ii) a monogenetic dome on Furnas volcano (the Azores, Portugal), and (iii) the upper portion of the caldera of Kīlauea (Hawai'i, USA). The tomographies reveal some of the major structures of these volcanoes as well as identifying alteration associated with high surface conductivities. We also review the petrophysics underlying the interpretation of the electrical conductivity of fresh and altered volcanic rocks and molten rocks to show that electrical conductivity tomography cannot be used as a stand-alone technique due to the non-uniqueness in

  16. Large-N in Volcano Settings: Volcanosri

    Science.gov (United States)

    Lees, J. M.; Song, W.; Xing, G.; Vick, S.; Phillips, D.

    2014-12-01

    We seek a paradigm shift in the approach we take on volcano monitoring where the compromise from high fidelity to large numbers of sensors is used to increase coverage and resolution. Accessibility, danger and the risk of equipment loss requires that we develop systems that are independent and inexpensive. Furthermore, rather than simply record data on hard disk for later analysis we desire a system that will work autonomously, capitalizing on wireless technology and in field network analysis. To this end we are currently producing a low cost seismic array which will incorporate, at the very basic level, seismological tools for first cut analysis of a volcano in crises mode. At the advanced end we expect to perform tomographic inversions in the network in near real time. Geophone (4 Hz) sensors connected to a low cost recording system will be installed on an active volcano where triggering earthquake location and velocity analysis will take place independent of human interaction. Stations are designed to be inexpensive and possibly disposable. In one of the first implementations the seismic nodes consist of an Arduino Due processor board with an attached Seismic Shield. The Arduino Due processor board contains an Atmel SAM3X8E ARM Cortex-M3 CPU. This 32 bit 84 MHz processor can filter and perform coarse seismic event detection on a 1600 sample signal in fewer than 200 milliseconds. The Seismic Shield contains a GPS module, 900 MHz high power mesh network radio, SD card, seismic amplifier, and 24 bit ADC. External sensors can be attached to either this 24-bit ADC or to the internal multichannel 12 bit ADC contained on the Arduino Due processor board. This allows the node to support attachment of multiple sensors. By utilizing a high-speed 32 bit processor complex signal processing tasks can be performed simultaneously on multiple sensors. Using a 10 W solar panel, second system being developed can run autonomously and collect data on 3 channels at 100Hz for 6 months

  17. Light-cone quantization and hadron structure

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1996-04-01

    Quantum chromodynamics provides a fundamental description of hadronic and nuclear structure and dynamics in terms of elementary quark and gluon degrees of freedom. In practice, the direct application of QCD to reactions involving the structure of hadrons is extremely complex because of the interplay of nonperturbative effects such as color confinement and multi-quark coherence. In this talk, the author will discuss light-cone quantization and the light-cone Fock expansion as a tractable and consistent representation of relativistic many-body systems and bound states in quantum field theory. The Fock state representation in QCD includes all quantum fluctuations of the hadron wavefunction, including fax off-shell configurations such as intrinsic strangeness and charm and, in the case of nuclei, hidden color. The Fock state components of the hadron with small transverse size, which dominate hard exclusive reactions, have small color dipole moments and thus diminished hadronic interactions. Thus QCD predicts minimal absorptive corrections, i.e., color transparency for quasi-elastic exclusive reactions in nuclear targets at large momentum transfer. In other applications, such as the calculation of the axial, magnetic, and quadrupole moments of light nuclei, the QCD relativistic Fock state description provides new insights which go well beyond the usual assumptions of traditional hadronic and nuclear physics

  18. Dynamic triggering of volcano drumbeat-like seismicity at the Tatun volcano group in Taiwan

    Science.gov (United States)

    Lin, Cheng-Horng

    2017-07-01

    Periodical seismicity during eruptions has been observed at several volcanoes, such as Mount St. Helens and Soufrière Hills. Movement of magma is often considered one of the most important factors in its generation. Without any magma movement, drumbeat-like (or heartbeat-like) periodical seismicity was detected twice beneath one of the strongest fumarole sites (Dayoukeng) among the Tatun volcano group in northern Taiwan in 2015. Both incidences of drumbeat-like seismicity were respectively started after felt earthquakes in Taiwan, and then persisted for 1-2 d afterward with repetition intervals of ∼18 min between any two adjacent events. The phenomena suggest both drumbeat-like (heartbeat-like) seismicity sequences were likely triggered by dynamic waves generated by the two felt earthquakes. Thus, rather than any involvement of magma, a simplified pumping system within a degassing conduit is proposed to explain the generation of drumbeat-like seismicity. The collapsed rocks within the conduit act as a piston, which was repeatedly lifted up by ascending gas from a deeper reservoir and dropped down when the ascending gas was escaping later. These phenomena show that the degassing process is still very strong in the Tatun volcano group in Taiwan, even though it has been dormant for about several thousand years.

  19. Insectos de cones y semillas de las coniferas de Mexico

    Science.gov (United States)

    David Cibrián-Tovar; Bernard H. Ebel; Harry O. Yates; José Tulio Mhdez-Montiel

    1986-01-01

    The hosts, description, damage, life cycle, habits, and importance of 54 known cone and seed destroying insects attacking Mexican conifer trees are discussed. Distribution maps and color photos are provided. New species described are three species of Cydia (seedworm), four species of Dioryctria (coneworm), and four species of cone...

  20. Polynomial Primal-Dual Cone Affine Scaling for Semidefinite Programming

    NARCIS (Netherlands)

    A.B. Berkelaar (Arjan); J.F. Sturm; S. Zhang (Shuzhong)

    1996-01-01

    textabstractIn this paper we generalize the primal--dual cone affine scaling algorithm of Sturm and Zhang to semidefinite programming. We show in this paper that the underlying ideas of the cone affine scaling algorithm can be naturely applied to semidefinite programming, resulting in a new

  1. Characteristics and petrology of the effusive-explosive activity of Colima volcano, in the years 2015-2017

    Science.gov (United States)

    Suarez-Plascencia, C.; Nuñez-Cornu, F. J.; Arreola-Ochoa, L. C.; Suarez, G. B. V.; Carrillo-Gonzalez, D. A.

    2017-12-01

    The Colima volcano, during the years 2015-2017, presented an important effusive and explosive activity, which began in January 2015 with the growth of a dome that was destroyed by explosions, forming pyroclastic flows reaching distances of up to 2 km by the north and south flanks of the volcano. In May a new dome was extruded, forming three thick lava flows along the northern and southern slopes; the extruded volume was approximately 6 million cubic meters, with a rate in 52 days of 1.3 m3/sec. On July 11 merapi flows were formed it flowed through by the ravines of Montegrande and San Antonio, on the south and southwest flank, reaching distances of 10.4 km. The following days the activity had decreased substantially, leaving a crater of 60 m of depth and 270 m of diameter. In February 2016, a small dome occupied the central part of the main crater, and it was until September that an episode of volcanic tremor began, that was associated with its rapid growth, which in 48 hours filled the crater and formed a lava flow that descended by the south slope. By October 2, 2.3 million m3 of lava were extruded, which caused a deflation of the dome. In October 7, the volcano emitted a great amount of gases and steam of water that formed an acid rain that affected forests and crops of the south and southwest slope, causing losses by 1 million dollars. In November, a series of explosions occurred that destroyed two thirds of the dome. In January 2017, the explosive activity increased and again destroyed the dome. Five events were recorded that reached between 3 km and 4 km of height on the top of the volcano, the dispersion of the ash generally went to the northeast, reaching distances of up to 200 km. Currently the volcano is sustaining reduced seismic and fumarole activity. In 2005, 2015 and 2017, the geochemical analysis of major elements such as SiO2 from the ash emitted by the volcano showed an increase from 54.51% to 60.05% and 60.24%, respectively, which was associated

  2. Deep magma transport at Kilauea volcano, Hawaii

    Science.gov (United States)

    Wright, T.L.; Klein, F.W.

    2006-01-01

    The shallow part of Kilauea's magma system is conceptually well-understood. Long-period and short-period (brittle-failure) earthquake swarms outline a near-vertical magma transport path beneath Kilauea's summit to 20 km depth. A gravity high centered above the magma transport path demonstrates that Kilauea's shallow magma system, established early in the volcano's history, has remained fixed in place. Low seismicity at 4-7 km outlines a storage region from which magma is supplied for eruptions and intrusions. Brittle-failure earthquake swarms shallower than 5 km beneath the rift zones accompany dike emplacement. Sparse earthquakes extend to a decollement at 10-12 km along which the south flank of Kilauea is sliding seaward. This zone below 5 km can sustain aseismic magma transport, consistent with recent tomographic studies. Long-period earthquake clusters deeper than 40 km occur parallel to and offshore of Kilauea's south coast, defining the deepest seismic response to magma transport from the Hawaiian hot spot. A path connecting the shallow and deep long-period earthquakes is defined by mainshock-aftershock locations of brittle-failure earthquakes unique to Kilauea whose hypocenters are deeper than 25 km with magnitudes from 4.4 to 5.2. Separation of deep and shallow long-period clusters occurs as the shallow plumbing moves with the volcanic edifice, while the deep plumbing is centered over the hotspot. Recent GPS data agrees with the volcano-propagation vector from Kauai to Maui, suggesting that Pacific plate motion, azimuth 293.5?? and rate of 7.4 cm/yr, has been constant over Kilauea's lifetime. However, volcano propagation on the island of Hawaii, azimuth 325??, rate 13 cm/yr, requires southwesterly migration of the locus of melting within the broad hotspot. Deep, long-period earthquakes lie west of the extrapolated position of Kilauea backward in time along a plate-motion vector, requiring southwesterly migration of Kilauea's magma source. Assumed ages of 0

  3. Space Radar Image of Kilauea Volcano, Hawaii

    Science.gov (United States)

    1994-01-01

    This is a deformation map of the south flank of Kilauea volcano on the big island of Hawaii, centered at 19.5 degrees north latitude and 155.25 degrees west longitude. The map was created by combining interferometric radar data -- that is data acquired on different passes of the space shuttle which are then overlayed to obtain elevation information -- acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar during its first flight in April 1994 and its second flight in October 1994. The area shown is approximately 40 kilometers by 80 kilometers (25 miles by 50 miles). North is toward the upper left of the image. The colors indicate the displacement of the surface in the direction that the radar instrument was pointed (toward the right of the image) in the six months between images. The analysis of ground movement is preliminary, but appears consistent with the motions detected by the Global Positioning System ground receivers that have been used over the past five years. The south flank of the Kilauea volcano is among the most rapidly deforming terrains on Earth. Several regions show motions over the six-month time period. Most obvious is at the base of Hilina Pali, where 10 centimeters (4 inches) or more of crustal deformation can be seen in a concentrated area near the coastline. On a more localized scale, the currently active Pu'u O'o summit also shows about 10 centimeters (4 inches) of change near the vent area. Finally, there are indications of additional movement along the upper southwest rift zone, just below the Kilauea caldera in the image. Deformation of the south flank is believed to be the result of movements along faults deep beneath the surface of the volcano, as well as injections of magma, or molten rock, into the volcano's 'plumbing' system. Detection of ground motions from space has proven to be a unique capability of imaging radar technology. Scientists hope to use deformation data acquired by SIR-C/X-SAR and future imaging

  4. Derivation of the gauge link in light cone gauge

    International Nuclear Information System (INIS)

    Gao Jianhua

    2010-01-01

    In light cone gauge, a gauge link at light cone infinity is necessary for transverse momentum-dependent parton distribution to restore the gauge invariance in some specific boundary conditions. We derive such transverse gauge link in a more regular and general method. We find the gauge link at light cone infinity naturally arises from the contribution of the pinched poles: one is from the quark propagator and the other is hidden in the gauge vector field in light cone gauge. Actually, in the amplitude level, we have obtained a more general gauge link over the hypersurface at light cone infinity which is beyond the transverse direction. The difference of such gauge link between semi-inclusive deep inelastic scattering and Drell-Yan processes can also be obtained directly and clearly in our derivation.

  5. Conceptual Design of Deployment Structure of Morphing Nose Cone

    Directory of Open Access Journals (Sweden)

    Junlan Li

    2013-01-01

    Full Text Available For a reusable space vehicle or a missile, the shape of the nose cone has a significant effect on the drag of the vehicle. In this paper, the concept of morphing nose cone is proposed to reduce the drag when the reentry vehicle flies back into the atmosphere. The conceptual design of the structure of morphing nose cone is conducted. Mechanical design and optimization approach are developed by employing genetic algorithm to find the optimal geometric parameters of the morphing structure. An example is analyzed by using the proposed method. The results show that optimal solution supplies the minimum position error. The concept of morphing nose cone will provide a novel way for the drag reduction of reentry vehicle. The proposed method could be practically used for the design and optimization of the deployable structure of morphing nose cone.

  6. Implementation of Tuy's cone-beam inversion formula

    International Nuclear Information System (INIS)

    Zeng, G.L.; Clack, R.; Gullberg, G.T.

    1994-01-01

    Tuy's cone-beam inversion formula was modified to develop a cone-beam reconstruction algorithm. The algorithm was implemented for a cone-beam vertex orbit consisting of a circle and two orthogonal lines. This orbit geometry satisfies the cone-beam data sufficiency condition and is easy to implement on commercial single photon emission computed tomography (SPECT) systems. The algorithm which consists of two derivative steps, one rebinning step, and one three-dimensional backprojection step, was verified by computer simulations and by reconstructing physical phantom data collected on a clinical SPECT system. The proposed algorithm gives equivalent results and is as efficient as other analytical cone-beam reconstruction algorithms. (Author)

  7. Element fluxes from Copahue Volcano, Argentina

    Science.gov (United States)

    Varekamp, J. C.

    2003-12-01

    Copahue volcano in Argentina has an active volcano-magmatic hydrothermal system that emits fluids with pH=0.3 that feed a river system. River flux measurements and analytical data provide element flux data from 1997 to 2003, which includes the eruptive period of July to December 2000. The fluids have up to 6.5 percent sulfate, 1 percent Cl and ppm levels of B, As, Cu, Zn and Pb. The hydrothermal system acts as a perfect scrubber for magmatic gases during the periods of passive degassing, although the dissolved magmatic gases are modified through water rock interaction and mineral precipitation. The magmatic SO2 disproportionates into sulfate and liquid elemental sulfur at about 300 C; the sulfate is discharged with the fluids, whereas the liquid sulfur is temporarily retained in the reservoir but ejected during phreatic and hydrothermal eruptions. The intrusion and chemical attack of new magma in the hydrothermal reservoir in early 2000 was indicated by strongly increased Mg concentrations and Mg fluxes, and higher Mg/Cl and Mg/K values. The hydrothermal discharge has acidified a large glacial lake (0.5 km3) to pH=2 and the lake effluents acidify the exiting river. Even more than 100 km downstream, the effects of acid pulses from the lake are evident from red coated boulders and fish die-offs. The river-bound sulfate fluxes from the system range from 70 to 200 kilotonnes/year. The equivalent SO2 output of the whole volcanic system ranges from 150 to 500 tonnes/day, which includes the fraction of native sulfur that formed inside the mountain but does not include the release of SO2 into the atmosphere during the eruptions. Trace element fluxes of the river will be scaled up and compared with global element fluxes from meteoric river waters (subterranean volcanic weathering versus watershed weathering).

  8. Geomechanical rock properties of a basaltic volcano

    Directory of Open Access Journals (Sweden)

    Lauren N Schaefer

    2015-06-01

    Full Text Available In volcanic regions, reliable estimates of mechanical properties for specific volcanic events such as cyclic inflation-deflation cycles by magmatic intrusions, thermal stressing, and high temperatures are crucial for building accurate models of volcanic phenomena. This study focuses on the challenge of characterizing volcanic materials for the numerical analyses of such events. To do this, we evaluated the physical (porosity, permeability and mechanical (strength properties of basaltic rocks at Pacaya Volcano (Guatemala through a variety of laboratory experiments, including: room temperature, high temperature (935 °C, and cyclically-loaded uniaxial compressive strength tests on as-collected and thermally-treated rock samples. Knowledge of the material response to such varied stressing conditions is necessary to analyze potential hazards at Pacaya, whose persistent activity has led to 13 evacuations of towns near the volcano since 1987. The rocks show a non-linear relationship between permeability and porosity, which relates to the importance of the crack network connecting the vesicles in these rocks. Here we show that strength not only decreases with porosity and permeability, but also with prolonged stressing (i.e., at lower strain rates and upon cooling. Complimentary tests in which cyclic episodes of thermal or load stressing showed no systematic weakening of the material on the scale of our experiments. Most importantly, we show the extremely heterogeneous nature of volcanic edifices that arise from differences in porosity and permeability of the local lithologies, the limited lateral extent of lava flows, and the scars of previous collapse events. Input of these process-specific rock behaviors into slope stability and deformation models can change the resultant hazard analysis. We anticipate that an increased parameterization of rock properties will improve mitigation power.

  9. Ash and Steam, Soufriere Hills Volcano, Monserrat

    Science.gov (United States)

    2002-01-01

    International Space Station crew members are regularly alerted to dynamic events on the Earth's surface. On request from scientists on the ground, the ISS crew observed and recorded activity from the summit of Soufriere Hills on March 20, 2002. These two images provide a context view of the island (bottom) and a detailed view of the summit plume (top). When the images were taken, the eastern side of the summit region experienced continued lava growth, and reports posted on the Smithsonian Institution's Weekly Volcanic Activity Report indicate that 'large (50-70 m high), fast-growing, spines developed on the dome's summit. These spines periodically collapsed, producing pyroclastic flows down the volcano's east flank that sometimes reached the Tar River fan. Small ash clouds produced from these events reached roughly 1 km above the volcano and drifted westward over Plymouth and Richmond Hill. Ash predominately fell into the sea. Sulfur dioxide emission rates remained high. Theodolite measurements of the dome taken on March 20 yielded a dome height of 1,039 m.' Other photographs by astronauts of Montserrat have been posted on the Earth Observatory: digital photograph number ISS002-E-9309, taken on July 9, 2001; and a recolored and reprojected version of the same image. Digital photograph numbers ISS004-E-8972 and 8973 were taken 20 March, 2002 from Space Station Alpha and were provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  10. Magma supply, storage, and transport at shield-stage Hawaiian volcanoes: Chapter 5 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Poland, Michael P.; Miklius, Asta; Montgomery-Brown, Emily K.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    The characteristics of magma supply, storage, and transport are among the most critical parameters governing volcanic activity, yet they remain largely unconstrained because all three processes are hidden beneath the surface. Hawaiian volcanoes, particularly Kīlauea and Mauna Loa, offer excellent prospects for studying subsurface magmatic processes, owing to their accessibility and frequent eruptive and intrusive activity. In addition, the Hawaiian Volcano Observatory, founded in 1912, maintains long records of geological, geophysical, and geochemical data. As a result, Hawaiian volcanoes have served as both a model for basaltic volcanism in general and a starting point for many studies of volcanic processes.

  11. K-Ar ages of the Nyuto-Takakura volcanic products, southern part of the Sengan geothermal area, northeast Japan

    International Nuclear Information System (INIS)

    Suto, Shigeru; Uto, Kozo; Uchiumi, Shigeru

    1990-01-01

    The K-Ar age determination of the volcanic rocks from the Nyuto-Takakura volcano group, northeast Japan, was carried out. Nyuto-Takakura volcanoes are situated in the southern part of the Sengan geothermal area. And the Young Volcanic Rocks in the area were already divided into the Early stage volcanics (erupted in Matsuyama reversed epoch or more older epoch) and the Later stage volcanics (erupted in Brunhes normal epoch) by accumulated paleomagnetic and K-Ar age data. The results in this study are as follows; Nyuto Volcano: 0.63±0.06, 0.36±0.07 Ma, Sasamoriyama Volcano: 0.09±0.07, 0.3±0.3 Ma, Marumori Lava Dome: 0.4±0.3, 0.31±0.12 Ma, Mikadoyama Lava Dome: <1 Ma, Takakurayama-Kotakakurayama volcano: 1.4±0.5, 1.0±0.4, <0.4 Ma. The determinated ages are concordant with the volcanic stratigraphy and the paleomagnetic data. Nyuto Volcano, Sasamoriyama Volcano, Marumori Lava Dome, Mikadoyama Lava Dome and upper part of the Takakurayama-Kotakakurayama Volcano are interpreted to be erupted in Brunhes normal epoch. The volcanic rocks from the lower part of the Takakurayama-Kotakakurayama volcano show normal magnetic polarity, so they are interpreted to be erupted in Jaramillo normal polarity event. The Early stage volcanics and the Later stage volcanics in the studied area are tend to be distributed in the central part and the outer part of the area, respectively. But the determinated ages in this study show that there is no simple migration of the eruption center of the volcanic rocks from the central part to the peripheral part. There is no geothermal manifestation or alteration area around the Sasamoriyama Volcano and the Marumori Lava Dome, which are the youngest volcanoes in the studied area. So it is concluded that there is no direct correlation between the eruption age of the nearest volcano and the geothermal activity. (author)

  12. Geochemical and Thermodinamic Modeling of Segara Anak Lake and the 2009 Eruption of Rinjani Volcano, Lombok, Indonesia

    Directory of Open Access Journals (Sweden)

    Akhmad Solikhin

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v5i4.106Rinjani is the second highest volcano in Indonesia with an elevation of 3726 m above sea level. The steep and highest cone of Rinjani consists mainly of loose pyroclastic ejecta and contains a crater with a few solfataras. The West of this cone is Segara Anak caldera. The western side of the caldera is occupied by a 230 m deep lake, covering an area of 11 km² and its volume was (before the 2009 eruption estimated 1.02 km3. This is probably the largest hot volcanic lake in the world.The lake water is neutral (pH: 7-8 and its chemistry dominated by chlorides and sulfates with a relatively high TDS (Total Dissolved Solids: 2640 mg/l. This unusual TDS as well as the lake surface temperatures (20 - 22°C well above ambient temperatures (14 - 15°C for this altitude, reflect a strong input of hydrothermal fluids. Numerous hot springs are located along the shore at the foot of Barujari volcanic cone. Bathymetric profiles show also several areas with columns of gas bubbles escaping from the lake floor indicating a significant discharge of CO gas into the lake. The mass and energy balance model of Rinjani Crater Lake produce total heat lost value on the average of 1700 MW. Most of the heating periods of the lake occurred when the heat released by the surface of the lake to the atmosphere was lower than the heat supplied from the hydrothermal system. Peaks of heat losses correspond to period of strong winds. Crater lake monitoring can provide a basic information about deep magmatic activity and surface processes that occur in the volcano. The monitoring also contributes to predict the next eruption in order to improve mitigation of volcanic eruption. Precursory signals of the May 2009 eruption can be seen from significant changes in the temperature and chemistry of some of the hot springs, the increase of Fe concentrations in spring #54, chemical plume of low pH and dissolved oxygen, acidification of Segara

  13. Explosive eruptive history of Pantelleria, Italy: Repeated caldera collapse and ignimbrite emplacement at a peralkaline volcano

    Science.gov (United States)

    Jordan, Nina J.; Rotolo, Silvio G.; Williams, Rebecca; Speranza, Fabio; McIntosh, William C.; Branney, Michael J.; Scaillet, Stéphane

    2018-01-01

    A new, pre-Green Tuff (46 ka) volcanic stratigraphy is presented for the peralkaline Pantelleria Volcano, Italy. New 40Ar/39Ar and paleomagnetic data are combined with detailed field studies to develop a comprehensive stratigraphic reconstruction of the island. We find that the pre-46 ka succession is characterised by eight silica-rich peralkaline (trachyte to pantellerite) ignimbrites, many of which blanketed the entire island. The ignimbrites are typically welded to rheomorphic, and are commonly associated with lithic breccias and/or pumice deposits. They record sustained radial pyroclastic density currents fed by low pyroclastic fountains. The onset of ignimbrite emplacement is typically preceded (more rarely followed) by pumice fallout with limited dispersal, and some eruptions lack any associated pumice fall deposit, suggesting the absence of tall eruption columns. Particular attention is given to the correlation of well-developed lithic breccias in the ignimbrites, interpreted as probable tracers of caldera collapses. They record as many as five caldera collapse events, in contrast to the two events reported to date. Inter-ignimbrite periods are characterised by explosive and effusive eruptions with limited dispersal, such as small pumice cones, as well as pedogenesis. These periods have similar characteristics as the current post-Green Tuff activity on the island, and, while not imminent, it is reasonable to postulate the occurrence of another ignimbrite-forming eruption sometime in the future.

  14. Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano, Hawaii

    Science.gov (United States)

    Trusdell, Frank A.; Moore, Richard B.

    2006-01-01

    K'lauea is an active shield volcano in the southeastern part of the Island of Hawai'i. The middle east rift zone (MERZ) map includes about 27 square kilometers of the MERZ and shows the distribution of the products of 37 separate eruptions during late Holocene time. Lava flows erupted during 1983-96 have reached the mapped area. The subaerial part of the MERZ is 3-4 km wide and about 18 km long. It is a constructional ridge, 50-150 m above the adjoining terrain, marked by low spatter ramparts and cones as high as 60 m. Lava typically flowed either northeast or southeast, depending on vent location relative to the topographic crest of the rift zone. The MERZ receives more than 100 in. of rainfall annually and is covered by tropical rain forest. Vegetation begins to grow on lava a few months after its eruption. Relative heights of trees can be a guide to relative ages of underlying lava flows, but proximity to faults, presence of easily weathered cinders, and human activity also affect the rate of growth. The rocks have been grouped into five basic age groups. The framework for the ages assigned is provided by eight radiocarbon ages from previous mapping by the authors and a single date from the current mapping effort. The numerical ages are supplemented by observations of stratigraphic relations, degree of weathering, soil development, and vegetative cover.

  15. The 2008 phreatomagmatic eruption of Okmok volcano, Aleutian Islands, Alaska: Chronology, deposits, and landform changes

    Science.gov (United States)

    Jessica Larsen,; Neal, Christina; Schaefer, Janet R.; Kaufman, Max; Lu, Zhong

    2015-01-01

    Okmok volcano, Aleutian Islands, Alaska, explosively erupted over a five-week period between July 12 and August 23, 2008. The eruption was predominantly phreatomagmatic, producing fine-grained tephra that covered most of northeastern Umnak Island. The eruption had a maximum Volcanic Explosivity Index (VEI) of 4, with eruption column heights up to 16 km during the opening phase. Several craters and a master tuff cone formed in the caldera as a result of phreatomagmatic explosions and accumulated tephra-fall and surge deposits. Ascending magma continuously interacted with an extensive shallow groundwater table in the caldera, resulting in the phreatomagmatic character of the eruption. Syneruptive explosion and collapse processes enlarged a pre-existing lake, created a second, entirely new lake, and formed new, deep craters. A field of ephemeral collapse pits and collapse escarpments formed where rapid groundwater withdrawal removed material from beneath capping lava flows. This was the first significant phreatomagmatic event in the U.S. since the Ukinrek Maars eruption in 1977.

  16. Self-potential signals caused by eruptions of the Galeras volcano – Colombia

    Directory of Open Access Journals (Sweden)

    Greinwald S.

    2007-12-01

    Full Text Available The National Institute of Geology and Mining, INGEOMINAS - Colombia, and the Federal Institute for Geosciences and Natural Resources, BGR - Germany, perform since 1997 as a joint venture
    multi-parameter measurements at the Galeras volcano, in the southwest of Colombia. Since the end of 1998 the Multi-parameter Station at Galeras (Estación Multiparámetro del Galeras - EMG includes the continuous monitoring of electromagnetic variations. The electromagnetic (EM station is located at the north-eastern foot walls of the central cone inside the caldera.
    During almost six years of electromagnetic monitoring, the data did not show significant variations of the electromagnetic field, which could be related to the volcanic activity. In July 2004 a new active period of Galeras began with two strong ash emissions. During both emissions strong self potential- (SP signals were recorded lasting for several hours. The present paper will present the data which could give some indications on the movements of liquids during ash emissions.

  17. The MU-RAY project: Volcano radiography with cosmic-ray muons

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosi, G. [INFN sezione di Perugia (Italy); Ambrosino, F. [INFN sezione di Napoli (Italy); Universita Federico II, Napoli (Italy); Battiston, R. [INFN sezione di Perugia (Italy); Universita di Perugia (Italy); Bross, A. [Fermilab (United States); Callier, S. [LAL, Orsay (France); Cassese, F. [INFN sezione di Napoli (Italy); Castellini, G. [CNR-IFAC, Firenze (Italy); Ciaranfi, R. [INFN sezione Firenze (Italy); Cozzolino, F. [INFN sezione di Napoli (Italy); D' Alessandro, R. [INFN sezione Firenze (Italy); Universita di Firenze (Italy); La Taille, C. de [LAL, Orsay (France); Iacobucci, G. [INFN sezione di Napoli (Italy); Marotta, A. [INFN sezione di Napoli (Italy); Universita Federico II, Napoli (Italy); Masone, V. [INFN sezione di Napoli (Italy); Martini, M. [INGV-Osservatorio Vesuviano, Napoli (Italy); Nishiyama, R. [Earthquake Research Institute, The University of Tokyo (Japan); Noli, P. [INFN sezione di Napoli (Italy); Universita Federico II, Napoli (Italy); Orazi, M. [INGV-Osservatorio Vesuviano, Napoli (Italy); Parascandolo, L.; Parascandolo, P. [INFN sezione di Napoli (Italy)

    2011-02-01

    Cosmic-ray muon radiography is a technique for imaging the variation of density inside the top few 100 m of a volcanic cone. With resolutions up to 10s of meters in optimal detection conditions, muon radiography can provide images of the top region of a volcano edifice with a resolution that is considerably better than that typically achieved with conventional methods. Such precise measurements are expected to provide us with information on anomalies in the rock density distribution, like those expected from dense lava conduits, low density magma supply paths or the compression with depth of the overlying soil. The MU-RAY project aims at the construction of muon telescopes and the development of new analysis tools for muon radiography. The telescopes are required to be able to work in harsh environment and to have low power consumption, good angular and time resolutions, large active area and modularity. The telescope consists of two X-Y planes of 2x2 square meters area made by plastic scintillator strips of triangular shape. Each strip is read by a fast WLS fiber coupled to a silicon photomultiplier. The readout electronics is based on the SPIROC chip.

  18. Acute Zonal Cone Photoreceptor Outer Segment Loss.

    Science.gov (United States)

    Aleman, Tomas S; Sandhu, Harpal S; Serrano, Leona W; Traband, Anastasia; Lau, Marisa K; Adamus, Grazyna; Avery, Robert A

    2017-05-01

    The diagnostic path presented narrows down the cause of acute vision loss to the cone photoreceptor outer segment and will refocus the search for the cause of similar currently idiopathic conditions. To describe the structural and functional associations found in a patient with acute zonal occult photoreceptor loss. A case report of an adolescent boy with acute visual field loss despite a normal fundus examination performed at a university teaching hospital. Results of a complete ophthalmic examination, full-field flash electroretinography (ERG) and multifocal ERG, light-adapted achromatic and 2-color dark-adapted perimetry, and microperimetry. Imaging was performed with spectral-domain optical coherence tomography (SD-OCT), near-infrared (NIR) and short-wavelength (SW) fundus autofluorescence (FAF), and NIR reflectance (REF). The patient was evaluated within a week of the onset of a scotoma in the nasal field of his left eye. Visual acuity was 20/20 OU, and color vision was normal in both eyes. Results of the fundus examination and of SW-FAF and NIR-FAF imaging were normal in both eyes, whereas NIR-REF imaging showed a region of hyporeflectance temporal to the fovea that corresponded with a dense relative scotoma noted on light-adapted static perimetry in the left eye. Loss in the photoreceptor outer segment detected by SD-OCT co-localized with an area of dense cone dysfunction detected on light-adapted perimetry and multifocal ERG but with near-normal rod-mediated vision according to results of 2-color dark-adapted perimetry. Full-field flash ERG findings were normal in both eyes. The outer nuclear layer and inner retinal thicknesses were normal. Localized, isolated cone dysfunction may represent the earliest photoreceptor abnormality or a distinct entity within the acute zonal occult outer retinopathy complex. Acute zonal occult outer retinopathy should be considered in patients with acute vision loss and abnormalities on NIR-REF imaging, especially if

  19. One hundred years of volcano monitoring in Hawaii

    Science.gov (United States)

    Kauahikaua, Jim; Poland, Mike

    2012-01-01

    In 2012 the Hawaiian Volcano Observatory (HVO), the oldest of five volcano observatories in the United States, is commemorating the 100th anniversary of its founding. HVO's location, on the rim of Kilauea volcano (Figure 1)—one of the most active volcanoes on Earth—has provided an unprecedented opportunity over the past century to study processes associated with active volcanism and develop methods for hazards assessment and mitigation. The scientifically and societally important results that have come from 100 years of HVO's existence are the realization of one man's vision of the best way to protect humanity from natural disasters. That vision was a response to an unusually destructive decade that began the twentieth century, a decade that saw almost 200,000 people killed by the effects of earthquakes and volcanic eruptions.

  20. The Active Lava Flows of Kilauea Volcano, Hawaii

    Indian Academy of Sciences (India)

    'lahar' is from Indonesia, a country with some of the most active and destructive volcanoes .... tourist-dependent businesses such as airlines, rental car compa- nies, and hotels. ... excellent viewing conditions and photo opportunities. The heat.

  1. Vegetation damage and recovery after Chiginagak Volcano Crater drainage event

    Data.gov (United States)

    Department of the Interior — From August 20 — 23, 2006, I revisited Chiginigak volcano to document vegetation recovery after the crater drainage event that severely damaged vegetation in May of...

  2. Penguin Bank: A Loa-Trend Hawaiian Volcano

    Science.gov (United States)

    Xu, G.; Blichert-Toft, J.; Clague, D. A.; Cousens, B.; Frey, F. A.; Moore, J. G.

    2007-12-01

    Hawaiian volcanoes along the Hawaiian Ridge from Molokai Island in the northwest to the Big Island in the southeast, define two parallel trends of volcanoes known as the Loa and Kea spatial trends. In general, lavas erupted along these two trends have distinctive geochemical characteristics that have been used to define the spatial distribution of geochemical heterogeneities in the Hawaiian plume (e.g., Abouchami et al., 2005). These geochemical differences are well established for the volcanoes forming the Big Island. The longevity of the Loa- Kea geochemical differences can be assessed by studying East and West Molokai volcanoes and Penguin Bank which form a volcanic ridge perpendicular to the Loa and Kea spatial trends. Previously we showed that East Molokai volcano (~1.5 Ma) is exclusively Kea-like and that West Molokai volcano (~1.8 Ma) includes lavas that are both Loa- and Kea-like (Xu et al., 2005 and 2007).The submarine Penguin Bank (~2.2 Ma), probably an independent volcano constructed west of West Molokai volcano, should be dominantly Loa-like if the systematic Loa and Kea geochemical differences were present at ~2.2 Ma. We have studied 20 samples from Penguin Bank including both submarine and subaerially-erupted lavas recovered by dive and dredging. All lavas are tholeiitic basalt representing shield-stage lavas. Trace element ratios, such as Sr/Nb and Zr/Nb, and isotopic ratios of Sr and Nd clearly are Loa-like. On an ɛNd-ɛHf plot, Penguin Bank lavas fall within the field defined by Mauna Loa lavas. Pb isotopic data lie near the Loa-Kea boundary line defined by Abouchami et al. (2005). In conclusion, we find that from NE to SW, i.e., perpendicular to the Loa and Kea spatial trend, there is a shift from Kea-like East Molokai lavas to Loa-like Penguin Bank lavas with the intermediate West Molokai volcano having lavas with both Loa- and Kea-like geochemical features. Therefore, the Loa and Kea geochemical dichotomy exhibited by Big Island volcanoes

  3. Magmas with slab fluid and decompression melting signatures coexisting in the Gulf of Fonseca: Evidence from Isla El Tigre volcano (Honduras, Central America)

    Science.gov (United States)

    Mattioli, Michele; Renzulli, Alberto; Agostini, Samuele; Lucidi, Roberto

    2016-01-01

    Isla El Tigre volcano is located in the Gulf of Fonseca (Honduras) along the Central America volcanic front, where a significant change in the strike of the volcanic chain is observed. The studied samples of this poorly investigated volcano are mainly subalkaline basic to intermediate lavas (basalts and basaltic andesites) and subordinate subalkaline/alkaline transitional basalts, both having the typical mineralogical and geochemical characteristics of arc volcanic rocks. On the basis of petrographic and geochemical features, two groups of rocks have been distinguished. Lavas from the main volcanic edifice are highly porphyritic and hy-qz normative, and have lower MgO contents ( 5 wt.%), are ol-hy normative and show lower HFSE depletions relative to LILE and LREE, with lower Ba/La, Ba/Nb and Zr/Nb ratios. This suggests that mantle-derived magmas were not produced by the same process throughout the activity of the volcano. The bulk rock geochemistry and 87Sr/86Sr (0.70373-0.70382), 143Nd/144Nd (0.51298-0.51301), 206Pb/204Pb (18.55-18.58), 207Pb/204Pb (15.54-15.56) and 208Pb/204Pb (38.23-38.26) isotopic data of Isla El Tigre compared with the other volcanoes of the Gulf of Fonseca and all available literature data for Central America suggests that this stratovolcano was mainly built by mantle-derived melts driven by slab-derived fluid-flux melting, while magmas erupted through its parasitic cones have a clear signature of decompression melting with minor slab contribution. The coexistence of these two different mantle melting generation processes is likely related to the complex geodynamic setting of the Gulf of Fonseca, where the volcanic front changes direction by ca. 30° and two fundamental tectonic structures of the Chortis continental block, mainly the N-S Honduras Depression and the NE-SW Guayape Fault Zone, cross each other.

  4. Volcano-hydrothermal energy research at white Island, New Zealand

    International Nuclear Information System (INIS)

    Allis, R.G.

    1994-01-01

    This paper presents the White Island (New Zealand) volcano-hydrothermal research project by the N.Z. DSIR and the Geological Survey of Japan, which is investigating the coupling between magmatic and geothermal systems. The first phase of this investigation is a geophysical survey of the crater floor of the andesite volcano, White Island during 1991/1992, to be followed by drilling from the crater floor into the hydrothermal system. (TEC). 4 figs., 8 refs

  5. Geochemical signatures of tephras from Quaternary Antarctic Peninsula volcanoes

    OpenAIRE

    Kraus,Stefan; Kurbatov,Andrei; Yates,Martin

    2013-01-01

    In the northern Antarctic Peninsula area, at least 12 Late Plelstocene-Holocene volcanic centers could be potential sources of tephra layers in the region. We present unique geochemical fingerprints for ten of these volcanoes using major, trace, rare earth element, and isotope data from 95 samples of tephra and other eruption products. The volcanoes have predominantly basaltic and basaltic andesitic compositions. The Nb/Y ratio proves useful to distinguish between volcanic centers located on ...

  6. Estimates of elastic plate thicknesses beneath large volcanos on Venus

    Science.gov (United States)

    Mcgovern, Patrick J.; Solomon, Sean C.

    1992-01-01

    Megellan radar imaging and topography data are now available for a number of volcanos on Venus greater than 100 km in radius. These data can be examined to reveal evidence of the flexural response of the lithosphere to the volcanic load. On Earth, flexure beneath large hotspot volcanos results in an annual topographic moat that is partially to completely filled in by sedimentation and mass wasting from the volcano's flanks. On Venus, erosion and sediment deposition are considered to be negligible at the resolution of Magellan images. Thus, it may be possible to observe evidence of flexure by the ponding of recent volcanic flows in the moat. We also might expect to find topographic signals from unfilled moats surrounding large volcanos on Venus, although these signals may be partially obscured by regional topography. Also, in the absence of sedimentation, tectonic evidence of deformation around large volcanos should be evident except where buried by very young flows. We use analytic solutions in axisymmetric geometry for deflections and stresses resulting from loading of a plate overlying an inviscid fluid. Solutions for a set of disk loads are superimposed to obtain a solution for a conical volcano. The deflection of the lithosphere produces an annular depression or moat, the extent of which can be estimated by measuring the distance from the volcano's edge to the first zero crossing or to the peak of the flexural arch. Magellan altimetry data records (ARCDRs) from data cycle 1 are processed using the GMT mapping and graphics software to produce topographic contour maps of the volcanos. We then take topographic profiles that cut across the annular and ponded flows seen on the radar images. By comparing the locations of these flows to the predicted moat locations from a range of models, we estimate the elastic plate thickness that best fits the observations, together with the uncertainty in that estimate.

  7. The Riscos Bayos Ignimbrites of the Caviahue-Copahue volcanic caldera complex, southern Andes, Argentina

    Science.gov (United States)

    Colvin, A.; Merrill, M.; Demoor, M.; Goss, A.; Varekamp, J. C.

    2004-05-01

    The Caviahue-Copahue volcanic complex (38 S, 70 W) is located on the eastern margin of the active arc in the southern Andes, Argentina. Volcán Copahue, an active stratovolcano which hosts an active hydrothermal system, sits on the southwestern rim of the elliptical Caviahue megacaldera (17 x 15 km). The caldera wall sequences are up to 0.6 km thick and consist of lavas with 51 -69 percent SiO2 and 0.2 - 5 percent MgO as well as breccias, dikes, sills, domes and minor ignimbrites. Andesitic lava flows also occur within the caldera, and are overlain by a chaotic complex of silicic lava and intracaldera pyroclastic flow deposits. The eastern wall sequence is capped by several extracaldera ignimbrites (Riscos Bayos formation) of about 50 m maximum thickness which extend 30 km east-southeast of the caldera. Young back-arc alkali basalt scoria cones occur east of the Caviahue-Copahue volcanic complex. The eruption of the Riscos Bayos formation at about 1.1 Ma (12 km cubed) may be related to the Caviahue caldera formation, though the Riscos Bayos account for only about 7 percent of the caldera volume. The Riscos Bayos consists of three lithic-bearing flow units: a grey basal flow, a tan middle flow and a bright-white, highly indurated uppermost flow. The basal unit consists of white and grey pumice fragments, black scoria clasts, black obsidian clasts (which give it the grey color), and accidental volcanic lithics set in a matrix of ash and crystals. The middle unit is composed of large mauve pumice fragments and accidental lithics set in a fine tan ash groundmass. The uppermost unit is composed of small pink and white pumice fragments set in a matrix of fine white ash. These pumices carry quartz and biotite crystals, whereas the lower two units are orthopyroxene-bearing trachy-dacites. The Caviahue-Copahue magmas all bear arc signatures, but possibly some magma mixing between the andesitic arc magmas and basaltic back-arc magmas may have occurred. The evolved top layer

  8. Radon in active volcanic areas of Southern Italy

    International Nuclear Information System (INIS)

    Avino, R.; Capaldi, G.; Pece, R.

    1999-01-01

    The paper presents the preliminary data dealing with the variations in time of the radiogenic gas radon in soils and waters of many active volcanic areas of Southern Italy. The greatest differences in Rn content of the investigated volcanic areas are: Ischia and Campi Flegrei, which have more Rn than Vesuvio and Volcano, both in soils and in waters. The thermalized waters of Ischia are enriched in Rn 15 times with respect to soils, while in the other areas soils and underground waters have comparable Rn contents

  9. Le cône sous-marin du Nil et son réseau de chenaux profonds : nouveaux résultats (campagne Fanil)The Nile Cone and its channel system: new results after the Fanil cruise

    Science.gov (United States)

    Bellaiche, Gilbert; Loncke, Lies; Gaullier, Virginie; Mascle, Jean; Courp, Thierry; Moreau, Alain; Radan, Silviu; Sardou, Olivier

    2001-10-01

    The meandrous leveed channels of the Nile Cone show clear evidence of avulsions. Their sedimentary architecture is founded on numerous stacked lens-shaped acoustic units. In the areas of the distal fan, lobe deposits are apparent from multichannel imagery. Huge debris flow deposits, sometimes associated with pockmarks, are recognized. Mud volcanoes and gas seeping are closely associated with faulting. In the East, a very long north-trending channel, originating from the Egyptian coast, merges with a network of channels, very probably originating from the Levantine coasts. Both networks outlet in the sedimentary basin located south of Cyprus.

  10. Pyroclastic flows generated by gravitational instability of the 1996-97 lava dome of Soufriere Hills Volcano, Montserrat

    Science.gov (United States)

    Cole, P.D.; Calder, E.S.; Druitt, T.H.; Hoblitt, R.; Robertson, R.; Sparks, R.S.J.; Young, S.R.

    1998-01-01

    Numerous pyroclastic flows were produced during 1996-97 by collapse of the growing andesitic lava dome at Soufriere Hills Volcano, Montserrat. Measured deposit volumes from these flows range from 0.2 to 9 ?? 106 m3. Flows range from discrete, single pulse events to sustained large scale dome collapse events. Flows entered the sea on the eastern and southern coasts, depositing large fans of material at the coast. Small runout distance (Soufriere Hills Volcano, Montserrat. Measured deposit volumes from these flows range from 0.2 to 9??106 m3. Flows range from discrete, single pulse events to sustained large scale dome collapse events. Flows entered the sea on the eastern and southern coasts, depositing large fans of material at the coast. Small runout distance (<1 km) flows had average flow front velocities in the order of 3-10 m/s while flow fronts of the larger runout distance flows (up to 6.5 km) advanced in the order of 15-30 m/s. Many flows were locally highly erosive. Field relations show that development of the fine grained ash cloud surge component was enhanced during the larger sustained events. Periods of elevated dome pyroclastic flow productivity and sustained collapse events are linked to pulses of high magma extrusion rates.

  11. Nabro and Mallahle Volcanoes, Eritrea and Ethiopia, SRTM Colored Height and Shaded Relief

    Science.gov (United States)

    2004-01-01

    The area known as the Afar Triangle is located at the northern end of the East Africa Rift, where it approaches the southeastern end of the Red Sea and the southwestern end of the Gulf of Aden. The East African Rift, the Red Sea, and the Gulf of Aden are all zones where Earth's crust is pulling apart in a process known as crustal spreading. Their three-way meeting is known as a triple junction, and their spreading creates a triangular topographic depression for which the area was named.Not surprisingly, the topographic effects of crustal spreading are more dramatic in the Afar Triangle than anywhere else upon Earth's landmasses. The spreading is primarily evident as patterns of numerous tension cracks. But some of these cracks provide conduits for magma to rise to the surface to form volcanoes.Shown here are a few of the volcanoes of the Afar Triangle. The larger two are Nabro Volcano (upper right, in Eritrea) and Mallahle Volcano (lower left, in Ethiopia). Nabro Volcano shows clear evidence of multiple episodes of activity that resulted in a crater in a crater in a crater. Many volcanoes in this area are active, including one nearby that last erupted in 1990.This image was created directly from an SRTM elevation model. A shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark. The shade image was then combined with a color coding of topographic height, with green at the lower elevations, rising through yellow, orange, and red, up to purple at the highest elevations.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth

  12. Diffuse He degassing from Cumbre Vieja volcano, La Palma, Canary Islands

    Science.gov (United States)

    Asensio-Ramos, María; De Jongh, Marli E.; Lamfers, Kristen R.; Alonso, Mar; Amonte, Cecilia; Padrón, Eleazar; Hernández, Pedro A.; Pérez, Nemesio M.

    2017-04-01

    Helium is considered as an ideal geochemical tracer due to its geochemical properties: chemical inertness, physical stability and practical insolubility in water under normal conditions. These characteristics, together with its high mobility on the crust, make the presence of helium anomalies on the surface environment of a volcanic system to be related to deep fluid migration controlled by volcano-tectonic features, also providing valuable information about the location and characteristics of the gas source and the fracturing of the crust. The recent results reported by Padrón et al. (2013) clearly show importance of helium emission studies for the prediction of major volcanic events and the importance of continuous monitoring of this gas in active volcanic regions. La Palma Island (708.32 km2) is located at the northwestern end of the Canarian Archipelago. Subaerial volcanic activity on this island started ˜2.0 My ago and has taken place exclusively at the southern part in the last 123 ka. Cumbre Vieja volcano, the most active basaltic volcano of the Canary Islands, was built in this zone, including a main north-south rift area 20 km long and up to 1,950 m in elevation, with vents located also at the northwest and northeast. Padrón et al., (2012) showed that helium is mainly emitted along both N-S and N-W rift of Cumbre Vieja, being, therefore, zones of enhanced permeability for deep gas migration and preferential routes for degassing. This work represents a continuation of the results obtained by Padrón et al. (2012) until the year 2016. Each study covered the 220 km2 of Cumbre Vieja with an average of 570 homogenously distributed sampling points. At each sampling site, soil gas samples were collected at 40 cm depth by withdrawing the gas aliquots into 60 cc hypodermic syringes. He content in the soil gases was analyzed by means of quadrupole mass spectrometry (QMS). Atmospheric gas was used periodically to calibrate the instrument. To estimate the helium

  13. Handling data redundancy in helical cone beam reconstruction with a cone-angle-based window function and its asymptotic approximation

    International Nuclear Information System (INIS)

    Tang Xiangyang; Hsieh Jiang

    2007-01-01

    A cone-angle-based window function is defined in this manuscript for image reconstruction using helical cone beam filtered backprojection (CB-FBP) algorithms. Rather than defining the window boundaries in a two-dimensional detector acquiring projection data for computed tomographic imaging, the cone-angle-based window function deals with data redundancy by selecting rays with the smallest cone angle relative to the reconstruction plane. To be computationally efficient, an asymptotic approximation of the cone-angle-based window function is also given and analyzed in this paper. The benefit of using such an asymptotic approximation also includes the avoidance of functional discontinuities that cause artifacts in reconstructed tomographic images. The cone-angle-based window function and its asymptotic approximation provide a way, equivalent to the Tam-Danielsson-window, for helical CB-FBP reconstruction algorithms to deal with data redundancy, regardless of where the helical pitch is constant or dynamically variable during a scan. By taking the cone-parallel geometry as an example, a computer simulation study is conducted to evaluate the proposed window function and its asymptotic approximation for helical CB-FBP reconstruction algorithm to handle data redundancy. The computer simulated Forbild head and thorax phantoms are utilized in the performance evaluation, showing that the proposed cone-angle-based window function and its asymptotic approximation can deal with data redundancy very well in cone beam image reconstruction from projection data acquired along helical source trajectories. Moreover, a numerical study carried out in this paper reveals that the proposed cone-angle-based window function is actually equivalent to the Tam-Danielsson-window, and rigorous mathematical proofs are being investigated

  14. Cone beam computed tomography in endodontic

    Energy Technology Data Exchange (ETDEWEB)

    Durack, Conor; Patel, Shanon [Unit of Endodontology, Department of Conservative Dentistry, King' s College London, London (United Kingdom)

    2012-07-01

    Cone beam computed tomography (CBCT) is a contemporary, radiological imaging system designed specifically for use on the maxillofacial skeleton. The system overcomes many of the limitations of conventional radiography by producing undistorted, three-dimensional images of the area under examination. These properties make this form of imaging particularly suitable for use in endodontic. The clinician can obtain an enhanced appreciation of the anatomy being assessed, leading to an improvement in the detection of endodontic disease and resulting in more effective treatment planning. In addition, CBCT operates with a significantly lower effective radiation dose when compared with conventional computed tomography (CT). The purpose of this paper is to review the current literature relating to the limitations and potential applications of CBCT in endodontic practice. (author)

  15. Cone beam computed tomography in endodontic

    International Nuclear Information System (INIS)

    Durack, Conor; Patel, Shanon

    2012-01-01

    Cone beam computed tomography (CBCT) is a contemporary, radiological imaging system designed specifically for use on the maxillofacial skeleton. The system overcomes many of the limitations of conventional radiography by producing undistorted, three-dimensional images of the area under examination. These properties make this form of imaging particularly suitable for use in endodontic. The clinician can obtain an enhanced appreciation of the anatomy being assessed, leading to an improvement in the detection of endodontic disease and resulting in more effective treatment planning. In addition, CBCT operates with a significantly lower effective radiation dose when compared with conventional computed tomography (CT). The purpose of this paper is to review the current literature relating to the limitations and potential applications of CBCT in endodontic practice. (author)

  16. Chemical profile of Taxodium distichum winter cones

    Directory of Open Access Journals (Sweden)

    Đapić Nina M.

    2017-01-01

    Full Text Available This work is concerned with the chemical profile of Taxodium distichum winter cones. The extract obtained after maceration in absolute ethanol was subjected to qualitative analysis by gas chromatography/mass spectrometry and quantification was done by gas chromatography/ flame ionization detector. The chromatogram revealed the presence of 53 compounds, of which 33 compounds were identified. The extract contained oxygenated monoterpenes (12.42%, sesquiterpenes (5.18%, oxygenated sesquiterpenes (17.41%, diterpenes (1.15%, and oxygenated diterpenes (30.87%, while the amount of retinoic acid was 0.32%. Monoacylglycerols were detected in the amount of 4.32%. The most abundant compounds were: caryophyllene oxide (14.27%, 6,7-dehydro-ferruginol (12.49%, bornyl acetate (10.96%, 6- deoxy-taxodione (9.50% and trans-caryophyllene (4.20%.

  17. Recent Seismicity in the Ceboruco Volcano, Western Mexico

    Science.gov (United States)

    Nunez, D.; Chávez-Méndez, M. I.; Nuñez-Cornu, F. J.; Sandoval, J. M.; Rodriguez-Ayala, N. A.; Trejo-Gomez, E.

    2017-12-01

    The Ceboruco volcano is the largest (2280 m.a.s.l) of several volcanoes along the Tepic-Zacoalco rift zone in Nayarit state (Mexico). During the last 1000 years, this volcano had effusive-explosive episodes with eight eruptions providing an average of one eruption each 125 years. Since the last eruption occurred in 1870, 147 years ago, a new eruption likelihood is really high and dangerous due to nearby population centers, important roads and lifelines that traverse the volcano's slopes. This hazards indicates the importance of monitoring the seismicity associated with the Ceboruco volcano whose ongoing activity is evidenced by fumaroles and earthquakes. During 2003 and 2008, this region was registered by just one Lennartz Marslite seismograph featuring a Lennartz Le3D sensor (1 Hz) [Rodríguez Uribe et al. (2013)] where they observed that seismicity rates and stresses appear to be increasing indicating higher levels of activity within the volcano. Until July 2017, a semi-permanent network with three Taurus (Nanometrics) and one Q330 Quanterra (Kinemetrics) digitizers with Lennartz 3Dlite sensors of 1 Hz natural frequency was registering in the area. In this study, we present the most recent seismicity obtained by the semi-permanent network and a temporary network of 21 Obsidians 4X and 8X (Kinemetrics) covering an area of 16 km x 16 km with one station every 2.5-3 km recording from November 2016 to July 2017.

  18. Petrologic insights into basaltic volcanism at historically active Hawaiian volcanoes: Chapter 6 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Helz, Rosalind L.; Clague, David A.; Sisson, Thomas W.; Thornber, Carl R.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Study of the petrology of Hawaiian volcanoes, in particular the historically active volcanoes on the Island of Hawai‘i, has long been of worldwide scientific interest. When Dr. Thomas A. Jaggar, Jr., established the Hawaiian Volcano Observatory (HVO) in 1912, detailed observations on basaltic activity at Kīlauea and Mauna Loa volcanoes increased dramatically. The period from 1912 to 1958 saw a gradual increase in the collection and analysis of samples from the historical eruptions of Kīlauea and Mauna Loa and development of the concepts needed to evaluate them. In a classic 1955 paper, Howard Powers introduced the concepts of magnesia variation diagrams, to display basaltic compositions, and olivine-control lines, to distinguish between possibly comagmatic and clearly distinct basaltic lineages. In particular, he and others recognized that Kīlauea and Mauna Loa basalts must have different sources.

  19. Relationship between Diffuse CO2 Degassing and Volcanic Activity. Case Study of the Poás, Irazú, and Turrialba Volcanoes, Costa Rica

    Directory of Open Access Journals (Sweden)

    Matthieu Epiard

    2017-10-01

    Full Text Available Active volcanoes exhibit diffuse gas emanations through the ground, the most abundant species of which is CO2. However, the relationship between diffuse degassing and volcanic activity is not often clear and some volcanoes may have low diffuse degassing levels despite having strong volcanic activity. The main goals of this study are to quantify diffuse CO2 degassing and determine whether patterns exist in relation to volcanic activity through the study of Turrialba, Poás, and Irazú, three active volcanoes in Costa Rica which are at different stages of activity. Structural controls of spatial distribution of diffuse degassing were also investigated. Measurement campaigns were conducted using the accumulation chamber method coupled with 10 cm depth ground temperature sampling with the aim of estimating the total diffuse CO2 degassing budget. The total amount of CO2 emitted diffusely by each volcano is ~113 ± 46 t/d over ~0.705 km2 for Turrialba, 0.9 ± 0.5 t/d for Poás over ~0.734 km2, 3.8 ± 0.9 t/d over ~0.049 km2 for Irazú's main crater, and 15 ± 12 t/d over 0.0059 km2 for Irazú's north flank. Turrialba and Poás volcano diffuse degassing budget represent about 10% of the whole gas output. Both volcanoes were in a transitional stage and the opening of new conduits may cause a loss in diffuse degassing and an increase of active degassing. Numerous diffuse degassing structures were also identified. At Turrialba, one of which was closely associated with the collapse of a crater wall in 2014 during the initiation of a new period of heightened eruptive activity. Similar structures were also observed on the outer slopes of the west crater, suggesting strong alteration and perhaps destabilization of the upper outer cone. Irazú's north flank is highly permeable and has experienced intense hydrothermal alteration.

  20. Cadmium Removal from Aqueous Solutions by Ground Pine Cone

    Directory of Open Access Journals (Sweden)

    H Izanloo, S Nasseri

    2005-01-01

    Full Text Available A study on the removal of cadmium ions from aqueous solutions by pine cone was conducted in batch conditions. Kinetic data and equilibrium removal isotherms were obtained. The influence of different experimental parameters such as contact time, initial concentration of cadmium, pine cone mass and particle size, and temperature on the kinetics of cadmium removal was studied. Results showed that the main parameters that played an important role in removal phenomenon were initial cadmium concentration, particle size and pine cone mass. The necessary time to reach equilibrium was between 4 and 7 hours based on the initial concentration of cadmium. The capacity of cadmium adsorption at equilibrium increased with the decrease of pine cone particle size. The capacity of cadmium adsorption at equilibrium by pine cone increased with the quantity of pine cone introduced (1–4 g/L. Temperature in the range of 20-30°C showed a restricted effect on the removal kinetics (13.56 mg/g at 20°C and a low capacity of adsorption about 11.48 mg/g at 30°C. The process followed pseudo second-order kinetics. The cadmium uptake of pine cone was quantitatively evaluated using adsorption isotherms. Results indicated that the Langmuir model gave a better fit to the experimental data in comparison with the Freundlich equation.