WorldWideScience

Sample records for cone beam micro-ct

  1. Geometric Parameters Estimation and Calibration in Cone-Beam Micro-CT

    Directory of Open Access Journals (Sweden)

    Jintao Zhao

    2015-09-01

    Full Text Available The quality of Computed Tomography (CT images crucially depends on the precise knowledge of the scanner geometry. Therefore, it is necessary to estimate and calibrate the misalignments before image acquisition. In this paper, a Two-Piece-Ball (TPB phantom is used to estimate a set of parameters that describe the geometry of a cone-beam CT system. Only multiple projections of the TPB phantom at one position are required, which can avoid the rotation errors when acquiring multi-angle projections. Also, a corresponding algorithm is derived. The performance of the method is evaluated through simulation and experimental data. The results demonstrated that the proposed method is valid and easy to implement. Furthermore, the experimental results from the Micro-CT system demonstrate the ability to reduce artifacts and improve image quality through geometric parameter calibration.

  2. Bone quality evaluation at dental implant site using multislice CT, micro-CT, and cone beam CT.

    Science.gov (United States)

    Parsa, Azin; Ibrahim, Norliza; Hassan, Bassam; van der Stelt, Paul; Wismeijer, Daniel

    2015-01-01

    The first purpose of this study was to analyze the correlation between bone volume fraction (BV/TV) and calibrated radiographic bone density Hounsfield units (HU) in human jaws, derived from micro-CT and multislice computed tomography (MSCT), respectively. The second aim was to assess the accuracy of cone beam computed tomography (CBCT) in evaluating trabecular bone density and microstructure using MSCT and micro-CT, respectively, as reference gold standards. Twenty partially edentulous human mandibular cadavers were scanned by three types of CT modalities: MSCT (Philips, Best, the Netherlands), CBCT (3D Accuitomo 170, J Morita, Kyoto, Japan), and micro-CT (SkyScan 1173, Kontich, Belgium). Image analysis was performed using Amira (v4.1, Visage Imaging Inc., Carlsbad, CA, USA), 3Diagnosis (v5.3.1, 3diemme, Cantu, Italy), Geomagic (studio(®) 2012, Morrisville, NC, USA), and CTAn (v1.11, SkyScan). MSCT, CBCT, and micro-CT scans of each mandible were matched to select the exact region of interest (ROI). MSCT HU, micro-CT BV/TV, and CBCT gray value and bone volume fraction of each ROI were derived. Statistical analysis was performed to assess the correlations between corresponding measurement parameters. Strong correlations were observed between CBCT and MSCT density (r = 0.89) and between CBCT and micro-CT BV/TV measurements (r = 0.82). Excellent correlation was observed between MSCT HU and micro-CT BV/TV (r = 0.91). However, significant differences were found between all comparisons pairs (P micro-CT BV/TV (P = 0.147). An excellent correlation exists between bone volume fraction and bone density as assessed on micro-CT and MSCT, respectively. This suggests that bone density measurements could be used to estimate bone microstructural parameters. A strong correlation also was found between CBCT gray values and BV/TV and their gold standards, suggesting the potential of this modality in bone quality assessment at implant site. © 2013 John Wiley & Sons A/S. Published by

  3. Self-calibration of a cone-beam micro-CT system

    International Nuclear Information System (INIS)

    Patel, V.; Chityala, R. N.; Hoffmann, K. R.; Ionita, C. N.; Bednarek, D. R.; Rudin, S.

    2009-01-01

    Use of cone-beam computed tomography (CBCT) is becoming more frequent. For proper reconstruction, the geometry of the CBCT systems must be known. While the system can be designed to reduce errors in the geometry, calibration measurements must still be performed and corrections applied. Investigators have proposed techniques using calibration objects for system calibration. In this study, the authors present methods to calibrate a rotary-stage CB micro-CT (CBμCT) system using only the images acquired of the object to be reconstructed, i.e., without the use of calibration objects. Projection images are acquired using a CBμCT system constructed in the authors' laboratories. Dark- and flat-field corrections are performed. Exposure variations are detected and quantified using analysis of image regions with an unobstructed view of the x-ray source. Translations that occur during the acquisition in the horizontal direction are detected, quantified, and corrected based on sinogram analysis. The axis of rotation is determined using registration of antiposed projection images. These techniques were evaluated using data obtained with calibration objects and phantoms. The physical geometric axis of rotation is determined and aligned with the rotational axis (assumed to be the center of the detector plane) used in the reconstruction process. The parameters describing this axis agree to within 0.1 mm and 0.3 deg with those determined using other techniques. Blurring due to residual calibration errors has a point-spread function in the reconstructed planes with a full-width-at-half-maximum of less than 125 μm in a tangential direction and essentially zero in the radial direction for the rotating object. The authors have used this approach on over 100 acquisitions over the past 2 years and have regularly obtained high-quality reconstructions, i.e., without artifacts and no detectable blurring of the reconstructed objects. This self-calibrating approach not only obviates

  4. Identification of dental root canals and their medial line from micro-CT and cone-beam CT records

    Directory of Open Access Journals (Sweden)

    Benyó Balázs

    2012-10-01

    Full Text Available Abstract Background Shape of the dental root canal is highly patient specific. Automated identification methods of the medial line of dental root canals and the reproduction of their 3D shape can be beneficial for planning endodontic interventions as severely curved root canals or multi-rooted teeth may pose treatment challenges. Accurate shape information of the root canals may also be used by manufacturers of endodontic instruments in order to make more efficient clinical tools. Method Novel image processing procedures dedicated to the automated detection of the medial axis of the root canal from dental micro-CT and cone-beam CT records are developed. For micro-CT, the 3D model of the root canal is built up from several hundred parallel cross sections, using image enhancement, histogram based fuzzy c-means clustering, center point detection in the segmented slice, three dimensional inner surface reconstruction, and potential field driven curve skeleton extraction in three dimensions. Cone-beam CT records are processed with image enhancement filters and fuzzy chain based regional segmentation, followed by the reconstruction of the root canal surface and detecting its skeleton via a mesh contraction algorithm. Results The proposed medial line identification and root canal detection algorithms are validated on clinical data sets. 25 micro-CT and 36 cone-beam-CT records are used in the validation procedure. The overall success rate of the automatic dental root canal identification was about 92% in both procedures. The algorithms proved to be accurate enough for endodontic therapy planning. Conclusions Accurate medial line identification and shape detection algorithms of dental root canal have been developed. Different procedures are defined for micro-CT and cone-beam CT records. The automated execution of the subsequent processing steps allows easy application of the algorithms in the dental care. The output data of the image processing procedures

  5. Three-dimensional focus of attention for iterative cone-beam micro-CT reconstruction

    International Nuclear Information System (INIS)

    Benson, T M; Gregor, J

    2006-01-01

    Three-dimensional iterative reconstruction of high-resolution, circular orbit cone-beam x-ray CT data is often considered impractical due to the demand for vast amounts of computer cycles and associated memory. In this paper, we show that the computational burden can be reduced by limiting the reconstruction to a small, well-defined portion of the image volume. We first discuss using the support region defined by the set of voxels covered by all of the projection views. We then present a data-driven preprocessing technique called focus of attention that heuristically separates both image and projection data into object and background before reconstruction, thereby further reducing the reconstruction region of interest. We present experimental results for both methods based on mouse data and a parallelized implementation of the SIRT algorithm. The computational savings associated with the support region are substantial. However, the results for focus of attention are even more impressive in that only about one quarter of the computer cycles and memory are needed compared with reconstruction of the entire image volume. The image quality is not compromised by either method

  6. Cone-beam micro-CT system based on LabVIEW software.

    Science.gov (United States)

    Ionita, Ciprian N; Hoffmann, Keneth R; Bednarek, Daniel R; Chityala, Ravishankar; Rudin, Stephen

    2008-09-01

    Construction of a cone-beam computed tomography (CBCT) system for laboratory research usually requires integration of different software and hardware components. As a result, building and operating such a complex system require the expertise of researchers with significantly different backgrounds. Additionally, writing flexible code to control the hardware components of a CBCT system combined with designing a friendly graphical user interface (GUI) can be cumbersome and time consuming. An intuitive and flexible program structure, as well as the program GUI for CBCT acquisition, is presented in this note. The program was developed in National Instrument's Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) graphical language and is designed to control a custom-built CBCT system but has been also used in a standard angiographic suite. The hardware components are commercially available to researchers and are in general provided with software drivers which are LabVIEW compatible. The program structure was designed as a sequential chain. Each step in the chain takes care of one or two hardware commands at a time; the execution of the sequence can be modified according to the CBCT system design. We have scanned and reconstructed over 200 specimens using this interface and present three examples which cover different areas of interest encountered in laboratory research. The resulting 3D data are rendered using a commercial workstation. The program described in this paper is available for use or improvement by other researchers.

  7. Accuracy and reliability of different cone beam computed tomography (CBCT) devices for structural analysis of alveolar bone in comparison with multislice CT and micro-CT.

    Science.gov (United States)

    Van Dessel, Jeroen; Nicolielo, Laura Ferreira Pinheiro; Huang, Yan; Coudyzer, Walter; Salmon, Benjamin; Lambrichts, Ivo; Jacobs, Reinhilde

    The aim of this study was to assess whether cone beam computed tomography (CBCT) may be used for clinically reliable alveolar bone quality assessment in comparison to its clinical alternatives, multislice computed tomography and the gold standard (micro-CT). Six dentate mandibular bone samples were scanned with seven CBCT devices (ProMax 3D Max, NewTom GiANO, Cranex 3D, 3D Accuitomo 170, Carestream 9300, Scanora 3D, I-CAT Next generation), one micro-CT scanner (SkyScan 1174) and one MSCT machine (Somatom Definition Flash) using two protocols (standard and high-resolution). MSCT and CBCT images were automatically spatially aligned on the micro-CT scan of the corresponding sample. A volume of interest was manually delineated on the micro-CT image and overlaid on the other scanning devices. Alveolar bone structures were automatically extracted using the adaptive thresholding algorithm. Based on the resulting binary images, an automatic 3D morphometric quantification was performed in a CT-Analyser (Bruker, Kontich, Belgium). The reliability and measurement errors were calculated for each modality compared to the gold standard micro-CT. Both MSCT and CBCT were associated with a clinically and statistically (P max, bone surface density -0.47 mm-1 min to 0.16 mm-1 max and trabecular thickness 0.15 mm min to 0.31 mm max) were significantly (P max and fractal dimension 0.08 min to 0.17 max) in all scanners compared to micro-CT. However, the structural pattern of the alveolar bone remained similar compared to that of the micro-CT for the ProMax 3D Max, NewTom GiANO, Cranex 3D, 3D Accuitomo 170 and Carestream 9300. On the other hand, the Scanora 3D, i-CAT Next Generation, standard and high-resolution MSCT displayed an overrated bone quantity and aberrant structural pattern compared to other scanning devices. The calculation of morphometric indices had an overall high reliability (intraclass correlation coefficient [ICC] 0.62 min to 0.99 max), except

  8. The reliability of cone-beam computed tomography to assess bone density at dental implant recipient sites: a histomorphometric analysis by micro-CT.

    Science.gov (United States)

    González-García, Raúl; Monje, Florencio

    2013-08-01

    The aim of this study was to objectively assess the reliability of the cone-beam computed tomography (CBCT) as a tool to pre-operatively determine radiographic bone density (RBD) by the density values provided by the system, analyzing its relationship with histomorphometric bone density expressed as bone volumetric fraction (BV/TV) assessed by micro-CT of bone biopsies at the site of insertion of dental implants in the maxillary bones. Thirty-nine bone biopsies of the maxillary bones at the sites of 39 dental implants from 31 edentulous healthy patients were analyzed. The NobelGuide™ software was used for implant planning, which also allowed fabrication of individual stereolithographic surgical guides. The analysis of CBCT images allowed pre-operative determination of mean density values of implant recipient sites along the major axis of the planned implants (axial RBD). Stereolithographic surgical guides were used to guide implant insertion and also to extract cylindrical bone biopsies from the core of the exact implant site. Further analysis of several osseous micro-structural variables including BV/TV was performed by micro-CT of the extracted bone biopsies. Mean axial RBD was 478 ± 212 (range: 144-953). A statistically significant difference (P = 0.02) was observed among density values of the cortical bone of the upper maxilla and mandible. A high positive Pearson's correlation coefficient (r = 0.858, P micro-CT at the site of dental implants in the maxillary bones. Pre-operative estimation of density values by CBCT is a reliable tool to objectively determine bone density. © 2012 John Wiley & Sons A/S.

  9. Bone quality evaluation at dental implant site using multislice CT, micro-CT, and cone beam CT

    NARCIS (Netherlands)

    Parsa, A.; Ibrahim, N.; Hassan, B.; van der Stelt, P.; Wismeijer, D.

    2015-01-01

    Objectives The first purpose of this study was to analyze the correlation between bone volume fraction (BV/TV) and calibrated radiographic bone density Hounsfield units (HU) in human jaws, derived from micro-CT and multislice computed tomography (MSCT), respectively. The second aim was to assess the

  10. Low-dose cardio-respiratory phase-correlated cone-beam micro-CT of small animals.

    Science.gov (United States)

    Sawall, Stefan; Bergner, Frank; Lapp, Robert; Mronz, Markus; Karolczak, Marek; Hess, Andreas; Kachelriess, Marc

    2011-03-01

    Micro-CT imaging of animal hearts typically requires a double gating procedure because scans during a breath-hold are not possible due to the long scan times and the high respiratory rates, Simultaneous respiratory and cardiac gating can either be done prospectively or retrospectively. True five-dimensional information can be either retrieved with retrospective gating or with prospective gating if several prospective gates are acquired. In any case, the amount of information available to reconstruct one volume for a given respiratory and cardiac phase is orders of magnitud lower than the total amount of information acquired. For example, the reconstruction of a volume from a 10% wide respiratory and a 20% wide cardiac window uses only 2% of the data acquired. Achieving a similar image quality as a nongated scan would therefore require to increase the amount of data and thereby the dose to the animal by up to a factor of 50. To achieve the goal of low-dose phase-correlated (LDPC) imaging, the authors propose to use a highly efficient combination of slightly modified existing algorithms. In particular, the authors developed a variant of the McKinnon-Bates image reconstruction algorithm and combined it with bilateral filtering in up to five dimensions to significantly reduce image noise without impairing spatial or temporal resolution. The preliminary results indicate that the proposed LDPC reconstruction method typically reduces image noise by a factor of up to 6 (e.g., from 170 to 30 HU), while the dose values lie in a range from 60 to 500 mGy. Compared to other publications that apply 250-1800 mGy for the same task [C. T. Badea et al., "4D micro-CT of the mouse heart," Mol. Imaging 4(2), 110-116 (2005); M. Drangova et al., "Fast retrospectively gated quantitative four-dimensional (4D) cardiac micro computed tomography imaging of free-breathing mice," Invest. Radiol. 42(2), 85-94 (2007); S. H. Bartling et al., "Retrospective motion gating in small animal CT of mice

  11. Applying microCT and 3D visualization to Jurassic silicified conifer seed cones: A virtual advantage over thin-sectioning.

    Science.gov (United States)

    Gee, Carole T

    2013-11-01

    As an alternative to conventional thin-sectioning, which destroys fossil material, high-resolution X-ray computed tomography (also called microtomography or microCT) integrated with scientific visualization, three-dimensional (3D) image segmentation, size analysis, and computer animation is explored as a nondestructive method of imaging the internal anatomy of 150-million-year-old conifer seed cones from the Late Jurassic Morrison Formation, USA, and of recent and other fossil cones. • MicroCT was carried out on cones using a General Electric phoenix v|tome|x s 240D, and resulting projections were processed with visualization software to produce image stacks of serial single sections for two-dimensional (2D) visualization, 3D segmented reconstructions with targeted structures in color, and computer animations. • If preserved in differing densities, microCT produced images of internal fossil tissues that showed important characters such as seed phyllotaxy or number of seeds per cone scale. Color segmentation of deeply embedded seeds highlighted the arrangement of seeds in spirals. MicroCT of recent cones was even more effective. • This is the first paper on microCT integrated with 3D segmentation and computer animation applied to silicified seed cones, which resulted in excellent 2D serial sections and segmented 3D reconstructions, revealing features requisite to cone identification and understanding of strobilus construction.

  12. Applying microCT and 3D visualization to Jurassic silicified conifer seed cones: A virtual advantage over thin-sectioning1

    Science.gov (United States)

    Gee, Carole T.

    2013-01-01

    • Premise of the study: As an alternative to conventional thin-sectioning, which destroys fossil material, high-resolution X-ray computed tomography (also called microtomography or microCT) integrated with scientific visualization, three-dimensional (3D) image segmentation, size analysis, and computer animation is explored as a nondestructive method of imaging the internal anatomy of 150-million-year-old conifer seed cones from the Late Jurassic Morrison Formation, USA, and of recent and other fossil cones. • Methods: MicroCT was carried out on cones using a General Electric phoenix v|tome|x s 240D, and resulting projections were processed with visualization software to produce image stacks of serial single sections for two-dimensional (2D) visualization, 3D segmented reconstructions with targeted structures in color, and computer animations. • Results: If preserved in differing densities, microCT produced images of internal fossil tissues that showed important characters such as seed phyllotaxy or number of seeds per cone scale. Color segmentation of deeply embedded seeds highlighted the arrangement of seeds in spirals. MicroCT of recent cones was even more effective. • Conclusions: This is the first paper on microCT integrated with 3D segmentation and computer animation applied to silicified seed cones, which resulted in excellent 2D serial sections and segmented 3D reconstructions, revealing features requisite to cone identification and understanding of strobilus construction. PMID:25202495

  13. MicroCT Bone Densitometry: Context Sensitivity, Beam Hardening Correction and the Effect of Surrounding Media

    Directory of Open Access Journals (Sweden)

    Philip L. Salmon

    2014-12-01

    Full Text Available The context-sensitivity of microCT bone densitometry due to beam hardening artefacts was assessed. Bones and teeth are scanned with varying thickness of surrounding media (water, alcohol, biological tissue and it is important to understand how this affects reconstructed attenuation (“density” of the mineralized tissue. Aluminium tubes and rods with thickness 0.127mm–5mm were scanned both in air or surrounded by up to 2cm of water. Scans were performed with different energy filters and degrees of software beam hardening correction (BHC. Also tested were the effects of signal-to-noise ratio, magnification and truncation. The thickness of an aluminium tube significantly affected its mean reconstructed attenuation. This effect of thickness could be reduced substantially by BHC for scans in air, but not for scans in water. Varying thickness of surrounding water also changed the mean attenuation of an aluminium tube. This artefact could be almost eliminated by an optimal BHC value. The “cupping” artefact of heterogeneous attenuation (elevated at outer surfaces could be corrected if aluminium was scanned in air, but in water BHC was much less effective. Scan truncation, changes to magnification and signal-to-noise ratio also caused artificial changes to measured attenuation. Measurement of bone mineral density by microCT is highly context sensitive. A surrounding layer of liquid or biological tissue reduces the ability of software BHC to remove bone density artefacts. Sample thickness, truncation, magnification and signal to noise ratio also affect reconstructed attenuation. Thus it is important for densitometry that sample and calibration phantom dimensions and mounting materials are standardised.

  14. X-ray absorption microtomography (microCT) and small beam diffraction mapping of sea urchin teeth.

    Science.gov (United States)

    Stock, S R; Barss, J; Dahl, T; Veis, A; Almer, J D

    2002-07-01

    Two noninvasive X-ray techniques, laboratory X-ray absorption microtomography (microCT) and X-ray diffraction mapping, were used to study teeth of the sea urchin Lytechinus variegatus. MicroCT revealed low attenuation regions at near the tooth's stone part and along the carinar process-central prism boundary; this latter observation appears to be novel. The expected variation of Mg fraction x in the mineral phase (calcite, Ca(1-x)Mg(x)CO(3)) cannot account for all of the linear attenuation coefficient decrease in the two zones: this suggested that soft tissue is localized there. Transmission diffraction mapping (synchrotron X-radiation, 80.8 keV, 0.1 x 0.1mm(2) beam area, 0.1mm translation grid, image plate area detector) simultaneously probed variations in 3-D and showed that the crystal elements of the "T"-shaped tooth were very highly aligned. Diffraction patterns from the keel (adaxial web) and from the abaxial flange (containing primary plates and the stone part) differed markedly. The flange contained two populations of identically oriented crystal elements with lattice parameters corresponding to x=0.13 and x=0.32. The keel produced one set of diffraction spots corresponding to the lower x. The compositions were more or less equivalent to those determined by others for camarodont teeth, and the high Mg phase is expected to be disks of secondary mineral epitaxially related to the underlying primary mineral element. Lattice parameter gradients were not noted in the keel or flange. Taken together, the microCT and diffraction results indicated that there was a band of relatively high protein content, of up to approximately 0.25 volume fraction, in the central part of the flange and paralleling its adaxial and abaxial faces. X-ray microCT and microdiffraction data used in conjunction with protein distribution data will be crucial for understanding the properties of various biocomposites and their mechanical functions.

  15. Recent micro-CT scanner developments at UGCT

    Energy Technology Data Exchange (ETDEWEB)

    Dierick, Manuel, E-mail: Manuel.Dierick@UGent.be [UGCT-Department of Physics and Astronomy, Faculty of Sciences, Ghent University, Proeftuinstraat 86, 9000 Ghent (Belgium); XRE, X-Ray Engineering bvba, De Pintelaan 111, 9000 Ghent (Belgium); Van Loo, Denis, E-mail: info@XRE.be [XRE, X-Ray Engineering bvba, De Pintelaan 111, 9000 Ghent (Belgium); Masschaele, Bert [UGCT-Department of Physics and Astronomy, Faculty of Sciences, Ghent University, Proeftuinstraat 86, 9000 Ghent (Belgium); XRE, X-Ray Engineering bvba, De Pintelaan 111, 9000 Ghent (Belgium); Van den Bulcke, Jan [UGCT-Woodlab-UGent, Department of Forest and Water Management, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent (Belgium); Van Acker, Joris, E-mail: Joris.VanAcker@UGent.be [UGCT-Woodlab-UGent, Department of Forest and Water Management, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent (Belgium); Cnudde, Veerle, E-mail: Veerle.Cnudde@UGent.be [UGCT-SGIG, Department of Geology and Soil Science, Faculty of Sciences, Ghent University, Krijgslaan 281, S8, 9000 Ghent (Belgium); Van Hoorebeke, Luc, E-mail: Luc.VanHoorebeke@UGent.be [UGCT-Department of Physics and Astronomy, Faculty of Sciences, Ghent University, Proeftuinstraat 86, 9000 Ghent (Belgium)

    2014-04-01

    This paper describes two X-ray micro-CT scanners which were recently developed to extend the experimental possibilities of microtomography research at the Centre for X-ray Tomography ( (www.ugct.ugent.be)) of the Ghent University (Belgium). The first scanner, called Nanowood, is a wide-range CT scanner with two X-ray sources (160 kV{sub max}) and two detectors, resolving features down to 0.4 μm in small samples, but allowing samples up to 35 cm to be scanned. This is a sample size range of 3 orders of magnitude, making this scanner well suited for imaging multi-scale materials such as wood, stone, etc. Besides the traditional cone-beam acquisition, Nanowood supports helical acquisition, and it can generate images with significant phase-contrast contributions. The second scanner, known as the Environmental micro-CT scanner (EMCT), is a gantry based micro-CT scanner with variable magnification for scanning objects which are not easy to rotate in a standard micro-CT scanner, for example because they are physically connected to external experimental hardware such as sensor wiring, tubing or others. This scanner resolves 5 μm features, covers a field-of-view of about 12 cm wide with an 80 cm vertical travel range. Both scanners will be extensively described and characterized, and their potential will be demonstrated with some key application results.

  16. Recent micro-CT scanner developments at UGCT

    International Nuclear Information System (INIS)

    Dierick, Manuel; Van Loo, Denis; Masschaele, Bert; Van den Bulcke, Jan; Van Acker, Joris; Cnudde, Veerle; Van Hoorebeke, Luc

    2014-01-01

    This paper describes two X-ray micro-CT scanners which were recently developed to extend the experimental possibilities of microtomography research at the Centre for X-ray Tomography ( (www.ugct.ugent.be)) of the Ghent University (Belgium). The first scanner, called Nanowood, is a wide-range CT scanner with two X-ray sources (160 kV max ) and two detectors, resolving features down to 0.4 μm in small samples, but allowing samples up to 35 cm to be scanned. This is a sample size range of 3 orders of magnitude, making this scanner well suited for imaging multi-scale materials such as wood, stone, etc. Besides the traditional cone-beam acquisition, Nanowood supports helical acquisition, and it can generate images with significant phase-contrast contributions. The second scanner, known as the Environmental micro-CT scanner (EMCT), is a gantry based micro-CT scanner with variable magnification for scanning objects which are not easy to rotate in a standard micro-CT scanner, for example because they are physically connected to external experimental hardware such as sensor wiring, tubing or others. This scanner resolves 5 μm features, covers a field-of-view of about 12 cm wide with an 80 cm vertical travel range. Both scanners will be extensively described and characterized, and their potential will be demonstrated with some key application results

  17. Trabecular bone structural parameters evaluated using dental cone-beam computed tomography: cellular synthetic bones.

    Science.gov (United States)

    Ho, Jung-Ting; Wu, Jay; Huang, Heng-Li; Chen, Michael Y c; Fuh, Lih-Jyh; Hsu, Jui-Ting

    2013-11-09

    This study compared the adequacy of dental cone beam computed tomography (CBCT) and micro computed tomography (micro-CT) in evaluating the structural parameters of trabecular bones. The cellular synthetic bones in 4 density groups (Groups 1-4: 0.12, 0.16, 0.20, and 0.32 g/cm3) were used in this study. Each group comprised 8 experimental specimens that were approximately 1 cm3. Dental CBCT and micro-CT scans were conducted on each specimen to obtain independent measurements of the following 4 trabecular bone structural parameters: bone volume fraction (BV/TV), specific bone surface (BS/BV), trabecular thickness (Tb.Th.), and trabecular separation (Tb.Sp.). Wilcoxon signed ranks tests were used to compare the measurement variations between the dental CBCT and micro-CT scans. A Spearman analysis was conducted to calculate the correlation coefficients (r) of the dental CBCT and micro-CT measurements. Of the 4 groups, the BV/TV and Tb.Th. measured using dental CBCT were larger compared with those measured using micro-CT. By contrast, the BS/BV measured using dental CBCT was significantly less compared with those measured using micro-CT. Furthermore, in the low-density groups (Groups 1 and 2), the Tb.Sp. measured using dental CBCT was smaller compared with those measured using micro-CT. However, the Tb.Sp. measured using dental CBCT was slightly larger in the high-density groups (Groups 3 and 4) than it was in the low density groups. The correlation coefficients between the BV/TV, BS/BV, Tb.Th., and Tb.Sp. values measured using dental CBCT and micro-CT were 0.9296 (p < .001), 0.8061 (p < .001), 0.9390 (p < .001), and 0.9583 (p < .001), respectively. Although the dental CBCT and micro-CT approaches exhibited high correlations, the absolute values of BV/TV, BS/BV, Tb.Th., Tb.Sp. differed significantly between these measurements. Additional studies must be conducted to evaluate using dental CBCT in clinical practice.

  18. A quality assurance phantom for the performance evaluation of volumetric micro-CT systems

    Energy Technology Data Exchange (ETDEWEB)

    Du, Louise Y [Department of Medical Biophysics, University of Western Ontario, London, ON (Canada); Umoh, Joseph [Imaging Research Laboratories, Robarts Research Institute, London, ON (Canada); Nikolov, Hristo N [Imaging Research Laboratories, Robarts Research Institute, London, ON (Canada); Pollmann, Steven I [Imaging Research Laboratories, Robarts Research Institute, London, ON (Canada); Lee, Ting-Yim [Department of Medical Biophysics, University of Western Ontario, London, ON (Canada); Holdsworth, David W [Department of Medical Biophysics, University of Western Ontario, London, ON (Canada)

    2007-12-07

    Small-animal imaging has recently become an area of increased interest because more human diseases can be modeled in transgenic and knockout rodents. As a result, micro-computed tomography (micro-CT) systems are becoming more common in research laboratories, due to their ability to achieve spatial resolution as high as 10 {mu}m, giving highly detailed anatomical information. Most recently, a volumetric cone-beam micro-CT system using a flat-panel detector (eXplore Ultra, GE Healthcare, London, ON) has been developed that combines the high resolution of micro-CT and the fast scanning speed of clinical CT, so that dynamic perfusion imaging can be performed in mice and rats, providing functional physiological information in addition to anatomical information. This and other commercially available micro-CT systems all promise to deliver precise and accurate high-resolution measurements in small animals. However, no comprehensive quality assurance phantom has been developed to evaluate the performance of these micro-CT systems on a routine basis. We have designed and fabricated a single comprehensive device for the purpose of performance evaluation of micro-CT systems. This quality assurance phantom was applied to assess multiple image-quality parameters of a current flat-panel cone-beam micro-CT system accurately and quantitatively, in terms of spatial resolution, geometric accuracy, CT number accuracy, linearity, noise and image uniformity. Our investigations show that 3D images can be obtained with a limiting spatial resolution of 2.5 mm{sup -1} and noise of {+-}35 HU, using an acquisition interval of 8 s at an entrance dose of 6.4 cGy.

  19. A quality assurance phantom for the performance evaluation of volumetric micro-CT systems

    International Nuclear Information System (INIS)

    Du, Louise Y; Umoh, Joseph; Nikolov, Hristo N; Pollmann, Steven I; Lee, Ting-Yim; Holdsworth, David W

    2007-01-01

    Small-animal imaging has recently become an area of increased interest because more human diseases can be modeled in transgenic and knockout rodents. As a result, micro-computed tomography (micro-CT) systems are becoming more common in research laboratories, due to their ability to achieve spatial resolution as high as 10 μm, giving highly detailed anatomical information. Most recently, a volumetric cone-beam micro-CT system using a flat-panel detector (eXplore Ultra, GE Healthcare, London, ON) has been developed that combines the high resolution of micro-CT and the fast scanning speed of clinical CT, so that dynamic perfusion imaging can be performed in mice and rats, providing functional physiological information in addition to anatomical information. This and other commercially available micro-CT systems all promise to deliver precise and accurate high-resolution measurements in small animals. However, no comprehensive quality assurance phantom has been developed to evaluate the performance of these micro-CT systems on a routine basis. We have designed and fabricated a single comprehensive device for the purpose of performance evaluation of micro-CT systems. This quality assurance phantom was applied to assess multiple image-quality parameters of a current flat-panel cone-beam micro-CT system accurately and quantitatively, in terms of spatial resolution, geometric accuracy, CT number accuracy, linearity, noise and image uniformity. Our investigations show that 3D images can be obtained with a limiting spatial resolution of 2.5 mm -1 and noise of ±35 HU, using an acquisition interval of 8 s at an entrance dose of 6.4 cGy

  20. 2D beam hardening correction for micro-CT of immersed hard tissue

    Science.gov (United States)

    Davis, Graham; Mills, David

    2016-10-01

    Beam hardening artefacts arise in tomography and microtomography with polychromatic sources. Typically, specimens appear to be less dense in the center of reconstructions because as the path length through the specimen increases, so the X-ray spectrum is shifted towards higher energies due to the preferential absorption of low energy photons. Various approaches have been taken to reduce or correct for these artefacts. Pre-filtering the X-ray beam with a thin metal sheet will reduce soft energy X-rays and thus narrow the spectrum. Correction curves can be applied to the projections prior to reconstruction which transform measured attenuation with polychromatic radiation to predicted attenuation with monochromatic radiation. These correction curves can be manually selected, iteratively derived from reconstructions (this generally works where density is assumed to be constant) or derived from a priori information about the X-ray spectrum and specimen composition. For hard tissue specimens, the latter approach works well if the composition is reasonably homogeneous. In the case of an immersed or embedded specimen (e.g., tooth or bone) the relative proportions of mineral and "organic" (including medium and plastic container) species varies considerably for different ray paths and simple beam hardening correction does not give accurate results. By performing an initial reconstruction, the total path length through the container can be determined. By modelling the X-ray properties of the specimen, a 2D correction transform can then be created such that the predicted monochromatic attenuation can be derived as a function of both the measured polychromatic attenuation and the container path length.

  1. Direct estimation of human trabecular bone stiffness using cone beam computed tomography.

    Science.gov (United States)

    Klintström, Eva; Klintström, Benjamin; Pahr, Dieter; Brismar, Torkel B; Smedby, Örjan; Moreno, Rodrigo

    2018-04-10

    The aim of this study was to evaluate the possibility of estimating the biomechanical properties of trabecular bone through finite element simulations by using dental cone beam computed tomography data. Fourteen human radius specimens were scanned in 3 cone beam computed tomography devices: 3-D Accuitomo 80 (J. Morita MFG., Kyoto, Japan), NewTom 5 G (QR Verona, Verona, Italy), and Verity (Planmed, Helsinki, Finland). The imaging data were segmented by using 2 different methods. Stiffness (Young modulus), shear moduli, and the size and shape of the stiffness tensor were studied. Corresponding evaluations by using micro-CT were regarded as the reference standard. The 3-D Accuitomo 80 (J. Morita MFG., Kyoto, Japan) showed good performance in estimating stiffness and shear moduli but was sensitive to the choice of segmentation method. NewTom 5 G (QR Verona, Verona, Italy) and Verity (Planmed, Helsinki, Finland) yielded good correlations, but they were not as strong as Accuitomo 80 (J. Morita MFG., Kyoto, Japan). The cone beam computed tomography devices overestimated both stiffness and shear compared with the micro-CT estimations. Finite element-based calculations of biomechanics from cone beam computed tomography data are feasible, with strong correlations for the Accuitomo 80 scanner (J. Morita MFG., Kyoto, Japan) combined with an appropriate segmentation method. Such measurements might be useful for predicting implant survival by in vivo estimations of bone properties. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Technical aspects of X-ray micro-computed tomography. Initial experience of 27-μm resolution using feldkamp cone-beam reconstruction

    International Nuclear Information System (INIS)

    Yamamoto, Shuji; Suzuki, Masahiro; Kohara, Kazushi; Iinuma, Gen; Moriyama, Noriyuki

    2007-01-01

    The objective of this study was to introduce the technical utility of micro-computed tomography (CT) with 27-μm resolution by cone-beam CT algorithm. Whole-body micro-CT scans were performed to honeybee. Two- and three-dimensional image analyses were performed by originally developed and available open-source software for acquired images. The original contribution of this work is to describe the technical characteristics of the X-ray micro-CT system, keeping a small experimental insect in a unique condition. Micro-CT may be used as a rapid prototyping tool to research and understand the high-resolution system with Feldkamp cone-beam reconstruction. (author)

  3. Synchrotron x-ray studies of the keel of the short-spined sea urchin lytechinus variegatus: absorption microtomography (microCT) and small beam diffraction mapping

    International Nuclear Information System (INIS)

    Stock, S.R.; Barss, J.; Dahl, T.; Veis, A.; Almer, J.D.; De Carlo, F.

    2003-01-01

    In sea urchin teeth, the keel plays an important structural role, and this paper reports results of microstructural characterization of the keel of Lytechinus variegatus using two noninvasive synchrotron x-ray techniques: x-ray absorption microtomography (microCT) and x-ray diffraction mapping. MicroCT with 14 keV x-rays mapped the spatial distribution of mineral at the 1.3 microm level in a millimeter-sized fragment of a mature portion of the keel. Two rows of low absorption channels (i.e., primary channels) slightly less than 10 microm in diameter were found running linearly from the flange to the base of the keel and parallel to its sides. The primary channels paralleled the oral edge of the keel, and the microCT slices revealed a planar secondary channel leading from each primary channel to the side of the keel. The primary and secondary channels were more or less coplanar and may correspond to the soft tissue between plates of the carinar process. Transmission x-ray diffraction with 80.8 keV x-rays and a 0.1 mm beam mapped the distribution of calcite crystal orientations and the composition Ca(1-x)Mg(x)CO(3) of the calcite. Unlike the variable Mg concentration and highly curved prisms found in the keel of Paracentrotus lividus, a constant Mg content (x = 0.13) and relatively little prism curvature was found in the keel of Lytechinus variegatus.

  4. Cardiac cone-beam CT

    International Nuclear Information System (INIS)

    Manzke, Robert

    2005-01-01

    This doctoral thesis addresses imaging of the heart with retrospectively gated helical cone-beam computed tomography (CT). A thorough review of the CT reconstruction literature is presented in combination with a historic overview of cardiac CT imaging and a brief introduction to other cardiac imaging modalities. The thesis includes a comprehensive chapter about the theory of CT reconstruction, familiarizing the reader with the problem of cone-beam reconstruction. The anatomic and dynamic properties of the heart are outlined and techniques to derive the gating information are reviewed. With the extended cardiac reconstruction (ECR) framework, a new approach is presented for the heart-rate-adaptive gated helical cardiac cone-beam CT reconstruction. Reconstruction assessment criteria such as the temporal resolution, the homogeneity in terms of the cardiac phase, and the smoothness at cycle-to-cycle transitions are developed. Several reconstruction optimization approaches are described: An approach for the heart-rate-adaptive optimization of the temporal resolution is presented. Streak artifacts at cycle-to-cycle transitions can be minimized by using an improved cardiac weighting scheme. The optimal quiescent cardiac phase for the reconstruction can be determined automatically with the motion map technique. Results for all optimization procedures applied to ECR are presented and discussed based on patient and phantom data. The ECR algorithm is analyzed for larger detector arrays of future cone-beam systems throughout an extensive simulation study based on a four-dimensional cardiac CT phantom. The results of the scientific work are summarized and an outlook proposing future directions is given. The presented thesis is available for public download at www.cardiac-ct.net

  5. Cone Beam Micro-CT System for Small Animal Imaging and Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Shouping Zhu

    2009-01-01

    in this paper. Experimental results show that the system is suitable for small animal imaging and is adequate to provide high-resolution anatomic information for bioluminescence tomography to build a dual modality system.

  6. Cone-Beam Computed Tomography for Image-Guided Radiation Therapy of Prostate Cancer

    Science.gov (United States)

    2008-01-01

    imaging in small- animal on-Medical Physics, Vol. 34, No. 12, December 2007cology models,” Mol. Imag. 3, 55–62 2004. 8E. B. Walters, K. Panda , J. A...publication 8 October 2007; published 28 November 2007 Cone-beam microcomputed tomography microCT is one of the most popular choices for small animal ...imaging which is becoming an important tool for studying animal models with transplanted diseases. Region-of-interest ROI imaging techniques in CT, which

  7. Advanced single-slice rebinning for tilted spiral cone-beam CT

    International Nuclear Information System (INIS)

    Kachelriess, Marc; Fuchs, Theo; Schaller, Stefan; Kalender, Willi A.

    2001-01-01

    Future medical CT scanners and today's micro CT scanners demand cone-beam reconstruction algorithms that are capable of reconstructing data acquired from a tilted spiral trajectory where the vector of rotation is not necessarily parallel to the vector of table increment. For the medical CT scanner this case of nonparallel object motion is met for nonzero gantry tilt: the table moves into a direction that is not perpendicular to the plane of rotation. Since this is not a special application of medical CT but rather a daily routine in head exams, there is a strong need for corresponding reconstruction algorithms. In contrast to medical CT, where the special case of nonperpendicular motion is used on purpose, micro CT scanners cannot avoid aberrations of the rotational axis and the table increment vector due to alignment problems. Especially for those micro CT scanners that have the lifting stage mounted on the rotation table (in contrast to setups where the lifting stage holds the rotation table), this kind of misalignment is equivalent to a gantry tilt. We therefore generalize the advanced single-slice rebinning algorithm (ASSR), which is considered a very promising approach for medical cone-beam reconstruction due to its high image quality and its high reconstruction speed [Med. Phys. 27, 754-772 (2000)], to the case of tilted gantries. We evaluate this extended ASSR approach (which we will denote as ASSR + , for convenience) in comparison to the original ASSR algorithm using simulated phantom data for reconstruction. For the case of nonparallel object motion ASSR + shows significant improvements over ASSR, however, its computational complexity is slightly increased due to the broken symmetry of the spiral trajectory

  8. Comparison of micro-computerized tomography and cone-beam computerized tomography in the detection of accessory canals in primary molars

    OpenAIRE

    Acar, Buket; Kamburo?lu, K?van?; Tatar, ?lkan; Ar?kan, Volkan; ?elik, Hakan Hamdi; Y?ksel, Selcen; ?zen, Tuncer

    2015-01-01

    Purpose This study was performed to compare the accuracy of micro-computed tomography (CT) and cone-beam computed tomography (CBCT) in detecting accessory canals in primary molars. Materials and Methods Forty-one extracted human primary first and second molars were embedded in wax blocks and scanned using micro-CT and CBCT. After the images were taken, the samples were processed using a clearing technique and examined under a stereomicroscope in order to establish the gold standard for this s...

  9. Respiratory correlated cone beam CT

    International Nuclear Information System (INIS)

    Sonke, Jan-Jakob; Zijp, Lambert; Remeijer, Peter; Herk, Marcel van

    2005-01-01

    A cone beam computed tomography (CBCT) scanner integrated with a linear accelerator is a powerful tool for image guided radiotherapy. Respiratory motion, however, induces artifacts in CBCT, while the respiratory correlated procedures, developed to reduce motion artifacts in axial and helical CT are not suitable for such CBCT scanners. We have developed an alternative respiratory correlated procedure for CBCT and evaluated its performance. This respiratory correlated CBCT procedure consists of retrospective sorting in projection space, yielding subsets of projections that each corresponds to a certain breathing phase. Subsequently, these subsets are reconstructed into a four-dimensional (4D) CBCT dataset. The breathing signal, required for respiratory correlation, was directly extracted from the 2D projection data, removing the need for an additional respiratory monitor system. Due to the reduced number of projections per phase, the contrast-to-noise ratio in a 4D scan reduced by a factor 2.6-3.7 compared to a 3D scan based on all projections. Projection data of a spherical phantom moving with a 3 and 5 s period with and without simulated breathing irregularities were acquired and reconstructed into 3D and 4D CBCT datasets. The positional deviations of the phantoms center of gravity between 4D CBCT and fluoroscopy were small: 0.13±0.09 mm for the regular motion and 0.39±0.24 mm for the irregular motion. Motion artifacts, clearly present in the 3D CBCT datasets, were substantially reduced in the 4D datasets, even in the presence of breathing irregularities, such that the shape of the moving structures could be identified more accurately. Moreover, the 4D CBCT dataset provided information on the 3D trajectory of the moving structures, absent in the 3D data. Considerable breathing irregularities, however, substantially reduces the image quality. Data presented for three different lung cancer patients were in line with the results obtained from the phantom study. In

  10. A backprojection-filtration algorithm for nonstandard spiral cone-beam CT with an n-PI-window

    International Nuclear Information System (INIS)

    Yu Hengyong; Ye Yangbo; Zhao Shiying; Wang Ge

    2005-01-01

    For applications in bolus-chasing computed tomography (CT) angiography and electron-beam micro-CT, the backprojection-filtration (BPF) formula developed by Zou and Pan was recently generalized by Ye et al to reconstruct images from cone-beam data collected along a rather flexible scanning locus, including a nonstandard spiral. A major implication of the generalized BPF formula is that it can be applied for n-PI-window-based reconstruction in the nonstandard spiral scanning case. In this paper, we design an n-PI-window-based BPF algorithm, and report the numerical simulation results with the 3D Shepp-Logan phantom and Defrise disk phantom. The proposed BPF algorithm consists of three steps: cone-beam data differentiation, weighted backprojection and inverse Hilbert filtration. Our simulated results demonstrate the feasibility and merits of the proposed algorithm

  11. GPU-Based 3D Cone-Beam CT Image Reconstruction for Large Data Volume

    Directory of Open Access Journals (Sweden)

    Xing Zhao

    2009-01-01

    Full Text Available Currently, 3D cone-beam CT image reconstruction speed is still a severe limitation for clinical application. The computational power of modern graphics processing units (GPUs has been harnessed to provide impressive acceleration of 3D volume image reconstruction. For extra large data volume exceeding the physical graphic memory of GPU, a straightforward compromise is to divide data volume into blocks. Different from the conventional Octree partition method, a new partition scheme is proposed in this paper. This method divides both projection data and reconstructed image volume into subsets according to geometric symmetries in circular cone-beam projection layout, and a fast reconstruction for large data volume can be implemented by packing the subsets of projection data into the RGBA channels of GPU, performing the reconstruction chunk by chunk and combining the individual results in the end. The method is evaluated by reconstructing 3D images from computer-simulation data and real micro-CT data. Our results indicate that the GPU implementation can maintain original precision and speed up the reconstruction process by 110–120 times for circular cone-beam scan, as compared to traditional CPU implementation.

  12. Accuracy of volumetric measurement of simulated root resorption lacunas based on cone beam computed tomography.

    Science.gov (United States)

    Wang, Y; He, S; Guo, Y; Wang, S; Chen, S

    2013-08-01

    To evaluate the accuracy of volumetric measurement of simulated root resorption cavities based on cone beam computed tomography (CBCT), in comparison with that of Micro-computed tomography (Micro-CT) which served as the reference. The State Key Laboratory of Oral Diseases at Sichuan University. Thirty-two bovine teeth were included for standardized CBCT scanning and Micro-CT scanning before and after the simulation of different degrees of root resorption. The teeth were divided into three groups according to the depths of the root resorption cavity (group 1: 0.15, 0.2, 0.3 mm; group 2: 0.6, 1.0 mm; group 3: 1.5, 2.0, 3.0 mm). Each depth included four specimens. Differences in tooth volume before and after simulated root resorption were then calculated from CBCT and Micro-CT scans, respectively. The overall between-method agreement of the measurements was evaluated using the concordance correlation coefficient (CCC). For the first group, the average volume of resorption cavity was 1.07 mm(3) , and the between-method agreement of measurement for the volume changes was low (CCC = 0.098). For the second and third groups, the average volumes of resorption cavities were 3.47 and 6.73 mm(3) respectively, and the between-method agreements were good (CCC = 0.828 and 0.895, respectively). The accuracy of 3-D quantitative volumetric measurement of simulated root resorption based on CBCT was fairly good in detecting simulated resorption cavities larger than 3.47 mm(3), while it was not sufficient for measuring resorption cavities smaller than 1.07 mm(3) . This method could be applied in future studies of root resorption although further studies are required to improve its accuracy. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Cone beam computed tomography in veterinary dentistry

    NARCIS (Netherlands)

    van Thielen, B.; Siguenza, F.; Hassan, B.

    2012-01-01

    The purpose of this study was to assess the feasibility of cone beam computed tomography (CBCT) in imaging dogs and cats for diagnostic dental veterinary applications. CBCT scans of heads of six dogs and two cats were made. Dental panoramic and multi-planar reformatted (MPR) para-sagittal

  14. Basic principle of cone beam computed tomography

    International Nuclear Information System (INIS)

    Choi, Yong Suk; Kim, Gyu Tae; Hwang, Eui Hwan

    2006-01-01

    The use of computed tomography for dental procedures has increased recently. Cone beam computed tomography(CBCT) systems have been designed for imaging hard tissues of the dentomaxillofacial region. CBCT is capable of providing high resolution in images of high diagnostic quality. This technology allows for 3-dimensional representation of the dentomaxillofacial skeleton with minimal distortion, but at lower equipment cost, simpler image acquisition and lower patient dose. Because this technology produces images with isotropic sub-millimeter spatial resolution, it is ideally suited for dedicated dentomaxillofacial imaging. In this paper, we provide a brief overview of cone beam scanning technology and compare it with the fan beam scanning used in conventional CT and the basic principles of currently available CBCT systems

  15. Three-dimensional evaluation of human jaw bone microarchitecture: correlation between the microarchitectural parameters of cone beam computed tomography and micro-computer tomography.

    Science.gov (United States)

    Kim, Jo-Eun; Yi, Won-Jin; Heo, Min-Suk; Lee, Sam-Sun; Choi, Soon-Chul; Huh, Kyung-Hoe

    2015-12-01

    To evaluate the potential feasibility of cone beam computed tomography (CBCT) in the assessment of trabecular bone microarchitecture. Sixty-eight specimens from four pairs of human jaw were scanned using both micro-computed tomography (micro-CT) of 19.37-μm voxel size and CBCT of 100-μm voxel size. The correlation of 3-dimensional parameters between CBCT and micro-CT was evaluated. All parameters, except bone-specific surface and trabecular thickness, showed linear correlations between the 2 imaging modalities (P < .05). Among the parameters, bone volume, percent bone volume, trabecular separation, and degree of anisotropy (DA) of CBCT images showed strong correlations with those of micro-CT images. DA showed the strongest correlation (r = 0.693). Most microarchitectural parameters from CBCT were correlated with those from micro-CT. Some microarchitectural parameters, especially DA, could be used as strong predictors of bone quality in the human jaw. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. A cone-beam reconstruction algorithm using shift-variant filtering and cone-beam backprojection

    International Nuclear Information System (INIS)

    Defrise, M.; Clack, R.

    1994-01-01

    An exact inversion formula written in the form of shift-variant filtered-backprojection (FBP) is given for reconstruction from cone-beam data taken from any orbit satisfying Tuy's sufficiency conditions. The method is based on a result of Grangeat, involving the derivative of the three-dimensional (3-D) Radon transform, but unlike Grangeat's algorithm, no 3D rebinning step is required. Data redundancy, which occurs when several cone-beam projections supply the same values in the Radon domain, is handled using an elegant weighting function and without discarding data. The algorithm is expressed in a convenient cone-beam detector reference frame, and a specific example for the case of a dual orthogonal circular orbit is presented. When the method is applied to a single circular orbit, it is shown to be equivalent to the well-known algorithm of Feldkamp et al

  17. A study of effective sequences on micro-CT in the dent-maxillo-facial region

    International Nuclear Information System (INIS)

    Kato, Masataka; Mori, Shintaro; Sakayanagi, Masashi; Fujita, Yuzo; Kaneda, Takashi

    2005-01-01

    Microfocus computed tomography (micro-CT) using cone-beam scan is becoming widely used for various studies of oral structures. However, this machine has not been used to evaluate the effective parameters for two-dimensional (2D) or three-dimensional (3D) images. This study evaluated the effective parameters of micro-CT for 2D or 3D images of oral hard tissue structures. We evaluated the CT value of 5 human teeth (upper first molars) to determine suitable CT value examined according to several X-ray parameters using conformal radiotherapy (CRT) on a work station. CT information from the specimens was obtained using a micro-CT (Toscaner-31300 μ, Toshiba ITC), under the conditions of tube voltage of 75 kV, tube current of 120 μA, 100∼1600 views, the number of times of addition, 512 x 512 pixel matrix, and 0.2 slice thickness. We made 3D-reconstruction images from the micro-CT data. Three-dimensional reconstruction was performed using 2D images processed by the volume-rendering method using 3D-reconstruction software (TRI/3D BON, RATOC system engineering). Then, we evaluate the 3D tooth images. In the assessment of images, three dental radiologists evaluated several 3D tooth images using 3D-reconstruction images. Each image was scored on a five-level scale by Scheffe one-pair comparison method as follows: 5: much easier to evaluate, 4: easier to evaluate, 3: equivalent, 2: harder to evaluate, 1: much harder to evaluate. In scoring, each of the three dental radiologists made an individual assessment, and when differences among individual scores occurred, the score was ultimately assigned by consensus among the three individuals. Statistical analysis of the scores assigned by the three dental radiologists as described above was carried out using Stat View-J 5.0 (Abacus Concepts, Inc, USA) statistical software and Tukey-Kramer multiple-comparison testing. The optimal CT value for evaluating the human tooth by micro-CT is 600 on 2D images. On 3D images, the optimal

  18. Quantification of bone quality using different cone beam computed tomography devices: Accuracy assessment for edentulous human mandibles.

    Science.gov (United States)

    Van Dessel, Jeroen; Nicolielo, Laura Ferreira Pinheiro; Huang, Yan; Slagmolen, Pieter; Politis, Constantinus; Lambrichts, Ivo; Jacobs, Reinhilde

    To determine the accuracy of the latest cone beam computed tomography (CBCT) machines in comparison to multi-slice computer tomography (MSCT) and micro computed tomography (micro-CT) for objectively assessing trabecular and cortical bone quality prior to implant placement. Eight edentulous human mandibular bone samples were scanned with seven CBCT scanners (3D Accuitomo 170, i-CAT Next Generation, ProMax 3D Max, Scanora 3D, Cranex 3D, Newtom GiANO and Carestream 9300) and one MSCT system (Somatom Definition Flash) using the clinical exposure protocol with the highest resolution. Micro-CT (SkyScan 1174) images served as a gold standard. A volume of interest (VOI) comprising trabecular and cortical bone only was delineated on the micro-CT. After spatial alignment of all scan types, micro-CT VOIs were overlaid on the CBCT and MSCT images. Segmentation was applied and morphometric parameters were calculated for each scanner. CBCT and MSCT morphometric parameters were compared with micro-CT using mixed-effect models. Intraclass correlation analysis was used to grade the accuracy of each scanner in assessing trabecular and cortical quality in comparison with the gold standard. Bone structure patterns of each scanner were compared with micro-CT in 2D and 3D to facilitate the interpretation of the morphometric analysis. Morphometric analysis showed an overestimation of the cortical and trabecular bone quantity during CBCT and MSCT evaluation compared to the gold standard micro-CT. The trabecular thickness (Tb.Th) was found to be significantly (P 3D Max (180 µm), followed by the 3D Accuitomo 170 (200 µm), Carestream 9300 (220 µm), Newtom GiANO (240 µm), Cranex 3D (280 µm), Scanora 3D (300 µm), high resolution MSCT (310 µm), i-CAT Next Generation (430 µm) and standard resolution MSCT (510 µm). The underestimation of the cortical thickness (Ct.Th) in ProMax 3D Max (-10 µm), the overestimation in Newtom GiANO (10 µm) and the high resolution

  19. Basic principles of cone beam computed tomography.

    Science.gov (United States)

    Abramovitch, Kenneth; Rice, Dwight D

    2014-07-01

    At the end of the millennium, cone-beam computed tomography (CBCT) heralded a new dental technology for the next century. Owing to the dramatic and positive impact of CBCT on implant dentistry and orthognathic/orthodontic patient care, additional applications for this technology soon evolved. New software programs were developed to improve the applicability of, and access to, CBCT for dental patients. Improved, rapid, and cost-effective computer technology, combined with the ability of software engineers to develop multiple dental imaging applications for CBCT with broad diagnostic capability, have played a large part in the rapid incorporation of CBCT technology into dentistry. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Trabecular bone structure parameters from 3D image processing of clinical multi-slice and cone-beam computed tomography data

    Energy Technology Data Exchange (ETDEWEB)

    Klintstroem, Eva; Smedby, Oerjan [Linkoeping University, Center for Medical Image Science and Visualization (CMIV), Linkoeping (Sweden); UHL County Council of Oestergoetland, Department of Radiology, Linkoeping (Sweden); Linkoeping University, Department of Medical and Health Sciences (IMH)/Radiology, Linkoeping (Sweden); Moreno, Rodrigo [Linkoeping University, Center for Medical Image Science and Visualization (CMIV), Linkoeping (Sweden); Linkoeping University, Department of Medical and Health Sciences (IMH)/Radiology, Linkoeping (Sweden); Brismar, Torkel B. [KUS Huddinge, Department of Clinical Science, Intervention and Technology at Karolinska Institutet and Department of Radiology, Stockholm (Sweden)

    2014-02-15

    Bone strength depends on both mineral content and bone structure. The aim of this in vitro study was to develop a method of quantitatively assessing trabecular bone structure by applying three-dimensional image processing to data acquired with multi-slice and cone-beam computed tomography using micro-computed tomography as a reference. Fifteen bone samples from the radius were examined. After segmentation, quantitative measures of bone volume, trabecular thickness, trabecular separation, trabecular number, trabecular nodes, and trabecular termini were obtained. The clinical machines overestimated bone volume and trabecular thickness and underestimated trabecular nodes and number, but cone-beam CT to a lesser extent. Parameters obtained from cone beam CT were strongly correlated with μCT, with correlation coefficients between 0.93 and 0.98 for all parameters except trabecular termini. The high correlation between cone-beam CT and micro-CT suggest the possibility of quantifying and monitoring changes of trabecular bone microarchitecture in vivo using cone beam CT. (orig.)

  1. Implementation of Tuy's cone-beam inversion formula

    International Nuclear Information System (INIS)

    Zeng, G.L.; Clack, R.; Gullberg, G.T.

    1994-01-01

    Tuy's cone-beam inversion formula was modified to develop a cone-beam reconstruction algorithm. The algorithm was implemented for a cone-beam vertex orbit consisting of a circle and two orthogonal lines. This orbit geometry satisfies the cone-beam data sufficiency condition and is easy to implement on commercial single photon emission computed tomography (SPECT) systems. The algorithm which consists of two derivative steps, one rebinning step, and one three-dimensional backprojection step, was verified by computer simulations and by reconstructing physical phantom data collected on a clinical SPECT system. The proposed algorithm gives equivalent results and is as efficient as other analytical cone-beam reconstruction algorithms. (Author)

  2. Cone beam computed tomography in endodontic

    Energy Technology Data Exchange (ETDEWEB)

    Durack, Conor; Patel, Shanon [Unit of Endodontology, Department of Conservative Dentistry, King' s College London, London (United Kingdom)

    2012-07-01

    Cone beam computed tomography (CBCT) is a contemporary, radiological imaging system designed specifically for use on the maxillofacial skeleton. The system overcomes many of the limitations of conventional radiography by producing undistorted, three-dimensional images of the area under examination. These properties make this form of imaging particularly suitable for use in endodontic. The clinician can obtain an enhanced appreciation of the anatomy being assessed, leading to an improvement in the detection of endodontic disease and resulting in more effective treatment planning. In addition, CBCT operates with a significantly lower effective radiation dose when compared with conventional computed tomography (CT). The purpose of this paper is to review the current literature relating to the limitations and potential applications of CBCT in endodontic practice. (author)

  3. Cone beam computed tomography in endodontic

    International Nuclear Information System (INIS)

    Durack, Conor; Patel, Shanon

    2012-01-01

    Cone beam computed tomography (CBCT) is a contemporary, radiological imaging system designed specifically for use on the maxillofacial skeleton. The system overcomes many of the limitations of conventional radiography by producing undistorted, three-dimensional images of the area under examination. These properties make this form of imaging particularly suitable for use in endodontic. The clinician can obtain an enhanced appreciation of the anatomy being assessed, leading to an improvement in the detection of endodontic disease and resulting in more effective treatment planning. In addition, CBCT operates with a significantly lower effective radiation dose when compared with conventional computed tomography (CT). The purpose of this paper is to review the current literature relating to the limitations and potential applications of CBCT in endodontic practice. (author)

  4. Comparison of the accuracy of 3-dimensional cone-beam computed tomography and micro-computed tomography reconstructions by using different voxel sizes.

    Science.gov (United States)

    Maret, Delphine; Peters, Ove A; Galibourg, Antoine; Dumoncel, Jean; Esclassan, Rémi; Kahn, Jean-Luc; Sixou, Michel; Telmon, Norbert

    2014-09-01

    Cone-beam computed tomography (CBCT) data are, in principle, metrically exact. However, clinicians need to consider the precision of measurements of dental morphology as well as other hard tissue structures. CBCT spatial resolution, and thus image reconstruction quality, is restricted by the acquisition voxel size. The aim of this study was to assess geometric discrepancies among 3-dimensional CBCT reconstructions relative to the micro-CT reference. A total of 37 permanent teeth from 9 mandibles were scanned with CBCT 9500 and 9000 3D and micro-CT. After semiautomatic segmentation, reconstructions were obtained from CBCT acquisitions (voxel sizes 76, 200, and 300 μm) and from micro-CT (voxel size 41 μm). All reconstructions were positioned in the same plane by image registration. The topography of the geometric discrepancies was displayed by using a color map allowing the maximum differences to be located. The maximum differences were mainly found at the cervical margins and on the cusp tips or incisal edges. Geometric reconstruction discrepancies were significant at 300-μm resolution (P = .01, Wilcoxon test). To study hard tissue morphology, CBCT acquisitions require voxel sizes smaller than 300 μm. This experimental study will have to be complemented by studies in vivo that consider the conditions of clinical practice. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Comparison of micro-computerized tomography and cone-beam computerized tomography in the detection of accessory canals in primary molars.

    Science.gov (United States)

    Acar, Buket; Kamburoğlu, Kıvanç; Tatar, İlkan; Arıkan, Volkan; Çelik, Hakan Hamdi; Yüksel, Selcen; Özen, Tuncer

    2015-12-01

    This study was performed to compare the accuracy of micro-computed tomography (CT) and cone-beam computed tomography (CBCT) in detecting accessory canals in primary molars. Forty-one extracted human primary first and second molars were embedded in wax blocks and scanned using micro-CT and CBCT. After the images were taken, the samples were processed using a clearing technique and examined under a stereomicroscope in order to establish the gold standard for this study. The specimens were classified into three groups: maxillary molars, mandibular molars with three canals, and mandibular molars with four canals. Differences between the gold standard and the observations made using the imaging methods were calculated using Spearman's rho correlation coefficient test. The presence of accessory canals in micro-CT images of maxillary and mandibular root canals showed a statistically significant correlation with the stereomicroscopic images used as a gold standard. No statistically significant correlation was found between the CBCT findings and the stereomicroscopic images. Although micro-CT is not suitable for clinical use, it provides more detailed information about minor anatomical structures. However, CBCT is convenient for clinical use but may not be capable of adequately analyzing the internal anatomy of primary teeth.

  6. Comparison of micro-computerized tomography and cone-beam computerized tomography in the detection of accessory canals in primary molars

    Energy Technology Data Exchange (ETDEWEB)

    Acar, Buket; Kamburoglu, Kivanc [Dept. of Dentomaxillofacial Radiology, Faculty of Dentistry, Ankara University, Ankara (Turkmenistan); Tatar, Ilkan [Dept. of Anatomy, Faculty of Medicine, Hacettepe University, Ankara (Turkmenistan); Arikan, Volkan [Dept. of Anatomy, Faculty of Medicine, Hacettepe University, Ankara (Turkmenistan); Celik, Hakan Hamid [Dept. of Pediatric Dentistry, Faculty of Dentistry, Kirikkale Unversity, Ankara (Turkmenistan); Yuksel, Selcen [Dept. of Biostatistics, Faculty of Medicine, Yildirim Beyazit University, Ankara (Turkmenistan); Ozen, Tuncer [Dept. of Dentomaxillofacial Radiology, Gulhane Military Hospital, Dental Clinics, Ankara (Turkmenistan)

    2015-12-15

    This study was performed to compare the accuracy of micro-computed tomography (CT) and cone-beam computed tomography (CBCT) in detecting accessory canals in primary molars. Forty-one extracted human primary first and second molars were embedded in wax blocks and scanned using micro-CT and CBCT. After the images were taken, the samples were processed using a clearing technique and examined under a stereomicroscope in order to establish the gold standard for this study. The specimens were classified into three groups: maxillary molars, mandibular molars with three canals, and mandibular molars with four canals. Differences between the gold standard and the observations made using the imaging methods were calculated using Spearman's rho correlation coefficient test. The presence of accessory canals in micro-CT images of maxillary and mandibular root canals showed a statistically significant correlation with the stereomicroscopic images used as a gold standard. No statistically significant correlation was found between the CBCT findings and the stereomicroscopic images.Although micro-CT is not suitable for clinical use, it provides more detailed information about minor anatomical structures. However, CBCT is convenient for clinical use but may not be capable of adequately analyzing the internal anatomy of primary teeth.

  7. Comparison of micro-computerized tomography and cone-beam computerized tomography in the detection of accessory canals in primary molars

    International Nuclear Information System (INIS)

    Acar, Buket; Kamburoglu, Kivanc; Tatar, Ilkan; Arikan, Volkan; Celik, Hakan Hamid; Yuksel, Selcen; Ozen, Tuncer

    2015-01-01

    This study was performed to compare the accuracy of micro-computed tomography (CT) and cone-beam computed tomography (CBCT) in detecting accessory canals in primary molars. Forty-one extracted human primary first and second molars were embedded in wax blocks and scanned using micro-CT and CBCT. After the images were taken, the samples were processed using a clearing technique and examined under a stereomicroscope in order to establish the gold standard for this study. The specimens were classified into three groups: maxillary molars, mandibular molars with three canals, and mandibular molars with four canals. Differences between the gold standard and the observations made using the imaging methods were calculated using Spearman's rho correlation coefficient test. The presence of accessory canals in micro-CT images of maxillary and mandibular root canals showed a statistically significant correlation with the stereomicroscopic images used as a gold standard. No statistically significant correlation was found between the CBCT findings and the stereomicroscopic images.Although micro-CT is not suitable for clinical use, it provides more detailed information about minor anatomical structures. However, CBCT is convenient for clinical use but may not be capable of adequately analyzing the internal anatomy of primary teeth

  8. Comparative evaluation of the accuracy of linear measurements between cone beam computed tomography and 3D microtomography

    Directory of Open Access Journals (Sweden)

    Francesca Mangione

    2013-09-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the influence of artifacts on the accuracy of linear measurements estimated with a common cone beam computed tomography (CBCT system used in dental clinical practice, by comparing it with microCT system as standard reference. MATERIALS AND METHODS: Ten bovine bone cylindrical samples containing one implant each, able to provide both points of reference and image quality degradation, have been scanned by CBCT and microCT systems. Thanks to the software of the two systems, for each cylindrical sample, two diameters taken at different levels, by using implants different points as references, have been measured. Results have been analyzed by ANOVA and a significant statistically difference has been found. RESULTS AND DISCUSSION: Due to the obtained results, in this work it is possible to say that the measurements made with the two different instruments are still not statistically comparable, although in some samples were obtained similar performances and therefore not statistically significant. CONCLUSION: With the improvement of the hardware and software of CBCT systems, in the near future the two instruments will be able to provide similar performances.

  9. Compensation of deformations in 3D cone beam tomography

    International Nuclear Information System (INIS)

    Desbat, L.; Roux, S.; Roux, S.; Grangeat, P.

    2006-01-01

    In dynamic tomography, the measured objects or organs are no-longer supposed to be static in the scanner during the acquisition but are supposed to move or to be deformed. Our approach is the analytic deformation compensation during the reconstruction. Our work concentrates on 3-dimensional cone beam tomography. We introduce a new large class of deformations preserving the 3-dimensional cone beam geometry. We show that deformations from this class can be analytically compensated. We present numerical experiments on phantoms showing the compensation of these deformations in 3-dimensional cone beam tomography. (authors)

  10. An optimization-based method for geometrical calibration in cone-beam CT without dedicated phantoms

    International Nuclear Information System (INIS)

    Panetta, D; Belcari, N; Guerra, A Del; Moehrs, S

    2008-01-01

    In this paper we present a new method for the determination of geometrical misalignments in cone-beam CT scanners, from the analysis of the projection data of a generic object. No a priori knowledge of the object shape and positioning is required. We show that a cost function, which depends on the misalignment parameters, can be defined using the projection data and that such a cost function has a local minimum in correspondence to the actual parameters of the system. Hence, the calibration of the scanner can be carried out by minimizing the cost function using standard optimization techniques. The method is developed for a particular class of 3D object functions, for which the redundancy of the fan beam sinogram in the transaxial midplane can be extended to cone-beam projection data, even at wide cone angles. The method has an approximated validity for objects which do not belong to that class; in that case, a suitable subset of the projection data can be selected in order to compute the cost function. We show by numerical simulations that our method is capable to determine with high accuracy the most critical misalignment parameters of the scanner, i.e., the transversal shift and the skew of the detector. Additionally, the detector slant can be determined. Other parameters such as the detector tilt, the longitudinal shift and the error in the source-detector distance cannot be determined with our method, as the proposed cost function has a very weak dependence on them. However, due to the negligible influence of these latter parameters in the reconstructed image quality, they can be kept fixed at estimated values in both calibration and reconstruction processes without compromising the final result. A trade-off between computational cost and calibration accuracy must be considered when choosing the data subset used for the computation of the cost function. Results on real data of a mouse femur as obtained with a small animal micro-CT are shown as well, proving

  11. A reconstruction algorithms for helical cone-beam SPECT

    International Nuclear Information System (INIS)

    Weng, Y.; Zeng, G.L.; Gullberg, G.T.

    1993-01-01

    Cone-beam SPECT provides improved sensitivity for imaging small organs like the brain and heart. However, current cone-beam tomography with the focal point traversing a planar orbit does not acquire sufficient data to give an accurate reconstruction. In this paper, the authors employ a data-acquisition method which obtains complete data for cone-beam SPECT by simultaneously rotating the gamma camera and translating the patient bed, so that cone-beam projections can be obtained with the focal point traversing a helix surrounding the patient. An implementation of Grangeat's algorithm for helical cone-beam projections is developed. The algorithm requires a rebinning step to convert cone-beam data to parallel-beam data which are then reconstructed using the 3D Radon inversion. A fast new rebinning scheme is developed which uses all of the detected data to reconstruct the image and properly normalizes any multiply scanned data. This algorithm is shown to produce less artifacts than the commonly used Feldkamp algorithm when applied to either a circular planar orbit or a helical orbit acquisition. The algorithm can easily be extended to any arbitrary orbit

  12. Cone Beam Computed Tomographic imaging in orthodontics.

    Science.gov (United States)

    Scarfe, W C; Azevedo, B; Toghyani, S; Farman, A G

    2017-03-01

    Over the last 15 years, cone beam computed tomographic (CBCT) imaging has emerged as an important supplemental radiographic technique for orthodontic diagnosis and treatment planning, especially in situations which require an understanding of the complex anatomic relationships and surrounding structures of the maxillofacial skeleton. CBCT imaging provides unique features and advantages to enhance orthodontic practice over conventional extraoral radiographic imaging. While it is the responsibility of each practitioner to make a decision, in tandem with the patient/family, consensus-derived, evidence-based clinical guidelines are available to assist the clinician in the decision-making process. Specific recommendations provide selection guidance based on variables such as phase of treatment, clinically-assessed treatment difficulty, the presence of dental and/or skeletal modifying conditions, and pathology. CBCT imaging in orthodontics should always be considered wisely as children have conservatively, on average, a three to five times greater radiation risk compared with adults for the same exposure. The purpose of this paper is to provide an understanding of the operation of CBCT equipment as it relates to image quality and dose, highlight the benefits of the technique in orthodontic practice, and provide guidance on appropriate clinical use with respect to radiation dose and relative risk, particularly for the paediatric patient. © 2017 Australian Dental Association.

  13. Direct cone beam SPECT reconstruction with camera tilt

    International Nuclear Information System (INIS)

    Jianying Li; Jaszczak, R.J.; Greer, K.L.; Coleman, R.E.; Zongjian Cao; Tsui, B.M.W.

    1993-01-01

    A filtered backprojection (FBP) algorithm is derived to perform cone beam (CB) single-photon emission computed tomography (SPECT) reconstruction with camera tilt using circular orbits. This algorithm reconstructs the tilted angle CB projection data directly by incorporating the tilt angle into it. When the tilt angle becomes zero, this algorithm reduces to that of Feldkamp. Experimentally acquired phantom studies using both a two-point source and the three-dimensional Hoffman brain phantom have been performed. The transaxial tilted cone beam brain images and profiles obtained using the new algorithm are compared with those without camera tilt. For those slices which have approximately the same distance from the detector in both tilt and non-tilt set-ups, the two transaxial reconstructions have similar profiles. The two-point source images reconstructed from this new algorithm and the tilted cone beam brain images are also compared with those reconstructed from the existing tilted cone beam algorithm. (author)

  14. The generalized back projection theorem for cone beam reconstruction

    International Nuclear Information System (INIS)

    Peyrin, F.C.

    1985-01-01

    The use of cone beam scanners raises the problem of three dimensional reconstruction from divergent projections. After a survey on bidimensional analytical reconstruction methods we examine their application to the 3D problem. Finally, it is shown that the back projection theorem can be generalized to cone beam projections. This allows to state a new inversion formula suitable for both the 4 π parallel and divergent geometries. It leads to the generalization of the ''rho-filtered back projection'' algorithm which is outlined

  15. A Clinical Evaluation Of Cone Beam Computed Tomography

    Science.gov (United States)

    2016-06-01

    A CLINICAL EVALUATION OF CONE BEAM COMPUTED TOMOGRAPHY by Bryan James Behm, D.D.S. Lieutenant, Dental Corps United States Navy A thesis... COMPUTED TOMOGRAPHY " is appropriately acknowledged and, beyond brief excerpts, is with the permission of the copyright owner. ~mes Behm Endodontic...printed without the expressed written permission of the author. IV ABSTRACT A CLINICAL EVALUATION OF CONE BEAM COMPUTED TOMOGRAPHY BRYAN JAMES

  16. The relationship between dental implant stability and trabecular bone structure using cone-beam computed tomography

    Science.gov (United States)

    2016-01-01

    Purpose The objective of this study was to investigate the relationships between primary implant stability as measured by impact response frequency and the structural parameters of trabecular bone using cone-beam computed tomography(CBCT), excluding the effect of cortical bone thickness. Methods We measured the impact response of a dental implant placed into swine bone specimens composed of only trabecular bone without the cortical bone layer using an inductive sensor. The peak frequency of the impact response spectrum was determined as an implant stability criterion (SPF). The 3D microstructural parameters were calculated from CT images of the bone specimens obtained using both micro-CT and CBCT. Results SPF had significant positive correlations with trabecular bone structural parameters (BV/TV, BV, BS, BSD, Tb.Th, Tb.N, FD, and BS/BV) (Pmicro-CT and CBCT (Pimplant stability prediction by combining BV/TV and SMI in the stepwise forward regression analysis. Bone with high volume density and low surface density shows high implant stability. Well-connected thick bone with small marrow spaces also shows high implant stability. The combination of bone density and architectural parameters measured using CBCT can predict the implant stability more accurately than the density alone in clinical diagnoses. PMID:27127692

  17. Generalized Fourier slice theorem for cone-beam image reconstruction.

    Science.gov (United States)

    Zhao, Shuang-Ren; Jiang, Dazong; Yang, Kevin; Yang, Kang

    2015-01-01

    The cone-beam reconstruction theory has been proposed by Kirillov in 1961, Tuy in 1983, Feldkamp in 1984, Smith in 1985, Pierre Grangeat in 1990. The Fourier slice theorem is proposed by Bracewell 1956, which leads to the Fourier image reconstruction method for parallel-beam geometry. The Fourier slice theorem is extended to fan-beam geometry by Zhao in 1993 and 1995. By combining the above mentioned cone-beam image reconstruction theory and the above mentioned Fourier slice theory of fan-beam geometry, the Fourier slice theorem in cone-beam geometry is proposed by Zhao 1995 in short conference publication. This article offers the details of the derivation and implementation of this Fourier slice theorem for cone-beam geometry. Especially the problem of the reconstruction from Fourier domain has been overcome, which is that the value of in the origin of Fourier space is 0/0. The 0/0 type of limit is proper handled. As examples, the implementation results for the single circle and two perpendicular circle source orbits are shown. In the cone-beam reconstruction if a interpolation process is considered, the number of the calculations for the generalized Fourier slice theorem algorithm is O(N^4), which is close to the filtered back-projection method, here N is the image size of 1-dimension. However the interpolation process can be avoid, in that case the number of the calculations is O(N5).

  18. GPU-based cone beam computed tomography.

    Science.gov (United States)

    Noël, Peter B; Walczak, Alan M; Xu, Jinhui; Corso, Jason J; Hoffmann, Kenneth R; Schafer, Sebastian

    2010-06-01

    The use of cone beam computed tomography (CBCT) is growing in the clinical arena due to its ability to provide 3D information during interventions, its high diagnostic quality (sub-millimeter resolution), and its short scanning times (60 s). In many situations, the short scanning time of CBCT is followed by a time-consuming 3D reconstruction. The standard reconstruction algorithm for CBCT data is the filtered backprojection, which for a volume of size 256(3) takes up to 25 min on a standard system. Recent developments in the area of Graphic Processing Units (GPUs) make it possible to have access to high-performance computing solutions at a low cost, allowing their use in many scientific problems. We have implemented an algorithm for 3D reconstruction of CBCT data using the Compute Unified Device Architecture (CUDA) provided by NVIDIA (NVIDIA Corporation, Santa Clara, California), which was executed on a NVIDIA GeForce GTX 280. Our implementation results in improved reconstruction times from minutes, and perhaps hours, to a matter of seconds, while also giving the clinician the ability to view 3D volumetric data at higher resolutions. We evaluated our implementation on ten clinical data sets and one phantom data set to observe if differences occur between CPU and GPU-based reconstructions. By using our approach, the computation time for 256(3) is reduced from 25 min on the CPU to 3.2 s on the GPU. The GPU reconstruction time for 512(3) volumes is 8.5 s. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  19. Low-dose dual-energy cone-beam CT using a total-variation minimization algorithm

    International Nuclear Information System (INIS)

    Min, Jong Hwan

    2011-02-01

    Dual-energy cone-beam CT is an important imaging modality in diagnostic applications, and may also find its use in other application such as therapeutic image guidance. Despite of its clinical values, relatively high radiation dose of dual-energy scan may pose a challenge to its wide use. In this work, we investigated a low-dose, pre-reconstruction type of dual-energy cone-beam CT (CBCT) using a total-variation minimization algorithm for image reconstruction. An empirical dual-energy calibration method was used to prepare material-specific projection data. Raw data at high and low tube voltages are converted into a set of basis functions which can be linearly combined to produce material-specific data using the coefficients obtained through the calibration process. From much fewer views than are conventionally used, material specific images are reconstructed by use of the total-variation minimization algorithm. An experimental study was performed to demonstrate the feasibility of the proposed method using a micro-CT system. We have reconstructed images of the phantoms from only 90 projections acquired at tube voltages of 40 kVp and 90 kVp each. Aluminum-only and acryl-only images were successfully decomposed. We evaluated the quality of the reconstructed images by use of contrast-to-noise ratio and detectability. A low-dose dual-energy CBCT can be realized via the proposed method by greatly reducing the number of projections

  20. SU-E-T-143: Effect of X-Ray and Cone Beam CT Reconstruction Parameters On Estimation of Bone Volume of Mice Used in Aging Research

    Energy Technology Data Exchange (ETDEWEB)

    Russ, M; Pang, M; Troen, B; Rudin, S; Ionita, C [University at Buffalo, Buffalo, NY (United States)

    2014-06-01

    Purpose: To investigate the variations in bone volume calculations in mice involved in aging research when changing cone beam micro-CT x-ray and reconstruction parameters. Methods: Mouse spines were placed on an indexed turn table that rotated 0.5° per projection and imaged by a self-built micro CT machine containing a CCD-based high-resolution x-ray detector. After the full 360° rotation data set of object images was obtained, a standard filtered back-projection cone beam reconstruction was performed. Four different kVp's between 40–70 kVp in 10kVp increments were selected. For each kVp two mAs settings were used. Each acquisition was reconstructed using two voxel sizes (12 and 25μm) and two step angles, 0.5° and 1°, respectively. A LabView program was written to determine the total bone volume contained in the mouse's total spine volume (bone plus gaps) as a measure of spine health. First, the user selected the desired 512×512 reconstruction to view the whole spine volume which was then used to select a gray-level threshold that allowed for viewing of the bone structure, then another threshold to include gaps. The program returned bone volume, bone × gap volume, and their ratio, BVF. Results: The calculated bone volume fractions were compared as a function of tube potential. Cases with 25μm slice thickness showed trials with lower kVp's had greater image contrast, which resulted in higher calculated bone volume fractions. Cases with 12μm reconstructed slice thickness were significantly noisier, and showed no clear maximum BVF. Conclusion: Using the projection images and reconstructions acquired from the micro CT, it can be shown that the micro-CT x-ray and reconstruction parameters significantly affect the total bone volume calculations. When comparing mice cohorts treated with different therapies researchers need to be aware of such details and use volumes which were acquired and processed in identical conditions.

  1. Exact cone beam CT with a spiral scan

    International Nuclear Information System (INIS)

    Tam, K.C.; Samarasekera, S.; Sauer, F.

    1998-01-01

    A method is developed which makes it possible to scan and reconstruct an object with cone beam x-rays in a spiral scan path with area detectors much shorter than the length of the object. The method is mathematically exact. If only a region of interest of the object is to be imaged, a top circle scan at the top level of the region of interest and a bottom circle scan at the bottom level of the region of interest are added. The height of the detector is required to cover only the distance between adjacent turns in the spiral projected at the detector. To reconstruct the object, the Radon transform for each plane intersecting the object is computed from the totality of the cone beam data. This is achieved by suitably combining the cone beam data taken at different source positions on the scan path; the angular range of the cone beam data required at each source position can be determined easily with a mask which is the spiral scan path projected on the detector from the current source position. The spiral scan algorithm has been successfully validated with simulated cone beam data. (author)

  2. SU-F-J-205: Effect of Cone Beam Factor On Cone Beam CT Number Accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Yao, W; Hua, C; Farr, J; Brady, S; Merchant, T [St. Jude Children’s Research Hospital, Memphis, TN (United States)

    2016-06-15

    Purpose: To examine the suitability of a Catphan™ 700 phantom for image quality QA of a cone beam computed tomography (CBCT) system deployed for proton therapy. Methods: Catphan phantoms, particularly Catphan™ 504, are commonly used in image quality QA for CBCT. As a newer product, Catphan™ 700 offers more tissue equivalent inserts which may be useful for generating the electron density – CT number curve for CBCT based treatment planning. The sensitometry-and-geometry module used in Catphan™ 700 is located at the end of the phantom and after the resolution line pair module. In Catphan™ 504 the line pair module is located at the end of the phantom and after the sensitometry-and-geometry module. To investigate the effect of difference in location on CT number accuracy due to the cone beam factor, we scanned the Catphan™ 700 with the central plane of CBCT at the center of the phantom, line pair and sensitometry-andgeometry modules of the phantom, respectively. The protocol head and thorax scan modes were used. For each position, scans were repeated 4 times. Results: For the head scan mode, the standard deviation (SD) of the CT numbers of each insert under 4 repeated scans was up to 20 HU, 11 HU, and 11 HU, respectively, for the central plane of CBCT located at the center of the phantom, line pair, and sensitometry-and-geometry modules of the phantom. The mean of the SD was 9.9 HU, 5.7 HU, and 5.9 HU, respectively. For the thorax mode, the mean of the SD was 4.5 HU, 4.4 HU, and 4.4 HU, respectively. The assessment of image quality based on resolution and spatial linearity was not affected by imaging location changes. Conclusion: When the Catphan™ 700 was aligned to the center of imaging region, the CT number accuracy test may not meet expectations. We recommend reconfiguration of the modules.

  3. Analytical fan-beam and cone-beam reconstruction algorithms with uniform attenuation correction for SPECT

    International Nuclear Information System (INIS)

    Tang Qiulin; Zeng, Gengsheng L; Gullberg, Grant T

    2005-01-01

    In this paper, we developed an analytical fan-beam reconstruction algorithm that compensates for uniform attenuation in SPECT. The new fan-beam algorithm is in the form of backprojection first, then filtering, and is mathematically exact. The algorithm is based on three components. The first one is the established generalized central-slice theorem, which relates the 1D Fourier transform of a set of arbitrary data and the 2D Fourier transform of the backprojected image. The second one is the fact that the backprojection of the fan-beam measurements is identical to the backprojection of the parallel measurements of the same object with the same attenuator. The third one is the stable analytical reconstruction algorithm for uniformly attenuated Radon data, developed by Metz and Pan. The fan-beam algorithm is then extended into a cone-beam reconstruction algorithm, where the orbit of the focal point of the cone-beam imaging geometry is a circle. This orbit geometry does not satisfy Tuy's condition and the obtained cone-beam algorithm is an approximation. In the cone-beam algorithm, the cone-beam data are first backprojected into the 3D image volume; then a slice-by-slice filtering is performed. This slice-by-slice filtering procedure is identical to that of the fan-beam algorithm. Both the fan-beam and cone-beam algorithms are efficient, and computer simulations are presented. The new cone-beam algorithm is compared with Bronnikov's cone-beam algorithm, and it is shown to have better performance with noisy projections

  4. Geometric calibration method for multiple head cone beam SPECT systems

    International Nuclear Information System (INIS)

    Rizo, Ph.; Grangeat, P.; Guillemaud, R.; Sauze, R.

    1993-01-01

    A method is presented for performing geometric calibration on Single Photon Emission Tomography (SPECT) cone beam systems with multiple cone beam collimators, each having its own orientation parameters. This calibration method relies on the fact that, in tomography, for each head, the relative position of the rotation axis and of the collimator does not change during the acquisition. In order to ensure the method stability, the parameters to be estimated in intrinsic parameters and extrinsic parameters are separated. The intrinsic parameters describe the acquisition geometry and the extrinsic parameters position of the detection system with respect to the rotation axis. (authors) 3 refs

  5. Cone-beam and fan-beam image reconstruction algorithms based on spherical and circular harmonics

    International Nuclear Information System (INIS)

    Zeng, Gengsheng L; Gullberg, Grant T

    2004-01-01

    A cone-beam image reconstruction algorithm using spherical harmonic expansions is proposed. The reconstruction algorithm is in the form of a summation of inner products of two discrete arrays of spherical harmonic expansion coefficients at each cone-beam point of acquisition. This form is different from the common filtered backprojection algorithm and the direct Fourier reconstruction algorithm. There is no re-sampling of the data, and spherical harmonic expansions are used instead of Fourier expansions. As a special case, a new fan-beam image reconstruction algorithm is also derived in terms of a circular harmonic expansion. Computer simulation results for both cone-beam and fan-beam algorithms are presented for circular planar orbit acquisitions. The algorithms give accurate reconstructions; however, the implementation of the cone-beam reconstruction algorithm is computationally intensive. A relatively efficient algorithm is proposed for reconstructing the central slice of the image when a circular scanning orbit is used

  6. Tilting the jaw to improve the image quality or to reduce the dose in cone-beam computed tomography

    International Nuclear Information System (INIS)

    Luckow, Marlen; Deyhle, Hans; Beckmann, Felix; Dagassan-Berndt, Dorothea; Müller, Bert

    2011-01-01

    Objective: The image quality in cone-beam computed tomography (CBCT) should be improved tilting the mandible that contains two dental titanium implants, within the relevant range of motion. Materials and methods: Using the mandible of a five-month-old pig, CBCT was performed varying the accelerating voltage, beam current, the starting rotation angle of the mandible in the source-detector plane and the tilt angles of the jaw with respect to the source-detector plane. The different datasets were automatically registered with respect to micro CT data to extract the common volume and the deviance to the pre-defined standard that characterizes the image quality. Results: The variations of the accelerating voltage, beam current and the rotation within the source-detection plane provided the expected quantitative behavior indicating the appropriate choice of the imaging quality factor. The tilting of the porcine mandible by about 14° improves the image quality by almost a factor of two. Conclusions: The tilting of the mandible with two dental implants can be used to significantly reduce the artifacts of the strongly X-ray absorbing materials in the CBCT images. The comparison of 14° jaw tilting with respect to the currently recommended arrangement in plane with the teeth demonstrates that the applied exposure time and the related dose can be reduced by a factor of four without decreasing the image quality.

  7. Spectral optimization for micro-CT

    International Nuclear Information System (INIS)

    Hupfer, Martin; Nowak, Tristan; Brauweiler, Robert; Eisa, Fabian; Kalender, Willi A.

    2012-01-01

    Purpose: To optimize micro-CT protocols with respect to x-ray spectra and thereby reduce radiation dose at unimpaired image quality. Methods: Simulations were performed to assess image contrast, noise, and radiation dose for different imaging tasks. The figure of merit used to determine the optimal spectrum was the dose-weighted contrast-to-noise ratio (CNRD). Both optimal photon energy and tube voltage were considered. Three different types of filtration were investigated for polychromatic x-ray spectra: 0.5 mm Al, 3.0 mm Al, and 0.2 mm Cu. Phantoms consisted of water cylinders of 20, 32, and 50 mm in diameter with a central insert of 9 mm which was filled with different contrast materials: an iodine-based contrast medium (CM) to mimic contrast-enhanced (CE) imaging, hydroxyapatite to mimic bone structures, and water with reduced density to mimic soft tissue contrast. Validation measurements were conducted on a commercially available micro-CT scanner using phantoms consisting of water-equivalent plastics. Measurements on a mouse cadaver were performed to assess potential artifacts like beam hardening and to further validate simulation results. Results: The optimal photon energy for CE imaging was found at 34 keV. For bone imaging, optimal energies were 17, 20, and 23 keV for the 20, 32, and 50 mm phantom, respectively. For density differences, optimal energies varied between 18 and 50 keV for the 20 and 50 mm phantom, respectively. For the 32 mm phantom and density differences, CNRD was found to be constant within 2.5% for the energy range of 21–60 keV. For polychromatic spectra and CMs, optimal settings were 50 kV with 0.2 mm Cu filtration, allowing for a dose reduction of 58% compared to the optimal setting for 0.5 mm Al filtration. For bone imaging, optimal tube voltages were below 35 kV. For soft tissue imaging, optimal tube settings strongly depended on phantom size. For 20 mm, low voltages were preferred. For 32 mm, CNRD was found to be almost independent

  8. Spectral optimization for micro-CT.

    Science.gov (United States)

    Hupfer, Martin; Nowak, Tristan; Brauweiler, Robert; Eisa, Fabian; Kalender, Willi A

    2012-06-01

    To optimize micro-CT protocols with respect to x-ray spectra and thereby reduce radiation dose at unimpaired image quality. Simulations were performed to assess image contrast, noise, and radiation dose for different imaging tasks. The figure of merit used to determine the optimal spectrum was the dose-weighted contrast-to-noise ratio (CNRD). Both optimal photon energy and tube voltage were considered. Three different types of filtration were investigated for polychromatic x-ray spectra: 0.5 mm Al, 3.0 mm Al, and 0.2 mm Cu. Phantoms consisted of water cylinders of 20, 32, and 50 mm in diameter with a central insert of 9 mm which was filled with different contrast materials: an iodine-based contrast medium (CM) to mimic contrast-enhanced (CE) imaging, hydroxyapatite to mimic bone structures, and water with reduced density to mimic soft tissue contrast. Validation measurements were conducted on a commercially available micro-CT scanner using phantoms consisting of water-equivalent plastics. Measurements on a mouse cadaver were performed to assess potential artifacts like beam hardening and to further validate simulation results. The optimal photon energy for CE imaging was found at 34 keV. For bone imaging, optimal energies were 17, 20, and 23 keV for the 20, 32, and 50 mm phantom, respectively. For density differences, optimal energies varied between 18 and 50 keV for the 20 and 50 mm phantom, respectively. For the 32 mm phantom and density differences, CNRD was found to be constant within 2.5% for the energy range of 21-60 keV. For polychromatic spectra and CMs, optimal settings were 50 kV with 0.2 mm Cu filtration, allowing for a dose reduction of 58% compared to the optimal setting for 0.5 mm Al filtration. For bone imaging, optimal tube voltages were below 35 kV. For soft tissue imaging, optimal tube settings strongly depended on phantom size. For 20 mm, low voltages were preferred. For 32 mm, CNRD was found to be almost independent of tube voltage. For 50 mm

  9. Cone beam computed tomography in Endodontics - a review

    NARCIS (Netherlands)

    Patel, S.; Durack, C.; Abella, F.; Shemesh, H.; Roig, M.; Lemberg, K.

    2015-01-01

    Cone beam computed tomography (CBCT) produces undistorted three-dimensional information of the maxillofacial skeleton, including the teeth and their surrounding tissues with a lower effective radiation dose than computed tomography. The aim of this paper is to: (i) review the current literature on

  10. Cardiac single-photon emission-computed tomography using combined cone-beam/fan-beam collimation

    International Nuclear Information System (INIS)

    Gullberg, Grant T.; Zeng, Gengsheng L.

    2004-01-01

    The objective of this work is to increase system sensitivity in cardiac single-photon emission-computed tomography (SPECT) studies without increasing patient imaging time. For imaging the heart, convergent collimation offers the potential of increased sensitivity over that of parallel-hole collimation. However, if a cone-beam collimated gamma camera is rotated in a planar orbit, the projection data obtained are not complete. Two cone-beam collimators and one fan-beam collimator are used with a three-detector SPECT system. The combined cone-beam/fan-beam collimation provides a complete set of data for image reconstruction. The imaging geometry is evaluated using data acquired from phantom and patient studies. For the Jaszazck cardiac torso phantom experiment, the combined cone-beam/fan-beam collimation provided 1.7 times greater sensitivity than standard parallel-hole collimation (low-energy high-resolution collimators). Also, phantom and patient comparison studies showed improved image quality. The combined cone-beam/fan-beam imaging geometry with appropriate weighting of the two data sets provides improved system sensitivity while measuring sufficient data for artifact free cardiac images

  11. A practical attenuation compensation method for cone beam spect

    International Nuclear Information System (INIS)

    Manglos, S.H.; Jaszczak, R.J.; Floyd, C.E.; Greer, K.L.; Coleman, R.E.

    1987-01-01

    An algorithm for attenuation compensation of cone beam SPECT images has been developed and implemented. The algorithm is based on a multiplicative post-processing method previously used for parallel and fan beam geometries. This method computes the compensation from the estimated average attenuation of photons originating from each image pixel. In the present development, a uniform attenuation coefficient inside of the body contour is assumed, although the method could be extended to include a non-uniform attenuation map. The algorithm is tested with experimental projections of a phantom obtained using a cone beam collimator. Profiles through the reconstructed images are presented as a quantitative test of the improvement due to the compensation. The algorithm provides adequate compensation for attenuation in a simple uniform cylindrical phantom, and the computational time is short compared to that expected for iterative reconstruction techniques. Also observed are image distortions in some reconstructed slices when the source distribution extends beyond the edge of the cone beam axial field-of-view

  12. Cone beam computerized tomography of face. Technological assessment report

    International Nuclear Information System (INIS)

    Saint-Pierre, Francoise; Fanelli, Gaelle; Mosnegutu, Lavinia; Devaux, Frederique

    2009-12-01

    Cone beam computerized tomography is an imagery technique notably used for the maxillofacial complex or a complete or limited exploration of maxillo-mandibular and dento-alveolar structures. Typically, this technique is implemented with devices which are different from scanners in various respects (performance of several linear cuts, use of an open cone beam). Based on a literature survey, this document reports an assessment which aimed at determining technical and dosimetric performances of the device, potential benefits in terms of diagnosis and therapy with respect to existing imagery techniques, specifications and role of this technique in odonto-stomatology, maxillofacial surgery, and even in ENT, and operation conditions and training to perform this act

  13. Analytically derived weighting factors for transmission tomography cone beam projections

    International Nuclear Information System (INIS)

    Yao Weiguang; Leszczynski, Konrad

    2009-01-01

    Weighting factors, which define the contributions of individual voxels of a 3D object to individual projection elements (pixels) on the detector, are the basic elements required in iterative tomographic reconstructions from transmission projections. Exact or as accurate as possible values for weighting factors are required in high-resolution reconstructions. Geometric complexity of the problem, however, makes it difficult to obtain exact weighting factor values. In this work, we derive an analytical expression for the weighting factors in cone beam projection geometry. The resulting formula is validated and applied to reconstruction from mega and kilovoltage x-ray cone beam projections. The reconstruction speed and accuracy are significantly improved by using the weighting factor values.

  14. Mandibular condyle position in cone beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Hyoung Joo; Kim, Gyu Tae; Choi, Yong Suk; Hwang, Eui Hwan [Kyung Hee Univ. School of Dentistry, Seoul (Korea, Republic of)

    2006-06-15

    To evaluate position of the mandibular condyle within articular fossa in an asymptomatic population radiographically by a cone beam computed tomography. Cone beam computed tomography of 60 temporomandibular joints was performed on 15 males and 15 females with no history of any temporomandibular disorders, or any other orthodontic or photoconductors treatments. Position of mandibular condyle within articular fossa at centric occlusion was evaluated. A statistical evaluation was done using a SPSS. In the sagittal views, mandibular condyle within articular fossa was laterally located at central section. Mandibular condyles in the right and left sides were showed asymmetric positional relationship at medial, central, and lateral sections. Mandibular condyle within articular fossa in an asymptomatic population was observed non-concentric position in the sagittal and coronal views.

  15. Cone beam CT in orthodontics: the current picture.

    Science.gov (United States)

    Makdissi, Jimmy

    2013-03-01

    The introduction of cone beam computed tomography (CBCT) technology to dentistry and orthodontics revolutionized the diagnosis, treatment and monitoring of orthodontic patients. This review article discusses the use of CBCT in diagnosis and treatment planning in orthodontics. The steps required to install and operate a CBCT facility within the orthodontic practice as well as the challenges are highlighted. The available guidelines in relation to the clinical applications of CBCT in orthodontics are explored. Copyright © 2013. Published by Elsevier Masson SAS.

  16. Use of Cone Beam Computed Tomography in Endodontics

    Directory of Open Access Journals (Sweden)

    William C. Scarfe

    2009-01-01

    Full Text Available Cone Beam Computed Tomography (CBCT is a diagnostic imaging modality that provides high-quality, accurate three-dimensional (3D representations of the osseous elements of the maxillofacial skeleton. CBCT systems are available that provide small field of view images at low dose with sufficient spatial resolution for applications in endodontic diagnosis, treatment guidance, and posttreatment evaluation. This article provides a literature review and pictorial demonstration of CBCT as an imaging adjunct for endodontics.

  17. Use of Cone Beam Computed Tomography in Endodontics

    Science.gov (United States)

    Scarfe, William C.; Levin, Martin D.; Gane, David; Farman, Allan G.

    2009-01-01

    Cone Beam Computed Tomography (CBCT) is a diagnostic imaging modality that provides high-quality, accurate three-dimensional (3D) representations of the osseous elements of the maxillofacial skeleton. CBCT systems are available that provide small field of view images at low dose with sufficient spatial resolution for applications in endodontic diagnosis, treatment guidance, and posttreatment evaluation. This article provides a literature review and pictorial demonstration of CBCT as an imaging adjunct for endodontics. PMID:20379362

  18. Cone beam computed tomography in Endodontics - a review.

    Science.gov (United States)

    Patel, S; Durack, C; Abella, F; Shemesh, H; Roig, M; Lemberg, K

    2015-01-01

    Cone beam computed tomography (CBCT) produces undistorted three-dimensional information of the maxillofacial skeleton, including the teeth and their surrounding tissues with a lower effective radiation dose than computed tomography. The aim of this paper is to: (i) review the current literature on the applications and limitations of CBCT; (ii) make recommendations for the use of CBCT in Endodontics; (iii) highlight areas of further research of CBCT in Endodontics. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  19. Anatomical structure of lingual foramen in cone beam computed tomography

    International Nuclear Information System (INIS)

    Ki, Min Woo; Hwang, Eui Hwan; Lee, Sang Rae

    2004-01-01

    To evaluate whether cone beam computed tomography can depict the distribution, position, frequency, relative vertical dimension, and the diameter of the lingual foramen and direction of lingual bone canal. Cone beam computed tomography of mandible was performed on 25 males and 25 females with no history of any orthodontic treatments or any other dental surgeries. A statistical comparison was done on the mean values of males and females. In the location and distribution of lingual foramina, median lingual foramen was found in all subjects and lateral lingual foramen in 58%. In the lateral lingual foramen, bilateral type was found in 28% and unilateral type in 30%. In the number of lingual foramina, median lingual foramen had two foramina and lateral lingual foramen had one foramen, mostly. In the relative mean vertical dimension of lingual foramina, median lingual foramen was 0.03 ± 0.08, and both lateral lingual foramina was 0.20 ± 0.04. The mean diameter of lingual foramina, median lingual foramen was 0.9 mm ± 0.28, right lateral lingual foramen was 0.92 mm ± 0.23, and left lateral lingual foramen was 0.88 mm ± 0.27. The most frequent direction of the lingual bone canals, median lingual bone canal proceeded in anteroinferior direction and lateral lingual bone canal in anterosuperolateral direction. Cone beam computed tomography can be helpful for surgery and implantation on the mandibular area. Radiologist should be aware of this anatomical feature and its possible implications.

  20. Anatomical structure of lingual foramen in cone beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ki, Min Woo; Hwang, Eui Hwan; Lee, Sang Rae [Kyunghee University College of Medicine, Seoul (Korea, Republic of)

    2004-07-15

    To evaluate whether cone beam computed tomography can depict the distribution, position, frequency, relative vertical dimension, and the diameter of the lingual foramen and direction of lingual bone canal. Cone beam computed tomography of mandible was performed on 25 males and 25 females with no history of any orthodontic treatments or any other dental surgeries. A statistical comparison was done on the mean values of males and females. In the location and distribution of lingual foramina, median lingual foramen was found in all subjects and lateral lingual foramen in 58%. In the lateral lingual foramen, bilateral type was found in 28% and unilateral type in 30%. In the number of lingual foramina, median lingual foramen had two foramina and lateral lingual foramen had one foramen, mostly. In the relative mean vertical dimension of lingual foramina, median lingual foramen was 0.03 {+-} 0.08, and both lateral lingual foramina was 0.20 {+-} 0.04. The mean diameter of lingual foramina, median lingual foramen was 0.9 mm {+-} 0.28, right lateral lingual foramen was 0.92 mm {+-} 0.23, and left lateral lingual foramen was 0.88 mm {+-} 0.27. The most frequent direction of the lingual bone canals, median lingual bone canal proceeded in anteroinferior direction and lateral lingual bone canal in anterosuperolateral direction. Cone beam computed tomography can be helpful for surgery and implantation on the mandibular area. Radiologist should be aware of this anatomical feature and its possible implications.

  1. Intra–cavity generation of Bessel–like beams with longitudinally dependent cone angles

    CSIR Research Space (South Africa)

    Litvin, IA

    2010-02-01

    Full Text Available The authors report on two resonator systems for producing Bessel–like beams with longitudinally dependent cone angles (LDBLBs). Such beams have extended propagation distances as compared to conventional Bessel– Gauss beams, with a far field pattern...

  2. Fundamentals of cone beam computed tomography for a prosthodontist

    Directory of Open Access Journals (Sweden)

    George Puthenpurayil John

    2015-01-01

    Full Text Available Cone beam computed tomography (CBCT, also referred to as C-arm computed tomography [CT], cone beam volume CT, or flat panel CT is a medical imaging technique of X-ray CT where the X-rays are divergent, forming a cone. [1] CBCT systems have been designed for imaging hard tissues of the maxillofacial region. CBCT is capable of providing sub-millimeter resolution in images of high diagnostic quality, with short scanning times (10-70 s and radiation dosages reportedly up to 15-100 times lower than those of conventional CT scans. Increasing availability of this technology provides the dental clinician with an imaging modality capable of providing a three-dimensional representation of the maxillofacial skeleton with minimal distortion. The aim of this article is to sensitize the Prosthodontist to CBCT technology, provide an overview of currently available maxillofacial CBCT systems and review the specific application of various CBCT display modes to clinical Prosthodontic practice. A MEDLINE search for relevant articles in this specific area of interest was conducted. The selected articles were critically reviewed and the data acquired were systematically compiled.

  3. Fundamentals of cone beam computed tomography for a prosthodontist

    Science.gov (United States)

    John, George Puthenpurayil; Joy, Tatu Elenjickal; Mathew, Justin; Kumar, Vinod R. B.

    2015-01-01

    Cone beam computed tomography (CBCT, also referred to as C-arm computed tomography [CT], cone beam volume CT, or flat panel CT) is a medical imaging technique of X-ray CT where the X-rays are divergent, forming a cone.[1] CBCT systems have been designed for imaging hard tissues of the maxillofacial region. CBCT is capable of providing sub-millimeter resolution in images of high diagnostic quality, with short scanning times (10–70 s) and radiation dosages reportedly up to 15–100 times lower than those of conventional CT scans. Increasing availability of this technology provides the dental clinician with an imaging modality capable of providing a three-dimensional representation of the maxillofacial skeleton with minimal distortion. The aim of this article is to sensitize the Prosthodontist to CBCT technology, provide an overview of currently available maxillofacial CBCT systems and review the specific application of various CBCT display modes to clinical Prosthodontic practice. A MEDLINE search for relevant articles in this specific area of interest was conducted. The selected articles were critically reviewed and the data acquired were systematically compiled. PMID:26929479

  4. Cone-beam tomography with discrete data sets

    International Nuclear Information System (INIS)

    Barrett, H.H.

    1994-01-01

    Sufficiently conditions for cone-beam data are well known for the case of continuous data collection along a cone-vortex curve with continuous detectors. These continuous conditions are inadequate for real-world data where discrete vertex geometries and discrete detector arrays are used. In this paper we present a theoretical formulation of cone-beam tomography with arbitrary discrete arrays of detectors and vertices. The theory models the imaging system as a linear continuous-to-discrete mapping and represents the continuous object exactly as a Fourier series. The reconstruction problem is posed as the estimation of some subset of the Fourier coefficients. The main goal of the theory is to determine which Fourier coefficients can be reliably determined from the data delivered by a specific discrete design. A fourier component will be well determined by the data if it satisfies two conditions: it makes a strong contribution to the data, and this contribution is relatively independent of the contribution of other Fourier components. To make these considerations precise, we introduce a concept called the cross-talk matrix. A diagonal element of this matrix measures the strength of a Fourier component in the data, while an off-diagonal element quantifies the dependence or aliasing of two different components. (Author)

  5. Prototype heel effect compensation filter for cone-beam CT

    International Nuclear Information System (INIS)

    Mori, Shinichiro; Endo, Masahiro; Nishizawa, Kanae; Ohno, Mari; Miyazaki, Hiroaki; Tsujita, Kazuhiko; Saito, Yasuo

    2005-01-01

    The prototype cone-beam CT (CBCT) has a larger beam width than the conventional multi-detector row CT (MDCT). This causes a non-uniform angular distribution of the x-ray beam intensity known as the heel effect. Scan conditions for CBCT tube current are adjusted on the anode side to obtain an acceptable clinical image quality. However, as the dose is greater on the cathode side than on the anode side, the signal-to-noise ratio on the cathode side is excessively high, resulting in an unnecessary dose amount. To compensate for the heel effect, we developed a heel effect compensation (HEC) filter. The HEC filter rendered the dose distribution uniform and reduced the dose by an average of 25% for free air and by 20% for CTDI phantoms compared to doses with the conventional filter. In addition, its effect in rendering the effective energy uniform resulted in an improvement in image quality. This new HEC filter may be useful in cone-beam CT studies. (note)

  6. Cone-beam volume CT mammographic imaging: feasibility study

    Science.gov (United States)

    Chen, Biao; Ning, Ruola

    2001-06-01

    X-ray projection mammography, using a film/screen combination or digital techniques, has proven to be the most effective imaging modality for early detection of breast cancer currently available. However, the inherent superimposition of structures makes small carcinoma (a few millimeters in size) difficult to detect in the occultation case or in dense breasts, resulting in a high false positive biopsy rate. The cone-beam x-ray projection based volume imaging using flat panel detectors (FPDs) makes it possible to obtain three-dimensional breast images. This may benefit diagnosis of the structure and pattern of the lesion while eliminating hard compression of the breast. This paper presents a novel cone-beam volume CT mammographic imaging protocol based on the above techniques. Through computer simulation, the key issues of the system and imaging techniques, including the x-ray imaging geometry and corresponding reconstruction algorithms, x-ray characteristics of breast tissues, x-ray setting techniques, the absorbed dose estimation and the quantitative effect of x-ray scattering on image quality, are addressed. The preliminary simulation results support the proposed cone-beam volume CT mammographic imaging modality in respect to feasibility and practicability for mammography. The absorbed dose level is comparable to that of current two-view mammography and would not be a prominent problem for this imaging protocol. Compared to traditional mammography, the proposed imaging protocol with isotropic spatial resolution will potentially provide significantly better low contrast detectability of breast tumors and more accurate location of breast lesions.

  7. Kinetic parameter estimation from SPECT cone-beam projection measurements

    International Nuclear Information System (INIS)

    Huesman, Ronald H.; Reutter, Bryan W.; Zeng, G. Larry; Gullberg, Grant T.

    1998-01-01

    Kinetic parameters are commonly estimated from dynamically acquired nuclear medicine data by first reconstructing a dynamic sequence of images and subsequently fitting the parameters to time-activity curves generated from regions of interest overlaid upon the image sequence. Biased estimates can result from images reconstructed using inconsistent projections of a time-varying distribution of radiopharmaceutical acquired by a rotating SPECT system. If the SPECT data are acquired using cone-beam collimators wherein the gantry rotates so that the focal point of the collimators always remains in a plane, additional biases can arise from images reconstructed using insufficient, as well as truncated, projection samples. To overcome these problems we have investigated the estimation of kinetic parameters directly from SPECT cone-beam projection data by modelling the data acquisition process. To accomplish this it was necessary to parametrize the spatial and temporal distribution of the radiopharmaceutical within the SPECT field of view. In a simulated chest image volume, kinetic parameters were estimated for simple one-compartment models for four myocardial regions of interest. Myocardial uptake and washout parameters estimated by conventional analysis of noiseless simulated cone-beam data had biases ranging between 3-26% and 0-28%, respectively. Parameters estimated directly from the noiseless projection data were unbiased as expected, since the model used for fitting was faithful to the simulation. Statistical uncertainties of parameter estimates for 10 000 000 events ranged between 0.2-9% for the uptake parameters and between 0.3-6% for the washout parameters. (author)

  8. Characteristics of megavoltage cone-beam digital tomosynthesis

    International Nuclear Information System (INIS)

    Descovich, M.; Morin, O.; Aubry, J. F.; Aubin, M.; Chen, J.; Bani-Hashemi, A; Pouliot, J.

    2008-01-01

    This article reports on the image characteristics of megavoltage cone-beam digital tomosynthesis (MVCB DT). MVCB DT is an in-room imaging technique, which enables the reconstruction of several two-dimensional slices from a set of projection images acquired over an arc of 20 deg. - 40 deg. The limited angular range reduces the acquisition time and the dose delivered to the patient, but affects the image quality of the reconstructed tomograms. Image characteristics (slice thickness, shape distortion, and contrast-to-noise ratio) are studied as a function of the angular range. Potential clinical applications include patient setup and the development of breath holding techniques for gated imaging

  9. Cone beam computed tomography: basics and applications in dentistry.

    Science.gov (United States)

    Venkatesh, Elluru; Elluru, Snehal Venkatesh

    2017-01-01

    The introduction of cone beam computed tomography (CBCT) devices, changed the way oral and maxillofacial radiology is practiced. CBCT was embraced into the dental settings very rapidly due to its compact size, low cost, low ionizing radiation exposure when compared to medical computed tomography. Alike medical CT, 3 dimensional evaluation of the maxillofacial region with minimal distortion is offered by the CBCT. This article provides an overview of basics of CBCT technology and reviews the specific application of CBCT technology to oral and maxillofacial region with few illustrations.

  10. Auto calibration of a cone-beam-CT

    International Nuclear Information System (INIS)

    Gross, Daniel; Heil, Ulrich; Schulze, Ralf; Schoemer, Elmar; Schwanecke, Ulrich

    2012-01-01

    Purpose: This paper introduces a novel autocalibration method for cone-beam-CTs (CBCT) or flat-panel CTs, assuming a perfect rotation. The method is based on ellipse-fitting. Autocalibration refers to accurate recovery of the geometric alignment of a CBCT device from projection images alone, without any manual measurements. Methods: The authors use test objects containing small arbitrarily positioned radio-opaque markers. No information regarding the relative positions of the markers is used. In practice, the authors use three to eight metal ball bearings (diameter of 1 mm), e.g., positioned roughly in a vertical line such that their projection image curves on the detector preferably form large ellipses over the circular orbit. From this ellipse-to-curve mapping and also from its inversion the authors derive an explicit formula. Nonlinear optimization based on this mapping enables them to determine the six relevant parameters of the system up to the device rotation angle, which is sufficient to define the geometry of a CBCT-machine assuming a perfect rotational movement. These parameters also include out-of-plane rotations. The authors evaluate their method by simulation based on data used in two similar approaches [L. Smekal, M. Kachelriess, S. E, and K. Wa, “Geometric misalignment and calibration in cone-beam tomography,” Med. Phys. 31(12), 3242–3266 (2004); K. Yang, A. L. C. Kwan, D. F. Miller, and J. M. Boone, “A geometric calibration method for cone beam CT systems,” Med. Phys. 33(6), 1695–1706 (2006)]. This allows a direct comparison of accuracy. Furthermore, the authors present real-world 3D reconstructions of a dry human spine segment and an electronic device. The reconstructions were computed from projections taken with a commercial dental CBCT device having two different focus-to-detector distances that were both calibrated with their method. The authors compare their reconstruction with a reconstruction computed by the manufacturer of the

  11. Simultaneous misalignment correction for approximate circular cone-beam computed tomography

    International Nuclear Information System (INIS)

    Kyriakou, Y; Hillebrand, L; Ertel, D; Kalender, W A; Lapp, R M

    2008-01-01

    Currently, CT scanning is often performed using flat detectors which are mounted on C-arm units or dedicated gantries as in radiation therapy or micro CT. For perspective cone-beam backprojection of the Feldkamp type (FDK) the geometry of an approximately circular scan trajectory has to be available for reconstruction. If the system or the scan geometry is afflicted with geometrical instabilities, referred to as misalignment, a non-perfect approximate circular scan is the case. Reconstructing a misaligned scan without knowledge of the true trajectory results in severe artefacts in the CT images. Unlike current methods which use a pre-scan calibration of the geometry for defined scan protocols and calibration phantoms, we propose a real-time iterative restoration of reconstruction geometry by means of entropy minimization. Entropy minimization is performed combining a simplex algorithm for multi-parameter optimization and iterative graphics card (GPU)-based FDK-reconstructions. Images reconstructed with the misaligned geometry were used as an input for the entropy minimization algorithm. A simplex algorithm changes the geometrical parameters of the source and detector with respect to the reduction of entropy. In order to reduce the size of the high-dimensional space required for minimization, the trajectory was described by only eight fix points. A virtual trajectory is generated for each iteration using a least-mean-squares algorithm to calculate an approximately circular path including these points. Entropy was minimal for the ideal dataset, whereas strong misalignment resulted in a higher entropy value. For the datasets used in this study, the simplex algorithm required 64-200 iterations to achieve an entropy value equivalent to the ideal dataset, depending on the grade of misalignment using random initialization conditions. The use of the GPU reduced the time per iteration as compared to a quad core CPU-based backprojection by a factor of 10 resulting in a total

  12. Increasing Cone-beam projection usage by temporal fitting

    DEFF Research Database (Denmark)

    Lyksborg, Mark; Hansen, Mads Fogtmann; Larsen, Rasmus

    2010-01-01

    A Cone-beam CT system can be used to image the lung region. The system records 2D projections which will allow 3D reconstruction however a reconstruction based on all projections will lead to a blurred reconstruction in regions were respiratory motion occur. To avoid this the projections are typi......A Cone-beam CT system can be used to image the lung region. The system records 2D projections which will allow 3D reconstruction however a reconstruction based on all projections will lead to a blurred reconstruction in regions were respiratory motion occur. To avoid this the projections...... in [6] prior knowledge of the lung deformation estimated from the planning CT could be used to include all projections into the reconstruction. It has also been attempted to estimate both the motion and 3D volume simultaneously in [4]. Problems with motion estimation are ill-posed leading to suboptimal...... motion which in return affects the reconstruction. By directly including time into the image representation the effect of suboptimal motion fields are avoided and we are still capable of using phase neighbour projections. The 4D image model is fitted by solving a statistical cost function based...

  13. Five-dimensional motion compensation for respiratory and cardiac motion with cone-beam CT of the thorax region

    Science.gov (United States)

    Sauppe, Sebastian; Hahn, Andreas; Brehm, Marcus; Paysan, Pascal; Seghers, Dieter; Kachelrieß, Marc

    2016-03-01

    We propose an adapted method of our previously published five-dimensional (5D) motion compensation (MoCo) algorithm1, developed for micro-CT imaging of small animals, to provide for the first time motion artifact-free 5D cone-beam CT (CBCT) images from a conventional flat detector-based CBCT scan of clinical patients. Image quality of retrospectively respiratory- and cardiac-gated volumes from flat detector CBCT scans is deteriorated by severe sparse projection artifacts. These artifacts further complicate motion estimation, as it is required for MoCo image reconstruction. For high quality 5D CBCT images at the same x-ray dose and the same number of projections as todays 3D CBCT we developed a double MoCo approach based on motion vector fields (MVFs) for respiratory and cardiac motion. In a first step our already published four-dimensional (4D) artifact-specific cyclic motion-compensation (acMoCo) approach is applied to compensate for the respiratory patient motion. With this information a cyclic phase-gated deformable heart registration algorithm is applied to the respiratory motion-compensated 4D CBCT data, thus resulting in cardiac MVFs. We apply these MVFs on double-gated images and thereby respiratory and cardiac motion-compensated 5D CBCT images are obtained. Our 5D MoCo approach processing patient data acquired with the TrueBeam 4D CBCT system (Varian Medical Systems). Our double MoCo approach turned out to be very efficient and removed nearly all streak artifacts due to making use of 100% of the projection data for each reconstructed frame. The 5D MoCo patient data show fine details and no motion blurring, even in regions close to the heart where motion is fastest.

  14. Handling data redundancy in helical cone beam reconstruction with a cone-angle-based window function and its asymptotic approximation

    International Nuclear Information System (INIS)

    Tang Xiangyang; Hsieh Jiang

    2007-01-01

    A cone-angle-based window function is defined in this manuscript for image reconstruction using helical cone beam filtered backprojection (CB-FBP) algorithms. Rather than defining the window boundaries in a two-dimensional detector acquiring projection data for computed tomographic imaging, the cone-angle-based window function deals with data redundancy by selecting rays with the smallest cone angle relative to the reconstruction plane. To be computationally efficient, an asymptotic approximation of the cone-angle-based window function is also given and analyzed in this paper. The benefit of using such an asymptotic approximation also includes the avoidance of functional discontinuities that cause artifacts in reconstructed tomographic images. The cone-angle-based window function and its asymptotic approximation provide a way, equivalent to the Tam-Danielsson-window, for helical CB-FBP reconstruction algorithms to deal with data redundancy, regardless of where the helical pitch is constant or dynamically variable during a scan. By taking the cone-parallel geometry as an example, a computer simulation study is conducted to evaluate the proposed window function and its asymptotic approximation for helical CB-FBP reconstruction algorithm to handle data redundancy. The computer simulated Forbild head and thorax phantoms are utilized in the performance evaluation, showing that the proposed cone-angle-based window function and its asymptotic approximation can deal with data redundancy very well in cone beam image reconstruction from projection data acquired along helical source trajectories. Moreover, a numerical study carried out in this paper reveals that the proposed cone-angle-based window function is actually equivalent to the Tam-Danielsson-window, and rigorous mathematical proofs are being investigated

  15. Exact fan-beam and 4π-acquisition cone-beam SPECT algorithms with uniform attenuation correction

    International Nuclear Information System (INIS)

    Tang Qiulin; Zeng, Gengsheng L.; Wu Jiansheng; Gullberg, Grant T.

    2005-01-01

    This paper presents analytical fan-beam and cone-beam reconstruction algorithms that compensate for uniform attenuation in single photon emission computed tomography. First, a fan-beam algorithm is developed by obtaining a relationship between the two-dimensional (2D) Fourier transform of parallel-beam projections and fan-beam projections. Using this relationship, 2D Fourier transforms of equivalent parallel-beam projection data are obtained from the fan-beam projection data. Then a quasioptimal analytical reconstruction algorithm for uniformly attenuated Radon data, developed by Metz and Pan, is used to reconstruct the image. A cone-beam algorithm is developed by extending the fan-beam algorithm to 4π solid angle geometry. The cone-beam algorithm is also an exact algorithm

  16. Dosimetric evaluation of cone beam computed tomography scanning protocols

    International Nuclear Information System (INIS)

    Soares, Maria Rosangela

    2015-01-01

    It was evaluated the cone beam computed tomography, CBCT scanning protocols, that was introduced in dental radiology at the end of the 1990's, and quickly became a fundamental examination for various procedures. Its main characteristic, the difference of medical CT is the beam shape. This study aimed to calculate the absorbed dose in eight tissues / organs of the head and neck, and to estimate the effective dose in 13 protocols and two techniques (stitched FOV e single FOV) of 5 equipment of different manufacturers of cone beam CT. For that purpose, a female anthropomorphic phantom was used, representing a default woman, in which were inserted thermoluminescent dosimeters at several points, representing organs / tissues with weighting values presented in the standard ICRP 103. The results were evaluated by comparing the dose according to the purpose of the tomographic image. Among the results, there is a difference up to 325% in the effective dose in relation to protocols with the same image goal. In relation to the image acquisition technique, the stitched FOV technique resulted in an effective dose of 5.3 times greater than the single FOV technique for protocols with the same image goal. In the individual contribution, the salivary glands are responsible for 31% of the effective dose in CT exams. The remaining tissues have also a significant contribution, 36%. The results drew attention to the need of estimating the effective dose in different equipment and protocols of the market, besides the knowledge of the radiation parameters and equipment manufacturing engineering to obtain the image. (author)

  17. A general exact method for synthesizing parallel-beam projections from cone-beam projections via filtered backprojection

    International Nuclear Information System (INIS)

    Li Liang; Chen Zhiqiang; Xing Yuxiang; Zhang Li; Kang Kejun; Wang Ge

    2006-01-01

    In recent years, image reconstruction methods for cone-beam computed tomography (CT) have been extensively studied. However, few of these studies discussed computing parallel-beam projections from cone-beam projections. In this paper, we focus on the exact synthesis of complete or incomplete parallel-beam projections from cone-beam projections. First, an extended central slice theorem is described to establish a relationship between the Radon space and the Fourier space. Then, data sufficiency conditions are proposed for computing parallel-beam projection data from cone-beam data. Using these results, a general filtered backprojection algorithm is formulated that can exactly synthesize parallel-beam projection data from cone-beam projection data. As an example, we prove that parallel-beam projections can be exactly synthesized in an angular range in the case of circular cone-beam scanning. Interestingly, this angular range is larger than that derived in the Feldkamp reconstruction framework. Numerical experiments are performed in the circular scanning case to verify our method

  18. Applications of cone beam computed tomography for a prosthodontist.

    Science.gov (United States)

    John, George Puthenpurayil; Joy, Tatu Elenjickal; Mathew, Justin; Kumar, Vinod R B

    2016-01-01

    Cone beam computed tomography (CBCT) is a medical imaging technique of X-ray computed tomography where the X-rays are divergent, forming a cone. CBCT systems have been designed for imaging hard tissues of the maxillofacial region. The increasing availability of this technology provides the dental clinician with an imaging modality capable of providing a three-dimensional representation of the maxillofacial skeleton with minimal distortion. This article is intended to elaborate and enunciate on the various applications and benefits of CBCT, in the realm of maxillofacial prosthodontics, over and beyond its obvious benefits in the rehabilitation of patients with implants. With the onus of meticulous reconstruction of near ideal occlusion resting on the prosthodontist, CBCT provides a unique imaging option, which can be a boon in various aspects of prosthodontic practice - from imaging of the temporomandibular joint for accurate movement simulation, to template assisted maxillofacial reconstruction or even over denture therapy. CBCT could play a crucial role in lessening the burden of a hectic prosthodontic routine for the clinician and critically contribute to accurate and effective treatment for the patient. Apart from the authors' clinical experiences shared here, a web-based search for relevant articles in this specific area of interest was also conducted. The selected articles were critically reviewed and the data acquired were systematically compiled.

  19. Micro-CT and nano-CT analysis of filling quality of three different endodontic sealers.

    Science.gov (United States)

    Huang, Yan; Celikten, Berkan; de Faria Vasconcelos, Karla; Ferreira Pinheiro Nicolielo, Laura; Lippiatt, Nicholas; Buyuksungur, Arda; Jacobs, Reinhilde; Orhan, Kaan

    2017-12-01

    To investigate voids in different root canal sealers using micro-CT and nano-CT, and to explore the feasibility of using nano-CT for quantitative analysis of sealer filling quality. 30 extracted mandibular central incisors were randomly assigned into three groups according to the applied root canal sealers (Total BC Sealer, Sure Seal Root, AH Plus) by the single cone technique. Subsequently, micro-CT and nano-CT were performed to analyse the incidence rate of voids, void fraction, void volume and their distribution in each sample. Micro-CT evaluation showed no significant difference among sealers for the incidence rate of voids or void fraction in the whole filling materials (p > 0.05), whereas a significant difference was found between AH Plus and the other two sealers using nano-CT (p nano-CT results displayed higher void volume in AH Plus among all the sealers and regions (p nano-CT analysis, when round root canals were treated by the single cone technique. The disparate results suggest that the higher resolution of nano-CT have a greater ability of distinguishing internal porosity, and therefore suggesting the potential use of nano-CT in quantitative analysis of filling quality of sealers.

  20. A characteristic of angiographic cone-beam CT

    International Nuclear Information System (INIS)

    Takase, Tadashi; Take, Toshio; Nakazawa, Yasuo; Kinouchi, Katsunori

    2009-01-01

    Angiographic cone-beam CT, called DynaCT by SIEMENS, is a 3D imaging tool reconstructed from projection data by a rotational C-arm with a flat panel detector. It can visualize low-contrast objects such as soft tissue or small vessels as well as high-contrast structures such as enhanced vessels or bone. We need to understand its image characteristics and dose distribution during 200 degree rotation around a patient. In this research, we evaluated fundamental characteristics and dose effectiveness for optimized clinical images. DynaCT, including soft tissue information and isochronal voxel data along the z-axis, could provide enough CT-like image quality for interventional radiology (IVR) use. In addition, evaluation of accumulated dose distribution helped us to predict and avoid the occurrence of radiodermatitis. Thus, DynaCT is useful as a support and navigation tool for IVR. (author)

  1. Application of cone beam computed tomography in facial imaging science

    Institute of Scientific and Technical Information of China (English)

    Zacharias Fourie; Janalt Damstra; Yijin Ren

    2012-01-01

    The use of three-dimensional (3D) methods for facial imaging has increased significantly over the past years.Traditional 2D imaging has gradually being replaced by 3D images in different disciplines,particularly in the fields of orthodontics,maxillofacial surgery,plastic and reconstructive surgery,neurosurgery and forensic sciences.In most cases,3D facial imaging overcomes the limitations of traditional 2D methods and provides the clinician with more accurate information regarding the soft-tissues and the underlying skeleton.The aim of this study was to review the types of imaging methods used for facial imaging.It is important to realize the difference between the types of 3D imaging methods as application and indications thereof may differ.Since 3D cone beam computed tomography (CBCT) imaging will play an increasingly importanl role in orthodontics and orthognathic surgery,special emphasis should be placed on discussing CBCT applications in facial evaluations.

  2. Cone beam computed tomography: A boon for maxillofacial imaging

    Directory of Open Access Journals (Sweden)

    Sreenivas Rao Ghali

    2017-01-01

    Full Text Available In day to day practice, the radiographic techniques used individually or in combination suffer from some inherent limits of all planar two-dimensional (2D projections such as magnification, distortion, superimposition, and misrepresentation of anatomic structures. The introduction of cone-beam computed tomography (CBCT, specifically dedicated to imaging the maxillofacial region, heralds a major shift from 2D to three-dimensional (3D approach. It provides a complete 3D view of the maxilla, mandible, teeth, and supporting structures with relatively high resolution allowing a more accurate diagnosis, treatment planning and monitoring, and analysis of outcomes than conventional 2D images, along with low radiation exposure to the patient. CBCT has opened up new vistas for the use of 3D imaging as a diagnostic and treatment planning tool in dentistry. This paper provides an overview of the imaging principles, underlying technology, dental applications, and in particular focuses on the emerging role of CBCT in dentistry.

  3. Image quality of cone beam CT on respiratory motion

    International Nuclear Information System (INIS)

    Zhang Ke; Li Minghui; Dai Jianrong; Wang Shi

    2011-01-01

    In this study,the influence of respiratory motion on Cone Beam CT (CBCT) image quality was investigated by a motion simulating platform, an image quality phantom, and a kV X-ray CBCT. A total of 21 motion states in the superior-inferior direction and the anterior-posterior direction, separately or together, was simulated by considering different respiration amplitudes, periods and hysteresis. The influence of motion on CBCT image quality was evaluated with the quality indexes of low contrast visibility, geometric accuracy, spatial resolution and uniformity of CT values. The results showed that the quality indexes were affected by the motion more prominently in AP direction than in SI direction, and the image quality was affected by the respiration amplitude more prominently than the respiration period and the hysteresis. The CBCT image quality and its characteristics influenced by the respiration motion, and may be exploited in finding solutions. (authors)

  4. Fossa navicularis magna detection on cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Syed, Ali Z. [Dept. of Oral and Maxillofacial Medicine and Diagnostic Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland(United States); Mupparapu, Mel [Div. of Radiology, University of Pennsylvania School of Dental Medicine, Philadelphia (United States)

    2016-03-15

    Herein, we report and discuss the detection of fossa navicularis magna, a close radiographic anatomic variant of canalis basilaris medianus of the basiocciput, as an incidental finding in cone-beam computed tomography (CBCT) imaging. The CBCT data of the patients in question were referred for the evaluation of implant sites and to rule out pathology in the maxilla and mandible. CBCT analysis showed osseous, notch-like defects on the inferior aspect of the clivus in all four cases. The appearance of fossa navicularis magna varied among the cases. In some, it was completely within the basiocciput and mimicked a small rounded, corticated, lytic defect, whereas it appeared as a notch in others. Fossa navicularis magna is an anatomical variant that occurs on the inferior aspect of the clivus. The pertinent literature on the anatomical variations occurring in this region was reviewed.

  5. Noise simulation in cone beam CT imaging with parallel computing

    International Nuclear Information System (INIS)

    Tu, S.-J.; Shaw, Chris C; Chen, Lingyun

    2006-01-01

    We developed a computer noise simulation model for cone beam computed tomography imaging using a general purpose PC cluster. This model uses a mono-energetic x-ray approximation and allows us to investigate three primary performance components, specifically quantum noise, detector blurring and additive system noise. A parallel random number generator based on the Weyl sequence was implemented in the noise simulation and a visualization technique was accordingly developed to validate the quality of the parallel random number generator. In our computer simulation model, three-dimensional (3D) phantoms were mathematically modelled and used to create 450 analytical projections, which were then sampled into digital image data. Quantum noise was simulated and added to the analytical projection image data, which were then filtered to incorporate flat panel detector blurring. Additive system noise was generated and added to form the final projection images. The Feldkamp algorithm was implemented and used to reconstruct the 3D images of the phantoms. A 24 dual-Xeon PC cluster was used to compute the projections and reconstructed images in parallel with each CPU processing 10 projection views for a total of 450 views. Based on this computer simulation system, simulated cone beam CT images were generated for various phantoms and technique settings. Noise power spectra for the flat panel x-ray detector and reconstructed images were then computed to characterize the noise properties. As an example among the potential applications of our noise simulation model, we showed that images of low contrast objects can be produced and used for image quality evaluation

  6. Dual resolution cone beam breast CT: A feasibility study

    International Nuclear Information System (INIS)

    Chen Lingyun; Shen Youtao; Lai, Chao-Jen; Han Tao; Zhong Yuncheng; Ge Shuaiping; Liu Xinming; Wang Tianpeng; Yang, Wei T.; Whitman, Gary J.; Shaw, Chris C.

    2009-01-01

    Purpose: In this study, the authors investigated the feasibility of a dual resolution volume-of-interest (VOI) cone beam breast CT technique and compared two implementation approaches in terms of dose saving and scatter reduction. Methods: With this technique, a lead VOI mask with an opening is inserted between the x-ray source and the breast to deliver x-ray exposure to the VOI while blocking x rays outside the VOI. A CCD detector is used to collect the high resolution projection data of the VOI. Low resolution cone beam CT (CBCT) images of the entire breast, acquired with a flat panel (FP) detector, were used to calculate the projection data outside the VOI with the ray-tracing reprojection method. The Feldkamp-Davis-Kress filtered backprojection algorithm was used to reconstruct the dual resolution 3D images. Breast phantoms with 180 μm and smaller microcalcifications (MCs) were imaged with both FP and FP-CCD dual resolution CBCT systems, respectively. Two approaches of implementing the dual resolution technique, breast-centered approach and VOI-centered approach, were investigated and evaluated for dose saving and scatter reduction with Monte Carlo simulation using a GEANT4 package. Results: The results showed that the breast-centered approach saved more breast absorbed dose than did VOI-centered approach with similar scatter reduction. The MCs in fatty breast phantom, which were invisible with FP CBCT scan, became visible with the FP-CCD dual resolution CBCT scan. Conclusions: These results indicate potential improvement of the image quality inside the VOI with reduced breast dose both inside and outside the VOI.

  7. Cone-beam volume CT breast imaging: Feasibility study

    International Nuclear Information System (INIS)

    Chen Biao; Ning Ruola

    2002-01-01

    X-ray projection mammography, using a film/screen combination, or digital techniques, has proven to be the most effective imaging modality currently available for early detection of breast cancer. However, the inherent superimposition of structures makes a small carcinoma (a few millimeters in size) difficult to detect when it is occult or in dense breasts, leading to a high false-positive biopsy rate. Cone-beam x-ray-projection-based volume imaging using flat panel detectors (FPDs) may allow obtaining three-dimensional breast images, resulting in more accurate diagnosis of structures and patterns of lesions while eliminating the hard compression of breasts. This article presents a novel cone-beam volume computed tomographic breast imaging (CBVCTBI) technique based on the above techniques. Through a variety of computer simulations, the key issues of the system and imaging techniques were addressed, including the x-ray imaging geometry and corresponding reconstruction algorithms, x-ray characteristics of breast tissue and lesions, x-ray setting techniques, the absorbed dose estimation, and the quantitative effect of x-ray scattering on image quality. The preliminary simulation results support the proposed CVBCTBI modality for breast imaging in respect to its feasibility and practicability. The absorbed dose level is comparable to that of current mammography and will not be a prominent problem for this imaging technique. Compared to conventional mammography, the proposed imaging technique with isotropic spatial resolution will potentially provide significantly better low-contrast detectability of breast tumors and more accurate location of breast lesions

  8. Adaptive radiotherapy based on contrast enhanced cone beam CT imaging

    International Nuclear Information System (INIS)

    Soevik, Aaste; Skogmo, Hege K.; Roedal, Jan; Lervaag, Christoffer; Eilertsen, Karsten; Malinen, Eirik

    2010-01-01

    Cone beam CT (CBCT) imaging has become an integral part of radiation therapy, with images typically used for offline or online patient setup corrections based on bony anatomy co-registration. Ideally, the co-registration should be based on tumor localization. However, soft tissue contrast in CBCT images may be limited. In the present work, contrast enhanced CBCT (CECBCT) images were used for tumor visualization and treatment adaptation. Material and methods. A spontaneous canine maxillary tumor was subjected to repeated cone beam CT imaging during fractionated radiotherapy (10 fractions in total). At five of the treatment fractions, CECBCT images, employing an iodinated contrast agent, were acquired, as well as pre-contrast CBCT images. The tumor was clearly visible in post-contrast minus pre-contrast subtraction images, and these contrast images were used to delineate gross tumor volumes. IMRT dose plans were subsequently generated. Four different strategies were explored: 1) fully adapted planning based on each CECBCT image series, 2) planning based on images acquired at the first treatment fraction and patient repositioning following bony anatomy co-registration, 3) as for 2), but with patient repositioning based on co-registering contrast images, and 4) a strategy with no patient repositioning or treatment adaptation. The equivalent uniform dose (EUD) and tumor control probability (TCP) calculations to estimate treatment outcome for each strategy. Results. Similar translation vectors were found when bony anatomy and contrast enhancement co-registration were compared. Strategy 1 gave EUDs closest to the prescription dose and the highest TCP. Strategies 2 and 3 gave EUDs and TCPs close to that of strategy 1, with strategy 3 being slightly better than strategy 2. Even greater benefits from strategies 1 and 3 are expected with increasing tumor movement or deformation during treatment. The non-adaptive strategy 4 was clearly inferior to all three adaptive strategies

  9. 3D dictionary learning based iterative cone beam CT reconstruction

    Directory of Open Access Journals (Sweden)

    Ti Bai

    2014-03-01

    Full Text Available Purpose: This work is to develop a 3D dictionary learning based cone beam CT (CBCT reconstruction algorithm on graphic processing units (GPU to improve the quality of sparse-view CBCT reconstruction with high efficiency. Methods: A 3D dictionary containing 256 small volumes (atoms of 3 × 3 × 3 was trained from a large number of blocks extracted from a high quality volume image. On the basis, we utilized cholesky decomposition based orthogonal matching pursuit algorithm to find the sparse representation of each block. To accelerate the time-consuming sparse coding in the 3D case, we implemented the sparse coding in a parallel fashion by taking advantage of the tremendous computational power of GPU. Conjugate gradient least square algorithm was adopted to minimize the data fidelity term. Evaluations are performed based on a head-neck patient case. FDK reconstruction with full dataset of 364 projections is used as the reference. We compared the proposed 3D dictionary learning based method with tight frame (TF by performing reconstructions on a subset data of 121 projections. Results: Compared to TF based CBCT reconstruction that shows good overall performance, our experiments indicated that 3D dictionary learning based CBCT reconstruction is able to recover finer structures, remove more streaking artifacts and also induce less blocky artifacts. Conclusion: 3D dictionary learning based CBCT reconstruction algorithm is able to sense the structural information while suppress the noise, and hence to achieve high quality reconstruction under the case of sparse view. The GPU realization of the whole algorithm offers a significant efficiency enhancement, making this algorithm more feasible for potential clinical application.-------------------------------Cite this article as: Bai T, Yan H, Shi F, Jia X, Lou Y, Xu Q, Jiang S, Mou X. 3D dictionary learning based iterative cone beam CT reconstruction. Int J Cancer Ther Oncol 2014; 2(2:020240. DOI: 10

  10. Estimation of effective dose from limited cone beam X-ray CT examination

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Kazuo; Arai, Yoshinori; Hashimoto, Koji [Nihon Univ., Tokyo (Japan). School of Dentistry; Nishizawa, Kanae

    2000-12-01

    The limited cone beam X-ray CT (Ortho-CT) was developed on the basis of multi-functional panoramic apparatus, SCANORA (Soredex Co. Helsinki Finland). The imaging intensifier (I.I.) was built in this apparatus as a X-ray detection device instead of X-ray film. The signal provided from I.I. was converted from analog into digital by an analog-digital converter and image reconstitution was done as a three-directional image of the dimensions 3.8 cm of width, 3.0 cm height and 3.8 cm depth with the personal computer. The 3DX Multi image micro CT'' (3DX) was developed along similar lines by MORITA Co., Ltd. (Kyoto, JAPAN). In this study, the stochastic effect on organ and tissue caused by examinations using Ortho-CT and 3DX was measured. The effective dose was estimated according to the recommendation of ICRP60 and was compared with those of panoramic radiography and computed tomography. The irradiation conditions were as follows: 85 kV, 10 mA with the filtration of 3 mmAl and added 1 mmCu for Ortho-CT, and 80 kV, 2 mA and the filtration of 3.1 mmAL for 3DX. The measurement of organ and tissue dose was performed using an anthropomorphic Rando woman phantom (Alderson Research Laboratories Co., Stanfora, CN), as well as by using two different type of thermoluminescent dosimeter (TLD); Panasonic UD-170A (BeO) and UD-110S (CaSO{sub 4}: Tm). The UD-170A was for dose measurement of the inner useful X-ray beams, while the UD-110S was for outer beams. The measured organ and tissue were those recommended with ICRP60 (gonad, breast, bone marrow, lung, thyroid gland, esophagus, stomach, colon, liver, bladder, skin, brain, thymus, adrenal, kidney, spleen, pancrease, upper large intestine, uterus, eyes and major salivary gland). The imaging by Orhto-CT was made in the left maxillary 1st molar, left mandibular 1st molar and temporomandibular joint. 3DX measurement was made in the maxillary incisor region and middle ear regions other than the regions mentioned above. The skin

  11. 3D printing for orthopedic applications: from high resolution cone beam CT images to life size physical models

    Science.gov (United States)

    Jackson, Amiee; Ray, Lawrence A.; Dangi, Shusil; Ben-Zikri, Yehuda K.; Linte, Cristian A.

    2017-03-01

    With increasing resolution in image acquisition, the project explores capabilities of printing toward faithfully reflecting detail and features depicted in medical images. To improve safety and efficiency of orthopedic surgery and spatial conceptualization in training and education, this project focused on generating virtual models of orthopedic anatomy from clinical quality computed tomography (CT) image datasets and manufacturing life-size physical models of the anatomy using 3D printing tools. Beginning with raw micro CT data, several image segmentation techniques including thresholding, edge recognition, and region-growing algorithms available in packages such as ITK-SNAP, MITK, or Mimics, were utilized to separate bone from surrounding soft tissue. After converting the resulting data to a standard 3D printing format, stereolithography (STL), the STL file was edited using Meshlab, Netfabb, and Meshmixer. The editing process was necessary to ensure a fully connected surface (no loose elements), positive volume with manifold geometry (geometry possible in the 3D physical world), and a single, closed shell. The resulting surface was then imported into a "slicing" software to scale and orient for printing on a Flashforge Creator Pro. In printing, relationships between orientation, print bed volume, model quality, material use and cost, and print time were considered. We generated anatomical models of the hand, elbow, knee, ankle, and foot from both low-dose high-resolution cone-beam CT images acquired using the soon to be released scanner developed by Carestream, as well as scaled models of the skeletal anatomy of the arm and leg, together with life-size models of the hand and foot.

  12. Clinical utility of dental cone-beam computed tomography: current perspectives

    Directory of Open Access Journals (Sweden)

    Jaju PP

    2014-04-01

    Full Text Available Prashant P Jaju,1 Sushma P Jaju21Oral Medicine and Radiology, 2Conservative Dentistry and Endodontics, Rishiraj College of Dental Sciences and Research Center, Bhopal, IndiaAbstract: Panoramic radiography and computed tomography were the pillars of maxillofacial diagnosis. With the advent of cone-beam computed tomography, dental practice has seen a paradigm shift. This review article highlights the potential applications of cone-beam computed tomography in the fields of dental implantology and forensic dentistry, and its limitations in maxillofacial diagnosis.Keywords: dental implants, cone-beam computed tomography, panoramic radiography, computed tomography

  13. Filtered region of interest cone-beam rotational angiography

    International Nuclear Information System (INIS)

    Schafer, Sebastian; Noeel, Peter B.; Walczak, Alan M.; Hoffmann, Kenneth R.

    2010-01-01

    Purpose: Cone-beam rotational angiography (CBRA) is widely used in the modern clinical settings. In a number of procedures, the area of interest is often considerably smaller than the field of view (FOV) of the detector, subjecting the patient to potentially unnecessary x-ray dose. The authors therefore propose a filter-based method to reduce the dose in the regions of low interest, while supplying high image quality in the region of interest (ROI). Methods: For such procedures, the authors propose a method of filtered region of interest (FROI)-CBRA. In the authors' approach, a gadolinium filter with a circular central opening is placed into the x-ray beam during image acquisition. The central region is imaged with high contrast, while peripheral regions are subjected to a substantial lower intensity and dose through beam filtering. The resulting images contain a high contrast/intensity ROI, as well as a low contrast/intensity peripheral region, and a transition region in between. To equalize the two regions' intensities, the first projection of the acquisition is performed with and without the filter in place. The equalization relationship, based on Beer's law, is established through linear regression using corresponding filtered and nonfiltered data. The transition region is equalized based on radial profiles. Results: Evaluations in 2D and 3D show no visible difference between conventional FROI-CBRA projection images and reconstructions in the ROI. CNR evaluations show similar image quality in the ROI, with a reduced CNR in the reconstructed peripheral region. In all filtered projection images, the scatter fraction inside the ROI was reduced. Theoretical and experimental dose evaluations show a considerable dose reduction; using a ROI half the original FOV reduces the dose by 60% for the filter thickness of 1.29 mm. Conclusions: These results indicate the potential of FROI-CBRA to reduce the dose to the patient while supplying the physician with the desired

  14. Effective dose range for dental cone beam computed tomography scanners

    International Nuclear Information System (INIS)

    Pauwels, Ruben; Beinsberger, Jilke; Collaert, Bruno; Theodorakou, Chrysoula; Rogers, Jessica; Walker, Anne; Cockmartin, Lesley; Bosmans, Hilde; Jacobs, Reinhilde; Bogaerts, Ria; Horner, Keith

    2012-01-01

    Objective: To estimate the absorbed organ dose and effective dose for a wide range of cone beam computed tomography scanners, using different exposure protocols and geometries. Materials and methods: Two Alderson Radiation Therapy anthropomorphic phantoms were loaded with LiF detectors (TLD-100 and TLD-100H) which were evenly distributed throughout the head and neck, covering all radiosensitive organs. Measurements were performed on 14 CBCT devices: 3D Accuitomo 170, Galileos Comfort, i-CAT Next Generation, Iluma Elite, Kodak 9000 3D, Kodak 9500, NewTom VG, NewTom VGi, Pax-Uni3D, Picasso Trio, ProMax 3D, Scanora 3D, SkyView, Veraviewepocs 3D. Effective dose was calculated using the ICRP 103 (2007) tissue weighting factors. Results: Effective dose ranged between 19 and 368 μSv. The largest contributions to the effective dose were from the remainder tissues (37%), salivary glands (24%), and thyroid gland (21%). For all organs, there was a wide range of measured values apparent, due to differences in exposure factors, diameter and height of the primary beam, and positioning of the beam relative to the radiosensitive organs. Conclusions: The effective dose for different CBCT devices showed a 20-fold range. The results show that a distinction is needed between small-, medium-, and large-field CBCT scanners and protocols, as they are applied to different indication groups, the dose received being strongly related to field size. Furthermore, the dose should always be considered relative to technical and diagnostic image quality, seeing that image quality requirements also differ for patient groups. The results from the current study indicate that the optimisation of dose should be performed by an appropriate selection of exposure parameters and field size, depending on the diagnostic requirements.

  15. Automated planning of breast radiotherapy using cone beam CT imaging

    International Nuclear Information System (INIS)

    Amit, Guy; Purdie, Thomas G.

    2015-01-01

    Purpose: Develop and clinically validate a methodology for using cone beam computed tomography (CBCT) imaging in an automated treatment planning framework for breast IMRT. Methods: A technique for intensity correction of CBCT images was developed and evaluated. The technique is based on histogram matching of CBCT image sets, using information from “similar” planning CT image sets from a database of paired CBCT and CT image sets (n = 38). Automated treatment plans were generated for a testing subset (n = 15) on the planning CT and the corrected CBCT. The plans generated on the corrected CBCT were compared to the CT-based plans in terms of beam parameters, dosimetric indices, and dose distributions. Results: The corrected CBCT images showed considerable similarity to their corresponding planning CTs (average mutual information 1.0±0.1, average sum of absolute differences 185 ± 38). The automated CBCT-based plans were clinically acceptable, as well as equivalent to the CT-based plans with average gantry angle difference of 0.99°±1.1°, target volume overlap index (Dice) of 0.89±0.04 although with slightly higher maximum target doses (4482±90 vs 4560±84, P < 0.05). Gamma index analysis (3%, 3 mm) showed that the CBCT-based plans had the same dose distribution as plans calculated with the same beams on the registered planning CTs (average gamma index 0.12±0.04, gamma <1 in 99.4%±0.3%). Conclusions: The proposed method demonstrates the potential for a clinically feasible and efficient online adaptive breast IMRT planning method based on CBCT imaging, integrating automation

  16. A unified analysis of FBP-based algorithms in helical cone-beam and circular cone- and fan-beam scans

    International Nuclear Information System (INIS)

    Pan Xiaochuan; Xia Dan; Zou Yu; Yu Lifeng

    2004-01-01

    A circular scanning trajectory is and will likely remain a popular choice of trajectory in computed tomography (CT) imaging because it is easy to implement and control. Filtered-backprojection (FBP)-based algorithms have been developed previously for approximate and exact reconstruction of the entire image or a region of interest within the image in circular cone-beam and fan-beam cases. Recently, we have developed a 3D FBP-based algorithm for image reconstruction on PI-line segments in a helical cone-beam scan. In this work, we demonstrated that the 3D FBP-based algorithm indeed provided a rather general formulation for image reconstruction from divergent projections (such as cone-beam and fan-beam projections). On the basis of this formulation we derived new approximate or exact algorithms for image reconstruction in circular cone-beam or fan-beam scans, which can be interpreted as special cases of the helical scan. Existing algorithms corresponding to the derived algorithms were identified. We also performed a preliminary numerical study to verify our theoretical results in each of the cases. The results in the work can readily be generalized to other non-circular trajectories

  17. Performance studies of four-dimensional cone beam computed tomography

    International Nuclear Information System (INIS)

    Qi Zhihua; Chen Guanghong

    2011-01-01

    Four-dimensional cone beam computed tomography (4DCBCT) has been proposed to characterize the breathing motion of tumors before radiotherapy treatment. However, when the acquired cone beam projection data are retrospectively gated into several respiratory phases, the available data to reconstruct each phase is under-sampled and thus causes streaking artifacts in the reconstructed images. To solve the under-sampling problem and improve image quality in 4DCBCT, various methods have been developed. This paper presents performance studies of three different 4DCBCT methods based on different reconstruction algorithms. The aims of this paper are to study (1) the relationship between the accuracy of the extracted motion trajectories and the data acquisition time of a 4DCBCT scan and (2) the relationship between the accuracy of the extracted motion trajectories and the number of phase bins used to sort projection data. These aims will be applied to three different 4DCBCT methods: conventional filtered backprojection reconstruction (FBP), FBP with McKinnon-Bates correction (MB) and prior image constrained compressed sensing (PICCS) reconstruction. A hybrid phantom consisting of realistic chest anatomy and a moving elliptical object with known 3D motion trajectories was constructed by superimposing the analytical projection data of the moving object to the simulated projection data from a chest CT volume dataset. CBCT scans with gantry rotation times from 1 to 4 min were simulated, and the generated projection data were sorted into 5, 10 and 20 phase bins before different methods were used to reconstruct 4D images. The motion trajectories of the moving object were extracted using a fast free-form deformable registration algorithm. The root mean square errors (RMSE) of the extracted motion trajectories were evaluated for all simulated cases to quantitatively study the performance. The results demonstrate (1) longer acquisition times result in more accurate motion delineation

  18. Electromagnetic scattering of a vector Bessel beam in the presence of an impedance cone

    KAUST Repository

    Salem, Mohamed; Bagci, Hakan

    2013-01-01

    The electromagnetic field scattering of a vector Bessel beam in the presence of an infinite circular cone with an impedance boundary on its surface is considered. The impinging field is normal to the tip of the cone and is expanded in terms

  19. Establishing a process of irradiating small animal brain using a CyberKnife and a microCT scanner

    International Nuclear Information System (INIS)

    Kim, Haksoo; Welford, Scott; Fabien, Jeffrey; Zheng, Yiran; Yuan, Jake; Brindle, James; Yao, Min; Lo, Simon; Wessels, Barry; Machtay, Mitchell; Sohn, Jason W.; Sloan, Andrew

    2014-01-01

    Purpose: Establish and validate a process of accurately irradiating small animals using the CyberKnife G4 System (version 8.5) with treatment plans designed to irradiate a hemisphere of a mouse brain based on microCT scanner images. Methods: These experiments consisted of four parts: (1) building a mouse phantom for intensity modulated radiotherapy (IMRT) quality assurance (QA), (2) proving usability of a microCT for treatment planning, (3) fabricating a small animal positioning system for use with the CyberKnife's image guided radiotherapy (IGRT) system, and (4)in vivo verification of targeting accuracy. A set of solid water mouse phantoms was designed and fabricated, with radiochromic films (RCF) positioned in selected planes to measure delivered doses. After down-sampling for treatment planning compatibility, a CT image set of a phantom was imported into the CyberKnife treatment planning system—MultiPlan (ver. 3.5.2). A 0.5 cm diameter sphere was contoured within the phantom to represent a hemispherical section of a mouse brain. A nude mouse was scanned in an alpha cradle using a microCT scanner (cone-beam, 157 × 149 pixels slices, 0.2 mm longitudinal slice thickness). Based on the results of our positional accuracy study, a planning treatment volume (PTV) was created. A stereotactic body mold of the mouse was “printed” using a 3D printer laying UV curable acrylic plastic. Printer instructions were based on exported contours of the mouse's skin. Positional reproducibility in the mold was checked by measuring ten CT scans. To verify accurate dose delivery in vivo, six mice were irradiated in the mold with a 4 mm target contour and a 2 mm PTV margin to 3 Gy and sacrificed within 20 min to avoid DNA repair. The brain was sliced and stained for analysis. Results: For the IMRT QA using a set of phantoms, the planned dose (6 Gy to the calculation point) was compared to the delivered dose measured via film and analyzed using Gamma analysis (3% and 3 mm). A

  20. Establishing a process of irradiating small animal brain using a CyberKnife and a microCT scanner

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Haksoo; Welford, Scott [Department of Radiation Oncology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106 (United States); Fabien, Jeffrey; Zheng, Yiran; Yuan, Jake; Brindle, James; Yao, Min; Lo, Simon; Wessels, Barry; Machtay, Mitchell; Sohn, Jason W., E-mail: jason.sohn@case.edu [Department of Radiation Oncology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106 and University Hospitals of Cleveland, 11100 Euclid Avenue, Cleveland, Ohio 44106 (United States); Sloan, Andrew [Department of Neurosurgery, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106 (United States)

    2014-02-15

    Purpose: Establish and validate a process of accurately irradiating small animals using the CyberKnife G4 System (version 8.5) with treatment plans designed to irradiate a hemisphere of a mouse brain based on microCT scanner images. Methods: These experiments consisted of four parts: (1) building a mouse phantom for intensity modulated radiotherapy (IMRT) quality assurance (QA), (2) proving usability of a microCT for treatment planning, (3) fabricating a small animal positioning system for use with the CyberKnife's image guided radiotherapy (IGRT) system, and (4)in vivo verification of targeting accuracy. A set of solid water mouse phantoms was designed and fabricated, with radiochromic films (RCF) positioned in selected planes to measure delivered doses. After down-sampling for treatment planning compatibility, a CT image set of a phantom was imported into the CyberKnife treatment planning system—MultiPlan (ver. 3.5.2). A 0.5 cm diameter sphere was contoured within the phantom to represent a hemispherical section of a mouse brain. A nude mouse was scanned in an alpha cradle using a microCT scanner (cone-beam, 157 × 149 pixels slices, 0.2 mm longitudinal slice thickness). Based on the results of our positional accuracy study, a planning treatment volume (PTV) was created. A stereotactic body mold of the mouse was “printed” using a 3D printer laying UV curable acrylic plastic. Printer instructions were based on exported contours of the mouse's skin. Positional reproducibility in the mold was checked by measuring ten CT scans. To verify accurate dose delivery in vivo, six mice were irradiated in the mold with a 4 mm target contour and a 2 mm PTV margin to 3 Gy and sacrificed within 20 min to avoid DNA repair. The brain was sliced and stained for analysis. Results: For the IMRT QA using a set of phantoms, the planned dose (6 Gy to the calculation point) was compared to the delivered dose measured via film and analyzed using Gamma analysis (3% and 3 mm

  1. Hybrid Spectral Micro-CT: System Design, Implementation, and Preliminary Results

    CERN Document Server

    Bennett, James R; Xu, Qiong; Yu, Hengyong; Walsh, Michael; Butler, Anthony; Butler, Phillip; Cao, Guohua; Mohs, Aaron; Wang, Ge

    2014-01-01

    Spectral CT has proven an important development in biomedical imaging, and there have been several publications in the past years demonstrating its merits in pre-clinical and clinical applications. In 2012, Xu et al. reported that near-term implementation of spectral micro-CT could be enhanced by a hybrid architecture: a narrow-beam spectral "interior" imaging chain integrated with a traditional wide-beam "global" imaging chain. This hybrid integration coupled with compressive sensing (CS)-based interior tomography demonstrated promising results for improved contrast resolution, and decreased system cost and radiation dose. The motivation for the current study is implementation and evaluation of the hybrid architecture with a first-of-its-kind hybrid spectral micro-CT system. Preliminary results confirm improvements in both contrast and spatial resolution. This technology is shown to merit further investigation and potential application in future spectral CT scanner design.

  2. Cone-beam CT in diagnosis of scaphoid fractures

    Energy Technology Data Exchange (ETDEWEB)

    Edlund, Rolf; Lapidus, Gunilla; Baecklund, Jenny [Capio St Goeran' s Hospital, Department of Radiology, Stockholm (Sweden); Skorpil, Mikael [Karolinska University Hospital, Department of Radiology, Stockholm (Sweden); Karolinska Institutet, Department of Molecular Medicine and Surgery, Stockholm (Sweden)

    2016-02-15

    This prospective study investigated the sensitivity of cone beam computed tomography (CBCT), a low dose technique recently made available for extremity examinations, in detecting scaphoid fractures. Magnetic resonance imaging (MRI) was used as gold standard for scaphoid fractures. A total of 95 patients with a clinically suspected scaphoid fracture were examined with radiography and CBCT in the acute setting. A negative CBCT exam was followed by an MRI within 2 weeks. When a scaphoid fracture was detected on MRI a new CBCT was performed. Radiography depicted seven scaphoid fractures, all of which were also seen with CBCT. CBCT detected another four scaphoid fractures. With MRI another five scaphoid fractures were identified that were not seen with radiography or with CBCT. These were also not visible on the reexamination CBCT. Sensitivity for radiography was 44, 95 % confidence interval 21-69 %, and for CBCT 69 %, 95 % confidence interval 41-88 % (p = 0.12). Several non-scaphoid fractures in the carpal region were identified, radiography and CBCT depicted 7 and 34, respectively (p < 0.0001). CBCT is a superior alternative to radiography, entailing more accurate diagnoses of carpal region fractures, and thereby requiring fewer follow-up MRI examinations. However, CBCT cannot be used to exclude scaphoid fractures, since MRI identified additional occult scaphoid fractures. (orig.)

  3. Cone beam computed tomography findings of impacted upper canines

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva Santos, Ludmilla Mota [Dept. of Endodontics, Aracatuba Dental School, Paulista State University, Aracatuba(Brazil); Bastos, Luana Costa; Da Silva, Silvio Jose Albergaria; Campos, Paulo Sergio Flores [School of Dentistry, Federal University of Bahia, Salvador (Brazil); Oliveira Santos, Christiano [Dept. of Stomatology, Oral Public Health, and Forensic Dentistry, School of Dentistry, University of Sao Paulo, Ribeirao Preto (Brazil); Neves, Frederico Sampaio [Dept. of Oral Diagnosis, Piracicaba Dental School, State University of Campinas, Piracicaba (Brazil)

    2014-12-15

    To describe the features of impacted upper canines and their relationship with adjacent structures through three-dimensional cone-beam computed tomography (CBCT) images. Using the CBCT scans of 79 upper impacted canines, we evaluated the following parameters: gender, unilateral/bilateral occurrence, location, presence and degree of root resorption of adjacent teeth (mild, moderate, or severe), root dilaceration, dental follicle width, and presence of other associated local conditions. Most of the impacted canines were observed in females (56 cases), unilaterally (51 cases), and at a palatine location (53 cases). Root resorption in adjacent teeth and root dilaceration were observed in 55 and 47 impacted canines, respectively. In most of the cases, the width of the dental follicle of the canine was normal; it was abnormally wide in 20 cases. A statistically significant association was observed for all variables, except for root dilaceration (p=0.115) and the side of impaction (p=0.260). Root resorption of adjacent teeth was present in most cases of canine impaction, mostly affecting adjacent lateral incisors to a mild degree. A wide dental follicle of impacted canines was not associated with a higher incidence of external root resorption of adjacent teeth.

  4. Radiographic evaluation of dentigerous cyst with cone beam CT

    International Nuclear Information System (INIS)

    Park, Yong Chan; Lee, Wan; Lee, Byung Do

    2010-01-01

    The purpose of this study was to accurately analyze the radiographic characteristics of dentigerous cyst (DC) with multiplanar images of cone beam computed tomography (CBCT). Thirty eight radiographically and histopathologically proven cases of DCs were analyzed with panoramic radiograph and CBCT, retrospectively. The radiographic CT pattern, symmetry of radiolucency around the unerupted tooth crown, ratio of long length to short length, degree of cortical bone alternation, effects on adjacent tooth, and cyst size were analyzed. Relative frequencies of these radiographic features were evaluated. In order to compare the CBCT features of DC with those of odontogenic keratocyst (OKC), 9 cases of OKCs were analyzed with the same method radiographically. DCs consisted of thirty unilocular cases (79.0%), seven lobulated cases (18.4%) and one multilocular case (2.6%). Eight were asymmetric (21.0%) and thirty were symmetric (79.0%). Maxillary DC showed rounder shape than mandibular DC (L/S ratio; maxilla 1.32, mandible 1.67). Alternations of lingual cortical bone (14 cases, 48.2%) were more frequent than those of buccal side (7 cases, 24.1%). CBCT images of DC showed definite root resorption and bucco-lingual tooth displacement. These findings were hardly observed on panoramic radiographs of DCs. Comparison of CBCT features of DC with those of OKC showed several different features. CBCT images of DC showed various characteristic radiographic features. Therefore, CBCT can be helpful for the diagnosis of DC radiographically.

  5. Radiographic evaluation of dentigerous cyst with cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Chan; Lee, Wan; Lee, Byung Do [School of Dentisity, Wonkwang University, Iksan (Korea, Republic of)

    2010-09-15

    The purpose of this study was to accurately analyze the radiographic characteristics of dentigerous cyst (DC) with multiplanar images of cone beam computed tomography (CBCT). Thirty eight radiographically and histopathologically proven cases of DCs were analyzed with panoramic radiograph and CBCT, retrospectively. The radiographic CT pattern, symmetry of radiolucency around the unerupted tooth crown, ratio of long length to short length, degree of cortical bone alternation, effects on adjacent tooth, and cyst size were analyzed. Relative frequencies of these radiographic features were evaluated. In order to compare the CBCT features of DC with those of odontogenic keratocyst (OKC), 9 cases of OKCs were analyzed with the same method radiographically. DCs consisted of thirty unilocular cases (79.0%), seven lobulated cases (18.4%) and one multilocular case (2.6%). Eight were asymmetric (21.0%) and thirty were symmetric (79.0%). Maxillary DC showed rounder shape than mandibular DC (L/S ratio; maxilla 1.32, mandible 1.67). Alternations of lingual cortical bone (14 cases, 48.2%) were more frequent than those of buccal side (7 cases, 24.1%). CBCT images of DC showed definite root resorption and bucco-lingual tooth displacement. These findings were hardly observed on panoramic radiographs of DCs. Comparison of CBCT features of DC with those of OKC showed several different features. CBCT images of DC showed various characteristic radiographic features. Therefore, CBCT can be helpful for the diagnosis of DC radiographically.

  6. Bone changes of mandibular condyle using cone beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Un; Kim, Hyung Seop; Song, Ju Seop; Kim, Kyoung A; Koh, Kwang Joon [Chonbuk National Univ., Chonju (Korea, Republic of)

    2007-09-15

    To assess bone changes of mandibular condyle using cone beam computed tomography (CBCT) in temporomandibualr disorder (TMD) patients. 314 temporomandibular joints (TMJs) images of 163 TMD patients were examined at the Department of Oral and Maxillofacial Radiology, Chonbuk National University. The images were obtained by PSR9000N (Asahi Roentgen Co., Japan) and reconstructed by using Asahivision software (Asahi Roentgen Co., Japan). The CBCT images were examined three times with four weeks interval by three radiologists. Bone changes of mandibular condyle such as flattening, sclerosis, erosion and osteophyte formation were observed in sagittal, axial, coronal and 3 dimensional images of the mandibular condyle. The statistical analysis was performed using SPSS 12.0. Intra-and interobserver agreement were performed by 3 radiologists without the knowledge of clinical information. Osteopathy (2.9%) was found more frequently on anterior surface of the mandibular condyle. Erosion (31.8%) was found more frequently on anterior surface of the mandibular condyle. The intraobserver agreement was good to excellent (k=0.78{sub 0}.84), but interobserver agreement was fair (k=0.45). CBCT can provide high qualified images of bone changes of the TMJ with axial, coronal and 3 dimensional images.

  7. Bone changes of mandibular condyle using cone beam computed tomography

    International Nuclear Information System (INIS)

    Lee, Ji Un; Kim, Hyung Seop; Song, Ju Seop; Kim, Kyoung A; Koh, Kwang Joon

    2007-01-01

    To assess bone changes of mandibular condyle using cone beam computed tomography (CBCT) in temporomandibualr disorder (TMD) patients. 314 temporomandibular joints (TMJs) images of 163 TMD patients were examined at the Department of Oral and Maxillofacial Radiology, Chonbuk National University. The images were obtained by PSR9000N (Asahi Roentgen Co., Japan) and reconstructed by using Asahivision software (Asahi Roentgen Co., Japan). The CBCT images were examined three times with four weeks interval by three radiologists. Bone changes of mandibular condyle such as flattening, sclerosis, erosion and osteophyte formation were observed in sagittal, axial, coronal and 3 dimensional images of the mandibular condyle. The statistical analysis was performed using SPSS 12.0. Intra-and interobserver agreement were performed by 3 radiologists without the knowledge of clinical information. Osteopathy (2.9%) was found more frequently on anterior surface of the mandibular condyle. Erosion (31.8%) was found more frequently on anterior surface of the mandibular condyle. The intraobserver agreement was good to excellent (k=0.78 0 .84), but interobserver agreement was fair (k=0.45). CBCT can provide high qualified images of bone changes of the TMJ with axial, coronal and 3 dimensional images

  8. Volumetric accuracy of cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cheol Woo; Kim, Jin Ho; Seo, Yu Kyeong; Lee, Sae Rom; Kang, Ju Hee; Oh, Song Hee; Kim, Gyu Tae; Choi, Yong Suk; Hwang, Eui Hwan [Dept. of Oral and Maxillofacial Radiology, Graduate School, Kyung Hee University, Seoul (Korea, Republic of)

    2017-09-15

    This study was performed to investigate the influence of object shape and distance from the center of the image on the volumetric accuracy of cone-beam computed tomography (CBCT) scans, according to different parameters of tube voltage and current. Four geometric objects (cylinder, cube, pyramid, and hexagon) with predefined dimensions were fabricated. The objects consisted of Teflon-perfluoroalkoxy embedded in a hydrocolloid matrix (Dupli-Coe-Loid TM; GC America Inc., Alsip, IL, USA), encased in an acrylic resin cylinder assembly. An Alphard Vega Dental CT system (Asahi Roentgen Ind. Co., Ltd, Kyoto, Japan) was used to acquire CBCT images. OnDemand 3D (CyberMed Inc., Seoul, Korea) software was used for object segmentation and image analysis. The accuracy was expressed by the volume error (VE). The VE was calculated under 3 different exposure settings. The measured volumes of the objects were compared to the true volumes for statistical analysis. The mean VE ranged from −4.47% to 2.35%. There was no significant relationship between an object's shape and the VE. A significant correlation was found between the distance of the object to the center of the image and the VE. Tube voltage affected the volume measurements and the VE, but tube current did not. The evaluated CBCT device provided satisfactory volume measurements. To assess volume measurements, it might be sufficient to use serial scans with a high resolution, but a low dose. This information may provide useful guidance for assessing volume measurements.

  9. Surgical stent for dental implant using cone beam CT images

    International Nuclear Information System (INIS)

    Choi, Hyung Soo; Kim, Gyu Tae; Choi, Yong Suk; Hwang, Eui Hwan

    2010-01-01

    The purpose of this study is to develop a surgical stent for dental implant procedure that can be easily applied and affordable by using cone beam computerized tomography (CBCT). Aluminum, Teflon-PFA (perfluoroalkoxy), and acetal (polyoxymethylene plastic) were selected as materials for the surgical stent. Among these three materials, the appropriate material was chosen using the CBCT images. The surgical stent, which could be easily placed into an oral cavity, was designed with chosen material. CBCT images of the new surgical stent on mandible were obtained using Alphard-3030 dental CT system (Asahi Roentgen Co., Ltd., Kyoto, Japan). The point of insertion was prescribed on the surgical stent with the multiplanar reconstruction software of OnDemand3D (CyberMed Inc., Seoul, Korea). Guide holes were made at the point of insertion on the surgical stent using newly designed guide jig. CBCT scans was taken for the second time to verify the accuracy of the newly designed surgical stent. Teflon-PFA showed radiologically excellent image characteristics for the surgical stent. High accuracy and reproducibility of implantation were confirmed with the surgical stent. The newly designed surgical stent can lead to the accurate implantation and achieve the clinically predictable result.

  10. Radiological protection in computed tomography and cone beam computed tomography.

    Science.gov (United States)

    Rehani, M M

    2015-06-01

    The International Commission on Radiological Protection (ICRP) has sustained interest in radiological protection in computed tomography (CT), and ICRP Publications 87 and 102 focused on the management of patient doses in CT and multi-detector CT (MDCT) respectively. ICRP forecasted and 'sounded the alarm' on increasing patient doses in CT, and recommended actions for manufacturers and users. One of the approaches was that safety is best achieved when it is built into the machine, rather than left as a matter of choice for users. In view of upcoming challenges posed by newer systems that use cone beam geometry for CT (CBCT), and their widened usage, often by untrained users, a new ICRP task group has been working on radiological protection issues in CBCT. Some of the issues identified by the task group are: lack of standardisation of dosimetry in CBCT; the false belief within the medical and dental community that CBCT is a 'light', low-dose CT whereas mobile CBCT units and newer applications, particularly C-arm CT in interventional procedures, involve higher doses; lack of training in radiological protection among clinical users; and lack of dose information and tracking in many applications. This paper provides a summary of approaches used in CT and MDCT, and preliminary information regarding work just published for radiological protection in CBCT. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  11. Deriving motion from megavoltage localization cone beam computed tomography scans

    International Nuclear Information System (INIS)

    Alfredo C Siochi, R

    2009-01-01

    Cone beam computed tomography (CBCT) projection data consist of views of a moving point (e.g. diaphragm apex). The point is selected in identification views of extreme motion (two inhale, two exhale). The room coordinates of the extreme points are determined by source-to-view ray tracing intersections. Projected to other views, these points become opposite corners of a motion-bounding box. The view coordinates of the point, relative to the box, are used to interpolate between extreme room coordinates. Along with the views' time stamps, this provides the point's room coordinates as a function of time. CBCT-derived trajectories of a tungsten pin, moving 3 cm cranio-caudally and 1 cm elsewhere, deviate from expected ones by at most 1.06 mm. When deviations from the ideal imaging geometry are considered, mean errors are less than 0.2 mm. While CBCT-derived cranio-caudal positions are insensitive to the choice of identification views, the bounding box determination requires view separations between 15 and 163 deg. Inhale views with the two largest amplitudes should be used, though corrections can account for different amplitudes. The information could be used to calibrate motion surrogates, adaptively define phase triggers immediately before gated radiotherapy and provide phase and amplitude sorting for 4D CBCT.

  12. Volumetric accuracy of cone-beam computed tomography

    International Nuclear Information System (INIS)

    Park, Cheol Woo; Kim, Jin Ho; Seo, Yu Kyeong; Lee, Sae Rom; Kang, Ju Hee; Oh, Song Hee; Kim, Gyu Tae; Choi, Yong Suk; Hwang, Eui Hwan

    2017-01-01

    This study was performed to investigate the influence of object shape and distance from the center of the image on the volumetric accuracy of cone-beam computed tomography (CBCT) scans, according to different parameters of tube voltage and current. Four geometric objects (cylinder, cube, pyramid, and hexagon) with predefined dimensions were fabricated. The objects consisted of Teflon-perfluoroalkoxy embedded in a hydrocolloid matrix (Dupli-Coe-Loid TM; GC America Inc., Alsip, IL, USA), encased in an acrylic resin cylinder assembly. An Alphard Vega Dental CT system (Asahi Roentgen Ind. Co., Ltd, Kyoto, Japan) was used to acquire CBCT images. OnDemand 3D (CyberMed Inc., Seoul, Korea) software was used for object segmentation and image analysis. The accuracy was expressed by the volume error (VE). The VE was calculated under 3 different exposure settings. The measured volumes of the objects were compared to the true volumes for statistical analysis. The mean VE ranged from −4.47% to 2.35%. There was no significant relationship between an object's shape and the VE. A significant correlation was found between the distance of the object to the center of the image and the VE. Tube voltage affected the volume measurements and the VE, but tube current did not. The evaluated CBCT device provided satisfactory volume measurements. To assess volume measurements, it might be sufficient to use serial scans with a high resolution, but a low dose. This information may provide useful guidance for assessing volume measurements

  13. Cone beam computed tomography findings of impacted upper canines

    International Nuclear Information System (INIS)

    Da Silva Santos, Ludmilla Mota; Bastos, Luana Costa; Da Silva, Silvio Jose Albergaria; Campos, Paulo Sergio Flores; Oliveira Santos, Christiano; Neves, Frederico Sampaio

    2014-01-01

    To describe the features of impacted upper canines and their relationship with adjacent structures through three-dimensional cone-beam computed tomography (CBCT) images. Using the CBCT scans of 79 upper impacted canines, we evaluated the following parameters: gender, unilateral/bilateral occurrence, location, presence and degree of root resorption of adjacent teeth (mild, moderate, or severe), root dilaceration, dental follicle width, and presence of other associated local conditions. Most of the impacted canines were observed in females (56 cases), unilaterally (51 cases), and at a palatine location (53 cases). Root resorption in adjacent teeth and root dilaceration were observed in 55 and 47 impacted canines, respectively. In most of the cases, the width of the dental follicle of the canine was normal; it was abnormally wide in 20 cases. A statistically significant association was observed for all variables, except for root dilaceration (p=0.115) and the side of impaction (p=0.260). Root resorption of adjacent teeth was present in most cases of canine impaction, mostly affecting adjacent lateral incisors to a mild degree. A wide dental follicle of impacted canines was not associated with a higher incidence of external root resorption of adjacent teeth.

  14. Reliability of voxel gray values in cone beam computed tomography for preoperative implant planning assessment

    NARCIS (Netherlands)

    Parsa, A.; Ibrahim, N.; Hassan, B.; Motroni, A.; van der Stelt, P.; Wismeijer, D.

    2012-01-01

    Purpose: To assess the reliability of cone beam computed tomography (CBCT) voxel gray value measurements using Hounsfield units (HU) derived from multislice computed tomography (MSCT) as a clinical reference (gold standard). Materials and Methods: Ten partially edentulous human mandibular cadavers

  15. Three-dimensional single-photon emission computed tomography using cone beam collimation (CB-SPECT)

    International Nuclear Information System (INIS)

    Jaszczak, R.J.; Floyd, C.E. Jr.; Manglos, S.H.; Greer, K.L.; Coleman, R.E.

    1986-01-01

    A simple and economically practical method of improving the sensitivity of camera-based SPECT was developed using converging (cone-beam) collimation. This geometry is particularly advantageous for SPECT devices using large field-of-view cameras in imaging smaller, centrally located activity distributions. Geometric sensitivities, spatial resolutions, and fields-of-view of a cone-beam collimator having a focal length of 48 cm and a similarly designed parallel hole collimator were compared analytically. At 15 cm from the collimator surface the point-source sensitivity of the cone-beam collimator was 2.4 times the sensitivity of the parallel-hole collimator. SPECT projection data (simulated using Monte Carlo methodology) were reconstructed using a 3-D filtered backprojection algorithm. Cone-beam emission CT (CB-SPECT) seems potentially useful for animal investigations, pediatric studies, and for brain imaging

  16. Iterative reconstruction with attenuation compensation from cone-beam projections acquired via nonplanar orbits

    International Nuclear Information System (INIS)

    Zeng, G.L.; Weng, Y.; Gullberg, G.T.

    1997-01-01

    Single photon emission computed tomography (SPECT) imaging with cone-beam collimators provides improved sensitivity and spatial resolution for imaging small objects with large field-of-view detectors. It is known that Tuy's cone-beam data sufficiency condition must be met to obtain artifact-free reconstructions. Even though Tuy's condition was derived for an attenuation-free situation, the authors hypothesize that an artifact-free reconstruction can be obtained even if the cone-beam data are attenuated, provided the imaging orbit satisfies Tuy's condition and the exact attenuation map is known. In the authors' studies, emission data are acquired using nonplanar circle-and-line orbits to acquire cone-beam data for tomographic reconstructions. An extended iterative ML-EM (maximum likelihood-expectation maximization) reconstruction algorithm is derived and used to reconstruct projection data with either a pre-acquired or assumed attenuation map. Quantitative accuracy of the attenuation corrected emission reconstruction is significantly improved

  17. Clinical utility of dental cone-beam computed tomography: current perspectives

    OpenAIRE

    Jaju, Prashant P; Jaju, Sushma P

    2014-01-01

    Prashant P Jaju,1 Sushma P Jaju21Oral Medicine and Radiology, 2Conservative Dentistry and Endodontics, Rishiraj College of Dental Sciences and Research Center, Bhopal, IndiaAbstract: Panoramic radiography and computed tomography were the pillars of maxillofacial diagnosis. With the advent of cone-beam computed tomography, dental practice has seen a paradigm shift. This review article highlights the potential applications of cone-beam computed tomography in the fields of dental implantology an...

  18. Cone beam tomography of the heart using single-photon emission-computed tomography

    International Nuclear Information System (INIS)

    Gullberg, G.T.; Christian, P.E.; Zeng, G.L.; Datz, F.L.; Morgan, H.T.

    1991-01-01

    The authors evaluated cone beam single-photon emission-computed tomography (SPECT) of the heart. A new cone beam reconstruction algorithm was used to reconstruct data collected from short scan acquisitions (of slightly more than 180 degrees) of a detector anteriorally traversing a noncircular orbit. The less than 360 degrees acquisition was used to minimize the attenuation artifacts that result from reconstructing posterior projections of 201T1 emissions from the heart. The algorithm includes a new method for reconstructing truncated projections of background tissue activity that eliminates reconstruction ring artifacts. Phantom and patient results are presented which compare a high-resolution cone beam collimator (50-cm focal length; 6.0-mm full width at half maximum [FWHM] at 10 cm) to a low-energy general purpose (LEGP) parallel hole collimator (8.2-mm FWHM at 10 cm) which is 1.33 times more sensitive. The cone beam tomographic results are free of reconstruction artifacts and show improved spatial and contrast resolution over that obtained with the LEGP parallel hole collimator. The limited angular sampling restrictions and truncation problems associated with cone beam tomography do not deter from obtaining diagnostic information. However, even though these preliminary results are encouraging, a thorough clinical study is still needed to investigate the specificity and sensitivity of cone beam tomography

  19. Full data consistency conditions for cone-beam projections with sources on a plane

    International Nuclear Information System (INIS)

    Clackdoyle, Rolf; Desbat, Laurent

    2013-01-01

    Cone-beam consistency conditions (also known as range conditions) are mathematical relationships between different cone-beam projections, and they therefore describe the redundancy or overlap of information between projections. These redundancies have often been exploited for applications in image reconstruction. In this work we describe new consistency conditions for cone-beam projections whose source positions lie on a plane. A further restriction is that the target object must not intersect this plane. The conditions require that moments of the cone-beam projections be polynomial functions of the source positions, with some additional constraints on the coefficients of the polynomials. A precise description of the consistency conditions is that the four parameters of the cone-beam projections (two for the detector, two for the source position) can be expressed with just three variables, using a certain formulation involving homogeneous polynomials. The main contribution of this work is our demonstration that these conditions are not only necessary, but also sufficient. Thus the consistency conditions completely characterize all redundancies, so no other independent conditions are possible and in this sense the conditions are full. The idea of the proof is to use the known consistency conditions for 3D parallel projections, and to then apply a 1996 theorem of Edholm and Danielsson that links parallel to cone-beam projections. The consistency conditions are illustrated with a simulation example. (paper)

  20. Filtered region of interest cone-beam rotational angiography

    Energy Technology Data Exchange (ETDEWEB)

    Schafer, Sebastian; Noeel, Peter B.; Walczak, Alan M.; Hoffmann, Kenneth R. [Department of Mechanical Engineering, SUNY at Buffalo, 3435 Main Street, Buffalo, New York 14214 (United States); Department of Neurosurgery, SUNY at Buffalo, 3435 Main Street, Buffalo, New York 14214 (United States) and Toshiba Stroke Research Center, SUNY at Buffalo, 3435 Main Street, Buffalo, New York 14214 (United States); Department of Neurosurgery, SUNY at Buffalo, 3435 Main Street, Buffalo, New York 14214 (United States); Department of Computer Science, SUNY at Buffalo, 3435 Main Street, Buffalo, New York 14214 (United States) and Toshiba Stroke Research Center, SUNY at Buffalo, 3435 Main Street, Buffalo, New York 14214 (United States); Department of Neurosurgery, SUNY at Buffalo, 3435 Main Street, Buffalo, New York 14214 and Toshiba Stroke Research Center, SUNY at Buffalo, 3435 Main Street, Buffalo, New York 14214 (United States); Department of Mechanical Engineering, SUNY at Buffalo, 3435 Main Street, Buffalo, New York 14214 (United States); Department of Neurosurgery, SUNY at Buffalo, 3435 Main Street, Buffalo, New York 14214 (United States); Department of Computer Science, SUNY at Buffalo, 3435 Main Street, Buffalo, New York 14214 (United States) and Toshiba Stroke Research Center, SUNY at Buffalo, 3435 Main Street, Buffalo, New York 14214 (United States)

    2010-02-15

    Purpose: Cone-beam rotational angiography (CBRA) is widely used in the modern clinical settings. In a number of procedures, the area of interest is often considerably smaller than the field of view (FOV) of the detector, subjecting the patient to potentially unnecessary x-ray dose. The authors therefore propose a filter-based method to reduce the dose in the regions of low interest, while supplying high image quality in the region of interest (ROI). Methods: For such procedures, the authors propose a method of filtered region of interest (FROI)-CBRA. In the authors' approach, a gadolinium filter with a circular central opening is placed into the x-ray beam during image acquisition. The central region is imaged with high contrast, while peripheral regions are subjected to a substantial lower intensity and dose through beam filtering. The resulting images contain a high contrast/intensity ROI, as well as a low contrast/intensity peripheral region, and a transition region in between. To equalize the two regions' intensities, the first projection of the acquisition is performed with and without the filter in place. The equalization relationship, based on Beer's law, is established through linear regression using corresponding filtered and nonfiltered data. The transition region is equalized based on radial profiles. Results: Evaluations in 2D and 3D show no visible difference between conventional FROI-CBRA projection images and reconstructions in the ROI. CNR evaluations show similar image quality in the ROI, with a reduced CNR in the reconstructed peripheral region. In all filtered projection images, the scatter fraction inside the ROI was reduced. Theoretical and experimental dose evaluations show a considerable dose reduction; using a ROI half the original FOV reduces the dose by 60% for the filter thickness of 1.29 mm. Conclusions: These results indicate the potential of FROI-CBRA to reduce the dose to the patient while supplying the physician with

  1. Dynamic bowtie filter for cone-beam/multi-slice CT.

    Directory of Open Access Journals (Sweden)

    Fenglin Liu

    Full Text Available A pre-patient attenuator ("bowtie filter" or "bowtie" is used to modulate an incoming x-ray beam as a function of the angle of the x-ray with respect to a patient to balance the photon flux on a detector array. While the current dynamic bowtie design is focused on fan-beam geometry, in this study we propose a methodology for dynamic bowtie design in multi-slice/cone-beam geometry. The proposed 3D dynamic bowtie is an extension of the 2D prior art. The 3D bowtie consists of a highly attenuating bowtie (HB filled in with heavy liquid and a weakly attenuating bowtie (WB immersed in the liquid of the HB. The HB targets a balanced flux distribution on a detector array when no object is in the field of view (FOV. The WB compensates for an object in the FOV, and hence is a scaled-down version of the object. The WB is rotated and translated in synchrony with the source rotation and patient translation so that the overall flux balance is maintained on the detector array. First, the mathematical models of different scanning modes are established for an elliptical water phantom. Then, a numerical simulation study is performed to compare the performance of the scanning modes in the cases of the water phantom and a patient cross-section without any bowtie and with a dynamic bowtie. The dynamic bowtie can equalize the numbers of detected photons in the case of the water phantom. In practical cases, the dynamic bowtie can effectively reduce the dynamic range of detected signals inside the FOV. Furthermore, the WB can be individualized using a 3D printing technique as the gold standard. We have extended the dynamic bowtie concept from 2D to 3D by using highly attenuating liquid and moving a scale-reduced negative copy of an object being scanned. Our methodology can be applied to reduce radiation dose and facilitate photon-counting detection.

  2. A fast and efficient method for sequential cone-beam tomography

    International Nuclear Information System (INIS)

    Koehler, Th.; Proksa, R.; Grass, M.

    2001-01-01

    Sequential cone-beam tomography is a method that uses data of two or more parallel circular trajectories of a cone-beam scanner to reconstruct the object function. We propose a condition for the data acquisition that ensures that all object points between two successive circles are irradiated over an angular span of the x-ray source position of exactly 360 deg. in total as seen along the rotation axis. A fast and efficient approximative reconstruction method for the proposed acquisition is presented which uses data from exactly 360 deg. for every object point. It is based on the Tent-FDK method which was recently developed for single circular cone-beam CT. The measurement geometry does not provide sufficient data for exact reconstruction but it is shown that the proposed reconstruction method provides satisfying image quality for small cone angles

  3. A study of reconstruction artifacts in cone beam tomography using filtered backprojection and iterative EM algorithms

    International Nuclear Information System (INIS)

    Zeng, G.L.; Gullberg, G.T.

    1990-01-01

    Reconstruction artifacts in cone beam tomography are studied for filtered backprojection (Feldkamp) and iterative EM algorithms. The filtered backprojection algorithm uses a voxel-driven, interpolated backprojection to reconstruct the cone beam data; whereas, the iterative EM algorithm performs ray-driven projection and backprojection operations for each iteration. Two weight in schemes for the projection and backprojection operations in the EM algorithm are studied. One weights each voxel by the length of the ray through the voxel and the other equates the value of a voxel to the functional value of the midpoint of the line intersecting the voxel, which is obtained by interpolating between eight neighboring voxels. Cone beam reconstruction artifacts such as rings, bright vertical extremities, and slice-to slice cross talk are not found with parallel beam and fan beam geometries

  4. A reconstruction method for cone-beam differential x-ray phase-contrast computed tomography.

    Science.gov (United States)

    Fu, Jian; Velroyen, Astrid; Tan, Renbo; Zhang, Junwei; Chen, Liyuan; Tapfer, Arne; Bech, Martin; Pfeiffer, Franz

    2012-09-10

    Most existing differential phase-contrast computed tomography (DPC-CT) approaches are based on three kinds of scanning geometries, described by parallel-beam, fan-beam and cone-beam. Due to the potential of compact imaging systems with magnified spatial resolution, cone-beam DPC-CT has attracted significant interest. In this paper, we report a reconstruction method based on a back-projection filtration (BPF) algorithm for cone-beam DPC-CT. Due to the differential nature of phase contrast projections, the algorithm restrains from differentiation of the projection data prior to back-projection, unlike BPF algorithms commonly used for absorption-based CT data. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a micro-focus x-ray tube source. Moreover, the numerical simulation and experimental results demonstrate that the proposed method can deal with several classes of truncated cone-beam datasets. We believe that this feature is of particular interest for future medical cone-beam phase-contrast CT imaging applications.

  5. CT thermometry for cone-beam CT guided ablation

    Science.gov (United States)

    DeStefano, Zachary; Abi-Jaoudeh, Nadine; Li, Ming; Wood, Bradford J.; Summers, Ronald M.; Yao, Jianhua

    2016-03-01

    Monitoring temperature during a cone-beam CT (CBCT) guided ablation procedure is important for prevention of over-treatment and under-treatment. In order to accomplish ideal temperature monitoring, a thermometry map must be generated. Previously, this was attempted using CBCT scans of a pig shoulder undergoing ablation.1 We are extending this work by using CBCT scans of real patients and incorporating more processing steps. We register the scans before comparing them due to the movement and deformation of organs. We then automatically locate the needle tip and the ablation zone. We employ a robust change metric due to image noise and artifacts. This change metric takes windows around each pixel and uses an equation inspired by Time Delay Analysis to calculate the error between windows with the assumption that there is an ideal spatial offset. Once the change map is generated, we correlate change data with measured temperature data at the key points in the region. This allows us to transform our change map into a thermal map. This thermal map is then able to provide an estimate as to the size and temperature of the ablation zone. We evaluated our procedure on a data set of 12 patients who had a total of 24 ablation procedures performed. We were able to generate reasonable thermal maps with varying degrees of accuracy. The average error ranged from 2.7 to 16.2 degrees Celsius. In addition to providing estimates of the size of the ablation zone for surgical guidance, 3D visualizations of the ablation zone and needle are also produced.

  6. Cone-Beam Computed Tomography-Guided Percutaneous Radiologic Gastrostomy

    International Nuclear Information System (INIS)

    Moehlenbruch, Markus; Nelles, Michael; Thomas, Daniel; Willinek, Winfried; Gerstner, Andreas; Schild, Hans H.; Wilhelm, Kai

    2010-01-01

    The purpose of this study was to investigate the feasibility of a flat-detector C-arm-guided radiographic technique (cone-beam computed tomography [CBCT]) for percutaneous radiologic gastrostomy (PRG) insertion. Eighteen patients (13 men and 5 women; mean age 62 years) in whom percutaneous endoscopic gastrostomy (PEG) had failed underwent CBCT-guided PRG insertion. PEG failure or unsuitability was caused by upper gastrointestinal tract obstruction in all cases. Indications for gastrostomy were esophageal and head and neck malignancies, respectively. Before the PRG procedure, initial C-arm CBCT scans were acquired. Three- and 2-dimensional soft-tissue reconstructions of the epigastrium region were generated on a dedicated workstation. Subsequently, gastropexy was performed with T-fasteners after CBCT-guided puncture of the stomach bubble, followed by insertion of an 14F balloon-retained catheter through a peel-away introducer. Puncture of the stomach bubble and PRG insertion was technically successful in all patients without alteration of the epigastric region. There was no malpositioning of the tube or other major periprocedural complications. In 2 patients, minor complications occurred during the first 30 days of follow-up (PRG malfunction: n = 1; slight infection: n = 1). Late complications, which were mainly tube disturbances, were observed in 2 patients. The mean follow-up time was 212 days. CBCT-guided PRG is a safe, well-tolerated, and successful method of gastrostomy insertion in patients in whom endoscopic gastrostomy is not feasible. CBCT provides detailed imaging of the soft tissue and surrounding structures of the epigastric region in one diagnostic tour and thus significantly improves the planning of PRG procedures.

  7. Trends in maxillofacial cone-beam computed tomography usage

    International Nuclear Information System (INIS)

    Arnheiter, C.; Scarfe, W.C.; Farman, A.G.

    2006-01-01

    Cone-beam computed tomography (CBCT) is making inroads into dental practice worldwide, both in terms of adding the third dimension to diagnosis, and also in terms of enabling image-guided treatment strategies. This article reports trends in the early referral pattern of patients to a CBCT facility in the United States. With institutional review board approval, a retrospective study was made of sequential CBCT radiographic reports made by a specialist oral and maxillofacial radiology service from May 2004 through January 2006 (n=329). Demographic and referral data were extracted from the reports. Descriptive statistics identified referral patterns, trends, and indications for CBCT. Comparisons were made with the Rogers' Product Innovation Adoption curve. The mean age of referred patients was 45±21 years, and there was a predominance of women (62%). Oral and maxillofacial surgeons (51%) and periodontology specialists (17%) made most patient referrals. The listed reasons for CBCT referrals were dental implant planning (40%), suspected surgical pathology (24%), and temporomandibular joint analysis (16%). Other uses included planning extraction of impacted teeth and orthodontic assessment. Over the period of the study, the numbers of pathology diagnosis cases remained relatively constant, while adoption of CBCT for dental implant planning followed closely the first three stages of the Rogers' Product Innovation Adoption curve. Alongside this increased CBCT adoption for dental implant planning, there was an associated increased demand for use of Digital Imaging and Communications in Medicine (DICOM) image sets for laser modeling and provision of surgical guides. Diagnosis will probably remain a constant source of referral for CBCT examination by oral and maxillofacial radiologists. Nevertheless, more specialized applications such as laser-guided model fabrication and image-guided surgery are expanding indications for CBCT referrals by dentists and also expanding the

  8. 4D cone beam CT via spatiotemporal tensor framelet

    International Nuclear Information System (INIS)

    Gao, Hao; Li, Ruijiang; Xing, Lei; Lin, Yuting

    2012-01-01

    Purpose: On-board 4D cone beam CT (4DCBCT) offers respiratory phase-resolved volumetric imaging, and improves the accuracy of target localization in image guided radiation therapy. However, the clinical utility of this technique has been greatly impeded by its degraded image quality, prolonged imaging time, and increased imaging dose. The purpose of this letter is to develop a novel iterative 4DCBCT reconstruction method for improved image quality, increased imaging speed, and reduced imaging dose. Methods: The essence of this work is to introduce the spatiotemporal tensor framelet (STF), a high-dimensional tensor generalization of the 1D framelet for 4DCBCT, to effectively take into account of highly correlated and redundant features of the patient anatomy during respiration, in a multilevel fashion with multibasis sparsifying transform. The STF-based algorithm is implemented on a GPU platform for improved computational efficiency. To evaluate the method, 4DCBCT full-fan scans were acquired within 30 s, with a gantry rotation of 200°; STF is also compared with a state-of-art reconstruction method via spatiotemporal total variation regularization. Results: Both the simulation and experimental results demonstrate that STF-based reconstruction achieved superior image quality. The reconstruction of 20 respiratory phases took less than 10 min on an NVIDIA Tesla C2070 GPU card. The STF codes are available at https://sites.google.com/site/spatiotemporaltensorframelet . Conclusions: By effectively utilizing the spatiotemporal coherence of the patient anatomy among different respiratory phases in a multilevel fashion with multibasis sparsifying transform, the proposed STF method potentially enables fast and low-dose 4DCBCT with improved image quality.

  9. 4D cone beam CT via spatiotemporal tensor framelet

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hao, E-mail: hao.gao@emory.edu [Departments of Mathematics and Computer Science, and Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322 (United States); Li, Ruijiang; Xing, Lei [Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Lin, Yuting [Department of Radiological Sciences, University of California, Irvine, California 92697 (United States)

    2012-11-15

    Purpose: On-board 4D cone beam CT (4DCBCT) offers respiratory phase-resolved volumetric imaging, and improves the accuracy of target localization in image guided radiation therapy. However, the clinical utility of this technique has been greatly impeded by its degraded image quality, prolonged imaging time, and increased imaging dose. The purpose of this letter is to develop a novel iterative 4DCBCT reconstruction method for improved image quality, increased imaging speed, and reduced imaging dose. Methods: The essence of this work is to introduce the spatiotemporal tensor framelet (STF), a high-dimensional tensor generalization of the 1D framelet for 4DCBCT, to effectively take into account of highly correlated and redundant features of the patient anatomy during respiration, in a multilevel fashion with multibasis sparsifying transform. The STF-based algorithm is implemented on a GPU platform for improved computational efficiency. To evaluate the method, 4DCBCT full-fan scans were acquired within 30 s, with a gantry rotation of 200°; STF is also compared with a state-of-art reconstruction method via spatiotemporal total variation regularization. Results: Both the simulation and experimental results demonstrate that STF-based reconstruction achieved superior image quality. The reconstruction of 20 respiratory phases took less than 10 min on an NVIDIA Tesla C2070 GPU card. The STF codes are available at https://sites.google.com/site/spatiotemporaltensorframelet . Conclusions: By effectively utilizing the spatiotemporal coherence of the patient anatomy among different respiratory phases in a multilevel fashion with multibasis sparsifying transform, the proposed STF method potentially enables fast and low-dose 4DCBCT with improved image quality.

  10. Assessment of vertical fracture using cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Moudi, Ehsan; Madani, Zahrasadat; Alhavaz, Abdolhamid; Bijani, Ali [Dental Material Research Center, Dental School, Babol University of Medical Sciences, Babol, (Korea, Republic of); Bagheri, Mohammad [Social Determinants of Health Research Center, Babol University of Medical Sciences, Babol (Korea, Republic of)

    2014-03-15

    The aim of this study was to investigate the accuracy of cone-beam computed tomography (CBCT) in the diagnosis of vertical root fractures in a tooth with gutta-percha and prefabricated posts. This study selected 96 extracted molar and premolar teeth of the mandible. These teeth were divided into six groups as follows: Groups A, B, and C consisted of teeth with vertical root fractures, and groups D, E, and F had teeth without vertical root fractures; groups A and D had teeth with gutta-percha and prefabricated posts; groups B and E had teeth with gutta-percha but without prefabricated posts, and groups C and F had teeth without gutta-percha or prefabricated posts. Then, the CBCT scans were obtained and examined by three oral and maxillofacial radiologists in order to determine the presence of vertical root fractures. The data were analyzed using IBM SPSS 20.0 (IBM Corp., Armonk, NY, USA). The kappa coefficient was 0.875 ± 0.049. Groups A and D showed a sensitivity of 81% and a specificity of 100%; groups E and B, a sensitivity of 94% and a specificity of 100%; and groups C and F, a sensitivity of 88% and a specificity of 100%. The CBCT scans revealed a high accuracy in the diagnosis of vertical root fractures; the accuracy did not decrease in the presence of gutta-percha. The presence of prefabricated posts also had little effect on the accuracy of the system, which was, of course, not statistically significant.

  11. Assessment of the Stylohyoid Complex with Cone Beam Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    İlgüy, Dilhan; İlgüy, Mehmet; Fişekçioğlu, Erdoğan; Dölekoğlu, Semanur [Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Yeditepe University, Istanbul (Turkey)

    2012-12-27

    Orientation of the stylohyoid complex (SHC) may be important for evaluation of the patient with orofacial pain or dysphagia. Our purpose was to assess the length and angulations of SHC using cone beam computed tomography (CBCT). In this study, 3D images provided by CBCT of 69 patients (36 females, 33 males, age range 15-77 years) were retrospectively evaluated. All CBCT images were performed because of other indications. None of the patients had symptoms of ossified SHC. The length and the thickness of SHC ossification, the anteroposterior angle (APA) and the mediolateral angle (MLA) were measured by maxillofacial radiologists on the anteroposterior, right lateral and left lateral views of CBCT. Student’s t test, Pearson's correlation and Chi-square test tests were used for statistical analysis. According to the results, the mean length of SHC was 25.3 ± 11.3 mm and the mean thickness of SHC was 4.8 ± 1.8 mm in the study group. The mean APA value of SHCs was 25.6° ± 5.4° and the mean MLA value was 66.4° ± 6.7°. A positive correlation coefficient was found between age and APA (r = 0.335; P < 0.01); between thickness and APA (r = 0.448; P < 0.01) and also between length and thickness was found (r=0.236). The size and morphology of the SHC can be easily assessed by 3D views provided by CBCT. In CBCT evaluation of the head and neck region, the radiologist should consider SHC according to these variations, which may have clinical importance.

  12. Assessment of the Stylohyoid Complex with Cone Beam Computed Tomography

    International Nuclear Information System (INIS)

    İlgüy, Dilhan; İlgüy, Mehmet; Fişekçioğlu, Erdoğan; Dölekoğlu, Semanur

    2012-01-01

    Orientation of the stylohyoid complex (SHC) may be important for evaluation of the patient with orofacial pain or dysphagia. Our purpose was to assess the length and angulations of SHC using cone beam computed tomography (CBCT). In this study, 3D images provided by CBCT of 69 patients (36 females, 33 males, age range 15-77 years) were retrospectively evaluated. All CBCT images were performed because of other indications. None of the patients had symptoms of ossified SHC. The length and the thickness of SHC ossification, the anteroposterior angle (APA) and the mediolateral angle (MLA) were measured by maxillofacial radiologists on the anteroposterior, right lateral and left lateral views of CBCT. Student’s t test, Pearson's correlation and Chi-square test tests were used for statistical analysis. According to the results, the mean length of SHC was 25.3 ± 11.3 mm and the mean thickness of SHC was 4.8 ± 1.8 mm in the study group. The mean APA value of SHCs was 25.6° ± 5.4° and the mean MLA value was 66.4° ± 6.7°. A positive correlation coefficient was found between age and APA (r = 0.335; P < 0.01); between thickness and APA (r = 0.448; P < 0.01) and also between length and thickness was found (r=0.236). The size and morphology of the SHC can be easily assessed by 3D views provided by CBCT. In CBCT evaluation of the head and neck region, the radiologist should consider SHC according to these variations, which may have clinical importance

  13. Evaluation of positioning errors of the patient using cone beam CT megavoltage; Evaluacion de errores de posicionamiento del paciente mediante Cone Beam CT de megavoltaje

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Ruiz-Zorrilla, J.; Fernandez Leton, J. P.; Zucca Aparicio, D.; Perez Moreno, J. M.; Minambres Moro, A.

    2013-07-01

    Image-guided radiation therapy allows you to assess and fix the positioning of the patient in the treatment unit, thus reducing the uncertainties due to the positioning of the patient. This work assesses errors systematic and errors of randomness from the corrections made to a series of patients of different diseases through a protocol off line of cone beam CT (CBCT) megavoltage. (Author)

  14. Fan-beam and cone-beam image reconstruction via filtering the backprojection image of differentiated projection data

    International Nuclear Information System (INIS)

    Zhuang Tingliang; Leng Shuai; Nett, Brian E; Chen Guanghong

    2004-01-01

    In this paper, a new image reconstruction scheme is presented based on Tuy's cone-beam inversion scheme and its fan-beam counterpart. It is demonstrated that Tuy's inversion scheme may be used to derive a new framework for fan-beam and cone-beam image reconstruction. In this new framework, images are reconstructed via filtering the backprojection image of differentiated projection data. The new framework is mathematically exact and is applicable to a general source trajectory provided the Tuy data sufficiency condition is satisfied. By choosing a piece-wise constant function for one of the components in the factorized weighting function, the filtering kernel is one dimensional, viz. the filtering process is along a straight line. Thus, the derived image reconstruction algorithm is mathematically exact and efficient. In the cone-beam case, the derived reconstruction algorithm is applicable to a large class of source trajectories where the pi-lines or the generalized pi-lines exist. In addition, the new reconstruction scheme survives the super-short scan mode in both the fan-beam and cone-beam cases provided the data are not transversely truncated. Numerical simulations were conducted to validate the new reconstruction scheme for the fan-beam case

  15. A faster ordered-subset convex algorithm for iterative reconstruction in a rotation-free micro-CT system

    International Nuclear Information System (INIS)

    Quan, E; Lalush, D S

    2009-01-01

    We present a faster iterative reconstruction algorithm based on the ordered-subset convex (OSC) algorithm for transmission CT. The OSC algorithm was modified such that it calculates the normalization term before the iterative process in order to save computational cost. The modified version requires only one backprojection per iteration as compared to two required for the original OSC. We applied the modified OSC (MOSC) algorithm to a rotation-free micro-CT system that we proposed previously, observed its performance, and compared with the OSC algorithm for 3D cone-beam reconstruction. Measurements on the reconstructed images as well as the point spread functions show that MOSC is quite similar to OSC; in noise-resolution trade-off, MOSC is comparable with OSC in a regular-noise situation and it is slightly worse than OSC in an extremely high-noise situation. The timing record shows that MOSC saves 25-30% CPU time, depending on the number of iterations used. We conclude that the MOSC algorithm is more efficient than OSC and provides comparable images.

  16. Beam Hardening Artifacts: Comparison between Two Cone Beam Computed Tomography Scanners

    Directory of Open Access Journals (Sweden)

    Farzad Esmaeili

    2012-04-01

    Full Text Available Background and aims. At present, cone beam computed tomography (CBCT has become a substitute for computed tomography (CT in dental procedures. The metallic materials used in dentistry can produce artifacts due to the beam hardening phenomenon. These artifacts decrease the quality of images. In the present study, the number of artifacts as a result of beam hardening in the images of dental implants was compared between two NewTom VG and Planmeca Promax 3D Max CBCT machines. Materials and methods. An implant drilling model was used in the present study. The implants (Dentis were placed in the canine, premolar and molar areas. Scanning procedures were carried out by two CBCT machines. The corresponding sections (coronal and axial of the implants were evaluated by two radiologists. The number of artifacts in each image was determined using the scale provided. Mann-Whitney U test was used for two-by-two comparisons at a significance level of P<0.05. Results. There were statistically significant differences in beam hardening artifacts in axial and coronal sections between the two x-ray machines (P<0.001, with a higher quality in the images produced by the NewTom VG. Conclusion. Given the higher quality of the images produced by the NewTom VG x-ray machine, it is recommended for imaging of patients with extensive restorations, multiple prostheses or previous implant treatments.

  17. A BPF-FBP tandem algorithm for image reconstruction in reverse helical cone-beam CT

    International Nuclear Information System (INIS)

    Cho, Seungryong; Xia, Dan; Pellizzari, Charles A.; Pan Xiaochuan

    2010-01-01

    Purpose: Reverse helical cone-beam computed tomography (CBCT) is a scanning configuration for potential applications in image-guided radiation therapy in which an accurate anatomic image of the patient is needed for image-guidance procedures. The authors previously developed an algorithm for image reconstruction from nontruncated data of an object that is completely within the reverse helix. The purpose of this work is to develop an image reconstruction approach for reverse helical CBCT of a long object that extends out of the reverse helix and therefore constitutes data truncation. Methods: The proposed approach comprises of two reconstruction steps. In the first step, a chord-based backprojection-filtration (BPF) algorithm reconstructs a volumetric image of an object from the original cone-beam data. Because there exists a chordless region in the middle of the reverse helix, the image obtained in the first step contains an unreconstructed central-gap region. In the second step, the gap region is reconstructed by use of a Pack-Noo-formula-based filteredbackprojection (FBP) algorithm from the modified cone-beam data obtained by subtracting from the original cone-beam data the reprojection of the image reconstructed in the first step. Results: The authors have performed numerical studies to validate the proposed approach in image reconstruction from reverse helical cone-beam data. The results confirm that the proposed approach can reconstruct accurate images of a long object without suffering from data-truncation artifacts or cone-angle artifacts. Conclusions: They developed and validated a BPF-FBP tandem algorithm to reconstruct images of a long object from reverse helical cone-beam data. The chord-based BPF algorithm was utilized for converting the long-object problem into a short-object problem. The proposed approach is applicable to other scanning configurations such as reduced circular sinusoidal trajectories.

  18. Actively triggered 4d cone-beam CT acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Fast, Martin F.; Wisotzky, Eric [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany); Oelfke, Uwe; Nill, Simeon [Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom)

    2013-09-15

    Purpose: 4d cone-beam computed tomography (CBCT) scans are usually reconstructed by extracting the motion information from the 2d projections or an external surrogate signal, and binning the individual projections into multiple respiratory phases. In this “after-the-fact” binning approach, however, projections are unevenly distributed over respiratory phases resulting in inefficient utilization of imaging dose. To avoid excess dose in certain respiratory phases, and poor image quality due to a lack of projections in others, the authors have developed a novel 4d CBCT acquisition framework which actively triggers 2d projections based on the forward-predicted position of the tumor.Methods: The forward-prediction of the tumor position was independently established using either (i) an electromagnetic (EM) tracking system based on implanted EM-transponders which act as a surrogate for the tumor position, or (ii) an external motion sensor measuring the chest-wall displacement and correlating this external motion to the phase-shifted diaphragm motion derived from the acquired images. In order to avoid EM-induced artifacts in the imaging detector, the authors devised a simple but effective “Faraday” shielding cage. The authors demonstrated the feasibility of their acquisition strategy by scanning an anthropomorphic lung phantom moving on 1d or 2d sinusoidal trajectories.Results: With both tumor position devices, the authors were able to acquire 4d CBCTs free of motion blurring. For scans based on the EM tracking system, reconstruction artifacts stemming from the presence of the EM-array and the EM-transponders were greatly reduced using newly developed correction algorithms. By tuning the imaging frequency independently for each respiratory phase prior to acquisition, it was possible to harmonize the number of projections over respiratory phases. Depending on the breathing period (3.5 or 5 s) and the gantry rotation time (4 or 5 min), between ∼90 and 145

  19. Actively triggered 4d cone-beam CT acquisition.

    Science.gov (United States)

    Fast, Martin F; Wisotzky, Eric; Oelfke, Uwe; Nill, Simeon

    2013-09-01

    4d cone-beam computed tomography (CBCT) scans are usually reconstructed by extracting the motion information from the 2d projections or an external surrogate signal, and binning the individual projections into multiple respiratory phases. In this "after-the-fact" binning approach, however, projections are unevenly distributed over respiratory phases resulting in inefficient utilization of imaging dose. To avoid excess dose in certain respiratory phases, and poor image quality due to a lack of projections in others, the authors have developed a novel 4d CBCT acquisition framework which actively triggers 2d projections based on the forward-predicted position of the tumor. The forward-prediction of the tumor position was independently established using either (i) an electromagnetic (EM) tracking system based on implanted EM-transponders which act as a surrogate for the tumor position, or (ii) an external motion sensor measuring the chest-wall displacement and correlating this external motion to the phase-shifted diaphragm motion derived from the acquired images. In order to avoid EM-induced artifacts in the imaging detector, the authors devised a simple but effective "Faraday" shielding cage. The authors demonstrated the feasibility of their acquisition strategy by scanning an anthropomorphic lung phantom moving on 1d or 2d sinusoidal trajectories. With both tumor position devices, the authors were able to acquire 4d CBCTs free of motion blurring. For scans based on the EM tracking system, reconstruction artifacts stemming from the presence of the EM-array and the EM-transponders were greatly reduced using newly developed correction algorithms. By tuning the imaging frequency independently for each respiratory phase prior to acquisition, it was possible to harmonize the number of projections over respiratory phases. Depending on the breathing period (3.5 or 5 s) and the gantry rotation time (4 or 5 min), between ∼90 and 145 projections were acquired per respiratory

  20. Actively triggered 4d cone-beam CT acquisition

    International Nuclear Information System (INIS)

    Fast, Martin F.; Wisotzky, Eric; Oelfke, Uwe; Nill, Simeon

    2013-01-01

    Purpose: 4d cone-beam computed tomography (CBCT) scans are usually reconstructed by extracting the motion information from the 2d projections or an external surrogate signal, and binning the individual projections into multiple respiratory phases. In this “after-the-fact” binning approach, however, projections are unevenly distributed over respiratory phases resulting in inefficient utilization of imaging dose. To avoid excess dose in certain respiratory phases, and poor image quality due to a lack of projections in others, the authors have developed a novel 4d CBCT acquisition framework which actively triggers 2d projections based on the forward-predicted position of the tumor.Methods: The forward-prediction of the tumor position was independently established using either (i) an electromagnetic (EM) tracking system based on implanted EM-transponders which act as a surrogate for the tumor position, or (ii) an external motion sensor measuring the chest-wall displacement and correlating this external motion to the phase-shifted diaphragm motion derived from the acquired images. In order to avoid EM-induced artifacts in the imaging detector, the authors devised a simple but effective “Faraday” shielding cage. The authors demonstrated the feasibility of their acquisition strategy by scanning an anthropomorphic lung phantom moving on 1d or 2d sinusoidal trajectories.Results: With both tumor position devices, the authors were able to acquire 4d CBCTs free of motion blurring. For scans based on the EM tracking system, reconstruction artifacts stemming from the presence of the EM-array and the EM-transponders were greatly reduced using newly developed correction algorithms. By tuning the imaging frequency independently for each respiratory phase prior to acquisition, it was possible to harmonize the number of projections over respiratory phases. Depending on the breathing period (3.5 or 5 s) and the gantry rotation time (4 or 5 min), between ∼90 and 145

  1. Benign Prostatic Hyperplasia: Cone-Beam CT in Conjunction with DSA for Identifying Prostatic Arterial Anatomy.

    Science.gov (United States)

    Wang, Mao Qiang; Duan, Feng; Yuan, Kai; Zhang, Guo Dong; Yan, Jieyu; Wang, Yan

    2017-01-01

    Purpose To describe findings in prostatic arteries (PAs) at digital subtraction angiography (DSA) and cone-beam computed tomography (CT) that allow identification of benign prostatic hyperplasia and to determine the value added with the use of cone-beam CT. Materials and Methods This retrospective single-institution study was approved by the institutional review board, and the requirement for written informed consent was waived. From February 2009 to December 2014, a total of 148 patients (mean age ± standard deviation, 70.5 years ± 14.5) underwent DSA of the internal iliac arteries and cone-beam CT with a flat-detector angiographic system before they underwent prostate artery embolization. Both the DSA and cone-beam CT images were evaluated by two interventional radiologists to determine the number of independent PAs and their origins and anastomoses with adjacent arteries. The exact McNemar test was used to compare the detection rate of the PAs and the anastomoses with DSA and with cone-beam CT. Results The PA anatomy was evaluated successfully by means of cone-beam CT in conjunction with DSA in all patients. Of the 296 pelvic sides, 274 (92.6%) had only one PA. The most frequent PA origin was the common gluteal-pudendal trunk with the superior vesicular artery in 118 (37.1%), followed by the anterior division of the internal iliac artery in 99 (31.1%), and the internal pudendal artery in 77 (24.2%) pelvic sides. In 67 (22.6%) pelvic sides, anastomoses to adjacent arteries were documented. The numbers of PA origins and anastomoses, respectively, that could be identified were significantly higher with cone-beam CT (301 of 318 [94.7%] and 65 of 67 [97.0%]) than with DSA (237 [74.5%] and 39 [58.2%], P < .05). Cone-beam CT provided essential information that was not available with DSA in 90 of 148 (60.8%) patients. Conclusion Cone-beam CT is a useful adjunctive technique to DSA for identification of the PA anatomy and provides information to help treatment planning

  2. Asymptomatic radiopaque lesions of the jaws. A radiographic study using cone-beam computed tomography

    International Nuclear Information System (INIS)

    Araki, Masao; Matsumoto, Naoyuki; Matsumoto, Kunihito; Ohnishi, Masaaki; Honda, Kazuya; Komiyama, Kazuo

    2011-01-01

    Panoramic radiography and cone-beam computed tomography (CT) were used to analyze asymptomatic radiopaque lesions in the jaw bones and determine the diagnostic relevance of the lesions based on their relationships to teeth and site of origin. One hundred radiopaque lesions detected between 1998 and 2002 were examined by both panoramic radiography and cone-beam CT. On the basis of panoramic radiographs, the region was classified as periapical, body, or edentulous, and the site was classified as molar or premolar. Follow-up data from medical records were available for only 36 of these cases. The study protocol for simultaneous use of cone-beam CT was approved by the ethics review board of our institution. A large majority of radiopaque lesions were observed in premolar and molar sites of the mandible; 60% of lesions were periapical, 24% were in the body, and 16% were in the edentulous region. An interesting type of radiopaque lesion, which we named a pearl shell structure (PSS), was observed on cone-beam CT in 34 of the 100 lesions. The PSS is a distinctive structure, and this finding on cone-beam CT likely represents the start of bone formation before bone sclerosis. (author)

  3. Improved image quality for asymmetric double-focal cone-beam SPECT

    International Nuclear Information System (INIS)

    Cao, Z.J.; Tsui, B.M.W.

    1993-01-01

    To optimize both spatial resolution and detection efficiency in brain SPECT imaging using a rectangular camera, an asymmetric double-focal cone-beam collimator is proposed with the focal points located near the base plane of the patient's head. To fit the entire head into the field-of-view of the collimator with dimensions of 50cmx40cm and at a radius-of-rotation of 15 cm, the focal lengths of the collimator are 55 and 70 cm, respectively, in the transverse and axial directions. With this geometry, the artifacts in the reconstructed image produced by the Feldkamp algorithm are more severe compared to those in a symmetric cone-beam geometry, due to the larger vertex angle between the top of the head and the base plane. To improve the reconstructed image quality, a fully three-dimensional (3D) reconstruction algorithm developed previously for single-focal cone-beam SPECT was extended to the asymmetric double-focal cone-beam geometry. The algorithm involves nonstationary 2D filtering and a reprojection technique for estimation of the missing data caused by a single-orbit cone-beam geometry. The results from simulation studies with the 3D Defrise slab phantom demonstrated that the fully 3D algorithm provided a much improved image quality in terms of reduced slice-to-slice cross talks and shape elongation compared to that produced by the conventional Feldkamp algorithm

  4. Evaluation of tilted cone-beam CT orbits in the development of a dedicated hybrid mammotomograph

    International Nuclear Information System (INIS)

    Madhav, P; Crotty, D J; Tornai, M P; McKinley, R L

    2009-01-01

    A compact dedicated 3D breast SPECT-CT (mammotomography) system is currently under development. In its initial prototype, the cone-beam CT sub-system is restricted to a fixed-tilt circular rotation around the patient's pendant breast. This study evaluated stationary-tilt angles for the CT sub-system that will enable maximal volumetric sampling and viewing of the breast and chest wall. Images of geometric/anthropomorphic phantoms were acquired using various fixed-tilt circular and 3D sinusoidal trajectories. The iteratively reconstructed images showed more distortion and attenuation coefficient inaccuracy from tilted cone-beam orbits than from the complex trajectory. Additionally, line profiles illustrated cupping artifacts in planes distal to the central plane of the tilted cone-beam, otherwise not apparent for images acquired with complex trajectories. This indicates that undersampled cone-beam data may be an additional cause of cupping artifacts. High-frequency objects could be distinguished for all trajectories, but their shapes and locations were corrupted by out-of-plane frequency information. Although more acrylic balls were visualized with a fixed-tilt and nearly flat cone-beam at the posterior of the breast, 3D complex trajectories have less distortion and more complete sampling throughout the reconstruction volume. While complex trajectories would ideally be preferred, negatively fixed-tilt source-detector configuration demonstrates minimally distorted patient images.

  5. Three-dimensional SPECT [single photon emission computed tomography] reconstruction of combined cone beam and parallel beam data

    International Nuclear Information System (INIS)

    Jaszczak, R.J.; Jianying Li; Huili Wang; Coleman, R.E.

    1992-01-01

    Single photon emission computed tomography (SPECT) using cone beam (CB) collimation exhibits increased sensitivity compared with acquisition geometries using parallel (P) hole collimation. However, CB collimation has a smaller field-of-view which may result in truncated projections and image artifacts. A primary objective of this work is to investigate maximum likelihood-expectation maximization (ML-EM) methods to reconstruct simultaneously acquired parallel and cone beam (P and CB) SPECT data. Simultaneous P and CB acquisition can be performed with commercially available triple camera systems by using two cone-beam collimators and a single parallel-hole collimator. The loss in overall sensitivity (relative to the use of three CB collimators) is about 15 to 20%. The authors have developed three methods to combine P and CB data using modified ML-EM algorithms. (author)

  6. A new approximate algorithm for image reconstruction in cone-beam spiral CT at small cone-angles

    International Nuclear Information System (INIS)

    Schaller, S.; Flohr, T.; Steffen, P.

    1996-01-01

    This paper presents a new approximate algorithm for image reconstruction with cone-beam spiral CT data at relatively small cone-angles. Based on the algorithm of Wang et al., our method combines a special complementary interpolation with filtered backprojection. The presented algorithm has three main advantages over Wang's algorithm: (1) It overcomes the pitch limitation of Wang's algorithm. (2) It significantly improves z-resolution when suitable sampling schemes are applied. (3) It avoids the waste of applied radiation dose inherent to Wang's algorithm. Usage of the total applied dose is an important requirement in medical imaging. Our method has been implemented on a standard workstation. Reconstructions of computer-simulated data of different phantoms, assuming sampling conditions and image quality requirements typical to medical CT, show encouraging results

  7. Motion tolerant iterative reconstruction algorithm for cone-beam helical CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hisashi; Goto, Taiga; Hirokawa, Koichi; Miyazaki, Osamu [Hitachi Medical Corporation, Chiba-ken (Japan). CT System Div.

    2011-07-01

    We have developed a new advanced iterative reconstruction algorithm for cone-beam helical CT. The features of this algorithm are: (a) it uses separable paraboloidal surrogate (SPS) technique as a foundation for reconstruction to reduce noise and cone-beam artifact, (b) it uses a view weight in the back-projection process to reduce motion artifact. To confirm the improvement of our proposed algorithm over other existing algorithm, such as Feldkamp-Davis-Kress (FDK) or SPS algorithm, we compared the motion artifact reduction, image noise reduction (standard deviation of CT number), and cone-beam artifact reduction on simulated and clinical data set. Our results demonstrate that the proposed algorithm dramatically reduces motion artifacts compared with the SPS algorithm, and decreases image noise compared with the FDK algorithm. In addition, the proposed algorithm potentially improves time resolution of iterative reconstruction. (orig.)

  8. Cone beam CT findings of retromolar canals: Report of cases and literature review

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang Sun [Dept. of Dental Hygiene, Eulji University, Seongnam (Korea, Republic of); Park, Chang Seo [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Yonsei University, Seoul (Korea, Republic of)

    2013-12-15

    A retromolar canal is an anatomical variation in the mandible. As it includes the neurovascular bundle, local anesthetic insufficiency can occur, and an injury of the retromolar canal during dental surgery in the mandible may result in excessive bleeding, paresthesia, and traumatic neuroma. Using imaging analysis software, we evaluated the cone-beam computed tomography (CT) images of two Korean patients who presented with retromolar canals. Retromolar canals were detectable on the sagittal and cross-sectional images of cone-beam CT, but not on the panoramic radiographs of the patients. Therefore, the clinician should pay particular attention to the identification of retromolar canals by preoperative radiographic examination, and additional cone beam CT scanning would be recommended.

  9. [CONE BEAM COMPUTED TOMOGRAPHY IN DIAGNOSTICS OF ODONTOGENIC MAXILLARY SINUSITIS (CASE REPORTS)].

    Science.gov (United States)

    Demidova, E; Khurdzidze, G

    2017-06-01

    Diagnostic studies performed by cone beam computed tomography Morita 3D made possible to obtain high resolution images of hard tissues of upper jawbone and maxillary sinus, to detect bony tissue defects, such as odontogenic cysts, cystogranulomas and granulomas. High-resolution and three dimensional tomographic image reconstructions allowed for optimal and prompt determination of the scope of surgical treatment and planning of effective conservative treatment regimen. Interactive diagnostics helped to estimate cosmetic and functional results of surgical treatment, to prevent the occurrence of surgical complications, and to evaluate the efficacy of conservative treatment. The obtained data contributed to determination of particular applications of cone beam computed tomography in the diagnosis of odontogenic maxillary sinusitis, detection of specific defects with cone beam tomography as the most informative method of diagnosis; as well as to determination of weak and strong sides, and helped to offer mechanisms of x-ray diagnostics to dental surgeons and ENT specialists.

  10. An analytical simulation technique for cone-beam CT and pinhole SPECT

    International Nuclear Information System (INIS)

    Zhang Xuezhu; Qi Yujin

    2011-01-01

    This study was aimed at developing an efficient simulation technique with an ordinary PC. The work involved derivation of mathematical operators, analytic phantom generations, and effective analytical projectors developing for cone-beam CT and pinhole SPECT imaging. The computer simulations based on the analytical projectors were developed by ray-tracing method for cone-beam CT and voxel-driven method for pinhole SPECT of degrading blurring. The 3D Shepp-Logan, Jaszczak and Defrise phantoms were used for simulation evaluations and image reconstructions. The reconstructed phantom images were of good accuracy with the phantoms. The results showed that the analytical simulation technique is an efficient tool for studying cone-beam CT and pinhole SPECT imaging. (authors)

  11. Quantitative cone beam X-ray luminescence tomography/X-ray computed tomography imaging

    International Nuclear Information System (INIS)

    Chen, Dongmei; Zhu, Shouping; Chen, Xueli; Chao, Tiantian; Cao, Xu; Zhao, Fengjun; Huang, Liyu; Liang, Jimin

    2014-01-01

    X-ray luminescence tomography (XLT) is an imaging technology based on X-ray-excitable materials. The main purpose of this paper is to obtain quantitative luminescence concentration using the structural information of the X-ray computed tomography (XCT) in the hybrid cone beam XLT/XCT system. A multi-wavelength luminescence cone beam XLT method with the structural a priori information is presented to relieve the severe ill-posedness problem in the cone beam XLT. The nanophosphors and phantom experiments were undertaken to access the linear relationship of the system response. Then, an in vivo mouse experiment was conducted. The in vivo experimental results show that the recovered concentration error as low as 6.67% with the location error of 0.85 mm can be achieved. The results demonstrate that the proposed method can accurately recover the nanophosphor inclusion and realize the quantitative imaging

  12. Attenuation maps for SPECT determined using cone beam transmission computed tomography

    International Nuclear Information System (INIS)

    Manglos, S.H.; Bassano, D.A.; Duxbury, C.E.; Capone, R.B.

    1990-01-01

    This paper presents a new method for measuring non-uniform attenuation maps, using a cone beam geometry CT scan acquired on a standard rotating gamma camera normally used for SPECT imaging. The resulting map is intended for use in non-uniform attenuation compensation of SPECT images. The method was implemented using a light-weight point source holder attached to the camera. A cone beam collimator may be used on the gamma camera, but the cone beam CT scans may also be acquired without collimator. In either implementation, the advantages include very high efficiency and resolution limited not by the collimator but by the intrinsic camera resolution (about 4 mm). Several phantoms tested the spatial uniformity, noise, linearity as a function of attenuation coefficient, and spatial resolution. Good quality attenuation maps were obtained, at least for the central slices where no truncation was present

  13. Cone beam CT findings of retromolar canals: Report of cases and literature review

    International Nuclear Information System (INIS)

    Han, Sang Sun; Park, Chang Seo

    2013-01-01

    A retromolar canal is an anatomical variation in the mandible. As it includes the neurovascular bundle, local anesthetic insufficiency can occur, and an injury of the retromolar canal during dental surgery in the mandible may result in excessive bleeding, paresthesia, and traumatic neuroma. Using imaging analysis software, we evaluated the cone-beam computed tomography (CT) images of two Korean patients who presented with retromolar canals. Retromolar canals were detectable on the sagittal and cross-sectional images of cone-beam CT, but not on the panoramic radiographs of the patients. Therefore, the clinician should pay particular attention to the identification of retromolar canals by preoperative radiographic examination, and additional cone beam CT scanning would be recommended.

  14. Prior image constrained scatter correction in cone-beam computed tomography image-guided radiation therapy.

    Science.gov (United States)

    Brunner, Stephen; Nett, Brian E; Tolakanahalli, Ranjini; Chen, Guang-Hong

    2011-02-21

    X-ray scatter is a significant problem in cone-beam computed tomography when thicker objects and larger cone angles are used, as scattered radiation can lead to reduced contrast and CT number inaccuracy. Advances have been made in x-ray computed tomography (CT) by incorporating a high quality prior image into the image reconstruction process. In this paper, we extend this idea to correct scatter-induced shading artifacts in cone-beam CT image-guided radiation therapy. Specifically, this paper presents a new scatter correction algorithm which uses a prior image with low scatter artifacts to reduce shading artifacts in cone-beam CT images acquired under conditions of high scatter. The proposed correction algorithm begins with an empirical hypothesis that the target image can be written as a weighted summation of a series of basis images that are generated by raising the raw cone-beam projection data to different powers, and then, reconstructing using the standard filtered backprojection algorithm. The weight for each basis image is calculated by minimizing the difference between the target image and the prior image. The performance of the scatter correction algorithm is qualitatively and quantitatively evaluated through phantom studies using a Varian 2100 EX System with an on-board imager. Results show that the proposed scatter correction algorithm using a prior image with low scatter artifacts can substantially mitigate scatter-induced shading artifacts in both full-fan and half-fan modes.

  15. Self-healing of Bessel-like beams with longitudinally dependent cone angles

    International Nuclear Information System (INIS)

    Litvin, I; Burger, L; Forbes, A

    2015-01-01

    Bessel beams have been extensively studied, but to date have been created over a finite region inside the laboratory. Recently Bessel-like beams with longitudinally dependent cone angles have been introduced allowing for a potentially infinite quasi non-diffracting propagation region. Here we show that such beams can self-heal. Moreover, in contrast to Bessel beams where the self-healing distance is constant, here the self-healing distance is dependent on where the obstruction is placed in the field, with the distance increasing as the Bessel-like beam propagates farther. We outline the theoretical concept for this self-healing and confirm it experimentally. (paper)

  16. Cone beam computed tomography radiation dose and image quality assessments.

    Science.gov (United States)

    Lofthag-Hansen, Sara

    2010-01-01

    Diagnostic radiology has undergone profound changes in the last 30 years. New technologies are available to the dental field, cone beam computed tomography (CBCT) as one of the most important. CBCT is a catch-all term for a technology comprising a variety of machines differing in many respects: patient positioning, volume size (FOV), radiation quality, image capturing and reconstruction, image resolution and radiation dose. When new technology is introduced one must make sure that diagnostic accuracy is better or at least as good as the one it can be expected to replace. The CBCT brand tested was two versions of Accuitomo (Morita, Japan): 3D Accuitomo with an image intensifier as detector, FOV 3 cm x 4 cm and 3D Accuitomo FPD with a flat panel detector, FOVs 4 cm x 4 cm and 6 cm x 6 cm. The 3D Accuitomo was compared with intra-oral radiography for endodontic diagnosis in 35 patients with 46 teeth analyzed, of which 41 were endodontically treated. Three observers assessed the images by consensus. The result showed that CBCT imaging was superior with a higher number of teeth diagnosed with periapical lesions (42 vs 32 teeth). When evaluating 3D Accuitomo examinations in the posterior mandible in 30 patients, visibility of marginal bone crest and mandibular canal, important anatomic structures for implant planning, was high with good observer agreement among seven observers. Radiographic techniques have to be evaluated concerning radiation dose, which requires well-defined and easy-to-use methods. Two methods: CT dose index (CTDI), prevailing method for CT units, and dose-area product (DAP) were evaluated for calculating effective dose (E) for both units. An asymmetric dose distribution was revealed when a clinical situation was simulated. Hence, the CTDI method was not applicable for these units with small FOVs. Based on DAP values from 90 patient examinations effective dose was estimated for three diagnostic tasks: implant planning in posterior mandible and

  17. Treatment of a Four-Rooted Maxillary Second Molar Detected with Cone-Beam Computed Tomography

    Directory of Open Access Journals (Sweden)

    Nahid Mohammadzade Akhlaghi

    2017-08-01

    Full Text Available The significance of clinician’s knowledge about root canal anatomy and its possible variations cannot be overlooked. In some cases, taking advantage of complementary imaging techniques can help achieve a perfect flawless endodontic treatment. This article reports endodontic management of a second maxillary molar that had an uncommon anatomy of the chamber floor. After obtaining a cone-beam computed tomography (CBCT image, the presence of a second palatal root was confirmed. All four roots were treated and patient’s symptoms were resolved.Keywords: Cone-Beam Computed Tomography; Root Canal Therapy; Tooth Root

  18. Partial volume and aliasing artefacts in helical cone-beam CT

    International Nuclear Information System (INIS)

    Zou Yu; Sidky, Emil Y; Pan, Xiaochuan

    2004-01-01

    A generalization of the quasi-exact algorithms of Kudo et al (2000 IEEE Trans. Med. Imaging 19 902-21) is developed that allows for data acquisition in a 'practical' frame for clinical diagnostic helical, cone-beam computed tomography (CT). The algorithm is investigated using data that model nonlinear partial volume averaging. This investigation leads to an understanding of aliasing artefacts in helical, cone-beam CT image reconstruction. An ad hoc scheme is proposed to mitigate artefacts due to the nonlinear partial volume and aliasing artefacts

  19. Quasi-monoenergetic proton beam produced by cone-top-end target

    International Nuclear Information System (INIS)

    Yu Jinqing; Jin Xiaolin; Li Bin; Zhou Weimin; Gu Yuqiu

    2012-01-01

    A scheme for generating quasi-monoenergetic proton beam is presented. In this paper, a new cone-top-end target is proposed and investigated by two-dimensional particle-in-cell (2D-PIC) simulation. The simulation results show that this target configuration can guide the hot electrons by the self-generated magnetic field along the profile of the cone-top-end target. The peak magnitude of sheath field at the rear surface of solid target can be enhanced, so the proton energy can be improved. The proton beam with energy spread of 9.9% can be obtained. (authors)

  20. Protocol of image guided off-line using cone beam CT megavoltage; Protocolo de imagen guiada off-line mediante Cone Beam CT de megavoltaje

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Ruiz-Zorrilla, J.; Fernandez Leton, J. P.; Perez Moreno, J. M.; Zucca Aparicio, D.; Minambres Moro, A.

    2013-07-01

    The goal of image guided protocols offline is to reduce systematic errors in positioning of the patient in the treatment unit, being more important than the random errors, since the systematic have one contribution in the margin of the CTV to the PTV. This paper proposes a protocol for image guided offline with the different actions to take with their threshold values evaluated previously by anatomic location in a sample of 474 patients and 4821Cone beam Megavoltaje CT (CBCT). (Author)

  1. Internal and external morphology of mandibular molars: An original micro-CT study and meta-analysis with review of implications for endodontic therapy.

    Science.gov (United States)

    Tomaszewska, Iwona M; Skinningsrud, Bendik; Jarzębska, Anna; Pękala, Jakub R; Tarasiuk, Jacek; Iwanaga, Joe

    2018-03-25

    The aim of this radiological micro-CT study and meta-analysis was to determine the morphological features of the root canal anatomy of the mandibular molars. The radiological study included micro-CT scans of 108 mandibular first, 120 mandibular second, and 146 mandibular third molars. For our meta-analysis, an extensive search was conducted through PubMed, Embase, and Web of Science to identify articles eligible for inclusion. Data extracted included investigative method (cadaveric, intraoperative, or imaging), Vertucci type of canal configuration, presence/number of canals, roots, apical foramina, apical deltas, and intercanal communications. In the mesial roots of mandibular molars, the most frequent Vertucci type of canal configuration was type IV, except for the mandibular third molar where type I was most common. Type I was most common in the distal root. There were usually two canals in the mesial root and one in the distal root. Two was the most common number of roots, and a third root was most prevalent in Asia. One apical foramen was most common in the distal root and two apical foramina in the mesial root. Intercanal communications were most frequent in the mesial root. Knowledge of the complex anatomy of the mandibular molars can make root canal therapy more likely to succeed. We recommend the use of cone-beam computed tomography before and after endodontic treatment to enable the root anatomy to be accurately described and properly diagnosed, and treatment outcome to be assessed. Clin. Anat. 00:000-000, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  2. Bessel-like beams with z-dependent cone angles

    CSIR Research Space (South Africa)

    Belyi, VN

    2009-08-01

    Full Text Available beams (keeping the transverse profile at any distances). This new type of beams can be obtained in optical system composed of lens axicon doublet and conical lens. An experimental set-up for producing such beams is realized. It is shown that depending...

  3. General surface reconstruction for cone-beam multislice spiral computed tomography

    International Nuclear Information System (INIS)

    Chen Laigao; Liang Yun; Heuscher, Dominic J.

    2003-01-01

    A new family of cone-beam reconstruction algorithm, the General Surface Reconstruction (GSR), is proposed and formulated in this paper for multislice spiral computed tomography (CT) reconstructions. It provides a general framework to allow the reconstruction of planar or nonplanar surfaces on a set of rebinned short-scan parallel beam projection data. An iterative surface formation method is proposed as an example to show the possibility to form nonplanar reconstruction surfaces to minimize the adverse effect between the collected cone-beam projection data and the reconstruction surfaces. The improvement in accuracy of the nonplanar surfaces over planar surfaces in the two-dimensional approximate cone-beam reconstructions is mathematically proved and demonstrated using numerical simulations. The proposed GSR algorithm is evaluated by the computer simulation of cone-beam spiral scanning geometry and various mathematical phantoms. The results demonstrate that the GSR algorithm generates much better image quality compared to conventional multislice reconstruction algorithms. For a table speed up to 100 mm per rotation, GSR demonstrates good image quality for both the low-contrast ball phantom and thorax phantom. All other performance parameters are comparable to the single-slice 180 deg. LI (linear interpolation) algorithm, which is considered the 'gold standard'. GSR also achieves high computing efficiency and good temporal resolution, making it an attractive alternative for the reconstruction of next generation multislice spiral CT data

  4. 3D algebraic iterative reconstruction for cone-beam x-ray differential phase-contrast computed tomography.

    Science.gov (United States)

    Fu, Jian; Hu, Xinhua; Velroyen, Astrid; Bech, Martin; Jiang, Ming; Pfeiffer, Franz

    2015-01-01

    Due to the potential of compact imaging systems with magnified spatial resolution and contrast, cone-beam x-ray differential phase-contrast computed tomography (DPC-CT) has attracted significant interest. The current proposed FDK reconstruction algorithm with the Hilbert imaginary filter will induce severe cone-beam artifacts when the cone-beam angle becomes large. In this paper, we propose an algebraic iterative reconstruction (AIR) method for cone-beam DPC-CT and report its experiment results. This approach considers the reconstruction process as the optimization of a discrete representation of the object function to satisfy a system of equations that describes the cone-beam DPC-CT imaging modality. Unlike the conventional iterative algorithms for absorption-based CT, it involves the derivative operation to the forward projections of the reconstructed intermediate image to take into account the differential nature of the DPC projections. This method is based on the algebraic reconstruction technique, reconstructs the image ray by ray, and is expected to provide better derivative estimates in iterations. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a mini-focus x-ray tube source. It is shown that the proposed method can reduce the cone-beam artifacts and performs better than FDK under large cone-beam angles. This algorithm is of interest for future cone-beam DPC-CT applications.

  5. A rotating and warping projector/backprojector for fan-beam and cone-beam iterative algorithm

    International Nuclear Information System (INIS)

    Zeng, G.L.; Hsieh, Y.L.; Gullberg, G.T.

    1994-01-01

    A rotating-and-warping projector/backprojector is proposed for iterative algorithms used to reconstruct fan-beam and cone-beam single photon emission computed tomography (SPECT) data. The development of a new projector/backprojector for implementing attenuation, geometric point response, and scatter models is motivated by the need to reduce the computation time yet to preserve the fidelity of the corrected reconstruction. At each projection angle, the projector/backprojector first rotates the image volume so that the pixelized cube remains parallel to the detector, and then warps the image volume so that the fan-beam and cone-beam rays are converted into parallel rays. In the authors implementation, these two steps are combined so that the interpolation of voxel values are performed only once. The projection operation is achieved by a simple weighted summation, and the backprojection operation is achieved by copying weighted projection array values to the image volume. An advantage of this projector/backprojector is that the system point response function can be deconvolved via the Fast Fourier Transform using the shift-invariant property of the point response when the voxel-to-detector distance is constant. The fan-beam and cone-beam rotating-and-warping projector/backprojector is applied to SPECT data showing improved resolution

  6. Feasibility of contrast-enhanced cone-beam CT for target localization and treatment monitoring

    International Nuclear Information System (INIS)

    Rodal, Jan; Sovik, Aste; Skogmo, Hege Kippenes; Knudtsen, Ingerid Skjei; Malinen, Eirik

    2010-01-01

    A dog with a spontaneous maxillary tumour was given 40 Gy of fractionated radiotherapy. At five out of 10 fractions cone-beam CT (CBCT) imaging before and after administration of an iodinated contrast agent were performed. Contrast enhancement maps were overlaid on the pre-contrast CBCT images. The tumour was clearly visualized in the images thus produced.

  7. Cone Beam Computed Tomography-Dawn of A New Imaging Modality in Orthodontics

    Science.gov (United States)

    Mamatha, J; Chaitra, K R; Paul, Renji K; George, Merin; Anitha, J; Khanna, Bharti

    2015-01-01

    Today, we are in a world of innovations, and there are various diagnostics aids that help to take a decision regarding treatment in a well-planned way. Cone beam computed tomography (CBCT) has been a vital tool for imaging diagnostic tool in orthodontics. This article reviews case reports during orthodontic treatment and importance of CBCT during the treatment evaluation. PMID:26225116

  8. Integration of digital dental casts in cone-beam computed tomography scans

    NARCIS (Netherlands)

    Rangel, F.A.; Maal, T.J.J.; Berge, S.J.; Kuijpers-Jagtman, A.M.

    2012-01-01

    Cone-beam computed tomography (CBCT) is widely used in maxillofacial surgery. The CBCT image of the dental arches, however, is of insufficient quality to use in digital planning of orthognathic surgery. Several authors have described methods to integrate digital dental casts into CBCT scans, but all

  9. Diagnosis and decision making in endodontics with the use of cone beam computed tomography

    NARCIS (Netherlands)

    Metska, M.E.

    2014-01-01

    In the current thesis the use of cone beam computed tomography (CBCT) in endodontics has been evaluated within the framework of ex vivo and in vivo studies. The first objective of the thesis was to examine whether CBCT scans can be used for the detection of vertical root fractures in endodontically

  10. Evaluation of positioning errors of the patient using cone beam CT megavoltage

    International Nuclear Information System (INIS)

    Garcia Ruiz-Zorrilla, J.; Fernandez Leton, J. P.; Zucca Aparicio, D.; Perez Moreno, J. M.; Minambres Moro, A.

    2013-01-01

    Image-guided radiation therapy allows you to assess and fix the positioning of the patient in the treatment unit, thus reducing the uncertainties due to the positioning of the patient. This work assesses errors systematic and errors of randomness from the corrections made to a series of patients of different diseases through a protocol off line of cone beam CT (CBCT) megavoltage. (Author)

  11. Clinical introduction of image lag correction for a cone beam CT system

    NARCIS (Netherlands)

    Stankovic, Uros; Ploeger, Lennert S.; Sonke, Jan-Jakob; van Herk, Marcel

    2016-01-01

    Image lag in the flat-panel detector used for Linac integrated cone beam computed tomography (CBCT) has a degrading effect on CBCT image quality. The most prominent visible artifact is the presence of bright semicircular structure in the transverse view of the scans, known also as radar artifact.

  12. Contours identification of elements in a cone beam computed tomography for investigating maxillary cysts

    Science.gov (United States)

    Chioran, Doina; Nicoarǎ, Adrian; Roşu, Şerban; Cǎrligeriu, Virgil; Ianeş, Emilia

    2013-10-01

    Digital processing of two-dimensional cone beam computer tomography slicesstarts by identification of the contour of elements within. This paper deals with the collective work of specialists in medicine and applied mathematics in computer science on elaborating and implementation of algorithms in dental 2D imagery.

  13. Evidence supporting the use of cone-beam computed tomography in orthodontics.

    NARCIS (Netherlands)

    Vlijmen, O.J.C. van; Kuijpers, M.A.R.; Berge, S.J.; Schols, J.G.J.H.; Maal, T.J.J.; Breuning, H.; Kuijpers-Jagtman, A.M.

    2012-01-01

    BACKGROUND: The authors conducted a systematic review of cone-beam computed tomography (CBCT) applications in orthodontics and evaluated the level of evidence to determine whether the use of CBCT is justified in orthodontics. TYPES OF STUDIES REVIEWED: The authors identified articles by searching

  14. Accuracy assessment of three-dimensional surface reconstructions of teeth from cone beam computed tomography scans

    NARCIS (Netherlands)

    Al-Rawi, B.; Hassan, B.; Vandenberge, B.; Jacobs, R.

    2010-01-01

    The use of three-dimensional (3D) models of the dentition obtained from cone beam computed tomography (CBCT) is becoming increasingly more popular in dentistry. A recent trend is to replace the traditional dental casts with digital CBCT models for diagnosis, treatment planning and simulation. The

  15. Two-sheet surface rebinning algorithm for real time cone beam tomography

    Energy Technology Data Exchange (ETDEWEB)

    Betcke, Marta M. [University College London (United Kingdom). Dept. of Computer Science; Lionheart, William R.B. [Manchester Univ. (United Kingdom). School of Mathematics

    2011-07-01

    The Rapiscan RTT80 is an example of a fast cone beam CT scanner in which the X-ray sources are fixed on a circle while the detector rows are offset axially on one side of the sources. Reconstruction for this offset truncation presents a new challenge and we propose a method using rebinning to an optimal two-sheet surface. (orig.)

  16. Comparison of five cone beam computed tomography systems for the detection of vertical root fractures

    NARCIS (Netherlands)

    Hassan, B.; Metska, M.E.; Ozok, A.R.; van der Stelt, P.; Wesselink, P.R.

    2010-01-01

    Introduction This study compared the accuracy of cone beam computed tomography (CBCT) scans made by five different systems in detecting vertical root fractures (VRFs). It also assessed the influence of the presence of root canal filling (RCF), CBCT slice orientation selection, and the type of tooth

  17. Detection of vertical root fractures in endodontically treated teeth by a cone beam computed tomography scan

    NARCIS (Netherlands)

    Hassan, B.; Metska, M.E.; Özok, A.R.; van der Stelt, P.; Wesselink, P.R.

    2009-01-01

    Our aim was to compare the accuracy of cone beam computed tomography (CBCT) scans and periapical radiographs (PRs) in detecting vertical root fractures (VRFs) and to assess the influence of root canal filling (RCF) on fracture visibility. Eighty teeth were endodontically prepared and divided into

  18. Cone-beam computed tomography: An inevitable investigation in cleidocranial dysplasia

    Directory of Open Access Journals (Sweden)

    Nandita S Gupta

    2015-01-01

    Full Text Available Cleidocranial dysplasia is a heritable skeletal dysplasia and one of the most common features of this syndrome is multiple impacted supernumerary teeth. Cone-beam computed tomography, the most recent advancement in maxillofacial imaging, provides the clinician to view the morphology of the skull and the dentition in all three dimensions and help in treatment planning for the patient.

  19. Accuracy and repeatability of anthropometric facial measurements using cone beam computed tomography

    NARCIS (Netherlands)

    Fourie, Zacharias; Damstra, Janalt; Gerrits, Peter O.; Ren, Yijin

    Objective: The purpose of this study was to determine the accuracy and repeatability of linear anthropometric measurements on the soft tissue surface model generated from cone beam computed tomography scans. Materials and Methods: The study sample consisted of seven cadaver heads. The accuracy and

  20. The outcome of root-canal treatments assessed by cone-beam computed tomography

    NARCIS (Netherlands)

    Liang, Y.H.

    2013-01-01

    In this thesis, in-vivo and ex-vivo methods were utilized to assess the outcome of root canal treatments determined by cone-beam computed tomography (CBCT) and the reliability of the CBCT-findings. CBCT provided useful and reliable information leading to a better understanding of the outcome and

  1. Point spread function modeling and image restoration for cone-beam CT

    International Nuclear Information System (INIS)

    Zhang Hua; Shi Yikai; Huang Kuidong; Xu Zhe

    2015-01-01

    X-ray cone-beam computed tomography (CT) has such notable features as high efficiency and precision, and is widely used in the fields of medical imaging and industrial non-destructive testing, but the inherent imaging degradation reduces the quality of CT images. Aimed at the problems of projection image degradation and restoration in cone-beam CT, a point spread function (PSF) modeling method is proposed first. The general PSF model of cone-beam CT is established, and based on it, the PSF under arbitrary scanning conditions can be calculated directly for projection image restoration without the additional measurement, which greatly improved the application convenience of cone-beam CT. Secondly, a projection image restoration algorithm based on pre-filtering and pre-segmentation is proposed, which can make the edge contours in projection images and slice images clearer after restoration, and control the noise in the equivalent level to the original images. Finally, the experiments verified the feasibility and effectiveness of the proposed methods. (authors)

  2. Movement of the patient and the cone beam computed tomography scanner: objectives and possible solutions

    Czech Academy of Sciences Publication Activity Database

    Hanzelka, T.; Dušek, J.; Ocásek, F.; Kučera, J.; Šedý, Jiří; Beneš, J.; Pavlíková, G.; Foltán, R.

    2013-01-01

    Roč. 116, č. 6 (2013), s. 769-773 ISSN 2212-4403 Institutional support: RVO:67985823 Keywords : cone beam computed tomography * movement artifacts * dry-run scan Subject RIV: ED - Physiology Impact factor: 1.265, year: 2013

  3. Automated patient setup and gating using cone beam computed tomography projections

    DEFF Research Database (Denmark)

    Wan, Hanlin; Bertholet, Jenny; Ge, Jiajia

    2016-01-01

    In radiation therapy, fiducial markers are often implanted near tumors and used for patient positioning and respiratory gating purposes. These markers are then used to manually align the patients by matching the markers in the cone beam computed tomography (CBCT) reconstruction to those...

  4. C-arm Cone Beam Computed Tomography: A New Tool in the Interventional Suite.

    Science.gov (United States)

    Raj, Santhosh; Irani, Farah Gillan; Tay, Kiang Hiong; Tan, Bien Soo

    2013-11-01

    C-arm Cone Beam CT (CBCT) is a technology that is being integrated into many of the newer angiography systems in the interventional suite. Due to its ability to provide cross sectional imaging, it has opened a myriad of opportunities for creating new clinical applications. We review the technical aspects, current reported clinical applications and potential benefits of this technology. Searches were made via PubMed using the string "CBCT", "Cone Beam CT", "Cone Beam Computed Tomography" and "C-arm Cone Beam Computed Tomography". All relevant articles in the results were reviewed. CBCT clinical applications have been reported in both vascular and non-vascular interventions. They encompass many aspects of a procedure including preprocedural planning, intraprocedural guidance and postprocedural assessment. As a result, they have allowed the interventionalist to be safer and more accurate in performing image guided procedures. There are however several technical limitations. The quality of images produced is not comparable to conventional computed tomography (CT). Radiation doses are also difficult to quantify when compared to CT and fluoroscopy. CBCT technology in the interventional suite has contributed significant benefits to the patient despite its current limitations. It is a tool that will evolve and potentially become an integral part of imaging guidance for intervention.

  5. Registration-based Reconstruction of Four-dimensional Cone Beam Computed Tomography

    DEFF Research Database (Denmark)

    Christoffersen, Christian; Hansen, David Christoffer; Poulsen, Per Rugaard

    2013-01-01

    We present a new method for reconstruction of four-dimensional (4D) cone beam computed tomography from an undersampled set of X-ray projections. The novelty of the proposed method lies in utilizing optical flow based registration to facilitate that each temporal phase is reconstructed from the full...

  6. Cone-beam CT in paediatric dentistry. DIMITRA project position statement

    International Nuclear Information System (INIS)

    Oenning, Anne Caroline; Jacobs, Reinhilde; Pauwels, Ruben; Stratis, Andreas; Hedesiu, Mihaela; Salmon, Benjamin

    2018-01-01

    DIMITRA (dentomaxillofacial paediatric imaging: an investigation towards low-dose radiation induced risks) is a European multicenter and multidisciplinary project focused on optimizing cone-beam CT exposures for children and adolescents. With increasing use of cone-beam CT for dentomaxillofacial diagnostics, concern arises regarding radiation risks associated with this imaging modality, especially for children. Research evidence concerning cone-beam CT indications in children remains limited, while reports mention inconsistent recommendations for dose reduction. Furthermore, there is no paper using the combined and integrated information on the required indication-oriented image quality and the related patient dose levels. In this paper, therefore, the authors initiate an integrated approach based on current evidence regarding image quality and dose, together with the expertise of DIMITRA's members searching for a state of the art. The aim of this DIMITRA position statement is to provide indication-oriented and patient-specific recommendations regarding the main cone-beam CT applications in the pediatric field. The authors will review this position statement document when results regarding multidisciplinary approaches evolve, in a period of 5 years or earlier. (orig.)

  7. Incidental findings on cone beam computed tomography scans in cleft lip and palate patients

    NARCIS (Netherlands)

    Kuijpers, Mette A. R.; Pazera, Andrzej; Admiraal, Ronald J.; Berge, Stefaan J.; Vissink, Arjan; Pazera, Pawel

    Cone beam computed tomography (CBCT) is frequently used in treatment planning for alveolar bone grafting (ABG) and orthognathic surgery in patients with cleft lip and palate (CLP). CBCT images may depict coincident findings. The aim of this study was to assess the prevalence of incidental findings

  8. Evaluation of web-based instruction for anatomical interpretation in maxillofacial cone beam computed tomography

    NARCIS (Netherlands)

    Al-Rawi, W.T.; Jacobs, R.; Hassan, B.A.; Sanderink, G.; Scarfe, W.C.

    2007-01-01

    Objectives: To evaluate the effectiveness of a web-based instruction in the interpretation of anatomy in images acquired with maxillofacial cone beam CT (CBCT). Methods: An interactive web-based education course for the interpretation of craniofacial CBCT images was recently developed at our

  9. Incidental findings on cone beam computed tomography scans in cleft lip and palate patients

    NARCIS (Netherlands)

    Kuijpers, M.A.R.; Pazera, A.; Admiraal, R.J.C.; Berge, S.J.; Vissink, A.; Pazera, P.

    2014-01-01

    OBJECTIVES: Cone beam computed tomography (CBCT) is frequently used in treatment planning for alveolar bone grafting (ABG) and orthognathic surgery in patients with cleft lip and palate (CLP). CBCT images may depict coincident findings. The aim of this study was to assess the prevalence of

  10. Impact of polychromatic x-ray sources on helical, cone-beam computed tomography and dual-energy methods

    International Nuclear Information System (INIS)

    Sidky, Emil Y; Zou Yu; Pan Xiaochuan

    2004-01-01

    Recently, there has been much work devoted to developing accurate and efficient algorithms for image reconstruction in helical, cone-beam computed tomography (CT). Little attention, however, has been directed to the effect of physical factors on helical, cone-beam CT image reconstruction. This work investigates the effect of polychromatic x-rays on image reconstruction in helical, cone-beam computed tomography. A pre-reconstruction dual-energy technique is developed to reduce beam-hardening artefacts and enhance contrast in soft tissue

  11. [Accurate 3D free-form registration between fan-beam CT and cone-beam CT].

    Science.gov (United States)

    Liang, Yueqiang; Xu, Hongbing; Li, Baosheng; Li, Hongsheng; Yang, Fujun

    2012-06-01

    Because the X-ray scatters, the CT numbers in cone-beam CT cannot exactly correspond to the electron densities. This, therefore, results in registration error when the intensity-based registration algorithm is used to register planning fan-beam CT and cone-beam CT. In order to reduce the registration error, we have developed an accurate gradient-based registration algorithm. The gradient-based deformable registration problem is described as a minimization of energy functional. Through the calculus of variations and Gauss-Seidel finite difference method, we derived the iterative formula of the deformable registration. The algorithm was implemented by GPU through OpenCL framework, with which the registration time was greatly reduced. Our experimental results showed that the proposed gradient-based registration algorithm could register more accurately the clinical cone-beam CT and fan-beam CT images compared with the intensity-based algorithm. The GPU-accelerated algorithm meets the real-time requirement in the online adaptive radiotherapy.

  12. Evaluation of patient dose in imaging using a cone-beam CT dosimetry by X-ray films for radiotherapeutic dose

    International Nuclear Information System (INIS)

    Yoshida, Yuri; Morita, Yasuhiko; Honda, Eiichi; Tomotake, Yoritoki; Ichikawa, Tetsuo

    2008-01-01

    A limited cone-beam X-ray CT (3DX multi-image micro CT; 3DX-FPD) is widely used in dentistry because it provides a lower cost, smaller size, and higher spatial resolution than a CT for medicine. Our recent research suggested that the patient dose of 3DX-FPD was less than 7/10 of that of CT, and it was several to 10 times more than that of dental or panoramic radiography. The purpose of this study was to evaluate the spatial dose distribution from 3DX-FPD and to estimate the influence of dose by positioning of the region of interest. Dosimetry of the organs and the tissues was performed using an anthropomorphic Alderson Rando phantom and X-ray films for measurement of radiotherapeutic dose. Measurements of dose distribution were performed using a cylinder-type tank of water made of acrylic resin imitating the head and X-ray films. The results are summarized as follows: The dose was higher as the ratio of the air region included in the region of interest increased. The dose distribution was not homogeneous and the dose was highest in the skin region. The dose was higher for several seconds after the beginning of exposure. It was concluded that patient positioning, as well as exposure conditions including the size of the exposure field and tube current, could greatly influence the patient dose in 3DX-FPD. In addition, it is necessary to consider the influence of image quality for the treatment of dental implants. (author)

  13. Evaluation of the OSC-TV iterative reconstruction algorithm for cone-beam optical CT.

    Science.gov (United States)

    Matenine, Dmitri; Mascolo-Fortin, Julia; Goussard, Yves; Després, Philippe

    2015-11-01

    The present work evaluates an iterative reconstruction approach, namely, the ordered subsets convex (OSC) algorithm with regularization via total variation (TV) minimization in the field of cone-beam optical computed tomography (optical CT). One of the uses of optical CT is gel-based 3D dosimetry for radiation therapy, where it is employed to map dose distributions in radiosensitive gels. Model-based iterative reconstruction may improve optical CT image quality and contribute to a wider use of optical CT in clinical gel dosimetry. This algorithm was evaluated using experimental data acquired by a cone-beam optical CT system, as well as complementary numerical simulations. A fast GPU implementation of OSC-TV was used to achieve reconstruction times comparable to those of conventional filtered backprojection. Images obtained via OSC-TV were compared with the corresponding filtered backprojections. Spatial resolution and uniformity phantoms were scanned and respective reconstructions were subject to evaluation of the modulation transfer function, image uniformity, and accuracy. The artifacts due to refraction and total signal loss from opaque objects were also studied. The cone-beam optical CT data reconstructions showed that OSC-TV outperforms filtered backprojection in terms of image quality, thanks to a model-based simulation of the photon attenuation process. It was shown to significantly improve the image spatial resolution and reduce image noise. The accuracy of the estimation of linear attenuation coefficients remained similar to that obtained via filtered backprojection. Certain image artifacts due to opaque objects were reduced. Nevertheless, the common artifact due to the gel container walls could not be eliminated. The use of iterative reconstruction improves cone-beam optical CT image quality in many ways. The comparisons between OSC-TV and filtered backprojection presented in this paper demonstrate that OSC-TV can potentially improve the rendering of

  14. Comparison of Swedish and Norwegian Use of Cone-Beam Computed Tomography: a Questionnaire Study

    Directory of Open Access Journals (Sweden)

    Jerker Edén Strindberg

    2015-12-01

    Full Text Available Objectives: Cone-beam computed tomography in dentistry can be used in some countries by other dentists than specialists in radiology. The frequency of buying cone-beam computed tomography to examine patients is rapidly growing, thus knowledge of how to use it is very important. The aim was to compare the outcome of an investigation on the use of cone-beam computed tomography in Sweden with a previous Norwegian study, regarding specifically technical aspects. Material and Methods: The questionnaire contained 45 questions, including 35 comparable questions to Norwegian clinics one year previous. Results were based on inter-comparison of the outcome from each of the two questionnaire studies. Results: Responses rate was 71% in Sweden. There, most of cone-beam computed tomography (CBCT examinations performed by dental nurses, while in Norway by specialists. More than two-thirds of the CBCT units had a scout image function, regularly used in both Sweden (79% and Norway (75%. In Sweden 4% and in Norway 41% of the respondents did not wait for the report from the radiographic specialist before initiating treatment. Conclusions: The bilateral comparison showed an overall similarity between the two countries. The survey gave explicit and important knowledge of the need for education and training of the whole team, since radiation dose to the patient could vary a lot for the same kind of radiographic examination. It is essential to establish quality assurance protocols with defined responsibilities in the team in order to maintain high diagnostic accuracy for all examinations when using cone-beam computed tomography for patient examinations.

  15. Investigation of bulk electron densities for dose calculations on cone-beam CT images

    International Nuclear Information System (INIS)

    Lambert, J.; Parker, J.; Gupta, S.; Hatton, J.; Tang, C.; Capp, A.; Denham, J.W.; Wright, P.

    2010-01-01

    Full text: If cone-beam CT images are to be used for dose calculations, then the images must be able to provide accurate electron density information. Twelve patients underwent twice weekly cone-beam CT scans in addition to the planning CT scan. A standardised 5-field treatment plan was applied to 169 of the CBCT images. Doses were calculated using the original electron density values in the CBCT and with bulk electron densities applied. Bone was assigned a density of 288 HU, and all other tissue was assigned to be water equivalent (0 HU). The doses were compared to the dose calculated on the original planning CT image. Using the original HU values in the cone-beam images, the average dose del i vered by the plans from all 12 patients was I. I % lower than the intended 200 cOy delivered on the original CT plans (standard devia tion 0.7%, maximum difference -2.93%). When bulk electron densities were applied to the cone-beam images, the average dose was 0.3% lower than the original CT plans (standard deviation 0.8%, maximum difference -2.22%). Compared to using the original HU values, applying bulk electron densities to the CBCT images improved the dose calculations by almost I %. Some variation due to natural changes in anatomy should be expected. The application of bulk elec tron densities to cone beam CT images has the potential to improve the accuracy of dose calculations due to inaccurate H U values. Acknowledgements This work was partially funded by Cancer Council NSW Grant Number RG 07-06.

  16. TH-AB-209-01: Making Benchtop X-Ray Fluorescence Computed Tomography (XFCT) Practical for in Vivo Imaging by Integration of a Dedicated High-Performance X-Ray Source in Conjunction with Micro-CT Functionality

    International Nuclear Information System (INIS)

    Manohar, N; Cho, S; Reynoso, F

    2016-01-01

    Purpose: To make benchtop x-ray fluorescence computed tomography (XFCT) practical for routine preclinical imaging tasks with gold nanoparticles (GNPs) by deploying, integrating, and characterizing a dedicated high-performance x-ray source and addition of simultaneous micro-CT functionality. Methods: Considerable research effort is currently under way to develop a polychromatic benchtop cone-beam XFCT system capable of imaging GNPs by stimulation and detection of gold K-shell x-ray fluorescence (XRF) photons. Recently, an ad hoc high-power x-ray source was incorporated and used to image the biodistribution of GNPs within a mouse, postmortem. In the current work, a dedicated x-ray source system featuring a liquid-cooled tungsten-target x-ray tube (max 160 kVp, ∼3 kW power) was deployed. The source was operated at 125 kVp, 24 mA. The tube’s compact dimensions allowed greater flexibility for optimizing both the irradiation and detection geometries. Incident x-rays were shaped by a conical collimator and filtered by 2 mm of tin. A compact “OEM” cadmium-telluride x-ray detector was implemented for detecting XRF/scatter spectra. Additionally, a flat panel detector was installed to allow simultaneous transmission CT imaging. The performance of the system was characterized by determining the detection limit (10-second acquisition time) for inserts filled with water/GNPs at various concentrations (0 and 0.010–1.0 wt%) and embedded in a small-animal-sized phantom. The phantom was loaded with 0.5, 0.3, and 0.1 wt% inserts and imaged using XFCT and simultaneous micro-CT. Results: An unprecedented detection limit of 0.030 wt% was experimentally demonstrated, with a 33% reduction in acquisition time. The reconstructed XFCT image accurately localized the imaging inserts. Micro-CT imaging did not provide enough contrast to distinguish imaging inserts from the phantom under the current conditions. Conclusion: The system is immediately capable of in vivo preclinical XFCT

  17. TH-AB-209-01: Making Benchtop X-Ray Fluorescence Computed Tomography (XFCT) Practical for in Vivo Imaging by Integration of a Dedicated High-Performance X-Ray Source in Conjunction with Micro-CT Functionality

    Energy Technology Data Exchange (ETDEWEB)

    Manohar, N; Cho, S [UT MD Anderson Cancer Center, Houston, TX (United States); Reynoso, F [UT MD Anderson Cancer Center, Houston, TX (United States); Washington University School of Medicine, St. Louis, MO (United States)

    2016-06-15

    Purpose: To make benchtop x-ray fluorescence computed tomography (XFCT) practical for routine preclinical imaging tasks with gold nanoparticles (GNPs) by deploying, integrating, and characterizing a dedicated high-performance x-ray source and addition of simultaneous micro-CT functionality. Methods: Considerable research effort is currently under way to develop a polychromatic benchtop cone-beam XFCT system capable of imaging GNPs by stimulation and detection of gold K-shell x-ray fluorescence (XRF) photons. Recently, an ad hoc high-power x-ray source was incorporated and used to image the biodistribution of GNPs within a mouse, postmortem. In the current work, a dedicated x-ray source system featuring a liquid-cooled tungsten-target x-ray tube (max 160 kVp, ∼3 kW power) was deployed. The source was operated at 125 kVp, 24 mA. The tube’s compact dimensions allowed greater flexibility for optimizing both the irradiation and detection geometries. Incident x-rays were shaped by a conical collimator and filtered by 2 mm of tin. A compact “OEM” cadmium-telluride x-ray detector was implemented for detecting XRF/scatter spectra. Additionally, a flat panel detector was installed to allow simultaneous transmission CT imaging. The performance of the system was characterized by determining the detection limit (10-second acquisition time) for inserts filled with water/GNPs at various concentrations (0 and 0.010–1.0 wt%) and embedded in a small-animal-sized phantom. The phantom was loaded with 0.5, 0.3, and 0.1 wt% inserts and imaged using XFCT and simultaneous micro-CT. Results: An unprecedented detection limit of 0.030 wt% was experimentally demonstrated, with a 33% reduction in acquisition time. The reconstructed XFCT image accurately localized the imaging inserts. Micro-CT imaging did not provide enough contrast to distinguish imaging inserts from the phantom under the current conditions. Conclusion: The system is immediately capable of in vivo preclinical XFCT

  18. A combination-weighted Feldkamp-based reconstruction algorithm for cone-beam CT

    International Nuclear Information System (INIS)

    Mori, Shinichiro; Endo, Masahiro; Komatsu, Shuhei; Kandatsu, Susumu; Yashiro, Tomoyasu; Baba, Masayuki

    2006-01-01

    The combination-weighted Feldkamp algorithm (CW-FDK) was developed and tested in a phantom in order to reduce cone-beam artefacts and enhance cranio-caudal reconstruction coverage in an attempt to improve image quality when utilizing cone-beam computed tomography (CBCT). Using a 256-slice cone-beam CT (256CBCT), image quality (CT-number uniformity and geometrical accuracy) was quantitatively evaluated in phantom and clinical studies, and the results were compared to those obtained with the original Feldkamp algorithm. A clinical study was done in lung cancer patients under breath holding and free breathing. Image quality for the original Feldkamp algorithm is degraded at the edge of the scan region due to the missing volume, commensurate with the cranio-caudal distance between the reconstruction and central planes. The CW-FDK extended the reconstruction coverage to equal the scan coverage and improved reconstruction accuracy, unaffected by the cranio-caudal distance. The extended reconstruction coverage with good image quality provided by the CW-FDK will be clinically investigated for improving diagnostic and radiotherapy applications. In addition, this algorithm can also be adapted for use in relatively wide cone-angle CBCT such as with a flat-panel detector CBCT

  19. Response analysis for an approximate 3-D image reconstruction in cone-beam SPECT

    International Nuclear Information System (INIS)

    Murayama, Hideo; Nohara, Norimasa

    1991-01-01

    Cone-beam single photon emission computed tomography (SPECT) offers the potential for a large increase in sensitivity as compared with parallel hole or fan-beam collimation. Three-dimensional image reconstruction was approximately accomplished by backprojecting filtered projections using a two-dimensional fan-beam algorithm. The cone-beam projection data were formed from mathematical phantoms as analytically derived line integrals of the density. In order to reduce the processing time, the filtered projections were backprojected into each plane parallel to the circle on which the focal point moved. Discrepancy of source position and degradation of resolution were investigated by computer simulation in three-dimensional image space. The results obtained suggest that, the nearer to the central plane or the axis of rotation, the less image degradation is performed. By introducing a parameter of angular difference between the focal point and a fixed point in the image space during rotation, degradation of the reconstructed image can be estimated for any cone-beam SPECT system. (author)

  20. The measurement of proton stopping power using proton-cone-beam computed tomography

    International Nuclear Information System (INIS)

    Zygmanski, P.; Rabin, M.S.Z.; Gall, K.P.; Rosenthal, S.J.

    2000-01-01

    A cone-beam computed tomography (CT) system utilizing a proton beam has been developed and tested. The cone beam is produced by scattering a 160 MeV proton beam with a modifier that results in a signal in the detector system, which decreases monotonically with depth in the medium. The detector system consists of a Gd 2 O 2 S:Tb intensifying screen viewed by a cooled CCD camera. The Feldkamp-Davis-Kress cone-beam reconstruction algorithm is applied to the projection data to obtain the CT voxel data representing proton stopping power. The system described is capable of reconstructing data over a 16x16x16cm 3 volume into 512x512x512 voxels. A spatial and contrast resolution phantom was scanned to determine the performance of the system. Spatial resolution is significantly degraded by multiple Coulomb scattering effects. Comparison of the reconstructed proton CT values with x-ray CT derived proton stopping powers shows that there may be some advantage to obtaining stopping powers directly with proton CT. The system described suggests a possible practical method of obtaining this measurement in vivo. (author)

  1. A new cone-beam X-ray CT system with a reduced size planar detector

    International Nuclear Information System (INIS)

    Li Liang; Chen Zhiqiang; Zhang Li; Xing Yuxiang; Kang Kejun

    2006-01-01

    In a traditional cone-beam CT system, the cost of product and computation is very high. The authors propose a transversely truncated cone-beam X-ray CT system with a reduced size detector positioned off-center, in which X-ray beams only cover half of the object. The reduced detector size cuts the cost and the X-ray dose of the CT system. The existing CT reconstruction algorithms are not directly applicable in this new CT system. Hence, the authors develop a BPF-type direct backprojection algorithm. Different from the traditional rebinding methods, our algorithm directly backprojects the pretreated projection data without rebinding. This makes the algorithm compact and computationally more efficient. Finally, some numerical simulations and practical experiments are done to validate the proposed algorithm. (authors)

  2. Single-slice rebinning method for helical cone-beam CT

    International Nuclear Information System (INIS)

    Noo, F.; Defrise, M.; Clackdoyle, R.

    1999-01-01

    In this paper, we present reconstruction results from helical cone-beam CT data, obtained using a simple and fast algorithm, which we call the CB-SSRB algorithm. This algorithm combines the single-slice rebinning method of PET imaging with the weighting schemes of spiral CT algorithms. The reconstruction is approximate but can be performed using 2D multislice fan-beam filtered backprojection. The quality of the results is surprisingly good, and far exceeds what one might expect, even when the pitch of the helix is large. In particular, with this algorithm comparable quality is obtained using helical cone-beam data with a normalized pitch of 10 to that obtained using standard spiral CT reconstruction with a normalized pitch of 2. (author)

  3. Scout-view assisted interior micro-CT

    International Nuclear Information System (INIS)

    Sharma, Kriti Sen; Narayanan, Shree; Agah, Masoud; Holzner, Christian; Vasilescu, Dragoş M; Jin, Xin; Hoffman, Eric A; Yu, Hengyong; Wang, Ge

    2013-01-01

    Micro computed tomography (micro-CT) is a widely-used imaging technique. A challenge of micro-CT is to quantitatively reconstruct a sample larger than the field-of-view (FOV) of the detector. This scenario is characterized by truncated projections and associated image artifacts. However, for such truncated scans, a low resolution scout scan with an increased FOV is frequently acquired so as to position the sample properly. This study shows that the otherwise discarded scout scans can provide sufficient additional information to uniquely and stably reconstruct the interior region of interest. Two interior reconstruction methods are designed to utilize the multi-resolution data without significant computational overhead. While most previous studies used numerically truncated global projections as interior data, this study uses truly hybrid scans where global and interior scans were carried out at different resolutions. Additionally, owing to the lack of standard interior micro-CT phantoms, we designed and fabricated novel interior micro-CT phantoms for this study to provide means of validation for our algorithms. Finally, two characteristic samples from separate studies were scanned to show the effect of our reconstructions. The presented methods show significant improvements over existing reconstruction algorithms. (paper)

  4. Micro CT based truth estimation of nodule volume

    Science.gov (United States)

    Kinnard, L. M.; Gavrielides, M. A.; Myers, K. J.; Zeng, R.; Whiting, B.; Lin-Gibson, S.; Petrick, N.

    2010-03-01

    With the advent of high-resolution CT, three-dimensional (3D) methods for nodule volumetry have been introduced, with the hope that such methods will be more accurate and consistent than currently used planar measures of size. However, the error associated with volume estimation methods still needs to be quantified. Volume estimation error is multi-faceted in the sense that there is variability associated with the patient, the software tool and the CT system. A primary goal of our current research efforts is to quantify the various sources of measurement error and, when possible, minimize their effects. In order to assess the bias of an estimate, the actual value, or "truth," must be known. In this work we investigate the reliability of micro CT to determine the "true" volume of synthetic nodules. The advantage of micro CT over other truthing methods is that it can provide both absolute volume and shape information in a single measurement. In the current study we compare micro CT volume truth to weight-density truth for spherical, elliptical, spiculated and lobulated nodules with diameters from 5 to 40 mm, and densities of -630 and +100 HU. The percent differences between micro CT and weight-density volume for -630 HU nodules range from [-21.7%, -0.6%] (mean= -11.9%) and the differences for +100 HU nodules range from [-0.9%, 3.0%] (mean=1.7%).

  5. Tilted cone-beam reconstruction with row-wise fan-to-parallel rebinning

    International Nuclear Information System (INIS)

    Hsieh Jiang; Tang Xiangyang

    2006-01-01

    Reconstruction algorithms for cone-beam CT have been the focus of many studies. Several exact and approximate reconstruction algorithms were proposed for step-and-shoot and helical scanning trajectories to combat cone-beam related artefacts. In this paper, we present a new closed-form cone-beam reconstruction formula for tilted gantry data acquisition. Although several algorithms were proposed in the past to combat errors induced by the gantry tilt, none of the algorithms addresses the scenario in which the cone-beam geometry is first rebinned to a set of parallel beams prior to the filtered backprojection. We show that the image quality advantages of the rebinned parallel-beam reconstruction are significant, which makes the development of such an algorithm necessary. Because of the rebinning process, the reconstruction algorithm becomes more complex and the amount of iso-centre adjustment depends not only on the projection and tilt angles, but also on the reconstructed pixel location. In this paper, we first demonstrate the advantages of the row-wise fan-to-parallel rebinning and derive a closed-form solution for the reconstruction algorithm for the step-and-shoot and constant-pitch helical scans. The proposed algorithm requires the 'warping' of the reconstruction matrix on a view-by-view basis prior to the backprojection step. We further extend the algorithm to the variable-pitch helical scans in which the patient table travels at non-constant speeds. The algorithm was tested extensively on both the 16- and 64-slice CT scanners. The efficacy of the algorithm is clearly demonstrated by multiple experiments

  6. Avaliação da simetria craniana através de imagens de TC cone beam = Cranial symmetry assessment through cone-beam CT images

    OpenAIRE

    Vilella, Oswaldo de Vasconcellos; Rothier, Eduardo Kant Colunga; Vilella, Beatriz de Souza

    2014-01-01

    Objetivo: O objetivo do presente estudo foi comparar os lados direito e esquerdo de indivíduos que apresentavam simetria craniana através de 2 imagens geradas pela tomografia computadorizada cone beam (TCCB). Métodos: A amostra consistiu de 35 imagens obtidas pelo tomógrafo 3D-i-CAT (Imaging Sciences International Inc. , Hatfield, USA), sendo 13 de indivíduos do gênero masculino e 22 do gênero feminino, com idades variando de 8 a 64 anos, que apresentavam simetria facial aceitável. As imagens...

  7. Electromagnetic scattering of a vector Bessel beam in the presence of an impedance cone

    KAUST Repository

    Salem, Mohamed

    2013-07-01

    The electromagnetic field scattering of a vector Bessel beam in the presence of an infinite circular cone with an impedance boundary on its surface is considered. The impinging field is normal to the tip of the cone and is expanded in terms of vector spherical wave functions; a Kontorovich-Lebedev (KL) transform is employed to expand the scattered fields. The problem is reduced to a singular integral equation with a variable coefficient of the non-convolution type. The singularities of the spectral function are deduced and representations for the field at the tip of the cone as well as other regions are given together with the conditions of validity of these representations. © 2013 IEEE.

  8. Using cone beam computed tomography to examine the prevalence ...

    African Journals Online (AJOL)

    Background/Purpose: The aim of this study was to characterize the condylar bone changes in the temporomandibular region using cone‑beam computed tomography (CBCT) and to determine the prevalence of these changes in a population. Materials and Methods: CBCT images of the temporomandibular joints (TMJs) of ...

  9. A theoretically exact reconstruction algorithm for helical cone-beam differential phase-contrast computed tomography

    International Nuclear Information System (INIS)

    Li Jing; Sun Yi; Zhu Peiping

    2013-01-01

    Differential phase-contrast computed tomography (DPC-CT) reconstruction problems are usually solved by using parallel-, fan- or cone-beam algorithms. For rod-shaped objects, the x-ray beams cannot recover all the slices of the sample at the same time. Thus, if a rod-shaped sample is required to be reconstructed by the above algorithms, one should alternately perform translation and rotation on this sample, which leads to lower efficiency. The helical cone-beam CT may significantly improve scanning efficiency for rod-shaped objects over other algorithms. In this paper, we propose a theoretically exact filter-backprojection algorithm for helical cone-beam DPC-CT, which can be applied to reconstruct the refractive index decrement distribution of the samples directly from two-dimensional differential phase-contrast images. Numerical simulations are conducted to verify the proposed algorithm. Our work provides a potential solution for inspecting the rod-shaped samples using DPC-CT, which may be applicable with the evolution of DPC-CT equipments. (paper)

  10. Cone Beam X-ray Luminescence Computed Tomography Based on Bayesian Method.

    Science.gov (United States)

    Zhang, Guanglei; Liu, Fei; Liu, Jie; Luo, Jianwen; Xie, Yaoqin; Bai, Jing; Xing, Lei

    2017-01-01

    X-ray luminescence computed tomography (XLCT), which aims to achieve molecular and functional imaging by X-rays, has recently been proposed as a new imaging modality. Combining the principles of X-ray excitation of luminescence-based probes and optical signal detection, XLCT naturally fuses functional and anatomical images and provides complementary information for a wide range of applications in biomedical research. In order to improve the data acquisition efficiency of previously developed narrow-beam XLCT, a cone beam XLCT (CB-XLCT) mode is adopted here to take advantage of the useful geometric features of cone beam excitation. Practically, a major hurdle in using cone beam X-ray for XLCT is that the inverse problem here is seriously ill-conditioned, hindering us to achieve good image quality. In this paper, we propose a novel Bayesian method to tackle the bottleneck in CB-XLCT reconstruction. The method utilizes a local regularization strategy based on Gaussian Markov random field to mitigate the ill-conditioness of CB-XLCT. An alternating optimization scheme is then used to automatically calculate all the unknown hyperparameters while an iterative coordinate descent algorithm is adopted to reconstruct the image with a voxel-based closed-form solution. Results of numerical simulations and mouse experiments show that the self-adaptive Bayesian method significantly improves the CB-XLCT image quality as compared with conventional methods.

  11. Measurement of breast tissue composition with dual energy cone-beam computed tomography: A postmortem study

    Energy Technology Data Exchange (ETDEWEB)

    Ding Huanjun; Ducote, Justin L.; Molloi, Sabee [Department of Radiological Sciences, University of California, Irvine, California 92697 (United States)

    2013-06-15

    Purpose: To investigate the feasibility of a three-material compositional measurement of water, lipid, and protein content of breast tissue with dual kVp cone-beam computed tomography (CT) for diagnostic purposes. Methods: Simulations were performed on a flat panel-based computed tomography system with a dual kVp technique in order to guide the selection of experimental acquisition parameters. The expected errors induced by using the proposed calibration materials were also estimated by simulation. Twenty pairs of postmortem breast samples were imaged with a flat-panel based dual kVp cone-beam CT system, followed by image-based material decomposition using calibration data obtained from a three-material phantom consisting of water, vegetable oil, and polyoxymethylene plastic. The tissue samples were then chemically decomposed into their respective water, lipid, and protein contents after imaging to allow direct comparison with data from dual energy decomposition. Results: Guided by results from simulation, the beam energies for the dual kVp cone-beam CT system were selected to be 50 and 120 kVp with the mean glandular dose divided equally between each exposure. The simulation also suggested that the use of polyoxymethylene as the calibration material for the measurement of pure protein may introduce an error of -11.0%. However, the tissue decomposition experiments, which employed a calibration phantom made out of water, oil, and polyoxymethylene, exhibited strong correlation with data from the chemical analysis. The average root-mean-square percentage error for water, lipid, and protein contents was 3.58% as compared with chemical analysis. Conclusions: The results of this study suggest that the water, lipid, and protein contents can be accurately measured using dual kVp cone-beam CT. The tissue compositional information may improve the sensitivity and specificity for breast cancer diagnosis.

  12. Monte Carlo dosimetry of iodine contrast objects in a small animal microCT

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Villafuerte, M., E-mail: mercedes@fisica.unam.mx [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, A.P. 20-364, 01000 Mexico D.F. (Mexico); Martinez-Davalos, A. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, A.P. 20-364, 01000 Mexico D.F. (Mexico)

    2011-08-21

    Small animal microcomputed tomography (microCT) studies with iodine-based contrast media are commonly used in preclinical research. While the use of contrast media improves the quality of the images, it can also result in an increase in the absorbed dose to organs with high concentration of the contrast agent, which might cause radiation damage to the animal. In this work we present the results of a Monte Carlo investigation of a microCT dosimetry study using mouse-sized cylindrical water phantoms with iodine contrast insets for different X-ray spectra (Mo and W targets, 30-80 kVp), iodine concentrations (0, 5, 10 and 15 mg mL{sup -1}) and contrast object sizes (3 and 10 mm diameter). Our results indicate an absorbed dose increase in the contrast-inset regions with respect to the absorbed dose distribution within a reference uniform water phantom. The calculated spatial absorbed dose distributions show large gradients due to beam hardening effects, and large absorbed dose enhancement as the mean energy of the beam and iodine concentration increase. We have found that absorbed doses in iodine contrast objects can increase by a factor of up to 12 for a realistic 80 kVp X-ray spectra and an iodine concentration of 15 mg mL{sup -1}.

  13. Scatter correction, intermediate view estimation and dose characterization in megavoltage cone-beam CT imaging

    Science.gov (United States)

    Sramek, Benjamin Koerner

    The ability to deliver conformal dose distributions in radiation therapy through intensity modulation and the potential for tumor dose escalation to improve treatment outcome has necessitated an increase in localization accuracy of inter- and intra-fractional patient geometry. Megavoltage cone-beam CT imaging using the treatment beam and onboard electronic portal imaging device is one option currently being studied for implementation in image-guided radiation therapy. However, routine clinical use is predicated upon continued improvements in image quality and patient dose delivered during acquisition. The formal statement of hypothesis for this investigation was that the conformity of planned to delivered dose distributions in image-guided radiation therapy could be further enhanced through the application of kilovoltage scatter correction and intermediate view estimation techniques to megavoltage cone-beam CT imaging, and that normalized dose measurements could be acquired and inter-compared between multiple imaging geometries. The specific aims of this investigation were to: (1) incorporate the Feldkamp, Davis and Kress filtered backprojection algorithm into a program to reconstruct a voxelized linear attenuation coefficient dataset from a set of acquired megavoltage cone-beam CT projections, (2) characterize the effects on megavoltage cone-beam CT image quality resulting from the application of Intermediate View Interpolation and Intermediate View Reprojection techniques to limited-projection datasets, (3) incorporate the Scatter and Primary Estimation from Collimator Shadows (SPECS) algorithm into megavoltage cone-beam CT image reconstruction and determine the set of SPECS parameters which maximize image quality and quantitative accuracy, and (4) evaluate the normalized axial dose distributions received during megavoltage cone-beam CT image acquisition using radiochromic film and thermoluminescent dosimeter measurements in anthropomorphic pelvic and head and

  14. Accurate technique for complete geometric calibration of cone-beam computed tomography systems

    International Nuclear Information System (INIS)

    Cho Youngbin; Moseley, Douglas J.; Siewerdsen, Jeffrey H.; Jaffray, David A.

    2005-01-01

    Cone-beam computed tomography systems have been developed to provide in situ imaging for the purpose of guiding radiation therapy. Clinical systems have been constructed using this approach, a clinical linear accelerator (Elekta Synergy RP) and an iso-centric C-arm. Geometric calibration involves the estimation of a set of parameters that describes the geometry of such systems, and is essential for accurate image reconstruction. We have developed a general analytic algorithm and corresponding calibration phantom for estimating these geometric parameters in cone-beam computed tomography (CT) systems. The performance of the calibration algorithm is evaluated and its application is discussed. The algorithm makes use of a calibration phantom to estimate the geometric parameters of the system. The phantom consists of 24 steel ball bearings (BBs) in a known geometry. Twelve BBs are spaced evenly at 30 deg in two plane-parallel circles separated by a given distance along the tube axis. The detector (e.g., a flat panel detector) is assumed to have no spatial distortion. The method estimates geometric parameters including the position of the x-ray source, position, and rotation of the detector, and gantry angle, and can describe complex source-detector trajectories. The accuracy and sensitivity of the calibration algorithm was analyzed. The calibration algorithm estimates geometric parameters in a high level of accuracy such that the quality of CT reconstruction is not degraded by the error of estimation. Sensitivity analysis shows uncertainty of 0.01 deg. (around beam direction) to 0.3 deg. (normal to the beam direction) in rotation, and 0.2 mm (orthogonal to the beam direction) to 4.9 mm (beam direction) in position for the medical linear accelerator geometry. Experimental measurements using a laboratory bench Cone-beam CT system of known geometry demonstrate the sensitivity of the method in detecting small changes in the imaging geometry with an uncertainty of 0.1 mm in

  15. Development of a cone-beam CT system for radiological technologist education

    International Nuclear Information System (INIS)

    Teramoto, Atsushi; Ohara, Ken; Ozaki, Kaho; Miyashita, Mariko; Ohno, Tomoyuki; Tsuzaka, Masatoshi; Fujita, Hiroshi

    2011-01-01

    For radiological technologists, it is very important to understand the principle of computed tomography (CT) and CT artifacts derived from mechanical and electrical failure. In this study, a CT system for educating radiological technologists was developed. The system consisted of a cone-beam CT scanner and educational software. The cone-beam CT scanner has a simple structure, using a micro-focus X-ray tube and an indirect-conversion flat panel detector. For the educational software, we developed various educational functions of image reconstruction and reconstruction parameters as well as CT artifacts. In the experiments, the capabilities of the system were evaluated using an acrylic phantom. We verified that the system produced the expected results. (author)

  16. Cone beam computed tomography in veterinary dentistry: description and standardization of the technique

    International Nuclear Information System (INIS)

    Roza, Marcello R.; Silva, Luiz A.F.; Fioravanti, Maria C. S.; Barriviera, Mauricio

    2009-01-01

    Eleven dogs and four cats with buccodental alterations, treated in the Centro Veterinario do Gama, in Brasilia, DF, Brazil, were submitted to cone beam computed tomography. The exams were carried out in a i-CAT tomograph, using for image acquisition six centimeters height, 40 seconds time, 0.2 voxel, 120 kilovolts and 46.72 milli amperes per second. The ideal positioning of the animal for the exam was also determined in this study and it proved to be fundamental for successful examination, which required a simple and safe anesthetic protocol due to the relatively short period of time necessary to obtain the images. Several alterations and diseases were identified with accurate imaging, demonstrating that cone beam computed tomography is a safe, accessible and feasible imaging method which could be included in the small animal dentistry routine diagnosis. (author)

  17. Dimensional Changes of Fresh Sockets With Reactive Soft Tissue Preservation: A Cone Beam CT Study.

    Science.gov (United States)

    Crespi, Roberto; Capparé, Paolo; Crespi, Giovanni; Gastaldi, Giorgio; Gherlone, Enrico Felice

    2017-06-01

    The aim of this study was to assess dimensional changes of the fresh sockets grafted with collagen sheets and maintenance of reactive soft tissue, using cone beam computed tomography (CBCT). Tooth extractions were performed with maximum preservation of the alveolar housing, reactive soft tissue was left into the sockets and collagen sheets filled bone defects. Cone beam computed tomography were performed before and 3 months after extractions. One hundred forty-five teeth, 60 monoradiculars and 85 molars, were extracted. In total, 269 alveoli were evaluated. In Group A, not statistically significant differences were found between monoradiculars, whereas statistically significant differences (P 0.05) for all types of teeth. This study reported an atraumatic tooth extraction, reactive soft tissue left in situ, and grafted collagen sponge may be helpful to reduce fresh socket collapse after extraction procedures.

  18. Determination of both mechanical and electronic shifts in cone beam SPECT

    International Nuclear Information System (INIS)

    Jianying Li; Jaszczak, R.J.; Huili Wang; Greer, K.L.; Coleman, R.E.

    1993-01-01

    The difference between the displacement of the centre of rotation (mechanical shift, MS) and the electronic centring misalignment (electronic shift, ES) in cone beam SPECT is evaluated. A method is proposed to determine both MS and ES using the centroid of a projected point source sampled over 360 o C and the Marquardt non-linear fitting algorithm. Both shifts are characterized by two orthogonal components. This method is verified using Monte Carlo simulated point source data with different combinations of mechanical and electronic shifts. Both shifts can be determined correctly. The proposed method was also applied to the authors' cone beam SPECT system to determine both shifts as well as the focal length. The determined ES parameters are then used to correct the projections and the MS parameters are incorporated into a reconstruction algorithm. The point source image are reconstructed and the image resolutions with and without the shift corrections are measured. (Author)

  19. Cone-Beam Computed Tomography Evaluation of Mental Foramen Variations: A Preliminary Study

    International Nuclear Information System (INIS)

    Sheikhi, Mahnaz; Karbasi Kheir, Mitra; Hekmatian, Ehsan

    2015-01-01

    Background. Mental foramen is important in surgical operations of premolars because it transfers the mental nerves and vessels. This study evaluated the variations of mental foramen by cone-beam computed tomography among a selected Iranian population. Materials and Methods. A total number of 180 cone-beam computed tomography projections were analyzed in terms of shape, size, direction, and horizontal and vertical positions of mental foramen in the right and left sides. Results. The most common shape was oval, opening direction was posterior-superior, horizontal position was in line with second premolar, and vertical position was apical to the adjacent dental root. The mean of foremen diameter was 3.59 mm. Conclusion. In addition to the most common types of mental foramen, other variations exist, too. Hence, it reflects the significance of preoperative radiographic examinations, especially 3-dimensional images to prevent nerve damage

  20. Cone beam computed tomography and intraoral radiography for diagnosis of dental abnormalities in dogs and cats

    International Nuclear Information System (INIS)

    Roza, Marcello R.; Fioravanti, Maria Clorinda S.; Silva, Luiz Antonio F.; Barriviera, Mauricio; Januario, Alessandro L.; Bezerra, Ana Cristina B.

    2011-01-01

    The development of veterinary dentistry has substantially improved the ability to diagnose canine and feline dental abnormalities. Consequently, examinations previously performed only on humans are now available for small animals, thus improving the diagnostic quality. This has increased the need for technical qualification of veterinary professionals and increased technological investments. This study evaluated the use of cone beam computed tomography and intraoral radiography as complementary exams for diagnosing dental abnormalities in dogs and cats. Cone beam computed tomography was provided faster image acquisition with high image quality, was associated with low ionizing radiation levels, enabled image editing, and reduced the exam duration. Our results showed that radiography was an effective method for dental radiographic examination with low cost and fast execution times, and can be performed during surgical procedures

  1. Endodontic applications of cone beam computed tomography: case series and literature review

    Directory of Open Access Journals (Sweden)

    Francesc Abella

    2015-11-01

    Full Text Available Cone beam computed tomography (CBCT is a relatively new method that produces three-dimensional (3D information of the maxillofacial skeleton, including the teeth and their surrounding tissue, with a lower effective radiation dose than traditional CT scans. Specific endodontic applications for CBCT are being identified as the use of this technology becomes more common. CBCT has great potential to become a valuable tool for diagnosing and managing endodontic problems, as well as for assessing root fractures, apical periodontitis, resorptions, perforations, root canal anatomy and the nature of the alveolar bone topography around teeth. This article aims to review cone beam technology and its advantages over CT scans and conventional radiography, to illustrate current and future clinical applications in endodontic practice, and to highlight areas of further research of CBCT in endodontics. Specific case examples illustrate how treatment planning has changed with the images obtained with CBCT technology compared with only periapical radiography.

  2. Radiation dose in cone-beam computed tomography: myth or reality

    International Nuclear Information System (INIS)

    Madi, Medhini

    2013-01-01

    In the growing inventory of clinical computed tomography technologies, cone-beam X-ray computed tomography is a relatively recent instalment. It is an advancement in computed tomography imaging which is designed to provide relatively low-dose high-spatial-resolution visualization of high contrast structures in the head and neck and other anatomic areas. Comparatively low dosing requirements and relatively compact design has led to intense interest in surgical planning and intra-operative cone-beam computed tomography applications, particularly in head and neck, and also in spinal, thoracic, abdominal and orthopaedic procedures. The use of this emerging imaging technology, which has potential applications for imaging of high-contrast structures in the head and neck as well as dentomaxillofacial regions, has been the subject of criticism as well as acclaim. This paper envisages to discuss the state-of-the-art of the technique. (author)

  3. Cone beam CT evaluation of patient set-up accuracy as a QA tool

    DEFF Research Database (Denmark)

    Nielsen, Morten; Bertelsen, Anders; Westberg, Jonas

    2009-01-01

    Purpose. To quantify by means of cone beam CT the random and systematic uncertainty involved in radiotherapy, and to determine if this information can be used for e.g. technical quality assurance, evaluation of patient immobilization and determination of margins for the treatment planning. Patients...... and lateral directions). In the CC direction, the margin has to be 5 mm for the Thorax patients. The total uncertainty on the patient position grows during the treatment course, especially in the CC direction for patients receiving thoracical irradiation. This may stem from problems in the immobilization...... and methods. Eighty four cancer patients have been cone beam CT scanned at treatment sessions 1, 2, 3, 10 and 20. Translational and rotational errors are analyzed. Results and conclusions. For the first three treatment sessions the mean translational error in the AP direction is 1 mm; this indicates a small...

  4. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities.

    Science.gov (United States)

    Lechuga, Lawrence; Weidlich, Georg A

    2016-09-12

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities-fan beam and cone beam-was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient.

  5. Quantification of organ motion during chemoradiotherapy of rectal cancer using cone-beam computed tomography.

    LENUS (Irish Health Repository)

    Chong, Irene

    2011-11-15

    There has been no previously published data related to the quantification of rectal motion using cone-beam computed tomography (CBCT) during standard conformal long-course chemoradiotherapy. The purpose of the present study was to quantify the interfractional changes in rectal movement and dimensions and rectal and bladder volume using CBCT and to quantify the bony anatomy displacements to calculate the margins required to account for systematic (Σ) and random (σ) setup errors.

  6. AAE and AAOMR Joint Position Statement: Use of Cone Beam Computed Tomography in Endodontics 2015 Update.

    Science.gov (United States)

    2015-10-01

    The following statement was prepared by the Special Committee to Revise the Joint American Association of Endodontists/American Academy of Oral and Maxillofacial Radiology Position on Cone Beam Computed Tomography, and approved by the AAE Board of Directors and AAOMR Executive Council in May 2015. AAE members may reprint this position statement for distribution to patients or referring dentists. Copyright © 2015 American Academy of Oral and Maxillofacial Radiology and American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. The Applications of Cone-Beam Computed Tomography in Endodontics: A Review of Literature

    Science.gov (United States)

    Kiarudi, Amir Hosein; Eghbal, Mohammad Jafar; Safi, Yaser; Aghdasi, Mohammad Mehdi; Fazlyab, Mahta

    2015-01-01

    By producing undistorted three-dimensional images of the area under examination, cone-beam computed tomography (CBCT) systems have met many of the limitations of conventional radiography. These systems produce images with small field of view at low radiation doses with adequate spatial resolution that are suitable for many applications in endodontics from diagnosis to treatment and follow-up. This review article comprehensively assembles all the data from literature regarding the potential applications of CBCT in endodontics. PMID:25598804

  8. Cone beam computed tomography image guidance system for a dedicated intracranial radiosurgery treatment unit.

    Science.gov (United States)

    Ruschin, Mark; Komljenovic, Philip T; Ansell, Steve; Ménard, Cynthia; Bootsma, Gregory; Cho, Young-Bin; Chung, Caroline; Jaffray, David

    2013-01-01

    Image guidance has improved the precision of fractionated radiation treatment delivery on linear accelerators. Precise radiation delivery is particularly critical when high doses are delivered to complex shapes with steep dose gradients near critical structures, as is the case for intracranial radiosurgery. To reduce potential geometric uncertainties, a cone beam computed tomography (CT) image guidance system was developed in-house to generate high-resolution images of the head at the time of treatment, using a dedicated radiosurgery unit. The performance and initial clinical use of this imaging system are described. A kilovoltage cone beam CT system was integrated with a Leksell Gamma Knife Perfexion radiosurgery unit. The X-ray tube and flat-panel detector are mounted on a translational arm, which is parked above the treatment unit when not in use. Upon descent, a rotational axis provides 210° of rotation for cone beam CT scans. Mechanical integrity of the system was evaluated over a 6-month period. Subsequent clinical commissioning included end-to-end testing of targeting performance and subjective image quality performance in phantoms. The system has been used to image 2 patients, 1 of whom received single-fraction radiosurgery and 1 who received 3 fractions, using a relocatable head frame. Images of phantoms demonstrated soft tissue contrast visibility and submillimeter spatial resolution. A contrast difference of 35 HU was easily detected at a calibration dose of 1.2 cGy (center of head phantom). The shape of the mechanical flex vs scan angle was highly reproducible and exhibited cone beam CT image guidance system was successfully adapted to a radiosurgery unit. The system is capable of producing high-resolution images of bone and soft tissue. The system is in clinical use and provides excellent image guidance without invasive frames. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Maxillary first molars with six canals confirmed with the aid of cone-beam computed tomography

    Directory of Open Access Journals (Sweden)

    Tahra Mohammad Al-Habboubi

    2016-01-01

    Full Text Available The maxillary first molar exhibits unpredictable root canal morphology. Different number of root canals has been reported with the aids of new tools. It is very important to clinically detect all canals for better outcome results. The purpose of the present case is to present a case of the maxillary first molar in a Saudi male patient with an anatomical variation of having six root canals that were confirmed with cone-beam computed tomography.

  10. Quantitative Assessment of Cervical Vertebral Maturation Using Cone Beam Computed Tomography in Korean Girls

    OpenAIRE

    Byun, Bo-Ram; Kim, Yong-Il; Yamaguchi, Tetsutaro; Maki, Koutaro; Son, Woo-Sung

    2015-01-01

    This study was aimed to examine the correlation between skeletal maturation status and parameters from the odontoid process/body of the second vertebra and the bodies of third and fourth cervical vertebrae and simultaneously build multiple regression models to be able to estimate skeletal maturation status in Korean girls. Hand-wrist radiographs and cone beam computed tomography (CBCT) images were obtained from 74 Korean girls (6?18 years of age). CBCT-generated cervical vertebral maturation ...

  11. Integration of Digital Dental Casts in Cone-Beam Computed Tomography Scans

    OpenAIRE

    Rangel, Frits A.; Maal, Thomas J. J.; Bergé, Stefaan J.; Kuijpers-Jagtman, Anne Marie

    2012-01-01

    Cone-beam computed tomography (CBCT) is widely used in maxillofacial surgery. The CBCT image of the dental arches, however, is of insufficient quality to use in digital planning of orthognathic surgery. Several authors have described methods to integrate digital dental casts into CBCT scans, but all reported methods have drawbacks. The aim of this feasibility study is to present a new simplified method to integrate digital dental casts into CBCT scans. In a patient scheduled for orthognathic ...

  12. The possible usability of three-dimensional cone beam computed dental tomography in dental research

    Science.gov (United States)

    Yavuz, I.; Rizal, M. F.; Kiswanjaya, B.

    2017-08-01

    The innovations and advantages of three-dimensional cone beam computed dental tomography (3D CBCT) are continually growing for its potential use in dental research. Imaging techniques are important for planning research in dentistry. Newly improved 3D CBCT imaging systems and accessory computer programs have recently been proven effective for use in dental research. The aim of this study is to introduce 3D CBCT and open a window for future research possibilities that should be given attention in dental research.

  13. Cone-beam computed tomography in the management of dentigerous cyst of the jaws: A report of two cases

    International Nuclear Information System (INIS)

    Vidya, Lakshminarayanan; Ranganathan, Kannan; Praveen, B; Gunaseelan, Rajan; Shanmugasundaram, S

    2013-01-01

    Cone-beam computed tomography (CBCT) is an emerging technology finding application in all branches of dentistry. The current series highlights the application of CBCT in the preoperative assessment of dentigerous cyst of the jaws

  14. The completeness condition and source orbits for exact image reconstruction in 3D cone-beam CT

    International Nuclear Information System (INIS)

    Mao Xiping; Kang Kejun

    1997-01-01

    The completeness condition for exact image reconstruction in 3D cone-beam CT are carefully analyzed in theory, and discussions about some source orbits which fulfill the completeness condition are followed

  15. Evaluation of Optic Canal and Surrounding Structures Using Cone Beam Computed Tomography: Considerations for Maxillofacial Surgery.

    Science.gov (United States)

    Sinanoglu, Alper; Orhan, Kaan; Kursun, Sebnem; Inceoglu, Beste; Oztas, Bengi

    2016-07-01

    The optic canal connects the anterior cranial fossa and the orbit and maintains the optic nerve and the ophthalmic artery. Within the extent of the surgical approach of the region, risk of iatrogenic injury of the neural and vascular structures increases. The aim of this retrospective morphometric study is to investigate the radiological anatomy of orbita, optic canal, and its surrounding using cone beam computed tomography (CBCT) scans in a group of Turkish population.Cone beam computed tomography images of a total of 182 patients were evaluated by 2 observers. Anatomical parameters regarding optic canal and orbita were measured for all patients from axial, sagittal, and three-dimensional reconstructed images. To assess intraobserver reliability, the Wilcoxon matched-pairs test was used. Pearson χ test and Student t test were performed for statistical analysis of differences, sex, localization, and measurements (P  0.05). The orbita width and height were larger for the males than females (P  0.05). Examination CBCT scans revealed that the shape of the optic canal was 70% funnel and 28% Hourglass shape, 2% amorph type round.These results provide detailed knowledge of the anatomical characteristics in the orbital area which may be of assistance for surgeons preoperatively. Cone beam computed tomography scans can be an alternative modality for multislice computed tomography with submillimeter resolution and lower dose in preoperative imaging of the orbit.

  16. Exact Reconstruction From Uniformly Attenuated Helical Cone-Beam Projections in SPECT

    International Nuclear Information System (INIS)

    Gullberg, Grant T.; Huang, Qiu; You, Jiangsheng; Zeng, Gengsheng L.

    2008-01-01

    In recent years the development of cone-beam reconstruction algorithms has been an active research area in x-ray computed tomography (CT), and significant progress has been made in the advancement of algorithms. Theoretically exact and computationally efficient analytical algorithms can be found in the literature. However, in single photon emission computed tomography (SPECT), published cone-beam reconstruction algorithms are either approximate or involve iterative methods. The SPECT reconstruction problem is more complicated due to degradations in the imaging detection process, one of which is the effect of attenuation of gamma ray photons. Attenuation should be compensated for to obtain quantitative results. In this paper, an analytical reconstruction algorithm for uniformly attenuated cone-beam projection data is presented for SPECT imaging. The algorithm adopts the DBH method, a procedure consisting of differentiation and backprojection followed by a finite inverse cosh-weighted Hilbert transform. The significance of the proposed approach is that a selected region of interest can be reconstructed even with a detector with a reduced field of view. The algorithm is designed for a general trajectory. However, to validate the algorithm, a numerical study was performed using a helical trajectory. The implementation is efficient and the simulation result is promising

  17. The detailed evaluation of supernumerary teeth with the aid of cone beam computed tomography

    International Nuclear Information System (INIS)

    Tumen, E.C.; Yavuz, I.; Atakul, F.; Tumen, D.S.; Hamamci, N.; Berber, G.; Uysal, E.

    2010-01-01

    The aim of this paper is to demonstrate the application of a recently developed three-dimensional imaging system, cone beam computed tomography, in the detailed evaluation of supernumerary teeth. Two-hundred and twenty three patients with supernumerary teeth (68 females and 155 males) were included in this study. Patients ranged in age from 12 to 25 years. Supernumerary teeth were detected by clinical examination and traditional radiographies. Moreover, careful investigation for more details was made with the cone beam computed tomography. Supernumerary teeth which were detected with the examinations of the cone beam computed tomography images were classified according to the number, location, shape and eruption rate. The prevalence of supernumerary teeth was determined to be 1.45% of the study population. Males were affected more than females in a ratio of 2.3:1. Supernumerary teeth were most frequently located in 86.2% of the cases in the maxilla; 10.1% in the mandible and 3.7% both in the maxilla and mandible. Supernumerary teeth were most commonly conical in shape (68.8%). One supernumerary tooth was present in 67.7% of the patients, 30.9% had two, and 1.4% had three supernumeraries. Definite and early diagnosis of the supernumerary teeth is very important. Detailed examinations and evaluations of these teeth with three-dimensional images is very beneficial in terms of treatment planning and preventing complications which may occur.

  18. Multi-mounted X-ray cone-beam computed tomography

    Science.gov (United States)

    Fu, Jian; Wang, Jingzheng; Guo, Wei; Peng, Peng

    2018-04-01

    As a powerful nondestructive inspection technique, X-ray computed tomography (X-CT) has been widely applied to clinical diagnosis, industrial production and cutting-edge research. Imaging efficiency is currently one of the major obstacles for the applications of X-CT. In this paper, a multi-mounted three dimensional cone-beam X-CT (MM-CBCT) method is reported. It consists of a novel multi-mounted cone-beam scanning geometry and the corresponding three dimensional statistical iterative reconstruction algorithm. The scanning geometry is the most iconic design and significantly different from the current CBCT systems. Permitting the cone-beam scanning of multiple objects simultaneously, the proposed approach has the potential to achieve an imaging efficiency orders of magnitude greater than the conventional methods. Although multiple objects can be also bundled together and scanned simultaneously by the conventional CBCT methods, it will lead to the increased penetration thickness and signal crosstalk. In contrast, MM-CBCT avoids substantially these problems. This work comprises a numerical study of the method and its experimental verification using a dataset measured with a developed MM-CBCT prototype system. This technique will provide a possible solution for the CT inspection in a large scale.

  19. Comparison of cone beam SPECT with conventional SPECT by means of cardiac-thorax phantom

    International Nuclear Information System (INIS)

    McGrath, M.A.; Manglos, S.H.

    1989-01-01

    Because of poor energy characteristics of Tl-201 used for myocardial perfusion imaging, the high sensitivity of cone-beam collimation is highly desirable. Using a cardiac-thorax phantom, the authors have compared single photon emission computed tomographic (SPECT) images obtained with a cone-beam collimator to those from a parallel hole collimator commonly used for thallium studies. A water-filled circular phantom with a cardiac insert was imaged. The myocardial shell was filled with Tl-201 (220 μCi). Two solid inserts within the myocardium simulated perfusion defects. The phantom ignores truncation effects in this preliminary experiment. For the authors' collimator, the resolution was designed to be similar to the authors' all-purpose, parallel-hole collimator at 10 cm. The focal length was 50 cm. The experimental protocol was chosen to be similar to their clinical protocol. A filtered back projection algorithm was used for cone-beam data. The same algorithm was used for the parallel-hole data, but with focal length set to infinity

  20. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization

    International Nuclear Information System (INIS)

    Sidky, Emil Y; Pan Xiaochuan

    2008-01-01

    An iterative algorithm, based on recent work in compressive sensing, is developed for volume image reconstruction from a circular cone-beam scan. The algorithm minimizes the total variation (TV) of the image subject to the constraint that the estimated projection data is within a specified tolerance of the available data and that the values of the volume image are non-negative. The constraints are enforced by the use of projection onto convex sets (POCS) and the TV objective is minimized by steepest descent with an adaptive step-size. The algorithm is referred to as adaptive-steepest-descent-POCS (ASD-POCS). It appears to be robust against cone-beam artifacts, and may be particularly useful when the angular range is limited or when the angular sampling rate is low. The ASD-POCS algorithm is tested with the Defrise disk and jaw computerized phantoms. Some comparisons are performed with the POCS and expectation-maximization (EM) algorithms. Although the algorithm is presented in the context of circular cone-beam image reconstruction, it can also be applied to scanning geometries involving other x-ray source trajectories

  1. SPECT reconstruction of combined cone beam and parallel hole collimation with experimental data

    International Nuclear Information System (INIS)

    Li, Jianying; Jaszczak, R.J.; Turkington, T.G.; Greer, K.L.; Coleman, R.E.

    1993-01-01

    The authors have developed three methods to combine parallel and cone bean (P and CB) SPECT data using modified Maximum Likelihood-Expectation Maximization (ML-EM) algorithms. The first combination method applies both parallel and cone beam data sets to reconstruct a single intermediate image after each iteration using the ML-EM algorithm. The other two iterative methods combine the intermediate parallel beam (PB) and cone beam (CB) source estimates to enhance the uniformity of images. These two methods are ad hoc methods. In earlier studies using computer Monte Carlo simulation, they suggested that improved images might be obtained by reconstructing combined P and CB SPECT data. These combined collimation methods are qualitatively evaluated using experimental data. An attenuation compensation is performed by including the effects of attenuation in the transition matrix as a multiplicative factor. The combined P and CB images are compared with CB-only images and the result indicate that the combined P and CB approaches suppress artifacts caused by truncated projections and correct for the distortions of the CB-only images

  2. An improved exact inversion formula for solenoidal fields in cone beam vector tomography

    Science.gov (United States)

    Katsevich, Alexander; Rothermel, Dimitri; Schuster, Thomas

    2017-06-01

    In this paper we present an improved inversion formula for the 3D cone beam transform of vector fields supported in the unit ball which is exact for solenoidal fields. It is well known that only the solenoidal part of a vector field can be determined from the longitudinal ray transform of a vector field in cone beam geometry. The inversion formula, as it was developed in Katsevich and Schuster (2013 An exact inversion formula for cone beam vector tomography Inverse Problems 29 065013), consists of two parts. The first part is of the filtered backprojection type, whereas the second part is a costly 4D integration and very inefficient. In this article we tackle this second term and obtain an improved formula, which is easy to implement and saves one order of integration. We also show that the first part contains all information about the curl of the field, whereas the second part has information about the boundary values. More precisely, the second part vanishes if the solenoidal part of the original field is tangential at the boundary. A number of numerical tests presented in the paper confirm the theoretical results and the exactness of the formula. Also, we obtain an inversion algorithm that works for general convex domains.

  3. Morphometric analysis - Cone beam computed tomography to predict bone quality and quantity.

    Science.gov (United States)

    Hohlweg-Majert, B; Metzger, M C; Kummer, T; Schulze, D

    2011-07-01

    Modified quantitative computed tomography is a method used to predict bone quality and quantify the bone mass of the jaw. The aim of this study was to determine whether bone quantity or quality was detected by cone beam computed tomography (CBCT) combined with image analysis. MATERIALS AND PROCEDURES: Different measurements recorded on two phantoms (Siemens phantom, Comac phantom) were evaluated on images taken with the Somatom VolumeZoom (Siemens Medical Solutions, Erlangen, Germany) and the NewTom 9000 (NIM s.r.l., Verona, Italy) in order to calculate a calibration curve. The spatial relationships of six sample cylinders and the repositioning from four pig skull halves relative to adjacent defined anatomical structures were assessed by means of three-dimensional visualization software. The calibration curves for computer tomography (CT) and cone beam computer tomography (CBCT) using the Siemens phantom showed linear correlation in both modalities between the Hounsfield Units (HU) and bone morphology. A correction factor for CBCT was calculated. Exact information about the micromorphology of the bone cylinders was only available using of micro computer tomography. Cone-beam computer tomography is a suitable choice for analysing bone mass, but, it does not give any information about bone quality. 2010 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  4. Truncation artifact suppression in cone-beam radionuclide transmission CT using maximum likelihood techniques: evaluation with human subjects

    International Nuclear Information System (INIS)

    Manglos, S.H.

    1992-01-01

    Transverse image truncation can be a serious problem for human imaging using cone-beam transmission CT (CB-CT) implemented on a conventional rotating gamma camera. This paper presents a reconstruction method to reduce or eliminate the artifacts resulting from the truncation. The method uses a previously published transmission maximum likelihood EM algorithm, adapted to the cone-beam geometry. The reconstruction method is evaluated qualitatively using three human subjects of various dimensions and various degrees of truncation. (author)

  5. Evaluation of a method for correction of scatter radiation in thorax cone beam CT

    International Nuclear Information System (INIS)

    Rinkel, J.; Dinten, J.M.; Esteve, F.

    2004-01-01

    Purpose: Cone beam CT (CBCT) enables three-dimensional imaging with isotropic resolution. X-ray scatter estimation is a big challenge for quantitative CBCT imaging of thorax: scatter level is significantly higher on cone beam systems compared to collimated fan beam systems. The effects of this scattered radiation are cupping artefacts, streaks, and quantification inaccuracies. The beam stops conventional scatter estimation approach can be used for CBCT but leads to a significant increase in terms of dose and acquisition time. At CEA-LETI has been developed an original scatter management process without supplementary acquisition. Methods and Materials: This Analytical Plus Indexing-based method (API) of scatter correction in CBCT is based on scatter calibration through offline acquisitions with beam stops on lucite plates, combined to an analytical transformation issued from physical equations. This approach has been applied with success in bone densitometry and mammography. To evaluate this method in CBCT, acquisitions from a thorax phantom with and without beam stops have been performed. To compare different scatter correction approaches, Feldkamp algorithm has been applied on rough data corrected from scatter by API and by beam stops approaches. Results: The API method provides results in good agreement with the beam stops array approach, suppressing cupping artefact. Otherwise influence of the scatter correction method on the noise in the reconstructed images has been evaluated. Conclusion: The results indicate that the API method is effective for quantitative CBCT imaging of thorax. Compared to a beam stops array method it needs a lower x-ray dose and shortens acquisition time. (authors)

  6. Status of computed tomography dosimetry for wide cone beam scanners

    International Nuclear Information System (INIS)

    2011-01-01

    International standardization in dosimetry is essential for the successful exploitation of radiation technology. To provide such standardization in diagnostic radiology, the IAEA published Code of Practice entitled Dosimetry in Diagnostic Radiology: An International Code of Practice (IAEA Technical Reports Series No. 457; 2007), which recommends procedures for calibration and dosimetric measurement both in standards dosimetry laboratories, especially Secondary Standards Dosimetry Laboratories (SSDLs), and in clinical centres for radiology, as found in most hospitals. These standards address the main dosimetric methodologies needed in clinical diagnostic radiology, with the calibration of associated dosimetric equipment, including the measurement methodologies for computed tomography (CT). For some time now there has been a growing awareness that radiation dose originating from medical diagnostic procedures in radiology, is contributing an increasing proportion to the total population dose, with a large component coming from CT examinations. This is accompanied by rapid developments in CT technology, including the use of increasingly wide X ray scanning beams, which are presenting problems in dosimetry that currently cannot be adequately addressed by existing standards. This situation has received attention from a number of professional bodies, and institutions have proposed and are investigating new and adapted dosimetric models in order to find robust solutions to these problems that are critically affecting clinical application of CT dosimetry. In view of these concerns, and as a response to a recommendation from a coordinated research project that reviewed the implementation of IAEA Technical Reports Series No. 457, a meeting was held to review current dosimetric methodologies and to determine if a practical solution for dosimetry for wide X ray beam CT scanners was currently available. The meeting rapidly formed the view that there was an interim solution that

  7. Ring artifact correction for high-resolution micro CT

    International Nuclear Information System (INIS)

    Kyriakou, Yiannis; Prell, Daniel; Kalender, Willi A

    2009-01-01

    In high-resolution micro CT using flat detectors (FD), imperfect or defect detector elements may cause concentric-ring artifacts due to their continuous over- or underestimation of attenuation values, which often disturb image quality. We here present a dedicated image-based ring artifact correction method for high-resolution micro CT, based on median filtering of the reconstructed image and working on a transformed version of the reconstructed images in polar coordinates. This post-processing method reduced ring artifacts in the reconstructed images and improved image quality for phantom and in in vivo scans. Noise and artifacts were reduced both in transversal and in multi-planar reformations along the longitudinal axis. (note)

  8. Implementation and commissioning of an integrated micro-CT/RT system with computerized independent jaw collimation

    International Nuclear Information System (INIS)

    Jensen, Michael D.; Hrinivich, W. Thomas; Jung, Jongho A.; Holdsworth, David W.; Drangova, Maria; Chen, Jeff; Wong, Eugene

    2013-01-01

    Purpose: To design, construct, and commission a set of computer-controlled motorized jaws for a micro-CT/RT system to perform conformal image-guided small animal radiotherapy.Methods: The authors designed and evaluated a system of custom-built motorized orthogonal jaws, which allows the delivery of off-axis rectangular fields on a GE eXplore CT 120 preclinical imaging system. The jaws in the x direction are independently driven, while the y-direction jaws are symmetric. All motors have backup encoders, verifying jaw positions. Mechanical performance of the jaws was characterized. Square beam profiles ranging from 2 × 2 to 60 × 60 mm 2 were measured using EBT2 film in the center of a 70 × 70 × 22 mm 3 solid water block. Similarly, absolute depth dose was measured in a solid water and EBT2 film stack 50 × 50 × 50 mm 3 . A calibrated Farmer ion chamber in a 70 × 70 × 20 mm 3 solid water block was used to measure the output of three field sizes: 50 × 50, 40 × 40, and 30 × 30 mm 2 . Elliptical target plans were delivered to films to assess overall system performance. Respiratory-gated treatment was implemented on the system and initially proved using a simple sinusoidal motion phantom. All films were scanned on a flatbed scanner (Epson 1000XL) and converted to dose using a fitted calibration curve. A Monte Carlo beam model of the micro-CT with the jaws has been created using BEAMnrc for comparison with the measurements. An example image-guided partial lung irradiation in a rat is demonstrated.Results: The averaged random error of positioning each jaw is less than 0.1 mm. Relative output factors measured with the ion chamber agree with Monte Carlo simulations within 2%. Beam profiles and absolute depth dose curves measured from the films agree with simulations within measurement uncertainty. Respiratory-gated treatments applied to a phantom moving with a peak-to-peak amplitude of 5 mm showed improved beam penumbra (80%–20%) from 3.9 to 0.8 mm.Conclusions: A

  9. Implementation and commissioning of an integrated micro-CT/RT system with computerized independent jaw collimation

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Michael D. [Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); Hrinivich, W. Thomas; Jung, Jongho A. [Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); Holdsworth, David W. [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, London, Ontario N6A 5K8 (Canada); Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); Department of Surgery, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); Drangova, Maria [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, London, Ontario N6A 5K8, Canada and Department of Medical Biophysics, The University of Western Ontario 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); Chen, Jeff [Department of Physics and Engineering, London Regional Cancer Program, London Health Sciences Centre, 800 Commissioners Road East, London, Ontario N6A 5W9 (Canada); Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); Department of Oncology, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); Wong, Eugene [Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); Department of Oncology, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); Department of Physics and Engineering, London Regional Cancer Program, London Health Sciences Centre, 800 Commissioners Road East, London, Ontario N6A 5W9 (Canada)

    2013-08-15

    Purpose: To design, construct, and commission a set of computer-controlled motorized jaws for a micro-CT/RT system to perform conformal image-guided small animal radiotherapy.Methods: The authors designed and evaluated a system of custom-built motorized orthogonal jaws, which allows the delivery of off-axis rectangular fields on a GE eXplore CT 120 preclinical imaging system. The jaws in the x direction are independently driven, while the y-direction jaws are symmetric. All motors have backup encoders, verifying jaw positions. Mechanical performance of the jaws was characterized. Square beam profiles ranging from 2 × 2 to 60 × 60 mm{sup 2} were measured using EBT2 film in the center of a 70 × 70 × 22 mm{sup 3} solid water block. Similarly, absolute depth dose was measured in a solid water and EBT2 film stack 50 × 50 × 50 mm{sup 3}. A calibrated Farmer ion chamber in a 70 × 70 × 20 mm{sup 3} solid water block was used to measure the output of three field sizes: 50 × 50, 40 × 40, and 30 × 30 mm{sup 2}. Elliptical target plans were delivered to films to assess overall system performance. Respiratory-gated treatment was implemented on the system and initially proved using a simple sinusoidal motion phantom. All films were scanned on a flatbed scanner (Epson 1000XL) and converted to dose using a fitted calibration curve. A Monte Carlo beam model of the micro-CT with the jaws has been created using BEAMnrc for comparison with the measurements. An example image-guided partial lung irradiation in a rat is demonstrated.Results: The averaged random error of positioning each jaw is less than 0.1 mm. Relative output factors measured with the ion chamber agree with Monte Carlo simulations within 2%. Beam profiles and absolute depth dose curves measured from the films agree with simulations within measurement uncertainty. Respiratory-gated treatments applied to a phantom moving with a peak-to-peak amplitude of 5 mm showed improved beam penumbra (80%–20%) from 3.9 to

  10. An index of beam hardening artifact for two-dimensional cone-beam CT tomographic images: establishment and preliminary evaluation

    Science.gov (United States)

    Yuan, Fusong; Lv, Peijun; Yang, Huifang; Wang, Yong; Sun, Yuchun

    2015-07-01

    Objectives: Based on the pixel gray value measurements, establish a beam-hardening artifacts index of the cone-beam CT tomographic image, and preliminarily evaluate its applicability. Methods: The 5mm-diameter metal ball and resin ball were fixed on the light-cured resin base plate respectively, while four vitro molars were fixed above and below the ball, on the left and right respectively, which have 10mm distance with the metal ball. Then, cone beam CT was used to scan the fixed base plate twice. The same layer tomographic images were selected from the two data and imported into the Photoshop software. The circle boundary was built through the determination of the center and radius of the circle, according to the artifact-free images section. Grayscale measurement tools were used to measure the internal boundary gray value G0, gray value G1 and G2 of 1mm and 20mm artifacts outside the circular boundary, the length L1 of the arc with artifacts in the circular boundary, the circumference L2. Hardening artifacts index was set A = (G1 / G0) * 0.5 + (G2 / G1) * 0.4 + (L2 / L1) * 0.1. Then, the A values of metal and resin materials were calculated respectively. Results: The A value of cobalt-chromium alloy material is 1, and resin material is 0. Conclusion: The A value reflects comprehensively the three factors of hardening artifacts influencing normal oral tissue image sharpness of cone beam CT. The three factors include relative gray value, the decay rate and range of artifacts.

  11. Cone beam x-ray luminescence computed tomography: a feasibility study.

    Science.gov (United States)

    Chen, Dongmei; Zhu, Shouping; Yi, Huangjian; Zhang, Xianghan; Chen, Duofang; Liang, Jimin; Tian, Jie

    2013-03-01

    The appearance of x-ray luminescence computed tomography (XLCT) opens new possibilities to perform molecular imaging by x ray. In the previous XLCT system, the sample was irradiated by a sequence of narrow x-ray beams and the x-ray luminescence was measured by a highly sensitive charge coupled device (CCD) camera. This resulted in a relatively long sampling time and relatively low utilization of the x-ray beam. In this paper, a novel cone beam x-ray luminescence computed tomography strategy is proposed, which can fully utilize the x-ray dose and shorten the scanning time. The imaging model and reconstruction method are described. The validity of the imaging strategy has been studied in this paper. In the cone beam XLCT system, the cone beam x ray was adopted to illuminate the sample and a highly sensitive CCD camera was utilized to acquire luminescent photons emitted from the sample. Photons scattering in biological tissues makes it an ill-posed problem to reconstruct the 3D distribution of the x-ray luminescent sample in the cone beam XLCT. In order to overcome this issue, the authors used the diffusion approximation model to describe the photon propagation in tissues, and employed the sparse regularization method for reconstruction. An incomplete variables truncated conjugate gradient method and permissible region strategy were used for reconstruction. Meanwhile, traditional x-ray CT imaging could also be performed in this system. The x-ray attenuation effect has been considered in their imaging model, which is helpful in improving the reconstruction accuracy. First, simulation experiments with cylinder phantoms were carried out to illustrate the validity of the proposed compensated method. The experimental results showed that the location error of the compensated algorithm was smaller than that of the uncompensated method. The permissible region strategy was applied and reduced the reconstruction error to less than 2 mm. The robustness and stability were then

  12. Characteristics of kilovoltage x-ray beams used for cone-beam computed tomography in radiation therapy

    International Nuclear Information System (INIS)

    Ding, George X; Duggan, Dennis M; Coffey, Charles W

    2007-01-01

    The purpose of this investigation is to characterize the beams produced by a kilovoltage (kV) imager integrated into a linear accelerator (Varian on-board imager integrated into the Trilogy accelerator) for acquiring high resolution volumetric cone-beam computed tomography (CBCT) images of the patient on the treatment table. The x-ray tube is capable of generating photon spectra with kVp values between 40 and 125 kV. The Monte Carlo simulations were used to study the characteristics of kV beams and the properties of imaged target scatters. The Monte Carlo results were benchmarked against measurements, and excellent agreements were obtained. We also studied the effect of including the electron impact ionization (EII), and the simulation showed that the characteristic radiation is increased significantly in the energy spectra when EII is included. Although only slight beam hardening is observed in the spectra of all photons after passing through the phantom target, there is a significant difference in the spectra and angular distributions between scattered and primary photons. The results also show that the photon fluence distributions are significantly altered by adding bow tie filters. The results indicate that a combination of large cone-beam field size and large imaged target significantly increases scatter-to-primary ratios for photons that reach the detector panel. For phantoms 10 cm, 20 cm and 30 cm thick of water placed at the isocentre, the scatter-to-primary ratios are 0.94, 3.0 and 7.6 respectively for an open 125 kVp CBCT beam. The Monte Carlo simulations show that the increase of the scatter is proportional to the increase of the imaged volume, and this also applies to scatter-to-primary ratios. This study shows both the magnitude and the characteristics of scattered x-rays. The knowledge obtained from this investigation may be useful in the future design of the image detector to improve the image quality

  13. Gambaran densitas kamar pulpa gigi sulung menggunakan cone beam CT-3D (Description of pulp chamber density in deciduous teeth using cone beam CT-3D

    Directory of Open Access Journals (Sweden)

    Herdiyati Y

    2013-06-01

    Full Text Available Background: Dental caries is the most common chronic diseases. Detection of caries is needed, especially on the deciduous teeth. An examination such as radiological examination is essential. The radiographic figures distinguish radiolucent of the crown. Digital radiography cone beam computed tomography (CBCT is able to show a more detailed picture. Purpose: This study was aimed to get value of the density of pulp chamber of caries and non caries deciduous teeth using CBCT radiographs. Methods: The study was conducted by using simple descriptive. The samples were all the data CBCT of pediatric patients aged 7-10 years who visited the Dental Hospital of the Faculty of Dentistry, University of Padjadjaran. The samples were teeth with single and double root. Results: The results showed that the value of the normal pulp density is 422.56 Hu, while the condition of caries decreased becomes -77.89 Hu. Conclusion: The tooth with caries showed a lower density than the non caries/tooth.Latar belakang: Karies gigi merupakan penyakit kronis yang sering terjadi. Deteksi terhadap karies sangat diperlukan terutama pada gigi decidius. Pemeriksaan penunjang berupa pemeriksaan radiologis sangat diperlukan. Secara umum gambaran radiografi dapat membedakan karies berupa gambaran radiolusent pada mahkota. Radiografi digital cone beam computed tomografi (CBCT, merupakan jenis radiografi yang mampu memperlihatkan gambaran yang lebih detail. Tujuan: Penelitian ini bertujuan mendapatkan nilai densitas kamar pulpa gigi sulung yang karies dan non karies menggunakan radiografi CBCT. Metode: Penelitian dilakukan dengan metode simple deskriptif. Sampel penelitian adalah semua data CBCT dari pasien anak berusia 7 - 10 tahun yang berkunjung ke RSGM Fakultas Kedokteran Gigi Universitas Padjadjaran. Gigi yang dianalisa meliputi gigi berakar tunggal dan berakar ganda. Hasil: Hasil penelitian menunjukkan bahwa nilai densitas pulpa normal adalah 422,56 Hu, sedangkan pada kondisi

  14. Maxillary first molar with 7 root canals diagnosed using cone-beam computed tomography

    Directory of Open Access Journals (Sweden)

    Evaldo Rodrigues

    2017-02-01

    Full Text Available Root canal anatomy is complex, and the recognition of anatomic variations could be a challenge for clinicians. This case report describes the importance of cone beam computed tomographyic (CBCT imaging during endodontic treatment. A 23 year old woman was referred by her general dental practitioner with the chief complaint of spontaneous pain in her right posterior maxilla. From the clinical and radiographic findings, a diagnosis of symptomatic irreversible pulpitis was made and endodontic treatment was suggested to the patient. The patient underwent CBCT examination, and CBCT scan slices revealed seven canals: three mesiobuccal (MB1, MB2, and MB3, two distobuccal (DB1 and DB2, and two palatal (P1 and P2. Canals were successfully treated with reciprocating files and filled using single-cone filling technique. Precise knowledge of root canal morphology and its variation is important during root canal treatment. CBCT examination is an excellent tool for identifying and managing these complex root canal systems.

  15. A fully three-dimensional reconstruction algorithm with the nonstationary filter for improved single-orbit cone beam SPECT

    International Nuclear Information System (INIS)

    Cao, Z.J.; Tsui, B.M.

    1993-01-01

    Conventional single-orbit cone beam tomography presents special problems. They include incomplete sampling and inadequate three-dimensional (3D) reconstruction algorithm. The commonly used Feldkamp reconstruction algorithm simply extends the two-dimensional (2D) fan beam algorithm to 3D cone beam geometry. A truly 3D reconstruction formulation has been derived for the single-orbit cone beam SPECT based on the 3D Fourier slice theorem. In the formulation, a nonstationary filter which depends on the distance from the central plane of the cone beam was derived. The filter is applied to the 2D projection data in directions along and normal to the axis-of-rotation. The 3D reconstruction algorithm with the nonstationary filter was evaluated using both computer simulation and experimental measurements. Significant improvement in image quality was demonstrated in terms of decreased artifacts and distortions in cone beam reconstructed images. However, compared with the Feldkamp algorithm, a five-fold increase in processing time is required. Further improvement in image quality needs complete sampling in frequency space

  16. Cone Beam X-Ray Luminescence Tomography Imaging Based on KA-FEM Method for Small Animals.

    Science.gov (United States)

    Chen, Dongmei; Meng, Fanzhen; Zhao, Fengjun; Xu, Cao

    2016-01-01

    Cone beam X-ray luminescence tomography can realize fast X-ray luminescence tomography imaging with relatively low scanning time compared with narrow beam X-ray luminescence tomography. However, cone beam X-ray luminescence tomography suffers from an ill-posed reconstruction problem. First, the feasibility of experiments with different penetration and multispectra in small animal has been tested using nanophosphor material. Then, the hybrid reconstruction algorithm with KA-FEM method has been applied in cone beam X-ray luminescence tomography for small animals to overcome the ill-posed reconstruction problem, whose advantage and property have been demonstrated in fluorescence tomography imaging. The in vivo mouse experiment proved the feasibility of the proposed method.

  17. Quality control and radioprotection in dental cone beam computed tomography - case study

    International Nuclear Information System (INIS)

    Rodrigues, Ligiane C.N.; Ferreira, Nadya M.P.D.

    2011-01-01

    The radiological protection in medical and odontologic radiology follows The Order (Portaria) 453/98 of the Ministry of Health, which presents the minimum set of tests for the constancy X-ray equipment. These tests follow the procedures set forth in the Resolution no. 64, the National Agency for Sanitary Vigilance. This work aims to show a study on dental cone beam computed tomography (CBCT), evaluating the physical parameters that influence the performance and image quality and presenting the appropriate tests to this new system. The authors analyzed the tests specific for computed tomography (CT) of the Resolution no. 64, feasibility assessment of them and if their interpretations are compatible with CBCT. Once determined if testing is feasible, compare with those presented in the manual provided by the equipment manufacturer. The CT scanner used was the Mini-Cat Tomography Scanner Xoran Technologies of KAVO. In the study it was verified that four tests could be reproduced in CBCT: noise, accuracy and uniformity in the number of CT of water and spatial resolution. Considering experimental data, the methodology and tolerance of manufacturer for the first two tests were more appropriate. For the uniformity test of the CT number, we recommend using the phantom quality control. Three new tests were suggested to be made in the quality control of the Cone Beam: linearity, artifacts and alignment of the beam. (author)

  18. Quality control and radioprotection in dental cone beam computed tomography - case study

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Ligiane C.N.; Ferreira, Nadya M.P.D., E-mail: lnadya@ime.eb.br [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The radiological protection in medical and odontologic radiology follows The Order (Portaria) 453/98 of the Ministry of Health, which presents the minimum set of tests for the constancy X-ray equipment. These tests follow the procedures set forth in the Resolution no. 64, the National Agency for Sanitary Vigilance. This work aims to show a study on dental cone beam computed tomography (CBCT), evaluating the physical parameters that influence the performance and image quality and presenting the appropriate tests to this new system. The authors analyzed the tests specific for computed tomography (CT) of the Resolution no. 64, feasibility assessment of them and if their interpretations are compatible with CBCT. Once determined if testing is feasible, compare with those presented in the manual provided by the equipment manufacturer. The CT scanner used was the Mini-Cat Tomography Scanner Xoran Technologies of KAVO. In the study it was verified that four tests could be reproduced in CBCT: noise, accuracy and uniformity in the number of CT of water and spatial resolution. Considering experimental data, the methodology and tolerance of manufacturer for the first two tests were more appropriate. For the uniformity test of the CT number, we recommend using the phantom quality control. Three new tests were suggested to be made in the quality control of the Cone Beam: linearity, artifacts and alignment of the beam. (author)

  19. Relationships between cone beam CT value and physical density in image guided radiation therapy

    International Nuclear Information System (INIS)

    Jiang Xiaoqin; Bai Sen; Zhong Renming; Tang Zhiquan; Jiang Qinfeng; Li Tao

    2007-01-01

    Objective: To evaluate the main factors affecting the relationship between physical density and CT value in cone-beam computed tomography(CBCT) for imaging guided radiation therapy(IGRT) by comparing the CT value in the image from cone-beam scanner and from fan-beam (FBCT) scanner of a reference phantom. Methods: A taking-park reference phantom with a set of tissue equivalent inserts was scanned at different energies different fields of view (FOV) for IGRT-CBCT and FBCT. The CT value of every insert was measured and compared. Results: The position of inserts in phantom, the size of phantom, the FOV of scanner and different energies had more effect on the relationships between physical density and the CT value from IGRT-CBCT than those from the normal FBCT. The higher the energy was, the less effect of the position of inserts in phantom, the size of phantom and the FOV of scanner on CT value, and the poorer density contrast was observed. Conclusion: At present, the CT value of IGRT-CBCT is not in the true HU value since the manufacturer has not corrected its number. Therefore, we are not able to use the CT value of CBCT for dose calculation in TPS. (authors)

  20. Comparative study of a low-Z cone-beam computed tomography system

    International Nuclear Information System (INIS)

    Roberts, D A; Hansen, V N; Poludniowski, G; Evans, P M; Thompson, M G; Niven, A; Seco, J

    2011-01-01

    Computed tomography images have been acquired using an experimental (low atomic number (Z) insert) megavoltage cone-beam imaging system. These images have been compared with standard megavoltage and kilovoltage imaging systems. The experimental system requires a simple modification to the 4 MeV electron beam from an Elekta Precise linac. Low-energy photons are produced in the standard medium-Z electron window and a low-Z carbon electron absorber located after the window. The carbon electron absorber produces photons as well as ensuring that all remaining electrons from the source are removed. A detector sensitive to diagnostic x-ray energies is also employed. Quantitative assessment of cone-beam computed tomography (CBCT) contrast shows that the low-Z imaging system is an order of magnitude or more superior to a standard 6 MV imaging system. CBCT data with the same contrast-to-noise ratio as a kilovoltage imaging system (0.15 cGy) can be obtained in doses of 11 and 244 cGy for the experimental and standard 6 MV systems, respectively. Whilst these doses are high for everyday imaging, qualitative images indicate that kilovoltage like images suitable for patient positioning can be acquired in radiation doses of 1-8 cGy with the experimental low-Z system.

  1. Minimal residual cone-beam reconstruction with attenuation correction in SPECT

    International Nuclear Information System (INIS)

    La, Valerie; Grangeat, Pierre

    1998-01-01

    This paper presents an iterative method based on the minimal residual algorithm for tomographic attenuation compensated reconstruction from attenuated cone-beam projections given the attenuation distribution. Unlike conjugate-gradient based reconstruction techniques, the proposed minimal residual based algorithm solves directly a quasisymmetric linear system, which is a preconditioned system. Thus it avoids the use of normal equations, which improves the convergence rate. Two main contributions are introduced. First, a regularization method is derived for quasisymmetric problems, based on a Tikhonov-Phillips regularization applied to the factorization of the symmetric part of the system matrix. This regularization is made spatially adaptive to avoid smoothing the region of interest. Second, our existing reconstruction algorithm for attenuation correction in parallel-beam geometry is extended to cone-beam geometry. A circular orbit is considered. Two preconditioning operators are proposed: the first one is Grangeat's inversion formula and the second one is Feldkamp's inversion formula. Experimental results obtained on simulated data are presented and the shadow zone effect on attenuated data is illustrated. (author)

  2. Region-of-interest reconstruction for a cone-beam dental CT with a circular trajectory

    International Nuclear Information System (INIS)

    Hu, Zhanli; Zou, Jing; Gui, Jianbao; Zheng, Hairong; Xia, Dan

    2013-01-01

    Dental CT is the most appropriate and accurate device for preoperative evaluation of dental implantation. It can demonstrate the quantity of bone in three dimensions (3D), the location of important adjacent anatomic structures and the quality of available bone with minimal geometric distortion. Nevertheless, with the rapid increase of dental CT examinations, we are facing the problem of dose reduction without loss of image quality. In this work, backprojection-filtration (BPF) and Feldkamp–Davis–Kress (FDK) algorithm was applied to reconstruct the 3D full image and region-of-interest (ROI) image from complete and truncated circular cone-beam data respectively by computer-simulation. In addition, the BPF algorithm was evaluated based on the 3D ROI-image reconstruction from real data, which was acquired from our developed circular cone-beam prototype dental CT system. The results demonstrated that the ROI-image quality reconstructed from truncated data using the BPF algorithm was comparable to that reconstructed from complete data. The FDK algorithm, however, created artifacts while reconstructing ROI-image. Thus it can be seen, for circular cone-beam dental CT, reducing scanning angular range of the BPF algorithm used for ROI-image reconstruction are helpful for reducing the radiation dose and scanning time. Finally, an analytical method was developed for estimation of the ROI projection area on the detector before CT scanning, which would help doctors to roughly estimate the total radiation dose before the CT examination. -- Highlights: ► BPF algorithm was applied by using dental CT for the first time. ► A method was developed for estimation of projection region before CT scanning. ► Roughly predict the total radiation dose before CT scans. ► Potential reduce imaging radiation dose, scatter, and scanning time

  3. Study of effective dose of various protocols in equipment cone beam CT

    International Nuclear Information System (INIS)

    Soares, M. R.; Maia, A. F.; Batista, W. O.; Caldas, L. V. E.; Lara, P. A.

    2014-08-01

    Currently the cone beam computed tomography is widely used in various procedures of dental radiology. Although the doses values associated with the procedures of cone beam CT are low compared to typical values associated with dental radiology procedure in multi slices CT. However can be high compared to typical values of other techniques commonly used in dental radiology. The present scenario is a very wide range of designs of equipment and, consequently, lack of uniformity in all parameters associated with x-ray generation and geometry. In this context, this study aimed to evaluate and calculate the absorbed dose in organs and tissues relevant and estimate effective dose for different protocols with different geometries of exposure in five cone beam CT equipment. For this, a female Alderson anthropomorphic phantom, manufactured by Radiology Support Devices was used. The phantom was irradiated with 26 dosimeters LiF: Mg, Ti (TLD-100), inserted in organs and tissues along the layers forming the head and neck of the phantom. The equipment used, in this present assessment, was: i-CAT Classical, Kodak 9000 3D, Gendex GXCB 500, Sirona Orthophos X G 3D and Planmeca Pro Max 3D. The effective doses were be determined by the ICRP 103 weighting factors. The values were between 7.0 and 111.5 micro Sv, confirming the broad dose range expected due to the diversity of equipment and protocols used in each equipment. The values of effective dose per Fov size were: between 7 and 51.2 micro Sv for located Fov; between 17.6 and 52.0 micro Sv for medium Fov; and between 11.5 and 43.1 micro Sv to large Fov (maxillofacial). In obtaining the effective dose the measurements highlighted a relevance contribution of dose absorbed by the remaining organs (36%), Salivary glands (30%), thyroid (12%) and bone marrow (12%). (Author)

  4. A study of incisive canal using a cone beam computed tomography

    International Nuclear Information System (INIS)

    Kim, Gyu Tae; Hwang, Eui Hwan; Lee, Sang Rae

    2004-01-01

    To investigate the anatomical structure of the incisive canal radiographically by a cone beam computed tomography. 38 persons (male 26, female 12) were chosen to take images of maxillary anterior region in dental CT mode using a cone beam computed tomography. The tube voltage were 65, 67, and 70 kVp, the tube current was 7 mA, and the exposure time was 13.3 seconds. The FH plane of each person was parallel to the floor. The images were analysed on the CRT display. The mean length of incisive canal was 15.87 mm ± 2.92. The mean diameter at the side of palate and nasal fossa were 3.49 mm ± 0.76 and 3.89 mm ± 1.06, respectively. In the cross-sectional shape of incisive canal, 50% were round, 34.2% were ovoid, and 15.8% were lobulated. 87% of incisive canal at the side of nasal fossa have one canal, 10.4% have two canals, and 2.6% have three canals, but these canals were merged into one canal in the middle portion of palate. The mean angles of the long axis of incisive canal and central incisor to the FH plane were 110.3 ± 6.96 and 117.45 ± 7.41, respectively. The angles of the long axis of incisive canal and central incisor to the FH plane were least correlated (r 0.258). This experiment suggests that a cone beam computed radiography will be helpful in surgery or implantation on the maxillary incisive area.

  5. Four-dimensional cone beam CT with adaptive gantry rotation and adaptive data sampling

    International Nuclear Information System (INIS)

    Lu Jun; Guerrero, Thomas M.; Munro, Peter; Jeung, Andrew; Chi, P.-C. M.; Balter, Peter; Zhu, X. Ronald; Mohan, Radhe; Pan Tinsu

    2007-01-01

    We have developed a new four-dimensional cone beam CT (4D-CBCT) on a Varian image-guided radiation therapy system, which has radiation therapy treatment and cone beam CT imaging capabilities. We adapted the speed of gantry rotation time of the CBCT to the average breath cycle of the patient to maintain the same level of image quality and adjusted the data sampling frequency to keep a similar level of radiation exposure to the patient. Our design utilized the real-time positioning and monitoring system to record the respiratory signal of the patient during the acquisition of the CBCT data. We used the full-fan bowtie filter during data acquisition, acquired the projection data over 200 deg of gantry rotation, and reconstructed the images with a half-scan cone beam reconstruction. The scan time for a 200-deg gantry rotation per patient ranged from 3.3 to 6.6 min for the average breath cycle of 3-6 s. The radiation dose of the 4D-CBCT was about 1-2 times the radiation dose of the 4D-CT on a multislice CT scanner. We evaluated the 4D-CBCT in scanning, data processing and image quality with phantom studies. We demonstrated the clinical applicability of the 4D-CBCT and compared the 4D-CBCT and the 4D-CT scans in four patient studies. The contrast-to-noise ratio of the 4D-CT was 2.8-3.5 times of the contrast-to-noise ratio of the 4D-CBCT in the four patient studies

  6. Study of effective dose of various protocols in equipment cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Soares, M. R.; Maia, A. F. [Universidade Federale de Sergipe, Departamento de Fisica, Cidade Universitaria Prof. Jose Aloisio de Campos, Marechal Rondon s/n, Jardim Rosa Elze, 49-100000 Sao Cristovao, Sergipe (Brazil); Batista, W. O. [Instituto Federal da Bahia, Rua Emidio dos Santos s/n, Barbalho, Salvador, 40301015 Bahia (Brazil); Caldas, L. V. E.; Lara, P. A., E-mail: mrs2206@gmail.com [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    Currently the cone beam computed tomography is widely used in various procedures of dental radiology. Although the doses values associated with the procedures of cone beam CT are low compared to typical values associated with dental radiology procedure in multi slices CT. However can be high compared to typical values of other techniques commonly used in dental radiology. The present scenario is a very wide range of designs of equipment and, consequently, lack of uniformity in all parameters associated with x-ray generation and geometry. In this context, this study aimed to evaluate and calculate the absorbed dose in organs and tissues relevant and estimate effective dose for different protocols with different geometries of exposure in five cone beam CT equipment. For this, a female Alderson anthropomorphic phantom, manufactured by Radiology Support Devices was used. The phantom was irradiated with 26 dosimeters LiF: Mg, Ti (TLD-100), inserted in organs and tissues along the layers forming the head and neck of the phantom. The equipment used, in this present assessment, was: i-CAT Classical, Kodak 9000 3D, Gendex GXCB 500, Sirona Orthophos X G 3D and Planmeca Pro Max 3D. The effective doses were be determined by the ICRP 103 weighting factors. The values were between 7.0 and 111.5 micro Sv, confirming the broad dose range expected due to the diversity of equipment and protocols used in each equipment. The values of effective dose per Fov size were: between 7 and 51.2 micro Sv for located Fov; between 17.6 and 52.0 micro Sv for medium Fov; and between 11.5 and 43.1 micro Sv to large Fov (maxillofacial). In obtaining the effective dose the measurements highlighted a relevance contribution of dose absorbed by the remaining organs (36%), Salivary glands (30%), thyroid (12%) and bone marrow (12%). (Author)

  7. A study of incisive canal using a cone beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gyu Tae; Hwang, Eui Hwan; Lee, Sang Rae [Kyunghee University College of Medicine, Seoul (Korea, Republic of)

    2004-03-15

    To investigate the anatomical structure of the incisive canal radiographically by a cone beam computed tomography. 38 persons (male 26, female 12) were chosen to take images of maxillary anterior region in dental CT mode using a cone beam computed tomography. The tube voltage were 65, 67, and 70 kVp, the tube current was 7 mA, and the exposure time was 13.3 seconds. The FH plane of each person was parallel to the floor. The images were analysed on the CRT display. The mean length of incisive canal was 15.87 mm {+-} 2.92. The mean diameter at the side of palate and nasal fossa were 3.49 mm {+-} 0.76 and 3.89 mm {+-} 1.06, respectively. In the cross-sectional shape of incisive canal, 50% were round, 34.2% were ovoid, and 15.8% were lobulated. 87% of incisive canal at the side of nasal fossa have one canal, 10.4% have two canals, and 2.6% have three canals, but these canals were merged into one canal in the middle portion of palate. The mean angles of the long axis of incisive canal and central incisor to the FH plane were 110.3 {+-} 6.96 and 117.45 {+-} 7.41, respectively. The angles of the long axis of incisive canal and central incisor to the FH plane were least correlated (r 0.258). This experiment suggests that a cone beam computed radiography will be helpful in surgery or implantation on the maxillary incisive area.

  8. Conservative Management of Type III Dens in Dente Using Cone Beam Computed Tomography

    Directory of Open Access Journals (Sweden)

    K Pradeep

    2012-01-01

    Full Text Available Dens in dente, also known as dens invaginatus, dilated composite odontoma, or deep foramen caecum, is a developmental malformation that usually affects maxillary incisor teeth, particularly lateral incisors. It may occur in teeth anywhere within the jaws, other locations are comparatively rare. It can occur within both the crown and the root, although crown invaginations are more common. The use of cone beam computed tomography (CBCT is very helpful in endodontic diagnosis of complex anatomic variations. In this case we demonstrate the use of CBCT in the evaluation and endodontic management of a Type III dens in dente (Oehler′s Type III.

  9. Automated volume of interest delineation and rendering of cone beam CT images in interventional cardiology

    Science.gov (United States)

    Lorenz, Cristian; Schäfer, Dirk; Eshuis, Peter; Carroll, John; Grass, Michael

    2012-02-01

    Interventional C-arm systems allow the efficient acquisition of 3D cone beam CT images. They can be used for intervention planning, navigation, and outcome assessment. We present a fast and completely automated volume of interest (VOI) delineation for cardiac interventions, covering the whole visceral cavity including mediastinum and lungs but leaving out rib-cage and spine. The problem is addressed in a model based approach. The procedure has been evaluated on 22 patient cases and achieves an average surface error below 2mm. The method is able to cope with varying image intensities, varying truncations due to the limited reconstruction volume, and partially with heavy metal and motion artifacts.

  10. A multiscale filter for noise reduction of low-dose cone beam projections.

    Science.gov (United States)

    Yao, Weiguang; Farr, Jonathan B

    2015-08-21

    The Poisson or compound Poisson process governs the randomness of photon fluence in cone beam computed tomography (CBCT) imaging systems. The probability density function depends on the mean (noiseless) of the fluence at a certain detector. This dependence indicates the natural requirement of multiscale filters to smooth noise while preserving structures of the imaged object on the low-dose cone beam projection. In this work, we used a Gaussian filter, exp(-x2/2σ(2)(f)) as the multiscale filter to de-noise the low-dose cone beam projections. We analytically obtained the expression of σ(f), which represents the scale of the filter, by minimizing local noise-to-signal ratio. We analytically derived the variance of residual noise from the Poisson or compound Poisson processes after Gaussian filtering. From the derived analytical form of the variance of residual noise, optimal σ(2)(f)) is proved to be proportional to the noiseless fluence and modulated by local structure strength expressed as the linear fitting error of the structure. A strategy was used to obtain the reliable linear fitting error: smoothing the projection along the longitudinal direction to calculate the linear fitting error along the lateral direction and vice versa. The performance of our multiscale filter was examined on low-dose cone beam projections of a Catphan phantom and a head-and-neck patient. After performing the filter on the Catphan phantom projections scanned with pulse time 4 ms, the number of visible line pairs was similar to that scanned with 16 ms, and the contrast-to-noise ratio of the inserts was higher than that scanned with 16 ms about 64% in average. For the simulated head-and-neck patient projections with pulse time 4 ms, the visibility of soft tissue structures in the patient was comparable to that scanned with 20 ms. The image processing took less than 0.5 s per projection with 1024   ×   768 pixels.

  11. Florid cemento-osseous dysplasia: A rare case report evaluated with cone-beam computed tomography.

    Science.gov (United States)

    Yildirim, Eren; Bağlar, Serdar; Ciftci, Mehmet Ertugrul; Ozcan, Erdal

    2016-01-01

    A 29-year-old systemically healthy female patient presented to our department. Cone-beam computed tomographic images showed multiple well-defined sclerotic masses with radiolucent border in both right and left molar regions of the mandible. These sclerotic masses were surrounded by a thin radiolucent border. We diagnosed the present pathology as florid cemento-osseous dysplasia and decided to follow the patient without taking biopsy. For the patient, who did not have any clinical complaints, radiographic followupis recommended twice a year. The responsibility of the dentist is to ensure the follow-up of the diagnosed patients and take necessary measures for preventing the infections.

  12. Clinical applications of cone beam computed tomography in endodontics: A comprehensive review.

    Science.gov (United States)

    Cohenca, Nestor; Shemesh, Hagay

    2015-09-01

    The use of cone beam computed tomography (CBCT) in endodontics has been extensively reported in the literature. Compared with the traditional spiral computed tomography, limited field of view (FOV) CBCT results in a fraction of the effective absorbed dose of radiation. The purpose of this manuscript is to review the application and advantages associated with advanced endodontic problems and complications, while reducing radiation exposure during complex endodontic procedures. The benefits of the added diagnostic information provided by intraoperative CBCT images in select cases justify the risk associated with the limited level of radiation exposure.

  13. Role of cone beam computed tomography in the prompt diagnosis of a nasopalatine duct cyst

    Directory of Open Access Journals (Sweden)

    Sapna Panjwani

    2014-01-01

    Full Text Available The nasopalatine duct cyst (NPDC is the most common of all the developmental, epithelial, and non-odontogenic cysts of the maxilla, believed to originate from the epithelial remnants of the nasopalatine duct. Typically, the lesion is asymptomatic and is detected accidentally on a radiograph. The definite diagnosis must be based on the clinical, radiological, and histopathological findings. Frequently misdiagnosed, the NPDC is not rare. The motive of reporting an entity that is not very rare is that the lesion is mostly misdiagnosed, and to emphasize the importance of cone-beam computed tomography (CBCT in the diagnosis and optimized treatment planning of NPDCs.

  14. Evaluation of the Prevalence of Complete Isthmii in Permanent Teeth Using Cone-Beam Computed Tomography

    OpenAIRE

    Haghanifar, Sina; Moudi, Ehsan; Madani, Zahrasadat; Farahbod, Foroozan; Bijani, Ali

    2017-01-01

    Introduction: The current study aimed at determining the prevalence of complete isthmii in permanent teeth, using cone-beam computed tomography (CBCT) in a selected Iranian community. Methods and Materials: In this cross sectional study, 100 CBCT images (from 58 female and 42 male patients) including 1654 teeth (809 maxillary and 845 mandibular teeth) were evaluated. Each tooth root was evaluated in axial plane (interval, 0.1 mm; thickness, 0.1 mm) from the orifice to the apex and from the ap...

  15. A preliminary study on cone beam CT image based treatment planning

    International Nuclear Information System (INIS)

    Padmanaban, Sriram; Jeevanandham, Prakash; Boopathy, Raghavendiran; Sukumar, Prabakar; Syam Kumar, S.A.; Kunjithapatham, Bhuvana; Nagarajan, Vivekanandan

    2008-01-01

    Kilovolt Cone beam computed tomography (CBCT) based on flat panel technology is primarily used for positioning verification. However it is required to evaluate the accuracy of dose calculation based on CBCT images for the purpose of re-planning in adaptive radiation therapy (ART). In this study, 3DCRT and IMRT plans were done using both the planning CT and CBCT images and the corresponding variations in dose and MUs were analyzed, hence evaluating the feasibility of using kilovolt CBCT for dose calculation and patient dose verification. (author)

  16. Evaluation of Skin Dose and Image Quality on Cone Beam Computed Tomography

    International Nuclear Information System (INIS)

    Ahn, Jong Ho; Hong, Chae Seon; Kim, Jin Man; Jang, Jun Young

    2008-01-01

    Cone-beam CT using linear accelerator attached to on-board imager is a image guided therapy equipment. Because it is to check the patient's set-up error, correction, organ and target movement. But imaging dose should be cause of the secondary cancer when taking a image. The aim of this study is investigation of appropriate cone beam CT scan mode to compare and estimate the image quality and skin dose. Measurement by Thermoluminescence dosimeter (TLD-100, Harshaw) with using the Rando phantom are placed on each eight sites in separately H and N, thoracic, abdominal section. each 4 methods of scan modes of are measured the for skin dose in three time. Subsequently, obtained average value. Following image quality QA protocol of equipment manufacturers using the catphan 504 phantom, image quality of each scan mode is compared and analyzed. The results of the measured skin dose are described in here. The skin dose of Head and Neck are measured mode A: 8.96 cGy, mode B: 4.59 cGy, mode C: 3.46 cGy mode D: 1.76 cGy and thoracic mode A: 9.42 cGy, mode B: 4.58 cGy, mode C: 3.65 cGy, mode D: 1.85 cGy, and abdominal mode A: 9.97 cGy, mode B: 5.12 cGy, mode C: 4.03 cGy, mode D: 2.21 cGy. Approximately, dose of mode B are reduced 50%, mode C are reduced 60%, mode D are reduced 80% a point of reference dose of mode A. the results of analyzed HU reproducibility, low contrast resolution, spatial resolution (high contrast resolution), HU uniformity in evaluation item of image quality are within the tolerance value by recommended equipment manufacturer in all scan mode. Maintaining the image quality as well as reducing the image dose are very important in cone beam CT. In the result of this study, we are considered when to take mode A when interested in soft tissue. And we are considered to take mode D when interested in bone scan and we are considered to take mode B, C when standard scan. Increasing secondary cancer risk due to cone beam CT scan should be reduced by low m

  17. Cone-beam computed tomography: Time to move from ALARA to ALADA

    Energy Technology Data Exchange (ETDEWEB)

    Jaju, Prashant P.; Jaju, Sushma P. [Rishiraj College of Dental Sciences and Research Centre, Bhopa(Indonesia)

    2015-12-15

    Cone-beam computed tomography (CBCT) is routinely recommended for dental diagnosis and treatment planning. CBCT exposes patients to less radiation than does conventional CT. Still, lack of proper education among dentists and specialists is resulting in improper referral for CBCT. In addition, aiming to generate high-quality images, operators may increase the radiation dose, which can expose the patient to unnecessary risk. This letter advocates appropriate radiation dosing during CBCT to the benefit of both patients and dentists, and supports moving from the concept of 'as low as reasonably achievable' (ALARA) to 'as low as diagnostically acceptable' (ALADA.

  18. History of imaging in orthodontics from Broadbent to cone-beam computed tomography.

    Science.gov (United States)

    Hans, Mark G; Palomo, J Martin; Valiathan, Manish

    2015-12-01

    The history of imaging and orthodontics is a story of technology informing biology. Advances in imaging changed our thinking as our understanding of craniofacial growth and the impact of orthodontic treatment deepened. This article traces the history of imaging in orthodontics from the invention of the cephalometer by B. Holly Broadbent in 1930 to the introduction of low-cost, low-radiation-dose cone-beam computed tomography imaging in 2015. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  19. Role of Cone Beam Computed Tomography in Diagnosis and Treatment Planning in Dentistry: An Update.

    Science.gov (United States)

    Shukla, Sagrika; Chug, Ashi; Afrashtehfar, Kelvin I

    2017-11-01

    Accurate diagnosis and treatment planning are the backbone of any medical therapy; for this reason, cone beam computed tomography (CBCT) was introduced and has been widely used. CBCT technology provides a three-dimensional image viewing, enabling exact location and extent of lesions or any anatomical region. For the very same reason, CBCT can not only be used for surgical fields but also for fields such as endodontics, prosthodontics, and orthodontics for appropriate treatment planning and effective dental care. The aim and clinical significance of this review are to update dental clinicians on the CBCT applications in each dental specialty for an appropriate diagnosis and more predictable treatment.

  20. Automated method for structural segmentation of nasal airways based on cone beam computed tomography

    Science.gov (United States)

    Tymkovych, Maksym Yu.; Avrunin, Oleg G.; Paliy, Victor G.; Filzow, Maksim; Gryshkov, Oleksandr; Glasmacher, Birgit; Omiotek, Zbigniew; DzierŻak, RóŻa; Smailova, Saule; Kozbekova, Ainur

    2017-08-01

    The work is dedicated to the segmentation problem of human nasal airways using Cone Beam Computed Tomography. During research, we propose a specialized approach of structured segmentation of nasal airways. That approach use spatial information, symmetrisation of the structures. The proposed stages can be used for construction a virtual three dimensional model of nasal airways and for production full-scale personalized atlases. During research we build the virtual model of nasal airways, which can be used for construction specialized medical atlases and aerodynamics researches.

  1. Thickness of the Buccal Plate in Posterior Teeth: A Prospective Cone Beam Computed Tomography Study.

    Science.gov (United States)

    Temple, Kayleigh Eaves; Schoolfield, John; Noujeim, Marcel E; Huynh-Ba, Guy; Lasho, David J; Mealey, Brian L

    Buccal plate thickness is an important clinical parameter for postextraction implant treatment planning. The purpose of this study was to assess buccal plate thickness of the posterior maxilla and mandible using cone beam computed tomography (CBCT). A total of 265 patients and 934 teeth met the inclusion criteria for this study. CBCT volumes were taken and aligned for measurement at the ideal midsagittal cross-section. Buccal plate thickness was measured at 1, 3, and 5 mm apical to the alveolar crest. The frequency of thick (≥ 1 mm), thin (teeth.

  2. Effects of hole tapering on cone-beam collimation for brain SPECT imaging

    International Nuclear Information System (INIS)

    Park, Mi-Ae; Kijewski, Marie Foley; Moore, Stephen C.

    2006-01-01

    New collimator manufacturing technologies, such as photoetching, electrical discharge machining, and stereolithography, expand the range of possible cone-beam collimator configurations. For example, it might now be possible for brain SPECT to make a short-focusing cone-beam collimator with tapered holes that increase in size with distance from the collimator surface; conventional lead-casting techniques produce holes of constant size and, consequently, varying septal thicknesses. Moreover, the changes in hole shape and loss of close packing due to focusing leads to thicker septa in the collimator periphery, especially for shorter focal lengths. We investigated the potential advantages of new cone-beam collimator manufacturing processes, and proposed a new design for very short focal-length collimators for brain SPECT imaging. We compared three cone-beam collimators, a conventional collimator manufactured using casting techniques (CC), a novel collimator with uniform hole sizes on the collimator surface and constant hole size through the collimator thickness (FC), and a novel collimator with uniform hole sizes and tapered holes (TC). We determined the resolution of each collimator analytically for focal lengths ranging from 20-50 cm, and adjusted the entrance hole sizes of FC and TC to equalize resolution of all collimators. Sensitivity was calculated at several locations by Monte Carlo simulation. Sensitivity was higher at all points for TC and FC than for CC, and higher for TC than for FC. The differences in sensitivity were larger for shorter focal lengths. For a point on the focal line at 10 cm in front of the collimator entrance surface, the sensitivity gain for TC compared to CC was 7% and 45% for focal lengths of 50 and 20 cm, respectively. The sensitivity gain for a 20-cm focal length, compared to CC, averaged over all locations, was 44% for TC and 23% for FC. We have shown that the new collimator designs made possible by new manufacturing techniques will

  3. A service for monitoring the quality of intraoperative cone beam CT images

    Directory of Open Access Journals (Sweden)

    Heckel Frank

    2016-09-01

    Full Text Available In recent years, operating rooms (ORs have transformed into integrated operating rooms, where devices are able to communicate, exchange data, or even steer and control each other. However, image data processing is commonly done by dedicated workstations for specific clinical use-cases. In this paper, we propose a concept for a dynamic service component for image data processing on the example of automatic image quality assessment (AQUA of intraoperative cone beam computed tomography (CBCT images. The service is build using the Open Surgical Communication Protocol (OSCP and the standard for Digital Imaging and Communications in Medicine (DICOM. We have validated the proposed concept in an integrated demonstrator OR.

  4. The importance of cone beam CT in the radiological detection of osteomalacia.

    Science.gov (United States)

    Cakur, B; Sümbüllü, M A; Dagistan, S; Durna, D

    2012-01-01

    Although osteomalacia is one of the most common osteometabolic diseases among the elderly, there is no case in the literature that presents the effects of osteomalacia in detail using cone beam CT (CBCT). While thin and porous bones are the most common radiographic sign of the disease, the radiological hallmarks are pseudofractures (Looser's zone). We coincidentally detected osteomalacia in a 23-year-old female and we showed the pseudofracture on CBCT images. In the present case, we aim to present the images of osteomalacia that were detected by CBCT in detail. CBCT has an important value in screening for osteomalacia.

  5. In vivo microCT imaging of rodent cerebral vasculature

    International Nuclear Information System (INIS)

    Seo, Youngho; Hasegawa, Bruce H; Hashimoto, Tomoki; Nuki, Yoshitsugu

    2008-01-01

    Computed tomography (CT) remains a critical diagnostic tool for evaluating patients with cerebrovascular disease, and the advent of specialized systems for imaging rodents has extended these techniques to small animal models of these diseases. We therefore have evaluated in vivo methods of imaging rat models of hemorrhagic stroke using a high resolution compact computed tomography ('microCT') system (FLEX(tm) X-O(tm), Gamma Medica-Ideas, Northridge, CA). For all in vivo studies, the head of the anesthetized rat was secured in a custom immobilization device for microCT imaging with 512 projections over 2 min at 60 kVp and 0.530 mA (I tube x t/rotation = 63.6 mAs). First, imaging without iodinated contrast was performed (a) to differentiate the effect of contrast agent in contrast-enhanced CT and (b) to examine the effectiveness of the immobilization device between two time points of CT acquisitions. Then, contrast-enhanced CT was performed with continuous administration of iopromide (300 mgI ml -1 at 1.2 ml min -1 ) to visualize aneurysms and other vascular formations in the carotid and cerebral arteries that may precede subarachnoid hemorrhage. The accuracy of registration between the noncontrast and contrast-enhanced CT images with the immobilization device was compared against the images aligned with normalized mutual information using FMRIB's linear image registration tool (FLIRT). Translations and rotations were examined between the FLIRT-aligned noncontrast CT image and the nonaligned noncontrast CT image. These two data sets demonstrated translational and rotational differences of less than 0.5 voxel (∼85 μm) and 0.5 deg., respectively. Noncontrast CT demonstrated a very small volume (0.1 ml) of femoral arterial blood introduced surgically into the rodent brain. Continuous administration of iopromide during the CT acquisition produced consistent vascular contrast in the reconstructed CT images. As a result, carotid arteries and major cerebral blood vessels

  6. In vivo microCT imaging of rodent cerebral vasculature

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Youngho; Hasegawa, Bruce H [Center for Molecular and Functional Imaging, Department of Radiology, University of California, San Francisco, CA 94143 (United States); Hashimoto, Tomoki; Nuki, Yoshitsugu [Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143 (United States)], E-mail: youngho.seo@radiology.ucsf.edu

    2008-04-07

    Computed tomography (CT) remains a critical diagnostic tool for evaluating patients with cerebrovascular disease, and the advent of specialized systems for imaging rodents has extended these techniques to small animal models of these diseases. We therefore have evaluated in vivo methods of imaging rat models of hemorrhagic stroke using a high resolution compact computed tomography ('microCT') system (FLEX(tm) X-O(tm), Gamma Medica-Ideas, Northridge, CA). For all in vivo studies, the head of the anesthetized rat was secured in a custom immobilization device for microCT imaging with 512 projections over 2 min at 60 kVp and 0.530 mA (I{sub tube} x t/rotation = 63.6 mAs). First, imaging without iodinated contrast was performed (a) to differentiate the effect of contrast agent in contrast-enhanced CT and (b) to examine the effectiveness of the immobilization device between two time points of CT acquisitions. Then, contrast-enhanced CT was performed with continuous administration of iopromide (300 mgI ml{sup -1} at 1.2 ml min{sup -1}) to visualize aneurysms and other vascular formations in the carotid and cerebral arteries that may precede subarachnoid hemorrhage. The accuracy of registration between the noncontrast and contrast-enhanced CT images with the immobilization device was compared against the images aligned with normalized mutual information using FMRIB's linear image registration tool (FLIRT). Translations and rotations were examined between the FLIRT-aligned noncontrast CT image and the nonaligned noncontrast CT image. These two data sets demonstrated translational and rotational differences of less than 0.5 voxel ({approx}85 {mu}m) and 0.5 deg., respectively. Noncontrast CT demonstrated a very small volume (0.1 ml) of femoral arterial blood introduced surgically into the rodent brain. Continuous administration of iopromide during the CT acquisition produced consistent vascular contrast in the reconstructed CT images. As a result, carotid

  7. Dosimetric evaluations and comparisons between different techniques (Fan beam, Cone beam, OPT) in the dental industry and not

    International Nuclear Information System (INIS)

    Rampado, O.

    2014-01-01

    In recent years there has been an impressive evolution and spread of cone beam tomographic equipment, in particular in the dental and maxillofacial surgery. These devices exhibit unique characteristics both from the point of view of the geometric parameters of exposure than the quality of the beams radiating employed. In parallel to this technological development it was dealt with the quantification of the dose to the patient, with a discussion between experts to define what are the variables most appropriate to use and the appropriate ways of measuring. And it is of interest also the discussion on the comparison of the risks associated with the use of this method as an alternative to traditional techniques or other tomographic techniques, both on the criteria of optimization in the realization of the tests.

  8. Brain SPECT with short focal-length cone-beam collimation

    International Nuclear Information System (INIS)

    Park, Mi-Ae; Moore, Stephen C.; Kijewski, Marie Foley

    2005-01-01

    Single-photon emission-computed tomography (SPECT) imaging of deep brain structures is compromised by loss of photons due to attenuation. We have previously shown that a centrally peaked collimator sensitivity function can compensate for this phenomenon, increasing sensitivity over most of the brain. For dual-head instruments, parallel-hole collimators cannot provide variable sensitivity without simultaneously degrading spatial resolution near the center of the brain; this suggests the use of converging collimators. We have designed collimator pairs for dual-head SPECT systems to increase sensitivity, particularly in the center of the brain, and compared the new collimation approach to existing approaches on the basis of performance in estimating activity concentration of small structures at various locations in the brain. The collimator pairs we evaluated included a cone-beam collimator, for increased sensitivity, and a fan-beam collimator, for data sufficiency. We calculated projections of an ellipsoidal uniform background, with 0.9-cm-radius spherical lesions at several locations in the background. From these, we determined ideal signal-to-noise ratios (SNR CRB ) for estimation of activity concentration within the spheres, based on the Cramer-Rao lower bound on variance. We also reconstructed, by an ordered-subset expectation-maximization (OS-EM) procedure, images of this phantom, as well as of the Zubal brain phantom, to allow visual assessment and to ensure that they were free of artifacts. The best of the collimator pairs evaluated comprised a cone-beam collimator with 20 cm focal length, for which the focal point is inside the brain, and a fan-beam collimator with 40 cm focal length. This pair yielded increased SNR CRB , compared to the parallel-parallel pair, throughout the imaging volume. The factor by which SNR CRB increased ranged from 1.1 at the most axially extreme location to 3.5 at the center. The gains in SNR CRB were relatively robust to mismatches

  9. An improved cone-beam filtered backprojection reconstruction algorithm based on x-ray angular correction and multiresolution analysis

    International Nuclear Information System (INIS)

    Sun, Y.; Hou, Y.; Yan, Y.

    2004-01-01

    With the extensive application of industrial computed tomography in the field of non-destructive testing, how to improve the quality of the reconstructed image is receiving more and more concern. It is well known that in the existing cone-beam filtered backprojection reconstruction algorithms the cone angle is controlled within a narrow range. The reason of this limitation is the incompleteness of projection data when the cone angle increases. Thus the size of the tested workpiece is limited. Considering the characteristic of X-ray cone angle, an improved cone-beam filtered back-projection reconstruction algorithm taking account of angular correction is proposed in this paper. The aim of our algorithm is to correct the cone-angle effect resulted from the incompleteness of projection data in the conventional algorithm. The basis of the correction is the angular relationship among X-ray source, tested workpiece and the detector. Thus the cone angle is not strictly limited and this algorithm may be used to detect larger workpiece. Further more, adaptive wavelet filter is used to make multiresolution analysis, which can modify the wavelet decomposition series adaptively according to the demand for resolution of local reconstructed area. Therefore the computation and the time of reconstruction can be reduced, and the quality of the reconstructed image can also be improved. (author)

  10. Comparison of two dosimetric protocols in water and solid phantoms for electron beams in an extension cone

    International Nuclear Information System (INIS)

    Genis S, R.; Garcia C, C.; Martinez A, M.

    1998-01-01

    The objective of this work is to realize the dosimetry for an extension cone for electron beams and proposing a simple and reliable procedure for this purpose. Clinically it was sufficient to employ an energy not greater than 9 MeV, by the clinical conditions of the leisure. It was had nominally 6 or 9 MeV and it was decided to employ the second energy. This cone was elaborated for special cases that by the anatomical position of the leisure, it is not allowed the easy access with the usual cones. (Author)

  11. WE-AB-207A-01: BEST IN PHYSICS (IMAGING): High-Resolution Cone-Beam CT of the Extremities and Cancellous Bone Architecture with a CMOS Detector

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Q; Brehler, M; Sisniega, A; Marinetto, E; Stayman, J; Siewerdsen, J; Zbijewski, W [Johns Hopkins University, Baltimore, MD (United States); Zyazin, A; Peters, I [Teledyne DALSA, Eindhoven (Netherlands); Yorkston, J [Carestream Health, Inc, Penfield, NY (United States)

    2016-06-15

    Purpose: Extremity cone-beam CT (CBCT) with an amorphous silicon (aSi) flat-panel detector (FPD) provides low-dose volumetric imaging with high spatial resolution. We investigate the performance of the newer complementary metal-oxide semiconductor (CMOS) detectors to enhance resolution of extremities CBCT to ∼0.1 mm, enabling morphological analysis of trabecular bone. Quantitative in-vivo imaging of bone microarchitecture could present an important advance for osteoporosis and osteoarthritis diagnosis and therapy assessment. Methods: Cascaded systems models of CMOS- and FPD-based extremities CBCT were implemented. Performance was compared for a range of pixel sizes (0.05–0.4 mm), focal spot sizes (0.3–0.6 FS), and x-ray techniques (0.05–0.8 mAs/projection) using detectability of high-, low-, and all-frequency tasks for a nonprewhitening observer. Test-bench implementation of CMOS-based extremity CBCT involved a Teledyne DALSA Xineos3030HR detector with 0.099 mm pixels and a compact rotating anode x-ray source with 0.3 FS (IMD RTM37). Metrics of bone morphology obtained using CMOS-based CBCT were compared in cadaveric specimens to FPD-based system using a Varian PaxScan4030 (0.194 mm pixels). Results: Finer pixel size and reduced electronic noise for CMOS (136 e compared to 2000 e for FPD) resulted in ∼1.9× increase in detectability for high-frequency tasks and ∼1.1× increase for all-frequency tasks. Incorporation of the new x-ray source with reduced focal spot size (0.3 FS vs. 0.5 FS used on current extremities CBCT) improved detectability for CMOS-based CBCT by ∼1.7× for high-frequency tasks. Compared to FPD CBCT, the CMOS detector yielded improved agreement with micro-CT in measurements of trabecular thickness (∼1.7× reduction in relative error), bone volume (∼1.5× reduction), and trabecular spacing (∼3.5× reduction). Conclusion: Imaging performance modelling and experimentation indicate substantial improvements for high

  12. WE-AB-207A-01: BEST IN PHYSICS (IMAGING): High-Resolution Cone-Beam CT of the Extremities and Cancellous Bone Architecture with a CMOS Detector

    International Nuclear Information System (INIS)

    Cao, Q; Brehler, M; Sisniega, A; Marinetto, E; Stayman, J; Siewerdsen, J; Zbijewski, W; Zyazin, A; Peters, I; Yorkston, J

    2016-01-01

    Purpose: Extremity cone-beam CT (CBCT) with an amorphous silicon (aSi) flat-panel detector (FPD) provides low-dose volumetric imaging with high spatial resolution. We investigate the performance of the newer complementary metal-oxide semiconductor (CMOS) detectors to enhance resolution of extremities CBCT to ∼0.1 mm, enabling morphological analysis of trabecular bone. Quantitative in-vivo imaging of bone microarchitecture could present an important advance for osteoporosis and osteoarthritis diagnosis and therapy assessment. Methods: Cascaded systems models of CMOS- and FPD-based extremities CBCT were implemented. Performance was compared for a range of pixel sizes (0.05–0.4 mm), focal spot sizes (0.3–0.6 FS), and x-ray techniques (0.05–0.8 mAs/projection) using detectability of high-, low-, and all-frequency tasks for a nonprewhitening observer. Test-bench implementation of CMOS-based extremity CBCT involved a Teledyne DALSA Xineos3030HR detector with 0.099 mm pixels and a compact rotating anode x-ray source with 0.3 FS (IMD RTM37). Metrics of bone morphology obtained using CMOS-based CBCT were compared in cadaveric specimens to FPD-based system using a Varian PaxScan4030 (0.194 mm pixels). Results: Finer pixel size and reduced electronic noise for CMOS (136 e compared to 2000 e for FPD) resulted in ∼1.9× increase in detectability for high-frequency tasks and ∼1.1× increase for all-frequency tasks. Incorporation of the new x-ray source with reduced focal spot size (0.3 FS vs. 0.5 FS used on current extremities CBCT) improved detectability for CMOS-based CBCT by ∼1.7× for high-frequency tasks. Compared to FPD CBCT, the CMOS detector yielded improved agreement with micro-CT in measurements of trabecular thickness (∼1.7× reduction in relative error), bone volume (∼1.5× reduction), and trabecular spacing (∼3.5× reduction). Conclusion: Imaging performance modelling and experimentation indicate substantial improvements for high

  13. Assessment of protocols in cone beam CT with symmetric and asymmetric beam using effective dose and Pka

    International Nuclear Information System (INIS)

    Batista, W. O.; Linhares de O, M. V.; Soares, M. R.; Maia, A. F.; Caldas, L. V. E.

    2014-08-01

    The cone beam CT is an emerging technology in dental radiology with significant differences the point of view of design technology between the various manufacturers on the world market. This study aims to evaluate and compare protocols with similar purposes in a cone beam CT scanner using TLDs and air kerma - area product (P ka ) as kerma index. Measurements were performed on two protocols used to obtain the image the maxilla-mandible in equipment Gendex GXCB 500: Protocol [GX1] extended diameter and asymmetric beam (14 cm x 8.5 cm - maxilla / mandible) and protocol [GX2] symmetrical beam (8.5 cm x 8.5 cm - maxillary / mandible). Was used LiF dosimeters (TLD 100) inserted into a female anthropomorphic phantom manufactured by Radiology Support Devices. For all protocols evaluated the value of P ka using a meter Diamentor E2 and PTW system Radcal Rapidose. The results obtained for Effective Dose / P ka these measurements were separated by protocol image. Protocol [GX1]: 44.5 μSv/478 mGy cm 2 ; protocol [GX2]: 54.8 μSv/507 mGy cm 2 . These values indicate that the relationship between the diameter of the image acquired in the protocol [GX1] and the diameter of the image in the protocol [GX2] is equal to 1.65, the Effective Dose for the first protocol has lower value at 18%. P ka values reveal very similar results between the two protocols, although, common sense leads to the interpretation that imaging protocols with field of view (Fov) of large diameters imply high values of effective dose when compared to small diameters. However, in this particular case, this is not true due to the asymmetrical beam technology. Conclude that for the cases where the scanner uses asymmetric beam to obtain images with large diameters that cover the entire face there are advantages from the point of view of reducing the exposure of patients with respect to the use of symmetrical beam and / or to Fov images with a smaller diameter. (Author)

  14. Assessment of protocols in cone beam CT with symmetric and asymmetric beam using effective dose and P{sub ka}

    Energy Technology Data Exchange (ETDEWEB)

    Batista, W. O.; Linhares de O, M. V. [Instituto Federal da Bahia, Rua Emidio dos Santos s/n, Barbalho, Salvador, 40301015 Bahia (Brazil); Soares, M. R.; Maia, A. F. [Universidade Federal de Sergipe, Departamento de Fisica, Cidade Universitaria Prof. Jose Aloisio de Campos, Marechal Rondon s/n, Jardim Rosa Elze, 49-100000 Sao Cristovao, Sergipe (Brazil); Caldas, L. V. E., E-mail: wilsonottobatista@gmail.com [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    The cone beam CT is an emerging technology in dental radiology with significant differences the point of view of design technology between the various manufacturers on the world market. This study aims to evaluate and compare protocols with similar purposes in a cone beam CT scanner using TLDs and air kerma - area product (P{sub ka}) as kerma index. Measurements were performed on two protocols used to obtain the image the maxilla-mandible in equipment Gendex GXCB 500: Protocol [GX1] extended diameter and asymmetric beam (14 cm x 8.5 cm - maxilla / mandible) and protocol [GX2] symmetrical beam (8.5 cm x 8.5 cm - maxillary / mandible). Was used LiF dosimeters (TLD 100) inserted into a female anthropomorphic phantom manufactured by Radiology Support Devices. For all protocols evaluated the value of P{sub ka} using a meter Diamentor E2 and PTW system Radcal Rapidose. The results obtained for Effective Dose / P{sub ka} these measurements were separated by protocol image. Protocol [GX1]: 44.5 μSv/478 mGy cm{sup 2}; protocol [GX2]: 54.8 μSv/507 mGy cm{sup 2}. These values indicate that the relationship between the diameter of the image acquired in the protocol [GX1] and the diameter of the image in the protocol [GX2] is equal to 1.65, the Effective Dose for the first protocol has lower value at 18%. P{sub ka} values reveal very similar results between the two protocols, although, common sense leads to the interpretation that imaging protocols with field of view (Fov) of large diameters imply high values of effective dose when compared to small diameters. However, in this particular case, this is not true due to the asymmetrical beam technology. Conclude that for the cases where the scanner uses asymmetric beam to obtain images with large diameters that cover the entire face there are advantages from the point of view of reducing the exposure of patients with respect to the use of symmetrical beam and / or to Fov images with a smaller diameter. (Author)

  15. Exploring miniature insect brains using micro-CT scanning techniques

    Science.gov (United States)

    Smith, Dylan B.; Bernhardt, Galina; Raine, Nigel E.; Abel, Richard L.; Sykes, Dan; Ahmed, Farah; Pedroso, Inti; Gill, Richard J.

    2016-01-01

    The capacity to explore soft tissue structures in detail is important in understanding animal physiology and how this determines features such as movement, behaviour and the impact of trauma on regular function. Here we use advances in micro-computed tomography (micro-CT) technology to explore the brain of an important insect pollinator and model organism, the bumblebee (Bombus terrestris). Here we present a method for accurate imaging and exploration of insect brains that keeps brain tissue free from trauma and in its natural stereo-geometry, and showcase our 3D reconstructions and analyses of 19 individual brains at high resolution. Development of this protocol allows relatively rapid and cost effective brain reconstructions, making it an accessible methodology to the wider scientific community. The protocol describes the necessary steps for sample preparation, tissue staining, micro-CT scanning and 3D reconstruction, followed by a method for image analysis using the freeware SPIERS. These image analysis methods describe how to virtually extract key composite structures from the insect brain, and we demonstrate the application and precision of this method by calculating structural volumes and investigating the allometric relationships between bumblebee brain structures. PMID:26908205

  16. 4-D Micro-CT of the Mouse Heart

    Directory of Open Access Journals (Sweden)

    Cristian T. Badea

    2005-04-01

    Full Text Available Purpose: Demonstrate noninvasive imaging methods for in vivo characterization of cardiac structure and function in mice using a micro-CT system that provides high photon fluence rate and integrated motion control. Materials and Methods: Simultaneous cardiac- and respiratory-gated micro-CT was performed in C57BL/6 mice during constant intravenous infusion of a conventional iodinated contrast agent (Isovue-370, and after a single intravenous injection of a blood pool contrast agent (Fenestra VC. Multiple phases of the cardiac cycle were reconstructed with contrast to noise and spatial resolution sufficient for quantitative assessment of cardiac function. Results: Contrast enhancement with Isovue-370 increased over time with a maximum of ~500 HU (aorta and 900 HU (kidney cortex. Fenestra VC provided more constant enhancement over 3 hr, with maximum enhancement of ~620 HU (aorta and ~90 HU (kidney cortex. The maximum enhancement difference between blood and myocardium in the heart was ~250 HU for Isovue-370 and ~500 HU for Fenestra VC. In mice with Fenestra VC, volumetric measurements of the left ventricle were performed and cardiac function was estimated by ejection fraction, stroke volume, and cardiac output. Conclusion: Image quality with Fenestra VC was sufficient for morphological and functional studies required for a standardized method of cardiac phenotyping of the mouse.

  17. Towards an inline reconstruction architecture for micro-CT systems

    International Nuclear Information System (INIS)

    Brasse, David; Humbert, Bernard; Mathelin, Carole; Rio, Marie-Christine; Guyonnet, Jean-Louis

    2005-01-01

    Recent developments in micro-CT have revolutionized the ability to examine in vivo living experimental animal models such as mouse with a spatial resolution less than 50 μm. The main requirements of in vivo imaging for biological researchers are a good spatial resolution, a low dose induced to the animal during the full examination and a reduced acquisition and reconstruction time for screening purposes. We introduce inline acquisition and reconstruction architecture to obtain in real time the 3D attenuation map of the animal fulfilling the three previous requirements. The micro-CT system is based on commercially available x-ray detector and micro-focus x-ray source. The reconstruction architecture is based on a cluster of PCs where a dedicated communication scheme combining serial and parallel treatments is implemented. In order to obtain high performance transmission rate between the detector and the reconstruction architecture, a dedicated data acquisition system is also developed. With the proposed solution, the time required to filter and backproject a projection of 2048 x 2048 pixels inside a volume of 140 mega voxels using the Feldkamp algorithm is similar to 500 ms, the time needed to acquire the same projection

  18. Dental imaging using laminar optical tomography and micro CT

    Science.gov (United States)

    Long, Feixiao; Ozturk, Mehmet S.; Intes, Xavier; Kotha, Shiva

    2014-02-01

    Dental lesions located in the pulp are quite difficult to identify based on anatomical contrast, and, hence, to diagnose using traditional imaging methods such as dental CT. However, such lesions could lead to functional and/or molecular optical contrast. Herein, we report on the preliminary investigation of using Laminar Optical Tomography (LOT) to image the pulp and root canals in teeth. LOT is a non-contact, high resolution, molecular and functional mesoscopic optical imaging modality. To investigate the potential of LOT for dental imaging, we injected an optical dye into ex vivo teeth samples and imaged them using LOT and micro-CT simultaneously. A rigid image registration between the LOT and micro-CT reconstruction was obtained, validating the potential of LOT to image molecular optical contrast deep in the teeth with accuracy, non-invasively. We demonstrate that LOT can retrieve the 3D bio-distribution of molecular probes at depths up to 2mm with a resolution of several hundred microns in teeth.

  19. Dose optimisation for intraoperative cone-beam flat-detector CT in paediatric spinal surgery

    International Nuclear Information System (INIS)

    Petersen, Asger Greval; Eiskjaer, Soeren; Kaspersen, Jon

    2012-01-01

    During surgery for spinal deformities, accurate placement of pedicle screws may be guided by intraoperative cone-beam flat-detector CT. The purpose of this study was to identify appropriate paediatric imaging protocols aiming to reduce the radiation dose in line with the ALARA principle. Using O-arm registered (Medtronic, Inc.), three paediatric phantoms were employed to measure CTDI w doses with default and lowered exposure settings. Images from 126 scans were evaluated by two spinal surgeons and scores were compared (Kappa statistics). Effective doses were calculated. The recommended new low-dose 3-D spine protocols were then used in 15 children. The lowest acceptable exposure as judged by image quality for intraoperative use was 70 kVp/40 mAs, 70 kVp/80 mAs and 80 kVp/40 mAs for the 1-, 5- and 12-year-old-equivalent phantoms respectively (kappa = 0,70). Optimised dose settings reduced CTDI w doses 89-93%. The effective dose was 0.5 mSv (91-94,5% reduction). The optimised protocols were used clinically without problems. Radiation doses for intraoperative 3-D CT using a cone-beam flat-detector scanner could be reduced at least 89% compared to manufacturer settings and still be used to safely navigate pedicle screws. (orig.)

  20. A novel image-domain-based cone-beam computed tomography enhancement algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiang; Li Tianfang; Yang Yong; Heron, Dwight E; Huq, M Saiful, E-mail: lix@upmc.edu [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232 (United States)

    2011-05-07

    Kilo-voltage (kV) cone-beam computed tomography (CBCT) plays an important role in image-guided radiotherapy. However, due to a large cone-beam angle, scatter effects significantly degrade the CBCT image quality and limit its clinical application. The goal of this study is to develop an image enhancement algorithm to reduce the low-frequency CBCT image artifacts, which are also called the bias field. The proposed algorithm is based on the hypothesis that image intensities of different types of materials in CBCT images are approximately globally uniform (in other words, a piecewise property). A maximum a posteriori probability framework was developed to estimate the bias field contribution from a given CBCT image. The performance of the proposed CBCT image enhancement method was tested using phantoms and clinical CBCT images. Compared to the original CBCT images, the corrected images using the proposed method achieved a more uniform intensity distribution within each tissue type and significantly reduced cupping and shading artifacts. In a head and a pelvic case, the proposed method reduced the Hounsfield unit (HU) errors within the region of interest from 300 HU to less than 60 HU. In a chest case, the HU errors were reduced from 460 HU to less than 110 HU. The proposed CBCT image enhancement algorithm demonstrated a promising result by the reduction of the scatter-induced low-frequency image artifacts commonly encountered in kV CBCT imaging.

  1. Assessment of simulated mandibular condyle bone lesions by cone beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Alexandre Perez; Perrella, Andreia; Arita, Emiko Saito; Pereira, Marlene Fenyo Soeiro de Matos; Cavalcanti, Marcelo de Gusmao Paraiso, E-mail: alexperez34@gmail.co [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Odontologia. Dept. de Estomatologia

    2010-10-15

    There are many limitations to image acquisition, using conventional radiography, of the temporomandibular joint (TMJ) region. The Computed Tomography (CT) scan is a better option, due to its higher accuracy, for purposes of diagnosis, surgical planning and treatment of bone injuries. The aim of the present study was to analyze two protocols of cone beam computed tomography for the evaluation of simulated mandibular condyle bone lesions. Spherical lesions were simulated in 30 dry mandibular condyles, using dentist drills and drill bits sizes 1, 3 and 6. Each of the mandibular condyles was submitted to cone beam computed tomography (CBCT) using two protocols: axial, coronal and sagittal multiplanar reconstruction (MPR); and sagittal plus coronal slices throughout the longitudinal axis of the mandibular condyles. For these protocols, 2 observers analyzed the CBCT images independently, regarding the presence or not of injuries. Only one of the observers, however, performed on 2 different occasions. The results were compared to the gold standard, evaluating the percentage of agreement, degree of accuracy of CBCT protocols and observers' examination. The z test was used for the statistical analysis. The results showed there were no statistically significant differences between the 2 protocols. There was greater difficulty in the assessment of small-size simulated lesions (drill no.1). From the results of this study, it can be concluded that CBCT is an accurate tool for analyzing mandibular condyle bone lesions, with the MPR protocol showing slightly better results than the sagittal plus coronal slices throughout the longitudinal axis. (author)

  2. Cone beam computed tomography in dentistry: what dental educators and learners should know.

    Science.gov (United States)

    Adibi, Shawn; Zhang, Wenjian; Servos, Tom; O'Neill, Paula N

    2012-11-01

    Recent advances in cone beam computed tomography (CBCT) in dentistry have identified the importance of providing outcomes related to the appropriate use of this innovative technology to practitioners, educators, and investigators. To assist in determining whether and what types of evidence exist, the authors conducted PubMed, Google, and Cochrane Library searches in the spring of 2011 using the key words "cone beam computed tomography and dentistry." This search resulted in over 26,900 entries in more than 700 articles including forty-one reviews recently published in national and international journals. This article is based on existing publications and studies and will provide readers with an overview of the advantages, disadvantages, and indications/contraindications of this emerging technology as well as some thoughts on the current educational status of CBCT in U.S. dental schools. It is the responsibility of dental educators to incorporate the most updated information on this technology into their curricula in a timely manner, so that the next generation of oral health providers and educators will be competent in utilizing this technology for the best interest of patients. To do so, there is a need to conduct studies meeting methodological standards to demonstrate the diagnostic efficacy of CBCT in the dental field.

  3. Cone Beam Computed Tomographic Evaluation of Mandibular Asymmetry in Patients with Cleft Lip and Palate.

    Science.gov (United States)

    Paknahad, Maryam; Shahidi, Shoaleh; Bahrampour, Ehsan; Beladi, Amir Saied; Khojastepour, Leila

    2018-01-01

    Objective The purpose of the present study was to compare mandibular vertical asymmetry in patients with unilateral and bilateral cleft lip and palate and subjects with normal occlusion. Materials and Methods Cone beam computed tomography scans of three groups consisting of 20 patients with unilateral cleft lip and palate, 20 patients affected by bilateral cleft lip and palate, and a control group of 20 subjects with normal occlusion were analyzed for this study. Condylar, ramal, and condylar plus ramal asymmetry indices were measured for all subjects using the method of Habets et al. Kruskal-Wallis and Mann-Whitney tests were used to determine any significant differences between the groups for all indices at the 95% level of confidence. Results There were no significant differences regarding sex for all mandibular asymmetry indices in all three groups. All Asymmetry indices (condylar, ramal, and condylar plus ramal asymmetry) were significantly higher in the unilateral cleft group compared with the other two groups. Conclusion Cone beam computed tomography images showed that patients with cleft lip and palate suffered from mandibular asymmetry. Subjects with unilateral cleft lip and palate had a more asymmetric mandible compared with the bilateral cleft lip and palate and control groups. Therefore, the mandible appears to be the leading factor in facial asymmetry in subjects with unilateral cleft lip and palate.

  4. External cervical resorption: an analysis using cone beam and microfocus computed tomography and scanning electron microscopy.

    Science.gov (United States)

    Gunst, V; Mavridou, A; Huybrechts, B; Van Gorp, G; Bergmans, L; Lambrechts, P

    2013-09-01

    To provide a three-dimensional representation of external cervical resorption (ECR) with microscopy, stereo microscopy, cone beam computed tomography (CT), microfocus CT and scanning electron microscopy (SEM). External cervical resorption is an aggressive form of root resorption, leading to a loss of dental hard tissues. This is due to clastic action, activated by a damage of the covering cementum and stimulated probably by infection. Clinically, it is a challenging situation as it is characterized by a late symptomatology. This is due to the pericanalar protection from a resorption-resistant sheet, composed of pre-dentine and surrounding dentine. The clastic activity is often associated with an attempt to repair, seen by the formation of osteoid tissue. Cone beam CT is extremely useful in the diagnoses and treatment planning of ECR. SEM analyses provide a better insight into the activity of osteoclasts. The root canal is surrounded by a layer of dentine that is resistant to resorption. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  5. Dedicated mobile volumetric cone-beam computed tomography for human brain imaging: A phantom study.

    Science.gov (United States)

    Ryu, Jong-Hyun; Kim, Tae-Hoon; Jeong, Chang-Won; Jun, Hong-Young; Heo, Dong-Woon; Lee, Jinseok; Kim, Kyong-Woo; Yoon, Kwon-Ha

    2015-01-01

    Mobile computed tomography (CT) with a cone-beam source is increasingly used in the clinical field. Mobile cone-beam CT (CBCT) has great merits; however, its clinical utility for brain imaging has been limited due to problems including scan time and image quality. The aim of this study was to develop a dedicated mobile volumetric CBCT for obtaining brain images, and to optimize the imaging protocol using a brain phantom. The mobile volumetric CBCT system was evaluated with regards to scan time and image quality, measured as signal-to-noise-ratio (SNR), contrast-to-noise-ratio (CNR), spatial resolution (10% MTF), and effective dose. Brain images were obtained using a CT phantom. The CT scan took 5.14 s at 360 projection views. SNR and CNR were 5.67 and 14.5 at 120 kV/10 mA. SNR and CNR values showed slight improvement as the x-ray voltage and current increased (p < 0.001). Effective dose and 10% MTF were 0.92 mSv and 360 μ m at 120 kV/10 mA. Various intracranial structures were clearly visible in the brain phantom images. Using this CBCT under optimal imaging acquisition conditions, it is possible to obtain human brain images with low radiation dose, reproducible image quality, and fast scan time.

  6. Derivation and implementation of a cone-beam reconstruction algorithm for nonplanar orbits

    International Nuclear Information System (INIS)

    Kudo, Hiroyuki; Saito, Tsuneo

    1994-01-01

    Smith and Grangeat derived a cone-beam inversion formula that can be applied when a nonplanar orbit satisfying the completeness condition is used. Although Grangeat's inversion formula is mathematically different from Smith's, they have similar overall structures to each other. The contribution of this paper is two-fold. First, based on the derivation of Smith, the authors point out that Grangeat's inversion formula and Smith's can be conveniently described using a single formula (the Smith-Grangeat inversion formula) that is in the form of space-variant filtering followed by cone-beam backprojection. Furthermore, the resulting formula is reformulated for data acquisition systems with a planar detector to obtain a new reconstruction algorithm. Second, the authors make two significant modifications to the new algorithm to reduce artifacts and numerical errors encountered in direct implementation of the new algorithm. As for exactness of the new algorithm, the following fact can be stated. The algorithm based on Grangeat's intermediate function is exact for any complete orbit, whereas that based on Smith's intermediate function should be considered as an approximate inverse excepting the special case where almost every plane in 3-D space meets the orbit. The validity of the new algorithm is demonstrated by simulation studies

  7. Cone-beam CT angiography of the thorax. An experimental study

    International Nuclear Information System (INIS)

    Yoshida, Katsuya; Shimada, Kazuhiro; Tadokoro, Hiroyuki

    1999-01-01

    The authors recently developed a cone-beam computed tomography (CT) scanner and this report presents their evaluation of its potential for thoracic vascular imaging. An X-ray tube and a video-fluoroscopic system were rotated around the objects and 360 projected images were collected in a 12-s scan. Each image was digitized and a 3 dimensional (D) image (256 x 256 x 256 voxel volume with a voxel dimension of 0.9 x 0.9 x 0.9 mm) was reconstructed. Two different 3D-CT angiographies were investigated in 2 pigs: right atriography and thoracic aortography. Each pig was anesthetized, mechanically ventilated and positioned within the scanner. Contrast agent was infused through the right atrium or the aortic root at a rate of 3 ml/s during the scan. The right atriography scan clearly delineated the anatomy of the pulmonary artery, heart chambers and thoracic aorta. The thoracic aortography scan also clearly delineated the aortic anatomy including the internal thoracic and intercostal arteries. In conclusion, cone-beam CT angiography is potentially useful for thoracic vascular imaging. (author)

  8. Use of cone beam computed tomography in implant dentistry: current concepts, indications and limitations for clinical practice and research.

    Science.gov (United States)

    Bornstein, Michael M; Horner, Keith; Jacobs, Reinhilde

    2017-02-01

    Diagnostic radiology is an essential component of treatment planning in the field of implant dentistry. This narrative review will present current concepts for the use of cone beam computed tomography imaging, before and after implant placement, in daily clinical practice and research. Guidelines for the selection of three-dimensional imaging will be discussed, and limitations will be highlighted. Current concepts of radiation dose optimization, including novel imaging modalities using low-dose protocols, will be presented. For preoperative cross-sectional imaging, data are still not available which demonstrate that cone beam computed tomography results in fewer intraoperative complications such as nerve damage or bleeding incidents, or that implants inserted using preoperative cone beam computed tomography data sets for planning purposes will exhibit higher survival or success rates. The use of cone beam computed tomography following the insertion of dental implants should be restricted to specific postoperative complications, such as damage of neurovascular structures or postoperative infections in relation to the maxillary sinus. Regarding peri-implantitis, the diagnosis and severity of the disease should be evaluated primarily based on clinical parameters and on radiological findings based on periapical radiographs (two dimensional). The use of cone beam computed tomography scans in clinical research might not yield any evident beneficial effect for the patient included. As many of the cone beam computed tomography scans performed for research have no direct therapeutic consequence, dose optimization measures should be implemented by using appropriate exposure parameters and by reducing the field of view to the actual region of interest. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Backscatter spectra measurements of the two beams on the same cone on Shenguang-III laser facility

    Science.gov (United States)

    Zha, Weiyi; Yang, Dong; Xu, Tao; Liu, Yonggang; Wang, Feng; Peng, Xiaoshi; Li, Yulong; Wei, Huiyue; Liu, Xiangming; Mei, Yu; Yan, Yadong; He, Junhua; Li, Zhichao; Li, Sanwei; Jiang, Xiaohua; Guo, Liang; Xie, Xufei; Pan, Kaiqiang; Liu, Shenye; Jiang, Shaoen; Zhang, Baohan; Ding, Yongkun

    2018-01-01

    In laser driven hohlraums, laser beams on the same incident cone may have different beam and plasma conditions, causing beam-to-beam backscatter difference and subsequent azimuthal variations in the x-ray drive on the capsule. To elucidate the large variation of backscatter proportion from beam to beam in some gas-filled hohlraum shots on Shenguang-III, two 28.5° beams have been measured with the Stimulated Raman Scattering (SRS) time-resolved spectra. A bifurcated fiber is used to sample two beams and then coupled to a spectrometer and streak camera combination to reduce the cost. The SRS spectra, characterized by a broad wavelength, were further corrected considering the temporal distortion and intensity modulation caused by components along the light path. This measurement will improve the understanding of the beam propagation inside the hohlraum and related laser plasma instabilities.

  10. Dose cone-beam CT alter treatment plans? Comparison of preoperative implant planning using panoramic versus cone-beam CT images

    International Nuclear Information System (INIS)

    Guerrero, Maria Eugenia; Jacobs, Reinhilde; Norge, Jorge; Castro, Carmen

    2014-01-01

    The present study was performed to compare the planning of implant placement based on panoramic radiography (PAN) and cone-beam computed tomography (CBCT) images, and to study the impact of the image dataset on the treatment planning. One hundred five partially edentulous patients (77 males, 28 females, mean age: 46 years, range: 26-67 years) seeking oral implant rehabilitation were referred for presurgical imaging. Imaging consisted of PAN and CBCT imaging. Four observers planned implant treatment based on the two-dimensional (2D) image datasets and at least one month later on the three-dimensional (3D) image dataset. Apart from presurgical diagnostic and dimensional measurement tasks, the observers needed to indicate the surgical confidence levels and assess the image quality in relation to the presurgical needs. All observers confirmed that both imaging modalities (PAN and CBCT) gave similar values when planning implant diameter. Also, the results showed no differences between both imaging modalities for the length of implants with an anterior location. However, significant differences were found in the length of implants with a posterior location. For implant dimensions, longer lengths of the implants were planned with PAN, as confirmed by two observers. CBCT provided images with improved scores for subjective image quality and surgical confidence levels. Within the limitations of this study, there was a trend toward PAN-based preoperative planning of implant placement leading towards the use of longer implants within the posterior jaw bone.

  11. Small field dose delivery evaluations using cone beam optical computed tomography-based polymer gel dosimetry

    Directory of Open Access Journals (Sweden)

    Timothy Olding

    2011-01-01

    Full Text Available This paper explores the combination of cone beam optical computed tomography with an N-isopropylacrylamide (NIPAM-based polymer gel dosimeter for three-dimensional dose imaging of small field deliveries. Initial investigations indicate that cone beam optical imaging of polymer gels is complicated by scattered stray light perturbation. This can lead to significant dosimetry failures in comparison to dose readout by magnetic resonance imaging (MRI. For example, only 60% of the voxels from an optical CT dose readout of a 1 l dosimeter passed a two-dimensional Low′s gamma test (at a 3%, 3 mm criteria, relative to a treatment plan for a well-characterized pencil beam delivery. When the same dosimeter was probed by MRI, a 93% pass rate was observed. The optical dose measurement was improved after modifications to the dosimeter preparation, matching its performance with the imaging capabilities of the scanner. With the new dosimeter preparation, 99.7% of the optical CT voxels passed a Low′s gamma test at the 3%, 3 mm criteria and 92.7% at a 2%, 2 mm criteria. The fitted interjar dose responses of a small sample set of modified dosimeters prepared (a from the same gel batch and (b from different gel batches prepared on the same day were found to be in agreement to within 3.6% and 3.8%, respectively, over the full dose range. Without drawing any statistical conclusions, this experiment gives a preliminary indication that intrabatch or interbatch NIPAM dosimeters prepared on the same day should be suitable for dose sensitivity calibration.

  12. Computerized methodology for micro-CT and histological data inflation using an IVUS based translation map.

    Science.gov (United States)

    Athanasiou, Lambros S; Rigas, George A; Sakellarios, Antonis I; Exarchos, Themis P; Siogkas, Panagiotis K; Naka, Katerina K; Panetta, Daniele; Pelosi, Gualtiero; Vozzi, Federico; Michalis, Lampros K; Parodi, Oberdan; Fotiadis, Dimitrios I

    2015-10-01

    A framework for the inflation of micro-CT and histology data using intravascular ultrasound (IVUS) images, is presented. The proposed methodology consists of three steps. In the first step the micro-CT/histological images are manually co-registered with IVUS by experts using fiducial points as landmarks. In the second step the lumen of both the micro-CT/histological images and IVUS images are automatically segmented. Finally, in the third step the micro-CT/histological images are inflated by applying a transformation method on each image. The transformation method is based on the IVUS and micro-CT/histological contour difference. In order to validate the proposed image inflation methodology, plaque areas in the inflated micro-CT and histological images are compared with the ones in the IVUS images. The proposed methodology for inflating micro-CT/histological images increases the sensitivity of plaque area matching between the inflated and the IVUS images (7% and 22% in histological and micro-CT images, respectively). Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Dual-energy attenuation coefficient decomposition with differential filtration and application to a microCT scanner

    International Nuclear Information System (INIS)

    Taschereau, R; Silverman, R W; Chatziioannou, A F

    2010-01-01

    Dual-energy x-ray computed tomography (DECT) has the capability to decompose attenuation coefficients using two basis functions and has proved its potential in reducing beam-hardening artifacts from reconstructed images. The method typically involves two successive scans with different x-ray tube voltage settings. This work proposes an approach to dual-energy imaging through x-ray beam filtration that requires only one scan and a single tube voltage setting. It has been implemented in a preclinical microCT tomograph with minor modifications. Retrofitting of the microCT scanner involved the addition of an automated filter wheel and modifications to the acquisition and reconstruction software. Results show that beam-hardening artifacts are reduced to noise level. Acquisition of a μ-Compton image is well suited for attenuation-correction of PET images while dynamic energy selection (4D viewing) offers flexibility in image viewing by adjusting contrast and noise levels to suit the task at hand. All dual-energy and single energy reference scans were acquired at the same soft tissue dose level of 50 mGy.

  14. Dual-energy attenuation coefficient decomposition with differential filtration and application to a microCT scanner

    Energy Technology Data Exchange (ETDEWEB)

    Taschereau, R; Silverman, R W; Chatziioannou, A F [Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States)], E-mail: rtaschereau@mednet.ucla.edu

    2010-02-21

    Dual-energy x-ray computed tomography (DECT) has the capability to decompose attenuation coefficients using two basis functions and has proved its potential in reducing beam-hardening artifacts from reconstructed images. The method typically involves two successive scans with different x-ray tube voltage settings. This work proposes an approach to dual-energy imaging through x-ray beam filtration that requires only one scan and a single tube voltage setting. It has been implemented in a preclinical microCT tomograph with minor modifications. Retrofitting of the microCT scanner involved the addition of an automated filter wheel and modifications to the acquisition and reconstruction software. Results show that beam-hardening artifacts are reduced to noise level. Acquisition of a {mu}-Compton image is well suited for attenuation-correction of PET images while dynamic energy selection (4D viewing) offers flexibility in image viewing by adjusting contrast and noise levels to suit the task at hand. All dual-energy and single energy reference scans were acquired at the same soft tissue dose level of 50 mGy.

  15. In-line phase contrast micro-CT reconstruction for biomedical specimens.

    Science.gov (United States)

    Fu, Jian; Tan, Renbo

    2014-01-01

    X-ray phase contrast micro computed tomography (micro-CT) can non-destructively provide the internal structure information of soft tissues and low atomic number materials. It has become an invaluable analysis tool for biomedical specimens. Here an in-line phase contrast micro-CT reconstruction technique is reported, which consists of a projection extraction method and the conventional filter back-projection (FBP) reconstruction algorithm. The projection extraction is implemented by applying the Fourier transform to the forward projections of in-line phase contrast micro-CT. This work comprises a numerical study of the method and its experimental verification using a biomedical specimen dataset measured at an X-ray tube source micro-CT setup. The numerical and experimental results demonstrate that the presented technique can improve the imaging contrast of biomedical specimens. It will be of interest for a wide range of in-line phase contrast micro-CT applications in medicine and biology.

  16. Evaluation of artifacts generated by zirconium implants in cone-beam computed tomography images.

    Science.gov (United States)

    Vasconcelos, Taruska Ventorini; Bechara, Boulos B; McMahan, Clyde Alex; Freitas, Deborah Queiroz; Noujeim, Marcel

    2017-02-01

    To evaluate zirconium implant artifact production in cone beam computed tomography images obtained with different protocols. One zirconium implant was inserted in an edentulous mandible. Twenty scans were acquired with a ProMax 3D unit (Planmeca Oy, Helsinki, Finland), with acquisition settings ranging from 70 to 90 peak kilovoltage (kVp) and voxel sizes of 0.32 and 0.16 mm. A metal artifact reduction (MAR) tool was activated in half of the scans. An axial slice through the middle region of the implant was selected for each dataset. Gray values (mean ± standard deviation) were measured in two regions of interest, one close to and the other distant from the implant (control area). The contrast-to-noise ratio was also calculated. Standard deviation decreased with greater kVp and when the MAR tool was used. The contrast-to-noise ratio was significantly higher when the MAR tool was turned off, except for low resolution with kVp values above 80. Selection of the MAR tool and greater kVp resulted in an overall reduction of artifacts in images acquired with low resolution. Although zirconium implants do produce image artifacts in cone-bean computed tomography scans, the setting that best controlled artifact generation by zirconium implants was 90 kVp at low resolution and with the MAR tool turned on. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. MicroCT vs. Hg porosimetry: microporosity in commercial stones

    Science.gov (United States)

    Fusi, N.; Martinez-Martinez, J.; Barberini, V.; Galimberti, L.

    2009-04-01

    have been cut and scanned by means of a X ray microCT system before and after mercury saturation with Hg porosimeter. The microCT system used is a BIR Actis 130/150 with nominal resolution of 5 micron; for our samples resolution is of 25 microns. Generator and detector are fixed, while the sample rotates; the scanning plane is horizontal. Samples reduce the X rays energy passing through, as a function of its density and atomic number. X rays are then collected on a detector, which converts them into light radiations; a digital camera collects light radiations in raw data and send them to the computer, where they are processed as black/white images. The Hg porosimeter used is a Pascal 140/240 Thermo Fisher. Samples were first degassed and then intruded by Hg. Apparent density, bulk density, porosity and open pore size distribution (pore diameter between 3.7 and 58000 nm) of each sample have been computed using the PASCAL (Pressurization with Automatic Speed-up by Continuous Adjustametnt Logic) method and the Washburn equation; this equation assumes: cylindrical pores, a contact angle between mercury and sample of 140°, a surface tension of mercury vacuum of 0,480 N/m and mercury density equal to 13.5 g/cm³. MicroCT images and porosity data from Hg porosimeter have been compared by several authors both for rocks (Klobes et alii, 1997) and for artificial materials with medical applications (Lin-Gibson et alii, 2007) In samples with no density/composition differences microCT images are homogeneous and gives no information on the internal structure of the sample. This is the case of massive samples (such as BA, BT, GM and TB) and of samples without any significant density differences between clasts and matrix (A and BS) or rock and veins (RC). MicroCT images of the same sample after mercury saturation offer a detailed map of microporosity of the rock, due to the high density contrast between mercury (13.6 g/cm3) and the rock (2.71 g/cm3 for calcite and 2.86 g/cm3 for

  18. Passive breath gating equipment for cone beam CT-guided RapidArc gastric cancer treatments

    International Nuclear Information System (INIS)

    Hu, Weigang; Li, Guichao; Ye, Jinsong; Wang, Jiazhou; Peng, Jiayuan; Gong, Min; Yu, Xiaoli; Studentski, Matthew T.; Xiao, Ying; Zhang, Zhen

    2015-01-01

    Background and purpose: To report preliminary results of passive breath gating (PBG) equipment for cone-beam CT image-guided gated RapidArc gastric cancer treatments. Material and methods: Home-developed PBG equipment integrated with the real-time position management system (RPM) for passive patient breath hold was used in CT simulation, online partial breath hold (PBH) CBCT acquisition, and breath-hold gating (BHG) RapidArc delivery. The treatment was discontinuously delivered with beam on during BH and beam off for free breathing (FB). Pretreatment verification PBH CBCT was obtained with the PBG-RPM system. Additionally, the reproducibility of the gating accuracy was evaluated. Results: A total of 375 fractions of breath-hold gating RapidArc treatments were successfully delivered and 233 PBH CBCTs were available for analysis. The PBH CBCT images were acquired with 2–3 breath holds and 1–2 FB breaks. The imaging time was the same for PBH CBCT and conventional FB CBCT (60 s). Compared to FB CBCT, the motion artifacts seen in PBH CBCT images were remarkably reduced. The average BHG RapidArc delivery time was 103 s for one 270-degree arc and 269 s for two full arcs. Conclusions: The PBG-RPM based PBH CBCT verification and BHG RapidArc delivery was successfully implemented clinically. The BHG RapidArc treatment was accomplished using a conventional RapidArc machine with high delivery efficiency

  19. Influence of lead apron shielding on absorbed doses from cone-beam computed tomography.

    Science.gov (United States)

    Rottke, Dennis; Andersson, Jonas; Ejima, Ken-Ichiro; Sawada, Kunihiko; Schulze, Dirk

    2017-06-01

    The aim of the present work was to investigate absorbed and to calculate effective doses (EDs) in cone-beam computed tomography (CBCT). The study was conducted using examination protocols with and without lead apron shielding. A full-body male RANDO® phantom was loaded with 110 GR200A thermoluminescence dosemeter chips at 55 different sites and set up in two different CBCT systems (CS 9500®, ProMax® 3D). Two different protocols were performed: the phantom was set up (1) with and (2) without a lead apron. No statistically significant differences in organ and absorbed doses from regions outside the primary beam could be found when comparing results from exposures with and without lead apron shielding. Consequently, calculating the ED showed no significant differences between the examination protocols with and without lead apron shielding. For the ProMax® 3D with shielding, the ED was 149 µSv, and for the examination protocol without shielding 148 µSv (SD = 0.31 µSv). For the CS 9500®, the ED was 88 and 86 µSv (SD = 0.95 µSv), respectively, with and without lead apron shielding. The results revealed no statistically significant differences in the absorbed doses between examination with and without lead apron shielding, especially in organs outside the primary beam. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Influence of lead apron shielding on absorbed doses from cone-beam computed tomography

    International Nuclear Information System (INIS)

    Rottke, Dennis; Andersson, Jonas; Ejima, Ken-Ichiro; Sawada, Kunihiko; Schulze, Dirk

    2017-01-01

    The aim of the present work was to investigate absorbed and to calculate effective doses (EDs) in cone-beam computed tomography (CBCT). The study was conducted using examination protocols with and without lead apron shielding. A full-body male RANDO"R phantom was loaded with 110 GR200A thermoluminescence dosemeter chips at 55 different sites and set up in two different CBCT systems (CS 9500"R, ProMax"R 3D). Two different protocols were performed: the phantom was set up (1) with and (2) without a lead apron. No statistically significant differences in organ and absorbed doses from regions outside the primary beam could be found when comparing results from exposures with and without lead apron shielding. Consequently, calculating the ED showed no significant differences between the examination protocols with and without lead apron shielding. For the ProMax"R 3D with shielding, the ED was 149 μSv, and for the examination protocol without shielding 148 μSv (SD = 0.31 μSv). For the CS 9500"R, the ED was 88 and 86 μSv (SD = 0.95 μSv), respectively, with and without lead apron shielding. The results revealed no statistically significant differences in the absorbed doses between examination with and without lead apron shielding, especially in organs outside the primary beam. (authors)

  1. An Efficient Estimation Method for Reducing the Axial Intensity Drop in Circular Cone-Beam CT

    Directory of Open Access Journals (Sweden)

    Lei Zhu

    2008-01-01

    Full Text Available Reconstruction algorithms for circular cone-beam (CB scans have been extensively studied in the literature. Since insufficient data are measured, an exact reconstruction is impossible for such a geometry. If the reconstruction algorithm assumes zeros for the missing data, such as the standard FDK algorithm, a major type of resulting CB artifacts is the intensity drop along the axial direction. Many algorithms have been proposed to improve image quality when faced with this problem of data missing; however, development of an effective and computationally efficient algorithm remains a major challenge. In this work, we propose a novel method for estimating the unmeasured data and reducing the intensity drop artifacts. Each CB projection is analyzed in the Radon space via Grangeat's first derivative. Assuming the CB projection is taken from a parallel beam geometry, we extract those data that reside in the unmeasured region of the Radon space. These data are then used as in a parallel beam geometry to calculate a correction term, which is added together with Hu’s correction term to the FDK result to form a final reconstruction. More approximations are then made on the calculation of the additional term, and the final formula is implemented very efficiently. The algorithm performance is evaluated using computer simulations on analytical phantoms. The reconstruction comparison with results using other existing algorithms shows that the proposed algorithm achieves a superior performance on the reduction of axial intensity drop artifacts with a high computation efficiency.

  2. Current status of dental caries diagnosis using cone beam computed tomography

    International Nuclear Information System (INIS)

    Park, Young Seok; Ahn, Jin Soo; Kwon, Ho Beom; Lee, Seung Pyo

    2011-01-01

    The purpose of this article is to review the current status of dental caries diagnosis using cone beam computed tomography (CBCT). An online PubMed search was performed to identify studies on caries research using CBCT. Despite its usefulness, there were inherent limitations in the detection of caries lesions through conventional radiograph mainly due to the two-dimensional (2D) representation of caries lesions. Several efforts were made to investigate the three-dimensional (3D) image of lesion, only to gain little popularity. Recently, CBCT was introduced and has been used for diagnosis of caries in several reports. Some of them maintained the superiority of CBCT systems, however it is still under controversies. The CBCT systems are promising, however they should not be considered as a primary choice of caries diagnosis in everyday practice yet. Further studies under more standardized condition should be performed in the near future.

  3. Impact of cone-beam computed tomography on implant planning and on prediction of implant size

    International Nuclear Information System (INIS)

    Pedroso, Ludmila Assuncao de Mello; Silva, Maria Alves Garcia Santos; Garcia, Robson Rodrigues; Leles, Jose Luiz Rodrigues; Leles, Claudio Rodrigues

    2013-01-01

    The aim was to investigate the impact of cone-beam computed tomography (CBCT) on implant planning and on prediction of final implant size. Consecutive patients referred for implant treatment were submitted to clinical examination, panoramic (PAN) radiography and a CBCT exam. Initial planning of implant length and width was assessed based on clinical and PAN exams, and final planning, on CBCT exam to complement diagnosis. The actual dimensions of the implants placed during surgery were compared with those obtained during initial and final planning, using the McNemmar test (p 0.05). It was concluded that CBCT improves the ability of predicting the actual implant length and reduces inaccuracy in surgical dental implant planning. (author)

  4. Cone Beam Computed Tomography (CBCT) in the Field of Interventional Oncology of the Liver

    Energy Technology Data Exchange (ETDEWEB)

    Bapst, Blanche, E-mail: blanchebapst@hotmail.com; Lagadec, Matthieu, E-mail: matthieu.lagadec@bjn.aphp.fr [Beaujon Hospital, University Hospitals Paris Nord Val de Seine, Beaujon, Department of Radiology (France); Breguet, Romain, E-mail: romain.breguet@hcuge.ch [University Hospital of Geneva (Switzerland); Vilgrain, Valérie, E-mail: Valerie.vilgrain@bjn.aphp.fr; Ronot, Maxime, E-mail: maxime.ronot@bjn.aphp.fr [Beaujon Hospital, University Hospitals Paris Nord Val de Seine, Beaujon, Department of Radiology (France)

    2016-01-15

    Cone beam computed tomography (CBCT) is an imaging modality that provides computed tomographic images using a rotational C-arm equipped with a flat panel detector as part of the Angiography suite. The aim of this technique is to provide additional information to conventional 2D imaging to improve the performance of interventional liver oncology procedures (intraarterial treatments such as chemoembolization or selective internal radiation therapy, and percutaneous tumor ablation). CBCT provides accurate tumor detection and targeting, periprocedural guidance, and post-procedural evaluation of treatment success. This technique can be performed during intraarterial or intravenous contrast agent administration with various acquisition protocols to highlight liver tumors, liver vessels, or the liver parenchyma. The purpose of this review is to present an extensive overview of published data on CBCT in interventional oncology of the liver, for both percutaneous ablation and intraarterial procedures.

  5. A limited cone-beam CT for dental, head and neck regions

    International Nuclear Information System (INIS)

    Kirimura, Susumu

    2004-01-01

    Recently, limited cone-beam CTs for dental or head-and-neck regions, which utilize two-dimensional X-ray detectors, have been gaining popularity. With one single rotation, they provide high-resolution volumetric data of a small region, which is suitable for specialized medical applications in the dental and otorhinolaryngology fields. It is particularly useful in visualizing small structures such as temporal, maxilla or mandibula bones. Since the imaging area is limited to a small but sufficient region, it can reduce unnecessary X-ray exposure to the patient. As the entire system is designed to be space-efficient compared to existing CT systems in the field, it is possible fit the unit into a small clinic. This type of device can be a far more practical and useful tool than an existing CT for special applications requiring detailed imaging of the fine bone structures of teeth, the middle ear, etc. (author)

  6. Quality assessment and enhancement for cone-beam computed tomography in dental imaging

    International Nuclear Information System (INIS)

    Jeon, Sung Chae

    2006-02-01

    Cone-beam CT will become increasingly important in diagnostic imaging modality in the dental practice over the next decade. For dental diagnostic imaging, cone-beam computed tomography (CBCT) system based on large area flat panel imager has been designed and developed for three-dimensional volumetric image. The new CBCT system can provide a 3-D volumetric image during only one circular scanning with relatively short times (20-30 seconds) and requires less radiation dose than that of conventional CT. To reconstruct volumetric image from 2-D projection images, FDK algorithm was employed. The prototype of our CBCT system gives the promising results that can be efficiently diagnosed. This dissertation deals with assessment, enhancement, and optimization for dental cone-beam computed tomography with high performance. A new blur estimation method was proposed, namely model based estimation algorithm. Based on the empirical model of the PSF, an image restoration is applied to radiological images. The accuracy of the PSF estimation under Poisson noise and readout electronic noise is significantly better for the R-L estimator than the Wiener estimator. In the image restoration experiment, the result showed much better improvement in the low and middle range of spatial frequency. Our proposed algorithm is more simple and effective method to determine 2-D PSF of the x-ray imaging system than traditional methods. Image based scatter correction scheme to reduce the scatter effects was proposed. This algorithm corrects scatter on projection images based on convolution, scatter fraction, and angular interpolation. The scatter signal was estimated by convolving a projection image with scatter point spread function (SPSF) followed by multiplication with scatter fraction. Scatter fraction was estimated using collimator which is similar to SPECS method. This method does not require extra x-ray dose and any additional phantom. Maximum estimated error for interpolation was less than 7

  7. Cone beam volume tomography: an imaging option for diagnosis of complex mandibular third molar anatomical relationships.

    Science.gov (United States)

    Danforth, Robert A; Peck, Jerry; Hall, Paul

    2003-11-01

    Complex impacted third molars present potential treatment complications and possible patient morbidity. Objectives of diagnostic imaging are to facilitate diagnosis, decision making, and enhance treatment outcomes. As cases become more complex, advanced multiplane imaging methods allowing for a 3-D view are more likely to meet these objectives than traditional 2-D radiography. Until recently, advanced imaging options were somewhat limited to standard film tomography or medical CT, but development of cone beam volume tomography (CBVT) multiplane 3-D imaging systems specifically for dental use now provides an alternative imaging option. Two cases were utilized to compare the role of CBVT to these other imaging options and to illustrate how multiplane visualization can assist the pretreatment evaluation and decision-making process for complex impacted mandibular third molar cases.

  8. Generation of three-dimensional prototype models based on cone beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lambrecht, J.T.; Berndt, D.C.; Zehnder, M. [University of Basel, Department of Oral Surgery, University Hospital for Oral Surgery, Oral Radiology and Oral Medicine, Basel (Switzerland); Schumacher, R. [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Institute for Medical and Analytical Technologies, Muttenz (Switzerland)

    2009-03-15

    The purpose of this study was to generate three-dimensional models based on digital volumetric data that can be used in basic and advanced education. Four sets of digital volumetric data were established by cone beam computed tomography (CBCT) (Accuitomo, J. Morita, Kyoto, Japan). Datasets were exported as Dicom formats and imported into Mimics and Magic software programs to separate the different tissues such as nerve, tooth and bone. These data were transferred to a Polyjet 3D Printing machine (Eden 330, Object, Israel) to generate the models. Three-dimensional prototype models of certain limited anatomical structures as acquired volumetrically were fabricated. Generating three-dimensional models based on CBCT datasets is possible. Automated routine fabrication of these models, with the given infrastructure, is too time-consuming and therefore too expensive. (orig.)

  9. Generation of three-dimensional prototype models based on cone beam computed tomography

    International Nuclear Information System (INIS)

    Lambrecht, J.T.; Berndt, D.C.; Zehnder, M.; Schumacher, R.

    2009-01-01

    The purpose of this study was to generate three-dimensional models based on digital volumetric data that can be used in basic and advanced education. Four sets of digital volumetric data were established by cone beam computed tomography (CBCT) (Accuitomo, J. Morita, Kyoto, Japan). Datasets were exported as Dicom formats and imported into Mimics and Magic software programs to separate the different tissues such as nerve, tooth and bone. These data were transferred to a Polyjet 3D Printing machine (Eden 330, Object, Israel) to generate the models. Three-dimensional prototype models of certain limited anatomical structures as acquired volumetrically were fabricated. Generating three-dimensional models based on CBCT datasets is possible. Automated routine fabrication of these models, with the given infrastructure, is too time-consuming and therefore too expensive. (orig.)

  10. Slice image pretreatment for cone-beam computed tomography based on adaptive filter

    International Nuclear Information System (INIS)

    Huang Kuidong; Zhang Dinghua; Jin Yanfang

    2009-01-01

    According to the noise properties and the serial slice image characteristics in Cone-Beam Computed Tomography (CBCT) system, a slice image pretreatment for CBCT based on adaptive filter was proposed. The judging criterion for the noise is established firstly. All pixels are classified into two classes: adaptive center weighted modified trimmed mean (ACWMTM) filter is used for the pixels corrupted by Gauss noise and adaptive median (AM) filter is used for the pixels corrupted by impulse noise. In ACWMTM filtering algorithm, the estimated Gauss noise standard deviation in the current slice image with offset window is replaced by the estimated standard deviation in the adjacent slice image to the current with the corresponding window, so the filtering accuracy of the serial images is improved. The pretreatment experiment on CBCT slice images of wax model of hollow turbine blade shows that the method makes a good performance both on eliminating noises and on protecting details. (authors)

  11. Indications for cone beam computed tomography in children and young patients in a Turkish subpopulation.

    Science.gov (United States)

    İşman, Özlem; Yılmaz, Hasan Hüseyin; Aktan, Ali Murat; Yilmaz, Büşra

    2017-05-01

    Cone beam computed tomography (CBCT) imaging is widely used in children; however, it remains controversial because of the health effects of radiation. This retrospective study investigated the indications for CBCT and dentomaxillofacial pathologies in paediatric patients. CBCT images of 329 paediatric patients (i.e., aged anomalies (38.5%), followed by the localisation of impacted teeth (33.1%). There was no relationship between sex and indications. There were significant associations between age groups and malocclusion and dentomaxillofacial anomalies, localisation of impacted teeth, and trauma. The face was the most frequently imaged region, followed by the jaws (maxilla and mandible). The most common indication for CBCT was malocclusion and dentomaxillofacial anomalies in the primary and permanent dentition age groups, whereas the localisation of impacted teeth was the most common indication in the mixed dentition age group. Generally, CBCT was indicated in orthodontics and surgery. © 2016 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Evaluation of canalis basilaris medianus using cone-beam computed tomography

    International Nuclear Information System (INIS)

    Syed, Ali Z.; Zahedpasha, Samir; Rathore, Sonali A.; Mupparapu, Mel

    2016-01-01

    The aim of this report is to present two cases of canalis basilaris medianus as identified on cone-beam computed tomography (CBCT) in the base of the skull. The CBCT data sets were sent for radiographic consultation. In both cases, multi-planar views revealed an osseous defect in the base of the skull in the clivus region, the sagittal view showed a unilateral, well-defined, non-corticated, track-like low-attenuation osseous defect in the clivus. The appearance of the defect was highly reminiscent of a fracture of the clivus. The borders of osseous defect were smooth, and no other radiographic signs suggestive of osteolytic destructive processes were noted. Based on the overall radiographic examination, a radiographic impression of canalis basilaris medianus was made. Canalis basilaris medianus is a rare anatomical variant and is generally observed on the clivus. Due to its potential association with meningitis, it should be recognized and reported to avoid potential complications

  13. [Use of Cone Beam Computed Tomography in endodontics: rational case selection criteria].

    Science.gov (United States)

    Rosen, E; Tsesis, I

    2016-01-01

    To present rational case selection criteria for the use of CBCT (Cone Beam Computed Tomography) in endodontics. This article reviews the literature concerning the benefits of CBCT in endodontics, alongside its radiation risks, and present case selection criteria for referral of endodontic patients to CBCT. Up to date, the expected ultimate benefit of CBCT to the endodontic patient is yet uncertain, and the current literature is mainly restricted to its technical efficacy. In addition, the potential radiation risks of CBCT scan are stochastic in nature and uncertain, and are worrying especially in pediatric patients. Both the efficacy of CBCT in supporting the endodontic practitioner decision making and in affecting treatment outcomes, and its long term potential radiation risks are yet uncertain. Therefore, a cautious rational decision making is essential when a CBCT scan is considered in endodontics. Risk-benefit considerations are presented.

  14. Using condition and usefulness of dental cone-beam CT in endodontic treatment

    International Nuclear Information System (INIS)

    Kimura, Yuichi; Araki, Kazuyuki; Yamada, Yoshishige; Tagaya, Atsuko; Seki, Kenji; Okano, Tomohiro; Endo, Atsushi

    2009-01-01

    This study evaluated the condition and usefulness of the dental cone-beam CT (3DX) in clinical endodontic treatments. Images from 55 examinations of 49 patients obtained using 3DX during an 11-month period were evaluated retrospectively to identify the usefulness of this modality compared with periapical or panoramic radiographs. The main indication for using of 3DX was diagnosis of root fracture in 65% of the examinations, second was the presence and expansion of periapical lesion in 22%, and third was to detect the canal system or root abnormality in 13%. The 3DX visualizes bony anatomical structures precisely and detects the presence and expansion of periapical lesions and the canal system of each root of mulirooted teeth that cannot easily be observed by intraoral radiography or panoramic radiography. The results of this study suggest that 3DX is a useful and reliable tool for endodontic treatments. (author)

  15. Effects of four instruments on coronal pre-enlargement by using cone beam computed tomography.

    Science.gov (United States)

    Sanfelice, Cintia Mussoline; da Costa, Fernanda Botega; Reis Só, Marcus Vinícius; Vier-Pelisser, Fabiana; Souza Bier, Carlos Alexandre; Grecca, Fabiana Soares

    2010-05-01

    This ex vivo study used cone beam computed tomography to evaluate the amount of dentin removal from the distal wall of the mesial canal of human mandibular first molars caused by 4 instruments used to flare the cervical third. Thirty-two mesial roots were divided into 4 groups prepared by using ProTaper, K3, Gates-Glidden, or LA Axxess. The dentin thickness of the distal cervical wall of mesial canals was measured before and after the preparation by using computed tomography and Adobe Photoshop software. There was no statistically significant difference between the study groups (P > 05). All the instruments used for cervical preparation seemed to be safe and did not damage the dentin structure of the distal wall of mesial root canals of mandibular molars. Copyright (c) 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Implementation techniques and acceleration of DBPF reconstruction algorithm based on GPGPU for helical cone beam CT

    International Nuclear Information System (INIS)

    Shen Le; Xing Yuxiang

    2010-01-01

    The derivative back-projection filtered algorithm for a helical cone-beam CT is a newly developed exact reconstruction method. Due to its large computational complexity, the reconstruction is rather slow for practical use. General purpose graphic processing unit (GPGPU) is an SIMD paralleled hardware architecture with powerful float-point operation capacity. In this paper,we propose a new method for PI-line choice and sampling grid, and a paralleled PI-line reconstruction algorithm implemented on NVIDIA's Compute Unified Device Architecture (CUDA). Numerical simulation studies are carried out to validate our method. Compared with conventional CPU implementation, the CUDA accelerated method provides images of the same quality with a speedup factor of 318. Optimization strategies for the GPU acceleration are presented. Finally, influence of the parameters of the PI-line samples on the reconstruction speed and image quality is discussed. (authors)

  17. Generalized algorithm for X-ray projections generation in cone-beam tomography

    International Nuclear Information System (INIS)

    Qin Zhongyuan; Mu Xuanqin; Wang Ping; Cai Yuanlong; Hou Chuanjian

    2002-01-01

    In order to get rid of random factors in the measurement so as to support proceeding 3D reconstruction, a general approach is presented to obtain the X-ray projections in cone-beam tomography. The phantom is firstly discretized into cubic volume through inverse transformation then a generalized projection procedure is proposed to the digitized result without concerning what the phantom exactly is. In the second step, line integrals are calculated to obtain the projection of each X-ray through accumulation of tri-linear interpolation. Considering projection angles, a rotation matrix is proposed to the X-ray source and the detector plane so projections in arbitrary angles can be got. In this approach the algorithm is easy to be extended and irregular objects can also be processed. The algorithm is implemented in Visual C++ and experiments are done using different models. Satisfactory results are obtained. It makes good preparation for the proceeding reconstruction

  18. Developmental salivary gland depression in the ascending mandibular ramous: A cone-beam computed tomography study

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Christine A.; Ahn, Yoon Hee; Odell, Scott; Mupparapu, Mel; Graham, David Mattew [University of Pennsylvania School of Dental Medicine, Philadelphia (United States)

    2016-09-15

    A static, unilateral, and focal bone depression located lingually within the ascending ramous, identical to the Stafne's bone cavity of the angle of the mandible, is being reported. During development of the mandible, submandibular gland inclusion may lead to the formation of a lingual concavity, which could contain fatty tissue, blood vessels, or soft tissue. However, similar occurrences in the ascending ramous at the level of the parotid gland are extremely rare. Similar cases were previously reported in dry, excavated mandibles, and 3 cases were reported in living patients. A 52-year-old African American male patient was seen for pain in the mandibular teeth. Panoramic radiography showed an unusual concavity within the left ascending ramous. Cone-beam computed tomography confirmed this incidental finding. The patient was cleared for the extraction of non-restorable teeth and scheduled for annual follow-up.

  19. [Comparison of root resorption between self-ligating and conventional brackets using cone-beam CT].

    Science.gov (United States)

    Liu, Yun; Guo, Hong-ming

    2016-04-01

    To analyze the differences of root resorption between passive self-ligating and conventional brackets, and to determine the relationship between passive self-ligating brackets and root resorption. Fifty patients were randomly divided into 2 groups using passive self-ligating brackets or conventional straight wire brackets (0.022 system), respectively. Cone-beam CT was taken before and after treatment. The amount of external apical root resorption of maxillary incisors was measured on CBCT images. Student's t test was performed to analyze the differences of root apical resorption between the 2 groups with SPSS17.0 software package. No significant difference(P> 0.05) in root resorption of maxillary incisors was found between passive self-ligating brackets and conventional brackets. Passive self-ligating brackets and conventional brackets can cause root resorption, but the difference was not significant. Passive self-ligating brackets do not induce more root resorption.

  20. Ameloblastic fibro-odontoma of maxilla with its analysis on cone beam computed tomography

    Directory of Open Access Journals (Sweden)

    Karan R Shah

    2017-01-01

    Full Text Available The ameloblastic fibro-odontoma (AFO is a rare mixed odontogenic tumor which shows properties of both ameloblastic fibroma and odontoma. It commonly affects children and young adults. In most cases, it is asymptomatic but may cause painless, slow growing swelling and discomfort. Radiologically, it is a well-circumscribed, mixed radiopaque and radiolucent entity consisting of radiolucency within which radiopaque foci of various sizes and shapes are seen. Histological examination shows both hard and soft tissue. The treatment of AFO usually conservative due to their benign biological behavior and consists of enucleation or surgical curettage. The purpose of this article is to present a case of an AFO in the posterior maxilla, along with discussion on clinical, radiological (including cone beam computed tomography scan, histological findings, and treatment of this tumor.

  1. Projection matrix acquisition for cone-beam computed tomography iterative reconstruction

    Science.gov (United States)

    Yang, Fuqiang; Zhang, Dinghua; Huang, Kuidong; Shi, Wenlong; Zhang, Caixin; Gao, Zongzhao

    2017-02-01

    Projection matrix is an essential and time-consuming part in computed tomography (CT) iterative reconstruction. In this article a novel calculation algorithm of three-dimensional (3D) projection matrix is proposed to quickly acquire the matrix for cone-beam CT (CBCT). The CT data needed to be reconstructed is considered as consisting of the three orthogonal sets of equally spaced and parallel planes, rather than the individual voxels. After getting the intersections the rays with the surfaces of the voxels, the coordinate points and vertex is compared to obtain the index value that the ray traversed. Without considering ray-slope to voxel, it just need comparing the position of two points. Finally, the computer simulation is used to verify the effectiveness of the algorithm.

  2. Anatomical Variation of the Maxillary Sinus in Cone Beam Computed Tomography

    Directory of Open Access Journals (Sweden)

    Marcelo Lupion Poleti

    2014-01-01

    Full Text Available Purpose. The aim of this paper is to report a case in which the cone beam computed tomography (CBCT was important for the confirmation of the presence of maxillary sinus septum and, therefore, the absence of a suspected pathologic process. Case Description. A 27-year-old male patient was referred for the assessment of a panoramic radiograph displaying a radiolucent area with radiopaque border located in the apical region of the left upper premolars. The provisional diagnosis was either anatomical variation of the maxillary sinuses or a bony lesion. Conclusion. The CBCT was important for an accurate assessment and further confirmation of the presence of maxillary septum, avoiding unnecessary surgical explorations.

  3. Rare finding of Eustachian tube calcifications with cone-beam computed tomography.

    Science.gov (United States)

    Syed, Ali Z; Hawkins, Anna; Alluri, Leela Subashini; Jadallah, Buthainah; Shahid, Kiran; Landers, Michael; Assaf, Hussein M

    2017-12-01

    Soft tissue calcification is a pathological condition in which calcium and phosphate salts are deposited in the soft tissue organic matrix. This study presents an unusual calcification noted in the cartilaginous portion of the Eustachian tube. A 67-year-old woman presented for dental treatment, specifically for implant placement, and cone-beam computed tomography (CBCT) was performed. The CBCT scan was reviewed by a board-certified oral and maxillofacial radiologist and revealed incidental findings of 2 distinct calcifications in the cartilaginous portion of the Eustachian tube. To the authors' knowledge, no previous study has reported the diagnosis of Eustachian tube calcification using CBCT. This report describes an uncommon variant of Eustachian tube calcification, which has a significant didactic value because such cases are seldom illustrated either in textbooks or in the literature. This case once again underscores the importance of having CBCT scans evaluated by a board-certified oral and maxillofacial radiologist.

  4. Excitation-resolved cone-beam x-ray luminescence tomography.

    Science.gov (United States)

    Liu, Xin; Liao, Qimei; Wang, Hongkai; Yan, Zhuangzhi

    2015-07-01

    Cone-beam x-ray luminescence computed tomography (CB-XLCT), as an emerging imaging technique, plays an important role in in vivo small animal imaging studies. However, CB-XLCT suffers from low-spatial resolution due to the ill-posed nature of reconstruction. We improve the imaging performance of CB-XLCT by using a multiband excitation-resolved imaging scheme combined with principal component analysis. To evaluate the performance of the proposed method, the physical phantom experiment is performed with a custom-made XLCT/XCT imaging system. The experimental results validate the feasibility of the method, where two adjacent nanophosphors (with an edge-to-edge distance of 2.4 mm) can be located.

  5. Cone Beam CT in Diagnosis and Surgical Planning of Dentigerous Cyst

    Directory of Open Access Journals (Sweden)

    Naira Figueiredo Deana

    2017-01-01

    Full Text Available Diagnosis and preoperative planning are critical in the execution of any surgical procedure. Panoramic radiography is a routine method used in dentistry to assist clinical diagnosis; however, with this technique 3D anatomical structures are compressed into 2D images, resulting in overlapping of structures which are of interest in the diagnosis. In this study we report the case of a patient who presented with a dentigerous cyst of expressive dimensions in the body of the mandible region. The surgery was planned and executed after observing the margins of the lesion by Cone Beam Computed Tomography (CBCT. We conclude that CBCT is a precise method to help diagnosis; it provides greater accuracy in surgical treatment planning through 3D image display, allowing more effective results.

  6. Analysis of intensity variability in multislice and cone beam computed tomography.

    Science.gov (United States)

    Nackaerts, Olivia; Maes, Frederik; Yan, Hua; Couto Souza, Paulo; Pauwels, Ruben; Jacobs, Reinhilde

    2011-08-01

    The aim of this study was to evaluate the variability of intensity values in cone beam computed tomography (CBCT) imaging compared with multislice computed tomography Hounsfield units (MSCT HU) in order to assess the reliability of density assessments using CBCT images. A quality control phantom was scanned with an MSCT scanner and five CBCT scanners. In one CBCT scanner, the phantom was scanned repeatedly in the same and in different positions. Images were analyzed using registration to a mathematical model. MSCT images were used as a reference. Density profiles of MSCT showed stable HU values, whereas in CBCT imaging the intensity values were variable over the profile. Repositioning of the phantom resulted in large fluctuations in intensity values. The use of intensity values in CBCT images is not reliable, because the values are influenced by device, imaging parameters and positioning. © 2011 John Wiley & Sons A/S.

  7. Metal Artifact Suppression in Dental Cone Beam Computed Tomography Images Using Image Processing Techniques.

    Science.gov (United States)

    Johari, Masoumeh; Abdollahzadeh, Milad; Esmaeili, Farzad; Sakhamanesh, Vahideh

    2018-01-01

    Dental cone beam computed tomography (CBCT) images suffer from severe metal artifacts. These artifacts degrade the quality of acquired image and in some cases make it unsuitable to use. Streaking artifacts and cavities around teeth are the main reason of degradation. In this article, we have proposed a new artifact reduction algorithm which has three parallel components. The first component extracts teeth based on the modeling of image histogram with a Gaussian mixture model. Striking artifact reduction component reduces artifacts using converting image into the polar domain and applying morphological filtering. The third component fills cavities through a simple but effective morphological filtering operation. Finally, results of these three components are combined into a fusion step to create a visually good image which is more compatible to human visual system. Results show that the proposed algorithm reduces artifacts of dental CBCT images and produces clean images.

  8. A technique for transferring a patient's smile line to a cone beam computed tomography (CBCT) image.

    Science.gov (United States)

    Bidra, Avinash S

    2014-08-01

    Fixed implant-supported prosthodontic treatment for patients requiring a gingival prosthesis often demands that bone and implant levels be apical to the patient's maximum smile line. This is to avoid the display of the prosthesis-tissue junction (the junction between the gingival prosthesis and natural soft tissues) and prevent esthetic failures. Recording a patient's lip position during maximum smile is invaluable for the treatment planning process. This article presents a simple technique for clinically recording and transferring the patient's maximum smile line to cone beam computed tomography (CBCT) images for analysis. The technique can help clinicians accurately determine the need for and amount of bone reduction required with respect to the maximum smile line and place implants in optimal positions. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. Evaluation of canalis basilaris medianus using cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Syed, Ali Z.; Zahedpasha, Samir [Dept. of Oral and Maxillofacial Medicine and Diagnostic Sciences, CWRU School of Dental Medicine, Cleveland (United States); Rathore, Sonali A. [Dept. of Oral Diagnostic Sciences, VCU School of Dentistry, Richmond (United States); Mupparapu, Mel [Dept. of Radiology, University of Pennsylvania School of Dental Medicine, Philadelphia (United States)

    2016-06-15

    The aim of this report is to present two cases of canalis basilaris medianus as identified on cone-beam computed tomography (CBCT) in the base of the skull. The CBCT data sets were sent for radiographic consultation. In both cases, multi-planar views revealed an osseous defect in the base of the skull in the clivus region, the sagittal view showed a unilateral, well-defined, non-corticated, track-like low-attenuation osseous defect in the clivus. The appearance of the defect was highly reminiscent of a fracture of the clivus. The borders of osseous defect were smooth, and no other radiographic signs suggestive of osteolytic destructive processes were noted. Based on the overall radiographic examination, a radiographic impression of canalis basilaris medianus was made. Canalis basilaris medianus is a rare anatomical variant and is generally observed on the clivus. Due to its potential association with meningitis, it should be recognized and reported to avoid potential complications.

  10. Quantitative assessment of cervical vertebral maturation using cone beam computed tomography in Korean girls.

    Science.gov (United States)

    Byun, Bo-Ram; Kim, Yong-Il; Yamaguchi, Tetsutaro; Maki, Koutaro; Son, Woo-Sung

    2015-01-01

    This study was aimed to examine the correlation between skeletal maturation status and parameters from the odontoid process/body of the second vertebra and the bodies of third and fourth cervical vertebrae and simultaneously build multiple regression models to be able to estimate skeletal maturation status in Korean girls. Hand-wrist radiographs and cone beam computed tomography (CBCT) images were obtained from 74 Korean girls (6-18 years of age). CBCT-generated cervical vertebral maturation (CVM) was used to demarcate the odontoid process and the body of the second cervical vertebra, based on the dentocentral synchondrosis. Correlation coefficient analysis and multiple linear regression analysis were used for each parameter of the cervical vertebrae (P cervical vertebral body and odontoid process, respectively, for the multiple regression models. This suggests that quantitative analysis might be used to estimate skeletal maturation status.

  11. Current status of dental caries diagnosis using cone beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Seok; Ahn, Jin Soo; Kwon, Ho Beom; Lee, Seung Pyo [School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2011-06-15

    The purpose of this article is to review the current status of dental caries diagnosis using cone beam computed tomography (CBCT). An online PubMed search was performed to identify studies on caries research using CBCT. Despite its usefulness, there were inherent limitations in the detection of caries lesions through conventional radiograph mainly due to the two-dimensional (2D) representation of caries lesions. Several efforts were made to investigate the three-dimensional (3D) image of lesion, only to gain little popularity. Recently, CBCT was introduced and has been used for diagnosis of caries in several reports. Some of them maintained the superiority of CBCT systems, however it is still under controversies. The CBCT systems are promising, however they should not be considered as a primary choice of caries diagnosis in everyday practice yet. Further studies under more standardized condition should be performed in the near future.

  12. Cone Beam Computed Tomographic Evaluation and Diagnosis of Mandibular First Molar with 6 Canals

    Directory of Open Access Journals (Sweden)

    Shiraz Pasha

    2016-01-01

    Full Text Available Root canal treatment of tooth with aberrant root canal morphology is very challenging. So thorough knowledge of both the external and internal anatomy of teeth is an important aspect of root canal treatment. With the advancement in technology it is imperative to use modern diagnostic tools such as magnification devices, CBCT, microscopes, and RVG to confirm the presence of these aberrant configurations. However, in everyday endodontic practice, clinicians have to treat teeth with atypical configurations for root canal treatment to be successful. This case report presents the management of a mandibular first molar with six root canals, four in mesial and two in distal root, and also emphasizes the use and importance of Cone Beam Computed Tomography (CBCT as a diagnostic tool in endodontics.

  13. Accessory mental foramen: A rare anatomical variation detected by cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Marianna Guanaes Gomes; De Faro Valverde, Ludmila; Vidal, Manuela Torres Andion; Crusoe-Rebello, Ieda Margarida [Dept. of Oral Radiology, School of Dentistry, Federal University of Bahia, Salvador (Brazil)

    2015-03-15

    The mental foramen is a bilateral opening in the vestibular portion of the mandible through which nerve endings, such as the mental nerve, emerge. In general, the mental foramen is located between the lower premolars. This region is a common area for the placement of dental implants. It is very important to identify anatomical variations in presurgical imaging exams since damage to neurovascular bundles may have a direct influence on treatment success. In the hemimandible, the mental foramen normally appears as a single structure, but there are some rare reports on the presence and number of anatomical variations; these variations may include accessory foramina. The present report describes the presence of accessory mental foramina in the right mandible, as detected by cone-beam computed tomography before dental implant placement.

  14. Inter- and intraobserver reproducibility of buccal bone measurements at dental implants with cone beam computed tomography in the esthetic region

    NARCIS (Netherlands)

    Slagter, Kirsten W; Raghoebar, Gerry M; Vissink, Arjan; Meijer, Henny J A

    2015-01-01

    BACKGROUND: Sufficient buccal bone is important for optimal esthetic results of implant treatment in the anterior region. It can be measured with cone beam computed tomography (CBCT), but background scattering and problems with standardization of the measurements are encountered. The aim was to

  15. The accuracy of the imaging reformation of cone beam computed tomography for the assessment of bone defect healing

    International Nuclear Information System (INIS)

    Kang, Ho Duk; Kim, Gyu Tae; Choi, Yong Suk; Hwang, Eui Hwan

    2007-01-01

    To evaluate the accuracy of the imaging reformation of cone beam computed tomography for the assessment of bone defect healing in rat model. Sprague-Dawely strain rats weighing about 350 gms were selected. Then critical size bone defects were done at parietal bone with implantation of collagen sponge. The rats were divided into seven groups of 3 days, 1 week, 2 weeks, 3 weeks, 4 weeks, 6 weeks, and 8 weeks. The healing of surgical defect was assessed by multiplanar reconstruction (MPR) images and three-dimensional (3-D) images of cone beam computed tomography, compared with soft X-ray radiograph and histopathologic examination. MPR images and 3-D images showed similar reformation of the healing amount at 3 days, 1 week, 2 weeks, and 8 weeks, however, lower reformation at 3 weeks, 4 weeks, and 6 weeks. According to imaging-based methodologies, MPR images revealed similar reformation of the healing mount than 3-D images compare with soft X-ray image. Among the four threshold values for 3-D images, 400-500 HU revealed similar reformation of the healing amount. Histopathologic examination confirmed the newly formed trabeculation correspond with imaging-based mythologies. MPR images revealed higher accuracy of the imaging reformation of cone beam computed tomography and cone beam computed tomography is a clinically useful diagnostic tool for the assessment of bone defect healing

  16. Accuracy and reliability of a novel method for fusion of digital dental casts and cone beam computed tomography scans

    NARCIS (Netherlands)

    Rangel, F.A.; Maal, T.J.J.; Bronkhorst, E.M.; Breuning, K.H.; Schols, J.G.J.H.; Berge, S.J.; Kuijpers-Jagtman, A.M.

    2013-01-01

    Several methods have been proposed to integrate digital models into Cone Beam Computed Tomography scans. Since all these methods have some drawbacks such as radiation exposure, soft tissue deformation and time-consuming digital handling processes, we propose a new method to integrate digital dental

  17. A cone-beam CT based technique to augment the 3D virtual skull model with a detailed dental surface.

    NARCIS (Netherlands)

    Swennen, G.R.J.; Mommaerts, M.Y.; Abeloos, J.V.S.; Clercq, C. De; Lamoral, P.; Neyt, N.; Casselman, J.W.; Schutyser, F.A.C.

    2009-01-01

    Cone-beam computed tomography (CBCT) is used for maxillofacial imaging. 3D virtual planning of orthognathic and facial orthomorphic surgery requires detailed visualisation of the interocclusal relationship. This study aimed to introduce and evaluate the use of a double CBCT scan procedure with a

  18. Guided access cavity preparation using cone-beam computed tomography and optical surface scans - an ex vivo study

    DEFF Research Database (Denmark)

    Buchgreitz, J; Buchgreitz, M; Mortensen, D

    2016-01-01

    AIM: To evaluate ex vivo, the accuracy of a preparation procedure planned for teeth with pulp canal obliteration (PCO) using a guide rail concept based on a cone-beam computed tomography (CBCT) scan merged with an optical surface scan. METHODOLOGY: A total of 48 teeth were mounted in acrylic bloc...

  19. The validity of cone-beam computed tomography in measuring root canal length using a gold standard

    NARCIS (Netherlands)

    Liang, Y.H.; Jiang, L.; Chen, C.; Gao, X.J.; Wesselink, P.R.; Wu, M.K.; Shemesh, H.

    2013-01-01

    Introduction The distance between a coronal reference point and the major apical foramen is important for working length determination. The aim of this in vitro study was to determine the accuracy of root canal length measurements performed with cone-beam computed tomographic (CBCT) scans using a

  20. Detection of vertical root fractures in vivo in endodontically treated teeth by cone-beam computed tomography scans

    NARCIS (Netherlands)

    Metska, M.E.; Aartman, I.H.A.; Wesselink, P.R.; Özok, A.R.

    2012-01-01

    Introduction The presence of a vertical root fracture (VRF) in an endodontically treated tooth has an immense impact on the treatment’s outcome. Early diagnosis of a VRF is imperative to avoid overtreatment and extensive bone loss. Our study aimed to examine the validity of 2 cone-beam computed

  1. Evaluation of imaging reformation with cone beam computed tomography for the assessment of bone density and shape in mandible

    International Nuclear Information System (INIS)

    Hong, Sang Woo; Kim, Gyu Tae; Choi, Yong Suk; Hwan, Eui Hwan

    2008-01-01

    Diagnostic estimation of destruction and formation of bone has the typical limit according to capacity of x-ray generator and image detector. So the aim of this study was to find out how much it can reproduce the shape and the density of bone in the case of using recently developed dental type of cone beam computed tomography, and which image is applied by new detector and mathematic calculation. Cone beam computed tomography (PSR 9000N, Asahi Roentgen Ind. Co., Ltd., Japan) and soft x-ray radiography were executed on dry mandible that was already decalcified during 5 hours, 10 hours, 15 hours, 20 hours, and 25 hours. Estimating and comparing of those came to the following results. The change of inferior border of mandible and anterior border of ramous in the region of cortical bone was observed between first 5 and 10 hours of decalcification. The reproduction of shape and density in the region of cortical bone and cancellous bone can be hardly observed at cone beam computed tomography compared with soft x-ray radiography. The difference of decrease of bone density according to hours of decalcification increase was not reproduced at cone beam computed tomography compared with soft x-ray radiography. CBCT images revealed higher spatial resolution. However, contrast resolution in region of low contrast sensitivity is the inferiority of images' property.

  2. C-arm Cone Beam Computed Tomographic Needle Path Overlay for Fluoroscopic-Guided Placement of Translumbar Central Venous Catheters

    International Nuclear Information System (INIS)

    Tam, Alda; Mohamed, Ashraf; Pfister, Marcus; Rohm, Esther; Wallace, Michael J.

    2009-01-01

    C-arm cone beam computed tomography is an advanced 3D imaging technology that is currently available on state-of-the-art flat-panel-based angiography systems. The overlay of cross-sectional imaging information can now be integrated with real-time fluoroscopy. This overlay technology was used to guide the placement of three percutaneous translumbar inferior vena cava catheters.

  3. Radiation dose response of normal lung assessed by Cone Beam CT - a potential tool for biologically adaptive radiation therapy

    DEFF Research Database (Denmark)

    Bertelsen, Anders; Schytte, Tine; Bentzen, Søren M

    2011-01-01

    Density changes of healthy lung tissue during radiotherapy as observed by Cone Beam CT (CBCT) might be an early indicator of patient specific lung toxicity. This study investigates the time course of CBCT density changes and tests for a possible correlation with locally delivered dose....

  4. Segmentation process significantly influences the accuracy of 3D surface models derived from cone beam computed tomography

    NARCIS (Netherlands)

    Fourie, Zacharias; Damstra, Janalt; Schepers, Rutger H; Gerrits, Pieter; Ren, Yijin

    AIMS: To assess the accuracy of surface models derived from 3D cone beam computed tomography (CBCT) with two different segmentation protocols. MATERIALS AND METHODS: Seven fresh-frozen cadaver heads were used. There was no conflict of interests in this study. CBCT scans were made of the heads and 3D

  5. Avaliação da simetria craniana através de imagens de TC cone beam = Cranial symmetry assessment through cone-beam CT images

    Directory of Open Access Journals (Sweden)

    Vilella, Oswaldo de Vasconcellos

    2014-01-01

    Full Text Available Objetivo: O objetivo do presente estudo foi comparar os lados direito e esquerdo de indivíduos que apresentavam simetria craniana através de 2 imagens geradas pela tomografia computadorizada cone beam (TCCB. Métodos: A amostra consistiu de 35 imagens obtidas pelo tomógrafo 3D-i-CAT (Imaging Sciences International Inc. , Hatfield, USA, sendo 13 de indivíduos do gênero masculino e 22 do gênero feminino, com idades variando de 8 a 64 anos, que apresentavam simetria facial aceitável. As imagens foram manipuladas com a ajuda do programa invivodental 5. 0 (Anatomage, San Jose, USA e posicionadas de forma análoga à postura da cabeça para a obtenção da radiografia cefalométrica de perfil. As distâncias lineares Go-Me, Go-Cd, S-Cd, Co-Gn e Co-A (mm; os ângulos mego. Cd, FMA e gogn. SN (graus, e cinco distâncias lineares côndilo-fossa glenóide foram as variáveis analisadas. Resultados: Uma diferença estatística significante entre os lados foi encontrada apenas para a variável S-Cd (mm. Conclusão: Portanto, não há necessidade de se obter valores bilaterais para essas variáveis (exceto S-Cd para avaliar o crânio de indivíduos sem assimetrias evidentes. Com relação à variável S-Cd, a dificuldade para se marcar o ponto S (sela nu

  6. Cone Beam Computed Tomography Guidance for Setup of Patients Receiving Accelerated Partial Breast Irradiation

    International Nuclear Information System (INIS)

    White, Elizabeth A.; Cho, John; Vallis, Katherine A.; Sharpe, Michael B.; Lee, Grace B.Sc.; Blackburn, Helen; Nageeti, Tahani; McGibney, Carol; Jaffray, David A.

    2007-01-01

    Purpose: To evaluate the role of cone-beam CT (CBCT) guidance for setup error reduction and soft tissue visualization in accelerated partial breast irradiation (APBI). Methods and Materials: Twenty patients were recruited for the delivery of radiotherapy to the postoperative cavity (3850 cGy in 10 fractions over 5 days) using an APBI technique. Cone-beam CT data sets were acquired after an initial skin-mark setup and before treatment delivery. These were registered online using the ipsilateral lung and external contours. Corrections were executed for translations exceeding 3 mm. The random and systematic errors associated with setup using skin-marks and setup using CBCT guidance were calculated and compared. Results: A total of 315 CBCT data sets were analyzed. The systematic errors for the skin-mark setup were 2.7, 1.7, and 2.4 mm in the right-left, anterior-posterior, and superior-inferior directions, respectively. These were reduced to 0.8, 0.7, and 0.8 mm when CBCT guidance was used. The random errors were reduced from 2.4, 2.2, and 2.9 mm for skin-marks to 1.5, 1.5, and 1.6 mm for CBCT guidance in the right-left, anterior-posterior, and superior-inferior directions, respectively. Conclusion: A skin-mark setup for APBI patients is sufficient for current planning target volume margins for the population of patients studied here. Online CBCT guidance minimizes the occurrence of large random deviations, which may have a greater impact for the accelerated fractionation schedule used in APBI. It is also likely to permit a reduction in planning target volume margins and provide skin-line visualization and dosimetric evaluation of cardiac and lung volumes

  7. Automatic tracking of implanted fiducial markers in cone beam CT projection images

    International Nuclear Information System (INIS)

    Marchant, T. E.; Skalski, A.; Matuszewski, B. J.

    2012-01-01

    Purpose: This paper describes a novel method for simultaneous intrafraction tracking of multiple fiducial markers. Although the proposed method is generic and can be adopted for a number of applications including fluoroscopy based patient position monitoring and gated radiotherapy, the tracking results presented in this paper are specific to tracking fiducial markers in a sequence of cone beam CT projection images. Methods: The proposed method is accurate and robust thanks to utilizing the mean shift and random sampling principles, respectively. The performance of the proposed method was evaluated with qualitative and quantitative methods, using data from two pancreatic and one prostate cancer patients and a moving phantom. The ground truth, for quantitative evaluation, was calculated based on manual tracking preformed by three observers. Results: The average dispersion of marker position error calculated from the tracking results for pancreas data (six markers tracked over 640 frames, 3840 marker identifications) was 0.25 mm (at iscoenter), compared with an average dispersion for the manual ground truth estimated at 0.22 mm. For prostate data (three markers tracked over 366 frames, 1098 marker identifications), the average error was 0.34 mm. The estimated tracking error in the pancreas data was < 1 mm (2 pixels) in 97.6% of cases where nearby image clutter was detected and in 100.0% of cases with no nearby image clutter. Conclusions: The proposed method has accuracy comparable to that of manual tracking and, in combination with the proposed batch postprocessing, superior robustness. Marker tracking in cone beam CT (CBCT) projections is useful for a variety of purposes, such as providing data for assessment of intrafraction motion, target tracking during rotational treatment delivery, motion correction of CBCT, and phase sorting for 4D CBCT.

  8. Morphology of palatally impacted canines: A case-controlled cone-beam volumetric tomography study.

    Science.gov (United States)

    Hettiarachchi, Pilana Vithanage Kalani Shihanika; Olive, Richard John; Monsour, Paul

    2017-02-01

    The aim of this study was to investigate the relationships between an apical curvature or a hook and the crown/root ratio in subjects with and without palatally impacted maxillary canines. An experimental group of 44 patients (17 boys, 27 girls; mean age, 13.6 years) with 59 palatally impacted maxillary canines was selected from the records of patients referred to a radiology practice for cone-beam imaging. If a patient had bilateral palatally impacted canines, 1 canine was randomly selected for analysis. The palatally impacted canine group was matched for age and sex with 49 normal subjects (25 boys, 24 girls; mean age, 13.2 years) with 98 canines. Cone-beam DICOM files were imported into In Vivo imaging software (version 5.3; Anatomage, San Jose, Calif) for analysis. The angulations and linear variables of the maxillary canines were measured by using the software measurement tools. Chi-square and independent t tests were used to test for differences between the groups. The presence of a hook at the apical third and other root curvature were significantly different between the 2 groups (P <0.001 and P <0.05, respectively). Of the 44 palatally impacted canines, 16 (36.4%) had an apical hook and only 1 canine in the control group had an apical hook (1.0%). The mean root length of the palatally impacted canines was 2.66 mm shorter (P <0.001), and the mean crown/root ratio was significantly greater for the palatally impacted canines compared with the nonimpacted group (P <0.001). Palatally impacted canines have a greater tendency to develop apical hooks and are less likely to develop other root curvatures than are nonimpacted canines. Also, they have shorter roots resulting in larger crown/root ratios compared with the control group. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  9. Quality control of a kV cone beam computed tomography imaging system

    International Nuclear Information System (INIS)

    Marguet, M.; Bodez, V.

    2009-01-01

    Purpose: This work presents the introduction of a quality assurance program for the On-Board Imager (O.B.I., Varian) kV cone beam computed tomography (kV C.B.C.T.) system, together with the results of 1 year monthly testing. Materials and methods: Firstly the geometric precision and stability of the equipment and of the associated software were evaluated using the Marker phantom. The coincidence of the accelerator isocenter and the imager isocenter was verified as well as the accuracy of the registration of kV cone beam computed tomography (kV C.B.C.T.) with reference CT images. Then, the kV C.B.C.T. image quality was evaluated using the Catphan 504 phantom and ArtiScan software (Aquilab) for both full-fan (F.F.) and half-fan (H.F.) imaging modes. Results: The kV C.B.C.T. isocenter and image registration with correction of the table position were found to be within a tolerance of 2.0 mm. Concerning the kV C.B.C.T. image quality, image noise and uniformity, the Hounsfield units (HU) stability and linearity, geometric distortion and high contrast resolution were all found to be within the manufacturer's recommendations for both F.F. and H.F. modes. However, the low contrast resolution for the HF mode did not meet the manufacturer's specifications. Conclusion: The quality assurance tests introduced have defined the initial system characteristics and their evolution during a period of 1 year, demonstrating the stability of the O.B.I.. (authors)

  10. Iterative image-domain ring artifact removal in cone-beam CT

    Science.gov (United States)

    Liang, Xiaokun; Zhang, Zhicheng; Niu, Tianye; Yu, Shaode; Wu, Shibin; Li, Zhicheng; Zhang, Huailing; Xie, Yaoqin

    2017-07-01

    Ring artifacts in cone beam computed tomography (CBCT) images are caused by pixel gain variations using flat-panel detectors, and may lead to structured non-uniformities and deterioration of image quality. The purpose of this study is to propose a method of general ring artifact removal in CBCT images. This method is based on the polar coordinate system, where the ring artifacts manifest as stripe artifacts. Using relative total variation, the CBCT images are first smoothed to generate template images with fewer image details and ring artifacts. By subtracting the template images from the CBCT images, residual images with image details and ring artifacts are generated. As the ring artifact manifests as a stripe artifact in a polar coordinate system, the artifact image can be extracted by mean value from the residual image; the image details are generated by subtracting the artifact image from the residual image. Finally, the image details are compensated to the template image to generate the corrected images. The proposed framework is iterated until the differences in the extracted ring artifacts are minimized. We use a 3D Shepp-Logan phantom, Catphan©504 phantom, uniform acrylic cylinder, and images from a head patient to evaluate the proposed method. In the experiments using simulated data, the spatial uniformity is increased by 1.68 times and the structural similarity index is increased from 87.12% to 95.50% using the proposed method. In the experiment using clinical data, our method shows high efficiency in ring artifact removal while preserving the image structure and detail. The iterative approach we propose for ring artifact removal in cone-beam CT is practical and attractive for CBCT guided radiation therapy.

  11. Fast 4D cone-beam CT from 60 s acquisitions

    Directory of Open Access Journals (Sweden)

    David C. Hansen

    2018-01-01

    Full Text Available Background & purpose: Four dimensional Cone beam CT (CBCT has many potential benefits for radiotherapy but suffers from poor image quality, long acquisition times, and/or long reconstruction times. In this work we present a fast iterative reconstruction algorithm for 4D reconstruction of fast acquisition cone beam CT, as well as a new method for temporal regularization and compare to state of the art methods for 4D CBCT. Materials & methods: Regularization parameters for the iterative algorithms were found automatically via computer optimization on 60 s acquisitions using the XCAT phantom. Nineteen lung cancer patients were scanned with 60 s arcs using the onboard image on a Varian trilogy linear accelerator. Images were reconstructed using an accelerated ordered subset algorithm. A frequency based temporal regularization algorithm was developed and compared to the McKinnon-Bates algorithm, 4D total variation and prior images compressed sensing (PICCS. Results: All reconstructions were completed in 60 s or less. The proposed method provided a structural similarity of 0.915, compared with 0.786 for the classic McKinnon-bates method. For the patient study, it provided fewer image artefacts than PICCS, and better spatial resolution than 4D TV. Conclusion: Four dimensional iterative CBCT reconstruction was done in less than 60 s, demonstrating the clinical feasibility. The frequency based method outperformed 4D total variation and PICCS on the simulated data, and for patients allowed for tumor location based on 60 s acquisitions, even for slowly breathing patients. It should thus be suitable for routine clinical use.

  12. High performance cone-beam spiral backprojection with voxel-specific weighting

    International Nuclear Information System (INIS)

    Steckmann, Sven; Knaup, Michael; Kachelriess, Marc

    2009-01-01

    Cone-beam spiral backprojection is computationally highly demanding. At first sight, the backprojection requirements are similar to those of cone-beam backprojection from circular scans such as it is performed in the widely used Feldkamp algorithm. However, there is an additional complication: the illumination of each voxel, i.e. the range of angles the voxel is seen by the x-ray cone, is a complex function of the voxel position. In general, one needs to multiply a voxel-specific weight w(x, y, z, α) prior to adding a projection from angle α to a voxel at position x, y, z. Often, the weight function has no analytically closed form and must be numerically determined. Storage of the weights is prohibitive since the amount of memory required equals the number of voxels per spiral rotation times the number of projections a voxel receives contributions and therefore is in the order of up to 10 12 floating point values for typical spiral scans. We propose a new algorithm that combines the spiral symmetry with the ability of today's 64 bit operating systems to store large amounts of precomputed weights, even above the 4 GB limit. Our trick is to backproject into slices that are rotated in the same manner as the spiral trajectory rotates. Using the spiral symmetry in this way allows one to exploit data-level paralellism and thereby to achieve a very high level of vectorization. An additional postprocessing step rotates these slices back to normal images. Our new backprojection algorithm achieves up to 17 giga voxel updates per second on our systems that are equipped with four standard Intel X7460 hexa core CPUs (Intel Xeon 7300 platform, 2.66 GHz, Intel Corporation). This equals the reconstruction of 344 images per second assuming that each slice consists of 512 x 512 pixels and receives contributions from 512 projections. Thereby, it is an order of magnitude faster than a highly optimized code that does not make use of the spiral symmetry. In its present version, the

  13. High performance cone-beam spiral backprojection with voxel-specific weighting

    Science.gov (United States)

    Steckmann, Sven; Knaup, Michael; Kachelrieß, Marc

    2009-06-01

    Cone-beam spiral backprojection is computationally highly demanding. At first sight, the backprojection requirements are similar to those of cone-beam backprojection from circular scans such as it is performed in the widely used Feldkamp algorithm. However, there is an additional complication: the illumination of each voxel, i.e. the range of angles the voxel is seen by the x-ray cone, is a complex function of the voxel position. In general, one needs to multiply a voxel-specific weight w(x, y, z, α) prior to adding a projection from angle α to a voxel at position x, y, z. Often, the weight function has no analytically closed form and must be numerically determined. Storage of the weights is prohibitive since the amount of memory required equals the number of voxels per spiral rotation times the number of projections a voxel receives contributions and therefore is in the order of up to 1012 floating point values for typical spiral scans. We propose a new algorithm that combines the spiral symmetry with the ability of today's 64 bit operating systems to store large amounts of precomputed weights, even above the 4 GB limit. Our trick is to backproject into slices that are rotated in the same manner as the spiral trajectory rotates. Using the spiral symmetry in this way allows one to exploit data-level paralellism and thereby to achieve a very high level of vectorization. An additional postprocessing step rotates these slices back to normal images. Our new backprojection algorithm achieves up to 17 giga voxel updates per second on our systems that are equipped with four standard Intel X7460 hexa core CPUs (Intel Xeon 7300 platform, 2.66 GHz, Intel Corporation). This equals the reconstruction of 344 images per second assuming that each slice consists of 512 × 512 pixels and receives contributions from 512 projections. Thereby, it is an order of magnitude faster than a highly optimized code that does not make use of the spiral symmetry. In its present version, the

  14. Peri-implant assessment via cone beam computed tomography and digital periapical radiography: an ex vivo study

    Directory of Open Access Journals (Sweden)

    Nicolau Silveira-Neto

    Full Text Available OBJECTIVES: This research evaluated detail registration in peri-implant bone using two different cone beam computer tomography systems and a digital periapical radiograph. METHODS: Three different image acquisition protocols were established for each cone beam computer tomography apparatus, and three clinical situations were simulated in an ex vivo fresh pig mandible: buccal bone defect, peri-implant bone defect, and bone contact. Data were subjected to two analyses: quantitative and qualitative. The quantitative analyses involved a comparison of real specimen measures using a digital caliper in three regions of the preserved buccal bone – A, B and E (control group – to cone beam computer tomography images obtained with different protocols (kp1, kp2, kp3, ip1, ip2, and ip3. In the qualitative analyses, the ability to register peri-implant details via tomography and digital periapical radiography was verified, as indicated by twelve evaluators. Data were analyzed with ANOVA and Tukey’s test (α=0.05. RESULTS: The quantitative assessment showed means statistically equal to those of the control group under the following conditions: buccal bone defect B and E with kp1 and ip1, peri-implant bone defect E with kp2 and kp3, and bone contact A with kp1, kp2, kp3, and ip2. Qualitatively, only bone contacts were significantly different among the assessments, and the p3 results differed from the p1 and p2 results. The other results were statistically equivalent. CONCLUSIONS: The registration of peri-implant details was influenced by the image acquisition protocol, although metal artifacts were produced in all situations. The evaluators preferred the Kodak 9000 3D cone beam computer tomography in most cases. The evaluators identified buccal bone defects better with cone beam computer tomography and identified peri-implant bone defects better with digital periapical radiography.

  15. A One-Step Cone-Beam CT-Enabled Planning-to-Treatment Model for Palliative Radiotherapy-From Development to Implementation

    International Nuclear Information System (INIS)

    Wong, Rebecca K.S.; Letourneau, Daniel; Varma, Anita; Bissonnette, Jean Pierre; Fitzpatrick, David; Grabarz, Daniel; Elder, Christine; Martin, Melanie; Bezjak, Andrea; Panzarella, Tony; Gospodarowicz, Mary; Jaffray, David A.

    2012-01-01

    Purpose: To develop a cone-beam computed tomography (CT)–enabled one-step simulation-to-treatment process for the treatment of bone metastases. Methods and Materials: A three-phase prospective study was conducted. Patients requiring palliative radiotherapy to the spine, mediastinum, or abdomen/pelvis suitable for treatment with simple beam geometry (≤2 beams) were accrued. Phase A established the accuracy of cone-beam CT images for the purpose of gross tumor target volume (GTV) definition. Phase B evaluated the feasibility of implementing the cone-beam CT–enabled planning process at the treatment unit. Phase C evaluated the online cone-beam CT–enabled process for the planning and treatment of patients requiring radiotherapy for bone metastases. Results: Eighty-four patients participated in this study. Phase A (n = 9) established the adequacy of cone-beam CT images for target definition. Phase B (n = 45) established the quality of treatment plans to be adequate for clinical implementation for bone metastases. When the process was applied clinically in bone metastases (Phase C), the degree of overlap between planning computed tomography (PCT) and cone-beam CT for GTV and between PCT and cone-beam CT for treatment field was 82% ± 11% and 97% ± 4%, respectively. The oncologist’s decision to accept the plan under a time-pressured environment remained of high quality, with the cone-beam CT–generated treatment plan delivering at least 90% of the prescribed dose to 100% ± 0% of the cone-beam CT planning target volume (PTV). With the assumption that the PCT PTV is the gold-standard target, the cone-beam CT–generated treatment plan delivered at least 90% and at least 95% of dose to 98% ± 2% and 97% ± 5% of the PCT PTV, respectively. The mean time for the online planning and treatment process was 32.7 ± 4.0 minutes. Patient satisfaction was high, with a trend for superior satisfaction with the cone-beam CT–enabled process. Conclusions: The cone-beam CT

  16. A One-Step Cone-Beam CT-Enabled Planning-to-Treatment Model for Palliative Radiotherapy-From Development to Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Rebecca K.S., E-mail: rebecca.wong@rmp.uhn.on.ca [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Letourneau, Daniel; Varma, Anita [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Bissonnette, Jean Pierre; Fitzpatrick, David; Grabarz, Daniel; Elder, Christine [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Martin, Melanie; Bezjak, Andrea [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Panzarella, Tony [Department of Biostatistics, Princess Margaret Hospital, Toronto, Ontario (Canada); Gospodarowicz, Mary [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Jaffray, David A. [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada)

    2012-11-01

    Purpose: To develop a cone-beam computed tomography (CT)-enabled one-step simulation-to-treatment process for the treatment of bone metastases. Methods and Materials: A three-phase prospective study was conducted. Patients requiring palliative radiotherapy to the spine, mediastinum, or abdomen/pelvis suitable for treatment with simple beam geometry ({<=}2 beams) were accrued. Phase A established the accuracy of cone-beam CT images for the purpose of gross tumor target volume (GTV) definition. Phase B evaluated the feasibility of implementing the cone-beam CT-enabled planning process at the treatment unit. Phase C evaluated the online cone-beam CT-enabled process for the planning and treatment of patients requiring radiotherapy for bone metastases. Results: Eighty-four patients participated in this study. Phase A (n = 9) established the adequacy of cone-beam CT images for target definition. Phase B (n = 45) established the quality of treatment plans to be adequate for clinical implementation for bone metastases. When the process was applied clinically in bone metastases (Phase C), the degree of overlap between planning computed tomography (PCT) and cone-beam CT for GTV and between PCT and cone-beam CT for treatment field was 82% {+-} 11% and 97% {+-} 4%, respectively. The oncologist's decision to accept the plan under a time-pressured environment remained of high quality, with the cone-beam CT-generated treatment plan delivering at least 90% of the prescribed dose to 100% {+-} 0% of the cone-beam CT planning target volume (PTV). With the assumption that the PCT PTV is the gold-standard target, the cone-beam CT-generated treatment plan delivered at least 90% and at least 95% of dose to 98% {+-} 2% and 97% {+-} 5% of the PCT PTV, respectively. The mean time for the online planning and treatment process was 32.7 {+-} 4.0 minutes. Patient satisfaction was high, with a trend for superior satisfaction with the cone-beam CT-enabled process. Conclusions: The cone-beam

  17. Use of Monte Carlo simulation software for calculating effective dose in cone beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gomes B, W. O., E-mail: wilsonottobatista@gmail.com [Instituto Federal da Bahia, Rua Emidio dos Santos s/n, Barbalho 40301-015, Salvador de Bahia (Brazil)

    2016-10-15

    This study aimed to develop a geometry of irradiation applicable to the software PCXMC and the consequent calculation of effective dose in applications of the Computed Tomography Cone Beam (CBCT). We evaluated two different CBCT equipment s for dental applications: Care stream Cs 9000 3-dimensional tomograph; i-CAT and GENDEX GXCB-500. Initially characterize each protocol measuring the surface kerma input and the product kerma air-area, P{sub KA}, with solid state detectors RADCAL and PTW transmission chamber. Then we introduce the technical parameters of each preset protocols and geometric conditions in the PCXMC software to obtain the values of effective dose. The calculated effective dose is within the range of 9.0 to 15.7 μSv for 3-dimensional computer 9000 Cs; within the range 44.5 to 89 μSv for GXCB-500 equipment and in the range of 62-111 μSv for equipment Classical i-CAT. These values were compared with results obtained dosimetry using TLD implanted in anthropomorphic phantom and are considered consistent. Os effective dose results are very sensitive to the geometry of radiation (beam position in mathematical phantom). This factor translates to a factor of fragility software usage. But it is very useful to get quick answers to regarding process optimization tool conclusions protocols. We conclude that use software PCXMC Monte Carlo simulation is useful assessment protocols for CBCT tests in dental applications. (Author)

  18. Hybrid simulation of scatter intensity in industrial cone-beam computed tomography

    International Nuclear Information System (INIS)

    Thierry, R.; Miceli, A.; Hofmann, J.; Flisch, A.; Sennhauser, U.

    2009-01-01

    A cone-beam computed tomography (CT) system using a 450 kV X-ray tube has been developed to challenge the three-dimensional imaging of parts of the automotive industry in short acquisition time. Because the probability of detecting scattered photons is high regarding the energy range and the area of detection, a scattering correction becomes mandatory for generating reliable images with enhanced contrast detectability. In this paper, we present a hybrid simulator for the fast and accurate calculation of the scattering intensity distribution. The full acquisition chain, from the generation of a polyenergetic photon beam, its interaction with the scanned object and the energy deposit in the detector is simulated. Object phantoms can be spatially described in form of voxels, mathematical primitives or CAD models. Uncollided radiation is treated with a ray-tracing method and scattered radiation is split into single and multiple scattering. The single scattering is calculated with a deterministic approach accelerated with a forced detection method. The residual noisy signal is subsequently deconvoluted with the iterative Richardson-Lucy method. Finally the multiple scattering is addressed with a coarse Monte Carlo (MC) simulation. The proposed hybrid method has been validated on aluminium phantoms with varying size and object-to-detector distance, and found in good agreement with the MC code Geant4. The acceleration achieved by the hybrid method over the standard MC on a single projection is approximately of three orders of magnitude.

  19. An FDK-like cone-beam SPECT reconstruction algorithm for non-uniform attenuated projections acquired using a circular trajectory

    International Nuclear Information System (INIS)

    Huang, Q; Zeng, G L; You, J; Gullberg, G T

    2005-01-01

    In this paper, Novikov's inversion formula of the attenuated two-dimensional (2D) Radon transform is applied to the reconstruction of attenuated fan-beam projections acquired with equal detector spacing and of attenuated cone-beam projections acquired with a flat planar detector and circular trajectory. The derivation of the fan-beam algorithm is obtained by transformation from parallel-beam coordinates to fan-beam coordinates. The cone-beam reconstruction algorithm is an extension of the fan-beam reconstruction algorithm using Feldkamp-Davis-Kress's (FDK) method. Computer simulations indicate that the algorithm is efficient and is accurate in reconstructing slices close to the central slice of the cone-beam orbit plane. When the attenuation map is set to zero the implementation is equivalent to the FDK method. Reconstructed images are also shown for noise corrupted projections

  20. Accuracy of cancellous bone volume fraction measured by micro-CT scanning

    DEFF Research Database (Denmark)

    Ding, Ming; Odgaard, A; Hvid, I

    1999-01-01

    Volume fraction, the single most important parameter in describing trabecular microstructure, can easily be calculated from three-dimensional reconstructions of micro-CT images. This study sought to quantify the accuracy of this measurement. One hundred and sixty human cancellous bone specimens...... which covered a large range of volume fraction (9.8-39.8%) were produced. The specimens were micro-CT scanned, and the volume fraction based on Archimedes' principle was determined as a reference. After scanning, all micro-CT data were segmented using individual thresholds determined by the scanner...

  1. Morphology of Major Stone Types, As Shown by Micro Computed Tomography (micro CT)

    International Nuclear Information System (INIS)

    Jackson, Molly E.; Beuschel, Christian A.; McAteer, James A.; Williams, James C.

    2008-01-01

    Micro CT offers the possibility of providing a non-destructive method of stone analysis that allows visualization of 100% of the stone's volume. For the present study, micro CT analysis was completed on stones of known composition with isotropic voxel sizes of either 7 or 9.1 μm. Each mineral type was distinctive, either by x-ray attenuation values or by morphology. Minor components, such as the presence of apatite in oxalate stones, were easily seen. The analysis of stones by micro CT opens up the possibility of exploring the stone as an encapsulated history of the patient's disease, showing changes in mineral deposition with time.

  2. Direct cone-beam cardiac reconstruction algorithm with cardiac banding artifact correction

    International Nuclear Information System (INIS)

    Taguchi, Katsuyuki; Chiang, Beshan S.; Hein, Ilmar A.

    2006-01-01

    Multislice helical computed tomography (CT) is a promising noninvasive technique for coronary artery imaging. Various factors can cause inconsistencies in cardiac CT data, which can result in degraded image quality. These inconsistencies may be the result of the patient physiology (e.g., heart rate variations), the nature of the data (e.g., cone-angle), or the reconstruction algorithm itself. An algorithm which provides the best temporal resolution for each slice, for example, often provides suboptimal image quality for the entire volume since the cardiac temporal resolution (TRc) changes from slice to slice. Such variations in TRc can generate strong banding artifacts in multi-planar reconstruction images or three-dimensional images. Discontinuous heart walls and coronary arteries may compromise the accuracy of the diagnosis. A β-blocker is often used to reduce and stabilize patients' heart rate but cannot eliminate the variation. In order to obtain robust and optimal image quality, a software solution that increases the temporal resolution and decreases the effect of heart rate is highly desirable. This paper proposes an ECG-correlated direct cone-beam reconstruction algorithm (TCOT-EGR) with cardiac banding artifact correction (CBC) and disconnected projections redundancy compensation technique (DIRECT). First the theory and analytical model of the cardiac temporal resolution is outlined. Next, the performance of the proposed algorithms is evaluated by using computer simulations as well as patient data. It will be shown that the proposed algorithms enhance the robustness of the image quality against inconsistencies by guaranteeing smooth transition of heart cycles used in reconstruction

  3. SU-G-TeP4-12: Individual Beam QA for a Robotic Radiosurgery System Using a Scintillator Cone

    Energy Technology Data Exchange (ETDEWEB)

    McGuinness, C; Descovich, M; Sudhyadhom, A [University of California San Francisco, San Francisco, CA (United States)

    2016-06-15

    Purpose: The targeting accuracy of the Cyberknife system is measured by end-to-end tests delivering multiple isocentric beams to a point in space. While the targeting accuracy of two representative beams can be determined by a Winston-Lutz-type test, no test is available today to determine the targeting accuracy of each clinical beam. We used a scintillator cone to measure the accuracy of each individual beam. Methods: The XRV-124 from Logos Systems Int’l is a scintillator cone with an imaging system that is able to measure individual beam vectors and a resulting error between planned and measured beam coordinates. We measured the targeting accuracy of isocentric and non-isocentric beams for a number of test cases using the Iris and the fixed collimator. The average difference between plan and measured beam position was 0.8–1.2mm across the collimator sizes and plans considered here. The max error for a single beam was 2.5mm for the isocentric plans, and 1.67mm for the non-isocentric plans. The standard deviation of the differences was 0.5mm or less. Conclusion: The CyberKnife System is specified to have an overall targeting accuracy for static targets of less than 0.95mm. In E2E tests using the XRV124 system we measure average beam accuracy between 0.8 to 1.23mm, with maximum of 2.5mm. We plan to investigate correlations between beam position error and robot position, and to quantify the effect of beam position errors on patient specific plans. Martina Descovich has received research support and speaker honoraria from Accuray.

  4. SU-G-TeP4-12: Individual Beam QA for a Robotic Radiosurgery System Using a Scintillator Cone

    International Nuclear Information System (INIS)

    McGuinness, C; Descovich, M; Sudhyadhom, A

    2016-01-01

    Purpose: The targeting accuracy of the Cyberknife system is measured by end-to-end tests delivering multiple isocentric beams to a point in space. While the targeting accuracy of two representative beams can be determined by a Winston-Lutz-type test, no test is available today to determine the targeting accuracy of each clinical beam. We used a scintillator cone to measure the accuracy of each individual beam. Methods: The XRV-124 from Logos Systems Int’l is a scintillator cone with an imaging system that is able to measure individual beam vectors and a resulting error between planned and measured beam coordinates. We measured the targeting accuracy of isocentric and non-isocentric beams for a number of test cases using the Iris and the fixed collimator. The average difference between plan and measured beam position was 0.8–1.2mm across the collimator sizes and plans considered here. The max error for a single beam was 2.5mm for the isocentric plans, and 1.67mm for the non-isocentric plans. The standard deviation of the differences was 0.5mm or less. Conclusion: The CyberKnife System is specified to have an overall targeting accuracy for static targets of less than 0.95mm. In E2E tests using the XRV124 system we measure average beam accuracy between 0.8 to 1.23mm, with maximum of 2.5mm. We plan to investigate correlations between beam position error and robot position, and to quantify the effect of beam position errors on patient specific plans. Martina Descovich has received research support and speaker honoraria from Accuray

  5. Metal artefact reduction for a dental cone beam CT image using image segmentation and backprojection filters

    International Nuclear Information System (INIS)

    Mohammadi, Mahdi; Khotanlou, Hassan; Mohammadi, Mohammad

    2011-01-01

    Full text: Due to low dose delivery and fast scanning, the dental Cone Beam CT (CBCT) is the latest technology being implanted for a range of dental imaging. The presence of metallic objects including amalgam or gold fillings in the mouth produces an intuitive image for human jaws. The feasibility of a fast and accurate approach for metal artefact reduction for dental CBCT is investigated. The current study investigates the metal artefact reduction using image segmentation and modification of several sinigrams. In order to reduce metal effects such as beam hardening, streak artefact and intense noises, the application of several algorithms is evaluated. The proposed method includes three stages: preprocessing, reconstruction and post-processing. In the pre-processing stage, in order to reduce the noise level, several phase and frequency filters were applied. At the second stage, based on the specific sinogram achieved for each segment, spline interpolation and weighting backprojection filters were applied to reconstruct the original image. A three-dimensional filter was then applied on reconstructed images, to improve the image quality. Results showed that compared to other available filters, standard frequency filters have a significant influence in the preprocessing stage (ΔHU = 48 ± 6). In addition, with the streak artefact, the probability of beam hardening artefact increases. t e post-processing stage, the application of three-dimensional filters improves the quality of reconstructed images (See Fig. I). Conclusion The proposed method reduces metal artefacts especially where there are more than one metal implanted in the region of interest.

  6. Estimating the effective radiation dose imparted to patients by intraoperative cone-beam computed tomography in thoracolumbar spinal surgery.

    Science.gov (United States)

    Lange, Jeffrey; Karellas, Andrew; Street, John; Eck, Jason C; Lapinsky, Anthony; Connolly, Patrick J; Dipaola, Christian P

    2013-03-01

    Observational. To estimate the radiation dose imparted to patients during typical thoracolumbar spinal surgical scenarios. Minimally invasive techniques continue to become more common in spine surgery. Computer-assisted navigation systems coupled with intraoperative cone-beam computed tomography (CT) represent one such method used to aid in instrumented spinal procedures. Some studies indicate that cone-beam CT technology delivers a relatively low dose of radiation to patients compared with other x-ray-based imaging modalities. The goal of this study was to estimate the radiation exposure to the patient imparted during typical posterior thoracolumbar instrumented spinal procedures, using intraoperative cone-beam CT and to place these values in the context of standard CT doses. Cone-beam CT scans were obtained using Medtronic O-arm (Medtronic, Minneapolis, MN). Thermoluminescence dosimeters were placed in a linear array on a foam-plastic thoracolumbar spine model centered above the radiation source for O-arm presets of lumbar scans for small or large patients. In-air dosimeter measurements were converted to skin surface measurements, using published conversion factors. Dose-length product was calculated from these values. Effective dose was estimated using published effective dose to dose-length product conversion factors. Calculated dosages for many full-length procedures using the small-patient setting fell within the range of published effective doses of abdominal CT scans (1-31 mSv). Calculated dosages for many full-length procedures using the large-patient setting fell within the range of published effective doses of abdominal CT scans when the number of scans did not exceed 3. We have demonstrated that single cone-beam CT scans and most full-length posterior instrumented spinal procedures using O-arm in standard mode would likely impart a radiation dose within the range of those imparted by a single standard CT scan of the abdomen. Radiation dose increases

  7. Micro-CT assessment of two different endodontic preparation systems

    Directory of Open Access Journals (Sweden)

    Cacio Moura-Netto

    2013-02-01

    Full Text Available The aim of this study was to compare two endodontic preparation systems using micro-CT analysis. Twenty-four one-rooted mandibular premolars were selected and randomly assigned to two groups. The samples (n = 12 of Group 1 were prepared using the ProTaper Universal rotary system, while Group 2 (n = 12 was prepared using the EndoEZE AET system complemented by manual apical preparation with K-type hand files up to #30. A 2.5% sodium hypochlorite solution was used in both groups for irrigating. Both groups were scanned by high-resolution microcomputed tomography before and after preparation (SkyScan 1172, SkyScan, Kontich, Belgium. The root canal volume and surface area was measured before and after preparation, and the differences were calculated and analyzed for statistically significant differences using ANOVA complemented by the Tukey test (p < 0.05. The results showed no statistically significant differences between the mean volumes of dentin removal by the two systems. However, the EndoEZE AET system presented a significantly greater mean surface area compared to the ProTaper system (p < 0.05. The EndoEZE AET system enabled preparation of a greater root canal surface area when compared to the ProTaper Universal system. There seemed to be no difference in dentin volume loss between the two systems used.

  8. Ultrafast cone-beam CT scatter correction with GPU-based Monte Carlo simulation

    Directory of Open Access Journals (Sweden)

    Yuan Xu

    2014-03-01

    Full Text Available Purpose: Scatter artifacts severely degrade image quality of cone-beam CT (CBCT. We present an ultrafast scatter correction framework by using GPU-based Monte Carlo (MC simulation and prior patient CT image, aiming at automatically finish the whole process including both scatter correction and reconstruction within 30 seconds.Methods: The method consists of six steps: 1 FDK reconstruction using raw projection data; 2 Rigid Registration of planning CT to the FDK results; 3 MC scatter calculation at sparse view angles using the planning CT; 4 Interpolation of the calculated scatter signals to other angles; 5 Removal of scatter from the raw projections; 6 FDK reconstruction using the scatter-corrected projections. In addition to using GPU to accelerate MC photon simulations, we also use a small number of photons and a down-sampled CT image in simulation to further reduce computation time. A novel denoising algorithm is used to eliminate MC noise from the simulated scatter images caused by low photon numbers. The method is validated on one simulated head-and-neck case with 364 projection angles.Results: We have examined variation of the scatter signal among projection angles using Fourier analysis. It is found that scatter images at 31 angles are sufficient to restore those at all angles with < 0.1% error. For the simulated patient case with a resolution of 512 × 512 × 100, we simulated 5 × 106 photons per angle. The total computation time is 20.52 seconds on a Nvidia GTX Titan GPU, and the time at each step is 2.53, 0.64, 14.78, 0.13, 0.19, and 2.25 seconds, respectively. The scatter-induced shading/cupping artifacts are substantially reduced, and the average HU error of a region-of-interest is reduced from 75.9 to 19.0 HU.Conclusion: A practical ultrafast MC-based CBCT scatter correction scheme is developed. It accomplished the whole procedure of scatter correction and reconstruction within 30 seconds.----------------------------Cite this

  9. Task-driven image acquisition and reconstruction in cone-beam CT

    International Nuclear Information System (INIS)

    Gang, Grace J; Stayman, J Webster; Siewerdsen, Jeffrey H; Ehtiati, Tina

    2015-01-01

    This work introduces a task-driven imaging framework that incorporates a mathematical definition of the imaging task, a model of the imaging system, and a patient-specific anatomical model to prospectively design image acquisition and reconstruction techniques to optimize task performance. The framework is applied to joint optimization of tube current modulation, view-dependent reconstruction kernel, and orbital tilt in cone-beam CT. The system model considers a cone-beam CT system incorporating a flat-panel detector and 3D filtered backprojection and accurately describes the spatially varying noise and resolution over a wide range of imaging parameters in the presence of a realistic anatomical model. Task-based detectability index (d′) is incorporated as the objective function in a task-driven optimization of image acquisition and reconstruction techniques. The orbital tilt was optimized through an exhaustive search across tilt angles ranging ±30°. For each tilt angle, the view-dependent tube current and reconstruction kernel (i.e. the modulation profiles) that maximized detectability were identified via an alternating optimization. The task-driven approach was compared with conventional unmodulated and automatic exposure control (AEC) strategies for a variety of imaging tasks and anthropomorphic phantoms. The task-driven strategy outperformed the unmodulated and AEC cases for all tasks. For example, d′ for a sphere detection task in a head phantom was improved by 30% compared to the unmodulated case by using smoother kernels for noisy views and distributing mAs across less noisy views (at fixed total mAs) in a manner that was beneficial to task performance. Similarly for detection of a line-pair pattern, the task-driven approach increased d′ by 80% compared to no modulation by means of view-dependent mA and kernel selection that yields modulation transfer function and noise-power spectrum optimal to the task. Optimization of orbital tilt identified the

  10. Analysis of bite marks in foodstuffs by computer tomography (cone beam CT)--3D reconstruction.

    Science.gov (United States)

    Marques, Jeidson; Musse, Jamilly; Caetano, Catarina; Corte-Real, Francisco; Corte-Real, Ana Teresa

    2013-12-01

    The use of three-dimensional (3D) analysis of forensic evidence is highlighted in comparison with traditional methods. This three-dimensional analysis is based on the registration of the surface from a bitten object. The authors propose to use Cone Beam Computed Tomography (CBCT), which is used in dental practice, in order to study the surface and interior of bitten objects and dental casts of suspects. In this study, CBCT is applied to the analysis of bite marks in foodstuffs, which may be found in a forensic case scenario. 6 different types of foodstuffs were used: chocolate, cheese, apple, chewing gum, pizza and tart (flaky pastry and custard). The food was bitten into and dental casts of the possible suspects were made. The dental casts and bitten objects were registered using an x-ray source and the CBCT equipment iCAT® (Pennsylvania, EUA). The software InVivo5® (Anatomage Inc, EUA) was used to visualize and analyze the tomographic slices and 3D reconstructions of the objects. For each material an estimate of its density was assessed by two methods: HU values and specific gravity. All the used materials were successfully reconstructed as good quality 3D images. The relative densities of the materials in study were compared. Amongst the foodstuffs, the chocolate had the highest density (median value 100.5 HU and 1,36 g/cm(3)), while the pizza showed to have the lowest (median value -775 HU and 0,39 g/cm(3)), on both scales. Through tomographic slices and three-dimensional reconstructions it was possible to perform the metric analysis of the bite marks in all the foodstuffs, except for the pizza. These measurements could also be obtained from the dental casts. The depth of the bite mark was also successfully determined in all the foodstuffs except for the pizza. Cone Beam Computed Tomography has the potential to become an important tool for forensic sciences, namely for the registration and analysis of bite marks in foodstuffs that may be found in a crime

  11. Consideration of the Effect according to Variation of Material and Respiration in Cone-Beam CT

    International Nuclear Information System (INIS)

    Na, Jun Young; Kim, Jung Mi; Kim, Dae Sup; Kang, Tae Young; Baek, Geum Mun; Kwon, Gyeong Tae

    2012-01-01

    Image Guided Radiation Therapy (IGRT) has been carried out using On-Board Imager system (OBI) in Asan Medical Center. For this reason, This study was to analyze and evaluate the impact on Cone-Beam CT according to variation of material and respiration. This study was to acquire and analyze Cone-Beam CT three times for two material: Cylider acryl (lung equvalent material, diameter 3 cm), Fiducial Marker (using clinic) under Motion Phantom able to adjust respiration pattern randomly was varying period, amplitude and baseline vis-a-vis reference respiration pattern. First, According to a kind of material, when being showed 100% in the acryl and 120% in the Fiducial Marker under the condition of same movement of the motion phantom. Second, According to the respiratory alteration, when being showed 1.13 in the baseline shift 1.8 mm and 1.27 in the baseline shift 3.3 mm for acryl. when being showed 1.01 in 1 sec of period and 1.045 in 2.5 sec of period for acryl. When being showed 0.86 in 0.7 times the standard of amplitude and 1.43 in 1.7 times the standard of amplitude for acryl. when being showed 1.18 in the baseline shift 1.8 mm and 1.34 in the baseline shift 3.3 mm for Fiducial Marker. when being showed 1.0 in 1 sec of period and 1.0 in 2.5 sec of period for Fiducial Marker. When being showed 0.99 in 0.7 times the standard of amplitude and 1.66 in 1.7 times the standard of amplitude for Fiducial Marker. The effect of image size of CBCT was 20% in the case of Fiducial marker. The impact of changes in breathing pattern was minimum 13% - maximum 43% for Arcyl, min. 18% - max. 66% for Fiducial marker. This difference makes serious uncertainty. So, Must be stabilized breathing of patient before acquiring CBCT. also must be monitored breathing of patient in the middle of acquire. If you observe considerable change of breathing when acquiring CBCT. After Image Guided, must be need to check treatment site using fluoroscopy. If a change is too big, re-acquiring CBCT.

  12. Direct fourier methods in 3D-reconstruction from cone-beam data

    International Nuclear Information System (INIS)

    Axelsson, C.

    1994-01-01

    The problem of 3D-reconstruction is encountered in both medical and industrial applications of X-ray tomography. A method able to utilize a complete set of projections complying with Tuys condition was proposed by Grangeat. His method is mathematically exact and consists of two distinct phases. In phase 1 cone-beam projection data are used to produce the derivative of the radon transform. In phase 2, after interpolation, the radon transform data are used to reconstruct the three-dimensional object function. To a large extent our method is an extension of the Grangeat method. Our aim is to reduce the computational complexity, i.e. to produce a faster method. The most taxing procedure during phase 1 is computation of line-integrals in the detector plane. By applying the direct Fourier method in reverse for this computation, we reduce the complexity of phase 1 from O(N 4 ) to O(N 3 logN). Phase 2 can be performed either as a straight 3D-reconstruction or as a sequence of two 2D-reconstructions in vertical and horizontal planes, respectively. Direct Fourier methods can be applied for the 2D- and for the 3D-reconstruction, which reduces the complexity of phase 2 from O(N 4 ) to O(N 3 logN) as well. In both cases, linogram techniques are applied. For 3D-reconstruction the inversion formula contains the second derivative filter instead of the well-known ramp-filter employed in the 2D-case. The derivative filter is more well-behaved than the 2D ramp-filter. This implies that less zeropadding is necessary which brings about a further reduction of the computational efforts. The method has been verified by experiments on simulated data. The image quality is satisfactory and independent of cone-beam angles. For a 512 3 volume we estimate that our method is ten times faster than Grangeats method

  13. Analisis gambaran histogramdan densitas kamar pulpa pada gigi suspek pulpitis reversibel dan ireversibel dengan menggunakan radiografi cone beam computed tomography (Histogram and density analysis of irreversible and reversible pulpitissuspected tooth using cone beam computed tomography radiography)

    OpenAIRE

    Lusi Epsilawati; Suhardjo Sitam; Sam Belly; Fahmi Oscandar

    2014-01-01

    Inflammation of the pulp is most common and difficult to diagnose. For it radiographs is necessary. One attempt to do is to assess its histogram and density. Radiography equipment that has the ability to analyze is cone beam computed tomography (CBCT). The purpose of this study is to analyze radiograph of the pulp chamber histogram: peak value, grayscale and trends , as well as the density on the condition reversible and irreversible pulpitis condition. The population of this ...

  14. Mathematical filtering minimizes metallic halation of titanium implants in MicroCT images.

    Science.gov (United States)

    Ha, Jee; Osher, Stanley J; Nishimura, Ichiro

    2013-01-01

    Microcomputed tomography (MicroCT) images containing titanium implant suffer from x-rays scattering, artifact and the implant surface is critically affected by metallic halation. To improve the metallic halation artifact, a nonlinear Total Variation denoising algorithm such as Split Bregman algorithm was applied to the digital data set of MicroCT images. This study demonstrated that the use of a mathematical filter could successfully reduce metallic halation, facilitating the osseointegration evaluation at the bone implant interface in the reconstructed images.

  15. The effect of spatial micro-CT image resolution and surface complexity on the morphological 3D analysis of open porous structures

    Energy Technology Data Exchange (ETDEWEB)

    Pyka, Grzegorz, E-mail: gregory.pyka@mtm.kuleuven.be [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 – PB2450, B-3001 Leuven (Belgium); Kerckhofs, Greet [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 – PB2450, B-3001 Leuven (Belgium); Biomechanics Research Unit, Université de Liege, Chemin des Chevreuils 1 - BAT 52/3, B-4000 Liège (Belgium); Schrooten, Jan; Wevers, Martine [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 – PB2450, B-3001 Leuven (Belgium)

    2014-01-15

    In material science microfocus X-ray computed tomography (micro-CT) is one of the most popular non-destructive techniques to visualise and quantify the internal structure of materials in 3D. Despite constant system improvements, state-of-the-art micro-CT images can still hold several artefacts typical for X-ray CT imaging that hinder further image-based processing, structural and quantitative analysis. For example spatial resolution is crucial for an appropriate characterisation as the voxel size essentially influences the partial volume effect. However, defining the adequate image resolution is not a trivial aspect and understanding the correlation between scan parameters like voxel size and the structural properties is crucial for comprehensive material characterisation using micro-CT. Therefore, the objective of this study was to evaluate the influence of the spatial image resolution on the micro-CT based morphological analysis of three-dimensional (3D) open porous structures with a high surface complexity. In particular the correlation between the local surface properties and the accuracy of the micro-CT-based macro-morphology of 3D open porous Ti6Al4V structures produced by selective laser melting (SLM) was targeted and revealed for rough surfaces a strong dependence of the resulting structure characteristics on the scan resolution. Reducing the surface complexity by chemical etching decreased the sensitivity of the overall morphological analysis to the spatial image resolution and increased the detection limit. This study showed that scan settings and image processing parameters need to be customized to the material properties, morphological parameters under investigation and the desired final characteristics (in relation to the intended functional use). Customization of the scan resolution can increase the reliability of the micro-CT based analysis and at the same time reduce its operating costs. - Highlights: • We examine influence of the image resolution

  16. Applications of linac-mounted kilovoltage Cone-beam Computed Tomography in modern radiation therapy: A review

    International Nuclear Information System (INIS)

    Srinivasan, Kavitha; Mohammadi, Mohammad; Shepherd, Justin

    2014-01-01

    The use of Cone-beam Computed Tomography (CBCT) in radiotherapy is increasing due to the widespread implementation of kilovoltage systems on the currently available linear accelerators. Cone beam CT acts as an effective Image-Guided Radiotherapy (IGRT) tool for the verification of patient position. It also opens up the possibility of real-time re-optimization of treatment plans for Adaptive Radiotherapy (ART). This paper reviews the most prominent applications of CBCT (linac-mounted) in radiation therapy, focusing on CBCT-based planning and dose calculation studies. This is followed by a concise review of the main issues associated with CBCT, such as imaging artifacts, dose and image quality. It explores how medical physicists and oncologists can best apply CBCT for therapeutic applications

  17. [Detection of marginal leakage of Class V restorations in vitro by micro-CT].

    Science.gov (United States)

    Gu, Lin-juan; Zhao, Xin-yi; Li, Shi-bao

    2012-09-01

    To evaluate the reliability and superiority of micro-CT in marginal leakage assessment of Class V restorations. Class V preparations with gingival margins in dentin and occlusal in enamel were made in sixteen extracted non-carious human molars and restored with dental bonding agents and composite resin. All teeth were then immersed in 50% ammonia-silver nitrate solution for 12 hours, followed by developing solution for 8 hours. Each restoration was scanned by a micro-CT and silver leakage was measured and three-dimensional image of the silver leakage alone cavity wall were reconstructed. Afterward, all restorations were sectioned and examined for leakage depth using a microscope. The silver leakage depth of each restoration obtained by micro-CT and microscope were compared for equivalency. The silver leakage depths in gingival wall obtained with micro-CT (0.78 mm) and microscope (0.74 mm) showed no significant difference (P > 0.05), while the judgment of leakage depths in occlusal wall in micro-CT image (0.40 mm) was affected by adjacent enamel structure, giving less leakage depths compared to microscope (0.72 mm)(P leakages showed channels on their way to spreading. Micro-CT can detect precisely the silver leakage in the dentin wall of a restoration and display its three-dimensional shape fully. Enamel structure affects the detection of the silver leakage next to it.

  18. Clinical introduction of image lag correction for a cone beam CT system

    International Nuclear Information System (INIS)

    Stankovic, Uros; Ploeger, Lennert S.; Sonke, Jan-Jakob; Herk, Marcel van

    2016-01-01

    Purpose: Image lag in the flat-panel detector used for Linac integrated cone beam computed tomography (CBCT) has a degrading effect on CBCT image quality. The most prominent visible artifact is the presence of bright semicircular structure in the transverse view of the scans, known also as radar artifact. Several correction strategies have been proposed, but until now the clinical introduction of such corrections remains unreported. In November 2013, the authors have clinically implemented a previously proposed image lag correction on all of their machines at their main site in Amsterdam. The purpose of this study was to retrospectively evaluate the effect of the correction on the quality of CBCT images and evaluate the required calibration frequency. Methods: Image lag was measured in five clinical CBCT systems (Elekta Synergy 4.6) using an in-house developed beam interrupting device that stops the x-ray beam midway through the data acquisition of an unattenuated beam for calibration. A triple exponential falling edge response was fitted to the measured data and used to correct image lag from projection images with an infinite response. This filter, including an extrapolation for saturated pixels, was incorporated in the authors’ in-house developed clinical CBCT reconstruction software. To investigate the short-term stability of the lag and associated parameters, a series of five image lag measurement over a period of three months was performed. For quantitative analysis, the authors have retrospectively selected ten patients treated in the pelvic region. The apparent contrast was quantified in polar coordinates for scans reconstructed using the parameters obtained from different dates with and without saturation handling. Results: Visually, the radar artifact was minimal in scans reconstructed using image lag correction especially when saturation handling was used. In patient imaging, there was a significant reduction of the apparent contrast from 43 ± 16.7 to

  19. Clinical introduction of image lag correction for a cone beam CT system.

    Science.gov (United States)

    Stankovic, Uros; Ploeger, Lennert S; Sonke, Jan-Jakob; van Herk, Marcel

    2016-03-01

    Image lag in the flat-panel detector used for Linac integrated cone beam computed tomography (CBCT) has a degrading effect on CBCT image quality. The most prominent visible artifact is the presence of bright semicircular structure in the transverse view of the scans, known also as radar artifact. Several correction strategies have been proposed, but until now the clinical introduction of such corrections remains unreported. In November 2013, the authors have clinically implemented a previously proposed image lag correction on all of their machines at their main site in Amsterdam. The purpose of this study was to retrospectively evaluate the effect of the correction on the quality of CBCT images and evaluate the required calibration frequency. Image lag was measured in five clinical CBCT systems (Elekta Synergy 4.6) using an in-house developed beam interrupting device that stops the x-ray beam midway through the data acquisition of an unattenuated beam for calibration. A triple exponential falling edge response was fitted to the measured data and used to correct image lag from projection images with an infinite response. This filter, including an extrapolation for saturated pixels, was incorporated in the authors' in-house developed clinical cbct reconstruction software. To investigate the short-term stability of the lag and associated parameters, a series of five image lag measurement over a period of three months was performed. For quantitative analysis, the authors have retrospectively selected ten patients treated in the pelvic region. The apparent contrast was quantified in polar coordinates for scans reconstructed using the parameters obtained from different dates with and without saturation handling. Visually, the radar artifact was minimal in scans reconstructed using image lag correction especially when saturation handling was used. In patient imaging, there was a significant reduction of the apparent contrast from 43 ± 16.7 to 15.5 ± 11.9 HU without the

  20. Characterization of Scattered X-Ray Photons in Dental Cone-Beam Computed Tomography.

    Science.gov (United States)

    Yang, Ching-Ching

    2016-01-01

    Scatter is a very important artifact causing factor in dental cone-beam CT (CBCT), which has a major influence on the detectability of details within images. This work aimed to improve the image quality of dental CBCT through scatter correction. Scatter was estimated in the projection domain from the low frequency component of the difference between the raw CBCT projection and the projection obtained by extrapolating the model fitted to the raw projections acquired with 2 different sizes of axial field-of-view (FOV). The function for curve fitting was optimized by using Monte Carlo simulation. To validate the proposed method, an anthropomorphic phantom and a water-filled cylindrical phantom with rod inserts simulating different tissue materials were scanned using 120 kVp, 5 mA and 9-second scanning time covering an axial FOV of 4 cm and 13 cm. The detectability of the CT image was evaluated by calculating the contrast-to-noise ratio (CNR). Beam hardening and cupping artifacts were observed in CBCT images without scatter correction, especially in those acquired with 13 cm FOV. These artifacts were reduced in CBCT images corrected by the proposed method, demonstrating its efficacy on scatter correction. After scatter correction, the image quality of CBCT was improved in terms of target detectability which was quantified as the CNR for rod inserts in the cylindrical phantom. Hopefully the calculations performed in this work can provide a route to reach a high level of diagnostic image quality for CBCT imaging used in oral and maxillofacial structures whilst ensuring patient dose as low as reasonably achievable, which may ultimately make CBCT scan a reliable and safe tool in clinical practice.

  1. Characterization of Scattered X-Ray Photons in Dental Cone-Beam Computed Tomography.

    Directory of Open Access Journals (Sweden)

    Ching-Ching Yang

    Full Text Available Scatter is a very important artifact causing factor in dental cone-beam CT (CBCT, which has a major influence on the detectability of details within images. This work aimed to improve the image quality of dental CBCT through scatter correction.Scatter was estimated in the projection domain from the low frequency component of the difference between the raw CBCT projection and the projection obtained by extrapolating the model fitted to the raw projections acquired with 2 different sizes of axial field-of-view (FOV. The function for curve fitting was optimized by using Monte Carlo simulation. To validate the proposed method, an anthropomorphic phantom and a water-filled cylindrical phantom with rod inserts simulating different tissue materials were scanned using 120 kVp, 5 mA and 9-second scanning time covering an axial FOV of 4 cm and 13 cm. The detectability of the CT image was evaluated by calculating the contrast-to-noise ratio (CNR.Beam hardening and cupping artifacts were observed in CBCT images without scatter correction, especially in those acquired with 13 cm FOV. These artifacts were reduced in CBCT images corrected by the proposed method, demonstrating its efficacy on scatter correction. After scatter correction, the image quality of CBCT was improved in terms of target detectability which was quantified as the CNR for rod inserts in the cylindrical phantom.Hopefully the calculations performed in this work can provide a route to reach a high level of diagnostic image quality for CBCT imaging used in oral and maxillofacial structures whilst ensuring patient dose as low as reasonably achievable, which may ultimately make CBCT scan a reliable and safe tool in clinical practice.

  2. Evaluation of a cone beam computed tomography geometry for image guided small animal irradiation

    International Nuclear Information System (INIS)

    Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Wong, John; Iordachita, Iulian; Siewerdsen, Jeffrey

    2015-01-01

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal (‘tubular’ geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal (‘pancake’ geometry). The small animal radiation research platform developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Not withstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e. pancake and tubular geometry

  3. Daily Online Cone Beam Computed Tomography to Assess Interfractional Motion in Patients With Intact Cervical Cancer

    International Nuclear Information System (INIS)

    Tyagi, Neelam; Lewis, John H.; Yashar, Catheryn M.; Vo, Daniel; Jiang, Steve B.; Mundt, Arno J.; Mell, Loren K.

    2011-01-01

    Purpose: To quantify interfraction motion in patients with intact cervical cancer and assess implications for clinical target volume (CTV) coverage and required planning margins. Methods and Materials: We analyzed 10 patients undergoing external beam radiotherapy using online cone beam computed tomography (CBCT) before each fraction. CTVs were contoured on the planning CT and on each CBCT. Each CBCT was rigidly registered to the planning CT with respect to bony anatomy. The CTV from each CBCT was projected onto the planning CT and compared to the CTV from the planning CT. Uniform three-dimensional expansions were applied to the planning CTV to assess required planning margins. For each fraction, the minimum margin required to encompass the CTV was calculated, and the volume of CTV (on the CBCT) encompassed by the PTV was determined as a function of margin size. Results: A uniform CTV planning treatment volume margin of 15 mm would have failed to encompass the CTV in 32% of fractions. The mean volume of CTV missed, however, was small (4 cc). The mean planning margin (across patients and fractions) required to encompass the CTV was 15 mm. Variation in margin estimates was high, with interpatient variation being the predominant component. Increased rectal volume was associated with posterior (p < 0.0001) and superior (p = 0.0004) shifts in the CTV, whereas increased bladder volume was associated with superior shifts (p < 0.0001). Conclusions: Interfraction motion results in a high probability of missing the CTV using conventional planning margins, but the volume of CTV missed is small. Adaptive radiotherapy approaches are needed to improve treatment accuracy.

  4. Evaluation of a cone beam computed tomography geometry for image guided small animal irradiation.

    Science.gov (United States)

    Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Iordachita, Iulian; Siewerdsen, Jeffrey; Wong, John

    2015-07-07

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal ('tubular' geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal ('pancake' geometry). The small animal radiation research platform developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Not withstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e. pancake and tubular geometry, respectively.

  5. Morphological assessment of the stylohyoid complex variations with cone beam computed tomography in a Turkish population.

    Science.gov (United States)

    Buyuk, C; Gunduz, K; Avsever, H

    2018-01-01

    The aim of this investigation was to evaluate the length, thickness, sagittal and transverse angulations and the morphological variations of the stylohyoid complex (SHC), to assess their probable associations with age and gender, and to investigate the prevalence of it in a wide range of a Turkish sub-population by using cone beam computed tomography (CBCT). The CBCT images of the 1000 patients were evaluated retrospectively. The length, thickness, sagittal and transverse angulations, morphological variations and ossification degrees of SHC were evaluated on multiplanar reconstructions (MPR) adnd three-dimensional (3D) volume rendering (3DVR) images. The data were analysed statistically by using nonparametric tests, Pearson's correlation coefficient, Student's t test, c2 test and one-way ANOVA. Statistical significance was considered at p 35 mm). The mean sagittal angle value was measured to be 72.24° and the mean transverse angle value was 70.81°. Scalariform shape, elongated type and nodular calcification pattern have the highest mean age values between the morphological groups, respectively. Calcified outline was the most prevalent calcification pattern in males. There was no correlation between length and the calcification pattern groups while scalariform shape and pseudoarticular type were the longest variations. We observed that as the anterior sagittal angle gets wider, SHC tends to get longer. The most observed morphological variations were linear shape, elongated type and calcified outline pattern. Detailed studies on the classification will contribute to the literature. (Folia Morphol 2018; 77, 1: 79-89).

  6. Clinical Implementation Of Megavoltage Cone Beam CT As Part Of An IGRT Program

    International Nuclear Information System (INIS)

    Gonzalez, Albin; Kinney, Vicki; Crooks, Cheryl; Bauer, Lisa

    2008-01-01

    Knowing where the tumor is at all times during treatment is the next challenge in the field of radiation therapy. This issue has become more important because with treatments such as Intensity Modulated Radiation Therapy (IMRT), healthy tissue is spared by using very tight margins around the tumor. These tight margins leave very small room for patient setup errors. The use of an imaging modality in the treatment room as a way to localize the tumor for patient set up is generally known as ''Image Guided Radiation Therapy'' or IGRT. This article deals with a form of IGRT known as Megavoltage Cone Beam Computed Tomography (MCBCT) using a Siemens Oncor linear accelerator currently in use at Firelands Regional Medical Center. With MCBCT, we are capable of acquiring CT images right before the treatment of the patient and then use this information to position the patient tumor according to the treatment plan. This article presents the steps followed in order to clinically implement this system, as well as some of the quality assurance tests suggested by the manufacturer and some tests developed in house

  7. A review of setup error in supine breast radiotherapy using cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Batumalai, Vikneswary, E-mail: Vikneswary.batumalai@sswahs.nsw.gov.au [South Western Clinical School, University of New South Wales, Sydney, New South Wales (Australia); Liverpool and Macarthur Cancer Therapy Centres, New South Wales (Australia); Ingham Institute of Applied Medical Research, Sydney, New South Wales (Australia); Holloway, Lois [South Western Clinical School, University of New South Wales, Sydney, New South Wales (Australia); Liverpool and Macarthur Cancer Therapy Centres, New South Wales (Australia); Ingham Institute of Applied Medical Research, Sydney, New South Wales (Australia); Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales (Australia); Institute of Medical Physics, School of Physics, University of Sydney, Sydney, New South Wales (Australia); Delaney, Geoff P. [South Western Clinical School, University of New South Wales, Sydney, New South Wales (Australia); Liverpool and Macarthur Cancer Therapy Centres, New South Wales (Australia); Ingham Institute of Applied Medical Research, Sydney, New South Wales (Australia)

    2016-10-01

    Setup error in breast radiotherapy (RT) measured with 3-dimensional cone-beam computed tomography (CBCT) is becoming more common. The purpose of this study is to review the literature relating to the magnitude of setup error in breast RT measured with CBCT. The different methods of image registration between CBCT and planning computed tomography (CT) scan were also explored. A literature search, not limited by date, was conducted using Medline and Google Scholar with the following key words: breast cancer, RT, setup error, and CBCT. This review includes studies that reported on systematic and random errors, and the methods used when registering CBCT scans with planning CT scan. A total of 11 relevant studies were identified for inclusion in this review. The average magnitude of error is generally less than 5 mm across a number of studies reviewed. The common registration methods used when registering CBCT scans with planning CT scan are based on bony anatomy, soft tissue, and surgical clips. No clear relationships between the setup errors detected and methods of registration were observed from this review. Further studies are needed to assess the benefit of CBCT over electronic portal image, as CBCT remains unproven to be of wide benefit in breast RT.

  8. Quality control in cone-beam computed tomography (CBCT) EFOMP-ESTRO-IAEA protocol (summary report).

    Science.gov (United States)

    de Las Heras Gala, Hugo; Torresin, Alberto; Dasu, Alexandru; Rampado, Osvaldo; Delis, Harry; Hernández Girón, Irene; Theodorakou, Chrysoula; Andersson, Jonas; Holroyd, John; Nilsson, Mats; Edyvean, Sue; Gershan, Vesna; Hadid-Beurrier, Lama; Hoog, Christopher; Delpon, Gregory; Sancho Kolster, Ismael; Peterlin, Primož; Garayoa Roca, Julia; Caprile, Paola; Zervides, Costas

    2017-07-01

    The aim of the guideline presented in this article is to unify the test parameters for image quality evaluation and radiation output in all types of cone-beam computed tomography (CBCT) systems. The applications of CBCT spread over dental and interventional radiology, guided surgery and radiotherapy. The chosen tests provide the means to objectively evaluate the performance and monitor the constancy of the imaging chain. Experience from all involved associations has been collected to achieve a consensus that is rigorous and helpful for the practice. The guideline recommends to assess image quality in terms of uniformity, geometrical precision, voxel density values (or Hounsfield units where available), noise, low contrast resolution and spatial resolution measurements. These tests usually require the use of a phantom and evaluation software. Radiation output can be determined with a kerma-area product meter attached to the tube case. Alternatively, a solid state dosimeter attached to the flat panel and a simple geometric relationship can be used to calculate the dose to the isocentre. Summary tables including action levels and recommended frequencies for each test, as well as relevant references, are provided. If the radiation output or image quality deviates from expected values, or exceeds documented action levels for a given system, a more in depth system analysis (using conventional tests) and corrective maintenance work may be required. Copyright © 2017. Published by Elsevier Ltd.

  9. Management of Oehler’s Type III Dens Invaginatus Using Cone Beam Computed Tomography

    Directory of Open Access Journals (Sweden)

    Jaya Ranganathan

    2016-01-01

    Full Text Available Dens Invaginatus is a dental malformation that poses diagnostic difficulties in the clinical context. This anomaly may increase the risk of pulp disease and can potentially complicate endodontic procedure due to the aberrant root canal anatomy. Compared to conventional radiographs, three-dimensional images obtained with Cone Beam Computed Tomography (CBCT are invaluable in the diagnosis of the extent of this anomaly and in the appropriate treatment planning. Oehler’s classification (1957 for Dens Invaginatus (DI into three types depending on the depth of the invagination has been used for treatment planning. Of the three types Type III DI is characterized by infolding of the enamel into the tooth up to the root apex and is considered as the most severe variant of DI and hence the most challenging to treat endodontically, due to the morphological complexities. This report describes a case of Oehler’s Type III DI in a necrotic permanent maxillary lateral incisor in which CBCT images played a key role in diagnosis and treatment planning. The case was managed successfully by a combination of nonsurgical and surgical endodontic therapy with orthograde and retrograde thermoplastic gutta percha obturation.

  10. A fast 4D cone beam CT reconstruction method based on the OSC-TV algorithm.

    Science.gov (United States)

    Mascolo-Fortin, Julia; Matenine, Dmitri; Archambault, Louis; Després, Philippe

    2018-01-01

    Four-dimensional cone beam computed tomography allows for temporally resolved imaging with useful applications in radiotherapy, but raises particular challenges in terms of image quality and computation time. The purpose of this work is to develop a fast and accurate 4D algorithm by adapting a GPU-accelerated ordered subsets convex algorithm (OSC), combined with the total variation minimization regularization technique (TV). Different initialization schemes were studied to adapt the OSC-TV algorithm to 4D reconstruction: each respiratory phase was initialized either with a 3D reconstruction or a blank image. Reconstruction algorithms were tested on a dynamic numerical phantom and on a clinical dataset. 4D iterations were implemented for a cluster of 8 GPUs. All developed methods allowed for an adequate visualization of the respiratory movement and compared favorably to the McKinnon-Bates and adaptive steepest descent projection onto convex sets algorithms, while the 4D reconstructions initialized from a prior 3D reconstruction led to better overall image quality. The most suitable adaptation of OSC-TV to 4D CBCT was found to be a combination of a prior FDK reconstruction and a 4D OSC-TV reconstruction with a reconstruction time of 4.5 minutes. This relatively short reconstruction time could facilitate a clinical use.

  11. Cone beam CT for organs motion evaluation in pediatric abdominal neuroblastoma

    International Nuclear Information System (INIS)

    Nazmy, Mohamed Soliman; Khafaga, Yasser; Mousa, Amr; Khalil, Ehab

    2012-01-01

    Background and purpose: To quantify the organ motion relative to bone in different breathing states in pediatric neuroblastoma using cone beam CT (CBCT) for better definition of the planning margins during abdominal IMRT. Methods and materials: Forty-two datasets of kV CBCT for 9 pediatric patients with abdominal neuroblastoma treated with IMRT were evaluated. Organs positions on planning CT scan were considered the reference position against which organs and target motions were evaluated. The position of the kidneys and the liver was assessed in all scans. The target movement was evaluated in four patients who were treated for gross residual disease. Results: The mean age of the patients was 4.1 ± 1.6 years. The range of target movement in the craniocaudal direction (CC) was 5 mm. In the CC direction, the range of movement was 10 mm for the right kidney, and 8 mm for the left kidney. Similarly, the liver upper edge range of motion was 11 mm while the lower edge range of motion was 13 mm. Conclusions: With the use of daily CBCT we may be able to reduce the PTV margin. If CBCT is not used daily, a wider margin is needed.

  12. Multimodal registration of three-dimensional maxillodental cone beam CT and photogrammetry data over time.

    Science.gov (United States)

    Bolandzadeh, N; Bischof, W; Flores-Mir, C; Boulanger, P

    2013-01-01

    In recent years, one of the foci of orthodontics has been on systems for the evaluation of treatment results and the tracking of tissue variations over time. This can be accomplished through analysing three-dimensional orthodontic images obtained before and after the treatments. Since complementary information is achieved by integrating multiple imaging modalities, cone beam CT (CBCT) and stereophotogrammetry technologies are used in this study to develop a method for tracking bone, teeth and facial soft-tissue variations over time. We propose a two-phase procedure of multimodal (Phase 1) and multitemporal (Phase 2) registration which aligns images taken from the same patient by different imaging modalities and at different times. Extrinsic (for Phase 1) and intrinsic (for Phase 2) landmark-based registration methods are employed as an initiation for a robust iterative closest points algorithm. Since the mandible moves independently of the upper skull, the registration procedure is applied separately on the mandible and the upper skull. The results show that the signed error distributions of both mandible and skull registrations follow a mixture of two Gaussian distributions, corresponding to alignment errors (due to our method) and temporal change over time. We suggest that the large values among the total registration errors correspond to the temporal change resulting from (1) the effect of treatment (i.e. the orthodontic changes of teeth positions); (2) the biological changes such as teeth growth over time, especially for teenagers; and (3) the segmentation procedure and CBCT precision change over time.

  13. Long term three dimensional tracking of orthodontic patients using registered cone beam CT and photogrammetry.

    Science.gov (United States)

    Boulanger, Pierre; Flores-Mir, Carlos; Ramirez, Juan F; Mesa, Elizabeth; Branch, John W

    2009-01-01

    The measurements from registered images obtained from Cone Beam Computed Tomography (CBCT) and a photogrammetric sensor are used to track three-dimensional shape variations of orthodontic patients before and after their treatments. The methodology consists of five main steps: (1) the patient's bone and skin shapes are measured in 3D using the fusion of images from a CBCT and a photogrammetric sensor. (2) The bone shape is extracted from the CBCT data using a standard marching cube algorithm. (3) The bone and skin shape measurements are registered using titanium targets located on the head of the patient. (4) Using a manual segmentation technique the head and lower jaw geometry are extracted separately to deal with jaw motion at the different record visits. (5) Using natural features of the upper head the two datasets are then registered with each other and then compared to evaluate bone, teeth, and skin displacements before and after treatments. This procedure is now used at the University of Alberta orthodontic clinic.

  14. Cone-beam computed tomography evaluation of dentoskeletal changes after asymmetric rapid maxillary expansion.

    Science.gov (United States)

    Baka, Zeliha Muge; Akin, Mehmet; Ucar, Faruk Izzet; Ileri, Zehra

    2015-01-01

    The aims of this study were to quantitatively evaluate the changes in arch widths and buccolingual inclinations of the posterior teeth after asymmetric rapid maxillary expansion (ARME) and to compare the measurements between the crossbite and the noncrossbite sides with cone-beam computed tomography (CBCT). From our clinic archives, we selected the CBCT records of 30 patients with unilateral skeletal crossbite (13 boys, 14.2 ± 1.3 years old; 17 girls, 13.8 ± 1.3 years old) who underwent ARME treatment. A modified acrylic bonded rapid maxillary expansion appliance including an occlusal locking mechanism was used in all patients. CBCT records had been taken before ARME treatment and after a 3-month retention period. Fourteen angular and 80 linear measurements were taken for the maxilla and the mandible. Frontally clipped CBCT images were used for the evaluation. Paired sample and independent sample t tests were used for statistical comparisons. Comparisons of the before-treatment and after-retention measurements showed that the arch widths and buccolingual inclinations of the posterior teeth increased significantly on the crossbite side of the maxilla and on the noncrossbite side of the mandible (P ARME treatment, the crossbite side of the maxilla and the noncrossbite side of the mandible were more affected than were the opposite sides. Copyright © 2015. Published by Elsevier Inc.

  15. Volumetric analysis of the mandibular condyle using cone beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Bayram, Mehmet, E-mail: dtmehmetbayram@yahoo.com [Karadeniz Technical University, Faculty of Dentistry, Department of Orthodontics, 61080 Trabzon (Turkey); Kayipmaz, Saadettin; Sezgin, Oemer Said [Karadeniz Technical University, Faculty of Dentistry, Department of Oral Radiology, Trabzon (Turkey); Kuecuek, Murat [Karadeniz Technical University, Faculty of Arts and Sciences, Department of Chemistry, Trabzon (Turkey)

    2012-08-15

    Objective: The aim was to determine the accuracy of volumetric analysis of the mandibular condyle using cone-beam computed tomography (CBCT). Materials and methods: Five dry mandibles containing 9 condyles were used. CBCT scans of the mandibles and an impression of each condylar area were taken. The physical volumes of the condyles were calculated as the gold standard using the water displacement technique. After isolating, the condylar volume was sectioned in the sagittal plane, and 0.3 mm thick sections with 0.9 mm intervals were obtained from 3D reconstructions. Using the Cavalieri principle, the volume of each condyle was estimated from the CBCT images by three observers. The accuracy of the CBCT volume measurements and the relation agreements between the results of the three observers were assessed using the Wilcoxon Signed Rank test and Pearson correlation test. The level of statistical significance was set at 0.05. Results: The results of the Pearson correlation showed that there were highly significant positive correlations between the observers' measurements. According to the results of the Wilcoxon Signed Rank test comparing the physical and observers' measurements, there were no statistically significant differences (p > 0.05). Conclusion: The Cavalieri principle, used in conjunction with a planimetry method, is a valid and effective method for volume estimation of the mandibular condyle on CBCT images.

  16. Geometric calibration method for multiple-head cone-beam SPECT system

    International Nuclear Information System (INIS)

    Rizo, P.; Grangeat, P.; Guillemaud, R.

    1994-01-01

    A method is presented for estimating the geometrical parameters of cone beam systems with multiple heads, each head having its own orientation. In tomography, for each head, the relative position of the rotation axis and f the collimator do not change during the data acquisition. The authors thus can separate the parameters into intrinsic parameters and extrinsic parameters. The intrinsic parameters describe the detection system geometry and the extrinsic parameters the position of the detection system with respect to the rotation axis. Intrinsic parameters must be estimated each time the acquisition geometry is modified. Extrinsic parameters are estimated by minimizing the distances between the measured position of a point source projection and the computed position obtained using the estimated extrinsic parameters. The main advantage of this method is that the extrinsic parameters are only weakly correlated when the intrinsic parameters are known. Thus the authors can use any simple least square error minimization method to perform the estimation of the extrinsic parameters. Giving a fixed value to the distance between the point source and the rotation axis in the estimation process, ensures the coherence of the extrinsic parameters between each head. They show that with this calibration method, the full width at half maximum measured with point sources is very close to the theoretical one, and remains almost unchanged when more than one head is used. Simulation results and reconstructions on a Jaszczak phantom are presented that show the capabilities of this method

  17. Cone beam computed tomographic imaging: perspective, challenges, and the impact of near-trend future applications.

    Science.gov (United States)

    Cavalcanti, Marcelo Gusmão Paraiso

    2012-01-01

    Cone beam computed tomography (CBCT) can be considered as a valuable imaging modality for improving diagnosis and treatment planning to achieve true guidance for several craniofacial surgical interventions. A new concept and perspective in medical informatics is the highlight discussion about the new imaging interactive workflow. The aim of this article was to present, in a short literature review, the usefulness of CBCT technology as an important alternative imaging modality, highlighting current practices and near-term future applications in cutting-edge thought-provoking perspectives for craniofacial surgical assessment. This article explains the state of the art of CBCT improvements, medical workstation, and perspectives of the dedicated unique hardware and software, which can be used from the CBCT source. In conclusion, CBCT technology is developing rapidly, and many advances are on the horizon. Further progress in medical workstations, engineering capabilities, and improvement in independent software-some open source-should be attempted with this new imaging method. The perspectives, challenges, and pitfalls in CBCT will be delineated and evaluated along with the technological developments.

  18. Cone-beam computed tomography for planning and assessing surgical outcomes of osteo-odonto-keratoprosthesis.

    Science.gov (United States)

    Berg, Britt-Isabelle; Dagassan-Berndt, Dorothea; Goldblum, David; Kunz, Christoph

    2015-04-01

    The aim of this study was to investigate the feasibility and effectiveness of cone-beam computed tomography (CBCT) in the planning, assessment, and follow-up for osteo-odonto-keratoprosthesis (OOKP). Six OOKP patients received a CBCT scan. CBCT scans were performed before and/or between ∼5 and 504 months after the primary OOKP intervention. Preoperative and postoperative results of the CBCT were assessed, regarding the available teeth and to assess the loss of bone in 1 patient, respectively. Resorption of the osteo-odonto-lamina was measured and graded. Five different measurements (I-V) were performed in the coronal and transversal views of CBCT. Four CBCT scans were performed preoperatively and 4 postoperatively. The follow-up time of the patients is between ∼1 to 528 months. Visualization of the potential donor teeth resulted in accurate 3-dimensional visualization of the tooth-lamina-bone complex. CBCT was found to help in the preoperative decision-making process (diameter of optical implant) and in enabling accurate postoperative evaluation of the bone volume and resorption zones of the OOKP. Loss of bone could be measured in a precise range and showed in the completed cases an average loss of 20.2%. The use of CBCT simplifies the preoperative decision making and ordering process. It also helps in determining the postoperative structure and resorption of the prosthesis.

  19. Quantitative Assessment of Cervical Vertebral Maturation Using Cone Beam Computed Tomography in Korean Girls

    Directory of Open Access Journals (Sweden)

    Bo-Ram Byun

    2015-01-01

    Full Text Available This study was aimed to examine the correlation between skeletal maturation status and parameters from the odontoid process/body of the second vertebra and the bodies of third and fourth cervical vertebrae and simultaneously build multiple regression models to be able to estimate skeletal maturation status in Korean girls. Hand-wrist radiographs and cone beam computed tomography (CBCT images were obtained from 74 Korean girls (6–18 years of age. CBCT-generated cervical vertebral maturation (CVM was used to demarcate the odontoid process and the body of the second cervical vertebra, based on the dentocentral synchondrosis. Correlation coefficient analysis and multiple linear regression analysis were used for each parameter of the cervical vertebrae (P<0.05. Forty-seven of 64 parameters from CBCT-generated CVM (independent variables exhibited statistically significant correlations (P<0.05. The multiple regression model with the greatest R2 had six parameters (PH2/W2, UW2/W2, (OH+AH2/LW2, UW3/LW3, D3, and H4/W4 as independent variables with a variance inflation factor (VIF of <2. CBCT-generated CVM was able to include parameters from the second cervical vertebral body and odontoid process, respectively, for the multiple regression models. This suggests that quantitative analysis might be used to estimate skeletal maturation status.

  20. Upper airway segmentation and dimensions estimation from cone-beam CT image datasets

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Hongjian; Scarfe, W.C. [Louisville Univ., KY (United States). School of Dentistry; Farman, A.G. [Louisville Univ., KY (United States). School of Dentistry; Louisville Univ., KY (United States). Div. of Radiology and Imaging Science

    2006-11-15

    Objective: To segment and measure the upper airway using cone-beam computed tomography (CBCT). This information may be useful as an imaging biomarker in the diagnostic assessment of patients with obstructive sleep apnea and in the planning of any necessary therapy. Methods: With Institutional Review Board Approval, anonymous CBCT datasets from subjects who had been imaged for a variety of conditions unrelated to the airway were evaluated. DICOM images were available. A segmentation algorithm was developed to separate the bounded upper airway and measurements were performed manually to determine the smallest cross-sectional area and the anteriorposterior distance of the retropalatal space (RP-SCA and RP-AP, respectively) and retroglossal space (RG-SCA and RG-AP, respectively). A segmentation algorithm was developed to separate the bounded upper airway and it was applied to determine RP-AP, RG-AP, the smallest transaxial-sectional area (TSCA) and largest sagittal view airway area (LCSA). A second algorithm was created to evaluate the airway volume within this bounded upper airway. Results: Measurements of the airway segmented automatically by the developed algorithm agreed with those obtained using manual segmentation. The corresponding volumes showed only very small differences considered clinically insignificant. Conclusion: Automatic segmentation of the airway imaged using CBCT is feasible and this method can be used to evaluate airway cross-section and volume comparable to measurements extracted using manual segmentation. (orig.)

  1. Customisation of a Monte Carlo dosimetry tool for dental cone-beam CT systems

    International Nuclear Information System (INIS)

    Stratis, A.; Lopez-Rendon, X.; Jacobs, R.; Zhang, G.; Bogaerts, R.; Bosmans, H.

    2016-01-01

    A versatile EGSnrc Monte Carlo (MC) framework, initially designed to explicitly simulate X-ray tubes and record the output data into phase space data files, was modified towards dental cone-beam computed tomography (CBCT) dosimetric applications by introducing equivalent sources. Half value layer (HVL) measurements were conducted to specify protocol-specific energy spectra. Air kerma measurements were carried out with an ionisation chamber positioned against the X-ray tube to obtain the total filtration attenuation characteristics. The framework is applicable to bow-tie and non-bow-tie inherent filtrations, and it accounts for the anode heel effect and the total filtration of the tube housing. The code was adjusted to the Promax 3D Max (Planmeca, Helsinki, Finland) dental CBCT scanner. For each clinical protocol, calibration factors were produced to allow absolute MC dose calculations. The framework was validated by comparing MC calculated doses and measured doses in a cylindrical water phantom. Validation results demonstrate the reliability of the framework for dental CBCT dosimetry purposes. (authors)

  2. Cone-Beam CT Localization of Internal Target Volumes for Stereotactic Body Radiotherapy of Lung Lesions

    International Nuclear Information System (INIS)

    Wang Zhiheng; Wu, Q. Jackie; Marks, Lawrence B.; Larrier, Nicole; Yin Fangfang

    2007-01-01

    Purpose: In this study, we investigate a technique of matching internal target volumes (ITVs) in four-dimensional (4D) simulation computed tomography (CT) to the composite target volume in free-breathing on-board cone-beam (CB) CT. The technique is illustrated by using both phantom and patient cases. Methods and Materials: A dynamic phantom with a target ball simulating respiratory motion with various amplitude and cycle times was used to verify localization accuracy. The dynamic phantom was scanned using simulation CT with a phase-based retrospective sorting technique. The ITV was then determined based on 10 sets of sorted images. The size and epicenter of the ITV identified from 4D simulation CT images and the composite target volume identified from on-board CBCT images were compared to assess localization accuracy. Similarly, for two clinical cases of patients with lung cancer, ITVs defined from 4D simulation CT images and CBCT images were compared. Results: For the phantom, localization accuracy between the ITV in 4D simulation CT and the composite target volume in CBCT was within 1 mm, and ITV was within 8.7%. For patient cases, ITVs on simulation CT and CBCT were within 8.0%. Conclusion: This study shows that CBCT is a useful tool to localize ITV for targets affected by respiratory motion. Verification of the ITV from 4D simulation CT using on-board free-breathing CBCT is feasible for the target localization of lung tumors

  3. Impact of cone-beam computed tomography on implant planning and on prediction of implant size

    Energy Technology Data Exchange (ETDEWEB)

    Pedroso, Ludmila Assuncao de Mello; Silva, Maria Alves Garcia Santos, E-mail: ludmilapedroso@hotmail.com [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Fac. de Odontologia; Garcia, Robson Rodrigues [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Fac. de Odontologia. Dept. de Medicina Oral; Leles, Jose Luiz Rodrigues [Universidade Paulista (UNIP), Goiania, GO (Brazil). Fac. de Odontologia. Dept. de Cirurgia; Leles, Claudio Rodrigues [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Fac. de Odontologia. Dept. de Prevencao e Reabilitacao Oral

    2013-11-15

    The aim was to investigate the impact of cone-beam computed tomography (CBCT) on implant planning and on prediction of final implant size. Consecutive patients referred for implant treatment were submitted to clinical examination, panoramic (PAN) radiography and a CBCT exam. Initial planning of implant length and width was assessed based on clinical and PAN exams, and final planning, on CBCT exam to complement diagnosis. The actual dimensions of the implants placed during surgery were compared with those obtained during initial and final planning, using the McNemmar test (p < 0.05). The final sample comprised 95 implants in 27 patients, distributed over the maxilla and mandible. Agreement in implant length was 50.5% between initial and final planning, and correct prediction of the actual implant length was 40.0% and 69.5%, using PAN and CBCT exams, respectively. Agreement in implant width assessment ranged from 69.5% to 73.7%. A paired comparison of the frequency of changes between initial or final planning and implant placement (McNemmar test) showed greater frequency of changes in initial planning for implant length (p < 0.001), but not for implant width (p = 0.850). The frequency of changes was not influenced by implant location at any stage of implant planning (chi-square test, p > 0.05). It was concluded that CBCT improves the ability of predicting the actual implant length and reduces inaccuracy in surgical dental implant planning. (author)

  4. Evaluation of condylar positions in patients with temporomandibular disorders: A cone-beam computed tomography study

    Energy Technology Data Exchange (ETDEWEB)

    Imanimoghaddam, Mahrokh; Mahdavi, Pirooze; Bagherpour, Ali; Darijani, Mansoreh; Ebrahimnejad, Hamed [Dept. of Oral and Maxillofacial Radiology, Oral and Maxillofacial Diseases Research Center, School of Dentistry, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Madani, Azam Sadat [Dept. of Oral and Maxillofacial Radiology, Oral and Maxillofacial Diseases Research Center, School of Dentistry, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of)

    2016-06-15

    This study was performed to compare the condylar position in patients with temporomandibular joint disorders (TMDs) and a normal group by using cone-beam computed tomography (CBCT). In the TMD group, 25 patients (5 men and 20 women) were randomly selected among the ones suffering from TMD according to the Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD). The control group consisted of 25 patients (8 men and 17 women) with normal temporomandibular joints (TMJs) who were referred to the radiology department in order to undergo CBCT scanning for implant treatment in the posterior maxilla. Linear measurements from the superior, anterior, and posterior joint spaces between the condyle and glenoid fossa were made through defined landmarks in the sagittal view. The inclination of articular eminence was also determined. The mean anterior joint space was 2.3 mm in the normal group and 2.8 mm in the TMD group, respectively. The results showed that there was a significant correlation between the superior and posterior joint spaces in both the normal and TMD groups, but it was only in the TMD group that the correlation coefficient among the dimensions of anterior and superior spaces was significant. There was a significant correlation between the inclination of articular eminence and the size of the superior and posterior spaces in the normal group. The average dimension of the anterior joint space was different between the two groups. CBCT could be considered a useful diagnostic imaging modality for TMD patients.

  5. Association between clinical and cone-beam computed tomography findings in patients with temporomandibular disorders

    Directory of Open Access Journals (Sweden)

    Mahrokh Imanimoghaddam

    2017-08-01

    Full Text Available BACKGROUND AND AIM: The aim of this study was to assess the association between the clinical and cone-beam computed tomography (CBCT findings in relation to bony changes in patients with temporomandibular disorders (TMD. METHODS: According to the research diagnostic criteria for temporomandibular disorder (RDC/TMD, forty-one patients with type II TMD (42 TM joints and type III TMD (40 TM joints were recruited for this study. Condylar position and bony changes including flattening, sclerosis, osteophytes, resorption, and erosion of joint were evaluated by CBCT and compared with clinical findings. Data were analyzed by SPSS software. RESULTS: Condylar flattening, sclerosis, resorption, and erosion were not significantly associated with joint/masticatory muscles pain or crepitus sound. The vertical or horizontal position of the condyle showed no significant relationship with the clinical findings. Condylar osteophyte was significantly associated with pain in masticatory muscles and crepitus (P = 0.030 and P = 0.010, respectively. There was no association between the condylar range of motion and pain in joint or masticatory muscles. CONCLUSION: Condylar osteophyte was significantly associated with both masticatory muscles pain and crepitus sound. No significant relationship was found between the other temporomandibular joint (TMJ radiographic and clinical findings in patients with TMD.

  6. Does hyrax expansion therapy affect maxillary sinus volume? A cone-beam computed tomography report

    International Nuclear Information System (INIS)

    Darsey, Drew M.; English, Jeryl D.; Ellis, Randy K.; Akyalcin, Sercan; Kau, Chung H

    2012-01-01

    The aim of this study was to investigate the initial effects of maxillary expansion therapy with Hyrax appliance and to evaluate the related changes in maxillary sinus volume. Thirty patients (20 females, 10 males; 13.8 years) requiring maxillary expansion therapy, as part of their comprehensive orthodontic treatment, were examined. Each patient had cone-beam computed tomography (CBCT) images taken before (T1) and after (T2) maxillary expansion therapy with a banded Hyrax appliance. Multiplanar slices were used to measure linear dimensions and palatal vault angle. Volumetric analysis was used to measure maxillary sinus volumes. Student t tests were used to compare the pre- and post-treatment measurements. Additionally, differences between two age groups were compared with Mann-Whitney U test. The level of significance was set at p=0.05. Comparison of pre-treatment to post-treatment variables revealed significant changes in the transverse dimension related to both maxillary skeletal and dental structures and palatal vault angle, resulting in a widened palatal vault (p<0.05). Hard palate showed no significant movement in the vertical and anteroposterior planes. Nasal cavity width increased on a mean value of 0.93 mm(SD=0.23, p<0.05). Maxillary sinus volume remained virtually stable. No significant age differences were observed in the sample. Hyrax expansion therapy did not have a significant impact on maxillary sinus volume.

  7. Determination of size-specific exposure settings in dental cone-beam CT

    International Nuclear Information System (INIS)

    Pauwels, Ruben; Jacobs, Reinhilde; Bogaerts, Ria; Bosmans, Hilde; Panmekiate, Soontra

    2017-01-01

    To estimate the possible reduction of tube output as a function of head size in dental cone-beam computed tomography (CBCT). A 16 cm PMMA phantom, containing a central and six peripheral columns filled with PMMA, was used to represent an average adult male head. The phantom was scanned using CBCT, with 0-6 peripheral columns having been removed in order to simulate varying head sizes. For five kV settings (70-90 kV), the mAs required to reach a predetermined image noise level was determined, and corresponding radiation doses were derived. Results were expressed as a function of head size, age, and gender, based on growth reference charts. The use of 90 kV consistently resulted in the largest relative dose reduction. A potential mAs reduction ranging from 7 % to 50 % was seen for the different simulated head sizes, showing an exponential relation between head size and mAs. An optimized exposure protocol based on head circumference or age/gender is proposed. A considerable dose reduction, through reduction of the mAs rather than the kV, is possible for small-sized patients in CBCT, including children and females. Size-specific exposure protocols should be clinically implemented. (orig.)

  8. Radiation dose evaluation of dental cone beam computed tomography using an anthropomorphic adult head phantom

    Science.gov (United States)

    Wu, Jay; Shih, Cheng-Ting; Ho, Chang-hung; Liu, Yan-Lin; Chang, Yuan-Jen; Min Chao, Max; Hsu, Jui-Ting

    2014-11-01

    Dental cone beam computed tomography (CBCT) provides high-resolution tomographic images and has been gradually used in clinical practice. Thus, it is important to examine the amount of radiation dose resulting from dental CBCT examinations. In this study, we developed an in-house anthropomorphic adult head phantom to evaluate the level of effective dose. The anthropomorphic phantom was made of acrylic and filled with plaster to replace the bony tissue. The contour of the head was extracted from a set of adult computed tomography (CT) images. Different combinations of the scanning parameters of CBCT were applied. Thermoluminescent dosimeters (TLDs) were used to measure the absorbed doses at 19 locations in the head and neck regions. The effective doses measured using the proposed phantom at 65, 75, and 85 kVp in the D-mode were 72.23, 100.31, and 134.29 μSv, respectively. In the I-mode, the effective doses were 108.24, 190.99, and 246.48 μSv, respectively. The maximum percent error between the doses measured by the proposed phantom and the Rando phantom was l4.90%. Therefore, the proposed anthropomorphic adult head phantom is applicable for assessing the radiation dose resulting from clinical dental CBCT.

  9. The current status of cone beam computed tomography imaging in orthodontics

    Science.gov (United States)

    Kapila, S; Conley, R S; Harrell, W E

    2011-01-01

    Cone beam CT (CBCT) has become an increasingly important source of three dimensional (3D) volumetric data in clinical orthodontics since its introduction into dentistry in 1998. The purpose of this manuscript is to highlight the current understanding of, and evidence for, the clinical use of CBCT in orthodontics, and to review the findings to answer clinically relevant questions. Currently available information from studies using CBCT can be organized into five broad categories: 1, the assessment of CBCT technology; 2, its use in craniofacial morphometric analyses; 3, incidental and missed findings; 4, analysis of treatment outcomes; and 5, efficacy of CBCT in diagnosis and treatment planning. The findings in these topical areas are summarized, followed by current indications and protocols for the use of CBCT in specific cases. Despite the increasing popularity of CBCT in orthodontics, and its advantages over routine radiography in specific cases, the effects of information derived from these images in altering diagnosis and treatment decisions has not been demonstrated in several types of cases. It has therefore been recommended that CBCT be used in select cases in which conventional radiography cannot supply satisfactory diagnostic information; these include cleft palate patients, assessment of unerupted tooth position, supernumerary teeth, identification of root resorption and for planning orthognathic surgery. The need to image other types of cases should be made on a case-by-case basis following an assessment of benefits vs risks of scanning in these situations. PMID:21159912

  10. Pediatric Phantom Dosimetry of Kodak 9000 Cone-beam Computed Tomography.

    Science.gov (United States)

    Yepes, Juan F; Booe, Megan R; Sanders, Brian J; Jones, James E; Ehrlich, Ygal; Ludlow, John B; Johnson, Brandon

    2017-05-15

    The purpose of the study was to evaluate the radiation dose of the Kodak 9000 cone-beam computed tomography (CBCT) device for different anatomical areas using a pediatric phantom. Absorbed doses resulting from maxillary and mandibular region three by five cm CBCT volumes of an anthropomorphic 10-year-old child phantom were acquired using optical stimulated dosimetry. Equivalent doses were calculated for radiosensitive tissues in the head and neck area, and effective dose for maxillary and mandibular examinations were calculated following the 2007 recommendations of the International Commission on Radiological Protection (ICRP). Of the mandibular scans, the salivary glands had the highest equivalent dose (1,598 microsieverts [μSv]), followed by oral mucosa (1,263 μSv), extrathoracic airway (pharynx, larynx, and trachea; 859 μSv), and thyroid gland (578 μSv). For the maxilla, the salivary glands had the highest equivalent dose (1,847 μSv), followed closely by oral mucosa (1,673 μSv), followed by the extrathoracic airway (pharynx, larynx, and trachea; 1,011 μSv) and lens of the eye (202 μSv). Compared to previous research of the Kodak 9000, completed with the adult phantom, a child receives one to three times more radiation for mandibular scans and two to 10 times more radiation for maxillary scans.

  11. Development of computer assisted learning program using cone beam projection for head radiography

    International Nuclear Information System (INIS)

    Nakazeko, Kazuma; Araki, Misao; Kajiwara, Hironori; Watanabe, Hiroyuki; Kuwayama, Jun; Karube, Shuhei; Hashimoto, Takeyuki; Shinohara, Hiroyuki

    2012-01-01

    We present a computer assisted learning (CAL) program to simulate head radiography. The program provides cone beam projections of a target volume, simulating three-dimensional computed tomography (CT) of a head phantom. The generated image is 512 x 512 x 512 pixels with each pixel 0.6 mm on a side. The imaging geometry, such as X-ray tube orientation and phantom orientation, can be varied. The graphical user interface (GUI) of the CAL program allows the study of the effects of varying the imaging geometry; each simulated projection image is shown quickly in an adjoining window. Simulated images with an assigned geometry were compared with the image obtained using the standard geometry in clinical use. The accuracy of the simulated image was verified through comparison with the image acquired using radiography of the head phantom, subsequently processed with a computed radiography system (CR image). Based on correlation coefficient analysis and visual assessment, it was concluded that the CAL program can satisfactorily simulate the CR image. Therefore, it should be useful for the training of head radiography. (author)

  12. Clinical implementation of intraoperative cone-beam CT in head and neck surgery

    Science.gov (United States)

    Daly, M. J.; Chan, H.; Nithiananthan, S.; Qiu, J.; Barker, E.; Bachar, G.; Dixon, B. J.; Irish, J. C.; Siewerdsen, J. H.

    2011-03-01

    A prototype mobile C-arm for cone-beam CT (CBCT) has been translated to a prospective clinical trial in head and neck surgery. The flat-panel CBCT C-arm was developed in collaboration with Siemens Healthcare, and demonstrates both sub-mm spatial resolution and soft-tissue visibility at low radiation dose (e.g., software based on the open-source Image-Guided Surgery Toolkit (IGSTK). The CBCT C-arm has been successfully deployed in 15 head and neck cases and streamlined into the surgical environment using human factors engineering methods and expert feedback from surgeons, nurses, and anesthetists. Intraoperative imaging is implemented in a manner that maintains operating field sterility, reduces image artifacts (e.g., carbon fiber OR table) and minimizes radiation exposure. Image reviews conducted with surgical staff indicate bony detail and soft-tissue visualization sufficient for intraoperative guidance, with additional artifact management (e.g., metal, scatter) promising further improvements. Clinical trial deployment suggests a role for intraoperative CBCT in guiding complex head and neck surgical tasks, including planning mandible and maxilla resection margins, guiding subcranial and endonasal approaches to skull base tumours, and verifying maxillofacial reconstruction alignment. Ongoing translational research into complimentary image-guidance subsystems include novel methods for real-time tool tracking, fusion of endoscopic video and CBCT, and deformable registration of preoperative volumes and planning contours with intraoperative CBCT.

  13. A level set method for cupping artifact correction in cone-beam CT

    International Nuclear Information System (INIS)

    Xie, Shipeng; Li, Haibo; Ge, Qi; Li, Chunming

    2015-01-01

    Purpose: To reduce cupping artifacts and improve the contrast-to-noise ratio in cone-beam computed tomography (CBCT). Methods: A level set method is proposed to reduce cupping artifacts in the reconstructed image of CBCT. The authors derive a local intensity clustering property of the CBCT image and define a local clustering criterion function of the image intensities in a neighborhood of each point. This criterion function defines an energy in terms of the level set functions, which represent a segmentation result and the cupping artifacts. The cupping artifacts are estimated as a result of minimizing this energy. Results: The cupping artifacts in CBCT are reduced by an average of 90%. The results indicate that the level set-based algorithm is practical and effective for reducing the cupping artifacts and preserving the quality of the reconstructed image. Conclusions: The proposed method focuses on the reconstructed image without requiring any additional physical equipment, is easily implemented, and provides cupping correction through a single-scan acquisition. The experimental results demonstrate that the proposed method successfully reduces the cupping artifacts

  14. The effect of cone beam CT (CBCT) on therapeutic decision-making in endodontics.

    Science.gov (United States)

    Mota de Almeida, F J; Knutsson, K; Flygare, L

    2014-01-01

    The aim was to assess to what extent cone beam CT (CBCT) used in accordance with current European Commission guidelines in a normal clinical setting has an impact on therapeutic decisions in a population referred for endodontic problems. The study includes data of consecutively examined patients collected from October 2011 to December 2012. From 2 different endodontic specialist clinics, 57 patients were referred for a CBCT examination using criteria in accordance with current European guidelines. The CBCT examinations were performed using similar equipment and standardized among clinics. After a thorough clinical examination, but before CBCT, the examiner made a preliminary therapy plan which was recorded. After the CBCT examination, the same examiner made a new therapy plan. Therapy plans both before and after the CBCT examination were plotted for 53 patients and 81 teeth. As four patients had incomplete protocols, they were not included in the final analysis. 4% of the patients referred to endodontic clinics during the study period were examined with CBCT. The most frequent reason for referral to CBCT examination was to differentiate pathology from normal anatomy, this was the case in 24 patients (45% of the cases). The primary outcome was therapy plan changes that could be attributed to CBCT examination. There were changes in 28 patients (53%). CBCT has a significant impact on therapeutic decision efficacy in endodontics when used in concordance with the current European Commission guidelines.

  15. Accuracy of digital peripical radiography and cone-beam computed tomography in detecting external root resorption

    Energy Technology Data Exchange (ETDEWEB)

    Creanga, Adriana Gabriela [Division of Dental Diagnostic Science, Rutgers School of Dental Medicine, Newark (United States); Geha, Hassem; Sankar, Vidya; Mcmahan, Clyde Alex; Noujeim, Marcel [University of Texas Health Science Center San Antonio, San Antonio (United States); Teixeira, Fabrico B. [Dept. of Endodontics, University of Iowa, Iowa City (United States)

    2015-09-15

    The purpose of this study was to evaluate and compare the efficacy of cone-beam computed tomography (CBCT) and digital intraoral radiography in diagnosing simulated small external root resorption cavities. Cavities were drilled in 159 roots using a small spherical bur at different root levels and on all surfaces. The teeth were imaged both with intraoral digital radiography using image plates and with CBCT. Two sets of intraoral images were acquired per tooth: orthogonal (PA) which was the conventional periapical radiograph and mesioangulated (SET). Four readers were asked to rate their confidence level in detecting and locating the lesions. Receiver operating characteristic (ROC) analysis was performed to assess the accuracy of each modality in detecting the presence of lesions, the affected surface, and the affected level. Analysis of variation was used to compare the results and kappa analysis was used to evaluate interobserver agreement. A significant difference in the area under the ROC curves was found among the three modalities (P=0.0002), with CBCT (0.81) having a significantly higher value than PA (0.71) or SET (0.71). PA was slightly more accurate than SET, but the difference was not statistically significant. CBCT was also superior in locating the affected surface and level. CBCT has already proven its superiority in detecting multiple dental conditions, and this study shows it to likewise be superior in detecting and locating incipient external root resorption.

  16. Three-dimensional localization of impacted canines and root resorption assessment using cone beam computed tomography.

    Science.gov (United States)

    Almuhtaseb, Eyad; Mao, Jing; Mahony, Derek; Bader, Rawan; Zhang, Zhi-xing

    2014-06-01

    The purpose of this study was to develop a new way to localize the impacted canines from three dimensions and to investigate the root resorption of the adjacent teeth by using cone beam computed tomography (CBCT). Forty-six patients undergoing orthodontic treatments and having impacted canines in Tongji Hospital were examined. The images of CBCT scans were obtained from KaVo 3D exam vision. Angular and linear measurements of the cusp tip and root apex according to the three planes (mid-sagittal, occlusal and frontal) have been taken using the cephalometric tool of the InVivo Dental Anatomage Version 5.1.10. The measurements of the angular and linear coordinates of the maxillary and mandibular canines were obtained. Using this technique the operators could envision the location of the impacted canine according to the three clinical planes. Adjacent teeth root resorption of 28.26 % was in the upper lateral incisors while 17.39% in upper central incisors, but no lower root resorption was found in our samples. Accurate and reliable localization of the impacted canines could be obtained from the novel analysis system, which offers a better surgical and orthodontic treatment for the patients with impacted canines.

  17. Cone-beam CT analysis of patients with obstructive sleep apnea compared to normal controls

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, Allison; Kalathingal Sajitha; De Rossi, Scott [Dept. of Oral Health and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta (United States); Cohen, Ruben [Park Avenue Oral and Facial Surgery, New York (United States); Loony, Stephen [Dept. of Biostatistics and Epidemiology, Augusta University Medical College of Georgia, Augusta (United States)

    2016-03-15

    To evaluate the upper airway dimensions of obstructive sleep apnea (OSA) and control subjects using a cone-beam computed tomography (CBCT) unit commonly applied in clinical practice in order to assess airway dimensions in the same fashion as that routinely employed in a clinical setting. This was a retrospective analysis utilizing existing CBCT scans to evaluate the dimensions of the upper airway in OSA and control subjects. The CBCT data of sixteen OSA and sixteen control subjects were compared. The average area, average volume, total volume, and total length of the upper airway were computed. Width and anterior-posterior (AP) measurements were obtained on the smallest axial slice. OSA subjects had a significantly smaller average airway area, average airway volume, total airway volume, and mean airway width. OSA subjects had a significantly larger airway length measurement. The mean A-P distance was not significantly different between groups. OSA subjects have a smaller upper airway compared to controls with the exception of airway length. The lack of a significant difference in the mean A-P distance may indicate that patient position during imaging (upright vs. supine) can affect this measurement. Comparison of this study with a future prospective study design will allow for validation of these results.

  18. Cone-beam CT analysis of patients with obstructive sleep apnea compared to normal controls

    International Nuclear Information System (INIS)

    Buchanan, Allison; Kalathingal Sajitha; De Rossi, Scott; Cohen, Ruben; Loony, Stephen

    2016-01-01

    To evaluate the upper airway dimensions of obstructive sleep apnea (OSA) and control subjects using a cone-beam computed tomography (CBCT) unit commonly applied in clinical practice in order to assess airway dimensions in the same fashion as that routinely employed in a clinical setting. This was a retrospective analysis utilizing existing CBCT scans to evaluate the dimensions of the upper airway in OSA and control subjects. The CBCT data of sixteen OSA and sixteen control subjects were compared. The average area, average volume, total volume, and total length of the upper airway were computed. Width and anterior-posterior (AP) measurements were obtained on the smallest axial slice. OSA subjects had a significantly smaller average airway area, average airway volume, total airway volume, and mean airway width. OSA subjects had a significantly larger airway length measurement. The mean A-P distance was not significantly different between groups. OSA subjects have a smaller upper airway compared to controls with the exception of airway length. The lack of a significant difference in the mean A-P distance may indicate that patient position during imaging (upright vs. supine) can affect this measurement. Comparison of this study with a future prospective study design will allow for validation of these results

  19. Idiosyncratic Presentation of Cemento-Osseous Dysplasia - An in Depth Analysis Using Cone Beam Computed Tomography.

    Science.gov (United States)

    Chennoju, Sai Kiran; Pachigolla, Ramaswamy; Govada, Vanya Mahitha; Alapati, Satish; Balla, Smitha

    2016-05-01

    Bone dysplasias comprise of a condition where the normal bone is replaced with fibrous tissue. Periapical Cemento-Osseous Dysplasia (PCOD) is a benign fibro-osseous condition where bone tissue is supplanted with fibrous tissue and cementum-like material. This condition affects mostly mandibular anterior region and rarely occurs in the maxilla. PCOD is seen above 30 years of age and has slight female predilection. Generally the teeth related to such lesions appear to be vital and are usually asymptomatic. These lesions are mostly seen during routine radiographic examination whose presentation may vary from complete radiolucency to dense radiopacity. The advent of Cone Beam Computed Tomography (CBCT) has brought a massive change in the field of dentistry which has become an important tool for diagnosis. Hence we hereby present an unusual case of cemento-osseous dysplasia in an unfamiliar location with an atypical presentation. The shape of the pathology was completely idiosyncratic and different from an orthodox lesion of COD, as the lesion was observed to grow out of the palatal surface with a prominent palatal expansion. This case highlights the importance of CBCT in radiographic diagnosis and in evaluating the characteristics of such lesion, which present with high diagnostic dilemma.

  20. Measurement of inter and intra fraction organ motion in radiotherapy using cone beam CT projection images

    International Nuclear Information System (INIS)

    Marchant, T E; Amer, A M; Moore, C J

    2008-01-01

    A method is presented for extraction of intra and inter fraction motion of seeds/markers within the patient from cone beam CT (CBCT) projection images. The position of the marker is determined on each projection image and fitted to a function describing the projection of a fixed point onto the imaging panel at different gantry angles. The fitted parameters provide the mean marker position with respect to the isocentre. Differences between the theoretical function and the actual projected marker positions are used to estimate the range of intra fraction motion and the principal motion axis in the transverse plane. The method was validated using CBCT projection images of a static marker at known locations and of a marker moving with known amplitude. The mean difference between actual and measured motion range was less than 1 mm in all directions, although errors of up to 5 mm were observed when large amplitude motion was present in an orthogonal direction. In these cases it was possible to calculate the range of motion magnitudes consistent with the observed marker trajectory. The method was shown to be feasible using clinical CBCT projections of a pancreas cancer patient

  1. Bowtie filter and water calibration in the improvement of cone beam CT image quality

    International Nuclear Information System (INIS)

    Li Minghui; Dai Jianrong; Zhang Ke

    2010-01-01

    Objective: To evaluate the improvement of cone beam CT (CBCT) image quality by using bewtie filter (F 1 ) and water calibration. Methods: First the multi-level gain calibration of the detector panel with the method of Cal 2 calibration was performed, and the CT images of CATPHAN503 with F 0 and bowtie filter were collected, respectively. Then the detector panel using water calibration kit was calibrated, and images were acquired again. Finally, the change of image quality after using F 1 and (or) water calibration method was observed. The observed indexes included low contrast visibility, spatial uniformity, ring artifact, spatial resolution and geometric accuracy. Results: Comparing with the traditional combination of F 0 filter and Cal 2 calibration, the combination of bowtie filter F 1 and water calibration improves low contrast visibility by 13.71%, and spatial uniformity by 54. 42%. Water calibration removes ring artifacts effectively. However, none of them improves spatial resolution and geometric accuracy. Conclusions: The combination of F 1 and water calibration improves CBCT image quality effectively. This improvement is aid to the registration of CBCT images and localization images. (authors)

  2. ANATOMICAL VARIATIONS FINDINGS ON CONE BEAM-COMPUTED TOMOGRAPHY IN CLEFT LIP AND PALATE PATIENTS

    Directory of Open Access Journals (Sweden)

    Yllka DECOLLI

    2015-09-01

    Full Text Available Introduction: Cone beam computed tomography (CBCT is frequently used in surgery treatment planning in patients with cleft lip and palate (CLP. The aim of this study was to investigate the presence of different anatomical variations of patients with cleft lip and palate using CBCT images. Materials and method: CBCTs taken from consecutive patients (n =25; mean age 10.7±4 years, range 6.5–23 years with a non-syndromic cleft lip and palate (CLP, between June 2014-2015, were systematically evaluated. Sinuses, nasopharynx, oropharynx, hypopharynx, temporo-mandibular joint (TMJ, maxilla and mandible were checked for incidental findings. Results: On 90.1 % of the CBCTs, incidental findings were found. The most prevalent ones were airway/sinus findings (78.1%, followed by dental problems, e.g. missing teeth (54%, nasal septum deviation (93%, middle ear and mastoid opacification, suggestive for otitis media (8% and (chronic mastoiditis (7%, abnormal TMJ anatomy (4.3%. Conclusions: Incidental findings are common on CBCTs in cleft lip and palate patients. Compared with the literature, CLP patients have more dental, nasal and ear problems. The CBCT scan should be reviewed by all specialists in the CLP team, stress being laid on their specific background knowledge concerning symptoms and treatment of these patients.

  3. Cone Beam Computed Tomography Analysis of Incidental Maxillary Sinus Pathologies in North Indian Population

    Directory of Open Access Journals (Sweden)

    Sangeeta S Malik

    2017-01-01

    Full Text Available Introduction: Maxillary sinus can be visualized in both two-dimensional and three-dimensional images. Computed tomography (CT is considered the gold standard method for the examination of maxillary sinus. Cone beam computed tomography (CBCT addresses the limitation of CT and provides many dental advantages. It can provide valuable knowledge about the pathology with limited exposure and low cost compared with other imaging used for diagnostic purposes. Aims and Objectives: The aim of the study is to analyze the prevalence of pathological changes in maxillary sinus of asymptomatic cases using CBCT for diagnostic purposes. Materials and Methods: This retrospective study evaluated 231 patients for incidental maxillary sinus pathologies. Pathological findings were categorized as mucosal thickening, polypoid mucosal thickening, radiopacification, and no pathological findings. Evaluation of pathological findings was done using factors of age and gender. Results: The present study showed 86 cases with maxillary sinus pathology and 145 cases with no pathological findings. Patients with maxillary sinus pathology were mostly diagnosed with mucosal thickening on both sides. In right maxillary sinus, 45 cases (52.3% showed mucosal thickening, and on the left side 36 cases (41.9% were diagnosed with mucosal thickening. Among 86 cases reported, 20 right maxillary sinus (23.3% and 25 left maxillary sinus (29.1% showed no signs of pathology. Conclusion: The incidental maxillary sinus pathologies are highly prevalent in asymptomatic patients. Therefore, oral radiologists should be aware of these incidental findings which will help in early diagnosis and treatment of disease.

  4. Cone beam computed tomography study of apical root resorption induced by Herbst appliance

    Directory of Open Access Journals (Sweden)

    João Paulo SCHWARTZ

    2015-10-01

    Full Text Available Objective This study evaluated the frequency of root resorption during the orthodontic treatment with Herbst appliance by Cone Beam Computed Tomography (CBCT.Material and Methods The sample comprised 23 patients (11 men, 12 women; mean ages 15.76±1.75 years with Class II division 1 malocclusion, treated with Herbst appliance. CBCT was obtained before treatment (T0 and after Herbst treatment (T1. All the dental roots, except third molars, were evaluated, and apical root resorption was determined using the axial guided navigation method. Paired t-tests and Wilcoxon T Test were used to compare the dependent samples in parametric and nonparametric cases, respectively. Chi-Square Test with Yates’ correction was used to evaluate the relationship between apical root resorption and gender. Results were considered at a significance level of 5%.Results Apical resorption was detected by CBCT in 57.96% of 980 roots that underwent Herbst appliance treatment. All patients had minimal resorption and there was no statistical significance between the genders.Conclusion CBCT three-dimensional evaluation showed association between Herbst appliance and minimal apical root resorption, mostly in the anchoring teeth, without clinical significance.

  5. Apical root resorption during orthodontic treatment. A prospective study using cone beam CT.

    Science.gov (United States)

    Lund, Henrik; Gröndahl, Kerstin; Hansen, Ken; Gröndahl, Hans-Göran

    2012-05-01

    To investigate the incidence and severity of root resorption during orthodontic treatment by means of cone beam computed tomography (CBCT) and to explore factors affecting orthodontically induced inflammatory root resorption (OIIRR). CBCT examinations were performed on 152 patients with Class I malocclusion. All roots from incisors to first molars were assessed on two or three occasions. At treatment end, 94% of patients had ≥1 root with shortening >1 mm, and 6.6% had ≥1 tooth where it exceeded 4 mm. Among teeth, 56.3% of upper lateral incisors had root shortening >1 mm. Of upper incisors and the palatal root of upper premolars, 2.6% showed root shortenings >4 mm. Slanted surface resorptions of buccal and palatal surfaces were found in 15.1% of upper central and 11.5% of lateral incisors. Monthly root shortening was greater after 6-month control than before. Upper jaw teeth and anterior teeth were significantly associated with the degree of root shortening. Gender, root length at baseline, and treatment duration were not. Practically all patients and up to 91% of all teeth showed some degree of root shortening, but few patients and teeth had root shortenings >4 mm. Slanted root resorption was found on root surfaces that could be evaluated only by a tomographic technique. A CBCT technique can provide more valid and accurate information about root resorption.

  6. Conventional frontal radiographs compared with frontal radiographs obtained from cone beam computed tomography.

    Science.gov (United States)

    Nur, Metin; Kayipmaz, Saadettin; Bayram, Mehmet; Celikoglu, Mevlut; Kilkis, Dogan; Sezgin, Omer Said

    2012-07-01

    To test the hypothesis that there is no difference between measurements performed on conventional frontal radiographs (FRs) and those performed on FRs obtained from cone beam computed tomography (CBCT) scans. This study consisted of conventional FRs and CBCT-constructed FRs obtained from 30 young adult patients. Twenty-three landmarks were identified on both types of cephalometric radiographs. Twenty-one widely used cephalometric variables (14 linear distances, 4 angles, and 3 ratios) were calculated. Paired t-tests were performed to compare the means of corresponding measurements on two cephalometric radiographs of the same patient. Reproducibility of measurements ranged from 0.85 to 0.99 for CBCT-constructed FRs, and from 0.78 to 0.96 for conventional FRs. A statistically significant difference was observed between conventional FRs and CBCT-constructed FRs for all linear measurements (eurR-eurL, loR-loL, moR-moL, zygR-zygL, lapR-lapL, mxR-mxL, maR-maL, umR-umL, lmR-lmL, agR-agL, me-ans) (P .05). However, no statistically significant differences were noted between conventional FRs and CBCT-constructed FRs for ratios and angular measurements (P > .05). The hypothesis was rejected. A difference has been noted between measurements performed on conventional FRs and those performed on CBCT-constructed FRs, particularly in terms of linear measurements.

  7. Dosimetry of cone beam computed tomography scanning for diagnosis and planning in implant dentistry

    International Nuclear Information System (INIS)

    Santos Pinto de A, E. L.; Manzi, F. R.; Goncalves Z, E.; Nogueira, M. S.; Fernandes Z, M. A.

    2015-10-01

    Full text: The radiation dose and estimate the radiation induced risk of cancer and morpho functional alterations according to BEIR VII (2006) and recommendations of the ICRP 103 (2007) were measured in cone beam computed tomography (CBCT) scanning (Tc Kodak 9000C 3D) in different oral and maxillofacial regions for diagnosis and planning in implant dentistry for each examination protocol: jaw full, maxilla full and jaw and maxilla full associated. Thermoluminescent dosimeters (TLD- 100 H) were placed in an Alderson-Rando in regions corresponding to the crystalline, parotid, submandibular and thyroid glands and ovaries. The highest values for entrance skin dose were observed in the region of the parotid and submandibular glands, 9.612 mGy to 7.912 mGy and 8.818 mGy to 0.483 mGy, respectively. All examination protocols presented on the right and left sides in the region of the submandibular gland the highest values for absorbed dose (D). In the jaw full exam the thyroid glands on both sides presented highest dose values than maxilla full exam. This study allowed measuring the entrance skin dose and the absorbed dose (D) highlighting a dosimetric preponderance to the salivary glands. With danger of to radiation that induces cancer risk was observed that the age group most likely to have to risk of cancer was 20 years, compared to 30, 40, 50, 60,70 and 80 years. (Author)

  8. Apical root resorption due to orthodontic treatment detected by cone beam computed tomography.

    Science.gov (United States)

    Castro, Iury O; Alencar, Ana H G; Valladares-Neto, José; Estrela, Carlos

    2013-03-01

    To determine the frequency of apical root resorption (ARR) due to orthodontic treatment using cone beam computed tomography (CBCT) in a sample of 1256 roots from 30 patients. All patients had Class I malocclusion with crowding. Of the 30 patients evaluated, 11 were boys and 19 were girls; their mean age was 13 years (11 to 16 years). Orthodontic treatment followed the nonextraction treatment. CBCT images were obtained before and after orthodontic treatment, and ARR was determined using Axial Guided Navigation of CBCT images. All patients had ARR. No statistically significant association was found between resorption frequency, gender, and age. ARR was detected using CBCT in 46% of all roots that underwent orthodontic treatment. CBCT was effective for detecting in vivo even minimal degrees of ARR due to orthodontic treatment and allowed three-dimensional evaluation of dental roots and visualization of palatine roots of maxillary molars. The highest frequencies and the most significant ARR occurred in incisors and distal roots of first maxillary and mandibular molars.

  9. Breast density quantification with cone-beam CT: a post-mortem study

    International Nuclear Information System (INIS)

    Johnson, Travis; Ding, Huanjun; Le, Huy Q; Ducote, Justin L; Molloi, Sabee

    2013-01-01

    Forty post-mortem breasts were imaged with a flat-panel based cone-beam x-ray CT system at 50 kVp. The feasibility of breast density quantification has been investigated using standard histogram thresholding and an automatic segmentation method based on the fuzzy c-means algorithm (FCM). The breasts were chemically decomposed into water, lipid, and protein immediately after image acquisition was completed. The per cent fibroglandular volume (%FGV) from chemical analysis was used as the gold standard for breast density comparison. Both image-based segmentation techniques showed good precision in breast density quantification with high linear coefficients between the right and left breast of each pair. When comparing with the gold standard using %FGV from chemical analysis, Pearson's r-values were estimated to be 0.983 and 0.968 for the FCM clustering and the histogram thresholding techniques, respectively. The standard error of the estimate was also reduced from 3.92% to 2.45% by applying the automatic clustering technique. The results of the postmortem study suggested that breast tissue can be characterized in terms of water, lipid and protein contents with high accuracy by using chemical analysis, which offers a gold standard for breast density studies comparing different techniques. In the investigated image segmentation techniques, the FCM algorithm had high precision and accuracy in breast density quantification. In comparison to conventional histogram thresholding, it was more efficient and reduced inter-observer variation. (paper)

  10. Prostate image-guided radiotherapy by megavolt cone-beam CT

    International Nuclear Information System (INIS)

    Zucca, Sergio; Carau, Barbara; Solla, Ignazio; Garibaldi, Elisabetta; Farace, Paolo; Lay, Giancarlo; Meleddu, Gianfranco; Gabriele, Pietro

    2011-01-01

    To test megavolt cone-beam CT (MV-CBCT) in order to evaluate setup errors in prostate radiotherapy. The setup of 9 patients was verified weekly by electronic portal imaging (EPI) and MV-CBCT, both performed in the same treatment session. EPI were compared with digitally reconstructed radiographies (DRRs). MV-CBCTs were matched to simulation CTs by manual registration based on bone markers (BMR), by manual registration based on soft tissues (STR) - rectum, bladder, and seminal vesicles - and by automatic registration (AR) performed by a mutual information algorithm. Shifts were evaluated along the three main axes: anteroposterior (AP), craniocaudal (CC), and laterolateral (LL). Finally, in 4 additional patients showing intraprostatic calcifications, the calcification mismatch error was used to evaluate the three MV-CBCT matching methods. A total of 50 pairs of orthogonal EPIs and 50 MV-CBCTs were analyzed. Assuming an overall tolerance of 2 mm, no significant differences were observed comparing EPI vs BMR in any axis. A significant difference (p < 0.001) was observed along the AP axis comparing EPI vs AR and EPI vs STR. On the calcification data set (22 measures), the calcification mismatch along the AP direction was significantly lower (p < 0.05) after STR than after BMR or AR. Bone markers were not an effective surrogate of the target position and significant differences were observed comparing EPI or BMR vs STR, supporting the assessment of soft tissue position by MVCBs to verify and correct patient setup in prostate radiotherapy. (orig.)

  11. Prostate image-guided radiotherapy by megavolt cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Zucca, Sergio; Carau, Barbara; Solla, Ignazio; Garibaldi, Elisabetta; Farace, Paolo; Lay, Giancarlo; Meleddu, Gianfranco; Gabriele, Pietro [Regional Oncological Hospital, Cagliari (Italy). Dept. of Radiooncology

    2011-08-15

    To test megavolt cone-beam CT (MV-CBCT) in order to evaluate setup errors in prostate radiotherapy. The setup of 9 patients was verified weekly by electronic portal imaging (EPI) and MV-CBCT, both performed in the same treatment session. EPI were compared with digitally reconstructed radiographies (DRRs). MV-CBCTs were matched to simulation CTs by manual registration based on bone markers (BMR), by manual registration based on soft tissues (STR) - rectum, bladder, and seminal vesicles - and by automatic registration (AR) performed by a mutual information algorithm. Shifts were evaluated along the three main axes: anteroposterior (AP), craniocaudal (CC), and laterolateral (LL). Finally, in 4 additional patients showing intraprostatic calcifications, the calcification mismatch error was used to evaluate the three MV-CBCT matching methods. A total of 50 pairs of orthogonal EPIs and 50 MV-CBCTs were analyzed. Assuming an overall tolerance of 2 mm, no significant differences were observed comparing EPI vs BMR in any axis. A significant difference (p < 0.001) was observed along the AP axis comparing EPI vs AR and EPI vs STR. On the calcification data set (22 measures), the calcification mismatch along the AP direction was significantly lower (p < 0.05) after STR than after BMR or AR. Bone markers were not an effective surrogate of the target position and significant differences were observed comparing EPI or BMR vs STR, supporting the assessment of soft tissue position by MVCBs to verify and correct patient setup in prostate radiotherapy. (orig.)

  12. Rapid maxillary expansion effects: An alternative assessment method by means of cone-beam tomography

    Directory of Open Access Journals (Sweden)

    Camilo Aquino Melgaço

    2014-10-01

    Full Text Available INTRODUCTION: This study aims to develop a method to assess the changes in palatal and lingual cross-sectional areas in patients submitted to rapid maxillary expansion (RME. METHODS: The sample comprised 31 Class I malocclusion individuals submitted to RME and divided into two groups treated with Haas (17 patients and Hyrax (14 patients expanders. Cone-beam computed tomography scans were acquired at T0 (before expansion and T1 (six months after screw stabilization. Maxillary and mandibular cross-sectional areas were assessed at first permanent molars and first premolars regions and compared at T0 and T1. Mandibular occlusal area was also analyzed. RESULTS: Maxillary cross-sectional areas increased in 56.18 mm2 and 44.32 mm2 for the posterior and anterior regions. These values were smaller for the mandible, representing augmentation of 40.32 mm2 and 39.91 mm2 for posterior and anterior sections. No differences were found when comparing both expanders. Mandibular occlusal area increased 43.99mm2 and mandibular incisors proclined. Increments of 1.74 mm and 1.7 mm occurred in mandibular intermolar and interpremolar distances. These same distances presented increments of 5.5 mm and 5.57 mm for the maxillary arch. CONCLUSION: Occlusal and cross-sectional areas increased significantly after RME. The method described seems to be reliable and precise to assess intraoral area changes.

  13. Accuracy and reliability of stitched cone-beam computed tomography images

    Energy Technology Data Exchange (ETDEWEB)

    Egbert, Nicholas [Private Practice, Reconstructive Dental Specialists of Utah, Salt Lake (United States); Cagna, David R.; Ahuja, Swati; Wicks, Russell A. [Dept. of rosthodontics, University of Tennessee Health Science Center College of Dentistry, Memphis (United States)

    2015-03-15

    This study was performed to evaluate the linear distance accuracy and reliability of stitched small field of view (FOV) cone-beam computed tomography (CBCT) reconstructed images for the fabrication of implant surgical guides. Three gutta percha points were fixed on the inferior border of a cadaveric mandible to serve as control reference points. Ten additional gutta percha points, representing fiduciary markers, were scattered on the buccal and lingual cortices at the level of the proposed complete denture flange. A digital caliper was used to measure the distance between the reference points and fiduciary markers, which represented the anatomic linear dimension. The mandible was scanned using small FOV CBCT, and the images were then reconstructed and stitched using the manufacturer's imaging software. The same measurements were then taken with the CBCT software. The anatomic linear dimension measurements and stitched small FOV CBCT measurements were statistically evaluated for linear accuracy. The mean difference between the anatomic linear dimension measurements and the stitched small FOV CBCT measurements was found to be 0.34 mm with a 95% confidence interval of +0.24 - +0.44 mm and a mean standard deviation of 0.30 mm. The difference between the control and the stitched small FOV CBCT measurements was insignificant within the parameters defined by this study. The proven accuracy of stitched small FOV CBCT data sets may allow image-guided fabrication of implant surgical stents from such data sets.

  14. Determination of size-specific exposure settings in dental cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Pauwels, Ruben [Chulalongkorn University, Department of Radiology, Faculty of Dentistry, Patumwan, Bangkok (Thailand); University of Leuven, OMFS-IMPATH Research Group, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven (Belgium); Jacobs, Reinhilde [University of Leuven, OMFS-IMPATH Research Group, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven (Belgium); Bogaerts, Ria [University of Leuven, Laboratory of Experimental Radiotherapy, Department of Oncology, Biomedical Sciences Group, Leuven (Belgium); Bosmans, Hilde [University of Leuven, Medical Physics and Quality Assessment, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven (Belgium); Panmekiate, Soontra [Chulalongkorn University, Department of Radiology, Faculty of Dentistry, Patumwan, Bangkok (Thailand)

    2017-01-15

    To estimate the possible reduction of tube output as a function of head size in dental cone-beam computed tomography (CBCT). A 16 cm PMMA phantom, containing a central and six peripheral columns filled with PMMA, was used to represent an average adult male head. The phantom was scanned using CBCT, with 0-6 peripheral columns having been removed in order to simulate varying head sizes. For five kV settings (70-90 kV), the mAs required to reach a predetermined image noise level was determined, and corresponding radiation doses were derived. Results were expressed as a function of head size, age, and gender, based on growth reference charts. The use of 90 kV consistently resulted in the largest relative dose reduction. A potential mAs reduction ranging from 7 % to 50 % was seen for the different simulated head sizes, showing an exponential relation between head size and mAs. An optimized exposure protocol based on head circumference or age/gender is proposed. A considerable dose reduction, through reduction of the mAs rather than the kV, is possible for small-sized patients in CBCT, including children and females. Size-specific exposure protocols should be clinically implemented. (orig.)

  15. Prevalence and features of distolingual roots in mandibular molars analyzed by cone-beam computed tomography

    International Nuclear Information System (INIS)

    Choi, Mi Ree; Moon, Young Mi; Seo, Min Seock

    2015-01-01

    This study evaluated the prevalence of distolingual roots in mandibular molars among Koreans, the root canal system associated with distolingual roots, and the concurrent appearance of a distolingual root in the mandibular first molar and a C-shaped canal in the mandibular second molar. Cone-beam computed tomographic images of 264 patients were screened and examined. Axial sections of 1056 mandibular molars were evaluated to determine the number of roots. The interorifice distances from the distolingual canal to the distobuccal canal were also estimated. Using an image analysis program, the root canal curvature was calculated. Pearson's chi-square test, the paired t-test, one-way analysis of variance, and post-hoc analysis were performed. Distolingual roots were observed in 26.1% of the subjects. In cases where a distolingual root was observed in the mandibular molar, a significant difference was observed in the root canal curvature between the buccolingual and mesiodistal orientations. The maximum root canal curvature was most commonly observed in the mesiodistal orientation in the coronal portion, but in the apical portion, maximum root canal curvature was most often observed in the buccolingual orientation. The canal curvature of distolingual roots was found to be very complex, with a different direction in each portion. No correlation was found between the presence of a distolingual root in the mandibular first molar and the presence of a C-shaped canal in the mandibular second molar

  16. Cone beam computed tomography evaluation of maxillary molar root canal morphology in a Turkish Cypriot population

    International Nuclear Information System (INIS)

    Kalender, Atakan; Aksoy, Umut; Basmaci, Fatma; Celikten, Berkan; Tufenkci, Pelin; Kelahmet, Umay; Orhan, Kaan

    2016-01-01

    The aim of this retrospective study was to review, analyse and characterize the root canal morphology of maxillary molars, using cone beam computed tomography (CBCT), in a group of the Turkish Cypriot population. The sample for this cross-sectional study consisted of retrospective evaluation of CBCT scans of 290 adult patients (age range 1680). The number of roots and their morphology, the number of canals per tooth and the root canal configurations were also classified according to the method of Vertucci. Pearson’s chi-square test was performed for canal configurations, sides and gender (p < 0.05). Among the 373 first molars, there was no single-rooted specimen, 2 (0.53%) teeth had 2 roots, 365 (97.8%) teeth had 3 roots and 6 ones (1.6%) had 4 roots. Among the 438 second molars, 14 (3.1%) were single-rooted, 26 (5.9%) teeth had 2 roots, 392 (89.4%) teeth had 3 roots and 6 teeth (1.3%) had 4 roots. No sex difference was found in the frequency of additional canals both in the maxillary first and second molars. Occurrence of additional canals did not differ with age. These results provide detailed knowledge of the root canal anatomy of the maxillary molar teeth in this particular population, which is of clinical importance for dental professionals when performing endodontic treatment

  17. kV cone-beam CT-based IGRT. A clinical review

    Energy Technology Data Exchange (ETDEWEB)

    Boda-Heggermann, Judit; Lohr, Frank; Wenz, Frederik [Heidelberg Univ., Univ. Medical Center Mannheim (Germany). Dept. of Radiation Oncology; Flentje, Michael; Guckenberger, Matthias [Univ. Hospital Wuerzburg (Germany). Dept. of Radiation Oncology

    2011-05-15

    Aims and Methods: Delivery of high radiation doses while simultaneously sparing organs at risk requires advanced imaging for target volume definition, highly conformal dose distributions of intensity modulated radiotherapy (IMRT), and narrow planning target volume (PTV) margins. Three-dimensional image-guided radiotherapy (IGRT) with cone-beam computer tomography (CBCT), which results in more precise target localization, is quickly replacing two-dimensional (2D) IGRT. An overview on the clinical applications of kilovoltage gantry-mounted CBCT systems with emphasis on the most frequently targeted body sites (prostate, lung, head and neck) is provided based on a review of the relevant literature. Alternative imaging methods and their advantages/disadvantages are discussed. Results: IGRT with soft tissue detection improves set-up accuracy and is currently replacing 2D verification and frame-based stereotactic treatments; safety margins are significantly reduced by this IGRT technology. In addition, systematic changes of tumor volume and shape and of the normal tissue can be monitored allowing for adaptation of radiotherapy. IGRT in combination with conformal treatment planning allows for hypofractionated dose escalation, which results in improved rates of local tumor control with low rates of toxicity. Conclusion: CBCT allows for daily pretreatment position verification and online correction of set-up errors which improves the precision of patient repositioning with the possibility of shrinking safety margins, sparing organs at risk, and escalating radiation doses. A trend for better clinical outcome can be observed. (orig.)

  18. Using cone beam computed thomography in planning the extraction of impacted third molars

    Directory of Open Access Journals (Sweden)

    Vlahović Zoran

    2016-01-01

    Full Text Available The panoramic radiography is the most used diagnostic imaging method in planning impacted lower third molar extractions. However, often panoramic radiography does not provide enough information in treatment planning for performing safely surgical extraction of impacted third molars. CBCT (Cone beam computed tomography provides more precise information in diagnostic analysis especially for planning surgical procedures where complications can be expected due to close relationship between mandibular canal and lower impacted third molars. The aim of this study is comparative analysis of panoramic radiography and CBCT in evaluating the topographic relationship between mandibular canal and impacted third molars. The study included 50 patients with close relationship between mandibular canal and impacted third molars detected using panoramic radiography. After panoramic radiography analysis CBCT was performed in order to diagnose, plan and prevent complications during the surgical tooth extraction. CBCT examination considered comparative analysis with panoramic radiography, marking, volume rendering and assessment of mandibular canal in buccolingual direction. Out of total patients where suprimposition of mandibular canal and impacted third molar on panoramic radiography was detected, in 32 patients mandibular chanal was localised on lingual side. Mandibular canal was positioned at bucal side in 18 of 50 patients. Results of this research indicate that panoramic radiography can be useful in everyday practice for diagnosis, planning and preparing lower third molar extractions, but in cases where close relationship between mandibular canal and lower third molars is detected CBCT is recommended as more precise radiographic imaging method in order to prevent complications.

  19. Volumetric analysis of the mandibular condyle using cone beam computed tomography

    International Nuclear Information System (INIS)

    Bayram, Mehmet; Kayipmaz, Saadettin; Sezgin, Ömer Said; Küçük, Murat

    2012-01-01

    Objective: The aim was to determine the accuracy of volumetric analysis of the mandibular condyle using cone-beam computed tomography (CBCT). Materials and methods: Five dry mandibles containing 9 condyles were used. CBCT scans of the mandibles and an impression of each condylar area were taken. The physical volumes of the condyles were calculated as the gold standard using the water displacement technique. After isolating, the condylar volume was sectioned in the sagittal plane, and 0.3 mm thick sections with 0.9 mm intervals were obtained from 3D reconstructions. Using the Cavalieri principle, the volume of each condyle was estimated from the CBCT images by three observers. The accuracy of the CBCT volume measurements and the relation agreements between the results of the three observers were assessed using the Wilcoxon Signed Rank test and Pearson correlation test. The level of statistical significance was set at 0.05. Results: The results of the Pearson correlation showed that there were highly significant positive correlations between the observers’ measurements. According to the results of the Wilcoxon Signed Rank test comparing the physical and observers’ measurements, there were no statistically significant differences (p > 0.05). Conclusion: The Cavalieri principle, used in conjunction with a planimetry method, is a valid and effective method for volume estimation of the mandibular condyle on CBCT images.

  20. Osteoporosis prediction from the mandible using cone-beam computed tomography

    International Nuclear Information System (INIS)

    Barngkgei, Imad; Al Haffar, Iyad; Khattab, Razan

    2014-01-01

    This study aimed to evaluate the use of dental cone-beam computed tomography (CBCT) in the diagnosis of osteoporosis among menopausal and postmenopausal women by using only a CBCT viewer program. Thirty-eight menopausal and postmenopausal women who underwent dual-energy X-ray absorptiometry (DXA) examination for hip and lumbar vertebrae were scanned using CBCT (field of view: 13 cmx15 cm; voxel size: 0.25 mm). Slices from the body of the mandible as well as the ramus were selected and some CBCT-derived variables, such as radiographic density (RD) as gray values, were calculated as gray values. Pearson's correlation, one-way analysis of variance (ANOVA), and accuracy (sensitivity and specificity) evaluation based on linear and logistic regression were performed to choose the variable that best correlated with the lumbar and femoral neck T-scores. RD of the whole bone area of the mandible was the variable that best correlated with and predicted both the femoral neck and the lumbar vertebrae T-scores; further, Pearson's correlation coefficients were 0.5/0.6 (p value=0.037/0.009). The sensitivity, specificity, and accuracy based on the logistic regression were 50%, 88.9%, and 78.4%, respectively, for the femoral neck, and 46.2%, 91.3%, and 75%, respectively, for the lumbar vertebrae. Lumbar vertebrae and femoral neck osteoporosis can be predicted with high accuracy from the RD value of the body of the mandible by using a CBCT viewer program.

  1. Cone beam computed tomography study of apical root resorption induced by Herbst appliance

    Science.gov (United States)

    SCHWARTZ, João Paulo; RAVELI, Taísa Boamorte; ALMEIDA, Kélei Cristina de Mathias; SCHWARTZ-FILHO, Humberto Osvaldo; RAVELI, Dirceu Barnabé

    2015-01-01

    Objective This study evaluated the frequency of root resorption during the orthodontic treatment with Herbst appliance by Cone Beam Computed Tomography (CBCT). Material and Methods The sample comprised 23 patients (11 men, 12 women; mean ages 15.76±1.75 years) with Class II division 1 malocclusion, treated with Herbst appliance. CBCT was obtained before treatment (T0) and after Herbst treatment (T1). All the dental roots, except third molars, were evaluated, and apical root resorption was determined using the axial guided navigation method. Paired t-tests and Wilcoxon T Test were used to compare the dependent samples in parametric and nonparametric cases, respectively. Chi-Square Test with Yates’ correction was used to evaluate the relationship between apical root resorption and gender. Results were considered at a significance level of 5%. Results Apical resorption was detected by CBCT in 57.96% of 980 roots that underwent Herbst appliance treatment. All patients had minimal resorption and there was no statistical significance between the genders. Conclusion CBCT three-dimensional evaluation showed association between Herbst appliance and minimal apical root resorption, mostly in the anchoring teeth, without clinical significance. PMID:26537718

  2. Cone-beam local reconstruction based on a Radon inversion transformation

    International Nuclear Information System (INIS)

    Wang Xian-Chao; Yan Bin; Li Lei; Hu Guo-En

    2012-01-01

    The local reconstruction from truncated projection data is one area of interest in image reconstruction for computed tomography (CT), which creates the possibility for dose reduction. In this paper, a filtered-backprojection (FBP) algorithm based on the Radon inversion transform is presented to deal with the three-dimensional (3D) local reconstruction in the circular geometry. The algorithm achieves the data filtering in two steps. The first step is the derivative of projections, which acts locally on the data and can thus be carried out accurately even in the presence of data truncation. The second step is the nonlocal Hilbert filtering. The numerical simulations and the real data reconstructions have been conducted to validate the new reconstruction algorithm. Compared with the approximate truncation resistant algorithm for computed tomography (ATRACT), not only it has a comparable ability to restrain truncation artifacts, but also its reconstruction efficiency is improved. It is about twice as fast as that of the ATRACT. Therefore, this work provides a simple and efficient approach for the approximate reconstruction from truncated projections in the circular cone-beam CT

  3. Tooth labeling in cone-beam CT using deep convolutional neural network for forensic identification

    Science.gov (United States)

    Miki, Yuma; Muramatsu, Chisako; Hayashi, Tatsuro; Zhou, Xiangrong; Hara, Takeshi; Katsumata, Akitoshi; Fujita, Hiroshi

    2017-03-01

    In large disasters, dental record plays an important role in forensic identification. However, filing dental charts for corpses is not an easy task for general dentists. Moreover, it is laborious and time-consuming work in cases of large scale disasters. We have been investigating a tooth labeling method on dental