WorldWideScience

Sample records for conduction implant bci

  1. Preoperative headband assessment for semi-implantable bone conduction hearing devices in conductive hearing loss: is it useful or misleading?

    Science.gov (United States)

    Rainsbury, James W; Williams, Blair A; Gulliver, Mark; Morris, David P

    2015-02-01

    To establish whether preoperative assessment using a conventional, percutaneous bone conducting implant (pBCI) processor on a headband accurately represents postoperative performance of a semi-implantable BCI (siBCI). Retrospective case series. Tertiary otology unit. Five patients with chronic otitis media (implanted unilaterally) and one with bilateral congenital ossicular fixation (implanted bilaterally). Semi-implantable bone conduction hearing implant. Functional hearing gain; preoperative (headband) versus postoperative (aided) speech discrimination; unaided bone conduction (BC) versus postoperative (aided) soundfield threshold. Significant functional gain was seen at all frequencies (one-tailed t test p G 0.01; n = 7). There was a 50 dB improvement in median speech reception threshold (SRT) from 70 dB unaided to 20 dB aided. Compared to the preoperative BC, aided siBCI thresholds were worse at 0.5 kHz, but at frequencies from 1 to 6 kHz, the siBCI closely matched the bone curve ( p G 0.01). The siBCI performed better than both pBCI processors on a headband at 3 to 4 kHz, except 1 kHz ( p G 0.01). BC thresholds may be a better indicator of implant performance than headband assessment. Candidacy assessment for siBCI implantation that relies on headband testing with pBCI processors should be interpreted with caution because the headband may under-represent the implanted device. This seems to be especially true at 3 kHz and above and may make it difficult for surgeons to conduct accurate informed consent discussions with patients about the realistic anticipated outcomes and benefits of the procedure.

  2. Embodiment and Estrangement: Results from a First-in-Human "Intelligent BCI" Trial.

    Science.gov (United States)

    Gilbert, F; Cook, M; O'Brien, T; Illes, J

    2017-11-11

    While new generations of implantable brain computer interface (BCI) devices are being developed, evidence in the literature about their impact on the patient experience is lagging. In this article, we address this knowledge gap by analysing data from the first-in-human clinical trial to study patients with implanted BCI advisory devices. We explored perceptions of self-change across six patients who volunteered to be implanted with artificially intelligent BCI devices. We used qualitative methodological tools grounded in phenomenology to conduct in-depth, semi-structured interviews. Results show that, on the one hand, BCIs can positively increase a sense of the self and control; on the other hand, they can induce radical distress, feelings of loss of control, and a rupture of patient identity. We conclude by offering suggestions for the proactive creation of preparedness protocols specific to intelligent-predictive and advisory-BCI technologies essential to prevent potential iatrogenic harms.

  3. Magnetic resonance imaging investigation of the bone conduction implant – a pilot study at 1.5 Tesla

    Directory of Open Access Journals (Sweden)

    Fredén Jansson KJ

    2015-10-01

    Full Text Available Karl-Johan Fredén Jansson,1 Bo Håkansson,1 Sabine Reinfeldt,1 Cristina Rigato,1 Måns Eeg-Olofsson2 1Department of Signals and Systems, Chalmers University of Technology, 2Deptartment of Otorhinolaryngology Head and Neck Surgery, Sahlgrenska University Hospital, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden Purpose: The objective of this pilot study was to investigate if an active bone conduction implant (BCI used in an ongoing clinical study withstands magnetic resonance imaging (MRI of 1.5 Tesla. In particular, the MRI effects on maximum power output (MPO, total harmonic distortion (THD, and demagnetization were investigated. Implant activation and image artifacts were also evaluated.Methods and materials: One implant was placed on the head of a test person at the position corresponding to the normal position of an implanted BCI and applied with a static pressure using a bandage and scanned in a 1.5 Tesla MRI camera. Scanning was performed both with and without the implant, in three orthogonal planes, and for one spin-echo and one gradient-echo pulse sequence. Implant functionality was verified in-between the scans using an audio processor programmed to generate a sequence of tones when attached to the implant. Objective verification was also carried out by measuring MPO and THD on a skull simulator as well as retention force, before and after MRI.Results: It was found that the exposure of 1.5 Tesla MRI only had a minor effect on the MPO, ie, it decreased over all frequencies with an average of 1.1±2.1 dB. The THD remained unchanged above 300 Hz and was increased only at lower frequencies. The retention magnet was demagnetized by 5%. The maximum image artifacts reached a distance of 9 and 10 cm from the implant in the coronal plane for the spin-echo and the gradient-echo sequence, respectively. The test person reported no MRI induced sound from the implant.Conclusion: This pilot study indicates that the present BCI

  4. Magnetic resonance imaging investigation of the bone conduction implant - a pilot study at 1.5 Tesla.

    Science.gov (United States)

    Jansson, Karl-Johan Fredén; Håkansson, Bo; Reinfeldt, Sabine; Rigato, Cristina; Eeg-Olofsson, Måns

    2015-01-01

    The objective of this pilot study was to investigate if an active bone conduction implant (BCI) used in an ongoing clinical study withstands magnetic resonance imaging (MRI) of 1.5 Tesla. In particular, the MRI effects on maximum power output (MPO), total harmonic distortion (THD), and demagnetization were investigated. Implant activation and image artifacts were also evaluated. One implant was placed on the head of a test person at the position corresponding to the normal position of an implanted BCI and applied with a static pressure using a bandage and scanned in a 1.5 Tesla MRI camera. Scanning was performed both with and without the implant, in three orthogonal planes, and for one spin-echo and one gradient-echo pulse sequence. Implant functionality was verified in-between the scans using an audio processor programmed to generate a sequence of tones when attached to the implant. Objective verification was also carried out by measuring MPO and THD on a skull simulator as well as retention force, before and after MRI. It was found that the exposure of 1.5 Tesla MRI only had a minor effect on the MPO, ie, it decreased over all frequencies with an average of 1.1±2.1 dB. The THD remained unchanged above 300 Hz and was increased only at lower frequencies. The retention magnet was demagnetized by 5%. The maximum image artifacts reached a distance of 9 and 10 cm from the implant in the coronal plane for the spin-echo and the gradient-echo sequence, respectively. The test person reported no MRI induced sound from the implant. This pilot study indicates that the present BCI may withstand 1.5 Tesla MRI with only minor effects on its performance. No MRI induced sound was reported, but the head image was highly distorted near the implant.

  5. Magnetic resonance imaging investigation of the bone conduction implant – a pilot study at 1.5 Tesla

    Science.gov (United States)

    Jansson, Karl-Johan Fredén; Håkansson, Bo; Reinfeldt, Sabine; Rigato, Cristina; Eeg-Olofsson, Måns

    2015-01-01

    Purpose The objective of this pilot study was to investigate if an active bone conduction implant (BCI) used in an ongoing clinical study withstands magnetic resonance imaging (MRI) of 1.5 Tesla. In particular, the MRI effects on maximum power output (MPO), total harmonic distortion (THD), and demagnetization were investigated. Implant activation and image artifacts were also evaluated. Methods and materials One implant was placed on the head of a test person at the position corresponding to the normal position of an implanted BCI and applied with a static pressure using a bandage and scanned in a 1.5 Tesla MRI camera. Scanning was performed both with and without the implant, in three orthogonal planes, and for one spin-echo and one gradient-echo pulse sequence. Implant functionality was verified in-between the scans using an audio processor programmed to generate a sequence of tones when attached to the implant. Objective verification was also carried out by measuring MPO and THD on a skull simulator as well as retention force, before and after MRI. Results It was found that the exposure of 1.5 Tesla MRI only had a minor effect on the MPO, ie, it decreased over all frequencies with an average of 1.1±2.1 dB. The THD remained unchanged above 300 Hz and was increased only at lower frequencies. The retention magnet was demagnetized by 5%. The maximum image artifacts reached a distance of 9 and 10 cm from the implant in the coronal plane for the spin-echo and the gradient-echo sequence, respectively. The test person reported no MRI induced sound from the implant. Conclusion This pilot study indicates that the present BCI may withstand 1.5 Tesla MRI with only minor effects on its performance. No MRI induced sound was reported, but the head image was highly distorted near the implant. PMID:26604836

  6. Conductivity in insulators due to implantation of conducting species

    International Nuclear Information System (INIS)

    Prawer, S.; Kalish, R.

    1993-01-01

    Control of the surface conductivity of insulators can be accomplished by high dose ion implantation of conductive species. The use of C + as the implant species is particularly interesting because C can either form electrically insulating sp 3 bonds or electrically conducting sp 2 bonds. In the present work, fused quartz plates have been irradiated with 100 keV C + ions to doses up to 1 x 10 17 ions/cm 2 at room temperature and at 200 deg C. The ion beam induced conductivity was monitored in-situ and was found to increase by up to 8 orders to magnitude for the ion dose range studied. Xe implantations over a similar range did not induce any changes in the conductivity showing that the increase in conductivity is caused by the presence of the C in the fused quartz matrix and not by damage. The dependence of the conductivity on implantation temperature and on post implantation annealing sheds light on the clustering of the C implants. The temperature dependence of the conductivity for the highest doses employed (1 x 10 17 C + /cm 2 ) can be described very well by lnσ α T. This is considered to be a peculiar dependence which does not comply with any of the standard models for conduction. 9 refs., 1 tab., 6 figs

  7. Effects of user mental state on EEG-BCI performance

    Directory of Open Access Journals (Sweden)

    Andrew eMyrden

    2015-06-01

    Full Text Available Changes in psychological state have been proposed as a cause of variation in brain-computer interface performance, but little formal analysis has been conducted to support this hypothesis. In this study, we investigated the effects of three mental states - fatigue, frustration, and attention - on BCI performance. Twelve able-bodied participants were trained to use a two-class EEG-BCI based on the performance of user-specific mental tasks. Following training, participants completed three testing sessions, during which they used the BCI to play a simple maze navigation game while periodically reporting their perceived levels of fatigue, frustration, and attention. Statistical analysis indicated that there is a significant relationship between frustration and BCI performance while the relationship between fatigue and BCI performance approached significance. BCI performance was 7% lower than average when self-reported fatigue was low and 10% lower than average when self-reported frustration was low. A multivariate analysis of mental state revealed the presence of contiguous regions in mental state space where BCI performance was more accurate than average, suggesting the importance of moderate fatigue for achieving effortless focus on BCI control, frustration as a potential motivating factor, and attention as a compensatory mechanism to increasing frustration. Finally, a visual analysis showed the sensitivity of underlying class distributions to changes in mental state. Collectively, these results indicate that mental state is closely related to BCI performance, encouraging future development of psychologically adaptive BCIs.

  8. Tools for Brain-Computer Interaction: a general concept for a hybrid BCI (hBCI

    Directory of Open Access Journals (Sweden)

    Gernot R. Mueller-Putz

    2011-11-01

    Full Text Available The aim of this work is to present the development of a hybrid Brain-Computer Interface (hBCI which combines existing input devices with a BCI. Thereby, the BCI should be available if the user wishes to extend the types of inputs available to an assistive technology system, but the user can also choose not to use the BCI at all; the BCI is active in the background. The hBCI might decide on the one hand which input channel(s offer the most reliable signal(s and switch between input channels to improve information transfer rate, usability, or other factors, or on the other hand fuse various input channels. One major goal therefore is to bring the BCI technology to a level where it can be used in a maximum number of scenarios in a simple way. To achieve this, it is of great importance that the hBCI is able to operate reliably for long periods, recognizing and adapting to changes as it does so. This goal is only possible if many different subsystems in the hBCI can work together. Since one research institute alone cannot provide such different functionality, collaboration between institutes is necessary. To allow for such a collaboration, a common software framework was investigated.

  9. Empathy, Motivation, and P300 BCI performance

    Directory of Open Access Journals (Sweden)

    Sonja C Kleih

    2013-10-01

    Full Text Available Motivation moderately influences Brain-Computer Interface (BCI performance in healthy subjects when monetary reward is used to manipulate extrinsic motivation. However, the motivation to use a BCI of severely paralyzed patients, who are potentially in need for BCI, could mainly be internal and thus, an intrinsic motivator may be more powerful. Also healthy subjects who participate in BCI studies could be intrinsically motivated as they may wish to contribute to research and thus extrinsic motivation by monetary reward would be less important than the content of the study. In this respect, motivation could be defined as motivation-to-help. The aim of this study was to investigate, whether subjects with high motivation for helping and who are highly empathic would perform better with a BCI controlled by event-related potentials (P300-BCI. We included N=20 healthy young participants naïve to BCI and grouped them according to their motivation for participating in a BCI study in a low and highly motivated group. Motivation was further manipulated with interesting or boring presentations about BCI and the possibility to help patients. Motivation for helping did neither influence BCI performance nor the P300 amplitude. Post-hoc, subjects were re-grouped according to their ability for perspective taking. We found significantly higher P300 amplitudes on parietal electrodes in participants with a low ability for perspective taking and therefore, lower empathy, as compared to participants with higher empathy. The lack of an effect of motivation on BCI performance contradicts previous findings and thus, requires further investigation. We speculate that subjects with higher empathy were less able to focus attention on the BCI task. Good perspective takers with regards to patients in potential need of BCI, may be more emotionally involved and therefore, less able to allocate attention on the BCI task at hand.

  10. Quality standards for bone conduction implants.

    Science.gov (United States)

    Gavilan, Javier; Adunka, Oliver; Agrawal, Sumit; Atlas, Marcus; Baumgartner, Wolf-Dieter; Brill, Stefan; Bruce, Iain; Buchman, Craig; Caversaccio, Marco; De Bodt, Marc T; Dillon, Meg; Godey, Benoit; Green, Kevin; Gstoettner, Wolfgang; Hagen, Rudolf; Hagr, Abdulrahman; Han, Demin; Kameswaran, Mohan; Karltorp, Eva; Kompis, Martin; Kuzovkov, Vlad; Lassaletta, Luis; Li, Yongxin; Lorens, Artur; Martin, Jane; Manoj, Manikoth; Mertens, Griet; Mlynski, Robert; Mueller, Joachim; O'Driscoll, Martin; Parnes, Lorne; Pulibalathingal, Sasidharan; Radeloff, Andreas; Raine, Christopher H; Rajan, Gunesh; Rajeswaran, Ranjith; Schmutzhard, Joachim; Skarzynski, Henryk; Skarzynski, Piotr; Sprinzl, Georg; Staecker, Hinrich; Stephan, Kurt; Sugarova, Serafima; Tavora, Dayse; Usami, Shin-Ichi; Yanov, Yuri; Zernotti, Mario; Zorowka, Patrick; de Heyning, Paul Van

    2015-01-01

    Bone conduction implants are useful in patients with conductive and mixed hearing loss for whom conventional surgery or hearing aids are no longer an option. They may also be used in patients affected by single-sided deafness. To establish a consensus on the quality standards required for centers willing to create a bone conduction implant program. To ensure a consistently high level of service and to provide patients with the best possible solution the members of the HEARRING network have established a set of quality standards for bone conduction implants. These standards constitute a realistic minimum attainable by all implant clinics and should be employed alongside current best practice guidelines. Fifteen items are thoroughly analyzed. They include team structure, accommodation and clinical facilities, selection criteria, evaluation process, complete preoperative and surgical information, postoperative fitting and assessment, follow-up, device failure, clinical management, transfer of care and patient complaints.

  11. Active Bone Conduction Prosthesis: BonebridgeTM

    Directory of Open Access Journals (Sweden)

    Zernotti, Mario E.

    2015-10-01

    Full Text Available Introduction Bone conduction implants are indicated for patients with conductive and mixed hearing loss, as well as for patients with single-sided deafness (SSD. The transcutaneous technology avoids several complications of the percutaneous bone conduction implants including skin reaction, skin growth over the abutment, and wound infection. The Bonebridge (MED-EL, Austria prosthesis is a semi-implantable hearing system: the BCI (Bone Conduction Implant is the implantable part that contains the Bone Conduction-Floating Mass Transducer (BC-FMT, which applies the vibrations directly to the bone; the external component is the audio processor Amadé BB (MED-EL, Austria, which digitally processes the sound and sends the information through the coil to the internal part. Bonebridge may be implanted through three different approaches: the transmastoid, the retrosigmoid, or the middle fossa approach. Objective This systematic review aims to describe the world́s first active bone conduction implant system, Bonebridge, as well as describe the surgical techniques in the three possible approaches, showing results from implant centers in the world in terms of functional gain, speech reception thresholds and word recognition scores. Data Synthesis The authors searched the MEDLINE database using the key term Bonebridge. They selected only five publications to include in this systematic review. The review analyzes 20 patients that received Bonebridge implants with different approaches and pathologies. Conclusion Bonebridge is a solution for patients with conductive/mixed hearing loss and SSD with different surgical approaches, depending on their anatomy. The system imparts fewer complications than percutaneous bone conduction implants and shows proven benefits in speech discrimination and functional gain.

  12. Empathy, motivation, and P300 BCI performance.

    Science.gov (United States)

    Kleih, Sonja C; Kübler, Andrea

    2013-01-01

    Motivation moderately influences brain-computer interface (BCI) performance in healthy subjects when monetary reward is used to manipulate extrinsic motivation. However, the motivation of severely paralyzed patients, who are potentially in need for BCI, could mainly be internal and thus, an intrinsic motivator may be more powerful. Also healthy subjects who participate in BCI studies could be internally motivated as they may wish to contribute to research and thus extrinsic motivation by monetary reward would be less important than the content of the study. In this respect, motivation could be defined as "motivation-to-help." The aim of this study was to investigate, whether subjects with high motivation for helping and who are highly empathic would perform better with a BCI controlled by event-related potentials (P300-BCI). We included N = 20 healthy young participants naïve to BCI and grouped them according to their motivation for participating in a BCI study in a low and highly motivated group. Motivation was further manipulated with interesting or boring presentations about BCI and the possibility to help patients. Motivation for helping did neither influence BCI performance nor the P300 amplitude. Post hoc, subjects were re-grouped according to their ability for perspective taking. We found significantly higher P300 amplitudes on parietal electrodes in participants with a low ability for perspective taking and therefore, lower empathy, as compared to participants with higher empathy. The lack of an effect of motivation on BCI performance contradicts previous findings and thus, requires further investigation. We speculate that subjects with higher empathy who are good perspective takers with regards to patients in potential need of BCI, may be more emotionally involved and therefore, less able to allocate attention on the BCI task at hand.

  13. BCI using imaginary movements

    DEFF Research Database (Denmark)

    Rohani, Darius Adam; Henning, William S.; Thomsen, Carsten E.

    2013-01-01

    Over the past two decades, much progress has been made in the rapidly evolving field of Brain Computer Interface (BCI). This paper presents a novel concept: a BCI-simulator, which has been developed for the Hex-O-Spell interface, using the sensory motor rhythms (SMR) paradigm. With the simulator...

  14. A note on p-semisimple BCI-algebras

    International Nuclear Information System (INIS)

    Aslam, M.; Thaheem, A.B.

    1989-07-01

    In this note we prove some equivalent conditions for p-semisimple BCI-algebras. We also show that if X is a p-semisimple BCI-algebra then Hom(X), the set of all homomorphisms of X is a (p-semisimple) BCI-algebra, thus extending the class of BCI-algebras with this property as proposed. We also study some duality conditions. (author). 11 refs

  15. Binaural enhancement for bilateral cochlear implant users.

    Science.gov (United States)

    Brown, Christopher A

    2014-01-01

    Bilateral cochlear implant (BCI) users receive limited binaural cues and, thus, show little improvement to speech intelligibility from spatial cues. The feasibility of a method for enhancing the binaural cues available to BCI users is investigated. This involved extending interaural differences of levels, which typically are restricted to high frequencies, into the low-frequency region. Speech intelligibility was measured in BCI users listening over headphones and with direct stimulation, with a target talker presented to one side of the head in the presence of a masker talker on the other side. Spatial separation was achieved by applying either naturally occurring binaural cues or enhanced cues. In this listening configuration, BCI patients showed greater speech intelligibility with the enhanced binaural cues than with naturally occurring binaural cues. In some situations, it is possible for BCI users to achieve greater speech intelligibility when binaural cues are enhanced by applying interaural differences of levels in the low-frequency region.

  16. Enhancement of electrical conductivity of ion-implanted polymer films

    International Nuclear Information System (INIS)

    Brock, S.

    1985-01-01

    The electrical conductivity of ion-implanted films of Nylon 66, Polypropylene (PP), Poly(tetrafluoroethylene) (Teflon) and mainly Poly (ethylene terephthalate) (PET) was determined by DC measurements at voltages up to 4500 V and compared with the corresponding values of pristine films. Measurements were made at 21 0 C +/- 1 0 C and 65 +/- 2% RH. The electrical conductivity of PET films implanted with F + , Ar + , or As + ions at energies of 50 keV increases by seven orders of magnitude as the fluence increases from 1 x 10 18 to 1 x 10 20 ions/m 2 . The conductivity of films implanted with As + was approximately one order greater than those implanted with Ar + , which in turn was approximately one-half order greater than those implanted with F + . The conductivity of the most conductive film ∼1 S/m) was almost 14 orders of magnitude greater than the pristine PET film. Except for the three PET samples implanted at fluences near 1 x 10 20 ions/m 2 with F + , Ar + , and As + ions, all implanted films were ohmic up to an electric field strength of 600 kV/m. The temperature dependence of the conductivity of the three PET films implanted near a fluence of 1 x 10 20 ions/m 2 was measured over the range of 80 K < T < 300 K

  17. Alpha neurofeedback training improves SSVEP-based BCI performance

    Science.gov (United States)

    Wan, Feng; Nuno da Cruz, Janir; Nan, Wenya; Wong, Chi Man; Vai, Mang I.; Rosa, Agostinho

    2016-06-01

    Objective. Steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) can provide relatively easy, reliable and high speed communication. However, the performance is still not satisfactory, especially in some users who are not able to generate strong enough SSVEP signals. This work aims to strengthen a user’s SSVEP by alpha down-regulating neurofeedback training (NFT) and consequently improve the performance of the user in using SSVEP-based BCIs. Approach. An experiment with two steps was designed and conducted. The first step was to investigate the relationship between the resting alpha activity and the SSVEP-based BCI performance, in order to determine the training parameter for the NFT. Then in the second step, half of the subjects with ‘low’ performance (i.e. BCI classification accuracy <80%) were randomly assigned to a NFT group to perform a real-time NFT, and the rest half to a non-NFT control group for comparison. Main results. The first step revealed a significant negative correlation between the BCI performance and the individual alpha band (IAB) amplitudes in the eyes-open resting condition in a total of 33 subjects. In the second step, it was found that during the IAB down-regulating NFT, on average the subjects were able to successfully decrease their IAB amplitude over training sessions. More importantly, the NFT group showed an average increase of 16.5% in the SSVEP signal SNR (signal-to-noise ratio) and an average increase of 20.3% in the BCI classification accuracy, which was significant compared to the non-NFT control group. Significance. These findings indicate that the alpha down-regulating NFT can be used to improve the SSVEP signal quality and the subjects’ performance in using SSVEP-based BCIs. It could be helpful to the SSVEP related studies and would contribute to more effective SSVEP-based BCI applications.

  18. Review of the BCI Competition IV

    Science.gov (United States)

    Tangermann, Michael; Müller, Klaus-Robert; Aertsen, Ad; Birbaumer, Niels; Braun, Christoph; Brunner, Clemens; Leeb, Robert; Mehring, Carsten; Miller, Kai J.; Müller-Putz, Gernot R.; Nolte, Guido; Pfurtscheller, Gert; Preissl, Hubert; Schalk, Gerwin; Schlögl, Alois; Vidaurre, Carmen; Waldert, Stephan; Blankertz, Benjamin

    2012-01-01

    The BCI competition IV stands in the tradition of prior BCI competitions that aim to provide high quality neuroscientific data for open access to the scientific community. As experienced already in prior competitions not only scientists from the narrow field of BCI compete, but scholars with a broad variety of backgrounds and nationalities. They include high specialists as well as students. The goals of all BCI competitions have always been to challenge with respect to novel paradigms and complex data. We report on the following challenges: (1) asynchronous data, (2) synthetic, (3) multi-class continuous data, (4) session-to-session transfer, (5) directionally modulated MEG, (6) finger movements recorded by ECoG. As after past competitions, our hope is that winning entries may enhance the analysis methods of future BCIs. PMID:22811657

  19. Predicting BCI subject performance using probabilistic spatio-temporal filters.

    Directory of Open Access Journals (Sweden)

    Heung-Il Suk

    Full Text Available Recently, spatio-temporal filtering to enhance decoding for Brain-Computer-Interfacing (BCI has become increasingly popular. In this work, we discuss a novel, fully Bayesian-and thereby probabilistic-framework, called Bayesian Spatio-Spectral Filter Optimization (BSSFO and apply it to a large data set of 80 non-invasive EEG-based BCI experiments. Across the full frequency range, the BSSFO framework allows to analyze which spatio-spectral parameters are common and which ones differ across the subject population. As expected, large variability of brain rhythms is observed between subjects. We have clustered subjects according to similarities in their corresponding spectral characteristics from the BSSFO model, which is found to reflect their BCI performances well. In BCI, a considerable percentage of subjects is unable to use a BCI for communication, due to their missing ability to modulate their brain rhythms-a phenomenon sometimes denoted as BCI-illiteracy or inability. Predicting individual subjects' performance preceding the actual, time-consuming BCI-experiment enhances the usage of BCIs, e.g., by detecting users with BCI inability. This work additionally contributes by using the novel BSSFO method to predict the BCI-performance using only 2 minutes and 3 channels of resting-state EEG data recorded before the actual BCI-experiment. Specifically, by grouping the individual frequency characteristics we have nicely classified them into the subject 'prototypes' (like μ - or β -rhythm type subjects or users without ability to communicate with a BCI, and then by further building a linear regression model based on the grouping we could predict subjects' performance with the maximum correlation coefficient of 0.581 with the performance later seen in the actual BCI session.

  20. Quadcopter control using a BCI

    Science.gov (United States)

    Rosca, S.; Leba, M.; Ionica, A.; Gamulescu, O.

    2018-01-01

    The paper presents how there can be interconnected two ubiquitous elements nowadays. On one hand, the drones, which are increasingly present and integrated into more and more fields of activity, beyond the military applications they come from, moving towards entertainment, real-estate, delivery and so on. On the other hand, unconventional man-machine interfaces, which are generous topics to explore now and in the future. Of these, we chose brain computer interface (BCI), which allows human-machine interaction without requiring any moving elements. The research consists of mathematical modeling and numerical simulation of a drone and a BCI. Then there is presented an application using a Parrot mini-drone and an Emotiv Insight BCI.

  1. Attention-level transitory response: a novel hybrid BCI approach

    Science.gov (United States)

    Diez, Pablo F.; Garcés Correa, Agustina; Orosco, Lorena; Laciar, Eric; Mut, Vicente

    2015-10-01

    Objective. People with disabilities may control devices such as a computer or a wheelchair by means of a brain-computer interface (BCI). BCI based on steady-state visual evoked potentials (SSVEP) requires visual stimulation of the user. However, this SSVEP-based BCI suffers from the ‘Midas touch effect’, i.e., the BCI can detect an SSVEP even when the user is not gazing at the stimulus. Then, these incorrect detections deteriorate the performance of the system, especially in asynchronous BCI because ongoing EEG is classified. In this paper, a novel transitory response of the attention-level of the user is reported. It was used to develop a hybrid BCI (hBCI). Approach. Three methods are proposed to detect the attention-level of the user. They are based on the alpha rhythm and theta/beta rate. The proposed hBCI scheme is presented along with these methods. Hence, the hBCI sends a command only when the user is at a high-level of attention, or in other words, when the user is really focused on the task being performed. The hBCI was tested over two different EEG datasets. Main results. The performance of the hybrid approach is superior to the standard one. Improvements of 20% in accuracy and 10 bits min-1 are reported. Moreover, the attention-level is extracted from the same EEG channels used in SSVEP detection and this way, no extra hardware is needed. Significance. A transitory response of EEG signal is used to develop the attention-SSVEP hBCI which is capable of reducing the Midas touch effect.

  2. Assisted closed-loop optimization of SSVEP-BCI efficiency

    Directory of Open Access Journals (Sweden)

    Jacobo eFernandez-Vargas

    2013-02-01

    Full Text Available We designed a novel assisted closed-loop optimization protocol to improve the efficiency of brain computer interfaces (BCI based on steady state visually evoked potentials (SSVEP. In traditional paradigms, the control over the BCI-performance completely depends on the subjects’ ability to learn from the given feedback cues. By contrast, in the proposed protocol both the subject and the machine share information and control over the BCI goal. Generally, the innovative assistance consists in the delivery of online information together with the online adaptation of BCI stimuli properties. In our case, this adaptive optimization process is realized by (i a closed-loop search for the best set of SSVEP flicker frequencies and (ii feedback of actual SSVEP magnitudes to both the subject and the machine. These closed-loop interactions between subject and machine are evaluated in real-time by continuous measurement of their efficiencies, which are used as online criteria to adapt the BCI control parameters. The proposed protocol aims to compensate for variability in possibly unknown subjects’ state and trait dimensions. In a study with N = 18 subjects, we found significant evidence that our protocol outperformed classic SSVEP-BCI control paradigms. Evidence is presented that it takes indeed into account interindividual variabilities: e.g. under the new protocol, baseline resting state EEG measures predict subjects’ BCI performances. This paper illustrates the promising potential of assisted closed-loop protocols in BCI systems. Probably their applicability might be expanded to innovative uses, e.g. as possible new diagnostic/therapeutic tools for clinical contexts and as new paradigms for basic research.

  3. Overcoming Inter-Subject Variability in BCI Using EEG-Based Identification

    Directory of Open Access Journals (Sweden)

    J. Stastny

    2014-04-01

    Full Text Available The high dependency of the Brain Computer Interface (BCI system performance on the BCI user is a well-known issue of many BCI devices. This contribution presents a new way to overcome this problem using a synergy between a BCI device and an EEG-based biometric algorithm. Using the biometric algorithm, the BCI device automatically identifies its current user and adapts parameters of the classification process and of the BCI protocol to maximize the BCI performance. In addition to this we present an algorithm for EEG-based identification designed to be resistant to variations in EEG recordings between sessions, which is also demonstrated by an experiment with an EEG database containing two sessions recorded one year apart. Further, our algorithm is designed to be compatible with our movement-related BCI device and the evaluation of the algorithm performance took place under conditions of a standard BCI experiment. Estimation of the mu rhythm fundamental frequency using the Frequency Zooming AR modeling is used for EEG feature extraction followed by a classifier based on the regularized Mahalanobis distance. An average subject identification score of 96 % is achieved.

  4. Conductive component after cochlear implantation in patients with residual hearing conservation.

    Science.gov (United States)

    Chole, Richard A; Hullar, Timothy E; Potts, Lisa G

    2014-12-01

    Changes in auditory thresholds following cochlear implantation are generally assumed to be due to damage to neural elements. Theoretical studies have suggested that placement of a cochlear implant can cause a conductive hearing loss. Identification of a conductive component following cochlear implantation could guide improvements in surgical techniques or device designs. The purpose of this study is to characterize new-onset conductive hearing losses after cochlear implantation. In a prospective study, air- and bone-conduction audiometric testing were completed on cochlear implant recipients. An air-bone gap equal to or greater than 15 dB HL at 2 frequencies determined the presence of a conductive component. Of the 32 patients with preoperative bone-conduction hearing, 4 patients had a new-onset conductive component resulting in a mixed hearing loss, with air-conduction thresholds ranging from moderate to profound and an average air-bone gap of 30 dB HL. One had been implanted through the round window, 2 had an extended round window, and 1 had a separate cochleostomy. Loss of residual hearing following cochlear implantation may be due in part to a conductive component. Identifying the mechanism for this conductive component may help minimize hearing loss. Postoperative hearing evaluation should measure both air- and bone-conduction thresholds.

  5. Modifying the conductivity of polypyrrole through low-energy lead ion implantation

    International Nuclear Information System (INIS)

    Booth, Marsilea Adela; Leveneur, Jérôme; Costa, Alexsandro Santos; Kennedy, John; Harbison, SallyAnn; Travas-Sejdic, Jadranka

    2012-01-01

    Interest lies in the creation of novel nanocomposite materials obtained through mixing, impregnation or incorporation techniques. One such technique is ion implantation which possesses the potential for retaining properties from the base material and implanted material as well as any effects observed from combining the two. To this end low-energy (15 keV) implantation of lead ions of various fluences was performed in conducting polypyrrole films. The presence of lead-rich particles was evidenced through transmission electron microscopy. An interesting trend was observed between fluence and conductivity. Of the fluences tested, the optimum fluences of lead ion implantation in polypyrrole films for enhanced conductivity are 5 × 10 14 at. cm −2 and 2 × 10 15 at. cm −2 . The conductivity and stability appear to result from a combination of effects: polymer degradation arising from ion beam damage, an increase in charge-carriers (dications) present after implantation and precipitation of Pb-rich nanoparticles. Monitoring conductivity over time showed increased retention of conductivity levels after lead implantation. Improvements in stability for polypyrrole open avenues for application and bring polypyrrole one step closer to practical use. A mechanism is suggested for this advantageous retained conductivity. -- Highlights: ► Implanted and characterized polypyrrole films with Pb ions at different fluences. ► Samples indicate high conductivity when implanted with particular fluences. ► Increase in charge carriers and precipitation of conductive Pb-rich phase. ► Conductivity stability is higher for some implanted fluences than for pristine polypyrrole.

  6. Electrical conductivity of platinum-implanted polymethylmethacrylate nanocomposite

    Science.gov (United States)

    Salvadori, M. C.; Teixeira, F. S.; Cattani, M.; Brown, I. G.

    2011-12-01

    Platinum/polymethylmethacrylate (Pt/PMMA) nanocomposite material was formed by low energy ion implantation of Pt into PMMA, and the transition from insulating to conducting phase was explored. In situ resistivity measurements were performed as the implantation proceeded, and transmission electron microscopy was used for direct visualization of Pt nanoparticles. Numerical simulation was carried out using the TRIDYN computer code to calculate the expected depth profiles of the implanted platinum. The maximum dose for which the Pt/PMMA system remains an insulator/conductor composite was found to be ϕ0 = 1.6 × 1016 cm-2, the percolation dose was 0.5 × 1016 cm-2, and the critical exponent was t = 1.46, indicating that the conductivity is due only to percolation. The results are compared with previously reported results for a Au/PMMA composite.

  7. Steroid therapy and conduction disturbances after transcatheter aortic valve implantation.

    Science.gov (United States)

    Havakuk, Ofer; Konigstein, Maayan; Ben Assa, Eyal; Arbel, Yaron; Abramowitz, Yigal; Halkin, Amir; Bazan, Samuel; Shmilovich, Haim; Keren, Gad; Finkelstein, Ariel; Banai, Shmuel

    2016-10-01

    Direct mechanical compression of the frame struts on the adjacent bundle branch with local inflammatory reaction might cause conduction system disturbances and need for pacemaker implantation following transcatheter aortic valve implantation (TAVI). We assessed the impact of preprocedural anti-inflammatory steroid therapy on the occurrence of conduction disturbances following TAVI. From a cohort of 324 patients who underwent transfemoral TAVI, 39 (12%) were pretreated with steroids because of iodine allergy (n=29) or active obstructive pulmonary disease (n=10). We compared the rate of occurrence of new conduction disturbances and pacemaker implantation between TAVI patients with (n=39) and without (n=285) steroid treatment, using Cox logistic regression estimates and proportional hazards models. The overall occurrence of new conduction defects and the need for new pacemaker implantation were similar among steroid and non-steroid-treated patients (38.4% vs 37.5% and 25.6% vs 25.3%, respectively). New conduction disturbances were more prevalent in patients treated with CoreValve prosthesis, low implantation, and smaller aortic annulus diameter (P<.001, P<.001, and P=.006, respectively). Thirty-day mortality and complication rates were similar between the groups. Although safe, steroid treatment prior to TAVI failed to reduce the incidence of new conduction defects and the need for pacemaker implantation. © 2016 John Wiley & Sons Ltd.

  8. Electrical conduction in 100 keV Kr+ ion implanted poly (ethylene terephthalate)

    Science.gov (United States)

    Goyal, P. K.; Kumar, V.; Gupta, Renu; Mahendia, S.; Anita, Kumar, S.

    2012-06-01

    Polyethylene terephthalate (PET) samples have been implanted to 100 keV Kr+ ions at the fluences 1×1015-- 1×1016 cm-2. From I-V characteristics, the conduction mechanism was found to be shifted from ohmic to space charge limited conduction (SCLC) after implantation. The surface conductivity of these implanted samples was found to increase with increasing implantation dose. The structural alterations in the Raman spectra of implanted PET samples indicate that such an increase in the conductivity may be attributed to the formation of conjugated double bonded carbonaceous structure in the implanted layer of PET.

  9. sBCI-Headset—Wearable and Modular Device for Hybrid Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    Tatsiana Malechka

    2015-02-01

    Full Text Available Severely disabled people, like completely paralyzed persons either with tetraplegia or similar disabilities who cannot use their arms and hands, are often considered as a user group of Brain Computer Interfaces (BCI. In order to achieve high acceptance of the BCI by this user group and their supporters, the BCI system has to be integrated into their support infrastructure. Critical disadvantages of a BCI are the time consuming preparation of the user for the electroencephalography (EEG measurements and the low information transfer rate of EEG based BCI. These disadvantages become apparent if a BCI is used to control complex devices. In this paper, a hybrid BCI is described that enables research for a Human Machine Interface (HMI that is optimally adapted to requirements of the user and the tasks to be carried out. The solution is based on the integration of a Steady-state visual evoked potential (SSVEP-BCI, an Event-related (de-synchronization (ERD/ERS-BCI, an eye tracker, an environmental observation camera, and a new EEG head cap for wearing comfort and easy preparation. The design of the new fast multimodal BCI (called sBCI system is described and first test results, obtained in experiments with six healthy subjects, are presented. The sBCI concept may also become useful for healthy people in cases where a “hands-free” handling of devices is necessary.

  10. Neurofeedback Training for BCI Control

    Science.gov (United States)

    Neuper, Christa; Pfurtscheller, Gert

    Brain-computer interface (BCI) systems detect changes in brain signals that reflect human intention, then translate these signals to control monitors or external devices (for a comprehensive review, see [1]). BCIs typically measure electrical signals resulting from neural firing (i.e. neuronal action potentials, Electroencephalogram (ECoG), or Electroencephalogram (EEG)). Sophisticated pattern recognition and classification algorithms convert neural activity into the required control signals. BCI research has focused heavily on developing powerful signal processing and machine learning techniques to accurately classify neural activity [2-4].

  11. Context-aware adaptive spelling in motor imagery BCI

    Science.gov (United States)

    Perdikis, S.; Leeb, R.; Millán, J. d. R.

    2016-06-01

    Objective. This work presents a first motor imagery-based, adaptive brain-computer interface (BCI) speller, which is able to exploit application-derived context for improved, simultaneous classifier adaptation and spelling. Online spelling experiments with ten able-bodied users evaluate the ability of our scheme, first, to alleviate non-stationarity of brain signals for restoring the subject’s performances, second, to guide naive users into BCI control avoiding initial offline BCI calibration and, third, to outperform regular unsupervised adaptation. Approach. Our co-adaptive framework combines the BrainTree speller with smooth-batch linear discriminant analysis adaptation. The latter enjoys contextual assistance through BrainTree’s language model to improve online expectation-maximization maximum-likelihood estimation. Main results. Our results verify the possibility to restore single-sample classification and BCI command accuracy, as well as spelling speed for expert users. Most importantly, context-aware adaptation performs significantly better than its unsupervised equivalent and similar to the supervised one. Although no significant differences are found with respect to the state-of-the-art PMean approach, the proposed algorithm is shown to be advantageous for 30% of the users. Significance. We demonstrate the possibility to circumvent supervised BCI recalibration, saving time without compromising the adaptation quality. On the other hand, we show that this type of classifier adaptation is not as efficient for BCI training purposes.

  12. Sound Localization in Patients With Congenital Unilateral Conductive Hearing Loss With a Transcutaneous Bone Conduction Implant.

    Science.gov (United States)

    Vyskocil, Erich; Liepins, Rudolfs; Kaider, Alexandra; Blineder, Michaela; Hamzavi, Sasan

    2017-03-01

    There is no consensus regarding the benefit of implantable hearing aids in congenital unilateral conductive hearing loss (UCHL). This study aimed to measure sound source localization performance in patients with congenital UCHL and contralateral normal hearing who received a new bone conduction implant. Evaluation of within-subject performance differences for sound source localization in a horizontal plane. Tertiary referral center. Five patients with atresia of the external auditory canal and contralateral normal hearing implanted with transcutaneous bone conduction implant at the Medical University of Vienna were tested. Activated/deactivated implant. Sound source localization test; localization performance quantified using the root mean square (RMS) error. Sound source localization ability was highly variable among individual subjects, with RMS errors ranging from 21 to 40 degrees. Horizontal plane localization performance in aided conditions showed statistically significant improvement compared with the unaided conditions, with RMS errors ranging from 17 to 27 degrees. The mean RMS error decreased by a factor of 0.71 (p conduction implant. Some patients with congenital UCHL might be capable of developing improved horizontal plane localization abilities with the binaural cues provided by this device.

  13. A Development Architecture for Serious Games Using BCI (Brain Computer Interface Sensors

    Directory of Open Access Journals (Sweden)

    Kyhyun Um

    2012-11-01

    Full Text Available Games that use brainwaves via brain–computer interface (BCI devices, to improve brain functions are known as BCI serious games. Due to the difficulty of developing BCI serious games, various BCI engines and authoring tools are required, and these reduce the development time and cost. However, it is desirable to reduce the amount of technical knowledge of brain functions and BCI devices needed by game developers. Moreover, a systematic BCI serious game development process is required. In this paper, we present a methodology for the development of BCI serious games. We describe an architecture, authoring tools, and development process of the proposed methodology, and apply it to a game development approach for patients with mild cognitive impairment as an example. This application demonstrates that BCI serious games can be developed on the basis of expert-verified theories.

  14. A development architecture for serious games using BCI (brain computer interface) sensors.

    Science.gov (United States)

    Sung, Yunsick; Cho, Kyungeun; Um, Kyhyun

    2012-11-12

    Games that use brainwaves via brain-computer interface (BCI) devices, to improve brain functions are known as BCI serious games. Due to the difficulty of developing BCI serious games, various BCI engines and authoring tools are required, and these reduce the development time and cost. However, it is desirable to reduce the amount of technical knowledge of brain functions and BCI devices needed by game developers. Moreover, a systematic BCI serious game development process is required. In this paper, we present a methodology for the development of BCI serious games. We describe an architecture, authoring tools, and development process of the proposed methodology, and apply it to a game development approach for patients with mild cognitive impairment as an example. This application demonstrates that BCI serious games can be developed on the basis of expert-verified theories.

  15. A Development Architecture for Serious Games Using BCI (Brain Computer Interface) Sensors

    Science.gov (United States)

    Sung, Yunsick; Cho, Kyungeun; Um, Kyhyun

    2012-01-01

    Games that use brainwaves via brain–computer interface (BCI) devices, to improve brain functions are known as BCI serious games. Due to the difficulty of developing BCI serious games, various BCI engines and authoring tools are required, and these reduce the development time and cost. However, it is desirable to reduce the amount of technical knowledge of brain functions and BCI devices needed by game developers. Moreover, a systematic BCI serious game development process is required. In this paper, we present a methodology for the development of BCI serious games. We describe an architecture, authoring tools, and development process of the proposed methodology, and apply it to a game development approach for patients with mild cognitive impairment as an example. This application demonstrates that BCI serious games can be developed on the basis of expert-verified theories. PMID:23202227

  16. Conduction Abnormalities and Pacemaker Implantations After SAPIEN 3 Vs SAPIEN XT Prosthesis Aortic Valve Implantation.

    Science.gov (United States)

    Husser, Oliver; Kessler, Thorsten; Burgdorf, Christof; Templin, Christian; Pellegrini, Costanza; Schneider, Simon; Kasel, Albert Markus; Kastrati, Adnan; Schunkert, Heribert; Hengstenberg, Christian

    2016-02-01

    Transcatheter aortic valve implantation is increasingly used in patients with aortic stenosis. Post-procedural intraventricular conduction abnormalities and permanent pacemaker implantations remain a serious concern. Recently, the Edwards SAPIEN 3 prosthesis has replaced the SAPIEN XT. We sought to determine the incidences of new-onset intraventricular conduction abnormalities and permanent pacemaker implantations by comparing the 2 devices. We analyzed the last consecutive 103 patients undergoing transcatheter aortic valve implantation with SAPIEN XT before SAPIEN 3 was used in the next 105 patients. To analyze permanent pacemaker implantations and new-onset intraventricular conduction abnormalities, patients with these conditions at baseline were excluded. Electrocardiograms were recorded at baseline, after the procedure, and before discharge. SAPIEN 3 was associated with higher device success (100% vs 92%; P=.005) and less paravalvular leakage (0% vs 7%; Ppacemaker implantations was 12.6% (23 of 183) with no difference between the 2 groups (SAPIEN 3: 12.5% [12 of 96] vs SAPIEN XT: 12.6% [11 of 87]; P=.99). SAPIEN 3 was associated with a higher rate of new-onset intraventricular conduction abnormalities (49% vs 27%; P=.007) due to a higher rate of fascicular blocks (17% vs 5%; P=.021). There was no statistically significant difference in transient (29% [20 of 69] vs persistent 19% [12 of 64]; P=.168) left bundle branch blocks (28% [19 of 69] vs 17% [11 of 64]; P=.154) when SAPIEN 3 was compared with SAPIEN XT. We found a trend toward a higher rate of new-onset intraventricular conduction abnormalities with SAPIEN 3 compared with SAPIEN XT, although this did not result in a higher permanent pacemaker implantation rate. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  17. Application of BCI systems in neurorehabilitation: a scoping review.

    Science.gov (United States)

    Bamdad, Mahdi; Zarshenas, Homayoon; Auais, Mohammad A

    2015-01-01

    To review various types of electroencephalographic activities of the brain and present an overview of brain-computer interface (BCI) systems' history and their applications in rehabilitation. A scoping review of published English literature on BCI application in the field of rehabilitation was undertaken. IEEE Xplore, ScienceDirect, Google Scholar and Scopus databases were searched since inception up to August 2012. All experimental studies published in English and discussed complete cycle of the BCI process was included in the review. In total, 90 articles met the inclusion criteria and were reviewed. Various approaches that improve the accuracy and performance of BCI systems were discussed. Based on BCI's clinical application, reviewed articles were categorized into three groups: motion rehabilitation, speech rehabilitation and virtual reality control (VRC). Almost half of the reviewed papers (48%) concentrated on VRC. Speech rehabilitation and motion rehabilitation made up 33% and 19% of the reviewed papers, respectively. Among different types of electroencephalography signals, P300, steady state visual evoked potentials and motor imagery signals were the most common. This review discussed various applications of BCI in rehabilitation and showed how BCI can be used to improve the quality of life for people with neurological disabilities. It will develop and promote new models of communication and finally, will create an accurate, reliable, online communication between human brain and computer and reduces the negative effects of external stimuli on BCI performance. Implications for Rehabilitation The field of brain-computer interfaces (BCI) is rapidly advancing and it is expected to fulfill a critical role in rehabilitation of neurological disorders and in movement restoration in the forthcoming years. In the near future, BCI has notable potential to become a major tool used by people with disabilities to control locomotion and communicate with surrounding

  18. Bacteria Hunt: Evaluating multi-paradigm BCI interaction

    NARCIS (Netherlands)

    Mühl, C.; Gürkök, Hayrettin; Plass - Oude Bos, D.; Thurlings, Marieke E.; Scherffig, Lasse; Duvinage, Matthieu; Elbakyan, Alexandra A.; Kang, SungWook; Poel, Mannes; Heylen, Dirk K.J.

    The multimodal, multi-paradigm brain-computer interfacing (BCI) game Bacteria Hunt was used to evaluate two aspects of BCI interaction in a gaming context. One goal was to examine the effect of feedback on the ability of the user to manipulate his mental state of relaxation. This was done by having

  19. BCI meeting 2005--workshop on technology: hardware and software.

    Science.gov (United States)

    Cincotti, Febo; Bianchi, Luigi; Birch, Gary; Guger, Christoph; Mellinger, Jürgen; Scherer, Reinhold; Schmidt, Robert N; Yáñez Suárez, Oscar; Schalk, Gerwin

    2006-06-01

    This paper describes the outcome of discussions held during the Third International BCI Meeting at a workshop to review and evaluate the current state of BCI-related hardware and software. Technical requirements and current technologies, standardization procedures and future trends are covered. The main conclusion was recognition of the need to focus technical requirements on the users' needs and the need for consistent standards in BCI research.

  20. A Novel Approach for Configuring The Stimulator of A BCI Framework Using XML

    Directory of Open Access Journals (Sweden)

    Indar Sugiarto

    2009-08-01

    Full Text Available In a working BCI framework, all aspects must be considered as an integral part that contributes to the successful operation of a BCI system. This also includes the development of robust but flexible stimulator, especially the one that closely related to the feedback of a BCI system. This paper describes a novel approach in providing flexible visual stimulator using XML which has been applied for a BCI (brain-computer interface framework. Using XML file format for configuring the visual stimulator of a BCI system, we can develop BCI applications which can accommodate many experiment strategies in BCI research. The BCI framework and its configuration platform is developed using C++ programming language which incorporate Qt’s most powerful XML parser named QXmlStream. The implementation and experiment shows that the XML configuration file can be well executed within the proposed BCI framework. Beside its capability in presenting flexible flickering frequencies and text formatting for SSVEP-based BCI, the configuration platform also provides 3 shapes, 16 colors, and 5 distinct feedback bars. It is not necessary to increase the number of shapes nor colors since those parameters are less important for the BCI stimulator. The proposed method can then be extended to enhance the usability of currently existed BCI framework such as BF++ Toys and BCI 2000.

  1. Players' opinions on control and playability of a BCI game

    NARCIS (Netherlands)

    Gürkök, Hayrettin; van de Laar, B.L.A.; Plass - Oude Bos, D.; Poel, Mannes; Nijholt, Antinus; Stephanidis, C; Antona, M.

    2014-01-01

    Brain-computer interface (BCI) games can satisfy our need for competence by providing us with challenges that we should enjoy tackling. However, many BCI games that claim to provide enjoyable challenges fail to do so. Some common fallacies and pitfalls about BCI games play a role in this failure and

  2. Simple communication using a SSVEP-based BCI

    International Nuclear Information System (INIS)

    Sanchez, Guillermo; Diez, Pablo F; Avila, Enrique; Laciar Leber, Eric

    2011-01-01

    Majority of Brain-Computer Interface (BCI) for communication purposes are speller, i.e., the user has to select letter by letter. In this work, is proposed a different approach where the user can select words from a word set designed in order to answer a wide range of questions. The word selection process is commanded by a Steady-state visual evoked potential (SSVEP) based-BCI that allows selecting a word in an average time of 26 s with accuracies of 92% on average. This BCI is focus in the first stages on rehabilitation or even in first moments of some diseases (such as stroke), when the person is eager to communicate with family and doctors.

  3. Simple communication using a SSVEP-based BCI

    Science.gov (United States)

    Sanchez, Guillermo; Diez, Pablo F.; Avila, Enrique; Laciar Leber, Eric

    2011-12-01

    Majority of Brain-Computer Interface (BCI) for communication purposes are speller, i.e., the user has to select letter by letter. In this work, is proposed a different approach where the user can select words from a word set designed in order to answer a wide range of questions. The word selection process is commanded by a Steady-state visual evoked potential (SSVEP) based-BCI that allows selecting a word in an average time of 26 s with accuracies of 92% on average. This BCI is focus in the first stages on rehabilitation or even in first moments of some diseases (such as stroke), when the person is eager to communicate with family and doctors.

  4. User Experience Evaluation in BCI: Mind the Gap!

    NARCIS (Netherlands)

    Plass - Oude Bos, D.; Gürkök, Hayrettin; van de Laar, B.L.A.; Nijboer, Femke; Nijholt, Antinus

    2011-01-01

    Generally brain-computer interface (BCI) systems are evaluated based on the assumption that the user is trying to perform a specific task in the most efficient way. BCI for entertainment yields interesting applications for both patients and healthy users. Then the purpose is to create positive

  5. Classification of binary intentions for individuals with impaired oculomotor function: ‘eyes-closed’ SSVEP-based brain-computer interface (BCI)

    Science.gov (United States)

    Lim, Jeong-Hwan; Hwang, Han-Jeong; Han, Chang-Hee; Jung, Ki-Young; Im, Chang-Hwan

    2013-04-01

    Objective. Some patients suffering from severe neuromuscular diseases have difficulty controlling not only their bodies but also their eyes. Since these patients have difficulty gazing at specific visual stimuli or keeping their eyes open for a long time, they are unable to use the typical steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems. In this study, we introduce a new paradigm for SSVEP-based BCI, which can be potentially suitable for disabled individuals with impaired oculomotor function. Approach. The proposed electroencephalography (EEG)-based BCI system allows users to express their binary intentions without needing to open their eyes. A pair of glasses with two light emitting diodes flickering at different frequencies was used to present visual stimuli to participants with their eyes closed, and we classified the recorded EEG patterns in the online experiments conducted with five healthy participants and one patient with severe amyotrophic lateral sclerosis (ALS). Main results. Through offline experiments performed with 11 participants, we confirmed that human SSVEP could be modulated by visual selective attention to a specific light stimulus penetrating through the eyelids. Furthermore, the recorded EEG patterns could be classified with accuracy high enough for use in a practical BCI system. After customizing the parameters of the proposed SSVEP-based BCI paradigm based on the offline analysis results, binary intentions of five healthy participants were classified in real time. The average information transfer rate of our online experiments reached 10.83 bits min-1. A preliminary online experiment conducted with an ALS patient showed a classification accuracy of 80%. Significance. The results of our offline and online experiments demonstrated the feasibility of our proposed SSVEP-based BCI paradigm. It is expected that our ‘eyes-closed’ SSVEP-based BCI system can be potentially used for communication of

  6. BCI and a User’s Judgment of Agency

    NARCIS (Netherlands)

    Vlek, R.J.; Acken, J.P. van; Beurskens, E.; Roijendijk, L.M.M.; Haselager, W.F.G.; Grübler, G.; Hildt, E.

    2014-01-01

    Performing an action with the assistance of a BCI may affect a user’s judgment of agency, resulting in an illusion of control, or automatism. We analyze this possibility from a theoretical perspective and discuss various factors that might influence a user’s judgment of agency in a BCI context. We

  7. Collins pine/BCI biomass to ethanol project

    International Nuclear Information System (INIS)

    Yancy, M.A.; Hinman, N.D.; Sheehan, J.J.; Tiangco, V.M.

    1999-01-01

    California has abundant biomass resources and a growing transportation fuels market. These two facts have helped to create an opportunity for biomass to ethanol projects within the state. One such project under development is the Collins Pine/BCI Project. Collins Pine Company and BC International (BCI) have teamed up to develop a forest biomass to ethanol facility to be collocated with Collins Pine's 12 MW, biomass-fueled electric generator in Chester, California. The Collins Pine Company (headquartered in Portland, Oregon) is an environmentally progressive lumber company that has owned and operated timberlands near Chester, California since the turn of the century. Collins manages 100,000 acres of timberland in the immediate area of the project. BCI (Dedham, Massachusetts) holds an exclusive license to a new, patented biotechnological process to convert lignocellulosic materials into ethanol and other specially chemicals with significant cost savings and environmental benefits. The project has received a California Energy Commission PIER program award to continue the developmental work done in the Quincy Library Group's Northeastern California Ethanol Manufacturing Feasibility Study (November 1997). This paper provides (1) a brief overview of the biomass and transportation fuels market in California; (2) the current status of the Collins Pine/BCI biomass ethanol project; and (3) future prospects and hurdles for the project to overcome. (author)

  8. Recovery of Ventriculo-Atrial Conduction after Adrenaline in Patients Implanted with Pacemakers.

    Science.gov (United States)

    Cismaru, Gabriel; Gusetu, Gabriel; Muresan, Lucian; Rosu, Radu; Andronache, Marius; Matuz, Roxana; Puiu, Mihai; Mester, Petru; Miclaus, Maria; Pop, Dana; Mircea, Petru Adrian; Zdrenghea, Dumitru

    2015-07-01

    Ventriculo-atrial (VA) conduction can have negative consequences for patients with implanted pacemakers and defibrillators. There is concern whether impaired VA conduction could recover during stressful situations. Although the influence of isoproterenol and atropine are well established, the effect of adrenaline has not been studied systematically. The objective of this study was to determine if adrenaline can facilitate recovery of VA conduction in patients implanted with pacemakers. A prospective study was conducted on 61 consecutive patients during a 4-month period (April-July 2014). The presence of VA conduction was assessed during the pacemaker implantation procedure. In case of an impaired VA conduction, adrenaline infusio was used as a stress surrogate to test conduction recovery. The indications for pacemaker implantation were: sinus node dysfunction in 18 patients, atrioventricular (AV) block in 40 patients, binodal dysfunction (sinus node+ AV node) in two patients and other (carotid sinus syndrome) in one patient. In the basal state, 15/61 (24.6%) presented spontaneous VA conduction and 46/61 (75.4%) had no VA conduction. After administration of adrenaline, there was VA conduction recovery in 5/46 (10.9%) patients. Adrenaline infusion produced recovery of VA conduction in 10.9% of patients with absent VA conduction in a basal state. Recovery of VA conduction during physiological or pathological stresses could be responsible for the pacemaker syndrome, PMT episodes, or certain implantable cardiac defibrillator detection issues. © 2015 Wiley Periodicals, Inc.

  9. Neutrosophic Regular Filters and Fuzzy Regular Filters in Pseudo-BCI Algebras

    Directory of Open Access Journals (Sweden)

    Xiaohong Zhang

    2017-09-01

    Full Text Available Neutrosophic set is a new mathematical tool for handling problems involving imprecise, indeterminacy and inconsistent data. Pseudo-BCI algebra is a kind of non-classical logic algebra in close connection with various non-commutative fuzzy logics. Recently, we applied neutrosophic set theory to pseudo-BCI algebras. In this paper, we study neutrosophic filters in pseudo-BCI algebras.

  10. The Cybathlon BCI race: Successful longitudinal mutual learning with two tetraplegic users.

    Science.gov (United States)

    Perdikis, Serafeim; Tonin, Luca; Saeedi, Sareh; Schneider, Christoph; Millán, José Del R

    2018-05-01

    This work aims at corroborating the importance and efficacy of mutual learning in motor imagery (MI) brain-computer interface (BCI) by leveraging the insights obtained through our participation in the BCI race of the Cybathlon event. We hypothesized that, contrary to the popular trend of focusing mostly on the machine learning aspects of MI BCI training, a comprehensive mutual learning methodology that reinstates the three learning pillars (at the machine, subject, and application level) as equally significant could lead to a BCI-user symbiotic system able to succeed in real-world scenarios such as the Cybathlon event. Two severely impaired participants with chronic spinal cord injury (SCI), were trained following our mutual learning approach to control their avatar in a virtual BCI race game. The competition outcomes substantiate the effectiveness of this type of training. Most importantly, the present study is one among very few to provide multifaceted evidence on the efficacy of subject learning during BCI training. Learning correlates could be derived at all levels of the interface-application, BCI output, and electroencephalography (EEG) neuroimaging-with two end-users, sufficiently longitudinal evaluation, and, importantly, under real-world and even adverse conditions.

  11. The Cybathlon BCI race: Successful longitudinal mutual learning with two tetraplegic users.

    Directory of Open Access Journals (Sweden)

    Serafeim Perdikis

    2018-05-01

    Full Text Available This work aims at corroborating the importance and efficacy of mutual learning in motor imagery (MI brain-computer interface (BCI by leveraging the insights obtained through our participation in the BCI race of the Cybathlon event. We hypothesized that, contrary to the popular trend of focusing mostly on the machine learning aspects of MI BCI training, a comprehensive mutual learning methodology that reinstates the three learning pillars (at the machine, subject, and application level as equally significant could lead to a BCI-user symbiotic system able to succeed in real-world scenarios such as the Cybathlon event. Two severely impaired participants with chronic spinal cord injury (SCI, were trained following our mutual learning approach to control their avatar in a virtual BCI race game. The competition outcomes substantiate the effectiveness of this type of training. Most importantly, the present study is one among very few to provide multifaceted evidence on the efficacy of subject learning during BCI training. Learning correlates could be derived at all levels of the interface-application, BCI output, and electroencephalography (EEG neuroimaging-with two end-users, sufficiently longitudinal evaluation, and, importantly, under real-world and even adverse conditions.

  12. Why standard brain-computer interface (BCI) training protocols should be changed: an experimental study

    Science.gov (United States)

    Jeunet, Camille; Jahanpour, Emilie; Lotte, Fabien

    2016-06-01

    Objective. While promising, electroencephaloraphy based brain-computer interfaces (BCIs) are barely used due to their lack of reliability: 15% to 30% of users are unable to control a BCI. Standard training protocols may be partly responsible as they do not satisfy recommendations from psychology. Our main objective was to determine in practice to what extent standard training protocols impact users’ motor imagery based BCI (MI-BCI) control performance. Approach. We performed two experiments. The first consisted in evaluating the efficiency of a standard BCI training protocol for the acquisition of non-BCI related skills in a BCI-free context, which enabled us to rule out the possible impact of BCIs on the training outcome. Thus, participants (N = 54) were asked to perform simple motor tasks. The second experiment was aimed at measuring the correlations between motor tasks and MI-BCI performance. The ten best and ten worst performers of the first study were recruited for an MI-BCI experiment during which they had to learn to perform two MI tasks. We also assessed users’ spatial ability and pre-training μ rhythm amplitude, as both have been related to MI-BCI performance in the literature. Main results. Around 17% of the participants were unable to learn to perform the motor tasks, which is close to the BCI illiteracy rate. This suggests that standard training protocols are suboptimal for skill teaching. No correlation was found between motor tasks and MI-BCI performance. However, spatial ability played an important role in MI-BCI performance. In addition, once the spatial ability covariable had been controlled for, using an ANCOVA, it appeared that participants who faced difficulty during the first experiment improved during the second while the others did not. Significance. These studies suggest that (1) standard MI-BCI training protocols are suboptimal for skill teaching, (2) spatial ability is confirmed as impacting on MI-BCI performance, and (3) when faced

  13. PET Mapping for Brain-Computer Interface Stimulation of the Ventroposterior Medial Nucleus of the Thalamus in Rats with Implanted Electrodes.

    Science.gov (United States)

    Zhu, Yunqi; Xu, Kedi; Xu, Caiyun; Zhang, Jiacheng; Ji, Jianfeng; Zheng, Xiaoxiang; Zhang, Hong; Tian, Mei

    2016-07-01

    Brain-computer interface (BCI) technology has great potential for improving the quality of life for neurologic patients. This study aimed to use PET mapping for BCI-based stimulation in a rat model with electrodes implanted in the ventroposterior medial (VPM) nucleus of the thalamus. PET imaging studies were conducted before and after stimulation of the right VPM. Stimulation induced significant orienting performance. (18)F-FDG uptake increased significantly in the paraventricular thalamic nucleus, septohippocampal nucleus, olfactory bulb, left crus II of the ansiform lobule of the cerebellum, and bilaterally in the lateral septum, amygdala, piriform cortex, endopiriform nucleus, and insular cortex, but it decreased in the right secondary visual cortex, right simple lobule of the cerebellum, and bilaterally in the somatosensory cortex. This study demonstrated that PET mapping after VPM stimulation can identify specific brain regions associated with orienting performance. PET molecular imaging may be an important approach for BCI-based research and its clinical applications. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  14. Vague BCK/BCI-algebras

    Directory of Open Access Journals (Sweden)

    Arsham Borumand Saeid

    2009-01-01

    Full Text Available In this note, by using the concept of vague sets, the notion of vague \\(BCK/BCI\\-algebra is introduced. And the notions of \\(\\alpha\\-cut and vague-cut are introduced and the relationships between these notions and crisp subalgebras are studied.

  15. Controlling a tactile ERP-BCI in a dual-task

    NARCIS (Netherlands)

    Thurlings, M.E.; Erp, J.B.F. van; Brouwer, A.M.; Werkhoven, P.J.

    2013-01-01

    When using brain–computer interfaces (BCIs) to control a game, the BCI may have to compete with gaming tasks for the same perceptual and cognitive resources.We investigated: 1) if and to what extent event-related potentials (ERPs) and ERP–BCI performance are affected in a dual-task situation; and 2)

  16. Differentiating closed-loop cortical intention from rest: building an asynchronous electrocorticographic BCI

    Science.gov (United States)

    Williams, Jordan J.; Rouse, Adam G.; Thongpang, Sanitta; Williams, Justin C.; Moran, Daniel W.

    2013-08-01

    Objective. Recent experiments have shown that electrocorticography (ECoG) can provide robust control signals for a brain-computer interface (BCI). Strategies that attempt to adapt a BCI control algorithm by learning from past trials often assume that the subject is attending to each training trial. Likewise, automatic disabling of movement control would be desirable during resting periods when random brain fluctuations might cause unintended movements of a device. To this end, our goal was to identify ECoG differences that arise between periods of active BCI use and rest. Approach. We examined spectral differences in multi-channel, epidural micro-ECoG signals recorded from non-human primates when rest periods were interleaved between blocks of an active BCI control task. Main Results. Post-hoc analyses demonstrated that these states can be decoded accurately on both a trial-by-trial and real-time basis, and this discriminability remains robust over a period of weeks. In addition, high gamma frequencies showed greater modulation with desired movement direction, while lower frequency components demonstrated greater amplitude differences between task and rest periods, suggesting possible specialized BCI roles for these frequencies. Significance. The results presented here provide valuable insight into the neurophysiology of BCI control as well as important considerations toward the design of an asynchronous BCI system.

  17. Ion implantation induced conducting nano-cluster formation in PPO

    International Nuclear Information System (INIS)

    Das, A.; Patnaik, A.; Ghosh, G.; Dhara, S.

    1997-01-01

    Conversion of polymers and non-polymeric organic molecules from insulating to semiconducting materials as an effect of energetic ion implantation is an established fact. Formation of nano-clusters enriched with carbonaceous materials are made responsible for the insulator-semiconductor transition. Conduction in these implanted materials is observed to follow variable range hopping (VRH) mechanism. Poly(2,6-dimethyl phenylene oxide) [PPO] compatible in various proportion with polystyrene is used as a high thermal resistant insulating polymer. PPO has been used for the first time in the ion implantation study

  18. Effects of background music on objective and subjective performance measures in an auditory BCI

    Directory of Open Access Journals (Sweden)

    Sijie Zhou

    2016-10-01

    Full Text Available Several studies have explored brain computer interface (BCI systems based on auditory stimuli, which could help patients with visual impairments. Usability and user satisfaction are important considerations in any BCI. Although background music can influence emotion and performance in other task environments, and many users may wish to listen to music while using a BCI, auditory and other BCIs are typically studied without background music. Some work has explored the possibility of using polyphonic music in auditory BCI systems. However, this approach requires users with good musical skills, and has not been explored in online experiments. Our hypothesis was that an auditory BCI with background music would be preferred by subjects over a similar BCI without background music, without any difference in BCI performance. We introduce a simple paradigm (which does not require musical skill using percussion instrument sound stimuli and background music, and evaluated it in both offline and online experiments. The result showed that subjects preferred the auditory BCI with background music. Different performance measures did not reveal any significant performance effect when comparing background music vs. no background. Since the addition of background music does not impair BCI performance but is preferred by users, auditory (and perhaps other BCIs should consider including it. Our study also indicates that auditory BCIs can be effective even if the auditory channel is simultaneously otherwise engaged.

  19. Enhanced Motor Imagery-Based BCI Performance via Tactile Stimulation on Unilateral Hand

    Directory of Open Access Journals (Sweden)

    Xiaokang Shu

    2017-12-01

    Full Text Available Brain-computer interface (BCI has attracted great interests for its effectiveness in assisting disabled people. However, due to the poor BCI performance, this technique is still far from daily-life applications. One of critical issues confronting BCI research is how to enhance BCI performance. This study aimed at improving the motor imagery (MI based BCI accuracy by integrating MI tasks with unilateral tactile stimulation (Uni-TS. The effects were tested on both healthy subjects and stroke patients in a controlled study. Twenty-two healthy subjects and four stroke patients were recruited and randomly divided into a control-group and an enhanced-group. In the control-group, subjects performed two blocks of conventional MI tasks (left hand vs. right hand, with 80 trials in each block. In the enhanced-group, subjects also performed two blocks of MI tasks, but constant tactile stimulation was applied on the non-dominant/paretic hand during MI tasks in the second block. We found the Uni-TS significantly enhanced the contralateral cortical activations during MI of the stimulated hand, whereas it had no influence on activation patterns during MI of the non-stimulated hand. The two-class BCI decoding accuracy was significantly increased from 72.5% (MI without Uni-TS to 84.7% (MI with Uni-TS in the enhanced-group (p < 0.001, paired t-test. Moreover, stroke patients in the enhanced-group achieved an accuracy >80% during MI with Uni-TS. This novel approach complements the conventional methods for BCI enhancement without increasing source information or complexity of signal processing. This enhancement via Uni-TS may facilitate clinical applications of MI-BCI.

  20. Clinical evaluation of BrainTree, a motor imagery hybrid BCI speller

    Science.gov (United States)

    Perdikis, S.; Leeb, R.; Williamson, J.; Ramsay, A.; Tavella, M.; Desideri, L.; Hoogerwerf, E.-J.; Al-Khodairy, A.; Murray-Smith, R.; Millán, J. d. R.

    2014-06-01

    Objective. While brain-computer interfaces (BCIs) for communication have reached considerable technical maturity, there is still a great need for state-of-the-art evaluation by the end-users outside laboratory environments. To achieve this primary objective, it is necessary to augment a BCI with a series of components that allow end-users to type text effectively. Approach. This work presents the clinical evaluation of a motor imagery (MI) BCI text-speller, called BrainTree, by six severely disabled end-users and ten able-bodied users. Additionally, we define a generic model of code-based BCI applications, which serves as an analytical tool for evaluation and design. Main results. We show that all users achieved remarkable usability and efficiency outcomes in spelling. Furthermore, our model-based analysis highlights the added value of human-computer interaction techniques and hybrid BCI error-handling mechanisms, and reveals the effects of BCI performances on usability and efficiency in code-based applications. Significance. This study demonstrates the usability potential of code-based MI spellers, with BrainTree being the first to be evaluated by a substantial number of end-users, establishing them as a viable, competitive alternative to other popular BCI spellers. Another major outcome of our model-based analysis is the derivation of a 80% minimum command accuracy requirement for successful code-based application control, revising upwards previous estimates attempted in the literature.

  1. Concept of software interface for BCI systems

    Science.gov (United States)

    Svejda, Jaromir; Zak, Roman; Jasek, Roman

    2016-06-01

    Brain Computer Interface (BCI) technology is intended to control external system by brain activity. One of main part of such system is software interface, which carries about clear communication between brain and either computer or additional devices connected to computer. This paper is organized as follows. Firstly, current knowledge about human brain is briefly summarized to points out its complexity. Secondly, there is described a concept of BCI system, which is then used to build an architecture of proposed software interface. Finally, there are mentioned disadvantages of sensing technology discovered during sensing part of our research.

  2. Fuzzy Tracking and Control Algorithm for an SSVEP-Based BCI System

    Directory of Open Access Journals (Sweden)

    Yeou-Jiunn Chen

    2016-09-01

    Full Text Available Subjects with amyotrophic lateral sclerosis (ALS consistently experience decreasing quality of life because of this distinctive disease. Thus, a practical brain-computer interface (BCI application can effectively help subjects with ALS to participate in communication or entertainment. In this study, a fuzzy tracking and control algorithm is proposed for developing a BCI remote control system. To represent the characteristics of the measured electroencephalography (EEG signals after visual stimulation, a fast Fourier transform is applied to extract the EEG features. A self-developed fuzzy tracking algorithm quickly traces the changes of EEG signals. The accuracy and stability of a BCI system can be greatly improved by using a fuzzy control algorithm. Fifteen subjects were asked to attend a performance test of this BCI system. The canonical correlation analysis (CCA was adopted to compare the proposed approach, and the average recognition rates are 96.97% and 94.49% for proposed approach and CCA, respectively. The experimental results showed that the proposed approach is preferable to CCA. Overall, the proposed fuzzy tracking and control algorithm applied in the BCI system can profoundly help subjects with ALS to control air swimmer drone vehicles for entertainment purposes.

  3. Evaluating the ergonomics of BCI devices for research and experimentation.

    Science.gov (United States)

    Ekandem, Joshua I; Davis, Timothy A; Alvarez, Ignacio; James, Melva T; Gilbert, Juan E

    2012-01-01

    The use of brain computer interface (BCI) devices in research and applications has exploded in recent years. Applications such as lie detectors that use functional magnetic resonance imaging (fMRI) to video games controlled using electroencephalography (EEG) are currently in use. These developments, coupled with the emergence of inexpensive commercial BCI headsets, such as the Emotiv EPOC ( http://emotiv.com/index.php ) and the Neurosky MindWave, have also highlighted the need of performing basic ergonomics research since such devices have usability issues, such as comfort during prolonged use, and reduced performance for individuals with common physical attributes, such as long or coarse hair. This paper examines the feasibility of using consumer BCIs in scientific research. In particular, we compare user comfort, experiment preparation time, signal reliability and ease of use in light of individual differences among subjects for two commercially available hardware devices, the Emotiv EPOC and the Neurosky MindWave. Based on these results, we suggest some basic considerations for selecting a commercial BCI for research and experimentation. STATEMENT OF RELEVANCE: Despite increased usage, few studies have examined the usability of commercial BCI hardware. This study assesses usability and experimentation factors of two commercial BCI models, for the purpose of creating basic guidelines for increased usability. Finding that more sensors can be less comfortable and accurate than devices with fewer sensors.

  4. DTU BCI speller: An SSVEP-based spelling system with dictionary support

    DEFF Research Database (Denmark)

    Vilic, Adnan; Kjaer, Troels W.; Thomsen, Carsten E.

    2013-01-01

    In this paper, a new brain computer interface (BCI) speller, named DTU BCI speller, is introduced. It is based on the steady-state visual evoked potential (SSVEP) and features dictionary support. The system focuses on simplicity and user friendliness by using a single electrode for the signal......) is 4.90 ± 3.84 with a best case of 8.74 CPM. All subjects reported systematically on different user friendliness measures, and the overall results indicated the potentials of the DTU BCI Speller system. For subjects with high classification accuracies, the introduced dictionary approach greatly reduced...

  5. Active training paradigm for motor imagery BCI.

    Science.gov (United States)

    Li, Junhua; Zhang, Liqing

    2012-06-01

    Brain-computer interface (BCI) allows the use of brain activities for people to directly communicate with the external world or to control external devices without participation of any peripheral nerves and muscles. Motor imagery is one of the most popular modes in the research field of brain-computer interface. Although motor imagery BCI has some advantages compared with other modes of BCI, such as asynchronization, it is necessary to require training sessions before using it. The performance of trained BCI system depends on the quality of training samples or the subject engagement. In order to improve training effect and decrease training time, we proposed a new paradigm where subjects participated in training more actively than in the traditional paradigm. In the traditional paradigm, a cue (to indicate what kind of motor imagery should be imagined during the current trial) is given to the subject at the beginning of a trial or during a trial, and this cue is also used as a label for this trial. It is usually assumed that labels for trials are accurate in the traditional paradigm, although subjects may not have performed the required or correct kind of motor imagery, and trials may thus be mislabeled. And then those mislabeled trials give rise to interference during model training. In our proposed paradigm, the subject is required to reconfirm the label and can correct the label when necessary. This active training paradigm may generate better training samples with fewer inconsistent labels because it overcomes mistakes when subject's motor imagination does not match the given cues. The experiments confirm that our proposed paradigm achieves better performance; the improvement is significant according to statistical analysis.

  6. Conductive polymer sensor arrays for smart orthopaedic implants

    Science.gov (United States)

    Micolini, Carolina; Holness, F. B.; Johnson, James A.; Price, Aaron D.

    2017-04-01

    This study proposes and demonstrates the design, implementation, and characterization of a 3D-printed smartpolymer sensor array using conductive polyaniline (PANI) structures embedded in a polymeric substrate. The piezoresistive characteristics of PANI were studied to evaluate the efficacy of the manufacturing of an embedded pressure sensor. PANI's stability throughout loading and unloading cycles together with the response to incremental loading cycles was investigated. It is demonstrated that this specially developed multi-material additive manufacturing process for polyaniline is a good candidate for the manufacture of implant components with smart-polymer sensors embedded for the analysis of joint loads in orthopaedic implants.

  7. Electrical conductivity enhancement of polyethersulfone (PES) by ion implantation

    International Nuclear Information System (INIS)

    Bridwell, L.B.; Giedd, R.E.; Wang Yongqiang; Mohite, S.S.; Jahnke, T.; Brown, I.M.

    1991-01-01

    Amorphous polyethersulfone (PES) films have been implanted with a variety of ions (He, B, C, N and As) at a bombarding energy of 50 keV in the dose range 10 16 -10 17 ions/cm 2 . Surface resistance as a function of dose indicates a saturation effect with a significant difference between He and the other ions used. ESR line shapes in the He implanted samples changed from a mixed Gaussian/Lorentzian to a pure Lorentzian and narrowed with increasing dose. Temperature dependent resistivity indicates an electron hopping mechanism for conduction. Infrared results indicate cross-linking or self-cyclization occurred for all implanted ions with further destruction in the case of As. (orig.)

  8. Predicting Mental Imagery-Based BCI Performance from Personality, Cognitive Profile and Neurophysiological Patterns.

    Directory of Open Access Journals (Sweden)

    Camille Jeunet

    Full Text Available Mental-Imagery based Brain-Computer Interfaces (MI-BCIs allow their users to send commands to a computer using their brain-activity alone (typically measured by ElectroEncephaloGraphy-EEG, which is processed while they perform specific mental tasks. While very promising, MI-BCIs remain barely used outside laboratories because of the difficulty encountered by users to control them. Indeed, although some users obtain good control performances after training, a substantial proportion remains unable to reliably control an MI-BCI. This huge variability in user-performance led the community to look for predictors of MI-BCI control ability. However, these predictors were only explored for motor-imagery based BCIs, and mostly for a single training session per subject. In this study, 18 participants were instructed to learn to control an EEG-based MI-BCI by performing 3 MI-tasks, 2 of which were non-motor tasks, across 6 training sessions, on 6 different days. Relationships between the participants' BCI control performances and their personality, cognitive profile and neurophysiological markers were explored. While no relevant relationships with neurophysiological markers were found, strong correlations between MI-BCI performances and mental-rotation scores (reflecting spatial abilities were revealed. Also, a predictive model of MI-BCI performance based on psychometric questionnaire scores was proposed. A leave-one-subject-out cross validation process revealed the stability and reliability of this model: it enabled to predict participants' performance with a mean error of less than 3 points. This study determined how users' profiles impact their MI-BCI control ability and thus clears the way for designing novel MI-BCI training protocols, adapted to the profile of each user.

  9. Fast Recognition of BCI-Inefficient Users Using Physiological Features from EEG Signals: A Screening Study of Stroke Patients

    Directory of Open Access Journals (Sweden)

    Xiaokang Shu

    2018-02-01

    Full Text Available Motor imagery (MI based brain-computer interface (BCI has been developed as an alternative therapy for stroke rehabilitation. However, experimental evidence demonstrates that a significant portion (10–50% of subjects are BCI-inefficient users (accuracy less than 70%. Thus, predicting BCI performance prior to clinical BCI usage would facilitate the selection of suitable end-users and improve the efficiency of stroke rehabilitation. In the current study, we proposed two physiological variables, i.e., laterality index (LI and cortical activation strength (CAS, to predict MI-BCI performance. Twenty-four stroke patients and 10 healthy subjects were recruited for this study. Each subject was required to perform two blocks of left- and right-hand MI tasks. Linear regression analyses were performed between the BCI accuracies and two physiological predictors. Here, the predictors were calculated from the electroencephalography (EEG signals during paretic hand MI tasks (5 trials; approximately 1 min. LI values exhibited a statistically significant correlation with two-class BCI (left vs. right performance (r = −0.732, p < 0.001, and CAS values exhibited a statistically significant correlation with brain-switch BCI (task vs. idle performance (r = 0.641, p < 0.001. Furthermore, the BCI-inefficient users were successfully recognized with a sensitivity of 88.2% and a specificity of 85.7% in the two-class BCI. The brain-switch BCI achieved a sensitivity of 100.0% and a specificity of 87.5% in the discrimination of BCI-inefficient users. These results demonstrated that the proposed BCI predictors were promising to promote the BCI usage in stroke rehabilitation and contribute to a better understanding of the BCI-inefficiency phenomenon in stroke patients.

  10. A Novel Design of 4-Class BCI Using Two Binary Classifiers and Parallel Mental Tasks

    Directory of Open Access Journals (Sweden)

    Tao Geng

    2008-01-01

    Full Text Available A novel 4-class single-trial brain computer interface (BCI based on two (rather than four or more binary linear discriminant analysis (LDA classifiers is proposed, which is called a “parallel BCI.” Unlike other BCIs where mental tasks are executed and classified in a serial way one after another, the parallel BCI uses properly designed parallel mental tasks that are executed on both sides of the subject body simultaneously, which is the main novelty of the BCI paradigm used in our experiments. Each of the two binary classifiers only classifies the mental tasks executed on one side of the subject body, and the results of the two binary classifiers are combined to give the result of the 4-class BCI. Data was recorded in experiments with both real movement and motor imagery in 3 able-bodied subjects. Artifacts were not detected or removed. Offline analysis has shown that, in some subjects, the parallel BCI can generate a higher accuracy than a conventional 4-class BCI, although both of them have used the same feature selection and classification algorithms.

  11. Tactile and bone-conduction auditory brain computer interface for vision and hearing impaired users.

    Science.gov (United States)

    Rutkowski, Tomasz M; Mori, Hiromu

    2015-04-15

    The paper presents a report on the recently developed BCI alternative for users suffering from impaired vision (lack of focus or eye-movements) or from the so-called "ear-blocking-syndrome" (limited hearing). We report on our recent studies of the extents to which vibrotactile stimuli delivered to the head of a user can serve as a platform for a brain computer interface (BCI) paradigm. In the proposed tactile and bone-conduction auditory BCI novel multiple head positions are used to evoke combined somatosensory and auditory (via the bone conduction effect) P300 brain responses, in order to define a multimodal tactile and bone-conduction auditory brain computer interface (tbcaBCI). In order to further remove EEG interferences and to improve P300 response classification synchrosqueezing transform (SST) is applied. SST outperforms the classical time-frequency analysis methods of the non-linear and non-stationary signals such as EEG. The proposed method is also computationally more effective comparing to the empirical mode decomposition. The SST filtering allows for online EEG preprocessing application which is essential in the case of BCI. Experimental results with healthy BCI-naive users performing online tbcaBCI, validate the paradigm, while the feasibility of the concept is illuminated through information transfer rate case studies. We present a comparison of the proposed SST-based preprocessing method, combined with a logistic regression (LR) classifier, together with classical preprocessing and LDA-based classification BCI techniques. The proposed tbcaBCI paradigm together with data-driven preprocessing methods are a step forward in robust BCI applications research. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. The Evaluations of Hydrogen Permeation and Life Cycle Assessment on Nanocrystallined TiN-BCY Hydrogen Membrane.

    Science.gov (United States)

    Lee, Soo-Sun; Hong, Tae-Whan

    2016-02-01

    Recently, Membrane technologies are used for the separation of mixtures in various industries. The promising method to reduce the CO2 emission and production of H2 from the coal based power plants is membrane separation with polymer, metal, ceramic and cermet materials. In this study, TiN ceramic material was selected, that is much less expensive than Pd. Also it has resistance to acids and chemically steady. Yttrium doped barium cerate (BCY) is a proton conductor. This perovskite exhibit both high proton conductivity and thermodynamic stability. But its chemical stability is very low under real operating environments. Thus, TiN-BCY may provide'a new membrane material for application. Life cycle assessment (LCA) based on fabrication of membrane and it was carried out to evaluate the energy demand and environmental impact. The analysis is performed according to the recommendations of ISO norms 14040 and obtained using the Gabi 6 software. This LCA will contribute to optimizing the eco-design, reducing the energy consumption and pollutant emissions during the eco-profiles of the TiN-BCY membrane.

  13. Proprioceptive feedback and brain computer interface (BCI based neuroprostheses.

    Directory of Open Access Journals (Sweden)

    Ander Ramos-Murguialday

    Full Text Available Brain computer interface (BCI technology has been proposed for motor neurorehabilitation, motor replacement and assistive technologies. It is an open question whether proprioceptive feedback affects the regulation of brain oscillations and therefore BCI control. We developed a BCI coupled on-line with a robotic hand exoskeleton for flexing and extending the fingers. 24 healthy participants performed five different tasks of closing and opening the hand: (1 motor imagery of the hand movement without any overt movement and without feedback, (2 motor imagery with movement as online feedback (participants see and feel their hand, with the exoskeleton moving according to their brain signals, (3 passive (the orthosis passively opens and closes the hand without imagery and (4 active (overt movement of the hand and rest. Performance was defined as the difference in power of the sensorimotor rhythm during motor task and rest and calculated offline for different tasks. Participants were divided in three groups depending on the feedback receiving during task 2 (the other tasks were the same for all participants. Group 1 (n = 9 received contingent positive feedback (participants' sensorimotor rhythm (SMR desynchronization was directly linked to hand orthosis movements, group 2 (n = 8 contingent "negative" feedback (participants' sensorimotor rhythm synchronization was directly linked to hand orthosis movements and group 3 (n = 7 sham feedback (no link between brain oscillations and orthosis movements. We observed that proprioceptive feedback (feeling and seeing hand movements improved BCI performance significantly. Furthermore, in the contingent positive group only a significant motor learning effect was observed enhancing SMR desynchronization during motor imagery without feedback in time. Furthermore, we observed a significantly stronger SMR desynchronization in the contingent positive group compared to the other groups during active and

  14. Proprioceptive feedback and brain computer interface (BCI) based neuroprostheses.

    Science.gov (United States)

    Ramos-Murguialday, Ander; Schürholz, Markus; Caggiano, Vittorio; Wildgruber, Moritz; Caria, Andrea; Hammer, Eva Maria; Halder, Sebastian; Birbaumer, Niels

    2012-01-01

    Brain computer interface (BCI) technology has been proposed for motor neurorehabilitation, motor replacement and assistive technologies. It is an open question whether proprioceptive feedback affects the regulation of brain oscillations and therefore BCI control. We developed a BCI coupled on-line with a robotic hand exoskeleton for flexing and extending the fingers. 24 healthy participants performed five different tasks of closing and opening the hand: (1) motor imagery of the hand movement without any overt movement and without feedback, (2) motor imagery with movement as online feedback (participants see and feel their hand, with the exoskeleton moving according to their brain signals, (3) passive (the orthosis passively opens and closes the hand without imagery) and (4) active (overt) movement of the hand and rest. Performance was defined as the difference in power of the sensorimotor rhythm during motor task and rest and calculated offline for different tasks. Participants were divided in three groups depending on the feedback receiving during task 2 (the other tasks were the same for all participants). Group 1 (n = 9) received contingent positive feedback (participants' sensorimotor rhythm (SMR) desynchronization was directly linked to hand orthosis movements), group 2 (n = 8) contingent "negative" feedback (participants' sensorimotor rhythm synchronization was directly linked to hand orthosis movements) and group 3 (n = 7) sham feedback (no link between brain oscillations and orthosis movements). We observed that proprioceptive feedback (feeling and seeing hand movements) improved BCI performance significantly. Furthermore, in the contingent positive group only a significant motor learning effect was observed enhancing SMR desynchronization during motor imagery without feedback in time. Furthermore, we observed a significantly stronger SMR desynchronization in the contingent positive group compared to the other groups during active and passive

  15. Fast Recognition of BCI-Inefficient Users Using Physiological Features from EEG Signals: A Screening Study of Stroke Patients.

    Science.gov (United States)

    Shu, Xiaokang; Chen, Shugeng; Yao, Lin; Sheng, Xinjun; Zhang, Dingguo; Jiang, Ning; Jia, Jie; Zhu, Xiangyang

    2018-01-01

    Motor imagery (MI) based brain-computer interface (BCI) has been developed as an alternative therapy for stroke rehabilitation. However, experimental evidence demonstrates that a significant portion (10-50%) of subjects are BCI-inefficient users (accuracy less than 70%). Thus, predicting BCI performance prior to clinical BCI usage would facilitate the selection of suitable end-users and improve the efficiency of stroke rehabilitation. In the current study, we proposed two physiological variables, i.e., laterality index (LI) and cortical activation strength (CAS), to predict MI-BCI performance. Twenty-four stroke patients and 10 healthy subjects were recruited for this study. Each subject was required to perform two blocks of left- and right-hand MI tasks. Linear regression analyses were performed between the BCI accuracies and two physiological predictors. Here, the predictors were calculated from the electroencephalography (EEG) signals during paretic hand MI tasks (5 trials; approximately 1 min). LI values exhibited a statistically significant correlation with two-class BCI (left vs. right) performance (r = -0.732, p discrimination of BCI-inefficient users. These results demonstrated that the proposed BCI predictors were promising to promote the BCI usage in stroke rehabilitation and contribute to a better understanding of the BCI-inefficiency phenomenon in stroke patients.

  16. Fast Recognition of BCI-Inefficient Users Using Physiological Features from EEG Signals: A Screening Study of Stroke Patients

    Science.gov (United States)

    Shu, Xiaokang; Chen, Shugeng; Yao, Lin; Sheng, Xinjun; Zhang, Dingguo; Jiang, Ning; Jia, Jie; Zhu, Xiangyang

    2018-01-01

    Motor imagery (MI) based brain-computer interface (BCI) has been developed as an alternative therapy for stroke rehabilitation. However, experimental evidence demonstrates that a significant portion (10–50%) of subjects are BCI-inefficient users (accuracy less than 70%). Thus, predicting BCI performance prior to clinical BCI usage would facilitate the selection of suitable end-users and improve the efficiency of stroke rehabilitation. In the current study, we proposed two physiological variables, i.e., laterality index (LI) and cortical activation strength (CAS), to predict MI-BCI performance. Twenty-four stroke patients and 10 healthy subjects were recruited for this study. Each subject was required to perform two blocks of left- and right-hand MI tasks. Linear regression analyses were performed between the BCI accuracies and two physiological predictors. Here, the predictors were calculated from the electroencephalography (EEG) signals during paretic hand MI tasks (5 trials; approximately 1 min). LI values exhibited a statistically significant correlation with two-class BCI (left vs. right) performance (r = −0.732, p discrimination of BCI-inefficient users. These results demonstrated that the proposed BCI predictors were promising to promote the BCI usage in stroke rehabilitation and contribute to a better understanding of the BCI-inefficiency phenomenon in stroke patients. PMID:29515363

  17. Depth of valve implantation, conduction disturbances and pacemaker implantation with CoreValve and CoreValve Accutrak system for Transcatheter Aortic Valve Implantation, a multi-center study.

    Science.gov (United States)

    Lenders, Guy D; Collas, Valérie; Hernandez, José Maria; Legrand, Victor; Danenberg, Haim D; den Heijer, Peter; Rodrigus, Inez E; Paelinck, Bernard P; Vrints, Christiaan J; Bosmans, Johan M

    2014-10-20

    Transcatheter Aortic Valve Implantation (TAVI) is now considered an indispensable treatment strategy in high operative risk patients with severe, symptomatic aortic stenosis. However, conduction disturbances and the need for Permanent Pacemaker (PPM) implantation after TAVI with the CoreValve prosthesis still remain frequent. We aimed to evaluate the implantation depth, the incidence and predictors of new conduction disturbances, and the need for PPM implantation within the first month after TAVI, using the new Accutrak CoreValve delivery system (ACV), compared to the previous generation CoreValve (non-ACV). In 5 experienced TAVI-centers, a total of 120 consecutive non-ACV and 112 consecutive ACV patients were included (n=232). The mean depth of valve implantation (DVI) was 8.4±4.0 mm in the non-ACV group and 7.1±4.0 mm in the ACV group (p=0.034). The combined incidence of new PPM implantation and new LBBB was 71.2% in the non-ACV group compared to 50.5% in the ACV group (p=0.014). DVI (p=0.002), first degree AV block (p=0.018) and RBBB (p<0.001) were independent predictors of PPM implantation. DVI (p<0.001) and pre-existing first degree AV-block (p=0.021) were identified as significant predictors of new LBBB. DVI is an independent predictor of TAVI-related conduction disturbances and can be reduced by using the newer CoreValve Accutrak delivery system, resulting in a significantly lower incidence of new LBBB and new PPM implantation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Brain-computer interface (BCI) evaluation in people with amyotrophic lateral sclerosis.

    Science.gov (United States)

    McCane, Lynn M; Sellers, Eric W; McFarland, Dennis J; Mak, Joseph N; Carmack, C Steve; Zeitlin, Debra; Wolpaw, Jonathan R; Vaughan, Theresa M

    2014-06-01

    Brain-computer interfaces (BCIs) might restore communication to people severely disabled by amyotrophic lateral sclerosis (ALS) or other disorders. We sought to: 1) define a protocol for determining whether a person with ALS can use a visual P300-based BCI; 2) determine what proportion of this population can use the BCI; and 3) identify factors affecting BCI performance. Twenty-five individuals with ALS completed an evaluation protocol using a standard 6 × 6 matrix and parameters selected by stepwise linear discrimination. With an 8-channel EEG montage, the subjects fell into two groups in BCI accuracy (chance accuracy 3%). Seventeen averaged 92 (± 3)% (range 71-100%), which is adequate for communication (G70 group). Eight averaged 12 (± 6)% (range 0-36%), inadequate for communication (L40 subject group). Performance did not correlate with disability: 11/17 (65%) of G70 subjects were severely disabled (i.e. ALSFRS-R < 5). All L40 subjects had visual impairments (e.g. nystagmus, diplopia, ptosis). P300 was larger and more anterior in G70 subjects. A 16-channel montage did not significantly improve accuracy. In conclusion, most people severely disabled by ALS could use a visual P300-based BCI for communication. In those who could not, visual impairment was the principal obstacle. For these individuals, auditory P300-based BCIs might be effective.

  19. Bonebridge Implantation for Conductive Hearing Loss in a Patient with Oval Window Atresia.

    Science.gov (United States)

    Kim, Minbum

    2015-08-01

    The occurrence of oval window atresia is a rare anomaly with conductive hearing loss. Traditional atresia surgeries involve challenging surgical techniques with risks of irreversible inner ear damage. Recent reports on Bonebridge (Medel, Innsbruck, Austria), a novel implantable bone conduction hearing aid system, assert that the device is safe and effective for conductive hearing loss. We present a case of Bonebridge implantation in an eight-year-old girl with bilateral oval window atresia.

  20. Surface-conductivity enhancement of PMMA by keV-energy metal-ion implantation

    International Nuclear Information System (INIS)

    Bannister, M.E.; Hijazi, H.; Meyer, H.M.; Cianciolo, V.; Meyer, F.W.

    2014-01-01

    An experiment has been proposed to measure the neutron electric dipole moment (nEDM) with high precision at the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source. One of the requirements of this experiment is the development of PMMA (Lucite) material with a sufficiently conductive surface to permit its use as a high-voltage electrode while immersed in liquid He. At the ORNL Multicharged Ion Research Facility, an R and D activity is under way to achieve suitable surface conductivity in poly-methyl methacrylate (PMMA) using metal ion implantation. The metal implantation is performed using an electron-cyclotron-resonance (ECR) ion source and a recently developed beam line deceleration module that is capable of providing high flux beams for implantation at energies as low as a few tens of eV. The latter is essential for reaching implantation fluences exceeding 1 × 10 16 cm −2 , where typical percolation thresholds in polymers have been reported. In this contribution, we report results on initial implantation of Lucite by Ti and W beams with keV energies to average fluences in the range 0.5–6.2 × 10 16 cm −2 . Initial measurements of surface-resistivity changes are reported as function of implantation fluence, energy, and sample temperature. We also report X-ray photoelectron spectroscopy (XPS) surface and depth profiling measurements of the ion implanted samples, to identify possible correlations between the near surface and depth resolved implanted W concentrations and the measured surface resistivities

  1. An improved P300 pattern in BCI to catch user’s attention

    Science.gov (United States)

    Jin, Jing; Zhang, Hanhan; Daly, Ian; Wang, Xingyu; Cichocki, Andrzej

    2017-06-01

    Objective. Brain-computer interfaces (BCIs) can help patients who have lost control over most muscles but are still conscious and able to communicate or interact with the environment. One of the most popular types of BCI is the P300-based BCI. With this BCI, users are asked to count the number of appearances of target stimuli in an experiment. To date, the majority of visual P300-based BCI systems developed have used the same character or picture as the target for every stimulus presentation, which can bore users. Consequently, users attention may decrease or be negatively affected by adjacent stimuli. Approach. In this study, a new stimulus is presented to increase user concentration. Honeycomb-shaped figures with 1-3 red dots were used as stimuli. The number and the positions of the red dots in the honeycomb-shaped figure were randomly changed during BCI control. The user was asked to count the number of the dots presented in each flash instead of the number of times they flashed. To assess the performance of this new stimulus, another honeycomb-shaped stimulus, without red dots, was used as a control condition. Main results. The results showed that the honeycomb-shaped stimuli with red dots obtained significantly higher classification accuracies and information transfer rates (p  <  0.05) compared to the honeycomb-shaped stimulus without red dots. Significance. The results indicate that this proposed method can be a promising approach to improve the performance of the BCI system and can be an efficient method in daily application.

  2. Thermal conductivity measurement of the He-ion implanted layer of W using transient thermoreflectance technique

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Shilian; Li, Yuanfei [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Wang, Zhigang [Department of Electronic Engineering, Dalian University of Technology, Dalian 116024 (China); Jia, Yuzhen [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610213 (China); Li, Chun [School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144 (China); Xu, Ben; Chen, Wanqi [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Bai, Suyuan [School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029 (China); Huang, Zhengxing; Tang, Zhenan [Department of Electronic Engineering, Dalian University of Technology, Dalian 116024 (China); Liu, Wei, E-mail: liuw@mail.tsinghua.edu.cn [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2017-02-15

    Transient thermoreflectance method was applied on the thermal conductivity measurement of the surface damaged layer of He-implanted tungsten. Uniform damages tungsten surface layer was produced by multi-energy He-ion implantation with thickness of 450 nm. Result shows that the thermal conductivity is reduced by 90%. This technique was further applied on sample with holes on the surface, which was produced by the He-implanted at 2953 K. The thermal conductivity decreases to 3% from the bulk value.

  3. Using Recent BCI Literature to Deepen our Understanding of Clinical Neurofeedback: A Short Review.

    Science.gov (United States)

    Jeunet, Camille; Lotte, Fabien; Batail, Jean-Marie; Philip, Pierre; Micoulaud Franchi, Jean-Arthur

    2018-05-15

    In their recent paper, Alkoby et al. (2017) provide the readership with an extensive and very insightful review of the factors influencing NeuroFeedback (NF) performance. These factors are drawn from both the NF literature and the Brain-Computer Interface (BCI) literature. Our short review aims to complement Alkoby et al.'s review by reporting recent additions to the BCI literature. The object of this paper is to highlight this literature and discuss its potential relevance and usefulness to better understand the processes underlying NF and further improve the design of clinical trials assessing NF efficacy. Indeed, we are convinced that while NF and BCI are fundamentally different in many ways, both the BCI and NF communities could reach compelling achievements by building upon one another. By reviewing the recent BCI literature, we identified three types of factors that influence BCI performance: task-specific, cognitive/motivational and technology-acceptance-related factors. Since BCIs and NF share a common goal (i.e., learning to modulate specific neurophysiological patterns), similar cognitive and neurophysiological processes are likely to be involved during the training process. Thus, the literature on BCI training may help (1) to deepen our understanding of neurofeedback training processes and (2) to understand the variables that influence the clinical efficacy of NF. This may help to properly assess and/or control the influence of these variables during randomized controlled trials. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Rapid prototyping of an EEG-based brain-computer interface (BCI).

    Science.gov (United States)

    Guger, C; Schlögl, A; Neuper, C; Walterspacher, D; Strein, T; Pfurtscheller, G

    2001-03-01

    The electroencephalogram (EEG) is modified by motor imagery and can be used by patients with severe motor impairments (e.g., late stage of amyotrophic lateral sclerosis) to communicate with their environment. Such a direct connection between the brain and the computer is known as an EEG-based brain-computer interface (BCI). This paper describes a new type of BCI system that uses rapid prototyping to enable a fast transition of various types of parameter estimation and classification algorithms to real-time implementation and testing. Rapid prototyping is possible by using Matlab, Simulink, and the Real-Time Workshop. It is shown how to automate real-time experiments and perform the interplay between on-line experiments and offline analysis. The system is able to process multiple EEG channels on-line and operates under Windows 95 in real-time on a standard PC without an additional digital signal processor (DSP) board. The BCI can be controlled over the Internet, LAN or modem. This BCI was tested on 3 subjects whose task it was to imagine either left or right hand movement. A classification accuracy between 70% and 95% could be achieved with two EEG channels after some sessions with feedback using an adaptive autoregressive (AAR) model and linear discriminant analysis (LDA).

  5. Passive BCI in Operational Environments: Insights, Recent Advances, and Future Trends.

    Science.gov (United States)

    Arico, Pietro; Borghini, Gianluca; Di Flumeri, Gianluca; Sciaraffa, Nicolina; Colosimo, Alfredo; Babiloni, Fabio

    2017-07-01

    This minireview aims to highlight recent important aspects to consider and evaluate when passive brain-computer interface (pBCI) systems would be developed and used in operational environments, and remarks future directions of their applications. Electroencephalography (EEG) based pBCI has become an important tool for real-time analysis of brain activity since it could potentially provide covertly-without distracting the user from the main task-and objectively-not affected by the subjective judgment of an observer or the user itself-information about the operator cognitive state. Different examples of pBCI applications in operational environments and new adaptive interface solutions have been presented and described. In addition, a general overview regarding the correct use of machine learning techniques (e.g., which algorithm to use, common pitfalls to avoid, etc.) in the pBCI field has been provided. Despite recent innovations on algorithms and neurotechnology, pBCI systems are not completely ready to enter the market yet, mainly due to limitations of the EEG electrodes technology, and algorithms reliability and capability in real settings. High complexity and safety critical systems (e.g., airplanes, ATM interfaces) should adapt their behaviors and functionality accordingly to the user' actual mental state. Thus, technologies (i.e., pBCIs) able to measure in real time the user's mental states would result very useful in such "high risk" environments to enhance human machine interaction, and so increase the overall safety.

  6. L1-Penalized N-way PLS for subset of electrodes selection in BCI experiments

    Science.gov (United States)

    Eliseyev, Andrey; Moro, Cecile; Faber, Jean; Wyss, Alexander; Torres, Napoleon; Mestais, Corinne; Benabid, Alim Louis; Aksenova, Tetiana

    2012-08-01

    Recently, the N-way partial least squares (NPLS) approach was reported as an effective tool for neuronal signal decoding and brain-computer interface (BCI) system calibration. This method simultaneously analyzes data in several domains. It combines the projection of a data tensor to a low dimensional space with linear regression. In this paper the L1-Penalized NPLS is proposed for sparse BCI system calibration, allowing uniting the projection technique with an effective selection of subset of features. The L1-Penalized NPLS was applied for the binary self-paced BCI system calibration, providing selection of electrodes subset. Our BCI system is designed for animal research, in particular for research in non-human primates.

  7. Investigating the feasibility of a BCI-driven robot-based writing agent for handicapped individuals

    Science.gov (United States)

    Syan, Chanan S.; Harnarinesingh, Randy E. S.; Beharry, Rishi

    2014-07-01

    Brain-Computer Interfaces (BCIs) predominantly employ output actuators such as virtual keyboards and wheelchair controllers to enable handicapped individuals to interact and communicate with their environment. However, BCI-based assistive technologies are limited in their application. There is minimal research geared towards granting disabled individuals the ability to communicate using written words. This is a drawback because involving a human attendant in writing tasks can entail a breach of personal privacy where the task entails sensitive and private information such as banking matters. BCI-driven robot-based writing however can provide a safeguard for user privacy where it is required. This study investigated the feasibility of a BCI-driven writing agent using the 3 degree-of- freedom Phantom Omnibot. A full alphanumerical English character set was developed and validated using a teach pendant program in MATLAB. The Omnibot was subsequently interfaced to a P300-based BCI. Three subjects utilised the BCI in the online context to communicate words to the writing robot over a Local Area Network (LAN). The average online letter-wise classification accuracy was 91.43%. The writing agent legibly constructed the communicated letters with minor errors in trajectory execution. The developed system therefore provided a feasible platform for BCI-based writing.

  8. Investigating the feasibility of a BCI-driven robot-based writing agent for handicapped individuals

    International Nuclear Information System (INIS)

    Syan, Chanan S; Harnarinesingh, Randy E S; Beharry, Rishi

    2014-01-01

    Brain-Computer Interfaces (BCIs) predominantly employ output actuators such as virtual keyboards and wheelchair controllers to enable handicapped individuals to interact and communicate with their environment. However, BCI-based assistive technologies are limited in their application. There is minimal research geared towards granting disabled individuals the ability to communicate using written words. This is a drawback because involving a human attendant in writing tasks can entail a breach of personal privacy where the task entails sensitive and private information such as banking matters. BCI-driven robot-based writing however can provide a safeguard for user privacy where it is required. This study investigated the feasibility of a BCI-driven writing agent using the 3 degree-of- freedom Phantom Omnibot. A full alphanumerical English character set was developed and validated using a teach pendant program in MATLAB. The Omnibot was subsequently interfaced to a P300-based BCI. Three subjects utilised the BCI in the online context to communicate words to the writing robot over a Local Area Network (LAN). The average online letter-wise classification accuracy was 91.43%. The writing agent legibly constructed the communicated letters with minor errors in trajectory execution. The developed system therefore provided a feasible platform for BCI-based writing

  9. Gallium ion implantation greatly reduces thermal conductivity and enhances electronic one of ZnO nanowires

    Directory of Open Access Journals (Sweden)

    Minggang Xia

    2014-05-01

    Full Text Available The electrical and thermal conductivities are measured for individual zinc oxide (ZnO nanowires with and without gallium ion (Ga+ implantation at room temperature. Our results show that Ga+ implantation enhances electrical conductivity by one order of magnitude from 1.01 × 103 Ω−1m−1 to 1.46 × 104 Ω−1m−1 and reduces its thermal conductivity by one order of magnitude from 12.7 Wm−1K−1 to 1.22 Wm−1K−1 for ZnO nanowires of 100 nm in diameter. The measured thermal conductivities are in good agreement with those in theoretical simulation. The increase of electrical conductivity origins in electron donor doping by Ga+ implantation and the decrease of thermal conductivity is due to the longitudinal and transverse acoustic phonons scattering by Ga+ point scattering. For pristine ZnO nanowires, the thermal conductivity decreases only two times when its diameter reduces from 100 nm to 46 nm. Therefore, Ga+-implantation may be a more effective method than diameter reduction in improving thermoelectric performance.

  10. Hermetic electronic packaging of an implantable brain-machine-interface with transcutaneous optical data communication.

    Science.gov (United States)

    Schuettler, Martin; Kohler, Fabian; Ordonez, Juan S; Stieglitz, Thomas

    2012-01-01

    Future brain-computer-interfaces (BCIs) for severely impaired patients are implanted to electrically contact the brain tissue. Avoiding percutaneous cables requires amplifier and telemetry electronics to be implanted too. We developed a hermetic package that protects the electronic circuitry of a BCI from body moisture while permitting infrared communication through the package wall made from alumina ceramic. The ceramic package is casted in medical grade silicone adhesive, for which we identified MED2-4013 as a promising candidate.

  11. Middle ear implant in conductive and mixed congenital hearing loss in children.

    Science.gov (United States)

    Roman, Stéphane; Denoyelle, Françoise; Farinetti, Anne; Garabedian, Erea-Noel; Triglia, Jean-Michel

    2012-12-01

    Active middle ear implant can be used in children and adolescents with congenital hearing loss. The authors report their experience with the semi implantable Medel Vibrant Soundbridge(®) (VSB) in the audiologic rehabilitation of such patients. In this retrospective study, audiological and surgical data of 10 children (10.5±4 years) implanted with 12 VSB in 2 tertiary cares ENT Departments were analysed. Two children with bilateral external auditory canal (EAC) atresia and mixed hearing loss (mean air conduction (AC) thresholds=65dB HL) were bilaterally implanted. Eight children presented with microtia associated with EAC atresia bilaterally (n=3) and unilaterally (n=5). All of them had a conductive hearing loss in the implanted ear (mean (AC) thresholds were 58.75dB HL preoperatively). The Floating Mass Transducer was crimped on the long process of the incus (n=8) or on the suprastructure of the stapes (n=4). There were no intra- or postoperative surgical complications. All the children wore their implants after 5 weeks. Postoperative mean bone conduction (BC) thresholds were unchanged. The mean aided thresholds with VSB (four frequencies warble tones at 0.5, 1, 2 and 4 kHz) were 28dB HL (± 10). Word discrimination threshold in quiet conditions in free field with the VSB unilaterally activated was 50% at 38dB SPL (± 9). The results indicate that satisfaction of the children and their parents is very encouraging but surgeons should be cautious with this new approach in relation to the pinna reconstruction and to possible risks to inner ear and facial nerve. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Investigating effects of different artefact types on motor imagery BCI

    DEFF Research Database (Denmark)

    Frølich, Laura; Winkler, Irene; Muller, Klaus-Robert

    2015-01-01

    Artefacts in recordings of the electroencephalogram (EEG) are a common problem in Brain-Computer Interfaces (BCIs). Artefacts make it difficult to calibrate from training sessions, resulting in low test performance, or lead to artificially high performance when unintentionally used for BCI control...... that muscle, but not ocular, artefacts adversely affect BCI performance when all 119 EEG channels are used. Artefacts have little influence when using 48 centrally located EEG channels in a configuration previously found to be optimal....

  13. On the quantification of SSVEP frequency responses in human EEG in realistic BCI conditions.

    Directory of Open Access Journals (Sweden)

    Rafał Kuś

    Full Text Available This article concerns one of the most important problems of brain-computer interfaces (BCI based on Steady State Visual Evoked Potentials (SSVEP, that is the selection of the a-priori most suitable frequencies for stimulation. Previous works related to this problem were done either with measuring systems that have little in common with actual BCI systems (e.g., single flashing LED or were presented on a small number of subjects, or the tested frequency range did not cover a broad spectrum. Their results indicate a strong SSVEP response around 10 Hz, in the range 13-25 Hz, and at high frequencies in the band of 40-60 Hz. In the case of BCI interfaces, stimulation with frequencies from various ranges are used. The frequencies are often adapted for each user separately. The selection of these frequencies, however, was not yet justified in quantitative group-level study with proper statistical account for inter-subject variability. The aim of this study is to determine the SSVEP response curve, that is, the magnitude of the evoked signal as a function of frequency. The SSVEP response was induced in conditions as close as possible to the actual BCI system, using a wide range of frequencies (5-30 Hz, in step of 1 Hz. The data were obtained for 10 subjects. SSVEP curves for individual subjects and the population curve was determined. Statistical analysis were conducted both on the level of individual subjects and for the group. The main result of the study is the identification of the optimal range of frequencies, which is 12-18 Hz, for the registration of SSVEP phenomena. The applied criterion of optimality was: to find the largest contiguous range of frequencies yielding the strong and constant-level SSVEP response.

  14. Offline analysis of context contribution to ERP-based typing BCI performance

    Science.gov (United States)

    Orhan, Umut; Erdogmus, Deniz; Roark, Brian; Oken, Barry; Fried-Oken, Melanie

    2013-12-01

    Objective. We aim to increase the symbol rate of electroencephalography (EEG) based brain-computer interface (BCI) typing systems by utilizing context information. Approach. Event related potentials (ERP) corresponding to a stimulus in EEG can be used to detect the intended target of a person for BCI. This paradigm is widely utilized to build letter-by-letter BCI typing systems. Nevertheless currently available BCI typing systems still require improvement due to low typing speeds. This is mainly due to the reliance on multiple repetitions before making a decision to achieve higher typing accuracy. Another possible approach to increase the speed of typing while not significantly reducing the accuracy of typing is to use additional context information. In this paper, we study the effect of using a language model (LM) as additional evidence for intent detection. Bayesian fusion of an n-gram symbol model with EEG features is proposed, and a specifically regularized discriminant analysis ERP discriminant is used to obtain EEG-based features. The target detection accuracies are rigorously evaluated for varying LM orders, as well as the number of ERP-inducing repetitions. Main results. The results demonstrate that the LMs contribute significantly to letter classification accuracy. For instance, we find that a single-trial ERP detection supported by a 4-gram LM may achieve the same performance as using 3-trial ERP classification for the non-initial letters of words. Significance. Overall, the fusion of evidence from EEG and LMs yields a significant opportunity to increase the symbol rate of a BCI typing system.

  15. Conduction disorders in the setting of transcatheter aortic valve implantation: a clinical perspective.

    Science.gov (United States)

    Fraccaro, Chiara; Napodano, Massimo; Tarantini, Giuseppe

    2013-06-01

    The presence of periprocedural conduction disorders (CDs) and the need for permanent pacemaker (PPM) after transcatheter aortic valve implantation (TAVI) are frequent findings in clinical practice. Notwithstanding, robust information on the prognostic and therapeutic implications of these complications are lacking. The newly occurrence of CD after TAVI seems related to the trauma of the conduction system during procedure. On the contrary, major predictors for PPM implantation after TAVI seem to be the use of CoreValve prosthesis (Medtronic, Minneapolis, MN) and the presence of CD before TAVI. An accurate pre-TAVI screening, careful valve implantation, as well as post-TAVI monitoring must be pursued to prevent avoidable PPM implantation. The aim of this report is to analyze the available data on this field and to propose some practical clinical tips to prevent or to manage these complications. Copyright © 2013 Wiley Periodicals, Inc.

  16. Enhancing clinical communication assessments using an audiovisual BCI for patients with disorders of consciousness

    Science.gov (United States)

    Wang, Fei; He, Yanbin; Qu, Jun; Xie, Qiuyou; Lin, Qing; Ni, Xiaoxiao; Chen, Yan; Pan, Jiahui; Laureys, Steven; Yu, Ronghao; Li, Yuanqing

    2017-08-01

    Objective. The JFK coma recovery scale-revised (JFK CRS-R), a behavioral observation scale, is widely used in the clinical diagnosis/assessment of patients with disorders of consciousness (DOC). However, the JFK CRS-R is associated with a high rate of misdiagnosis (approximately 40%) because DOC patients cannot provide sufficient behavioral responses. A brain-computer interface (BCI) that detects command/intention-specific changes in electroencephalography (EEG) signals without the need for behavioral expression may provide an alternative method. Approach. In this paper, we proposed an audiovisual BCI communication system based on audiovisual ‘yes’ and ‘no’ stimuli to supplement the JFK CRS-R for assessing the communication ability of DOC patients. Specifically, patients were given situation-orientation questions as in the JFK CRS-R and instructed to select the answers using the BCI. Main results. Thirteen patients (eight vegetative state (VS) and five minimally conscious state (MCS)) participated in our experiments involving both the BCI- and JFK CRS-R-based assessments. One MCS patient who received a score of 1 in the JFK CRS-R achieved an accuracy of 86.5% in the BCI-based assessment. Seven patients (four VS and three MCS) obtained unresponsive results in the JFK CRS-R-based assessment but responsive results in the BCI-based assessment, and 4 of those later improved scores in the JFK CRS-R-based assessment. Five patients (four VS and one MCS) obtained usresponsive results in both assessments. Significance. The experimental results indicated that the audiovisual BCI could provide more sensitive results than the JFK CRS-R and therefore supplement the JFK CRS-R.

  17. Removal of proprioception by BCI raises a stronger body ownership illusion in control of a humanlike robot.

    Science.gov (United States)

    Alimardani, Maryam; Nishio, Shuichi; Ishiguro, Hiroshi

    2016-09-22

    Body ownership illusions provide evidence that our sense of self is not coherent and can be extended to non-body objects. Studying about these illusions gives us practical tools to understand the brain mechanisms that underlie body recognition and the experience of self. We previously introduced an illusion of body ownership transfer (BOT) for operators of a very humanlike robot. This sensation of owning the robot's body was confirmed when operators controlled the robot either by performing the desired motion with their body (motion-control) or by employing a brain-computer interface (BCI) that translated motor imagery commands to robot movement (BCI-control). The interesting observation during BCI-control was that the illusion could be induced even with a noticeable delay in the BCI system. Temporal discrepancy has always shown critical weakening effects on body ownership illusions. However the delay-robustness of BOT during BCI-control raised a question about the interaction between the proprioceptive inputs and delayed visual feedback in agency-driven illusions. In this work, we compared the intensity of BOT illusion for operators in two conditions; motion-control and BCI-control. Our results revealed a significantly stronger BOT illusion for the case of BCI-control. This finding highlights BCI's potential in inducing stronger agency-driven illusions by building a direct communication between the brain and controlled body, and therefore removing awareness from the subject's own body.

  18. A Brain-Computer Interface (BCI) system to use arbitrary Windows applications by directly controlling mouse and keyboard.

    Science.gov (United States)

    Spuler, Martin

    2015-08-01

    A Brain-Computer Interface (BCI) allows to control a computer by brain activity only, without the need for muscle control. In this paper, we present an EEG-based BCI system based on code-modulated visual evoked potentials (c-VEPs) that enables the user to work with arbitrary Windows applications. Other BCI systems, like the P300 speller or BCI-based browsers, allow control of one dedicated application designed for use with a BCI. In contrast, the system presented in this paper does not consist of one dedicated application, but enables the user to control mouse cursor and keyboard input on the level of the operating system, thereby making it possible to use arbitrary applications. As the c-VEP BCI method was shown to enable very fast communication speeds (writing more than 20 error-free characters per minute), the presented system is the next step in replacing the traditional mouse and keyboard and enabling complete brain-based control of a computer.

  19. Investigating the effects of a sensorimotor rhythm-based BCI training on the cortical activity elicited by mental imagery

    Science.gov (United States)

    Toppi, J.; Risetti, M.; Quitadamo, L. R.; Petti, M.; Bianchi, L.; Salinari, S.; Babiloni, F.; Cincotti, F.; Mattia, D.; Astolfi, L.

    2014-06-01

    Objective. It is well known that to acquire sensorimotor (SMR)-based brain-computer interface (BCI) control requires a training period before users can achieve their best possible performances. Nevertheless, the effect of this training procedure on the cortical activity related to the mental imagery ability still requires investigation to be fully elucidated. The aim of this study was to gain insights into the effects of SMR-based BCI training on the cortical spectral activity associated with the performance of different mental imagery tasks. Approach. Linear cortical estimation and statistical brain mapping techniques were applied on high-density EEG data acquired from 18 healthy participants performing three different mental imagery tasks. Subjects were divided in two groups, one of BCI trained subjects, according to their previous exposure (at least six months before this study) to motor imagery-based BCI training, and one of subjects who were naive to any BCI paradigms. Main results. Cortical activation maps obtained for trained and naive subjects indicated different spectral and spatial activity patterns in response to the mental imagery tasks. Long-term effects of the previous SMR-based BCI training were observed on the motor cortical spectral activity specific to the BCI trained motor imagery task (simple hand movements) and partially generalized to more complex motor imagery task (playing tennis). Differently, mental imagery with spatial attention and memory content could elicit recognizable cortical spectral activity even in subjects completely naive to (BCI) training. Significance. The present findings contribute to our understanding of BCI technology usage and might be of relevance in those clinical conditions when training to master a BCI application is challenging or even not possible.

  20. A novel BCI based on ERP components sensitive to configural processing of human faces

    Science.gov (United States)

    Zhang, Yu; Zhao, Qibin; Jing, Jin; Wang, Xingyu; Cichocki, Andrzej

    2012-04-01

    This study introduces a novel brain-computer interface (BCI) based on an oddball paradigm using stimuli of facial images with loss of configural face information (e.g., inversion of face). To the best of our knowledge, till now the configural processing of human faces has not been applied to BCI but widely studied in cognitive neuroscience research. Our experiments confirm that the face-sensitive event-related potential (ERP) components N170 and vertex positive potential (VPP) have reflected early structural encoding of faces and can be modulated by the configural processing of faces. With the proposed novel paradigm, we investigate the effects of ERP components N170, VPP and P300 on target detection for BCI. An eight-class BCI platform is developed to analyze ERPs and evaluate the target detection performance using linear discriminant analysis without complicated feature extraction processing. The online classification accuracy of 88.7% and information transfer rate of 38.7 bits min-1 using stimuli of inverted faces with only single trial suggest that the proposed paradigm based on the configural processing of faces is very promising for visual stimuli-driven BCI applications.

  1. A Semisupervised Support Vector Machines Algorithm for BCI Systems

    Science.gov (United States)

    Qin, Jianzhao; Li, Yuanqing; Sun, Wei

    2007-01-01

    As an emerging technology, brain-computer interfaces (BCIs) bring us new communication interfaces which translate brain activities into control signals for devices like computers, robots, and so forth. In this study, we propose a semisupervised support vector machine (SVM) algorithm for brain-computer interface (BCI) systems, aiming at reducing the time-consuming training process. In this algorithm, we apply a semisupervised SVM for translating the features extracted from the electrical recordings of brain into control signals. This SVM classifier is built from a small labeled data set and a large unlabeled data set. Meanwhile, to reduce the time for training semisupervised SVM, we propose a batch-mode incremental learning method, which can also be easily applied to the online BCI systems. Additionally, it is suggested in many studies that common spatial pattern (CSP) is very effective in discriminating two different brain states. However, CSP needs a sufficient labeled data set. In order to overcome the drawback of CSP, we suggest a two-stage feature extraction method for the semisupervised learning algorithm. We apply our algorithm to two BCI experimental data sets. The offline data analysis results demonstrate the effectiveness of our algorithm. PMID:18368141

  2. Fast Recognition of BCI-Inefficient Users Using Physiological Features from EEG Signals: A Screening Study of Stroke Patients

    OpenAIRE

    Xiaokang Shu; Shugeng Chen; Lin Yao; Xinjun Sheng; Dingguo Zhang; Ning Jiang; Jie Jia; Xiangyang Zhu

    2018-01-01

    Motor imagery (MI) based brain-computer interface (BCI) has been developed as an alternative therapy for stroke rehabilitation. However, experimental evidence demonstrates that a significant portion (10–50%) of subjects are BCI-inefficient users (accuracy less than 70%). Thus, predicting BCI performance prior to clinical BCI usage would facilitate the selection of suitable end-users and improve the efficiency of stroke rehabilitation. In the current study, we proposed two physiological variab...

  3. Classifying BCI signals from novice users with extreme learning machine

    Directory of Open Access Journals (Sweden)

    Rodríguez-Bermúdez Germán

    2017-07-01

    Full Text Available Brain computer interface (BCI allows to control external devices only with the electrical activity of the brain. In order to improve the system, several approaches have been proposed. However it is usual to test algorithms with standard BCI signals from experts users or from repositories available on Internet. In this work, extreme learning machine (ELM has been tested with signals from 5 novel users to compare with standard classification algorithms. Experimental results show that ELM is a suitable method to classify electroencephalogram signals from novice users.

  4. Usage of drip drops as stimuli in an auditory P300 BCI paradigm.

    Science.gov (United States)

    Huang, Minqiang; Jin, Jing; Zhang, Yu; Hu, Dewen; Wang, Xingyu

    2018-02-01

    Recently, many auditory BCIs are using beeps as auditory stimuli, while beeps sound unnatural and unpleasant for some people. It is proved that natural sounds make people feel comfortable, decrease fatigue, and improve the performance of auditory BCI systems. Drip drop is a kind of natural sounds that makes humans feel relaxed and comfortable. In this work, three kinds of drip drops were used as stimuli in an auditory-based BCI system to improve the user-friendness of the system. This study explored whether drip drops could be used as stimuli in the auditory BCI system. The auditory BCI paradigm with drip-drop stimuli, which was called the drip-drop paradigm (DP), was compared with the auditory paradigm with beep stimuli, also known as the beep paradigm (BP), in items of event-related potential amplitudes, online accuracies and scores on the likability and difficulty to demonstrate the advantages of DP. DP obtained significantly higher online accuracy and information transfer rate than the BP ( p  < 0.05, Wilcoxon signed test; p  < 0.05, Wilcoxon signed test). Besides, DP obtained higher scores on the likability with no significant difference on the difficulty ( p  < 0.05, Wilcoxon signed test). The results showed that the drip drops were reliable acoustic materials as stimuli in an auditory BCI system.

  5. Classification of unconscious like/dislike decisions: First results towards a novel application for BCI technology.

    Science.gov (United States)

    Wriessnegger, S C; Hackhofer, D; Muller-Putz, G R

    2015-01-01

    More and more applications for BCI technology emerge that are not restricted to communication or control, like gaming, rehabilitation, Neuro-IS research, neuro-economics or security. In this context a so called passive BCI, a system that derives its outputs from arbitrary brain activity for enriching a human-machine interaction with implicit information on the actual user state will be used. Concretely EEG-based BCI technology enables the use of signals related to attention, intentions and mental state, without relying on indirect measures based on overt behavior or other physiological signals which is an important point e.g. in Neuromarketing research. The scope of this pilot EEG-study was to detect like/dislike decisions on car stimuli just by means of ERP analysis. Concretely to define user preferences concerning different car designs by implementing an offline BCI based on shrinkage LDA classification. Although classification failed in the majority of participants the elicited early (sub) conscious ERP components reflect user preferences for cars. In a broader sense this study should pave the way towards a "product design BCI" suitable for neuromarketing research.

  6. BCI-FES system for neuro-rehabilitation of stroke patients

    Science.gov (United States)

    Jure, Fabricio A.; Carrere, Lucía C.; Gentiletti, Gerardo G.; Tabernig, Carolina B.

    2016-04-01

    Nowadays, strokes are a growing cause of mortality and many people remain with motor sequelae and troubles in the daily activities. To treat this sequelae, alternative rehabilitation techniques are needed. In this article a Brain Computer Interface (BCI) system to control a Functional Electrical Stimulation (FES) system is presented. It can be used as a novel tool in easy setup clinical routines, to improve the rehabilitation process by mean of detecting patient´s motor intention, performing it by FES and finally receiving appropriate feedback The BCI-FES system presented here, consists of three blocks: the first one decodes the patient´s intention and it is composed by the patient, the acquisition hardware and the processing software (Emotiv EPOC®). The second block, based on Arduino’s technology, transforms the information into a valid command signal. The last one excites the patient´s neuromuscular system by means of a FES device. In order to evaluate the cerebral activity sensed by the device, topographic maps were obtained. The BCI-FES system was able to detect the patient´s motor intention and control the FES device. At the time of this publication, the system it’s being employing in a rehabilitation program with patients post stroke.

  7. Preliminary functional results and quality of life after implantation of a new bone conduction hearing device in patients with conductive and mixed hearing loss.

    Science.gov (United States)

    Ihler, Friedrich; Volbers, Laura; Blum, Jenny; Matthias, Christoph; Canis, Martin

    2014-02-01

    To review functional results and quality of life of the first patients implanted with a newly introduced bone conduction implant system. Retrospective chart analysis of 6 patients (6 ears) implanted for conductive hearing loss (CHL) and mixed hearing loss (MHL) in 1 tertiary referral center between July 2012 and February 2013. Implantation of a new bone conduction hearing device. Pure tone audiometry (air conduction and bone conduction thresholds, pure tone average, air-bone gap, and functional gain), speech audiometry (Freiburg Monosyllabic Test), intraoperative and postoperative complication rate, and patient satisfaction (Glasgow benefit inventory [GBI]) were assessed. Air-conduction pure tone average (PTA) was 58.8 ± 8.2 dB HL. Unaided average air-bone gap (ABG) was 33.3 ± 6.2 dB. Aided air-conduction PTA in sound field was 25.2 ± 5.1 dB HL. Aided average ABG was -0.3 ± 7.3 dB. Average functional gain was 33.6 ± 7.2 dB. Mean improvement of GBI was +36.1. No intraoperative complications occurred. During a follow-up period of 8.5 ± 2.2 months, no device failure and no need for revision surgery occurred. Audiometric results of the new bone conduction hearing system are satisfying and comparable to the results of devices that have been applied previously for CHL and MHL. Intraoperatively and postoperatively, no complications were noted.

  8. Multiresolution analysis over graphs for a motor imagery based online BCI game.

    Science.gov (United States)

    Asensio-Cubero, Javier; Gan, John Q; Palaniappan, Ramaswamy

    2016-01-01

    Multiresolution analysis (MRA) over graph representation of EEG data has proved to be a promising method for offline brain-computer interfacing (BCI) data analysis. For the first time we aim to prove the feasibility of the graph lifting transform in an online BCI system. Instead of developing a pointer device or a wheel-chair controller as test bed for human-machine interaction, we have designed and developed an engaging game which can be controlled by means of imaginary limb movements. Some modifications to the existing MRA analysis over graphs for BCI have also been proposed, such as the use of common spatial patterns for feature extraction at the different levels of decomposition, and sequential floating forward search as a best basis selection technique. In the online game experiment we obtained for three classes an average classification rate of 63.0% for fourteen naive subjects. The application of a best basis selection method helps significantly decrease the computing resources needed. The present study allows us to further understand and assess the benefits of the use of tailored wavelet analysis for processing motor imagery data and contributes to the further development of BCI for gaming purposes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Driving a Semiautonomous Mobile Robotic Car Controlled by an SSVEP-Based BCI.

    Science.gov (United States)

    Stawicki, Piotr; Gembler, Felix; Volosyak, Ivan

    2016-01-01

    Brain-computer interfaces represent a range of acknowledged technologies that translate brain activity into computer commands. The aim of our research is to develop and evaluate a BCI control application for certain assistive technologies that can be used for remote telepresence or remote driving. The communication channel to the target device is based on the steady-state visual evoked potentials. In order to test the control application, a mobile robotic car (MRC) was introduced and a four-class BCI graphical user interface (with live video feedback and stimulation boxes on the same screen) for piloting the MRC was designed. For the purpose of evaluating a potential real-life scenario for such assistive technology, we present a study where 61 subjects steered the MRC through a predetermined route. All 61 subjects were able to control the MRC and finish the experiment (mean time 207.08 s, SD 50.25) with a mean (SD) accuracy and ITR of 93.03% (5.73) and 14.07 bits/min (4.44), respectively. The results show that our proposed SSVEP-based BCI control application is suitable for mobile robots with a shared-control approach. We also did not observe any negative influence of the simultaneous live video feedback and SSVEP stimulation on the performance of the BCI system.

  10. A gaze independent hybrid-BCI based on visual spatial attention

    Science.gov (United States)

    Egan, John M.; Loughnane, Gerard M.; Fletcher, Helen; Meade, Emma; Lalor, Edmund C.

    2017-08-01

    Objective. Brain-computer interfaces (BCI) use measures of brain activity to convey a user’s intent without the need for muscle movement. Hybrid designs, which use multiple measures of brain activity, have been shown to increase the accuracy of BCIs, including those based on EEG signals reflecting covert attention. Our study examined whether incorporating a measure of the P3 response improved the performance of a previously reported attention-based BCI design that incorporates measures of steady-state visual evoked potentials (SSVEP) and alpha band modulations. Approach. Subjects viewed stimuli consisting of two bi-laterally located flashing white boxes on a black background. Streams of letters were presented sequentially within the boxes, in random order. Subjects were cued to attend to one of the boxes without moving their eyes, and they were tasked with counting the number of target-letters that appeared within. P3 components evoked by target appearance, SSVEPs evoked by the flashing boxes, and power in the alpha band are modulated by covert attention, and the modulations can be used to classify trials as left-attended or right-attended. Main Results. We showed that classification accuracy was improved by including a P3 feature along with the SSVEP and alpha features (the inclusion of a P3 feature lead to a 9% increase in accuracy compared to the use of SSVEP and Alpha features alone). We also showed that the design improves the robustness of BCI performance to individual subject differences. Significance. These results demonstrate that incorporating multiple neurophysiological indices of covert attention can improve performance in a gaze-independent BCI.

  11. The user-centered design as novel perspective for evaluating the usability of BCI-controlled applications.

    Directory of Open Access Journals (Sweden)

    Andrea Kübler

    Full Text Available Albeit research on brain-computer interfaces (BCI for controlling applications has expanded tremendously, we still face a translational gap when bringing BCI to end-users. To bridge this gap, we adapted the user-centered design (UCD to BCI research and development which implies a shift from focusing on single aspects, such as accuracy and information transfer rate (ITR, to a more holistic user experience. The UCD implements an iterative process between end-users and developers based on a valid evaluation procedure. Within the UCD framework usability of a device can be defined with regard to its effectiveness, efficiency, and satisfaction. We operationalized these aspects to evaluate BCI-controlled applications. Effectiveness was regarded equivalent to accuracy of selections and efficiency to the amount of information transferred per time unit and the effort invested (workload. Satisfaction was assessed with questionnaires and visual-analogue scales. These metrics have been successfully applied to several BCI-controlled applications for communication and entertainment, which were evaluated by end-users with severe motor impairment. Results of four studies, involving a total of N = 19 end-users revealed: effectiveness was moderate to high; efficiency in terms of ITR was low to high and workload low to medium; depending on the match between user and technology, and type of application satisfaction was moderate to high. The here suggested evaluation metrics within the framework of the UCD proved to be an applicable and informative approach to evaluate BCI controlled applications, and end-users with severe impairment and in the locked-in state were able to participate in this process.

  12. The user-centered design as novel perspective for evaluating the usability of BCI-controlled applications.

    Science.gov (United States)

    Kübler, Andrea; Holz, Elisa M; Riccio, Angela; Zickler, Claudia; Kaufmann, Tobias; Kleih, Sonja C; Staiger-Sälzer, Pit; Desideri, Lorenzo; Hoogerwerf, Evert-Jan; Mattia, Donatella

    2014-01-01

    Albeit research on brain-computer interfaces (BCI) for controlling applications has expanded tremendously, we still face a translational gap when bringing BCI to end-users. To bridge this gap, we adapted the user-centered design (UCD) to BCI research and development which implies a shift from focusing on single aspects, such as accuracy and information transfer rate (ITR), to a more holistic user experience. The UCD implements an iterative process between end-users and developers based on a valid evaluation procedure. Within the UCD framework usability of a device can be defined with regard to its effectiveness, efficiency, and satisfaction. We operationalized these aspects to evaluate BCI-controlled applications. Effectiveness was regarded equivalent to accuracy of selections and efficiency to the amount of information transferred per time unit and the effort invested (workload). Satisfaction was assessed with questionnaires and visual-analogue scales. These metrics have been successfully applied to several BCI-controlled applications for communication and entertainment, which were evaluated by end-users with severe motor impairment. Results of four studies, involving a total of N = 19 end-users revealed: effectiveness was moderate to high; efficiency in terms of ITR was low to high and workload low to medium; depending on the match between user and technology, and type of application satisfaction was moderate to high. The here suggested evaluation metrics within the framework of the UCD proved to be an applicable and informative approach to evaluate BCI controlled applications, and end-users with severe impairment and in the locked-in state were able to participate in this process.

  13. BCI inside a virtual reality classroom: a potential training tool for attention

    OpenAIRE

    Rohani, Darius Adam; Puthusserypady, Sadasivan

    2015-01-01

    Background: A growing population is diagnosed with Attention Deficit Hyperactivity Disorder (ADHD) and are currently being treated with psychostimulants. Brain Computer Interface (BCI) is a method of communicating with an external program or device based on measured electrical signals from the brain. A particular brain signal, the P300 potential, can be measured about 300 ms after a voluntary cognitive involvement to external stimuli. By utilizing the P300 potential, we have designed a BCI- a...

  14. Increasing BCI communication rates with dynamic stopping towards more practical use: an ALS study

    Science.gov (United States)

    Mainsah, B. O.; Collins, L. M.; Colwell, K. A.; Sellers, E. W.; Ryan, D. B.; Caves, K.; Throckmorton, C. S.

    2015-02-01

    Objective. The P300 speller is a brain-computer interface (BCI) that can possibly restore communication abilities to individuals with severe neuromuscular disabilities, such as amyotrophic lateral sclerosis (ALS), by exploiting elicited brain signals in electroencephalography (EEG) data. However, accurate spelling with BCIs is slow due to the need to average data over multiple trials to increase the signal-to-noise ratio (SNR) of the elicited brain signals. Probabilistic approaches to dynamically control data collection have shown improved performance in non-disabled populations; however, validation of these approaches in a target BCI user population has not occurred. Approach. We have developed a data-driven algorithm for the P300 speller based on Bayesian inference that improves spelling time by adaptively selecting the number of trials based on the acute SNR of a user’s EEG data. We further enhanced the algorithm by incorporating information about the user’s language. In this current study, we test and validate the algorithms online in a target BCI user population, by comparing the performance of the dynamic stopping (DS) (or early stopping) algorithms against the current state-of-the-art method, static data collection, where the amount of data collected is fixed prior to online operation. Main results. Results from online testing of the DS algorithms in participants with ALS demonstrate a significant increase in communication rate as measured in bits/min (100-300%), and theoretical bit rate (100-550%), while maintaining selection accuracy. Participants also overwhelmingly preferred the DS algorithms. Significance. We have developed a viable BCI algorithm that has been tested in a target BCI population which has the potential for translation to improve BCI speller performance towards more practical use for communication.

  15. Hilbert-Huang Spectrum as a new field for the identification of EEG event related de-/synchronization for BCI applications.

    Science.gov (United States)

    Panoulas, Konstantinos I; Hadjileontiadis, Leontios J; Panas, Stavros M

    2008-01-01

    Brain Computer Interfaces (BCI) usually utilize the suppression of mu-rhythm during actual or imagined motor activity. In order to create a BCI system, a signal processing method is required to extract features upon which the discrimination is based. In this article, the Empirical Mode Decomposition along with the Hilbert-Huang Spectrum (HHS) is found to contain the necessary information to be considered as an input to a discriminator. Also, since the HHS defines amplitude and instantaneous frequency for each sample, it can be used for an online BCI system. Experimental results when the HHS applied to EEG signals from an on-line database (BCI Competition III) show the potentiality of the proposed analysis to capture the imagined motor activity, contributing to a more enhanced BCI performance.

  16. Movement-related cortical potentials in paraplegic patients: abnormal patterns and considerations for BCI-rehabilitation

    Directory of Open Access Journals (Sweden)

    Ren eXu

    2014-08-01

    Full Text Available Non-invasive EEG-based Brain-Computer Interfaces (BCI can be promising for the motor neuro-rehabilitation of paraplegic patients. However, this shall require detailed knowledge of the abnormalities in the EEG signatures of paraplegic patients. The association of abnormalities in different subgroups of patients and their relation to the sensorimotor integration are relevant for the design, implementation and use of BCI systems in patient populations. This study explores the patterns of abnormalities of movement related cortical potentials (MRCP during motor imagery tasks of feet and right hand in patients with paraplegia (including the subgroups with/without central neuropathic pain and complete/incomplete injury patients and the level of distinctiveness of abnormalities in these groups using pattern classification. The most notable observed abnormalities were the amplified execution negativity and its slower rebound in the patient group. The potential underlying mechanisms behind these changes and other minor dissimilarities in patients’ subgroups, as well as the relevance to BCI applications, are discussed. The findings are of interest from a neurological perspective as well as for BCI-assisted neuro-rehabilitation and therapy.

  17. Experiencing BCI control in a popular computer game

    NARCIS (Netherlands)

    van de Laar, B.L.A.; Coyle, D.; Gürkök, Hayrettin; Principe, J.; Lotte, F.; Plass - Oude Bos, D.; Poel, Mannes; Nijholt, Antinus

    2013-01-01

    Brain–computer interfaces (BCIs) are not only being developed to aid disabled individuals with motor substitution, motor recovery, and novel communication possibilities, but also as a modality for healthy users in entertainment and gaming. This study investigates whether the incorporation of a BCI

  18. Effect of biased feedback on motor imagery learning in BCI-teleoperation system

    Directory of Open Access Journals (Sweden)

    Maryam eAlimardani

    2014-04-01

    Full Text Available Feedback design is an important issue in motor imagery BCI systems. Regardless, to date it has not been reported how feedback presentation can optimize co-adaptation between a human brain and such systems. This paper assesses the effect of realistic visual feedback on users’ BC performance and motor imagery skills. We previously developed a tele-operation system for a pair of humanlike robotic hands and showed that BCI control of such hands along with first-person perspective visual feedback of movements can arouse a sense of embodiment in the operators. In the first stage of this study, we found that the intensity of this ownership illusion was associated with feedback presentation and subjects’ performance during BCI motion control. In the second stage, we probed the effect of positive and negative feedback bias on subjects’ BCI performance and motor imagery skills. Although the subject specific classifier, which was set up at the beginning of experiment, detected no significant change in the subjects’ online performance, evaluation of brain activity patterns revealed that subjects’ self-regulation of motor imagery features improved due to a positive bias of feedback and a possible occurrence of ownership illusion. Our findings suggest that in general training protocols for BCIs, manipulation of feedback can play an important role in the optimization of subjects’ motor imagery skills.

  19. Cybathlon experiences of the Graz BCI racing team Mirage91 in the brain-computer interface discipline.

    Science.gov (United States)

    Statthaler, Karina; Schwarz, Andreas; Steyrl, David; Kobler, Reinmar; Höller, Maria Katharina; Brandstetter, Julia; Hehenberger, Lea; Bigga, Marvin; Müller-Putz, Gernot

    2017-12-28

    In this work, we share our experiences made at the world-wide first CYBATHLON, an event organized by the Eidgenössische Technische Hochschule Zürich (ETH Zürich), which took place in Zurich in October 2016. It is a championship for severely motor impaired people using assistive prototype devices to compete against each other. Our team, the Graz BCI Racing Team MIRAGE91 from Graz University of Technology, participated in the discipline "Brain-Computer Interface Race". A brain-computer interface (BCI) is a device facilitating control of applications via the user's thoughts. Prominent applications include assistive technology such as wheelchairs, neuroprostheses or communication devices. In the CYBATHLON BCI Race, pilots compete in a BCI-controlled computer game. We report on setting up our team, the BCI customization to our pilot including long term training and the final BCI system. Furthermore, we describe CYBATHLON participation and analyze our CYBATHLON result. We found that our pilot was compliant over the whole time and that we could significantly reduce the average runtime between start and finish from initially 178 s to 143 s. After the release of the final championship specifications with shorter track length, the average runtime converged to 120 s. We successfully participated in the qualification race at CYBATHLON 2016, but performed notably worse than during training, with a runtime of 196 s. We speculate that shifts in the features, due to the nonstationarities in the electroencephalogram (EEG), but also arousal are possible reasons for the unexpected result. Potential counteracting measures are discussed. The CYBATHLON 2016 was a great opportunity for our student team. We consolidated our theoretical knowledge and turned it into practice, allowing our pilot to play a computer game. However, further research is required to make BCI technology invariant to non-task related changes of the EEG.

  20. Classification of Movement and Inhibition Using a Hybrid BCI.

    Science.gov (United States)

    Chmura, Jennifer; Rosing, Joshua; Collazos, Steven; Goodwin, Shikha J

    2017-01-01

    Brain-computer interfaces (BCIs) are an emerging technology that are capable of turning brain electrical activity into commands for an external device. Motor imagery (MI)-when a person imagines a motion without executing it-is widely employed in BCI devices for motor control because of the endogenous origin of its neural control mechanisms, and the similarity in brain activation to actual movements. Challenges with translating a MI-BCI into a practical device used outside laboratories include the extensive training required, often due to poor user engagement and visual feedback response delays; poor user flexibility/freedom to time the execution/inhibition of their movements, and to control the movement type (right arm vs. left leg) and characteristics (reaching vs. grabbing); and high false positive rates of motion control. Solutions to improve sensorimotor activation and user performance of MI-BCIs have been explored. Virtual reality (VR) motor-execution tasks have replaced simpler visual feedback (smiling faces, arrows) and have solved this problem to an extent. Hybrid BCIs (hBCIs) implementing an additional control signal to MI have improved user control capabilities to a limited extent. These hBCIs either fail to allow the patients to gain asynchronous control of their movements, or have a high false positive rate. We propose an immersive VR environment which provides visual feedback that is both engaging and immediate, but also uniquely engages a different cognitive process in the patient that generates event-related potentials (ERPs). These ERPs provide a key executive function for the users to execute/inhibit movements. Additionally, we propose signal processing strategies and machine learning algorithms to move BCIs toward developing long-term signal stability in patients with distinctive brain signals and capabilities to control motor signals. The hBCI itself and the VR environment we propose would help to move BCI technology outside laboratory

  1. Classification of Movement and Inhibition Using a Hybrid BCI

    Directory of Open Access Journals (Sweden)

    Jennifer Chmura

    2017-08-01

    Full Text Available Brain-computer interfaces (BCIs are an emerging technology that are capable of turning brain electrical activity into commands for an external device. Motor imagery (MI—when a person imagines a motion without executing it—is widely employed in BCI devices for motor control because of the endogenous origin of its neural control mechanisms, and the similarity in brain activation to actual movements. Challenges with translating a MI-BCI into a practical device used outside laboratories include the extensive training required, often due to poor user engagement and visual feedback response delays; poor user flexibility/freedom to time the execution/inhibition of their movements, and to control the movement type (right arm vs. left leg and characteristics (reaching vs. grabbing; and high false positive rates of motion control. Solutions to improve sensorimotor activation and user performance of MI-BCIs have been explored. Virtual reality (VR motor-execution tasks have replaced simpler visual feedback (smiling faces, arrows and have solved this problem to an extent. Hybrid BCIs (hBCIs implementing an additional control signal to MI have improved user control capabilities to a limited extent. These hBCIs either fail to allow the patients to gain asynchronous control of their movements, or have a high false positive rate. We propose an immersive VR environment which provides visual feedback that is both engaging and immediate, but also uniquely engages a different cognitive process in the patient that generates event-related potentials (ERPs. These ERPs provide a key executive function for the users to execute/inhibit movements. Additionally, we propose signal processing strategies and machine learning algorithms to move BCIs toward developing long-term signal stability in patients with distinctive brain signals and capabilities to control motor signals. The hBCI itself and the VR environment we propose would help to move BCI technology outside

  2. Listen, you are writing!Speeding up online spelling with a dynamic auditory BCI

    Directory of Open Access Journals (Sweden)

    Martijn eSchreuder

    2011-10-01

    Full Text Available Representing an intuitive spelling interface for Brain-Computer Interfaces (BCI in the auditory domain is not straightforward. In consequence, all existing approaches based on event-related potentials (ERP rely at least partially on a visual representation of the interface. This online study introduces an auditory spelling interface that eliminates the necessity for such a visualization. In up to two sessions, a group of healthy subjects (N=21 was asked to use a text entry application, utilizing the spatial cues of the AMUSE paradigm (Auditory Multiclass Spatial ERP. The speller relies on the auditory sense both for stimulation and the core feedback. Without prior BCI experience, 76% of the participants were able to write a full sentence during the first session. By exploiting the advantages of a newly introduced dynamic stopping method, a maximum writing speed of 1.41 characters/minute (7.55 bits/minute could be reached during the second session (average: .94 char/min, 5.26 bits/min. For the first time, the presented work shows that an auditory BCI can reach performances similar to state-of-the-art visual BCIs based on covert attention. These results represent an important step towards a purely auditory BCI.

  3. EEG correlates of P300-based brain-computer interface (BCI) performance in people with amyotrophic lateral sclerosis

    Science.gov (United States)

    Mak, Joseph N.; McFarland, Dennis J.; Vaughan, Theresa M.; McCane, Lynn M.; Tsui, Phillippa Z.; Zeitlin, Debra J.; Sellers, Eric W.; Wolpaw, Jonathan R.

    2012-04-01

    The purpose of this study was to identify electroencephalography (EEG) features that correlate with P300-based brain-computer interface (P300 BCI) performance in people with amyotrophic lateral sclerosis (ALS). Twenty people with ALS used a P300 BCI spelling application in copy-spelling mode. Three types of EEG features were found to be good predictors of P300 BCI performance: (1) the root-mean-square amplitude and (2) the negative peak amplitude of the event-related potential to target stimuli (target ERP) at Fz, Cz, P3, Pz, and P4; and (3) EEG theta frequency (4.5-8 Hz) power at Fz, Cz, P3, Pz, P4, PO7, PO8 and Oz. A statistical prediction model that used a subset of these features accounted for >60% of the variance in copy-spelling performance (p < 0.001, mean R2 = 0.6175). The correlations reflected between-subject, rather than within-subject, effects. The results enhance understanding of performance differences among P300 BCI users. The predictors found in this study might help in: (1) identifying suitable candidates for long-term P300 BCI operation; (2) assessing performance online. Further work on within-subject effects needs to be done to establish whether P300 BCI user performance could be improved by optimizing one or more of these EEG features.

  4. The extraction of motion-onset VEP BCI features based on deep learning and compressed sensing.

    Science.gov (United States)

    Ma, Teng; Li, Hui; Yang, Hao; Lv, Xulin; Li, Peiyang; Liu, Tiejun; Yao, Dezhong; Xu, Peng

    2017-01-01

    Motion-onset visual evoked potentials (mVEP) can provide a softer stimulus with reduced fatigue, and it has potential applications for brain computer interface(BCI)systems. However, the mVEP waveform is seriously masked in the strong background EEG activities, and an effective approach is needed to extract the corresponding mVEP features to perform task recognition for BCI control. In the current study, we combine deep learning with compressed sensing to mine discriminative mVEP information to improve the mVEP BCI performance. The deep learning and compressed sensing approach can generate the multi-modality features which can effectively improve the BCI performance with approximately 3.5% accuracy incensement over all 11 subjects and is more effective for those subjects with relatively poor performance when using the conventional features. Compared with the conventional amplitude-based mVEP feature extraction approach, the deep learning and compressed sensing approach has a higher classification accuracy and is more effective for subjects with relatively poor performance. According to the results, the deep learning and compressed sensing approach is more effective for extracting the mVEP feature to construct the corresponding BCI system, and the proposed feature extraction framework is easy to extend to other types of BCIs, such as motor imagery (MI), steady-state visual evoked potential (SSVEP)and P300. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. BCI inside a virtual reality classroom: a potential training tool for attention

    DEFF Research Database (Denmark)

    Rohani, Darius Adam; Puthusserypady, Sadasivan

    2015-01-01

    Background : A growing population is diagnosed with Attention Deficit Hyperactivity Disorder (ADHD) and are currently being treated with psychostimulants. Brain Computer Interface (BCI) is a method of communicating with an external program or device based on measured electrical signals from...... the brain. A particular brain signal, the P300 potential, can be measured about 300 ms after a voluntary cognitive involvement to external stimuli. By utilizing the P300 potential, we have designed a BCI- assisted exercising tool targeting attention enhancement within an immersive 3D virtual reality (VR...

  6. Combining motor imagery with selective sensation toward a hybrid-modality BCI.

    Science.gov (United States)

    Yao, Lin; Meng, Jianjun; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang

    2014-08-01

    A hybrid modality brain-computer interface (BCI) is proposed in this paper, which combines motor imagery with selective sensation to enhance the discrimination between left and right mental tasks, e.g., the classification between left/ right stimulation sensation and right/ left motor imagery. In this paradigm, wearable vibrotactile rings are used to stimulate both the skin on both wrists. Subjects are required to perform the mental tasks according to the randomly presented cues (i.e., left hand motor imagery, right hand motor imagery, left stimulation sensation or right stimulation sensation). Two-way ANOVA statistical analysis showed a significant group effect (F (2,20) = 7.17, p = 0.0045), and the Benferroni-corrected multiple comparison test (with α = 0.05) showed that the hybrid modality group is 11.13% higher on average than the motor imagery group, and 10.45% higher than the selective sensation group. The hybrid modality experiment exhibits potentially wider spread usage within ten subjects crossed 70% accuracy, followed by four subjects in motor imagery and five subjects in selective sensation. Six subjects showed statistically significant improvement ( Benferroni-corrected) in hybrid modality in comparison with both motor imagery and selective sensation. Furthermore, among subjects having difficulties in both motor imagery and selective sensation, the hybrid modality improves their performance to 90% accuracy. The proposed hybrid modality BCI has demonstrated clear benefits for those poorly performing BCI users. Not only does the requirement of motor and sensory anticipation in this hybrid modality provide basic function of BCI for communication and control, it also has the potential for enhancing the rehabilitation during motor recovery.

  7. How Well Can We Learn With Standard BCI Training Approaches? A Pilot Study.

    OpenAIRE

    Jeunet , Camille; Cellard , Alison; Subramanian , Sriram; Hachet , Martin; N'Kaoua , Bernard; Lotte , Fabien

    2014-01-01

    International audience; While being very promising, brain-computer interfaces (BCI) remain barely used outside laboratories because they are not reliable enough. It has been suggested that current training approaches may be partly responsible for the poor reliability of BCIs as they do not satisfy recommendations from psychology and are thus inadequate. To determine to which extent such BCI training approaches (i.e., feedback and training tasks) are suitable to learn a skill, we used them in ...

  8. Electroencephalography Signal Grouping and Feature Classification Using Harmony Search for BCI

    Directory of Open Access Journals (Sweden)

    Tae-Ju Lee

    2013-01-01

    Full Text Available This paper presents a heuristic method for electroencephalography (EEG grouping and feature classification using harmony search (HS for improving the accuracy of the brain-computer interface (BCI system. EEG, a noninvasive BCI method, uses many electrodes on the scalp, and a large number of electrodes make the resulting analysis difficult. In addition, traditional EEG analysis cannot handle multiple stimuli. On the other hand, the classification method using the EEG signal has a low accuracy. To solve these problems, we use a heuristic approach to reduce the complexities in multichannel problems and classification. In this study, we build a group of stimuli using the HS algorithm. Then, the features from common spatial patterns are classified by the HS classifier. To confirm the proposed method, we perform experiments using 64-channel EEG equipment. The subjects are subjected to three kinds of stimuli: audio, visual, and motion. Each stimulus is applied alone or in combination with the others. The acquired signals are processed by the proposed method. The classification results in an accuracy of approximately 63%. We conclude that the heuristic approach using the HS algorithm on the BCI is beneficial for EEG signal analysis.

  9. Audio-visual feedback improves the BCI performance in the navigational control of a humanoid robot

    Directory of Open Access Journals (Sweden)

    Emmanuele eTidoni

    2014-06-01

    Full Text Available Advancement in brain computer interfaces (BCI technology allows people to actively interact in the world through surrogates. Controlling real humanoid robots using BCI as intuitively as we control our body represents a challenge for current research in robotics and neuroscience. In order to successfully interact with the environment the brain integrates multiple sensory cues to form a coherent representation of the world. Cognitive neuroscience studies demonstrate that multisensory integration may imply a gain with respect to a single modality and ultimately improve the overall sensorimotor performance. For example, reactivity to simultaneous visual and auditory stimuli may be higher than to the sum of the same stimuli delivered in isolation or in temporal sequence. Yet, knowledge about whether audio-visual integration may improve the control of a surrogate is meager. To explore this issue, we provided human footstep sounds as audio feedback to BCI users while controlling a humanoid robot. Participants were asked to steer their robot surrogate and perform a pick-and-place task through BCI-SSVEPs. We found that audio-visual synchrony between footsteps sound and actual humanoid’s walk reduces the time required for steering the robot. Thus, auditory feedback congruent with the humanoid actions may improve motor decisions of the BCI’s user and help in the feeling of control over it. Our results shed light on the possibility to increase robot’s control through the combination of multisensory feedback to a BCI user.

  10. Wireless communication with implanted medical devices using the conductive properties of the body.

    Science.gov (United States)

    Ferguson, John E; Redish, A David

    2011-07-01

    Many medical devices that are implanted in the body use wires or wireless radiofrequency telemetry to communicate with circuitry outside the body. However, the wires are a common source of surgical complications, including breakage, infection and electrical noise. In addition, radiofrequency telemetry requires large amounts of power and results in low-efficiency transmission through biological tissue. As an alternative, the conductive properties of the body can be used to enable wireless communication with implanted devices. In this article, several methods of intrabody communication are described and compared. In addition to reducing the complications that occur with current implantable medical devices, intrabody communication can enable novel types of miniature devices for research and clinical applications.

  11. Interruption of Electrical Conductivity of Titanium Dental Implants Suggests a Path Towards Elimination Of Corrosion.

    Science.gov (United States)

    Pozhitkov, Alex E; Daubert, Diane; Brochwicz Donimirski, Ashley; Goodgion, Douglas; Vagin, Mikhail Y; Leroux, Brian G; Hunter, Colby M; Flemmig, Thomas F; Noble, Peter A; Bryers, James D

    2015-01-01

    Peri-implantitis is an inflammatory disease that results in the destruction of soft tissue and bone around the implant. Titanium implant corrosion has been attributed to the implant failure and cytotoxic effects to the alveolar bone. We have documented the extent of titanium release into surrounding plaque in patients with and without peri-implantitis. An in vitro model was designed to represent the actual environment of an implant in a patient's mouth. The model uses actual oral microbiota from a volunteer, allows monitoring electrochemical processes generated by biofilms growing on implants and permits control of biocorrosion electrical current. As determined by next generation DNA sequencing, microbial compositions in experiments with the in vitro model were comparable with the compositions found in patients with implants. It was determined that the electrical conductivity of titanium implants was the key factor responsible for the biocorrosion process. The interruption of the biocorrosion current resulted in a 4-5 fold reduction of corrosion. We propose a new design of dental implant that combines titanium in zero oxidation state for osseointegration and strength, interlaid with a nonconductive ceramic. In addition, we propose electrotherapy for manipulation of microbial biofilms and to induce bone healing in peri-implantitis patients.

  12. Interruption of Electrical Conductivity of Titanium Dental Implants Suggests a Path Towards Elimination Of Corrosion.

    Directory of Open Access Journals (Sweden)

    Alex E Pozhitkov

    Full Text Available Peri-implantitis is an inflammatory disease that results in the destruction of soft tissue and bone around the implant. Titanium implant corrosion has been attributed to the implant failure and cytotoxic effects to the alveolar bone. We have documented the extent of titanium release into surrounding plaque in patients with and without peri-implantitis. An in vitro model was designed to represent the actual environment of an implant in a patient's mouth. The model uses actual oral microbiota from a volunteer, allows monitoring electrochemical processes generated by biofilms growing on implants and permits control of biocorrosion electrical current. As determined by next generation DNA sequencing, microbial compositions in experiments with the in vitro model were comparable with the compositions found in patients with implants. It was determined that the electrical conductivity of titanium implants was the key factor responsible for the biocorrosion process. The interruption of the biocorrosion current resulted in a 4-5 fold reduction of corrosion. We propose a new design of dental implant that combines titanium in zero oxidation state for osseointegration and strength, interlaid with a nonconductive ceramic. In addition, we propose electrotherapy for manipulation of microbial biofilms and to induce bone healing in peri-implantitis patients.

  13. As above, so below? Towards understanding inverse models in BCI

    Science.gov (United States)

    Lindgren, Jussi T.

    2018-02-01

    Objective. In brain-computer interfaces (BCI), measurements of the user’s brain activity are classified into commands for the computer. With EEG-based BCIs, the origins of the classified phenomena are often considered to be spatially localized in the cortical volume and mixed in the EEG. We investigate if more accurate BCIs can be obtained by reconstructing the source activities in the volume. Approach. We contrast the physiology-driven source reconstruction with data-driven representations obtained by statistical machine learning. We explain these approaches in a common linear dictionary framework and review the different ways to obtain the dictionary parameters. We consider the effect of source reconstruction on some major difficulties in BCI classification, namely information loss, feature selection and nonstationarity of the EEG. Main results. Our analysis suggests that the approaches differ mainly in their parameter estimation. Physiological source reconstruction may thus be expected to improve BCI accuracy if machine learning is not used or where it produces less optimal parameters. We argue that the considered difficulties of surface EEG classification can remain in the reconstructed volume and that data-driven techniques are still necessary. Finally, we provide some suggestions for comparing approaches. Significance. The present work illustrates the relationships between source reconstruction and machine learning-based approaches for EEG data representation. The provided analysis and discussion should help in understanding, applying, comparing and improving such techniques in the future.

  14. STATIC CODE ANALYSIS FOR SOFTWARE QUALITY IMPROVEMENT: A CASE STUDY IN BCI FRAMEWORK DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Indar Sugiarto

    2008-01-01

    Full Text Available This paper shows how the systematic approach in software testing using static code analysis method can be used for improving the software quality of a BCI framework. The method is best performed during the development phase of framework programs. In the proposed approach, we evaluate several software metrics which are based on the principles of object oriented design. Since such method is depending on the underlying programming language, we describe the method in term of C++ language programming whereas the Qt platform is also currently being used. One of the most important metric is so called software complexity. Applying the software complexity calculation using both McCabe and Halstead method for the BCI framework which consists of two important types of BCI, those are SSVEP and P300, we found that there are two classes in the framework which have very complex and prone to violation of cohesion principle in OOP. The other metrics are fit the criteria of the proposed framework aspects, such as: MPC is less than 20; average complexity is around value of 5; and the maximum depth is below 10 blocks. Such variables are considered very important when further developing the BCI framework in the future.

  15. Oxygen ion implantation induced microstructural changes and electrical conductivity in Bakelite RPC detector material

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, K. V. Aneesh, E-mail: aneesh1098@gmail.com; Ravikumar, H. B., E-mail: hbr@physics.uni-mysore.ac.in [Department of Studies in Physics, University of Mysore, Mysore-570006 (India); Ranganathaiah, C., E-mail: cr@physics.uni-mysore.ac.in [Govt. Research Centre, Sahyadri Educational Institutions, Mangalore-575007 (India); Kumarswamy, G. N., E-mail: kumy79@gmail.com [Department of Studies in Physics, Amrita Vishwa Vidyapeetham, Bangalore-560035 (India)

    2016-05-06

    In order to explore the structural modification induced electrical conductivity, samples of Bakelite Resistive Plate Chamber (RPC) detector materials were exposed to 100 keV Oxygen ion in the fluences of 10{sup 12}, 10{sup 13}, 10{sup 14} and 10{sup 15} ions/cm{sup 2}. Ion implantation induced microstructural changes have been studied using Positron Annihilation Lifetime Spectroscopy (PALS) and X-Ray Diffraction (XRD) techniques. Positron lifetime parameters viz., o-Ps lifetime and its intensity shows the deposition of high energy interior track and chain scission leads to the formation of radicals, secondary ions and electrons at lower ion implantation fluences (10{sup 12} to10{sup 14} ions/cm{sup 2}) followed by cross-linking at 10{sup 15} ions/cm{sup 2} fluence due to the radical reactions. The reduction in electrical conductivity of Bakelite detector material is correlated to the conducting pathways and cross-links in the polymer matrix. The appropriate implantation energy and fluence of Oxygen ion on polymer based Bakelite RPC detector material may reduce the leakage current, improves the efficiency, time resolution and thereby rectify the aging crisis of the RPC detectors.

  16. Online adaptation of a c-VEP Brain-computer Interface(BCI) based on error-related potentials and unsupervised learning.

    Science.gov (United States)

    Spüler, Martin; Rosenstiel, Wolfgang; Bogdan, Martin

    2012-01-01

    The goal of a Brain-Computer Interface (BCI) is to control a computer by pure brain activity. Recently, BCIs based on code-modulated visual evoked potentials (c-VEPs) have shown great potential to establish high-performance communication. In this paper we present a c-VEP BCI that uses online adaptation of the classifier to reduce calibration time and increase performance. We compare two different approaches for online adaptation of the system: an unsupervised method and a method that uses the detection of error-related potentials. Both approaches were tested in an online study, in which an average accuracy of 96% was achieved with adaptation based on error-related potentials. This accuracy corresponds to an average information transfer rate of 144 bit/min, which is the highest bitrate reported so far for a non-invasive BCI. In a free-spelling mode, the subjects were able to write with an average of 21.3 error-free letters per minute, which shows the feasibility of the BCI system in a normal-use scenario. In addition we show that a calibration of the BCI system solely based on the detection of error-related potentials is possible, without knowing the true class labels.

  17. Engineering the heart: Evaluation of conductive nanomaterials for improving implant integration and cardiac function

    Science.gov (United States)

    Zhou, Jin; Chen, Jun; Sun, Hongyu; Qiu, Xiaozhong; Mou, Yongchao; Liu, Zhiqiang; Zhao, Yuwei; Li, Xia; Han, Yao; Duan, Cuimi; Tang, Rongyu; Wang, Chunlan; Zhong, Wen; Liu, Jie; Luo, Ying; (Mengqiu) Xing, Malcolm; Wang, Changyong

    2014-01-01

    Recently, carbon nanotubes together with other types of conductive materials have been used to enhance the viability and function of cardiomyocytes in vitro. Here we demonstrated a paradigm to construct ECTs for cardiac repair using conductive nanomaterials. Single walled carbon nanotubes (SWNTs) were incorporated into gelatin hydrogel scaffolds to construct three-dimensional ECTs. We found that SWNTs could provide cellular microenvironment in vitro favorable for cardiac contraction and the expression of electrochemical associated proteins. Upon implantation into the infarct hearts in rats, ECTs structurally integrated with the host myocardium, with different types of cells observed to mutually invade into implants and host tissues. The functional measurements showed that SWNTs were essential to improve the performance of ECTs in inhibiting pathological deterioration of myocardium. This work suggested that conductive nanomaterials hold therapeutic potential in engineering cardiac tissues to repair myocardial infarction. PMID:24429673

  18. A hybrid BCI web browser based on EEG and EOG signals.

    Science.gov (United States)

    Shenghong He; Tianyou Yu; Zhenghui Gu; Yuanqing Li

    2017-07-01

    In this study, we propose a new web browser based on a hybrid brain computer interface (BCI) combining electroencephalographic (EEG) and electrooculography (EOG) signals. Specifically, the user can control the horizontal movement of the mouse by imagining left/right hand motion, and control the vertical movement of the mouse, select/reject a target, or input text in an edit box by blinking eyes in synchrony with the flashes of the corresponding buttons on the GUI. Based on mouse control, target selection and text input, the user can open a web page of interest, select an intended target in the web and read the page content. An online experiment was conducted involving five healthy subjects. The experimental results demonstrated the effectiveness of the proposed method.

  19. Comparative study of 150 keV Ar+ and O+ ion implantation induced structural modification on electrical conductivity in Bakelite polymer

    Science.gov (United States)

    Aneesh Kumar, K. V.; Krishnaveni, S.; Asokan, K.; Ranganathaiah, C.; Ravikumar, H. B.

    2018-02-01

    A comparative study of 150 keV argon (Ar+) and oxygen (O+) ion implantation induced microstructural modifications in Bakelite Resistive Plate Chamber (RPC) detector material at different implantation fluences have been studied using Positron Annihilation Lifetime Spectroscopy (PALS). Positron lifetime parameters viz., o-Ps lifetime (τ3) and its intensity (I3) upon lower implantation fluences can be interpreted as the cross-linking and the increased local temperature induced diffusion followed by trapping of ions in the interior polymer voids. The increased o-Ps lifetime (τ3) at higher O+ ion implantation fluences indicates chain scission owing to the oxidation and track formation. This is also justified by the X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) results. The modification in the microstructure and electrical conductivity of Bakelite materials are more upon implantation of O+ ions than Ar+ ions of same energy and fluences. The reduced electrical conductivity of Bakelite polymer material upon ion implantation of both the ions is correlated to the conducting pathways and cross-links in the polymer matrix. The appropriate energy and fluence of implanting ions might reduce the leakage current and hence improve the performance of Bakelite RPC detectors.

  20. Continuous EEG signal analysis for asynchronous BCI application.

    Science.gov (United States)

    Hsu, Wei-Yen

    2011-08-01

    In this study, we propose a two-stage recognition system for continuous analysis of electroencephalogram (EEG) signals. An independent component analysis (ICA) and correlation coefficient are used to automatically eliminate the electrooculography (EOG) artifacts. Based on the continuous wavelet transform (CWT) and Student's two-sample t-statistics, active segment selection then detects the location of active segment in the time-frequency domain. Next, multiresolution fractal feature vectors (MFFVs) are extracted with the proposed modified fractal dimension from wavelet data. Finally, the support vector machine (SVM) is adopted for the robust classification of MFFVs. The EEG signals are continuously analyzed in 1-s segments, and every 0.5 second moves forward to simulate asynchronous BCI works in the two-stage recognition architecture. The segment is first recognized as lifted or not in the first stage, and then is classified as left or right finger lifting at stage two if the segment is recognized as lifting in the first stage. Several statistical analyses are used to evaluate the performance of the proposed system. The results indicate that it is a promising system in the applications of asynchronous BCI work.

  1. Images from the Mind: BCI image reconstruction based on Rapid Serial Visual Presentations of polygon primitives

    Directory of Open Access Journals (Sweden)

    Luís F Seoane

    2015-04-01

    Full Text Available We provide a proof of concept for an EEG-based reconstruction of a visual image which is on a user's mind. Our approach is based on the Rapid Serial Visual Presentation (RSVP of polygon primitives and Brain-Computer Interface (BCI technology. In an experimental setup, subjects were presented bursts of polygons: some of them contributed to building a target image (because they matched the shape and/or color of the target while some of them did not. The presentation of the contributing polygons triggered attention-related EEG patterns. These Event Related Potentials (ERPs could be determined using BCI classification and could be matched to the stimuli that elicited them. These stimuli (i.e. the ERP-correlated polygons were accumulated in the display until a satisfactory reconstruction of the target image was reached. As more polygons were accumulated, finer visual details were attained resulting in more challenging classification tasks. In our experiments, we observe an average classification accuracy of around 75%. An in-depth investigation suggests that many of the misclassifications were not misinterpretations of the BCI concerning the users' intent, but rather caused by ambiguous polygons that could contribute to reconstruct several different images. When we put our BCI-image reconstruction in perspective with other RSVP BCI paradigms, there is large room for improvement both in speed and accuracy. These results invite us to be optimistic. They open a plethora of possibilities to explore non-invasive BCIs for image reconstruction both in healthy and impaired subjects and, accordingly, suggest interesting recreational and clinical applications.

  2. BNCI Horizon 2020 : towards a roadmap for the BCI community

    NARCIS (Netherlands)

    Brunner, Clemens; Birbaumer, Niels; Blankertz, Benjamin; Guger, Christoph; Kübler, Andrea; Mattia, Donatella; Millán, José del R.; Miralles, Felip; Nijholt, Anton; Opisso, Eloy; Ramsey, Nick; Salomon, Patric; Müller-Putz, Gernot R.

    2015-01-01

    The brain-computer interface (BCI) field has grown dramatically over the past few years, but there are still no coordinated efforts to ensure efficient communication and collaboration among key stakeholders. The European Commission (EC) has recently renewed their efforts to establish such a

  3. BNCI Horizon 2020: towards a roadmap for the BCI community

    NARCIS (Netherlands)

    Brunner, Clemens; Birbaumer, Niels; Blankertz, Benjamin; Guger, Christoph; Kübler, Andrea; Mattia, Donatella; Millán, Jose del R.; Miralles, Felip; Nijholt, Antinus; Opisso, Eloy; Ramsey, Nick; Salomon, Patric; Müller-Putz, Gernot R.

    2015-01-01

    The brain-computer interface (BCI) field has grown dramatically over the past few years, but there are still no coordinated efforts to ensure efficient communication and collaboration among key stakeholders. The European Commission (EC) has recently renewed their efforts to establish such a

  4. Functional results after Bonebridge implantation in adults and children with conductive and mixed hearing loss.

    Science.gov (United States)

    Rahne, Torsten; Seiwerth, Ingmar; Götze, Gerrit; Heider, Cornelia; Radetzki, Florian; Herzog, Michael; Plontke, Stefan K

    2015-11-01

    In patients with conductive hearing loss caused by middle ear disorders or atresia of the ear canal, a Bonebridge implantation can improve hearing by providing vibratory input to the temporal bone. The expected results are improved puretone thresholds and speech recognition. In the European Union, approval of the Bonebridge implantation was recently extended to children. We evaluated the functional outcome of a Bonebridge implantation for eight adults and three children. We found significant improvement in the puretone thresholds, with improvement in the air-bone gap. Speech recognition after surgery was significantly higher than in the best-aided situation before surgery. The Bonebridge significantly improved speech recognition in noisy environments and sound localization. In situations relevant to daily life, hearing deficits were nearly completely restored with the Bonebridge implantation in both adults and children.

  5. Affective SSVEP BCI to effectively control 3D objects by using a prism array-based display

    Science.gov (United States)

    Mun, Sungchul; Park, Min-Chul

    2014-06-01

    3D objects with depth information can provide many benefits to users in education, surgery, and interactions. In particular, many studies have been done to enhance sense of reality in 3D interaction. Viewing and controlling stereoscopic 3D objects with crossed or uncrossed disparities, however, can cause visual fatigue due to the vergenceaccommodation conflict generally accepted in 3D research fields. In order to avoid the vergence-accommodation mismatch and provide a strong sense of presence to users, we apply a prism array-based display to presenting 3D objects. Emotional pictures were used as visual stimuli in control panels to increase information transfer rate and reduce false positives in controlling 3D objects. Involuntarily motivated selective attention by affective mechanism can enhance steady-state visually evoked potential (SSVEP) amplitude and lead to increased interaction efficiency. More attentional resources are allocated to affective pictures with high valence and arousal levels than to normal visual stimuli such as white-and-black oscillating squares and checkerboards. Among representative BCI control components (i.e., eventrelated potentials (ERP), event-related (de)synchronization (ERD/ERS), and SSVEP), SSVEP-based BCI was chosen in the following reasons. It shows high information transfer rates and takes a few minutes for users to control BCI system while few electrodes are required for obtaining reliable brainwave signals enough to capture users' intention. The proposed BCI methods are expected to enhance sense of reality in 3D space without causing critical visual fatigue to occur. In addition, people who are very susceptible to (auto) stereoscopic 3D may be able to use the affective BCI.

  6. On left (θ,ϕ-derivations in BCI-algebras

    Directory of Open Access Journals (Sweden)

    G. Muhiuddin

    2014-07-01

    Full Text Available The notion of (regular left (θ,ϕ-derivations of a BCI-algebra is introduced, some useful examples are discussed, and related properties are investigated. Conditions for a left (θ,ϕ-derivation to be regular are provided. The concepts of a d(θ,ϕ-invariant left (θ,ϕ-derivation and θ-ideal are introduced, and their relations are discussed. Furthermore, some more interesting results are established.

  7. Application of a single-flicker online SSVEP BCI for spatial navigation.

    Science.gov (United States)

    Chen, Jingjing; Zhang, Dan; Engel, Andreas K; Gong, Qin; Maye, Alexander

    2017-01-01

    A promising approach for brain-computer interfaces (BCIs) employs the steady-state visual evoked potential (SSVEP) for extracting control information. Main advantages of these SSVEP BCIs are a simple and low-cost setup, little effort to adjust the system parameters to the user and comparatively high information transfer rates (ITR). However, traditional frequency-coded SSVEP BCIs require the user to gaze directly at the selected flicker stimulus, which is liable to cause fatigue or even photic epileptic seizures. The spatially coded SSVEP BCI we present in this article addresses this issue. It uses a single flicker stimulus that appears always in the extrafoveal field of view, yet it allows the user to control four control channels. We demonstrate the embedding of this novel SSVEP stimulation paradigm in the user interface of an online BCI for navigating a 2-dimensional computer game. Offline analysis of the training data reveals an average classification accuracy of 96.9±1.64%, corresponding to an information transfer rate of 30.1±1.8 bits/min. In online mode, the average classification accuracy reached 87.9±11.4%, which resulted in an ITR of 23.8±6.75 bits/min. We did not observe a strong relation between a subject's offline and online performance. Analysis of the online performance over time shows that users can reliably control the new BCI paradigm with stable performance over at least 30 minutes of continuous operation.

  8. Keeping Disability in Mind: A Case Study in Implantable Brain-Computer Interface Research.

    Science.gov (United States)

    Sullivan, Laura Specker; Klein, Eran; Brown, Tim; Sample, Matthew; Pham, Michelle; Tubig, Paul; Folland, Raney; Truitt, Anjali; Goering, Sara

    2018-04-01

    Brain-Computer Interface (BCI) research is an interdisciplinary area of study within Neural Engineering. Recent interest in end-user perspectives has led to an intersection with user-centered design (UCD). The goal of user-centered design is to reduce the translational gap between researchers and potential end users. However, while qualitative studies have been conducted with end users of BCI technology, little is known about individual BCI researchers' experience with and attitudes towards UCD. Given the scientific, financial, and ethical imperatives of UCD, we sought to gain a better understanding of practical and principled considerations for researchers who engage with end users. We conducted a qualitative interview case study with neural engineering researchers at a center dedicated to the creation of BCIs. Our analysis generated five themes common across interviews. The thematic analysis shows that participants identify multiple beneficiaries of their work, including other researchers, clinicians working with devices, device end users, and families and caregivers of device users. Participants value experience with device end users, and personal experience is the most meaningful type of interaction. They welcome (or even encourage) end-user input, but are skeptical of limited focus groups and case studies. They also recognize a tension between creating sophisticated devices and developing technology that will meet user needs. Finally, interviewees espouse functional, assistive goals for their technology, but describe uncertainty in what degree of function is "good enough" for individual end users. Based on these results, we offer preliminary recommendations for conducting future UCD studies in BCI and neural engineering.

  9. Exploring the use of tactile feedback in an ERP-based auditory BCI.

    Science.gov (United States)

    Schreuder, Martijn; Thurlings, Marieke E; Brouwer, Anne-Marie; Van Erp, Jan B F; Tangermann, Michael

    2012-01-01

    Giving direct, continuous feedback on a brain state is common practice in motor imagery based brain-computer interfaces (BCI), but has not been reported for BCIs based on event-related potentials (ERP), where feedback is only given once after a sequence of stimuli. Potentially, direct feedback could allow the user to adjust his strategy during a running trial to obtain the required response. In order to test the usefulness of such feedback, directionally congruent vibrotactile feedback was given during an online auditory BCI experiment. Users received either no feedback, short feedback pulses or continuous feedback. The feedback conditions showed reduced performance both on a behavioral task and in terms of classification accuracy. Several explanations are discussed that give interesting starting points for further research on this topic.

  10. The Role of the Interplay between Stimulus Type and Timing in Explaining BCI-Illiteracy for Visual P300-Based Brain-Computer Interfaces

    Directory of Open Access Journals (Sweden)

    Roberta Carabalona

    2017-06-01

    Full Text Available Visual P300-based Brain-Computer Interface (BCI spellers enable communication or interaction with the environment by flashing elements in a matrix and exploiting consequent changes in end-user's brain activity. Despite research efforts, performance variability and BCI-illiteracy still are critical issues for real world applications. Moreover, there is a quite unaddressed kind of BCI-illiteracy, which becomes apparent when the same end-user operates BCI-spellers intended for different applications: our aim is to understand why some well performers can become BCI-illiterate depending on speller type. We manipulated stimulus type (factor STIM: either characters or icons, color (factor COLOR: white, green and timing (factor SPEED: fast, slow. Each BCI session consisted of training (without feedback and performance phase (with feedback, both in copy-spelling. For fast flashing spellers, we observed a performance worsening for white icon-speller. Our findings are consistent with existing results reported on end-users using identical white×fast spellers, indicating independence of worsening trend from users' group. The use of slow stimulation timing shed a new light on the perceptual and cognitive phenomena related to the use of a BCI-speller during both the training and the performance phase. We found a significant STIM main effect for the N1 component on Pz and PO7 during the training phase and on PO8 during the performance phase, whereas in both phases neither the STIM×COLOR interaction nor the COLOR main effect was statistically significant. After collapsing data for factor COLOR, it emerged a statistically significant modulation of N1 amplitude depending to the phase of BCI session: N1 was more negative for icons than for characters both on Pz and PO7 (training, whereas the opposite modulation was observed for PO8 (performance. Results indicate that both feedback and expertise with respect to the stimulus type can modulate the N1 component and

  11. Selección de Canales en Sistemas BCI basados en Potenciales P300 mediante Inteligencia de Enjambre

    Directory of Open Access Journals (Sweden)

    V. Martínez-Cagigal

    2017-10-01

    Full Text Available Resumen: Los sistemas Brain-Computer Interface (BCI se definen como sistemas de comunicación que monitorizan la actividad cerebral y traducen determinadas características, correspondientes a las intenciones del usuario, en comandos de control de un dispositivo. La selección de canales en los sistemas BCI es fundamental para evitar el sobre-entrenamiento del clasificador, reducir la carga computacional y aumentar la comodidad del usuario. A pesar de que se han desarrollado varios algoritmos con anterioridad para tal fin, las metaheurísticas basadas en inteligencia de enjambre aún no han sido suficientemente explotadas en los sistemas BCI basados en potenciales P300. En este estudio se muestra una comparativa entre cinco métodos de enjambre, basados en el comportamiento de sistemas biológicos, aplicados con el objetivo de optimizar la selección de canales en este tipo de sistemas. Los métodos se han evaluado sobre la base de datos de la “III BCI Competition 2005”, reportando precisiones similares o, en algunos casos, incluso más altas que las obtenidas sin realizar ningún tipo de selección. Dado que los cinco métodos se han demostrado capaces de disminuir drásticamente los 64 canales originales a menos de la mitad sin comprometer el rendimiento del sistema, así como de superar el conjunto típico de 8 canales y el método backward elimination, se concluye que todos ellos son adecuados para su aplicación en la selección de canales en sistemas P300-BCI. Abstract: Brain-Computer Interfaces (BCI are direct communication pathways between the brain and the environment that translate certain features, which correspond to users’ intentions, into device control commands. Channel selection in BCI systems is essential to avoid over-fitting, to reduce the computational cost and to increase the users’ comfort. Although several algorithms have previously developed for that purpose

  12. A new hybrid BCI paradigm based on P300 and SSVEP.

    Science.gov (United States)

    Wang, Minjue; Daly, Ian; Allison, Brendan Z; Jin, Jing; Zhang, Yu; Chen, Lanlan; Wang, Xingyu

    2015-04-15

    P300 and steady-state visual evoked potential (SSVEP) approaches have been widely used for brain-computer interface (BCI) systems. However, neither of these approaches can work for all subjects. Some groups have reported that a hybrid BCI that combines two or more approaches might provide BCI functionality to more users. Hybrid P300/SSVEP BCIs have only recently been developed and validated, and very few avenues to improve performance have been explored. The present study compares an established hybrid P300/SSVEP BCIs paradigm to a new paradigm in which shape changing, instead of color changing, is adopted for P300 evocation to decrease the degradation on SSVEP strength. The result shows that the new hybrid paradigm presented in this paper yields much better performance than the normal hybrid paradigm. A performance increase of nearly 20% in SSVEP classification is achieved using the new hybrid paradigm in comparison with the normal hybrid paradigm. All the paradigms except the normal hybrid paradigm used in this paper obtain 100% accuracy in P300 classification. The new hybrid P300/SSVEP BCIs paradigm in which shape changing, instead of color changing, could obtain as high classification accuracy of SSVEP as the traditional SSVEP paradigm and could obtain as high classification accuracy of P300 as the traditional P300 paradigm. P300 did not interfere with the SSVEP response using the new hybrid paradigm presented in this paper, which was superior to the normal hybrid P300/SSVEP paradigm. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. An Asynchronous P300 BCI With SSVEP-Based Control State Detection

    DEFF Research Database (Denmark)

    Panicker, Rajesh C.; Puthusserypady, Sadasivan; Sun, Ying

    2011-01-01

    In this paper, an asynchronous brain–computer interface (BCI) system combining the P300 and steady-state visually evoked potentials (SSVEPs) paradigms is proposed. The information transfer is accomplished using P300 event-related potential paradigm and the control state (CS) detection is achieved...

  14. Evolution of the Brain Computing Interface (BCI and Proposed Electroencephalography (EEG Signals Based Authentication Model

    Directory of Open Access Journals (Sweden)

    Ramzan Qaseem

    2018-01-01

    Full Text Available With current advancements in the field of Brain Computer interface it is required to study how it will affect the other technologies currently in use. In this paper, the authors motivate the need of Brain Computing Interface in the era of IoT (Internet of Things, and analyze how BCI in the presence of IoT could have serious privacy breach if not protected by new kind of more secure protocols. Security breach and hacking has been around for a long time but now we are sensitive towards data as our lives depend on it. When everything is interconnected through IoT and considering that we control all interconnected things by means of our brain using BCI (Brain Computer Interface, the meaning of security breach becomes much more sensitive than in the past. This paper describes the old security methods being used for authentication and how they can be compromised. Considering the sensitivity of data in the era of IoT, a new form of authentication is required, which should incorporate BCI rather than usual authentication techniques.

  15. Low power digital communication in implantable devices using volume conduction of biological tissues.

    Science.gov (United States)

    Yao, Ning; Lee, Heung-No; Sclabassi, R J; Sun, Mingui

    2006-01-01

    This work investigates the data communication problem of implantable devices using fundamental theories in communications. We utilize the volume conduction property of biological tissues to establish a digital communications link. Data obtained through animal experiments are used to analyze the time and frequency response of the volume conduction channel as well as to characterize the biological signals and noises present in the system. A low power bandwidth efficient channel-coded modulation scheme is proposed to conserve battery power and reduce the health risks associated.

  16. Light on! Real world evaluation of a P300-based brain-computer interface (BCI) for environment control in a smart home.

    Science.gov (United States)

    Carabalona, Roberta; Grossi, Ferdinando; Tessadri, Adam; Castiglioni, Paolo; Caracciolo, Antonio; de Munari, Ilaria

    2012-01-01

    Brain-computer interface (BCI) systems aim to enable interaction with other people and the environment without muscular activation by the exploitation of changes in brain signals due to the execution of cognitive tasks. In this context, the visual P300 potential appears suited to control smart homes through BCI spellers. The aim of this work is to evaluate whether the widely used character-speller is more sustainable than an icon-based one, designed to operate smart home environment or to communicate moods and needs. Nine subjects with neurodegenerative diseases and no BCI experience used both speller types in a real smart home environment. User experience during BCI tasks was evaluated recording concurrent physiological signals. Usability was assessed for each speller type immediately after use. Classification accuracy was lower for the icon-speller, which was also more attention demanding. However, in subjective evaluations, the effect of a real feedback partially counterbalanced the difficulty in BCI use. Since inclusive BCIs require to consider interface sustainability, we evaluated different ergonomic aspects of the interaction of disabled users with a character-speller (goal: word spelling) and an icon-speller (goal: operating a real smart home). We found the first one as more sustainable in terms of accuracy and cognitive effort.

  17. Design and simulation of virtual telephone keypad control based on brain computer interface (BCI with very high transfer rates

    Directory of Open Access Journals (Sweden)

    Rehab B. Ashari

    2011-03-01

    Full Text Available Brain Computer Interface (BCI is a communication and control mechanism, which does not rely on any kind of muscular response to send a message to the external world. This technique is used to help the paralyzed people with spinal cord injury to have the ability to communicate with the external world. In this paper we emphasize to increase the BCI System bit rate for controlling a virtual telephone keypad. To achieve the proposed algorithm, a simulated virtual telephone keypad based on Steady State Visual Evoked Potential (SSVEP BCI system is developed. Dynamic programming technique with specifically modified Longest Common Subsequence (LCS algorithm is used. By comparing the paralyzed user selection with the recent, and then the rest, of the stored records in the file of the telephone, the user can save the rest of his choices for controlling the keypad and thence improving the overall performance of the BCI system. This axiomatic approach, which is used in searching the web pages for increasing the performance of the searching, is urgent to be used for the paralyzed people rather than the normal user.

  18. Maps managing interface design for a mobile robot navigation governed by a BCI

    International Nuclear Information System (INIS)

    Auat Cheein, Fernando A; Carelli, Ricardo; Celeste, Wanderley Cardoso; Freire Bastos, Teodiano; Di Sciascio, Fernando

    2007-01-01

    In this paper, a maps managing interface is proposed. This interface is governed by a Brain Computer Interface (BCI), which also governs a mobile robot's movements. If a robot is inside a known environment, the user can load a map from the maps managing interface in order to navigate it. Otherwise, if the robot is in an unknown environment, a Simultaneous Localization and Mapping (SLAM) algorithm is released in order to obtain a probabilistic grid map of that environment. Then, that map is loaded into the map database for future navigations. While slamming, the user has a direct control of the robot's movements via the BCI. The complete system is applied to a mobile robot and can be also applied to an autonomous wheelchair, which has the same kinematics. Experimental results are also shown

  19. Emotiv EPOC BCI with Python on a Raspberry pi

    OpenAIRE

    Patrón, José Salgado; Monje, Cristian Raúl Barrera

    2015-01-01

    The hybrid Brain-Computer Interface [BCI] system gives an insight on the development of useful interfaces for users with different backgrounds, from medical applications to video games, where standalone and wearable means accessibility for the user. Systems such as EPOC offers a simple solution for acquiring electroencephalography and electromyography signals with low price and fast setup, compared to high tech medical equipment. From the processing point of view, a computer always offers the...

  20. An experimental model of an indigenous BCI based system to help disabled people to communicate

    Science.gov (United States)

    Kabir, Kazi Sadman; Rahman, Chowdhury M. Abid; Farayez, Araf; Ferdous, Mahbuba

    2017-12-01

    In this paper a Brain Computer Interface (BCI) system has been proposed to help patients suffering from motor disease, paralysis or locked in syndrome to communicate via eye blinking. In this proposed BCI system EEG data is fetched by NeuroSky Headset and then analyzed by the help of WPF (Windows Presentation Foundation) based serial monitor to detect the EEG signal when the eye gives a blink. This detection of eye blinking can be used to select predefined texts and those texts can be converted to speech. The experimental result shows that this system can be used as an effective and efficient tool to communicate through brain.

  1. Spatial Filter Feature Extraction Methods for P300 BCI Speller: A Comparison

    DEFF Research Database (Denmark)

    Chiou, Eleni; Puthusserypady, Sadasivan

    2017-01-01

    Brain Computer Interface (BCI) systems enable subjects affected by neuromuscular disorders to interact with the outside world. A P300 speller uses Event Related Potential (ERP) components, generated in the brain in the presence of a target stimulus, to extract information about the user’s intent...

  2. Maps managing interface design for a mobile robot navigation governed by a BCI

    Energy Technology Data Exchange (ETDEWEB)

    Auat Cheein, Fernando A [Institute of Automatic, National University of San Juan. San Martin, 1109 - Oeste 5400 San Juan (Argentina); Carelli, Ricardo [Institute of Automatic, National University of San Juan. San Martin, 1109 - Oeste 5400 San Juan (Argentina); Celeste, Wanderley Cardoso [Electrical Engineering Department, Federal University of Espirito Santo. Fernando Ferrari, 514 29075-910 Vitoria-ES (Brazil); Freire Bastos, Teodiano [Electrical Engineering Department, Federal University of Espirito Santo. Fernando Ferrari, 514 29075-910 Vitoria-ES (Brazil); Di Sciascio, Fernando [Institute of Automatic, National University of San Juan. San Martin, 1109 - Oeste 5400 San Juan (Argentina)

    2007-11-15

    In this paper, a maps managing interface is proposed. This interface is governed by a Brain Computer Interface (BCI), which also governs a mobile robot's movements. If a robot is inside a known environment, the user can load a map from the maps managing interface in order to navigate it. Otherwise, if the robot is in an unknown environment, a Simultaneous Localization and Mapping (SLAM) algorithm is released in order to obtain a probabilistic grid map of that environment. Then, that map is loaded into the map database for future navigations. While slamming, the user has a direct control of the robot's movements via the BCI. The complete system is applied to a mobile robot and can be also applied to an autonomous wheelchair, which has the same kinematics. Experimental results are also shown.

  3. First clinical experiences with an implantable bone conduction hearing aid at the University of Amsterdam

    NARCIS (Netherlands)

    van der Hulst, R. J.; Dreschler, W. A.; Tange, R. A.

    1993-01-01

    A transcutaneous bone-conduction hearing aid was implanted in 11 patients who were not suitable for transcranial sound amplification. Audiological and surgical selection criteria were followed strictly. One device had to be explanted and minor revision surgery was needed in two cases for skin

  4. Active Bio-sensor System, Compatible with Arm Muscle Movement or Blinking Signals in BCI Application

    Directory of Open Access Journals (Sweden)

    Saeid Mehrkanoon

    2008-05-01

    Full Text Available This paper addresses a bionic active sensor system for the BCI application. Proposed system involves analog and digital parts. Two types of accurate sensors are used to pickup the blinking and muscle movement signals. A precision micro-power instrumentation amplifier with the adjustable gain, a sixth order low pass active filter with cutoff frequency 0.1 Hz, and a sixth order band pas filter with the bandwidth of 2-6 Hz are constructed to provide the clean blinking and arm muscle movement signals. TMS320C25 DSP processor is used for independent and unique command signals which are prepared for BCI application by a power amplifier and driver.

  5. Evaluation of long-term patient satisfaction and experience with the Baha(®) bone conduction implant

    DEFF Research Database (Denmark)

    Rasmussen, Jacob; Olsen, Steen Østergaard; Nielsen, Lars Holme

    2012-01-01

    Objective: Evaluate long-term patient satisfaction with bone-anchored hearing aids (the Baha(R), now referred to by Cochlear as a 'bone conduction implant') in our hospital clinic spanning the eighteen-year period from the inception of our Baha program. The researchers further wished to analyse t...

  6. Design of an EEG-based brain-computer interface (BCI) from standard components running in real-time under Windows.

    Science.gov (United States)

    Guger, C; Schlögl, A; Walterspacher, D; Pfurtscheller, G

    1999-01-01

    An EEG-based brain-computer interface (BCI) is a direct connection between the human brain and the computer. Such a communication system is needed by patients with severe motor impairments (e.g. late stage of Amyotrophic Lateral Sclerosis) and has to operate in real-time. This paper describes the selection of the appropriate components to construct such a BCI and focuses also on the selection of a suitable programming language and operating system. The multichannel system runs under Windows 95, equipped with a real-time Kernel expansion to obtain reasonable real-time operations on a standard PC. Matlab controls the data acquisition and the presentation of the experimental paradigm, while Simulink is used to calculate the recursive least square (RLS) algorithm that describes the current state of the EEG in real-time. First results of the new low-cost BCI show that the accuracy of differentiating imagination of left and right hand movement is around 95%.

  7. Motor imagery based brain-computer interfaces: An emerging technology to rehabilitate motor deficits.

    Science.gov (United States)

    Alonso-Valerdi, Luz Maria; Salido-Ruiz, Ricardo Antonio; Ramirez-Mendoza, Ricardo A

    2015-12-01

    When the sensory-motor integration system is malfunctioning provokes a wide variety of neurological disorders, which in many cases cannot be treated with conventional medication, or via existing therapeutic technology. A brain-computer interface (BCI) is a tool that permits to reintegrate the sensory-motor loop, accessing directly to brain information. A potential, promising and quite investigated application of BCI has been in the motor rehabilitation field. It is well-known that motor deficits are the major disability wherewith the worldwide population lives. Therefore, this paper aims to specify the foundation of motor rehabilitation BCIs, as well as to review the recent research conducted so far (specifically, from 2007 to date), in order to evaluate the suitability and reliability of this technology. Although BCI for post-stroke rehabilitation is still in its infancy, the tendency is towards the development of implantable devices that encompass a BCI module plus a stimulation system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Comparison of single and mixed ion implantation effects on the changes of the surface hardness, light transmittance, and electrical conductivity of polymeric materials

    International Nuclear Information System (INIS)

    Park, J. W.; Lee, J. H.; Lee, J. S.; Kil, J. G.; Choi, B. H.; Han, Z. H.

    2001-01-01

    Single or mixed ions of N, He, C were implanted onto the transparent PET(Polyethylen Terephtalate) with the ion energies of less than 100 keV and the surface hardness, light transmittance and electrical conductivity were examined. As measured with nanoindentation, mixed ion implantations such as N + +He + or N + + C + exhibited more increase in the surface hardness than the single ion implantation. Especially, implantation of C+N ions increased the surface hardness by about three times as compared to the implantation of N ion alone, which means more than 10 times increase than the untreated PET. Surface electrical conductivity was increased along with the hardness increase. The conductivity increase was more proportional to the hardness when used the higher ion energy and ion dose, while it did not show any relationship at as low as 50 keV of ion energy. The light at the 550 nm wavelength (visual range) transmitted more than 85%, which is close to that of as-received PET, and at the wavelength below 300 nm(UV range) the rays were absorbed more than 95% as traveling through the sheet, implying that there are processing parameters which the ion implanted PET maintains the transparency and absorbs the UV rays

  9. An on-line BCI for control of hand grasp sequence and holding using adaptive probabilistic neural network.

    Science.gov (United States)

    Hazrati, Mehrnaz Kh; Erfanian, Abbas

    2008-01-01

    This paper presents a new EEG-based Brain-Computer Interface (BCI) for on-line controlling the sequence of hand grasping and holding in a virtual reality environment. The goal of this research is to develop an interaction technique that will allow the BCI to be effective in real-world scenarios for hand grasp control. Moreover, for consistency of man-machine interface, it is desirable the intended movement to be what the subject imagines. For this purpose, we developed an on-line BCI which was based on the classification of EEG associated with imagination of the movement of hand grasping and resting state. A classifier based on probabilistic neural network (PNN) was introduced for classifying the EEG. The PNN is a feedforward neural network that realizes the Bayes decision discriminant function by estimating probability density function using mixtures of Gaussian kernels. Two types of classification schemes were considered here for on-line hand control: adaptive and static. In contrast to static classification, the adaptive classifier was continuously updated on-line during recording. The experimental evaluation on six subjects on different days demonstrated that by using the static scheme, a classification accuracy as high as the rate obtained by the adaptive scheme can be achieved. At the best case, an average classification accuracy of 93.0% and 85.8% was obtained using adaptive and static scheme, respectively. The results obtained from more than 1500 trials on six subjects showed that interactive virtual reality environment can be used as an effective tool for subject training in BCI.

  10. CT pre-operative planning of a new semi-implantable bone conduction hearing device

    Energy Technology Data Exchange (ETDEWEB)

    Law, Eric K.C.; Bhatia, Kunwar S.S. [Prince of Wales Hospital, The Chinese University of Hong Kong, Department of Imaging and Interventional Radiology, Hong Kong, SAR (China); Tsang, Willis S.S.; Tong, Michael C.F. [Prince of Wales Hospital, The Chinese University of Hong Kong, Department of Otorhinolaryngology, Head and Neck Surgery, Hong Kong, SAR (China); Shi, Lin [The Chinese University of Hong Kong, Department of Medicine and Therapeutics, Hong Kong, SAR (China); The Chinese University of Hong Kong, Chow Yuk Ho Technology Center for Innovative Medicine, Hong Kong, SAR (China)

    2016-06-15

    Accommodating a novel semi-implantable bone conduction hearing device within the temporal bone presents challenges for surgical planning. This study describes the utility of CT in pre-operative assessment of such an implant. Retrospective review of pre-operative CT, clinical and surgical records of 16 adults considered for device implantation. Radiological suitability was assessed on CT using 3D simulation software. Antero-posterior (AP) dimensions of the mastoid bone and minimum skull thickness were measured. CT planning results were correlated with operative records. Eight and five candidates were suitable for device placement in the transmastoid and retrosigmoid positions, respectively, and three were radiologically unsuitable. The mean AP diameter of the mastoid cavity was 14.6 mm for the transmastoid group and 4.6 mm for the retrosigmoid group (p < 0.05). Contracted mastoid and/or prior surgery were predisposing factors for unsuitability. Four transmastoid and five retrosigmoid positions required sigmoid sinus/dural depression and/or use of lifts due to insufficient bone capacity. A high proportion of patients being considered have contracted or operated mastoids, which reduces the feasibility of the transmastoid approach. This finding combined with the complex temporal bone geometry illustrates the importance of careful CT evaluation using 3D software for precise device simulation. (orig.)

  11. Single Versus Multiple Events Error Potential Detection in a BCI-Controlled Car Game With Continuous and Discrete Feedback.

    Science.gov (United States)

    Kreilinger, Alex; Hiebel, Hannah; Müller-Putz, Gernot R

    2016-03-01

    This work aimed to find and evaluate a new method for detecting errors in continuous brain-computer interface (BCI) applications. Instead of classifying errors on a single-trial basis, the new method was based on multiple events (MEs) analysis to increase the accuracy of error detection. In a BCI-driven car game, based on motor imagery (MI), discrete events were triggered whenever subjects collided with coins and/or barriers. Coins counted as correct events, whereas barriers were errors. This new method, termed ME method, combined and averaged the classification results of single events (SEs) and determined the correctness of MI trials, which consisted of event sequences instead of SEs. The benefit of this method was evaluated in an offline simulation. In an online experiment, the new method was used to detect erroneous MI trials. Such MI trials were discarded and could be repeated by the users. We found that, even with low SE error potential (ErrP) detection rates, feasible accuracies can be achieved when combining MEs to distinguish erroneous from correct MI trials. Online, all subjects reached higher scores with error detection than without, at the cost of longer times needed for completing the game. Findings suggest that ErrP detection may become a reliable tool for monitoring continuous states in BCI applications when combining MEs. This paper demonstrates a novel technique for detecting errors in online continuous BCI applications, which yields promising results even with low single-trial detection rates.

  12. Anisotropy of electrical conductivity in dc due to intrinsic defect formation in α-Al{sub 2}O{sub 3} single crystal implanted with Mg ions

    Energy Technology Data Exchange (ETDEWEB)

    Tardío, M., E-mail: mtardio@fis.uc3m.es [Departamento de Física, Escuela Politécnica Superior, Universidad Carlos III, Avda. de la Universidad, 30, 28911 Leganés (Madrid) (Spain); Egaña, A.; Ramírez, R.; Muñoz-Santiuste, J.E. [Departamento de Física, Escuela Politécnica Superior, Universidad Carlos III, Avda. de la Universidad, 30, 28911 Leganés (Madrid) (Spain); Alves, E. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela (Portugal)

    2016-07-15

    The electrical conductivity in α-Al{sub 2}O{sub 3} single crystals implanted with Mg ions in two different crystalline orientations, parallel and perpendicular to c axis, was investigated. The samples were implanted at room temperature with energies of 50 and 100 keV and fluences of 1 × 10{sup 15}, 5 × 10{sup 15} and 5 × 10{sup 16} ions/cm{sup 2}. Optical characterization reveals slight differences in the absorption bands at 6.0 and 4.2 eV, attributed to F type centers and Mie scattering from Mg precipitates, respectively. DC electrical measurements using the four and two-point probe methods, between 295 and 490 K, were used to characterize the electrical conductivity of the implanted area (Meshakim and Tanabe, 2001). Measurements in this temperature range indicate that: (1) the electrical conductivity is thermally activated independently of crystallographic orientation, (2) resistance values in the implanted region decrease with fluence levels, and (3) the I–V characteristic of electrical contacts in samples with perpendicular c axis orientation is clearly ohmic, whereas contacts are blocking in samples with parallel c axis. When thin layers are sequentially removed from the implanted region by immersing the sample in a hot solution of nitric and fluorhydric acids the electrical resistance increases until reaching the values of non-implanted crystal (Jheeta et al., 2006). We conclude that the enhancement in conductivity observed in the implanted regions is related to the intrinsic defects created by the implantation rather than to the implanted Mg ions (da Silva et al., 2002; Tardío et al., 2001; Tardío et al., 2008).

  13. Performance evaluation of a motor-imagery-based EEG-Brain computer interface using a combined cue with heterogeneous training data in BCI-Naive subjects

    Directory of Open Access Journals (Sweden)

    Lee Youngbum

    2011-10-01

    Full Text Available Abstract Background The subjects in EEG-Brain computer interface (BCI system experience difficulties when attempting to obtain the consistent performance of the actual movement by motor imagery alone. It is necessary to find the optimal conditions and stimuli combinations that affect the performance factors of the EEG-BCI system to guarantee equipment safety and trust through the performance evaluation of using motor imagery characteristics that can be utilized in the EEG-BCI testing environment. Methods The experiment was carried out with 10 experienced subjects and 32 naive subjects on an EEG-BCI system. There were 3 experiments: The experienced homogeneous experiment, the naive homogeneous experiment and the naive heterogeneous experiment. Each experiment was compared in terms of the six audio-visual cue combinations and consisted of 50 trials. The EEG data was classified using the least square linear classifier in case of the naive subjects through the common spatial pattern filter. The accuracy was calculated using the training and test data set. The p-value of the accuracy was obtained through the statistical significance test. Results In the case in which a naive subject was trained by a heterogeneous combined cue and tested by a visual cue, the result was not only the highest accuracy (p Conclusions We propose the use of this measuring methodology of a heterogeneous combined cue for training data and a visual cue for test data by the typical EEG-BCI algorithm on the EEG-BCI system to achieve effectiveness in terms of consistence, stability, cost, time, and resources management without the need for a trial and error process.

  14. Comparison Study of Percutaneous Osseointegrated Bone Conduction Device Complications When Using the 9 mm Abutment Versus 6 mm Abutment at Initial Implantation.

    Science.gov (United States)

    Wise, Sean R; LaRouere, Jacqueline S; Bojrab, Dennis I; LaRouere, Michael J

    2018-04-01

    To assess differences in the incidence, type, and management of complications encountered with implantation of percutaneous osseointegrated bone conduction devices when using a 9 mm abutment versus 6 mm abutment at initial implantation. Retrospective cohort study. One hundred thirty consecutive patients between January 2010 and December 2011 underwent single-stage percutaneous osseointegrated bone conduction device implantation using a 9 or 6 mm abutment. Clinical outcomes assessed for the two groups included the incidence, type, and management of postoperative complications. Abutment size, age, sex, indication for surgery, implant device type, duration of follow-up, and patient comorbidities were evaluated as potential factors affecting outcomes. Average duration of follow-up was 16 months (range 6-29 mo). Postoperative complications occurred in 38 (29.2%) patients. Twenty-four (18.4%) patients experienced minor complications requiring simple, local care; eight (6.1%) patients required in-office procedural intervention; and six (4.6%) patients required revision surgery in the operating room. Implant extrusion occurred in three (2.3%) patients. Eleven (8.5%) patients required placement of a longer abutment. Patients receiving the 6 mm abutment at initial surgery were significantly more likely to encounter a complication requiring in-office procedural intervention or revision surgery (p = 0.001). Minor complications after implantation of percutaneous osseointegrated bone conduction devices are common. The vast majority of these complications are due to localized skin reactions, most of which are readily addressed through local care. Patients receiving the 9 mm abutment during initial implantation are significantly less likely to require in-office procedural intervention or revision surgery postoperatively as compared with those receiving the shorter, 6 mm abutment.

  15. A chemically stable electrolyte with a novel sandwiched structure for proton-conducting solid oxide fuel cells (SOFCs)

    KAUST Repository

    Bi, Lei

    2013-11-01

    A chemically stable electrolyte structure was developed for proton-conducting SOFCs by using two layers of stable BaZr0.7Pr 0.1Y0.2O3 -δ to sandwich a highly-conductive but unstable BaCe0.8Y0.2O 3 -δ electrolyte layer. The sandwiched electrolyte structure showed good chemical stability in both CO2 and H2O atmosphere, indicating that the BZPY layers effectively protect the inner BCY electrolyte, while the BCY electrolyte alone decomposed completely under the same conditions. Fuel cell prototypes fabricated with the sandwiched electrolyte achieved a relatively high performance of 185 mW cm- 2 at 700 C, with a high electrolyte film conductivity of 4 × 10- 3 S cm- 1 at 600 C. © 2013 Elsevier B.V.

  16. Time-frequency analysis of band-limited EEG with BMFLC and Kalman filter for BCI applications

    Science.gov (United States)

    2013-01-01

    Background Time-Frequency analysis of electroencephalogram (EEG) during different mental tasks received significant attention. As EEG is non-stationary, time-frequency analysis is essential to analyze brain states during different mental tasks. Further, the time-frequency information of EEG signal can be used as a feature for classification in brain-computer interface (BCI) applications. Methods To accurately model the EEG, band-limited multiple Fourier linear combiner (BMFLC), a linear combination of truncated multiple Fourier series models is employed. A state-space model for BMFLC in combination with Kalman filter/smoother is developed to obtain accurate adaptive estimation. By virtue of construction, BMFLC with Kalman filter/smoother provides accurate time-frequency decomposition of the bandlimited signal. Results The proposed method is computationally fast and is suitable for real-time BCI applications. To evaluate the proposed algorithm, a comparison with short-time Fourier transform (STFT) and continuous wavelet transform (CWT) for both synthesized and real EEG data is performed in this paper. The proposed method is applied to BCI Competition data IV for ERD detection in comparison with existing methods. Conclusions Results show that the proposed algorithm can provide optimal time-frequency resolution as compared to STFT and CWT. For ERD detection, BMFLC-KF outperforms STFT and BMFLC-KS in real-time applicability with low computational requirement. PMID:24274109

  17. Control or non-control state: that is the question! An asynchronous visual P300-based BCI approach

    Science.gov (United States)

    Pinegger, Andreas; Faller, Josef; Halder, Sebastian; Wriessnegger, Selina C.; Müller-Putz, Gernot R.

    2015-02-01

    Objective. Brain-computer interfaces (BCI) based on event-related potentials (ERP) were proven to be a reliable synchronous communication method. For everyday life situations, however, this synchronous mode is impractical because the system will deliver a selection even if the user is not paying attention to the stimulation. So far, research into attention-aware visual ERP-BCIs (i.e., asynchronous ERP-BCIs) has led to variable success. In this study, we investigate new approaches for detection of user engagement. Approach. Classifier output and frequency-domain features of electroencephalogram signals as well as the hybridization of them were used to detect the user's state. We tested their capabilities for state detection in different control scenarios on offline data from 21 healthy volunteers. Main results. The hybridization of classifier output and frequency-domain features outperformed the results of the single methods, and allowed building an asynchronous P300-based BCI with an average correct state detection accuracy of more than 95%. Significance. Our results show that all introduced approaches for state detection in an asynchronous P300-based BCI can effectively avoid involuntary selections, and that the hybrid method is the most effective approach.

  18. Systematic review: a review of adolescent behavior change interventions [BCI] and their effectiveness in HIV and AIDS prevention in sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    M. Mwale

    2017-09-01

    Full Text Available Abstract Background Despite sub-Saharan Africa [SSA] constituting just 12% of the world’s population, the region has the highest burden of HIV with 70% of HIV infection in general and 80% of new infections among young people occuring in the region. Diverse intervention programmes have been implemented among young people but with minimal translation to behavior change. A systematic review of Behavior Change Interventions [BCI] targeting adolescents in SSA was therefore conducted with the objective of delineating this intervention vis-a-vis efficacy gap. Methods From April to July 2015 searches were made from different journals online. Databases searched included MEDLINE, EBSCOhost, PsychINFO, Cochrane, and Google Scholar; Cambridge and Oxford journal websites, UNAIDS and WHO for studies published between 2000 and 2015. After excluding other studies by review of titles and then abstracts, the studies were reduced to 17. Three of these were randomized trials and five quasi-experimental. Overall interventions included those prescribing life skills, peer education [n = 6] and community collaborative programmes. The main study protocol was approved by the University of Malawi College of Medicine Ethics Committee on 30th June 2016 [ref #: P.01/16/1847. The review was registered with PROSPERO [NIH] in 2015. Results The review yielded some 200 titles and abstracts, 20 full text articles were critically analysed and 17 articles reviewed reflecting a dearth in published studies in the area of psychosocial BCI interventions targeting adolescents in SSA. Results show that a number of reviewed interventions [n = 8] registered positive outcomes in both knowledge and sexual practices. Conclusions The review demonstrates a paucity of psychosocial BCI studies targeting adolescents in SSA. There are however mixed findings about the effectiveness of psychosocial BCI targeting adolescents in SSA. Other studies portray intervention effectiveness and others

  19. Gaze-independent BCI-spelling using rapid serial visual presentation (RSVP).

    Science.gov (United States)

    Acqualagna, Laura; Blankertz, Benjamin

    2013-05-01

    A Brain Computer Interface (BCI) speller is a communication device, which can be used by patients suffering from neurodegenerative diseases to select symbols in a computer application. For patients unable to overtly fixate the target symbol, it is crucial to develop a speller independent of gaze shifts. In the present online study, we investigated rapid serial visual presentation (RSVP) as a paradigm for mental typewriting. We investigated the RSVP speller in three conditions, regarding the Stimulus Onset Asynchrony (SOA) and the use of color features. A vocabulary of 30 symbols was presented one-by-one in a pseudo random sequence at the same location of display. All twelve participants were able to successfully operate the RSVP speller. The results show a mean online spelling rate of 1.43 symb/min and a mean symbol selection accuracy of 94.8% in the best condition. We conclude that the RSVP is a promising paradigm for BCI spelling and its performance is competitive with the fastest gaze-independent spellers in literature. The RSVP speller does not require gaze shifts towards different target locations and can be operated by non-spatial visual attention, therefore it can be considered as a valid paradigm in applications with patients for impaired oculo-motor control. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. The SSVEP-Based BCI Text Input System Using Entropy Encoding Algorithm

    Directory of Open Access Journals (Sweden)

    Yeou-Jiunn Chen

    2015-01-01

    Full Text Available The so-called amyotrophic lateral sclerosis (ALS or motor neuron disease (MND is a neurodegenerative disease with various causes. It is characterized by muscle spasticity, rapidly progressive weakness due to muscle atrophy, and difficulty in speaking, swallowing, and breathing. The severe disabled always have a common problem that is about communication except physical malfunctions. The steady-state visually evoked potential based brain computer interfaces (BCI, which apply visual stimulus, are very suitable to play the role of communication interface for patients with neuromuscular impairments. In this study, the entropy encoding algorithm is proposed to encode the letters of multilevel selection interface for BCI text input systems. According to the appearance frequency of each letter, the entropy encoding algorithm is proposed to construct a variable-length tree for the letter arrangement of multilevel selection interface. Then, the Gaussian mixture models are applied to recognize electrical activity of the brain. According to the recognition results, the multilevel selection interface guides the subject to spell and type the words. The experimental results showed that the proposed approach outperforms the baseline system, which does not consider the appearance frequency of each letter. Hence, the proposed approach is able to ease text input interface for patients with neuromuscular impairments.

  1. Using ELM-based weighted probabilistic model in the classification of synchronous EEG BCI.

    Science.gov (United States)

    Tan, Ping; Tan, Guan-Zheng; Cai, Zi-Xing; Sa, Wei-Ping; Zou, Yi-Qun

    2017-01-01

    Extreme learning machine (ELM) is an effective machine learning technique with simple theory and fast implementation, which has gained increasing interest from various research fields recently. A new method that combines ELM with probabilistic model method is proposed in this paper to classify the electroencephalography (EEG) signals in synchronous brain-computer interface (BCI) system. In the proposed method, the softmax function is used to convert the ELM output to classification probability. The Chernoff error bound, deduced from the Bayesian probabilistic model in the training process, is adopted as the weight to take the discriminant process. Since the proposed method makes use of the knowledge from all preceding training datasets, its discriminating performance improves accumulatively. In the test experiments based on the datasets from BCI competitions, the proposed method is compared with other classification methods, including the linear discriminant analysis, support vector machine, ELM and weighted probabilistic model methods. For comparison, the mutual information, classification accuracy and information transfer rate are considered as the evaluation indicators for these classifiers. The results demonstrate that our method shows competitive performance against other methods.

  2. P300-based brain-computer interface (BCI) event-related potentials (ERPs): People with amyotrophic lateral sclerosis (ALS) vs. age-matched controls.

    Science.gov (United States)

    McCane, Lynn M; Heckman, Susan M; McFarland, Dennis J; Townsend, George; Mak, Joseph N; Sellers, Eric W; Zeitlin, Debra; Tenteromano, Laura M; Wolpaw, Jonathan R; Vaughan, Theresa M

    2015-11-01

    Brain-computer interfaces (BCIs) aimed at restoring communication to people with severe neuromuscular disabilities often use event-related potentials (ERPs) in scalp-recorded EEG activity. Up to the present, most research and development in this area has been done in the laboratory with young healthy control subjects. In order to facilitate the development of BCI most useful to people with disabilities, the present study set out to: (1) determine whether people with amyotrophic lateral sclerosis (ALS) and healthy, age-matched volunteers (HVs) differ in the speed and accuracy of their ERP-based BCI use; (2) compare the ERP characteristics of these two groups; and (3) identify ERP-related factors that might enable improvement in BCI performance for people with disabilities. Sixteen EEG channels were recorded while people with ALS or healthy age-matched volunteers (HVs) used a P300-based BCI. The subjects with ALS had little or no remaining useful motor control (mean ALS Functional Rating Scale-Revised 9.4 (±9.5SD) (range 0-25)). Each subject attended to a target item as the items in a 6×6 visual matrix flashed. The BCI used a stepwise linear discriminant function (SWLDA) to determine the item the user wished to select (i.e., the target item). Offline analyses assessed the latencies, amplitudes, and locations of ERPs to the target and non-target items for people with ALS and age-matched control subjects. BCI accuracy and communication rate did not differ significantly between ALS users and HVs. Although ERP morphology was similar for the two groups, their target ERPs differed significantly in the location and amplitude of the late positivity (P300), the amplitude of the early negativity (N200), and the latency of the late negativity (LN). The differences in target ERP components between people with ALS and age-matched HVs are consistent with the growing recognition that ALS may affect cortical function. The development of BCIs for use by this population may begin

  3. Conduction Abnormalities and Permanent Pacemaker Implantation After Transcatheter Aortic Valve Replacement Using the Repositionable LOTUS Device: The United Kingdom Experience.

    Science.gov (United States)

    Rampat, Rajiv; Khawaja, M Zeeshan; Hilling-Smith, Roland; Byrne, Jonathan; MacCarthy, Philip; Blackman, Daniel J; Krishnamurthy, Arvindra; Gunarathne, Ashan; Kovac, Jan; Banning, Adrian; Kharbanda, Raj; Firoozi, Sami; Brecker, Stephen; Redwood, Simon; Bapat, Vinayak; Mullen, Michael; Aggarwal, Suneil; Manoharan, Ganesh; Spence, Mark S; Khogali, Saib; Dooley, Maureen; Cockburn, James; de Belder, Adam; Trivedi, Uday; Hildick-Smith, David

    2017-06-26

    The authors report the incidence of pacemaker implantation up to hospital discharge and the factors influencing pacing rate following implantation of the LOTUS bioprosthesis (Boston Scientific, Natick, Massachusetts) in the United Kingdom. Transcatheter aortic valve replacement (TAVR) is associated with a significant need for permanent pacemaker implantation. Pacing rates vary according to the device used. The REPRISE II (Repositionable Percutaneous Replacement of Stenotic Aortic Valve Through Implantation of Lotus Valve System) trial reported a pacing rate of 29% at 30 days after implantation of the LOTUS device. Data were collected retrospectively on 228 patients who had the LOTUS device implanted between March 2013 and February 2015 across 10 centers in the United Kingdom. Twenty-seven patients (12%) had pacemakers implanted pre-procedure and were excluded from the analysis. Patients were aged 81.2 ± 7.7 years; 50.7% were male. The mean pre-procedural QRS duration was 101.7 ± 20.4 ms. More than one-half of the cohort (n = 111, 55%) developed new left bundle branch block (LBBB) following the procedure. Permanent pacemakers were implanted in 64 patients (32%) with a median time to insertion of 3.0 ± 3.4 days. Chief indications for pacing were atrioventricular (AV) block (n = 46, 72%), or LBBB with 1st degree AV block (n = 11, 17%). Amongst those who received a pacemaker following TAVR the pre-procedural electrocardiogram findings included: No conduction disturbance (n = 41, 64%); 1st degree AV block (n = 10, 16%); right bundle branch block (n = 6, 9%) and LBBB (n = 5, 8%). LBBB (but not permanent pacemaker) occurred more frequently in patients who had balloon aortic valvuloplasty before TAVR (odds ratio [OR]: 1.25; p = 0.03). Pre-procedural conduction abnormality (composite of 1st degree AV block, hemiblock, right bundle branch block, LBBB) was independently associated with the need for permanent pacemaker (OR: 2.54; p = 0.048). The absence of

  4. Control of Brain Activity in hMT+/V5 at Three Response Levels Using fMRI-Based Neurofeedback/BCI.

    Science.gov (United States)

    Sousa, Teresa; Direito, Bruno; Lima, João; Ferreira, Carlos; Nunes, Urbano; Castelo-Branco, Miguel

    2016-01-01

    A major challenge in brain-computer interface (BCI) research is to increase the number of command classes and levels of control. BCI studies often use binary control level approaches (level 0 and 1 of brain activation for each class of control). Different classes may often be achieved but not different levels of activation for the same class. The increase in the number of levels of control in BCI applications may allow for larger efficiency in neurofeedback applications. In this work we test the hypothesis whether more than two modulation levels can be achieved in a single brain region, the hMT+/V5 complex. Participants performed three distinct imagery tasks during neurofeedback training: imagery of a stationary dot, imagery of a dot with two opposing motions in the vertical axis and imagery of a dot with four opposing motions in vertical or horizontal axes (imagery of 2 or 4 motion directions). The larger the number of motion alternations, the higher the expected hMT+/V5 response. A substantial number (17 of 20) of participants achieved successful binary level of control and 12 were able to reach even 3 significant levels of control within the same session, confirming the whole group effects at the individual level. With this simple approach we suggest that it is possible to design a parametric system of control based on activity modulation of a specific brain region with at least 3 different levels. Furthermore, we show that particular imagery task instructions, based on different number of motion alternations, provide feasible achievement of different control levels in BCI and/or neurofeedback applications.

  5. Evaluación experimental y estadística de un prototipo de interfaz cerebro-computador (ICC) [Experimental and statistical evaluation of a brain-computer interface (BCI) prototype

    NARCIS (Netherlands)

    Arcos Argoty, J.; Garcia Cossio, E.; Torres Villa, R.A.

    2010-01-01

    Abstract: Nowadays, brain-computer interfaces (BCI) are designed to be used in experimental and clinical studies, and their results allow the creation of new assistive technologies for people with motor disabilities. In 2008, a prototype of a BCI was developed in the School of Engineering of

  6. Optical and electronic properties of sub-surface conducting layers in diamond created by MeV B-implantation at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Willems van Beveren, L. H., E-mail: laurensw@unimelb.edu.au; Bowers, H.; Ganesan, K.; Johnson, B. C.; McCallum, J. C.; Prawer, S. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Liu, R. [SIMS Facility, Office of the Deputy-Vice Chancellor (Research and Development) Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751 (Australia)

    2016-06-14

    Boron implantation with in-situ dynamic annealing is used to produce highly conductive sub-surface layers in type IIa (100) diamond plates for the search of a superconducting phase transition. Here, we demonstrate that high-fluence MeV ion-implantation, at elevated temperatures avoids graphitization and can be used to achieve doping densities of 6 at. %. In order to quantify the diamond crystal damage associated with implantation Raman spectroscopy was performed, demonstrating high temperature annealing recovers the lattice. Additionally, low-temperature electronic transport measurements show evidence of charge carrier densities close to the metal-insulator-transition. After electronic characterization, secondary ion mass spectrometry was performed to map out the ion profile of the implanted plates. The analysis shows close agreement with the simulated ion-profile assuming scaling factors that take into account an average change in diamond density due to device fabrication. Finally, the data show that boron diffusion is negligible during the high temperature annealing process.

  7. A critical review of cell culture strategies for modelling intracortical brain implant material reactions.

    Science.gov (United States)

    Gilmour, A D; Woolley, A J; Poole-Warren, L A; Thomson, C E; Green, R A

    2016-06-01

    The capacity to predict in vivo responses to medical devices in humans currently relies greatly on implantation in animal models. Researchers have been striving to develop in vitro techniques that can overcome the limitations associated with in vivo approaches. This review focuses on a critical analysis of the major in vitro strategies being utilized in laboratories around the world to improve understanding of the biological performance of intracortical, brain-implanted microdevices. Of particular interest to the current review are in vitro models for studying cell responses to penetrating intracortical devices and their materials, such as electrode arrays used for brain computer interface (BCI) and deep brain stimulation electrode probes implanted through the cortex. A background on the neural interface challenge is presented, followed by discussion of relevant in vitro culture strategies and their advantages and disadvantages. Future development of 2D culture models that exhibit developmental changes capable of mimicking normal, postnatal development will form the basis for more complex accurate predictive models in the future. Although not within the scope of this review, innovations in 3D scaffold technologies and microfluidic constructs will further improve the utility of in vitro approaches. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Enhanced Performance by Time-Frequency-Phase Feature for EEG-Based BCI Systems

    Directory of Open Access Journals (Sweden)

    Baolei Xu

    2014-01-01

    Full Text Available We introduce a new motor parameter imagery paradigm using clench speed and clench force motor imagery. The time-frequency-phase features are extracted from mu rhythm and beta rhythms, and the features are optimized using three process methods: no-scaled feature using “MIFS” feature selection criterion, scaled feature using “MIFS” feature selection criterion, and scaled feature using “mRMR” feature selection criterion. Support vector machines (SVMs and extreme learning machines (ELMs are compared for classification between clench speed and clench force motor imagery using the optimized feature. Our results show that no significant difference in the classification rate between SVMs and ELMs is found. The scaled feature combinations can get higher classification accuracy than the no-scaled feature combinations at significant level of 0.01, and the “mRMR” feature selection criterion can get higher classification rate than the “MIFS” feature selection criterion at significant level of 0.01. The time-frequency-phase feature can improve the classification rate by about 20% more than the time-frequency feature, and the best classification rate between clench speed motor imagery and clench force motor imagery is 92%. In conclusion, the motor parameter imagery paradigm has the potential to increase the direct control commands for BCI control and the time-frequency-phase feature has the ability to improve BCI classification accuracy.

  9. Mushu, a free- and open source BCI signal acquisition, written in Python.

    Science.gov (United States)

    Venthur, Bastian; Blankertz, Benjamin

    2012-01-01

    The following paper describes Mushu, a signal acquisition software for retrieval and online streaming of Electroencephalography (EEG) data. It is written, but not limited, to the needs of Brain Computer Interfacing (BCI). It's main goal is to provide a unified interface to EEG data regardless of the amplifiers used. It runs under all major operating systems, like Windows, Mac OS and Linux, is written in Python and is free- and open source software licensed under the terms of the GNU General Public License.

  10. Number of implants for mandibular implant overdentures: a systematic review

    Science.gov (United States)

    Lee, Jeong-Yol; Kim, Ha-Young; Bryant, S. Ross

    2012-01-01

    PURPOSE The aim of this systematic review is to address treatment outcomes of Mandibular implant overdentures relative to implant survival rate, maintenance and complications, and patient satisfaction. MATERIALS AND METHODS A systematic literature search was conducted by a PubMed search strategy and hand-searching of relevant journals from included studies. Randomized Clinical Trials (RCT) and comparative clinical trial studies on mandibular implant overdentures until August, 2010 were selected. Eleven studies from 1098 studies were finally selected and data were analyzed relative to number of implants. RESULTS Six studies presented the data of the implant survival rate which ranged from 95% to 100% for 2 and 4 implant group and from 81.8% to 96.1% for 1 and 2 implant group. One study, which statistically compared implant survival rate showed no significant differences relative to the number of implants. The most common type of prosthetic maintenance and complications were replacement or reattaching of loose clips for 2 and 4 implant group, and denture repair due to the fracture around an implant for 1 and 2 implant groups. Most studies showed no significant differences in the rate of prosthetic maintenance and complication, and patient satisfaction regardless the number of implants. CONCLUSION The implant survival rate of mandibular overdentures is high regardless of the number of implants. Denture maintenance is likely not inflenced substantially by the number of implants and patient satisfaction is typically high again regardless os the number of implants. PMID:23236572

  11. Post-stroke Rehabilitation Training with a Motor-Imagery-Based Brain-Computer Interface (BCI-Controlled Hand Exoskeleton: A Randomized Controlled Multicenter Trial

    Directory of Open Access Journals (Sweden)

    Alexander A. Frolov

    2017-07-01

    Full Text Available Repeated use of brain-computer interfaces (BCIs providing contingent sensory feedback of brain activity was recently proposed as a rehabilitation approach to restore motor function after stroke or spinal cord lesions. However, there are only a few clinical studies that investigate feasibility and effectiveness of such an approach. Here we report on a placebo-controlled, multicenter clinical trial that investigated whether stroke survivors with severe upper limb (UL paralysis benefit from 10 BCI training sessions each lasting up to 40 min. A total of 74 patients participated: median time since stroke is 8 months, 25 and 75% quartiles [3.0; 13.0]; median severity of UL paralysis is 4.5 points [0.0; 30.0] as measured by the Action Research Arm Test, ARAT, and 19.5 points [11.0; 40.0] as measured by the Fugl-Meyer Motor Assessment, FMMA. Patients in the BCI group (n = 55 performed motor imagery of opening their affected hand. Motor imagery-related brain electroencephalographic activity was translated into contingent hand exoskeleton-driven opening movements of the affected hand. In a control group (n = 19, hand exoskeleton-driven opening movements of the affected hand were independent of brain electroencephalographic activity. Evaluation of the UL clinical assessments indicated that both groups improved, but only the BCI group showed an improvement in the ARAT's grasp score from 0 [0.0; 14.0] to 3.0 [0.0; 15.0] points (p < 0.01 and pinch scores from 0.0 [0.0; 7.0] to 1.0 [0.0; 12.0] points (p < 0.01. Upon training completion, 21.8% and 36.4% of the patients in the BCI group improved their ARAT and FMMA scores respectively. The corresponding numbers for the control group were 5.1% (ARAT and 15.8% (FMMA. These results suggests that adding BCI control to exoskeleton-assisted physical therapy can improve post-stroke rehabilitation outcomes. Both maximum and mean values of the percentage of successfully decoded imagery-related EEG activity, were higher

  12. Implanted ZnO thin films: Microstructure, electrical and electronic properties

    International Nuclear Information System (INIS)

    Lee, J.; Metson, J.; Evans, P.J.; Kinsey, R.; Bhattacharyya, D.

    2007-01-01

    Magnetron sputtered polycrystalline ZnO thin films were implanted using Al, Ag, Sn, Sb and codoped with TiN in order to improve the conductivity and to attempt to achieve p-type behaviour. Structural and electrical properties of the implanted ZnO thin films were examined with X-ray diffractometry (XRD), scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS), atomic force microscopy (AFM) and conductivity measurements. Depth profiles of the implanted elements varied with the implant species. Implantation causes a partial amorphisation of the crystalline structure and decreases the effective grain size of the films. One of the findings is the improvement, as a consequence of implantation, in the conductivity of initially poorly conductive samples. Heavy doping may help for the conversion of conduction type of ZnO thin films. Annealing in vacuum mitigated structural damage and stress caused by implantation, and improved the conductivity of the implanted ZnO thin films

  13. Middle ear implants

    Directory of Open Access Journals (Sweden)

    K S Gangadhara Somayaji

    2013-01-01

    Full Text Available Hearing loss is becoming more common in the society living in cities with lot of background noise around, and frequent use of gadgets like mobile phones, MP3s, and IPods are adding to the problem. The loss may involve the conductive or perceptive pathway. Majority of the patients with conductive hearing loss will revert back to normal hearing levels with medical and/or surgical treatment. However, in sensorineural hearing loss, many factors are involved in the management. Though traditionally hearing aids in various forms are the most commonly used modality in managing these patients, there are some drawbacks associated with them. Implantable middle ear amplifiers represent the most recent breakthrough in the management of hearing loss. Middle ear implants are surgically implanted electronic devices that aim to correct hearing loss by stimulating the ossicular chain or middle ear. Of late, they are also being used in the management of congenital conductive hearing loss and certain cases of chronic otitis media with residual hearing loss. The article aims to provide general information about the technology, indications and contraindications, selection of candidates, available systems, and advantages of middle ear implants. (MEI

  14. A Tri-Layer Proton-Conducting Electrolyte for Chemically Stable Operation in Solid Oxide Fuel Cells

    KAUST Repository

    Bi, Lei

    2013-10-07

    Two BaZr0.7Pr0.1Y0.2O3-δ (BZPY) layers were used to sandwich a BaCe0.8Y0.2O3-δ (BCY) layer to produce a tri-layer electrolyte consisting of BZPY/BCY/BZPY. The BZPY layers significantly improved the chemical stability of the BCY electrolyte layer, which was not stable when tested alone, suggesting that the BZPY layer effectively protected the BCY layer from CO2 reaction, which is the major problem of BCY-based materials. A fuel cell with this sandwiched electrolyte supported on a Ni-based composite anode showed a reasonable cell performance, reaching 185 mW cm-2 at 700 oC, in spite of the relatively large electrolyte thickness (about 65 µm).

  15. A Tri-Layer Proton-Conducting Electrolyte for Chemically Stable Operation in Solid Oxide Fuel Cells

    KAUST Repository

    Bi, Lei; Traversa, Enrico

    2013-01-01

    Two BaZr0.7Pr0.1Y0.2O3-δ (BZPY) layers were used to sandwich a BaCe0.8Y0.2O3-δ (BCY) layer to produce a tri-layer electrolyte consisting of BZPY/BCY/BZPY. The BZPY layers significantly improved the chemical stability of the BCY electrolyte layer, which was not stable when tested alone, suggesting that the BZPY layer effectively protected the BCY layer from CO2 reaction, which is the major problem of BCY-based materials. A fuel cell with this sandwiched electrolyte supported on a Ni-based composite anode showed a reasonable cell performance, reaching 185 mW cm-2 at 700 oC, in spite of the relatively large electrolyte thickness (about 65 µm).

  16. An efficient word typing P300-BCI system using a modified T9 interface and random forest classifier.

    Science.gov (United States)

    Akram, Faraz; Han, Seung Moo; Kim, Tae-Seong

    2015-01-01

    A typical P300-based spelling brain computer interface (BCI) system types a single character with a character presentation paradigm and a P300 classification system. Lately, a few attempts have been made to type a whole word with the help of a smart dictionary that suggests some candidate words with the input of a few initial characters. In this paper, we propose a novel paradigm utilizing initial character typing with word suggestions and a novel P300 classifier to increase word typing speed and accuracy. The novel paradigm involves modifying the Text on 9 keys (T9) interface, which is similar to the keypad of a mobile phone used for text messaging. Users can type the initial characters using a 3×3 matrix interface and an integrated custom-built dictionary that suggests candidate words as the user types the initials. Then the user can select one of the given suggestions to complete word typing. We have adopted a random forest classifier, which significantly improves P300 classification accuracy by combining multiple decision trees. We conducted experiments with 10 subjects using the proposed BCI system. Our proposed paradigms significantly reduced word typing time and made word typing more convenient by outputting complete words with only a few initial character inputs. The conventional spelling system required an average time of 3.47 min per word while typing 10 random words, whereas our proposed system took an average time of 1.67 min per word, a 51.87% improvement, for the same words under the same conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Hearing outcomes of the active bone conduction system Bonebridge® in conductive or mixed hearing loss.

    Science.gov (United States)

    Carnevale, Claudio; Til-Pérez, Guillermo; Arancibia-Tagle, Diego J; Tomás-Barberán, Manuel D; Sarría-Echegaray, Pedro L

    2018-05-18

    The active transcutaneous bone conduction implant Bonebridge ® , is indicated for patients affected by bilateral conductive/mixed hearing loss or unilateral sensorineural hearing loss, showing hearing outcomes similar to other percutaneous bone conduction implants, but with a lower rate of complications. The aim of this study was to analyze the hearing outcomes in a series of 26 patients affected by conductive or mixed hearing loss and treated with Bonebridge ® . 26 of 30 patients implanted with Bonebridge ® between October 2012 and May 2017, were included in the study. We compared the air conduction thresholds at the frequencies 500, 1000, 2000, 3000, 4000Hz, the SRT50% and the percentage of correct answers at an intensity of 50dB with and without the implant. "Pure tone average" with the implant was 34.91dB showing an average gain of 33.46dB. Average SRT 50% with the implant was 34.33dB, whereas before the surgery no patient achieved 50% of correct answers at a sound intensity of 50dB. The percentage of correct answers at 50dB changed from 11% without the implant to 85% with it. We only observed one complication consisting of an extrusion of the implant in a patient with a history of 2 previous rhytidectomies. The hearing outcomes obtained in our study are similar to those published in the literature. Bonebridge ® represents an excellent alternative in the treatment of conductive or mixed hearing loss, and with a lower rate of complications. Copyright © 2018 Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Workshops of the Sixth International Brain–Computer Interface Meeting: brain–computer interfaces past, present, and future

    Science.gov (United States)

    Huggins, Jane E.; Guger, Christoph; Ziat, Mounia; Zander, Thorsten O.; Taylor, Denise; Tangermann, Michael; Soria-Frisch, Aureli; Simeral, John; Scherer, Reinhold; Rupp, Rüdiger; Ruffini, Giulio; Robinson, Douglas K. R.; Ramsey, Nick F.; Nijholt, Anton; Müller-Putz, Gernot; McFarland, Dennis J.; Mattia, Donatella; Lance, Brent J.; Kindermans, Pieter-Jan; Iturrate, Iñaki; Herff, Christian; Gupta, Disha; Do, An H.; Collinger, Jennifer L.; Chavarriaga, Ricardo; Chase, Steven M.; Bleichner, Martin G.; Batista, Aaron; Anderson, Charles W.; Aarnoutse, Erik J.

    2017-01-01

    The Sixth International Brain–Computer Interface (BCI) Meeting was held 30 May–3 June 2016 at the Asilomar Conference Grounds, Pacific Grove, California, USA. The conference included 28 workshops covering topics in BCI and brain–machine interface research. Topics included BCI for specific populations or applications, advancing BCI research through use of specific signals or technological advances, and translational and commercial issues to bring both implanted and non-invasive BCIs to market. BCI research is growing and expanding in the breadth of its applications, the depth of knowledge it can produce, and the practical benefit it can provide both for those with physical impairments and the general public. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and highlighting important issues and calls for action to support future research and development. PMID:29152523

  19. Workshops of the Sixth International Brain-Computer Interface Meeting: brain-computer interfaces past, present, and future.

    Science.gov (United States)

    Huggins, Jane E; Guger, Christoph; Ziat, Mounia; Zander, Thorsten O; Taylor, Denise; Tangermann, Michael; Soria-Frisch, Aureli; Simeral, John; Scherer, Reinhold; Rupp, Rüdiger; Ruffini, Giulio; Robinson, Douglas K R; Ramsey, Nick F; Nijholt, Anton; Müller-Putz, Gernot; McFarland, Dennis J; Mattia, Donatella; Lance, Brent J; Kindermans, Pieter-Jan; Iturrate, Iñaki; Herff, Christian; Gupta, Disha; Do, An H; Collinger, Jennifer L; Chavarriaga, Ricardo; Chase, Steven M; Bleichner, Martin G; Batista, Aaron; Anderson, Charles W; Aarnoutse, Erik J

    2017-01-01

    The Sixth International Brain-Computer Interface (BCI) Meeting was held 30 May-3 June 2016 at the Asilomar Conference Grounds, Pacific Grove, California, USA. The conference included 28 workshops covering topics in BCI and brain-machine interface research. Topics included BCI for specific populations or applications, advancing BCI research through use of specific signals or technological advances, and translational and commercial issues to bring both implanted and non-invasive BCIs to market. BCI research is growing and expanding in the breadth of its applications, the depth of knowledge it can produce, and the practical benefit it can provide both for those with physical impairments and the general public. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and highlighting important issues and calls for action to support future research and development.

  20. Latent variable method for automatic adaptation to background states in motor imagery BCI

    Science.gov (United States)

    Dagaev, Nikolay; Volkova, Ksenia; Ossadtchi, Alexei

    2018-02-01

    Objective. Brain-computer interface (BCI) systems are known to be vulnerable to variabilities in background states of a user. Usually, no detailed information on these states is available even during the training stage. Thus there is a need in a method which is capable of taking background states into account in an unsupervised way. Approach. We propose a latent variable method that is based on a probabilistic model with a discrete latent variable. In order to estimate the model’s parameters, we suggest to use the expectation maximization algorithm. The proposed method is aimed at assessing characteristics of background states without any corresponding data labeling. In the context of asynchronous motor imagery paradigm, we applied this method to the real data from twelve able-bodied subjects with open/closed eyes serving as background states. Main results. We found that the latent variable method improved classification of target states compared to the baseline method (in seven of twelve subjects). In addition, we found that our method was also capable of background states recognition (in six of twelve subjects). Significance. Without any supervised information on background states, the latent variable method provides a way to improve classification in BCI by taking background states into account at the training stage and then by making decisions on target states weighted by posterior probabilities of background states at the prediction stage.

  1. Age-Specific Mechanisms in an SSVEP-Based BCI Scenario: Evidences from Spontaneous Rhythms and Neuronal Oscillators

    Directory of Open Access Journals (Sweden)

    Jan Ehlers

    2012-01-01

    Full Text Available Utilizing changes in steady-state visual evoked potentials (SSVEPs is an established approach to operate a brain-computer interface (BCI. The present study elucidates to what extent development-specific changes in the background EEG influence the ability to proper handle a stimulus-driven BCI. Therefore we investigated the effects of a wide range of photic driving on children between six and ten years in comparison to an adult control group. The results show differences in the driving profiles apparently in close communication with the specific type of intermittent stimulation. The factor age gains influence with decreasing stimulation frequency, whereby the superior performance of the adults seems to be determined to a great extent by elaborated driving responses at 10 and 11 Hz, matching the dominant resonance frequency of the respective background EEG. This functional interplay was only partially obtained in higher frequency ranges and absent in the induced driving between 30 and 40 Hz, indicating distinctions in the operating principles and developmental changes of the underlying neuronal oscillators.

  2. Classification of BCI Users Based on Cognition

    Directory of Open Access Journals (Sweden)

    N. Firat Ozkan

    2018-01-01

    Full Text Available Brain-Computer Interfaces (BCI are systems originally developed to assist paralyzed patients allowing for commands to the computer with brain activities. This study aims to examine cognitive state with an objective, easy-to-use, and easy-to-interpret method utilizing Brain-Computer Interface systems. Seventy healthy participants completed six tasks using a Brain-Computer Interface system and participants’ pupil dilation, blink rate, and Galvanic Skin Response (GSR data were collected simultaneously. Participants filled Nasa-TLX forms following each task and task performances of participants were also measured. Cognitive state clusters were created from the data collected using the K-means method. Taking these clusters and task performances into account, the general cognitive state of each participant was classified as low risk or high risk. Logistic Regression, Decision Tree, and Neural Networks were also used to classify the same data in order to measure the consistency of this classification with other techniques and the method provided a consistency between 87.1% and 100% with other techniques.

  3. Sequential Probability Ratio Testing with Power Projective Base Method Improves Decision-Making for BCI

    Science.gov (United States)

    Liu, Rong

    2017-01-01

    Obtaining a fast and reliable decision is an important issue in brain-computer interfaces (BCI), particularly in practical real-time applications such as wheelchair or neuroprosthetic control. In this study, the EEG signals were firstly analyzed with a power projective base method. Then we were applied a decision-making model, the sequential probability ratio testing (SPRT), for single-trial classification of motor imagery movement events. The unique strength of this proposed classification method lies in its accumulative process, which increases the discriminative power as more and more evidence is observed over time. The properties of the method were illustrated on thirteen subjects' recordings from three datasets. Results showed that our proposed power projective method outperformed two benchmark methods for every subject. Moreover, with sequential classifier, the accuracies across subjects were significantly higher than that with nonsequential ones. The average maximum accuracy of the SPRT method was 84.1%, as compared with 82.3% accuracy for the sequential Bayesian (SB) method. The proposed SPRT method provides an explicit relationship between stopping time, thresholds, and error, which is important for balancing the time-accuracy trade-off. These results suggest SPRT would be useful in speeding up decision-making while trading off errors in BCI. PMID:29348781

  4. More-reliable SOS ion implantations

    Science.gov (United States)

    Woo, D. S.

    1980-01-01

    Conducting layer prevents static charges from accumulating during implantation of silicon-on-sapphire MOS structures. Either thick conducting film or thinner film transparent to ions is deposited prior to implantation, and gaps are etched in regions to be doped. Grounding path eliminates charge flow that damages film or cracks sapphire wafer. Prevention of charge buildup by simultaneously exposing structure to opposite charges requires equipment modifications less practical and more expensive than deposition of conducting layer.

  5. A comparative study of pseudorandom sequences used in a c-VEP based BCI for online wheelchair control

    DEFF Research Database (Denmark)

    Isaksen, Jonas L.; Mohebbi, Ali; Puthusserypady, Sadasivan

    2016-01-01

    In this study, a c-VEP based BCI system was developed to run on three distinctive pseudorandom sequences, namely the m-code, the Gold-code, and the Barker-code. The Visual Evoked Potentials (VEPs) were provoked using these codes. In the online session, subjects controlled a LEGO® Mindstorms® robot...

  6. Ion implantation into diamond

    International Nuclear Information System (INIS)

    Sato, Susumu

    1994-01-01

    The graphitization and the change to amorphous state of diamond surface layer by ion implantation and its characteristics are reported. In the diamond surface, into which more than 10 16 ions/cm 2 was implanted, the diamond crystals are broken, and the structure changes to other carbon structure such as amorphous state or graphite. Accompanying this change of structure, the electric conductivity of the implanted layer shows two discontinuous values due to high resistance and low resistance. This control of structure can be done by the temperature of the base during the ion implantation into diamond. Also it is referred to that by the base temperature during implantation, the mutual change of the structure between amorphous state and graphite can be controlled. The change of the electric resistance and the optical characteristics by the ion implantation into diamond surface, the structural analysis by Raman spectroscopy, and the control of the structure of the implanted layer by the base temperature during implantation are reported. (K.I.)

  7. Martensitic transformation in helium implanted 316 stainless steel

    International Nuclear Information System (INIS)

    Ishimatsu, Manabu; Tsukuda, Noboru

    1997-01-01

    In order to simulate surface deterioration phenomenon due to particle loading of SUS-316 steel which is one of candidate materials for nuclear fusion reactor vacuum wall structure material, helium ion implanting was conducted at room temperature, 473 K and 573 K. To martensitic phase formed as a results, implantation dose dependence, implanting temperature dependence, and annealing under 1073 K were conducted. Formation of the martensitic phase was suppressed at high implanting temperature. At room temperature implantation, the martensitic phase disappeared at more than 873 K, but at high temperature implantation, it increased abnormally near at 973 K. This showed that deterioration of materials depended extremely upon using temperature and temperature history. (G.K.)

  8. Ion implantation and bio-compatibility

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yoshiaki; Kusakabe, Masahiro [Sony Corp., Tokyo (Japan). Corporate Research Labs.; Iwaki, Masaya

    1992-07-01

    Surface modification of polymers by ion implantation has been carried out to control surface properties such as conductivity, wettability, blood and tissue compatibility. Ion implantation into silicone rubber, polystyrene and segmented polyurethane was performed at 150 keV with doses ranging from 1 x 10[sup 15] to 3 x 10[sup 17] ions/cm[sup 2] to improve bio-compatibility. The platelet accumulation on ion implanted silicone rubber decreased and non-thrombogenicity of ion implanted specimens were improved. The ion implanted polystyrene and segmented polyurethane have been found to exhibit remarkably higher adhesion and spreading of endothelial cells compared to the non-implanted case. It is concluded that ion implantation into polymers is effective in controlling their bio-compatibility. (author).

  9. Estudio de técnicas de análisis y clasificación de señales EEG en el contexto de sistemas BCI (Brain Computer Interface)

    OpenAIRE

    Henríquez Muñoz, Claudia Nureibis

    2014-01-01

    Máster universitario en Investigación e Innovación en TIC. Las Interfaces Cerebro Computador (BCI) son una tecnología basada en la adquisición y procesamiento de señales cerebrales para el control de diversos dispositivos. Su objetivo principal es proporcionar un nuevo canal de salida al cerebro del usuario que requiere un control adaptativo voluntario. Usualmente los BCI se enfocan en reconocer eventos que son adquiridos por métodos como el Electroencefalograma (EEG). Dicho...

  10. Does the number of implants have any relation with peri-implant disease?

    Directory of Open Access Journals (Sweden)

    Bernardo Born PASSONI

    2014-10-01

    Full Text Available Objective: The aim of this study was to evaluate the relationship between the number of pillar implants of implant-supported fixed prostheses and the prevalence of periimplant disease. Material and Methods: Clinical and radiographic data were obtained for the evaluation. The sample consisted of 32 patients with implant-supported fixed prostheses in function for at least one year. A total of 161 implants were evaluated. Two groups were formed according to the number of implants: G1 ≤5 implants and G2 >5 implants. Data collection included modified plaque index (MPi, bleeding on probing (BOP, probing depth (PD, width of keratinized mucosa (KM and radiographic bone loss (BL. Clinical and radiographic data were grouped for each implant in order to conduct the diagnosis of mucositis or peri-implantitis. Results: Clinical parameters were compared between groups using Student’s t test for numeric variables (KM, PD and BL and Mann-Whitney test for categorical variables (MPi and BOP. KM and BL showed statistically significant differences between both groups (p<0.001. Implants from G1 – 19 (20.43% – compared with G2 – 26 (38.24% – showed statistically significant differences regarding the prevalence of peri-implantitis (p=0.0210. Conclusion: It seems that more than 5 implants in total fixed rehabilitations increase bone loss and consequently the prevalence of implants with periimplantitis. Notwithstanding, the number of implants does not have any influence on the prevalence of mucositis.

  11. Management of peri-implant infections

    Directory of Open Access Journals (Sweden)

    K L Vandana

    2015-01-01

    Full Text Available The ever-increasing popularity of dental implants in recent years has been associated with the reported incidence of short-term and long-term complications such as peri-implant mucositis and peri-implantitis. Therapies proposed for treating peri-implantitis are based on the evidence available for the treatment of periodontitis, and are aimed at reducing the bacterial load within peri-implant pockets and decontaminating implant surfaces, and, in some cases, attempting afterward to bring about bone regeneration. The treatment of peri-implant infections comprises conservative (nonsurgical and surgical approaches. This paper reviews various treatment strategies used for the treatment of peri-implant diseases. There are many approaches suggested by various authors for the treatment of peri-implant diseases, but there is no “ideal peri-implant therapy” that has been described in the literature. There is no consensus regarding the treatment protocol as the studies conducted so far have had varying study designs, small sample sizes, and short follow-up periods.

  12. Spatial resolution and maximum compensation factor of two-dimensional selective excitation pulses for MRI of objects containing conductive implants

    Directory of Open Access Journals (Sweden)

    Taeseong Woo

    2017-05-01

    Full Text Available A quantitative diagnosis using magnetic resonance imaging (MRI can be disturbed by radiofrequency (RF field inhomogeneity induced by the conductive implants. This inhomogeneity causes a local decrease of the signal intensity around the conductor, resulting in a deterioration of the accurate quantification. In a previous study, we developed an MRI imaging method using a two-dimensional selective excitation pulse (2D pulse to mitigate signal inhomogeneity induced by metallic implants. In this paper, the effect of 2D pulse was evaluated quantitatively by numerical simulation and MRI experiments. We introduced two factors for evaluation, spatial resolution and maximum compensation factor. Numerical simulations were performed with two groups. One group was composed of four models with different signal loss width, to evaluate the spatial resolution of the 2D pulse. The other group is also composed of four models with different amounts of signal loss for evaluating maximum compensation factor. In MRI experiments, we prepared phantoms containing conductors, which have different electrical conductivities related with the amounts of signal intensity decrease. The recovery of signal intensity was observed by 2D pulses, in both numerical simulations and experiments.

  13. Experimental study on bone tissue reaction around HA implants radiated after implantation

    International Nuclear Information System (INIS)

    Kudo, Masato; Matsui, Yoshiro; Tamura, Sayaka; Chen, Xuan; Uchida, Haruo; Mori, Kimie; Ohno, Kohsuke; Michi, Ken-ichi

    1998-01-01

    This study was conducted to investigate histologically and histomorphometrically the tissue reaction around hydroxylapatite (HA) implants that underwent irradiation in 3 different periods in the course of bone healing after implantation. The cylindrical high-density HA implants were implanted in 48 Japanese white rabbit mandibles. A single 15 Gy dose was applied to the mandible 5, 14, or 28 days after implantation. The rabbits were sacrificed 7, 14, 28, and 90 days after irradiation. Nonirradiated rabbits were used as controls. CMR, labeling with tetracycline and calcein, and non-decalcified specimens stained with toluidine blue were used for histological analyses and histomorphometric measurements. The results were as follows: In the rabbits irradiated 5 days after implantation, the HA-bone contact was observed later than that in the controls and the bone-implant contact surface ratio was lower than that in the controls at examination because necrosis of the newly-formed bone occurred just after irradiation. HA-bone contact of the rabbits irradiated 14 and 28 days after implantation was similar to that of the controls. And, bone remodeling was suppressed in rabbits of each group sacrificed at 90 days after irradiation. The results suggested that a short interval between implantation and irradiation causes direct contact between HA implant and bone and a long lapse of time before irradiation hardly affects the bone-implant contact, but delays bone remodeling. Therefore, it is necessary to prevent overloading the HA implants irradiated after implantation and pay utmost attention to conditions around the bone-implant contact. (author)

  14. Implants in free fibula flap supporting dental rehabilitation - Implant and peri-implant related outcomes of a randomized clinical trial.

    Science.gov (United States)

    Kumar, Vinay V; Ebenezer, Supriya; Kämmerer, Peer W; Jacob, P C; Kuriakose, Moni A; Hedne, Naveen; Wagner, Wilfried; Al-Nawas, Bilal

    2016-11-01

    The objective of this study was to assess the difference in success rates of implants when using two or four implant-supported-overdentures following segmental mandibular reconstruction with fibula free flap. This prospective, parallel designed, randomized clinical study was conducted with 1:1 ratio. At baseline, all participants already had segmental reconstruction of mandible with free fibula flap. The participants were randomized into two groups: Group-I received implant-supported-overdentures on two tissue-level implants and Group-II received implant-supported-overdentures on four tissue-level implants. Success rates of the implants were evaluated at 3 months, 6 months and 12 months following implant loading using marginal bone level changes as well as peri-implant indices (Buser et al., 1990). 52 patients were randomized into two treatment groups (26 each), out of which 18 patients (36 implants) of Group-I and 17 patients (68 implants) of Group-II were evaluated. One implant in Group-I was lost due to infective complications and one patient in the same group had superior barrel necrosis. There was a statistically significant increase at both time points (p = 0.03, p = 0.04 at 6 months, 12 months) in the amount of marginal bone loss in Group-I (0.4 mm, 0.5 mm at 6 months, 12 months) as compared to Group-II (0.1 mm, 0.2 mm at 6 months, 12 months). There were no clinically significant changes peri-implant parameters between both groups. Peri-implant soft tissue hyperplasia was seen in both groups, 32% of implants at 3-months, 26% at 6-months and 3% at 12-months follow-up. The results of this study show that patients with 2-implant-supported-overdentures had higher marginal bone loss as compared to patients with 4-implant-supported-overdentures. There were no clinically significant differences in peri-implant soft tissue factors in patients with 2- or 4-implant-supported-overdentures. Hyperplastic peri-implant tissues are common in the early implant

  15. Vibroplasty for mixed and conductive hearing loss.

    Science.gov (United States)

    Luers, Jan Christoffer; Hüttenbrink, Karl-Bernd; Zahnert, Thomas; Bornitz, Matthias; Beutner, Dirk

    2013-08-01

    To summarize new application methods of an active middle ear implant (Vibrant Soundbridge) in patients with conductive or mixed hearing loss. Publications listed in the Medline/PubMed database. All publications published in English language; search term Vibrant Soundbridge AND floating mass transducer in all fields. Structured analysis of all publications. Extraction of significant findings and conclusions and audiometric data. Modern application methods of an active middle ear implant (VSB) open new therapeutic options for patients with various outer and middle ear diseases resulting in conductive or mixed hearing loss. Titanium couplers can help to couple the active middle ear implant in a standardized way to remnants of the ossicular chain or to the round window. Thus, the active middle ear implant has been established as an alternative treatment option for patients with mixed and conductive hearing. However, the heterogeneity of the studies published so far complicates the analysis of the audiometric results, and thus, the functional hearing gain after VSB implantation varies a lot.

  16. Electrical properties of polymer modified by metal ion implantation

    International Nuclear Information System (INIS)

    Wu Yuguang; Zhang Tonghe; Zhang Huixing; Zhang Xiaoji; Deng Zhiwei; Zhou Gu

    2000-01-01

    Polyethylene terephthalate (PET) has been modified by Ag, Cr, Cu and Si ion implantation with a dose range from 1x10 16 to 2x10 17 ions cm -2 using a metal vapor vacuum arc (MEVVA) source. The electrical properties of PET have been changed after metal ion implantation. The resistivity of implanted PET decreased obviously with an increase of ion dose. When metal ion dose of 2x10 17 cm -2 was selected, the resistivity of PET could be less than 10 Ω cm, but when Si ions are implanted, the resistivity of PET would be up to several hundred Ω cm. The results show that the conductive behavior of a metal ion implanted sample is obviously different from Si implantation one. The changes of the structure and composition have been observed with transmission electron microscope (TEM) and X-ray diffraction (XRD). The surface structure is varying after ion implantation and it is believed that the change would cause the improvement of the conductive properties. The mechanism of electrical conduction will be discussed

  17. Decontamination of titanium implant surface and re-osseointegration to treat peri-implantitis: a literature review

    NARCIS (Netherlands)

    Subramani, K.; Wismeijer, D.

    2012-01-01

    PURPOSE: To review the literature on decontamination of titanium implant surfaces following peri-implantitis and the effect of various cleaning methods on re-osseointegration. MATERIALS AND METHODS: An electronic search of the literature at PubMed was conducted on the studies published between 1966

  18. Feasibility of BCI Control in a Realistic Smart Home Environment.

    Science.gov (United States)

    Kosmyna, Nataliya; Tarpin-Bernard, Franck; Bonnefond, Nicolas; Rivet, Bertrand

    2016-01-01

    Smart homes have been an active area of research, however despite considerable investment, they are not yet a reality for end-users. Moreover, there are still accessibility challenges for the elderly or the disabled, two of the main potential targets for home automation. In this exploratory study we design a control mechanism for smart homes based on Brain Computer Interfaces (BCI) and apply it in the "Domus" smart home platform in order to evaluate the potential interest of users about BCIs at home. We enable users to control lighting, a TV set, a coffee machine and the shutters of the smart home. We evaluate the performance (accuracy, interaction time), usability and feasibility (USE questionnaire) on 12 healthy subjects and 2 disabled subjects. We find that healthy subjects achieve 77% task accuracy. However, disabled subjects achieved a better accuracy (81% compared to 77%).

  19. A real-time classification algorithm for EEG-based BCI driven by self-induced emotions.

    Science.gov (United States)

    Iacoviello, Daniela; Petracca, Andrea; Spezialetti, Matteo; Placidi, Giuseppe

    2015-12-01

    The aim of this paper is to provide an efficient, parametric, general, and completely automatic real time classification method of electroencephalography (EEG) signals obtained from self-induced emotions. The particular characteristics of the considered low-amplitude signals (a self-induced emotion produces a signal whose amplitude is about 15% of a really experienced emotion) require exploring and adapting strategies like the Wavelet Transform, the Principal Component Analysis (PCA) and the Support Vector Machine (SVM) for signal processing, analysis and classification. Moreover, the method is thought to be used in a multi-emotions based Brain Computer Interface (BCI) and, for this reason, an ad hoc shrewdness is assumed. The peculiarity of the brain activation requires ad-hoc signal processing by wavelet decomposition, and the definition of a set of features for signal characterization in order to discriminate different self-induced emotions. The proposed method is a two stages algorithm, completely parameterized, aiming at a multi-class classification and may be considered in the framework of machine learning. The first stage, the calibration, is off-line and is devoted at the signal processing, the determination of the features and at the training of a classifier. The second stage, the real-time one, is the test on new data. The PCA theory is applied to avoid redundancy in the set of features whereas the classification of the selected features, and therefore of the signals, is obtained by the SVM. Some experimental tests have been conducted on EEG signals proposing a binary BCI, based on the self-induced disgust produced by remembering an unpleasant odor. Since in literature it has been shown that this emotion mainly involves the right hemisphere and in particular the T8 channel, the classification procedure is tested by using just T8, though the average accuracy is calculated and reported also for the whole set of the measured channels. The obtained

  20. Congenitally Deafblind Children and Cochlear Implants

    DEFF Research Database (Denmark)

    Dammeyer, Jesper Herup

    2008-01-01

    There has been much research conducted demonstrating the positive benefits of cochlear implantation (CI) in children who are deaf. Research on cochlear implantation in children who are both deaf and blind, however, is lacking. The purpose of this article is to present a study of 5 congenitally...... deafblind children who received cochlear implants between 2.2 and 4.2 years of age.  Ratings of video observations were used to measure the children's early communication development with and without the use of their cochlear implants. In addition, parental interviews were used to assess the benefits...... parents perceived regarding their children's cochlear implants. Two examples are included in this article to illustrate the parents' perspectives about cochlear implantation in their deafblind children. Benefits of cochlear implantation in this cohort of children included improved attention and emotional...

  1. Implanted-tritium permeation experiments

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Holland, D.F.; Casper, L.A.; Hsu, P.Y.; Miller, L.G.; Schmunk, R.E.; Watts, K.D.; Wilson, C.J.; Kershner, C.J.; Rogers, M.L.

    1982-04-01

    In fusion reactors, charge exchange neutral atoms of tritium coming from the plasma will be implanted into the first wall and other interior structures. EG and G Idaho is conducting two experiments to determine the magnitude of permeation into the coolant streams and the retention of tritium in those structures. One experiment uses an ion gun to implant deuterium. The ion gun will permit measurements to be made for a variety of implantation energies and fluxes. The second experiment utilizes a fission reactor to generate a tritium implantation flux by the 3 He(n,p) 3 H reaction. This experiment will simulate the fusion reactor radiation environment. We also plan to verify a supporting analytical code development program, in progress, by these experiments

  2. Toward a reliable gaze-independent hybrid BCI combining visual and natural auditory stimuli.

    Science.gov (United States)

    Barbosa, Sara; Pires, Gabriel; Nunes, Urbano

    2016-03-01

    Brain computer interfaces (BCIs) are one of the last communication options for patients in the locked-in state (LIS). For complete LIS patients, interfaces must be gaze-independent due to their eye impairment. However, unimodal gaze-independent approaches typically present levels of performance substantially lower than gaze-dependent approaches. The combination of multimodal stimuli has been pointed as a viable way to increase users' performance. A hybrid visual and auditory (HVA) P300-based BCI combining simultaneously visual and auditory stimulation is proposed. Auditory stimuli are based on natural meaningful spoken words, increasing stimuli discrimination and decreasing user's mental effort in associating stimuli to the symbols. The visual part of the interface is covertly controlled ensuring gaze-independency. Four conditions were experimentally tested by 10 healthy participants: visual overt (VO), visual covert (VC), auditory (AU) and covert HVA. Average online accuracy for the hybrid approach was 85.3%, which is more than 32% over VC and AU approaches. Questionnaires' results indicate that the HVA approach was the less demanding gaze-independent interface. Interestingly, the P300 grand average for HVA approach coincides with an almost perfect sum of P300 evoked separately by VC and AU tasks. The proposed HVA-BCI is the first solution simultaneously embedding natural spoken words and visual words to provide a communication lexicon. Online accuracy and task demand of the approach compare favorably with state-of-the-art. The proposed approach shows that the simultaneous combination of visual covert control and auditory modalities can effectively improve the performance of gaze-independent BCIs. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Feasibility of BCI Control in a Realistic Smart Home Environment

    Science.gov (United States)

    Kosmyna, Nataliya; Tarpin-Bernard, Franck; Bonnefond, Nicolas; Rivet, Bertrand

    2016-01-01

    Smart homes have been an active area of research, however despite considerable investment, they are not yet a reality for end-users. Moreover, there are still accessibility challenges for the elderly or the disabled, two of the main potential targets for home automation. In this exploratory study we design a control mechanism for smart homes based on Brain Computer Interfaces (BCI) and apply it in the “Domus”1 smart home platform in order to evaluate the potential interest of users about BCIs at home. We enable users to control lighting, a TV set, a coffee machine and the shutters of the smart home. We evaluate the performance (accuracy, interaction time), usability and feasibility (USE questionnaire) on 12 healthy subjects and 2 disabled subjects. We find that healthy subjects achieve 77% task accuracy. However, disabled subjects achieved a better accuracy (81% compared to 77%). PMID:27616986

  4. Feasibility of BCI Control in a Realistic Smart Home Environment

    Directory of Open Access Journals (Sweden)

    Nataliya Kosmyna

    2016-08-01

    Full Text Available Smart homes have been an active area of research, however despite considerable investment, they are not yet a reality for end-users. Moreover, there are still accessibility challenges for the elderly or the disabled, two of the main potential targets for home automation. In this exploratory study we design a control mechanism for smart homes based on Brain Computer Interfaces (BCI and apply it in the Domus smart home platform in order to evaluate the potential interest of users about BCIs at home. We enable users to control lighting, a TV set, a coffee machine and the shutters of the smart home. We evaluate the performance (accuracy, interaction time, usability and feasibility (USE questionnaire on 12 healthy subjects and 2 disabled subjects. We find that healthy subjects achieve 77% task accuracy. However, disabled subjects achieved a better accuracy (81% compared to 77%.

  5. Mandibular implant-supported overdentures: Prosthetic overview

    Directory of Open Access Journals (Sweden)

    Fahad A Al-Harbi

    2018-01-01

    Full Text Available Implant-supported overdentures are becoming the treatment of choice for the completely edentulous mandible. They significantly improve the quality of life in edentulous patients. For this review article, the literature was searched to identify pertinent studies. No meta-analysis was conducted because of high heterogeneity within the literature. Accordingly, in this review article, the author provides an update on implant-supported mandible overdentures with regard to the number of implants, type of loading, stress–strain distribution, mode of implant-to-denture attachment, occlusal considerations and complications.

  6. Can the Hydroxyapatite-Coated Skin-Penetrating Abutment for Bone Conduction Hearing Implants Integrate with the Surrounding Skin?

    Science.gov (United States)

    van Hoof, Marc; Wigren, Stina; Duimel, Hans; Savelkoul, Paul H M; Flynn, Mark; Stokroos, Robert Jan

    2015-01-01

    Percutaneous implants, such as bone conduction hearing implants, suffer from complications that include inflammation of the surrounding skin. A sealed skin-abutment interface can prevent the ingress of bacteria, which should reduce the occurrence of peri-abutment dermatitis. It was hypothesized that a hydroxyapatite (HA)-coated abutment in conjunction with soft tissue preservation surgery should enable integration with the adjacent skin. Previous research has confirmed that integration is never achieved with as-machined titanium abutments. Here, we investigate, in vivo, if skin integration is achievable in patients using a HA-coated abutment. One titanium abutment (control) and one HA-coated abutment (case) together with the surrounding skin were surgically retrieved from two patients who had a medical indication for this procedure. Histological sections of the skin were investigated using light microscopy. The abutment was qualitatively analyzed using scanning electron microscopy. The titanium abutment only had a partial and thin layer of attached amorphous biological material. The HA-coated abutment was almost fully covered by a pronounced thick layer of organized skin, composed of different interconnected structural layers. Proof-of-principle evidence that the HA-coated abutment can achieve integration with the surrounding skin was presented for the first time.

  7. EEG classification for motor imagery and resting state in BCI applications using multi-class Adaboost extreme learning machine

    Science.gov (United States)

    Gao, Lin; Cheng, Wei; Zhang, Jinhua; Wang, Jue

    2016-08-01

    Brain-computer interface (BCI) systems provide an alternative communication and control approach for people with limited motor function. Therefore, the feature extraction and classification approach should differentiate the relative unusual state of motion intention from a common resting state. In this paper, we sought a novel approach for multi-class classification in BCI applications. We collected electroencephalographic (EEG) signals registered by electrodes placed over the scalp during left hand motor imagery, right hand motor imagery, and resting state for ten healthy human subjects. We proposed using the Kolmogorov complexity (Kc) for feature extraction and a multi-class Adaboost classifier with extreme learning machine as base classifier for classification, in order to classify the three-class EEG samples. An average classification accuracy of 79.5% was obtained for ten subjects, which greatly outperformed commonly used approaches. Thus, it is concluded that the proposed method could improve the performance for classification of motor imagery tasks for multi-class samples. It could be applied in further studies to generate the control commands to initiate the movement of a robotic exoskeleton or orthosis, which finally facilitates the rehabilitation of disabled people.

  8. Plasma immersion ion implantation into insulating materials

    International Nuclear Information System (INIS)

    Tian Xiubo; Yang Shiqin

    2006-01-01

    Plasma immersion ion implantation (PIII) is an effective surface modification tool. During PIII processes, the objects to be treated are immersed in plasmas and then biased to negative potential. Consequently the plasma sheath forms and ion implantation may be performed. The pre-requirement of plasma implantation is that the object is conductive. So it seems difficult to treat the insulating materials. The paper focuses on the possibilities of plasma implantation into insulting materials and presents some examples. (authors)

  9. Analysis of nano-meter structure in Ti implanted polymers

    International Nuclear Information System (INIS)

    Zhou Gu; Wu Yuguang; Zhang Tonghe; Zhao Xinrong

    2001-01-01

    Polyethylene terephthalate (PET) is modified with Ti ion implantation to a dose of 1x10 17 to 2 x 10 17 cm -2 by using a metal vapor vacuum arc(MEVVA)source. Nano-meter structures in the implanted sample are observed by means of transmission electron microscope (TEM). The influence of ion dose on the structure is indicated. The results show that dense nano-meter phases are dispersed uniformly in the implanted layer. TEM cross section indicates that there is a three-layer structure in the implanted PET. It is found that a metallurgical surface is formed. Therefore the hardness, wear resistance and conductive properties of PET are improved after metal ion implantation. The mechanism of electrical conduction will be discussed

  10. Optical and Electrical Properties of Ar+ Implanted PET

    Science.gov (United States)

    Kumar, Rajiv; Shekhawat, Nidhi; Sharma, Annu; Aggarwal, Sanjeev; Kumar, Praveen; Kanjilal, D.

    2011-07-01

    In the present work, the effect of 100 keV argon ion implantation on the optical and electrical properties of PET has been studied. A continuous reduction in optical band gap (from 3.63 to 1.93 eV) with increasing implantation dose has been observed as analyzed using UV-Visible absorption spectroscopy. Current-Voltage (I-V) characteristics have been studied which clearly indicate the enhancement in the conductivity of PET specimens as an effect of implantation. This increase in conductivity has been correlated with the decrease in optical band gap.

  11. Comparison of Reconstructive Outcomes in Breast Cancer Patients With Preexisting Subpectoral Implants: Implant-Sparing Mastectomy With Delayed Implant Exchange Versus Immediate Tissue Expander Reconstruction.

    Science.gov (United States)

    Parabkaharan, Sangeetha; Melody, Megan; Trotta, Rose; Lleshi, Amina; Sun, Weihong; Smith, Paul D; Khakpour, Nazanin; Dayicioglu, Deniz

    2016-06-01

    Women who have undergone prior augmentation mammoplasty represent a unique subset of breast cancer patients with several options available for breast reconstruction. We performed a single institution review of surgical outcomes of breast reconstruction performed in patients with breast cancer with prior history of subpectoral breast augmentation. Institutional review board-approved retrospective review was conducted among patients with previously mentioned criteria treated at our institution between 2000 and 2014. Reconstructions were grouped into 2 categories as follows: (1) removal of preexisting subpectoral implant during mastectomy with immediate tissue expander placement and (2) implant-sparing mastectomy followed by delayed exchange to a larger implant. We reviewed demographics, tumor features, and reconstruction outcomes of these groups. Fifty-three patients had preexisting subpectoral implants. Of the 63 breast reconstructions performed, 18 (28.6%) had immediate tissue expander placed and 45 (71.4%) had implant-sparing mastectomy followed by delayed implant exchange. The groups were comparable based on age, body mass index, cancer type, tumor grade, TNM stage at presentation, and hormonal receptor status. No significant difference was noted between tumor margins or subsequent recurrence, mastectomy specimen weight, removed implant volume, volume of implant placed during reconstruction, or time from mastectomy to final implant placement. Rates of complications were significantly higher in the tissue expander group compared to the implant-sparing mastectomy group 7 (38.9%) versus 4 (8.9%) (P = 0.005). Implant-sparing mastectomy with delayed implant exchange in patients with preexisting subpectoral implants is safe and has fewer complications compared to tissue expander placement. There was no difference noted in the final volume of implant placed, time interval for final implant placement, or tumor margins.

  12. Low permanent pacemaker rates following Lotus device implantation for transcatheter aortic valve replacement due to modified implantation protocol.

    Science.gov (United States)

    Krackhardt, Florian; Kherad, Behrouz; Krisper, Maximilian; Pieske, Burkert; Laule, Michael; Tschöpe, Carsten

    2017-01-01

    Conduction disturbances requiring permanent pacemaker implantation following transcatheter aortic valve replacement (TAVR) are a common problem. Pacemaker implantation rates after TAVR appear to be higher compared to conventional aortic valve replacement. The aim of this study was to analyze whether a high annulus implantation conveys the benefit of a decreased rate of permanent pacemaker implantation while being safe and successful according to Valve Academic Research Consortium 2 (VARC2)-criteria. A total of 23 patients with symptomatic severe aortic valve stenosis, an aortic annulus of 19-27 mm and at high risk for surgery were treated with the Lotus valve. In all patients the valve was implanted in a high annulus position via femoral access. The primary device performance endpoint was VARC2-defined device success after 30 days and the primary safety endpoint was the need for permanent pacemaker implantation. The mean age was 73.23 ± 7.65 years, 46% were female, 38% were New York Heart Association class III/IV at baseline. Thirty-day follow-up data were available for all patients. The VARC2-defined device success rate after 30 days was 22/23 (96%). 2/21 (10%) patients required a newly implanted pacemaker due to 3rd degree atrioventricular block. 25% of the patients developed a new left bundle branch block after valvuloplasty or device implantation. 21 of the 23 patients (96%) had no other signs of conduction disturbances after 30 days. The approach of the modified implantation technique of Lotus TAVR device was safe and effective. The incidence of need for a permanent pacemaker following TAVR could be significantly reduced due to adopted implantation protocol.

  13. Evaluation of long-term patient satisfaction and experience with the Baha(®) bone conduction implant

    DEFF Research Database (Denmark)

    Rasmussen, Jacob; Olsen, Steen Østergaard; Nielsen, Lars Holme

    2012-01-01

    Objective: Evaluate long-term patient satisfaction with bone-anchored hearing aids (the Baha(R), now referred to by Cochlear as a 'bone conduction implant') in our hospital clinic spanning the eighteen-year period from the inception of our Baha program. The researchers further wished to analyse...... the various factors leading to patient satisfaction/dissatisfaction with their Baha. We developed a new questionnaire to obtain a comprehensive impression of individual patient practices, general satisfaction, and experiences with their Baha in respect to time spent using Baha, sound quality, annoyance from...... noise disturbance, ease of communication, cosmetic appearance, and satisfaction with the Baha amongst patient relatives, an aspect not previously investigated. Design: The study design was retrospective and executed as a postal questionnaire. The questionnaire was developed by the authors of this paper...

  14. Beyond maximum speed—a novel two-stimulus paradigm for brain-computer interfaces based on event-related potentials (P300-BCI)

    Science.gov (United States)

    Kaufmann, Tobias; Kübler, Andrea

    2014-10-01

    Objective. The speed of brain-computer interfaces (BCI), based on event-related potentials (ERP), is inherently limited by the commonly used one-stimulus paradigm. In this paper, we introduce a novel paradigm that can increase the spelling speed by a factor of 2, thereby extending the one-stimulus paradigm to a two-stimulus paradigm. Two different stimuli (a face and a symbol) are presented at the same time, superimposed on different characters and ERPs are classified using a multi-class classifier. Here, we present the proof-of-principle that is achieved with healthy participants. Approach. Eight participants were confronted with the novel two-stimulus paradigm and, for comparison, with two one-stimulus paradigms that used either one of the stimuli. Classification accuracies (percentage of correctly predicted letters) and elicited ERPs from the three paradigms were compared in a comprehensive offline analysis. Main results. The accuracies slightly decreased with the novel system compared to the established one-stimulus face paradigm. However, the use of two stimuli allowed for spelling at twice the maximum speed of the one-stimulus paradigms, and participants still achieved an average accuracy of 81.25%. This study introduced an alternative way of increasing the spelling speed in ERP-BCIs and illustrated that ERP-BCIs may not yet have reached their speed limit. Future research is needed in order to improve the reliability of the novel approach, as some participants displayed reduced accuracies. Furthermore, a comparison to the most recent BCI systems with individually adjusted, rapid stimulus timing is needed to draw conclusions about the practical relevance of the proposed paradigm. Significance. We introduced a novel two-stimulus paradigm that might be of high value for users who have reached the speed limit with the current one-stimulus ERP-BCI systems.

  15. Fusion of P300 and eye-tracker data for spelling using BCI2000

    Science.gov (United States)

    Kalika, Dmitry; Collins, Leslie; Caves, Kevin; Throckmorton, Chandra

    2017-10-01

    Objective. Various augmentative and alternative communication (AAC) devices have been developed in order to aid communication for individuals with communication disorders. Recently, there has been interest in combining EEG data and eye-gaze data with the goal of developing a hybrid (or ‘fused’) BCI (hBCI) AAC system. This work explores the effectiveness of a speller that fuses data from an eye-tracker and the P300 speller in order to create a hybrid P300 speller. Approach. This hybrid speller collects both eye-tracking and EEG data in parallel, and the user spells characters on the screen in the same way that they would if they were only using the P300 speller. Online and offline experiments were performed. The online experiments measured the performance of the speller for sixteen non-disabled participants, while the offline simulations were used to assess the robustness of the hybrid system. Main results. Online results showed that for fifteen non-disabled participants, using eye-gaze in a Bayesian framework with EEG data from the P300 speller improved accuracy (0.0163+/- 2.72 , 0.085+/- 0.111 , 0.080+/- 0.106 for estimated, medium and high variance configurations) and reduced the average number of flashes required to spell a character compared to the standard P300 speller that relies solely on EEG data (-53.27+/- 25.87 , -36.15+/- 19.3 , -18.85+/- 12.43 for estimated, medium and high variance configurations). Offline simulations indicate that the system provides more robust performance than a standalone eye gaze system. Significance. The results of this work on non-disabled participants shows the potential efficacy of hybrid P300 and eye-tracker speller. Further validation on the amyotrophic lateral sceloris population is needed to assess the benefit of this hybrid system.

  16. C-V and G-V characteristics of ion-implanted MOS structures depending upon the geometrical structure of the implanted region

    International Nuclear Information System (INIS)

    Zohta, Y.

    1977-01-01

    It is found that the capacitance-voltage (C-V) and conductance-voltage (G-V) characteristics of MOS capacitors, into which ions of the opposite conductivity type are implanted, depend strongly upon the geometrical structure of the ion-implanted region. This phenomenon can be analyzed in terms of lateral current flow which connects an inversion layer formed in the ion-implanted region to a surrounding nonimplanted substrate. On the basis of this model, the C-V and G-V characteristics are calculated using a simple equivalent circuit, and general relationships inherent in this model are obtained. MOS capacitors with an ion-implanted layer of different geometries have been prepared to measure their C-V and G-V characteristics. Comparison of experimental measurements with theory substantiates the lateral current flow model

  17. Scalloped Implant-Abutment Connection Compared to Conventional Flat Implant-Abutment Connection: a Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Starch-Jensen, Thomas; Christensen, Ann-Eva; Lorenzen, Henning

    2017-01-01

    The objective was to test the hypothesis of no difference in implant treatment outcome after installation of implants with a scalloped implant-abutment connection compared to a flat implant-abutment connection. A MEDLINE (PubMed), Embase and Cochrane library search in combination with a hand-search of relevant journals was conducted. No language or year of publication restriction was applied. The search provided 298 titles. Three studies fulfilled the inclusion criteria. The included studies were characterized by low or moderate risk of bias. Survival of suprastructures has never been compared within the same study. High implant survival rate was reported in all the included studies. Significantly more peri-implant marginal bone loss, higher probing depth score, bleeding score and gingival score was observed around implants with a scalloped implant-abutment connection. There were no significant differences between the two treatment modalities regarding professional or patient-reported outcome measures. Meta-analysis disclosed a mean difference of peri-implant marginal bone loss of 1.56 mm (confidence interval: 0.87 to 2.25), indicating significant more bone loss around implants with a scalloped implant-abutment connection. A scalloped implant-abutment connection seems to be associated with higher peri-implant marginal bone loss compared to a flat implant-abutment connection. Therefore, the hypothesis of the present systematic review must be rejected. However, further long-term randomized controlled trials assessing implant treatment outcome with the two treatment modalities are needed before definite conclusions can be provided about the beneficial use of implants with a scalloped implant-abutment connection on preservation of the peri-implant marginal bone level.

  18. The influence of implant-abutment connection to peri-implant bone loss: A systematic review and meta-analysis.

    Science.gov (United States)

    Caricasulo, Riccardo; Malchiodi, Luciano; Ghensi, Paolo; Fantozzi, Giuliano; Cucchi, Alessandro

    2018-05-15

    Different implant-abutment connections are available and it has been claimed they could have an effect on marginal bone loss. The aim of this review is to establish if implant connection configuration influences peri-implant bone loss (PBL) after functional loading. A specific question was formulated according to the Population, Intervention, Control, and Outcome (PICO): Does the type of implant-abutment connection (external, internal, or conical) have an influence on peri-implant bone loss? A PubMed/MEDLINE electronic search was conducted to identify English language publications published in international journals during the last decade (from 2006 to 2016). The search was conducted by using the Medical Subject Headings (MeSH) keywords "dental implants OR dental abutment AND external connection OR internal connection OR conical connection OR Morse Taper." Selected studies were randomized clinical trials and prospective studies; in vitro studies, case reports and retrospective studies were excluded. Titles and abstracts and, in the second phase, full texts, were evaluated autonomously and in duplicate by two reviewers. A total of 1649 articles were found, but only 14 studies met the pre-established inclusion criteria and were considered suitable for meta-analytic analysis. The network meta-analysis (NMA) suggested a significant difference between the external and the conical connections; this was less evident for the internal and conical ones. Platform-switching (PS) seemed to positively affect bone levels, non-regarding the implant-connection it was applied to. Within the limitations of this systematic review, it can be concluded that crestal bone levels are better maintained in the short-medium term when internal kinds of interface are adopted. In particular, conical connections seem to be more advantageous, showing lower peri-implant bone loss, but further studies are necessary to investigate the efficacy of implant-abutment connection on stability of crestal

  19. Diagnostic Principles of Peri-Implantitis: a Systematic Review and Guidelines for Peri-Implantitis Diagnosis Proposal

    Directory of Open Access Journals (Sweden)

    Ausra Ramanauskaite

    2016-09-01

    Full Text Available Objectives: To review and summarize the literature concerning peri-implantitis diagnostic parameters and to propose guidelines for peri-implantitis diagnosis. Material and Methods: An electronic literature search was conducted of the MEDLINE (Ovid and EMBASE databases for articles published between 2011 and 2016. Sequential screening at the title/abstract and full-text levels was performed. Systematic reviews/guidelines of consensus conferences proposing classification or suggesting diagnostic parameters for peri-implantitis in the English language were included. The review was recorded on PROSPERO system with the code CRD42016033287. Results: The search resulted in 10 articles that met the inclusion criteria. Four were papers from consensus conferences, two recommended diagnostic guidelines, three proposed classification of peri-implantitis, and one suggested an index for implant success. The following parameters were suggested to be used for peri-implantitis diagnosis: pain, mobility, bleeding on probing, probing depth, suppuration/exudate, and radiographic bone loss. In all of the papers, different definitions of peri-implantitis or implant success, as well as different thresholds for the above mentioned clinical and radiographical parameters, were used. Current evidence rationale for the diagnosis of peri-implantitis and classification based on consecutive evaluation of soft-tissue conditions and the amount of bone loss were suggested. Conclusions: Currently there is no single uniform definition of peri-implantitis or the parameters that should be used. Rationale for diagnosis and prognosis of peri-implantitis as well as classification of the disease is proposed.

  20. A temperature sensor implant for active implantable medical devices for in vivo subacute heating tests under MRI.

    Science.gov (United States)

    Silemek, Berk; Acikel, Volkan; Oto, Cagdas; Alipour, Akbar; Aykut, Zaliha Gamze; Algin, Oktay; Atalar, Ergin

    2018-05-01

    To introduce a temperature sensor implant (TSI) that mimics an active implantable medical device (AIMD) for animal testing of MRI heating. Computer simulations and phantom experiments poorly represent potential temperature increases. Animal experiments could be a better model, but heating experiments conducted immediately after the surgery suffer from alterations of the thermoregulatory and tissue properties during acute testing conditions. Therefore, the aim of this study was to introduce a temperature sensor implant that mimics an AIMD and capable of measuring the electrode temperature after implantation of the device without any further intervention at any time after the surgery in an animal model. A battery-operated TSI, which resembled an AIMD, was used to measure the lead temperature and impedance and the case temperature. The measured values were transmitted to an external computer via a low-power Bluetooth communication protocol. In addition to validation experiments on the phantom, a sheep experiment was conducted to test the feasibility of the system in subacute conditions. The measurements had a maximum of 0.5°C difference compared to fiber-optic temperature probes. In vivo animal experiments demonstrated feasibility of the system. An active implant, which can measure its own temperature, was proposed to investigate implant heating during MRI examinations. Magn Reson Med 79:2824-2832, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  1. Prognostic indicators for surgical peri-implantitis treatment

    NARCIS (Netherlands)

    de Waal, Yvonne C M; Raghoebar, Gerry M; Meijer, Henny J A; Winkel, Edwin G; van Winkelhoff, Arie Jan

    2016-01-01

    Objectives: Objective of this study was to identify prognostic indicators for the outcome of resective peri-implantitis treatment, by an analysis of the pooled data of two previously conducted randomized controlled trials. Material and methods: Data of 74 patients with peri-implantitis (187

  2. High-grade Angiosarcoma Associated with Ruptured Breast Implants

    Directory of Open Access Journals (Sweden)

    Nicolas R. Smoll, MBBS

    2013-04-01

    Full Text Available Summary: Since the serendipitous discovery that implanted polymers cause sarcomas in rats, much research has been conducted to prove or disprove a link between silicone breast implants and/or polymer-based materials and breast cancer. In light of an initial report that 35% of rats implanted with a variety of polymers developed fibrosarcomas, we report a case of primary angiosarcoma found in a patient presenting with bilateral rupture of gel-filled breast implants.

  3. Post-stroke Rehabilitation Training with a Motor-Imagery-Based Brain-Computer Interface (BCI)-Controlled Hand Exoskeleton: A Randomized Controlled Multicenter Trial.

    Science.gov (United States)

    Frolov, Alexander A; Mokienko, Olesya; Lyukmanov, Roman; Biryukova, Elena; Kotov, Sergey; Turbina, Lydia; Nadareyshvily, Georgy; Bushkova, Yulia

    2017-01-01

    Repeated use of brain-computer interfaces (BCIs) providing contingent sensory feedback of brain activity was recently proposed as a rehabilitation approach to restore motor function after stroke or spinal cord lesions. However, there are only a few clinical studies that investigate feasibility and effectiveness of such an approach. Here we report on a placebo-controlled, multicenter clinical trial that investigated whether stroke survivors with severe upper limb (UL) paralysis benefit from 10 BCI training sessions each lasting up to 40 min. A total of 74 patients participated: median time since stroke is 8 months, 25 and 75% quartiles [3.0; 13.0]; median severity of UL paralysis is 4.5 points [0.0; 30.0] as measured by the Action Research Arm Test, ARAT, and 19.5 points [11.0; 40.0] as measured by the Fugl-Meyer Motor Assessment, FMMA. Patients in the BCI group ( n = 55) performed motor imagery of opening their affected hand. Motor imagery-related brain electroencephalographic activity was translated into contingent hand exoskeleton-driven opening movements of the affected hand. In a control group ( n = 19), hand exoskeleton-driven opening movements of the affected hand were independent of brain electroencephalographic activity. Evaluation of the UL clinical assessments indicated that both groups improved, but only the BCI group showed an improvement in the ARAT's grasp score from 0 [0.0; 14.0] to 3.0 [0.0; 15.0] points ( p exoskeleton-assisted physical therapy can improve post-stroke rehabilitation outcomes. Both maximum and mean values of the percentage of successfully decoded imagery-related EEG activity, were higher than chance level. A correlation between the classification accuracy and the improvement in the upper extremity function was found. An improvement of motor function was found for patients with different duration, severity and location of the stroke.

  4. Quantitative ion implantation

    International Nuclear Information System (INIS)

    Gries, W.H.

    1976-06-01

    This is a report of the study of the implantation of heavy ions at medium keV-energies into electrically conducting mono-elemental solids, at ion doses too small to cause significant loss of the implanted ions by resputtering. The study has been undertaken to investigate the possibility of accurate portioning of matter in submicrogram quantities, with some specific applications in mind. The problem is extensively investigated both on a theoretical level and in practice. A mathematical model is developed for calculating the loss of implanted ions by resputtering as a function of the implanted ion dose and the sputtering yield. Numerical data are produced therefrom which permit a good order-of-magnitude estimate of the loss for any ion/solid combination in which the ions are heavier than the solid atoms, and for any ion energy from 10 to 300 keV. The implanted ion dose is measured by integration of the ion beam current, and equipment and techniques are described which make possible the accurate integration of an ion current in an electromagnetic isotope separator. The methods are applied to two sample cases, one being a stable isotope, the other a radioisotope. In both cases independent methods are used to show that the implantation is indeed quantitative, as predicted. At the same time the sample cases are used to demonstrate two possible applications for quantitative ion implantation, viz. firstly for the manufacture of calibration standards for instrumental micromethods of elemental trace analysis in metals, and secondly for the determination of the half-lives of long-lived radioisotopes by a specific activity method. It is concluded that the present study has advanced quantitative ion implantation to the state where it can be successfully applied to the solution of problems in other fields

  5. Behavior of PET implanted by Ti, Ag, Si and C ion using MEVVA implantation

    International Nuclear Information System (INIS)

    Wu Yuguang; Zhang Tonghe; Zhang Yanwen; Zhang Huixing; Zhang Xiaoji; Zhou Gu

    2001-01-01

    Polyethylene terephthalane (PET) has been modified with Ti, Ag, Si and C ions from a metal vapor arc source (MEVVA). Ti, Ag, Si and C ions were implanted with acceleration voltage 40 kV to fluences ranging from 1x10 16 to 2x10 17 cm -2 . The surface of implanted PET darkened with increasing ion dose, when the metal ion dose was greater than 1x10 17 cm -2 the color changed to metallic bright. The surface resistance decreases by 5-6 orders of magnitude with increasing dose. The resistivity is stable after long-term storage. The depth of Ti- and Ag-implanted layer is approximately 150 and 80 nm measured by Rutherford backscattering (RBS), respectively. TEM photos revealed the presence of Ti and Ag nano-meter particles on the surface resulting from the high-dose implantation. Ti and Ag ion implantations improved conductivity and wear resistance significantly. The phase and structural changes were obtained by X-ray diffraction (XRD). It can be seen that nano-meter particles of Ti precipitation, TiO 2 and Ti-carbides have been formed in implanted layer. Nano-hardness of implanted PET has been measured by a nano-indenter. The results show that the surface hardness, modulus and wear resistance could be increased

  6. Helium implantation effects in SAP and aluminum

    International Nuclear Information System (INIS)

    Bauer, W.; Thomas, G.J.

    1976-02-01

    A series of 300 keV He implantations of Al and SAP 930 have been conducted at temperatures between 150 and 773K. The He re-emission was monitored during implantation and the samples were examined with a scanning electron microscope after implantation. Both Al and SAP 930 were found to blister after a critical He dose was reached at temperatures above 473K, both underwent flaking below that temperature, with blistering re-appearing in SAP 930 at an implantation temperature of 150K. The surface deformation and He re-emission are strongly dependent on microstructural effects in the intermediate temperature regime

  7. Ações de fomento à pesquisa científica na FaBCI/FESPSP: panorama do período de 2008 a 2010Actions of scientific development research at FaBCI/FESPSP: overview of the period 2008 to 2010

    Directory of Open Access Journals (Sweden)

    Wellington Ferreira Rodrigues

    2012-06-01

    Full Text Available Apresenta e descreve as ações de incentivo à pesquisa científica desenvolvidas na Fundação Escola de Sociologia e Política de São Paulo - FESPSP entre os anos de 2008 e 2010. O foco do trabalho é a participação dos alunos da Faculdade de Biblioteconomia e Ciência da Informação – FaBCI nestes programas e a produção apresentada nestes anos. Além disso, são apresentados os resultados obtidos pelo programa de Monitoria Científica, aplicado em 2010 apenas no curso de Biblioteconomia e Ciência da Informação da FESPSP, entre os meses de abril a dezembro de 2010. Palavras-chave: Pesquisa científica. Iniciação científica. Instituição de Ensino Superior. Abstract This paper presents and describes activities to encourage scientific research developed at Fundação Escola de Sociologia e Política de São Paulo (FESPSP between 2008 and 2010. The main focus of this study is the participation of students of the School of Library and Information Science (FaBCI in these programs and their production throughout these years. Moreover, we present the results of the program of Scientific Monitoring, applied exclusively in the course of Library and Information Science of FESPSP between April and December 2010. Keywords: Scientific research. Undergraduate research. College Education Institution.

  8. Amorphous GaP produced by ion implantation

    International Nuclear Information System (INIS)

    Shimada, T.; Kato, Y.; Shiraki, Y.; Komatsubara, K.F.

    1976-01-01

    Two types of non-crystalline states ('disordered' and 'amorphous') of GaP were produced by using ion implantation and post annealing. A structural-phase-transition-like annealing behaviour from the 'disordered' state to the 'amorphous' state was observed. The ion dose dependence and the annealing behaviour of the atomic structure of GaP implanted with 200 keV -N + ions were studied by using electron diffraction, backscattering and volume change measurements. The electronic structure was also investigated by measuring optical absorption and electrical conductivity. The implanted layer gradually loses the crystalline order with the increase of the nitrogen dose. The optical absorption coefficient α and electric conductivity sigma of GaP crystals implanted with 200 keV -N + ions of 1 x 10 16 cm -2 were expressed as αhν = C(hν - E 0 )sup(n) and log sigma = A -BTsup(-1/4), respectively. Moreover, the volume of the implanted layer increased about three percent and the electron diffraction pattern was diffused halo whose intensity monotonically decreases along the radial direction. These results indicate that the as-implanted layer has neither a long range order or short range order ('disordered state'). In the sample implanted at 1 x 10 16 cm -2 , a structural phase-transition-like annealing stage was observed at around 400 0 C. That is, the optical absorption coefficient abruptly fell off from 6 x 10 4 to 7 x 10 3 cm -1 and the volume of the implanted layer decreased about 2% within an increase of less than 10 degrees in the anneal temperature. Moreover, the short range order of the lattice structure appeared in the electron diffraction pattern. According to the backscattering experiment, the heavily implanted GaP was still in the non-crystalline state even after annealing. These facts suggest that heavily implanted GaP, followed by annealing at around 400 0 C, is in the 'amorphous' state, although as-implanted GaP is not in the 'amorphous' state but in the

  9. Do textured breast implants decrease the rate of capsular contracture compared to smooth implants?

    Science.gov (United States)

    Cifuentes, Ignacio; Dagnino, Bruno; Rada, Gabriel

    2017-08-31

    The use of breast implants for aesthetic and reconstructive purposes has become one of the most common procedures performed by plastic surgeons. Several breast implants models exist. They differ in their size, filling, shape and characteristic of the shell, which can be smooth or textured. Capsular contracture is one of the main complications of breast implants. It has been suggested that the use of textured implants could reduce the incidence of capsular contracture. To answer this question, we used Epistemonikos, the largest database of systematic reviews in health, which is maintained by screening multiple information sources, including MEDLINE, EMBASE, Cochrane, among others. We identified 15 studies overall, of which 13 were randomized trials relevant for the question of interest. We extracted data from the systematic reviews, reanalyzed data of primary studies, conducted a meta-analysis and generated a summary of findings table using the GRADE approach. We concluded the use of textured breast implants probably decreases the risk of capsular contracture, however, they might be associated to an increased risk of anaplastic large cell lymphoma.

  10. Tribological studies of ion-implanted steel constituents

    International Nuclear Information System (INIS)

    Wei, Ronghau.

    1990-01-01

    Tribological properties of ion-implanted ferrite and austenite were studied systematically using a unique oscillating pin-on-disc wear tester. Results show that nitrogen implantation at elevated temperatures to high doses dramatically improves the adhesive wear resistance of ferrite and the critical load at which the adhesive wear mechanism changes from mild to severe for austenite. The wear resistance of nitrogen-implanted ferrite is determined by the nitride formed. Extremely hard solid solutions of nitrogen develop on the implanted austenite surfaces and induce three orders of magnitude reductions in wear rates. The implantation conditions that should be used to produce deep, wear-resistant layers for both steels are discussed in detail. Oscillating pin-on-disc wear tests demonstrate that nitrogen does not diffuse during the wearing process although tests conducted using conventional fixed pin-on-disc test equipment could erroneously suggest this occurs. Taken together, the results show that high-dose-rate implantation at low energies yields very-high-quality implanted surfaces at low cost

  11. Self-regulation of brain rhythms in the precuneus: a novel BCI paradigm for patients with ALS

    Science.gov (United States)

    Fomina, Tatiana; Lohmann, Gabriele; Erb, Michael; Ethofer, Thomas; Schölkopf, Bernhard; Grosse-Wentrup, Moritz

    2016-12-01

    Objective. Electroencephalographic (EEG) brain-computer interfaces (BCIs) hold promise in restoring communication for patients with completely locked-in stage amyotrophic lateral sclerosis (ALS). However, these patients cannot use existing EEG-based BCIs, arguably because such systems rely on brain processes that are impaired in the late stages of ALS. In this work, we introduce a novel BCI designed for patients in late stages of ALS based on high-level cognitive processes that are less likely to be affected by ALS. Approach. We trained two ALS patients via EEG-based neurofeedback to use self-regulation of theta or gamma oscillations in the precuneus for basic communication. Because there is a tight connection between the precuneus and consciousness, precuneus oscillations are arguably generated by high-level cognitive processes, which are less likely to be affected by ALS than processes linked to the peripheral nervous system. Main results. Both patients learned to self-regulate their precuneus oscillations and achieved stable online decoding accuracy over the course of disease progression. One patient achieved a mean online decoding accuracy in a binary decision task of 70.55% across 26 training sessions, and the other patient achieved 59.44% across 16 training sessions. We provide empirical evidence that these oscillations were cortical in nature and originated from the intersection of the precuneus, cuneus, and posterior cingulate. Significance. Our results establish that ALS patients can employ self-regulation of precuneus oscillations for communication. Such a BCI is likely to be available to ALS patients as long as their consciousness supports communication.

  12. Comparison of Audiological Results Between a Transcutaneous and a Percutaneous Bone Conduction Instrument in Conductive Hearing Loss.

    Science.gov (United States)

    Gerdes, Timo; Salcher, Rolf Benedikt; Schwab, Burkard; Lenarz, Thomas; Maier, Hannes

    2016-07-01

    In conductive, mixed hearing losses and single-sided-deafness bone-anchored hearing aids are a well-established treatment. The transcutaneous transmission across the intact skin avoids the percutaneous abutment of a bone-anchored device with the usual risk of infections and requires less care.In this study, the audiological results of the Bonebridge transcutaneous bone conduction implant (MED-EL) are compared to the generally used percutaneous device BP100 (Cochlear Ltd., Sydney, Australia). Ten patients implanted with the transcutaneous hearing implant were compared to 10 matched patients implanted with a percutaneous device. Tests included pure-tone AC and BC thresholds and unaided and aided sound field thresholds. Speech intelligibility was determined in quiet using the Freiburg monosyllable test and in noise with the Oldenburg sentence test (OLSA) in sound field with speech from the front (S0). The subjective benefit was assessed with the Abbreviated Profile of Hearing Aid Benefit. In comparison with the unaided condition there was a significant improvement in aided thresholds, word recognition scores (WRS), and speech reception thresholds (SRT) in noise, measured in sound field, for both devices. The comparison of the two devices revealed a minor but not significant difference in functional gain (Bonebridge: PTA = 27.5 dB [mean]; BAHA: PTA = 26.3 dB [mean]). No significant difference between the two devices was found when comparing the improvement in WRSs and SRTs (Bonebridge: improvement WRS = 80% [median], improvement SRT = 6.5 dB SNR [median]; BAHA: improvement WRS = 77.5% [median], BAHA: improvement SRT = 6.9 dB SNR [median]). Our data show that the transcutaneous bone conduction hearing implant is an audiologically equivalent alternative to percutaneous bone-anchored devices in conductive hearing loss with a minor sensorineural hearing loss component.

  13. Spatial co-adaptation of cortical control columns in a micro-ECoG brain-computer interface

    Science.gov (United States)

    Rouse, A. G.; Williams, J. J.; Wheeler, J. J.; Moran, D. W.

    2016-10-01

    Objective. Electrocorticography (ECoG) has been used for a range of applications including electrophysiological mapping, epilepsy monitoring, and more recently as a recording modality for brain-computer interfaces (BCIs). Studies that examine ECoG electrodes designed and implanted chronically solely for BCI applications remain limited. The present study explored how two key factors influence chronic, closed-loop ECoG BCI: (i) the effect of inter-electrode distance on BCI performance and (ii) the differences in neural adaptation and performance when fixed versus adaptive BCI decoding weights are used. Approach. The amplitudes of epidural micro-ECoG signals between 75 and 105 Hz with 300 μm diameter electrodes were used for one-dimensional and two-dimensional BCI tasks. The effect of inter-electrode distance on BCI control was tested between 3 and 15 mm. Additionally, the performance and cortical modulation differences between constant, fixed decoding using a small subset of channels versus adaptive decoding weights using the entire array were explored. Main results. Successful BCI control was possible with two electrodes separated by 9 and 15 mm. Performance decreased and the signals became more correlated when the electrodes were only 3 mm apart. BCI performance in a 2D BCI task improved significantly when using adaptive decoding weights (80%-90%) compared to using constant, fixed weights (50%-60%). Additionally, modulation increased for channels previously unavailable for BCI control under the fixed decoding scheme upon switching to the adaptive, all-channel scheme. Significance. Our results clearly show that neural activity under a BCI recording electrode (which we define as a ‘cortical control column’) readily adapts to generate an appropriate control signal. These results show that the practical minimal spatial resolution of these control columns with micro-ECoG BCI is likely on the order of 3 mm. Additionally, they show that the combination and

  14. Changes in surface properties caused by ion implantation

    International Nuclear Information System (INIS)

    Iwaki, Masaya

    1987-01-01

    This report outlines various aspects of ion implantation. Major features of ion implantation are described first, focusing on the structure of ion implantation equipment and some experimental results of ion implantation into semiconductors. Distribution of components in ion-implantated layers is then discussed. The two major features of ion implantation in relation to the distribution of implanted ions are: (1) high controllability of addition of ions to a surface layer and (2) formation of a large number of lattice defects in a short period of time. Application of ion implantation to metallic materials is expected to permit the following: (1) formation of a semi-stable alloy surface layer by metallic ion implantation, (2) formation of a semi-stable ceramic surface layer or buried layer by non-metallic ion implantation, and (3) formation of a buried layer by combined implementation of a different metallic ion and non-metallic ion. Ion implantation in carbon materials, polymers and ceramics is discussed next. The last part of the report is dedicated to macroscopic properties of an ion-implanted layer, centering on surface modification, formation of a conductive surface layer, and tribology. (Nogami, K.) 60 refs

  15. International consensus on Vibrant Soundbridge(R) implantation in children and adolescents.

    NARCIS (Netherlands)

    Cremers, C.W.R.J.; O'Connor, A.F.; Helms, J.; Roberson, J.; Claros, P.; Frenzel, H.; Profant, M.; Schmerber, S.; Streitberger, C.; Baumgartner, W.D.; Orfila, D.; Pringle, M.; Cenjor, C.; Giarbini, N.; Jiang, D.; Snik, A.F.M.

    2010-01-01

    OBJECTIVE: Active middle ear implants augment hearing in patients with sensorineural, conductive, and mixed hearing losses with great success. However, the application of active middle ear implants has been restricted to compromised ears in adults only. Recently, active middle ear implants have been

  16. Ion-implanted PLZT ceramics: a new high-sensitivity image storage medium

    International Nuclear Information System (INIS)

    Peercy, P.S.; Land, C.E.

    1980-01-01

    Results were presented of our studies of photoferroelectric (PFE) image storage in H- and He-ion implanted PLZT (lead lanthanum zirconate titanate) ceramics which demonstrate that the photosensitivity of PLZT can be significantly increased by ion implantation in the ceramic surface to be exposed to image light. More recently, implantations of Ar and Ar + Ne into the PLZT surface have produced much greater photosensitivity enhancement. For example, the photosensitivity after implantation with 1.5 x 10 14 350 keV Ar/cm 2 + 1 x 10 15 500 keV Ne/cm 2 is increased by about four orders of magnitude over that of unimplanted PLZT. Measurements indicate that the photosensitivity enhancement in ion-implanted PLZT is controlled by implantation-produced disorder which results in marked decreases in dielectric constant and dark conductivity and changes in photoconductivity of the implanted layer. The effects of Ar- and Ar + Ne-implantation are presented along with a phenomenological model which describes the enhancement in photosensitivity obtained by ion implantation. This model takes into account both light- and implantation-induced changes in conductivity and gives quantitative agreement with the measured changes in the coercive voltage V/sub c/ as a function of near-uv light intensity for both unimplanted and implanted PLZT. The model, used in conjunction with calculations of the profiles of implantation-produced disorder, has provided the information needed for co-implanting ions of different masses, e.g., Ar and Ne, to improve photosensitivity

  17. Control of a brain-computer interface using stereotactic depth electrodes in and adjacent to the hippocampus

    Science.gov (United States)

    Krusienski, D. J.; Shih, J. J.

    2011-04-01

    A brain-computer interface (BCI) is a device that enables severely disabled people to communicate and interact with their environments using their brain waves. Most research investigating BCI in humans has used scalp-recorded electroencephalography or intracranial electrocorticography. The use of brain signals obtained directly from stereotactic depth electrodes to control a BCI has not previously been explored. In this study, event-related potentials (ERPs) recorded from bilateral stereotactic depth electrodes implanted in and adjacent to the hippocampus were used to control a P300 Speller paradigm. The ERPs were preprocessed and used to train a linear classifier to subsequently predict the intended target letters. The classifier was able to predict the intended target character at or near 100% accuracy using fewer than 15 stimulation sequences in the two subjects tested. Our results demonstrate that ERPs from hippocampal and hippocampal adjacent depth electrodes can be used to reliably control the P300 Speller BCI paradigm.

  18. Doping of silicon carbide by ion implantation; Dopage du carbure de silicium par implantation ionique

    Energy Technology Data Exchange (ETDEWEB)

    Gimbert, J

    1999-03-04

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  19. A review of brain-computer interface games and an opinion survey from researchers, developers and users.

    Science.gov (United States)

    Ahn, Minkyu; Lee, Mijin; Choi, Jinyoung; Jun, Sung Chan

    2014-08-11

    In recent years, research on Brain-Computer Interface (BCI) technology for healthy users has attracted considerable interest, and BCI games are especially popular. This study reviews the current status of, and describes future directions, in the field of BCI games. To this end, we conducted a literature search and found that BCI control paradigms using electroencephalographic signals (motor imagery, P300, steady state visual evoked potential and passive approach reading mental state) have been the primary focus of research. We also conducted a survey of nearly three hundred participants that included researchers, game developers and users around the world. From this survey, we found that all three groups (researchers, developers and users) agreed on the significant influence and applicability of BCI and BCI games, and they all selected prostheses, rehabilitation and games as the most promising BCI applications. User and developer groups tended to give low priority to passive BCI and the whole head sensor array. Developers gave higher priorities to "the easiness of playing" and the "development platform" as important elements for BCI games and the market. Based on our assessment, we discuss the critical point at which BCI games will be able to progress from their current stage to widespread marketing to consumers. In conclusion, we propose three critical elements important for expansion of the BCI game market: standards, gameplay and appropriate integration.

  20. A Review of Brain-Computer Interface Games and an Opinion Survey from Researchers, Developers and Users

    Directory of Open Access Journals (Sweden)

    Minkyu Ahn

    2014-08-01

    Full Text Available In recent years, research on Brain-Computer Interface (BCI technology for healthy users has attracted considerable interest, and BCI games are especially popular. This study reviews the current status of, and describes future directions, in the field of BCI games. To this end, we conducted a literature search and found that BCI control paradigms using electroencephalographic signals (motor imagery, P300, steady state visual evoked potential and passive approach reading mental state have been the primary focus of research. We also conducted a survey of nearly three hundred participants that included researchers, game developers and users around the world. From this survey, we found that all three groups (researchers, developers and users agreed on the significant influence and applicability of BCI and BCI games, and they all selected prostheses, rehabilitation and games as the most promising BCI applications. User and developer groups tended to give low priority to passive BCI and the whole head sensor array. Developers gave higher priorities to “the easiness of playing” and the “development platform” as important elements for BCI games and the market. Based on our assessment, we discuss the critical point at which BCI games will be able to progress from their current stage to widespread marketing to consumers. In conclusion, we propose three critical elements important for expansion of the BCI game market: standards, gameplay and appropriate integration.

  1. Bristle-sensors—low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications

    Science.gov (United States)

    Grozea, Cristian; Voinescu, Catalin D.; Fazli, Siamac

    2011-04-01

    In this paper, we present a new, low-cost dry electrode for EEG that is made of flexible metal-coated polymer bristles. We examine various standard EEG paradigms, such as capturing occipital alpha rhythms, testing for event-related potentials in an auditory oddball paradigm and performing a sensory motor rhythm-based event-related (de-) synchronization paradigm to validate the performance of the novel electrodes in terms of signal quality. Our findings suggest that the dry electrodes that we developed result in high-quality EEG recordings and are thus suitable for a wide range of EEG studies and BCI applications. Furthermore, due to the flexibility of the novel electrodes, greater comfort is achieved in some subjects, this being essential for long-term use.

  2. Your eyes give you away: pupillary responses, EEG dynamics, and applications for BCI (Conference Presentation)

    Science.gov (United States)

    Sajda, Paul

    2017-05-01

    As we move through an environment, we are constantly making assessments, judgments, and decisions about the things we encounter. Some are acted upon immediately, but many more become mental notes or fleeting impressions - our implicit "labeling" of the world. In this talk I will describe our work using physiological correlates of this labeling to construct a hybrid brain-computer interface (hBCI) system for efficient navigation of a 3-D environment. Specifically, we record electroencephalographic (EEG), saccadic, and pupillary data from subjects as they move through a small part of a 3-D virtual city under free-viewing conditions. Using machine learning, we integrate the neural and ocular signals evoked by the objects they encounter to infer which ones are of subjective interest. These inferred labels are propagated through a large computer vision graph of objects in the city, using semi-supervised learning to identify other, unseen objects that are visually similar to those that are labelled. Finally, the system plots an efficient route so that subjects visit similar objects of interest. We show that by exploiting the subjects' implicit labeling, the median search precision is increased from 25% to 97%, and the median subject need only travel 40% of the distance to see 84% of the objects of interest. We also find that the neural and ocular signals contribute in a complementary fashion to the classifiers' inference of subjects' implicit labeling. In summary, we show that neural and ocular signals reflecting subjective assessment of objects in a 3-D environment can be used to inform a graph-based learning model of that environment, resulting in an hBCI system that improves navigation and information delivery specific to the user's interests.

  3. Dopant site location in dual-implanted GaP using (111) planar channeling

    International Nuclear Information System (INIS)

    Parikh, N.R.; Kao, C.T.; Lee, D.R.; Muse, J.; Swanson, M.L.; Venkatasubramanian, R.; Timmons, M.

    1990-01-01

    Previous studies have indicated that dual implantation can efficiently introduce group IV dopant onto selected sub-lattice sites in III--V compound semiconductors, thus enhancing electrical activation. The authors have studied this phenomenon in GaP using Rutherford Backscattering Spectroscopy (RBS) to determine the lattice location of Sn atoms. The authors used single crystals of GaP (100) which had been implanted at 400 degrees C with 120 Sn + following previously implanted 69 Ga + or 31 P + . Energies were selected for equivalent projected ranges, and all species were implanted with doses of 1 x 10 15 atoms/cm 2 . Asymmetry in the angular scan of the {111} planar channel was then used to determine the sub-lattice location of the implanted Sn. RBS results indicated that for all implants Sn atoms were substituting Ga and P sites equally. However, Hall effect measurements gave p type conduction for GaP implanted with Sn alone, while those with prior implants of Ga or P resulted in n-type conduction. RBS and Hall effect results are explained by a vacancy complex model

  4. Short Implants: New Horizon in Implant Dentistry.

    Science.gov (United States)

    Jain, Neha; Gulati, Manisha; Garg, Meenu; Pathak, Chetan

    2016-09-01

    The choice of implant length is an essential factor in deciding the survival rates of these implants and the overall success of the prosthesis. Placing an implant in the posterior part of the maxilla and mandible has always been very critical due to poor bone quality and quantity. Long implants can be placed in association with complex surgical procedures such as sinus lift and bone augmentation. These techniques are associated with higher cost, increased treatment time and greater morbidity. Hence, there is need for a less invasive treatment option in areas of poor bone quantity and quality. Data related to survival rates of short implants, their design and prosthetic considerations has been compiled and structured in this manuscript with emphasis on the indications, advantages of short implants and critical biomechanical factors to be taken into consideration when choosing to place them. Studies have shown that comparable success rates can be achieved with short implants as those with long implants by decreasing the lateral forces to the prosthesis, eliminating cantilevers, increasing implant surface area and improving implant to abutment connection. Short implants can be considered as an effective treatment alternative in resorbed ridges. Short implants can be considered as a viable treatment option in atrophic ridge cases in order to avoid complex surgical procedures required to place long implants. With improvement in the implant surface geometry and surface texture, there is an increase in the bone implant contact area which provides a good primary stability during osseo-integration.

  5. Reevaluation of the indications for permanent pacemaker implantation after transcatheter aortic valve implantation

    DEFF Research Database (Denmark)

    Bjerre Thygesen, Julie; Loh, Poay Huan; Cholteesupachai, Jiranut

    2014-01-01

    AIMS: Conduction abnormalities (CA) requiring permanent pacemaker (PPM) are a well-known complication after transcatheter aortic valve implantation (TAVI). This study aimed to determine the incidence of TAVI-related PPM and reevaluate the indications for PPM after the periprocedural period. METHO...

  6. The effect of thread pattern upon implant osseointegration.

    Science.gov (United States)

    Abuhussein, Heba; Pagni, Giorgio; Rebaudi, Alberto; Wang, Hom-Lay

    2010-02-01

    Implant design features such as macro- and micro-design may influence overall implant success. Limited information is currently available. Therefore, it is the purpose of this paper to examine these factors such as thread pitch, thread geometry, helix angle, thread depth and width as well as implant crestal module may affect implant stability. A literature search was conducted using MEDLINE to identify studies, from simulated laboratory models, animal, to human, related to this topic using the keywords of implant thread, implant macrodesign, thread pitch, thread geometry, helix angle, thread depth, thread width and implant crestal module. The results showed how thread geometry affects the distribution of stress forces around the implant. A decreased thread pitch may positively influence implant stability. Excess helix angles in spite of a faster insertion may jeopardize the ability of implants to sustain axial load. Deeper threads seem to have an important effect on the stabilization in poorer bone quality situations. The addition of threads or microthreads up to the crestal module of an implant might provide a potential positive contribution on bone-to to-implant contact as well as on the preservation of marginal bone; nonetheless this remains to be determined. Appraising the current literature on this subject and combining existing data to verify the presence of any association between the selected characteristics may be critical in the achievement of overall implant success.

  7. Classification of EEG-P300 Signals Extracted from Brain Activities in BCI Systems Using ν-SVM and BLDA Algorithms

    Directory of Open Access Journals (Sweden)

    Ali MOMENNEZHAD

    2014-06-01

    Full Text Available In this paper, a linear predictive coding (LPC model is used to improve classification accuracy, convergent speed to maximum accuracy, and maximum bitrates in brain computer interface (BCI system based on extracting EEG-P300 signals. First, EEG signal is filtered in order to eliminate high frequency noise. Then, the parameters of filtered EEG signal are extracted using LPC model. Finally, the samples are reconstructed by LPC coefficients and two classifiers, a Bayesian Linear discriminant analysis (BLDA, and b the υ-support vector machine (υ-SVM are applied in order to classify. The proposed algorithm performance is compared with fisher linear discriminant analysis (FLDA. Results show that the efficiency of our algorithm in improving classification accuracy and convergent speed to maximum accuracy are much better. As example at the proposed algorithms, respectively BLDA with LPC model and υ-SVM with LPC model with8 electrode configuration for subject S1 the total classification accuracy is improved as 9.4% and 1.7%. And also, subject 7 at BLDA and υ-SVM with LPC model algorithms (LPC+BLDA and LPC+ υ-SVM after block 11th converged to maximum accuracy but Fisher Linear Discriminant Analysis (FLDA algorithm did not converge to maximum accuracy (with the same configuration. So, it can be used as a promising tool in designing BCI systems.

  8. Influence of Palatal Coverage and Implant Distribution on Implant Strain in Maxillary Implant Overdentures.

    Science.gov (United States)

    Takahashi, Toshihito; Gonda, Tomoya; Mizuno, Yoko; Fujinami, Yozo; Maeda, Yoshinobu

    2016-01-01

    Maxillary implant overdentures are often used in clinical practice. However, there is no agreement or established guidelines regarding prosthetic design or optimal implant placement configuration. The purpose of this study was to examine the influence of palatal coverage and implant number and distribution in relation to impact strain under maxillary implant overdentures. A maxillary edentulous model with implants and experimental overdentures with and without palatal coverage was fabricated. Four strain gauges were attached to each implant, and they were positioned in the anterior, premolar, and molar areas. A vertical occlusal load of 98 N was applied through a mandibular complete denture, and the implant strains were compared using one-way analysis of variance (P = .05). The palatolabial strain was much higher on anterior implants than on other implants in both denture types. Although there was no significant difference between the strain under dentures with and without palatal coverage, palateless dentures tended to result in higher implant strain than dentures with palatal coverage. Dentures supported by only two implants registered higher strain than those supported by four or six implants. Implants under palateless dentures registered higher strain than those under dentures with palatal coverage. Anterior implants exhibited higher palatolabial strain than other implants regardless of palatal coverage and implant configuration; it is therefore recommended that maxillary implant overdentures should be supported by six implants with support extending to the distal end of the arch.

  9. Immediate implant placement into fresh extraction sockets versus delayed implants into healed sockets: A systematic review and meta-analysis.

    Science.gov (United States)

    Mello, C C; Lemos, C A A; Verri, F R; Dos Santos, D M; Goiato, M C; Pellizzer, E P

    2017-09-01

    The aim of this systematic review and meta-analysis was to compare the survival rate of the implants and the peri-implant tissue changes associated with implants inserted in fresh extraction sockets and those inserted in healed sockets. This review has been registered at PROSPERO under the number CRD42016043309. A systematic search was conducted by two reviewers independently in the databases PubMed/MEDLINE, Embase, and the Cochrane Library using different search terms; articles published until November 2016 were searched for. The searches identified 30 eligible studies. A total of 3,049 implants were installed in a total of 1,435 patients with a mean age of 46.68 years and a minimum of 6 months of follow-up. The survival rate of delayed implants (98.38%) was significantly greater than immediate implants (95.21%) (p=.001). For the marginal bone loss (p=.32), implant stability quotients values (p=.44), and pocket probing depth (p=.94) there was no significant difference between the analysed groups. The immediate implants placed in fresh sockets should be performed with caution because of the significantly lower survival rates than delayed implants inserted in healed sockets. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  10. The efficacy of short (6 mm) dental implants with a novel thread design.

    Science.gov (United States)

    Bechara, Soheil; Nimčenko, Tatjana; Kubilius, Ričardas

    2017-01-01

    To assess efficacy of short (6 mm) implants with a novel macrostructure and thread design placed in a compromised bone situations of edentulous posterior regions of maxilla (3-4 mm of bone height under sinus floor) as compared to results of clinical situations treated with simultaneous maxillary sinus grafting and placement of long (≥10 mm) implants of the same company. Clinical cases of conducted clinical study. Patients with compromised bone height in edentulous posterior regions of maxilla were randomly divided into two groups. Short (6mm length) implant treatment conducted in the test group and simultaneous sinus lift with standard length implant placement treatment in the control group. In general implant stability quotient (ISQ) and marginal bone level (MBL) changes values in both groups were comparable. However, significant negative correlation was found between implant's diameter and MBL changes. Implant's length has little if none impact on initial implant anchorage, especially in greatly compromised residual bone situations. Results have confirmed that implant initial stability mainly depends on implant's macro-design and further its development on implant's micro-design: namely, implant diameter rather than length, tapered shape and improved thread design determines primarily acquired mechanical anchorage, while bioactive surface treatment ensures development of biological stability.

  11. Timing of Conduction Abnormalities Leading to Permanent Pacemaker Insertion After Transcatheter Aortic Valve Implantation-A Single-Centre Review.

    Science.gov (United States)

    Ozier, Daniel; Zivkovic, Nevena; Elbaz-Greener, Gabby; Singh, Sheldon M; Wijeysundera, Harindra C

    2017-12-01

    Transcatheter aortic valve implantation (TAVI) is the preferred alternative to traditional surgical aortic valve replacement; however, it remains expensive. One potential driver of cost is the need for postprocedural monitoring for conduction abnormalities after TAVI. Given the paucity of literature on the optimal length of monitoring, we aimed to determine when clinically significant conduction abnormalities leading to permanent pacemaker (PPM) insertion after TAVI were first identified. We identified all patients in the Sunnybrook Health Sciences Centre TAVI registry (Toronto, Canada) who underwent TAVI between 2009 and 2016, excluding those with pre-existing PPMs or those who underwent emergency open heart surgery. Through dedicated chart review, the timing and type of conduction abnormalities leading to PPM were recorded. Patients were divided according to the timing of conduction abnormality: during the procedure vs after the procedure. The overall PPM insertion rate was 15.6% (80 of 512 cases), with all but 1 patient receiving a PPM for class I indications. PPMs were inserted for complete heart block/high-grade atrioventricular block (91.3%), severe sinus node dysfunction (3.8%), and alternating bundle branch block (3.8%). Of these conduction abnormalities, 55.0% occurred during the procedure (intraprocedure; n = 44 patients). The mean time to the development of a conduction abnormality necessitating PPM was 1.2 days (interquartile range, 0-2 days), with 88.8% occurring within 72 hours of the procedure (n = 71 patients). In the entire TAVI cohort, leading to PPM. The majority of conduction abnormalities leading to PPM insertion after TAVI occur in the very early periprocedural period, suggesting that early mobilization and discharge will be safe from a conduction standpoint. Copyright © 2017 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  12. Awareness, knowledge, and attitude of patients toward dental implants - A questionnaire-based prospective study.

    Science.gov (United States)

    Hosadurga, Rajesh; Shanti, Tenneti; Hegde, Shashikanth; Kashyap, Rajesh Shankar; Arunkumar, Suryanarayan Maiya

    2017-01-01

    In developing nations like India awareness and education about dental implants as a treatment modality is still scanty. The study was conducted to determine the awareness, knowledge, and attitude of patients toward dental implants as a treatment modality among the general population and to assess the influence of personality characteristics on accepting dental implants as a treatment modality in general and as well as treatment group. A structured questionnaire-based survey was conducted on 500 randomly selected participants attending the outpatient department. The study was conducted in 2 parts. In the first part of the study, level of awareness, knowledge, and attitude was assessed. In the second part of the study, interactive educational sessions using audiovisual aids were conducted following which a retest was conducted. The participants who agreed to undergo implant treatment were followed up to assess their change in attitude towards dental implants posttreatment. Thus pain, anxiety, functional, and esthetic benefits were measured using visual analog scale. They were further followed up for 1 year to reassess awareness, knowledge, and attitude towards dental implants. A total of 450 individuals completed the questionnaires. Only 106 individuals agreed to participate in the educational sessions and 83 individuals took the retest. Out of these, only 39 individuals chose implants as a treatment option. A significant improvement in the level of information, subjective and objective need for information, was noted after 1 year. In this study, a severe deficit in level of information, subjective and objective need for information towards, dental implants as a treatment modality was noted. In the treatment group, a significant improvement in perception of dental implant as a treatment modality suggests that professionally imparted knowledge can bring about a change in the attitude.

  13. Influence of implantation energy on the electrical properties of ultrathin gate oxides grown on nitrogen implanted Si substrates

    International Nuclear Information System (INIS)

    Kapetanakis, E.; Skarlatos, D.; Tsamis, C.; Normand, P.; Tsoukalas, D.

    2003-01-01

    Metal-oxide-semiconductor tunnel diodes with gate oxides, in the range of 2.5-3.5 nm, grown either on 25 or 3 keV nitrogen-implanted Si substrates at (0.3 or 1) x10 15 cm -2 dose, respectively, are investigated. The dependence of N 2 + ion implant energy on the electrical quality of the growing oxide layers is studied through capacitance, equivalent parallel conductance, and gate current measurements. Superior electrical characteristics in terms of interface state trap density, leakage current, and breakdown fields are found for oxides obtained through 3 keV nitrogen implants. These findings together with the full absence of any extended defect in the silicon substrate make the low-energy nitrogen implantation technique an attractive option for reproducible low-cost growth of nanometer-thick gate oxides

  14. COCHLEAR IMPLANTATION PREVALENCE IN ELDERLY

    Directory of Open Access Journals (Sweden)

    A. V. Starokha

    2014-01-01

    Full Text Available Current paper describes an experience of cochlear implantation in elderly. Cochlear implantation has become a widely accepted intervention in the treatment of individuals with severe-to-profound sensorineural hearing loss. Cochlear implants are now accepted as a standard of care to optimize hearing and subsequent speech development in children and adults with deafness. But cochlear implantation affects not only hearing abilities, speech perception and speech production; it also has an outstanding impact on the social life, activities and self-esteem of each patient. The aim of this study was to evaluate the cochlear implantation efficacy in elderly with severe to profound sensorineural hearing loss. There were 5 patients under our observation. Surgery was performed according to traditional posterior tympanotomy and cochleostomy for cochlear implant electrode insertion for all observed patients. The study was conducted in two stages: before speech processor’s activation and 3 months later. Pure tone free field audiometry was performed to each patient to assess the efficiency of cochlear implantation in dynamics. The aim of the study was also to evaluate quality of life in elderly with severe to profound sensorineural hearing loss after unilateral cochlear implantation. Each patient underwent questioning with 36 Item Short Form Health Survey (SF-36. SF-36 is a set of generic, coherent, and easily administered quality-of-life measures. The SF-36 consists of eight scaled scores, which are the weighted sums of the questions in their section. Each scale is directly transformed into a 0-100 scale on the assumption that each question carries equal weight. The eight sections are: physical functioning; physical role functioning; emotional role functioning; vitality; emotional well-being; social role functioning; bodily pain; general health perceptions. Our results demonstrate that cochlear implantation in elderly consistently improved quality of life

  15. Cochlear implants and medical tourism.

    Science.gov (United States)

    McKinnon, Brian J; Bhatt, Nishant

    2010-09-01

    To compare the costs of medical tourism in cochlear implant surgery performed in India as compared to the United States. In addition, the cost savings of obtaining cochlear implant surgery in India were compare d to those of other surgical interventions obtained as a medical tourist. Searches were conducted on Medline and Google using the search terms: 'medical tourism', 'medical offshoring', 'medical outsourcing', 'cochlear implants' and 'cochlear implantation'. The information regarding cost of medical treatment was obtained from personal communication with individuals familiar with India's cochlear implantation medical tourism industry. The range of cost depended on length of stay as well as the device chosen. Generally the cost, inclusive of travel, surgery and device, was in the range of $21,000-30,000, as compared to a cost range of $40,000-$60,000 in the US. With the escalating cost of healthcare in the United States, it is not surprising that some patients would seek to obtain surgical care overseas at a fraction of the cost. Participants in medical tourism often have financial resources, but lack health insurance coverage. While cardiovascular and orthopedic surgery performed outside the United States in India at centers that cater to medical tourists are often performed at one-quarter to one-third of the cost that would have been paid in the United States, the cost differential for cochlear implants is not nearly as favorable.

  16. Physical property of disordered-GaAs produced by ion implantation

    International Nuclear Information System (INIS)

    Nojima, Shunji

    1979-01-01

    The properties of disordered-GaAs produced by ion implantation and its annealing behaviors are investigated for ion species of H, Be, P, and As, from the viewpoints of both the electrical property and the physical structure of the disordered layer. From the study of the electron diffraction for implanted layers and of the conductivity due to defects as a function of dose, depth, measuring temperature, and annealing temperature, the following two facts are clarified: first, the conductivity due to defects can be a good measure for the degree of disorder in GaAs produced by ion implantation, when it is less than --1 Ω -1 cm -1 . Second, the localized states originating from defects are distributed with the same density in the high dose implanted layer, in spite of the degree of disorder in the physical structure. (author)

  17. Electrochemical investigations of ion-implanted oxide films

    International Nuclear Information System (INIS)

    Schultze, J.W.; Danzfuss, B.; Meyer, O.; Stimming, U.

    1985-01-01

    Oxide films (passive films) of 40-50 nm thickness were prepared by anodic polarization of hafnium and titanium electrodes up to 20 V. Multiple-energy ion implantation of palladium, iron and xenon was used in order to obtain modified films with constant concentration profiles of the implanted ions. Rutherford backscattering, X-ray photoelectron spectroscopy measurements and electrochemical charging curves prove the presence of implanted ions, but electrochemical and photoelectrochemical measurements indicate that the dominating effect of ion implantation is the disordering of the oxide film. The capacity of hafnium electrodes increases as a result of an increase in the dielectric constant D. For titanium the Schottky-Mott analysis shows that ion implantation causes an increase in D and the donor concentration N. Additional electronic states in the band gap which are created by the implantation improve the conductivity of the semiconducting or insulating films. This is seen in the enhancement of electron transfer reactions and its disappearance during repassivation and annealing. Energy changes in the band gap are derived from photoelectrochemical measurements; the absorption edge of hafnium oxide films decreases by approximately 2 eV because of ion implantation, but it stays almost constant for titanium oxide films. All changes in electrochemical behavior caused by ion implantation show little variation with the nature of the implanted ion. Hence the dominating effect seems to be a disordering of the oxide. (Auth.)

  18. Beam Profile Disturbances from Implantable Pacemakers or Implantable Cardioverter-Defibrillator Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Gossman, Michael S., E-mail: mgossman@tsrcc.com [Tri-State Regional Cancer Center, Medical Physics Section, Ashland, KY (United States); Comprehensive Heart and Vascular Associates, Heart and Vascular Center, Ashland, KY (United States); Medtronic, Inc., External Research Program, Mounds View, MN (United States); Nagra, Bipinpreet; Graves-Calhoun, Alison; Wilkinson, Jeffrey [Tri-State Regional Cancer Center, Medical Physics Section, Ashland, KY (United States); Comprehensive Heart and Vascular Associates, Heart and Vascular Center, Ashland, KY (United States); Medtronic, Inc., External Research Program, Mounds View, MN (United States)

    2011-01-01

    The medical community is advocating for progressive improvement in the design of implantable cardioverter-defibrillators and implantable pacemakers to accommodate elevations in dose limitation criteria. With advancement already made for magnetic resonance imaging compatibility in some, a greater need is present to inform the radiation oncologist and medical physicist regarding treatment planning beam profile changes when such devices are in the field of a therapeutic radiation beam. Treatment plan modeling was conducted to simulate effects induced by Medtronic, Inc.-manufactured devices on therapeutic radiation beams. As a continuation of grant-supported research, we show that radial and transverse open beam profiles of a medical accelerator were altered when compared with profiles resulting when implantable pacemakers and cardioverter-defibrillators are placed directly in the beam. Results are markedly different between the 2 devices in the axial plane and the sagittal planes. Vast differences are also presented for the therapeutic beams at 6-MV and 18-MV x-ray energies. Maximum changes in percentage depth dose are observed for the implantable cardioverter-defibrillator as 9.3% at 6 MV and 10.1% at 18 MV, with worst distance to agreement of isodose lines at 2.3 cm and 1.3 cm, respectively. For the implantable pacemaker, the maximum changes in percentage depth dose were observed as 10.7% at 6 MV and 6.9% at 18 MV, with worst distance to agreement of isodose lines at 2.5 cm and 1.9 cm, respectively. No differences were discernible for the defibrillation leads and the pacing lead.

  19. Characterisation of Cs ion implanted GaN by DLTS

    Science.gov (United States)

    Ngoepe, P. N. M.; Meyer, W. E.; Auret, F. D.; Omotoso, E.; Hlatshwayo, T. T.; Diale, M.

    2018-04-01

    Deep level transient spectroscopy (DLTS) was used to characterise Cs implanted GaN grown by hydride vapour phase epitaxy (HVPE). This implantation was done at room temperature using energy of 360 keV to a fluence of 10-11 cm-2. A defect with activation energy of 0.19 eV below the conduction band and an apparent capture cross section of 1.1 × 10-15 cm2 was induced. This defect has previously been observed after rare earth element (Eu, Er and Pr) implantation. It has also been reported after electron, proton and He ion implantation.

  20. Simulation of peri-implant bone healing due to immediate loading in dental implant treatments.

    Science.gov (United States)

    Chou, Hsuan-Yu; Müftü, Sinan

    2013-03-15

    The goal of this work was to investigate the role of immediate loading on the peri-implant bone healing in dental implant treatments. A mechano-regulatory tissue differentiation model that takes into account the stimuli through the solid and the fluid components of the healing tissue, and the diffusion of pluripotent stem cells into the healing callus was used. A two-dimensional axisymmetric model consisting of a dental implant, the healing callus tissue and the host bone tissue was constructed for the finite element analysis. Poroelastic material properties were assigned to the healing callus and the bone tissue. The effects of micro-motion, healing callus size, and implant thread design on the length of the bone-to-implant contact (BIC) and the bone volume (BV) formed in the healing callus were investigated. In general, the analysis predicted formation of a continuous layer of soft tissue along the faces of the implant which are parallel to the loading direction. This was predicted to be correlated with the high levels of distortional strain transferred through the solid component of the stimulus. It was also predicted that the external threads on the implant, redistribute the interfacial load, thus help reduce the high distortional stimulus and also help the cells to differentiate to bone tissue. In addition, the region underneath the implant apex was predicted to experience high fluid stimulus that results in the development of soft tissue. The relationship between the variables considered in this study and the outcome measures, BV and BIC, was found to be highly nonlinear. A three-way analysis of variance (ANOVA) of the results was conducted and it showed that micro-motion presents the largest hindrance to bone formation during healing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Does the Implant Surgical Technique Affect the Primary and/or Secondary Stability of Dental Implants? A Systematic Review

    Science.gov (United States)

    Shadid, Rola Muhammed; Sadaqah, Nasrin Rushdi; Othman, Sahar Abdo

    2014-01-01

    Background. A number of surgical techniques for implant site preparation have been advocated to enhance the implant of primary and secondary stability. However, there is insufficient scientific evidence to support the association between the surgical technique and implant stability. Purpose. This review aimed to investigate the influence of different surgical techniques including the undersized drilling, the osteotome, the piezosurgery, the flapless procedure, and the bone stimulation by low-level laser therapy on the primary and/or secondary stability of dental implants. Materials and methods. A search of PubMed, Cochrane Library, and grey literature was performed. The inclusion criteria comprised observational clinical studies and randomized controlled trials (RCTs) conducted in patients who received dental implants for rehabilitation, studies that evaluated the association between the surgical technique and the implant primary and/or secondary stability. The articles selected were carefully read and classified as low, moderate, and high methodological quality and data of interest were tabulated. Results. Eight clinical studies were included then they were classified as moderate or high methodological quality and control of bias. Conclusions. There is a weak evidence suggesting that any of previously mentioned surgical techniques could influence the primary and/or secondary implant stability. PMID:25126094

  2. Does the Implant Surgical Technique Affect the Primary and/or Secondary Stability of Dental Implants? A Systematic Review

    Directory of Open Access Journals (Sweden)

    Rola Muhammed Shadid

    2014-01-01

    Full Text Available Background. A number of surgical techniques for implant site preparation have been advocated to enhance the implant of primary and secondary stability. However, there is insufficient scientific evidence to support the association between the surgical technique and implant stability. Purpose. This review aimed to investigate the influence of different surgical techniques including the undersized drilling, the osteotome, the piezosurgery, the flapless procedure, and the bone stimulation by low-level laser therapy on the primary and/or secondary stability of dental implants. Materials and methods. A search of PubMed, Cochrane Library, and grey literature was performed. The inclusion criteria comprised observational clinical studies and randomized controlled trials (RCTs conducted in patients who received dental implants for rehabilitation, studies that evaluated the association between the surgical technique and the implant primary and/or secondary stability. The articles selected were carefully read and classified as low, moderate, and high methodological quality and data of interest were tabulated. Results. Eight clinical studies were included then they were classified as moderate or high methodological quality and control of bias. Conclusions. There is a weak evidence suggesting that any of previously mentioned surgical techniques could influence the primary and/or secondary implant stability.

  3. Index finger motor imagery EEG pattern recognition in BCI applications using dictionary cleaned sparse representation-based classification for healthy people

    Science.gov (United States)

    Miao, Minmin; Zeng, Hong; Wang, Aimin; Zhao, Fengkui; Liu, Feixiang

    2017-09-01

    Electroencephalogram (EEG)-based motor imagery (MI) brain-computer interface (BCI) has shown its effectiveness for the control of rehabilitation devices designed for large body parts of the patients with neurologic impairments. In order to validate the feasibility of using EEG to decode the MI of a single index finger and constructing a BCI-enhanced finger rehabilitation system, we collected EEG data during right hand index finger MI and rest state for five healthy subjects and proposed a pattern recognition approach for classifying these two mental states. First, Fisher's linear discriminant criteria and power spectral density analysis were used to analyze the event-related desynchronization patterns. Second, both band power and approximate entropy were extracted as features. Third, aiming to eliminate the abnormal samples in the dictionary and improve the classification performance of the conventional sparse representation-based classification (SRC) method, we proposed a novel dictionary cleaned sparse representation-based classification (DCSRC) method for final classification. The experimental results show that the proposed DCSRC method gives better classification accuracies than SRC and an average classification accuracy of 81.32% is obtained for five subjects. Thus, it is demonstrated that single right hand index finger MI can be decoded from the sensorimotor rhythms, and the feature patterns of index finger MI and rest state can be well recognized for robotic exoskeleton initiation.

  4. Comparison of Subgingival and Peri-implant Microbiome in Chronic Periodontitis.

    Science.gov (United States)

    Zhang, Qian; Qin, Xue Yan; Jiang, Wei Peng; Zheng, Hui; Xu, Xin Li; Chen, Feng

    2015-09-01

    To analyse the microbia composition of 10 healthy dental implants and 10 chronic periodontitis patients. Subgingival plaque and peri-implant biofilm were sampled at the first molar site before and after implant restoration. The analysis was conducted by 454-prosequencing of bacterial V1 to V3 regions of 16S rDNA. Chronic periodontitis subjects showed greater bacterial diversity compared with implant subjects. The relative abundance of sixteen genera and twelve species differed significantly between implant and chronic periodontitis subjects. The genera Catonella, Desulfovibrio, Mogibacterium, Peptostreptococcus and Propionibacterium were present in higher abundance in chronic periodontitis subjects, while implant subjects had higher proportions of Brevundimonas and Pseudomonas species. Our results demonstrate that implant restoration changes the oral microbiota. The analysis suggests that periodontal bacteria can remain for a prolonged period of time at non-dental sites, from where they can colonise the peri-implant.

  5. The Asilomar Survey: Stakeholders' Opinions on Ethical Issues Related to Brain-Computer Interfacing

    NARCIS (Netherlands)

    Nijboer, Femke; Clausen, Jens; Allison, Brendan Z.; Haselager, Pim

    2013-01-01

    Brain-Computer Interface (BCI) research and (future) applications raise important ethical issues that need to be addressed to promote societal acceptance and adequate policies. Here we report on a survey we conducted among 145 BCI researchers at the 4th International BCI conference, which took place

  6. The Asilomar Survey: Stakeholders’ Opinions on Ethical Issues Related to Brain-Computer Interfacing

    NARCIS (Netherlands)

    Nijboer, F.; Clausen, J.; Allison, B.Z.; Haselager, W.F.G.

    2013-01-01

    Brain-Computer Interface (BCI) research and (future) applications raise important ethical issues that need to be addressed to promote societal acceptance and adequate policies. Here we report on a survey we conducted among 145 BCI researchers at the 4th International BCI conference, which took place

  7. Comparison of marginal bone loss between internal- and external-connection dental implants in posterior areas without periodontal or peri-implant disease.

    Science.gov (United States)

    Kim, Dae-Hyun; Kim, Hyun Ju; Kim, Sungtae; Koo, Ki-Tae; Kim, Tae-Il; Seol, Yang-Jo; Lee, Yong-Moo; Ku, Young; Rhyu, In-Chul

    2018-04-01

    The purpose of this retrospective study with 4-12 years of follow-up was to compare the marginal bone loss (MBL) between external-connection (EC) and internal-connection (IC) dental implants in posterior areas without periodontal or peri-implant disease on the adjacent teeth or implants. Additional factors influencing MBL were also evaluated. This retrospective study was performed using dental records and radiographic data obtained from patients who had undergone dental implant treatment in the posterior area from March 2006 to March 2007. All the implants that were included had follow-up periods of more than 4 years after loading and satisfied the implant success criteria, without any peri-implant or periodontal disease on the adjacent implants or teeth. They were divided into 2 groups: EC and IC. Subgroup comparisons were conducted according to splinting and the use of cement in the restorations. A statistical analysis was performed using the Mann-Whitney U test for comparisons between 2 groups and the Kruskal-Wallis test for comparisons among more than 2 groups. A total of 355 implants in 170 patients (206 EC and 149 IC) fulfilled the inclusion criteria and were analyzed in this study. The mean MBL was 0.47 mm and 0.15 mm in the EC and IC implants, respectively, which was a statistically significant difference ( P <0.001). Comparisons according to splinting (MBL of single implants: 0.34 mm, MBL of splinted implants: 0.31 mm, P =0.676) and cement use (MBL of cemented implants: 0.27 mm, MBL of non-cemented implants: 0.35 mm, P =0.178) showed no statistically significant differences in MBL, regardless of the implant connection type. IC implants showed a more favorable bone response regarding MBL in posterior areas without peri-implantitis or periodontal disease.

  8. Spectral feature extraction of EEG signals and pattern recognition during mental tasks of 2-D cursor movements for BCI using SVM and ANN.

    Science.gov (United States)

    Bascil, M Serdar; Tesneli, Ahmet Y; Temurtas, Feyzullah

    2016-09-01

    Brain computer interface (BCI) is a new communication way between man and machine. It identifies mental task patterns stored in electroencephalogram (EEG). So, it extracts brain electrical activities recorded by EEG and transforms them machine control commands. The main goal of BCI is to make available assistive environmental devices for paralyzed people such as computers and makes their life easier. This study deals with feature extraction and mental task pattern recognition on 2-D cursor control from EEG as offline analysis approach. The hemispherical power density changes are computed and compared on alpha-beta frequency bands with only mental imagination of cursor movements. First of all, power spectral density (PSD) features of EEG signals are extracted and high dimensional data reduced by principle component analysis (PCA) and independent component analysis (ICA) which are statistical algorithms. In the last stage, all features are classified with two types of support vector machine (SVM) which are linear and least squares (LS-SVM) and three different artificial neural network (ANN) structures which are learning vector quantization (LVQ), multilayer neural network (MLNN) and probabilistic neural network (PNN) and mental task patterns are successfully identified via k-fold cross validation technique.

  9. Ion implantation

    International Nuclear Information System (INIS)

    Dearnaley, Geoffrey

    1975-01-01

    First, ion implantation in semiconductors is discussed: ion penetration, annealing of damage, gettering, ion implanted semiconductor devices, equipement requirements for ion implantation. The importance of channeling for ion implantation is studied. Then, some applications of ion implantation in metals are presented: study of the corrosion of metals and alloys; influence or ion implantation on the surface-friction and wear properties of metals; hyperfine interactions in implanted metals

  10. Modification of polyethyleneterephtalate by implantation of nitrogen ions

    International Nuclear Information System (INIS)

    Svorcik, V.; Endrst, R.; Rybka, V.; Hnatowicz, V.; Cerny, F.

    1994-01-01

    The implantation of 90 keV N + ions into polyethyleneterephtalate (PET) to fluences of 1 x 10 14 --1 x 10 17 cm -2 was studied. The changes in electrical sheet conductivity and polarity of ion-exposed PET were observed and the structural changes were examined using IR spectroscopy. One degradation process is a chain fission according to the Norrish II reaction. The sheet conductivity due to conjugated double bonds was increased by ten orders of magnitude as a result of ion implantation. The surface polarity of the PET samples increases slightly with increasing ion fluence

  11. Influence of immediate loading on provisional restoration in dental implant stability

    Science.gov (United States)

    Ikbal, M.; Odang, R. W.; Indrasari, M.; Dewi, R. S.

    2017-08-01

    The success of dental implant treatment is determined by the primary stability at placement. One factor that could influence this stability is occlusal loading through provisional restoration. Two types of loading protocols are usually used: immediate and delayed loading. However, some controversies remain about the influence of occlusal loading on implant stability. Therefore, the influence of immediate loading on implant stability must be studied. An animal study was conducted by placing nine dental implants in the mandibular jaw of three Macaca fascicularis. Provisional restorations with various occlusal contacts (no, light, and normal contact) were placed on the implant. The implant stability was measured using the Ostell ISQ three times: immediately (baseline) and at the first and second months after implant placement. The implant stability between implants with no and normal occlusal contact as well as light and normal occlusal contact showed significant differences (p implant placement. However, no significant increase (p > 0.05) in implant stability was seen at the baseline and the first and second months after implant placement for all occlusal contact groups. Immediate loading influenced the implant stability, and provisional restoration of implant without occlusal contact showed the highest implant stability.

  12. Electrical properties and dielectric spectroscopy of Ar{sup +} implanted polycarbonate

    Energy Technology Data Exchange (ETDEWEB)

    Chawla, Mahak, E-mail: mahak.chawla@gmail.com; Shekhawat, Nidhi; Aggarwal, Sanjeev; Sharma, Annu [Department of Physics, Kurukshetra University, Kurukshetra - 136119 (India); Nair, K. G. M. [Consultant, UGC-DAE Consortium for Scientific Research, Kalpakkam Node, Kokilamedu-603104, Tamilnadu (India)

    2015-05-15

    The aim of the present paper is to study the effect of argon ion implantation on electrical and dielectric properties of polycarbonate. Specimens were implanted with 130 keV Ar{sup +} ions in the fluence ranging from 1×10{sup 14} to 1×10{sup 16} ions cm{sup −2}. The beam current used was ∼0.40 µA cm{sup −2}. The electrical conduction behaviour of virgin and Ar{sup +} implanted polycarbonate specimens have been studied through current-voltage (I-V characteristic) measurements. It has been observed that after implantation conductivity increases with increasing ion fluence. The dielectric spectroscopy of these specimens has been done in the frequency range of 100 kHz-100 MHz. Relaxation processes were studied by Cole-Cole plot of complex permittivity (real part of complex permittivity, ε′ vs. imaginary part of complex permittivity, ε″). The Cole-Cole plots have also been used to determine static dielectric constant (ε{sub s}), optical dielectric constant (ε{sub ∞}), spreading factor (α), average relaxation time (τ{sub 0}) and molecular relaxation time (τ). The dielectric behaviour has been found to be significantly affected due to Ar{sup +} implantation. The possible correlation between this behaviour and the changes induced by the implantation has been discussed.

  13. Patients' perceptions of implant placement surgery, the post-surgical healing and the transitional implant prostheses: a qualitative study.

    Science.gov (United States)

    Kashbour, Wafa A; Rousseau, Nikki; Thomason, J Mark; Ellis, Janice S

    2017-07-01

    This study aimed to explore patients' thoughts, feelings about, and experiences of, implant placement surgery (IPS), the post-surgical healing stage and the immediate post-surgical transitional implant prosthesis (TIP) (fixed and removable). A qualitative study design was chosen and 38 semi-structured telephone and face-to-face interviews were conducted with 34 patients at different stages of implant treatment. The interviews were transcribed verbatim; the data collection and coding process followed the principles of thematic analysis, which was facilitated through the use of NVivo10. Patients anticipated that surgery would be painful and unpleasant but were prepared to accept this temporary discomfort for the expected benefits of implant treatment. However, a key finding was that patients felt they had overestimated the trauma of surgery but underestimated the discomfort and difficulties of the healing phase. A number of difficulties were also identified with the TIP phase following implant surgery. Existing research has tended to focus on the longer term benefits of dental implant treatment. This qualitative study has investigated in-depth patients' perceptions of dental implant surgery, including their experiences related to sedation, and of transitional implant restoration. While patients felt their concerns were overestimated in relation to the implant surgery, they experienced greater morbidity than they expected in the healing phase. Recommendations are made for relatively small changes in care provision which might improve the overall patient experience. Partial dentate patients treated with a fixed transitional prosthesis experienced advantages more quickly than patients with an overdenture. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. [Esthetic analysis on immediate single-tooth implant restoration in anterior maxilla].

    Science.gov (United States)

    Li, Shao-wei; Wang, Guo-shi; Sha, Yan-zhi

    2015-10-01

    To evaluate the esthetic outcomes of immediate single-tooth implant restoration in anterior maxilla with the pink esthetic score (PES). Nine patients were treated with 9 Straumann implants by immediate single-tooth implant restoration in anterior maxilla. Assessment of PES after crown placement at 1 week (baseline) and 6 months after implantation was conducted. Statistical analysis was performed using SPSS 16.0 software package. Nine implants achieved a retention rate of 100%. PES for single-tooth implant was 10.33 ± 1.50 at 1 week and 11.44 ± 0.88 at 6 months after crown placement. The difference was significant(P=0.021). This study indicates that immediate single-tooth implant restoration in anterior maxilla is predictable. Immediate single-tooth implantation can result in good clinical esthetic results in most patients with single-tooth missing in anterior maxilla.

  15. Awareness of dental implants among dental patients in Nigeria ...

    African Journals Online (AJOL)

    The aim of this study was to determine the level of awareness of dental implant in Nigerian patients and their willingness to choose dental implant as a tooth replacement option. A survey was conducted among patients presenting for dental treatment in 3 teaching hospitals and private dental clinics in 3 urban cities of ...

  16. Personalized hip implants manufacturing and testing

    Science.gov (United States)

    Croitoru, A. Sorin Mihai; Pacioga, B. Adrian; Comsa, C. Stanca

    2017-09-01

    Two models of Ti6Al4V personalized femoral stems for hip replacement have been designed and laser sintered with different sizes of fenestrated architecture that mimics the natural structure of bone, ensuring postoperative bone ingrowth and increasing the elasticity of the entire structure. They were tested statically and dynamically versus a commercial femoral stem. Mechanical tests were performed in order to determine the fatigue limit using the Locati method. The tests were conducted in a thermostatic bath (37°±1°) with the implants immersed in distilled water salted solution 0.91%. For probe embedment poly-methyl methacrylate (PMMA) was used. The characteristic curves of the two personalized fenestrated implants reveal an elastic behaviour by their nonlinear appearance. After dynamic tests an inverse relationship between displacements obtained in the static tests and the fatigue limit was observed. Large fenestrations conferred the desired elasticity to the implant, but contributed to a life service reduction. The fatigue limit for both implants was much above the minimum value specified by ISO 7602: 2010, so both models can be safely used in the medical practice, leading to increased life service of implants.

  17. Comparison of oxidation resistance of copper treated by beam-line ion implantation and plasma immersion ion implantation

    International Nuclear Information System (INIS)

    An Quanzhang; Li Liuhe; Hu Tao; Xin Yunchang; Fu, Ricky K.Y.; Kwok, D.T.K.; Cai Xun; Chu, Paul K.

    2009-01-01

    Copper which has many favorable properties such as low cost, high thermal and electrical conductivity, as well as easy fabrication and joining is one of the main materials in lead frames, interconnects, and foils in flexible circuits. Furthermore, copper is one of the best antibacterial materials. However, unlike aluminum oxide or chromium oxide, the surface copper oxide layer does not render sufficient protection against oxidation. In this work, in order to improve the surface oxidation resistance of Cu, Al and N were introduced into copper by plasma immersion ion implantation (PIII) and beam-line ion implantation (BII). The implantation fluences of Al and N were 2 x 10 17 ions cm -2 and 5 x 10 16 ions cm -2 , respectively. The implanted and untreated copper samples were oxidized in air at 260 deg. C for 1 h. The X-ray diffraction (XRD), scanning electron microscopy (SEM), as well as X-ray photoelectron spectroscopy (XPS) results indicate that both implantation methods can enhance the oxidation resistance of copper but to different extent. PIII is superior to BII in enhancing the oxidation resistance of copper. The effects and possible mechanisms are discussed.

  18. Does antibiotic prophylaxis at implant placement decrease early implant failures? A Cochrane systematic review.

    Science.gov (United States)

    Esposito, Marco; Grusovin, Maria Gabriella; Loli, Vasiliki; Coulthard, Paul; Worthington, Helen V

    2010-01-01

    Marco Esposito is the first author of two of the included studies; however, he was not involved in the quality assessment of these trials. This review is based on a Cochrane systematic review entitled 'Interventions for replacing missing teeth: antibiotics at dental implant placement to prevent complications' published in The Cochrane Library (see http://www.cochrane.org for more information). Cochrane systematic reviews are regularly updated to include new research, and in response to comments and criticisms from readers. If you wish to comment on this review, please send your comments to the Cochrane website or to Marco Esposito. The Cochrane Library should be consulted for the most recent version of the review. The results of a Cochrane Review can be interpreted differently, depending on people's perspectives and circumstances. Please consider the conclusions presented carefully. They are the opinions of the review authors, and are not necessarily shared by the Cochrane Collaboration. To assess the beneficial or harmful effects of systemic prophylactic antibiotics at dental implant placement versus no antibiotic/placebo administration and, if antibiotics are of benefit, to find which type, dosage and duration is the most effective. The Cochrane Oral Health Group's Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE and EMBASE were searched up to 2 June 2010 for randomised controlled clinical trials (RCTs) with a follow-up of at least 3 months comparing the administration of various prophylactic antibiotic regimens versus no antibiotics to patients undergoing dental implant placement. Outcome measures were prosthesis failures, implant failures, postoperative infections and adverse events (gastrointestinal, hypersensitivity, etc.). Screening of eligible studies, assessment of the methodological quality of the trials and data extraction were conducted in duplicate and independently by two review authors. Meta-analyses were

  19. Surface modification by metal ion implantation forming metallic nanoparticles in an insulating matrix

    International Nuclear Information System (INIS)

    Salvadori, M.C.; Teixeira, F.S.; Sgubin, L.G.; Cattani, M.; Brown, I.G.

    2014-01-01

    Highlights: • Metal nanoparticles can be produced through metallic ion implantation in insulating substrate, where the implanted metal self-assembles into nanoparticles. • The nanoparticles nucleate near the maximum of the implantation depth profile, that can be estimated by computer simulation using the TRIDYN. • Nanocomposites, obtained by this way, can be produced in different insulator materials. More specifically we have studied Au/PMMA (polymethylmethacrylate), Pt/PMMA, Ti/alumina and Au/alumina systems. • The nanocomposites were characterized by measuring the resistivity of the composite layer as function of the dose implanted, reaching the percolation threshold. • Excellent agreement was found between the experimental results and the predictions of the theory. - Abstract: There is special interest in the incorporation of metallic nanoparticles in a surrounding dielectric matrix for obtaining composites with desirable characteristics such as for surface plasmon resonance, which can be used in photonics and sensing, and controlled surface electrical conductivity. We have investigated nanocomposites produced by metal ion implantation into insulating substrates, where the implanted metal self-assembles into nanoparticles. The nanoparticles nucleate near the maximum of the implantation depth profile (projected range), which can be estimated by computer simulation using the TRIDYN code. TRIDYN is a Monte Carlo simulation program based on the TRIM (Transport and Range of Ions in Matter) code that takes into account compositional changes in the substrate due to two factors: previously implanted dopant atoms, and sputtering of the substrate surface. Our study show that the nanoparticles form a bidimentional array buried a few nanometers below the substrate surface. We have studied Au/PMMA (polymethylmethacrylate), Pt/PMMA, Ti/alumina and Au/alumina systems. Transmission electron microscopy of the implanted samples show that metallic nanoparticles form in

  20. Congenitally Deafblind Children and Cochlear Implants: Effects on Communication

    Science.gov (United States)

    Dammeyer, Jesper

    2009-01-01

    There has been much research conducted demonstrating the positive benefits of cochlear implantation (CI) in children who are deaf. Research on CI in children who are both deaf and blind, however, is lacking. The purpose of this article is to present a study of five congenitally deafblind children who received cochlear implants between 2.2 and 4.2…

  1. Doping of silicon carbide by ion implantation

    International Nuclear Information System (INIS)

    Gimbert, J.

    1999-01-01

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  2. Tinnitus and Sleep Difficulties After Cochlear Implantation.

    Science.gov (United States)

    Pierzycki, Robert H; Edmondson-Jones, Mark; Dawes, Piers; Munro, Kevin J; Moore, David R; Kitterick, Pádraig T

    To estimate and compare the prevalence of and associations between tinnitus and sleep difficulties in a sample of UK adult cochlear implant users and those identified as potential candidates for cochlear implantation. The study was conducted using the UK Biobank resource, a population-based cohort of 40- to 69-year olds. Self-report data on hearing, tinnitus, sleep difficulties, and demographic variables were collected from cochlear implant users (n = 194) and individuals identified as potential candidates for cochlear implantation (n = 211). These "candidates" were selected based on (i) impaired hearing sensitivity, inferred from self-reported hearing aid use and (ii) impaired hearing function, inferred from an inability to report words accurately at negative signal to noise ratios on an unaided closed-set test of speech perception. Data on tinnitus (presence, persistence, and related distress) and on sleep difficulties were analyzed using logistic regression models controlling for gender, age, deprivation, and neuroticism. The prevalence of tinnitus was similar among implant users (50%) and candidates (52%; p = 0.39). However, implant users were less likely to report that their tinnitus was distressing at its worst (41%) compared with candidates (63%; p = 0.02). The logistic regression model suggested that this difference between the two groups could be explained by the fact that tinnitus was less persistent in implant users (46%) compared with candidates (72%; p reported difficulties with sleep were similar among implant users (75%) and candidates (82%; p = 0.28), but participants with tinnitus were more likely to report sleep difficulties than those without (p explanation is supported by the similar prevalence of sleep problems among implant users and potential candidates for cochlear implantation, despite differences between the groups in tinnitus persistence and related emotional distress. Cochlear implantation may therefore not be an appropriate intervention

  3. Development of a blunt chest injury care bundle: An integrative review.

    Science.gov (United States)

    Kourouche, Sarah; Buckley, Thomas; Munroe, Belinda; Curtis, Kate

    2018-04-07

    Blunt chest injuries (BCI) are associated with high rates of morbidity and mortality. There are many interventions for BCI which may be able to be combined as a care bundle for improved and more consistent outcomes. To review and integrate the BCI management interventions to inform the development of a BCI care bundle. A structured search of the literature was conducted to identify studies evaluating interventions for patients with BCI. Databases MEDLINE, CINAHL, PubMed and Scopus were searched from 1990-April 2017. A two-step data extraction process was conducted using pre-defined data fields, including research quality indicators. Each study was appraised using a quality assessment tool, scored for level of evidence, then data collated into categories. Interventions were also assessed using the APEASE criteria then integrated to develop a BCI care bundle. Eighty-one articles were included in the final analysis. Interventions that improved BCI outcomes were grouped into three categories; respiratory intervention, analgesia and surgical intervention. Respiratory interventions included continuous positive airway pressure and high flow nasal oxygen. Analgesia interventions included regular multi-modal analgesia and paravertebral or epidural analgesia. Surgical fixation was supported for use in moderate to severe rib fractures/BCI. Interventions supported by evidence and that met APEASE criteria were combined into a BCI care bundle with four components: respiratory adjuncts, analgesia, complication prevention, and surgical fixation. The key components of a BCI care bundle are respiratory support, analgesia, complication prevention including chest physiotherapy and surgical fixation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Formation of p-type ZnO thin film through co-implantation

    Science.gov (United States)

    Chuang, Yao-Teng; Liou, Jhe-Wei; Woon, Wei-Yen

    2017-01-01

    We present a study on the formation of p-type ZnO thin film through ion implantation. Group V dopants (N, P) with different ionic radii are implanted into chemical vapor deposition grown ZnO thin film on GaN/sapphire substrates prior to thermal activation. It is found that mono-doped ZnO by N+ implantation results in n-type conductivity under thermal activation. Dual-doped ZnO film with a N:P ion implantation dose ratio of 4:1 is found to be p-type under certain thermal activation conditions. Higher p-type activation levels (1019 cm-3) under a wider thermal activation range are found for the N/P dual-doped ZnO film co-implanted by additional oxygen ions. From high resolution x-ray diffraction and x-ray photoelectron spectroscopy it is concluded that the observed p-type conductivities are a result of the promoted formation of PZn-4NO complex defects via the concurrent substitution of nitrogen at oxygen sites and phosphorus at zinc sites. The enhanced solubility and stability of acceptor defects in oxygen co-implanted dual-doped ZnO film are related to the reduction of oxygen vacancy defects at the surface. Our study demonstrates the prospect of the formation of stable p-type ZnO film through co-implantation.

  5. Short dental implants: an emerging concept in implant treatment.

    Science.gov (United States)

    Al-Hashedi, Ashwaq Ali; Taiyeb Ali, Tara Bai; Yunus, Norsiah

    2014-06-01

    Short implants have been advocated as a treatment option in many clinical situations where the use of conventional implants is limited. This review outlines the effectiveness and clinical outcomes of using short implants as a valid treatment option in the rehabilitation of edentulous atrophic alveolar ridges. Initially, an electronic search was performed on the following databases: Medline, PubMed, Embase, Cochrane Database of Systematic Reviews, and DARE using key words from January 1990 until May 2012. An additional hand search was included for the relevant articles in the following journals: International Journal of Oral and Maxillofacial Implants, Clinical Oral Implants Research, Journal of Clinical Periodontology, International Journal of Periodontics, Journal of Periodontology, and Clinical Implant Dentistry and Related Research. Any relevant papers from the journals' references were hand searched. Articles were included if they provided detailed data on implant length, reported survival rates, mentioned measures for implant failure, were in the English language, involved human subjects, and researched implants inserted in healed atrophic ridges with a follow-up period of at least 1 year after implant-prosthesis loading. Short implants demonstrated a high rate of success in the replacement of missing teeth in especially atrophic alveolar ridges. The advanced technology and improvement of the implant surfaces have encouraged the success of short implants to a comparable level to that of standard implants. However, further randomized controlled clinical trials and prospective studies with longer follow-up periods are needed.

  6. Dental implants in medically complex patients-a retrospective study.

    Science.gov (United States)

    Manor, Yifat; Simon, Roy; Haim, Doron; Garfunkel, Adi; Moses, Ofer

    2017-03-01

    Dental implant insertion for oral rehabilitation is a worldwide procedure for healthy and medically compromised patients. The impact of systemic disease risks on the outcome of implant therapy is unclear, since there are few if any published randomized controlled trials (RCTs). The objective of this study is to investigate the rate of complications and failures following dental implantation in medically compromised patients in order to elucidate risk factors and prevent them. A retrospective cohort study was conducted from patient files treated with dental implantation between the years 2008-2014. The study group consisted of medically complex patients while the control group consisted of healthy patients. Preoperative, intraoperative, and post operative clinical details were retrieved from patients' files. The survival rate and the success rate of the dental implants were evaluated clinically and radiographically. A total of 204 patients (1003 dental implants) were included in the research, in the study group, 93 patients with 528 dental implants and in the control group, 111 patients with 475 dental implants. No significant differences were found between the groups regarding implant failures or complications. The failure rate of dental implants among the patients was 11.8 % in the study group and 16.2 % in the control group (P = 0.04). It was found that patients with a higher number of implants (mean 6.8) had failures compared with patients with a lower number of implants (mean 4.2) regardless of their health status (P dental implantation in medically complex patients and in healthy patients. Medically complex patients can undergo dental implantation. There are similar rates of complications and failures of dental implants in medically complex patients and in healthy patients.

  7. [The Léon [correction of Laurent] Guedj implant concept: simplification of the surgical phase in implantology].

    Science.gov (United States)

    Fabie, L; Guedj, L; Pichaud, Ch; Fabie, M

    2002-11-01

    We present a new self-drilling self-tapping dental implant that simplifies the operative technique and optimizes osseointegration. The implant, the instrumentation, and the operative technique are described. An experimental study was conducted in a sheep with pathological and histomorphological analysis at three months. A clinical evaluation was also conducted in 18 patients who had 27 implants. The experimental study demonstrated good quality osseointegration, without bone necrosis. Three sectors were identified. Histomorphometric analysis demonstrated that mean bone contact reached 40% on cancellous bone and 65% on cortical bone. In the clinical series, one implant had to be removed due to a problem with gum healing. All the other implants were well tolerated. The advantage of this new technique is the use of the implant as the drilling instrument. Much time is saved. In addition, the bone-implant contact is better since the bone cavity is exactly adapted to the implant. The risk of bone lesion is reduced due to the smaller number of drillings.

  8. Analysis of submerged implant towards mastication load using 3D finite element method (FEM)

    OpenAIRE

    Widia Hafsyah Sumarlina Ritonga; Janti Rusjanti; Nunung Rusminah; Aldilla Miranda; Tatacipta Dirgantara

    2016-01-01

    Introduction: The surgical procedure for implantation of a surgical implant comprising a stage for the implant design nonsubmerged and two stages for submerged. Submerged implant design often used in Faculty of Dentistry Universitas Padjadjaran because it is safer in achieving osseointegration. This study was conducted to evaluate the failure of dental implant based on location and the value of internal tensiones as well as supporting tissues when given mastication load by using the 3D Finite...

  9. Effects of melatonin implantation during the slow period of cashmere ...

    African Journals Online (AJOL)

    This study was conducted to investigate the effects of melatonin implantation during the slow period of cashmere growth on fibre production in Inner Mongolian cashmere goats. It was found that melatonin implantation had no effect on the growth rate of cashmere, except from February to March when the rate of treated goats ...

  10. Primary prevention of peri-implantitis: managing peri-implant mucositis.

    Science.gov (United States)

    Jepsen, Søren; Berglundh, Tord; Genco, Robert; Aass, Anne Merete; Demirel, Korkud; Derks, Jan; Figuero, Elena; Giovannoli, Jean Louis; Goldstein, Moshe; Lambert, France; Ortiz-Vigon, Alberto; Polyzois, Ioannis; Salvi, Giovanni E; Schwarz, Frank; Serino, Giovanni; Tomasi, Cristiano; Zitzmann, Nicola U

    2015-04-01

    Over the past decades, the placement of dental implants has become a routine procedure in the oral rehabilitation of fully and partially edentulous patients. However, the number of patients/implants affected by peri-implant diseases is increasing. As there are--in contrast to periodontitis--at present no established and predictable concepts for the treatment of peri-implantitis, primary prevention is of key importance. The management of peri-implant mucositis is considered as a preventive measure for the onset of peri-implantitis. Therefore, the remit of this working group was to assess the prevalence of peri-implant diseases, as well as risks for peri-implant mucositis and to evaluate measures for the management of peri-implant mucositis. Discussions were informed by four systematic reviews on the current epidemiology of peri-implant diseases, on potential risks contributing to the development of peri-implant mucositis, and on the effect of patient and of professionally administered measures to manage peri-implant mucositis. This consensus report is based on the outcomes of these systematic reviews and on the expert opinion of the participants. Key findings included: (i) meta-analysis estimated a weighted mean prevalence for peri-implant mucositis of 43% (CI: 32-54%) and for peri-implantitis of 22% (CI: 14-30%); (ii) bleeding on probing is considered as key clinical measure to distinguish between peri-implant health and disease; (iii) lack of regular supportive therapy in patients with peri-implant mucositis was associated with increased risk for onset of peri-implantitis; (iv) whereas plaque accumulation has been established as aetiological factor, smoking was identified as modifiable patient-related and excess cement as local risk indicator for the development of peri-implant mucositis; (v) patient-administered mechanical plaque control (with manual or powered toothbrushes) has been shown to be an effective preventive measure; (vi) professional intervention

  11. Studies of ion implanted thermally oxidised chromium

    International Nuclear Information System (INIS)

    Muhl, S.

    1977-01-01

    The thermal oxidation of 99.99% pure chromium containing precise amounts of foreign elements has been studied and compared to the oxidation of pure chromium. Thirty-three foreign elements including all of the naturally occurring rare earth metals were ion implanted into chromium samples prior to oxidation at 750 0 C in oxygen. The role of radiation induced damage, inherent in this doping technique, has been studied by chromium implantations at various energies and doses. The repair of the damage has been studied by vacuum annealing at temperatures up to 800 0 C prior to oxidation. Many of the implants caused an inhibition of oxidation, the greatest being a 93% reduction for 2 x 10 16 ions/cm 2 of praseodymium. The distribution of the implant was investigated by the use of 2 MeV alpha backscattering and ion microprobe analysis. Differences in the topography and structure of the chromic oxide on and off the implanted area were studied using scanning electron and optical microscopy. X-ray diffraction analysis was used to investigate if a rare earth-chromium compound of a perovskite-type structure had been formed. Lastly, the electrical conductivity of chromic oxide on and off the implanted region was examined at low voltages. (author)

  12. Surgical implantation techniques for electronic tags in fish

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Glenn N.; Cooke, Steven J.; Brown, Richard S.; Deters, Katherine A.

    2011-01-01

    Intracoelomic implantation of transmitters into fish requires making a surgical incision, incision closure, and other surgery related techniques; however, the tools and techniques used in the surgical process vary widely. We review the available literature and focus on tools and techniques used for conducting surgery on juvenile salmonids because of the large amount of research that is conducted on them. The use of sterilized surgical instruments properly selected for a given size of fish will minimize tissue damage and infection rates, and speed the wound healing of fish implanted with transmitters. For the implantation of transmitters into small fish, the optimal surgical methods include making an incision on the ventral midline along the linea alba (for studies under 1 month), protecting the viscera (by lifting the skin with forceps while creating the incision), and using absorbable monofilament suture with a small-swaged-on swaged-on tapered or reverse-cutting needle. Standardizing the implantation techniques to be used in a study involving particular species and age classes of fish will improve survival and transmitter retention while allowing for comparisons to be made among studies and across multiple years. This review should be useful for researchers working on juvenile salmonids and other sizes and species of fish.

  13. Heat generated by dental implant drills during osteotomy-a review: heat generated by dental implant drills.

    Science.gov (United States)

    Mishra, Sunil Kumar; Chowdhary, Ramesh

    2014-06-01

    Osseointegration is the more stable situation and results in a high success rate of dental implants. Heat generation during rotary cutting is one of the important factors influencing the development of osseointegration. To assess the various factors related to implant drills responsible for heat generation during osteotomy. To identify suitable literature, an electronic search was performed using Medline and Pubmed database. Articles published in between 1960 to February 2013 were searched. The search is focused on heat generated by dental implant drills during osteotomy. Various factors related to implant drill such effect of number of blades; drill design, drill fatigue, drill speed and force applied during osteotomies which were responsible for heat generation were reviewed. Titles and abstracts were screened, and literature that fulfilled the inclusion criteria was selected for a full-text reading. The initial literature search resulted in 299 articles out of which only 70 articles fulfils the inclusion criteria and were included in this systematic review. Many factors related to implant drill responsible for heat generation were found. Successful preparation of an implant cavity with minimal damage to the surrounding bone depends on the avoidance of excessive temperature generation during surgical drilling. The relationship between heat generated and implant drilling osteotomy is multifactorial in nature and its complexity has not been fully studied. Lack of scientific knowledge regarding this issue still exists. Further studies should be conducted to determine the various factors which generate less heat while osteotomy such as ideal ratio of force and speed in vivo, exact time to replace a drill, ideal drill design, irrigation system, drill-bone contact area.

  14. A new testing protocol for zirconia dental implants.

    Science.gov (United States)

    Sanon, Clarisse; Chevalier, Jérôme; Douillard, Thierry; Cattani-Lorente, Maria; Scherrer, Susanne S; Gremillard, Laurent

    2015-01-01

    Based on the current lack of standards concerning zirconia dental implants, we aim at developing a protocol to validate their functionality and safety prior their clinical use. The protocol is designed to account for the specific brittle nature of ceramics and the specific behavior of zirconia in terms of phase transformation. Several types of zirconia dental implants with different surface textures (porous, alveolar, rough) were assessed. The implants were first characterized in their as-received state by Scanning Electron Microscopy (SEM), Focused Ion Beam (FIB), X-Ray Diffraction (XRD). Fracture tests following a method adapted from ISO 14801 were conducted to evaluate their initial mechanical properties. Accelerated aging was performed on the implants, and XRD monoclinic content measured directly at their surface instead of using polished samples as in ISO 13356. The implants were then characterized again after aging. Implants with an alveolar surface presented large defects. The protocol shows that such defects compromise the long-term mechanical properties. Implants with a porous surface exhibited sufficient strength but a significant sensitivity to aging. Even if associated to micro cracking clearly observed by FIB, aging did not decrease mechanical strength of the implants. As each dental implant company has its own process, all zirconia implants may behave differently, even if the starting powder is the same. Especially, surface modifications have a large influence on strength and aging resistance, which is not taken into account by the current standards. Protocols adapted from this work could be useful. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Scalloped Implant-Abutment Connection Compared to Conventional Flat Implant-Abutment Connection

    DEFF Research Database (Denmark)

    Starch-Jensen, Thomas; Christensen, Ann-Eva; Lorenzen, Henning

    2017-01-01

    OBJECTIVES: The objective was to test the hypothesis of no difference in implant treatment outcome after installation of implants with a scalloped implant-abutment connection compared to a flat implant-abutment connection. MATERIAL AND METHODS: A MEDLINE (PubMed), Embase and Cochrane library search...... of suprastructures has never been compared within the same study. High implant survival rate was reported in all the included studies. Significantly more peri-implant marginal bone loss, higher probing depth score, bleeding score and gingival score was observed around implants with a scalloped implant-abutment...... loss around implants with a scalloped implant-abutment connection. CONCLUSIONS: A scalloped implant-abutment connection seems to be associated with higher peri-implant marginal bone loss compared to a flat implant-abutment connection. Therefore, the hypothesis of the present systematic review must...

  16. Conducting polymer coated neural recording electrodes

    Science.gov (United States)

    Harris, Alexander R.; Morgan, Simeon J.; Chen, Jun; Kapsa, Robert M. I.; Wallace, Gordon G.; Paolini, Antonio G.

    2013-02-01

    Objective. Neural recording electrodes suffer from poor signal to noise ratio, charge density, biostability and biocompatibility. This paper investigates the ability of conducting polymer coated electrodes to record acute neural response in a systematic manner, allowing in depth comparison of electrochemical and electrophysiological response. Approach. Polypyrrole (Ppy) and poly-3,4-ethylenedioxythiophene (PEDOT) doped with sulphate (SO4) or para-toluene sulfonate (pTS) were used to coat iridium neural recording electrodes. Detailed electrochemical and electrophysiological investigations were undertaken to compare the effect of these materials on acute in vivo recording. Main results. A range of charge density and impedance responses were seen with each respectively doped conducting polymer. All coatings produced greater charge density than uncoated electrodes, while PEDOT-pTS, PEDOT-SO4 and Ppy-SO4 possessed lower impedance values at 1 kHz than uncoated electrodes. Charge density increased with PEDOT-pTS thickness and impedance at 1 kHz was reduced with deposition times up to 45 s. Stable electrochemical response after acute implantation inferred biostability of PEDOT-pTS coated electrodes while other electrode materials had variable impedance and/or charge density after implantation indicative of a protein fouling layer forming on the electrode surface. Recording of neural response to white noise bursts after implantation of conducting polymer-coated electrodes into a rat model inferior colliculus showed a general decrease in background noise and increase in signal to noise ratio and spike count with reduced impedance at 1 kHz, regardless of the specific electrode coating, compared to uncoated electrodes. A 45 s PEDOT-pTS deposition time yielded the highest signal to noise ratio and spike count. Significance. A method for comparing recording electrode materials has been demonstrated with doped conducting polymers. PEDOT-pTS showed remarkable low fouling during

  17. Pacemaker implantation after catheter ablation for atrial fibrillation.

    Science.gov (United States)

    Deshmukh, Abhishek J; Yao, Xiaoxi; Schilz, Stephanie; Van Houten, Holly; Sangaralingham, Lindsey R; Asirvatham, Samuel J; Friedman, Paul A; Packer, Douglas L; Noseworthy, Peter A

    2016-01-01

    Sinus node dysfunction requiring pacemaker implantation is commonly associated with atrial fibrillation (AF), but may not be clinically apparent until restoration of sinus rhythm with ablation or cardioversion. We sought to determine frequency, time course, and predictors for pacemaker implantation after catheter ablation, and to compare the overall rates to a matched cardioversion cohort. We conducted a retrospective analysis using a large US commercial insurance database and identified 12,158 AF patients who underwent catheter ablation between January 1, 2005 and December 31, 2012. Over an average of 2.4 years of follow-up, 5.6 % of the patients underwent pacemaker implantation. Using the Cox proportional hazards models, we found that risk of risks of pacemaker implantation was associated with older age (50-64 and ≥65 versus pacemaker implantation between ablation patients and propensity score (PS)-matched cardioversion groups (3.5 versus. 4.1 % at 1 year and 8.8 versus 8.3 % at 5 years). Overall, pacemaker implantation occurs in about 1/28 patients within 1 year of catheter ablation. The overall implantation rate decreased between 2005 and 2012. Furthermore, the risk after ablation is similar to cardioversion, suggesting that patients require pacing due to a common underlying electrophysiologic substrate, rather than the ablation itself.

  18. Assessment of Cochlear Function during Cochlear Implantation by Extra- and Intracochlear Electrocochleography

    OpenAIRE

    Dalbert, Adrian; Pfiffner, Flurin; Hoesli, Marco; Koka, Kanthaiah; Veraguth, Dorothe; Roosli, Christof; Huber, Alexander

    2018-01-01

    Objective: The aims of this study were: (1) To investigate the correlation between electrophysiological changes during cochlear implantation and postoperative hearing loss, and (2) to detect the time points that electrophysiological changes occur during cochlear implantation. Material and Methods: Extra- and intracochlear electrocochleography (ECoG) were used to detect electrophysiological changes during cochlear implantation. Extracochlear ECoG recordings were conducted through a needle elec...

  19. Qualitative and quantitative observations of bone tissue reactions to anodised implants.

    Science.gov (United States)

    Sul, Young-Taeg; Johansson, Carina B; Röser, Kerstin; Albrektsson, Tomas

    2002-04-01

    Research projects focusing on biomaterials related factors; the bulk implant material, the macro-design of the implant and the microsurface roughness are routinely being conducted at our laboratories. In this study, we have investigated the bone tissue reactions to turned commercially pure (c.p.) titanium implants with various thicknesses of the oxide films after 6 weeks of insertion in rabbit bone. The control c.p. titanium implants had an oxide thickness of 17-200 nm while the test implants revealed an oxide thickness between 600 and 1000 nm. Routine histological investigations of the tissue reactions around the implants and enzyme histochemical detections of alkaline and acid phosphatase activities demonstrated similar findings around both the control and test implants. In general, the histomorphometrical parameters (bone to implant contact and newly formed bone) revealed significant quantitative differences between the control and test implants. The test implants demonstrated a greater bone response histomorphometrically than control implants and the osteoconductivity was more pronounced around the test implant surfaces. The parameters that differed between the implant surfaces, i.e. the oxide thickness, the pore size distribution, the porosity and the crystallinity of the surface oxides may represent factors that have an influence on the histomorphometrical results indicated by a stronger bone tissue response to the test implant surfaces, with an oxide thickness of more than 600 nm.

  20. Auditory brainstem activity and development evoked by apical versus basal cochlear implant electrode stimulation in children.

    Science.gov (United States)

    Gordon, K A; Papsin, B C; Harrison, R V

    2007-08-01

    The role of apical versus basal cochlear implant electrode stimulation on central auditory development was examined. We hypothesized that, in children with early onset deafness, auditory development evoked by basal electrode stimulation would differ from that evoked more apically. Responses of the auditory nerve and brainstem, evoked by an apical and a basal implant electrode, were measured over the first year of cochlear implant use in 50 children with early onset severe to profound deafness who used hearing aids prior to implantation. Responses at initial stimulation were of larger amplitude and shorter latency when evoked by the apical electrode. No significant effects of residual hearing or age were found on initial response amplitudes or latencies. With implant use, responses evoked by both electrodes showed decreases in wave and interwave latencies reflecting decreased neural conduction time through the brainstem. Apical versus basal differences persisted with implant experience with one exception; eIII-eV interlatency differences decreased with implant use. Acute stimulation shows prolongation of basally versus apically evoked auditory nerve and brainstem responses in children with severe to profound deafness. Interwave latencies reflecting neural conduction along the caudal and rostral portions of the brainstem decreased over the first year of implant use. Differences in neural conduction times evoked by apical versus basal electrode stimulation persisted in the caudal but not rostral brainstem. Activity-dependent changes of the auditory brainstem occur in response to both apical and basal cochlear implant electrode stimulation.

  1. Why are mini-implants lost: the value of the implantation technique!

    Science.gov (United States)

    Romano, Fabio Lourenço; Consolaro, Alberto

    2015-01-01

    The use of mini-implants have made a major contribution to orthodontic treatment. Demand has aroused scientific curiosity about implant placement procedures and techniques. However, the reasons for instability have not yet been made totally clear. The aim of this article is to establish a relationship between implant placement technique and mini-implant success rates by means of examining the following hypotheses: 1) Sites of poor alveolar bone and little space between roots lead to inadequate implant placement; 2) Different sites require mini-implants of different sizes! Implant size should respect alveolar bone diameter; 3) Properly determining mini-implant placement site provides ease for implant placement and contributes to stability; 4) The more precise the lancing procedures, the better the implant placement technique; 5) Self-drilling does not mean higher pressures; 6) Knowing where implant placement should end decreases the risk of complications and mini-implant loss.

  2. Why are mini-implants lost: The value of the implantation technique!

    Directory of Open Access Journals (Sweden)

    Fabio Lourenço Romano

    2015-02-01

    Full Text Available The use of mini-implants have made a major contribution to orthodontic treatment. Demand has aroused scientific curiosity about implant placement procedures and techniques. However, the reasons for instability have not yet been made totally clear. The aim of this article is to establish a relationship between implant placement technique and mini-implant success rates by means of examining the following hypotheses: 1 Sites of poor alveolar bone and little space between roots lead to inadequate implant placement; 2 Different sites require mini-implants of different sizes! Implant size should respect alveolar bone diameter; 3 Properly determining mini-implant placement site provides ease for implant placement and contributes to stability; 4 The more precise the lancing procedures, the better the implant placement technique; 5 Self-drilling does not mean higher pressures; 6 Knowing where implant placement should end decreases the risk of complications and mini-implant loss.

  3. Do Breast Implants Influence Breastfeeding? A Meta-Analysis of Comparative Studies.

    Science.gov (United States)

    Cheng, Fengrui; Dai, Shuiping; Wang, Chiyi; Zeng, Shaoxue; Chen, Junjie; Cen, Ying

    2018-06-01

    Aesthetic breast implant augmentation surgery is the most popular plastic surgery worldwide. Many women choose to receive breast implants during their reproductive ages, although the long-term effects are still controversial. Research aim: We conducted a meta-analysis to assess the influence of aesthetic breast augmentation on breastfeeding. We also compared the exclusive breastfeeding rates of periareolar versus inframammary incision. A systematic search for comparative studies about breast implants and breastfeeding was performed in PubMed, MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, ScienceDirect, Scopus, and Web of Science through May 2018. Meta-analysis was conducted with a random-effects model (or fixed effects, if heterogeneity was absent). Four cohorts and one cross-sectional study were included. There was a significant reduction in the exclusive breastfeeding rate for women with breast implants compared with women without implants, pooled relative risk = 0.63, 95% confidence interval [0.46, 0.86], as well as the breastfeeding rate, pooled relative risk = 0.88, 95% confidence interval [0.81, 0.95]. There was no evidence that periareolar incision was associated with a reduction in the exclusive breastfeeding rate, pooled relative risk = 0.84, 95% confidence interval [0.45, 1.58]. Participants with breast implants are less likely to establish breastfeeding, especially exclusive breastfeeding. Periareolar incision does not appear to reduce the exclusive breastfeeding rate.

  4. Optimizing the face Paradigm of BCI system by modified Mismatch Negative paradigm

    Directory of Open Access Journals (Sweden)

    Siejie Zhou

    2016-10-01

    Full Text Available Many recent studies have focused on improving the performance of event-related potential (ERP based brain computer interfaces (BCIs. The use of a face pattern has been shown to obtain high classification accuracies and information transfer rates (ITRs by evoking discriminative ERPs (N200 and N400 in addition to P300 potentials. Recently, it has been proved that the performance of traditional P300-based BCIs could be improved through a modification of the mismatch pattern. In this paper, a mismatch inverted face pattern (MIF-pattern was presented to improve the performance of the inverted face pattern (IF-pattern, one of the state of the art patterns used in visual-based BCI systems. Ten subjects attended in this experiment. The result showed that the mismatch inverted face pattern could evoke significantly larger vertex positive potentials (p<0.05 and N400s (p<0.05 compared to the inverted face pattern. The classification accuracy (mean accuracy is 99.58% and ITRs (mean bit rate is 27.88 bit/min of the mismatch inverted face pattern was significantly higher than that of the inverted face pattern (p<0.05.

  5. Bilinear Regularized Locality Preserving Learning on Riemannian Graph for Motor Imagery BCI.

    Science.gov (United States)

    Xie, Xiaofeng; Yu, Zhu Liang; Gu, Zhenghui; Zhang, Jun; Cen, Ling; Li, Yuanqing

    2018-03-01

    In off-line training of motor imagery-based brain-computer interfaces (BCIs), to enhance the generalization performance of the learned classifier, the local information contained in test data could be used to improve the performance of motor imagery as well. Further considering that the covariance matrices of electroencephalogram (EEG) signal lie on Riemannian manifold, in this paper, we construct a Riemannian graph to incorporate the information of training and test data into processing. The adjacency and weight in Riemannian graph are determined by the geodesic distance of Riemannian manifold. Then, a new graph embedding algorithm, called bilinear regularized locality preserving (BRLP), is derived upon the Riemannian graph for addressing the problems of high dimensionality frequently arising in BCIs. With a proposed regularization term encoding prior information of EEG channels, the BRLP could obtain more robust performance. Finally, an efficient classification algorithm based on extreme learning machine is proposed to perform on the tangent space of learned embedding. Experimental evaluations on the BCI competition and in-house data sets reveal that the proposed algorithms could obtain significantly higher performance than many competition algorithms after using same filter process.

  6. Safely re-integrating silicone breast implants into the plastic surgery practice.

    Science.gov (United States)

    Gladfelter, Joanne

    2006-01-01

    In the early 1990s, it was reported that silicone breast implants were possibly responsible for serious damage to women's health. In January 1992, the Food and Drug Administration issued a voluntary breast implant moratorium and, in April, issued a ban on the use of silicone gel-filled implants for cosmetic breast augmentation. Since that time, silicone gel-filled breast implants have been available to women only for select cases: women seeking breast reconstruction or revision of an existing breast implant, women who have had breast cancer surgery, a severe injury to the breast, a birth defect that affects the breast, or a medical condition causing a severe breast deformity. Since the ban on the use of silicone gel-filled breast implants for cosmetic breast augmentation, numerous scientific studies have been conducted. To ensure patient safety, the American Board of Plastic Surgery believes that these scientific studies and the Food and Drug Administration's scrutiny of silicone gel-filled breast implants have been appropriate and necessary.

  7. Primary prevention of peri-implantitis: Managing peri-implant mucositis

    OpenAIRE

    Jepsen, Søren; Berglundh, Tord; Genco, Robert; Aass, Anne Merete; Demirel, Korkud; Derks, Jan; Figuero, Elena; Giovannoli, Jean Louis; Goldstein, Moshe; LAMBERT, France; Ortiz-Vigon, Alberto; Polyzois, Ioannis; Salvi, Giovanni; Schwarz, Frank; Serino, Giovanni

    2015-01-01

    Abstract AIMS: Over the past decades, the placement of dental implants has become a routine procedure in the oral rehabilitation of fully and partially edentulous patients. However, the number of patients/implants affected by peri-implant diseases is increasing. As there are--in contrast to periodontitis--at present no established and predictable concepts for the treatment of peri-implantitis, primary prevention is of key importance. The management of peri-implant mucositis is considere...

  8. Osteogenesis and Morphology of the Peri-Implant Bone Facing Dental Implants

    Directory of Open Access Journals (Sweden)

    Marco Franchi

    2004-01-01

    Full Text Available This study investigated the influence of different implant surfaces on peri-implant osteogenesis and implant face morphology of peri-implant tissues during the early (2 weeks and complete healing period (3 months. Thirty endosseous titanium implants (conic screws with differently treated surfaces (smooth titanium = SS, titanium plasma sprayed = TPS, sand-blasted zirconium oxide = Zr-SLA were implanted in femur and tibiae diaphyses of two mongrel sheep. Histological sections of the implants and surrounding tissues obtained by sawing and grinding techniques were observed under light microscopy (LM. The peri-implant tissues of other samples were mechanically detached from the corresponding implants to be processed for SEM observation. Two weeks after implantation, we observed osteogenesis (new bone trabeculae around all implant surfaces only where a gap was present at the host bone-metal interface. No evident bone deposition was detectable where threads of the screws were in direct contact with the compact host bone. Distance osteogenesis predominated in SS implants, while around rough surfaces (TPS and Zr-SLA, both distance and contact osteogenesis were present. At SEM analysis 2 weeks after implantation, the implant face of SS peri-implant tissue showed few, thin, newly formed, bone trabeculae immersed in large, loose, marrow tissue with blood vessels. Around the TPS screws, the implant face of the peri-implant tissue was rather irregular because of the rougher metal surface. Zr-SLA screws showed more numerous, newly formed bone trabeculae crossing marrow spaces and also needle-like crystals in bone nodules indicating an active mineralising process. After 3 months, all the screws appeared osseointegrated, being almost completely covered by a compact, mature, newly formed bone. However, some marrow spaces rich in blood vessels and undifferentiated cells were in contact with the metal surface. By SEM analysis, the implant face of the peri-implant

  9. Dimensional soft tissue changes following soft tissue grafting in conjunction with implant placement or around present dental implants: a systematic review.

    Science.gov (United States)

    Poskevicius, Lukas; Sidlauskas, Antanas; Galindo-Moreno, Pablo; Juodzbalys, Gintaras

    2017-01-01

    To systematically review changes in mucosal soft tissue thickness and keratinised mucosa width after soft tissue grafting around dental implants. An electronic literature search was conducted of the MEDLINE database published between 2009 and 2014. Sequential screenings at the title, abstract, and full-text levels were performed. Clinical human studies in the English language that had reported changes in soft tissue thickness or keratinised mucosa width after soft tissue grafting at implant placement or around a present implant at 6-month follow-up or longer were included. The search resulted in fourteen articles meeting the inclusion criteria: Six of them reported connective tissue grafting around present dental implants, compared to eight at the time of implant placement. Better long-term soft tissue thickness outcomes were reported for soft tissue augmentation around dental implants (0.8-1.4 mm), compared with augmentation at implant placement (-0.25-1.43 mm). Both techniques were effective in increasing keratinised tissue width: at implant placement (2.5 mm) or around present dental implants (2.33-2.57 mm). The present systematic review discovered that connective tissue grafts enhanced keratinised mucosa width and soft tissue thickness for an observation period of up to 48 months. However, some shrinkage may occur, resulting in decreases in soft tissue, mostly for the first three months. Further investigations using accurate evaluation methods need to be done to evaluate the appropriate time for grafting. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Survival of dental implants placed in sites of previously failed implants.

    Science.gov (United States)

    Chrcanovic, Bruno R; Kisch, Jenö; Albrektsson, Tomas; Wennerberg, Ann

    2017-11-01

    To assess the survival of dental implants placed in sites of previously failed implants and to explore the possible factors that might affect the outcome of this reimplantation procedure. Patients that had failed dental implants, which were replaced with the same implant type at the same site, were included. Descriptive statistics were used to describe the patients and implants; survival analysis was also performed. The effect of systemic, environmental, and local factors on the survival of the reoperated implants was evaluated. 175 of 10,096 implants in 98 patients were replaced by another implant at the same location (159, 14, and 2 implants at second, third, and fourth surgeries, respectively). Newly replaced implants were generally of similar diameter but of shorter length compared to the previously placed fixtures. A statistically significant greater percentage of lost implants were placed in sites with low bone quantity. There was a statistically significant difference (P = 0.032) in the survival rates between implants that were inserted for the first time (94%) and implants that replaced the ones lost (73%). There was a statistically higher failure rate of the reoperated implants for patients taking antidepressants and antithrombotic agents. Dental implants replacing failed implants had lower survival rates than the rates reported for the previous attempts of implant placement. It is suggested that a site-specific negative effect may possibly be associated with this phenomenon, as well as the intake of antidepressants and antithrombotic agents. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Sub-meninges implantation reduces immune response to neural implants.

    Science.gov (United States)

    Markwardt, Neil T; Stokol, Jodi; Rennaker, Robert L

    2013-04-15

    Glial scar formation around neural interfaces inhibits their ability to acquire usable signals from the surrounding neurons. To improve neural recording performance, the inflammatory response and glial scarring must be minimized. Previous work has indicated that meningeally derived cells participate in the immune response, and it is possible that the meninges may grow down around the shank of a neural implant, contributing to the formation of the glial scar. This study examines whether the glial scar can be reduced by placing a neural probe completely below the meninges. Rats were implanted with sets of loose microwire implants placed either completely below the meninges or implanted conventionally with the upper end penetrating the meninges, but not attached to the skull. Histological analysis was performed 4 weeks following surgical implantation to evaluate the glial scar. Our results found that sub-meninges implants showed an average reduction in reactive astrocyte activity of 63% compared to trans-meninges implants. Microglial activity was also reduced for sub-meninges implants. These results suggest that techniques that isolate implants from the meninges offer the potential to reduce the encapsulation response which should improve chronic recording quality and stability. Published by Elsevier B.V.

  12. Scalloped Implant-Abutment Connection Compared to Conventional Flat Implant-Abutment Connection

    DEFF Research Database (Denmark)

    Starch-Jensen, Thomas; Christensen, Ann-Eva; Lorenzen, Henning

    2017-01-01

    OBJECTIVES: The objective was to test the hypothesis of no difference in implant treatment outcome after installation of implants with a scalloped implant-abutment connection compared to a flat implant-abutment connection. MATERIAL AND METHODS: A MEDLINE (PubMed), Embase and Cochrane library search......-abutment connection. There were no significant differences between the two treatment modalities regarding professional or patient-reported outcome measures. Meta-analysis disclosed a mean difference of peri-implant marginal bone loss of 1.56 mm (confidence interval: 0.87 to 2.25), indicating significant more bone...... loss around implants with a scalloped implant-abutment connection. CONCLUSIONS: A scalloped implant-abutment connection seems to be associated with higher peri-implant marginal bone loss compared to a flat implant-abutment connection. Therefore, the hypothesis of the present systematic review must...

  13. Imaging of common breast implants and implant-related complications: A pictorial essay.

    Science.gov (United States)

    Shah, Amisha T; Jankharia, Bijal B

    2016-01-01

    The number of women undergoing breast implant procedures is increasing exponentially. It is, therefore, imperative for a radiologist to be familiar with the normal and abnormal imaging appearances of common breast implants. Diagnostic imaging studies such as mammography, ultrasonography, and magnetic resonance imaging are used to evaluate implant integrity, detect abnormalities of the implant and its surrounding capsule, and detect breast conditions unrelated to implants. Magnetic resonance imaging of silicone breast implants, with its high sensitivity and specificity for detecting implant rupture, is the most reliable modality to asses implant integrity. Whichever imaging modality is used, the overall aim of imaging breast implants is to provide the pertinent information about implant integrity, detect implant failures, and to detect breast conditions unrelated to the implants, such as cancer.

  14. Influence of implant rod curvature on sagittal correction of scoliosis deformity

    DEFF Research Database (Denmark)

    Salmingo, Remel A.; Tadano, Shigeru; Abe, Yuichiro

    2014-01-01

    of the implant rod’s angle of curvature during surgery and establish its influence on sagittal correction of scoliosis deformity. STUDY DESIGN: A retrospective analysis of the preoperative and postoperative implant rod geometry and angle of curvature was conducted. PATIENT SAMPLE: Twenty adolescent idiopathic......BACKGROUND CONTEXT: Deformation of in vivo–implanted rods could alter the scoliosis sagittal correction. To our knowledge, no previous authors have investigated the influence of implanted-rod deformation on the sagittal deformity correction during scoliosis surgery. PURPOSE: To analyze the changes...... scoliosis patients underwent surgery. Average age at the time of operation was 14 years. OUTCOME MEASURES: The preoperative and postoperative implant rod angle of curvature expressed in degrees was obtained for each patient. METHODS: Two implant rods were attached to the concave and convex side...

  15. Carbon Fiber Biocompatibility for Implants

    Directory of Open Access Journals (Sweden)

    Richard Petersen

    2016-01-01

    Full Text Available Carbon fibers have multiple potential advantages in developing high-strength biomaterials with a density close to bone for better stress transfer and electrical properties that enhance tissue formation. As a breakthrough example in biomaterials, a 1.5 mm diameter bisphenol-epoxy/carbon-fiber-reinforced composite rod was compared for two weeks in a rat tibia model with a similar 1.5 mm diameter titanium-6-4 alloy screw manufactured to retain bone implants. Results showed that carbon-fiber-reinforced composite stimulated osseointegration inside the tibia bone marrow measured as percent bone area (PBA to a great extent when compared to the titanium-6-4 alloy at statistically significant levels. PBA increased significantly with the carbon-fiber composite over the titanium-6-4 alloy for distances from the implant surfaces of 0.1 mm at 77.7% vs. 19.3% (p < 10−8 and 0.8 mm at 41.6% vs. 19.5% (p < 10−4, respectively. The review focuses on carbon fiber properties that increased PBA for enhanced implant osseointegration. Carbon fibers acting as polymer coated electrically conducting micro-biocircuits appear to provide a biocompatible semi-antioxidant property to remove damaging electron free radicals from the surrounding implant surface. Further, carbon fibers by removing excess electrons produced from the cellular mitochondrial electron transport chain during periods of hypoxia perhaps stimulate bone cell recruitment by free-radical chemotactic influences. In addition, well-studied bioorganic cell actin carbon fiber growth would appear to interface in close contact with the carbon-fiber-reinforced composite implant. Resulting subsequent actin carbon fiber/implant carbon fiber contacts then could help in discharging the electron biological overloads through electrochemical gradients to lower negative charges and lower concentration.

  16. Immediate Direct-To-Implant Breast Reconstruction Using Anatomical Implants

    Directory of Open Access Journals (Sweden)

    Sung-Eun Kim

    2014-09-01

    Full Text Available BackgroundIn 2012, a new anatomic breast implant of form-stable silicone gel was introduced onto the Korean market. The intended use of this implant is in the area of aesthetic breast surgery, and many reports are promising. Thus far, however, there have been no reports on the use of this implant for breast reconstruction in Korea. We used this breast implant in breast reconstruction surgery and report our early experience.MethodsFrom November 2012 to April 2013, the Natrelle Style 410 form-stable anatomically shaped cohesive silicone gel-filled breast implant was used in 31 breasts of 30 patients for implant breast reconstruction with an acellular dermal matrix. Patients were treated with skin-sparing mastectomies followed by immediate breast reconstruction.ResultsThe mean breast resection volume was 240 mL (range, 83-540 mL. The mean size of the breast implants was 217 mL (range, 125-395 mL. Breast shape outcomes were considered acceptable. Infection and skin thinning occurred in one patient each, and hematoma and seroma did not occur. Three cases of wound dehiscence occurred, one requiring surgical intervention, while the others healed with conservative treatment in one month. Rippling did not occur. So far, complications such as capsular contracture and malrotation of breast implant have not yet arisen.ConclusionsBy using anatomic breast implants in breast reconstruction, we achieved satisfactory results with aesthetics better than those obtained with round breast implants. Therefore, we concluded that the anatomical implant is suitable for breast reconstruction.

  17. Electromagnetic Compatibility of Transcutaneous Energy Transmission Systemfor Totally Implantable Artificial Heart

    Science.gov (United States)

    Shiba, Kenji; Koshiji, Kohji

    Transcutaneous Energy Transmission (TET) is one way of providing the energy needed to power a totally implantable artificial heart (TIAH). In the present study, an externally coupled TET system was implanted in a prototype human phantom to evaluate emission and immunity. In the emission evaluation, measurements were conducted based on CISPR Pub.11 and VDE 0871 standards, while immunity tests were based on the standards of the IEC 61000-4 series. The magnetic field of the radiated emission was measured using a loop antenna. At 0.1[MHz], we found the greatest magnetic field of 47.8 [dBμA/m], somewhat less than CISPR’s upper limit of 54 [dBμA/m]. For the conducted emission, by installing a noise filter and ferrite beads in the input section of the DC-power supply, conducted emission could be kept within the allowable limits of CISPR Pub.11 and VDE 0871. Finally, the immunity tests against radiated and conducted emission, electrostatic discharge and voltage fluctuation proved that the prototype could withstand the maximum level of disturbance. These results confirmed that the TET system implanted in a human phantom could, through modification, meet the emission and immunity standards.

  18. Imaging of common breast implants and implant-related complications: A pictorial essay

    Directory of Open Access Journals (Sweden)

    Amisha T Shah

    2016-01-01

    Full Text Available The number of women undergoing breast implant procedures is increasing exponentially. It is, therefore, imperative for a radiologist to be familiar with the normal and abnormal imaging appearances of common breast implants. Diagnostic imaging studies such as mammography, ultrasonography, and magnetic resonance imaging are used to evaluate implant integrity, detect abnormalities of the implant and its surrounding capsule, and detect breast conditions unrelated to implants. Magnetic resonance imaging of silicone breast implants, with its high sensitivity and specificity for detecting implant rupture, is the most reliable modality to asses implant integrity. Whichever imaging modality is used, the overall aim of imaging breast implants is to provide the pertinent information about implant integrity, detect implant failures, and to detect breast conditions unrelated to the implants, such as cancer.

  19. Research on ion implantation in MEMS device fabrication by theory, simulation and experiments

    Science.gov (United States)

    Bai, Minyu; Zhao, Yulong; Jiao, Binbin; Zhu, Lingjian; Zhang, Guodong; Wang, Lei

    2018-06-01

    Ion implantation is widely utilized in microelectromechanical systems (MEMS), applied for embedded lead, resistors, conductivity modifications and so forth. In order to achieve an expected device, the principle of ion implantation must be carefully examined. The elementary theory of ion implantation including implantation mechanism, projectile range and implantation-caused damage in the target were studied, which can be regarded as the guidance of ion implantation in MEMS device design and fabrication. Critical factors including implantations dose, energy and annealing conditions are examined by simulations and experiments. The implantation dose mainly determines the dopant concentration in the target substrate. The implantation energy is the key factor of the depth of the dopant elements. The annealing time mainly affects the repair degree of lattice damage and thus the activated elements’ ratio. These factors all together contribute to ions’ behavior in the substrates and characters of the devices. The results can be referred to in the MEMS design, especially piezoresistive devices.

  20. Effects of residual hearing on cochlear implant outcomes in children: A systematic-review.

    Science.gov (United States)

    Chiossi, Julia Santos Costa; Hyppolito, Miguel Angelo

    2017-09-01

    to investigate if preoperative residual hearing in prelingually deafened children can interfere on cochlear implant indication and outcomes. a systematic-review was conducted in five international databases up to November-2016, to locate articles that evaluated cochlear implantation in children with some degree of preoperative residual hearing. Outcomes were auditory, language and cognition performances after cochlear implant. The quality of the studies was assessed and classified according to the Oxford Levels of Evidence table - 2011. Risk of biases were also described. From the 30 articles reviewed, two types of questions were identified: (a) what are the benefits of cochlear implantation in children with residual hearing? (b) is the preoperative residual hearing a predictor of cochlear implant outcome? Studies ranged from 04 to 188 subjects, evaluating populations between 1.8 and 10.3 years old. The definition of residual hearing varied between studies. The majority of articles (n = 22) evaluated speech perception as the outcome and 14 also assessed language and speech production. There is evidence that cochlear implant is beneficial to children with residual hearing. Preoperative residual hearing seems to be valuable to predict speech perception outcomes after cochlear implantation, even though the mechanism of how it happens is not clear. More extensive researches must be conducted in order to make recommendations and to set prognosis for cochlear implants based on children preoperative residual hearing. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Retrograde peri-implantitis

    Directory of Open Access Journals (Sweden)

    Mohamed Jumshad

    2010-01-01

    Full Text Available Retrograde peri-implantitis constitutes an important cause for implant failure. Retrograde peri-implantitis may sometimes prove difficult to identify and hence institution of early treatment may not be possible. This paper presents a report of four cases of (the implant placed developing to retrograde peri-implantitis. Three of these implants were successfully restored to their fully functional state while one was lost due to extensive damage. The paper highlights the importance of recognizing the etiopathogenic mechanisms, preoperative assessment, and a strong postoperative maintenance protocol to avoid retrograde peri-implant inflammation.

  2. Patients' experiences of dental implant treatment: A literature review of key qualitative studies.

    Science.gov (United States)

    Kashbour, W A; Rousseau, N S; Ellis, J S; Thomason, J M

    2015-07-01

    To identify and summarise the findings of previous qualitative studies relating to patients' experience of dental implant treatment (DIT) at various stages of their implant treatment, by means of textual narrative synthesis. Original articles reporting patients' experience with dental implant were included. A two-stage search of the literature, electronic and hand search identified relevant qualitative studies up to July 2014. An extensive electronic search was conducted of databases including PubMed, Embase, Scopus, Web of Knowledge, Cochrane Database and Google Scholar. Included primary studies (n=10) used qualitative research methods and qualitative analysis to investigate patients' experiences with dental implants treatment. While the growing interest in implant treatment for the replacement of missing dentition is evident, it is essential to investigate patients' perceptions of different aspects of implant treatment. This textual narrative synthesis conducted to review qualitative studies which provided insight into patients' experience of two types of implant prostheses namely ISOD (implant-supported overdenture) and FISP (fixed implant supported prostheses). Primary reviewed studies tended to include samples of older patients with more extensive tooth loss, and to focus on experiences prior to and post-treatment rather than on the treatment period itself. Findings across reviewed studies (n=10) suggested that patients with FISP thought of implant treatment as a process of 'normalisation'(1) and believed that such implant restorations could be similar to natural teeth, whereas patients with ISOD focused more on the functional and social advantages of their implant treatment. The growing interest in qualitative research is evident in several branches of clinical dentistry and dental implantology is not an exception. Qualitative studies concerning the patients account of their experience of dental implants is however limited. The aim of this review is to

  3. Top-Cited Articles in Implant Dentistry.

    Science.gov (United States)

    Fardi, Anastasia; Kodonas, Konstantinos; Lillis, Theodoros; Veis, Alexander

    Citation analysis is the field of bibliometrics that uses citation data to evaluate the scientific recognition and the influential performance of a research article in the scientific community. The aim of this study was to conduct a bibliometric analysis of the top-cited articles pertaining to implant dentistry, to analyze the main characteristics, and to display the most interesting topics and evolutionary trends. The 100 top-cited articles published in "Dentistry, Oral Surgery, and Medicine" journals were identified using the Science Citation Index Database. The articles were further reviewed, and basic information was collected, including the number of citations, journals, authors, publication year, study design, level of evidence, and field of study. The highly cited articles in implant dentistry were cited between 199 and 2,229 times. The majority of them were published in four major journals: Clinical Oral Implants Research, International Journal of Oral & Maxillofacial Implants, Journal of Clinical Periodontology, and Journal of Periodontology. The publication year ranged from 1981 to 2009, with 45% published in a nine-year period (2001 to 2009). Publications from the United States (29%) were the most heavily cited, followed by those from Sweden (23%) and Switzerland (17%). The University of Göteborg from Sweden produced the highest number of publications (n = 19), followed by the University of Bern in Switzerland (n = 13). There was a predominance of clinical papers (n = 42), followed by reviews (n = 25), basic science research (n = 21), and proceedings papers (n = 12). Peri-implant tissue healing and health (24%), implant success/failures (19.2%), and biomechanical topics (16.8%) were the most common fields of study. Citation analysis in the field of implant dentistry reveals interesting information about the topics and trends negotiated by researchers and elucidates which characteristics are required for a paper to attain a "classic" status. Clinical

  4. The Asilomar Survey: Stakeholders' Opinions on Ethical Issues Related to Brain-Computer Interfacing.

    Science.gov (United States)

    Nijboer, Femke; Clausen, Jens; Allison, Brendan Z; Haselager, Pim

    2013-01-01

    Brain-Computer Interface (BCI) research and (future) applications raise important ethical issues that need to be addressed to promote societal acceptance and adequate policies. Here we report on a survey we conducted among 145 BCI researchers at the 4 th International BCI conference, which took place in May-June 2010 in Asilomar, California. We assessed respondents' opinions about a number of topics. First, we investigated preferences for terminology and definitions relating to BCIs. Second, we assessed respondents' expectations on the marketability of different BCI applications (BCIs for healthy people, BCIs for assistive technology, BCIs-controlled neuroprostheses and BCIs as therapy tools). Third, we investigated opinions about ethical issues related to BCI research for the development of assistive technology: informed consent process with locked-in patients, risk-benefit analyses, team responsibility, consequences of BCI on patients' and families' lives, liability and personal identity and interaction with the media. Finally, we asked respondents which issues are urgent in BCI research.

  5. Long-wavelength germanium photodetectors by ion implantation

    International Nuclear Information System (INIS)

    Wu, I.C.; Beeman, J.W.; Luke, P.N.; Hansen, W.L.; Haller, E.E.

    1990-11-01

    Extrinsic far-infrared photoconductivity in thin high-purity germanium wafers implanted with multiple-energy boron ions has been investigated. Initial results from Fourier transform spectrometer(FTS) measurements have demonstrated that photodetectors fabricated from this material have an extended long-wavelength threshold near 192μm. Due to the high-purity substrate, the ability to block the hopping conduction in the implanted IR-active layer yields dark currents of less than 100 electrons/sec at temperatures below 1.3 K under an operating bias of up to 70 mV. Optimum peak responsivity and noise equivalent power (NEP) for these sensitive detectors are 0.9 A/W and 5 x 10 -16 W/Hz 1/2 at 99 μm, respectively. The dependence of the performance of devices on the residual donor concentration in the implanted layer will be discussed. 12 refs., 4 figs

  6. N and Si Implantation Effect on Structural and Electrical Properties of Bridgman grown GaSe Single Crystal

    International Nuclear Information System (INIS)

    Karabulut, O.

    2004-01-01

    N and Si implantation to GaSe single crystals were carried out parallel to c-axis with ion beam of about 10 1 6 ions/cm 2 dose having energy values 30, 60 and 100 keV. Ion implantation modifications on Bridgman grown GaSe single crystals have been investigated by means of XRD, electrical conductivity, absorption and photoconductivity measurements. XRD measurements revealed that annealing results in a complete recovery of the crystalline nature that was moderately reduced upon implantation. It was observed that both N- and Siimplantation followed by annealing process decreased the resistivity values from 10 7 to 10 3 .-cm. The analysis of temperature dependent conductivity showed that at high temperature region above 200 K, the transport mechanism is dominated by thermal excitation in the doped and undoped GaSe samples. At lower temperatures, the conduction of carriers is dominated by variable range hopping mechanism in the implanted samples. Absorption and spectral photoconductivity measurements showed that the band edge is shifted in the implanted sample. All these modifications were attributed to the structural modifications and continuous shallow trap levels introduced upon implantation and annealing

  7. Cochlear implants in children implanted in Jordan: A parental overview.

    Science.gov (United States)

    Alkhamra, Rana A

    2015-07-01

    Exploring the perspective of parents on the cochlear implant process in Jordan. Sixty parents of deaf children were surveyed on the information gathering process prior to cochlear implant surgery, and their implant outcome expectations post-surgery. Whether child or parent characteristics may impact parents' post-surgical expectations was explored. Although parents used a variety of information sources when considering a cochlear implant, the ear, nose and throat doctor comprised their major source of information (60%). Parents received a range of information prior to cochlear implant but agreed (93.3%) on the need for a multidisciplinary team approach. Post-surgically, parents' expected major developments in the areas of spoken language (97%), and auditory skills (100%). Receiving education in mainstream schools (92%) was expected too. Parents perceived the cochlear implant decision as the best decision they can make for their child (98.3%). A significant correlation was found between parents contentment with the cochlear implant decision and expecting developments in the area of reading and writing (r=0.7). Child's age at implantation and age at hearing loss diagnosis significantly affected parents' post-implant outcome expectations (pparents agree on the need for a comprehensive multidisciplinary team approach during the different stages of the cochlear implant process. Parents' education about cochlear implants prior to the surgery can affect their post-surgical outcome expectations. The parental perspective presented in this study can help professionals develop better understanding of parents' needs and expectations and henceforth improve their services and support during the different stages of the cochlear implant process. Copyright © 2015. Published by Elsevier Ireland Ltd.

  8. Hearing loss patterns after cochlear implantation via the round window in an animal model.

    Science.gov (United States)

    Attias, Joseph; Hod, Roy; Raveh, Eyal; Mizrachi, Aviram; Avraham, Karen B; Lenz, Danielle R; Nageris, Ben I

    2016-01-01

    The mechanism and the type of hearing loss induced by cochlear implants are mostly unknown. Therefore, this study evaluated the impact and type of hearing loss induced by each stage of cochlear implantation surgery in an animal model. Original basic research animal study. The study was conducted in a tertiary, university-affiliated medical center in accordance with the guidelines of the Institutional Animal Care and Use Committee. Cochlear implant electrode array was inserted via the round window membrane in 17 ears of 9 adult-size fat sand rats. In 7 ears of 5 additional animals round window incision only was performed, followed by patching with a small piece of periosteum (control). Hearing thresholds to air (AC) and bone conduction (BC), clicks, 1 kHz and 6 kHz tone bursts were measured by auditory brainstem evoked potential, before, during each stage of surgery and one week post-operatively. In addition, inner ear histology was performed. The degree of hearing loss increased significantly from baseline throughout the stages of cochlear implantation surgery and up to one week after (plosses were found for 1-kHz and 6-kHz frequencies. The hearing loss was not associated with significant changes in inner ear histology. Hearing loss following cochlear implantation in normal hearing animals is progressive and of mixed type, but mainly conductive. Changes in the inner-ear mechanism are most likely responsible for the conductive hearing loss. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The Survival of Morse Cone-Connection Implants with Platform Switch.

    Science.gov (United States)

    Cassetta, Michele; Di Mambro, Alfonso; Giansanti, Matteo; Brandetti, Giulia

    2016-01-01

    The aim of this prospective clinical study was to evaluate the survival up to 5 years of Morse cone-connection implants with platform switch considering the influence of biologically relevant, anatomical, and stress-related variables. STROBE guidelines were followed. Seven hundred forty-eight implants were inserted in 350 patients. Follow-up visits were scheduled at the time of stagetwo surgery (2 months later) and at 6, 12, 24, 36, and 60 months. All implants were initially loaded with a cemented provisional acrylic restoration. The definitive metal-ceramic restorations were cemented at the 6-month follow-up. Implant cumulative survival rates (CSRs) were calculated using life table actuarial method. Survival data were also analyzed by the log-rank test and Cox regression. The statistical analysis was conducted at the patient level. P ≤ .05 was considered as an indicator of statistical significance. During the follow-up (mean: 40 months; SD: 20.27), 28 patients were considered failed (8%). The CSR and its standard error (SE) was 92% ± 2.17%. Patients with implant-supported single crowns had a CSR of 90%, whereas those with implant-supported fixed dental prostheses had a CSR of 93%. The implant diameter (P = .0399) and implant length (P = .0441) were statistically significant. The probability of failure was almost 75% lower for patients with wide rather than standard implants, 91% lower for patients with long implants, and 69% lower for patients with standard implants compared with short implants. The use of Morse cone-connection implants with platform switch is a safe and reliable treatment method. Stress-related variables influence the risk of failure confirming the importance of biomechanical factors in the longevity of osseointegrated implants; thus, the clinician may obtain better results if attention is paid to these factors.

  10. Long time follow up of implant therapy and treatment of peri-implantitis.

    Science.gov (United States)

    Roos-Jansåker, Ann-Marie

    2007-01-01

    Dental implants have become an often used alternative to replace missing teeth, resulting in an increasing percentage of the adult population with implant supported prosthesis. Although favourable long-term results of implant therapy have been reported, infections occur. Until recently few reports included data on peri-implant infections, possibly underestimating this complication of implant treatment. It is possible that some infections around implants develop slowly and that with time peri-implantitis will be a common complication to implant therapy as an increasing number of patients have had their implants for a long time (>10 years). Data on treatment of peri-implant lesions are scarce leaving the clinician with limited guidance regarding choice of treatment. The aim of this thesis was to study the frequency of implant loss and presence of peri-implant lesions in a group of patients supplied with Brånemark implants 9-14 years ago, and to relate these events to patient and site specific characteristics. Moreover three surgical treatment modalities for peri-implantitis were evaluated. The thesis is based on six studies; Studies I-III included 218 patients and 1057 implants followed for 9-14 years evaluating prevalence of, and factors related to implant loss (Paper I) and prevalence of peri-implant infections and related factors (Paper I-III). Study IV is a review describing different treatment modalities of peri-implant infections. Study V is a prospective cohort study involving 36 patients and 65 implants, evaluating the use of a bone substitute with or without the use of a resorbable membrane. Study VI is a case series with 12 patients and 16 implants, evaluating a bone substitute in combination with a resorbable membrane and submerged healing. This thesis demonstrated that: After 9-14 years the survival rates of dental implants are high (95.7%). Implant loss seems to cluster within patients and are related to periodontitis evidenced as bone loss on

  11. Hip Implant Systems

    Science.gov (United States)

    ... Implants and Prosthetics Metal-on-Metal Hip Implants Hip Implants Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Hip implants are medical devices intended to restore mobility ...

  12. Immediate implants in extraction sockets with periapical lesions: an illustrated review

    Directory of Open Access Journals (Sweden)

    Arthur B. Novaes Jr.

    2013-10-01

    Full Text Available Aim Immediate implantation has gained great attention since first proposed. Immediate implants in replacement of teeth with periapical lesion is, to date, an issue of discussion. The aim of this study is to perform an illustrated literature review of immediate implants in sockets exhibiting previous periapical lesions.Materials and methods A search on medline/EMBASE database was done for the literature review which is presented together with two case reports illustrating the state of the art of immediate implants on sockets with periapical lesions. Both cases are presented in areas with great aesthetic demands and a periapical lesion of considerable size. The two cases were conducted following strict granulation tissue removal and careful rinsing and pre-operative antibiotics, followed by good primary stability of the dental implant.Results and conclusion Both cases represented successes in aesthetics and function, describing a successful protocol for immediate implant installation in areas exhibiting periapical lesions.

  13. Hearing improvement with softband and implanted bone-anchored hearing devices and modified implantation surgery in patients with bilateral microtia-atresia.

    Science.gov (United States)

    Wang, Yibei; Fan, Xinmiao; Wang, Pu; Fan, Yue; Chen, Xiaowei

    2018-01-01

    To evaluate auditory development and hearing improvement in patients with bilateral microtia-atresia using softband and implanted bone-anchored hearing devices and to modify the implantation surgery. The subjects were divided into two groups: the softband group (40 infants, 3 months to 2 years old, Ponto softband) and the implanted group (6 patients, 6-28 years old, Ponto). The Infant-Toddler Meaning Auditory Integration Scale was used conducted to evaluate auditory development at baseline and after 3, 6, 12, and 24 months, and visual reinforcement audiometry was used to assess the auditory threshold in the softband group. In the implanted group, bone-anchored hearing devices were implanted combined with the auricular reconstruction surgery, and high-resolution CT was used to assess the deformity preoperatively. Auditory threshold and speech discrimination scores of the patients with implants were measured under the unaided, softband, and implanted conditions. Total Infant-Toddler Meaning Auditory Integration Scale scores in the softband group improved significantly and approached normal levels. The average visual reinforcement audiometry values under the unaided and softband conditions were 76.75 ± 6.05 dB HL and 32.25 ± 6.20 dB HL (P hearing devices is effective for auditory development and hearing improvement in infants with bilateral microtia-atresia. Wearing softband bone-anchored hearing devices before auricle reconstruction and combining bone-anchored hearing device implantation with auricular reconstruction surgery may bethe optimal clinical choice for these patients, and results in more significant hearing improvement and minimal surgical and anesthetic injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Implant and prosthodontic survival rates with implant fixed complete dental prostheses in the edentulous mandible after at least 5 years: a systematic review.

    Science.gov (United States)

    Papaspyridakos, Panos; Mokti, Muizzaddin; Chen, Chun-Jung; Benic, Goran I; Gallucci, German O; Chronopoulos, Vasilios

    2014-10-01

    The treatment of mandibular edentulism with implant fixed complete dental prostheses (IFCDPs) is a routinely used treatment option. The study aims to report the implant and prosthodontic survival rates associated with IFCDPs for the edentulous mandible after an observation period of a minimum 5 years. An electronic MEDLINE/PubMED search was conducted to identify randomized controlled clinical trials and prospective studies with IFCDPs for the edentulous mandible. Clinical studies with at least 5-year follow-up were selected. Pooled data were statistically analyzed and cumulative implant- and prosthesis survival rates were calculated by meta-analysis, regression, and chi-square statistics. Implant-related and prosthesis-related factors were identified and their impact on survival rates was assessed. Seventeen prospective studies, including 501 patients and 2,827 implants, were selected for meta-analysis. The majority of the implants (88.5% of all placed implants) had been placed in the interforaminal area. Cumulative implant survival rates for rough surface ranged from 98.42% (95% confidence interval [CI]: 97.98-98.86) (5 years) to 96.86% (95% CI: 96.00-97.73) (10 years); smooth surface implant survival rates ranged from 98.93% (95% CI: 98.38-99.49) (5 years) to 97.88% (95% CI: 96.78-98.98) (10 years). The prosthodontic survival rates for 1-piece IFCDPs ranged from 98.61% (95% CI: 97.80-99.43) (5 years) to 97.25% (95% CI: 95.66-98.86) (10 years). Treatment with mandibular IFCDPs yields high implant and prosthodontic survival rates (more than 96% after 10 years). Rough surface implants exhibited cumulative survival rates similar to the smooth surface ones (p > .05) in the edentulous mandible. The number of supporting implants and the antero-posterior implant distribution had no influence (p > .05) on the implant survival rate. The prosthetic design and veneering material, the retention type, and the loading protocol (delayed, early, and immediate) had no

  15. Age at implantation and auditory memory in cochlear implanted children.

    Science.gov (United States)

    Mikic, B; Miric, D; Nikolic-Mikic, M; Ostojic, S; Asanovic, M

    2014-05-01

    Early cochlear implantation, before the age of 3 years, provides the best outcome regarding listening, speech, cognition an memory due to maximal central nervous system plasticity. Intensive postoperative training improves not only auditory performance and language, but affects auditory memory as well. The aim of this study was to discover if the age at implantation affects auditory memory function in cochlear implanted children. A total of 50 cochlear implanted children aged 4 to 8 years were enrolled in this study: early implanted (1-3y) n = 27 and late implanted (4-6y) n = 23. Two types of memory tests were used: Immediate Verbal Memory Test and Forward and Backward Digit Span Test. Early implanted children performed better on both verbal and numeric tasks of auditory memory. The difference was statistically significant, especially on the complex tasks. Early cochlear implantation, before the age of 3 years, significantly improve auditory memory and contribute to better cognitive and education outcomes.

  16. Modification of electrical properties of polymer membranes by ion implantation

    International Nuclear Information System (INIS)

    Dworecki, K.; Hasegawa, T.; Sudlitz, K.; Wasik, S.

    2000-01-01

    This paper presents an experimental study of the electrical properties of polymer ion irradiated polyethylene terephthalate (PET) membranes. The polymer samples have been implanted with a variety of ions (O 5+ , N 4+ , Kr 9+ ) by the energy of 10 keV/q up to doses of 10 15 ions/cm 2 and then they were polarized in an electric field of 4.16x10 6 V/m at non-isothermal conditions. The electrical properties and the changes in the chemical structure of implanted membrane were measured by conductivity and discharge currents and FTIR spectra. Electrical conductivity of the membranes PET increases to 1-3 orders of magnitude after implantation and is determined by the charge transport caused by free space charge and by thermal detrapping of charge carriers. The spectra of thermally induced discharge current (TDC) shows that ion irradiated PET membranes are characterized by high ability to accumulate charge

  17. PIP breast implant removal: a study of 828 cases.

    Science.gov (United States)

    Oulharj, S; Pauchot, J; Tropet, Y

    2014-03-01

    In March, 2010, the French Health Products Safety Agency suspended the sale of prefilled silicone breast implants manufactured by Poly Implants Prosthèse Prothese (PIP) because of a high failure rate and the use of an inappropriate silicone gel that did not comply with CE marking. These findings led to an international medical crisis. In France, 30,000 female patients had PIP implants. In our Department, 1150 PIP breast implants had been implanted in 630 patients since 2001. A retrospective study was conducted to define the rupture rate of these implants and the complications that arise. The women included in the study underwent implant removal from May 2010 to September 2012 for preventive or curative reasons. Data were collected from medical records that included: results of clinical examination, breast ultrasound before removal, rates of implant rupture, results of biopsy of periprosthetic capsule and pericapsule tissue and postoperative complications. A total of 828 PIP breast implants were removed in 455 patients. The rate of ruptured implants was 7.73% (64/828), corresponding to 11.6% of patients. A periprosthetic effusion was associated with rupture in 44% of cases. Breast ultrasound indicated a rupture for 87 implants; 32% were true positives and 3% were false negatives. Periprosthetic capsule biopsy demonstrated the presence of a foreign body, which seemed to be silicone, in 26% of cases and the presence of inflammation in 13% of cases. No siliconoma-type lesion was identified in the pericapsular tissue at biopsy. A total of 14 implants presented perspiration at removal. A statistically significant difference was found between the rates of rupture for texturised implants as compared to the smooth-surfaced implants. There were eight post-revisional-surgery complications (1%) and three cases of breast adenocarcinoma. The preventive explantation of PIP breast implants is justified given the high failure rate (7.73%) and given patients' exposure to silicone

  18. Breast reconstruction - implants

    Science.gov (United States)

    Breast implants surgery; Mastectomy - breast reconstruction with implants; Breast cancer - breast reconstruction with implants ... harder to find a tumor if your breast cancer comes back. Getting breast implants does not take as long as breast reconstruction ...

  19. Mn-implanted, polycrystalline indium tin oxide and indium oxide films

    International Nuclear Information System (INIS)

    Scarlat, Camelia; Vinnichenko, Mykola; Xu Qingyu; Buerger, Danilo; Zhou Shengqiang; Kolitsch, Andreas; Grenzer, Joerg; Helm, Manfred; Schmidt, Heidemarie

    2009-01-01

    Polycrystalline conducting, ca. 250 nm thick indium tin oxide (ITO) and indium oxide (IO) films grown on SiO 2 /Si substrates using reactive magnetron sputtering, have been implanted with 1 and 5 at.% of Mn, followed by annealing in nitrogen or in vacuum. The effect of the post-growth treatment on the structural, electrical, magnetic, and optical properties has been studied. The roughness of implanted films ranges between 3 and 15 nm and XRD measurements revealed a polycrystalline structure. A positive MR has been observed for Mn-implanted and post-annealed ITO and IO films. It has been interpreted by considering s-d exchange. Spectroscopic ellipsometry has been used to prove the existence of midgap electronic states in the Mn-implanted ITO and IO films reducing the transmittance below 80%.

  20. Definitive diagnosis of breast implant rupture using magnetic resonance imaging.

    Science.gov (United States)

    Ahn, C Y; Shaw, W W; Narayanan, K; Gorczyca, D P; Sinha, S; Debruhl, N D; Bassett, L W

    1993-09-01

    Breast implant rupture is an important complication of augmented and reconstructed breasts. Although several techniques such as mammography, xeromammography, ultrasound, thermography, and computed tomographic (CT) scanning have been proven to be useful to detect implant rupture, they have several disadvantages and lack specificity. In the current study, we have established magnetic resonance imaging (MRI) as a definitive, reliable, and reproducible technique to diagnose both intracapsular and extracapsular ruptures. The study was conducted in 100 symptomatic patients. Our imaging parameters were able to identify ruptures in implants with silicone shells. All the ruptures showed the presence of wavy lines, free-floating silicone shell within the gel ("free-floating loose-thread sign" or "linguine sign"). We had a 3.75 percent incidence of false-positive and false-negative results. The sensitivity for detection of silicone implant rupture was 76 percent, with a specificity of 97 percent. In addition, we also were able to identify the artifacts that may interfere with the definitive diagnosis of implant rupture.

  1. Wear life of sputtered MoSx films extended by high energy ion implantation

    International Nuclear Information System (INIS)

    Okazaki, Yasufumi; Fujiura, Hideo; Nishimura, Makoto

    2000-01-01

    The tribological characteristics of sputtered MoSx films have been reportedly improved by inert gas ion implantation. We tried to extend their wear life by introducing indium, carbon and gallium ion implantation. Pin-on-disk testers were used to measure friction coefficient and wear life in a vacuum, dry and humid air. Comparing with the unimplanted films, we found that the indium ion implanted films showed marked improvement in wear life in a vacuum. Carbon ion implanted films showed improvement in wear life in high humid air. Implantation was effective when it was conducted with maximum concentration at the interface between film and substrate rather than at the neighborhood of the interface inside a film. (author)

  2. Precision of fit between implant impression coping and implant replica pairs for three implant systems.

    Science.gov (United States)

    Nicoll, Roxanna J; Sun, Albert; Haney, Stephan; Turkyilmaz, Ilser

    2013-01-01

    The fabrication of an accurately fitting implant-supported fixed prosthesis requires multiple steps, the first of which is assembling the impression coping on the implant. An imprecise fit of the impression coping on the implant will cause errors that will be magnified in subsequent steps of prosthesis fabrication. The purpose of this study was to characterize the 3-dimensional (3D) precision of fit between impression coping and implant replica pairs for 3 implant systems. The selected implant systems represent the 3 main joint types used in implant dentistry: external hexagonal, internal trilobe, and internal conical. Ten impression copings and 10 implant replicas from each of the 3 systems, B (Brånemark System), R (NobelReplace Select), and A (NobelActive) were paired. A standardized aluminum test body was luted to each impression coping, and the corresponding implant replica was embedded in a stone base. A coordinate measuring machine was used to quantify the maximum range of displacement in a vertical direction as a function of the tightening force applied to the guide pin. Maximum angular displacement in a horizontal plane was measured as a function of manual clockwise or counterclockwise rotation. Vertical and rotational positioning was analyzed by using 1-way analysis of variance (ANOVA). The Fisher protected least significant difference (PLSD) multiple comparisons test of the means was applied when the F-test in the ANOVA was significant (α=.05). The mean and standard deviation for change in the vertical positioning of impression copings was 4.3 ±2.1 μm for implant system B, 2.8 ±4.2 μm for implant system R, and 20.6 ±8.8 μm for implant system A. The mean and standard deviation for rotational positioning was 3.21 ±0.98 degrees for system B, 2.58 ±1.03 degrees for system R, and 5.30 ±0.79 degrees for system A. The P-value for vertical positioning between groups A and B and between groups A and R was <.001. No significant differences were found for

  3. ISHTE deep-ocean corers and heater-implant system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Olson, L. O.; Harrison, J. G.

    1982-09-01

    Seafloor instrumentation systems are being developed for the In-Situ Heat Transfer Experiment (ISHTE) to determine the thermal conductivity of deep ocean sediments. As part of the experiment, a heat canister will be implanted into the sediment. Also, after about one year on the seafloor, core samplers are to be actuated to gather sediment samples. This report describes the deep ocean piston corers and the heater-implant drive system.

  4. Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors

    Science.gov (United States)

    2012-01-01

    A brain-computer interface (BCI) is a communication system that can help users interact with the outside environment by translating brain signals into machine commands. The use of electroencephalographic (EEG) signals has become the most common approach for a BCI because of their usability and strong reliability. Many EEG-based BCI devices have been developed with traditional wet- or micro-electro-mechanical-system (MEMS)-type EEG sensors. However, those traditional sensors have uncomfortable disadvantage and require conductive gel and skin preparation on the part of the user. Therefore, acquiring the EEG signals in a comfortable and convenient manner is an important factor that should be incorporated into a novel BCI device. In the present study, a wearable, wireless and portable EEG-based BCI device with dry foam-based EEG sensors was developed and was demonstrated using a gaming control application. The dry EEG sensors operated without conductive gel; however, they were able to provide good conductivity and were able to acquire EEG signals effectively by adapting to irregular skin surfaces and by maintaining proper skin-sensor impedance on the forehead site. We have also demonstrated a real-time cognitive stage detection application of gaming control using the proposed portable device. The results of the present study indicate that using this portable EEG-based BCI device to conveniently and effectively control the outside world provides an approach for researching rehabilitation engineering. PMID:22284235

  5. Ion implantation

    International Nuclear Information System (INIS)

    Johnson, E.

    1986-01-01

    It is the purpose of the present paper to give a review of surface alloy processing by ion implantation. However, rather than covering this vast subject as a whole, the survey is confined to a presentation of the microstructures that can be found in metal surfaces after ion implantation. The presentation is limited to alloys processed by ion implantation proper, that is to processes in which the alloy compositions are altered significantly by direct injection of the implanted ions. The review is introduced by a presentation of the processes taking place during development of the fundamental event in ion implantation - the collision cascade, followed by a summary of the various microstructures which can be formed after ion implantation into metals. This is compared with the variability of microstructures that can be achieved by rapid solidification processing. The microstructures are subsequently discussed in the light of the processes which, as the implantations proceed, take place during and immediately after formation of the individual collision cascades. These collision cascades define the volumes inside which individual ions are slowed down in the implanted targets. They are not only centres for vigorous agitation but also the sources for formation of excess concentrations of point defects, which will influence development of particular microstructures. A final section presents a selection of specific structures which have been observed in different alloy systems. (orig./GSCH)

  6. Ion-implantation induced defects in ZnO studied by a slow positron beam

    International Nuclear Information System (INIS)

    Chen, Z.Q.; Maekawa, M.; Kawasuso, A.; Sekiguchi, T.; Suzuki, R.

    2004-01-01

    Introduction and annealing behavior of defects in Al + -implanted ZnO have been studied using an energy variable slow positron beam. Vacancy clusters are produced after Al + -implantation. With increasing ion dose above 10 14 Al + /cm 2 the implanted layer is amorphized. Heat treatment up to 600 C enhances the creation of large voids that allow the positronium formation. The large voids disappear accompanying the recrystallization process by further heat treatment above 600 C. Afterwards, implanted Al impurities are completely activated to contribute to the n-type conduction. The ZnO crystal quality is also improved after recrystallization. (orig.)

  7. Antibiotics in the treatment of peri-implantitis

    NARCIS (Netherlands)

    van Winkelhoff, Arie Jan

    2012-01-01

    Purpose: To review and discuss current literature on the use of systemically administered or locally delivered antibiotics in the treatment of peri-implantitis. Materials and methods: A literature search was conducted using MEDLINE through the Pub Med database of the US National Library of Medicine

  8. Optimizing the Detection of Wakeful and Sleep-Like States for Future Electrocorticographic Brain Computer Interface Applications.

    Science.gov (United States)

    Pahwa, Mrinal; Kusner, Matthew; Hacker, Carl D; Bundy, David T; Weinberger, Kilian Q; Leuthardt, Eric C

    2015-01-01

    Previous studies suggest stable and robust control of a brain-computer interface (BCI) can be achieved using electrocorticography (ECoG). Translation of this technology from the laboratory to the real world requires additional methods that allow users operate their ECoG-based BCI autonomously. In such an environment, users must be able to perform all tasks currently performed by the experimenter, including manually switching the BCI system on/off. Although a simple task, it can be challenging for target users (e.g., individuals with tetraplegia) due to severe motor disability. In this study, we present an automated and practical strategy to switch a BCI system on or off based on the cognitive state of the user. Using a logistic regression, we built probabilistic models that utilized sub-dural ECoG signals from humans to estimate in pseudo real-time whether a person is awake or in a sleep-like state, and subsequently, whether to turn a BCI system on or off. Furthermore, we constrained these models to identify the optimal anatomical and spectral parameters for delineating states. Other methods exist to differentiate wake and sleep states using ECoG, but none account for practical requirements of BCI application, such as minimizing the size of an ECoG implant and predicting states in real time. Our results demonstrate that, across 4 individuals, wakeful and sleep-like states can be classified with over 80% accuracy (up to 92%) in pseudo real-time using high gamma (70-110 Hz) band limited power from only 5 electrodes (platinum discs with a diameter of 2.3 mm) located above the precentral and posterior superior temporal gyrus.

  9. Optimizing the Detection of Wakeful and Sleep-Like States for Future Electrocorticographic Brain Computer Interface Applications.

    Directory of Open Access Journals (Sweden)

    Mrinal Pahwa

    Full Text Available Previous studies suggest stable and robust control of a brain-computer interface (BCI can be achieved using electrocorticography (ECoG. Translation of this technology from the laboratory to the real world requires additional methods that allow users operate their ECoG-based BCI autonomously. In such an environment, users must be able to perform all tasks currently performed by the experimenter, including manually switching the BCI system on/off. Although a simple task, it can be challenging for target users (e.g., individuals with tetraplegia due to severe motor disability. In this study, we present an automated and practical strategy to switch a BCI system on or off based on the cognitive state of the user. Using a logistic regression, we built probabilistic models that utilized sub-dural ECoG signals from humans to estimate in pseudo real-time whether a person is awake or in a sleep-like state, and subsequently, whether to turn a BCI system on or off. Furthermore, we constrained these models to identify the optimal anatomical and spectral parameters for delineating states. Other methods exist to differentiate wake and sleep states using ECoG, but none account for practical requirements of BCI application, such as minimizing the size of an ECoG implant and predicting states in real time. Our results demonstrate that, across 4 individuals, wakeful and sleep-like states can be classified with over 80% accuracy (up to 92% in pseudo real-time using high gamma (70-110 Hz band limited power from only 5 electrodes (platinum discs with a diameter of 2.3 mm located above the precentral and posterior superior temporal gyrus.

  10. Feedback characteristics between implantable microphone and transducer in middle ear cavity.

    Science.gov (United States)

    Arman Woo, S H; Woo, Seong Tak; Song, Byung Seop; Cho, Jin-Ho

    2013-10-01

    With the advent of implantable hearing aids, implementation and acoustic sensing strategy of the implantable microphone becomes an important issue; among the many types of implantable microphone, placing the microphone in middle ear cavity (MEC) has advantages including simple operation and insensitive to skin touching or chewing motion. In this paper, an implantable microphone was implemented and researched feedback characteristic when both the implantable microphone and the transducer were placed in the MEC. Analytical and finite element analysis were conducted to design the microphone to have a natural frequency of 7 kHz and showed good characteristics of SNR and sensitivity. For the feedback test, simple analytical and finite element analysis were calculated and compared with in vitro experiments (n = 4). From the experiments, the open-loop gain and feedback factor were measured and the minimum gain margin measured as 14.3 dB.

  11. Tribological properties of nitrogen implanted and boron implanted steels

    International Nuclear Information System (INIS)

    Kern, K.T.

    1996-01-01

    Samples of a steel with high chrome content was implanted separately with 75 keV nitrogen ions and with 75 keV boron ions. Implanted doses of each ion species were 2-, 4-, and 8 x 10 17 /cm 2 . Retained doses were measured using resonant non-Rutherford Backscattering Spectrometry. Tribological properties were determined using a pin-on-disk test with a 6-mm diameter ruby pin with a velocity of 0.94 m/min. Testing was done at 10% humidity with a load of 377 g. Wear rate and coefficient of friction were determined from these tests. While reduction in the wear rate for nitrogen implanted materials was observed, greater reduction (more than an order of magnitude) was observed for boron implanted materials. In addition, reduction in the coefficient of friction for high-dose boron implanted materials was observed. Nano-indentation revealed a hardened layer near the surface of the material. Results from grazing incidence x-ray diffraction suggest the formation of Fe 2 N and Fe 3 N in the nitrogen implanted materials and Fe 3 B in the boron implanted materials. Results from transmission electron microscopy will be presented

  12. Cochlear implantation in late-implanted adults with prelingual deafness.

    Science.gov (United States)

    Most, Tova; Shrem, Hadas; Duvdevani, Ilana

    2010-01-01

    The purpose of this study was to examine the effect of cochlear implantation (CI) on prelingually deafened participants who were implanted as adults. The effect of the CI was examined with regard to the following variables: communication, family, social skills, education, and work satisfaction with one's life, loneliness, and self-esteem. Thirty-eight adults participated. Four self-report questionnaires were used at 2 points in time: before and after CI. The research findings show significant differences in the reports of most variables before and after implantation. The participants felt better with regard to communication, social skills, education, and work and satisfaction with one's life after implantation in comparison to their feelings before implantation. Furthermore, they felt less lonely after implantation. However, there were no significant differences before and after implantation regarding their feelings within the family and regarding their self-esteem. The results demonstrated the need to evaluate the benefits resulting from the CI not only with traditional clinical measures but with additional measures as well. Furthermore, they demonstrated the benefit of the CI on the positive psychosociological implications of prelingually deafened adults. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Histology of a dental implant with a platform switched implant-abutment connection

    Directory of Open Access Journals (Sweden)

    Vittoria Perrotti

    2011-10-01

    Full Text Available Background: Peri-implant crestal bone must be stable for aesthetic reasons. Aim of this study was a histologic analysis of an implant with a platform switched implant-abutment connection. Materials and methods: A 32-year-old male patient participated in this study. The patient needed a bilateral mandibular restoration. Four implants were used, and were immediately restored and loaded the same day of insertion. After a 6 weeks healing period, one implant with platform-switched abutment was retrieved with trephine. Before retrieval the implant was osseointegrated and not mobile. On one side of the implant, a 1 mm resorption of the crestal bone was present. On the contrary, on the other side no bone resorption had occurred and about 1 mm of bone was present over the implant shoulder. Results: The bone-implant contact percentage was 65.1 ± 6.3 %. Platform- switching could help in maintaining the height of the peri-implant crestal bone.

  14. Effectiveness of Implant Therapy Analyzed in a Swedish Population: Prevalence of Peri-implantitis.

    Science.gov (United States)

    Derks, J; Schaller, D; Håkansson, J; Wennström, J L; Tomasi, C; Berglundh, T

    2016-01-01

    Peri-implantitis is an inflammatory disease affecting soft and hard tissues surrounding dental implants. As the global number of individuals that undergo restorative therapy through dental implants increases, peri-implantitis is considered as a major and growing problem in dentistry. A randomly selected sample of 588 patients who all had received implant-supported therapy 9 y earlier was clinically and radiographically examined. Prevalence of peri-implantitis was assessed and risk indicators were identified by multilevel regression analysis. Forty-five percent of all patients presented with peri-implantitis (bleeding on probing/suppuration and bone loss >0.5 mm). Moderate/severe peri-implantitis (bleeding on probing/suppuration and bone loss >2 mm) was diagnosed in 14.5%. Patients with periodontitis and with ≥4 implants, as well as implants of certain brands and prosthetic therapy delivered by general practitioners, exhibited higher odds ratios for moderate/severe peri-implantitis. Similarly, higher odds ratios were identified for implants installed in the mandible and with crown restoration margins positioned ≤1.5 mm from the crestal bone at baseline. It is suggested that peri-implantitis is a common condition and that several patient- and implant-related factors influence the risk for moderate/severe peri-implantitis (ClinicalTrials.gov NCT01825772). © International & American Associations for Dental Research 2015.

  15. Bilateral Poly Implant Prothèse Implant Rupture: An Uncommon Presentation

    Directory of Open Access Journals (Sweden)

    Peter Mallon

    2013-07-01

    Full Text Available Summary: A woman in her 50s underwent delayed bilateral Poly Implant Prothèse implant reconstruction following mastectomy for breast cancer. Symptoms of implant rupture developed 43 months after surgery with an erythematous rash on her trunk. The rash then spread to her reconstructed breast mounds. Initial ultrasound scan and magnetic resonance imaging were normal; however, subsequent magnetic resonance imaging demonstrated left implant rupture only. In theater, following removal of both implants, both were found to be ruptured. The rash on her trunk resolved within 3 weeks in the postoperative period. Chemical analyses of silicone in both implants confirmed a nonauthorized silicone source; in addition, the chemical structure was significantly different between the left and right implant, perhaps explaining the variation in presentation.

  16. Complications after cardiac implantable electronic device implantations

    DEFF Research Database (Denmark)

    Kirkfeldt, Rikke Esberg; Johansen, Jens Brock; Nohr, Ellen Aagaard

    2013-01-01

    Complications after cardiac implantable electronic device (CIED) treatment, including permanent pacemakers (PMs), cardiac resynchronization therapy devices with defibrillators (CRT-Ds) or without (CRT-Ps), and implantable cardioverter defibrillators (ICDs), are associated with increased patient...

  17. Management of peri-implantitis

    Directory of Open Access Journals (Sweden)

    Jayachandran Prathapachandran

    2012-01-01

    Full Text Available Peri-implantitis is a site-specific infectious disease that causes an inflammatory process in soft tissues, and bone loss around an osseointegrated implant in function. The etiology of the implant infection is conditioned by the status of the tissue surrounding the implant, implant design, degree of roughness, external morphology, and excessive mechanical load. The microorganisms most commonly associated with implant failure are spirochetes and mobile forms of Gram-negative anaerobes, unless the origin is the result of simple mechanical overload. Diagnosis is based on changes of color in the gingiva, bleeding and probing depth of peri-implant pockets, suppuration, X-ray, and gradual loss of bone height around the tooth. Treatment will differ depending upon whether it is a case of peri-implant mucositis or peri-implantitis. The management of implant infection should be focused on the control of infection, the detoxification of the implant surface, and regeneration of the alveolar bone. This review article deals with the various treatment options in the management of peri-implantitis. The article also gives a brief description of the etiopathogenesis, clinical features, and diagnosis of peri-implantitis.

  18. The Asilomar Survey: Stakeholders? Opinions on Ethical Issues Related to Brain-Computer Interfacing

    OpenAIRE

    Nijboer, Femke; Clausen, Jens; Allison, Brendan Z.; Haselager, Pim

    2011-01-01

    Brain-Computer Interface (BCI) research and (future) applications raise important ethical issues that need to be addressed to promote societal acceptance and adequate policies. Here we report on a survey we conducted among 145 BCI researchers at the 4th International BCI conference, which took place in May–June 2010 in Asilomar, California. We assessed respondents’ opinions about a number of topics. First, we investigated preferences for terminology and definitions relating to BCIs. Second, w...

  19. One-stage explant-implant procedure of exposed porous orbital implants

    DEFF Research Database (Denmark)

    Toft, Peter B; Rasmussen, Marie L Roed; Prause, Jan Ulrik

    2011-01-01

    Purpose:  To investigate the risks of implant exposure after a combined explant-implant procedure in patients with an exposed porous orbital implant. Methods:  Twenty-four consecutive patients who had a combined explant-implant procedure of an exposed hydroxyapatite (21) or porous polyethylene (3...... at the same procedure in sockets without profound signs of infection. The procedure carries a possible risk of poor motility....

  20. Two-stage implant systems.

    Science.gov (United States)

    Fritz, M E

    1999-06-01

    Since the advent of osseointegration approximately 20 years ago, there has been a great deal of scientific data developed on two-stage integrated implant systems. Although these implants were originally designed primarily for fixed prostheses in the mandibular arch, they have been used in partially dentate patients, in patients needing overdentures, and in single-tooth restorations. In addition, this implant system has been placed in extraction sites, in bone-grafted areas, and in maxillary sinus elevations. Often, the documentation of these procedures has lagged. In addition, most of the reports use survival criteria to describe results, often providing overly optimistic data. It can be said that the literature describes a true adhesion of the epithelium to the implant similar to adhesion to teeth, that two-stage implants appear to have direct contact somewhere between 50% and 70% of the implant surface, that the microbial flora of the two-stage implant system closely resembles that of the natural tooth, and that the microbiology of periodontitis appears to be closely related to peri-implantitis. In evaluations of the data from implant placement in all of the above-noted situations by means of meta-analysis, it appears that there is a strong case that two-stage dental implants are successful, usually showing a confidence interval of over 90%. It also appears that the mandibular implants are more successful than maxillary implants. Studies also show that overdenture therapy is valid, and that single-tooth implants and implants placed in partially dentate mouths have a success rate that is quite good, although not quite as high as in the fully edentulous dentition. It would also appear that the potential causes of failure in the two-stage dental implant systems are peri-implantitis, placement of implants in poor-quality bone, and improper loading of implants. There are now data addressing modifications of the implant surface to alter the percentage of

  1. Effect of 200 keV Ar+ implantation on optical & electrical properties of polyethyleneterepthalate (PET)

    Science.gov (United States)

    Kumar, Rajiv; Goyal, Meetika; Sharma, Ambika; Aggarwal, Sanjeev; Sharma, Annu; Kanjilal, D.

    2015-05-01

    In the present paper we have discussed the effect of 200 keV Ar+ ions on the electrical and optical properties of PET samples. PET samples were implanted with 200 keV Ar+ ions to various doses ranging from 1×1015 to 1×1017 Ar+ cm2. The changes in the electrical and optical properties of pristine and implanted PET specimens have been studied by using Keithley electrometer and UV-Visible absorption spectroscopy. The electrical conductivity has found to be increased with increasing ion dose. The optical studies have revealed the drastic alterations in optical band gap from 3.63 eV to 1.48 eV and also increase in number of carbon atoms per cluster from 215 to 537. Further, the change in the electrical conductivity and optical band gap has also been correlated with the formation of conductive islands in the implanted layers of PET.

  2. Pacemaker implantation rate after transcatheter aortic valve implantation with early and new-generation devices: a systematic review.

    Science.gov (United States)

    van Rosendael, Philippe J; Delgado, Victoria; Bax, Jeroen J

    2018-02-06

    The incidence of new-onset conduction abnormalities requiring permanent pacemaker implantation (PPI) after transcatheter aortic valve implantation (TAVI) with new-generation prostheses remains debated. This systematic review analyses the incidence of PPI after TAVI with new-generation devices and evaluates the electrical, anatomical, and procedural factors associated with PPI. In addition, the incidence of PPI after TAVI with early generation prostheses was reviewed for comparison. According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist, this systematic review screened original articles published between October 2010 and October 2017, reporting on the incidence of PPI after implantation of early and new-generation TAVI prostheses. Of the 1406 original articles identified in the first search for new-generation TAVI devices, 348 articles were examined for full text, and finally, 40 studies (n = 17 139) were included. The incidence of a PPI after the use of a new-generation TAVI prosthesis ranged between 2.3% and 36.1%. For balloon-expandable prostheses, the PPI rate remained low when using an early generation SAPIEN device (ranging between 2.3% and 28.2%), and with the new-generation SAPIEN 3 device, the PPI rate was between 4.0% and 24.0%. For self-expandable prostheses, the PPI rates were higher with the early generation CoreValve device (16.3-37.7%), and despite a reduction in PPI rates with the new Evolut R, the rates remained relatively higher (14.7-26.7%). When dividing the studies according to the highest (>26.0%) and the lowest (left ventricular outflow tract (anatomical factor), and balloon valvuloplasty and depth of implantation (procedural factors) were associated with increased risk of PPI. The rate of PPI after TAVI with new-generation devices is highly variable. Specific recommendations for implantation of each prosthesis, taking into consideration the presence of pre-existent conduction abnormalities and

  3. Studies of phase formation in CoSi2 buried layers fabricated using ion implantation

    International Nuclear Information System (INIS)

    Galaev, A.A.; Parkhomenko, Yu.N.; Podgornyi, D.A.; Shcherbachev, K.D.

    1998-01-01

    The processes of the formation of cobalt disilicide buried layers in silicon are studied under different conditions of implantation with Co. In particular, the effects of the implantation dose and the postimplantation annealing temperature on the state of the Co-implanted layer are considered. Two types of heteroepitaxial Si/CoSi 2 /Si structures are obtained with the conducting layers of thicknesses 70 and 90 nm buried at the depths 80 and 10 nm, respectively

  4. Impact of implant design on primary stability of orthodontic mini-implants.

    Science.gov (United States)

    Wilmes, Benedict; Ottenstreuer, Stephanie; Su, Yu-Yu; Drescher, Dieter

    2008-01-01

    Skeletal anchorage with mini-implants has greatly broadened the treatment possibilities in orthodontics over the last few years. To reduce implant failure rates, it is advisable to obtain adequate primary stability. The aim of this study was to quantitatively analyze the impact of implant design and dimension on primary stability. Forty-two porcine iliac bone segments were prepared and embedded in resin. To evaluate the primary stability, we documented insertion torques of the following mini-implants: Aarhus Screw, AbsoAnchor, LOMAS, Micro-Anchorage-System, ORLUS and Spider Screw. In each bone, five Dual Top Screws were inserted for reference purposes to achieve comparability among the specimens. We observed wide variation in insertion torques and hence primary stability, depending on mini-implant design and dimension; the great impact that mini-implant diameter has on insertion torques was particularly conspicuous. Conical mini-implants achieved higher primary stabilities than cylindrical designs. The diameter and design of the mini-implant thread have a distinctive impact on primary stability. Depending on the region of insertion and local bone quality, the choice of the mini-implant design and size is crucial to establish sufficient primary stability.

  5. Effect of implant position, angulation, and attachment height on peri-implant bone stress associated with mandibular two-implant overdentures: a finite element analysis.

    Science.gov (United States)

    Hong, Hae Ryong; Pae, Ahran; Kim, Yooseok; Paek, Janghyun; Kim, Hyeong-Seob; Kwon, Kung-Rock

    2012-01-01

    The aim of this study was to analyze and compare the level and distribution of peri-implant bone stresses associated with mandibular two-implant overdentures with different implant positions. Mathematical models of mandibles and overdentures were designed using finite element analysis software. Two intraosseous implants and ball attachment systems were placed in the interforaminal region. The overdenture, which was supported by the two implants, was designed to withstand bilateral and unilateral vertical masticatory loads (total 100 N). In all, eight types of models, which differed according to assigned implant positions, height of attachments, and angulation, were tested: MI (model with implants positioned in the lateral incisor sites), MC (implants in canine sites), MP (implants in premolar sites), MI-Hi (greater height of attachments), MC-M (canine implants placed with mesial inclination), MC-D (canine implants placed with distal inclination), MC-B (canine implants placed with buccal inclination), and MC-L (canine implants placed with lingual inclination). Peri-implant bone stress levels associated with overdentures retained by lateral incisor implants resulted in the lowest stress levels and the highest efficiency in distributing peri-implant stress. MI-Hi showed increased stress levels and decreased efficiency in stress distribution. As the implants were inclined, stress levels increased and the efficiency of stress distribution decreased. Among the inclined models, MC-B showed the lowest stress level and best efficiency in stress distribution. The lowest stress and the best stability of implants in mandibular two-implant overdentures were obtained when implants were inserted in lateral incisor areas with shorter attachments and were placed parallel to the long axes of the teeth.

  6. Cochlear Implant

    Directory of Open Access Journals (Sweden)

    Mehrnaz Karimi

    1992-04-01

    Full Text Available People with profound hearing loss are not able to use some kinds of conventional amplifiers due to the nature of their loss . In these people, hearing sense is stimulated only when the auditory nerve is activated via electrical stimulation. This stimulation is possible through cochlear implant. In fact, for the deaf people who have good mental health and can not use surgical and medical treatment and also can not benefit from air and bone conduction hearing aids, this device is used if they have normal central auditory system. The basic parts of the device included: Microphone, speech processor, transmitter, stimulator and receiver, and electrode array.

  7. Ion-implantation induced defects in ZnO studied by a slow positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.Q.; Maekawa, M.; Kawasuso, A. [Japan Atomic Energy Research Institute, Gunma (Japan); Sekiguchi, T. [National Inst. for Materials Science, Tsukuba, Ibaraki (Japan); Suzuki, R. [National Inst. of Advanced Industrial Science and Technology, Tsukuba, Ibaraki (Japan)

    2004-07-01

    Introduction and annealing behavior of defects in Al{sup +}-implanted ZnO have been studied using an energy variable slow positron beam. Vacancy clusters are produced after Al{sup +}-implantation. With increasing ion dose above 10{sup 14} Al{sup +}/cm{sup 2} the implanted layer is amorphized. Heat treatment up to 600 C enhances the creation of large voids that allow the positronium formation. The large voids disappear accompanying the recrystallization process by further heat treatment above 600 C. Afterwards, implanted Al impurities are completely activated to contribute to the n-type conduction. The ZnO crystal quality is also improved after recrystallization. (orig.)

  8. Influence of Different Implant Geometry in Clinical Longevity and Maintenance of Marginal Bone: A Systematic Review.

    Science.gov (United States)

    Lovatto, Sabrina Telles; Bassani, Rafaela; Sarkis-Onofre, Rafael; Dos Santos, Mateus Bertolini Fernandes

    2018-03-26

    To assess, through a systematic review, the influence of different implant geometries on clinical longevity and maintenance of marginal bone tissue. An electronic search was conducted in MEDLINE, Scopus, and Web of Science databases, limited to studies written in English from 1996 to 2017 using specific search strategies. Only randomized controlled trials (RCTs) that compared dental implants and their geometries were included. Two reviewers independently selected studies, extracted data, and assessed the risk of bias of included studies. From the 4006 references identified by the search, 24 were considered eligible for full-text analysis, after which 10 studies were included in this review. A similar behavior of marginal bone loss between tapered and cylindrical geometries was observed; however, implants that had micro-threads in the neck presented a slight decrease of marginal bone loss compared to implants with straight or smooth neck. Success and survival rates were high, with cylindrical implants presenting higher success and survival rates than tapered ones. Implant geometry seems to have little influence on marginal bone loss (MBL) and survival and success rates after 1 year of implant placement; however, the evidence in this systematic review was classified as very low due to limitations such as study design, sample size, and publication bias. Thus, more well-designed RCTs should be conducted to provide evidence regarding the influence of implant geometry on MBL and survival and success rates after 1 year of implant placement. © 2018 by the American College of Prosthodontists.

  9. Implantation of β-emitters on biomedical implants: 32 P isotropic ion implantation using a coaxial plasma reactor

    International Nuclear Information System (INIS)

    Fortin, M.A.; Paynter, R.W.; Sarkissian, A.; Stansfield, B.L.; Terreault, B.; Dufresne, V.

    2003-01-01

    The development of endovascular brachytherapy and the treatment of certain types of cancers (liver, lung, prostate) often require the use of beta-emitters, sometimes in the form of radioisotope-implanted devices. Among the most commonly used isotopes figures 32 P, a pure beta-emitter (maximum energy: 1.7 MeV), of which the path in biological tissues is of a few cm, restricting the impact of electron bombardment to the immediate environment of the implant. Several techniques and processes have been tried to elaborate surfaces and devices showing strongly bonded, or implanted 32 P. Anodizing, vapor phase deposition, grafting of oligonucleotides, as well as ion implantation processes have been investigated by several research groups as methods to implant beta-radioisotopes into surfaces. A coaxial plasma reactor was developed at INRS to implant radioisotopes into cylindrical metallic objects, such as coronary stents commonly used in angioplasty procedures. The dispersion of 32 P atoms on the interior surfaces of the chamber can be investigated using radiographs, contributing to image the plasma ion transport mechanisms that guide the efficiency of the implantation procedure. The amount of radioactivity on the wall liner, on the internal components, and on the biomedical implants are quantified using a surface barrier detector. A comparative study establishes a relationship between the gray scale of the radiographs, and dose measurements. A program was developed to convert the digitized images into maps showing surface dose density in mCi/cm 2 . An integration process allows the quantification of the doses on the walls and components of the reactor. Finally, the resulting integral of the 32 P dose is correlated to the initial amount of radioactivity inserted inside the implanter before the dismantling procedure. This method could be introduced as a fast and reliable way to test, qualify and assess the amount of radioactivity present on the as-produced implants

  10. Reliable and energy-efficient communications for wireless biomedical implant systems.

    Science.gov (United States)

    Ntouni, Georgia D; Lioumpas, Athanasios S; Nikita, Konstantina S

    2014-11-01

    Implant devices are used to measure biological parameters and transmit their results to remote off-body devices. As implants are characterized by strict requirements on size, reliability, and power consumption, applying the concept of cooperative communications to wireless body area networks offers several benefits. In this paper, we aim to minimize the power consumption of the implant device by utilizing on-body wearable devices, while providing the necessary reliability in terms of outage probability and bit error rate. Taking into account realistic power considerations and wireless propagation environments based on the IEEE P802.l5 channel model, an exact theoretical analysis is conducted for evaluating several communication scenarios with respect to the position of the wearable device and the motion of the human body. The derived closed-form expressions are employed toward minimizing the required transmission power, subject to a minimum quality-of-service requirement. In this way, the complexity and power consumption are transferred from the implant device to the on-body relay, which is an efficient approach since they can be easily replaced, in contrast to the in-body implants.

  11. Cochlear Implants and Psychiatric Assessments: a Norrie Disease Case Report.

    Science.gov (United States)

    Jacques, Denis; Dubois, Thomas; Zdanowicz, Nicolas; Gilain, Chantal; Garin, Pierre

    2017-09-01

    It is important to perform psychiatric assessments of adult patients who are candidates for cochlear implants both to screen them for psychiatric disorders and to assess their understanding and compliance with the procedure. Deafness is a factor of difficulty for conducting in-depth psychiatric interviews, but concomitant blindness may make it impossible. After a description of Norrie disease, a rare disease in which blindness and deafness may occur together, we propose a case report of a patient suffering from the disease and who consulted in view of a cochlear implant. Early information on cochlear implants appears to be necessary before total deafness occurs in patients suffering from Norrie disease. An inventory of digital communication tools that can be used by the patient is also highly valuable. Research should be supported for a more systematic use of psychiatric assessments prior to cochlear implants. In the special case of Norrie disease, we recommend early screening for mental retardation and related psychotic disorders and, depending on the patient's level of understanding, preventive information on the benefits and limits of cochlear implants before total deafness occurs.

  12. Early implant-associated osteomyelitis results in a peri-implanted bacterial reservoir

    DEFF Research Database (Denmark)

    Jensen, Louise Kruse; Koch, Janne; Aalbæk, Bent

    2017-01-01

    weight of Staphylococcus aureus or saline was inserted into the right tibial bone of 12 pigs. The animals were consecutively killed on day 2, 4 and 6 following implantation. Bone tissue around the implant was histologically evaluated. Identification of S. aureus was performed immunohistochemically...... on tissue section and with scanning electron microscopy and peptide nucleic acid in situ hybridization on implants. The distance of the peri-implanted pathological bone area (PIBA), measured perpendicular to the implant, was significantly larger in infected animals compared to controls (p = 0...

  13. Influence of implant rod curvature on sagittal correction of scoliosis deformity.

    Science.gov (United States)

    Salmingo, Remel Alingalan; Tadano, Shigeru; Abe, Yuichiro; Ito, Manabu

    2014-08-01

    Deformation of in vivo-implanted rods could alter the scoliosis sagittal correction. To our knowledge, no previous authors have investigated the influence of implanted-rod deformation on the sagittal deformity correction during scoliosis surgery. To analyze the changes of the implant rod's angle of curvature during surgery and establish its influence on sagittal correction of scoliosis deformity. A retrospective analysis of the preoperative and postoperative implant rod geometry and angle of curvature was conducted. Twenty adolescent idiopathic scoliosis patients underwent surgery. Average age at the time of operation was 14 years. The preoperative and postoperative implant rod angle of curvature expressed in degrees was obtained for each patient. Two implant rods were attached to the concave and convex side of the spinal deformity. The preoperative implant rod geometry was measured before surgical implantation. The postoperative implant rod geometry after surgery was measured by computed tomography. The implant rod angle of curvature at the sagittal plane was obtained from the implant rod geometry. The angle of curvature between the implant rod extreme ends was measured before implantation and after surgery. The sagittal curvature between the corresponding spinal levels of healthy adolescents obtained by previous studies was compared with the implant rod angle of curvature to evaluate the sagittal curve correction. The difference between the postoperative implant rod angle of curvature and normal spine sagittal curvature of the corresponding instrumented level was used to evaluate over or under correction of the sagittal deformity. The implant rods at the concave side of deformity of all patients were significantly deformed after surgery. The average degree of rod deformation Δθ at the concave and convex sides was 15.8° and 1.6°, respectively. The average preoperative and postoperative implant rod angle of curvature at the concave side was 33.6° and 17.8

  14. Electrical Properties Of Indium And Yttrium-Doped Barium Cerate-Based Compounds For Use As Ceramic Fuel Cell Electrolytes

    Directory of Open Access Journals (Sweden)

    Gawel R.

    2015-06-01

    Full Text Available The aim of this work is to compare the electrical properties of BaCe0.85Y0.15O3−δ (BCY15, BaCe0.70In0.30O3−δ (BCI30 and a composite material consisting of 30%vol. BCY15 and 70%vol. Ce0.85Y0.15O2−δ (YDC15. BCY15 and YDC15 were synthesized by co-precipitation, whereas BCI30 was obtained using the solid-state reaction method. Pellets were initially formed from powders at 5 MPa, after which they were isostatically pressed at 250 MPa and sintered at 1500°C. Electrochemical impedance spectroscopy (EIS was used to determine the electrical properties of the samples in both air (pO2 = 0.021 MPa and Ar-5%H2 atmospheres. In the temperature range 200-400°C in air atmosphere the highest conductivity values were determined for BCY15 (5,22·10−5 − 2.74·10−3 S/cm. On the other hand, the electrical conductivity values obtained for Y70B30 in both atmospheres between 200 and 550°C are in the order of magnitude of 10−7 − 10−3 S/cm. Consequently, it can be concluded that the compounds exhibit significant H+ and O2− electrical conductivity at temperatures above 500°C, which indicates the possibility for their potential use as ceramic fuel cell electrolytes.

  15. Influence of different implant materials on the primary stability of orthodontic mini-implants

    OpenAIRE

    Chin-Yun Pan; Szu-Ting Chou; Yu-Chuan Tseng; Yi-Hsin Yang; Chao-Yi Wu; Ting-Hsun Lan; Pao-Hsin Liu; Hong-Po Chang

    2012-01-01

    This study evaluates the influence of different implant materials on the primary stability of orthodontic mini-implants by measuring the resonance frequency. Twenty-five orthodontic mini-implants with a diameter of 2 mm were used. The first group contained stainless steel mini-implants with two different lengths (10 and 12 mm). The second group included titanium alloy mini-implants with two different lengths (10 and 12 mm) and stainless steel mini-implants 10 mm in length. The mini-implants w...

  16. [Pre-operation evaluation and intra-operation management of cochlear implantation].

    Science.gov (United States)

    Zhang, Dao-xing; Hu, Bao-hua; Xiao, Yu-li; Shi, Bo-ning

    2004-10-01

    To summarize pre-operation evaluation experiences in cochlear implantation. Performing auditory evaluation and image analysis seriously in 158 severe hearing loss or total deaf cases before cochlear implantation, comparing their performance with the findings during and post operation. Among the total 158 cases, 116 cases with normal structure, 42 cases with the abnormal findings of the inner or middle ear. Stapedial gusher happened in 6 cases, 1 case was not predicted before operation. Except 1 case with serious malformation, the findings of other 157 cases in operation were consistent with the pre-operation evaluation. We helped all patients reconstruct auditory conduction with cochlear implantation, and the average hearing level up to 37.6 dB SPL. Performing image analysis seriously before operation and planning for operation according to HRCT can do great help to cochlear implantation. The operation under the HRCT instruction has less complications.

  17. Predictors and Frequency of Conduction Disturbances After Open-Heart Surgery

    Directory of Open Access Journals (Sweden)

    Zahra Emkanjoo

    2008-02-01

    Full Text Available Introduction The risk of developing conduction disturbances after coronary bypass grafting (CABG or valvular surgery has been well established in previous studies, leading to permanent pacemaker implantation in about 2% to 3% of patients, and in 10% of patients undergoing repeat cardiac surgery.We sought to determine the incidence, features and predictors of conduction disorders in the immediate post-operative period of patients subjected to open-heart surgery, and the need for permanent pacemaker implantation.Material and Method We prospectively studied 374 consecutive patients who underwent open-heart surgery in our institution: coronary artery bypass (CABG (n=128, Mitral valve replacement(MVR(n=18, aortic valve replacement(AVR (n=21, MVR and AVR(n=56, repair of ventricular septal defect (VSD (n=51, repair of tetralogy of Fallot (TOF (n=57,CABG and valvular surgery (n=6, others (n=37.Results Among 374 patients included in our study (mean age 34.46±25.68; 146 males, 192 developed new conduction disorders: symptomatic sinus bradycardia in 8%, atrial fibrillation with slow ventricular response (AF in 4.5%, first-degree atrioventricular block (AVBin 6.4%, second-degree AVB in 0.3%, third-degree AVB in 7%, new right bundle branch block (RBBB in 33%, and new left bundle branch block (LBBB in 2.1%. In 5.6% patients, a permanent pacemaker was implanted, 47.6% of them underwent valvular surgery. In 44.1% of patients the conduction defects occurred in the first 48 hr. after surgery. In CABG group, 29.7% of patients developed new conduction disturbances; the most common of them was symptomatic sinus bradycardia. After valvular surgery 44.2% of patients developed conduction disturbances, of those the most common was atrial fibrillation with slow ventricular response . After VSD and TOF repair, the most common conduction disturbance was new RBBB. Perioperative myocardial infarction (MI occurred in 1.9% of patients. The occurrence conduction disturbance

  18. Develop techniques for ion implantation of PLZT [lead-lanthanum-zirconate-titanate] for adaptive optics

    International Nuclear Information System (INIS)

    Batishko, C.R.; Brimhall, J.L.; Pawlewicz, W.T.; Stahl, K.A.; Toburen, L.H.

    1987-09-01

    Research was conducted at Pacific Northwest Laboratory to develop high photosensitivity adaptive optical elements utilizing ion implanted lanthanum-doped lead-zirconate-titanate (PLZT). One centimeter square samples were prepared by implanting ferroelectric and anti-ferroelectric PLZT with a variety of species or combinations of species. These included Ne, O, Ni, Ne/Cr, Ne/Al, Ne/Ni, Ne/O, and Ni/O, at a variety of energies and fluences. An indium-tin oxide (ITO) electrode coating was designed to give a balance of high conductivity and optical transmission at near uv to near ir wavelengths. Samples were characterized for photosensitivity; implanted layer thickness, index of refraction, and density; electrode (ITO) conductivity; and in some cases, residual stress curvature. Thin film anti-ferroelectric PLZT was deposited in a preliminary experiment. The structure was amorphous with x-ray diffraction showing the beginnings of a structure at substrate temperatures of approximately 550 0 C. This report summarizes the research and provides a sampling of the data taken during the report period

  19. [Clinical effects of micro-implant and traditional anchorage in orthodontic treatments].

    Science.gov (United States)

    Qian, Yi; Zhou, Hua-Jie; Wu, Jian-Hua

    2017-06-01

    To analyze the value of micro-implant and traditional anchorage in the treatment of malocclusion. From Jan 2015 to Jan 2016, 20 cases with malocclusion were randomly divided into control group(10) and experimental group (10). A comparison was conducted between the control group, in which traditional anchorage was used and the experimental group, in which micro-implant anchorage was adopted. The data were analyzed with SPSS 17.0 software package. There was significant difference of U1-NA, L1-NB, U1-APg, U6-PtPNS between the 2 groups(PMicro-implant anchorage can improve overjet relation of the anterior teeth and effect of orthodontic treatment.

  20. Influence of different implant materials on the primary stability of orthodontic mini-implants.

    Science.gov (United States)

    Pan, Chin-Yun; Chou, Szu-Ting; Tseng, Yu-Chuan; Yang, Yi-Hsin; Wu, Chao-Yi; Lan, Ting-Hsun; Liu, Pao-Hsin; Chang, Hong-Po

    2012-12-01

    This study evaluates the influence of different implant materials on the primary stability of orthodontic mini-implants by measuring the resonance frequency. Twenty-five orthodontic mini-implants with a diameter of 2 mm were used. The first group contained stainless steel mini-implants with two different lengths (10 and 12 mm). The second group included titanium alloy mini-implants with two different lengths (10 and 12 mm) and stainless steel mini-implants 10 mm in length. The mini-implants were inserted into artificial bones with a 2-mm-thick cortical layer and 40 or 20 lb/ft(3) trabecular bone density at insertion depths of 2, 4, and 6 mm. The resonance frequency of the mini-implants in the artificial bone was detected with the Implomates(®) device. Data were analyzed by two-way analysis of variance followed by the Tukey honestly significant difference test (α = 0.05). Greater insertion depth resulted in higher resonance frequency, whereas longer mini-implants showed lower resonance frequency values. However, resonance frequency was not influenced by the implant materials titanium alloy or stainless steel. Therefore, the primary stability of a mini-implant is influenced by insertion depth and not by implant material. Insertion depth is extremely important for primary implant stability and is critical for treatment success. Copyright © 2012. Published by Elsevier B.V.

  1. Influence of different implant materials on the primary stability of orthodontic mini-implants

    Directory of Open Access Journals (Sweden)

    Chin-Yun Pan

    2012-12-01

    Full Text Available This study evaluates the influence of different implant materials on the primary stability of orthodontic mini-implants by measuring the resonance frequency. Twenty-five orthodontic mini-implants with a diameter of 2 mm were used. The first group contained stainless steel mini-implants with two different lengths (10 and 12 mm. The second group included titanium alloy mini-implants with two different lengths (10 and 12 mm and stainless steel mini-implants 10 mm in length. The mini-implants were inserted into artificial bones with a 2-mm-thick cortical layer and 40 or 20 lb/ft3 trabecular bone density at insertion depths of 2, 4, and 6 mm. The resonance frequency of the mini-implants in the artificial bone was detected with the Implomates® device. Data were analyzed by two-way analysis of variance followed by the Tukey honestly significant difference test (α = 0.05. Greater insertion depth resulted in higher resonance frequency, whereas longer mini-implants showed lower resonance frequency values. However, resonance frequency was not influenced by the implant materials titanium alloy or stainless steel. Therefore, the primary stability of a mini-implant is influenced by insertion depth and not by implant material. Insertion depth is extremely important for primary implant stability and is critical for treatment success.

  2. Imaging of common breast implants and implant-related complications: A pictorial essay

    OpenAIRE

    Shah, Amisha T; Jankharia, Bijal B

    2016-01-01

    The number of women undergoing breast implant procedures is increasing exponentially. It is, therefore, imperative for a radiologist to be familiar with the normal and abnormal imaging appearances of common breast implants. Diagnostic imaging studies such as mammography, ultrasonography, and magnetic resonance imaging are used to evaluate implant integrity, detect abnormalities of the implant and its surrounding capsule, and detect breast conditions unrelated to implants. Magnetic resonance i...

  3. Dental Implant Surgery

    Science.gov (United States)

    ... here to find out more. Dental Implant Surgery Dental Implant Surgery Dental implant surgery is, of course, ... to find out more. Wisdom Teeth Management Wisdom Teeth Management An impacted wisdom tooth can damage neighboring ...

  4. [Clinical application of individualized three-dimensional printing implant template in multi-tooth dental implantation].

    Science.gov (United States)

    Wang, Lie; Chen, Zhi-Yuan; Liu, Rong; Zeng, Hao

    2017-08-01

    To study the value and satisfaction of three-dimensional printing implant template and conventional implant template in multi-tooth dental implantation. Thirty cases (83 teeth) with missing teeth needing to be implanted were randomly divided into conventional implant template group (CIT group, 15 cases, 42 teeth) and 3D printing implant template group (TDPIT group, 15 cases, 41 teeth). Patients in CIT group were operated by using conventional implant template, while patients in TDPIT group were operated by using three-dimensional printing implant template. The differences of implant neck and tip deviation, implant angle deviation and angle satisfaction between the two groups were compared. The difference of probing depth and bone resorption of implant were compared 1 year after operation between the two groups. The difference of success rate and satisfaction of dental implantation were compared 1 year after operation between the two groups. SPSS19.0 software package was used for statistical analysis. The deviation direction of the neck and the tip in disto-mesial, bucco-palatal, vertical direction and angle of implants in disto-mesial and bucco-palatal direction in TDPIT group were significantly lower than in CIT group (P0.05). The difference of the cumulative success rate in dental implantation at 3 months and 6 months between the two groups were not significant (P>0.05), but the cumulative success rate of TDPIT group was significantly higher than CIT group at 9 months and 1 year (90.48% vs 100%,P=0.043). The patients' satisfaction rate of dental implantation in TDPIT group was significantly higher than in CIT group (86.67% vs 53.33%, P=0.046). Using three-dimensional printing implant template can obtain better accuracy of implant, higher implant success rate and better patients' satisfaction than using conventional implant template. It is suitable for clinical application.

  5. Implant dentistry in postgraduate university education. Present conditions, potential, limitations and future trends.

    Science.gov (United States)

    Mattheos, N; Wismeijer, D; Shapira, L

    2014-03-01

    In recent years, opportunities for postgraduate university education in implant dentistry have increased significantly, with an increase in both the number but also the complexity of available postgraduate programmes. However, there appears to be a lack of standards directing the learning outcomes of such programmes. A scientific literature search was conducted for publications reporting on university programmes within implant dentistry, including description of programmes and evaluation of learning outcomes. A separate Internet search was conducted to collect information on existing university programmes as presented on university websites. Implant dentistry has reached a critical mass of an independent, multidisciplinary and vibrant domain of science, which combines knowledge and discovery from many clinical and basic sciences. Many university programmes conclude with a master's or equivalent degree, but there appears to be a great diversity with regard to duration and learning objectives, as well as targeted skills and competences. The importance of implant dentistry has also increased within established specialist training programmes. There was little indication, however, that the comprehensive aspects of implant dentistry are present in all specialist training programmes where implants are being covered. Although universities should maintain the options of designing academic programmes as they best see fit, it is imperative for them to introduce some form of transparent and comparable criteria, which will allow the profession and the public to relate the degree and academic credentials to the actual skills and competences of the degree holder. With regard to established specialist training programmes, the interdisciplinary and comprehensive nature of implant dentistry needs to be emphasised, covering both surgical and restorative aspects. Finally, implant dentistry is not, at present, a dental specialty. The profession has not reached a consensus as to whether

  6. Osseointegration of zirconia implants: an SEM observation of the bone-implant interface.

    Science.gov (United States)

    Depprich, Rita; Zipprich, Holger; Ommerborn, Michelle; Mahn, Eduardo; Lammers, Lydia; Handschel, Jörg; Naujoks, Christian; Wiesmann, Hans-Peter; Kübler, Norbert R; Meyer, Ulrich

    2008-11-06

    The successful use of zirconia ceramics in orthopedic surgery led to a demand for dental zirconium-based implant systems. Because of its excellent biomechanical characteristics, biocompatibility, and bright tooth-like color, zirconia (zirconium dioxide, ZrO2) has the potential to become a substitute for titanium as dental implant material. The present study aimed at investigating the osseointegration of zirconia implants with modified ablative surface at an ultrastructural level. A total of 24 zirconia implants with modified ablative surfaces and 24 titanium implants all of similar shape and surface structure were inserted into the tibia of 12 Göttinger minipigs. Block biopsies were harvested 1 week, 4 weeks or 12 weeks (four animals each) after surgery. Scanning electron microscopy (SEM) analysis was performed at the bone implant interface. Remarkable bone attachment was already seen after 1 week which increased further to intimate bone contact after 4 weeks, observed on both zirconia and titanium implant surfaces. After 12 weeks, osseointegration without interposition of an interfacial layer was detected. At the ultrastructural level, there was no obvious difference between the osseointegration of zirconia implants with modified ablative surfaces and titanium implants with a similar surface topography. The results of this study indicate similar osseointegration of zirconia and titanium implants at the ultrastructural level.

  7. Influence of Peri-Implant Soft Tissue Condition and Plaque Accumulation on Peri-Implantitis: a Systematic Review

    Directory of Open Access Journals (Sweden)

    Mindaugas Pranskunas

    2016-09-01

    Full Text Available Objectives: To systematically examine influence of soft tissue condition and plaque accumulation around dental implants on peri-implantitis development. Material and Methods: An electronic literature search was conducted of two databases - MEDLINE (Ovid and EMBASE from 2011 to 2016. Sequential screenings at the title, abstract, and full-text levels were performed. Clinical human studies in the English language that had reported soft tissue condition or plaque accumulation influence on peri-implantitis development were included. The resulting articles were independently subjected to clear inclusion and exclusion criteria by two reviewers as follows. Results: The search resulted in 8 articles meeting the inclusion criteria. These studies reported gingival index, plaque index, pocket depth, bleeding on probing/modified bleeding index for sites with “adequate” (≥ 2 mm and “inadequate” (< 2 mm width of keratinized mucosa. Results demonstrated that the amount of keratinized mucosa has little influence on soft-tissue inflammation in the presence of good oral hygiene. However, suboptimal oral hygiene due to difficulty in access for plaque control in the areas of minimal keratinized mucosa may lead to greater tissue damage. Conclusions: In cases with insufficient keratinized gingiva in the vicinity of implants, the insufficiency does not necessarily mediate adverse effects on the hygiene management and soft tissue health condition. Nonetheless, the risk of the increase of gingival index, plaque index, pocket depth, bleeding on probing/modified bleeding index is present. Therefore, the presence of an appropriate amount of keratinized gingiva is required.

  8. Radiotherapy for breast cancer is not associated with increased risk of cied implantation

    DEFF Research Database (Denmark)

    Johansen, J. B.; Rehammar, J. C.; Jorgensen, O. D.

    2015-01-01

    Introduction: Radiotherapy is an important treatment in early stage breast cancer but it is claimed that radiotherapy causes damage to the cardiac conduction system and increases the risk implantation of CIED (pacemaker or ICD). However, this paradigm is based on smaller series of case reports. Due...... to the anatomy, radiotherapy will potential mainly affect the conduction system in left sided breast cancer. The aim of this study was to evaluate risk of implantation of a CIED subsequent to radiotherapy for breast cancer by comparing left- versus right sided radiotherapy in a nationwide cohort. Methods: From...... the database of the Danish Breast Cancer Collaborative Group, we identified women treated with radiotherapy for early-stage breast cancer in Denmark from 1982 to 2005. By record linkage to the Danish Pacemaker and ICD Registry information was retrieved on CIED implants subsequent to radiotherapy. The rate...

  9. [Retrieval and failure analysis of surgical implants in Brazil: the need for proper regulation].

    Science.gov (United States)

    Azevedo, Cesar R de Farias; Hippert, Eduardo

    2002-01-01

    This paper summarizes several cases of metallurgical failure analysis of surgical implants conducted at the Laboratory of Failure Analysis, Instituto de Pesquisas Tecnológicas (IPT), in Brazil. Failures with two stainless steel femoral compression plates, one stainless steel femoral nail plate, one Ti-6Al-4V alloy maxillary reconstruction plate, and five Nitinol wires were investigated. The results showed that the implants were not in accordance with ISO standards and presented evidence of corrosion-assisted fracture. Furthermore, some of the implants presented manufacturing/processing defects which also contributed to their premature failure. Implantation of materials that are not biocompatible may cause several types of adverse effects in the human body and lead to premature implant failure. A review of prevailing health legislation is needed in Brazil, along with the adoption of regulatory mechanisms to assure the quality of surgical implants on the market, providing for compulsory procedures in the reporting and investigation of surgical implants which have failed in service.

  10. When Not to Go SOLO? Contraindications Based on Implant Experience.

    Science.gov (United States)

    Wollersheim, Laurens W; Li, Wilson W; Kaya, Abdullah; van Boven, Wim J; van der Meulen, Jan; de Mol, Bas A

    2016-11-01

    Because of the design and specific implantation technique of the stentless Freedom SOLO bioprosthesis, patient selection is crucial. The aim of the study was to discuss the contraindications to this prosthesis based on the authors' implant experience. Between April 2005 and February 2015, one surgeon at the authors' center performed 292 aortic valve replacements using a bioprosthesis, with the initial intention of implanting a SOLO valve in every patient. A search was conducted for all of these patients and data collected on whether a SOLO valve was used, or not. A SOLO valve was implanted in 238 patients (82%), and a stented bioprosthesis in 54 (18%). The predominant reasons not to implant a SOLO valve were asymmetric commissures (26%) and a large aortic annulus (24%). Only one patient had structural valve deterioration, and none of the patients had to undergo reoperation because of aortic valve insufficiency or paravalvular leakage. Asymmetric commissures, large aortic annulus (>27 mm), calcified aortic sinuses, dilated sinotubular junction, aberrant location of coronary ostia and whenever the stent of a stented bioprosthesis is useful, were contraindications to implant a SOLO valve. When these contraindications were taken into account, a very good durability could be achieved with the SOLO valve during mid-term follow up.

  11. Initial clinical experience with Ahmed Valve implantation in refractory pediatric glaucoma

    OpenAIRE

    Novak-Lauš, Katia; Škunca Herman, Jelena; Šimić Prskalo, Marija; Jurišić, Darija; Mandić, Zdravko

    2016-01-01

    The purpose is to report on the safety and efficacy of Ahmed Glaucoma Valve (AGV, New World Medical, Inc., Rancho Cucamonga, CA, USA) implantation for the management of refractory pediatric glaucoma observed during one-year follow up period. A retrospective chart review was conducted on 10 eyes, all younger than 11 years, with pediatric glaucoma that underwent AGV implantation for medicamentously uncontrolled intraocular pressure (IOP) between 2010 and 2014. Outcome measures were control of I...

  12. Economic Evaluation of Implant-Supported Overdentures in Edentulous Patients: A Systematic Review.

    Science.gov (United States)

    Zhang, Qi; Jin, Xin; Yu, Mengliu; Ou, Guoming; Matsui, Hiroyuki; Liang, Xing; Sasaki, Keiichi

    Edentulous patients benefit significantly from implant-supported overdenture prostheses. The purpose of this systematic review was to evaluate the cost-effectiveness of implant-supported overdentures (IODs) for edentulous patients. The search was limited to studies written in English and included an electronic and manual search through MEDLINE (Ovid, 1946 to November 2015), Embase (Ovid, 1966 to November 2015), Cochrane Central Register of Controlled Trials (CENTRAL) (to November 2015), and PubMed (to November 2015). Two investigators extracted the data and assessed the studies independently. No meta-analysis was conducted due to the high heterogeneity within the literature. Of the initial 583 selected articles, 10 studies involving 802 participants were included. Of these, 6 studies had a high risk of bias and the rest had an unclear risk of bias. Implant-supported prostheses were more cost-effective when compared to conventional dentures and fixed implant-supported prostheses. Overdentures supported by two implants and magnet attachment were reported as cost-effective. Implant-supported overdentures are a cost-effective treatment for edentulous patients. More clinical studies with appropriate scientific vigor are required to further assess the cost-effectiveness of implant-supported overdentures.

  13. Influence of controlled immediate loading and implant design on peri-implant bone formation.

    Science.gov (United States)

    Vandamme, Katleen; Naert, Ignace; Geris, Liesbet; Vander Sloten, Jozef; Puers, Robert; Duyck, Joke

    2007-02-01

    Tissue formation at the implant interface is known to be sensitive to mechanical stimuli. The aim of the study was to compare the bone formation around immediately loaded versus unloaded implants in two different implant macro-designs. A repeated sampling bone chamber with a central implant was installed in the tibia of 10 rabbits. Highly controlled loading experiments were designed for a cylindrical (CL) and screw-shaped (SL) implant, while the unloaded screw-shaped (SU) implant served as a control. An F-statistic model with alpha=5% determined statistical significance. A significantly higher bone area fraction was observed for SL compared with SU (pimplant contact occurred was the highest for SL and significantly different from SU (pimplant contact was observed, a loading (SL versus SU: p=0.0049) as well as an implant geometry effect (SL versus CL: p=0.01) was found, in favour of the SL condition. Well-controlled immediate implant loading accelerates tissue mineralization at the interface. Adequate bone stimulation via mechanical coupling may account for the larger bone response around the screw-type implant compared with the cylindrical implant.

  14. Interventions for replacing missing teeth: treatment of peri-implantitis.

    Science.gov (United States)

    Esposito, Marco; Grusovin, Maria Gabriella; Worthington, Helen V

    2012-01-18

    One of the key factors for the long-term success of oral implants is the maintenance of healthy tissues around them. Bacterial plaque accumulation induces inflammatory changes in the soft tissues surrounding oral implants and it may lead to their progressive destruction (peri-implantitis) and ultimately to implant failure. Different treatment strategies for peri-implantitis have been suggested, however it is unclear which are the most effective. To identify the most effective interventions for treating peri-implantitis around osseointegrated dental implants. We searched the Cochrane Oral Health Group's Trials Register, CENTRAL, MEDLINE and EMBASE. Handsearching included several dental journals. We checked the bibliographies of the identified randomised controlled trials (RCTs) and relevant review articles for studies outside the handsearched journals. We wrote to authors of all identified RCTs, to more than 55 dental implant manufacturers and an Internet discussion group to find unpublished or ongoing RCTs. No language restrictions were applied. The last electronic search was conducted on 9 June 2011. All RCTs comparing agents or interventions for treating peri-implantitis around dental implants. Screening of eligible studies, assessment of the methodological quality of the trials and data extraction were conducted in duplicate and independently by two review authors. We contacted the authors for missing information. Results were expressed as random-effects models using mean differences for continuous outcomes and risk ratios for dichotomous outcomes with 95% confidence intervals (CI). Heterogeneity was to be investigated including both clinical and methodological factors. Fifteen eligible trials were identified, but six were excluded. The following interventions were compared in the nine included studies: different non-surgical interventions (five trials); adjunctive treatments to non-surgical interventions (one trial); different surgical interventions (two trials

  15. Systematic review and meta-analysis of randomized controlled trials for the management of limited vertical height in the posterior region: short implants (5 to 8 mm) vs longer implants (> 8 mm) in vertically augmented sites.

    Science.gov (United States)

    Lee, Sung-Ah; Lee, Chun-Teh; Fu, Martin M; Elmisalati, Waiel; Chuang, Sung-Kiang

    2014-01-01

    The aim of this study was to undertake a systematic review with meta-analysis on randomized controlled trials (RCTs) to compare the rates of survival, success, and complications of short implants to those of longer implants in the posterior regions. Electronic literature searches were conducted through the MEDLINE (PubMed) and EMBASE databases to locate all relevant articles published between January 1, 1990, and April 30, 2013. Eligible studies were selected based on inclusion criteria, and quality assessments were conducted. After data extraction, meta-analyses were performed. In total, 539 dental implants (265 short implants [length 5 to 8 mm] and 274 control implants [length > 8 mm]) from four RCTs were included. The fixed prostheses of multiple short and control implants were all splinted. The mean follow-up period was 2.1 years. The 1-year and 5-year cumulative survival rates (CSR) were 98.7% (95% confidence interval [CI], 97.8% to 99.5%) and 93.6% (95% CI, 89.8% to 97.5%), respectively, for the short implant group and 98.0% (95% CI, 96.9% to 99.1%) and 90.3% (95% CI, 85.2% to 95.4%), respectively, for the control implant group. The CSRs of the two groups did not demonstrate a statistically significant difference. There were also no statistically significant differences in success rates, failure rates, or complications between the two groups. Placement of short dental implants could be a predictable alternative to longer implants to reduce surgical complications and patient morbidity in situations where vertical augmentation procedures are needed. However, only four studies with potential risk of bias were selected in this meta-analysis. Within the limitations of this meta-analysis, these results should be confirmed with robust methodology and RCTs with longer follow-up duration.

  16. Attachment systems for mandibular implant overdentures: a systematic review

    Science.gov (United States)

    Kim, Ha-Young; Lee, Jeong-Yol; Bryant, S. Ross

    2012-01-01

    PURPOSE The aim of this systematic review was to address treatment outcome according to attachment systems for mandibular implant overdentures in terms of implant survival rate, prosthetic maintenance and complications, and patient satisfaction. MATERIALS AND METHODS A systematic literature search was conducted using PubMed and hand searching of relevant journals considering inclusion and exclusion criteria. Clinical trial studies on mandibular implant overdentures until August, 2010 were selected if more than one type of overdenture attachment was reported. Twenty four studies from 1098 studies were finally included and the data on implant survival rate, prosthetic maintenance and complications, patient satisfaction were analyzed relative to attachment systems. RESULTS Four studies presented implant survival rates (95.8 - 97.5% for bar, 96.2 - 100% for ball, 91.7% for magnet) according to attachment system. Ten other studies presented an implant survival rate ranging from 93.3% to 100% without respect to the attachment groups. Common prosthetic maintenance and complications were replacement of an assay for magnet attachments, and activation of a matrix or clip for ball or bar attachments. Prosthetic maintenance and complications most commonly occurred in the magnet groups. Conflicting findings were found on the rate of prosthetic maintenance and complications comparing ball and bar attachments. Most studies showed no significant differences in patient satisfaction depending upon attachment systems. CONCLUSION The implant survival rate of mandibular overdentures seemed to be high regardless attachment systems. The prosthetic maintenance and complications may be influenced by attachment systems. However patient satisfaction may be independent of the attachment system. PMID:23236571

  17. Effect of time varying phosphorus implantation on optoelectronics properties of RF sputtered ZnO thin-films

    Science.gov (United States)

    Murkute, Punam; Ghadi, Hemant; Saha, Shantanu; Chavan, Vinayak; Chakrabarti, Subhananda

    2018-03-01

    ZnO has potential application in the field of short wavelength devices like LED's, laser diodes, UV detectors etc, because of its wide band gap (3.34 eV) and high exciton binding energy (60 meV). ZnO possess N-type conductivity due to presence of defects arising from oxygen and zinc interstitial vacancies. In order to achieve P-type or intrinsic carrier concentration an implantation study is preferred. In this report, we have varied phosphorous implantation time and studied its effect on optical as well structural properties of RF sputtered ZnO thin-films. Implantation was carried out using Plasma Immersion ion implantation technique for 10 and 20 s. These films were further annealed at 900°C for 10 s in oxygen ambient to activate phosphorous dopants. Low temperature photoluminescence (PL) spectra measured two distinct peaks at 3.32 and 3.199 eV for 20 s implanted sample annealed at 900°C. Temperature dependent PL measurement shows slightly blue shift in peak position from 18 K to 300 K. 3.199 eV peak can be attributed to donoracceptor pair (DAP) emission and 3.32 eV peak corresponds to conduction-band-to-acceptor (eA0) transition. High resolution x-ray diffraction revels dominant (002) peak from all samples. Increasing implantation time resulted in low peak intensity suggesting a formation of implantation related defects. Compression in C-axis with implantation time indicates incorporation of phosphorus in the formed film. Improvement in surface quality was observed from 20 s implanted sample which annealed at 900°C.

  18. Ion implantation damage annealing in 4H-SiC monitored by scanning spreading resistance microscopy

    International Nuclear Information System (INIS)

    Suchodolskis, A.; Hallen, A.; Linnarsson, M.K.; Osterman, J.; Karlsson, U.O.

    2006-01-01

    To obtain a better understanding of the damage annealing process and dopant defect incorporation and activation we have implanted epitaxially grown 4H-SiC layers with high doses of Al + ions. Cross-sections of the samples are investigated by scanning spreading resistance microscopy (SSRM) using a commercial atomic force microscopy (AFM). The defects caused by the implanted ions compensate for the doping and decrease the charge carrier mobility. This causes the resistivity to increase in the as-implanted regions. The calculated profile of implanted ions is in good agreement with the measured ones and shows a skewed Gaussian shape. Implanted samples are annealed up to 400 deg. C. Despite these low annealing temperatures we observe a clear improvement of the sample conductivity in the as-implanted region

  19. Observation of He bubbles in ion irradiated fusion materials by conductive atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Hongyu [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Li, Ruihuan [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Yang, Deming [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022 (China); Wu, Yunfeng; Niu, Jinhai; Yang, Qi [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Zhao, Jijun [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Liu, Dongping, E-mail: dongping.liu@dlnu.edu.cn [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Fujian Key Laboratory for Plasma and Magnetic Resonance, Department of Electronic Science, Aeronautics, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China)

    2013-10-15

    Using a non-destructive conductive atomic force microscope combined with the Ar{sup +} etching technique, we demonstrate that nanoscale and conductive He bubbles are formed in the implanted layer of single-crystalline 6H-SiC irradiated with 100 keV He{sup +}. We find that the surface swelling of irradiated SiC samples is well correlated with the growth of elliptic He bubbles in the implanted layer. First-principle calculations are performed to estimate the internal pressure of the He bubble in the void of SiC. Analysis indicates that nanoscale He bubbles acting as a captor capture the He atoms diffusing along the implanted layer at an evaluated temperature and result in the surface swelling of irradiated SiC materials.

  20. Influence of Implant Positions and Occlusal Forces on Peri-Implant Bone Stress in Mandibular Two-Implant Overdentures: A 3-Dimensional Finite Element Analysis.

    Science.gov (United States)

    Alvarez-Arenal, Angel; Gonzalez-Gonzalez, Ignacio; deLlanos-Lanchares, Hector; Brizuela-Velasco, Aritza; Dds, Elena Martin-Fernandez; Ellacuria-Echebarria, Joseba

    2017-12-01

    The aim of this study was to evaluate and compare the bone stress around implants in mandibular 2-implant overdentures depending on the implant location and different loading conditions. Four 3-dimensional finite element models simulating a mandibular 2-implant overdenture and a Locator attachment system were designed. The implants were located at the lateral incisor, canine, second premolar, and crossed-implant levels. A 150 N unilateral and bilateral vertical load of different location was applied, as was 40 N when combined with midline load. Data for von Mises stress were produced numerically, color coded, and compared between the models for peri-implant bone and loading conditions. With unilateral loading, in all 4 models much higher peri-implant bone stress values were recorded on the load side compared with the no-load side, while with bilateral occlusal loading, the stress distribution was similar on both sides. In all models, the posterior unilateral load showed the highest stress, which decreased as the load was applied more mesially. In general, the best biomechanical environment in the peri-implant bone was found in the model with implants at premolar level. In the crossed-implant model, the load side greatly altered the biomechanical environment. Overall, the overdenture with implants at second premolar level should be the chosen design, regardless of where the load is applied. The occlusal loading application site influences the bone stress around the implant. Bilateral occlusal loading distributes the peri-implant bone stress symmetrically, while unilateral loading increases it greatly on the load side, no matter where the implants are located.

  1. Remapping cortical modulation for electrocorticographic brain-computer interfaces: a somatotopy-based approach in individuals with upper-limb paralysis

    Science.gov (United States)

    Degenhart, Alan D.; Hiremath, Shivayogi V.; Yang, Ying; Foldes, Stephen; Collinger, Jennifer L.; Boninger, Michael; Tyler-Kabara, Elizabeth C.; Wang, Wei

    2018-04-01

    Objective. Brain-computer interface (BCI) technology aims to provide individuals with paralysis a means to restore function. Electrocorticography (ECoG) uses disc electrodes placed on either the surface of the dura or the cortex to record field potential activity. ECoG has been proposed as a viable neural recording modality for BCI systems, potentially providing stable, long-term recordings of cortical activity with high spatial and temporal resolution. Previously we have demonstrated that a subject with spinal cord injury (SCI) could control an ECoG-based BCI system with up to three degrees of freedom (Wang et al 2013 PLoS One). Here, we expand upon these findings by including brain-control results from two additional subjects with upper-limb paralysis due to amyotrophic lateral sclerosis and brachial plexus injury, and investigate the potential of motor and somatosensory cortical areas to enable BCI control. Approach. Individuals were implanted with high-density ECoG electrode grids over sensorimotor cortical areas for less than 30 d. Subjects were trained to control a BCI by employing a somatotopic control strategy where high-gamma activity from attempted arm and hand movements drove the velocity of a cursor. Main results. Participants were capable of generating robust cortical modulation that was differentiable across attempted arm and hand movements of their paralyzed limb. Furthermore, all subjects were capable of voluntarily modulating this activity to control movement of a computer cursor with up to three degrees of freedom using the somatotopic control strategy. Additionally, for those subjects with electrode coverage of somatosensory cortex, we found that somatosensory cortex was capable of supporting ECoG-based BCI control. Significance. These results demonstrate the feasibility of ECoG-based BCI systems for individuals with paralysis as well as highlight some of the key challenges that must be overcome before such systems are translated to the clinical

  2. Analysis of submerged implant towards mastication load using 3D finite element method (FEM

    Directory of Open Access Journals (Sweden)

    Widia Hafsyah Sumarlina Ritonga

    2016-11-01

    Full Text Available Introduction: The surgical procedure for implantation of a surgical implant comprising a stage for the implant design nonsubmerged and two stages for submerged. Submerged implant design often used in Faculty of Dentistry Universitas Padjadjaran because it is safer in achieving osseointegration. This study was conducted to evaluate the failure of dental implant based on location and the value of internal tensiones as well as supporting tissues when given mastication load by using the 3D Finite Element Method (FEM. Methods: This study used a photograph of the mandibular CBCT patient and CT Scan Micro one implant submerged. Radiograph image was then converted into a digital model of the 3D computerized finite element, inputted the material properties, pedestal, then simulated the occlusion load  as much as 87N and 29N of frictional Results: The maximum tension location on the implant was located on the  exact side of the contact area between the implant and alveolar crest. The maximum tension value was 193.31MPa on the implant body. The value was below the limit value of the ability of the titanium alloy to withstand fracture (860 MPa. Conclusion: The location of the maximum tension on the body of the implant was located on the exact contact area between the implant-abutment and alveolar crest. Under the mastication load, this implant design found no failure.

  3. CLINICAL CONSIDERATIONS OF DENTAL IMPLANT SYSTEM IN IMMEDIATE LOADING IMPLANT CASES

    Directory of Open Access Journals (Sweden)

    Carolina Damayanti Marpaung

    2015-06-01

    Full Text Available Immediate loading of dental implant has been researched intensively in the development of Branemark’s early concept of 2 stages implant placement. This was embarked from both patients and practiitioner’s convenience towards a simpler protocol and shorter time frame. Many recent researchers later found that micromotions derived from occlusal loading for a certain degree, instead of resulting a fibrous tissue encapsulation, can enhance the osseointegration process. Dental Implant system enhancement towards maximizing the primary stability held a key factor in Branemark’s concept development. Surgical protocol and implant design was found to give a significant contribution to the prognosis of immediate-loading implants.

  4. Electrodeposited silk coatings for functionalized implant applications

    Science.gov (United States)

    Elia, Roberto

    The mechanical and morphological properties of titanium as well as its biocompatibility and osteoinductive characteristics have made it the material of choice for dental implant systems. Although the success rate of titanium implants exceeds 90% in healthy individuals, a large subset of the population has one or more risk factors that inhibit implant integration. Treatments and coatings have been developed to improve clinical outcomes via introduction of appropriate surface topography, texture and roughness or incorporation of bioactive molecules. It is essential that the coatings and associated deposition techniques are controllable and reproducible. Currently, methods of depositing functional coatings are dictated by numerous parameters (temperature, particle size distribution, pH and voltage), which result in variable coating thickness, strength, porosity and weight, and hinder or preclude biomolecule incorporation. Silk is a highly versatile protein with a unique combination of mechanical and physical properties, including tunable degradation, biocompatibility, drug stabilizing capabilities and mechanical properties. Most recently an electrogelation technique was developed which allows for the deposition of gels which dry seamlessly over the contoured topography of the conductive substrate. In this work we examine the potential use of silk electrogels as mechanically robust implant coatings capable of sequestering and releasing therapeutic agents. Electrodeposition of silk electrogels formed in uniform electric fields was characterized with respect to field intensity and deposition time. Gel formation kinetics were used to derive functions which allowed for the prediction of coating deposition over a range of process and solution parameters. Silk electrogel growth orientation was shown to be influenced by the applied electric field. Coatings were reproducible and tunable via intrinsic silk solution properties and extrinsic process parameters. Adhesion was

  5. Objective and subjective outcome of a new transcutaneous bone conduction hearing device

    DEFF Research Database (Denmark)

    Eberhard, Kristine Elisabeth; Olsen, Steen Østergaard; Miyazaki, Hidemi

    2016-01-01

    Objective: To examine the objective and subjective outcome of a new transcutaneous bone conduction hearing device. Study Design: Prospective, consecutive case series. Patients: Twelve patients were implanted. Eight patients had a conductive/mixed (con/mix) hearing loss. Four had single sided...... to beneficial outcome. In Speech, Spatial and Qualities of Hearing Scale 12, ''quality of hearing'' scored especially high. The con/mix hearing loss group showed larger benefit especially in SDS, SRT50% in noise and the subjective evaluations, whereas frequency and duration of use were similar. Conclusion......: This study on the first 12 Nordic patients implanted with a new transcutaneous bone conduction hearing device demonstrates significant objective, as well as subjective hearing benefit. Patient satisfaction was high, as was the frequency of use....

  6. Psychological intervention following implantation of an implantable defibrillator

    DEFF Research Database (Denmark)

    Pedersen, Susanne S.; van den Broek, Krista C; Sears, Samuel F

    2007-01-01

    The medical benefits of the implantable cardioverter defibrillator (ICD) are unequivocal, but a subgroup of patients experiences emotional difficulties following implantation. For this subgroup, some form of psychological intervention may be warranted. This review provides an overview of current ...

  7. Effect of annealing on properties of sputtered and nitrogen-implanted ZnO:Ga thin films

    Directory of Open Access Journals (Sweden)

    Vojs M.

    2012-07-01

    Full Text Available Thin films of gallium-doped zinc oxide (ZnO:Ga were deposited on Corning glass substrates by rf diode sputtering and then implanted with 180 keV nitrogen ions in the dose range of 1 × 1015 ÷ 2 × 1016 cm-2. After the ion implantation, the films were annealed under oxygen and nitrogen ambient, at different temperatures and time, and the effect on their microstructure, type and range of conductivity, and optical properties was investigated. Post-implantation annealing at 550 °C resulted in n-type conductivity films with the highest electron concentration of 1.4 × 1020 cm-3. It was found that the annealing parameters had a profound impact on the film’s properties. A p-type conductivity (a hole concentration of 2.8 × 1019 cm-3, mobility of 0.6 cm2/V s was observed in a sample implanted with 1 × 1016 cm-2 after a rapid thermal annealing (RTA in N2 at 400 °C. Optical transmittance of all films was >84% in the wavelength range of 390–1100 nm. The SIMS depth profile of the complex 30NO− ions reproduces well a Gaussian profile of ion implantation. XRD patterns reveal a polycrystalline structure of N-implanted ZnO:Ga films with a c-axis preferred orientation of the crystallites. Depending on the annealing conditions, the estimated crystallite size increased 25 ÷ 42 nm and average micro-strains decreased 1.19 × 10-2 ÷ 6.5 × 10-3 respectively.

  8. Highly Stripped Ion Sources for MeV Ion Implantation

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, Ady

    2009-06-30

    Original technical objectives of CRADA number PVI C-03-09 between BNL and Poole Ventura, Inc. (PVI) were to develop an intense, high charge state, ion source for MeV ion implanters. Present day high-energy ion implanters utilize low charge state (usually single charge) ion sources in combination with rf accelerators. Usually, a MV LINAC is used for acceleration of a few rnA. It is desirable to have instead an intense, high charge state ion source on a relatively low energy platform (de acceleration) to generate high-energy ion beams for implantation. This de acceleration of ions will be far more efficient (in energy utilization). The resultant implanter will be smaller in size. It will generate higher quality ion beams (with lower emittance) for fabrication of superior semiconductor products. In addition to energy and cost savings, the implanter will operate at a lower level of health risks associated with ion implantation. An additional aim of the project was to producing a product that can lead to long­ term job creation in Russia and/or in the US. R&D was conducted in two Russian Centers (one in Tomsk and Seversk, the other in Moscow) under the guidance ofPVI personnel and the BNL PI. Multiple approaches were pursued, developed, and tested at various locations with the best candidate for commercialization delivered and tested at on an implanter at the PVI client Axcelis. Technical developments were exciting: record output currents of high charge state phosphorus and antimony were achieved; a Calutron-Bemas ion source with a 70% output of boron ion current (compared to 25% in present state-of-the-art). Record steady state output currents of higher charge state phosphorous and antimony and P ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb {sup 4 +}, Sb{sup 5+}, and Sb{sup 6+} respectively. Ultimate commercialization goals did not succeed (even though a number of the products like high

  9. Influence of red wine fermentation oenological additives on inoculated strain implantation.

    Science.gov (United States)

    Duarte, Filomena L; Alves, Ana Claudia; Alemão, Maria Filomena; Baleiras-Couto, M Margarida

    2013-06-01

    Pure selected cultures of Saccharomyces cerevisiae starters are regularly used in the wine industry. A survey of S. cerevisiae populations during red wine fermentations was performed in order to evaluate the influence of oenological additives on the implantation of the inoculated strain. Pilot scale fermentations (500 L) were conducted with active dry yeast (ADY) and other commercial oenological additives, namely two commercial fermentation activators and two commercial tannins. Six microsatellite markers were used to type S. cerevisiae strains. The methodology proved to be very discriminating as a great diversity of wild strains (48 genotypes) was detected. Statistical analysis confirmed a high detection of the inoculated commercial strain, and for half the samples an effective implantation of ADY (over 80 %) was achieved. At late fermentation time, ADY strain implantation in fermentations conducted with commercial additives was lower than in the control. These results question the efficacy of ADY addition in the presence of other additives, indicating that further studies are needed to improve knowledge on oenological additives' use.

  10. The formation of an organic coat and the release of corrosion microparticles from metallic magnesium implants.

    Science.gov (United States)

    Badar, Muhammad; Lünsdorf, Heinrich; Evertz, Florian; Rahim, Muhammad Imran; Glasmacher, Birgit; Hauser, Hansjörg; Mueller, Peter P

    2013-07-01

    Magnesium alloys have been proposed as prospective degradable implant materials. To elucidate the complex interactions between the corroding implants and the tissue, magnesium implants were analyzed in a mouse model and the response was compared to that induced by Ti and by the resorbable polymer polyglactin, respectively. One month after implantation, distinct traces of corrosion were apparent but the magnesium implants were still intact, whereas resorbable polymeric wound suture implants were already fragmented. Analysis of magnesium implants 2weeks after implantation by energy-dispersive X-ray spectroscopy indicated that magnesium, oxygen, calcium and phosphate were present at the implant surface. One month after implantation, the element composition of the outermost layer of the implant was indicative of tissue without detectable levels of magnesium, indicating a protective barrier function of this organic layer. In agreement with this notion, gene expression patterns in the surrounding tissue were highly similar for all implant materials investigated. However, high-resolution imaging using energy-filtered transmission electron microscopy revealed magnesium-containing microparticles in the tissue in the proximity of the implant. The release of such corrosion particles may contribute to the accumulation of calcium phosphate in the nearby tissue and to bone conductive activities of magnesium implants. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Developing a Research Instrument to Document Awareness, Knowledge, and Attitudes Regarding Breast Cancer and Early Detection Techniques for Pakistani Women: The Breast Cancer Inventory (BCI).

    Science.gov (United States)

    Naqvi, Atta Abbas; Zehra, Fatima; Ahmad, Rizwan; Ahmad, Niyaz

    2016-12-09

    There is a general hesitation in participation among Pakistani women when it comes to giving their responses in surveys related to breast cancer which may be due to the associated stigma and conservatism in society. We felt that no research instrument was able to extract information from the respondents to the extent it was needed for the successful execution of our study. The need to develop a research instrument tailored for Pakistani women was based upon the fact that most Pakistani women come from a conservative background and sometimes view this topic as provocative and believe discussing publicly about it as inappropriate. Existing research instruments exhibited a number of weaknesses during literature review. Therefore, using them may not be able to extract information concretely. A research instrument was, thus, developed exclusively. It was coined as, "breast cancer inventory (BCI)" by a panel of experts for executing a study aimed at documenting awareness, knowledge, and attitudes of Pakistani women regarding breast cancer and early detection techniques. The study is still in the data collection phase. The statistical analysis involved the Kaiser-Meyer-Olkin (KMO) measure and Bartlett's test for sampling adequacy. In addition, reliability analysis and exploratory factor analysis (EFA) were, also employed. This concept paper focuses on the development, piloting and validation of the BCI. It is the first research instrument which has high acceptability among Pakistani women and is able to extract adequate information from the respondents without causing embarrassment or unease.

  12. Effect of 200 keV Ar+ implantation on optical and electrical properties of polyethyleneterepthalate (PET)

    International Nuclear Information System (INIS)

    Kumar, Rajiv; Goyal, Meetika; Sharma, Ambika; Aggarwal, Sanjeev; Sharma, Annu; Kanjilal, D.

    2015-01-01

    In the present paper we have discussed the effect of 200 keV Ar + ions on the electrical and optical properties of PET samples. PET samples were implanted with 200 keV Ar + ions to various doses ranging from 1×10 15 to 1×10 17 Ar + cm 2 . The changes in the electrical and optical properties of pristine and implanted PET specimens have been studied by using Keithley electrometer and UV-Visible absorption spectroscopy. The electrical conductivity has found to be increased with increasing ion dose. The optical studies have revealed the drastic alterations in optical band gap from 3.63 eV to 1.48 eV and also increase in number of carbon atoms per cluster from 215 to 537. Further, the change in the electrical conductivity and optical band gap has also been correlated with the formation of conductive islands in the implanted layers of PET

  13. A comparative study: use of a Brain-computer Interface (BCI) device by people with cerebral palsy in interaction with computers.

    Science.gov (United States)

    Heidrich, Regina O; Jensen, Emely; Rebelo, Francisco; Oliveira, Tiago

    2015-01-01

    This article presents a comparative study among people with cerebral palsy and healthy controls, of various ages, using a Brain-computer Interface (BCI) device. The research is qualitative in its approach. Researchers worked with Observational Case Studies. People with cerebral palsy and healthy controls were evaluated in Portugal and in Brazil. The study aimed to develop a study for product evaluation in order to perceive whether people with cerebral palsy could interact with the computer and compare whether their performance is similar to that of healthy controls when using the Brain-computer Interface. Ultimately, it was found that there are no significant differences between people with cerebral palsy in the two countries, as well as between populations without cerebral palsy (healthy controls).

  14. The relationship of silicone breast implants and cancer at other sites.

    Science.gov (United States)

    Brinton, Louise A

    2007-12-01

    Although most attention regarding the effects of silicone breast implants on cancer risk has focused on breast cancer, there have also been concerns regarding effects on other cancers. This includes malignancies that could occur as a result of foreign-body carcinogenesis (sarcomas) or immune alterations (hematopoietic malignancies), or cancers suggested as possibly elevated on the basis of previous epidemiologic studies (cancers of the cervix, vulva, lung, and brain). Searches of the English language literature on the topic of silicone breast implants and cancer risk were conducted and reviewed to determine relationships that might have etiologic relevance. Epidemiologic studies provide no support for an increased risk of either sarcoma or multiple myeloma among breast implant recipients, disputing clinical and laboratory findings suggesting such a link. Although a number of epidemiologic studies have demonstrated elevated risks of cervical, vulvar, and lung cancers among breast implant patients, it is likely that these excesses relate more to lifestyle characteristics (e.g., cigarette smoking, sexual behavior) than to the effects of the implants. Brain cancer excesses, suggested in one study, have not been confirmed in either an update of the mortality experience in this study or on the basis of other investigations. At present, there is no convincing evidence that breast implants alter the risk of nonbreast malignancies. Breast implant patients should continue to be monitored for longer term risks and to assess whether cancer risk is influenced by various patient and implant characteristics.

  15. Prevalence of Peri-Implant Mucositis and Peri-Implantitis in Patients Treated with a Combination of Axial and Tilted Implants Supporting a Complete Fixed Denture

    Directory of Open Access Journals (Sweden)

    Nicolò Cavalli

    2015-01-01

    Full Text Available Objectives. The aim of this retrospective study was to assess the incidence and prevalence of peri-implant mucositis and peri-implantitis in patients with a fixed full-arch prosthesis supported by two axial and two tilted implants. Materials and Methods. Sixty-nine patients were included in the study. Each patient received a fixed full-arch prosthesis supported by two mesial axial and two distal tilted implants to rehabilitate the upper arch, the lower arch, or both. Three hundred thirty-six implants for 84 restorations were delivered. Patients were scheduled for follow-up visits every 6 months in the first 2 years and yearly after. At each follow-up visit peri-implant mucositis and peri-implantitis were diagnosed if present. Results. The overall follow-up range was from 12 to 130 months (mean 63,2 months. Three patients presented peri-implantitis. The prevalence of peri-implant mucositis ranged between 0 and 7,14% of patients (5,06% of implants while the prevalence of peri-implantitis varied from 0 to 4,55% of patients (3,81% of implants. Conclusions. The prevalence and incidence of peri-implant mucositis and peri-implantitis are lower than most of the studies in literature. Therefore this kind of rehabilitation could be considered a feasible option, on the condition of adopting a systematic hygienic protocol.

  16. A new system of implant abutment connection: how to improve a two piece implant system sealing.

    Science.gov (United States)

    Grecchi, F; DI Girolamo, M; Cura, F; Candotto, V; Carinci, F

    2017-01-01

    Implant dentistry has become one of the most successful dentistry techniques for replacing missing teeth. The success rate of implant dentistry is above 80%. However, peri-implantitis is a later complication of implant dentistry that if untreated, can lead to implant loss. One of the hypotized causes of peri-implantis is the bacterial leakage at the level of implant-abutment connection. Bacterial leakage is favored to the presence of a micro gap at the implant-abutment interface, allowing microorganisms to penetrate and colonize the inner part of the implant leading to biofilm accumulation and consequently to peri-implantitis development. To identify the capability of the implant to protect the internal space from the external environment, the passage of genetically modified Escherichia coli across implant-abutment interface was evaluated. Implants were immerged in a bacterial culture for twenty-four hours and then bacteria amount was measured inside implant-abutment interface with Real-time PCR. Bacteria were detected inside all studied implants, with a median percentage of 9%. The reported results are better to those of previous studies carried out on different implant systems. Until now, none implant-abutment system has been proven to seal the gap between implant and abutment.

  17. Poly Implants Prosthèse Breast Implants: A Case Series and Review of the Literature.

    Science.gov (United States)

    Klein, Doron; Hadad, Eran; Wiser, Itay; Wolf, Omer; Itzhaki Shapira, Ortal; Fucks, Shir; Heller, Lior

    2018-01-01

    Silicone breast implants from the French manufacturer Poly Implants Prosthèse (PIP) were recalled from the European market after the French regulator has revealed the implants contain non-medical-grade silicone filler. In December 2011, following a large increase in reported rupture rate and a possible cancer risk, the French Ministry of Health recommended consideration of the PIP explantation, regardless of their condition. In 2012, the Israel Ministry of Health recommended to replace the implants only upon suspected implant rupture. The aims of this study were to characterize breast-augmented Israeli patients with PIP implants, compare their outcomes with those of breast-augmented patients with different implant types, and review the current PIP literature. Breast-augmented patients who underwent an elective breast implant exchange in Israel between January 2011 and January 2017 were included in the study. Data were collected from electronic and physical medical files. There were 73 breast-augmented female patients with 146 PIP breast implants included in this study. Average implant age was 6.7 ± 2.79 years. Mean implant size was 342.8 ± 52.9 mL. Fourteen women (19 implants [16%]) had a high-grade capsular contracture (Baker grade 3-4). During exchange, 28 implants were found to be ruptured (19.2%). Less than 10 years following breast augmentation, PIP implants demonstrated higher rupture rate compared with other implants. Our data are comparable to overall available rupture rate. Among patients with definitive rupture diagnosis, an elective implant removal should be recommended. In cases of undamaged implants, plastic surgeons should also seriously consider PIP implant explantation. When the patient does not desire to remove the implant, an annual physical examination and breast ultrasound are recommended, beginning a year after augmentation.

  18. Sacroiliac joint stability: Finite element analysis of implant number, orientation, and superior implant length.

    Science.gov (United States)

    Lindsey, Derek P; Kiapour, Ali; Yerby, Scott A; Goel, Vijay K

    2018-03-18

    To analyze how various implants placement variables affect sacroiliac (SI) joint range of motion. An experimentally validated finite element model of the lumbar spine and pelvis was used to simulate a fusion of the SI joint using various placement configurations of triangular implants (iFuse Implant System ® ). Placement configurations were varied by changing implant orientation, superior implant length, and number of implants. The range of motion of the SI joint was calculated using a constant moment of 10 N-m with a follower load of 400 N. The changes in motion were compared between the treatment groups to assess how the different variables affected the overall motion of the SI joint. Transarticular placement of 3 implants with superior implants that end in the middle of the sacrum resulted in the greatest reduction in range of motion (flexion/extension = 73%, lateral bending = 42%, axial rotation = 72%). The range of motions of the SI joints were reduced with use of transarticular orientation (9%-18%) when compared with an inline orientation. The use of a superior implant that ended mid-sacrum resulted in median reductions of (8%-14%) when compared with a superior implant that ended in the middle of the ala. Reducing the number of implants, resulted in increased SI joint range of motions for the 1 and 2 implant models of 29%-133% and 2%-39%, respectively, when compared with the 3 implant model. Using a validated finite element model we demonstrated that placement of 3 implants across the SI joint using a transarticular orientation with superior implant reaching the sacral midline resulted in the most stable construct. Additional clinical studies may be required to confirm these results.

  19. Hearing Benefit and Rated Satisfaction in Children with Unilateral Conductive Hearing Loss Using a Transcutaneous Magnetic-Coupled Bone-Conduction Hearing Aid.

    Science.gov (United States)

    Polonenko, Melissa J; Carinci, Lora; Gordon, Karen A; Papsin, Blake C; Cushing, Sharon L

    Bilateral hearing is important for learning, development, and function in complex everyday environments. Children with conductive and mixed hearing loss (HL) have been treated for years with percutaneous coupling through an abutment, which achieves powerful output, but the implant site is susceptible to skin reactions and trauma. To overcome these complications, transcutaneous magnetic coupling systems were recently introduced. The purpose of the study was to evaluate whether the new transcutaneous magnetic coupling is an effective coupling paradigm for bone-conduction hearing aids (BCHAs). We hypothesized that magnetic coupling will (1) have limited adverse events, (2) provide adequate functional gain, (3) improve spatial hearing and aid listening in everyday situations, and (4) provide satisfactory outcomes to children and their families given one normal hearing ear. Retrospective analysis of audiological outcomes in a tertiary academic pediatric hospital. Nine children aged 5-17 yr with permanent unilateral conductive HL (UCHL) or mixed HL were implanted with a transcutaneous magnet-retained BCHA. Average hearing thresholds of the better and implanted ears were 12.3 ± 11.5 dB HL and 69.1 ± 11.6 dB HL, respectively, with a 59.4 ± 4.8 dB (mean ± standard deviation) conductive component. Data were extracted from audiology charts of the children with permanent UCHL or mixed HL who qualified for a surgically retained BCHA and agreed to the magnetic coupling. Outcomes were collected from the 3- to 9-mo follow-up appointments, and included surgical complications, aided audiometric thresholds with varying magnet strength, speech performance in quiet and noise, and patient-rated benefit and satisfaction using questionnaires. Repeated measures analysis of variance was used to analyze audiometric outcomes, and nonparametric tests were used to evaluate rated benefit and satisfaction. All nine children tolerated the device and only one child had discomfort at the wound

  20. [Radiotherapy and implantable medical device: example of infusion pumps].

    Science.gov (United States)

    Abrous-Anane, S; Benhassine, S; Lopez, S; Cristina, K; Mazeron, J-J

    2013-12-01

    Indication for radiotherapy is often questioned for patients equipped with implantable medical devices like infusion pumps as the radiation tolerance is poor or not known. We report here on the case of a patient who we treated with pelvic radiotherapy for cervical cancer and who had an infusion pump in iliac fossa. We conducted a series of tests on five identical pumps that insured that the treatment protocol is harmless to the implanted device. Copyright © 2013 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  1. Minimum Lateral Bone Coverage Required for Securing Fixation of Cementless Acetabular Components in Hip Dysplasia

    Directory of Open Access Journals (Sweden)

    Masanori Fujii

    2017-01-01

    Full Text Available Objectives. To determine the minimum lateral bone coverage required for securing stable fixation of the porous-coated acetabular components (cups in hip dysplasia. Methods. In total, 215 primary total hip arthroplasties in 199 patients were reviewed. The average follow-up period was 49 months (range: 24–77 months. The lateral bone coverage of the cups was assessed by determining the cup center-edge (cup-CE angle and the bone coverage index (BCI from anteroposterior pelvic radiographs. Further, cup fixation was determined using the modified DeLee and Charnley classification system. Results. All cups were judged to show stable fixation by bone ingrowth. The cup-CE angle was less than 0° in 7 hips (3.3% and the minimum cup-CE angle was −9.2° (BCI: 48.8%. Thin radiolucent lines were observed in 5 hips (2.3%, which were not associated with decreased lateral bone coverage. Loosening, osteolysis, dislocation, or revision was not observed in any of the cases during the follow-up period. Conclusion. A cup-CE angle greater than −10° (BCI > 50% was acceptable for stable bony fixation of the cup. Considering possible errors in manual implantation, we recommend that the cup position be planned such that the cup-CE angle is greater than 0° (BCI > 60%.

  2. Impact of cone-beam computed tomography on implant planning and on prediction of implant size

    Energy Technology Data Exchange (ETDEWEB)

    Pedroso, Ludmila Assuncao de Mello; Silva, Maria Alves Garcia Santos, E-mail: ludmilapedroso@hotmail.com [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Fac. de Odontologia; Garcia, Robson Rodrigues [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Fac. de Odontologia. Dept. de Medicina Oral; Leles, Jose Luiz Rodrigues [Universidade Paulista (UNIP), Goiania, GO (Brazil). Fac. de Odontologia. Dept. de Cirurgia; Leles, Claudio Rodrigues [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Fac. de Odontologia. Dept. de Prevencao e Reabilitacao Oral

    2013-11-15

    The aim was to investigate the impact of cone-beam computed tomography (CBCT) on implant planning and on prediction of final implant size. Consecutive patients referred for implant treatment were submitted to clinical examination, panoramic (PAN) radiography and a CBCT exam. Initial planning of implant length and width was assessed based on clinical and PAN exams, and final planning, on CBCT exam to complement diagnosis. The actual dimensions of the implants placed during surgery were compared with those obtained during initial and final planning, using the McNemmar test (p < 0.05). The final sample comprised 95 implants in 27 patients, distributed over the maxilla and mandible. Agreement in implant length was 50.5% between initial and final planning, and correct prediction of the actual implant length was 40.0% and 69.5%, using PAN and CBCT exams, respectively. Agreement in implant width assessment ranged from 69.5% to 73.7%. A paired comparison of the frequency of changes between initial or final planning and implant placement (McNemmar test) showed greater frequency of changes in initial planning for implant length (p < 0.001), but not for implant width (p = 0.850). The frequency of changes was not influenced by implant location at any stage of implant planning (chi-square test, p > 0.05). It was concluded that CBCT improves the ability of predicting the actual implant length and reduces inaccuracy in surgical dental implant planning. (author)

  3. Metals for bone implants. Part 1. Powder metallurgy and implant rendering.

    Science.gov (United States)

    Andani, Mohsen Taheri; Shayesteh Moghaddam, Narges; Haberland, Christoph; Dean, David; Miller, Michael J; Elahinia, Mohammad

    2014-10-01

    New metal alloys and metal fabrication strategies are likely to benefit future skeletal implant strategies. These metals and fabrication strategies were looked at from the point of view of standard-of-care implants for the mandible. These implants are used as part of the treatment for segmental resection due to oropharyngeal cancer, injury or correction of deformity due to pathology or congenital defect. The focus of this two-part review is the issues associated with the failure of existing mandibular implants that are due to mismatched material properties. Potential directions for future research are also studied. To mitigate these issues, the use of low-stiffness metallic alloys has been highlighted. To this end, the development, processing and biocompatibility of superelastic NiTi as well as resorbable magnesium-based alloys are discussed. Additionally, engineered porosity is reviewed as it can be an effective way of matching the stiffness of an implant with the surrounding tissue. These porosities and the overall geometry of the implant can be optimized for strain transduction and with a tailored stiffness profile. Rendering patient-specific, site-specific, morphology-specific and function-specific implants can now be achieved using these and other metals with bone-like material properties by additive manufacturing. The biocompatibility of implants prepared from superelastic and resorbable alloys is also reviewed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Improved corrosion resistance on biodegradable magnesium by zinc and aluminum ion implantation

    Science.gov (United States)

    Xu, Ruizhen; Yang, Xiongbo; Suen, Kai Wong; Wu, Guosong; Li, Penghui; Chu, Paul K.

    2012-12-01

    Magnesium and its alloys have promising applications as biodegradable materials, and plasma ion implantation can enhance the corrosion resistance by modifying the surface composition. In this study, suitable amounts of zinc and aluminum are plasma-implanted into pure magnesium. The surface composition, phases, and chemical states are determined, and electrochemical tests and electrochemical impedance spectroscopy (EIS) are conducted to investigate the surface corrosion behavior and elucidate the mechanism. The corrosion resistance enhancement after ion implantation is believed to stem from the more compact oxide film composed of magnesium oxide and aluminum oxide as well as the appearance of the β-Mg17Al12 phase.

  5. [Cochlear implant in patients with congenital malformation of the inner ear].

    Science.gov (United States)

    Wan, Liang-cai; Guo, Meng-he; Qian, Yu-hong; Liu, Shuang-xiu; Zhang, Hong-zheng; Chen, Shuai-jun; Chen, Hao; Gong, Jian

    2009-10-01

    To summarize the clinical experience with multi-channel cochlear implantation in patients with inner ear malformations and evaluate and the outcomes of speech rehabilitation. A retrospective study was conducted in 295 patients receiving cochlear implantation from 1998 to 2007, including 25 patients with large vestibular aqueduct syndrome (LVAS), 9 with Modini malformation, and 5 with common cavity deformity. All the patients received the Nucleus24 cochlear implants. In LVAS cases, 4 had Nucleus 24R (ST) implants, 8 had Contuor implants, 10 had Contuor Advance, and the remaining cases used Nucleus24(M) straight-electrode implants. Severe gusher appeared in 3 cases of LVAS, and perilymph fluctuation were seen in other 15 cases. Four patients with Mondini malformation and 2 with common cavity malformation also experienced severe gusher, but the electrodes were inserted smoothly in all the patients without postoperative facial paralysis or cerebrospinal fluid leakage. The hearing threshold in these patients was similar to that in patients with normal cochlear structure. After speech rehabilitation for over 6 months, the abilities of speech discrimination and spoken language improved in all the cases in comparison with the preoperative lingual functions. Multi-channel cochlear implantation can be performed in patients with inner ear malformation, but should not be attempted in patients with poor cochlear and cochlear nerve development. A comprehensive pre-operative radiographic and audiological evaluation is essential.

  6. Novel implant design improves implant survival in multirooted extraction sites: a preclinical pilot study.

    Science.gov (United States)

    Sivan-Gildor, Adi; Machtei, Eli E; Gabay, Eran; Frankenthal, Shai; Levin, Liran; Suzuki, Marcelo; Coelho, Paulo G; Zigdon-Giladi, Hadar

    2014-10-01

    The primary aim is to evaluate clinical, radiographic, and histologic parameters of novel implants with "three roots" design that were inserted into fresh multirooted extraction sockets. A secondary aim is to compare this new implant to standard root-form dental implants. Immediate implantation of novel or standard design 6 × 6-mm implants was performed bilaterally into multirooted sockets in mandibles of mini-pigs. Twelve weeks later, clinical, radiographic, stability, histomorphometric, and microcomputed tomography (micro-CT) analyses were performed. Survival rates were significantly higher in the test implants compared with control (92.8% versus 33.3%, respectively; P micro-CT analyses demonstrated bone fill in the inner part of the test implants. Moreover, bone-to-implant contact was higher in the test implants (55.50% ± 3.68% versus 42.47% ± 9.89%). Contrary to the clinical, radiographic, and histomorphometric results, resonance frequency analysis measurements were greater in the control group (77.74 ± 3.21 implant stability quotient [ISQ]) compared with the test group (31.09 ± 0.28 ISQ), P = 0.008. The novel design implants resulted in significantly greater survival rate in multirooted extraction sites. Further studies will be required to validate these findings.

  7. Group D. Initiator paper. Implants--peri-implant (hard and soft tissue) interactions in health and disease: the impact of explosion of implant manufacturers.

    Science.gov (United States)

    Ivanovski, Saso

    2015-01-01

    1. The best-documented implants have a threaded solid screw-type design and are manufactured from commercially pure (grade IV) titanium. There is good evidence to support implants ≥ 6 mm in length, and ≥ 3 mm in diameter. 2. Integrity of the seal between the abutment and the implant is important for several reasons, including minimization of mechanical and biological complications and maintaining marginal bone levels. Although the ideal design features of the implant-abutment connection have not been determined, an internal connection, micro-grooves at the implant collar, and horizontal offset of the implant-abutment junction (platform switch) appear to impart favorable properties. 3. Implants with moderately rough implant surfaces provide advantages over machined surfaces in terms of the speed and extent of osseointegration. While the favorable performances of both minimally and moderately rough surfaces are supported by long-term data, moderately rough surfaces provide superior outcomes in compromised sites, such as the posterior maxilla. 4. Although plaque is critical in the progression of peri-implantitis, the disease has a multi-factorial aetiology, and may be influenced by poor integrity of the abutment/implant connection. Iatrogenic factors, such as the introduction of a foreign body. (e.g., cement) below the mucosal margin, can be important contributors. 5. Clinicians should exercise caution when using a particular implant system, ensuring that the implant design is appropriate and supported by scientific evidence. Central to this is access to and participation in quality education on the impact that implant characteristics can have on clinical outcomes. Caution should be exercised in utilizing non-genuine restorative componentry that may lead to a poor implant-abutment fit and subsequent technical and biological complications.

  8. Structure of ion-implanted ceramics

    International Nuclear Information System (INIS)

    Naramoto, Hiroshi

    1983-01-01

    The variation of structure of LiF, MgO, Al 2 O 3 and TiO 2 accompanying annealing after ion implantation is explained. The analysis of structure is usually made by the perturbed gamma ray angular correlation, the internal electron Moessbauer method, or the ion scattering method. The results of analyses are discussed for alkali ion implantation, Fe-ion implantation, In-ion implantation, Au-ion implantation, Pt-ion implantation, Pb-ion implantation and transition metal ion implantation. The coupling of the implanted elements with lattice defects and matrix elements, and the compatibility between deposited elements and matrix crystal lattice were studied. The variation of physical properties due to ion implantation such as phase transition, volume change, the control of single crystal region, and the variation of hardness near surface were investigated, and the examples are presented. (Kato, T.)

  9. New orthopaedic implant management tool for computer-assisted planning, navigation, and simulation: from implant CAD files to a standardized XML-based implant database.

    Science.gov (United States)

    Sagbo, S; Blochaou, F; Langlotz, F; Vangenot, C; Nolte, L-P; Zheng, G

    2005-01-01

    Computer-Assisted Orthopaedic Surgery (CAOS) has made much progress over the last 10 years. Navigation systems have been recognized as important tools that help surgeons, and various such systems have been developed. A disadvantage of these systems is that they use non-standard formalisms and techniques. As a result, there are no standard concepts for implant and tool management or data formats to store information for use in 3D planning and navigation. We addressed these limitations and developed a practical and generic solution that offers benefits for surgeons, implant manufacturers, and CAS application developers. We developed a virtual implant database containing geometrical as well as calibration information for orthopedic implants and instruments, with a focus on trauma. This database has been successfully tested for various applications in the client/server mode. The implant information is not static, however, because manufacturers periodically revise their implants, resulting in the deletion of some implants and the introduction of new ones. Tracking these continuous changes and keeping CAS systems up to date is a tedious task if done manually. This leads to additional costs for system development, and some errors are inevitably generated due to the huge amount of information that has to be processed. To ease management with respect to implant life cycle, we developed a tool to assist end-users (surgeons, hospitals, CAS system providers, and implant manufacturers) in managing their implants. Our system can be used for pre-operative planning and intra-operative navigation, and also for any surgical simulation involving orthopedic implants. Currently, this tool allows addition of new implants, modification of existing ones, deletion of obsolete implants, export of a given implant, and also creation of backups. Our implant management system has been successfully tested in the laboratory with very promising results. It makes it possible to fill the current gap

  10. Characterization of Cement Particles Found in Peri-implantitis-Affected Human Biopsy Specimens.

    Science.gov (United States)

    Burbano, Maria; Wilson, Thomas G; Valderrama, Pilar; Blansett, Jonathan; Wadhwani, Chandur P K; Choudhary, Pankaj K; Rodriguez, Lucas C; Rodrigues, Danieli C

    2015-01-01

    Peri-implantitis is a disease characterized by soft tissue inflammation and continued loss of supporting bone, which can result in implant failure. Peri-implantitis is a multifactorial disease, and one of its triggering factors may be the presence of excess cement in the soft tissues surrounding an implant. This descriptive study evaluated the composition of foreign particles from 36 human biopsy specimens with 19 specimens selected for analysis. The biopsy specimens were obtained from soft tissues affected by peri-implantitis around cement-retained implant crowns and compared with the elemental composition of commercial luting cement. Nineteen biopsy specimens were chosen for the comparison, and five test cements (TempBond, Telio, Premier Implant Cement, Intermediate Restorative Material, and Relyx) were analyzed using scanning electron microscopy equipped with energy dispersive x-ray spectroscopy. This enabled the identification of the chemical composition of foreign particles embedded in the tissue specimens and the composition of the five cements. Statistical analysis was conducted using classification trees to pair the particles present in each specimen with the known cements. The particles in each biopsy specimen could be associated with one of the commercial cements with a level of probability ranging between .79 and 1. TempBond particles were found in one biopsy specimen, Telio particles in seven, Premier Implant Cement particles in four, Relyx particles in four, and Intermediate Restorative Material particles in three. Particles found in human soft tissue biopsy specimens around implants affected by peri-implant disease were associated with five commercially available dental cements.

  11. Processing of Silver-Implanted Aluminum Nitride for Energy Harvesting Devices

    Science.gov (United States)

    Alleyne, Fatima Sierre

    One of the more attractive sources of green energy has roots in the popular recycling theme of other green technologies, now known by the term "energy scavenging." In its most promising conformation, energy scavenging converts cyclic mechanical vibrations in the environment or random mechanical pressure pulses, caused by sources ranging from operating machinery to human footfalls, into electrical energy via piezoelectric transducers. While commercial piezoelectrics have evolved to favor lead zirconate titanate (PZT) for its combination of superior properties, the presence of lead in these ceramic compounds raises resistance to their application in anything "green" due to potential health implications during their manufacturing, recycling, or in-service application, if leaching occurs. Therefore in this study we have pursued the application of aluminum nitride (AlN) as a non-toxic alternative to PZT, seeking processing pathways to augment the modest piezoelectric performance of AlN and exploit its compatibility with complementary-metal-oxide semiconductor (CMOS) manufacturing. Such piezoelectric transducers have been categorized as microelectromechanical systems (MEMS), which despite more than a decade of research in this field, is plagued by delamination at the electrode/piezoelectric interface. Consequently the electric field essential to generate and sustain the piezoelectric response of these devices is lost, resulting in device failure. Working on the hypothesis that buried conducting layers can both mitigate the delamination problem and generate sufficient electric field to engage the operation of resonator devices, we have undertaken a study of silver ion implantation to experimentally assess its feasibility. As with most ion implantation procedures employed in semiconductor fabrication, the implanted sample is subjected to a thermal treatment, encouraging diffusion-assisted precipitation of the implanted species at high enough concentrations. The objective

  12. Interaction of mobile phones with superficial passive metallic implants

    International Nuclear Information System (INIS)

    Virtanen, H; Huttunen, J; Toropainen, A; Lappalainen, R

    2005-01-01

    The dosimetry of exposure to radiofrequency (RF) electromagnetic (EM) fields of mobile phones is generally based on the specific absorption rate (SAR, W kg -1 ), which is the electromagnetic energy absorbed in the tissues per unit mass and time. In this study, numerical methods and modelling were used to estimate the effect of a passive, metallic (conducting) superficial implant on a mobile phone EM field and especially its absorption in tissues in the near field. Two basic implant models were studied: metallic pins and rings in the surface layers of the human body near the mobile phone. The aim was to find out 'the worst case scenario' with respect to energy absorption by varying different parameters such as implant location, orientation, size and adjacent tissues. Modelling and electromagnetic field calculations were carried out using commercial SEMCAD software based on the FDTD (finite difference time domain) method. The mobile phone was a 900 MHz or 1800 MHz generic phone with a quarter wave monopole antenna. A cylindrical tissue phantom models different curved sections of the human body such as limbs or a head. All the parameters studied (implant size, orientation, location, adjacent tissues and signal frequency) had a major effect on the SAR distribution and in certain cases high local EM fields arose near the implant. The SAR values increased most when the implant was on the skin and had a resonance length or diameter, i.e. about a third of the wavelength in tissues. The local peak SAR values increased even by a factor of 400-700 due to a pin or a ring. These highest values were reached in a limited volume close to the implant surface in almost all the studied cases. In contrast, without the implant the highest SAR values were generally reached on the skin surface. Mass averaged SAR 1g and SAR 10g values increased due to the implant even by a factor of 3 and 2, respectively. However, at typical power levels of mobile phones the enhancement is unlikely to be

  13. Comparison of of Interleukin 23 Level in Gingival Crevicular Fluid between Peri-implantitis and Healthy Patients

    Directory of Open Access Journals (Sweden)

    Vahid Esfahanian

    2018-06-01

    Full Text Available Introduction: Peri-implantitis is characterized by irreversible lesions that are caused by microbial plaque, involving not only the soft tissue around the implant, but also the implant-supporting bone. In the peri-implant diseases, some cytokines are increased, and inflammatory mediators, which are observed in peri-implantitis, induce the activation of osteoclasts and bone resorption. The aim of this study was to compare the level of interleukin 23 (IL-23 in patients with peri-implantitis and those with healthy peri-implant tissue. Materials & methods: This clinical trial was conducted on 19 patients with peri-implantitis and 19 patients with healthy peri-implant tissue. The samples were collected from sulcular fluid/gingival pocket fluid by paper cone and placed in vials. The level of IL-23 was determined using ELISA reader. Furthermore, the relationship of IL-23 levels with bleeding, probing depth, and pus formation was analyzed. Data analysis was performed using independent t-test, Pearson correlation coefficient, and Spearman test. Results: According to the results, the level of IL-23 in the patients with peri-implantitis was significantly higher than that in the group with healthy peri-implant tissue (P

  14. Self-Paced (Asynchronous BCI Control of a Wheelchair in Virtual Environments: A Case Study with a Tetraplegic

    Directory of Open Access Journals (Sweden)

    Robert Leeb

    2007-09-01

    Full Text Available The aim of the present study was to demonstrate for the first time that brain waves can be used by a tetraplegic to control movements of his wheelchair in virtual reality (VR. In this case study, the spinal cord injured (SCI subject was able to generate bursts of beta oscillations in the electroencephalogram (EEG by imagination of movements of his paralyzed feet. These beta oscillations were used for a self-paced (asynchronous brain-computer interface (BCI control based on a single bipolar EEG recording. The subject was placed inside a virtual street populated with avatars. The task was to “go” from avatar to avatar towards the end of the street, but to stop at each avatar and talk to them. In average, the participant was able to successfully perform this asynchronous experiment with a performance of 90%, single runs up to 100%.

  15. Peculiarities of the electrontransport properties of polyimide films implanted with copper and cobalt ions

    International Nuclear Information System (INIS)

    Nazhim, F.A.; Odzhaev, V.B.; Lukashevich, M.G.; Nuzhdin, V.I.; Khajbullin, R.I.

    2010-01-01

    Thin polyimide foils were implanted with 40 keV Co + and Cu + ions at fluencies of 2,5·1016-1,251017 cm 2 and at ion current densities of 4, 8 and 12 mA cm 2 . Surface dc electric resistance of the implanted polymer samples have been measured in the temperature range 40-300 K. Metal implantation results in decreasing polymer resistance with the dose and current density increasing for the both kinds of metal ions. The decrease of dc electric resistance is caused by radiation-induced carbonization and metal nanoparticle formation in the implanted region of polymer. The transition from the insulating to metallic regime of conductivity is observed in cobalt implanted samples for critical doses above Dc = 1,25?1017 cm 2 at an ion current density of 8 mA cm 2 . In the contrary, high-fluence implantation in the polymer with Cu + ions for the same regimes does not result in the transition. The dominating mechanisms of charge carrier transport and the origin of insulator-to-metal transition in the metal implanted polymer are discussed. (authors)

  16. Radiographic evaluation of marginal bone level around implants with different neck designs after 1 year.

    Science.gov (United States)

    Shin, Young-Kyu; Han, Chong-Hyun; Heo, Seong-Joo; Kim, Sunjai; Chun, Heoung-Jae

    2006-01-01

    To evaluate the influence of macro- and microstructure of the implant surface at the marginal bone level after functional loading. Sixty-eight patients were randomly assigned to 1 of 3 groups. The first group received 35 implants with a machined neck (Ankylos); the second group, 34 implants with a rough-surfaced neck (Stage 1); and the third, 38 implants with a rough-surfaced neck with microthreads (Oneplant). Clinical and radiographic examinations were conducted at baseline (implant loading) and 3, 6, and 12 months postloading. Two-way repeated analysis of variance (ANOVA) was used to test the significance of marginal bone change of each tested group at baseline, 3, 6, and 12 month follow-ups and 1-way ANOVA was also used to compare the bone loss of each time interval within the same implant group (P implant neck not only reduce crestal bone loss but also help with early biomechanical adaptation against loading in comparison to the machined neck design. A rough surface with microthreads at the implant neck was the most effective design to maintain the marginal bone level against functional loading.

  17. Ion implantation technology

    CERN Document Server

    Downey, DF; Jones, KS; Ryding, G

    1993-01-01

    Ion implantation technology has made a major contribution to the dramatic advances in integrated circuit technology since the early 1970's. The ever-present need for accurate models in ion implanted species will become absolutely vital in the future due to shrinking feature sizes. Successful wide application of ion implantation, as well as exploitation of newly identified opportunities, will require the development of comprehensive implant models. The 141 papers (including 24 invited papers) in this volume address the most recent developments in this field. New structures and possible approach

  18. Individual titanium zygomatic implant

    Science.gov (United States)

    Nekhoroshev, M. V.; Ryabov, K. N.; Avdeev, E. V.

    2018-03-01

    Custom individual implants for the reconstruction of craniofacial defects have gained importance due to better qualitative characteristics over their generic counterparts – plates, which should be bent according to patient needs. The Additive Manufacturing of individual implants allows reducing cost and improving quality of implants. In this paper, the authors describe design of zygomatic implant models based on computed tomography (CT) data. The fabrication of the implants will be carried out with 3D printing by selective laser melting machine SLM 280HL.

  19. A 5-year randomized trial to compare 1 or 2 implants for implant overdentures.

    Science.gov (United States)

    Bryant, S R; Walton, J N; MacEntee, M I

    2015-01-01

    The hypothesis of this 5-y randomized clinical trial was that there would be no significant difference in the satisfaction of edentulous participants with removable complete overdentures attached to 1 or 2 mandibular implants. Secondary aims were to test changes in satisfaction between and within the groups from baseline to 5 y and differences between the groups in implant survival and prosthodontic maintenance over 5 y. Each of the 86 participants (mean age, 67 y) was randomly allocated to receive either 1 implant in the midline (group 1) or 2 implants in the canine areas (group 2) attached to a mandibular overdenture opposing a maxillary complete denture. Satisfaction was self-assessed by participants on a visual analog scale at baseline prior to implants, as well as at 2 mo and 1, 3, and 5 y with implant overdentures, whereas implant survival and prosthodontic maintenance were assessed by clinical examination. After 5 y, 29 participants in group 1 and 33 in group 2 were available, with most dropouts due to death. Satisfaction with the implant denture after 5 y was significantly (P overdentures retained by 1 implant or 2 implants. Additional research is required to confirm long-term treatment effectiveness of single-implant dentures and the implications of prosthetic maintenance with implant overdentures (ClinicalTrials.gov: NCT02117856). © International & American Associations for Dental Research 2014.

  20. Recent advances in dental implants.

    Science.gov (United States)

    Hong, Do Gia Khang; Oh, Ji-Hyeon

    2017-12-01

    Dental implants are a common treatment for the loss of teeth. This paper summarizes current knowledge on implant surfaces, immediate loading versus conventional loading, short implants, sinus lifting, and custom implants using three-dimensional printing. Most of the implant surface modifications showed good osseointegration results. Regarding biomolecular coatings, which have been recently developed and studied, good results were observed in animal experiments. Immediate loading had similar clinical outcomes compared to conventional loading and can be used as a successful treatment because it has the advantage of reducing treatment times and providing early function and aesthetics. Short implants showed similar clinical outcomes compared to standard implants. A variety of sinus augmentation techniques, grafting materials, and alternative techniques, such as tilted implants, zygomatic implants, and short implants, can be used. With the development of new technologies in three-dimension and computer-aided design/computer-aided manufacturing (CAD/CAM) customized implants can be used as an alternative to conventional implant designs. However, there are limitations due to the lack of long-term studies or clinical studies. A long-term clinical trial and a more predictive study are needed.

  1. Paediatric Cochlear Implantation in Patients with Waardenburg Syndrome.

    Science.gov (United States)

    van Nierop, Josephine W I; Snabel, Rebecca R; Langereis, Margreet; Pennings, Ronald J E; Admiraal, Ronald J C; Mylanus, Emmanuel A M; Kunst, Henricus P M

    2016-01-01

    To analyse the benefit of cochlear implantation in young deaf children with Waardenburg syndrome (WS) compared to a reference group of young deaf children without additional disabilities. A retrospective study was conducted on children with WS who underwent cochlear implantation at the age of 2 years or younger. The post-operative results for speech perception (phonetically balanced standard Dutch consonant-vocal-consonant word lists) and language comprehension (the Reynell Developmental Language Scales, RDLS), expressed as a language quotient (LQ), were compared between the WS group and the reference group by using multiple linear regression analysis. A total of 14 children were diagnosed with WS, and 6 of them had additional disabilities. The WS children were implanted at a mean age of 1.6 years and the 48 children of the reference group at a mean age of 1.3 years. The WS children had a mean phoneme score of 80% and a mean LQ of 0.74 at 3 years post-implantation, and these results were comparable to those of the reference group. Only the factor additional disabilities had a significant negative influence on auditory perception and language comprehension. Children with WS performed similarly to the reference group in the present study, and these outcomes are in line with the previous literature. Although good counselling about additional disabilities concomitant to the syndrome is relevant, cochlear implantation is a good rehabilitation method for children with WS. © 2016 S. Karger AG, Basel.

  2. Effect of implant design and bioactive glass coating on biomechanical properties of fiber-reinforced composite implants.

    Science.gov (United States)

    Ballo, Ahmed M; Akca, Eralp; Ozen, Tuncer; Moritz, Niko; Lassila, Lippo; Vallittu, Pekka; Närhi, Timo

    2014-08-01

    This study aimed to evaluate the influence of implant design and bioactive glass (BAG) coating on the response of bone to fiber-reinforced composite (FRC) implants. Three different FRC implant types were manufactured for the study: non-threaded implants with a BAG coating; threaded implants with a BAG coating; and threaded implants with a grit-blasted surface. Thirty-six implants (six implants for each group per time point) were installed in the tibiae of six pigs. After an implantation period of 4 and 12 wk, the implants were retrieved and prepared for micro-computed tomography (micro-CT), push-out testing, and scanning electron microscopy analysis. Micro-CT demonstrated that the screw-threads and implant structure remained undamaged during the installation. The threaded FRC/BAG implants had the highest bone volume after 12 wk of implantation. The push-out strengths of the threaded FRC/BAG implants after 4 and 12 wk (463°N and 676°N, respectively) were significantly higher than those of the threaded FRC implants (416°N and 549°N, respectively) and the nonthreaded FRC/BAG implants (219°N and 430°N, respectively). Statistically significant correlation was found between bone volume and push-out strength values. This study showed that osseointegrated FRC implants can withstand the static loading up to failure without fracture, and that the addition of BAG significantly improves the push-out strength of FRC implants. © 2014 Eur J Oral Sci.

  3. Nanomodified Peek Dental Implants: Bioactive Composites and Surface Modification—A Review

    Directory of Open Access Journals (Sweden)

    Shariq Najeeb

    2015-01-01

    Full Text Available Purpose. The aim of this review is to summarize and evaluate the relevant literature regarding the different ways how polyetheretherketone (PEEK can be modified to overcome its limited bioactivity, and thereby making it suitable as a dental implant material. Study Selection. An electronic literature search was conducted via the PubMed and Google Scholar databases using the keywords “PEEK dental implants,” “nano,” “osseointegration,” “surface treatment,” and “modification.” A total of 16 in vivo and in vitro studies were found suitable to be included in this review. Results. There are many viable methods to increase the bioactivity of PEEK. Most methods focus on increasing the surface roughness, increasing the hydrophilicity and coating osseoconductive materials. Conclusion. There are many ways in which PEEK can be modified at a nanometer level to overcome its limited bioactivity. Melt-blending with bioactive nanoparticles can be used to produce bioactive nanocomposites, while spin-coating, gas plasma etching, electron beam, and plasma-ion immersion implantation can be used to modify the surface of PEEK implants in order to make them more bioactive. However, more animal studies are needed before these implants can be deemed suitable to be used as dental implants.

  4. Mecanobiología de la interfase hueso-implante dental Mechanobiology of bone-dental implant interphase

    Directory of Open Access Journals (Sweden)

    Juan Carlos Vanegas Acosta

    2010-03-01

    Full Text Available La osteointegración es la conexión estructural y funcional entre el hueso y un implante. Cuando un implante se inserta en el hueso, se crea la denominada interfase hueso-implante, una zona de unión entre la superficie del biomaterial del implante y el hueso circundante. La cicatrización de esta interfase depende de las condiciones biológicas del hueso, las características de diseño del implante y la distribución de cargas entre hueso e implante. En este artículo se hace una revisión del proceso de cicatrización de la interfase hueso-implante para el caso de un implante dental. El objetivo es describir la secuencia de eventos biológicos iniciados con la lesión causada por la inserción del implante y que concluyen con la formación de nuevo hueso en la interfase. Esta descripción incluye una novedosa clasificación de los fenómenos mecánicos que intervienen durante el proceso de cicatrización de los tejidos lesionados. Esta descripción mecanobiológica de la interfase hueso-implante dental se utiliza para determinar las características más relevantes a tener en cuenta en la formulación de un modelo matemático de la osteointegración de implantes dentales.The osteointegration is the structural and functional connection between bone and implant. When an implant is inserted in bone, it creates the so-called bone-implant interphase, a joint zone between implant biomaterial surface and the surrounding bone. The healing of this interphase depends on bone biological conditions, characteristic of implant design and the distribution of loads between bone and implant. The aim of present article is to review of healing process of bone-implant interphase for a dental implant and also to describe the sequence of biological events beginning with lesion caused by implant insertion and leading to the formation of a new bone in the interphase. This description includes a novel classification of mechanical phenomena present in the healing

  5. Cochlear Implants

    Science.gov (United States)

    ... implant, including: • How long a person has been deaf, •The number of surviving auditory nerve fibers, and • ... Implant, Severe Sensoryneurial Hearing Loss Get Involved Professional Development Practice Management ENT Careers Marketplace Privacy Policy Terms ...

  6. The clinical implications of poly implant prothèse breast implants: an overview.

    Science.gov (United States)

    Wazir, Umar; Kasem, Abdul; Mokbel, Kefah

    2015-01-01

    Mammary implants marketed by Poly Implant Prothèse (PIP) were found to contain industrial grade silicone and this caused heightened anxiety and extensive publicity regarding their safety in humans. These implants were used in a large number of patients worldwide for augmentation or breast reconstruction. We reviewed articles identified by searches of Medline, PubMed, Embase, and Google Scholar databases up to May 2014 using the terms: "PIP", "Poly Implant Prothèse", "breast implants" and "augmentation mammoplasty" "siloxanes" or "silicone". In addition the websites of regulating bodies in Europe, USA, and Australia were searched for reports related to PIP mammary implants. PIP mammary implants are more likely to rupture than other implants and can cause adverse effects in the short to the medium term related to the symptoms of rupture such as pain, lumps in the breast and axilla and anxiety. Based on peer-reviewed published studies we have calculated an overall rupture rate of 14.5% (383/2,635) for PIP implants. However, there is no evidence that PIP implant rupture causes long-term adverse health effects in humans so far. Silicone lymphadenopathy represents a foreign body reaction and should be treated conservatively. The long-term adverse effects usually arise from inappropriate extensive surgery, such as axillary lymph node dissection or extensive resection of breast tissue due to silicone leakage.

  7. The Clinical Implications of Poly Implant Prothèse Breast Implants: An Overview

    Directory of Open Access Journals (Sweden)

    Umar Wazir

    2015-01-01

    Full Text Available Mammary implants marketed by Poly Implant Prothèse (PIP were found to contain industrial grade silicone and this caused heightened anxiety and extensive publicity regarding their safety in humans. These implants were used in a large number of patients worldwide for augmentation or breast reconstruction. We reviewed articles identified by searches of Medline, PubMed, Embase, and Google Scholar databases up to May 2014 using the terms: "PIP", "Poly Implant Prothèse", "breast implants" and "augmentation mammoplasty" "siloxanes" or "silicone". In addition the websites of regulating bodies in Europe, USA, and Australia were searched for reports related to PIP mammary implants. PIP mammary implants are more likely to rupture than other implants and can cause adverse effects in the short to the medium term related to the symptoms of rupture such as pain, lumps in the breast and axilla and anxiety. Based on peer-reviewed published studies we have calculated an overall rupture rate of 14.5% (383/2,635 for PIP implants. However, there is no evidence that PIP implant rupture causes long-term adverse health effects in humans so far. Silicone lymphadenopathy represents a foreign body reaction and should be treated conservatively. The long-term adverse effects usually arise from inappropriate extensive surgery, such as axillary lymph node dissection or extensive resection of breast tissue due to silicone leakage.

  8. Synergistic effects of iodine and silver ions co-implanted in 6H-SiC

    Science.gov (United States)

    Kuhudzai, R. J.; Malherbe, J. B.; Hlatshwayo, T. T.; van der Berg, N. G.; Devaraj, A.; Zhu, Z.; Nandasiri, M.

    2015-12-01

    Motivated by the aim of understanding the release of fission products through the SiC coating of fuel kernels in modern high temperature nuclear reactors, a fundamental investigation is conducted to understand the synergistic effects of implanted silver (Ag) and iodine (I) in 6H-SiC. The implantation of the individual species, as well as the co-implantation of 360 keV ions of I and Ag at room temperature in 6H-SiC and their subsequent annealing behaviour has been investigated by Secondary Ion Mass Spectrometry (SIMS), Atom Probe Tomography (APT) and X-ray Photoelectron Spectroscopy (XPS). SIMS and APT measurements indicated the presence of Ag in the co-implanted samples after annealing at 1500 °C for 30 h in sharp contrast to the samples implanted with Ag only. In samples implanted with Ag only, complete loss of the implanted Ag was observed. However, for I only implanted samples, some iodine was retained. APT of annealed co-implanted 6H-SiC showed clear spatial association of Ag and I clusters in SiC, which can be attributed to the observed I assisted retention of Ag after annealing. Such detailed studies will be necessary to identify the fundamental mechanism of fission products migration through SiC coatings.

  9. Current control for magnetized plasma in direct-current plasma-immersion ion implantation

    International Nuclear Information System (INIS)

    Tang Deli; Chu, Paul K.

    2003-01-01

    A method to control the ion current in direct-current plasma-immersion ion implantation (PIII) is reported for low-pressure magnetized inductively coupled plasma. The ion current can be conveniently adjusted by applying bias voltage to the conducting grid that separates plasma formation and implantation (ion acceleration) zones without the need to alter the rf input power, gas flux, or other operating conditions. The ion current that diminishes with an increase in grid bias in magnetized plasmas can be varied from 48 to 1 mA by increasing the grid voltage from 0 to 70 V at -50 kV sample bias and 0.5 mTorr hydrogen pressure. High implantation voltage and monoenergetic immersion implantation can now be achieved by controlling the ion current without varying the macroscopic plasma parameters. The experimental results and interpretation of the effects are presented in this letter. This technique is very attractive for PIII of planar samples that require on-the-fly adjustment of the implantation current at high implantation voltage but low substrate temperature. In some applications such as hydrogen PIII-ion cut, it may obviate the need for complicated sample cooling devices that must work at high voltage

  10. Risk of pacemaker implantation after uneventful successful cavotricuspid isthmus radiofrequency ablation in patients with common atrial flutter.

    Science.gov (United States)

    Rodríguez-Mañero, Moisés; González-Melchor, Layla; Ballesteros, Gabriel; Raposeiras-Roubín, Sergio; García-Seara, Javier; López, Xesús Alberte Fernández; Cambeiro, Cristina González; Alcalde, Oscar; García-Bolao, Ignacio; Martínez-Sande, Luis; González-Juanatey, José Ramón

    2016-01-01

    Little is known about the risk of pacemaker implantation after common atrial flutter ablation in the long-term. We retrospectively reviewed the electrophysiology laboratory database at two Spanish University Hospitals from 1998 to 2012 to identify patients who had undergone successful ablation for cavotricuspid dependent atrial flutter. Cox regression analysis was used to examine the risk of pacemaker implantation. A total of 298 patients were considered eligible for inclusion. The mean age of the enrolled patients was 65.7±11. During 57.7±42.8 months, 30 patients (10.1%) underwent pacemaker implantation. In the stepwise multivariate models only heart rate at the time of the ablation (OR: 0.96; 95% CI: 0.93-0.98; ppacemaker implantation. A heart rate of ≤65 bpm was identified as the optimal cut-off value to predict the need of pacemaker implantation in the follow-up (sensitivity: 79%, specificity: 74%) by ROC curve analyses. This is the first study of an association between the slow conducting common atrial flutter and subsequent risk of pacemaker implantation. In light of these findings, assessing it prior to ablation can be helpful for the risk stratification of sinus node disease or atrioventricular conduction disease requiring a pacemaker implantation in patients with persistent atrial flutter. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. In vitro biological outcome of laser application for modification or processing of titanium dental implants.

    Science.gov (United States)

    Hindy, Ahmed; Farahmand, Farzam; Tabatabaei, Fahimeh Sadat

    2017-07-01

    There are numerous functions for laser in modern implant dentistry including surface treatment, surface coating, and implant manufacturing. As laser application may potentially improve osseointegration of dental implants, we systematically reviewed the literature for in vitro biological responses to laser-modified or processed titanium dental implants. The literature was searched in PubMed, ISI Web, and Scopus, using keywords "titanium dental implants," "laser," "biocompatibility," and their synonyms. After screening the 136 references obtained, 28 articles met the inclusion criteria. We found that Nd:YAG laser was the most commonly used lasers in the treatment or processing of titanium dental implants. Most of the experiments used cell attachment and cell proliferation to investigate bioresponses of the implants. The most commonly used cells in these assays were osteoblast-like cells. Only one study was conducted in stem cells. These in vitro studies reported higher biocompatibility in laser-modified titanium implants. It seems that laser radiation plays a vital role in cell response to dental implants; however, it is necessary to accomplish more studies using different laser types and parameters on various cells to offer a more conclusive result.

  12. An in vivo assessment of the effects of using different implant abutment occluding materials on implant microleakage and the peri-implant microbiome

    Science.gov (United States)

    Rubino, Caroline

    Microleakage may be a factor in the progression of peri-implant pathology. Microleakage in implant dentistry refers to the passage of bacteria, fluids, molecules or ions between the abutment-implant interface to and from the surrounding periodontal tissues. This creates a zone of inflammation and reservoir of bacteria at the implant-abutment interface. Bone loss typically occurs within the first year of abutment connection and then stabilizes. It has not yet been definitively proven that the occurrence of microleakage cannot contribute to future bone loss or impede the treatment of peri-implant disease. Therefore, strategies to reduce or eliminate microleakage are sought out. Recent evidence demonstrates that the type of implant abutment channel occluding material can affect the amount of microleakage in an in vitro study environment. Thus, we hypothesize that different abutment screw channel occluding materials will affect the amount of observed microleakage, vis-a-vis the correlation between the microflora found on the abutment screw channel occluding material those found in the peri-implant sulcus. Additional objectives include confirming the presence of microleakage in vivo and assessing any impact that different abutment screw channel occluding materials may have on the peri-implant microbiome. Finally, the present study provides an opportunity to further characterize the peri-implant microbiome. Eight fully edentulous patients restored with at dental implants supporting screw-retained fixed hybrid prostheses were included in the study. At the initial appointment (T1), the prostheses were removed and the implants and prostheses were cleaned. The prostheses were then inserted with polytetrafluoroethylene tape (PTFE, TeflonRTM), cotton, polyvinyl siloxane (PVS), or synthetic foam as the implant abutment channel occluding material and sealed over with composite resin. About six months later (T2), the prostheses were removed and the materials collected. Paper

  13. Biodegradable radioactive implants for glaucoma filtering surgery produced by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Assmann, W. [Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, 85748 Garching (Germany)]. E-mail: walter.assmann@lmu.de; Schubert, M. [Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, 85748 Garching (Germany); Held, A. [Augenklinik, Technische Universitaet Muenchen, 81675 Munich (Germany); Pichler, A. [Augenklinik, Technische Universitaet Muenchen, 81675 Muenchen (Germany); Chill, A. [Zentralinstitut fuer Medizintechnik, Technische Universitaet Muenchen, 85748 Garching (Germany); Kiermaier, S. [Zentralinstitut fuer Medizintechnik, Technische Universitaet Muenchen, 85748 Garching (Germany); Schloesser, K. [Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Busch, H. [NTTF GmbH, 53619 Rheinbreitbach (Germany); Schenk, K. [NTTF GmbH, 53619 Rheinbreitbach (Germany); Streufert, D. [Acri.Tec GmbH, 16761 Hennigsdorf (Germany); Lanzl, I. [Augenklinik, Technische Universitaet Muenchen, 81675 Munich (Germany)

    2007-04-15

    A biodegradable, {beta}-emitting implant has been developed and successfully tested which prevents fresh intraocular pressure increase after glaucoma filtering surgery. Ion implantation has been used to load the polymeric implants with the {beta}-emitter {sup 32}P. The influence of ion implantation and gamma sterilisation on degradation and {sup 32}P-fixation behavior has been studied by ion beam and chemical analysis. Irradiation effects due to the applied ion fluence (10{sup 15} ions/cm{sup 2}) and gamma dose (25 kGy) are found to be tolerable.

  14. Trends in cochlear implants.

    Science.gov (United States)

    Zeng, Fan-Gang

    2004-01-01

    More than 60,000 people worldwide use cochlear implants as a means to restore functional hearing. Although individual performance variability is still high, an average implant user can talk on the phone in a quiet environment. Cochlear-implant research has also matured as a field, as evidenced by the exponential growth in both the patient population and scientific publication. The present report examines current issues related to audiologic, clinical, engineering, anatomic, and physiologic aspects of cochlear implants, focusing on their psychophysical, speech, music, and cognitive performance. This report also forecasts clinical and research trends related to presurgical evaluation, fitting protocols, signal processing, and postsurgical rehabilitation in cochlear implants. Finally, a future landscape in amplification is presented that requires a unique, yet complementary, contribution from hearing aids, middle ear implants, and cochlear implants to achieve a total solution to the entire spectrum of hearing loss treatment and management.

  15. Repeated implantation failure versus repeated implantation success: discrimination at a metabolomic level.

    Science.gov (United States)

    RoyChoudhury, Sourav; Singh, Apoorva; Gupta, Nalini J; Srivastava, Sudha; Joshi, Mamata V; Chakravarty, Baidyanath; Chaudhury, Koel

    2016-06-01

    Is there any difference at the serum metabolic level between women with recurrent implantation failure (RIF) and women with recurrent implantation success (RIS) when undergoing in vitro fertilization (IVF)? Eight metabolites, including valine, adipic acid, l-lysine, creatine, ornithine, glycerol, d-glucose and urea, were found to be significantly up-regulated in women with RIF when compared with women with RIS. Despite transfer of three high-grade embryos per cycle, RIF following three or more consecutive IVF attempts occurs in a group of infertile women. Conversely, there is a group of women who undergo successful implantation each cycle, yet have a poor obstetric history. This study was conducted over a period of 10 years (January 2004-October 2014). Groups of 28 women with RIF (age ≤40 years and BMI ≤28) and 24 women with RIS (age and BMI matched) were selected from couples with primary infertility reporting at the Institute of Reproductive Medicine, Kolkata, India. Women recruited in the RIF group had history of implantation failure in at least three consecutive IVF attempts, in which three embryos of high-grade quality were transferred in each cycle. Blood samples were collected from both the groups during the implantation window following overnight fasting for at least 10 h (7-10 days post ovulation). Samples were analyzed using a 700 MHz NMR spectrometer and acquired spectra were subjected to chemometric and statistical analysis. Serum levels of endothelial nitric oxide synthase (eNOS) were measured using an enzyme immunoassay technique. Valine, adipic acid, l-lysine, creatine, ornithine, glycerol, d-glucose and urea were found to be significantly down-regulated in women with RIS when compared with those with RIF, with fold change values of 0.81, 0.82, 0.79, 0.80, 0.78, 0.68, 0.76 and 0.74, respectively. Further, serum eNOS was found to be significantly lower in women with RIF when compared with RIS (P failure. One of the authors, S.R.C. acknowledges the

  16. Cost-effectiveness of implant-supported mandibular removable partial dentures

    NARCIS (Netherlands)

    Jensen, Charlotte; Ross, Jamila; Feenstra, Talitha L; Raghoebar, Gerry M; Speksnijder, Caroline; Meijer, Henny J A; Cune, Marco S

    ObjectivesThe aim of this study was to conduct a cost-effectiveness analysis comparing conventional removable partial dentures (RPDs) and implant-supported RPDs (ISRPDs) treatment in patients with an edentulous maxilla and a bilateral free-ending situation in the mandible. Material and methodsThirty

  17. Expanding the (kaleido)scope: exploring current literature trends for translating electroencephalography (EEG) based brain-computer interfaces for motor rehabilitation in children

    Science.gov (United States)

    Kinney-Lang, E.; Auyeung, B.; Escudero, J.

    2016-12-01

    Rehabilitation applications using brain-computer interfaces (BCI) have recently shown encouraging results for motor recovery. Effective BCI neurorehabilitation has been shown to exploit neuroplastic properties of the brain through mental imagery tasks. However, these applications and results are currently restricted to adults. A systematic search reveals there is essentially no literature describing motor rehabilitative BCI applications that use electroencephalograms (EEG) in children, despite advances in such applications with adults. Further inspection highlights limited literature pursuing research in the field, especially outside of neurofeedback paradigms. Then the question naturally arises, do current literature trends indicate that EEG based BCI motor rehabilitation applications could be translated to children? To provide further evidence beyond the available literature for this particular topic, we present an exploratory survey examining some of the indirect literature related to motor rehabilitation BCI in children. Our goal is to establish if evidence in the related literature supports research on this topic and if the related studies can help explain the dearth of current research in this area. The investigation found positive literature trends in the indirect studies which support translating these BCI applications to children and provide insight into potential pitfalls perhaps responsible for the limited literature. Careful consideration of these pitfalls in conjunction with support from the literature emphasize that fully realized motor rehabilitation BCI applications for children are feasible and would be beneficial. • BCI intervention has improved motor recovery in adult patients and offer supplementary rehabilitation options to patients. • A systematic literature search revealed that essentially no research has been conducted bringing motor rehabilitation BCI applications to children, despite advances in BCI. • Indirect studies discovered

  18. Expanding the (kaleido)scope: exploring current literature trends for translating electroencephalography (EEG) based brain-computer interfaces for motor rehabilitation in children.

    Science.gov (United States)

    Kinney-Lang, E; Auyeung, B; Escudero, J

    2016-12-01

    Rehabilitation applications using brain-computer interfaces (BCI) have recently shown encouraging results for motor recovery. Effective BCI neurorehabilitation has been shown to exploit neuroplastic properties of the brain through mental imagery tasks. However, these applications and results are currently restricted to adults. A systematic search reveals there is essentially no literature describing motor rehabilitative BCI applications that use electroencephalograms (EEG) in children, despite advances in such applications with adults. Further inspection highlights limited literature pursuing research in the field, especially outside of neurofeedback paradigms. Then the question naturally arises, do current literature trends indicate that EEG based BCI motor rehabilitation applications could be translated to children? To provide further evidence beyond the available literature for this particular topic, we present an exploratory survey examining some of the indirect literature related to motor rehabilitation BCI in children. Our goal is to establish if evidence in the related literature supports research on this topic and if the related studies can help explain the dearth of current research in this area. The investigation found positive literature trends in the indirect studies which support translating these BCI applications to children and provide insight into potential pitfalls perhaps responsible for the limited literature. Careful consideration of these pitfalls in conjunction with support from the literature emphasize that fully realized motor rehabilitation BCI applications for children are feasible and would be beneficial. •  BCI intervention has improved motor recovery in adult patients and offer supplementary rehabilitation options to patients. •  A systematic literature search revealed that essentially no research has been conducted bringing motor rehabilitation BCI applications to children, despite advances in BCI. •  Indirect studies

  19. Micro-cutting of silicon implanted with hydrogen and post-implantation thermal treatment

    Science.gov (United States)

    Jelenković, Emil V.; To, Suet; Sundaravel, B.; Xiao, Gaobo; Huang, Hu

    2016-07-01

    It was reported that non-amorphizing implantation by hydrogen has a potential in improving silicon machining. Post-implantation high-temperature treatment will affect implantation-induced damage, which can have impact on silicon machining. In this article, a relation of a thermal annealing of hydrogen implanted in silicon to micro-cutting experiment is investigated. Hydrogen ions were implanted into 4″ silicon wafers with 175 keV, 150 keV, 125 keV and doses of 2 × 1016 cm-2, 2 × 1016 cm-2 and 3 × 1016 cm-2, respectively. In this way, low hydrogen atom-low defect concentration was created in the region less than ~0.8 μm deep and high hydrogen atom-high defect concentration was obtained at silicon depth of ~0.8-1.5 μm. The post-implantation annealing was carried out at 300 and 400 °C in nitrogen for 1 h. Physical and electrical properties of implanted and annealed samples were characterized by secondary ion mass spectroscopy (SIMS), X-ray diffraction (XRD), Rutherford backscattering (RBS) and nanoindentation. Plunge cutting experiment was carried out in and silicon crystal direction. The critical depth of cut and cutting force were monitored and found to be influenced by the annealing. The limits of hydrogen implantation annealing contribution to the cutting characteristics of silicon are discussed in light of implantation process and redistribution of hydrogen and defects generation during annealing process.

  20. Chimeric Peptides as Implant Functionalization Agents for Titanium Alloy Implants with Antimicrobial Properties

    Science.gov (United States)

    Yucesoy, Deniz T.; Hnilova, Marketa; Boone, Kyle; Arnold, Paul M.; Snead, Malcolm L.; Tamerler, Candan

    2015-04-01

    Implant-associated infections can have severe effects on the longevity of implant devices and they also represent a major cause of implant failures. Treating these infections associated with implants by antibiotics is not always an effective strategy due to poor penetration rates of antibiotics into biofilms. Additionally, emerging antibiotic resistance poses serious concerns. There is an urge to develop effective antibacterial surfaces that prevent bacterial adhesion and proliferation. A novel class of bacterial therapeutic agents, known as antimicrobial peptides (AMPs), are receiving increasing attention as an unconventional option to treat septic infection, partly due to their capacity to stimulate innate immune responses and for the difficulty of microorganisms to develop resistance towards them. While host and bacterial cells compete in determining the ultimate fate of the implant, functionalization of implant surfaces with AMPs can shift the balance and prevent implant infections. In the present study, we developed a novel chimeric peptide to functionalize the implant material surface. The chimeric peptide simultaneously presents two functionalities, with one domain binding to a titanium alloy implant surface through a titanium-binding domain while the other domain displays an antimicrobial property. This approach gains strength through control over the bio-material interfaces, a property built upon molecular recognition and self-assembly through a titanium alloy binding domain in the chimeric peptide. The efficiency of chimeric peptide both in-solution and absorbed onto titanium alloy surface was evaluated in vitro against three common human host infectious bacteria, Streptococcus mutans, Staphylococcus epidermidis, and Escherichia coli. In biological interactions such as occur on implants, it is the surface and the interface that dictate the ultimate outcome. Controlling the implant surface by creating an interface composed chimeric peptides may therefore

  1. Immediately loaded mini dental implants as overdenture retainers: 1-Year cohort study of implant stability and peri-implant marginal bone level.

    Science.gov (United States)

    Šćepanović, Miodrag; Todorović, Aleksandar; Marković, Aleksa; Patrnogić, Vesna; Miličić, Biljana; Moufti, Adel M; Mišić, Tijana

    2015-05-01

    This 1-year cohort study investigated stability and peri-implant marginal bone level of immediately loaded mini dental implants used to retain overdentures. Each of 30 edentulous patients received 4 mini dental implants (1.8 mm × 13 mm) in the interforaminal mandibular region. The implants were immediately loaded with pre-made overdentures. Outcome measures included implant stability and bone resorption. Implant stability was measured using the Periotest Classic(®) device immediately after placement and on the 3rd and 6th weeks and the 4th, 6th and 12th months postoperatively. The peri-implant marginal bone level (PIBL) was evaluated at the implant's mesial and distal sides from the polished platform to the marginal crest. Radiographs were taken using a tailored film holder to reproducibly position the X-ray tube at the 6th week, 4th and 12th months postoperatively. The primary stability (Periotest value, PTV) measured -0.27 ± 3.41 on a scale of -8 to + 50 (lower PTV reflects higher stability). The secondary stability decreased significantly until week 6 (mean PTV = 7.61 ± 7.05) then increased significantly reaching (PTV = 6.17 ± 6.15) at 12 months. The mean PIBL measured -0.40 mm after 1 year of functional loading, with no statistically significant differences at the various follow-ups (p = 0.218). Mini dental implants placed into the interforaminal region could achieve a favorable primary stability for immediate loading. The follow-up Periotest values fluctuated, apparently reflecting the dynamics of bone remodeling, with the implants remaining clinically stable (98.3%) after 1 year of function. The 1-year bone resorption around immediately loaded MDIs is within the clinically acceptable range for standard implants. Copyright © 2014 Elsevier GmbH. All rights reserved.

  2. Comparative silicone breast implant evaluation using mammography, sonography, and magnetic resonance imaging: experience with 59 implants.

    Science.gov (United States)

    Ahn, C Y; DeBruhl, N D; Gorczyca, D P; Shaw, W W; Bassett, L W

    1994-10-01

    With the current controversy regarding the safety of silicone implants, the detection and evaluation of implant rupture are causing concern for both plastic surgeons and patients. Our study obtained comparative value analysis of mammography, sonography, and magnetic resonance imaging (MRI) in the detection of silicone implant rupture. Twenty-nine symptomatic patients (total of 59 silicone implants) were entered into the study. Intraoperative findings revealed 21 ruptured implants (36 percent). During physical examination, a positive "squeeze test" was highly suggestive of implant rupture. Mammograms were obtained of 51 implants (sensitivity 11 percent, specificity 89 percent). Sonography was performed on 57 implants (sensitivity 70 percent, specificity 92 percent). MRI was performed on 55 implants (sensitivity 81 percent, specificity 92 percent). Sonographically, implant rupture is demonstrated by the "stepladder sign." Double-lumen implants may appear as false-positive results for rupture on sonography. On MRI, the "linguine sign" represents disrupted fragments of a ruptured implant. The most reliable imaging modality for implant rupture detection is MRI, followed by sonogram. Mammogram is the least reliable. Our study supports the clinical indication and diagnostic value of sonogram and MRI in the evaluation of symptomatic breast implant patients.

  3. Comparison of Carina active middle-ear implant with conventional hearing aids for mixed hearing loss.

    Science.gov (United States)

    Savaş, V A; Gündüz, B; Karamert, R; Cevizci, R; Düzlü, M; Tutar, H; Bayazit, Y A

    2016-04-01

    To compare the auditory outcomes of Carina middle-ear implants with those of conventional hearing aids in patients with moderate-to-severe mixed hearing loss. The study comprised nine patients (six males, three females) who underwent middle-ear implantation with Carina fully implantable active middle-ear implants to treat bilateral moderate-to-severe mixed hearing loss. The patients initially used conventional hearing aids and subsequently received the Carina implants. The hearing thresholds with implants and hearing aids were compared. There were no significant differences between: the pre-operative and post-operative air and bone conduction thresholds (p > 0.05), the thresholds with hearing aids and Carina implants (p > 0.05), or the pre-operative (mean, 72.8 ± 19 per cent) and post-operative (mean, 69.9 ± 24 per cent) speech discrimination scores (p > 0.05). One of the patients suffered total sensorineural hearing loss three months following implantation despite an initial 38 dB functional gain. All except one patient showed clinical improvements after implantation according to quality of life questionnaire (Glasgow Benefit Inventory) scores. Acceptance of Carina implants is better than with conventional hearing aids in patients with mixed hearing loss, although both yield similar hearing amplification. Cosmetic reasons appear to be critical for patient acceptance.

  4. A feasibility study of magnetic resonance imaging of silicone breast implants in Finland

    DEFF Research Database (Denmark)

    Kulmala, Ilona; Boice, John D; McLaughlin, Joseph K

    2005-01-01

    to determine the feasibility of conducting a magnetic resonance imaging (MRI)-based study of rupture incidence. The pilot investigation included a clinical examination by a plastic surgeon, MRI scan, and self-administered questionnaire. The participation rate was 100%. Implants in our study represented a cross...... the other diagnosed all implants as intact. The procedures of the feasibility study proved successful, and the results demonstrate the importance of a rigid image evaluation protocol with employment of well-defined rupture criteria, as well as the benefits of several image readers.......Cosmetic breast implants have become increasingly popular throughout the world. However, there is insufficient knowledge about the frequency and severity of local complications such as rupture and capsular contracture. A pilot study of 25 Finnish women with 50 cosmetic breast implants was organized...

  5. The Efficacy of Supportive Peri-Implant Therapies in Preventing Peri-Implantitis and Implant Loss: a Systematic Review of the Literature

    Directory of Open Access Journals (Sweden)

    Ausra Ramanauskaite

    2016-09-01

    Full Text Available Objectives: To study the efficacy of supportive peri-implant therapies in preventing clinical and radiological signs of peri-implantitis and implant loss. Material and Methods: Longitudinal human studies, published between January 1, 2006, and February 1, 2016, were included based on an electronic search using MEDLINE and EMBASE databases and complemented by a manual search. Articles were included only if 1 they comprised a group of patients involved in/adhering to regular supportive peri-implant therapies (SPTs and a control group without such therapies or with poor adherence to them, 2 the protocol of the SPTs was clearly described and 3 the outcome was indicated by means of clinical/radiological changes or implant loss. Results: After initially identifying a total of 710 titles and abstracts, 12 full text articles were selected for eligibility assessment. Seven studies, three prospective and four retrospective, fulfilled the inclusion criteria for this review. The frequency of recall visits varied between the studies from a minimum of one visit every three months to an individually tailored regimen. In all the studies a lack of SPTs or poor adherence to them resulted in significantly higher frequencies of sites with mucosal bleeding, deepened peri-implant pockets or alveolar bone loss. In line with the above, a lack of/poor adherence to SPTs was associated with higher implant loss. Conclusions: To prevent peri-implantitis, an individually tailored supportive programme based on patient motivation and re-instruction in oral hygiene measures combined with professional implant cleaning seem to be crucial.

  6. Clinical potential of implantable wireless sensors for orthopedic treatments.

    Science.gov (United States)

    Karipott, Salil Sidharthan; Nelson, Bradley D; Guldberg, Robert E; Ong, Keat Ghee

    2018-04-01

    Implantable wireless sensors have been used for real-time monitoring of chemicals and physical conditions of bones, tendons and muscles to diagnose and study orthopedic diseases and injuries. Due to the importance of these sensors in orthopedic care, a critical review, which not only analyzes the underlying technologies but also their clinical implementations and challenges, will provide a landscape view on their current state and their future clinical role. Areas covered: By conducting an extensive literature search and following the leaders of orthopedic implantable wireless sensors, this review covers the battery-powered and battery-free wireless implantable sensor technologies, and describes their implementation for hips, knees, spine, and shoulder stress/strain monitoring. Their advantages, limitations, and clinical challenges are also described. Expert commentary: Currently, implantable wireless sensors are mostly limited for scientific investigations and demonstrative experiments. Although rapid advancement in sensors and wireless technologies will push the reliability and practicality of these sensors for clinical realization, regulatory constraints and financial viability in medical device industry may curtail their continuous adoption for clinical orthopedic applications. In the next five years, these sensors are expected to gain increased interest from researchers, but wide clinical adoption is still unlikely.

  7. Current amplification models of sensorineurall and conductive hearing loss

    Directory of Open Access Journals (Sweden)

    Ostojić Sanja

    2012-01-01

    Full Text Available The main function of a hearing aid is to improve auditory and language abilities of hearing impaired users. The amplification model has to be adapted according to age, degree and type of hearing loss. The goal of this paper is to analyze the current amplification models of sensorineural and conductive hearing loss which can provide a high quality of speech perception and sounds at any degree of hearing loss. The BAHA is a surgically implantable system for treatment of conductive hearing loss that works through direct bone conduction. BAHA is used to help people with chronic ear infections, congenital external auditory canal atresia and single sided deafness who cannot benefit from conventional hearing aids. The last generation of hearing aid for sensorineural hearing loss is cochlear implant. Bimodal amplification improves binaural hearing. Hearing aids alone do not make listening easier in all situations. The things that can interfere with listening are background noises, distance from a sound and reverberation or echo. The device used most often today is the Frequency Modulated (FM system.

  8. Benefits and Risks of Cochlear Implants

    Science.gov (United States)

    ... and Medical Procedures Implants and Prosthetics Cochlear Implants Benefits and Risks of Cochlear Implants Share Tweet Linkedin ... the Use of Cochlear Implants What are the Benefits of Cochlear Implants? For people with implants: Hearing ...

  9. An economic evaluation of maxillary implant overdentures based on six vs. four implants.

    Science.gov (United States)

    Listl, Stefan; Fischer, Leonhard; Giannakopoulos, Nikolaos Nikitas

    2014-08-18

    The purpose of the present study was to assess the value for money achieved by bar-retained implant overdentures based on six implants compared with four implants as treatment alternatives for the edentulous maxilla. A Markov decision tree model was constructed and populated with parameter estimates for implant and denture failure as well as patient-centred health outcomes as available from recent literature. The decision scenario was modelled within a ten year time horizon and relied on cost reimbursement regulations of the German health care system. The cost-effectiveness threshold was identified above which the six-implant solution is preferable over the four-implant solution. Uncertainties regarding input parameters were incorporated via one-way and probabilistic sensitivity analysis based on Monte-Carlo simulation. Within a base case scenario of average treatment complexity, the cost-effectiveness threshold was identified to be 17,564 € per year of denture satisfaction gained above of which the alternative with six implants is preferable over treatment including four implants. Sensitivity analysis yielded that, depending on the specification of model input parameters such as patients' denture satisfaction, the respective cost-effectiveness threshold varies substantially. The results of the present study suggest that bar-retained maxillary overdentures based on six implants provide better patient satisfaction than bar-retained overdentures based on four implants but are considerably more expensive. Final judgements about value for money require more comprehensive clinical evidence including patient-centred health outcomes.

  10. Risk of pacemaker or implantable cardioverter defibrillator after radiotherapy for early-stage breast cancer in Denmark, 1982-2005

    DEFF Research Database (Denmark)

    Rehammar, Jens Christian; Johansen, Jens Brock; Jensen, Maj-Britt

    2017-01-01

    BACKGROUND AND PURPOSE: To examine the risk of cardiac conduction abnormalities or severe ventricular arrhythmias requiring implantation of a cardiac implantable electronic device (CIED), either a pacemaker or an implantable cardioverter-defibrillator, subsequent to breast cancer (BC) radiotherapy...... (RT). MATERIAL AND METHODS: All women treated for early-stage BC in Denmark from 1982 to 2005 were identified from the Danish Breast Cancer Cooperative Group. By record linkage to the Danish Pacemaker and ICD Registry information was retrieved on CIED implants subsequent to RT. Standardized incidence...

  11. [Researches on biomechanics of micro-implant-bone interface and optimum design of micro implant's neck].

    Science.gov (United States)

    Deng, Feng; Zhang, Lei; Zhang, Yi; Song, Jin-lin; Fan, Yuboa

    2007-07-01

    To compare and analyze the stress distribution at the micro-implant-bone interface based on the different micro-implant-bone conditioned under orthodontic load, and to optimize the design of micro implant's neck. An adult skull with all tooth was scanned by spiral CT, and the data were imported into computer for three-dimensional reconstruction with software Mimics 9.0. The three dimensional finite element models of three micro-implant-bone interfaces(initial stability, full osseointegration and fibrous integration) were analyzed by finite element analysis software ABAQUS6.5. The primary stress distributions of different micro-implant-bone conditions were evaluated when 2N force was loaded. Then the diameter less than 1.5 mm of the micro implant's neck was added with 0.2 mm, to compare the stress distribution of the modified micro-implant-bone interface with traditional type. The stress mostly concentrated on the neck of micro implant and the full osseointegration interface in all models showed the lowest strain level. Compared with the traditional type, the increasing diameter neck of the micro implant obviously decreased the stress level in all the three conditions. The micro-implant-bone interface and the diameter of micro implant's neck both are the important influence factors to the stress distribution of micro implant.

  12. Implant Mandibular Overdentures Retained by Immediately Loaded Implants: A 1-Year Randomized Trial Comparing the Clinical and Radiographic Outcomes Between Mini Dental Implants and Standard-Sized Implants.

    Science.gov (United States)

    Zygogiannis, Kostas; Aartman, Irene Ha; Parsa, Azin; Tahmaseb, Ali; Wismeijer, Daniel

    The aim of this 1-year randomized trial was to evaluate and compare the clinical and radiographic performance of four immediately loaded mini dental implants (MDIs) and two immediately loaded standard-sized tissue-level (STL) implants, placed in the interforaminal region of the mandible and used to retain mandibular overdentures (IODs) in completely edentulous patients. A total of 50 completely edentulous patients wearing conventional maxillary dentures and complaining about insufficient retention of their mandibular dentures were divided into two groups; 25 patients received four MDIs and 25 patients received two STL implants. The marginal bone loss (MBL) at the mesial and distal sides of each implant was assessed by means of standardized intraoral radiographs after a period of 1 year. Implant success and survival rates were also calculated. Immediate loading was possible for all patients in the first group. In the second group, an immediate loading protocol could not be applied for 10 patients. These patients were treated with a delayed loading protocol. A mean MBL of 0.42 ± 0.56 mm for the MDIs and 0.54 ± 0.49 mm for the immediately loaded STL implants was recorded at the end of the evaluation period. There was no statistically significant difference between the MDIs and the immediately loaded STL implants. Two MDIs failed, resulting in a survival rate of 98%. The success rate was 91%. For the immediately loaded conventional implants, the survival rate was 100% and the success rate 96.7% after 1 year of function. However, in 10 patients, the immediate loading protocol could not be followed. Considering the limitations of this short-term clinical study, immediate loading of four unsplinted MDIs or two splinted STL implants to retain mandibular overdentures seems to be a feasible treatment option. The marginal bone level changes around the MDIs were well within the clinically acceptable range.

  13. Does platform switching really prevent crestal bone loss around implants?

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Hagiwara

    2010-08-01

    Full Text Available To maintain long-term implant stability, it is important to minimize bone loss around the implant. Several clinical studies have shown a mean marginal bone loss around dental implants of 1.5–2 mm in the first year after prosthetic restoration. Currently, concepts to prevent bone loss around dental implants have been reported as the platform switching (PLS. This technique use of prosthetic abutments with reduced width in relation to the implant platform diameter seems to have the greatest potential to limit the crestal resorption. However, there are only a few reports on the mechanism of action or the extent of bone loss prevention, and as such, it is difficult to say that the effect of PLS has been thoroughly examined. Excluding case reports, articles on PLS can be broadly categorized into: (1 radiographic evaluation of crestal bone level in humans, (2 histological and histomorphometrical analysis in animals, or (3 finite element analysis. This review revealed a shortage of published data for above three categories related PLS. Researchers have attempted to explain the mechanism of action of PLS; however, it is necessary to conduct further studies, including histological studies using animals, to clarify the mechanism fully.

  14. Implant decontamination with phosphoric acid during surgical peri-implantitis treatment : a RCT

    NARCIS (Netherlands)

    Hentenaar, Diederik F M; De Waal, Yvonne C M; Strooker, Hans; Meijer, Henny J A; Van Winkelhoff, Arie-Jan; Raghoebar, Gerry M

    2017-01-01

    BACKGROUND: Peri-implantitis is known as an infectious disease that affects the peri-implant soft and hard tissue. Today, scientific literature provides very little evidence for an effective intervention protocol for treatment of peri-implantitis. The aim of the present randomized controlled trial

  15. Randomized study on the effect of single-implant versus two-implant retained overdentures on implant loss and muscle activity: a 12-month follow-up report.

    Science.gov (United States)

    Alqutaibi, A Y; Kaddah, A F; Farouk, M

    2017-06-01

    The objective was to evaluate and compare single- and two-implant retained overdentures for the rehabilitation of the edentulous mandible. Fifty-six edentulous subjects were eligible for inclusion. Using a random sampling system, a single implant or two implants were placed in the mandible. After 3 months, locator attachments were connected to the implants and the denture delivered with the retentive components incorporated in the denture base. Implant failure and muscle activity were evaluated at the 3-, 6-, and 12-month follow-up examinations. The study sample comprised 56 patients (32 male, 24 female), with a mean age of 58.2 years. A total of 84 implants were placed (28 in the single-implant group and 56 in the two-implant group). All patients completed the 12 months of follow-up. No significant differences were found between subjects in the two groups with respect to implant failure. With regard to improvements in muscle activity, the two-implant group showed statistically significant but perhaps not clinically important differences. Single-implant mandibular overdentures may be suggested as an alternative treatment modality for the rehabilitation of edentulous patients who cannot afford the cost of a two-implant overdenture. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  16. Plasma-implantation-based surface modification of metals with single-implantation mode

    Science.gov (United States)

    Tian, X. B.; Cui, J. T.; Yang, S. Q.; Fu, Ricky K. Y.; Chu, Paul K.

    2004-12-01

    Plasma ion implantation has proven to be an effective surface modification technique. Its biggest advantage is the capability to treat the objects with irregular shapes without complex manipulation of target holder. Many metal materials such as aluminum, stainless steel, tool steel, titanium, magnesium etc, has been treated using this technique to improve their wear-resistance, corrosion-resistance, fatigue-resistance, oxidation-resistance, bio-compatiblity etc. However in order to achieve thicker modified layers, hybrid processes combining plasma ion implantation with other techniques have been frequently employed. In this paper plasma implantation based surface modification of metals using single-implantation mode is reviewed.

  17. Microscopic Study of Surface Microtopographic Characteristics of Dental Implants

    Science.gov (United States)

    Sezin, M.; Croharé, L.; Ibañez, J.C.

    2016-01-01

    Objective: To determine and compare the micro topographic characteristics of dental implants submitted to different surface treatments, using scanning electron microscopy (SEM). Materials and Methods: Implants were divided into 7 groups of 3 specimens each, according to the surface treatment used: group 1: Osseotite, BIOMET 3i; group 2: SLA surface, Institut Straumann AG; group 3: Oxalife surface, Tree-Oss implant; group 4: B&W implant surface; group 5: Q-implant surface; group 6: ML implant surface; group 7: RBM surface, Rosterdent implant. The surfaces were examined under SEM (Carl Zeiss FE-SEM-SIGMA). Image Proplus software was used to determine the number and mean diameter of pores per area unit (mm). The data obtained were analyzed with the Mann-Whitney test. A confocal laser microscope (LEXT-OLS4100 Olympus) was used to conduct the comparative study of surface roughness (Ra). Data were analyzed using Tukey's HSD test. Results: The largest average pore diameter calculated in microns was found in group 5 (3.45 µm+/-1.91) while the smallest in group 7 (1.47µm+/-1.29). Significant differences were observed among each one of the groups studied (p<0.05). The largest number of pores/mm2 was found in group 2 (229343) and the smallest number in group 4 (10937). Group 2 showed significant differences regarding the other groups (p<0.05). The greatest roughness (Ra) was observed in group 2 (0.975µm+/-0.115) and the smallest in group 4 (0.304µm+/-0.063). Group 2 was significantly different from the other groups (p<0.05). Conclusion: The micro topography observed in the different groups presented dissimilar and specific features, depending on the chemical treatment used for the surfaces.. PMID:27335615

  18. Case presentation of florid cemento-osseous dysplasia with concomitant cemento-ossifying fibroma discovered during implant explantation.

    Science.gov (United States)

    Gerlach, Robert C; Dixon, Douglas R; Goksel, Tamer; Castle, James T; Henry, Walter A

    2013-03-01

    A 39-year-old African American woman presented for treatment of a symptomatic mandibular right first molar with a large, periapical radiolucency. After initial attempts at endodontic therapy, this tooth was ultimately extracted owing to unabated symptoms. The extraction site underwent ridge preservation grafting, implant placement, and restoration. After 26 months of implant function, the patient returned with clinical symptoms of pain, buccal swelling, and the sensation of a "loose" implant. This case report details a diagnosis of 2 distinct disease entities associated with the implant site, a cemento-ossifying fibroma and florid cemento-osseous dysplasia of the mandible. This diagnosis was determined from clinical, surgical, radiographic, and histopathologic evidence after biopsy and removal of the previously osseointegrated implant following postinsertion failure by fibrous encapsulation. Before implant therapy, it is essential to conduct a thorough radiographic evaluation of any dental arch with suspected bony lesions to prevent implant failure. Published by Mosby, Inc.

  19. Mini-implants in orthodontics: A systematic review of the literature

    NARCIS (Netherlands)

    Reynders, Reint; Ronchi, Laura; Bipat, Shandra

    2009-01-01

    Introduction: In this article, we systematically reviewed the literature to quantify success and complications encountered with the use of mini-implants for orthodontic anchorage, and to analyze factors associated with success or failure. Methods: Computerized and manual searches were conducted up

  20. Initial experience with the Sophono Alpha 1 osseointegrated implant.

    Science.gov (United States)

    Escorihuela-García, Vicente; Llópez-Carratalá, Ignacio; Pitarch-Ribas, Ignacia; Latorre-Monteagudo, Emilia; Marco-Algarra, Jaime

    2014-01-01

    In the last several years, bone anchored hearing aids have proven to be useful in treating conductive and mixed unilateral or bilateral hearing loss, as well as for sensorineural unilateral hearing loss. The Sophono Alpha 1 model has the advantage of not requiring an abutment, with it being coupled by magnetism instead. We report the cases of 3 infants with congenital malformations of external and middle ear. Audiometry showed conductive hearing loss. All 3 patients were implanted with Alpha 1 model (Sophono). Patients evolved satisfactorily. After 30 days we applied the processor and the control audiometry showed a marked improvement of hearing thresholds, although without a complete closure of the gap. With minimal care, the skin over the implant remained in excellent condition, with a very satisfactory cosmetic outcome. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.