WorldWideScience

Sample records for conduction electron polarization

  1. The effect of driven electron-phonon coupling on the electronic conductance of a polar nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Mardaani, Mohammad, E-mail: mohammad-m@sci.sku.ac.ir; Rabani, Hassan, E-mail: rabani-h@sci.sku.ac.ir [Department of Physics, Faculty of Science, Shahrekord University, P. O. Box 115, Shahrekord (Iran, Islamic Republic of); Nanotechnology Research Center, Shahrekord University, 8818634141 Shahrekord (Iran, Islamic Republic of); Esmaili, Esmat; Shariati, Ashrafalsadat [Department of Physics, Faculty of Science, Shahrekord University, P. O. Box 115, Shahrekord (Iran, Islamic Republic of)

    2015-08-07

    A semi-classical model is proposed to explore the effect of electron-phonon coupling on the coherent electronic transport of a polar chain which is confined between two rigid leads in the presence of an external electric field. To this end, we construct the model by means of Green's function technique within the nearest neighbor tight-binding and harmonic approximations. For a time-periodic electric field, the atomic displacements from the equilibrium positions are obtained precisely. The result is then used to compute the electronic transport properties of the chain within the Peierls-type model. The numerical results indicate that the conductance of the system shows interesting behavior in some special frequencies. For each special frequency, there is an electronic quasi-state in which the scattering of electrons by vibrating atoms reaches maximum. The system electronic conductance decreases dramatically at the strong electron-phonon couplings and low electron energies. In the presence of damping forces, the electron-phonon interaction has a less significant effect on the conductance.

  2. The effect of driven electron-phonon coupling on the electronic conductance of a polar nanowire

    International Nuclear Information System (INIS)

    Mardaani, Mohammad; Rabani, Hassan; Esmaili, Esmat; Shariati, Ashrafalsadat

    2015-01-01

    A semi-classical model is proposed to explore the effect of electron-phonon coupling on the coherent electronic transport of a polar chain which is confined between two rigid leads in the presence of an external electric field. To this end, we construct the model by means of Green's function technique within the nearest neighbor tight-binding and harmonic approximations. For a time-periodic electric field, the atomic displacements from the equilibrium positions are obtained precisely. The result is then used to compute the electronic transport properties of the chain within the Peierls-type model. The numerical results indicate that the conductance of the system shows interesting behavior in some special frequencies. For each special frequency, there is an electronic quasi-state in which the scattering of electrons by vibrating atoms reaches maximum. The system electronic conductance decreases dramatically at the strong electron-phonon couplings and low electron energies. In the presence of damping forces, the electron-phonon interaction has a less significant effect on the conductance

  3. Optically Polarized Conduction-Band Electrons in Tungsten Observed by Spin-Polarized Photoemission

    DEFF Research Database (Denmark)

    Zürcher, P.; Meier, F.; Christensen, N. E.

    1979-01-01

    Along the (100) direction of tungsten, interband transitions induced by circularly polarized light of energy 1.5 eV......Along the (100) direction of tungsten, interband transitions induced by circularly polarized light of energy 1.5 eV...

  4. Control of Electronic Conduction at an Oxide Heterointerface using Surface Polar Adsorbates

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Christopher

    2011-08-19

    We study the effect of the surface adsorption of a variety of common laboratory solvents on the conductivity at the interface between LaAlO{sub 3} and SrTiO{sub 3}. This interface possesses a range of intriguing physics, notably a proposed connection between the surface state of the LaAlO{sub 3} and the conductivity buried in the SrTiO{sub 3}. We show that the application of chemicals such as acetone, ethanol, and water can induce a large change (factor of three) in the conductivity. This phenomenon is observed only for polar solvents. These data provide experimental evidence for a general polarization-facilitated electronic transfer mechanism.

  5. Polarized electron sources

    International Nuclear Information System (INIS)

    Prepost, R.

    1994-01-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented

  6. Polarized electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Prepost, R. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented.

  7. Electron spin polarization induced by spin Hall effect in semiconductors with a linear in the momentum spin-orbit splitting of conduction band

    OpenAIRE

    Korenev, V. L.

    2005-01-01

    It is shown that spin Hall effect creates uniform spin polarization of electrons in semiconductor with a linear in the momentum spin splitting of conduction band. In turn, the profile of the non-uniform spin polarization accumulated at the edge of the sample oscillates in space even in the absence of an external magnetic field.

  8. Polarized electron sources

    International Nuclear Information System (INIS)

    Clendenin, J.E.

    1995-05-01

    Polarized electron sources for high energy accelerators took a significant step forward with the introduction of a new laser-driven photocathode source for the SLC in 1992. With an electron beam polarization of >80% and with ∼99% uptime during continuous operation, this source is a key factor in the success of the current SLC high-energy physics program. The SLC source performance is used to illustrate both the capabilities and the limitations of solid-state sources. The beam requirements for future colliders are similar to that of the SLC with the addition in most cases of multiple-bunch operation. A design for the next generation accelerator source that can improve the operational characteristics and at least minimize some of the inherent limitations of present sources is presented. Finally, the possibilities for producing highly polarized electron beams for high-duty-factor accelerators are discussed

  9. Source of spin polarized electrons

    International Nuclear Information System (INIS)

    Pierce, D.T.; Meier, F.A.; Siegmann, H.C.

    1976-01-01

    A method is described of producing intense beams of polarized free electrons in which a semiconductor with a spin orbit split valence band and negative electron affinity is used as a photocathode and irradiated with circularly polarized light

  10. Polarized electrons at Jefferson laboratory

    International Nuclear Information System (INIS)

    Sinclair, C.K.

    1998-01-01

    The CEBAF accelerator at Jefferson laboratory can deliver CW electron beams to three experimental halls simultaneously. A large fraction of the approved scientific program at the lab requires polarized electron beams. Many of these experiments, both polarized and unpolarized, require high average beam current as well. Since all electrons delivered to the experimental halls originate from the same cathode, delivery of polarized beam to a single hall requires using the polarized source to deliver beam to all experiments in simultaneous operation. The polarized source effort at Jefferson Lab is directed at obtaining very long polarized source operational lifetimes at high average current and beam polarization; at developing the capability to deliver all electrons leaving the polarized source to the experimental halls; and at delivering polarized beam to multiple experimental halls simultaneously. Initial operational experience with the polarized source will be presented. copyright 1998 American Institute of Physics

  11. Polarized Electrons at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, C.K.

    1997-12-31

    The CEBAF accelerator at Jefferson laboratory can deliver CW electron beams to three experimental halls simultaneously. A large fraction of the approved scientific program at the lab requires polarized electron beams. Many of these experiments, both polarized and unpolarized, require high average beam current as well. Since all electrons delivered to the experimental halls originate from the same cathode, delivery of polarized beam to a single hall requires using the polarized source to deliver beam to all experiments in simultaneous operation. The polarized source effort at Jefferson Lab is directed at obtaining very long polarized source operational lifetimes at high average current and beam polarization; at developing the capability to deliver all electrons leaving the polarized source to the experimental halls; and at delivering polarized beam to multiple experimental halls simultaneously.initial operational experience with the polarized source will be presented.

  12. High Intensity Polarized Electron Sources

    International Nuclear Information System (INIS)

    Poelker, Benard; Adderley, Philip; Brittian, Joshua; Clark, J.; Grames, Joseph; Hansknecht, John; McCarter, James; Stutzman, Marcy; Suleiman, Riad; Surles-law, Kenneth

    2008-01-01

    During the 1990s, at numerous facilities world wide, extensive RandD devoted to constructing reliable GaAs photoguns helped ensure successful accelerator-based nuclear and high-energy physics programs using spin polarized electron beams. Today, polarized electron source technology is considered mature, with most GaAs photoguns meeting accelerator and experiment beam specifications in a relatively trouble-free manner. Proposals for new collider facilities however, require electron beams with parameters beyond today's state-of-the-art and serve to renew interest in conducting polarized electron source RandD. And at CEBAF/Jefferson Lab, there is an immediate pressing need to prepare for new experiments that require considerably more beam current than before. One experiment in particular?Q-weak, a parity violation experiment that will look for physics beyond the Standard Model?requires 180 uA average current at polarization >80% for a duration of one year, with run-averaged helicity correlate

  13. The SLAC polarized electron source

    International Nuclear Information System (INIS)

    Clendenin, J.E.; Alley, R.; Frisch, J.; Kotseroglou, T.; Mulhollan, G.; Schultz, D.; Tang, H.; Turner, J.; Yeremian, A.D.

    1997-08-01

    Since 1992, the SLAC 3-km linac has operated exclusively with polarized electrons. The polarized electron source is highly reliable, remotely operated and monitored, and able to produce a variety of electron bunch profiles for high-energy physics experiments. The source and its operating characteristics are described. Some implications drawn from the operating experience are discussed

  14. High energy polarized electron beams

    International Nuclear Information System (INIS)

    Rossmanith, R.

    1987-01-01

    In nearly all high energy electron storage rings the effect of beam polarization by synchrotron radiation has been measured. The buildup time for polarization in storage rings is of the order of 10 6 to 10 7 revolutions; the spins must remain aligned over this time in order to avoid depolarization. Even extremely small spin deviations per revolution can add up and cause depolarization. The injection and the acceleration of polarized electrons in linacs is much easier. Although some improvements are still necessary, reliable polarized electron sources with sufficiently high intensity and polarization are available. With the linac-type machines SLC at Stanford and CEBAF in Virginia, experiments with polarized electrons will be possible

  15. The SLAC polarized electron source

    International Nuclear Information System (INIS)

    Tang, H.; Alley, R.; Frisch, J.

    1995-06-01

    The SLAC polarized electron source employs a photocathode DC high voltage gun with a loadlock and a YAG pumped Ti:sapphire laser system for colliding beam experiments or a flash lamp pumped Ti:sapphire laser for fixed target experiments. It uses a thin, strained GaAs(100) photocathode, and is capable of producing a pulsed beam with a polarization of ≥80% and a peak current exceeding 10 A. Its operating efficiency has reached 99%. The physics and technology of producing high polarization electron beams from a GaAs photocathode will be reviewed. The prospects of realizing a polarized electron source for future linear colliders will also be discussed

  16. Polarized Electrons for Linear Colliders

    International Nuclear Information System (INIS)

    Clendenin, J.

    2004-01-01

    Future electron-positron linear colliders require a highly polarized electron beam with a pulse structure that depends primarily on whether the acceleration utilizes warm or superconducting rf structures. The International Linear Collider (ILC) will use cold structures for the main linac. It is shown that a dc-biased polarized photoelectron source such as successfully used for the SLC can meet the charge requirements for the ILC micropulse with a polarization approaching 90%

  17. Physics with polarized electron beams

    International Nuclear Information System (INIS)

    Swartz, M.L.

    1988-01-01

    As a distinct field, elementary particle physics is now approximately forty years old. In all that time, only a few of the thousands of experiments that have been performed have made use of spin polarized particle beams (with apologies to those who have studied neutrino interactions, polarized beam are defined to refer to the case in which the experimenter has control over the polarization direction). If the discussion is restricted to spin polarized electron beams, the number of experiments becomes countable with the fingers of one hand (with several to spare). There are two reasons for this lack of interest. The first is that spin polarized beams are difficult to produce, accelerate, and transport. The second reason is that any physical process that can occur during the collision of a polarized particle with another (polarized or not) can also occur during the collision of unpolarized particles. One might ask then, why has any effort been expended on the subject. The answer, at least in the case of polarized electron beams, is that electron accelerators and storage rings have in recent years achieved sufficient energy to begin to probe the weak interaction directly. The weak interaction distinguishes between left- and right-handed fermionic currents. Left-handed particles interact in a fundamentally different way than their right-handed counterparts. If the experimenter wishes to explore or exploit this difference, he (or she) must either prepare the spin state of the incident particles or analyze the spin state of outgoing particles. For reasons of genearlity and improved statistical precision, the former is usually preferable to the latter. The first of these lectures will review some of the techniques necessary for the production, transport, and monitoring of polarized electron (or positron) beams. The second lecture will survey some of the physics possibilities of polarized electron-positron collisions

  18. Physics with polarized electron beams

    International Nuclear Information System (INIS)

    Swartz, M.L.

    1988-06-01

    As a distinct field, elementary particle physics is now approximately forty years old. In all that time, only a few of the thousands of experiments that have been performed have made use of spin polarized particle beams. There are two reasons for this lack of interest. The first is that spin polarized beams are difficult to produce, accelerate, and transport. The second reason is that any physical process that can occur during the collision of a polarized particle with another (polarized or not) can also occur during the collision of unpolarized particles. One might ask then, why has any effort been expended on the subject? The answer, at least in the case of polarized electron beams, is that electron accelerators and storage rings have in recent years achieved sufficient energy to begin to probe the weak interaction directly. The weak interaction distinguishes between left- and right-handed fermionic currents. Left-handed particles interact in a fundamentally different way than their right-handed counterparts. If the experimenter wishes to explore or exploit this difference, he (or she) must either prepare the spin state of the incident particles or analyze the spin state of outgoing particles. For reasons, of generality and improved statistical precision, the former is usually preferable to the latter. The first of these lectures will review some of the techniques necessary for the production, transport, and monitoring of polarized electron (or positron) beams. The second lecture will survey some of the physics possibilities of polarized electron--positron collisions. 33 refs., 26 figs., 5 tabs

  19. High current polarized electron source

    Science.gov (United States)

    Suleiman, R.; Adderley, P.; Grames, J.; Hansknecht, J.; Poelker, M.; Stutzman, M.

    2018-05-01

    Jefferson Lab operates two DC high voltage GaAs photoguns with compact inverted insulators. One photogun provides the polarized electron beam at the Continuous Electron Beam Accelerator Facility (CEBAF) up to 200 µA. The other gun is used for high average current photocathode lifetime studies at a dedicated test facility up to 4 mA of polarized beam and 10 mA of un-polarized beam. GaAs-based photoguns used at accelerators with extensive user programs must exhibit long photocathode operating lifetime. Achieving this goal represents a significant challenge for proposed facilities that must operate in excess of tens of mA of polarized average current. This contribution describes techniques to maintain good vacuum while delivering high beam currents, and techniques that minimize damage due to ion bombardment, the dominant mechanism that reduces photocathode yield. Advantages of higher DC voltage include reduced space-charge emittance growth and the potential for better photocathode lifetime. Highlights of R&D to improve the performance of polarized electron sources and prolong the lifetime of strained-superlattice GaAs are presented.

  20. The SLC polarized electron source

    International Nuclear Information System (INIS)

    Clendenin, J.E.

    1990-10-01

    A polarized electron source consisting of a 3-electrode photocathode gun and a flashlamp-pumped dye laser has been designed and built for the SLC and is currently undergoing commissioning. The source is described, and the operating configuration is discussed. The present status of the source and future plans are briefly indicated. 7 refs., 4 figs

  1. Polarization in free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Papadichev, V.A. [Lebedev Physical Institute, Moscow (Russian Federation)

    1995-12-31

    Polarization of electromagnetic radiation is required very often in numerous scientific and industrial applications: studying of crystals, molecules and intermolecular interaction high-temperature superconductivity, semiconductors and their transitions, polymers and liquid crystals. Using polarized radiation allows to obtain important data (otherwise inaccessible) in astrophysics, meteorology and oceanology. It is promising in chemistry and biology for selective influence on definite parts of molecules in chain synthesis reactions, precise control of various processes at cell and subcell levels, genetic engineering etc. Though polarization methods are well elaborated in optics, they can fail in far-infrared, vacuum-ultraviolet and X-ray regions because of lack of suitable non-absorbing materials and damaging of optical elements at high specific power levels. Therefore, it is of some interest to analyse polarization of untreated FEL radiation obtained with various types of undulators, with and without axial magnetic field. The polarization is studied using solutions for electron orbits in various cases: plane or helical undulator with or without axial magnetic field, two plane undulators, a combination of right- and left-handed helical undulators with equal periods, but different field amplitudes. Some examples of how a desired polarization (elliptical circular or linear) can be obtained or changed quickly, which is necessary in many experiments, are given.

  2. Electron interactions with polar molecules

    International Nuclear Information System (INIS)

    Garrett, W.R.

    1981-01-01

    A description is given of a number of the features of discrete and continuous spectra of electrons interacting with polar molecules. Attention is focused on the extent to which theoretical predictions concerning cross sections, resonances, and bound states are strongly influenced by the various approximations that are so ubiquitous in the treatment of such problems. Similarly, threshold scattering and photodetachment processes are examined for the case of weakly bound dipole states whose higher members overlap the continuum

  3. POLARIZED BEAMS: 1 - Longitudinal electron spin polarization at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1994-09-15

    Wednesday 4 May marked a turning point in the art of the manipulation of spins in electron storage rings: longitudinal electron spin polarization (with the spins oriented along the electrons' direction of motion) was established in the electron ring of HERA, the electronproton collider at DESY in Hamburg. A polarization level of about 55% was obtained and polarizations of over 60% were reproducibly obtained in the following days. The beam energy was 27.52 GeV, corresponding to half integer spin tune of 62.5.

  4. Development of spin polarized electron beam

    International Nuclear Information System (INIS)

    Nakanishi, Tsutomu

    2001-01-01

    Physical structure of the polarized electron beam production is explained in this paper. Nagoya University group has been improving the quality of beam. The present state of quality and the development objects are described. The new results of the polarized electron reported in 'RES-2000 Workshop' in October 2000, are introduced. The established ground of GaAs type polarized electron beam source, observation of the negative electron affinity (NEA) surface, some problems of NEA surface of high energy polarized electron beam such as the life, time response, the surface charge limited phenomena of NEA surface are explained. The interested reports in the RES-2000 Workshop consisted of observation by SPLEEM (Spin Low Energy Electron Microscope), Spin-STM and Spin-resolved Photoelectron Spectroscopy. To increase the performance of the polarized electron source, we will develop low emittance and large current. (S.Y.)

  5. Electron thermal conduction in LASNEX

    International Nuclear Information System (INIS)

    Munro, D.; Weber, S.

    1994-01-01

    This report is a transcription of hand-written notes by DM dated 29 January 1986, transcribed by SW, with some clarifying comments added and details specific to running the LASNEX code deleted. Reference to the esoteric measurement units employed in LASNEX has also been deleted by SW (hopefully, without introducing errors in the numerical constants). The report describes the physics equations only, and only of electron conduction. That is, it does not describe the numerical method, which may be finite difference or finite element treatment in space, and (usually) implicit treatment in time. It does not touch on other electron transport packages which are available, and which include suprathermal electrons, nonlocal conduction, Krook model conduction, and modifications to electron conduction by magnetic fields. Nevertheless, this model is employed for the preponderance of LASNEX simulations

  6. A polarity-induced defect mechanism for conductivity and magnetism at polar-nonpolar oxide interfaces.

    Science.gov (United States)

    Yu, Liping; Zunger, Alex

    2014-10-13

    The discovery of conductivity and magnetism at the polar-nonpolar interfaces of insulating nonmagnetic oxides such as LaAlO3 and SrTiO3 has raised prospects for attaining interfacial functionalities absent in the component materials. Yet, the microscopic origin of such emergent phenomena remains unclear, posing obstacles to design of improved functionalities. Here we present first principles calculations of electronic and defect properties of LaAlO3/SrTiO3 interfaces and reveal a unifying mechanism for the origins of both conductivity and magnetism. We demonstrate that the polar discontinuity across the interface triggers thermodynamically the spontaneous formation of certain defects that in turn cancel the polar field induced by the polar discontinuity. The ionization of the spontaneously formed surface oxygen vacancy defects leads to interface conductivity, whereas the unionized Ti-on-Al antisite defects lead to interface magnetism. The proposed mechanism suggests practical design principles for inducing and controlling both conductivity and magnetism at general polar-nonpolar interfaces.

  7. Physics results with polarized electrons at SLAC

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1996-03-01

    Polarized electron beams can play an important role in the dynamics of interactions at high energies. Polarized electron beams at SLAC have been an important part of the physics program since 1970, when they were first proposed for use in testing the spin structure of the proton. Since 1992, the SLAC linear accelerator and the SLC have operated solely with polarized electrons, providing data for tests of QCD in studies of the spin structure of the nucleon and tests of the electroweak sector of the Standard Model. In the following sections, the performance of the source is summarized, and some of the recent results using the polarized beams are discussed

  8. Spin polarization of electrons in quantum wires

    OpenAIRE

    Vasilchenko, A. A.

    2013-01-01

    The total energy of a quasi-one-dimensional electron system is calculated using density functional theory. It is shown that spontaneous ferromagnetic state in quantum wire occurs at low one-dimensional electron density. The critical electron density below which electrons are in spin-polarized state is estimated analytically.

  9. Versatile spin-polarized electron source

    Science.gov (United States)

    Jozwiak, Chris; Park, Cheol -Hwan; Gotlieb, Kenneth; Louie, Steven G.; Hussain, Zahid; Lanzara, Alessandra

    2015-09-22

    One or more embodiments relate generally to the field of photoelectron spin and, more specifically, to a method and system for creating a controllable spin-polarized electron source. One preferred embodiment of the invention generally comprises: method for creating a controllable spin-polarized electron source comprising the following steps: providing one or more materials, the one or more materials having at least one surface and a material layer adjacent to said surface, wherein said surface comprises highly spin-polarized surface electrons, wherein the direction and spin of the surface electrons are locked together; providing at least one incident light capable of stimulating photoemission of said surface electrons; wherein the photon polarization of said incident light is tunable; and inducing photoemission of the surface electron states.

  10. Physics with polarized electrons and targets

    International Nuclear Information System (INIS)

    Donnelly, T.W.

    1984-01-01

    With the advent of electron stretcher or storage rings electron scattering from polarized targets becomes a general new tool for nuclear structure studies. Without such facilities it is necessary to have very dense polarized targets for use with the typical (less or approximately equal 50 μA) electron beams available and very few measurements of this type have been attempted. On the other hand, with electron rings the effective circulating current can be greatly increased. In this case much thinner internal targets may be used while still maintaining the same luminosity as in external beam experiments. In ancticipation of such new experimental capabilities we have re-developed the theoretical basis for discussions of electron scattering from polarized targets using either unpolarized or polarized electron beams. This work takes the formalism of unpolarized (e,e') and extends it in a straightforward way to include general polarizations of electrons, target nuclei, recoil nuclei or any combinations of these polarizations. In the present context it is only possible to provide a brief summary of the general form of the cross section and to present a few illustrative examples of the nuclear structure information that may be extracted from such polarization measurements

  11. Latest on polarization in electron storage rings

    International Nuclear Information System (INIS)

    Chao, A.W.

    1983-01-01

    The field of beam polarization in electron storage rings is making rapid progress in recent several years. This report is an attempt to summarize some of these developments concerning how to produce and maintain a high level of beam polarization. Emphasized will be the ideas and current thoughts people have on what should and could be done on electron rings being designed at present such as HERA, LEP and TRISTAN. 23 references

  12. Spin-polarized scanning electron microscopy

    International Nuclear Information System (INIS)

    Kohashi, Teruo

    2014-01-01

    Spin-Polarized Scanning Electron Microscopy (Spin SEM) is one way for observing magnetic domain structures taking advantage of the spin polarization of the secondary electrons emitted from a ferromagnetic sample. This principle brings us several excellent capabilities such as high-spatial resolution better than 10 nm, and analysis of magnetization direction in three dimensions. In this paper, the principle and the structure of the spin SEM is briefly introduced, and some examples of the spin SEM measurements are shown. (author)

  13. Progress on a cryogenically cooled RF gun polarized electron source

    Energy Technology Data Exchange (ETDEWEB)

    Fliller, R.P., III; Edwards, H.; /Fermilab

    2006-08-01

    RF guns have proven useful in multiple accelerator applications. An RF gun capable of producing polarized electrons is an attractive electron source for the ILC or an electron-ion collider. Producing such a gun has proven elusive. The NEA GaAs photocathode needed for polarized electron production is damaged by the vacuum environment in an RF gun. Electron and ion back bombardment can also damage the cathode. These problems must be mitigated before producing an RF gun polarized electron source. In this paper we report continuing efforts to improve the vacuum environment in a normal conducting RF gun by cooling it with liquid nitrogen after a high temperature vacuum bake out. We also report on a design of a cathode preparation chamber to produce bulk GaAs photocathodes for testing in such a gun. Future directions are also discussed.

  14. Polarized electrons, trions, and nuclei in charged quantum dots

    Science.gov (United States)

    Bracker, A. S.; Tischler, J. G.; Korenev, V. L.; Gammon, D.

    2003-07-01

    We have investigated spin polarization in GaAs quantum dots. Excitons and trions are polarized directly by optical excitation and studied through polarization of photoluminescence. Electrons and nuclei are polarized indirectly through subsequent relaxation processes. Polarized electrons are identified by the Hanle effect for exciton and trion photoluminescence, while polarized nuclei are identified through the Overhauser effect in individual charged quantum dots.

  15. STANFORD: Highly polarized SLC electron beams

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: Using specialized photocathodes made with 'strained' gallium arsenide, physicists at the Stanford Linear Accelerator Center (SLAC) have generated electron beams with polarizations in excess of 60 percent a year ahead of schedule. Together with recent luminosity increases, this breakthrough will have a major impact on the physics output of the Stanford Linear Collider (SLC). Beam polarization was almost tripled using photocathodes in which a gallium arsenide layer was grown epitaxially over a substrate of gallium arsenide phosphide. The mismatch between these two layers deforms the crystal structure and removes a degeneracy in the valence band structure, permitting selective optical pumping of one unique spin state. Whereas conventional gallium arsenide photocathodes are limited to 50 percent polarization because of this degeneracy (and realistic cathodes fall substantially below this theoretical limit), such strained crystal lattices have the potential to yield polarizations close to 100 percent. Polarization enhancement with strained lattices was first demonstrated in 1991 by a SLAC/Wisconsin/ Berkeley group (May 1991, page 6) with a 71 percent polarization in a laboratory experiment. More recently this group has achieved polarization in excess of 90 percent, reported last November at the Nagoya Spin Symposium. (In a complementary development, a Japanese KEK/ Nagoya/KEK obtains polarized beams using a 'superlattice' - May 1991, page 4.) The 1993 SLC run, the strained gallium arsenide photocathode technique's debut in an operating particle accelerator, has proved to be a resounding, unqualified success - as have physics experiments on the Z particles produced by the highly polarized beam. A conservative approach was called for, due to concerns about possible charge saturation effects. A relatively thick (0.3 micron) gallium arsenide layer was used for the photocathode in the SLC polarized electron source. With a titanium

  16. Performance of the SLC polarized electron source with high polarization

    International Nuclear Information System (INIS)

    Clendenin, J.E.; Alley, R.K.; Aoyagi, H.

    1993-04-01

    For the 1992 operating cycle of the SLAC Linear Collider (SLC), the polarized electron source (PES) during its maiden run successfully met the pulse intensity and overall efficiency requirements of the SLC. However, the polarization of the bulk GaAs cathode was low (∼27%) and the pulse-to-pulse stability was marginal. We have shown that adequate charge for the SLC can be extracted from a strained layer cathode having P e ∼80% even though the quantum efficiency (QE) is - beam stability. The performance of the PES during the 1993 SLC operating cycle with these and other improvements is discussed

  17. Conductivity of the electron-impurity system

    International Nuclear Information System (INIS)

    Goettig, S.

    1983-09-01

    The free-carrier absorption of electromagnetic radiation due to the presence of static scatterers is examined taking into account the electron-electron interaction, the plasma-phonon polar coupling and the plasma anisotropy. For the case of strong coupling in the isotropic plasma the absorption due to the collective-mode excitation processes is, for frequencies just above the plasmon-like collective mode frequency, shown to be dominant over the absorption due to single-particle excitations. The expression for the frequency-dependent absorptive part of the conductivity due to the long-wavelength collective-mode excitations is derived for the case of multicomponent anisotropic degenerate plasma (e.g. lead chalcogenides). The results are discussed in detail and compared with available experimental data for n-PbSe. The comparison with the previous theories is also given. (author)

  18. The Polarized Electron Source at ELSA

    International Nuclear Information System (INIS)

    Drachenfels, Wolther von; Frommberger, Frank; Gowin, Michael; Hillert, Wolfgang; Hoffmann, Markus; Neff, Bernhold

    2003-01-01

    At the electron stretcher accelerator ELSA in Bonn a pulsed 50 kV inverted gun of polarized electrons has been in operation since February 2000. A strained-layer superlattice crystal is used to deliver a beam with a polarization of about 80 %. A flashlamp-pumped Ti-Sapphire laser with a pulse repetition rate of 50 Hz serves as source of light. The gun is operated in space charge limitation. The current can be chosen by varying the distance between cathode and anode. With 1 μs pulses of 100 mA the source was particularly used together with a polarized target for a GDH sum rule experiment. The high photocathode lifetime allows continuous operation at 100 mA typically for periods of about two weeks without maintenance. So far no change of the crystal was necessary

  19. Principal and experimental study of source of polarized electrons

    International Nuclear Information System (INIS)

    Shang Rencheng; Gao Junfang; Xiao Yuan; Pang Wenning; Deng Jingkang

    1999-01-01

    The getting of polarized electrons was briefly introduced, that is the source of polarized electrons. The measurement of polarization in future, the application of polarized electrons in atomic and molecular physics, condensed physics, biological physics, nuclear and particle physics were discussed

  20. STANFORD: Producing highly polarized electrons (2)

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Electron spin polarization above 70% by photoemission from a specially prepared semiconductor has been achieved by T. Maruyama and E. Garwin of the Stanford Linear Accelerator Center (SLAC), R. Prepost and G. Zapalac of Wisconsin, and J. Walker and S. Smith of Berkeley

  1. KEK/NAGOYA/SLAC: Highly polarized electrons

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    In the push by the Japanese KEK Laboratory, in collaboration with university groups and overseas laboratories, to develop new techniques for the future Japan electronpositron collider (JLC), a recent achievement is a significant increase in the efficient yield of highly polarized electrons

  2. The polarized electron beam at ELSA

    International Nuclear Information System (INIS)

    Hoffmann, M.; Drachenfels, W. von; Frommberger, F.; Gowin, M.; Hillert, W.; Husmann, D.; Keil, J.; Helbing, K.; Michel, T.; Naumann, J.; Speckner, T.; Zeitler, G.

    2001-01-01

    The future medium energy physics program at the electron stretcher accelerator ELSA of Bonn University mainly relies on experiments using polarized electrons in the energy range from 1 to 3.2 GeV. To provide a polarized beam with high polarization and sufficient intensity a dedicated source has been developed and set into operation. To prevent depolarization during acceleration in the circular accelerators several depolarizing resonances have to be corrected for. Intrinsic resonances are compensated using two pulsed betatron tune jump quadrupoles. The influence of imperfection resonances is successfully reduced applying a dynamic closed orbit correction in combination with an empirical harmonic correction on the energy ramp. In order to minimize beam depolarization, both types of resonances and the correction techniques have been studied in detail. It turned out that the polarization in ELSA can be conserved up to 2.5 GeV and partially up to 3.2 GeV which is demonstrated by measurements using a Moeller polarimeter installed in the external GDH1-beamline

  3. Electron scattering with polarized targets at TESLA

    International Nuclear Information System (INIS)

    Anselmino, M.; Aschenauer, E.C.; Belostotski, S.

    2000-11-01

    Measurements of polarized electron-nucleon scattering can be realized at the TESLA linear collider facility with projected luminosities that are about two orders of magnitude higher than those expected of other experiments at comparable energies. Longitudinally polarized electrons, accelerated as a small fraction of the total current in the e + arm of TESLA, can be directed onto a solid state target that may be either longitudinally or transversely polarized. A large variety of polarized parton distribution and fragmentation functions can be determined with unprecedented accuracy, many of them for the first time. A main goal of the experiment is the precise measurement of the x- and Q 2 -dependence of the experimentally totally unknown quark transversity distributions that will complete the information on the nucleon's quark spin structure as relevant for high energy processes. Comparing their Q 2 -evolution to that of the corresponding helicity distributions constitutes an important precision test of the predictive power of QCD in the spin sector. Measuring transversity distributions and tensor charges allows access to the hitherto unmeasured chirally odd operators in QCD which are of great importance to understand the role of chiral symmetry. The possibilities of using unpolarized targets and of experiments with a real photon beam turn TESLA-N into a versatile next-generation facility at the intersection of particle and nuclear physics. (orig.)

  4. Electron Beam Polarization Measurement Using Touschek Lifetime Technique

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Changchun; /Duke U., DFELL; Li, Jingyi; /Duke U., DFELL; Mikhailov, Stepan; /Duke U., DFELL; Popov, Victor; /Duke U., DFELL; Wu, Wenzhong; /Duke U., DFELL; Wu, Ying; /Duke U., DFELL; Chao, Alex; /SLAC; Xu, Hong-liang; /Hefei, NSRL; Zhang, Jian-feng; /Hefei, NSRL

    2012-08-24

    Electron beam loss due to intra-beam scattering, the Touschek effect, in a storage ring depends on the electron beam polarization. The polarization of an electron beam can be determined from the difference in the Touschek lifetime compared with an unpolarized beam. In this paper, we report on a systematic experimental procedure recently developed at Duke FEL laboratory to study the radiative polarization of a stored electron beam. Using this technique, we have successfully observed the radiative polarization build-up of an electron beam in the Duke storage ring, and determined the equilibrium degree of polarization and the time constant of the polarization build-up process.

  5. Bates GaAs polarized electron source

    International Nuclear Information System (INIS)

    Schaefer, H.R.; Cates, G.; Michaels, R.; Hughes, V.W.; Lubell, M.S.; Souder, P.A.

    1983-05-01

    In order to pursue measurements of parity violating effects of the neutral weak current, we have developed a polarized electron source suitable for installation at the MIT-Bates Linear Accelerator. The source is designed to provide a high peak-current pulsed beam that has a approx. 1% duty factor and that is extremely stable under helicity reversal. 34 references, 6 figures, 1 table

  6. The polarized electron gun for the SLC

    International Nuclear Information System (INIS)

    Schultz, D.C.; Clendenin, J.; Frisch, J.; Hoyt, E.; Klaisner, L.; Woods, M.; Wright, D.; Zolotorev, M.

    1992-03-01

    A new polarized electron gun for use on the SLC at SLAC has been built and tested. It is a diode gun with a laser driven GaAs photocathode. It is designed to provide short (2ns) pulses of 10 A at 160 kV at 120 Hz. The design features of the gun and results from a testing program on a new and dedicated beam line are presented. Early results from operation on the SLC will also be shown

  7. Spin-polarized ballistic conduction through correlated Au-NiMnSb-Au heterostructures

    KAUST Repository

    Morari, C.

    2017-11-20

    We examine the ballistic conduction through Au-NiMnSb-Au heterostructures consisting of up to four units of the half-metallic NiMnSb in the scattering region, using density functional theory (DFT) methods. For a single NiMnSb unit the transmission function displays a spin polarization of around 50% in a window of 1eV centered around the Fermi level. By increasing the number of layers, an almost complete spin polarization of the transmission is obtained in this energy range. Supplementing the DFT calculations with local electronic interactions, of Hubbard-type on the Mn sites, leads to a hybridization between the interface and many-body states. The significant reduction of the spin polarization seen in the density of states is not apparent in the spin polarization of the conduction electron transmission, which suggests that the hybridized interface and many-body induced states are localized.

  8. SLC polarized beam source electron optics design

    International Nuclear Information System (INIS)

    Eppley, K.R.; Lavine, T.L.; Early, R.A.; Herrmannsfeldt, W.B.; Miller, R.H.; Schultz, D.C.; Spencer, C.M.; Yeremian, A.D.

    1991-05-01

    This paper describes the design of the beam-line from the polarized electron gun to the linac injector in the Stanford Linear Collider (SLC). The polarized electron source is a GaAs photocathode, requiring 10 -11 -Torr-range pressure for adequate quantum efficiency and longevity. The photocathode is illuminated by 3-nsec-long laser pulses. The quality of the optics for the 160-kV beam is crucial since electron-stimulated gas desorption from beam loss in excess of 0.1% of the 20-nC pulses may poison the photocathode. Our design for the transport line consists of a differential pumping region isolated by a pair of valves. Focusing is provided by a pair of Helmholtz coils and by several iron-encased solenoidal lenses. Our optics design is based on beam transport simulations using 2 1/2-D particle-in-cell codes to model the gun and to solve the fully-relativistic time-dependent equations of motion in three dimensions for electrons in the presence of azimuthally symmetric electromagnetic fields. 6 refs., 6 figs

  9. Conducting polymer based biomolecular electronic devices

    Indian Academy of Sciences (India)

    Conducting polymers; LB films; biosensor microactuators; monolayers. ... have been projected for applications for a wide range of biomolecular electronic devices such as optical, electronic, drug-delivery, memory and biosensing devices.

  10. Superthermal electron distribution measurements from polarized electron cyclotron emission

    International Nuclear Information System (INIS)

    Luce, T.C.; Efthimion, P.C.; Fisch, N.J.

    1988-06-01

    Measurements of the superthermal electron distribution can be made by observing the polarized electron cyclotron emission. The emission is viewed along a constant magnetic field surface. This simplifies the resonance condition and gives a direct correlation between emission frequency and kinetic energy of the emitting electron. A transformation technique is formulated which determines the anisotropy of the distribution and number density of superthermals at each energy measured. The steady-state distribution during lower hybrid current drive and examples of the superthermal dynamics as the runaway conditions is varied are presented for discharges in the PLT tokamak. 15 refs., 8 figs

  11. Fractional model for heat conduction in polar bear hairs

    Directory of Open Access Journals (Sweden)

    Wang Qing-Li

    2012-01-01

    Full Text Available Time-fractional differential equations can accurately describe heat conduction in fractal media, such as wool fibers, goose down and polar bear hair. The fractional complex transform is used to convert time-fractional heat conduction equations with the modified Riemann-Liouville derivative into ordinary differential equations, and exact solutions can be easily obtained. The solution process is straightforward and concise.

  12. Measurement of electron beam polarization at the SLC

    International Nuclear Information System (INIS)

    Steiner, H.; California Univ., Berkeley

    1988-01-01

    One of the unique features of the SLC is its capability to accelerate longitudinally polarized electrons. The SLC polarization group has been performed to implement the polarization program at the SLC. Technically the polarization project consists of three main parts: (1) a polarized source, (2) spin-rotating superconducting solenoid magnets to be used to manipulate the direction of the electron spin, and (3) the polarimeters needed to monitor and measure the electron beam polarization. It is this last topic that will concern us here. Two types of polarimeters will be used - Compton and Moeller. (orig./HSI)

  13. Electronic Conductivity of Doped-Lanthanum Gallate Electrolytes

    Science.gov (United States)

    Yamaji, Katsuhiko; Xiong, Yue Ping; Kishimoto, Haruo; Horita, Teruhisa; Sakai, Natsuko; Brito, Manuel E.; Yokokawa, Harumi

    Electronic conductivity of doped lanthanum gallate electrolytes were determined by using a Hebb-Wagner type polarization cell. Electronic conductivity of cobalt-doped, La0.8Sr0.2Ga0.8Mg0.15Co0.5O3-δ (LSGMC), and non cobalt-doped, La0.8Sr0.2Ga0.8Mg0.2O2.8 (LSGM8282), were measured as a function of oxygen partial pressures. The electronic conductivity of LSGM8282 showed a linear dependence on p(O2)1/4 in the higher p(O2) region, which is attributed to the electronic hole conductivity. The electronic conductivity of LSGMC showed a linear dependence on p(O2)1/6 in the higher p(O2) region. LSGMC has higher electronic conductivity than LSGM, and the conductivity was not clearly changed with temperatures between 600 and 800 °C. In lower p(O2) region, the electronic conductivity data have poor reproducibility and did not show any dependence on p(O2) because of the degradation of the electrolytes in severe reducing atmospheres.

  14. Using Electronic Mail to Conduct Survey Research.

    Science.gov (United States)

    Thach, Liz

    1995-01-01

    Describes public and private online networks and the characteristics of electronic mail. Reviews the literature on survey research conducted via electronic mail, and examines the issues of design, implementation, and response. A table displays advantages and disadvantages of electronic mail surveys. (AEF)

  15. Polarized electronic sources for future e+/e- linear colliders

    International Nuclear Information System (INIS)

    Tang, H.; Alley, R.K.; Clendenin, J.E.

    1997-05-01

    Polarized electron beams will play a crucial role in maximizing the physics potential for future e + /e - linear colliders. We will review the SLC polarized electron source (PES), present a design for a conventional PES for the Next Linear Collider (NLC), and discuss the physics issues of a polarized RF gun

  16. Polarized Light Sources for photocathode electron guns at SLAC

    International Nuclear Information System (INIS)

    Woods, M.; Frisch, J.; Witte, K.; Zolotorev, M.

    1992-12-01

    We describe current and future Polarized Light Sources at SLAC for use with photocathode electron guns to produce polarized electron beams. The SLAC experiments SLD and E142 are considered, and are used to define the required parameters for the Polarized Light Sources

  17. The Electronic Thermal Conductivity of Graphene.

    Science.gov (United States)

    Kim, Tae Yun; Park, Cheol-Hwan; Marzari, Nicola

    2016-04-13

    Graphene, as a semimetal with the largest known thermal conductivity, is an ideal system to study the interplay between electronic and lattice contributions to thermal transport. While the total electrical and thermal conductivity have been extensively investigated, a detailed first-principles study of its electronic thermal conductivity is still missing. Here, we first characterize the electron-phonon intrinsic contribution to the electronic thermal resistivity of graphene as a function of doping using electronic and phonon dispersions and electron-phonon couplings calculated from first-principles at the level of density-functional theory and many-body perturbation theory (GW). Then, we include extrinsic electron-impurity scattering using low-temperature experimental estimates. Under these conditions, we find that the in-plane electronic thermal conductivity κe of doped graphene is ∼300 W/mK at room temperature, independently of doping. This result is much larger than expected and comparable to the total thermal conductivity of typical metals, contributing ∼10% to the total thermal conductivity of bulk graphene. Notably, in samples whose physical or domain sizes are of the order of few micrometers or smaller, the relative contribution coming from the electronic thermal conductivity is more important than in the bulk limit, because lattice thermal conductivity is much more sensitive to sample or grain size at these scales. Last, when electron-impurity scattering effects are included we find that the electronic thermal conductivity is reduced by 30 to 70%. We also find that the Wiedemann-Franz law is broadly satisfied at low and high temperatures but with the largest deviations of 20-50% around room temperature.

  18. The ELSA laser beamline for electron polarization measurements via Compton backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Switka, Michael; Hinterkeuser, Florian; Koop, Rebecca; Hillert, Wolfgang [Electron Stretcher Facility ELSA, Physics Institute of Bonn University (Germany)

    2016-07-01

    The Electron Stretcher Facility ELSA provides a spin polarized electron beam with energies of 0.5 - 3.2 GeV for double polarization hadron physics experiments. As of 2015, the laser beamline of the polarimeter based on Compton backscattering restarted operation. It consists of a cw disk laser with design total beam power of 40 W and features two polarized 515 nm photon beams colliding head-on with the stored electron beam in ELSA. The polarization measurement is based on the vertical profile asymmetry of the back-scattered photons, which is dependent on the polarization degree of the stored electron beam. After recent laser repairs, beamline and detector modifications, the properties of the beamline have been determined and first measurements of the electron polarization degree were conducted. The beamline performance and first measurements are presented.

  19. Electron and nuclear spin system polarization in semiconductors by light

    Energy Technology Data Exchange (ETDEWEB)

    Zakharchenya, B; Flejsher, V

    1981-02-01

    Discussed are the principles of optical electron spin orientation, dynamic polarization and cooling of nuclear spin systems in optical electron orientation, and behavioural characteristics of bound electron and nuclear spin systems of a semiconductor in the optical orientation situation.

  20. Measurement of electron beam polarization at the SLC

    International Nuclear Information System (INIS)

    Steiner, H.

    1987-03-01

    The polarimeters needed to monitor and measure electron beam polarization at the Stanford Linear Collider are discussed. Two types of polarimeters, are to be used. The first is based on the spin dependent elastic scattering of photons from high energy electrons. The second utilizes the spin dependence of elastic electron-electron scattering. The plans of the SLC polarization group to measure and monitor electron beam polarization are discussed. A brief discussion of the physics and the demands it imposes on beam polarization measurements is presented. The Compton polarimeter and the essential characteristics of two Moeller polarimeters are presented

  1. Optically pumped electron spin polarized targets for use in the production of polarized ion beams

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1979-01-01

    The production of relatively dense electron spin polarized alkali metal vapor targets by optical pumping with intense cw dye lasers is discussed. The target density and electron spin polarization depend on the dye laser intensity and bandwidth, the magnetic field at the target, and the electron spin depolarization time. For example in a magnetic field of 1.5 x 10 3 G, and using 1 W dye laser with a bandwidth of 10 10 Hz one can construct an electron spin polarized Na vapor target with a target thickness of 1.6 x 10 13 atoms/cm 2 and an average electron spin polarization of about 90% even though the Na atoms are completely depolarized at every wall collision. Possible uses of the electron spin polarized targets for the production of intense beams of polarized H - or 3 He - ions are discussed. (orig.)

  2. Structure of conduction electrons on polysilanes

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Tsuneki [Hokkaido Univ., Sapporo (Japan); Kumagai, Jun

    1998-10-01

    The orbital structures of conduction electrons on permethylated oligosilane, Si{sub 2n}(CH{sub 3}){sub 2n+2}(n = 2 - 8), and poly(cyclohexylmethylsilane) have been determined by the electron spin-echo envelope modulation signals of the radical anions of these silanes in a deuterated rigid matrix at 77 K. The conduction electron on permethylated oligosilane is delocalized over the entire main chain, whereas that on poly(cyclohexylmethylsilane) is localized on a part of the main chain composed of about six Si atoms. Quantum-chemical calculations suggest that Anderson localization due to fluctuation of {sigma} conjugation by conformational disorder of the main chain is responsible for the localization of both the conduction electron and the hole. (author)

  3. EPIC - an electron-polarized ion collider

    International Nuclear Information System (INIS)

    Cameron, J.M.

    1999-01-01

    As discussed earlier in this workshop, we have been studying at the Indiana University Cyclotron Facility (IUCF) for some time the potential of a facility-the Light Ion Spin Synchrotron (LISS)- focusing on reactions induced by polarized nucleons at ∼ 1 to 20 GeV. The technology would extrapolate from what we have learned using our existing Cooler ring using internal polarized targets. Indeed, these techniques are most viable at higher energies where the loss of the stored beam is due to the nuclear reactions which are of interest and not that of multiple Coulomb scattering which dominate in our present energy range. However, while the internal targets are not exactly fixed, they certainly do not contribute to the available energy in the center of momentum frame. Consequently, the energy and momentum which can be effective explored are 6 GeV and 3 GeV/c respectively, about the same range that we expect to explore using electromagnetic probes using the enhanced Thomas Jefferson National Accelerator Laboratory electron beam. Looking at the structure of hadrons, as we currently understand it, one can divide it into four size scales. The LISS facility would permit studies of the manifestation of the nucleon substructure but generally would not get to scales where one would only have incoherent interactions at the partonic level. Following in a path already trodden by our European colleagues, we have recently started to look at the possibility of adding an electronic collider option to our plans. This would significantly increase the kinematic range, with 25 GeV protons and 4 GeV electrons (one gets over 20 GeV in the center of mass-equivalent to about 200 GeV on a fixed proton target). The accessible range provides coverage up to Q 2 = 20 GeV/ c 2 and down to x ∼ 10 -2 (here x = Q 2 /2Mv, the usual Bjorken scaling variable). As the energy of both beams would be variable, one can cover the whole range between HERMES and CERN/FNAL muon beams. Examples of the range of

  4. Electron conductivity model for dense plasmas

    International Nuclear Information System (INIS)

    Lee, Y.T.; More, R.M.

    1984-01-01

    An electron conductivity model for dense plasmas is described which gives a consistent and complete set of transport coefficients including not only electrical conductivity and thermal conductivity, but also thermoelectric power, and Hall, Nernst, Ettinghausen, and Leduc--Righi coefficients. The model is useful for simulating plasma experiments with strong magnetic fields. The coefficients apply over a wide range of plasma temperature and density and are expressed in a computationally simple form. Different formulas are used for the electron relaxation time in plasma, liquid, and solid phases. Comparisons with recent calculations and available experimental measurement show the model gives results which are sufficiently accurate for many practical applications

  5. Feasibility studies of a polarized positron source based on the Bremsstrahlung of polarized electrons

    International Nuclear Information System (INIS)

    Dumas, J.

    2011-09-01

    The nuclear and high-energy physics communities have shown a growing interest in the availability of high current, highly-polarized positron beams. A sufficiently energetic polarized photon or lepton incident on a target may generate, via Bremsstrahlung and pair creation within a solid target foil, electron-positron pairs that should carry some fraction of the initial polarization. Recent advances in high current (> 1 mA) spin polarized electron sources at Jefferson Lab offer the perspective of creating polarized positrons from a low energy electron beam. This thesis discusses polarization transfer from electrons to positrons in the perspective of the design optimization of a polarized positron source. The PEPPo experiment, aiming at a measurement of the positron polarization from a low energy (< 10 MeV) highly spin polarized electron beam is discussed. A successful demonstration of this technique would provide an alternative scheme for the production of low energy polarized positrons and useful information for the optimization of the design of polarized positron sources in the sub-GeV energy range. (author)

  6. Conductivity of a spin-polarized two-dimensional hole gas at very low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dlimi, S., E-mail: kaaouachi21@yahoo.fr; Kaaouachi, A. El, E-mail: kaaouachi21@yahoo.fr; Limouny, L., E-mail: kaaouachi21@yahoo.fr; Sybous, A.; Narjis, A.; Errai, M.; Daoudi, E. [Research Group ESNPS , Physics department, University Ibn Zohr, Faculty of Sciences, B.P 8106, Hay Dakhla, 80000 Agadir (Morocco); Idrissi, H. El [Faculté des Sciences et Techniques de Mohammedia, Département de physique. BP 146 Quartier Yasmina Mohammedia (Morocco); Zatni, A. [Laboratoire MSTI. Ecole de technologied' Agadir, B.P33/S Agadir (Morocco)

    2014-01-27

    In the ballistic regime where k{sub B}Tτ / ħ ≥1, the temperature dependence of the metallic conductivity in a two-dimensional hole system of gallium arsenide, is found to change non-monotonically with the degree of spin polarization. In particular, it fades away just before the onset of complete spin polarization, but reappears again in the fully spin-polarized state, being, however, suppressed relative to the zero magnetic field case. The analysis of the degree of suppression can distinguish between screening and interaction-based theories. We show that in a fully polarized spin state, the effects of disorder are dominant and approach a strong localization regime, which is contrary to the behavior of 2D electron systems in a weakly disordered unpolarized state. It was found that the elastic relaxation time correction, depending on the temperature, changed significantly with the degree of spin polarization, to reach a minimum just below the start of the spin-polarized integer, where the conductivity is practically independent of temperature.

  7. Molecular electron recollision dynamics in intense circularly polarized laser pulses

    Science.gov (United States)

    Bandrauk, André D.; Yuan, Kai-Jun

    2018-04-01

    Extreme UV and x-ray table top light sources based on high-order harmonic generation (HHG) are focused now on circular polarization for the generation of circularly polarized attosecond pulses as new tools for controlling electron dynamics, such as charge transfer and migration and the generation of attosecond quantum electron currents for ultrafast magneto-optics. A fundamental electron dynamical process in HHG is laser induced electron recollision with the parent ion, well established theoretically and experimentally for linear polarization. We discuss molecular electron recollision dynamics in circular polarization by theoretical analysis and numerical simulation. The control of the polarization of HHG with circularly polarized ionizing pulses is examined and it is shown that bichromatic circularly polarized pulses enhance recollision dynamics, rendering HHG more efficient, especially in molecules because of their nonspherical symmetry. The polarization of the harmonics is found to be dependent on the compatibility of the rotational symmetry of the net electric field created by combinations of bichromatic circularly polarized pulses with the dynamical symmetry of molecules. We show how the field and molecule symmetry influences the electron recollision trajectories by a time-frequency analysis of harmonics. The results, in principle, offer new unique controllable tools in the study of attosecond molecular electron dynamics.

  8. Electron Cyclotron Waves Polarization in the TJII Stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Cappa, A.; Martinez-Fernandez, J.; Wagner, D.

    2013-05-01

    This report describes the theoretical calculations related with the electron cyclotron (EC) waves polarization control in the TJII stellarator. Two main aspects will be distinguished: the determination of the vacuum polarization that the wave must exhibit if a given propagation mode in a cold plasma is desired and the calculation of the behavior of the grooved polarizers and other transmission systems used to launch the vacuum wave with the required polarization. (Author) 13 refs.

  9. Scattering of polarized low-energy electrons by ferromagnetic metals

    International Nuclear Information System (INIS)

    Helman, J.S.

    1981-01-01

    A source of spin polarized electrons with remarkable characteristics based on negative electron affinity (NEA) GaAs has recently been developed. It constitutes a unique tool to investigate spin dependent interactions in electron scattering processes. The characteristics and working principles of the source are briefly described. Some theoretical aspects of the scattering of polarized low-energy electrons by ferromagnetic metals are discussed. Finally, the results of the first polarized low-energy electron diffraction experiment using the NEA GaAs source are reviewed; they give information about the surface magnetization of ferromagnetic Ni (110). (Author) [pt

  10. Variations of the electron concentration in the polar ionosphere

    International Nuclear Information System (INIS)

    Chasovitin, Yu.K.; Shushkova, V.B.

    1980-01-01

    The possibility of constructing an empirical model of electron concentration in the polar ionosphere is considered. The results of rocket measurements carried out at Fort Churchill and on the Hays island at 70-210 km heights are used to analyse the distribution of electron concentration in the non-illuminated sector of the auroral oval, in the subauroral ionosphere and in the polar cap. Taking account of magnetospheric-ionospheric relationships and the geomagnetic environment, certain regularities in the distribution of electron concentration in the polar field, which may serve as a basis for constructing an empirical model of the polar ionosphere have been identified

  11. Latest polarization and beam characterization results of the Orsay polarized electron source

    International Nuclear Information System (INIS)

    Arianer, J.; Cohen, S.; Essabaa, S.; Frascaria, R.; Zerhouni, O.

    1995-01-01

    The Orsay polarized electron source based on the chemi-ionization of aligned He(2 3 S 1 ) atoms and CO 2 molecules is briefly described. The latest results concerning electron polarization and beam emittance are presented. The present development status is also discussed. (K.A.)

  12. Temperature dependent electronic conduction in semiconductors

    International Nuclear Information System (INIS)

    Roberts, G.G.; Munn, R.W.

    1980-01-01

    This review describes the temperature dependence of bulk-controlled electronic currents in semiconductors. The scope of the article is wide in that it contrasts conduction mechanisms in inorganic and organic solids and also single crystal and disordered semiconductors. In many experimental situations it is the metal-semiconductor contact or the interface between two dissimilar semiconductors that governs the temperature dependence of the conductivity. However, in order to keep the length of the review within reasonable bounds, these topics have been largely avoided and emphasis is therefore placed on bulk-limited currents. A central feature of electronic conduction in semiconductors is the concentrations of mobile electrons and holes that contribute to the conductivity. Various statistical approaches may be used to calculate these densities which are normally strongly temperature dependent. Section 1 emphasizes the relationship between the position of the Fermi level, the distribution of quantum states, the total number of electrons available and the absolute temperature of the system. The inclusion of experimental data for several materials is designed to assist the experimentalist in his interpretation of activation energy curves. Sections 2 and 3 refer to electronic conduction in disordered solids and molecular crystals, respectively. In these cases alternative approaches to the conventional band theory approach must be considered. For example, the velocities of the charge carriers are usually substantially lower than those in conventional inorganic single crystal semiconductors, thus introducing the possibility of an activated mobility. Some general electronic properties of these materials are given in the introduction to each of these sections and these help to set the conduction mechanisms in context. (orig.)

  13. Electron correlations in narrow energy bands: modified polar model approach

    Directory of Open Access Journals (Sweden)

    L. Didukh

    2008-09-01

    Full Text Available The electron correlations in narrow energy bands are examined within the framework of the modified form of polar model. This model permits to analyze the effect of strong Coulomb correlation, inter-atomic exchange and correlated hopping of electrons and explain some peculiarities of the properties of narrow-band materials, namely the metal-insulator transition with an increase of temperature, nonlinear concentration dependence of Curie temperature and peculiarities of transport properties of electronic subsystem. Using a variant of generalized Hartree-Fock approximation, the single-electron Green's function and quasi-particle energy spectrum of the model are calculated. Metal-insulator transition with the change of temperature is investigated in a system with correlated hopping. Processes of ferromagnetic ordering stabilization in the system with various forms of electronic DOS are studied. The static conductivity and effective spin-dependent masses of current carriers are calculated as a function of electron concentration at various DOS forms. The correlated hopping is shown to cause the electron-hole asymmetry of transport and ferromagnetic properties of narrow band materials.

  14. Generation of valley-polarized electron beam in bilayer graphene

    International Nuclear Information System (INIS)

    Park, Changsoo

    2015-01-01

    We propose a method to produce valley-polarized electron beams using a bilayer graphene npn junction. By analyzing the transmission properties of electrons through the junction with zigzag interface in the presence of trigonal warping, we observe that there exist a range of incident energies and barrier heights in which transmitted electrons are well polarized and collimated. From this observation and by performing numerical simulations, it is demonstrated that valley-dependent electronic currents with nearly perfect polarization can be generated. We also show that the peak-to-peak separation angle between the polarized currents is tunable either by incident energy or by barrier height each of which is controlled by using top and back gate voltages. The results can be used for constructing an electron beam splitter to produce valley-polarized currents

  15. Generation of valley-polarized electron beam in bilayer graphene

    Science.gov (United States)

    Park, Changsoo

    2015-12-01

    We propose a method to produce valley-polarized electron beams using a bilayer graphene npn junction. By analyzing the transmission properties of electrons through the junction with zigzag interface in the presence of trigonal warping, we observe that there exist a range of incident energies and barrier heights in which transmitted electrons are well polarized and collimated. From this observation and by performing numerical simulations, it is demonstrated that valley-dependent electronic currents with nearly perfect polarization can be generated. We also show that the peak-to-peak separation angle between the polarized currents is tunable either by incident energy or by barrier height each of which is controlled by using top and back gate voltages. The results can be used for constructing an electron beam splitter to produce valley-polarized currents.

  16. Detecting Kondo Entanglement by Electron Conductance

    Science.gov (United States)

    Yoo, Gwangsu; Lee, S.-S. B.; Sim, H.-S.

    2018-04-01

    Quantum entanglement between an impurity spin and electrons nearby is a key property of the single-channel Kondo effects. We show that the entanglement can be detected by measuring electron conductance through a double quantum dot in an orbital Kondo regime. We derive a relation between the entanglement and the conductance, when the SU(2) spin symmetry of the regime is weakly broken. The relation reflects the universal form of many-body states near the Kondo fixed point. Using it, the spatial distribution of the entanglement—hence, the Kondo cloud—can be detected, with breaking of the symmetry spatially nonuniformly by electrical means.

  17. Electron conductance in curved quantum structures

    DEFF Research Database (Denmark)

    Willatzen, Morten; Gravesen, Jens

    2010-01-01

    is computationally fast and provides direct (geometrical) parameter insight as regards the determination of the electron transmission coefficient. We present, as a case study, calculations of the electron conductivity of a helically shaped quantum-wire structure and discuss the influence of the quantum......A differential-geometry analysis is employed to investigate the transmission of electrons through a curved quantum-wire structure. Although the problem is a three-dimensional spatial problem, the Schrodinger equation can be separated into three general coordinates. Hence, the proposed method...

  18. Electron-beam-induced conduction in dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Acris, F C; Davies, P M; Lewis, T J [University Coll. of North Wales, Bangor (UK). School of Electronic Engineering Science

    1976-03-14

    A model for the enhanced conduction induced in dielectric films under electron bombardment while electrically stressed is discussed. It is assumed that the beam produces a virtual electrode at the end of its range in the dielectric and, as a consequence, the induced conduction is shown to depend on the properties of that part of the dielectric beyond the range of the beam. This model has also been discussed recently by Nunes de Oliviera and Gross. In the present treatment, it is shown how the model permits investigation of beam scattering and carrier generation and recombination processes. Experiments on electron-bombardment-induced conduction of thin (72 to 360 nm) films of anodic tantalum oxide are reported and it is shown that the theoretical model provides a very satisfactory explanation of all features of the results including the apparent threshold energy for enhanced conduction.

  19. Imaging differential polarization microscope with electronic readout

    International Nuclear Information System (INIS)

    Mickols, W.; Tinoco, I.; Katz, J.E.; Maestre, M.F.; Bustamante, C.

    1985-01-01

    A differential polarization microscope forms two images: one of the transmitted intensity and the other due to the change in intensity between images formed when different polarizations of light are used. The interpretation of these images for linear dichroism and circular dichroism are described. The design constraints on the data acquisition systems and the polarization modulation are described. The advantage of imaging several biological systems which contain optically anisotropic structures are described

  20. Electron quantum interferences and universal conductance fluctuations

    International Nuclear Information System (INIS)

    Benoit, A.; Pichard, J.L.

    1988-05-01

    Quantum interferences yield corrections to the classical ohmic behaviour predicted by Boltzmann theory in electronic transport: for instance the well-known ''weak localization'' effects. Furthermore, very recently, quantum interference effects have been proved to be responsible for statistically different phenomena, associated with Universal Conductance Fluctuations and observed on very small devices [fr

  1. Polarization Studies for the eRHIC Electron Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Gianfelice-Wendt, Eliana [Fermilab; Tepikian, S. [Brookhaven

    2018-04-01

    A hadron/lepton collider with polarized beams has been under consideration by the scientific community since some years, in the U.S. and Europe. Among the various proposals, those by JLAB and BNL with polarized electron and proton beams are currently under closer study in the U.S. Experimenters call for the simultaneous storage of electron bunches with both spin helicity. In the BNL based Ring-Ring design, electrons are stored at top energy in a ring to be accommodated in the existing RHIC tunnel. The transversely polarized electron beam is injected into the storage ring at variable energies, between 5 and 18 GeV. Polarization is brought into the longitudinal direction at the IP by a couple of spin rotators. In this paper results of first studies of the attainable beam polarization level and lifetime in the storage ring at 18 GeV are presented.

  2. Spin polarized electron tunneling and magnetoresistance in molecular junctions.

    Science.gov (United States)

    Szulczewski, Greg

    2012-01-01

    This chapter reviews tunneling of spin-polarized electrons through molecules positioned between ferromagnetic electrodes, which gives rise to tunneling magnetoresistance. Such measurements yield important insight into the factors governing spin-polarized electron injection into organic semiconductors, thereby offering the possibility to manipulate the quantum-mechanical spin degrees of freedom for charge carriers in optical/electrical devices. In the first section of the chapter a brief description of the Jullière model of spin-dependent electron tunneling is reviewed. Next, a brief description of device fabrication and characterization is presented. The bulk of the review highlights experimental studies on spin-polarized electron tunneling and magnetoresistance in molecular junctions. In addition, some experiments describing spin-polarized scanning tunneling microscopy/spectroscopy on single molecules are mentioned. Finally, some general conclusions and prospectus on the impact of spin-polarized tunneling in molecular junctions are offered.

  3. The S-DALINAC polarized electron injector SPIN

    Energy Technology Data Exchange (ETDEWEB)

    Eckardt, Christian; Bahlo, Thore; Bangert, Phillip; Barday, Roman; Bonnes, Uwe; Brunken, Marco; Burandt, Christoph; Eichhorn, Ralf; Enders, Joachim; Espig, Martin; Platz, Markus; Poltoratska, Yuliya; Roth, Markus; Schneider, Fabian; Wagner, Markus; Weber, Antje; Zwicker, Benjamin [Institut fuer Kernphysik, Technische Universitaet, Darmstadt (Germany); Ackermann, Wolfgang; Mueller, Wolfgang F.O.; Weiland, Thomas [Institut fuer Theorie Elektromagnetischer Felder, Technische Universitaet, Darmstadt (Germany); Aulenbacher, Kurt [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, Mainz (Germany)

    2011-07-01

    A source of polarized electrons has been installed at the superconducting 130 MeV Darmstadt electron linac S-DALINAC. Polarized electrons are generated by irradiating a GaAs cathode with pulsed Ti:Sapphire and diode lasers and preaccelerated to 100 keV. A Wien filter and 100 keV Mott polarimeter are used for spin manipulation and polarization measurement and various beam diagnostic elements are installed. To measure the beam polarization downstream of the superconducting injector linac a 5-10 MeV Mott polarimeter and a Compton-transmission polarimeter have been developed. We report on the status of the polarized electron source and foreseen experiments.

  4. Printable Transparent Conductive Films for Flexible Electronics.

    Science.gov (United States)

    Li, Dongdong; Lai, Wen-Yong; Zhang, Yi-Zhou; Huang, Wei

    2018-03-01

    Printed electronics are an important enabling technology for the development of low-cost, large-area, and flexible optoelectronic devices. Transparent conductive films (TCFs) made from solution-processable transparent conductive materials, such as metal nanoparticles/nanowires, carbon nanotubes, graphene, and conductive polymers, can simultaneously exhibit high mechanical flexibility, low cost, and better photoelectric properties compared to the commonly used sputtered indium-tin-oxide-based TCFs, and are thus receiving great attention. This Review summarizes recent advances of large-area flexible TCFs enabled by several roll-to-roll-compatible printed techniques including inkjet printing, screen printing, offset printing, and gravure printing using the emerging transparent conductive materials. The preparation of TCFs including ink formulation, substrate treatment, patterning, and postprocessing, and their potential applications in solar cells, organic light-emitting diodes, and touch panels are discussed in detail. The rational combination of a variety of printed techniques with emerging transparent conductive materials is believed to extend the opportunities for the development of printed electronics within the realm of flexible electronics and beyond. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Radiative shocks with electron thermal conduction

    International Nuclear Information System (INIS)

    Borkowski, Kazimierz.

    1988-01-01

    The authors studies the influence of electron thermal conduction on radiative shock structure for both one- and two-temperature plasmas. The dimensionless ratio of the conductive length to the cooling length determines whether or not conduction is important, and shock jump conditions with conduction are established for a collisionless shock front. He obtains approximate solutions with the assumptions that the ionization state of the gas is constant and the cooling rate is a function of temperature alone. In the absence of magnetic fields, these solutions indicate that conduction noticeably influences normal-abundance interstellar shocks with velocities 50-100 km s -1 and dramatically affects metal-dominated shocks over a wide range of shock velocities. Magnetic fields inhibit conduction, but the conductive energy flux and the corresponding decrease in the post-shock electron temperature may still be appreciable. He calculates detailed steady-state radiative shock models in gas composed entirely of oxygen, with the purpose of explaining observations of fast-moving knots in Cas A and other oxygen-rich supernova remnants (SNRs). The O III ion, whose forbidden emission usually dominates the observed spectra, is present over a wide range of shock velocities, from 100 to 170 kms -1 . All models with conduction have extensive warm photoionization zones, which provides better agreement with observed optical (O I) line strengths. However, the temperatures in these zones could be lowered by (Si II) 34.8 μm and (Ne II) 12.8 μm cooling if Si and Ne are present in appreciable abundance relative to O. Such low temperatures would be inconsistent with the observed (O I) emission in oxygen-rich SNRs

  6. Electron heat conduction and suprathermal particles

    International Nuclear Information System (INIS)

    Bakunin, O.G.; Krasheninnikov, S.I.

    1991-01-01

    As recognized at present, the applicability of Spitzer-Harm's theory on electron heat conduction along the magnetic field is limited by comparatively small values of the thermal electron mean free path ratio, λ to the characteristic length of changes in plasma parameters, L: γ=λ/L≤10 -2 . The stationary kinetic equation for the electron distribution function inhomogeneous along the x-axis f e (v,x) allows one to have solutions in the self-similar variables. The objective of a given study is to generalize the solutions for the case of arbitrary Z eff , that will allow one to compare approximate solutions to the kinetic equation with the precise ones in a wide range of parameters. (author) 8 refs., 2 figs

  7. On the possibility of obtaining high-energy polarized electrons on Yerevan synchrotron

    International Nuclear Information System (INIS)

    Melikyan, R.A.

    1975-01-01

    A possibility of producing high-energy polarized electrons on the Yerevan synchrotron is discussed. A review of a number of low-energy polarized electron sources and of some of experiments with high-energy polarized electrons is given

  8. Electron and nuclear spin system polarization in semiconductors by light

    International Nuclear Information System (INIS)

    Zakharchenya, B.; Flejsher, V.

    1981-01-01

    Discussed are the principles of optical electron spin orientation, dynamic polarization and cooling of nuclear spin systems in optical electron orientation, and behavioural characteristics of bound electron and nuclear spin systems of a semiconductor in the optical orientation situation. (J.P.)

  9. Stimulated emission of photoexcited polarized electrons from GaAs

    International Nuclear Information System (INIS)

    Derbenev, Ya.S.; Melikyan, R.A.

    1986-01-01

    The influence of electric field on the emission of photoexcited polarized electrons is investigated. The thermalization of excited electrons is shown to be prevented at the field intensity in semiconductor of about 3 kV/cm. As a consequence the quantum yield grows up to unity. With the increase of the output energy of electrons the effective operation time of photocathode also increases

  10. Development of a high average current polarized electron source with long cathode operational lifetime

    Energy Technology Data Exchange (ETDEWEB)

    C. K. Sinclair; P. A. Adderley; B. M. Dunham; J. C. Hansknecht; P. Hartmann; M. Poelker; J. S. Price; P. M. Rutt; W. J. Schneider; M. Steigerwald

    2007-02-01

    Substantially more than half of the electromagnetic nuclear physics experiments conducted at the Continuous Electron Beam Accelerator Facility of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory) require highly polarized electron beams, often at high average current. Spin-polarized electrons are produced by photoemission from various GaAs-based semiconductor photocathodes, using circularly polarized laser light with photon energy slightly larger than the semiconductor band gap. The photocathodes are prepared by activation of the clean semiconductor surface to negative electron affinity using cesium and oxidation. Historically, in many laboratories worldwide, these photocathodes have had short operational lifetimes at high average current, and have often deteriorated fairly quickly in ultrahigh vacuum even without electron beam delivery. At Jefferson Lab, we have developed a polarized electron source in which the photocathodes degrade exceptionally slowly without electron emission, and in which ion back bombardment is the predominant mechanism limiting the operational lifetime of the cathodes during electron emission. We have reproducibly obtained cathode 1/e dark lifetimes over two years, and 1/e charge density and charge lifetimes during electron beam delivery of over 2?105???C/cm2 and 200 C, respectively. This source is able to support uninterrupted high average current polarized beam delivery to three experimental halls simultaneously for many months at a time. Many of the techniques we report here are directly applicable to the development of GaAs photoemission electron guns to deliver high average current, high brightness unpolarized beams.

  11. Operating experience with the polarized electron gun at SLAC

    International Nuclear Information System (INIS)

    Alguard, M.J.; Baum, G.; Clendenin, J.E.; Hughes, V.W.; Lubell, M.S.; Miller, R.H.; Raith, W.; Schuler, K.P.; Sodja, J.

    1977-03-01

    During the two years of operation of the SLAC Polarized Electron Gun (PEGGY), the electron intensity delivered to the target has increased from 7 x 10 7 e - /pulse to 1 x 10 9 e - /pulse. The polarization is 0.85 with no measurable degradation caused by acceleration through the linear accelerator. The predominant cause of downtime is replenishment of lithium, which now averages 43 hours. The lifetime of a lithium load is about 175 hours

  12. Polarized electron sources for linear colliders

    International Nuclear Information System (INIS)

    Clendenin, J.E.; Ecklund, S.D.; Miller, R.H.; Schultz, D.C.; Sheppard, J.C.

    1992-07-01

    Linear colliders require high peak current beams with low duty factors. Several methods to produce polarized e - beams for accelerators have been developed. The SLC, the first linear collider, utilizes a photocathode gun with a GaAs cathode. Although photocathode sources are probably the only practical alternative for the next generation of linear colliders, several problems remain to be solved, including high voltage breakdown which poisons the cathode, charge limitations that are associated with the condition of the semiconductor cathode, and a relatively low polarization of ≤5O%. Methods to solve or at least greatly reduce the impact of each of these problems are at hand

  13. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yongling [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Bo, Maolin [Yangtze Normal University, College of Mechanical and Electrical Engineering, Chongqing 408100 (China); Wang, Yan [School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Liu, Yonghui [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Sun, Chang Q. [NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Huang, Yongli, E-mail: huangyongli@xtu.edu.cn [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China)

    2017-02-28

    Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O{sup 2−} lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta{sup +} electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta{sup +}; the sp{sup 3}-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent

  14. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    International Nuclear Information System (INIS)

    Guo, Yongling; Bo, Maolin; Wang, Yan; Liu, Yonghui; Sun, Chang Q.; Huang, Yongli

    2017-01-01

    Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O"2"− lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta"+ electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta"+; the sp"3-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent insight into the

  15. Spin polarized electrons in surface science

    International Nuclear Information System (INIS)

    Siegmann, H.C.

    1983-01-01

    The potentialities of spin-polarised electron beams as a probe of surface magnetic properties are outlined. Elastic as well as inelastic scattering of electrons from solid surfaces are considered. (G.Q.)

  16. Electron distribution in polar heterojunctions within a realistic model

    Energy Technology Data Exchange (ETDEWEB)

    Tien, Nguyen Thanh, E-mail: thanhtienctu@gmail.com [College of Natural Science, Can Tho University, 3-2 Road, Can Tho City (Viet Nam); Thao, Dinh Nhu [Center for Theoretical and Computational Physics, College of Education, Hue University, 34 Le Loi Street, Hue City (Viet Nam); Thao, Pham Thi Bich [College of Natural Science, Can Tho University, 3-2 Road, Can Tho City (Viet Nam); Quang, Doan Nhat [Institute of Physics, Vietnamese Academy of Science and Technology, 10 Dao Tan Street, Hanoi (Viet Nam)

    2015-12-15

    We present a theoretical study of the electron distribution, i.e., two-dimensional electron gas (2DEG) in polar heterojunctions (HJs) within a realistic model. The 2DEG is confined along the growth direction by a triangular quantum well with a finite potential barrier and a bent band figured by all confinement sources. Therein, interface polarization charges take a double role: they induce a confining potential and, furthermore, they can make some change in other confinements, e.g., in the Hartree potential from ionized impurities and 2DEG. Confinement by positive interface polarization charges is necessary for the ground state of 2DEG existing at a high sheet density. The 2DEG bulk density is found to be increased in the barrier, so that the scattering occurring in this layer (from interface polarization charges and alloy disorder) becomes paramount in a polar modulation-doped HJ.

  17. Magnetic impurity coupled to interacting conduction electrons

    International Nuclear Information System (INIS)

    Schork, T.

    1996-01-01

    We consider a magnetic impurity which interacts by hybridization with a system of weakly correlated electrons and determine the energy of the ground state by means of a 1/N f expansion. The correlations among the conduction electrons are described by a Hubbard Hamiltonian and are treated to the lowest order in the interaction strength. We find that their effect on the Kondo temperature, T K , in the Kondo limit is twofold: first, the position of the impurity level is shifted due to the reduction of charge fluctuations, which reduces T K . Secondly, the bare Kondo exchange coupling is enhanced as spin fluctuations are enlarged. In total, T K increases. Both corrections require intermediate states beyond the standard Varma-Yafet ansatz. This shows that the Hubbard interaction does not just provide quasiparticles, which hybridize with the impurity, but also renormalizes the Kondo coupling. copyright 1996 The American Physical Society

  18. Polarized positrons and electrons at the linear collider

    International Nuclear Information System (INIS)

    Moortgat-Pick, G.; Abe, T.; Alexander, G.; Ananthanarayan, B.; Babich, A.A.; Bharadwaj, V.; Barber, D.; Bartl, A.; Brachmann, A.; Chen, S.; Clarke, J.; Clendenin, J.E.; Dainton, J.; Desch, K.; Diehl, M.; Dobos, B.; Dorland, T.; Dreiner, H.K.; Eberl, H.; Ellis, J.

    2008-01-01

    The proposed International Linear Collider (ILC) is well-suited for discovering physics beyond the Standard Model and for precisely unraveling the structure of the underlying physics. The physics return can be maximized by the use of polarized beams. This report shows the paramount role of polarized beams and summarizes the benefits obtained from polarizing the positron beam, as well as the electron beam. The physics case for this option is illustrated explicitly by analyzing reference reactions in different physics scenarios. The results show that positron polarization, combined with the clean experimental environment provided by the linear collider, allows to improve strongly the potential of searches for new particles and the identification of their dynamics, which opens the road to resolve shortcomings of the Standard Model. The report also presents an overview of possible designs for polarizing both beams at the ILC, as well as for measuring their polarization

  19. Parity violating asymmetries in polarized electron scattering

    International Nuclear Information System (INIS)

    Derman, E.; Marciano, W.J.

    1979-01-01

    We discuss parity violating asymmetries between the scattering of right and left-handed electrons on a variety of targets. Implications for gauge theories from recent SLAC results on deep-inelastic electron-deuterium and electron-proton scattering are examined. A derivation of the asymmetry for electron-electron scattering is given, its advantages are pointed out, and the feasibility of such a measurement is discussed. Other proposed or contemplated asymmetry experiments are reviewed and the necessity of including the Collins-Wilczek-Zee hadronic axial isoscalar current contribution in asymmetry predictions is noted

  20. Thermal conductivity of electron-irradiated graphene

    Science.gov (United States)

    Weerasinghe, Asanka; Ramasubramaniam, Ashwin; Maroudas, Dimitrios

    2017-10-01

    We report results of a systematic analysis of thermal transport in electron-irradiated, including irradiation-induced amorphous, graphene sheets based on nonequilibrium molecular-dynamics simulations. We focus on the dependence of the thermal conductivity, k, of the irradiated graphene sheets on the inserted irradiation defect density, c, as well as the extent of defect passivation with hydrogen atoms. While the thermal conductivity of irradiated graphene decreases precipitously from that of pristine graphene, k0, upon introducing a low vacancy concentration, c reduction of the thermal conductivity with the increasing vacancy concentration exhibits a weaker dependence on c until the amorphization threshold. Beyond the onset of amorphization, the dependence of thermal conductivity on the vacancy concentration becomes significantly weaker, and k practically reaches a plateau value. Throughout the range of c and at all hydrogenation levels examined, the correlation k = k0(1 + αc)-1 gives an excellent description of the simulation results. The value of the coefficient α captures the overall strength of the numerous phonon scattering centers in the irradiated graphene sheets, which include monovacancies, vacancy clusters, carbon ring reconstructions, disorder, and a rough nonplanar sheet morphology. Hydrogen passivation increases the value of α, but the effect becomes very minor beyond the amorphization threshold.

  1. Spin polarized and density modulated phases in symmetric electron-electron and electron-hole bilayers.

    Science.gov (United States)

    Kumar, Krishan; Moudgil, R K

    2012-10-17

    We have studied symmetric electron-electron and electron-hole bilayers to explore the stable homogeneous spin phase and the feasibility of inhomogeneous charge-/spin-density ground states. The former is resolved by comparing the ground-state energies in states of different spin polarizations, while the latter is resolved by searching for a divergence in the wavevector-dependent static charge/spin susceptibility. For this endeavour, we have used the dielectric approach within the self-consistent mean-field theory of Singwi et al. We find that the inter-layer interactions tend to change an abrupt spin-polarization transition of an isolated layer into a nearly gradual one, even though the partially spin-polarized phases are not clearly stable within the accuracy of our calculation. The transition density is seen to decrease with a reduction in layer spacing, implying a suppression of spin polarization by inter-layer interactions. Indeed, the suppression shows up distinctly in the spin susceptibility computed from the spin-polarization dependence of the ground-state energy. However, below a critical layer spacing, the unpolarized liquid becomes unstable against a charge-density-wave (CDW) ground state at a density preceding full spin polarization, with the transition density for the CDW state increasing on further reduction in the layer spacing. Due to attractive e-h correlations, the CDW state is found to be more pronounced in the e-h bilayer. On the other hand, the static spin susceptibility diverges only in the long-wavelength limit, which simply represents a transition to the homogeneous spin-polarized phase.

  2. Polarized target physics at the Bonn electron accelerators

    International Nuclear Information System (INIS)

    Meyer, W.

    1988-12-01

    At the BONN 2.5 GeV electron synchrotron experiments with polarized nucleon targets have a long tradition. Starting with measurements of the target asymmetry in single pion photoproduction off polarized protons, resp. neutrons, the experiments have been concentrated on photodisintegration measurements of polarized deuterons. Parallel to these activities a considerable progress in the field of the target technology, e.g. cryogenics and target materials, has been made, by which all the measurements have profitted enormously. Especially the development of the new target material ammonia has allowed the first use of a polarized deuteron (ND 3 ) target in an intense electron beam. The construction of a frozen spin target, which will be used in combination with a tagged polarized photon beam, makes a new generation of polarized target experiments in photon induced reactions possible. Together with electron scattering off polarized deuterons and neutrons they will be a main activity in the physics program at the new stretcher accelerator ELSA in BONN. (orig.)

  3. Polarized positrons in Jefferson lab electron ion collider (JLEIC)

    Science.gov (United States)

    Lin, Fanglei; Grames, Joe; Guo, Jiquan; Morozov, Vasiliy; Zhang, Yuhong

    2018-05-01

    The Jefferson Lab Electron Ion Collider (JLEIC) is designed to provide collisions of electron and ion beams with high luminosity and high polarization to reach new frontier in exploration of nuclear structure. The luminosity, exceeding 1033 cm-2s-1 in a broad range of the center-of-mass (CM) energy and maximum luminosity above 1034 cm-2s-1, is achieved by high-rate collisions of short small-emittance low-charge bunches with proper cooling of the ion beam and synchrotron radiation damping of the electron beam. The polarization of light ion species (p, d, 3He) and electron can be easily preserved, manipulated and maintained by taking advantage of the unique figure-8 shape rings. With a growing physics interest, polarized positron-ion collisions are considered to be carried out in the JLEIC to offer an additional probe to study the substructure of nucleons and nuclei. However, the creation of polarized positrons with sufficient intensity is particularly challenging. We propose a dedicated scheme to generate polarized positrons. Rather than trying to accumulate "hot" positrons after conversion, we will accumulate "cold" electrons before conversion. Charge accumulation additionally provides a novel means to convert high repetition rate (>100 MHz) electron beam from the gun to a low repetition rate (<100 MHz) positron beam for broad applications. In this paper, we will address the scheme, provide preliminary estimated parameters and explain the key areas to reach the desired goal.

  4. Development of spin-polarized transmission electron microscope

    International Nuclear Information System (INIS)

    Kuwahara, M; Saitoh, K; Tanaka, N; Takeda, Y; Ujihara, T; Asano, H; Nakanishi, T

    2011-01-01

    In order to study spin related phenomena in nano-size materials, spin-polarized electron source (PES) has been employed for the incident beam in transmission electron microscope (TEM). The PES has been designed and constructed with optimizing for spin-polarized TEM. The illuminating system of TEM is also designed to focus the spin-polarized electron beam emitted from a semiconductor photocathode with a negative electron affinity (NEA) surface. The beam energy is set to below 40 keV which is lower energy type as a TEM, because the spin interaction with condensed matters is very small corresponding with a Coulomb interaction. The polarized electron gun has realized in an extra high vacuum (XHV) condition and high field gradient of 4 MV/m on a surface of photocathode. Furthermore, it demonstrated that 40-keV polarized electron beam was operated with a sub-milli second pulse mode by using the backside excitation type photocathode. This high performance PES will make it possible to observe dynamically a magnetic field images with high contrast and highspeed temporal imaging in TEM.

  5. Formation of Electron Strings in Narrow Band Polar Semiconductors

    Science.gov (United States)

    Kusmartsev, F. V.

    2000-01-01

    We show that linear electron strings may arise in polar semiconductors. A single string consists of M spinless fermions trapped by an extended polarization well of a cigar shape. Inside the string the particles are free although they interact with each other via Coulomb forces. The strings arise as a result of an electronic phase separation associated with an instability of small adiabatic polarons. We have found the length of the string which depends on dielectric constants of semiconductors. The appearance of these electron strings may have an impact on the effect of stripe formation observed in a variety of high- Tc experiments.

  6. Electron-spin polarization in tunnel junctions with ferromagnetic EuS barriers

    International Nuclear Information System (INIS)

    Hao, X.; Moodera, J.S.; Meservey, R.

    1989-01-01

    The authors report here spin-polarized tunneling experiments using non-ferromagnetic electrodes and ferromagnetic EuS barriers. Because of the conduction band in EuS splits into spin-up and spin-down subbands when the temperature is below 16.7 K, the Curie temperature of EuS, the tunnel barrier for electrons with different spin directions is different, therefore giving rise to tunnel current polarization. The spin-filter effect, as it may be called, was observed earlier, directly or indirectly, by several groups: Esaki et al. made a tunneling study on junctions having EuS and EuSe barriers; Thompson et al. studied Schottky barrier tunneling between In and doped EuS; Muller et al. and Kisker et al. performed electron field emission experiments on EuS-coated tungsten tips. The field emission experiments gave a maximum polarization of (89 + 7)% for the emitted electrons. Although the previous tunneling studies did not directly show electron polarization, their results were explained by the same spin- filter effect. This work uses the spin-polarized tunneling technique to show directly that tunnel current is indeed polarized and polarization can be as high as 85%

  7. Experiments with polarized electron beams at SLAC

    International Nuclear Information System (INIS)

    Cooper, P.

    1977-01-01

    Elastic and deep inelastic scattering of electrons on protons are studied. Cross sections for elastic scattering are plotted, and the parity nonconservation and neutral currents are diagramed for the deep inelastic scattering

  8. Production of spin-polarized unstable nuclei by using polarized electron capture process

    International Nuclear Information System (INIS)

    Shimizu, S.

    1998-01-01

    Measurements of emitted radiation from spin polarized nuclei are used to get information on electromagnetic moment of ground state unstable nuclei together with spin or parity state of excited states of their decayed (daughter) nuclei. These data are known to be useful for experimental investigation into the structure of unstable nuclei far from the stability line. The present study aims to establish a general method applicable to 11 Be and 16 N nuclei. To produce spin polarization, a new method in which the electron spin polarization of Rb is firstly produced by laser pumping, then the electron is transferred to the unstable nuclear beam (RNB) when they passes through the Rb vapor is proposed. Finally the polarized RNB will be implanted into superfluid helium to remain with a long spin-relaxation time. Future experimental set up for the above measurement adopted in the available radioactive nuclear beam facilities is briefly described. (Ohno, S.)

  9. Thickness, humidity, and polarization dependent ferroelectric switching and conductivity in Mg doped lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Neumayer, Sabine M.; Rodriguez, Brian J., E-mail: brian.rodriguez@ucd.ie [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 (Ireland); Strelcov, Evgheni; Kravchenko, Ivan I.; Kalinin, Sergei V. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Manzo, Michele; Gallo, Katia [Department of Applied Physics, KTH - Royal Institute of Technology, Roslagstullbacken 21, 10691 Stockholm (Sweden); Kholkin, Andrei L. [Department of Physics and CICECO-Aveiro Institute of Materials, 3810-193 Aveiro, Portugal and Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation)

    2015-12-28

    Mg doped lithium niobate (Mg:LN) exhibits several advantages over undoped LN such as resistance to photorefraction, lower coercive fields, and p-type conductivity that is particularly pronounced at domain walls and opens up a range of applications, e.g., in domain wall electronics. Engineering of precise domain patterns necessitates well founded knowledge of switching kinetics, which can differ significantly from that of undoped LN. In this work, the role of humidity and sample composition in polarization reversal has been investigated under application of the same voltage waveform. Control over domain sizes has been achieved by varying the sample thickness and initial polarization as well as atmospheric conditions. In addition, local introduction of proton exchanged phases allows for inhibition of domain nucleation or destabilization, which can be utilized to modify domain patterns. Polarization dependent current flow, attributed to charged domain walls and band bending, demonstrates the rectifying ability of Mg:LN in combination with suitable metal electrodes that allow for further tailoring of conductivity.

  10. Thickness, humidity, and polarization dependent ferroelectric switching and conductivity in Mg doped lithium niobate

    International Nuclear Information System (INIS)

    Neumayer, Sabine M.; Rodriguez, Brian J.; Strelcov, Evgheni; Kravchenko, Ivan I.; Kalinin, Sergei V.; Manzo, Michele; Gallo, Katia; Kholkin, Andrei L.

    2015-01-01

    Mg doped lithium niobate (Mg:LN) exhibits several advantages over undoped LN such as resistance to photorefraction, lower coercive fields, and p-type conductivity that is particularly pronounced at domain walls and opens up a range of applications, e.g., in domain wall electronics. Engineering of precise domain patterns necessitates well founded knowledge of switching kinetics, which can differ significantly from that of undoped LN. In this work, the role of humidity and sample composition in polarization reversal has been investigated under application of the same voltage waveform. Control over domain sizes has been achieved by varying the sample thickness and initial polarization as well as atmospheric conditions. In addition, local introduction of proton exchanged phases allows for inhibition of domain nucleation or destabilization, which can be utilized to modify domain patterns. Polarization dependent current flow, attributed to charged domain walls and band bending, demonstrates the rectifying ability of Mg:LN in combination with suitable metal electrodes that allow for further tailoring of conductivity

  11. One-dimensional heat conduction equation of the polar bear hair

    Directory of Open Access Journals (Sweden)

    Zhu Wei-Hong

    2015-01-01

    Full Text Available Hairs of a polar bear (Ursus maritimus possess special membrane-pore structure. The structure enables the polar bear to survive in the harsh Arctic regions. In this paper, the membrane-pore structure be approximately considered as fractal space, 1-D heat conduction equation of the polar bear hair is established and the solution of the equation is obtained.

  12. Spin dynamics of electrons in strong fields studied via bremsstrahlung from a polarized electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Tashenov, Stanislav [Royal Institute of Technology, Stockholm (Sweden); Stockholm University (Sweden); Physikalisches Institut, Universitaet Heidelberg (Germany); Baeck, Torbjoern; Cederwall, Bo; Khaplanov, Anton; Schaessburger, Kai-Uwe [Royal Institute of Technology, Stockholm (Sweden); Barday, Roman; Enders, Joachim; Poltoratska, Yuliya [Institut fuer Kernphysik, Technische Universitaet, Darmstadt (Germany); Surzhykov, Andrey [Physikalisches Institut, Universitaet Heidelberg (Germany); GSI, Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2011-07-01

    Linear polarization of the photons emitted in the process of the atomic field electron bremsstrahlung has been studied at the newly developed 100 keV polarized electron source of TU Darmstadt. A correlation between the initial orientation of the electron spin and the degree and the angle of photon linear polarization has been measured for the first time. For this purpose a hard x-ray Compton polarimeter consisting of a segmented high purity germanium detector and an external passive photon scattering target have been applied. Linear polarization sensitive Compton and Rayleigh photon scattering distributions have been sampled by the segmented detector. The observed polarization correlation reveals a precession of the electron spin as it moves in the field of the nucleus. The full-relativistic calculations for the case of radiative recombination into a Rydberg series limit have been corroborated by the measurement. The results of this experiment suggest a new method for electron beam polarimetry.

  13. Scattering of polarized electrons from polarized targets: Coincidence reactions and prescriptions for polarized half-off-shell single-nucleon cross sections

    International Nuclear Information System (INIS)

    Caballero, J.A.; Massachusetts Inst. of Tech., Cambridge, MA; Donnelly, T.W.; Massachusetts Inst. of Tech., Cambridge, MA; Poulis, G.I.; Massachusetts Inst. of Tech., Cambridge, MA

    1993-01-01

    Coincidence reactions of the type vector A( vector e, e'N)B involving the scattering of polarized electrons from polarized targets are discussed within the context of the plane-wave impulse approximation. Prescriptions are developed for polarized half-off single-nucleon cross sections; the different prescriptions are compared for typical quasi-free kinematics. Illustrative results are presented for coincidence polarized electron scattering from typical polarized nuclei. (orig.)

  14. Polarization and magnetization of electronic matter

    International Nuclear Information System (INIS)

    Beck, G.

    1979-01-01

    The behaviour of a system of spin-electrons in a weak external electric or magnetic field is studied. Already in the case of a single free electron classical and quantum theory lead to different results concerning the Lorentz transformation of the magnetic moment (Thomas factor of spin-orbit coupling). The separation of the current into a convection and a spin part can be performed in a covariant way. While the convection current is responsible for the diamagnetism of a system, the spin current accounts for paramagnetic behaviour. After a Lorentz transformation of a diamagnetic system paraelectric components appear, while a paramagnetic system, after rransformation, exhibits dia-electric properties, epsilon 1) after a Lorentz transformation shows diamagnetic components, while a diaelectric system would acquire paramagnetic behaviour. Quantum electrodynamics leads to the result, that Dirac's electron vacuum behaves like a paramagnetic medium. It follows from this result, that the electron vacuum in a weak external electric field represents a diaelectric system. (Author) [pt

  15. Neoclassical electron heat conduction in tokamaks performed by the ions

    International Nuclear Information System (INIS)

    Ware, A.A.

    1987-07-01

    The increment to neoclassical ion heat conduction caused by electron collisions is shown to act like electron heat conduction since the energy is taken from and given back to the electrons at each diffusion step length. It can exceed electron neoclassical heat conduction by an order of magnitude

  16. Parity violation in polarized electron scattering

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1980-10-01

    The weak forces are responsible for the decay of radioactive nuclei, and it was in these decay processes where parity non-conservation was first observed. Beta decay occurs through emission of e + or e - particles, indicating that the weak force can carry charge of both signs, and it was natural to speculate on the existence of a neutral component of the weak force. Even though weak neutral forces had not been observed it was conjectured that a neutral component of weak decay could exist, and Zel'dovich in 1957 suggested that parity violating effects may be observable in electron scattering and in atomic spectra. More than twenty years have passed since the early conjectures, and a great deal has been learned. Progress in quantum field theory led to the development of the SU(2) x U(1) gauge theory of weak and electromagnetic interactions and provided a renormalizable theory with a minimum of additional assumptions. Gauge theories predicted the existence of a new force, the neutral current interaction. This new interaction was first seen in 1973 in the Gargamelle bubble chamber at CERN. Today the neutral currents are accepted as well established, and it is the details of the neutral current structure that occupy attention. In particular the role that electrons play cannot be tested readily in neutrino beams (recent neutrino-electron scattering experiments are, however, rapidly improving this situation) and therefore interest in electron-hadron neutral current effects has been high. Parity violation is a unique signature of weak currents, and measurements of its size are a particularly important and sensitive means for determining the neutral current structure

  17. Polarized Parton Distributions at an Electron-Ion Collider

    CERN Document Server

    Ball, Richard D.; Guffanti, Alberto; Nocera, Emanuele R.; Ridolfi, Giovanni; Rojo, Juan

    2014-01-01

    We study the potential impact of inclusive deep-inelastic scattering data from a future electron-ion collider (EIC) on longitudinally polarized parton distribution (PDFs). We perform a PDF determination using the NNPDF methodology, based on sets of deep-inelastic EIC pseudodata, for different realistic choices of the electron and proton beam energies. We compare the results to our current polarized PDF set, NNPDFpol1.0, based on a fit to fixed-target inclusive DIS data. We show that the uncertainties on the first moments of the polarized quark singlet and gluon distributions are substantially reduced in comparison to NNPDFpol1.0, but also that more measurements may be needed to ultimately pin down the size of the gluon contribution to the nucleon spin.

  18. Polarization of electron cyclotron emission spectra in LHD

    International Nuclear Information System (INIS)

    Vries, P.C. de; Nagayama, Y.; Kawahata, K.; Inagaki, S.; Sasao, H.; Nagasaki, K.

    1999-07-01

    Electron cyclotron emission (ECE) can be used to determine the electron temperature profile in magnetized plasmas. The complex structure of the magnetic field configuration in the Large Helical Device (LHD), which has a large shear, complicates the analysis of the ECE spectrum. In a sheared magnetic field the propagation of X and O-mode polarization through the plasma are coupled, causing mode conversion and polarization rotation. Mode scrambling is also caused by wall reflections. In this report, this mode conversion in LHD is numerically analyzed. It was found that at low density mode conversion scrambles the ECE spectra. However, at higher density (n eo > 1.0·10 19 m -3 ) the polarization mode is found to rotate with the sheared magnetic field, yielding only a negligible mode conversion. Wall reflections are found to depolarize the ECE spectrum. Notwithstanding the LHD magnetic configuration, it is shown that temperature profiles could be revealed from the ECE spectra. (author)

  19. Electron-beam induced conduction in some polymers

    International Nuclear Information System (INIS)

    Suzuoki, Yasuo; Mizutani, Teruyoshi; Ieda, Masayuki

    1976-01-01

    The charge signal induced by pulsed electron beam consists of two components, i.e. the fast and the slow components. The slow component which corresponds to carrier transport via shallow traps exhibited an asymmetry with respect to the bias field polarity. The asymmetry revealed that the main carriers which drifted via shallow traps were electrons in PET, both electrons and holes in PEN, and holes in PS. TSC spectra of electron-beam induced electrets proved directly the existence of electron shallow traps in PET and both electron and hole traps in PEN. Their trap energies were 0.1 to 0.2 eV. (auth.)

  20. Polarized electron-muon neutrino scattering to electron and neutrino in noncommutative space

    Directory of Open Access Journals (Sweden)

    MM Ettefaghi

    2011-06-01

    Full Text Available For neutrino scattering from polarized electron, the weak interaction term in the cross section is significantly suppressed by the polarized term. The magnetic moment term does not receive any correction from the electron polarization. Hence, the study of the magnetic moment of neutrinos through scattering from the polarized electron leads to a stronger bound on the neutrino magnetic moment compared with the unpolarized case. On the other hand, neutrinos which are electrically neutral can couple directly with photons in Noncommutative (NC QED. In this paper, we calculate the NC QED corrections on this scattering are calculated. The phase difference between the NC term and the polarized weak interaction term is π/2. Therefore, the NC term does not destroy the above suppression.

  1. Development of a high average current polarized electron source with long cathode operational lifetime

    Directory of Open Access Journals (Sweden)

    C. K. Sinclair

    2007-02-01

    Full Text Available Substantially more than half of the electromagnetic nuclear physics experiments conducted at the Continuous Electron Beam Accelerator Facility of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory require highly polarized electron beams, often at high average current. Spin-polarized electrons are produced by photoemission from various GaAs-based semiconductor photocathodes, using circularly polarized laser light with photon energy slightly larger than the semiconductor band gap. The photocathodes are prepared by activation of the clean semiconductor surface to negative electron affinity using cesium and oxidation. Historically, in many laboratories worldwide, these photocathodes have had short operational lifetimes at high average current, and have often deteriorated fairly quickly in ultrahigh vacuum even without electron beam delivery. At Jefferson Lab, we have developed a polarized electron source in which the photocathodes degrade exceptionally slowly without electron emission, and in which ion back bombardment is the predominant mechanism limiting the operational lifetime of the cathodes during electron emission. We have reproducibly obtained cathode 1/e dark lifetimes over two years, and 1/e charge density and charge lifetimes during electron beam delivery of over 2×10^{5}   C/cm^{2} and 200 C, respectively. This source is able to support uninterrupted high average current polarized beam delivery to three experimental halls simultaneously for many months at a time. Many of the techniques we report here are directly applicable to the development of GaAs photoemission electron guns to deliver high average current, high brightness unpolarized beams.

  2. An analysis of heat conduction in polar bear hairs using one-dimensional fractional model

    Directory of Open Access Journals (Sweden)

    Zhu Wei-Hong

    2016-01-01

    Full Text Available Hairs of a polar bear are of superior properties such as the excellent thermal protection. The polar bears can perennially live in an extremely cold environment and can maintain body temperature at around 37 °C. Why do polar bears can resist such cold environment? Its membrane-pore structure plays an important role. In the previous work, we established a 1-D fractional heat conduction equation to reveal the hidden mechanism for the hairs. In this paper, we further discuss solutions and parameters of the equation established and analyze heat conduction in polar bear hairs.

  3. Photo electron emission microscopy of polarity-patterned materials

    International Nuclear Information System (INIS)

    Yang, W-C; Rodriguez, B J; Gruverman, A; Nemanich, R J

    2005-01-01

    This study presents variable photon energy photo electron emission microscopy (PEEM) of polarity-patterned epitaxial GaN films, and ferroelectric LiNbO 3 (LNO) single crystals and PbZrTiO 3 (PZT) thin films. The photo electrons were excited with spontaneous emission from the tunable UV free electron laser (FEL) at Duke University. We report PEEM observation of polarity contrast and measurement of the photothreshold of each polar region of the materials. For a cleaned GaN film with laterally patterned Ga- and N-face polarities, we found a higher photoelectric yield from the N-face regions compared with the Ga-face regions. Through the photon energy dependent contrast in the PEEM images of the surfaces, we can deduce that the threshold of the N-face region is less than ∼4.9 eV while that of the Ga-face regions is greater than 6.3 eV. In both LNO and PZT, bright emission was detected from the negatively poled domains, indicating that the emission threshold of the negative domain is lower than that of the positive domain. For LNO, the measured photothreshold was ∼4.6 eV at the negative domain and ∼6.2 eV at the positive domain, while for PZT, the threshold of the negative domain was less than 4.3 eV. Moreover, PEEM observation of the PZT surface at elevated temperatures displayed that the domain contrast disappeared near the Curie temperature of ∼300 deg. C. The PEEM polarity contrast of the polar materials is discussed in terms of internal screening from free carriers and defects and the external screening due to adsorbed ions

  4. Photo electron emission microscopy of polarity-patterned materials

    Science.gov (United States)

    Yang, W.-C.; Rodriguez, B. J.; Gruverman, A.; Nemanich, R. J.

    2005-04-01

    This study presents variable photon energy photo electron emission microscopy (PEEM) of polarity-patterned epitaxial GaN films, and ferroelectric LiNbO3 (LNO) single crystals and PbZrTiO3 (PZT) thin films. The photo electrons were excited with spontaneous emission from the tunable UV free electron laser (FEL) at Duke University. We report PEEM observation of polarity contrast and measurement of the photothreshold of each polar region of the materials. For a cleaned GaN film with laterally patterned Ga- and N-face polarities, we found a higher photoelectric yield from the N-face regions compared with the Ga-face regions. Through the photon energy dependent contrast in the PEEM images of the surfaces, we can deduce that the threshold of the N-face region is less than ~4.9 eV while that of the Ga-face regions is greater than 6.3 eV. In both LNO and PZT, bright emission was detected from the negatively poled domains, indicating that the emission threshold of the negative domain is lower than that of the positive domain. For LNO, the measured photothreshold was ~4.6 eV at the negative domain and ~6.2 eV at the positive domain, while for PZT, the threshold of the negative domain was less than 4.3 eV. Moreover, PEEM observation of the PZT surface at elevated temperatures displayed that the domain contrast disappeared near the Curie temperature of ~300 °C. The PEEM polarity contrast of the polar materials is discussed in terms of internal screening from free carriers and defects and the external screening due to adsorbed ions.

  5. Electron Interference in Molecular Circular Polarization Attosecond XUV Photoionization

    Directory of Open Access Journals (Sweden)

    Kai-Jun Yuan

    2015-01-01

    Full Text Available Two-center electron interference in molecular attosecond photoionization processes is investigated from numerical solutions of time-dependent Schrödinger equations. Both symmetric H\\(_2^+\\ and nonsymmetric HHe\\(^{2+}\\ one electron diatomic systems are ionized by intense attosecond circularly polarized XUV laser pulses. Photoionization of these molecular ions shows signature of interference with double peaks (minima in molecular attosecond photoelectron energy spectra (MAPES at critical angles \\(\\vartheta_c\\ between the molecular \\(\\textbf{R}\\ axis and the photoelectron momentum \\(\\textbf{p}\\. The interferences are shown to be a function of the symmetry of electronic states and the interference patterns are sensitive to the molecular orientation and pulse polarization. Such sensitivity offers possibility for imaging of molecular structure and orbitals.

  6. Polarized electron cyclotron emission in the Tokapole II Tokamak

    International Nuclear Information System (INIS)

    Sengstacke, M.A.; Dexter, R.N.; Prager, S.C.

    1984-06-01

    To examine the effect of wall reflections we have measured the polarization of second harmonic cyclotron emission (at omega = 2 omega/sub ce/) in the Tokapole II tokamak both with and without a microwave absorber installed within the field of view of the receiving antenna. Indeed, the local elimination of wall reflections markedly enhances the polarization, as described in section II. Section III describes observations consistent with right-hand cutoff effects and an attempt to infer the electron temperature from cyclotron emission in an optically thin plasma

  7. Optical studies of polarized-electron-noble-gas collisions

    International Nuclear Information System (INIS)

    Gay, T.I.; Furst, J.E.; Geesmann, H.; Khakoo, M.A.; Madison, D.H.; Wijayaratna, W.M.K.P.; Bartschat, K.

    1992-01-01

    We have measured the Stoke's parameters of light emitted following impact excitation of He and Xe by transversely-polarized electrons. For He, the 2 3 S-3 3 P, 389 nm transition was studied in an effort to systematically develop a highly accurate optical electron polarimeter. The 6 3 P 2 -6 3 D 3 , 882 nm transition in Xe was used to assess the importance of spin-dependent forces on the continuum electron for this target. We attempted (and failed) to made the first optical observations of Mott scattering. (Author)

  8. First results from SLD with polarized electron beam at SLC

    International Nuclear Information System (INIS)

    Fero, M.J.

    1992-12-01

    The SLAC Linear Collider (SLC) has been modified to collide a longitudinally polarized electron beam with the unpolarized positron beam. We review the beginning of polarized beam running at the SLC, and report on the measurement of the left-right cross section asymmetry (A LR ) made with a sample of 10,224 Z decays collected over the course of the 1992 run. The average beam polarization for this set of Z decays was 22.4 ± 0.6%(syst.). A LR was measured to be 0.100 ± 0.044(stat.) ± 0.004(syst.). From this measurement, the weak mixing angle defined at the Z boson pole is determined to be sin 2 θ eff W = 0.2378 ± 0.0056 ± 0.0005

  9. Study of deep inelastic scattering of polarized electrons off polarized deuterons

    International Nuclear Information System (INIS)

    Kuriki, M.

    1996-03-01

    This thesis describes a 29GeV electron - nucleon scattering experiment carried out at Stanford Linear Accelerator Center (SLAC). Highly polarized electrons are scattered off a polarized ND 3 target. Scattered electrons are detected by two spectrometers located in End Station A (ESA) at angles of 4.5 degrees and 7 degrees with respect to the beam axis. We have measured the spin structure function g 1 of deuteron over the range of 0.029 2 2 . This integral indicates a discrepancy of more than three standard deviations from the prediction of the Ellis-Jaffe sum rule, 0.068±0.005 at Q 2 = 3.0(GeV/c) 2 while our result of g 1 d in good agreement with SMC results. Combined with g 1 of the proton, the measurement of ∫ 0 1 (g 1 d -g 1 n ) is 0.169±0.008. We also obtained the strong coupling constant at Q 2 = 3.0(GeV/c) 2 to be 0.417 -0.110 +0.086 , using the power correction for the sum rule up to third order of α s . This result is in agreement with the strong coupling constant α s (Q 2 ) = 3.0(GeV/c 2 ) obtained from various experiments. Using our deuteron results and the axial vector couplings of hyperon decays, the total quark polarization along the nucleon spin is found to be 0.286±.055, implying that quarks carry only 30% of the nucleon spin. The strange sea quark polarization is also determined to be -0.101 ± .023. These measurements are in agreement with other experiments and provide the world's most precise measurement of these quark polarizations. 80 refs., 151 figs., 23 tabs

  10. Electron spin polarization in high-energy storage rings

    International Nuclear Information System (INIS)

    Mane, S.R.

    1987-01-01

    In a high energy storage ring, a single photon emission has relatively little effect on the orbital motion, but it can produce a relatively large change in the electron spin state. Hence the unperturbed orbital motion can be satisfactorily described using classical mechanics, but the spin must be treated quantum mechanically. The electron motion is therefore treated semi-classically in this thesis. It is explained how to diagonalize the unperturbed Hamiltonian to the leading order in Planck's constant. The effects of perturbations are then included, and the relevant time-scales and ensemble averages are elucidated. The Derbenev-Kondratenko formula for the equilibrium degree of polarization is rederived. Mathematical details of the rederivation are given. Since the original authors used a different formalism, a proof is offered of the equivalence between their method and the one used in this thesis. An algorithm is also presented to evaluate the equilibrium polarization. It has a number of new features, which enable the polarization to be calculated to a higher degree of approximation than has hitherto been possible. This facilitates the calculation of so-called spin resonances, which are points at which the polarization almost vanishes. A computer program has been written to implement the above algorithm, in the approximation of linear orbital dynamics, and sample results are presented

  11. Electric Charge Accumulation in Polar and Non-Polar Polymers under Electron Beam Irradiation

    Science.gov (United States)

    Nagasawa, Kenichiro; Honjoh, Masato; Takada, Tatsuo; Miyake, Hiroaki; Tanaka, Yasuhiro

    The electric charge accumulation under an electron beam irradiation (40 keV and 60 keV) was measured by using the pressure wave propagation (PWP) method in the dielectric insulation materials, such as polar polymeric films (polycarbonate (PC), polyethylene-naphthalate (PEN), polyimide (PI), and polyethylene-terephthalate (PET)) and non-polar polymeric films (polystyrene (PS), polypropylene (PP), polyethylene (PE) and polytetrafluoroethylene (PTFE)). The PE and PTFE (non-polar polymers) showed the properties of large amount of electric charge accumulation over 50 C/m3 and long saturation time over 80 minutes. The PP and PS (non-polar polymer) showed the properties of middle amount of charge accumulation about 20 C/m3 and middle saturation time about 1 to 20 minutes. The PC, PEN, PI and PET (polar polymers) showed the properties of small amount of charge accumulation about 5 to 20 C/m3 and within short saturation time about 1.0 minutes. This paper summarizes the relationship between the properties of charge accumulation and chemical structural formula, and compares between the electro static potential distribution with negative charged polymer and its chemical structural formula.

  12. Electric charge accumulation in polar and non-polar polymers under electron beam irradiation

    International Nuclear Information System (INIS)

    Nagasawa, Kenichiro; Honjoh, Masato; Takada, Tatsuo; Miyake, Hiroaki; Tanaka, Yasuhiro

    2010-01-01

    The electric charge accumulation under an electron beam irradiation (40 keV and 60 keV) was measured by using the pressure wave propagation (PWP) method in the dielectric insulation materials, such as polar polymeric films (polycarbonate (PC), polyethylene-naphthalate (PEN), polyimide (PI), and polyethylene-terephthalate (PET)) and non-polar polymeric films (polystyrene (PS), polypropylene (PP), polyethylene (PE) and polytetrafluoroethylene (PTFE)). The PE and PTFE (non-polar polymers) showed the properties of large amount of electric charge accumulation over 50 C/m 3 and long saturation time over 80 minutes. The PP and PS (non-polar polymer) showed the properties of middle amount of charge accumulation about 20 C/m 3 and middle saturation time about 1 to 20 minutes. The PC, PEN, PI and PET (polar polymers) showed the properties of small amount of charge accumulation about 5 to 20 C/m 3 and within short saturation time about 1.0 minutes. This paper summarizes the relationship between the properties of charge accumulation and chemical structural formula, and compares between the electro static potential distribution with negative charged polymer and its chemical structural formula. (author)

  13. Tunneling conductance of a two-dimensional electron gas with Dresselhaus spin-orbit coupling

    International Nuclear Information System (INIS)

    Srisongmuang, B.; Ka-oey, A.

    2012-01-01

    We theoretically studied the spin-dependent charge transport in a two-dimensional electron gas with Dresselhaus spin-orbit coupling (DSOC) and metal junctions. It is shown that the DSOC energy can be directly measured from the tunneling conductance spectrum. We found that spin polarization of the conductance in the propagation direction can be obtained by injecting from the DSOC system. We also considered the effect of the interfacial scattering barrier (both spin-flip and non-spin-flip scattering) on the overall conductance and the spin polarization of the conductance. It is found that the increase of spin-flip scattering can enhance the conductance under certain conditions. Moreover, both types of scattering can increase the spin polarization below the branches crossing of the energy band. - Highlights: → DSOC energy can be directly measured from tunneling conductance spectrum. → Spin polarization of conductance in the propagation direction can be obtained by injecting from DSOC system. → Both types of scattering can increase spin polarization.

  14. Polarized electrons and the origin of optical activity

    International Nuclear Information System (INIS)

    Bonner, W.A.; Dort, M.A. Van; Yearian, M.R.; Zeman, H.D.; Li, G.C.; Stanford Univ., Calif.

    1976-01-01

    The history of experiments bearing on the origin of optical acitivity in nature by parity non-conservation during the β-decay of radioactive isotopes is briefly reviewed. Following this, we present a more detailed description of our recent published and unpublished data and calculations regarding the generation of optical activity in DL-leucine by means of artificially produced longitudinally polarized electrons from a linear accelerator

  15. Parity nonconservation in polarized electron scattering at high energies

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1979-10-01

    Recent observations of parity violation in inelastic scattering of electrons at high energy is discussed with reference to the process e(polarized) + D(unpolarized) → e + X. The kinetics of this process, the idealized case of scattering from free quark targets, experimental techniques and results, and relations to atomic physics of parity violation in bismuth and thallium atoms with a model independent analysis. 17 references

  16. Polarization Measurements in elastic electron-deuteron scattering

    International Nuclear Information System (INIS)

    Garcon, M.

    1989-01-01

    The deuteron electromagnetic form factors, are recalled. The experiment, recently performed in the Bates accelerator (M.I.T.), is described. The aim of the experiment is the measurement of the tensor polarization of the backscattered deuteron, in the elastic electron-deuteron scattering, up to q = 4.6 f/m. Different experimental methods, concerning the determination of this observable, are compared. Several improvement possibilities in this field are suggested

  17. Electronic conductance of quantum wire with serial periodic potential structures

    International Nuclear Information System (INIS)

    Fayad, Hisham M.; Shabat, Mohammed M.; Abdus Salam International Centre for Theoretical Physics, Trieste

    2000-08-01

    A theory based on the total transfer matrix is presented to investigate the electronic conductance in a quantum wire with serial periodic potentials. We apply the formalism in computation of the electronic conductance in a wire with different physical parameters of the wire structure. The numerical results could be used in designing some future quantum electronic devices. (author)

  18. Conducting polymer based biomolecular electronic devices

    Indian Academy of Sciences (India)

    Characterization of conducting polymers has been considered to be very .... and CH4) on surface plasmon resonance of Langmuir–Blodgett films of ..... [37] D G Zhu, M C Petty, H Ancelin and J Yarwood, Thin Solid Films 176, 151 (1989).

  19. Spin polarized electron source technology transferred from HE accelerators to electron microscopes

    International Nuclear Information System (INIS)

    Nakanishi, Tsutomu

    2009-01-01

    For many years, we have developed a technology of spin-polarized-electron-source (PES) for a future linear collider project (ILC). Various new techniques for achieving high polarization, high quantum efficiency, high current density, sub-nanosecond multi-bunch generation etc. were developed. Two fundamental technologies; reduction of dark current and preparation of extremely high vacuum environment to protect the Negative Electron Affinity (NEA) surface have been also developed. Using these PES technologies and a new transmission type photocathode, we recently succeeded in producing the high brightness and high polarization electron beam for the low energy electron microscope (LEEM). Our Spin-LEEM system enables the world-first dynamic observation of surface magnetic domain formed by evaporation on the metal substrate with ∼ 20 nm space resolutions. (author)

  20. Conductance and spin polarization for a quantum wire with the competition of Rashba and Dresselhaus spin-orbit coupling

    International Nuclear Information System (INIS)

    Fu Xi; Chen Zeshun; Zhong Feng; Zhou Guanghui

    2010-01-01

    We investigate theoretically the spin transport of a quantum wire (QW) with weak Rashba and Dresselhaus spin-orbit coupling (SOC) nonadiabatically connected to two normal leads. Using scattering matrix method and Landauer-Buettiker formula within effective free-electron approximation, we have calculated spin-dependent conductances G ↑ and G ↓ , total conductance G and spin polarization P z for a hard-wall potential confined QW. It is demonstrated that, the SOCs induce the splitting of G ↑ and G ↓ and form spin polarization P z . Moreover, the conductances present quantized plateaus, the plateaus and P z show oscillation structures near the subband edges. Furthermore, with the increase of QW width a strong spin polarization (P z ∼1) gradually becomes weak, which can be used to realize a spin filter. When the two SOCs coexist, the total conductance presents an isotropy transport due to the Rashba and Dresselhaus Hamiltonians being fixed, and the alteration of two SOCs strength ratio changes the sign of spin polarization. This may provide a way of realizing the expression of unit information by tuning gate voltage.

  1. Specific heat, polarization and heat conduction in microwave heating systems: A nonequilibrium thermodynamic point of view

    International Nuclear Information System (INIS)

    Bergese, Paolo

    2006-01-01

    A microwave (MW) field can induce in a dielectric material an oscillatory polarization. By this mechanism part of the energy carried by the waves is converted into chaotic agitation, and the material heats up. MW heating is a nonequilibrium phenomenon, while conventional heating can generally be considered as quasi-static. Excess (or nonthermal) effects of MWs with respect to conventional heating lie in this difference. Macroscopically, MW heating can be described in the framework of linear nonequilibrium thermodynamics (NET). This approach indicates that in a dielectric material under MW heating the specific heat has a dynamic component linked to the variation of polarization with temperature, and that polarization and heat conduction are intertwined. In particular, linear NET provides a new phenomenological equation for heat conduction that is composed of the classic Fourier's law and an additional term due to polarization relaxation. This term quantitatively describes the excess effect of MWs on thermal conduction

  2. A polarized look at nucleons: Laser electron gamma source

    International Nuclear Information System (INIS)

    1991-01-01

    As the title suggests we are going to look at reactions induced on nucleons by polarized photons. The results I am going to show today are from the Laser Electron Gamma Source, or ''LEGS'' facility, at Brookhaven National Laboratory. At LEGS, gamma ray beams are produced by backscattering laser light from relativistic electrons. I will only summarize the main characteristics of this facility, and leave an in depth description to Dr. Schaerf who will discuss LEGS and other similar backscattering facilities on Wednesday. Reactions with polarized photons inevitably reflect interference terms that for the most part remain hidden in spin-averaged unpolarized measurements. This provides a tool for probing interactions that depend upon spin. In particular, we are going to look today at two cases where the polarization is used to probe the tensor interaction. First, we will examine the tensor force between a proton-neutron pair in deuterium. Secondly, we will examine the tensor force between quarks in a proton that produces a small E2 component that is mixed with the predominantly M1 excitation of the delta resonance.The magnitude of this E2 components provides a sensitive probe of the structure of the Nucleon

  3. Classification of materials for conducting spheroids based on the first order polarization tensor

    Science.gov (United States)

    Khairuddin, TK Ahmad; Mohamad Yunos, N.; Aziz, ZA; Ahmad, T.; Lionheart, WRB

    2017-09-01

    Polarization tensor is an old terminology in mathematics and physics with many recent industrial applications including medical imaging, nondestructive testing and metal detection. In these applications, it is theoretically formulated based on the mathematical modelling either in electrics, electromagnetics or both. Generally, polarization tensor represents the perturbation in the electric or electromagnetic fields due to the presence of conducting objects and hence, it also desribes the objects. Understanding the properties of the polarization tensor is necessary and important in order to apply it. Therefore, in this study, when the conducting object is a spheroid, we show that the polarization tensor is positive-definite if and only if the conductivity of the object is greater than one. In contrast, we also prove that the polarization tensor is negative-definite if and only if the conductivity of the object is between zero and one. These features categorize the conductivity of the spheroid based on in its polarization tensor and can then help to classify the material of the spheroid.

  4. Electron-Spin Filters Would Offer Spin Polarization Greater than 1

    Science.gov (United States)

    Ting, David Z.

    2009-01-01

    A proposal has been made to develop devices that would generate spin-polarized electron currents characterized by polarization ratios having magnitudes in excess of 1. Heretofore, such devices (denoted, variously, as spin injectors, spin polarizers, and spin filters) have typically offered polarization ratios having magnitudes in the approximate range of 0.01 to 0.1. The proposed devices could be useful as efficient sources of spin-polarized electron currents for research on spintronics and development of practical spintronic devices.

  5. On some methods to produce high-energy polarized electron beams by means of proton synchrotrons

    International Nuclear Information System (INIS)

    Bessonov, E.G.; Vazdik, Ya.A.

    1980-01-01

    Some methods of production of high-energy polarized electron beams by means of proton synchrotrons are considered. These methods are based on transfer by protons of a part of their energy to the polarized electrons of a thin target placed inside the working volume of the synchrotron. It is suggested to use as a polarized electron target a magnetized crystalline iron in which proton channeling is realized, polarized atomic beams and the polarized plasma. It is shown that by this method one can produce polarized electron beams with energy approximately 100 GeV, energy spread +- 5 % and intensity approximately 10 7 electron/c, polarization approximately 30% and with intensity approximately 10 4 -10 5 electron/c, polarization approximately 100% [ru

  6. Large acceptance magnetic spectrometers for polarized deep inelastic electron scattering

    International Nuclear Information System (INIS)

    Petratos, G.G.; Eisele, R.L.; Gearhart, R.A.; Hughes, E.W.; Young, C.C.

    1991-10-01

    The design of two magnetic spectrometers for the measurement of the spin-dependent structure function g 1 n of the neutron and a test of the Bjorken sum rule is described. The measurement will consist of scattering 23 GeV polarized electrons off a polarized 3 He target and detecting scattered electrons of 7 to 18 GeV at 4.5 degree and 7 degree. Each spectrometer is based on two large aperture dipole magnets bending in opposite directions. This ''reverse'' deflection design doubles the solid angle as compared to the conventional design of same direction bends used in previous experiments. Proper choice of the deflection angles and the distance between the two dipoles in each spectrometer allows background photons from radiative processes to reach the detectors only after at least two bounces off the spectrometer vacuum walls, resulting in an expected tolerable background. Each spectrometer is equipped with a pair of Cerenkov detectors, a pair of scintillation hodoscopes and a lead-glass shower calorimeter providing electron and pion identification with angular and momentum resolutions sufficient for the experimental measurement. 7 refs., 8 figs., 1 tab

  7. DVCS in the fragmentation region of polarized electron

    International Nuclear Information System (INIS)

    Akushevich, I.; Kuraev, E.A.; Nikolaev, N.N.

    2000-01-01

    For the kinematical region when a hard photon is emitted predominantly close to the direction of motion of a longitudinally polarized initial electron and relatively small momentum transfer to a proton we calculate the azimuthal asymmetry of a photon emission. It arises from the interference of the Bethe-Heitler amplitude and those which are described by a heavy photon impact factor. The azimuthal asymmetry does not decrease in the limit of infinite cms energy. The lowest order expression for the impact factor of a heavy photon is presented

  8. Magneto-spin Hall conductivity of a two-dimensional electron gas

    OpenAIRE

    Milletari', M.; Raimondi, R.; Schwab, P.

    2008-01-01

    It is shown that the interplay of long-range disorder and in-plane magnetic field gives rise to an out-of-plane spin polarization and a finite spin Hall conductivity of the two-dimensional electron gas in the presence of Rashba spin-orbit coupling. A key aspect is provided by the electric-field induced in-plane spin polarization. Our results are obtained first in the \\textit{clean} limit where the spin-orbit splitting is much larger than the disorder broadening of the energy levels via the di...

  9. The electrical conductivity of an interacting electron gas

    International Nuclear Information System (INIS)

    Kojima, D.Y.

    1977-01-01

    A manybody theory by the propagator method developed by Montroll and Ward for the equilibrium statistical mechanics, is reformulated to describe the electrical conductivity for an electron gas system containing impurity. The theory includes electron-impurity interaction to the infinite order and electron-electron interaction to the first order exchange effect. The propagator used by Montroll and Ward is separated into two propagators, each of which satisfies either Bloch or Schroedinger equation, to utilize the perturbation method. Correct counting of graphs are presented. Change in the relaxation time due to the electron-electron interaction is explicity shown and compared with recent works [pt

  10. Measurement of Deuteron Tensor Polarization in Elastic Electron Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Kenneth K. [Univ. of Maryland, College Park, MD (United States)

    2000-01-01

    Nuclear physics traces it roots back to the very beginning of the last century. The concept of the nuclear atom was introduced by Rutherford around 1910. The discovery of the neutron Chadwick in 1932 gave us the concept of two nucleons: the proton and the neutron. The Jlab electron accelerator with its intermediate energy high current continuous wave beam combined with the Hall C high resolution electron spectrometer and a deutron recoil polarimeter provided experiment E94018 with the opportunity to study the deuteron electomagnetic structure, in particular to measure the tensor polarization observable t20, at high four momentum transfers than ever before. This dissertation presents results of JLab experiment E94018.

  11. Spin-polarized ballistic conduction through correlated Au-NiMnSb-Au heterostructures

    KAUST Repository

    Morari, C.; Appelt, W. H.; Ö stlin, A.; Prinz-Zwick, A.; Schwingenschlö gl, Udo; Eckern, U.; Chioncel, L.

    2017-01-01

    calculations with local electronic interactions, of Hubbard-type on the Mn sites, leads to a hybridization between the interface and many-body states. The significant reduction of the spin polarization seen in the density of states is not apparent in the spin

  12. Organic photovoltaic cell incorporating electron conducting exciton blocking layers

    Science.gov (United States)

    Forrest, Stephen R.; Lassiter, Brian E.

    2014-08-26

    The present disclosure relates to photosensitive optoelectronic devices including a compound blocking layer located between an acceptor material and a cathode, the compound blocking layer including: at least one electron conducting material, and at least one wide-gap electron conducting exciton blocking layer. For example, 3,4,9,10 perylenetetracarboxylic bisbenzimidazole (PTCBI) and 1,4,5,8-napthalene-tetracarboxylic-dianhydride (NTCDA) function as electron conducting and exciton blocking layers when interposed between the acceptor layer and cathode. Both materials serve as efficient electron conductors, leading to a fill factor as high as 0.70. By using an NTCDA/PTCBI compound blocking layer structure increased power conversion efficiency is achieved, compared to an analogous device using a conventional blocking layers shown to conduct electrons via damage-induced midgap states.

  13. Emission of circularly polarized recombination radiation from p-doped GaAs and GaAs0.62P0.38 under the impact of polarized electrons

    International Nuclear Information System (INIS)

    Fromme, B.; Baum, G.; Goeckel, D.; Raith, W.

    1989-01-01

    Circularly polarized light is emitted in radiative transitions of polarized electrons from the conduction to the valence band in GaAs or GaAs 1-x P x crystals. The degree of light polarization is directly related to the polarization of the conduction-band electrons at the instant of recombination and allows conclusions about the depolarization of electrons in the conduction band. The depolarization is caused by spin-relaxation processes. The efficiency of these processes depends on crystal type, crystal temperature, degree of doping, and kinetic energy of the electrons. Highly p-doped GaAs and GaAs 0.62 P 0.38 crystals (N A >1x10 19 atoms/cm 3 ) were bombarded with polarized electrons (initial polarization 38%), and the spectral distribution and the circular polarization of the emitted recombination radiation were measured. The initial kinetic energy of the electrons in the conduction band was varied between 5 and 1000 eV. The measurements of the spectral distribution show that the electrons are thermalized before recombination occurs, independent of their initial energy. An important thermalization process in this energy range is the excitation of crystal electrons by electron-hole pair creation. The circular polarization of the recombination radiation lies below 1% in the whole energy range. It decreases with increasing electron energy but is still of measurable magnitude at 100 eV in the case of GaAs 0.62 P 0.38 . The circular polarization is smaller for GaAs than for GaAs 0.62 P 0.38 , which we attribute to more efficient spin relaxation in GaAs

  14. Electron ionization and spin polarization control of Fe atom adsorbed graphene irradiated by a femtosecond laser

    International Nuclear Information System (INIS)

    Yu, Dong; Jiang, Lan; Wang, Feng; Li, Xin; Qu, Liangti; Lu, Yongfeng

    2015-01-01

    We investigate the structural properties and ionized spin electrons of an Fe–graphene system, in which the time-dependent density functional theory (TDDFT) within the generalized gradient approximation is used. The electron dynamics, including electron ionization and ionized electron spin polarization, is described for Fe atom adsorbed graphene under femtosecond laser irradiation. The theoretical results show that the electron ionization and ionized electron spin polarization are sensitive to the laser parameters, such as the incident angle and the peak intensity. The spin polarization presents the maximum value under certain laser parameters, which may be used as a source of spin-polarized electrons. - Highlights: • The structural properties of Fe–graphene system are investigated. • The electron dynamics of Fe–graphene system under laser irradiation are described. • The Fe–graphene system may be used as a source of spin-polarized electrons

  15. Electronic Conductivity of Vanadium-Tellurite Glass-Ceramics

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Yue, Yuanzheng; Bragatto, Caio B.

    2013-01-01

    In this paper, we investigate the electronic conductivity of 2TeO2-V2O5 glass-ceramics with crystallinity ranging from 0 to 100 wt.%, i.e., from entirely amorphous to completely crystalline. The glass is prepared by the melt quenching technique, and the crystal is prepared by subsequent heat...... spectroscopy. We find similar activation energies for both glass and crystal, implying that they have similar conduction mechanisms, i.e., thermally activated hopping. The electronic conductivity of 2TeO2-V2O5 glass is about one order of magnitude higher than that of the corresponding crystal......, and a percolation phenomenon occurs at a glass fraction of 61 wt.%, increasing from a lower conductivity in the crystal to a higher conductivity in the glass. We explain the behavior of electronic conduction in the 2TeO2-V2O5 glass-ceramics by considering constriction effects between particles as well...

  16. Electron emission in the Auger neutralization of a spin-polarized He+ ion embedded in a free electron gas

    International Nuclear Information System (INIS)

    Juaristi, J.I.; Alducin, M.; Diez Muino, R.; Roesler, M.

    2005-01-01

    Results are presented for the energy distribution and spin polarization of the electrons excited during the Auger neutralization of a spin polarized He + ion embedded in a paramagnetic free electron gas. The screening of the He + ion is calculated using density functional theory within the local spin density approximation. The Auger rates, the energy distribution and the spin polarization of the excited electrons are obtained using the Fermi golden rule. The transport of the electrons is calculated within the Boltzmann transport equation formalism. The spin-polarization of the initially excited electrons is very high (>70%) and parallel to that of the electron bound to the He + ion. Nevertheless, the emitted electrons show a much lower degree of polarization, mainly in the low energy range, due to the creation of the unpolarized cascade of secondaries in the transport process

  17. Study of the Polarization Strategy for Electron Cyclotron Heating Systems on HL-2M

    Science.gov (United States)

    Zhang, F.; Huang, M.; Xia, D. H.; Song, S. D.; Wang, J. Q.; Huang, B.; Wang, H.

    2016-06-01

    As important components integrated in transmission lines of electron cyclotron heating systems, polarizers are mainly used to obtain the desired polarization for highly efficient coupling between electron cyclotron waves and plasma. The polarization strategy for 105-GHz electron cyclotron heating systems of HL-2M tokamak is studied in this paper. Considering the polarizers need high efficiency, stability, and low loss to realize any polarization states, two sinusoidal-grooved polarizers, which include a linear polarizer and an elliptical polarizer, are designed with the coordinate transformation method. The parameters, the period p and the depth d, of two sinusoidal-grooved polarizers are optimized by a phase difference analysis method to achieve an almost arbitrary polarization. Finally, the optimized polarizers are manufactured and their polarization characteristics are tested with a low-power test platform. The experimental results agree well with the numerical calculations, indicating that the designed polarizers can meet the polarization requirements of the electron cyclotron heating systems of HL-2M tokamak.

  18. Method of forming electronically conducting polymers on conducting and nonconducting substrates

    Science.gov (United States)

    Murphy, Oliver J. (Inventor); Hitchens, G. Duncan (Inventor); Hodko, Dalibor (Inventor); Clarke, Eric T. (Inventor); Miller, David L. (Inventor); Parker, Donald L. (Inventor)

    2001-01-01

    The present invention provides electronically conducting polymer films formed from photosensitive formulations of pyrrole and an electron acceptor that have been selectively exposed to UV light, laser light, or electron beams. The formulations may include photoinitiators, flexibilizers, solvents and the like. These solutions can be used in applications including printed circuit boards and through-hole plating and enable direct metallization processes on non-conducting substrates. After forming the conductive polymer patterns, a printed wiring board can be formed by sensitizing the polymer with palladium and electrolytically depositing copper.

  19. Acceleration of polarized electrons in the Bonn electron-accelerator facility ELSA

    International Nuclear Information System (INIS)

    Hoffmann, M.

    2001-12-01

    The future medium energy physics program at the electron stretcher accelerator ELSA of Bonn University mainly relies on experiments using polarized electrons in the energy range from 1 to 3.2 GeV. To prevent depolarization during acceleration in the circular accelerators several depolarizing resonances have to be corrected for. Intrinsic resonances are compensated using two pulsed betatron tune jump quadrupoles. The influence of imperfection resonances is successfully reduced applying a dynamic closed orbit correction in combination with an empirical harmonic correction on the energy ramp. Both types of resonances and the correction techniques have been studied in detail. The imperfection resonances were used to calibrate the energy of the stretcher ring with high accuracy. A new technique to extract the beam with horizontal oriented polarization was successfully installed. For all energies a polarized electron beam with more than 50% polarization can now be supplied to the experiments at ELSA, which is demonstrated by measurements using a Moeller polarimeter installed in the external beamline. (orig.)

  20. Terahertz radiation by subpicosecond spin-polarized photocurrent originating from Dirac electrons in a Rashba-type polar semiconductor

    Science.gov (United States)

    Kinoshita, Yuto; Kida, Noriaki; Miyamoto, Tatsuya; Kanou, Manabu; Sasagawa, Takao; Okamoto, Hiroshi

    2018-04-01

    The spin-splitting energy bands induced by the relativistic spin-orbit interaction in solids provide a new opportunity to manipulate the spin-polarized electrons on the subpicosecond timescale. Here, we report one such example in a bulk Rashba-type polar semiconductor BiTeBr. Strong terahertz electromagnetic waves are emitted after the resonant excitation of the interband transition between the Rashba-type spin-splitting energy bands with a femtosecond laser pulse circularly polarized. The phase of the emitted terahertz waves is reversed by switching the circular polarization. This suggests that the observed terahertz radiation originates from the subpicosecond spin-polarized photocurrents, which are generated by the asymmetric depopulation of the Dirac state. Our result provides a way for the current-induced terahertz radiation and its phase control by the circular polarization of incident light without external electric fields.

  1. Comparative study of electron conduction in azulene and naphthalene

    Indian Academy of Sciences (India)

    Wintec

    tional or electronic devices. Recent advances in experi- mental techniques have allowed ... stimulates us to study the electronic conduction in azulene molecule and to compare that with its isomer, naphthalene. ..... ernment of India, for funding and (SD) acknowledges CSIR,. Government of India, for a research fellowship.

  2. Ionic and electronic conductivity in lead-zirconate-titanate (PZT)

    NARCIS (Netherlands)

    Boukamp, Bernard A.; Pham thi ngoc mai, P.T.N.M.; Blank, David H.A.; Bouwmeester, Henricus J.M.

    2004-01-01

    Accurate impedance measurements on differently sized samples of lead–zirconate–titanate (PbZr0.53Ti0.47O3, PZT) have been analyzed with a CNLS procedure, resulting in the separation of the ionic and electronic conductivities over a temperature range from f150 to 630 jC. At 603 jC the electronic

  3. Paramagnetic resonance and electronic conduction in organic semiconductors

    International Nuclear Information System (INIS)

    Nechtschein, M.

    1963-01-01

    As some organic bodies simultaneously display semi-conducting properties and a paramagnetism, this report addresses the study of conduction in organic bodies. The author first briefly recalls how relationships between conductibility and Electron Paramagnetic Resonance (EPR) can be noticed in a specific case (mineral and metallic semiconductors). He discusses published results related to paramagnetism and conductibility in organic bodies. He reviews various categories of organic bodies in which both properties are simultaneously present. He notably addresses radical molecular crystals, non-radical molecular crystals, charge transfer complexes, pyrolyzed coals, and pseudo-ferromagnetic organic structures. He discusses the issue of relationships between conduction (charge transfer by electrons) and ERP (which reveals the existence of non-paired electrons which provide free spins)

  4. Electronic predistortion for compensation of polarization-mode dispersion

    Science.gov (United States)

    Hellerbrand, Stephan; Hanik, Norbert; Weiershausen, W.

    2009-01-01

    One of the major impairments in high-speed optical transmission links is Polarization-Mode Dispersion (PMD). We propose the method of electronic predistortion (EPD) for the mitigation of PMD. This approach has already been successfully applied for the compensation of Chromatic Dispersion (CD) and Fiber-Nonlinearities. The advantage of this method is that impairments can efficiently be mitigated without the need for coherent reception. The proposed scheme is based on the possibility to control the optical field at the transmitter by using two complex modulators for the modulation of two orthogonally polarized optical signals. If the physical origin of PMD is exactly known then the ideal predistorted field and the corresponding electrical driving signals can be computed accurately. In practice, however, this information is not available. Therefore it is shown how to determine appropriate driving signals for a set of measured PMD parameters. Measurements will be communicated through a feedback channel in practice. We suggest a possible strategy for application of this technique in scenarios, in which the adaptation speed is intrinsically limited due to the round-trip delay. Numerical simulations reveal that the use of EPD can significantly increase the tolerance towards PMD in comparison to a system without compensation.

  5. What do we learn from polarization measurements in deep-inelastic electron-nucleon scattering

    International Nuclear Information System (INIS)

    Anselmino, M.

    1979-01-01

    We examine what can be learned from deep-inelastic electron-nucleon scattering with polarized initial electrons and measurement of the polarization of the final electrons. A direct evaluation of the separate structure functions W 1 and W 2 is shown to be possible

  6. Parity violation in inelastic scattering of polarized electrons

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1978-10-01

    Parity nonconservation was observed in the inelastic scattering of longitudinally polarized electrons from an unpolarized deuterium target at 19.4 and 22.2 GeV. An asymmetry A = (sigma/sub R/ - sigma/sub L)/(sigma/sub R/ + sigma/sub L/) = (-9.5 +- 1.6) x 10 -5 Q 2 , Q 2 in (GeV/c) 2 was found for values of Q 2 near 1.4. The statistical and systematic errors are each about 9 percent of the measured asymmetry. This result is consistent with predictions from the standard Weinberg--Salam SU(2) x U(1) model. Using the simple quark-parton model of the nucleon, the value sin 2 theta/sub W/ = 0.20 +- 0.03 is obtained. 21 references

  7. High voltage processing of the SLC polarized electron gun

    International Nuclear Information System (INIS)

    Saez, P.; Clendenin, J.; Garden, C.; Hoyt, E.; Klaisner, L.; Prescott, C.; Schultz, D.; Tang, H.

    1993-04-01

    The SLC polarized electron gun operates at 120 kV with very low dark current to maintain the ultra high vacuum (UHV). This strict requirement protects the extremely sensitive photocathode from contaminants caused by high voltage (HV) activity. Thorough HV processing is thus required x-ray sensitive photographic film, a nanoammeter in series with gun power supply, a radiation meter, a sensitive residual gas analyzer and surface x-ray spectrometry were used to study areas in the gun where HV activity occurred. By reducing the electric field gradients, carefully preparing the HV surfaces and adhering to very strict clean assembly procedures, we found it possible to process the gun so as to reduce both the dark current at operating voltage and the probability of HV discharge. These HV preparation and processing techniques are described

  8. B meson physics with polarized electron beams at the SLC

    International Nuclear Information System (INIS)

    Atwood, W.B.

    1988-09-01

    The expected large cross-section for e + e - → Z 0 and subsequent decay to b/bar b/ quarks makes the Z 0 an attractive place to pursue B meson physics. In addition, the big Electroweak asymmetries, thought to exist in Z 0 decays to b/bar b/ quarks with polarized electron beams, provide an outstanding handle for observation of such effects as B 0 -/bar B/ 0 mixing. In this paper, the feasibility of such measurements is investigated and, with relatively small samples of Z 0 's (a few hundred thousand), both B/sub d/ and B/sub s/ meson mixing are shown to be measurable. The subject of CP violation in neutral B mesons is discussed last, but presently such measurements seem to be out of reach. 7 refs., 6 figs., 3 tabs

  9. Development of new bi-polar plates based on electrically conductive filled polymers for PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Jousse, F.; Salas, J.F.; Giroud, F. [C.E.A., Le Ripault, Monts (France); Icard, B.; Laurent, J.Y.; Serre Combe, P.

    2000-07-01

    In polymer electrolyte membrane fuel cell technology, the bi-polar plates are dedicated to: the current collection, the separation and distribution of gas (hydrogen and oxygen) at the cathode and the anode. To achieve these functions, bi-polar plate materials must satisfy the following properties: high conductivity (higher than 10 S/cm), high chemical resistance to acid and water, very low permeability to hydrogen (permeability < Pe{sup H2}{sub Nafion} (20 C) = 7.10{sup -17} m{sup 2}/Pa/s). Traditionally bi-polar plates have been designed with stainless steel or graphite. However, the cost of these plates are incompatible to transport applications, principally because of the gas channel machining step. Recently, we have noticed the work of T.M. Besmann [1] on the manufacturing of bi-polar plates based on carbon fibres and phenolic resin, processed by pyrolisis and densification on surface by a chemical vapour infiltration process. However, this kind of process seems too expensive and complex for the needs of the road electric transportation industry. Organic composites based on conductive chemical resistant fillers and processed by molding could be an alternative solution. Bi-polar plates requirements can be achieved by controlling and optimising experimental parameters such as the nature and morphology of fillers, the resin characteristics, and the process conditions. To avoid corrosion of the composite material, and then, the contamination of the cell, we have selected non metallic fillers, based on graphite or carbon black. (orig.)

  10. Quantum mechanical force field for water with explicit electronic polarization.

    Science.gov (United States)

    Han, Jaebeom; Mazack, Michael J M; Zhang, Peng; Truhlar, Donald G; Gao, Jiali

    2013-08-07

    A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 10(6) self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across

  11. Electron-Poor Polar Intermetallics: Complex Structures, Novel Clusters, and Intriguing Bonding with Pronounced Electron Delocalization.

    Science.gov (United States)

    Lin, Qisheng; Miller, Gordon J

    2018-01-16

    Intermetallic compounds represent an extensive pool of candidates for energy related applications stemming from magnetic, electric, optic, caloric, and catalytic properties. The discovery of novel intermetallic compounds can enhance understanding of the chemical principles that govern structural stability and chemical bonding as well as finding new applications. Valence electron-poor polar intermetallics with valence electron concentrations (VECs) between 2.0 and 3.0 e - /atom show a plethora of unprecedented and fascinating structural motifs and bonding features. Therefore, establishing simple structure-bonding-property relationships is especially challenging for this compound class because commonly accepted valence electron counting rules are inappropriate. During our efforts to find quasicrystals and crystalline approximants by valence electron tuning near 2.0 e - /atom, we observed that compositions close to those of quasicrystals are exceptional sources for unprecedented valence electron-poor polar intermetallics, e.g., Ca 4 Au 10 In 3 containing (Au 10 In 3 ) wavy layers, Li 14.7 Mg 36.8 Cu 21.5 Ga 66 adopting a type IV clathrate framework, and Sc 4 Mg x Cu 15-x Ga 7.5 that is incommensurately modulated. In particular, exploratory syntheses of AAu 3 T (A = Ca, Sr, Ba and T = Ge, Sn) phases led to interesting bonding features for Au, such as columns, layers, and lonsdaleite-type tetrahedral frameworks. Overall, the breadth of Au-rich polar intermetallics originates, in part, from significant relativistics effect on the valence electrons of Au, effects which result in greater 6s/5d orbital mixing, a small effective metallic radius, and an enhanced Mulliken electronegativity, all leading to ultimate enhanced binding with nearly all metals including itself. Two other successful strategies to mine electron-poor polar intermetallics include lithiation and "cation-rich" phases. Along these lines, we have studied lithiated Zn-rich compounds in which structural

  12. Cellulose nanocrystal: electronically conducting polymer nanocomposites for supercapacitors

    OpenAIRE

    Liew, Soon Yee

    2012-01-01

    This thesis describes the use of cellulose nanocrystals for the fabrication of porous nanocomposites with electronic conducting polymers for electrochemical supercapacitor applications. The exceptional strength and negatively charged surface functionalities on cellulose nanocrystals are utilised in these nanocomposites. The negatively charged surface functionalities on cellulose nanocrystals allow their simultaneous incorporation into electropolymerised, positively charged conducting polymer ...

  13. Electron polar cap and the boundary of open geomagnetic field lines.

    Science.gov (United States)

    Evans, L. C.; Stone, E. C.

    1972-01-01

    A total of 333 observations of the boundary of the polar access region for electrons (energies greater than 530 keV) provides a comprehensive map of the electron polar cap. The boundary of the electron polar cap, which should occur at the latitude separating open and closed field lines, is consistent with previously reported closed field line limits determined from trapped-particle data. The boundary, which is sharply defined, seems to occur at one of three discrete latitudes. Although the electron flux is generally uniform across the polar cap, a limited region of reduced access is observed about 10% of the time.

  14. Electronic conduction in doped multiferroic BiFeO3

    Science.gov (United States)

    Yang, Chan-Ho; Seidel, Jan; Kim, Sang-Yong; Gajek, M.; Yu, P.; Holcomb, M. B.; Martin, L. W.; Ramesh, R.; Chu, Y. H.

    2009-03-01

    Competition between multiple ground states, that are energetically similar, plays a key role in many interesting material properties and physical phenomena as for example in high-Tc superconductors (electron kinetic energy vs. electron-electron repulsion), colossal magnetoresistance (metallic state vs. charge ordered insulating state), and magnetically frustrated systems (spin-spin interactions). We are exploring the idea of similar competing phenomena in doped multiferroics by control of band-filling. In this paper we present systematic investigations of divalent Ca doping of ferroelectric BiFeO3 in terms of structural and electronic conduction properties as well as diffusion properties of oxygen vacancies.

  15. Polarized Electron Beams for Nuclear Physics at the MIT Bates Accelerator Center

    CERN Document Server

    Farkhondeh, Manouchehr; Franklin, Wilbur; Ihloff, Ernie; McAllister, Brian; Milner, Richard; North, William; Tschalär, C; Tsentalovich, Evgeni; Wang, Defa; Wang, Dong; Wang, Fuhua; Zolfaghari, Abbasali; Zwart, Townsend; van der Laan, Jan

    2005-01-01

    The MIT Bates Accelerator Center is delivering highly polarized electron beams to its South Hall Ring for use in Nuclear Physics Experiments. Circulating electron currents in excess of 200 mA with polarization of 70% are scattered from a highly polarized, but very thin atomic beam source deuterium target. At the electron source a compact diode laser creates photoemission of quasi-CW mA pulses of polarized electrons at low duty factors from a strained GaAs photocathode. Refurbished RF transmitters provide power to the 2856 MHz linac, accelerating the beam to 850 MeV in two passes before injection into the South Hall Ring. In the ring a Siberian snake serves to maintain a high degree of longitudinal polarization at the BLAST scattering target. A Compton laser back-scattering polarimeter measures the electron beam polarization with a statistical acuracy of 6% every 15 minutes.

  16. Optimization of the transverse electron polarization of HERA at 26.7 GeV

    International Nuclear Information System (INIS)

    Grosshauser, C.

    1994-08-01

    The methods applied for the optimization of the transverse electron polarization were presented in the following and the measurements performed by this extensively described. By these measurements could be shown that in pure electron-beam operation a degree of polarization of P similar 67% can be reached. A adjustment of the electron storage ring determined by this allows also under luminosity conditions without further optimization an only fewly deminuished transverse electron polarization. The measured polarization values where thereby over several hours stable and could also after months be reproduced. An interference of the polarization by electron-proton collisions could not be stated in the framework of the measurements. In an optimization of the electron polarization performed during the luminosity operation polarization values of P similar 67% could be reached. Thereby could be stated that an optimization of the electron polarization can be perforemd parallel to the data taking of the experiments H1 and ZEUS without fearing of extensive interferences for the measurement conditions of the experiments. By means of the resonance depolarization, which was at HERA for the first time successfully applied, the electron energy was determined with a maximal error of similar 3 MeV and an energy calibration of the HERA electron storage ring performed. At this energy calibration a mean deviation of the nominal energy from the energy values, which were determined by means of the depolarization measurements, of similar 35 MeV resulted. By the different studies on the transverse electron polarization and by the production of the worldwide first longitudinally polarized electron beam in a storage ring, in which a degree of polarization of P long ≥55% was observed, could be shown that a data taking of the experiment HERMES can be pursued parallel to the experiments H1 and ZEUS in the electron storage ring HERA

  17. Electronic structure classifications using scanning tunneling microscopy conductance imaging

    International Nuclear Information System (INIS)

    Horn, K.M.; Swartzentruber, B.S.; Osbourn, G.C.; Bouchard, A.; Bartholomew, J.W.

    1998-01-01

    The electronic structure of atomic surfaces is imaged by applying multivariate image classification techniques to multibias conductance data measured using scanning tunneling microscopy. Image pixels are grouped into classes according to shared conductance characteristics. The image pixels, when color coded by class, produce an image that chemically distinguishes surface electronic features over the entire area of a multibias conductance image. Such open-quotes classedclose quotes images reveal surface features not always evident in a topograph. This article describes the experimental technique used to record multibias conductance images, how image pixels are grouped in a mathematical, classification space, how a computed grouping algorithm can be employed to group pixels with similar conductance characteristics in any number of dimensions, and finally how the quality of the resulting classed images can be evaluated using a computed, combinatorial analysis of the full dimensional space in which the classification is performed. copyright 1998 American Institute of Physics

  18. Bulk electron spin polarization generated by the spin Hall current

    OpenAIRE

    Korenev, V. L.

    2005-01-01

    It is shown that the spin Hall current generates a non-equilibrium spin polarization in the interior of crystals with reduced symmetry in a way that is drastically different from the previously well-known equilibrium polarization during the spin relaxation process. The steady state spin polarization value does not depend on the strength of spin-orbit interaction offering possibility to generate relatively high spin polarization even in the case of weak spin-orbit coupling.

  19. Bulk electron spin polarization generated by the spin Hall current

    Science.gov (United States)

    Korenev, V. L.

    2006-07-01

    It is shown that the spin Hall current generates a nonequilibrium spin polarization in the interior of crystals with reduced symmetry in a way that is drastically different from the previously well-known “equilibrium” polarization during the spin relaxation process. The steady state spin polarization value does not depend on the strength of spin-orbit interaction offering possibility to generate relatively high spin polarization even in the case of weak spin-orbit coupling.

  20. Low Emittance Guns for the ILC Polarized Electron Beam

    International Nuclear Information System (INIS)

    Clendenin, J. E.; Brachmann, A.; Ioakeimidi, K.; Kirby, R. E.; Maruyama, T.; Miller, R. H.; Wang, J. W.; Zhou, F.

    2007-01-01

    Polarized electron beams generated by DC guns are routinely available at several accelerators including JLAB, Mainz and SLAC. These guns operate with a cathode bias on the order of -100 kV. To minimize space charge effects, relatively long bunches are generated at the gun and then compressed longitudinally external to the gun just before and during initial acceleration. For linear colliders, this compression is accomplished using a combination of rf bunchers. For the basic design of the International Linear Collider (ILC), a 120 kV DC photocathode gun is used to produce a series of nanosecond bunches that are each compressed by two sub-harmonic bunchers (SHBs) followed by an L-band buncher and capture section. The longitudinal bunching process results in a significantly higher emittance than produced by the gun alone. While high-energy experiments using polarized beams are not generally sensitive to the source emittance, there are several benefits to a lower source emittance including a simpler more efficient injector system and a lower radiation load during transport especially at bends as at the damping ring. For the ILC, the SHBs could be eliminated if the voltage of the gun is raised sufficiently. Simulations using the General Particle Tracer (GPT) package indicate that a cathode bias voltage of ≥200 kV should allow both SHBs to be operated at 433 or even 650 MHz, while ≥500 kV would be required to eliminate the SHBs altogether. Simulations can be used to determine the minimum emittance possible if the injector is designed for a given increased voltage. A possible alternative to the DC gun is an rf gun. Emittance compensation, routinely used with rf guns, is discussed for higher-voltage DC guns

  1. Low Emittance Guns for the ILC Polarized Electron Beam

    International Nuclear Information System (INIS)

    Clendenin, J.E.; Brachmann, A.; Ioakeimidi, K.; Kirby, R.E.; Maruyama, T.; Miller, R.H.; Wang, J.W.; Zhou, F.; SLAC

    2006-01-01

    Polarized electron beams generated by DC guns are routinely available at several accelerators including JLAB, Mainz and SLAC. These guns operate with a cathode bias on the order of -100 kV. To minimize space charge effects, relatively long bunches are generated at the gun and then compressed longitudinally external to the gun just before and during initial acceleration. For linear colliders, this compression is accomplished using a combination of rf bunchers. For the basic design of the International Linear Collider (ILC), a 120 kV DC photocathode gun is used to produce a series of nanosecond bunches that are each compressed by two sub-harmonic bunchers (SHBs) followed by an L-band buncher and capture section. The longitudinal bunching process results in a significantly higher emittance than produced by the gun alone. While high-energy experiments using polarized beams are not generally sensitive to the source emittance, there are several benefits to a lower source emittance including a simpler more efficient injector system and a lower radiation load during transport especially at bends as at the damping ring. For the ILC, the SHBs could be eliminated if the voltage of the gun is raised sufficiently. Simulations using the General Particle Tracer (GPT) package indicate that a cathode bias voltage of (ge)200 kV should allow both SHBs to be operated at 433 or even 650 MHz, while (ge)500 kV would be required to eliminate the SHBs altogether. Simulations can be used to determine the minimum emittance possible if the injector is designed for a given increased voltage. A possible alternative to the DC gun is an rf gun. Emittance compensation, routinely used with rf guns, is discussed for higher-voltage DC guns

  2. Theory of Inclusive Scattering of Polarized Electrons by Polarized $^{3}$He and the Neutron Form Factors

    OpenAIRE

    Atti, C. Ciofi degli; Pace, E.; Salmé, G.

    1993-01-01

    The theory of inclusive lepton scattering of polarized leptons by polarized J = 1/2 hadrons is presented and the origin of different expressions for the polarized nuclear response function appearing in the literature is explained. The sensitivity of the longitudinal asymmetry upon the neutron form factors is investigated.

  3. Conduction mechanism studies on electron transfer of disordered system

    Institute of Scientific and Technical Information of China (English)

    徐慧; 宋祎璞; 李新梅

    2002-01-01

    Using the negative eigenvalue theory and the infinite order perturbation theory, a new method was developed to solve the eigenvectors of disordered systems. The result shows that eigenvectors change from the extended state to the localized state with the increase of the site points and the disordered degree of the system. When electric field is exerted, the electrons transfer from one localized state to another one. The conductivity is induced by the electron transfer. The authors derive the formula of electron conductivity and find the electron hops between localized states whose energies are close to each other, whereas localized positions differ from each other greatly. At low temperature the disordered system has the character of the negative differential dependence of resistivity and temperature.

  4. Effect of ionic conductivity of zirconia electrolytes on polarization properties of various electrodes in SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masahiro; Uchida, Hiroyuki; Yoshida, Manabu [Yamanashi Univ., Kofu (Japan)

    1996-12-31

    Solid oxide fuel cells (SOFCs) have been intensively investigated because, in principle, their energy conversion efficiency is fairly high. Lowering the operating temperature of SOFCs from 1000{degrees}C to around 800{degrees}C is desirable for reducing serious problems such as physical and chemical degradation of the constructing materials. The object of a series of the studies is to find a clue for achieving higher electrode performances at a low operating temperature than those of the present level. Although the polarization loss at electrodes can be reduced by using mixed-conducting ceria electrolytes, or introducing the mixed-conducting (reduced zirconia or ceria) laver on the conventional zirconia electrolyte surface, no reports are available on the effect of such an ionic conductivity of electrolytes on electrode polarizations. High ionic conductivity of the electrolyte, of course, reduces the ohmic loss. However, we have found that the IR-free polarization of a platinum anode attached to zirconia electrolytes is greatly influenced by the ionic conductivity, {sigma}{sub ion}, of the electrolytes used. The higher the {sigma}{sub ion}, the higher the exchange current density, j{sub 0}, for the Pt anode in H{sub 2} at 800 {approximately} 1000{degrees}C. It was indicated that the H{sub 2} oxidation reaction rate was controlled by the supply rate of oxide ions through the Pt/zirconia interface which is proportional to the {sigma}{sub ion}. Recently, we have proposed a new concept of the catalyzed-reaction layers which realizes both high-performances of anodes and cathodes for medium-temperature operating SOFCs. We present the interesting dependence of the polarization properties of various electrodes (the SDC anodes with and without Ru microcatalysts, Pt cathode, La(Sr)MnO{sub 3} cathodes with and without Pt microcatalysts) on the {sigma}{sub ion} of various zirconia electrolytes at 800 {approximately} 1000{degrees}C.

  5. The 50 kV inverted source of polarized electrons at ELSA

    International Nuclear Information System (INIS)

    Hillert, Wolfgang; Gowin, Michael; Neff, Berhold

    2001-01-01

    The future medium energy physics program at the electron stretcher accelerator ELSA of Bonn University mainly relies on experiments requiring a beam of polarized electrons and a polarized target. To provide a polarized beam with high polarization and sufficient intensity a pulsed 50 kV inverted gun of polarized electrons has been set into operation. The gun is operated in space charge limitation, producing a peak current of 100 mA in rectangular 1μs long electron pulses. Photocathode lifetime during operation is higher than 3000 hours. Using a Be-InGaAs/Be-AlGaAs superlattice photocathode a polarization of 80% and a corresponding quantum efficiency of 0.4% could be obtained

  6. Status report of the Darmstadt polarized electron source at the S-DALINAC

    Energy Technology Data Exchange (ETDEWEB)

    Poltoratska, Yuliya; Barday, Roman; Bonnes, Uwe; Brunken, Marco; Eichhorn, Ralf; Eckardt, Christian; Enders, Joachim; Ingenhaag, Christoph; Goeoek, Alf; Platz, Markus; Roth, Markus; Wagner, Markus [Institut fuer Kernphysik, Technische Universitaet, Darmstadt (Germany); Mueller, Wolfgang F.O.; Weiland, Thomas [Institut fuer Theorie Elektromagnetischer Felder, Technische Universitaet, Darmstadt (Germany)

    2009-07-01

    The injection section of the superconducting Darmstadt electron linear accelerator S-DALINAC will soon be extended with a source of polarized electrons SPIN. The set-up consists of a 100 keV GaAs polarized gun and associated beamline including a Chopper-Prebuncher system to affect the time structure of the emitted beam, a laser system to produce polarized light with the required wavelength and an assembly for polarisation manipulation and measurement. We report on the status of the entire construction and review recent results on operation parameters. An outlook on the upcoming installation of the polarized electron source at the S-DALINAC is given.

  7. Monte Carlo study of electron relaxation in graphene with spin polarized, degenerate electron gas in presence of electron-electron scattering

    Science.gov (United States)

    Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek

    2017-12-01

    The Monte Carlo simulation method is applied to study the relaxation of excited electrons in monolayer graphene. The presence of spin polarized background electrons population, with density corresponding to highly degenerate conditions is assumed. Formulas of electron-electron scattering rates, which properly account for electrons presence in two energetically degenerate, inequivalent valleys in this material are presented. The electron relaxation process can be divided into two phases: thermalization and cooling, which can be clearly distinguished when examining the standard deviation of electron energy distribution. The influence of the exchange effect in interactions between electrons with parallel spins is shown to be important only in transient conditions, especially during the thermalization phase.

  8. Spin-Hall conductivity and electric polarization in metallic thin films

    KAUST Repository

    Wang, Xuhui

    2013-02-21

    We predict theoretically that when a normal metallic thin film (without bulk spin-orbit coupling, such as Cu or Al) is sandwiched by two insulators, two prominent effects arise due to the interfacial spin-orbit coupling: a giant spin-Hall conductivity due to the surface scattering and a transverse electric polarization due to the spin-dependent phase shift in the spinor wave functions.

  9. Spin-Hall conductivity and electric polarization in metallic thin films

    KAUST Repository

    Wang, Xuhui; Xiao, Jiang; Manchon, Aurelien; Maekawa, Sadamichi

    2013-01-01

    We predict theoretically that when a normal metallic thin film (without bulk spin-orbit coupling, such as Cu or Al) is sandwiched by two insulators, two prominent effects arise due to the interfacial spin-orbit coupling: a giant spin-Hall conductivity due to the surface scattering and a transverse electric polarization due to the spin-dependent phase shift in the spinor wave functions.

  10. The production and extraction of polarized electrons from an optically pumped helium discharge

    International Nuclear Information System (INIS)

    Vandiver, R.J.; Schearer, L.D.; Gay, T.J.

    1992-01-01

    Polarized electrons are produced from interactions involving nearly 100% polarized helium 2 3 S 1 metastable atoms in a weak electrical discharge. The high metastable polarizations are obtained through the use of recently developed, high-power lasers tunable to the relevant helium transitions near 1083 nm and the development of a crossed beam pumping technique. The dominant interactions involving the 2 3 S 1 atoms and electrons are spin preserving; hence the electrons of the discharge attain a high polarization. The authors have extracted a well collimated electron beam with over 20 μA of current from the discharge. An optical polarimeter will be used to determine the polarization of the extracted electrons

  11. Tuning the conductivity threshold and carrier density of two-dimensional electron gas at oxide interfaces through interface engineering

    Directory of Open Access Journals (Sweden)

    H. J. Harsan Ma

    2015-08-01

    Full Text Available The two-dimensional electron gas (2DEG formed at the perovskite oxides heterostructures is of great interest because of its potential applications in oxides electronics and nanoscale multifunctional devices. A canonical example is the 2DEG at the interface between a polar oxide LaAlO3 (LAO and non-polar SrTiO3 (STO. Here, the LAO polar oxide can be regarded as the modulating or doping layer and is expected to define the electronic properties of 2DEG at the LAO/STO interface. However, to practically implement the 2DEG in electronics and device design, desired properties such as tunable 2D carrier density are necessary. Here, we report the tuning of conductivity threshold, carrier density and electronic properties of 2DEG in LAO/STO heterostructures by insertion of a La0.5Sr0.5TiO3 (LSTO layer of varying thicknesses, and thus modulating the amount of polarization of the oxide over layers. Our experimental result shows an enhancement of carrier density up to a value of about five times higher than that observed at the LAO/STO interface. A complete thickness dependent metal-insulator phase diagram is obtained by varying the thickness of LAO and LSTO providing an estimate for the critical thickness needed for the metallic phase. The observations are discussed in terms of electronic reconstruction induced by polar oxides.

  12. Electronic Conductivity of Polypyrrole−Dodecyl Benzene Sulfonate Complexes

    DEFF Research Database (Denmark)

    West, Keld; Bay, Lasse; Nielsen, Martin Meedom

    2004-01-01

    The electronic conductivity of the electroactive polymer polypyrrole-dodecyl benzene sulfonate (PPy-DBS) has been characterized as function of the redox level. The polymer was synthesized with different isomers of the dopant anions: the common mixed DBS tenside and three well-defined synthetic...

  13. Electron beam induced conductivity in 'PET' and 'FEP'

    International Nuclear Information System (INIS)

    Walzade, S.J.; Jog, J.P.; Dake, S.B.; Bhoraskar, S.V.

    1983-01-01

    Electron Beam Induced Conductivity (EBIC), classified into EBIC (bulk) and EBIC (surface) have been measured in PET and FEP respectively. The peculiar oscillatory nature of the induced gain versus beam energy variations is explained in terms of the spatial distributions of the trapping centres near the surface of the polymers. (author)

  14. Highly Confined Electronic and Ionic Conduction in Oxide Heterostructures

    DEFF Research Database (Denmark)

    Pryds, Nini

    2015-01-01

    The conductance confined at the interface of complex oxide heterostructures provides new opportunities to explore nanoelectronic as well as nanoionic devices. In this talk I will present our recent results both on ionic and electronic conductivity at different heterostructures systems. In the first...... unattainable for Bi2O3-based materials, is achieved[1]. These confined heterostructures provide a playground not only for new high ionic conductivity phenomena that are sufficiently stable but also uncover a large variety of possible technological perspectives. At the second part, I will discuss and show our...

  15. Microbial interspecies electron transfer via electric currents through conductive minerals

    Science.gov (United States)

    Kato, Souichiro; Hashimoto, Kazuhito; Watanabe, Kazuya

    2012-01-01

    In anaerobic biota, reducing equivalents (electrons) are transferred between different species of microbes [interspecies electron transfer (IET)], establishing the basis of cooperative behaviors and community functions. IET mechanisms described so far are based on diffusion of redox chemical species and/or direct contact in cell aggregates. Here, we show another possibility that IET also occurs via electric currents through natural conductive minerals. Our investigation revealed that electrically conductive magnetite nanoparticles facilitated IET from Geobacter sulfurreducens to Thiobacillus denitrificans, accomplishing acetate oxidation coupled to nitrate reduction. This two-species cooperative catabolism also occurred, albeit one order of magnitude slower, in the presence of Fe ions that worked as diffusive redox species. Semiconductive and insulating iron-oxide nanoparticles did not accelerate the cooperative catabolism. Our results suggest that microbes use conductive mineral particles as conduits of electrons, resulting in efficient IET and cooperative catabolism. Furthermore, such natural mineral conduits are considered to provide ecological advantages for users, because their investments in IET can be reduced. Given that conductive minerals are ubiquitously and abundantly present in nature, electric interactions between microbes and conductive minerals may contribute greatly to the coupling of biogeochemical reactions. PMID:22665802

  16. Radiation self-polarization of electrons moving in a magnetic field. [Vector spin operator, relaxation time

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V G; Dorofeev, O F; Sokolov, A A; Ternov, I M; Khalilov, V R [Moskovskij Gosudarstvennyj Univ. (USSR)

    1975-03-11

    When electrons move in a magnetic field, synchrotron radiation gives rise to transitions accompanied by the electron spin reorientation. In this case, it is essential that the transition probability depends on the spin orientation; as a result electron polarization takes place with the spin orientation being predominantly opposite to the direction of the magnetic field. This effect has been called ''radiative self-polarization of electrons''. The present work is concerned with the question how the choice of the spin operator will affect the self-polarization degree and relaxation time. The problem has been solved for a vector spin operator.

  17. Generation of intense spin-polarized electron beams at the electron accelerator facility ELSA

    International Nuclear Information System (INIS)

    Heiliger, Dominik

    2014-08-01

    The inverted source of polarized electrons at the electron accelerator ELSA in Bonn routinely provides a pulsed and low energetic beam of polarized electrons (100 mA, 48 keV) by irradiating a GaAs strained-layer superlattice photocathode with laser light. Due to the beam energy of 48 keV the beam transport to the linear accelerator is strongly space charge dominated and the actual beam current has an impact on the beam dynamics. Thus, the optics of the transfer line to the linear accelerator must be optimized with respect to the chosen beam intensity. An intensity upgrade including numerical simulations of the beam transport as well as a generation and a transport of a beam current of nearly 200 mA was successfully operated. In order to enhance the reliability and uptime of the source, a new extreme high vacuum load lock system was installed and commissioned. It consists of an activation chamber for heat cleaning of the photocathodes and activation with cesium and oxygen, a storage in which different types of photocathodes can be stored and a loading chamber in which an atomic hydrogen source is used to remove nearly any remaining surface oxidation. The new cleaning procedure with atomic hydrogen was investigated regarding its potential to restore the initial quantum efficiency of the photocathode after many activations.

  18. Thermal conductance of a surface phonon-polariton crystal made up of polar nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez-Miranda, Jose; Joulain, Karl; Ezzahri, Younes [Univ. de Poitiers, Futuroscope Chasseneuil (France). Inst. Pprime, CNRS

    2017-05-01

    We demonstrate that the energy transport of surface phonon-polaritons can be large enough to be observable in a crystal made up of a three-dimensional assembly of nanorods of silicon carbide. The ultralow phonon thermal conductivity of this nanostructure along with its high surface area-to-volume ratio allows the predominance of the polariton energy over that generated by phonons. The dispersion relation, propagation length, and thermal conductance of polaritons are numerically determined as functions of the radius and temperature of the nanorods. It is shown that the thermal conductance of a crystal with nanorods at 500 K and diameter (length) of 200 nm (20 μm) is 0.55 nW.K{sup -1}, which is comparable to the quantum of thermal conductance of polar nanowires.

  19. TESLA-N electron scattering with polarized targets at TESLA

    International Nuclear Information System (INIS)

    Korotokov, V.

    2001-01-01

    Measurements of polarized eN scattering can be realized at the TESLA linear collider facility at DESY with luminosities that are about two orders of magnitude higher than those expected for other experiments at comparable energies. A large variety of polarized parton distribution and fragmentation functions can be determined with unprecedented accuracy, many of them for the first time

  20. Spin polarization of electrons in a magnetic impurity doped ...

    Indian Academy of Sciences (India)

    Abstract. A theoretical model is presented in this paper for degree of spin polarization in a light emitting diode (LED) whose epitaxial region contains quantum dots doped with magnetic impurity. The model is then used to investigate the effect of electron–phonon interaction on degree of spin polarization at different ...

  1. Spin polarization of electrons in a magnetic impurity doped ...

    Indian Academy of Sciences (India)

    A theoretical model is presented in this paper for degree of spin polarization in alight emitting diode (LED) whose epitaxial region contains quantum dots doped with magnetic impurity. The model is then used to investigate the effect of electron–phonon interaction on degree of spin polarization at different temperatures and ...

  2. Proceedings of the Workshop on future of nuclear physics in Europe with polarized electrons and photons

    International Nuclear Information System (INIS)

    Didelez, J.P.; Tamas, G.

    1990-01-01

    In the proceedings of the workshop, held at the Institut de Physique Nucleaire in Orsay, France, full texts of 20 contributions are presented. The two main topics were polarized electrons and polarized photons. It has been reported that significant processes have been made recently in the science and technology of polarized electron sources, polarized targets and polarimeters. The relevant tools are therefore now available to complete extensive experimental programs. The 20 papers are indexed and abstracted separately for the INIS database. (R.P.)

  3. Detecting Electron Transport of Amino Acids by Using Conductance Measurement

    Directory of Open Access Journals (Sweden)

    Wei-Qiong Li

    2017-04-01

    Full Text Available The single molecular conductance of amino acids was measured by a scanning tunneling microscope (STM break junction. Conductance measurement of alanine gives out two conductance values at 10−1.85 G0 (1095 nS and 10−3.7 G0 (15.5 nS, while similar conductance values are also observed for aspartic acid and glutamic acid, which have one more carboxylic acid group compared with alanine. This may show that the backbone of NH2–C–COOH is the primary means of electron transport in the molecular junction of aspartic acid and glutamic acid. However, NH2–C–COOH is not the primary means of electron transport in the methionine junction, which may be caused by the strong interaction of the Au–SMe (methyl sulfide bond for the methionine junction. The current work reveals the important role of the anchoring group in the electron transport in different amino acids junctions.

  4. Global auroral conductance distribution due to electron and proton precipitation from IMAGE-FUV observations

    Directory of Open Access Journals (Sweden)

    V. Coumans

    2004-04-01

    Full Text Available The Far Ultraviolet (FUV imaging system on board the IMAGE satellite provides a global view of the north auroral region in three spectral channels, including the SI12 camera sensitive to Doppler shifted Lyman-α emission. FUV images are used to produce instantaneous maps of electron mean energy and energy fluxes for precipitated protons and electrons. We describe a method to calculate ionospheric Hall and Pedersen conductivities induced by auroral proton and electron ionization based on a model of interaction of auroral particles with the atmosphere. Different assumptions on the energy spectral distribution for electrons and protons are compared. Global maps of ionospheric conductances due to instantaneous observation of precipitating protons are calculated. The contribution of auroral protons in the total conductance induced by both types of auroral particles is also evaluated and the importance of proton precipitation is evaluated. This method is well adapted to analyze the time evolution of ionospheric conductances due to precipitating particles over the auroral region or in particular sectors. Results are illustrated with conductance maps of the north polar region obtained during four periods with different activity levels. It is found that the proton contribution to conductance is relatively higher during quiet periods than during substorms. The proton contribution is higher in the period before the onset and strongly decreases during the expansion phase of substorms. During a substorm which occurred on 28 April 2001, a region of strong proton precipitation is observed with SI12 around 14:00MLT at ~75° MLAT. Calculation of conductances in this sector shows that neglecting the protons contribution would produce a large error. We discuss possible effects of the proton precipitation on electron precipitation in auroral arcs. The increase in the ionospheric conductivity, induced by a former proton precipitation can reduce the potential drop

  5. Global auroral conductance distribution due to electron and proton precipitation from IMAGE-FUV observations

    Directory of Open Access Journals (Sweden)

    V. Coumans

    2004-04-01

    Full Text Available The Far Ultraviolet (FUV imaging system on board the IMAGE satellite provides a global view of the north auroral region in three spectral channels, including the SI12 camera sensitive to Doppler shifted Lyman-α emission. FUV images are used to produce instantaneous maps of electron mean energy and energy fluxes for precipitated protons and electrons. We describe a method to calculate ionospheric Hall and Pedersen conductivities induced by auroral proton and electron ionization based on a model of interaction of auroral particles with the atmosphere. Different assumptions on the energy spectral distribution for electrons and protons are compared. Global maps of ionospheric conductances due to instantaneous observation of precipitating protons are calculated. The contribution of auroral protons in the total conductance induced by both types of auroral particles is also evaluated and the importance of proton precipitation is evaluated. This method is well adapted to analyze the time evolution of ionospheric conductances due to precipitating particles over the auroral region or in particular sectors. Results are illustrated with conductance maps of the north polar region obtained during four periods with different activity levels. It is found that the proton contribution to conductance is relatively higher during quiet periods than during substorms. The proton contribution is higher in the period before the onset and strongly decreases during the expansion phase of substorms. During a substorm which occurred on 28 April 2001, a region of strong proton precipitation is observed with SI12 around 14:00MLT at ~75° MLAT. Calculation of conductances in this sector shows that neglecting the protons contribution would produce a large error. We discuss possible effects of the proton precipitation on electron precipitation in auroral arcs. The increase in the ionospheric conductivity, induced by a former proton precipitation can reduce the potential drop

  6. The thermodynamical foundation of electronic conduction in solids

    Science.gov (United States)

    Bringuier, E.

    2018-03-01

    In elementary textbooks, the microscopic justification of Ohm’s local law in a solid medium starts with Drude’s classical model of electron transport and next discusses the quantum-dynamical and statistical amendments. In this paper, emphasis is laid instead upon the thermodynamical background motivated by the Joule-Lenz heating effect accompanying conduction and the fact that the conduction electrons are thermalized at the lattice temperature. Both metals and n-type semiconductors are considered; but conduction under a magnetic field is not. Proficiency in second-year thermodynamics and vector analysis is required from an undergraduate university student in physics so that the content of the paper can be taught to third-year students. The necessary elements of quantum mechanics are posited in this paper without detailed justification. We start with the equilibrium-thermodynamic notion of the chemical potential of the electron gas, the value of which distinguishes metals from semiconductors. Then we turn to the usage of the electrochemical potential in the description of near-equilibrium electron transport. The response of charge carriers to the electrochemical gradient involves the mobility, which is the reciprocal of the coefficient of the effective friction force opposing the carrier drift. Drude’s calculation of mobility is restated with the dynamical requirements of quantum physics. Where the carrier density is inhomogeneous, there appears diffusion, the coefficient of which is thermodynamically related to the mobility. Next, it is remarked that the release of heat was ignored in Drude’s original model. In this paper, the flow of Joule heat is handled thermodynamically within an energy balance where the voltage generator, the conduction electrons and the host lattice are involved in an explicit way. The notion of dissipation is introduced as the rate of entropy creation in a steady state. The body of the paper is restricted to the case of one

  7. About the free electron model in electric conduction of metals

    International Nuclear Information System (INIS)

    Hoffmann, C.

    1991-01-01

    In the model proposed by Drude to describe, among others, the electric conduction in metals, it is supposed that electrons move freely in the material with a time interval between encounters T and a probability distribution g(t). The name, 'electron pause time', will be assigned to the time T with that probability distribution. The calculations made by Drude turned out to be erroneous. The error can be corrected observing that the random variable 'pause time' appearing in this intuitive idea is not the previously defined random variable T, 'electron pause time', but another random variable S, which will be called 'observed pause time' whose probability density is Csg(s), where C is a normalization constant. With this distribution, the characteristics of the distribution, q(u), of the wait time can be obtained. (Author) [es

  8. Subsurface imaging of water electrical conductivity, hydraulic permeability and lithology at contaminated sites by induced polarization

    Science.gov (United States)

    Maurya, P. K.; Balbarini, N.; Møller, I.; Rønde, V.; Christiansen, A. V.; Bjerg, P. L.; Auken, E.; Fiandaca, G.

    2018-05-01

    At contaminated sites, knowledge about geology and hydraulic properties of the subsurface and extent of the contamination is needed for assessing the risk and for designing potential site remediation. In this study, we have developed a new approach for characterizing contaminated sites through time-domain spectral induced polarization. The new approach is based on: (1) spectral inversion of the induced polarization data through a reparametrization of the Cole-Cole model, which disentangles the electrolytic bulk conductivity from the surface conductivity for delineating the contamination plume; (2) estimation of hydraulic permeability directly from the inverted parameters using a laboratory-derived empirical equation without any calibration; (3) the use of the geophysical imaging results for supporting the geological modelling and planning of drilling campaigns. The new approach was tested on a data set from the Grindsted stream (Denmark), where contaminated groundwater from a factory site discharges to the stream. Two overlapping areas were covered with seven parallel 2-D profiles each, one large area of 410 m × 90 m (5 m electrode spacing) and one detailed area of 126 m × 42 m (2 m electrode spacing). The geophysical results were complemented and validated by an extensive set of hydrologic and geologic information, including 94 estimates of hydraulic permeability obtained from slug tests and grain size analyses, 89 measurements of water electrical conductivity in groundwater, and four geological logs. On average the IP-derived and measured permeability values agreed within one order of magnitude, except for those close to boundaries between lithological layers (e.g. between sand and clay), where mismatches occurred due to the lack of vertical resolution in the geophysical imaging. An average formation factor was estimated from the correlation between the imaged bulk conductivity values and the water conductivity values measured in groundwater, in order to

  9. Proceedings of the workshop on photocathodes for polarized electron sources for accelerators

    International Nuclear Information System (INIS)

    Chatwell, M.; Clendenin, J.; Maruyama, T.; Schultz, D.

    1994-04-01

    Application of the GaAs polarized electron source to studies of surface magnetism; thermal stability of Cs on NES III-V-Photocathodes and its effect on quantum efficiency; AFEL accelerator; production and detection of SPIN polarized electrons; emittance measurements on a 100-keV beam from a GaAs photocathode electron gun; modern theory of photoemission and its applications to practical photocathodes; experimental studies of the charge limit phenomenon in GaAs photocathodes; new material for photoemission electron source; semiconductor alloy InGaAsP grown on GaAs substrate; NEA photocathode surface preparation; technology and physics; metalorganic chemical vapor deposition of GaAs-GaAsP spin-polarized photocathodes; development of photocathodes injectors for JLC-ATF; effect of radiation trapping on polarization of photoelectrons from semiconductors; and energy analysis of electrons emitted by a semiconductor photocathode

  10. Proceedings of the workshop on photocathodes for polarized electron sources for accelerators. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Chatwell, M.; Clendenin, J.; Maruyama, T.; Schultz, D. [eds.

    1994-04-01

    Application of the GaAs polarized electron source to studies of surface magnetism; thermal stability of Cs on NES III-V-Photocathodes and its effect on quantum efficiency; AFEL accelerator; production and detection of SPIN polarized electrons; emittance measurements on a 100-keV beam from a GaAs photocathode electron gun; modern theory of photoemission and its applications to practical photocathodes; experimental studies of the charge limit phenomenon in GaAs photocathodes; new material for photoemission electron source; semiconductor alloy InGaAsP grown on GaAs substrate; NEA photocathode surface preparation; technology and physics; metalorganic chemical vapor deposition of GaAs-GaAsP spin-polarized photocathodes; development of photocathodes injectors for JLC-ATF; effect of radiation trapping on polarization of photoelectrons from semiconductors; and energy analysis of electrons emitted by a semiconductor photocathode.

  11. Photo-Induced Electron Spin Polarization in a Narrow Band Gap Semiconductor Nanostructure

    International Nuclear Information System (INIS)

    Peter, A. John; Lee, Chang Woo

    2012-01-01

    Photo-induced spin dependent electron transmission through a narrow gap InSb/InGa x Sb 1−x semiconductor symmetric well is theoretically studied using transfer matrix formulism. The transparency of electron transmission is calculated as a function of electron energy for different concentrations of gallium. Enhanced spin-polarized photon assisted resonant tunnelling in the heterostructure due to Dresselhaus and Rashba spin-orbit coupling induced splitting of the resonant level and compressed spin-polarization are observed. Our results show that Dresselhaus spin-orbit coupling is dominant for the photon effect and the computed polarization efficiency increases with the photon effect and the gallium concentration

  12. Fractal model of polarization switching kinetics in ferroelectrics under nonequilibrium conditions of electron irradiation

    Science.gov (United States)

    Maslovskaya, A. G.; Barabash, T. K.

    2018-03-01

    The paper presents the results of the fractal and multifractal analysis of polarization switching current in ferroelectrics under electron irradiation, which allows statistical memory effects to be estimated at dynamics of domain structure. The mathematical model of formation of electron beam-induced polarization current in ferroelectrics was suggested taking into account the fractal nature of domain structure dynamics. In order to realize the model the computational scheme was constructed using the numerical solution approximation of fractional differential equation. Evidences of electron beam-induced polarization switching process in ferroelectrics were specified at a variation of control model parameters.

  13. An L-Band Polarized Electron PWT Photoinjector for the International Linear Collider (ILC)

    CERN Document Server

    Yu, David; Chen Ping; Lundquist, Martin; Luo, Yan; Smirnov, Alexei Yu

    2005-01-01

    A multi-cell, standing-wave, L-band, p-mode, plane-wave-transformer (PWT) photoinjector with an integrated photocathode in a novel linac structure is proposed by DULY Research Inc. as a polarized electron source. The PWT photoinjector is capable of operation in ultra high vacuum and moderate field gradient. Expected performance of an L-band polarized electron PWT injector operating under the parameters for the International Linear Collider is presented. The projected normalized transverse rms emittance is an order of magnitude lower than that produced with a polarized electron dc gun followed by subharmonic bunchers.

  14. Accurate measurement of the electron beam polarization in JLab Hall A using Compton polarimetry

    International Nuclear Information System (INIS)

    Escoffier, S.; Bertin, P.Y.; Brossard, M.; Burtin, E.; Cavata, C.; Colombel, N.; Jager, C.W. de; Delbart, A.; Lhuillier, D.; Marie, F.; Mitchell, J.; Neyret, D.; Pussieux, T.

    2005-01-01

    A major advance in accurate electron beam polarization measurement has been achieved at Jlab Hall A with a Compton polarimeter based on a Fabry-Perot cavity photon beam amplifier. At an electron energy of 4.6GeV and a beam current of 40μA, a total relative uncertainty of 1.5% is typically achieved within 40min of data taking. Under the same conditions monitoring of the polarization is accurate at a level of 1%. These unprecedented results make Compton polarimetry an essential tool for modern parity-violation experiments, which require very accurate electron beam polarization measurements

  15. Intense source of spin-polarized electrons using laser-induced optical pumping

    International Nuclear Information System (INIS)

    Gray, L.G.; Giberson, K.W.; Cheng, C.; Keiffer, R.S.; Dunning, F.B.; Walters, G.K.

    1983-01-01

    A source of spin-polarized electrons based on a laser-pumped flowing helium afterglow is described. He(2 3 S) atoms contained in the afterglow are optically pumped using circularly polarized 1.08-μm (2 3 S→2 3 P) radiation provided by a NaF (F 2+ )( color-center laser. Spin angular momentum conservation in subsequent chemi-ionization reactions with CO 2 produces polarized electrons that are extracted from the afterglow. At low currents, < or approx. =1 μA, polarizations of approx.70%--80% are achieved. At higher currents the polarization decreases, falling to approx.40% at 50 μA. The spin polarization can be simply reversed (P→-P) and the source is suitable for use in the majority of low-energy spin-dependent scattering experiments proposed to date

  16. The HERMES polarized hydrogen and deuterium gas target in the HERA electron storage ring

    International Nuclear Information System (INIS)

    Airapetian, A.; Akopov, N.; Akopov, Z.

    2005-01-01

    The HERMES hydrogen and deuterium nuclear-polarized gas targets have been in use since 1996 with the polarized electron beam of HERA at DESY to study the spin structure of the nucleon. Polarized atoms from a Stern-Gerlach Atomic Beam Source are injected into a storage cell internal to the HERA electron ring. Atoms diffusing from the center of the storage cell into a side tube are analyzed to determine the atomic fraction and the atomic polarizations. The atoms have a nuclear polarization, the axis of which is defined by an external magnetic holding field. The holding field was longitudinal during 1996-2000, and was changed to transverse in 2001. The design of the target is described, the method for analyzing the target polarization is outlined, and the performance of the target in the various running periods is presented

  17. The HERMES polarized hydrogen and deuterium gas target in the HERA electron storage ring

    International Nuclear Information System (INIS)

    Airapetian, A.; Akopov, N.; Akopov, Z.; Peking University, Beijing

    2004-08-01

    The HERMES hydrogen and deuterium nuclear-polarized gas targets have been in use since 1996 with the polarized electron beam of HERA at DESY to study the spin structure of the nucleon. Polarized atoms from a Stern-Gerlach Atomic Beam Source are injected into a storage cell internal to the HERA electron ring. Atoms diffusing from the center of the storage cell into a side tube are analyzed to determine the atomic fraction and the atomic polarizations. The atoms have a nuclear polarization, the axis of which is defined by an external magnetic holding field. The holding field was longitudinal during 1996-2000, and was changed to transverse in 2001. The design of the target is described, the method for analyzing the target polarization is outlined, and the performance of the target in the various running periods is presented. (orig.)

  18. Evaluation of radiative spin polarization in an electron storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A W [Stanford Linear Accelerator Center, CA (USA)

    1981-02-15

    We have developed a matrix formalism that provides an accurate way of evaluating the degree of spin polarization built up through the process of synchrotron radiation under a wide variety of storage ring operation conditions.

  19. Thermal conductivity of graphene nanoribbons accounting for phonon dispersion and polarization

    International Nuclear Information System (INIS)

    Wang, Yingjun; Xie, Guofeng

    2015-01-01

    The relative contribution to heat conduction by different phonon branches is still an intriguing and open question in phonon transport of graphene nanoribbons (GNRs). By incorporating the direction–dependent phonon–boundary scattering into the linearized phonon Boltzmann transport equation, we find that because of lower Grüneisen parameter, the TA phonons have the major contribution to thermal conductivity of GNRs, and in the case of smooth edge and micron–length of GNRS, the relative contribution of TA branch to thermal conductivity is over 50%. The length and edge roughness of GNRs have distinct influences on the relative contribution of different polarization branches to thermal conductivity. The contribution of TA branch to thermal conductivity increases with increasing the length or decreasing the edge roughness of GNRs. On the contrary, the contribution of ZA branch to thermal conductivity increases with decreasing the length or increasing the edge roughness of GNRs. The contribution of LA branch is length and roughness insensitive. Our findings are helpful for understanding and engineering the thermal conductivity of GNRs.

  20. Observation of strongly forbidden solid effect dynamic nuclear polarization transitions via electron-electron double resonance detected NMR

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Albert A.; Corzilius, Björn; Haze, Olesya; Swager, Timothy M.; Griffin, Robert G., E-mail: rgg@mit.edu [Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2013-12-07

    We present electron paramagnetic resonance experiments for which solid effect dynamic nuclear polarization transitions were observed indirectly via polarization loss on the electron. This use of indirect observation allows characterization of the dynamic nuclear polarization (DNP) process close to the electron. Frequency profiles of the electron-detected solid effect obtained using trityl radical showed intense saturation of the electron at the usual solid effect condition, which involves a single electron and nucleus. However, higher order solid effect transitions involving two, three, or four nuclei were also observed with surprising intensity, although these transitions did not lead to bulk nuclear polarization—suggesting that higher order transitions are important primarily in the transfer of polarization to nuclei nearby the electron. Similar results were obtained for the SA-BDPA radical where strong electron-nuclear couplings produced splittings in the spectrum of the indirectly observed solid effect conditions. Observation of high order solid effect transitions supports recent studies of the solid effect, and suggests that a multi-spin solid effect mechanism may play a major role in polarization transfer via DNP.

  1. Spin structure function measurements with polarized protons and electrons at HERA

    International Nuclear Information System (INIS)

    Ball, R.D.; Deshpande, A.; Forte, S.; Hughes, V.W.; Lichtenstadt, J.; Ridolfi, G.

    1995-01-01

    Useful insights into the spin structure functions of the nucleon can be achieved by measurements of spin-dependent asymmetries in inclusive scattering of high energy polarized electrons by high energy polarized protons at HERA. Such an experiment would be a natural extension of the polarized lepton-nucleon scattering experiments presently carried out at CERN and SLAC. We present here estimates of possible data in the extended kinematic range of HERA and associated statistical errors. (orig.)

  2. Chemically induced dynamic electron polarization. Pulse radiolysis of aqueous solutions of alcohols

    International Nuclear Information System (INIS)

    Trifunac, A.D.; Thurnauer, M.C.

    1975-01-01

    The radical pair model of chemically induced dynamic electron polarization (CIDEP) is experimentally verified. Aqueous solutions of alcohols were irradiated with 3 MeV electrons and observed with time resolved electron paramagnetic resonance (EPR) spectroscopy. Relative line intensities of the polarized EPR spectra of radicals from methanol and especially ethylene glycol, alone and in the presence of radicals from compounds containing halogens, illustrates the polarization dependence on the g-factor differences between the radical pair components. The observation of the relative polarization enhancement in the various lines of the multiline EPR spectra illustrates the polarization dependence on the hyperfine terms. Intrinsic enhancements are calculated and are shown to be proportional to the observed enhancement, showing that the radical pair model of CIDEP is qualitatively correct

  3. High electron thermal conductivity of chiral carbon nanotubes

    International Nuclear Information System (INIS)

    Mensah, S.Y.; Allotey, F.K.A.; Nkrumah, George; Mensah, N.G.

    2003-11-01

    Solving the Boltzmann kinetic equation with energy dispersion relation obtained in the tight binding approximation, the carrier thermal conductivity κ e of a chiral carbon nanotube (CCNT) was determined. The dependence of κ e on temperature T, chiral geometric angle φ h and overlap integrals Δ z and Δ s were obtained. The results were numerically analysed. Unusually high values of κ e were observed suggesting that ne is nontrivial in the calculation of the thermal conductivity κ of CCNT. More interestingly we noted also that at 104 K and for Δ z and Δ s values of 0.020 eV and 0.0150 eV respectively the κ e value is about 41000 W/mK as reported for a 99.9% pure 12 C crystal. We predict that the electron thermal conductivity of CCNT should exceed 200,000 W/mK at ∼ 80 K. (author)

  4. Electron Transfer between Electrically Conductive Minerals and Quinones

    Directory of Open Access Journals (Sweden)

    Olga Taran

    2017-07-01

    Full Text Available Long-distance electron transfer in marine environments couples physically separated redox half-reactions, impacting biogeochemical cycles of iron, sulfur and carbon. Bacterial bio-electrochemical systems that facilitate electron transfer via conductive filaments or across man-made electrodes are well-known, but the impact of abiotic currents across naturally occurring conductive and semiconductive minerals is poorly understood. In this paper I use cyclic voltammetry to explore electron transfer between electrodes made of common iron minerals (magnetite, hematite, pyrite, pyrrhotite, mackinawite, and greigite, and hydroquinones—a class of organic molecules found in carbon-rich sediments. Of all tested minerals, only pyrite and magnetite showed an increase in electric current in the presence of organic molecules, with pyrite showing excellent electrocatalytic performance. Pyrite electrodes performed better than commercially available glassy carbon electrodes and showed higher peak currents, lower overpotential values and a smaller separation between oxidation and reduction peaks for each tested quinone. Hydroquinone oxidation on pyrite surfaces was reversible, diffusion controlled, and stable over a large number of potential cycles. Given the ubiquity of both pyrite and quinones, abiotic electron transfer between minerals and organic molecules is likely widespread in Nature and may contribute to several different phenomena, including anaerobic respiration of a wide variety of microorganisms in temporally anoxic zones or in the proximity of hydrothermal vent chimneys, as well as quinone cycling and the propagation of anoxic zones in organic rich waters. Finally, interactions between pyrite and quinones make use of electrochemical gradients that have been suggested as an important source of energy for the origins of life on Earth. Ubiquinones and iron sulfide clusters are common redox cofactors found in electron transport chains across all domains

  5. Electron Transfer Between Electrically Conductive Minerals and Quinones

    Science.gov (United States)

    Taran, Olga

    2017-07-01

    Long-distance electron transfer in marine environments couples physically separated redox half-reactions, impacting biogeochemical cycles of iron, sulfur and carbon. Bacterial bio-electrochemical systems that facilitate electron transfer via conductive filaments or across man-made electrodes are well known, but the impact of abiotic currents across naturally occurring conductive and semiconducitve minerals is poorly understood. In this paper I use cyclic voltammetry to explore electron transfer between electrodes made of common iron minerals (magnetite, hematite, pyrite, pyrrhotite, mackinawite and greigite), and hydroquinones - a class of organic molecules found in carbon-rich sediments. Of all tested minerals, only pyrite and magnetite showed an increase in electric current in the presence of organic molecules, with pyrite showing excellent electrocatalytic performance. Pyrite electrodes performed better than commercially available glassy carbon electrodes and showed higher peak currents, lower overpotential values and a smaller separation between oxidation and reduction peaks for each tested quinone. Hydroquinone oxidation on pyrite surfaces was reversible, diffusion controlled, and stable over a large number of potential cycles. Given the ubiquity of both pyrite and quinones, abiotic electron transfer between minerals and organic molecules is likely widespread in Nature and may contribute to several different phenomena, including anaerobic respiration of a wide variety of microorganisms in temporally anoxic zones or in the proximity of hydrothermal vent chimneys, as well as quinone cycling and the propagation of anoxic zones in organic rich waters. Finally, interactions between pyrite and quinones make use of electrochemical gradients that have been suggested as an important source of energy for the origins of life on Earth. Ubiquinones and iron sulfide clusters are common redox cofactors found in electron transport chains across all domains of life and

  6. Progress in measurement and understanding of beam polarization in electron positron storage rings

    International Nuclear Information System (INIS)

    Barber, D.P.; Bremer, H.D.; Kewisch, J.; Lewin, H.C.; Limberg, T.; Mais, H.; Ripken, G.; Rossmanith, R.; Schmidt, R.

    1983-07-01

    A report is presented on the status of attempts to obtain and measure spin polarization in electron-positron storage rings. Experimental results are presented and their relationship to predictions of calculations discussed. Examples of methods for decoupling orbital and spin motion and thus improving polarization are discussed. (orig.)

  7. Performance of a Polarized Deuterium Internal Target in a Medium-Energy Electron Storage Ring.

    NARCIS (Netherlands)

    Zhou, Z.L.; Ferro Luzzi, M.M.E.; van den Brand, J.F.J.; Bulten, H.J.; Alarcon, R.; van Bommel, R.; Botto, T.; Bouwhuis, M.; Buchholz, M.; Choi, S.; Comfort, J.; Doets, M.; Dolfini, S.; Ent, R.; Gaulard, C.; de Jager, C.W.; Lang, J.; de Lange, D.J.; Miller, M.A.; Passchier, E.; Passchier, I.; Poolman, H.R.; Six, E.; Steijger, J.J.M.; Unal, O.; de Vries, H.

    1996-01-01

    A polarized deuterium target internal to a medium-energy electron storage ring is described in the context of spindependent (e, e′d) and (e ,e′p) experiments. Tensor polarized deuterium was produced in an atomic beam source and injected into a storage cell target. A Breit-Rabi polarimeter was used

  8. Non-perturbative calculation of equilibrium polarization of stored electron beams

    International Nuclear Information System (INIS)

    Yokoya, Kaoru.

    1992-05-01

    Stored electron/positron beams polarize spontaneously owing to the spin-flip synchrotron radiation. In the existing computer codes, the degree of the equilibrium polarization has been calculated using perturbation expansions in terms of the orbital oscillation amplitudes. In this paper a new numerical method is presented which does not employ the perturbation expansion. (author)

  9. The HERA polarimeter and the first observation of electron spin polarization at HERA

    International Nuclear Information System (INIS)

    Barber, D.P.; Bremer, H.D.; Boege, M.; Brinkmann, R.; Gianfelice-Wendt, E.; Kaiser, H.; Klanner, R.; Lewin, H.C.; Meyners, N.; Vogel, W.; Brueckner, W.; Buescher, C.; Dueren, M.; Gaul, H.G.; Muecklich, A.; Neunreither, F.; Rith, K.; Scholz, C.; Steffens, E.; Veltri, M.; Wander, W.; Zapfe, K.; Zetsche, F.; Chapman, M.; Milner, R.; Coulter, K.; Delheij, P.P.J.; Haeusser, O.; Henderson, R.; Levy, P.; Vetterli, M.; Gressmann, H.; Janke, T.; Micheel, B.; Westphal, D.; Kaiser, R.; Losev, L.; Nowak, W.D.

    1992-10-01

    Electron spin polarizations of about 8% were observed at HERA in November 1991. In runs during 1992 utilizing special orbit corrections, polarization values close to 60% have been achieved. In this paper the polarimeter, the machine conditions, the data analysis, the first results and plans for future measurements are described. (orig.)

  10. Nuclear-polarization correction to the bound-electron g factor in heavy hydrogenlike ions

    OpenAIRE

    Nefiodov, A. V.; Plunien, G.; Soff, G.

    2002-01-01

    The influence of nuclear polarization on the bound-electron $g$ factor in heavy hydrogenlike ions is investigated. Numerical calculations are performed for the K- and L-shell electrons taking into account the dominant virtual nuclear excitations. This determines the ultimate limit for tests of QED utilizing measurements of the bound-electron $g$ factor in highly charged ions.

  11. Nuclear-polarization correction to the bound-electron g factor in heavy hydrogenlike ions.

    Science.gov (United States)

    Nefiodov, A V; Plunien, G; Soff, G

    2002-08-19

    The influence of nuclear polarization on the bound-electron g factor in heavy hydrogenlike ions is investigated. Numerical calculations are performed for the K- and L-shell electrons taking into account the dominant virtual nuclear excitations. This determines the ultimate limit for tests of QED utilizing measurements of the bound-electron g factor in highly charged ions.

  12. Surface chemistry and electronic structure of nonpolar and polar GaN films

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Monu; Krishna, T.C. Shibin; Aggarwal, Neha; Gupta, Govind, E-mail: govind@nplindia.org

    2015-08-01

    Highlights: • Surface chemistry and electronic structure of polar and nonpolar GaN is reported. • Influence of polarization on electron affinity of p & np GaN films is investigated. • Correlation between surface morphology and polarity has been deduced. - Abstract: Photoemission and microscopic analysis of nonpolar (a-GaN/r-Sapphire) and polar (c-GaN/c-Sapphire) epitaxial gallium nitride (GaN) films grown via RF-Molecular Beam Epitaxy is reported. The effect of polarization on surface properties like surface states, electronic structure, chemical bonding and morphology has been investigated and correlated. It was observed that polarization lead to shifts in core level (CL) as well as valence band (VB) spectra. Angle dependent X-ray Photoelectron Spectroscopic analysis revealed higher surface oxide in polar GaN film compared to nonpolar GaN film. On varying the take off angle (TOA) from 0° to 60°, the Ga−O/Ga−N ratio varied from 0.11–0.23 for nonpolar and 0.17–0.36 for polar GaN film. The nonpolar film exhibited N-face polarity while Ga-face polarity was perceived in polar GaN film due to the inherent polarization effect. Polarization charge compensated surface states were observed on the polar GaN film and resulted in downward band bending. Ultraviolet photoelectron spectroscopic measurements revealed electron affinity and ionization energy of 3.4 ± 0.1 eV and 6.8 ± 0.1 eV for nonpolar GaN film and 3.8 ± 0.1 eV and 7.2 ± 0.1 eV for polar GaN film respectively. Field Emission Scanning Electron Microscopy measurements divulged smooth morphology with pits on polar GaN film. The nonpolar film on the other hand showed pyramidal structures having facets all over the surface.

  13. Electronic conductivity studies on oxyhalide glasses containing TMO

    Energy Technology Data Exchange (ETDEWEB)

    Vijayatha, D. [R& D Center, Bharatiar University, Coimbatore, Tamil Nadu (India); Department of Physics, Gurunanak Institute of Technology, Hyderabad -040 (India); Viswanatha, R. [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012 (India); Sujatha, B. [Department of Electronics and Communcation, MSRIT, Bangalore 560054 (India); Narayana Reddy, C., E-mail: nivetejareddy@gmail.com [Department of Physics, Sree Siddaganga College of Arts, Science and Commerce, Tumkur 572102 (India)

    2016-05-06

    Microwave-assisted synthesis is cleaner, more economical and much faster than conventional methods. The development of new routes for the synthesis of solid materials is an integral part of material science and technology. The electronic conductivity studies on xPbCl{sub 2} – 60 PbO – (40-x) V{sub 2}O{sub 5} (1 ≥ x ≤ 10) glass system has been carried out over a wide range of composition and temperature (300 K to 423 K). X-ray diffraction study confirms the amorphous nature of the samples. The Scanning electron microscopic studies reveal the formation of cluster like morphology in PbCl{sub 2} containing glasses. The d.c conductivity exhibits Arrhenius behaviour and increases with V{sub 2}O{sub 5} concentration. Analysis of the results is interpreted in view Austin-Mott’s small polaron model of electron transport. Activation energies calculated using regression analysis exhibit composition dependent trend and the variation is explained in view of the structure of lead-vanadate glass.

  14. Solving structure in the CP29 light harvesting complex with polarization-phased 2D electronic spectroscopy

    Science.gov (United States)

    Ginsberg, Naomi S.; Davis, Jeffrey A.; Ballottari, Matteo; Cheng, Yuan-Chung; Bassi, Roberto; Fleming, Graham R.

    2011-01-01

    The CP29 light harvesting complex from green plants is a pigment-protein complex believed to collect, conduct, and quench electronic excitation energy in photosynthesis. We have spectroscopically determined the relative angle between electronic transition dipole moments of its chlorophyll excitation energy transfer pairs in their local protein environments without relying on simulations or an X-ray crystal structure. To do so, we measure a basis set of polarized 2D electronic spectra and isolate their absorptive components on account of the tensor relation between the light polarization sequences used to obtain them. This broadly applicable advance further enhances the acuity of polarized 2D electronic spectroscopy and provides a general means to initiate or feed back on the structural modeling of electronically-coupled chromophores in condensed phase systems, tightening the inferred relations between the spatial and electronic landscapes of ultrafast energy flow. We also discuss the pigment composition of CP29 in the context of light harvesting, energy channeling, and photoprotection within photosystem II. PMID:21321222

  15. Current-induced spin polarization in a spin-polarized two-dimensional electron gas with spin-orbit coupling

    International Nuclear Information System (INIS)

    Wang, C.M.; Pang, M.Q.; Liu, S.Y.; Lei, X.L.

    2010-01-01

    The current-induced spin polarization (CISP) is investigated in a combined Rashba-Dresselhaus spin-orbit-coupled two-dimensional electron gas, subjected to a homogeneous out-of-plane magnetization. It is found that, in addition to the usual collision-related in-plane parts of CISP, there are two impurity-density-free contributions, arising from intrinsic and disorder-mediated mechanisms. The intrinsic parts of spin polarization are related to the Berry curvature, analogous with the anomalous and spin Hall effects. For short-range collision, the disorder-mediated spin polarizations completely cancel the intrinsic ones and the total in-plane components of CISP equal those for systems without magnetization. However, for remote disorders, this cancellation does not occur and the total in-plane components of CISP strongly depend on the spin-orbit interaction coefficients and magnetization for both pure Rashba and combined Rashba-Dresselhaus models.

  16. Precision gamma-ray polarimetry applied to studies of bremsstrahlung produced by polarized electrons

    Energy Technology Data Exchange (ETDEWEB)

    Kovtun, Oleksiy

    2015-12-16

    The thesis reports on the measurement of bremsstrahlung linear polarization produced in collisions of longitudinally and transversely polarized electrons with gold atoms. The experiment was performed at the Mainzer Microtron MAMI in the Institut fuer Kernphysik of Johannes Gutenberg-Universitaet Mainz, Germany. Spin-oriented electrons with 2.15 MeV kinetic energy collided with a thin golden target and produced bremsstrahlung. Linear polarization of the emitted photons was measured by means of Compton polarimetry applied to a segmented high-purity germanium detector. Experimental results reveal a strong correlation between the electron spin orientation and bremsstrahlung linear polarization. This indicates a dominant role of the electron spin in atomic-field bremsstrahlung and Coulomb scattering.

  17. Status report of the S-DALINAC polarized electron injector SPIN at Darmstadt

    Energy Technology Data Exchange (ETDEWEB)

    Eckardt, Christian; Bahlo, Thore; Bangert, Phillip; Barday, Roman; Bonnes, Uwe; Brunken, Marco; Eichhorn, Ralf; Enders, Joachim; Platz, Markus; Poltoratska, Yuliya; Roth, Markus; Schneider, Fabian; Wagner, Markus; Weber, Antje; Zwicker, Benjamin [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany); Ackermann, Wolfgang; Mueller, Wolfgang F.O.; Weiland, Thomas [Institut fuer Theorie Elektromagnetischer Felder, Technische Universitaet Darmstadt (Germany)

    2010-07-01

    At the superconducting 130 MeV Darmstadt electron linac S-DALINAC a source of polarized electrons is being installed. Polarized electrons are produced by photoemission from a negative electron affinity strained superlattice GaAs cathode and preaccelerated to 100 keV. With a Wien filter and Mott polarimeter in the beam line the polarization is manipulated and measured. For beam diagnostics wire scanners, fluorescent screens and a coaxial Faraday cup are included. To measure the beam polarization at higher energies, a 5-10 MeV Mott polarimeter and a 50-130 MeV Moeller polarimeter as well as a Compton transmission polarimeter will be installed. We report on the status of the implementation and show plans for future development and experiments.

  18. Spin physics with polarized electrons at the SLC [Stanford Linear Collider

    International Nuclear Information System (INIS)

    Moffeit, K.C.

    1990-11-01

    The Stanford Linear Collider was designed to accommodate polarized electron beams. A gallium arsenide-based photon emission source will provide a beam of longitudinally polarized electrons of about 40 percent polarization. A system of bend magnets and a superconducting solenoid will be used to rotate the spins so that the polarization is preserved while the 1.21 GeV electrons are stored in the damping ring. Another set of bend magnets and two superconducting solenoids orient the spin vectors so that longitudinal polarization of the electrons is achieved at the collision point with the unpolarized positions. A system to monitor the polarization based on Moeller and Compton scattering will be used. Spin physics with longitudinally polarized electrons uses the measurement of the left-right asymmetry to provide tests of the Standard Model. The uncertainty in the measurement is precise enough to be sensitive to the effects of particles which can not be produced directly in the machines we have today. 5 refs

  19. Mixed oxygen ion/electron-conducting ceramics for oxygen separation

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.W.; Armstrong, T.R.; Armstrong, B.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-08-01

    Mixed oxygen ion and electron-conducting ceramics are unique materials that can passively separate high purity oxygen from air. Oxygen ions move through a fully dense ceramic in response to an oxygen concentration gradient, charge-compensated by an electron flux in the opposite direction. Compositions in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, perovskites where M=Sr, Ca, and Ba, and N=Mn, Ni, Cu, Ti, and Al, have been prepared and their electrical, oxygen permeation, oxygen vacancy equilibria, and catalytic properties evaluated. Tubular forms, disks, and asymmetric membrane structures, a thin dense layer on a porous support of the same composition, have been fabricated for testing purposes. In an oxygen partial gradient, the passive oxygen flux through fully dense structures was highly dependent on composition. An increase in oxygen permeation with increased temperature is attributed to both enhanced oxygen vacancy mobility and higher vacancy populations. Highly acceptor-doped compositions resulted in oxygen ion mobilities more than an order of magnitude higher than yttria-stabilized zirconia. The mixed conducting ceramics have been utilized in a membrane reactor configuration to upgrade methane to ethane and ethylene. Conditions were established to balance selectivity and throughput in a catalytic membrane reactor constructed from mixed conducting ceramics.

  20. Highly Stretchable and Conductive Superhydrophobic Coating for Flexible Electronics.

    Science.gov (United States)

    Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Chen, Zhonghua; Zeng, Xingrong

    2018-03-28

    Superhydrophobic materials integrating stretchability with conductivity have huge potential in the emerging application horizons such as wearable electronic sensors, flexible power storage apparatus, and corrosion-resistant circuits. Herein, a facile spraying method is reported to fabricate a durable superhydrophobic coating with excellent stretchable and electrical performance by combing 1-octadecanethiol-modified silver nanoparticles (M-AgNPs) with polystyrene- b-poly(ethylene- co-butylene)- b-polystyrene (SEBS) on a prestretched natural rubber (NR) substrate. The embedding of M-AgNPs in elastic SEBS matrix and relaxation of prestretched NR substrate construct hierarchical rough architecture and endow the coating with dense charge-transport pathways. The fabricated coating exhibits superhydrophobicity with water contact angle larger than 160° and a high conductivity with resistance of about 10 Ω. The coating not only maintains superhydrophobicity at low/high stretch ratio for the newly generated small/large protuberances but also responds to stretching and bending with good sensitivity, broad sensing range, and stable response cycles. Moreover, the coating exhibits excellent durability to heat and strong acid/alkali and mechanical forces including droplet impact, kneading, torsion, and repetitive stretching-relaxation. The findings conceivably stand out as a new tool to fabricate multifunctional superhydrophobic materials with excellent stretchability and conductivity for flexible electronics under wet or corrosive environments.

  1. Spin-polarized free electron beam interaction with radiation and superradiant spin-flip radiative emission

    Directory of Open Access Journals (Sweden)

    A. Gover

    2006-06-01

    Full Text Available The problems of spin-polarized free-electron beam interaction with electromagnetic wave at electron-spin resonance conditions in a magnetic field and of superradiant spin-flip radiative emission are analyzed in the framework of a comprehensive classical model. The spontaneous emission of spin-flip radiation from electron beams is very weak. We show that the detectivity of electron spin resonant spin-flip and combined spin-flip/cyclotron-resonance-emission radiation can be substantially enhanced by operating with ultrashort spin-polarized electron beam bunches under conditions of superradiant (coherent emission. The proposed radiative spin-state modulation and the spin-flip radiative emission schemes can be used for control and noninvasive diagnostics of polarized electron/positron beams. Such schemes are of relevance in important scattering experiments off nucleons in nuclear physics and off magnetic targets in condensed matter physics.

  2. Conductive Elastomers for Stretchable Electronics, Sensors and Energy Harvesters

    Directory of Open Access Journals (Sweden)

    Jin-Seo Noh

    2016-04-01

    Full Text Available There have been a wide variety of efforts to develop conductive elastomers that satisfy both mechanical stretchability and electrical conductivity, as a response to growing demands on stretchable and wearable devices. This article reviews the important progress in conductive elastomers made in three application fields of stretchable technology: stretchable electronics, stretchable sensors, and stretchable energy harvesters. Diverse combinations of insulating elastomers and non-stretchable conductive materials have been studied to realize optimal conductive elastomers. It is noted that similar material combinations and similar structures have often been employed in different fields of application. In terms of stretchability, cyclic operation, and overall performance, fields such as stretchable conductors and stretchable strain/pressure sensors have achieved great advancement, whereas other fields like stretchable memories and stretchable thermoelectric energy harvesting are in their infancy. It is worth mentioning that there are still obstacles to overcome for the further progress of stretchable technology in the respective fields, which include the simplification of material combination and device structure, securement of reproducibility and reliability, and the establishment of easy fabrication techniques. Through this review article, both the progress and obstacles associated with the respective stretchable technologies will be understood more clearly.

  3. Spin-resolved conductance of Dirac electrons through multibarrier arrays

    Science.gov (United States)

    Dahal, Dipendra; Gumbs, Godfrey; Iurov, Andrii

    We use a transfer matrix method to calculate the transmission coefficient of Dirac electrons through an arbitrary number of square potential barrier in gapped monolayer graphene(MLG) and bilayer graphene (BLG). The widths of barriers may not be chosen equal. The shift in the angle of incidence and the width of the barrier required for resonance are investigated numerically for both MLG and BLG. We compare the effects due to energy gap on these two transmission coefficient for each of these two structures (MLG and BLG). We present our results as functions of barrier width, height as well as incoming electron energy as well as band gap and examine the conditions for which perfect reflection or transmission occurs. Our transmission data are further used to calculate conductivity.

  4. High frequency conductivity of hot electrons in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Amekpewu, M., E-mail: mamek219@gmail.com [Department of Applied Physics, University for Development Studies, Navrongo (Ghana); Mensah, S.Y. [Department of Physics, College of Agriculture and Natural Sciences, U.C.C. (Ghana); Musah, R. [Department of Applied Physics, University for Development Studies, Navrongo (Ghana); Mensah, N.G. [Department of Mathematics, College of Agriculture and Natural Sciences, U.C.C. (Ghana); Abukari, S.S.; Dompreh, K.A. [Department of Physics, College of Agriculture and Natural Sciences, U.C.C. (Ghana)

    2016-05-01

    High frequency conductivity of hot electrons in undoped single walled achiral Carbon Nanotubes (CNTs) under the influence of ac–dc driven fields was considered. We investigated semi-classically Boltzmann's transport equation with and without the presence of the hot electrons’ source by deriving the current densities in CNTs. Plots of the normalized current density versus frequency of ac-field revealed an increase in both the minimum and maximum peaks of normalized current density at lower frequencies as a result of a strong injection of hot electrons. The applied ac-field plays a twofold role of suppressing the space-charge instability in CNTs and simultaneously pumping an energy for lower frequency generation and amplification of THz radiations. These have enormous promising applications in very different areas of science and technology.

  5. Permanent and induced dipole requirements in ab initio calculations of electron affinities of polar molecules

    International Nuclear Information System (INIS)

    Garrett, W.R.

    1979-01-01

    Through the use of a molecular pseudopotential method, we determine the a approximate magnitudes of errors that result when electron affinity determinations of polar negative ions are made through ab initio calculations in which the use of a given basis set yields inappropriate values for permanent and induced dipole moments of the neutral molecule. These results should prove useful in assessing the adequacy of basis sets in ab initio calculations of molecular electron affinities for simple linear polar molecules

  6. Observation of electron polarization above 80% in photoemission from strained III-V compounds

    International Nuclear Information System (INIS)

    Garwin, E.L.; Maruyama, T.; Prepost, R.; Zapalac, G.H.

    1992-02-01

    Spin-polarized electron photoemission has been investigated for strained III--V compounds; (1) strained In x Ga 1-x As epitaxially grown on a GaAs substrate, and (2) strained GaAs grown on a GaAs 1-x P x buffer layer. The lattice mismatched heterostructure results in a highly strained epitaxial layer, and electron spin polarization as high as 90% has been observed

  7. Partial pseudospin polarization, latticetronics and Fano resonances in quantum dots based in graphene ribbons: a conductance spectroscopy

    Science.gov (United States)

    López, Luis I. A.; Champi, Ana; Ujevic, Sebastian; Mendoza, Michel

    2015-11-01

    In this work we study, as a function of the height V and width L b of the potential barriers, the transport of Dirac quasi-particles through quantum dots in graphene ribbons. We observed, as we increase V, a partial polarization ( PP) of the pseudospin due to the participation of the hyperbolic bands. This generates polarizations in the sub-lattices A or B outside the dot regions for single, coupled, and open dots. Thus for energies around the Dirac point, the conductance G at both sides of the dot shows a latticetronics of conductances G A and G B as a function of V and L b . This fact can be used as a PP spectroscopy which associates hole-type waves with the latticetronics. A periodic enhancement of PP is obtained with the increase of V in dots formed by barriers that completely occupy the nanoribbon width. For this case, a direct correspondence between G( V) and PP( V) exists. On the other hand, for the open dots, the PP( V) and the G( V) show a complex behavior that exhibit higher intensities when compared to the previous case. In the Dirac limit we have no backscattering signs, however when we move slightly away from this limit the first signs of confinement appear in the PP( V) (it freezes in a given sub-lattice). In the last case the backscattering fingerprints are obtained directly from the conductance (splittings). The open quantum dots are very sensible to their opening w d and this generates Fano line-shapes of difficult interpretation around the Dirac point. The PP spectroscopy used here allows us to understand the influence of w d in the relativistic analogues and to associate electron-type waves with the observed Fano line-shapes.

  8. New secondary batteries utilizing electronically conductive polymer cathodes

    Science.gov (United States)

    Martin, Charles R.; White, Ralph E.

    1989-01-01

    The objectives of this project are to characterize the transport properties in electronically conductive polymers and to assess the utility of these films as cathodes in lithium/polymer secondary batteries. During this research period, progress has been made in a literature survey of the historical background, methods of preparation, the physical and chemical properties, and potential technological applications of polythiophene. Progress has also been made in the characterization of polypyrrole flat films and fibrillar films. Cyclic voltammetry and potential step chronocoulometry were used to gain information on peak currents and potentials switching reaction rates, charge capacity, and charge retention. Battery charge/discharge studies were also performed.

  9. Optical conductivity and electronic Raman response of cuprate superconductors

    International Nuclear Information System (INIS)

    Vanyolos, A.; Dora, B.; Virosztek, A.

    2010-01-01

    We present the results of detailed analytical calculations for the in-plane optical conductivity and the electronic Raman susceptibility in quasi two-dimensional systems possessing a ground state with two competing order parameters: a d-wave density wave (dDW) and d-wave superconductor (dSC). In the coexisting dDW+dSC phase we determine the frequency dependence of these correlation functions in the presence of randomly distributed non-magnetic impurities in the unitary limit.

  10. Coherent polarization radiation of relativistic electrons in crystals

    International Nuclear Information System (INIS)

    Morokhovskii, V.L.

    2014-01-01

    A brief narration about the history of those heated arguments and discussions around the nature of so-called parametric X-radiation, which were concluded by the recognition of the discovery the phenomenon of coherent polarization bremsstrahlung of relativistic charged particles in crystals. Some important information and comments, which stay over of notice of specialists till now are reported.

  11. Polarization asymmetries in photoproduction of electron-positron pairs

    International Nuclear Information System (INIS)

    Vescan, T.

    1980-01-01

    The inclusive reaction γN→e + e - + ... is examined taking into account the polarization of the photon, nucleon and leptons. The results apply also to the exclusive reaction γN→e + e - N by taking the elastic limit of the structure functions. (author)

  12. Radiative corrections to chargino production in electron-positron collisions with polarized beams

    International Nuclear Information System (INIS)

    Diaz, Marco A.; King, Stephen F.; Ross, Douglas A.

    2001-01-01

    We study radiative corrections to chargino production at linear colliders with polarized electron beams. We calculate the one-loop corrected cross sections for polarized electon beams due to three families of quarks and squarks, working in the {ovr MS} scheme, extending our previous calculation of the unpolarized cross section with one-loop corrections due to the third family of quarks and squarks. In some cases we find rather large corrections to the tree-level cross sections. For example, for the case of right-handed polarized electrons and large tanβ the corrections can be of order 30%, allowing sensitivity to the squark mass parameters

  13. Anomalous property of coherent bremsstrahlung linear polarization of relativistic electrons in a crystal

    International Nuclear Information System (INIS)

    Lapko, V.P.; Nasonov, N.N.; Truten', V.I.

    1993-01-01

    Polarization and spectral-and-angular properties of γ-radiation of the relativistic electron flux moving in a crystal under uncorrelated collisions with crystal atomic chains, are studied theoretically. Direction of linear polarization of radiation is shown to vary with energy of emitted photon. Reasons of occurrence of this effect are discussed. The results of numerical calculations demonstrating the possibility to form an intensive source of polarized γ-quanta on the basis of coherent radiation of relativistic electrons during low-angular scattering at crystal atom chains, are given

  14. Polarization effects in radiative recombination of an electron with a highly charged ion

    International Nuclear Information System (INIS)

    Klasnikov, A.E.; Shabaev, V.M.; Artemyev, A.N.; Kovtun, A.V.; Stoehlker, T.

    2005-01-01

    The radiative recombination of an unpolarized electron with a polarized highly charged H-like ion in its ground state is studied. The absolute and relative values of the electron spin-flip contribution to the cross section of the process for various scattering angles and photon polarizations are calculated. It is shown that, in addition to the forward and backward directions, there are some other scattering angles of the emitted photon, where, at a fixed linear photon polarization, the spin-flip transition gives a dominant contribution to the differential cross section

  15. The effects of electron spiraling on the anisotropy and polarization of photon emission from an electron beam ion trap

    International Nuclear Information System (INIS)

    Savin, D.W.; Gu, M.F.; Beiersdorfer, P.

    1998-01-01

    We present a theoretical formalism for calculating the anisotropy and polarization of photon emission due to a spiraling beam of electrons in an electron beam ion trap (EBIT). We present measurements of the polarization for the Fe XXIV 4p 2 P 3/2 → 2s 2 S 1/2 X-ray transition due to electron impact excitation. We discuss these results, together with previously reported EBIT polarization measurements, in the light of electron spiraling. We find that spiraling effects cannot yet be discerned in these measurements. This is important for many EBIT measurements concerned with X-ray line intensity measurements. While the amount of spiraling is not accurately known, neglecting its effects introduces an error typically no larger than that given by counting statistics. (author)

  16. N-polar GaN epitaxy and high electron mobility transistors

    International Nuclear Information System (INIS)

    Wong, Man Hoi; Keller, Stacia; Dasgupta, Nidhi Sansaptak; Denninghoff, Daniel J; Kolluri, Seshadri; Brown, David F; Lu, Jing; Fichtenbaum, Nicholas A; Ahmadi, Elaheh; DenBaars, Steven P; Speck, James S; Mishra, Umesh K; Singisetti, Uttam; Chini, Alessandro; Rajan, Siddharth

    2013-01-01

    This paper reviews the progress of N-polar (0001-bar) GaN high frequency electronics that aims at addressing the device scaling challenges faced by GaN high electron mobility transistors (HEMTs) for radio-frequency and mixed-signal applications. Device quality (Al, In, Ga)N materials for N-polar heterostructures are developed using molecular beam epitaxy and metalorganic chemical vapor deposition. The principles of polarization engineering for designing N-polar HEMT structures will be outlined. The performance, scaling behavior and challenges of microwave power devices as well as highly-scaled depletion- and enhancement-mode devices employing advanced technologies including self-aligned processes, n+ (In,Ga)N ohmic contact regrowth and high aspect ratio T-gates will be discussed. Recent research results on integrating N-polar GaN with Si for prospective novel applications will also be summarized. (invited review)

  17. DMSP optical and electron measurements in the vicinity of polar cap arcs

    International Nuclear Information System (INIS)

    Hardy, D.A.; Burke, W.J.; Gussenhoven, M.S.

    1982-01-01

    We have completed an extensive analysis of the electron and optical data from the DMSP satellites for an external period of polar cap arc occurrences on December 12, 1977. The polar cap arcs are observed in three distinct intervals in a period of quieting after a time of intense substorm activity. The observation of polar cap arcs is associated with the admittance of large and variable fluxes of low-energy electrons into a major portion of both the northern and southern hemisphere polar caps. These fluxes fall into the following categories: First, nearly Maxwellian distributions of electrons with temperatures between 50 eV and 200 eV and number densities varying from 0.03/cm 3 to 4/cm 3 . The highest densities are found at the poleward boundary of the diffuse aurorae and near the visible polar cap arcs. The lowest densities are associated with the polar rain. Second, distributions of electrons peaked between 50 eV and 200 eV. These distributions result from accelertion of the cold Maxwellian distribution through a potential of 50 to 200 V without any heating of the electrons. Third, distributions of electrons displaying two populations; an intense low-energy component with a temperature of approx.20 eV and a much weaker high-energy component with a temperature of 180 eV. We interpret such distributions as evidence of direct admittance of magnetosheath electrons into the polar cap. Fourth,, distributions of electrons peaked at approx.1 keV. These distributions produce the visible arcs. They result from the acceleration of a two-component electron population with temperatures of 100 and 350 eV through a potential drop of approx.750 V

  18. Theory of thermal conductivity in the disordered electron liquid

    Energy Technology Data Exchange (ETDEWEB)

    Schwiete, G., E-mail: schwiete@uni-mainz.de [Johannes Gutenberg Universität, Spin Phenomena Interdisciplinary Center (SPICE) and Institut für Physik (Germany); Finkel’stein, A. M. [Texas A& M University, Department of Physics and Astronomy (United States)

    2016-03-15

    We study thermal conductivity in the disordered two-dimensional electron liquid in the presence of long-range Coulomb interactions. We describe a microscopic analysis of the problem using the partition function defined on the Keldysh contour as a starting point. We extend the renormalization group (RG) analysis developed for thermal transport in the disordered Fermi liquid and include scattering processes induced by the long-range Coulomb interaction in the sub-temperature energy range. For the thermal conductivity, unlike for the electrical conductivity, these scattering processes yield a logarithmic correction that may compete with the RG corrections. The interest in this correction arises from the fact that it violates the Wiedemann–Franz law. We checked that the sub-temperature correction to the thermal conductivity is not modified either by the inclusion of Fermi liquid interaction amplitudes or as a result of the RG flow. We therefore expect that the answer obtained for this correction is final. We use the theory to describe thermal transport on the metallic side of the metal–insulator transition in Si MOSFETs.

  19. Theory of thermal conductivity in the disordered electron liquid

    International Nuclear Information System (INIS)

    Schwiete, G.; Finkel’stein, A. M.

    2016-01-01

    We study thermal conductivity in the disordered two-dimensional electron liquid in the presence of long-range Coulomb interactions. We describe a microscopic analysis of the problem using the partition function defined on the Keldysh contour as a starting point. We extend the renormalization group (RG) analysis developed for thermal transport in the disordered Fermi liquid and include scattering processes induced by the long-range Coulomb interaction in the sub-temperature energy range. For the thermal conductivity, unlike for the electrical conductivity, these scattering processes yield a logarithmic correction that may compete with the RG corrections. The interest in this correction arises from the fact that it violates the Wiedemann–Franz law. We checked that the sub-temperature correction to the thermal conductivity is not modified either by the inclusion of Fermi liquid interaction amplitudes or as a result of the RG flow. We therefore expect that the answer obtained for this correction is final. We use the theory to describe thermal transport on the metallic side of the metal–insulator transition in Si MOSFETs.

  20. Development of microstrip gas chambers on substrata with electronic conductivity

    International Nuclear Information System (INIS)

    Bouclier, R.; Garabatos, C.; Manzin, G.; Sauli, F.; Shekhtman, L.; Temmel, T.; Della Mea, G.; Maggioni, G.; Rigato, V.; Logachenko, I.

    1994-01-01

    This paper describes several recent developments on Microstrip Gas Chambers (MSGCs). The authors have studied the operating behavior of the detectors in different gas mixtures; maximum stable gains have been achieved in mixtures of argon and dimethyl-ether (DME) in almost equal proportions. Using detectors manufactured on semi-conducting glass substrates, capable of withstanding very high rates (above 10 6 mm -2 s -1 ), they have demonstrated extended lifetime without gain modifications up to a collected charge of 130 mC cm -1 in clean laboratory operating conditions. They have also verified that relaxing the requirements on cleanness conditions, either in the gas mixing system or in the detector construction, may result in fast aging of the devices under irradiation. As an alternative to the semi-conducting glass, they have developed a novel technique to coat regular glass with a thin lead silicate layer having electron conductivity; a new development consisting in coating already manufactured MSGCs with the thin semi-conducting layer is also described. The preliminary results show an excellent rate capability of this kind of devices, intrinsically simpler to manufacture

  1. Measurement of electron beam polarization produced by photoemission from bulk GaAs using twisted light

    Science.gov (United States)

    Clayburn, Nathan; Dreiling, Joan; McCarter, James; Ryan, Dominic; Poelker, Matt; Gay, Timothy

    2012-06-01

    GaAs photocathodes produce spin polarized electron beams when illuminated with circularly polarized light with photon energy approximately equal to the bandgap energy [1, 2]. A typical polarization value obtained with bulk GaAs and conventional circularly polarized light is 35%. This study investigated the spin polarization of electron beams emitted from GaAs illuminated with ``twisted light,'' an expression that describes a beam of light having orbital angular momentum (OAM). In the experiment, 790nm laser light was focused to a near diffraction-limited spot size on the surface of the GaAs photocathode to determine if OAM might couple to valence band electron spin mediated by the GaAs lattice. Our polarization measurements using a compact retarding-field micro-Mott polarimeter [3] have established an upper bound on the polarization of the emitted electron beam of 2.5%. [4pt] [1] D.T. Pierce, F. Meier, P. Zurcher, Appl. Phys. Lett. 26 670 (1975).[0pt] [2] C.K. Sinclair, et al., PRSTAB 10 023501 (2007).[0pt] [3] J.L. McCarter, M.L. Stutzman, K.W. Trantham, T.G. Anderson, A.M. Cook, and T.J. Gay Nucl. Instrum. and Meth. A (2010).

  2. The Role of polarized positrons and electrons in revealing fundamental interactions at the linear collider

    CERN Document Server

    Moortgat-Pick, G.; Alexander, G.; Ananthanarayan, B.; Babich, A.A.; Bharadwaj, V.; Barber, D.; Bartl, A.; Brachmann, A.; Chen, S.; Clarke, J.; Clendenin, J.E.; Dainton, J.; Desch, K.; Diehl, M.; Dobos, B.; Dorland, Tyler McMillan; Dreiner, H.K.; Eberl, H.; Ellis, John R.; Flottmann, K.; Fraas, H.; Franco-Sollova, F.; Franke, F.; Freitas, A.; Goodson, J.; Gray, J.; Han, A.; Heinemeyer, S.; Hesselbach, S.; Hirose, T.; Hohenwarter-Sodek, K.; Juste, A.; Kalinowski, J.; Kernreiter, T.; Kittel, O.; Kraml, S.; Langenfeld, U.; Majerotto, W.; Martinez, A.; Martyn, H.U.; Mikhailichenko, A.; Milstene, C.; Menges, W.; Meyners, N.; Monig, K.; Moffeit, K.; Moretti, S.; Nachtmann, O.; Nagel, F.; Nakanishi, T.; Nauenberg, U.; Nowak, H.; Omori, T.; Osland, P.; Pankov, A.A.; Paver, N.; Pitthan, R.; Poschl, R.; Porod, W.; Proulx, J.; Richardson, P.; Riemann, S.; Rindani, S.D.; Rizzo, T.G.; Schalicke, A.; Schuler, P.; Schwanenberger, C.; Scott, D.; Sheppard, J.; Singh, R.K.; Sopczak, A.; Spiesberger, H.; Stahl, A.; Steiner, H.; Wagner, A.; Weber, A.M.; Weiglein, G.; Wilson, G.W.; Woods, M.; Zerwas, P.; Zhang, J.; Zomer, F.

    2008-01-01

    The proposed International Linear Collider (ILC) is well-suited for discovering physics beyond the Standard Model and for precisely unraveling the structure of the underlying physics. The physics return can be maximized by the use of polarized beams. This report shows the paramount role of polarized beams and summarizes the benefits obtained from polarizing the positron beam, as well as the electron beam. The physics case for this option is illustrated explicitly by analyzing reference reactions in different physics scenarios. The results show that positron polarization, combined with the clean experimental environment provided by the linear collider, allows to improve strongly the potential of searches for new particles and the identification of their dynamics, which opens the road to resolve shortcomings of the Standard Model. The report also presents an overview of possible designs for polarizing both beams at the ILC, as well as for measuring their polarization.

  3. The Role of polarized positrons and electrons in revealing fundamental interactions at the linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Moortgat-Pick, G.; /CERN /Durham U., IPPP; Abe, T.; Alexander, G.; Ananthanarayan, B.; Babich, A.A.; Bharadwaj, V.; Barber, D.; Bartl, A.; Brachmann, A.; Chen, S.; Clarke,; Clendenin, J.E.; Dainton, J.; Desch, K.; Diehl, M.; Dobos, B.; Dorland, T.; Eberl, H.; Ellis, John R.; Flottman, K.; Frass, H.; /CERN /Durham U., IPPP /Colorado U. /Tel-Aviv

    2005-07-01

    The proposed International Linear Collider (ILC) is well-suited for discovering physics beyond the Standard Model and for precisely unraveling the structure of the underlying physics. The physics return can be maximized by the use of polarized beams. This report shows the paramount role of polarized beams and summarizes the benefits obtained from polarizing the positron beam, as well as the electron beam. The physics case for this option is illustrated explicitly by analyzing reference reactions in different physics scenarios. The results show that positron polarization, combined with the clean experimental environment provided by the linear collider, allows to improve strongly the potential of searches for new particles and the identification of their dynamics, which opens the road to resolve shortcomings of the Standard Model. The report also presents an overview of possible designs for polarizing both beams at the ILC, as well as for measuring their polarization.

  4. Revealing Fundamental Interactions: the Role of Polarized Positrons and Electrons at the Linear Collider

    Energy Technology Data Exchange (ETDEWEB)

    Moortgat-Pick, G.; /CERN /Durham U., IPPP; Abe, T.; Alexander, G.; Ananthanarayan, B.; Babich, A.A.; Bharadwaj, V.; Barber, D.; Bartl, A.; Brachmann, A.; Chen, S.; Clarke,; Clendenin, J.E.; Dainton, J.; Desch, K.; Diehl, M.; Dobos, B.; Dorland, T.; Eberl, H.; Ellis, John R.; Flottman, K.; Frass, H.; /CERN /Durham U., IPPP /Colorado U. /Tel-Aviv

    2005-07-06

    The proposed International Linear Collider (ILC) is well-suited for discovering physics beyond the Standard Model and for precisely unraveling the structure of the underlying physics. The physics return can be maximized by the use of polarized beams. This report shows the paramount role of polarized beams and summarizes the benefits obtained from polarizing the positron beam, as well as the electron beam. The physics case for this option is illustrated explicitly by analyzing reference reactions in different physics scenarios. The results show that positron polarization, combined with the clean experimental environment provided by the linear collider, allows to improve strongly the potential of searches for new particles and the identification of their dynamics, which opens the road to resolve shortcomings of the Standard Model. The report also presents an overview of possible designs for polarizing both beams at the ILC, as well as for measuring their polarization.

  5. Revealing Fundamental Interactions: the Role of Polarized Positrons and Electrons at the Linear Collider

    International Nuclear Information System (INIS)

    Moortgat-Pick, G.; CERN, Durham U. IPPP; Abe, T.; Alexander, G.; Ananthanarayan, B.; Babich, A.A.; Bharadwaj, V.; Barber, D.; Bartl, A.; Brachmann, A.; Chen, S.; Clarke, J.; Clendenin, J.E.; Dainton, J.; Desch, K.; Diehl, M.; Dobos, B.; Dorland, T.; Eberl, H.; Ellis, John R.; Flottman, K.; Frass, H.

    2005-01-01

    The proposed International Linear Collider (ILC) is well-suited for discovering physics beyond the Standard Model and for precisely unraveling the structure of the underlying physics. The physics return can be maximized by the use of polarized beams. This report shows the paramount role of polarized beams and summarizes the benefits obtained from polarizing the positron beam, as well as the electron beam. The physics case for this option is illustrated explicitly by analyzing reference reactions in different physics scenarios. The results show that positron polarization, combined with the clean experimental environment provided by the linear collider, allows to improve strongly the potential of searches for new particles and the identification of their dynamics, which opens the road to resolve shortcomings of the Standard Model. The report also presents an overview of possible designs for polarizing both beams at the ILC, as well as for measuring their polarization

  6. Electrically and Thermally Conducting Nanocomposites for Electronic Applications

    Directory of Open Access Journals (Sweden)

    Daryl Santos

    2010-02-01

    Full Text Available Nanocomposites made up of polymer matrices and carbon nanotubes are a class of advanced materials with great application potential in electronics packaging. Nanocomposites with carbon nanotubes as fillers have been designed with the aim of exploiting the high thermal, electrical and mechanical properties characteristic of carbon nanotubes. Heat dissipation in electronic devices requires interface materials with high thermal conductivity. Here, current developments and challenges in the application of nanotubes as fillers in polymer matrices are explored. The blending together of nanotubes and polymers result in what are known as nanocomposites. Among the most pressing current issues related to nanocomposite fabrication are (i dispersion of carbon nanotubes in the polymer host, (ii carbon nanotube-polymer interaction and the nature of the interface, and (iii alignment of carbon nanotubes in a polymer matrix. These issues are believed to be directly related to the electrical and thermal performance of nanocomposites. The recent progress in the fabrication of nanocomposites with carbon nanotubes as fillers and their potential application in electronics packaging as thermal interface materials is also reported.

  7. Creating intense polarized electron beam via laser stripping and spin-orbit interaction

    International Nuclear Information System (INIS)

    Danilov, V.; Ptitsyn, V.; Gorlov, T.

    2010-01-01

    The recent advance in laser field make it possible to excite and strip electrons with definite spin from hydrogen atoms. The sources of hydrogen atoms with orders of magnitude higher currents (than that of the conventional polarized electron cathods) can be obtained from H - sources with good monochromatization. With one electron of H - stripped by a laser, the remained electron is excited to upper state (2P 3/2 and 2P 1/2 ) by a circular polarization laser light from FEL. Then, it is excited to a high quantum number (n=7) with mostly one spin direction due to energy level split of the states with a definite direction of spin and angular momentum in an applied magnetic field and then it is stripped by a strong electric field of an RF cavity. This paper presents combination of lasers and fields to get high polarization and high current electron source.

  8. CP-even and CP-odd transverse polarization of the electron in muon decay

    International Nuclear Information System (INIS)

    Kuznetsov, A.

    1981-01-01

    A model of the weak interaction which contains intermediate vector bosons of the most general form and which admits CP violation in muon decay is used to calculate the CP-even and CP-odd transverse polarization of the μ-decay electrons with inclusion of radiative corrections. It is shown that these corrections are important only at the beginning of the spectrum, and their contribution reduces the observed effects of the transverse polarization. The transverse polarization grows appreciably at electron energies close to the maximum energy and at small emission angles. It is expedient to search for the CP-even and CP-odd transverse polarization of the electrons at energies E/sub e/ = 0.975E/sup max//sub e/ and emission angles theta = 25--35 0

  9. CP-even and CP-odd transverse polarization of the electron in the muon decay

    International Nuclear Information System (INIS)

    Kuznetsov, A.V.

    1981-01-01

    In the most general weak interaction model with intermediate vector bosons, allowing CP breaking in the muon decay, CP- even and CP-odd transverse polarization of the μ-decay electrons is calculated taking into account the radiative corrections. It is shown that such corrections are essential only at the beginning of the spectrum reducing the observed transverse polarization effects. When the electron energy is close to its maximum and the emission angles are small, the transverse polarization considerably grows. Search for CP-even and CP-odd transverse polarization of the electrons should be carried out at energies Esub(e) approximately equal to O.975 Esub(e)sup(max) and emission angles THETA approximately equal to 25+35 deg [ru

  10. Ag–graphene hybrid conductive ink for writing electronics

    International Nuclear Information System (INIS)

    Xu, L Y; Yang, G Y; Jing, H Y; Han, Y D; Wei, J

    2014-01-01

    With the aim of preparing a method for the writing of electronics on paper by the use of common commercial rollerball pens loaded with conductive ink, hybrid conductive ink composed of Ag nanoparticles (15 wt%) and graphene–Ag composite nanosheets (0.15 wt%) formed by depositing Ag nanoparticles (∼10 nm) onto graphene sheets was prepared for the first time. Owing to the electrical pathway effect of graphene and the decreased contact resistance of graphene junctions by depositing Ag nanoparticles (NPs) onto graphene sheets, the concentration of Ag NPs was significantly reduced while maintaining high conductivity at a curing temperature of 100 ° C. A typical resistivity value measured was 1.9 × 10 −7  Ω m, which is 12 times the value for bulk silver. Even over thousands of bending cycles or rolling, the resistance values of writing tracks only increase slightly. The stability and flexibility of the writing circuits are good, demonstrating the promising future of this hybrid ink and direct writing method. (paper)

  11. Electron spin polarization in realistic trajectories around the magnetic node of two counter-propagating, circularly polarized, ultra-intense lasers

    Science.gov (United States)

    Del Sorbo, D.; Seipt, D.; Thomas, A. G. R.; Ridgers, C. P.

    2018-06-01

    It has recently been suggested that two counter-propagating, circularly polarized, ultra-intense lasers can induce a strong electron spin polarization at the magnetic node of the electromagnetic field that they setup (Del Sorbo et al 2017 Phys. Rev. A 96 043407). We confirm these results by considering a more sophisticated description that integrates over realistic trajectories. The electron dynamics is weakly affected by the variation of power radiated due to the spin polarization. The degree of spin polarization differs by approximately 5% if considering electrons initially at rest or already in a circular orbit. The instability of trajectories at the magnetic node induces a spin precession associated with the electron migration that establishes an upper temporal limit to the polarization of the electron population of about one laser period.

  12. Spin-polarized electron tunneling across a Si delta-doped GaMnAs/n-GaAs interface

    DEFF Research Database (Denmark)

    Andresen, S.E.; Sørensen, B.S.; Lindelof, P.E.

    2003-01-01

    Spin-polarized electron coupling across a Si delta-doped GaMnAs/n-GaAs interface was investigated. The injection of spin-polarized electrons was detected as circular polarized emission from a GaInAs/GaAs quantum well light emitting diode. The angular momentum selection rules were simplified...

  13. Reflecting and Polarizing Properties of Conductive Fabrics in Ultra-High Frequency Range

    Directory of Open Access Journals (Sweden)

    Oleg Kiprijanovič

    2015-09-01

    Full Text Available The system based on ultra-wide band (UWB signals was employed for qualitative estimation of attenuating, reflecting and polarizing properties of conductive fabrics, capable to prevent local static charge accumulation. Pulsed excitation of triangle monopole antenna of 6.5 cm height by rectangular electric pulses induced radiation of UWB signals with spectral density of power having maximum in ultra-high frequency (UHF range. The same antenna was used for the radiated signal receiving. Filters and amplifiers of different passband were employed to divide UHF range into subranges of 0.3-0.55 GHz, 0.55-1 GHz, 1-2 GHz and 2-4 GHz bands. The free space method, when conductive fabric samples of 50x50 cm2 were placed between transmitting and receiving antennas, was used to imitate a practical application. Received wideband signals corresponding to the defined range were detected by unbiased detectors. The fabrics made of two types of warps, containing different threads with conductive yarns, were investigated. It was estimated attenuation and reflective properties of the fabrics when electric field is collinear or perpendicular to thread direction. In the UHF range it was revealed good reflecting properties of the fabrics containing metallic component in the threads. The system has advantages but not without a certain shortcoming. Adapting it for specific tasks should lead to more effective usage, including yet unused properties of the UWB signals.

  14. First attempt of the measurement of the beam polarization at an accelerator with the optical electron polarimeter POLO

    CERN Document Server

    Collin, B; Essabaa, S; Frascaria, R; Gacougnolle, R; Kunne, Ronald Alexander; Aulenbacher, K; Tioukine, V

    2004-01-01

    The conventional methods for measuring the polarization of electron beams are either time consuming, invasive or accurate only to a few percent. We developped a method to measure electron beam polarization by observing the light emitted by argon atoms following their excitation by the impact of polarized electrons. The degree of circular polarization of the emitted fluorescence is directly related to the electron polarization. We tested the polarimeter on a test GaAs source available at the MAMI electron accelerator in Mainz, Germany. The polarimeter determines the polarization of a 50 keV electron beam decelerated to a few eV and interacting with an effusive argon gas jet. The resulting decay of the excited states produces the emission of a circularly polarized radiation line at 811.5 nm which is observed and analyzed.

  15. Polar 5, a Norwegian US electron accelerator sounding rocket

    International Nuclear Information System (INIS)

    Jacobsen, T.A.; Maehlum, B.N.; Troeim, J.

    1976-01-01

    A technical description of a mother daughter experiment including an electron gun is given. The payload was launched by a Nike/Tomahawk rocket from Andenes, North-Norway near 2030 local time on February 1, 1976. A few preliminary observations obtained by the HF-wave propagation experiment, the retarding potential analyzer and the energetic electron counters are be presented

  16. Spin-polarized transport in a two-dimensional electron gas with interdigital-ferromagnetic contacts

    DEFF Research Database (Denmark)

    Hu, C.-M.; Nitta, Junsaku; Jensen, Ane

    2001-01-01

    Ferromagnetic contacts on a high-mobility, two-dimensional electron gas (2DEG) in a narrow gap semiconductor with strong spin-orbit interaction are used to investigate spin-polarized electron transport. We demonstrate the use of magnetized contacts to preferentially inject and detect specific spi...

  17. Structural and electronic properties of polar MnO ultrathin film grown on Ag(111)

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Asish K., E-mail: asish.kundu@saha.ac.in; Menon, Krishnakumar S. R. [Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 70064 (India)

    2016-05-23

    Surface electronic structure of ultrathin polar MnO film was studied by Low-energy Electron Diffraction (LEED) and Photoemission Spectroscopic (PES) techniques. Epitaxial monolayer to facet formation with increasing film thickness has been observed by LEED. Our LEED result shows p(2x2) surface reconstruction along with facet formation, stabilize the polar MnO(111) surface. The core levels and the valence band electronic structure of MnO films have been studied as a function of film thickness using X-ray and ultraviolet photoelectron spectroscopy techniques.

  18. Spin polarization of a magnetic electron gas induced by a van Vleck ion

    International Nuclear Information System (INIS)

    Palermo, L.; Silva, X.A. do

    1978-11-01

    The mutual polarization of a magnetic electron gas and a van Vleck ion, interacting via exchange, are theoretically investigated using the double-time Green function method. A pair of equations describing the dynamics of the electron gas and the ion are conveniently decoupled and an analytic expression for the electron gas polarization, which depends on the square of the exchange parameter, is obtained. Besides a RKKY-like term, a new term associated to the process of formation of the magnetic moment of the ion appears [pt

  19. Circular dichroism measurements at an x-ray free-electron laser with polarization control

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, G.; Shevchuk, I.; Walter, P.; Viefhaus, J. [Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg (Germany); Lindahl, A. O. [PULSE at Stanford, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Knie, A. [Institut für Physik, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel (Germany); Hartmann, N.; Lutman, A. A.; MacArthur, J. P.; Glownia, J. M.; Helml, W.; Huang, Z.; Marinelli, A.; Nuhn, H.-D.; Moeller, S.; Coffee, R. N.; Ilchen, M., E-mail: markus.ilchen@xfel.eu [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Buck, J.; Galler, A.; Liu, J. [European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); and others

    2016-08-15

    A non-destructive diagnostic method for the characterization of circularly polarized, ultraintense, short wavelength free-electron laser (FEL) light is presented. The recently installed Delta undulator at the LCLS (Linac Coherent Light Source) at SLAC National Accelerator Laboratory (USA) was used as showcase for this diagnostic scheme. By applying a combined two-color, multi-photon experiment with polarization control, the degree of circular polarization of the Delta undulator has been determined. Towards this goal, an oriented electronic state in the continuum was created by non-resonant ionization of the O{sub 2} 1s core shell with circularly polarized FEL pulses at hν ≃ 700 eV. An also circularly polarized, highly intense UV laser pulse with hν ≃ 3.1 eV was temporally and spatially overlapped, causing the photoelectrons to redistribute into so-called sidebands that are energetically separated by the photon energy of the UV laser. By determining the circular dichroism of these redistributed electrons using angle resolving electron spectroscopy and modeling the results with the strong-field approximation, this scheme allows to unambiguously determine the absolute degree of circular polarization of any pulsed, ultraintense XUV or X-ray laser source.

  20. Circular dichroism measurements at an x-ray free-electron laser with polarization control

    Science.gov (United States)

    Hartmann, G.; Lindahl, A. O.; Knie, A.; Hartmann, N.; Lutman, A. A.; MacArthur, J. P.; Shevchuk, I.; Buck, J.; Galler, A.; Glownia, J. M.; Helml, W.; Huang, Z.; Kabachnik, N. M.; Kazansky, A. K.; Liu, J.; Marinelli, A.; Mazza, T.; Nuhn, H.-D.; Walter, P.; Viefhaus, J.; Meyer, M.; Moeller, S.; Coffee, R. N.; Ilchen, M.

    2016-08-01

    A non-destructive diagnostic method for the characterization of circularly polarized, ultraintense, short wavelength free-electron laser (FEL) light is presented. The recently installed Delta undulator at the LCLS (Linac Coherent Light Source) at SLAC National Accelerator Laboratory (USA) was used as showcase for this diagnostic scheme. By applying a combined two-color, multi-photon experiment with polarization control, the degree of circular polarization of the Delta undulator has been determined. Towards this goal, an oriented electronic state in the continuum was created by non-resonant ionization of the O2 1s core shell with circularly polarized FEL pulses at hν ≃ 700 eV. An also circularly polarized, highly intense UV laser pulse with hν ≃ 3.1 eV was temporally and spatially overlapped, causing the photoelectrons to redistribute into so-called sidebands that are energetically separated by the photon energy of the UV laser. By determining the circular dichroism of these redistributed electrons using angle resolving electron spectroscopy and modeling the results with the strong-field approximation, this scheme allows to unambiguously determine the absolute degree of circular polarization of any pulsed, ultraintense XUV or X-ray laser source.

  1. Electron-beam-induced conduction in polyethylene terephthalate films

    Energy Technology Data Exchange (ETDEWEB)

    Beckley, L M; Lewis, T J; Taylor, D M [University Coll. of North Wales, Bangor (UK). School of Electronic Engineering Science

    1976-06-21

    Measurements are reported of electron-beam-induced conduction in thin polyethylene terephthalate (PET) films for electron energies up to 10 keV. The ratio of induced dielectric current to incident beam current (the gain) is orders of magnitude less than unity over practically the whole range of beam penetration. This result is quite unlike that normally found for inorganic dielectrics where the gain will exceed unity and reach a maximum at or near full penetration. In spite of the very different gain characteristics it is shown that the model recently proposed by Nunes de Oliviera and Gross (J. App. Phys.; 46:3132 (1975)), and by Aris et al (IEE Conf. Publ. No.129.; 267 (1975) and J. Phys. C. Solid State Phys.; 9:797 (1976)) and applied to mica and tantalum oxide respectively is also applicable to PET. Use is made of the known carrier mobility and lifetime data for this polymer and it is shown that very large space-charge distortions of the field can be produced by the beam which may well account for the frequent sample failure experienced during the experiments. The work supports suggestions by earlier workers that the current in unirradiated PET is electrode limited and predicts the maximum (space-charge limited) current likely to occur in this polymer.

  2. Integrated organic electronic based optochemical sensors using polarization filters

    International Nuclear Information System (INIS)

    Kraker, Elke; Haase, Anja; Lamprecht, Bernhard; Jakopic, Georg; Konrad, Christian; Koestler, Stefan

    2008-01-01

    A compact, integrated photoluminescence based oxygen and pH sensor, utilizing an organic light emitting device (OLED) as the light source and an organic photodiode (OPD) as the detection unit, is described. The main challenge in such an integrated sensor is the suppression of the excitation light at the detector, which is typically by many orders of magnitude higher in intensity than the emitted fluorescence. In our approach, we refrain from utilizing edge filters which require narrow band excitation sources and dyes with an adequate large Stokes shift. We rather developed an integrated sensor concept relying on two polarizers to separate the emission and excitation light. One polarizer is located right after the OLED, while the other one, oriented at 90 deg. to the first, is placed in front of the OPD. The main advantage of this solution is that any combination of excitation and emission light is acceptable, even if the two signals overlap spectrally. This is especially important for the use of OLEDs as the excitation sources, as these devices typically exhibit a broad spectral emission

  3. A three-dimensional polarization domain retrieval method from electron diffraction data

    International Nuclear Information System (INIS)

    Pennington, Robert S.; Koch, Christoph T.

    2015-01-01

    We present an algorithm for retrieving three-dimensional domains of picometer-scale shifts in atomic positions from electron diffraction data, and apply it to simulations of ferroelectric polarization in BaTiO 3 . Our algorithm successfully and correctly retrieves polarization domains in which the Ti atom positions differ by less than 3 pm (0.4% of the unit cell diagonal distance) with 5 and 10 nm depth resolution along the beam direction, and we also retrieve unit cell strain, corresponding to tetragonal-to-cubic unit cell distortions, for 10 nm domains. Experimental applicability is also discussed. - Highlights: • We show a retrieval method for ferroelectric polarization from TEM diffraction data. • Simulated strain and polarization variations along the beam direction are retrieved. • This method can be used for 3D strain and polarization mapping without specimen tilt

  4. Mapping 180° polar domains using electron backscatter diffraction and dynamical scattering simulations

    Energy Technology Data Exchange (ETDEWEB)

    Burch, Matthew J.; Fancher, Chris M.; Patala, Srikanth [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC (United States); De Graef, Marc [Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburg, PA (United States); Dickey, Elizabeth C. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC (United States)

    2017-02-15

    A novel technique, which directly and nondestructively maps polar domains using electron backscatter diffraction (EBSD) is described and demonstrated. Through dynamical diffraction simulations and quantitative comparison to experimental EBSD patterns, the absolute orientation of a non-centrosymmetric crystal can be determined. With this information, the polar domains of a material can be mapped. The technique is demonstrated by mapping the non-ferroelastic, or 180°, ferroelectric domains in periodically poled LiNbO{sub 3} single crystals. Further, the authors demonstrate the possibility of mapping polarity using this technique in other polar materials system. - Highlights: • A novel technique to directly polar domains utilizing EBSD is demonstrated. • The technique relies on dynamical diffraction simulations of EBSD patterns. • The technique is demonstrated by mapping 180° domains in LiNbO{sub 3} single crystals. • Further application of this technique to other materials classes is discussed.

  5. Polarization reversal of electron cyclotron wave due to radial boundary condition

    International Nuclear Information System (INIS)

    Takahashi, K.; Kaneko, T.; Hatakeyama, R.

    2004-01-01

    The electron cyclotron wave is an important plasma wave in the fields of basic plasma physics and nuclear fusion. Propagation and absorption of electromagnetic waves with electron cyclotron resonance (ECR) frequency are experimentally and theoretically investigated for the case of inhomogeneously magnetized plasma column with peripheral vacuum layer, when a left-hand polarized wave (LHPW) is selectively launched. The polarization reversal from the LHPW to the right-hand polarized wave is found to occur near the ECR point. As a result, it is clarified that the LHPW, which has been considered not to be absorbed at the ECR point, is absorbed near the ECR point. The phenomena can be explained by taking into account the effects of the radial boundary conditions. In addition, it is found that the polarization reversal point can be adjusted by the external parameters, for example, plasma radius. (authors)

  6. Target correlation and polarization effects on the electron impact ionization of He atoms

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Hari P, E-mail: hps1@physics.ucf.edu [Physics Department, University of Central Florida, Orlando, FL 32816 (United States)

    2011-03-28

    We have reported here the results of our investigation of the effects of electron correlation and polarization of the target in the incident channel on the electron impact ionization of the helium atom. The triple differential cross section (TDCS) is calculated for 28.6 eV incident electron energy for the case when the two final-state outgoing electrons share 4.0 eV excess energy equally and unequally and leave in the opposite direction. The electron correlation and polarization of the He-target in the initial state are considered completely ab initio using the recently extended multiconfiguration Hartree-Fock method. The electron correlation between the two outgoing electrons in the final state is included through the variationally determined screening potential. It is found that both target correlation and polarization in the incident channel play an important role; the polarization has larger effect on the TDCS than the target correlation. We compared our results with available experimental and theoretical data.

  7. Structure of the spin polarization spectrum of secondary electrons emitted from nickel

    International Nuclear Information System (INIS)

    Helman, J.S.

    1985-01-01

    The main features of the structure observed in the energy resolved spin polarization of secondary electrons emitted from Ni are interpreted in terms of surface and bulk plasmon assisted emission. The model also predicts a measureable shift of the main polarization peak of about 0.3 eV to lower energies as the temperature is raised from room temperature to closely below the Curie temperature. (Author) [pt

  8. On the spallation of a polarized photon on a nonpolarized electron

    International Nuclear Information System (INIS)

    Bozrikov, P.V.; Kopytov, G.F.

    1978-01-01

    Considered is the process of the spallation of a polarized photon of the plane electromagnet wave into two polarized photons on a nonpolarized electron. One of these photons is considered as an emitted one, another as a photon of a plane wave. The degrees of circular and linear polarization of the emitted photon are studied in detail. It is shown that the degree of linear polarization does not depend on the type of circular polarization of the initial plane wave photon. At a relativistic electron moving in the direction of the plane wave, totally linearly polarized radiation appears. The analogy between the following two processes is made: (1) γ 1 +e - → γ 2 + γ tilde +e' - (where γ 1 , γ 2 are photons of the plane wave, and γ tilde is an emitted photon) and (2) γ 1 +e - → γ 2 +γ 3 +e' - . From the correspondence between the processes it follows that the results of the investigation may be applied to the double Compton effect. Besides, it appears to be possible to study the correlation between polarization states of all three photons participating in the double Compton scattering

  9. Electron motion in high-pressure polar gases: NH3

    International Nuclear Information System (INIS)

    Christophorou, L.G.; Carter, J.G.; Maxey, D.V.

    1982-01-01

    Drift velocities w for slow electrons in NH 3 vapor have been measured and are reported as a function of the density-reduced electric field E/N ( -17 V cm 2 ), density N (2.43--292 x 10 18 molecule cm -3 ), and temperature T (300--650 K). The w decreases with increasing N considerably and this decrease varies with T; for a fixed N it is higher the lower the T. Use is made of the T- and N-dependence of w to assess the role of the various processes which delay the electron drift. The density range above approx.2.5 x 10 19 molecules cm -3 seems (anionic) electron state. The number density N/sub L/ at which complete electron localization occurs, has been estimated at various T. At T = 300 K, N/sub L/approx. =3.3 x 10 20 molecule cm -3 or approx.0.01 g cm 3 . Estimates have also been made of the binding energy of the electron to the trapping species (possibly NH 3 clusters) which, depending on T, range from 0.11 to 0.15 eV

  10. Electron - polar acoustical phonon interactions in nitride based diluted magnetic semiconductor quantum well via hot electron magnetotransport

    International Nuclear Information System (INIS)

    Pandya, Ankur; Shinde, Satyam; Jha, Prafulla K.

    2015-01-01

    In this paper the hot electron transport properties like carrier energy and momentum scattering rates and electron energy loss rates are calculated via interactions of electrons with polar acoustical phonons for Mn doped BN quantum well in BN nanosheets via piezoelectric scattering and deformation potential mechanisms at low temperatures with high electric field. Electron energy loss rate increases with the electric field. It is observed that at low temperatures and for low electric field the phonon absorption is taking place whereas, for sufficient large electric field, phonon emission takes place. Under the piezoelectric (polar acoustical phonon) scattering mechanism, the carrier scattering rate decreases with the reduction of electric field at low temperatures wherein, the scattering rate variation with electric field is limited by a specific temperature beyond which there is no any impact of electric field on such scattering

  11. Design and performance of a spin-polarized electron energy loss spectrometer with high momentum resolution

    Energy Technology Data Exchange (ETDEWEB)

    Vasilyev, D.; Kirschner, J. [Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany)

    2016-08-15

    We describe a new “complete” spin-polarized electron energy loss spectrometer comprising a spin-polarized primary electron source, an imaging electron analyzer, and a spin analyzer of the “spin-polarizing mirror” type. Unlike previous instruments, we have a high momentum resolution of less than 0.04 Å{sup −1}, at an energy resolution of 90-130 meV. Unlike all previous studies which reported rather broad featureless data in both energy and angle dependence, we find richly structured spectra depending sensitively on small changes of the primary energy, the kinetic energy after scattering, and of the angle of incidence. The key factor is the momentum resolution.

  12. Anisotropic electron velocity distribution in an ECR helium plasma as determined from polarization of emission lines

    International Nuclear Information System (INIS)

    Iwamae, A; Sato, T; Horimoto, Y; Inoue, K; Fujimoto, T; Uchida, M; Maekawa, T

    2005-01-01

    A helium plasma is produced by electron-cyclotron resonance heating in a cusp-configuration magnetic field. Several neutral helium lines are found polarized in the direction perpendicular to the magnetic field; the maximum polarization degree exceeds 10%. The polarization degree and intensity of the emission lines yield, respectively, the alignment and population of the upper levels. The population-alignment collisional-radiative model is developed, and the experimental result is interpreted in terms of an anisotropic electron velocity distribution; it is of a Saturn-type with the central thermal component of 14 eV and the 'ring' component displaced by 9.2 eV from the central component. The relative number of 'ring' electrons is 40%. (letter to the editor)

  13. Cross sections and spin polarizations of electrons elastically scattered from oriented molecules (CH3I)

    International Nuclear Information System (INIS)

    Fink, M.; Ross, A.W.; Fink, R.J.

    1989-01-01

    Elastic differential cross sections and spin polarizations for electrons elastically scattered from CH 3 I are calculated using the independent atom model. Three molecular orientations with respect to the incident electron wavevector are considered - first, the molecule is oriented randomly, second, the electron wave front and molecular bond are parallel, and third, the wavefront and the bond axis are perpendicular. It will be seen to what extent orientational averaging weakens features of the cross section and spin polarization. The calculations show that cross section and spin polarization measurements are a possible tool for determining the degree of molecular orientation. There is no degeneracy between I-C and C-I in cross section and spin polarization measurements. The results presented here for 200 eV and 600 eV electrons scattered by CH 3 I should be considered as a case study and it should be possible to find molecules and electron energies for which even more dramatic differences between the various orientations between the molecules and the electrons can be expected. (orig.)

  14. The Utilization of Spin Polarized Photoelectron Spectroscopy as a Probe of Electron Correlation with an Ultimate Goal of Pu

    International Nuclear Information System (INIS)

    Tobin, James; Yu, Sung; Chung, Brandon; Morton, Simon; Komesu, Takashi; Waddill, George

    2008-01-01

    We are developing the technique of spin-polarized photoelectron spectroscopy as a probe of electron correlation with the ultimate goal of resolving the Pu electronic structure controversy. Over the last several years, we have demonstrated the utility of spin polarized photoelectron spectroscopy for determining the fine details of the electronic structure in complex systems such as those shown in the paper.

  15. Polarimetry of the polarized hydrogen deuteride HDice target under an electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Laine, Vivien E. [Blaise Pascal Univ., Aubiere (France)

    2013-10-01

    The study of the nucleon structure has been a major research focus in fundamental physics in the past decades and still is the main research line of the Thomas Jefferson National Accelerator Facility (Jefferson Lab). For this purpose and to obtain statistically meaningful results, having both a polarized beam and a highly efficient polarized target is essential. For the target, this means high polarization and high relative density of polarized material. A Hydrogen Deuteride (HD) target that presents both such characteristics has been developed first at Brookhaven National Lab (BNL) and brought to the Hall B of Jefferson Lab in 2008. The HD target has been shown to work successfully under a high intensity photon beam (BNL and Jefferson Lab). However, it remained to be seen if the target could stand an electron beam of reasonably high current (nA). In this perspective, the target was tested for the first time in its frozen spin mode under an electron beam at Jefferson Lab in 2012 during the g14 experiment. This dissertation presents the principles and usage procedures of this HD target. The polarimetry of this target with Nuclear Magnetic Resonance (NMR) during the electron beam tests is also discussed. In addition, this dissertation also describes another way to perform target polarimetry with the elastic scattering of electrons off a polarized target by using data taken on helium-3 during the E97-110 experiment that occurred in Jefferson Lab's Hall A in 2003.

  16. Influence of Neutral Currents on Electron and Gamma Polarizations in the Process e+N→e′+N+γ

    International Nuclear Information System (INIS)

    Ousmane Manga, Adamou; Moussa, Aboubacar; Aboubacar, Almoustapha; Samsonenko, N. V.

    2014-01-01

    The differential cross section of electron inelastic scattering by nuclei followed by γ radiation is calculated using the multipole decomposition of the hadronic currents and by taking into account the longitudinal polarization of the initial electron and the circular polarization of the γ radiation. We performed the analysis of the angular and energy dependence of the degree of electron and photon polarization which can yield information on values of weak neutral currents parameters

  17. Mining social media data for opinion polarities about electronic cigarettes.

    Science.gov (United States)

    Dai, Hongying; Hao, Jianqiang

    2017-03-01

    There is an ongoing debate about harm and benefit of e-cigarettes, usage of which has rapidly increased in recent years. By separating non-commercial (organic) tweets from commercial tweets, we seek to evaluate the general public's attitudes towards e-cigarettes. We collected tweets containing the words 'e-cig', 'e-cigarette', 'e-liquid', 'vape', 'vaping', 'vapor' and 'vaporizer' from 23 July to 14 October 2015 (n=757 167). A multilabel Naïve Bayes model was constructed to classify tweets into 5 polarities (against, support, neutral, commercial, irrelevant). We further analysed the prevalence of e-cigarette tweets, geographic variations in these tweets and the impact of socioeconomic factors on the public attitudes towards e-cigarettes. Opinions from organic tweets about e-cigarettes were mixed (against 17.7%, support 10.8% and neutral 19.4%). The organic-against tweets delivered strong educational information about the risks of e-cigarette use and advocated for the general public, especially youth, to stop vaping. However, the organic-against tweets were outnumbered by commercial tweets and organic-support tweets by a ratio of over 1 to 3. Higher prevalence of organic tweets was associated with states with higher education rates (r=0.60, p<0.0001), higher percentage of black and African-American population (r=0.34, p=0.01), and higher median household income (r=0.33, p=0.02). The support rates for e-cigarettes were associated with states with fewer persons under 18 years old (r=-0.33, p=0.02) and a higher percentage of female population (r=0.3, p=0.02). The organic-against tweets raised public awareness of potential health risks and could aid in preventing non-smokers, adolescents and young adults from using e-cigarettes. Opinion polarities about e-cigarettes from social networks could be highly influential to the general public, especially youth. Further educational campaigns should include measuring their effectiveness. Published by the BMJ Publishing Group

  18. Design and commissioning of an aberration-corrected ultrafast spin-polarized low energy electron microscope with multiple electron sources.

    Science.gov (United States)

    Wan, Weishi; Yu, Lei; Zhu, Lin; Yang, Xiaodong; Wei, Zheng; Liu, Jefferson Zhe; Feng, Jun; Kunze, Kai; Schaff, Oliver; Tromp, Ruud; Tang, Wen-Xin

    2017-03-01

    We describe the design and commissioning of a novel aberration-corrected low energy electron microscope (AC-LEEM). A third magnetic prism array (MPA) is added to the standard AC-LEEM with two prism arrays, allowing the incorporation of an ultrafast spin-polarized electron source alongside the standard cold field emission electron source, without degrading spatial resolution. The high degree of symmetries of the AC-LEEM are utilized while we design the electron optics of the ultrafast spin-polarized electron source, so as to minimize the deleterious effect of time broadening, while maintaining full control of electron spin. A spatial resolution of 2nm and temporal resolution of 10ps (ps) are expected in the future time resolved aberration-corrected spin-polarized LEEM (TR-AC-SPLEEM). The commissioning of the three-prism AC-LEEM has been successfully finished with the cold field emission source, with a spatial resolution below 2nm. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Prospects for Measuring $\\Delta$G from Jets at HERA with Polarized Protons and Electrons

    CERN Document Server

    De Roeck, A.; Kunne, F.; Maul, M.; Schafer, A.; Wu, C.Y.; Mirkes, E.; Radel, G.

    1996-01-01

    The measurement of the polarized gluon distribution function Delta G(x) from photon-gluon fusion processes in electron-proton deep inelastic scattering producing two jets has been investigated. The study is based on the MEPJET and PEPSI simulation programs. The size of the expected spin asymmetry and corresponding statistical uncertainties for a possible measurement with polarized beams of electrons and protons at HERA have been estimated. The results show that the asymmetry can reach a few percent, and is not washed out by hadronization and higher order processes.

  20. Prospects for measuring ΔG from jets at HERA with polarized protons and electrons

    International Nuclear Information System (INIS)

    Roeck, A. de; Feltesse, J.; Kunne, F.; Maul, M.; Schaefer, A.; Wu, C.Y.; Mirkes, E.; Raedel, G.

    1996-09-01

    The measurement of the polarized gluon distribution function ΔG(x) from photon-gluon fusion processes in electron-proton deep inelastic scattering producing two jets has been investigated. The study is based on the MEPJET and PEPSI simulation programs. The size of the expected spin asymmetry and corresponding statistical uncertainties for a possible measurement with polarized beams of electrons and protons at HERA have been estimated. The results show that the asymmetry can reach a few percent, and is not washed out by hadronization and higher order processes. (orig.)

  1. Final-photon polarization in the scattering of photons by high-energy electrons

    International Nuclear Information System (INIS)

    Choi, J.; Choi, S.Y.; Ie, S.H.; Song, H.S.; Good, R.H. Jr.

    1987-01-01

    A general method for calculating the polarization of the outgoing photon beam in any reaction is presented. As an example the method is applied to the high-energy photon beam produced in Compton scattering of a laser beam by a high-energy electron beam. The Stokes parameters of the outgoing photon beam, relative to a unit vector normal to the photon momentum and including their dependence on the polarization of incident photon and electron beams, are obtained explicitly. It is expected that this method will be useful, both in photon production reactions and in the subsequent high-energy photon reactions

  2. Polarized Bhabha scattering and a precision measurement of the electron neutral current couplings

    International Nuclear Information System (INIS)

    Abe, K.; Abt, I.; Ahn, C.J.; Akagi, T.; Ash, W.W.; Aston, D.; Bacchetta, N.; Baird, K.G.; Baltay, C.; Band, H.R.; Barakat, M.B.; Baranko, G.; Bardon, O.; Barklow, T.; Bazarko, A.O.; Ben-David, R.; Benvenuti, A.C.; Bienz, T.; Bilei, G.M.; Bisello, D.; Blaylock, G.; Bogart, J.R.; Bolton, T.; Bower, G.R.; Brau, J.E.; Breidenbach, M.; Bugg, W.M.; Burke, D.; Burnett, T.H.; Burrows, P.N.; Busza, W.; Calcaterra, A.; Caldwell, D.O.; Calloway, D.; Camanzi, B.; Carpinelli, M.; Cassell, R.; Castaldi, R.; Castro, A.; Cavalli-Sforza, M.; Church, E.; Cohn, H.O.; Coller, J.A.; Cook, V.; Cotton, R.; Cowan, R.F.; Coyne, D.G.; D'Oliveira, A.; Damerell, C.J.S.; Dasu, S.; De Sangro, R.; De Simone, P.; Dell'Orso, R.; Dima, M.; Du, P.Y.C.; Dubois, R.; Eisenstein, B.I.; Elia, R.; Falciai, D.; Fan, C.; Fero, M.J.; Frey, R.; Furuno, K.; Gillman, T.; Gladding, G.; Gonzalez, S.; Hallewell, G.D.; Hart, E.L.; Hasegawa, Y.; Hedges, S.; Hertzbach, S.S.; Hildreth, M.D.; Huber, J.; Huffer, M.E.; Hughes, E.W.; Hwang, H.; Iwasaki, Y.; Jacques, P.; Jaros, J.; Johnson, A.S.; Johnson, J.R.; Johnson, R.A.; Junk, T.; Kajikawa, R.; Kalelkar, M.; Karliner, I.; Kawahara, H.; Kendall, H.W.; Kim, Y.; King, M.E.; King, R.; Kofler, R.R.; Krishna, N.M.; Kroeger, R.S.; Labs, J.F.; Langston, M.; Lath, A.; Lauber, J.A.; Leith, D.W.G.; Liu, X.; Loreti, M.; Lu, A.; Lynch, H.L.; Ma, J.; Mancinelli, G.; Manly, S.; Mantovani, G.; Markiewicz, T.W.; Maruyama, T.; Massetti, R.; Masuda, H.; Mazzucato, E.; McKemey, A.K.; Meadows, B.T.; Messner, R.; Mockett, P.M.; Moffeit, K.C.; Mours, B.; Mueller, G.; Muller, D.; Nagamine, T.; Nauenberg, U.; Neal, H.; Nussbaum, M.; Ohnishi, Y.; Osborne, L.S.; Panvini, R.S.; Park, H.; Pavel, T.J.; Peruzzi, I.; Pescara, L.; Piccolo, M.; Piemontese, L.; Pieroni, E.; Pitts, K.T.; Plano, R.J.; Prepost, R.; Prescott, C.Y.; Punkar, G.D.; Quigley, J.; Ratcliff, B.N.; Reeves, T.W.; Rensing, P.E.; Rochester, L.S.; Rothberg, J.E.; Rowson, P.C.; Russell, J.J.; Saxton, O.H.; Schalk, T.

    1995-01-01

    Bhabha scattering with polarized electrons at the Z 0 resonance has been measured with the SLD experiment at the SLAC Linear Collider. The first measurement of the left-right asymmetry in Bhabha scattering is presented, yielding the effective weak mixing angle of sinθ eff W =0.2245±0.0049±0.0010. The effective electron couplings to the Z 0 are extracted from a combined analysis of polarized Bhabha scattering and the left-right asymmetry previously published: υ e =-0.0414±0.0020 and a e =-0.4977±0.0045

  3. Parity Violation in Atoms and Polarized Electron Scattering

    CERN Document Server

    Bouchiat, Marie-Anne; PAVI'97

    1999-01-01

    This work is an extensive review of the advances in the field of parity violation experiments in electron scattering at high energy and and in atomic physics. The results are a challenge to the standard electroweak theory and the understanding of hadron structure. The theoretical framework is presented at a pedagogical level, experiments and future projects are reviewed, and the results and their interpretation are discussed.

  4. Leveraging Technological Capabilities across Polarized Cultures: Shanghai Delco Electronics Limited

    OpenAIRE

    Lucy A. Ojode

    2006-01-01

    Rallying its units for an impending spin-off from General Motors, the Delphi Automotive Systems division cleared the Delphi Delco Electronics (Delphi-D) unit to begin planning for entry into China in 1994. Delphi saw China as ideal for leveraging its technological and innovation capabilities as well as the enormous General Motor heritage and reputation from years of experience delivering quality products to the automotive industry. Delphi-D found a perfect partner in Shanghai Changjiang YiBia...

  5. Electron-energy relaxation in polar semiconductor double quantum dots

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Khás, Zdeněk; Zdeněk, Petr; Čerňanský, Marian; Lin, C. Y.

    2001-01-01

    Roč. 15, č. 27 (2001), s. 3503-3512 ISSN 0217-9792 R&D Projects: GA AV ČR IAA1010113; GA MŠk OC P5.20 Institutional research plan: CEZ:AV0Z1010914 Keywords : electron ic energy relaxation * zero-dimensional nanostructures Subject RIV: BE - The oretical Physics Impact factor: 0.523, year: 2001

  6. Magnetic field vector and electron density diagnostics from linear polarization measurements in 14 solar prominences

    Science.gov (United States)

    Bommier, V.

    1986-01-01

    The Hanle effect is the modification of the linear polarization parameters of a spectral line due to the effect of the magnetic field. It has been successfully applied to the magnetic field vector diagnostic in solar prominences. The magnetic field vector is determined by comparing the measured polarization to the polarization computed, taking into account all the polarizing and depolarizing processes in line formation and the depolarizing effect of the magnetic field. The method was applied to simultaneous polarization measurements in the Helium D3 line and in the hydrogen beta line in 14 prominences. Four polarization parameters are measured, which lead to the determination of the three coordinates of the magnetic field vector and the electron density, owing to the sensitivity of the hydrogen beta line to the non-negligible effect of depolarizing collisions with electrons and protons of the medium. A mean value of 1.3 x 10 to the 10th power cu. cm. is derived in 14 prominences.

  7. Acceleration of polarized electrons in the Bonn synchrotron and the planned stretcher ring ELSA

    International Nuclear Information System (INIS)

    Brefeld, W.

    1981-10-01

    In the last year at the synchrotron polarized electrons were successfully accelerated. For this the polarization vector in the transfer channel between source and LINAC was rotated in such a way that the electrons can be injected into the accelerator with the necessary vertical polarization. It was shown that the degree of polarization of the electrons after passing of the imperfection resonances at 0.441 GeV, 0.881 GeV, 1.322 GeV, and 1.763 GeV and the intrinsic resonance at 1.498 GeV remained conserved at a high degree also without additional procedures. Although it is desirable to reduce the present depolarization. First attempts for overcoming the second resonance were performed. The results indicate that for this a system of two pulse dipoles doesn't suffice. For the answer of this question however a much more intensive polarized source is needed. At ELSA the working with polarized electrons seems to be possible in the whole energy range if it succeeds to circumvent the position of the intrinsic resonance dependent from the working point. Though the imperfection resonances at 2.203 GeV, 2.644 GeV, and 3.085 GeV can depolarize the electrons much more strongly because of the relatively slow passing through the resonances an overcoming with pulse dipoles should by possible. Because of the large resonance time-distances the dipoles have much more time than in the synchrotron to reach the required value steadily. (orig.) [de

  8. Ion sense of polarization of the electromagnetic wave field in the electron whistler frequency band

    Directory of Open Access Journals (Sweden)

    B. Lundin

    Full Text Available It is shown that the left-hand (or ion-type sense of polarization can appear in the field interference pattern of two plane electron whistler waves. Moreover, it is demonstrated that the ion-type polarized wave electric fields can be accompanied by the presence at the same observation point of electron-type polarized wave magnetic fields. The registration of ion-type polarized fields with frequencies between the highest ion gyrofrequency and the electron gyrofrequency in a cold, overdense plasma is a sufficient indication for the existence of an interference wave pattern, which can typically occur near artificial or natural reflecting magnetospheric plasma regions, inside waveguides (as in helicon discharges, for example, in fields resonantly emitted by beams of charged particles or, in principle, in some self-sustained, nonlinear wave field structures. A comparison with the conventional spectral matrix data processing approach is also presented in order to facilitate the calculations of the analyzed polarization parameters.

    Key words. Ionosphere (wave propagation Radio science (waves in plasma Space plasma physics (general or miscellaneous

  9. Ion sense of polarization of the electromagnetic wave field in the electron whistler frequency band

    Directory of Open Access Journals (Sweden)

    B. Lundin

    2002-08-01

    Full Text Available It is shown that the left-hand (or ion-type sense of polarization can appear in the field interference pattern of two plane electron whistler waves. Moreover, it is demonstrated that the ion-type polarized wave electric fields can be accompanied by the presence at the same observation point of electron-type polarized wave magnetic fields. The registration of ion-type polarized fields with frequencies between the highest ion gyrofrequency and the electron gyrofrequency in a cold, overdense plasma is a sufficient indication for the existence of an interference wave pattern, which can typically occur near artificial or natural reflecting magnetospheric plasma regions, inside waveguides (as in helicon discharges, for example, in fields resonantly emitted by beams of charged particles or, in principle, in some self-sustained, nonlinear wave field structures. A comparison with the conventional spectral matrix data processing approach is also presented in order to facilitate the calculations of the analyzed polarization parameters.Key words. Ionosphere (wave propagation Radio science (waves in plasma Space plasma physics (general or miscellaneous

  10. Monte Carlo studies of thermalization of electron-hole pairs in spin-polarized degenerate electron gas in monolayer graphene

    Science.gov (United States)

    Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek

    2018-02-01

    Monte Carlo method is applied to the study of relaxation of excited electron-hole (e-h) pairs in graphene. The presence of background of spin-polarized electrons, with high density imposing degeneracy conditions, is assumed. To such system, a number of e-h pairs with spin polarization parallel or antiparallel to the background is injected. Two stages of relaxation: thermalization and cooling are clearly distinguished when average particles energy and its standard deviation σ _E are examined. At the very beginning of thermalization phase, holes loose energy to electrons, and after this process is substantially completed, particle distributions reorganize to take a Fermi-Dirac shape. To describe the evolution of and σ _E during thermalization, we define characteristic times τ _ {th} and values at the end of thermalization E_ {th} and σ _ {th}. The dependence of these parameters on various conditions, such as temperature and background density, is presented. It is shown that among the considered parameters, only the standard deviation of electrons energy allows to distinguish between different cases of relative spin polarizations of background and excited electrons.

  11. Electronic Conduction through Atomic Chains, Quantum Well and Quantum Wire

    International Nuclear Information System (INIS)

    Sharma, A. C.

    2011-01-01

    Charge transport is dynamically and strongly linked with atomic structure, in nanostructures. We report our ab-initio calculations on electronic transport through atomic chains and the model calculations on electron-electron and electron-phonon scattering rates in presence of random impurity potential in a quantum well and in a quantum wire. We computed synthesis and ballistic transport through; (a) C and Si based atomic chains attached to metallic electrodes, (b) armchair (AC), zigzag (ZZ), mixed, rotated-AC and rotated-ZZ geometries of small molecules made of 2S, 6C and 4H atoms attaching to metallic electrodes, and (c) carbon atomic chain attached to graphene electrodes. Computed results show that synthesis of various atomic chains are practically possible and their transmission coefficients are nonzero for a wide energy range. The ab-initio calculations on electronic transport have been performed with the use of Landauer-type scattering formalism formulated in terms of Grben's functions in combination with ground-state DFT. The electron-electron and electron-phonon scattering rates have been calculated as function of excitation energy both at zero and finite temperatures for disordered 2D and 1D systems. Our model calculations suggest that electron scattering rates in a disordered system are mainly governed by effective dimensionality of a system, carrier concentration and dynamical screening effects.

  12. Characterization of polarized electrons coming from helium post-discharge source

    International Nuclear Information System (INIS)

    Zerhouni, R.O.

    1996-02-01

    The objective of this thesis is the characterization of the polarized electron source developed at Orsay and foreseen to be coupled to a cw accelerator for nuclear physics experiments. The principle of operation of this source relies on the chemo-ionization reaction between optically aligned helium triplet metastable atoms and CO 2 molecules. The helium metastable atoms are generated by injection of purified helium into a 2,45 GHz micro-wave discharge. They are optically pumped using two beams of 1,083 micro-meter resonant radiation, one circularly and the other linearly polarized. Both beams are delivered by a high power LNA laser. The metastable atomic beam interacts with a dense (10 13 cm -3 ) spin singlet CO 2 target. A fraction of the produced polarized electrons is extracted and collimated by electrostatic optics. Either to the Mott polarimeter or to the Faraday cup in order to measure the electron polarization and extracted current. For current intensities of 100 micro-Amperes, the electronic polarization reaches 62 % and shows that this type of source has reached the same high competitive level as the most performing GaAs ones. Additionally, the optical properties of the extracted beam are found to be excellent. These properties (energy spread and emittance) reflect the electron energy distribution at the chemo-ionization region. The upper limit of the beam's energy spread is 0.24 eV since this value characterizes our instrumental resolution. The average normalized emittance is found to be 0.6 pi mm-mrad. These values satisfy the requirements of most cw accelerators. All the measurements were performed at low electron beam transport energies (1 to 2 KeV). (author). 105 refs., 54 figs., 4 tabs

  13. The high peak current polarized electron source of the Stanford Linear Collider

    International Nuclear Information System (INIS)

    Schultz, D.; Alley, R.; Aoyagi, H.; Clendenin, J.; Frisch, J.; Garden, C.; Hoyt, E.; Kirby, R.; Klaisner, L.; Kulikov, A.; Mulhollan, G.; Prescott, C.; Saez, P.; Tang, H.; Turner, J.; Woods, M.; Yeremian, D.; Zolotorev, M.

    1994-01-01

    The Stanford Linear Collider injector requires two 2 ns pulses of 4.5-5.5 x 10 10 electrons, separated by 61 ns at 120 Hz, from its source. Since 1992, these currents have been provided by a polarized electron source based on GaAs photocathodes. A beam polarization of 76±4% has been measured at the end of the 50 GeV linac. At low photocathode quantum efficiencies, and for excitation near threshold, the maximum current delivered by the source is constrained, not by the space charge limit of the gun, but by a ''charge limit'' of the photocathode. The charge limited current is proportional to the photocathode quantum efficiency, but the proportionality varies for different photocathode types. Experience with high polarization strained GaAs photocathodes on a test beamline and on the SLC is presented. (orig.)

  14. Measurement of the transverse polarization of electrons emitted in free-neutron decay.

    Science.gov (United States)

    Kozela, A; Ban, G; Białek, A; Bodek, K; Gorel, P; Kirch, K; Kistryn, St; Kuźniak, M; Naviliat-Cuncic, O; Pulut, J; Severijns, N; Stephan, E; Zejma, J

    2009-05-01

    Both components of the transverse polarization of electrons (sigmaT1, sigmaT2) emitted in the beta-decay of polarized, free neutrons have been measured. The T-odd, P-odd correlation coefficient quantifying sigmaT2, perpendicular to the neutron polarization and electron momentum, was found to be R=0.008+/-0.015+/-0.005. This value is consistent with time reversal invariance and significantly improves limits on the relative strength of imaginary scalar couplings in the weak interaction. The value obtained for the correlation coefficient associated with sigmaT1, N=0.056+/-0.011+/-0.005, agrees with the Standard Model expectation, providing an important sensitivity test of the experimental setup.

  15. Electron scattering times in ZnO based polar heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Falson, J., E-mail: j.falson@fkf.mpg.de [Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), The University of Tokyo, Tokyo 113-8656 (Japan); Department of Advanced Materials Science, The University of Tokyo, Kashiwa 277-8561 (Japan); Max Planck Institute for Solid State Research, D-70569 Stuttgart (Germany); Kozuka, Y. [Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), The University of Tokyo, Tokyo 113-8656 (Japan); Smet, J. H. [Max Planck Institute for Solid State Research, D-70569 Stuttgart (Germany); Arima, T. [Department of Advanced Materials Science, The University of Tokyo, Kashiwa 277-8561 (Japan); RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan); Tsukazaki, A. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); PRESTO, Japan Science and Technology Agency (JST), Tokyo 102-0075 (Japan); Kawasaki, M. [Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), The University of Tokyo, Tokyo 113-8656 (Japan); RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan)

    2015-08-24

    The remarkable historic advances experienced in condensed matter physics have been enabled through the continued exploration and proliferation of increasingly richer and cleaner material systems. In this work, we report on the scattering times of charge carriers confined in state-of-the-art MgZnO/ZnO heterostructures displaying electron mobilities in excess of 10{sup 6} cm{sup 2}/V s. Through an examination of low field quantum oscillations, we obtain the effective mass of charge carriers, along with the transport and quantum scattering times. These times compare favorably with high mobility AlGaAs/GaAs heterostructures, suggesting the quality of MgZnO/ZnO heterostructures now rivals that of traditional semiconductors.

  16. Elastic and inelastic electron scattering on tensor polarized deuteron

    International Nuclear Information System (INIS)

    Zevakov, S.A.; Barkov, L.M.; Arenkhovel', Kh.

    2006-01-01

    The components T 20 and T 21 of the tensor analysis capability of the elastic electron scattering on deuteron are measured in the momentum transfer range of 8.4-21.6 fm -2 . The form factors of deuteron G C and G Q are defined in the momentum transfer range where the monopole charge form factor G C turns into zero. The preliminary measuring results of T 20 , T 21 and T 22 of the deuteron photodisintegration reaction in the photon energy range of 25-500 MeV and the proton departure angles equal to 20 deg-40 deg and 75 deg-105 deg are presented. The experimental results are compared with the theoretical predictions [ru

  17. Dynamic simulation of charging processes in polar dielectrics irradiated by the electron bunches of middle level energy

    International Nuclear Information System (INIS)

    Maslovskaya, A.G.

    2011-01-01

    Nowadays the scanning electron microscopy techniques are widely used practically in condenser matter physics to study properties and structure of solids. The electron probe of scanning electron microscope is not merely a passive indicator of the geometrical or potential profile of the sample surface, but also the source producing ionizing, electric and thermal action on the sample. The application of raster electron methods to polar materials, responding to electric and heat exposures of the electron bunches allows us to get a response and create new modes of image formation. Let assume, that a sample surface of dielectric is irradiated by thin focused electron bunches of middle level energy (with order 1÷50 keV). When electrons bombard the dielectric sample the accumulation of absorbed electrons occurs. As a result generated charged areas can irregular drift the initial bunches. Charging effect occurs at any magnifications and any actual probe current. This work considers the results of dynamic simulation of charging process in polar dielectrics under the investigation with the scanning electron microscope. The purpose of present study is design and model implementation of three-dimensional dynamic model of charge relaxation in polar materials irradiated by electron bunches of middle level energy. The mathematical problem definition is given by the system of the continuity equation and Poisson equation. Final system of equations was modified in terms of intrinsic radiation-induced conductivity in sample as well as cylindrical symmetry of the problem. The simulation is based on numerical method solving of boundary problem for partial derivative equation system. In addition the initial electron distribution is determined by Monte-Carlo method using the programming implementation. To solve this problem we used the computational methods of solution of nonstationary mathematical physics problem such as finite difference method and finite element method realized with

  18. Rotatable spin-polarized electron source for inverse-photoemission experiments

    International Nuclear Information System (INIS)

    Stolwijk, S. D.; Wortelen, H.; Schmidt, A. B.; Donath, M.

    2014-01-01

    We present a ROtatable Spin-polarized Electron source (ROSE) for the use in spin- and angle-resolved inverse-photoemission (SR-IPE) experiments. A key feature of the ROSE is a variable direction of the transversal electron beam polarization. As a result, the inverse-photoemission experiment becomes sensitive to two orthogonal in-plane polarization directions, and, for nonnormal electron incidence, to the out-of-plane polarization component. We characterize the ROSE and test its performance on the basis of SR-IPE experiments. Measurements on magnetized Ni films on W(110) serve as a reference to demonstrate the variable spin sensitivity. Moreover, investigations of the unoccupied spin-dependent surface electronic structure of Tl/Si(111) highlight the capability to analyze complex phenomena like spin rotations in momentum space. Essentially, the ROSE opens the way to further studies on complex spin-dependent effects in the field of surface magnetism and spin-orbit interaction at surfaces

  19. On the theory of elastic scattering of spin polarized electrons from ferromagnets

    International Nuclear Information System (INIS)

    Helman, J.S.

    1984-01-01

    The first Born approximation supposedly inadequate for dealing with elastic scattering of spin polarized electrons on ferromagnets is reconsidered. It is found that when used in conjunction with a spin dependent pseudopotential, it can describe the gross features of the ansisotropy. (Author) [pt

  20. On the theory of elastic scattering of spin polarized electrons from ferromagnets

    International Nuclear Information System (INIS)

    Helman, J.S.; Baltenspenger, W.

    1984-01-01

    The first Born approximation supposedly inadequate for dealing with the elastic scattering of spin polarized electrons on ferromagnets is reconsidered. It is found that when used in conjunction with a spin dependent pseudo-potential, it can describe the gross features of the anisotropy. (author) [pt

  1. A high power gain switched diode laser oscillator and amplifier for the CEBAF polarized electron injector

    International Nuclear Information System (INIS)

    Poelker, M.; Hansknecht, J.

    1996-01-01

    The photocathode in the polarized electron source at Jefferson Lab is illuminated with pulsed laser light from a gain switched diode laser and diode optical amplifier. Laser pulse repetition rates up to 2,000 MHz, optical pulsewidths between 31 and 123 ps, and average power > 100 mW are demonstrated. The laser system is highly reliable and completely remotely controlled

  2. Coalescence of two polarized photons with antiparallel momenta into one on an electron

    International Nuclear Information System (INIS)

    Galynskii, M.V.

    1989-01-01

    The matrix elements have been calculated for the coalescence of two photons with antiparallel momenta and equal frequencies into one on an electron. An explicit expression for the differential probability for the process, with allowance for the polarization of all the particles, has been obtained in the nonrelativistic approximation

  3. Progress on the design of the polarized Medium-energy Electron Ion Collider at JLAB

    Energy Technology Data Exchange (ETDEWEB)

    Lin, F.; Bogacz, A.; Brindza, P.; Camsonne, A.; Daly, E.; Derbenev, Ya. S.; Douglas, D.; Ent, R.; Gaskell, D.; Geng, R.; Grames, J.; Guo, J.; Harwood, L.; Hutton, A.; Jordan, K.; Kimber, A.; Krafft, G.; Li, R.; Michalski, T.; Morozov, V. S.; Nadel-Turonski, P.; /Jefferson Lab /Argonne /DESY /Moscow , Inst. Phys. Tech., Dolgoprydny /Dubna, JINR /Northern Illinois U. /Old Doominion U. /Novosibirsk, GOO Zaryad /SLAC /Texas A-M

    2015-07-14

    The Medium-energy Electron Ion Collider (MEIC) at JLab is designed to provide high luminosity and high polarization needed to reach new frontiers in the exploration of nuclear structure. The luminosity, exceeding 1033 cm-2s-1 in a broad range of the center-of-mass (CM) energy and maximum luminosity above 1034 cm-2s-1, is achieved by high-rate collisions of short small-emittance low-charge bunches made possible by high-energy electron cooling of the ion beam and synchrotron radiation damping of the electron beam. The polarization of light ion species (p, d, 3He) can be easily preserved and manipulated due to the unique figure-8 shape of the collider rings. A fully consistent set of parameters have been developed considering the balance of machine performance, required technical development and cost. This paper reports recent progress on the MEIC accelerator design including electron and ion complexes, integrated interaction region design, figure-8-ring-based electron and ion polarization schemes, RF/SRF systems and ERL-based high-energy electron cooling. Luminosity performance is also presented for the MEIC baseline design.

  4. Effect of Rashba and Dresselhaus Spin-Orbit Couplings on Electron Spin Polarization in a Hybrid Magnetic-Electric Barrier Nanostructure

    Science.gov (United States)

    Yang, Shi-Peng; Lu, Mao-Wang; Huang, Xin-Hong; Tang, Qiang; Zhou, Yong-Long

    2017-04-01

    A theoretical study has been carried out on the spin-dependent electron transport in a hybrid magnetic-electric barrier nanostructure with both Rashba and Dresselhaus spin-orbit couplings, which can be experimentally realized by depositing a ferromagnetic strip and a Schottky metal strip on top of a semiconductor heterostructure. The spin-orbit coupling-dependent transmission coefficient, conductance, and spin polarization are calculated by solving the Schrödinger equation exactly with the help of the transfer-matrix method. We find that both the magnitude and sign of the electron spin polarization vary strongly with the spin-orbit coupling strength. Thus, the degree of electron spin polarization can be manipulated by properly adjusting the spin-orbit coupling strength, and such a nanosystem can be employed as a controllable spin filter for spintronics applications.

  5. Radiative electron rearrangement and polarization in target K x-ray spectra

    International Nuclear Information System (INIS)

    Jamison, K.A.

    1978-01-01

    Two topics in the atomic physics of ion-atom collisions are studied. The first is an investigation of a free-atom decay process that is shown to be a two-electron one-photon decay. This two-electron decay requires an initial state with multiple inner-shell vacancies that has a high probability of creation in ion-atom collisions. Because this decay promotes one electron to a higher shell while allowing the other to fall to a lower shell, it is referred to as radiative electron rearrangement (RER). The investigation of this process includes the experimental study of the x-ray spectra region approx. 150 eV below the characteristic Kα 1 2 target radiation in third period elements when bombarded by various ion beams in the energy range 1 to 2 MeV/amu. Theoretical calculations of the transition energies, line strengths, and line widths are performed to verify the origin of the RER lines. The second topic of consideration is the study of the polarization of Kα satellite radiation from targets of Al and Si. It is shown that the polarization, which is observed experimentally with a curved-crystal polarimeter, is due to the nonstatistical population of the magnetic substates created in specific ion-atom collisions. Further, the polarization of the RER lines is studied. The connection between the polarization of the normal Kα satellite radiation and the polarization of the RER lines adds final proof to their origin as two-electron one-photon transitions

  6. Modeling of polarization phenomena due to RF sheaths and electron beams in magnetized plasma

    International Nuclear Information System (INIS)

    Faudot, E.

    2005-01-01

    This work investigates the problematic of hot spots induced by accelerated particle fluxes in tokamaks. It is shown that the polarization due to sheaths in the edge plasma in which an electron beam at a high level of energy is injected, can reach several hundreds volts and thus extend the deposition area. The notion of obstructed sheath is introduced and explains the acceleration of energy deposition by the decreasing of the sheath potential. Then, a 2-dimensional fluid modeling of flux tubes in front of ICRF antennae allows us to calculate the rectified potentials taking into account RF polarization currents transverse to magnetic field lines. The 2-dimensional fluid code designed validates the analytical results which show that the DC rectified potential is 50% greater with polarization currents than without. Finally, the simultaneous application of an electron beam and a RF potential reveals that the potentials due to each phenomenon are additives when RF potential is much greater than beam polarization. The density depletion of polarized flux tubes in 2-dimensional PIC (particles in cells) simulations is characterized but not yet explained. (author)

  7. Paramagnetic resonance and electronic conduction in organic semiconductors; Resonance paramagnetique et conduction electroniques dans les semi-conducteurs organiques

    Energy Technology Data Exchange (ETDEWEB)

    Nechtschein, M. [Commissariat a l' energie atomique et aux energies alternatives - CEA, Laboratoire de Resonance Magnetique (France)

    1963-07-01

    As some organic bodies simultaneously display semi-conducting properties and a paramagnetism, this report addresses the study of conduction in organic bodies. The author first briefly recalls how relationships between conductibility and Electron Paramagnetic Resonance (EPR) can be noticed in a specific case (mineral and metallic semiconductors). He discusses published results related to paramagnetism and conductibility in organic bodies. He reviews various categories of organic bodies in which both properties are simultaneously present. He notably addresses radical molecular crystals, non-radical molecular crystals, charge transfer complexes, pyrolyzed coals, and pseudo-ferromagnetic organic structures. He discusses the issue of relationships between conduction (charge transfer by electrons) and ERP (which reveals the existence of non-paired electrons which provide free spins)

  8. Deep inelastic scattering of polarized electrons by polarized 3 He and the study of the neutron spin structure

    International Nuclear Information System (INIS)

    Arnold, R.G.; Bosted, P.E.; Dunne, J.; Fellbaum, J.; Keppel, C.; Rock, S.E.; Spengos, M.; Szalata, Z.M.; White, J.L.; Breton, V.; Fonvieille, H.; Roblin, Y.; Shapiro, G.; Hughes, E.W.; Borel, H.; Lombard-Nelsen, R.M.; Marroncle, J.; Morgenstern, J.; Staley, F.; Terrien, Y.; Anthony, P.L.; Dietrich, F.S.; Chupp, T.E.; Smith, T.; Thompson, A.K.; Kuhn, S.E.; Cates, G.D.; Middleton, H.; Newbury, N.R.; Anthony, P.L.; Gearhart, R.; Hughes, E.W.; Maruyama, T.; Meyer, W.; Petratos, G.G.; Pitthan, R.; Rokni, S.H.; Stuart, L.M.; White, J.L.; Woods, M.; Young, C.C.; Erbacher, R.; Kawall, D.; Kuhn, S.E.; Meziani, Z.E.; Holmes, R.; Souder, P.A.; Xu, J.; Meziani, Z.E.; Band, H.R.; Johnson, J.R.; Maruyama, T.; Prepost, R.; Zapala, G.

    1996-01-01

    The neutron longitudinal and transverse asymmetries A 1 n and A 2 n have been extracted from deep inelastic scattering of polarized electrons by a polarized 3 He target at incident energies of 19.42, 22.66 and 25.51 GeV. The measurement allows for the determination of the neutron spin structure functions g 1 n (x, Q 2 ) and g 2 n (x, Q 2 ) over the range 0.03 2 of 2 (GeV/c) 2 . The data are used for the evaluation of the Ellis-Jaffe and Bjorken sum rules. The neutron spin structure function g 1 n (x, Q 2 ) is small and negative within the range of our measurement, yielding an integral ∫ 0.03 0.6 g 1 n (x)dx - 0.028 ± 0.006 (stat) ± 0.006 (syst). Assuming Regge behavior at low x, we extract Γ 1 n ∫ 0 1 g 1 n (x)dx = - 0.031 ± 0.006 (stat) ± 0.009 (syst). Combined with previous proton integral results from SLAC experiment E143, we find Γ 1 p - Γ 1 n = 0.160 ± 0.015 in agreement with the Bjorken sum rule prediction Γ 1 p - Γ 1 p 0.176 ± 0.008 at a Q 2 value of 3 (GeV/c) 2 evaluated using α s 0.32 ± 0.05. (authors)

  9. Strain-induced phase transition and electron spin-polarization in graphene spirals.

    Science.gov (United States)

    Zhang, Xiaoming; Zhao, Mingwen

    2014-07-16

    Spin-polarized triangular graphene nanoflakes (t-GNFs) serve as ideal building blocks for the long-desired ferromagnetic graphene superlattices, but they are always assembled to planar structures which reduce its mechanical properties. Here, by joining t-GNFs in a spiral way, we propose one-dimensional graphene spirals (GSs) with superior mechanical properties and tunable electronic structures. We demonstrate theoretically the unique features of electron motion in the spiral lattice by means of first-principles calculations combined with a simple Hubbard model. Within a linear elastic deformation range, the GSs are nonmagnetic metals. When the axial tensile strain exceeds an ultimate strain, however, they convert to magnetic semiconductors with stable ferromagnetic ordering along the edges. Such strain-induced phase transition and tunable electron spin-polarization revealed in the GSs open a new avenue for spintronics devices.

  10. Quantum pump effect induced by a linearly polarized microwave in a two-dimensional electron gas.

    Science.gov (United States)

    Song, Juntao; Liu, Haiwen; Jiang, Hua

    2012-05-30

    A quantum pump effect is predicted in an ideal homogeneous two-dimensional electron gas (2DEG) that is normally irradiated by linearly polarized microwaves (MW). Without considering effects from spin-orbital coupling or the magnetic field, it is found that a polarized MW can continuously pump electrons from the longitudinal to the transverse direction, or from the transverse to the longitudinal direction, in the central irradiated region. The large pump current is obtained for both the low frequency limit and the high frequency case. Its magnitude depends on sample properties such as the size of the radiated region, the power and frequency of the MW, etc. Through the calculated results, the pump current should be attributed to the dominant photon-assisted tunneling processes as well as the asymmetry of the electron density of states with respect to the Fermi energy.

  11. Correlations and polarization in electronic and atomic collisions and (e,2e) reactions

    International Nuclear Information System (INIS)

    Teubner, P.J.O.; Weigold, E.

    1992-01-01

    This volume contains the invited papers presented at the Sixth International Symposium on Correlations and Polarization in Electronic and Atomic collisions and (e,2e) Reactions held at Flinders University, Adelaide, Australia from 18-21 July, 1991. This symposium was a satellite meeting to the XVII International Conference on the Physics of Electronic and Atomic Collisions (ICPEAC) held in Brisbane, Australia. It follows a tradition of satellite meetings on (e,2e) collisions and on correlation and polarization in electronic and atomic collisions held in association with previous ICPEACs. The subject matter of this symposium covered that of the previous meeting at Hoboken, USA (1989) on correlation and polarization phenomena as well as that of the previous meeting at the University of Maryland (1989) on (e,2e) collisions. In addition it extended the scope to include some discussion of (e,3e), (γ,eγ) and (γ,2γ) coincidence measurements. The discussion of the current rapid advances in coincidence experiments, correlations and polarization measurements and related theoretical developments brought together 100 scientist from many countries with broad interdisciplinary backgrounds. The symposium stressed the common threads weaving through all these areas of research. (Author)

  12. Search for Time Reversal Violation in Neutron Decay: A Measurement of the Transverse Polarization of Electrons

    International Nuclear Information System (INIS)

    Bodek, K.; Kaczmarek, A.; Kistryn, St.; Kuzniak, M.; Zejma, J.; Pulut, J.; Kirch, K.; Bialek, A.; Kozela, A.; Ban, G.; Naviliat-Cuncic, O.; Gorel, P.; Beck, M.; Lindroth, A.; Severijns, N.; Stephan, E.; Czarnecki, A.

    2006-01-01

    A non-zero value of the R-correlation coefficient due to the e - polarization component, perpendicular to the plane spanned by the spin of the decaying neutron and the electron momentum, would signal a violation of time reversal symmetry and thus physics beyond the Standard Model. The value of the N-correlation coefficient, given by the transverse e - polarization component within that plane, is expected to be finite. The measurement of N serves as an important systematic check of the apparatus for the R-measurement. The first phase of data taking has been completed. Preliminary results from a limited data sample show no deviations from the Standard Model predictions

  13. Physics in the GeV region with polarized targets in electron storage rings

    International Nuclear Information System (INIS)

    Holt, R.J.

    1988-01-01

    There is evidence from the D(γ,p)n reaction that the meson-exchange model is failing in the GeV region. Surprisingly, it appears that the new (Dγ,p)n data favor the energy dependence of the nuclear chromodynamics model rather that of the meson-exchange model. Application of the polarization method to electron scattering studies is in its infancy, and it is potentially a very powerful technique. The internal target method coupled with laser-driven polarized targets should represent an important tool for nuclear physics

  14. Polarization effects in the reaction of charm baryon production on colliding electron-positron beams

    International Nuclear Information System (INIS)

    Rekalo, M.P.; Korzh, A.P.; Barannik, V.P.

    1980-01-01

    To calculate energy and angular distributions of various decay products of charm baAyons, which are prodUced in reactions on colliding e + e - beams, it is necessary to know the differential cross sections of the e + e - → C+anti C process which correspond to different polarized states of produced C and anti C (C - charm baryon). These differential cross sections are calculated for a single-photon mechanism with respect to the contribution of the anapole and electric dipole form factors of C-baryon. Polarizations of colliding electron-positron beams are taken into account in a full volume

  15. Electron Gas Dynamic Conductivity Tensor on the Nanotube Surface in Magnetic Field

    Directory of Open Access Journals (Sweden)

    A. M. Ermolaev

    2011-01-01

    Full Text Available Kubo formula was derived for the electron gas conductivity tensor on the nanotube surface in longitudinal magnetic field considering spatial and time dispersion. Components of the degenerate and nondegenerate electron gas conductivity tensor were calculated. The study has showed that under high electron density, the conductivity undergoes oscillations of de Haas-van Alphen and Aharonov-Bohm types with the density of electrons and magnetic field changes.

  16. Reconfigurable electronics using conducting metal-organic frameworks

    Science.gov (United States)

    Allendorf, Mark D.; Talin, Albert Alec; Leonard, Francois; Stavila, Vitalie

    2017-07-18

    A device including a porous metal organic framework (MOF) disposed between two terminals, the device including a first state wherein the MOF is infiltrated by a guest species to form an electrical path between the terminals and a second state wherein the electrical conductivity of the MOF is less than the electrical conductivity in the first state. A method including switching a porous metal organic framework (MOF) between two terminals from a first state wherein a metal site in the MOF is infiltrated by a guest species that is capable of charge transfer to a second state wherein the MOF is less electrically conductive than in the first state.

  17. Failure modes of conducting yarns in electronic-textile applications

    NARCIS (Netherlands)

    Kok, M. de; Vries, H. de; Pacheco, K.; Heck, G. van

    2015-01-01

    Integration of electronic functionalities into textiles adds to the value of textiles. It allows measuring, detecting, actuating and treating or communicating with a body or object. These added values can render the smart textiles very useful, fun, supporting, protecting or even lifesaving. It is,

  18. Organic semi-conducting architectures for supramolecular electronics

    NARCIS (Netherlands)

    Leclère, P.E.L.G.; Surin, M.; Jonkheijm, P.; Henze, O.; Schenning, A.P.H.J.; Biscarini, F.; Grimsdale, A.C.; Feast, W.J.; Meijer, E.W.; Müllen, K.; Brédas, J.L.; Lazzaroni, R.

    2004-01-01

    The properties of organic electronic materials in the solid-state are determined not only by those of individual molecules but also by those of ensembles of molecules. The ability to control the architectures of these ensembles is thus essential for optimizing the properties of conjugated materials

  19. Nobel Prize 2000: from conducting polymers to molecular electronics

    International Nuclear Information System (INIS)

    Pron, A.; Rannou, P.

    2001-01-01

    In this paper the development of conducting organic polymers is reviewed. Poly(3-alkylthiophenes) with regioregularity exceeding 99% are especially interesting because if used as a thin semiconducting layer in the field effect transistor (FET) configuration they become superconducting at 2.35 K. This is the first example of the superconductivity of an organic polymer. Fields of use of conducting polymers are reviewed, too

  20. Importance of polarization effects in electron impact single ionization of argon atom

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, G., E-mail: g_vpurohit@yahoo.co [Department of Basic Sciences, School of Engineering, Sir Padampat Singhania University, Bhatewar, Udaipur 313 601 (India); Patidar, Vinod; Sud, K.K. [Department of Basic Sciences, School of Engineering, Sir Padampat Singhania University, Bhatewar, Udaipur 313 601 (India)

    2009-12-15

    We report the results of our calculations of triple differential cross section (TDCS) for electron impact single ionization (i.e. (e, 2e) processes) from the 3s shell of argon using a modified distorted wave Born approximation formalism by including correlation-polarization potential, which accounts for both correlation and polarization effects. We observe that DWBA formalism including polarization potential is able to reproduce most of the trends of experimental data and hence provide a future direction for further investigation of ionization process from the 3s shell of argon. We also compare our results with the available theoretical and experimental results. The present calculations significantly improve the agreement with the experimental results but still there are certain discrepancies, which is a matter of further investigation.

  1. Measurement of electron beam polarization from unstrained GaAs via two-photon photoemission

    Energy Technology Data Exchange (ETDEWEB)

    McCarter, J.L., E-mail: jlm2ar@virginia.edu [Department of Physics, University of Virginia, Charlottesville, VA 22901 (United States); Afanasev, A. [Department of Physics, The George Washington University, Washington, DC 20052 (United States); Gay, T.J. [Jorgensen Hall, University of Nebraska, Lincoln, NE 68588 (United States); Hansknecht, J. [Thomas Jefferson National Accelerator Facility, 12050 Jefferson Avenue, Suite 500, Newport News, VA 23606 (United States); Kechiantz, A. [Department of Physics, The George Washington University, Washington, DC 20052 (United States); Poelker, M. [Thomas Jefferson National Accelerator Facility, 12050 Jefferson Avenue, Suite 500, Newport News, VA 23606 (United States)

    2014-02-21

    Two-photon absorption of 1560 nm light was used to generate polarized electron beams from unstrained GaAs photocathodes of varying thickness: 625 μm, 0.32 μm, and 0.18 μm. For each photocathode, the degree of spin polarization of the photoemitted beam was less than 50%, contradicting earlier predictions based on simple quantum mechanical selection rules for spherically-symmetric systems but consistent with the more sophisticated model of Bhat et al. (Phys. Rev. B 71 (2005) 035209). Polarization via two-photon absorption was the highest from the thinnest photocathode sample and comparable to that obtained via one-photon absorption (using 778 nm light), with values 40.3±1.0% and 42.6±1.0%, respectively.

  2. Calculation and construction of a beam-transport system for polarized electrons

    International Nuclear Information System (INIS)

    Marschke, G.

    1987-09-01

    In the framework of the ELSA-SAPHIR project a transfer channel between ELSA and the large-space detector SAPHIR was calculated and constructed. Existing optical elements were modified corresponding to their application and the missing racks constructed and ordered for fabrication. Furthermore the vacuum system was designed as the whole as well as in the single components. Starting from the architectonic conditions and the optics to be realized the coordinates of the elements were calculated as preconditions fo the geodetic measurements and calibrations. It was shown that both for a polarized and for an unpolarized electron beam an optic was realized corresponding to the requirements up to an energy of 3.5 GeV. Under the given conditions, the applied method of the rotation of the polarization vector, and the geometrical preconditions up to 3.0 GeV also an acceptable longitudinal polarization was reached. (orig./HSI) [de

  3. Effect of the anisotropy of the electron g-factor in spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong, Chittagong 4331 (Bangladesh); Gray, E. MacA. [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)

    2010-02-15

    Spin polarization in the presence of an external magnetic field and electric bias in quantum confined semiconductor structures has been studied by time- and polarization-resolved spectrometry. From measurements with angular variations of the magnetic field from the Voigt configuration (VC) it was found that both the frequency ({Omega}) and decay rate ({beta}) of the oscillatory component of the polarization increase with variation of the angle from the VC. Their dependences are discussed based on the electron spin dephasing related to the spread of the electron g-factor (g{sub e}) (i.e. unequal values of the longitudinal (g{sub e||}) and transverse (g{sub e}-perpendicular) components of g{sub e}) and the exchange interaction between the electron and hole spins. It is demonstrated that the increase in {Omega} upon deviation of the magnetic field from the VC relates to the anisotropy of g{sub e} (g{sub e||} and g{sub e}-perpendicular) resulting from the quantum confinement effect. However, the angular dependence on {beta} is related to the residual exchange interaction between the electron spin and rapidly relaxing hole spin.

  4. Development of high-performance alkali-hybrid polarized 3He targets for electron scattering

    Science.gov (United States)

    Singh, Jaideep T.; Dolph, P. A. M.; Tobias, W. A.; Averett, T. D.; Kelleher, A.; Mooney, K. E.; Nelyubin, V. V.; Wang, Yunxiao; Zheng, Yuan; Cates, G. D.

    2015-05-01

    Background: Polarized 3He targets have been used as effective polarized neutron targets for electron scattering experiments for over twenty years. Over the last ten years, the effective luminosity of polarized 3He targets based on spin-exchange optical pumping has increased by over an order of magnitude. This has come about because of improvements in commercially-available lasers and an improved understanding of the physics behind the polarization process. Purpose: We present the development of high-performance polarized 3He targets for use in electron scattering experiments. Improvements in the performance of polarized 3He targets, target properties, and operating parameters are documented. Methods: We utilize the technique of alkali-hybrid spin-exchange optical pumping to polarize the 3He targets. Spectrally narrowed diode lasers used for the optical pumping greatly improved the performance. A simulation of the alkali-hybrid spin-exchange optical pumping process was developed to provide guidance in the design of the targets. Data was collected during the characterization of 24 separate glass target cells, each of which was constructed while preparing for one of four experiments at Jefferson Laboratory in Newport News, Virginia. Results: From the data obtained we made determinations of the so-called X -factors that quantify a temperature-dependent and as-yet poorly understood spin-relaxation mechanism that limits the maximum achievable 3He polarization to well under 100%. The presence of the X -factor spin-relaxation mechanism was clearly evident in our data. Good agreement between the simulation and the actual target performance was obtained by including details such as off-resonant optical pumping. Included in our results is a measurement of the K -3He spin-exchange rate coefficient kseK=(7.46 ±0.62 ) ×10-20cm3/s over the temperature range 503 K to 563 K. Conclusions: In order to achieve high performance under the operating conditions described in this paper

  5. Pitch Angle Scattering of Upgoing Electron Beams in Jupiter's Polar Regions by Whistler Mode Waves

    Science.gov (United States)

    Elliott, S. S.; Gurnett, D. A.; Kurth, W. S.; Clark, G.; Mauk, B. H.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.

    2018-02-01

    The Juno spacecraft's Jupiter Energetic-particle Detector Instrument has observed field-aligned, unidirectional (upgoing) electron beams throughout most of Jupiter's entire polar cap region. The Waves instrument detected intense broadband whistler mode emissions occurring in the same region. In this paper, we investigate the pitch angle scattering of the upgoing electron beams due to interactions with the whistler mode waves. Profiles of intensity versus pitch angle for electron beams ranging from 2.53 to 7.22 Jovian radii show inconsistencies with the expected adiabatic invariant motion of the electrons. It is believed that the observed whistler mode waves perturb the electron motion and scatter them away from the magnetic field line. The diffusion equation has been solved by using diffusion coefficients which depend on the magnetic intensity of the whistler mode waves.

  6. Electronically conductive polymer binder for lithium-ion battery electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe

    2017-05-16

    A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  7. Understanding the effects of electronic polarization and delocalization on charge-transport levels in oligoacene systems

    KAUST Repository

    Sutton, Christopher; Tummala, Naga Rajesh; Kemper, Travis; Aziz, Saadullah G.; Sears, John; Coropceanu, Veaceslav; Bredas, Jean-Luc

    2017-01-01

    Electronic polarization and charge delocalization are important aspects that affect the charge-transport levels in organic materials. Here, using a quantum mechanical/ embedded-charge (QM/EC) approach based on a combination of the long-range corrected omega B97X-D exchange-correlation functional (QM) and charge model 5 (CM5) point-charge model (EC), we evaluate the vertical detachment energies and polarization energies of various sizes of crystalline and amorphous anionic oligoacene clusters. Our results indicate that QM/EC calculations yield vertical detachment energies and polarization energies that compare well with the experimental values obtained from ultraviolet photoemission spectroscopy measurements. In order to understand the effect of charge delocalization on the transport levels, we considered crystalline naphthalene systems with QM regions including one or five-molecules. The results for these systems show that the delocalization and polarization effects are additive; therefore, allowing for electron delocalization by increasing the size of the QM region leads to the additional stabilization of the transport levels. Published by AIP Publishing.

  8. Understanding the effects of electronic polarization and delocalization on charge-transport levels in oligoacene systems

    KAUST Repository

    Sutton, Christopher

    2017-06-13

    Electronic polarization and charge delocalization are important aspects that affect the charge-transport levels in organic materials. Here, using a quantum mechanical/ embedded-charge (QM/EC) approach based on a combination of the long-range corrected omega B97X-D exchange-correlation functional (QM) and charge model 5 (CM5) point-charge model (EC), we evaluate the vertical detachment energies and polarization energies of various sizes of crystalline and amorphous anionic oligoacene clusters. Our results indicate that QM/EC calculations yield vertical detachment energies and polarization energies that compare well with the experimental values obtained from ultraviolet photoemission spectroscopy measurements. In order to understand the effect of charge delocalization on the transport levels, we considered crystalline naphthalene systems with QM regions including one or five-molecules. The results for these systems show that the delocalization and polarization effects are additive; therefore, allowing for electron delocalization by increasing the size of the QM region leads to the additional stabilization of the transport levels. Published by AIP Publishing.

  9. Circularly polarized harmonic generation by intense bicircular laser pulses: electron recollision dynamics and frequency dependent helicity

    Science.gov (United States)

    Bandrauk, André D.; Mauger, François; Yuan, Kai-Jun

    2016-12-01

    Numerical solutions of time-dependent Schrödinger equations for one and two electron cyclic molecules {{{H}}}nq+ exposed to intense bichromatic circularly polarized laser pulses of frequencies {ω }1 and {ω }2, such that {ω }1/{ω }2={n}1/{n}2 (integer) produce circularly polarized high order harmonics with a cut-off recollision maximum energy at and greater than the linear polarization law (in atomic units) {N}m{ω }1={I}p+3.17{U}p, where I p is the ionization potential and {U}p={(2{E}0)}2/4{ω }2 is the ponderomotive energy defined by the field E 0 (intensity I={{cE}}02/8π ) from each pulse and mean frequency ω =({ω }1+{ω }2)/2 . An electron recollision model in a rotating frame at rotating frequency {{Δ }}ω =({ω }1-{ω }2)/2 predicts this simple result as a result of recollision dynamics in a combination of bichromatic circularly polarized pulses. The harmonic helicities and their intensities are shown to depend on compatible symmetries of the net pulse electric fields with that of the molecules.

  10. Improved Electron Yield and Spin-Polarization from III-V Photocathodes via Bias Enhanced Carrier Drift: Final Report

    International Nuclear Information System (INIS)

    Mulhollan, Gregory A.

    2006-01-01

    In this DOE STTR program, Saxet Surface Science, with the Stanford Linear Accelerator Center as partner, designed, built and tested photocathode structures such that optimal drift-enhanced spin-polarization from GaAs based photoemitters was achieved with minimal bias supply requirements. The forward bias surface grid composition was optimized for maximum polarization and yield, together with other construction parameters including doping profile. This program has culminated in a cathode bias structure affording increased electron spin polarization when applied to III-V based photocathodes. The optimized bias structure has been incorporated into a cathode mounting and biasing design for use in a polarized electron gun.

  11. Electron spin polarization effects in low energy electron diffraction, ion neutralization and metastable atom deexcitation at solid surfaces. Progress report No. 4, 1 January-31 December 1984

    International Nuclear Information System (INIS)

    1984-01-01

    In the present contract year, a GaAs polarized electron source has been used to undertake a polarized LEED study of order-disorder transformations at Cu 3 Au (100) and (111) surfaces. A polarized LEED study of Cu (100) has also been initiated. A polarized MDS study of Ni(110) surface magnetism has been completed. Spin dependences in the Auger electron yield were observed that provide a measure of the surface magnetism and were used to probe the dependence of surface magnetism on temperature and adsorbate coverage. A similar study using a ferromagnetic glass is now underway. A Mott polarization analyzer, constructed to measure the ESP of the ejected electrons, is also being installed on the apparatus. Such measurements provide direct information concerning the dynamics of secondary electron ejection and the details of adsorbate-substrate bonding

  12. Investigations of the physical properties of photoemission polarized electron sources for accelerator applications

    International Nuclear Information System (INIS)

    Dunham, B.M.

    1993-01-01

    This experiment measured the polarization and quantum efficiency as a function of wavelength for the chalcopyrite semiconductor Zn (Ge 0.7 Si 0.3 )As 2 . Also, the onset of space charge growth of a 100 keV electron beam passing through the Illinois/CEBAF polarized electron injection system was studied by measuring the beam emittance as a function of current. Finally the thermal properties of GaAs were investigated by measuring the beam emittance as functions of the excitation laser wavelength and the laser spot size. The experiments were performed of Zn(Ge 0.7 Si 0.3 )As 2 was measured to be ∼19%, much lower than the expected 100%. Also, the expected emittance as a function of current was measured and the onset of space charge effects was found to be ∼0.5 mA, much lower than predicted by the electron gun design program EGUN. Finally, the effective transverse thermal energy of the electrons emitted from GaAs at 100 keV as a function of excitation wavelength was measured by a new method for low beam currents. The electron thermal energy for wavelengths between 840 and 633 nm was found to be ∼33 meV, a factor of 3 lower than for a thermionic electron gun. It was found to increase sharply for photon wavelengths less than 633 nm

  13. Electron acceleration by a radially polarized laser pulse during ionization of low density gases

    Directory of Open Access Journals (Sweden)

    Kunwar Pal Singh

    2011-03-01

    Full Text Available The acceleration of electrons by a radially polarized intense laser pulse has been studied. The axial electric field of the laser is responsible for electron acceleration. The axial electric field increases with decreasing laser spot size; however, the laser pulse gets defocused sooner for smaller values and the electrons do not experience high electric field for long, reducing the energy they can reach. The electron remains confined in the electric field of the laser for longer and the electron energy peaks for the normalized laser spot size nearly equal to the normalized laser intensity parameter. Electron energy peaks for initial laser phase ϕ_{0}=π due to accelerating laser phase and decreases with transverse initial position of the electrons. The energy and angle of the emittance spectrum of the electrons generated during ionization of krypton and argon at low densities have been obtained and a right choice of laser parameters has been suggested to obtain high energy quasimonoenergetic collimated electron beams. It has been found that argon is more suitable than krypton to obtain high energy electron beams due to higher ionization potential of inner shells for the former.

  14. Magnetization and spin-polarized conductance of asymmetrically hydrogenated graphene nanoribbons: significance of sigma bands

    International Nuclear Information System (INIS)

    Honda, Syuta; Inuzuka, Kouhei; Inoshita, Takeshi; Ota, Norio; Sano, Nobuyuki

    2014-01-01

    The magnetization and spin transport of asymmetric zigzag-edge graphene nanoribbons, terminated by hydrogen on one edge while unterminated on the other edge, were investigated by a combination of first-principles calculations and a tight-binding approach. At the unterminated edge, a spin-polarized σ edge state of minority spin appears near the Fermi level and contributes to spin transport. This state enters the band gap for ribbon widths of less than 15 chains, dominating the spin-polarized current. This indicates the importance of the σ edge states in the design of spintronic devices using graphene nanoribbons. We also examined the case where the ‘unterminated’ edge is partially terminated by hydrogen. (paper)

  15. Deep inelastic scattering of polarized electrons by polarized {sup 3} He and the study of the neutron spin structure

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, R G; Bosted, P E; Dunne, J; Fellbaum, J; Keppel, C; Rock, S E; Spengos, M; Szalata, Z M; White, J L [Washington State Univ., Pullman, WA (United States); Breton, V; Fonvieille, H; Roblin, Y [Clermont-Ferrand-2 Univ., 63 - Aubiere (France); Shapiro, G [Lawrence Berkeley Lab., CA (United States); Hughes, E W [California Inst. of Tech., Pasadena, CA (United States); Borel, H; Lombard-Nelsen, R M; Marroncle, J; Morgenstern, J; Staley, F; Terrien, Y [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d` Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l` Instrumentation Associee; Petratos, G G [Kent State Univ., OH (United States); Anthony, P L; Dietrich, F S [Lawrence Livermore National Lab., CA (United States); Chupp, T E; Smith, T [Michigan Univ., Dearborn, MI (United States); Thompson, A K [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Kuhn, S E [Norfolk State Univ., VA (United States); Cates, G D; Middleton, H; Newbury, N R [Princeton Univ., NJ (United States); Anthony, P L; Gearhart, R; Hughes, E W; Maruyama, T; Meyer, W; Petratos, G G; Pitthan, R; Rokni, S H; Stuart, L M; White, J L; Woods, M; Young, C C [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Erbacher, R; Kawall, D; Kuhn, S E; Meziani, Z E [Stanford Univ., CA (United States); Holmes, R; Souder, P A; Xu, J [Syracuse Univ., NY (United States); Meziani, Z E [Temple Univ., Philadelphia, PA (United States); Band, H R; Johnson, J R; Maruyama, T; Prepost, R; Zapala, G [Wisconsin Univ., Madison, WI (United States)

    1997-12-31

    The neutron longitudinal and transverse asymmetries A{sub 1}{sup n} and A{sub 2}{sup n} have been extracted from deep inelastic scattering of polarized electrons by a polarized {sup 3}He target at incident energies of 19.42, 22.66 and 25.51 GeV. The measurement allows for the determination of the neutron spin structure functions g{sub 1}{sup n}(x, Q{sup 2}) and g{sub 2}{sup n} (x, Q{sup 2}) over the range 0.03 < x < 0.6 at an average Q{sup 2} of 2 (GeV/c){sup 2}. The data are used for the evaluation of the Ellis-Jaffe and Bjorken sum rules. The neutron spin structure function g{sub 1}{sup n} (x, Q{sup 2}) is small and negative within the range of our measurement, yielding an integral {integral}{sub 0.03}{sup 0.6} g{sub 1}{sup n} (x)dx - 0.028 {+-} 0.006 (stat) {+-} 0.006 (syst). Assuming Regge behavior at low x, we extract {Gamma}{sub 1}{sup n} {integral}{sub 0}{sup 1} g{sub 1}{sup n} (x)dx = - 0.031 {+-} 0.006 (stat) {+-} 0.009 (syst). Combined with previous proton integral results from SLAC experiment E143, we find {Gamma}{sub 1}{sup p} - {Gamma}{sub 1}{sup n} = 0.160 {+-} 0.015 in agreement with the Bjorken sum rule prediction {Gamma}{sub 1}{sup p} - {Gamma}{sub 1}{sup p} 0.176 {+-} 0.008 at a Q{sup 2} value of 3 (GeV/c){sup 2} evaluated using {alpha}{sub s} 0.32 {+-} 0.05. (authors). 109 refs.

  16. Production of charm and beauty in e+e- with polarized electron beam

    International Nuclear Information System (INIS)

    Su, D.

    1995-09-01

    The test of the Standard Model through the measurements of Z 0 to fermion couplings can benefit from much enhanced sensitivity by using longitudinally polarized electron beams. This report reviews preliminary electroweak measurements from SLD on heavy quark production at the Z 0 , using 150,000 hadronic Z 0 decays accumulated during the 93-95 runs with high electron beam polarization. The parity violating parameters A b and A c of the Zbb and Zcc couplings are measured directly from the left-right forward-backward asymmetries. A measurement of R b with a lifetime double tag and a summary of the preliminary measurement of A LR from the 93-95 SLD data are also included in this report

  17. Classical and quantum theories of the polarization bremsstrahlung in the local electron density model

    International Nuclear Information System (INIS)

    Astapenko, V.A.; Bureeva, L.A.; Lisitsa, V.S.

    2000-01-01

    Classical and quantum theories of polarization bremsstrahlung in a statistical (Thomas-Fermi) potential of complex atoms and ions are developed. The basic assumptions of the theories correspond to the approximations employed earlier in classical and quantum calculations of ordinary bremsstrahlung in a static potential. This makes it possible to study on a unified basis the contribution of both channels in the radiation taking account of their interference. The classical model makes it possible to obtain simple universal formulas for the spectral characteristics of the radiation. The theory is applied to electrons with moderate energies, which are characteristic for plasma applications, specifically, radiation from electrons on the argon-like ion KII at frequencies close to its ionization potential. The computational results show the importance of taking account of the polarization channel of the radiation for plasma with heavy ions

  18. Micromagnetism in (001) magnetite by spin-polarized low-energy electron microscopy

    International Nuclear Information System (INIS)

    Figuera, Juan de la; Vergara, Lucía; N'Diaye, Alpha T.; Quesada, Adrian; Schmid, Andreas K.

    2013-01-01

    Spin-polarized low-energy electron microscopy was used to image a magnetite crystal with (001) surface orientation. Sets of spin-dependent images of magnetic domain patterns observed in this surface were used to map the direction of the magnetization vector with high spatial and angular resolution. We find that domains are magnetized along the surface directions, and domain wall structures include 90° and 180° walls. A type of unusually curved domain walls are interpreted as Néel-capped surface terminations of 180° Bloch walls. - Highlights: ► The (001) surface of magnetite is imaged by spin-polarized low-energy electron microscopy. ► The magnetic domain microstructure is resolved. ► Magnetic easy axes in this surface are found to be along directions. ► Magnetic domain wall structures include wide Néel-caps

  19. Micromagnetism in (001) magnetite by spin-polarized low-energy electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Figuera, Juan de la, E-mail: juan.delafiguera@iqfr.csic.es [Instituto de Química-Física “Rocasolano”, CSIC, Madrid 28006 (Spain); Vergara, Lucía [Instituto de Química-Física “Rocasolano”, CSIC, Madrid 28006 (Spain); N' Diaye, Alpha T. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Quesada, Adrian [Instituto de Cerámica y Vidrio, CSIC, Calle Kelsen 5, 28049, Madrid (Spain); Schmid, Andreas K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2013-07-15

    Spin-polarized low-energy electron microscopy was used to image a magnetite crystal with (001) surface orientation. Sets of spin-dependent images of magnetic domain patterns observed in this surface were used to map the direction of the magnetization vector with high spatial and angular resolution. We find that domains are magnetized along the surface <110> directions, and domain wall structures include 90° and 180° walls. A type of unusually curved domain walls are interpreted as Néel-capped surface terminations of 180° Bloch walls. - Highlights: ► The (001) surface of magnetite is imaged by spin-polarized low-energy electron microscopy. ► The magnetic domain microstructure is resolved. ► Magnetic easy axes in this surface are found to be along <110> directions. ► Magnetic domain wall structures include wide Néel-caps.

  20. Stretchable, Twisted Conductive Microtubules for Wearable Computing, Robotics, Electronics, and Healthcare

    OpenAIRE

    Thanh Nho Do; Yon Visell

    2017-01-01

    Stretchable and flexible multifunctional electronic components, including sensors and actuators, have received increasing attention in robotics, electronics, wearable, and healthcare applications. Despite advances, it has remained challenging to design analogs of many electronic components to be highly stretchable, to be efficient to fabricate, and to provide control over electronic performance. Here, we describe highly elastic sensors and interconnects formed from thin, twisted conductive mi...

  1. Simulating of spectrum and polarization characteristics of ultrarelativistic - electron coherent radiation in a diamond crystal

    International Nuclear Information System (INIS)

    Truten', V.I.

    2000-01-01

    On the base of the computer simulation method it is shown that new maxima of ultrarelativistic electron radiation spectrum in aligned crystals may appear in a low-frequency region together with the ordinary coherent maxima. The appearance of these maxima is the result of the high-index-crystal-plane effect. These maxima manifest themselves in spectral as well as in polarization features of radiation [ru

  2. Relaxation of electron energy in the coupled polar semiconductor quantum dots

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Khás, Zdeněk; Zdeněk, Petr; Čerňanský, Marian; Lin, C. Y.

    2001-01-01

    Roč. 49, 10-11 (2001), s. 1011-1018 ISSN 0015-8208 R&D Projects: GA AV ČR IAA1010113; GA MŠk OC P5.20 Institutional research plan: CEZ:AV0Z1010914 Keywords : coupled polar semiconductor quantum dots * electron energy relaxation Subject RIV: BE - The oretical Physics Impact factor: 1.043, year: 2001

  3. Electronically conductive polymer binder for lithium-ion battery electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2017-08-01

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  4. Electronically conductive polymer binder for lithium-ion battery electrode

    Science.gov (United States)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2015-07-07

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  5. Investigating Pulsed Discharge Polarity Employing Solid-State Pulsed Power Electronics

    DEFF Research Database (Denmark)

    Davari, Pooya; Zare, Firuz; Blaabjerg, Frede

    2015-01-01

    condition plays an important role in maintaining the desired performance. Investigating the system parameters contributed to the generated pulses is an effective way in improving the system performance further ahead. One of these parameters is discharge polarity which has received less attention....... In this paper, effects of applied voltage polarity on plasma discharge have been investigated in different mediums at atmospheric pressure. The experiments have been conducted based on high voltage DC power supply and high voltage pulse generator for point-to-point and point-to-plane geometries. Furthermore......, the influence of electric field distribution is analyzed using Finite Element simulations for the employed geometries and mediums. The experimental and simulation results have verified the important role of the applied voltage polarity, employed geometry and medium of the system on plasma generation....

  6. Understanding the electron-phonon interaction in polar crystals: Perspective presented by the vibronic theory

    Science.gov (United States)

    Pishtshev, A.; Kristoffel, N.

    2017-05-01

    We outline our novel results relating to the physics of the electron-TO-phonon (el-TO-ph) interaction in a polar crystal. We explained why the el-TO-ph interaction becomes effectively strong in a ferroelectric, and showed how the electron density redistribution establishes favorable conditions for soft-behavior of the long-wavelength branch of the active TO vibration. In the context of the vibronic theory it has been demonstrated that at the macroscopic level the interaction of electrons with the polar zone-centre TO phonons can be associated with the internal long-range dipole forces. Also we elucidated a methodological issue of how local field effects are incorporated within the vibronic theory. These result provided not only substantial support for the vibronic mechanism of ferroelectricity but also presented direct evidence of equivalence between vibronic and the other lattice dynamics models. The corresponding comparison allowed us to introduce the original parametrization for constants of the vibronic interaction in terms of key material constants. The applicability of the suggested formula has been tested for a wide class of polar materials.

  7. Investigation of resonant polarization radiation of relativistic electrons in gratings at small angles

    International Nuclear Information System (INIS)

    Aleinik, A.N.; Chefonov, O.V.; Kalinin, B.N.; Naumenko, G.A.; Potylitsyn, A.P.; Saruev, G.A.; Sharafutdinov, A.F.

    2003-01-01

    The resonant optical polarization radiation (ROPR) in the Smith-Purcell geometry and the one from the inclined grating at the Tomsk synchrotron and 6-MeV microtron have been investigated. The polarization radiation was observed at 4.2 deg. from the 200 MeV electron beam and at 5 deg. from the 6.2 MeV electron beam. Two methods of measurement of ROPR maxima in these two cases have been used. In the first case (the experiment on synchrotron) we have fixed the wavelength of radiation using an optical filter; the orientation dependence of this radiation was measured. In this dependence we have observed two peaks of radiation from electrons in gold foil grating of 0.1 mm period. The first large peak is a zeroth order peak in direction of specular reflection, and the second one is the first-order peak of resonant polarization radiation. In the experiment on microtron the spectra of ROPR from aluminum foil strip grating of 0.2 mm period in the Smith-Purcell geometry were measured, and the peak of the first-order Smith-Purcell radiation in these spectra was observed. The comparison of data obtained with the simulation results has been performed

  8. Effect of on-site Coulomb interaction on electronic and transport properties of 100% spin polarized CoMnVAs

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Tahir Mohiuddin; Gupta, Dinesh C., E-mail: sosfizix@gmail.com

    2017-08-01

    Highlights: • 100% spin-polarized material important for the application in spintronics. • Ferromagnetic nature. • Ductile in nature for mechanical applications. • Semiconducting behavior with a band gap of 0.55 eV in minority spin channel. • Possibly efficient thermoelectric material. - Abstract: The structural, electronic, magnetic and transport properties of a new quaternary Heusler alloy CoMnVAs have been investigated by employing generalized gradient approximation (GGA), modified Becke-Johnson (mBJ) and GGA with Hubbard U correction (GGA + U). The alloy is energetically more stable in ferromagnetic Y{sub 1} type structure. Elastic parameters reveal high anisotropy and ductile nature of the material. CoMnVAs shows half-metallic ferromagnet character with 100% spin polarization at Fermi level with band gap of 0.55 eV in the minority spin state. The alloy also possesses high electrical conductivity and Seebeck coefficients with 15 μVK{sup −1} at room temperature, achieving a figure of merit of 0.65 at high temperatures. The high degree of ductility, 100% spin polarization and large Seebeck coefficient, makes it an attractive candidate to be used in spin voltage generators and thermoelectric materials.

  9. IMF B(y) and day-night conductivity effects in the expanding polar cap convection model

    Science.gov (United States)

    Moses, J. J.; Gorney, D. J.; Siscoe, G. L.; Crooker, N. U.

    1987-01-01

    During southward B(z) periods the open field line region in the ionosphere (polar cap) expands due to increased dayside merging. Ionospheric plasma flow patterns result which can be classified by the sign of the interplanetary magnetic field (IMF) B(y) component. In this paper, a time-dependent ionospheric convection model is constructed to simulate these flows. The model consists of a spiral boundary with a gap in it. The sign of the IMF B(y) component determines the geometry of the gap. A potential is applied across the gap and distributed around the boundary. A flow results which enters the polar cap through the gap and uniformly pushes the boundary outward. Results of the model show that B(y) effects are greatest near the gap and virtually unnoticeable on the nightside of the polar cap. Adding a day-night ionospheric conductivity gradient concentrates the polar cap electric field toward dawn. The resulting flow curvature gives a sunward component that is independent of B(y). These patterns are shown to be consistent with published observations.

  10. Laser sources for polarized electron beams in cw and pulsed accelerators

    CERN Document Server

    Hatziefremidis, A; Fraser, D; Avramopoulos, H

    1999-01-01

    We report the characterization of a high power, high repetition rate, mode-locked laser system to be used in continuous wave and pulsed electron accelerators for the generation of polarized electron beams. The system comprises of an external cavity diode laser and a harmonically mode-locked Ti:Sapphire oscillator and it can provide up to 3.4 W average power, with a corresponding pulse energy exceeding 1 nJ at 2856 MHz repetition rate. The system is tunable between 770-785 and 815-835 nm with two sets of diodes for the external cavity diode laser. (author)

  11. Complete snake and rotator schemes for spin polarization in proton rings and large electron rings

    International Nuclear Information System (INIS)

    Steffen, K.

    1983-11-01

    In order to maintain spin polarization in proton rings and large electron rings, some generalized Siberian Snake scheme may be required to make the spin tune almost independent of energy and thus avoid depolarizing resonances. The practical problem of finding such schemes that, at reasonable technical effort, can be made to work over large energy ranges has been addressed before and is here revisited in a broadened view and with added new suggestions. As a result, possibly optimum schemes for electron rings (LEP) and proton rings are described. In the proposed LEP scheme, spin rotation is devised such that, at the interaction points, the spin direction is longitudinal as required for experiments. (orig.)

  12. Measurement of Tensor Polarization in Elastic Electron-Deuteron Scattering at Large Momentum Transfer

    International Nuclear Information System (INIS)

    David Abbott; Abdellah Ahmidouch; Heinz Anklin; Francois Arvieux; Jacques Ball; Beedoe, S.; Elizabeth Beise; Louis Bimbot; Werner Boeglin; Herbert Breuer; Roger Carlini; Nicholas Chant; Samuel Danagoulian; Dow, K.; Jean-Eric Ducret; James Dunne; Lars Ewell; Laurent Eyraud; Christophe Furget; Michel Garcon; Ronald Gilman; Charles Glashausser; Paul Gueye; Kenneth Gustafsson; Kawtar Hafidi; Adrian Honegger; Juerg Jourdan; Serge Kox; Gerfried Kumbartzki; Lu, L.; Allison Lung; David Mack; Pete Markowitz; Justin McIntyre; David Meekins; Fernand Merchez; Joseph Mitchell; Mohring, R.; Sekazi Mtingwa; Hamlet Mkrtchyan; David Pitz; Liming Qin; Ronald Ransome; Jean-Sebastien Real; Philip Roos; Paul Rutt; Reyad Sawafta; Samuel Stepanyan; Raphael Tieulent; Egle Tomasi-Gustafsson; William Turchinetz; Kelley Vansyoc; Jochen Volmer; Eric Voutier; William Vulcan; Claude Williamson; Stephen Wood; Chen Yan; Jie Zhao; Wenxia Zhao

    2000-01-01

    Tensor polarization observables (t20, t21 and t22) have been measured in elastic electron-deuteron scattering for six values of momentum transfer between 0.66 and 1.7 (GeV/c) 2 . The experiment was performed at the Jefferson Laboratory in Hall C using the electron HMS Spectrometer, a specially designed deuteron magnetic channel and the recoil deuteron polarimeter POLDER. The new data determine to much larger Q 2 the deuteron charge form factors G C and G Q . They are in good agreement with relativistic calculations and disagree with pQCD predictions

  13. Tailoring of polarization in electron blocking layer for electron confinement and hole injection in ultraviolet light-emitting diodes

    International Nuclear Information System (INIS)

    Lu, Yu-Hsuan; Pilkuhn, Manfred H.; Fu, Yi-Keng; Chu, Mu-Tao; Huang, Shyh-Jer; Su, Yan-Kuin; Wang, Kang L.

    2014-01-01

    The influence of the AlGaN electron blocking layer (EBL) with graded aluminum composition on electron confinement and hole injection in AlGaN-based ultraviolet light-emitting diodes (LEDs) are investigated. The light output power of LED with graded AlGaN EBL was markedly improved, comparing to LED with conventional EBL. In experimental results, a high increment of 86.7% can be obtained in light output power. Simulation analysis shows that via proper modification of the barrier profile from the last barrier of the active region to EBL, not only the elimination of electron overflow to p-type layer can be achieved but also the hole injection into the active region can be enhanced, compared to a conventional LED structure. The dominant factor to the performance improvement is shown to be the modulation of polarization field by the graded Al composition in EBL

  14. Tailoring of polarization in electron blocking layer for electron confinement and hole injection in ultraviolet light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yu-Hsuan; Pilkuhn, Manfred H. [Department of Electrical Engineering, Institute of Microelectronics and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Fu, Yi-Keng; Chu, Mu-Tao [Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan (China); Huang, Shyh-Jer, E-mail: yksu@mail.ncku.edu.tw, E-mail: totaljer48@gmail.com [Department of Electrical Engineering, Institute of Microelectronics and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, California 90095 (United States); Su, Yan-Kuin, E-mail: yksu@mail.ncku.edu.tw, E-mail: totaljer48@gmail.com [Department of Electrical Engineering, Institute of Microelectronics and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Department of Electronic Engineering, Kun-Shan University, Tainan 71003, Taiwan (China); Wang, Kang L. [Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, California 90095 (United States)

    2014-03-21

    The influence of the AlGaN electron blocking layer (EBL) with graded aluminum composition on electron confinement and hole injection in AlGaN-based ultraviolet light-emitting diodes (LEDs) are investigated. The light output power of LED with graded AlGaN EBL was markedly improved, comparing to LED with conventional EBL. In experimental results, a high increment of 86.7% can be obtained in light output power. Simulation analysis shows that via proper modification of the barrier profile from the last barrier of the active region to EBL, not only the elimination of electron overflow to p-type layer can be achieved but also the hole injection into the active region can be enhanced, compared to a conventional LED structure. The dominant factor to the performance improvement is shown to be the modulation of polarization field by the graded Al composition in EBL.

  15. Dynamical nuclear spin polarization induced by electronic current through double quantum dots

    International Nuclear Information System (INIS)

    Lopez-Monis, Carlos; Platero, Gloria; Inarrea, Jesus

    2011-01-01

    We analyse electron-spin relaxation in electronic transport through coherently coupled double quantum dots (DQDs) in the spin blockade regime. In particular, we focus on hyperfine (HF) interaction as the spin-relaxation mechanism. We pay special attention to the effect of the dynamical nuclear spin polarization induced by the electronic current on the nuclear environment. We discuss the behaviour of the electronic current and the induced nuclear spin polarization versus an external magnetic field for different HF coupling intensities and interdot tunnelling strengths. We take into account, for each magnetic field, all HF-mediated spin-relaxation processes coming from different opposite spin level approaches. We find that the current as a function of the external magnetic field shows a peak or a dip and that the transition from a current dip to a current peak behaviour is obtained by decreasing the HF coupling or by increasing the interdot tunnelling strength. We give a physical picture in terms of the interplay between the electrons tunnelling out of the DQD and the spin-flip processes due to the nuclear environment.

  16. Electron-impact excitation rate-coefficients and polarization of subsequent emission for Ar"+ ion

    International Nuclear Information System (INIS)

    Dipti; Srivastava, Rajesh

    2016-01-01

    Electron impact excitation in Ar"+ ions has been studied by using fully relativistic distorted wave theory. Calculations are performed to obtain the excitation cross-sections and rate-coefficients for the transitions from the ground state 3p"5 (J=3/2) to fine-structure levels of excited states 3p"44s, 3p"44p, 3p"45s, 3p"45p, 3p"43d and 3p"44d. Polarization of the radiation following the excitation has been calculated using the obtained magnetic sub-level cross-sections. Comparison of the present rate-coefficients is also done with the previously reported theoretical results for some unresolved fine structure transitions. - Highlights: • Fully relativistic distorted wave theory has been used to study the excitation of fine-structure states of Ar"+. • We have calculated electron-impact excitation cross-sections for the wide range of incident electron energies. • Electron impact excitation rate-coefficients are calculated as a function of electron temperature. • Polarization of photons emitted following the decay of the excited fine-structure states are also reported.

  17. Thermal computations for electronics conductive, radiative, and convective air cooling

    CERN Document Server

    Ellison, Gordon

    2010-01-01

    IntroductionPrimary mechanisms of heat flowConductionApplication example: Silicon chip resistance calculationConvectionApplication example: Chassis panel cooled by natural convectionRadiationApplication example: Chassis panel cooled only by radiation 7Illustrative example: Simple thermal network model for a heat sinked power transistorIllustrative example: Thermal network circuit for a printed circuit boardCompact component modelsIllustrative example: Pressure and thermal circuits for a forced air cooled enclosureIllustrative example: A single chip package on a printed circuit board-the proble

  18. A Spin-Light Polarimeter for Multi-GeV Longitudinally Polarized Electron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Mohanmurthy, Prajwal [Mississippi State University, Starkville, MS (United States); Dutta, Dipangkar [Mississippi State University, Starkville, MS (United States) and Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2014-02-01

    The physics program at the upgraded Jefferson Lab (JLab) and the physics program envisioned for the proposed electron-ion collider (EIC) include large efforts to search for interactions beyond the Standard Model (SM) using parity violation in electroweak interactions. These experiments require precision electron polarimetry with an uncertainty of < 0.5 %. The spin dependent Synchrotron radiation, called "spin-light," can be used to monitor the electron beam polarization. In this article we develop a conceptual design for a "spin-light" polarimeter that can be used at a high intensity, multi-GeV electron accelerator. We have also built a Geant4 based simulation for a prototype device and report some of the results from these simulations.

  19. Probing the 4p electron-spin polarization in NiO

    International Nuclear Information System (INIS)

    Neubeck, W.; Vettier, C.; Bergevin, F. de; Yakhou, F.; Mannix, D.; Bengone, O.; Alouani, M.; Barbier, A.

    2001-01-01

    K-edge resonant x-ray magnetic scattering experiments have been performed on antiferromagnetic NiO. The observation of two resonances at the K edge allows the construction of models to compare the electronic properties of NiO and the observed resonant magnetic x-ray scattering. From the polarization analysis of the scattered beam, a quadrupolar transition (1s-3d) and a dipolar transition (1s-4p) are identified. While the quadrupolar transition can be modeled using an atomic picture for the 3d electrons, the dipolar transition is associated to a broadband structure of p electrons and its energy profile is compared to electronic band-structure calculations

  20. Soft capacitor fibers using conductive polymers for electronic textiles

    Science.gov (United States)

    Gu, Jian Feng; Gorgutsa, Stephan; Skorobogatiy, Maksim

    2010-11-01

    A novel, highly flexible, conductive polymer-based fiber with high electric capacitance is reported. In its cross section the fiber features a periodic sequence of hundreds of conductive and isolating plastic layers positioned around metallic electrodes. The fiber is fabricated using the fiber drawing method, where a multi-material macroscopic preform is drawn into a sub-millimeter capacitor fiber in a single fabrication step. Several kilometers of fibers can be obtained from a single preform with fiber diameters ranging between 500 and 1000 µm. A typical measured capacitance of our fibers is 60-100 nF m-1 and it is independent of the fiber diameter. Analysis of the fiber frequency response shows that in its simplest interrogation mode the capacitor fiber has a transverse resistance of 5 kΩ m L-1, which is inversely proportional to the fiber length L and is independent of the fiber diameter. Softness of the fiber materials, the absence of liquid electrolyte in the fiber structure, ease of scalability to large production volumes and high capacitance of our fibers make them interesting for various smart textile applications ranging from distributed sensing to energy storage.

  1. Soft capacitor fibers using conductive polymers for electronic textiles

    International Nuclear Information System (INIS)

    Gu, Jian Feng; Gorgutsa, Stephan; Skorobogatiy, Maksim

    2010-01-01

    A novel, highly flexible, conductive polymer-based fiber with high electric capacitance is reported. In its cross section the fiber features a periodic sequence of hundreds of conductive and isolating plastic layers positioned around metallic electrodes. The fiber is fabricated using the fiber drawing method, where a multi-material macroscopic preform is drawn into a sub-millimeter capacitor fiber in a single fabrication step. Several kilometers of fibers can be obtained from a single preform with fiber diameters ranging between 500 and 1000 µm. A typical measured capacitance of our fibers is 60–100 nF m −1 and it is independent of the fiber diameter. Analysis of the fiber frequency response shows that in its simplest interrogation mode the capacitor fiber has a transverse resistance of 5 kΩ m L −1 , which is inversely proportional to the fiber length L and is independent of the fiber diameter. Softness of the fiber materials, the absence of liquid electrolyte in the fiber structure, ease of scalability to large production volumes and high capacitance of our fibers make them interesting for various smart textile applications ranging from distributed sensing to energy storage

  2. Effect of electrical conductivity on the polarization behaviour and pyroelectric, piezoelectric property prediction of 0-3 ferroelectric composites

    International Nuclear Information System (INIS)

    Wei Nian; Zhang Duanming; Yang Fengxia; Han Xiangyun; Zhong Zhicheng; Zheng Keyu

    2007-01-01

    We have investigated the effect of electrical conductivity of the constituents on the poling behaviour of the ceramic inclusions in 0-3 ferroelectric composites which comprise a dilute suspension of spherical particles uniformly distributed in the matrix material. A new model for the pyroelectric and piezoelectric properties in terms of the poling conditions (poling field and poling time) has been developed to include electrical conductivity. Simulated results show that conductivity plays an important role in the poling process. Properly increasing the conductivity of the matrix σ m can enhance the polarization in the ceramic inclusion of the composite P i , thereby making the poling of the composite more efficient. In contrast, higher conductivity of the ceramic inclusion σ i results in lower polarization P i , which is unfavourable to the poling of the composite. These results provide insights into the observed behaviour of 0-3 composites. The model predicts the pyroelectric and piezoelectric properties under different poling conditions, which agree well with the corresponding experimental data

  3. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    Energy Technology Data Exchange (ETDEWEB)

    Abeyratne, S; Ahmed, S; Barber, D; Bisognano, J; Bogacz, A; Castilla, A; Chevtsov, P; Corneliussen, S; Deconinck, W; Degtiarenko, P; Delayen, J; Derbenev, Ya; DeSilva, S; Douglas, D; Dudnikov, V; Ent, R; Erdelyi, B; Evtushenko, P; Fujii, Yu; Filatov, Yury; Gaskell, D; Geng, R; Guzey, V; Horn, T; Hutton, A; Hyde, C; Johnson, R; Kim, Y; Klein, F; Kondratenko, A; Kondratenko, M; Krafft, G; Li, R; Lin, F; Manikonda, S; Marhauser, F; McKeown, R; Morozov, V; Dadel-Turonski, P; Nissen, E; Ostroumov, P; Pivi, M; Pilat, F; Poelker, M; Prokudin, A; Rimmer, R; Satogata, T; Sayed, H; Spata, M; Sullivan, M; Tennant, C; Terzic, B; Tiefenback, M; Wang, M; Wang, S; Weiss, C; Yunn, B

    2012-08-01

    Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectively utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very

  4. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    International Nuclear Information System (INIS)

    Abeyratne, S.; Accardi, A.; Ahmed, S.; Barber, D.; Bisognano, J.; Bogacz, A.; Castilla, A.; Chevtsov, P.; Corneliussen, S.; Deconinck, W.; Degtiarenko, P.; Delayen, J.; Derbenev, Ya.; DeSilva, S.; Douglas, D.; Dudnikov, V.; Ent, R.; Erdelyi, B.; Evtushenko, P.; Fujii, Yu; Filatov, Yury; Gaskell, D.; Geng, R.; Guzey, V.; Horn, T.; Hutton, A.; Hyde, C.; Johnson, R.; Kim, Y.; Klein, F.; Kondratenko, A.; Kondratenko, M.; Krafft, G.; Li, R.; Lin, F.; Manikonda, S.; Marhauser, F.; McKeown, R.; Morozov, V.; Dadel-Turonski, P.; Nissen, E.; Ostroumov, P.; Pivi, M.; Pilat, F.; Poelker, M.; Prokudin, A.; Rimmer, R.; Satogata, T.; Sayed, H.; Spata, M.; Sullivan, M.; Tennant, C.; Terzic, B.; Tiefenback, M.; Wang, H.; Wang, S.; Weiss, C.; Yunn, B.; Zhang, Y.

    2012-01-01

    Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectively utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very

  5. Electronic device for measuring the polarization parameter in the π-p → π0n charge exchange reaction on a polarized proton target

    International Nuclear Information System (INIS)

    Brehin, S.

    1967-12-01

    An electronic apparatus has been constructed to measure the polarization parameter P 0 (t) in π - p → π 0 n charge exchange scattering at 5.9 GeV/c and 11,2 GeV/c on polarized proton target. This device insures triggering of a heavy plate spark chamber, allowing visualisation of γ rays from the π 0 decays when the associated neutron offers suitable characteristics in direction and energy. The neutron is detected by an array of 32 counters and his energy is measured by a time of flight method. Electronic circuits of this apparatus are described as test and calibration methods used. (author) [fr

  6. ''Electron Conic'' Signatures observed in the nightside auroral zone and over the polar cap

    International Nuclear Information System (INIS)

    Menietti, J.D.; Burch, J.L.

    1985-01-01

    A preliminary search of the Dynamics Explorer 1 high-altitude plasma instrument data base has yielded examples of ''electron conic'' signatures. The three example passes show an association with regions of downward electron acceleration and upward ion beams, but this is not true of all the electron conic events. The electron conic signatures are clearly discernible on energy-flux-versus-time color spectrograms as pairs of discrete vertical bands which are symmetric about a pitch angle of approximately 180 0 . One of the examples is a polar cap pass with electron conic signatures observed at invariant latitudes from 84 0 to 75 0 . The other two cases are nightside auroral zone passes in which the regions of detectable electron conics are spatially more confined, covering only about 1 0 in invariant latitude. The conic signatures have been found at energies that range from 50 eV 0 is larger than expected for a loss cone feature. If the electrons conserve the first adiabatic invariant in a dipole magnetic field, and in some cases a parallel electric field, the mirroring altitude varies between about 500 km and 8000 km, which is above the atmospheric loss region. For this reason, and in analogy with the formation of ion conics, we suggest that the conic signatures are produced by heating of the electrons perpendicular to the magnetic field

  7. Strong electron bidirectional anisotropies in the distant tail: ISEE 3 observations of polar rain

    International Nuclear Information System (INIS)

    Baker, D.N.; Bame, S.J.; Feldman, W.C.; Gosling, J.T.; Zwickl, R.D.; Slavin, J.A.; Smith, E.J.

    1986-01-01

    A detailed observational treatment of bidirectional electrons (--50 to 50 eV)in the distant magnetotail (rapprox. >100 R/sub E/) is presented. It is found that electrons in this energy range commonly exhibit strong, field-aligned anisotropies in the tail lobes. Because of large tail motions, the ISEE 3 data provide extensive sampling of both the north and south lobes in rapid succession. These data demonstrate directly the strong asymmetries that exist between the north and south lobes at any one time. The bidirectional fluxes are found to occur predominantly in the lobe directly connected to the sunward interplanetary magnetic field in the open magnetosphere model (north lobe for away sectors and south lobe for toward sectors). Electron anisotropy and magnetic field data are presented which show the transition from unidirectional (sheath) electron populations to bidirectional (lobe) populations. Thus we demonstrate the open nature of the distant magnetopause and show that the source of the higher-energy, bidirectional lobe electrons is the tailward directed electron heat flux population in the distant magnetosheath. Taken together, the present evidence suggests that the bidirectional electrons that we observe in the distant tail are closely related to the polar rain electrons observed previously at lower altitudes. Furthermore, these data provide strong evidence that the distant tail is composed largely of open magnetic field lines in contradistinction to some recently advanced models

  8. Self-consistent electronic structure of spin-polarized dilute magnetic semiconductor quantum wells

    International Nuclear Information System (INIS)

    Hong, S. P.; Yi, K. S.; Quinn, J. J.

    2000-01-01

    The electronic properties of spin-symmetry-broken dilute magnetic semiconductor quantum wells are investigated self-consistently at zero temperature. The spin-split subband structure and carrier concentration of modulation-doped quantum wells are examined in the presence of a strong magnetic field. The effects of exchange and correlations of electrons are included in a local-spin-density-functional approximation. We demonstrate that exchange correlation of electrons decreases the spin-split subband energy but enhances the carrier density in a spin-polarized quantum well. We also observe that as the magnetic field increases, the concentration of spin-down (majority) electrons increases but that of spin-up (minority) electrons decreases. The effect of orbital quantization on the in-plane motion of electrons is also examined and shows a sawtoothlike variation in subband electron concentrations as the magnetic-field intensity increases. The latter variation is attributed to the presence of ionized donors acting as the electron reservoir, which is partially responsible for the formation of the integer quantum Hall plateaus. (c) 2000 The American Physical Society

  9. Measurement of the longitudinal polarization of the HERA electron beam using crystals and the ZEUS luminosity monitor

    International Nuclear Information System (INIS)

    Piotrzkowski, K.

    1995-12-01

    A measurement of the longitudinal polarization of the electron beam at HERA utilizing coherent interactions of high energy photons in crystals is described. Modification of existing facilities would allow an independent polarization measurement and a verification of birefringence phenomena in crystals for 20-30 GeV photons. Relevant experimental issues and systematic uncertainties are also presented. (orig.)

  10. Dynamics of nonequilibrium conductivity of dielectrics with polaration properties controlled by in ection

    International Nuclear Information System (INIS)

    Arkhipov, V.I.; Rudenko, A.I.

    1979-01-01

    The effect of changes of radiation stimulation permittivity on nonequilibrium conductivity of dielectrics and high-resistance conductors in a radiation field has been studied theoretically. The plane-parallel sample under the constant voltage has been irradiated by penetrating radiation. The uniform radiation caused the transfer the current carriers from traps to the conduction band. The dependence of permittivity on charged traps concentration is shown to lead to negative nonequilibrium conductivity of high-resistance materials

  11. Polar observations of electron density distribution in the Earth’s magnetosphere. 2. Density profiles

    Directory of Open Access Journals (Sweden)

    H. Laakso

    2002-11-01

    Full Text Available Using spacecraft potential measurements of the Polar electric field experiment, we investigate electron density variations of key plasma regions within the magnetosphere, including the polar cap, cusp, trough, plasmapause, and auroral zone. The statistical results were presented in the first part of this study, and the present paper reports detailed structures revealed by individual satellite passes. The high-altitude (> 3 RE polar cap is generally one of the most tenuous regions in the magnetosphere, but surprisingly, the polar cap boundary does not appear as a steep density decline. At low altitudes (1 RE in summer, the polar densities are very high, several 100 cm-3 , and interestingly, the density peaks at the central polar cap. On the noonside of the polar cap, the cusp appears as a dense, 1–3° wide region. A typical cusp density above 4 RE distance is between several 10 cm-3 and a few 100 cm-3 . On some occasions the cusp is crossed multiple times in a single pass, simultaneously with the occurrence of IMF excursions, as the cusp can instantly shift its position under varying solar wind conditions, similar to the magnetopause. On the nightside, the auroral zone is not always detected as a simple density cavity. Cavities are observed but their locations, strengths, and sizes vary. Also, the electric field perturbations do not necessarily overlap with the cavities: there are cavities with no field disturbances, as well as electric field disturbances observed with no clear cavitation. In the inner magnetosphere, the density distributions clearly show that the plasmapause and trough densities are well correlated with geomagnetic activity. Data from individual orbits near noon and midnight demonstrate that at the beginning of geomagnetic disturbances, the retreat speed of the plasmapause can be one L-shell per hour, while during quiet intervals the plasmapause can expand anti-earthward at the same speed. For the trough region, it is found

  12. Determination of electron beam polarization using electron detector in Compton polarimeter with less than 1% statistical and systematic uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Amrendra [Mississippi State Univ., Mississippi State, MS (United States)

    2015-05-01

    The Q-weak experiment aims to measure the weak charge of proton with a precision of 4.2%. The proposed precision on weak charge required a 2.5% measurement of the parity violating asymmetry in elastic electron - proton scattering. Polarimetry was the largest experimental contribution to this uncertainty and a new Compton polarimeter was installed in Hall C at Jefferson Lab to make the goal achievable. In this polarimeter the electron beam collides with green laser light in a low gain Fabry-Perot Cavity; the scattered electrons are detected in 4 planes of a novel diamond micro strip detector while the back scattered photons are detected in lead tungstate crystals. This diamond micro-strip detector is the first such device to be used as a tracking detector in a nuclear and particle physics experiment. The diamond detectors are read out using custom built electronic modules that include a preamplifier, a pulse shaping amplifier and a discriminator for each detector micro-strip. We use field programmable gate array based general purpose logic modules for event selection and histogramming. Extensive Monte Carlo simulations and data acquisition simulations were performed to estimate the systematic uncertainties. Additionally, the Moller and Compton polarimeters were cross calibrated at low electron beam currents using a series of interleaved measurements. In this dissertation, we describe all the subsystems of the Compton polarimeter with emphasis on the electron detector. We focus on the FPGA based data acquisition system built by the author and the data analysis methods implemented by the author. The simulations of the data acquisition and the polarimeter that helped rigorously establish the systematic uncertainties of the polarimeter are also elaborated, resulting in the first sub 1% measurement of low energy (?1 GeV) electron beam polarization with a Compton electron detector. We have demonstrated that diamond based micro-strip detectors can be used for tracking in a

  13. Electric dipole excitation of {sup 208}Pb by polarized electron impact

    Energy Technology Data Exchange (ETDEWEB)

    Jakubassa-Amundsen, D.H. [University of Munich, Mathematics Institute, Munich (Germany); Ponomarev, V.Yu. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany)

    2016-03-15

    The cross sections and spin asymmetries for the excitation of 1{sup -} states in {sup 208}Pb by transversely polarized electrons with collision energy of 30-180MeV have been examined within the DWBA scattering formalism. As examples, we have considered a low-lying 1{sup -} state and also states belonging to the pygmy dipole and giant dipole resonances. The structure of these states and their corresponding transition charge and current densities have been taken from an RPA calculation within the quasiparticle phonon model. The complex-plane rotation method has been applied to achieve the convergence of the radial DWBA integrals for backward scattering. We have studied the behaviour of the cross sections and spin asymmetries as a function of electron energy and scattering angle. The role of the longitudinal and transversal contributions to the excitation has been thoroughly studied. We conclude that the spin asymmetry S, related to unpolarized outgoing electrons, is mostly well below 1% even at the backward scattering angles and its measurement provides a challenge for future experiments with polarized electrons. (orig.)

  14. Transparent conducting oxide top contacts for organic electronics

    KAUST Repository

    Franklin, Joseph B.

    2014-01-01

    A versatile method for the deposition of transparent conducting oxide (TCO) layers directly onto conjugated polymer thin film substrates is presented. Using pulsed laser deposition (PLD) we identify a narrow window of growth conditions that permit the deposition of highly transparent, low sheet resistance aluminium-doped zinc oxide (AZO) without degradation of the polymer film. Deposition on conjugated polymers mandates the use of low growth temperatures (<200°C), here we deposit AZO onto poly-3-hexylthiophene (P3HT) thin films at 150°C, and investigate the microstructural and electrical properties of the AZO as the oxygen pressure in the PLD chamber is varied (5-75 mTorr). The low oxygen pressure conditions previously optimized for AZO deposition on rigid substrates are shown to be unsuitable, resulting in catastrophic damage of the polymer films. By increasing the oxygen pressure, thus reducing the energy of the ablated species, we identify conditions that allow direct deposition of continuous, transparent AZO films without P3HT degradation. We find that uptake of oxygen into the AZO films reduces the intrinsic charge carriers and AZO films with a measured sheet resistance of approximately 500 Ω □-1 can be prepared. To significantly reduce this value we identify a novel process in which AZO is deposited over a range of oxygen pressures-enabling the deposition of highly transparent AZO with sheet resistances below 50 Ω □-1 directly onto P3HT. We propose these low resistivity films are widely applicable as transparent top-contacts in a range of optoelectronic devices and highlight this by demonstrating the operation of a semi-transparent photovoltaic device. © 2014 The Royal Society of Chemistry. 2014.

  15. Nonequilibrium electron-vibration coupling and conductance fluctuations in a C60 junction

    DEFF Research Database (Denmark)

    Ulstrup, Søren; Frederiksen, Thomas; Brandbyge, Mads

    2012-01-01

    displacement. Combined with a vibrational heating mechanism we construct a model from our results that explain the polarity-dependent two-level conductance fluctuations observed in recent scanning tunneling microscopy (STM) experiments [N. Ne´el et al., Nano Lett. 11, 3593 (2011)]. These findings highlight...

  16. Electron nonelastic scattering by confined and interface polar optical phonons in a modulation-doped AlGaAs/GaAs/AlGaAs quantum well

    CERN Document Server

    Pozela, K

    2001-01-01

    The calculations of electron scattering rates by polar optical (PO) phonons in an AlGaAs/GaAs/AlGaAs quantum well (QW) with a different width and doping level are performed. The electron-PO-phonon scattering mechanisms which are responsible for the alternate dependence of electron mobility on a QW width, as well as for the decrease of conductivity in the QW with increasing electron concentration are determined. It is shown that the degeneration of electron gas decreases the electron scattering rate by PO-phonon emission and increases the scattering rate by phonon absorption. The competition between the decrease of the intrasubband scattering and the increase of the intersubband scattering by PO-phonon absorption is responsible for the alternate changes of the mobility with a QW width

  17. Continuous wave protocol for simultaneous polarization and optical detection of P1-center electron spin resonance

    Science.gov (United States)

    Kamp, E. J.; Carvajal, B.; Samarth, N.

    2018-01-01

    The ready optical detection and manipulation of bright nitrogen vacancy center spins in diamond plays a key role in contemporary quantum information science and quantum metrology. Other optically dark defects such as substitutional nitrogen atoms (`P1 centers') could also become potentially useful in this context if they could be as easily optically detected and manipulated. We develop a relatively straightforward continuous wave protocol that takes advantage of the dipolar coupling between nitrogen vacancy and P1 centers in type 1b diamond to detect and polarize the dark P1 spins. By combining mutual spin flip transitions with radio frequency driving, we demonstrate the simultaneous optical polarization and detection of the electron spin resonance of the P1 center. This technique should be applicable to detecting and manipulating a broad range of dark spin populations that couple to the nitrogen vacancy center via dipolar fields, allowing for quantum metrology using these spin populations.

  18. Importance of conduction electron correlation in a Kondo lattice, Ce₂CoSi₃.

    Science.gov (United States)

    Patil, Swapnil; Pandey, Sudhir K; Medicherla, V R R; Singh, R S; Bindu, R; Sampathkumaran, E V; Maiti, Kalobaran

    2010-06-30

    Kondo systems are usually described by the interaction of the correlation induced local moments with the highly itinerant conduction electrons. Here, we study the role of electron correlations among conduction electrons in the electronic structure of a Kondo lattice compound, Ce₂CoSi₃, using high resolution photoemission spectroscopy and ab initio band structure calculations, where Co 3d electrons contribute in the conduction band. High energy resolution employed in the measurements helped to reveal the signatures of Ce 4f states derived Kondo resonance features at the Fermi level and the dominance of Co 3d contributions at higher binding energies in the conduction band. The lineshape of the experimental Co 3d band is found to be significantly different from that obtained from the band structure calculations within the local density approximations, LDA. Consideration of electron-electron Coulomb repulsion, U, among Co 3d electrons within the LDA + U method leads to a better representation of experimental results. The signature of an electron correlation induced satellite feature is also observed in the Co 2p core level spectrum. These results clearly demonstrate the importance of the electron correlation among conduction electrons in deriving the microscopic description of such Kondo systems.

  19. Contribution of vitamin K1 to the electron spin polarization in spinach photosystem I

    International Nuclear Information System (INIS)

    Rustandi, R.R.; Snyder, S.W.; Feezel, L.L.; Michalski, T.J.; Norris, J.R.; Thurnauer, M.C.; Biggins, J.

    1990-01-01

    The electron spin polarized (ESP) electron paramagnetic resonance (EPR) signal observed in spinach photosystem I (PSI) particles was examined in preparations depleted of vitamin K1 by solvent extraction and following biological reconstitution by the quinone. The ESP EPR signal was not detected in the solvent-extracted PSI sample but was restored upon reconstitution with either protonated or deuterated vitamin K1 under conditions that also restored electron transfer to the terminal PSI acceptors. Reconstitution using deuterated vitamin K1 resulted in a line narrowing of the ESP EPR signal, supporting the conclusion that the ESP EPR signals in the reconstituted samples arise from a radical pair consisting of the oxidized PSI primary donor, P700+, and reduced vitamin K1

  20. Room temperature Compton profiles of conduction electrons in α-Ga ...

    Indian Academy of Sciences (India)

    Room temperature Compton profiles of momentum distribution of conduction electrons in -Ga metal are calculated in band model. For this purpose, the conduction electron wave functions are determined in a temperature-dependent non-local model potential. The profiles calculated along the crystallographic directions, ...

  1. Electron-spin polarization of photoions produced through photoionization from the laser-excited triplet state of Sr

    International Nuclear Information System (INIS)

    Yonekura, Nobuaki; Nakajima, Takashi; Matsuo, Yukari; Kobayashi, Tohru; Fukuyama, Yoshimitsu

    2004-01-01

    We report the detailed experimental study on the production of electron-spin-polarized Sr + ions through one-photon resonant two-photon ionization via laser-excited 5s5p 3 P 1 (M J =+1) of Sr atoms produced by laser-ablation. We have experimentally confirmed that the use of laser-ablation for the production of Sr atoms prior to photoionization does not affect the electron-spin polarization. We have found that the degree of electron-spin polarization is 64±9%, which is in good agreement with our recent theoretical prediction. As we discuss in detail, we infer, from a simple analysis, that photoelectrons, being the counterpart of electron-spin-polarized Sr + ions, have approximately the same degree of electron-spin polarization. Our experimental results demonstrate that the combined use of laser-ablation technique and pulsed lasers for photoionization would be a compact and effective way to realize a pulsed source for spin-polarized ions and electrons for the studies of various spin-dependent dynamics in chemical physics

  2. Computer simulations analysis for determining the polarity of charge generated by high energy electron irradiation of a thin film

    DEFF Research Database (Denmark)

    Malac, Marek; Hettler, Simon; Hayashida, Misa

    2017-01-01

    Detailed simulations are necessary to correctly interpret the charge polarity of electron beam irradiated thin film patch. Relying on systematic simulations we provide guidelines and movies to interpret experimentally the polarity of the charged area, to be understood as the sign of the electrost......Detailed simulations are necessary to correctly interpret the charge polarity of electron beam irradiated thin film patch. Relying on systematic simulations we provide guidelines and movies to interpret experimentally the polarity of the charged area, to be understood as the sign...... of the electrostatic potential developed under the beam with reference to a ground electrode. We discuss the two methods most frequently used to assess charge polarity: Fresnel imaging of the irradiated area and Thon rings analysis. We also briefly discuss parameter optimization for hole free phase plate (HFPP...

  3. Correlation effects on spin-polarized electron-hole quantum bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Saini, L. K., E-mail: drlalitsaini75@gmail.com; Sharma, R. O., E-mail: sharmarajesh0387@gmail.com [Department of Applied Physics, S. V. National Institute of Technology, Surat – 395 007 (India); Nayak, Mukesh G. [Department of Physics, Silvassa College (Silvassa Institute of Higher Learning), Silvassa 396 230 (India)

    2016-05-06

    We present a numerical calculation for the intra- and interlayer pair-correlation functions, g{sub ll’}(r), of spin-polarized electron-hole quantum bilayers at zero temperature. The calculations of g{sub ll’}(r) are performed by including electron correlations within the dynamical version of the self-consistent mean-field approximation of Singwi, Tosi, Land and Sjölander (qSTLS). Our study reveals that the critical layer density decreases (increases) due to the inclusion of finite width (mass-asymmetry) effect during the phase-transition from charge-density wave to Wigner crystal ground-state by yielding the pronounced oscillatory behavior ing{sub ll}(r). The results are compared with recent findings of spin-polarized electron-hole quantum bilayers with mass-symmetry and zero width effects. To highlight the importance of dynamical character of correlations, we have also compared our results with the STLS results.

  4. Bidirectional electron anisotropies in the distant tail: ISEE-3 observations of polar rain

    International Nuclear Information System (INIS)

    Baker, D.N.; Bame, S.J.; Feldman, W.C.; Gosling, J.T.; Zwickl, R.D.; Slavin, J.A.; Smith, E.J.

    1985-01-01

    A detailed observational treatment of bidirectional electrons (50 approx.500 eV) in the distant magnetotail (r greater than or equal to 100 R/sub E/) is presented. It is found that electrons in this energy range commonly exhibit strong, field-aligned anisotropies in the tail lobes. Because of large tail motions, the ISEE-3 data provide extensive sampling of both the north and south lobes in rapid succession, demonstrating directly the strong asymmetries that exist between the north and south lobes at any one time. The bidirectional fluxes are found to occur predominantly in the lobe directly connected to the sunward IMF in the open magnetosphere model (north lobe for away sectors and south lobe for toward sectors). Electron anisotropy and magnetic field data are presented which show the transition from unidirectional (sheath) electron populations to bidirectional (lobe) populations. Taken together, the present evidence suggests that the bidirectional electrons that we observe in the distant tail are closely related to the polar rain electrons observed previously at lower altitudes. Furthermore, these data provide strong evidence that the distant tail is comprised largely of open magnetic field lines in contradistinction to some recently advanced models

  5. Electrochemically oxidized electronic and ionic conducting nanostructured block copolymers for lithium battery electrodes.

    Science.gov (United States)

    Patel, Shrayesh N; Javier, Anna E; Balsara, Nitash P

    2013-07-23

    Block copolymers that can simultaneously conduct electronic and ionic charges on the nanometer length scale can serve as innovative conductive binder material for solid-state battery electrodes. The purpose of this work is to study the electronic charge transport of poly(3-hexylthiophene)-b-poly(ethylene oxide) (P3HT-PEO) copolymers electrochemically oxidized with lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt in the context of a lithium battery charge/discharge cycle. We use a solid-state three-terminal electrochemical cell that enables simultaneous conductivity measurements and control over electrochemical doping of P3HT. At low oxidation levels (ratio of moles of electrons removed to moles of 3-hexylthiophene moieties in the electrode), the electronic conductivity (σe,ox) increases from 10(-7) S/cm to 10(-4) S/cm. At high oxidation levels, σe,ox approaches 10(-2) S/cm. When P3HT-PEO is used as a conductive binder in a positive electrode with LiFePO4 active material, P3HT is electrochemically active within the voltage window of a charge/discharge cycle. The electronic conductivity of the P3HT-PEO binder is in the 10(-4) to 10(-2) S/cm range over most of the potential window of the charge/discharge cycle. This allows for efficient electronic conduction, and observed charge/discharge capacities approach the theoretical limit of LiFePO4. However, at the end of the discharge cycle, the electronic conductivity decreases sharply to 10(-7) S/cm, which means the "conductive" binder is now electronically insulating. The ability of our conductive binder to switch between electronically conducting and insulating states in the positive electrode provides an unprecedented route for automatic overdischarge protection in rechargeable batteries.

  6. Magnetization reversal of ferromagnetic nanoparticles induced by a stream of polarized electrons

    Energy Technology Data Exchange (ETDEWEB)

    Kozhushner, M.A.; Gatin, A.K.; Grishin, M.V.; Shub, B.R. [Semenov Institute of Chemical Physics of RAS, 4, Kosygin Street, Moscow 119991 (Russian Federation); Kim, V.P.; Khomutov, G.B. [Faculty of Physics, Lomonosov Moscow State University, Lenin Gory 1-2, Moscow 119991 (Russian Federation); Ilegbusi, O.J. [University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816-2450 (United States); Trakhtenberg, L.I. [Semenov Institute of Chemical Physics of RAS, 4, Kosygin Street, Moscow 119991 (Russian Federation)

    2016-09-15

    The remagnetization of ferromagnetic Fe{sub 3}O{sub 4} nanoparticles of several thousand cubic nanometers by spin-polarized current is investigated. For this purpose, magnetite nanoparticles are synthesized and deposited on a conductive nonmagnetic substrate. The remagnetization is conducted in high-vacuum scanning tunneling microscope (STM). The STM tip from magnetized iron wire constitutes one electrode while the ferromagnetic nanoparticle on the graphite surface represents the second electrode. The measured threshold value of remagnetization current (I{sub thresh}=9 nA) is the lowest value of current at which remagnetization occurs. The change in nanoparticle magnetization is detected by the effect of giant magnetic resistance, specifically, the dependence of the weak polarized current (Ipolarized current on magnetic moment of small ferromagnetic nanoclusters. The peculiarities of size dependence of the observed effects are explained. - Highlights: • Ferromagnetic nanoparticle in STM with ferromagnetic tip. • Change of the direction of nanoparticle magnetization by current I>I{sub cr}=9 nA. • GMR effect used to control change of magnetization.

  7. A stretchable and screen-printable conductive ink for stretchable electronics

    Science.gov (United States)

    Mohammed, Anwar; Pecht, Michael

    2016-10-01

    Stretchable electronics can offer an added degree of design freedom and generate products with unprecedented capabilities. Stretchable conductive ink serving as interconnect, is a key enabler for stretchable electronics. This paper focuses on the development of a stretchable and screen printable conductive ink which could be stretched more than 500 cycles at 20% strain while maintaining electrical and mechanical integrity. The screen printable and stretchable conductive ink developed in this paper marks an important milestone for this nascent technology.

  8. An in-situ photocathode loading system for the SLC Polarized Electron Gun

    International Nuclear Information System (INIS)

    Kirby, R.E.; Collet, G.J.; Skarpaas, K.

    1992-12-01

    An ultra-high vacuum loadlock system capable of operating at high voltage has been added to the SLC Polarized Electron Gun. The unit incorporates facilities for heat cleaning, activating and measuring the quantum efficiency of photocathodes. A tray of up to four photocathodes can be exchanged without bringing the activation unit or gun up to atmosphere. Low voltage quantum efficiencies of 20% have been obtained for bulk GaAs at 633 nm and 6% for a 0.3 micron GaAs layer at 755 nm. Results for other cathodes as well as operational characteristics are discussed

  9. Polarized electrode enhances biological direct interspecies electron transfer for methane production in upflow anaerobic bioelectrochemical reactor.

    Science.gov (United States)

    Feng, Qing; Song, Young-Chae; Yoo, Kyuseon; Kuppanan, Nanthakumar; Subudhi, Sanjukta; Lal, Banwari

    2018-08-01

    The influence of polarized electrodes on the methane production, which depends on the sludge concentration, was investigated in upflow anaerobic bioelectrochemical (UABE) reactor. When the polarized electrode was placed in the bottom zone with a high sludge concentration, the methane production was 5.34 L/L.d, which was 53% higher than upflow anaerobic sludge blanket (UASB) reactor. However, the methane production was reduced to 4.34 L/L.d by placing the electrode in the upper zone of the UABE reactor with lower sludge concentration. In the UABE reactor, the methane production was mainly improved by the enhanced biological direct interspecies electron transfer (bDIET) pathway, and the methane production via the electrode was a minor fraction of less than 4% of total methane production. The polarized electrodes that placed in the bottom zone with a high sludge concentration enhance the bDIET for methane production in the UABE reactor and greatly improve the methane production. Copyright © 2018. Published by Elsevier Ltd.

  10. Inclusive spin-momentum analysis and new physics at a polarized electron-positron collider

    Energy Technology Data Exchange (ETDEWEB)

    Ananthanarayan, B. [Indian Institute of Science, Centre for High Energy Physics, Bangalore (India); Rindani, Saurabh D. [Physical Research Laboratory, Theoretical Physics Division, Ahmedabad (India)

    2018-02-15

    We consider the momentum distribution and the polarization of an inclusive heavy fermion in a process assumed to arise from standard-model (SM) s-channel exchange of a virtual γ or Z with a further contribution from physics beyond the standard model involving s-channel exchanges. The interference of the new-physics amplitude with the SM γ or Z exchange amplitude is expressed entirely in terms of the space-time signature of such new physics. Transverse as well as longitudinal polarizations of the electron and positron beams are taken into account. Similarly, we consider the cases of the polarization of the observed final-state fermion along longitudinal and two transverse spin-quantization axes, which are required for a full reconstruction of the spin dependence of the process. We show how these model-independent distributions can be used to deduce some general properties of the nature of the interaction and some of their properties in prior work which made use of spin-momentum correlations. (orig.)

  11. Localized conductive patterning via focused electron beam reduction of graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Songkil; Henry, Mathias [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Kulkarni, Dhaval D.; Zackowski, Paul; Jang, Seung Soon; Tsukruk, Vladimir V. [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Fedorov, Andrei G., E-mail: agf@gatech.edu [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-03-30

    We report on a method for “direct-write” conductive patterning via reduction of graphene oxide (GO) sheets using focused electron beam induced deposition (FEBID) of carbon. FEBID treatment of the intrinsically dielectric graphene oxide between two metal terminals opens up the conduction channel, thus enabling a unique capability for nanoscale conductive domain patterning in GO. An increase in FEBID electron dose results in a significant increase of the domain electrical conductivity with improving linearity of drain-source current vs. voltage dependence, indicative of a change of graphene oxide electronic properties from insulating to semiconducting. Density functional theory calculations suggest a possible mechanism underlying this experimentally observed phenomenon, as localized reduction of graphene oxide layers via interactions with highly reactive intermediates of electron-beam-assisted dissociation of surface-adsorbed hydrocarbon molecules. These findings establish an unusual route for using FEBID as nanoscale lithography and patterning technique for engineering carbon-based nanomaterials and devices with locally tailored electronic properties.

  12. Distribution of conductive minerals as associated with uranium minerals at Dendang Arai sector by induced polarization method

    International Nuclear Information System (INIS)

    Nurdin, M.; Nikijuluw, N.; Subardjo; Sudarto, S.

    2000-01-01

    Based on previous investigation results, a favourable zone of 20-80 meters in wide, 80-240 meters in length and in the direction of East-West to Northwest-Southeast was found. The favourable zone is conductor, associated with sulfide. Induced polarization method has been applied to find vertical and horizontal sulfide distribution. The measurement was conducted in perpendicular to lateral direction of the conductive zone in an interval of 20 meters. Properties measured are apparent resistivity and charge ability. Measurement results indicated the presence of sulfide zone with the position and dip are sub-vertical. Sulfide zones were found on the fault cross-point with the directions being East-West to East South East-West North West by fault is North-South. This anomalies were then represented in 3 (three) dimension tomographic model. (author)

  13. Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization

    Science.gov (United States)

    Scott, Faith J.; Saliba, Edward P.; Albert, Brice J.; Alaniva, Nicholas; Sesti, Erika L.; Gao, Chukun; Golota, Natalie C.; Choi, Eric J.; Jagtap, Anil P.; Wittmann, Johannes J.; Eckardt, Michael; Harneit, Wolfgang; Corzilius, Björn; Th. Sigurdsson, Snorri; Barnes, Alexander B.

    2018-04-01

    We describe a frequency-agile gyrotron which can generate frequency-chirped microwave pulses. An arbitrary waveform generator (AWG) within the NMR spectrometer controls the microwave frequency, enabling synchronized pulsed control of both electron and nuclear spins. We demonstrate that the acceleration of emitted electrons, and thus the microwave frequency, can be quickly changed by varying the anode voltage. This strategy results in much faster frequency response than can be achieved by changing the potential of the electron emitter, and does not require a custom triode electron gun. The gyrotron frequency can be swept with a rate of 20 MHz/μs over a 670 MHz bandwidth in a static magnetic field. We have already implemented time-domain electron decoupling with dynamic nuclear polarization (DNP) magic angle spinning (MAS) with this device. In this contribution, we show frequency-swept DNP enhancement profiles recorded without changing the NMR magnet or probe. The profile of endofullerenes exhibits a DNP profile with a <10 MHz linewidth, indicating that the device also has sufficient frequency stability, and therefore phase stability, to implement pulsed DNP mechanisms such as the frequency-swept solid effect. We describe schematics of the mechanical and vacuum construction of the device which includes a novel flanged sapphire window assembly. Finally, we discuss how commercially available continuous-wave gyrotrons can potentially be converted into similar frequency-agile high-power microwave sources.

  14. Electron paramagnetic resonance and dynamic nuclear polarization of char suspensions: surface science and oximetry

    International Nuclear Information System (INIS)

    Clarkson, R.B.; Odintsov, B.M.; Ceroke, P.J.; Ardenkjaer-Larsen, J.H.; Fruianu, M.; Belford, R.L.

    1998-01-01

    Carbon chars have been synthesized in our laboratory from a variety of starting materials, by means of a highly controlled pyrolysis technique. These chars exhibit electron paramagnetic resonance (EPR) line shapes which change with the local oxygen concentration in a reproducible and stable fashion; they can be calibrated and used for oximetry. Biological stability and low toxicity make chars good sensors for in vivo measurements. Scalar and dipolar interactions of water protons at the surfaces of chars may be utilized to produce dynamic nuclear polarization (DNP) of the 1 H nuclear spin population in conjunction with electron Zeeman pumping. Low-frequency EPR, DNP and DNP-enhanced MRI all show promise as oximetry methods when used with carbon chars. (author)

  15. Polarized electron beams elastically scattered by atoms as a tool for testing fundamental predictions of quantum mechanics.

    Science.gov (United States)

    Dapor, Maurizio

    2018-03-29

    Quantum information theory deals with quantum noise in order to protect physical quantum bits (qubits) from its effects. A single electron is an emblematic example of a qubit, and today it is possible to experimentally produce polarized ensembles of electrons. In this paper, the theory of the polarization of electron beams elastically scattered by atoms is briefly summarized. Then the POLARe program suite, a set of computer programs aimed at the calculation of the spin-polarization parameters of electron beams elastically interacting with atomic targets, is described. Selected results of the program concerning Ar, Kr, and Xe atoms are presented together with the comparison with experimental data about the Sherman function for low kinetic energy of the incident electrons (1.5eV-350eV). It is demonstrated that the quantum-relativistic theory of the polarization of electron beams elastically scattered by atoms is in good agreement with experimental data down to energies smaller than a few eV.

  16. Estimate of electrostatic solvation free energy of electron in various polar solvents by using modified born equation

    International Nuclear Information System (INIS)

    Yamashita, Kazuo; Kitamura, Mitsutaka; Imai, Hideo

    1976-01-01

    The modified Born equation was tentatively applied to estimate the electrostatic free energies of solvation of the electron in various polar solvents. The related data of halide ions and a datum of the hydration free energy of the electron obtained by radiation chemical studies were used for the numerical calculations. (auth.)

  17. On the possibility of the electron polarization to be the driving force for the C60-TMB nanowire growth

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Geng, Junfeng; Solov'yov, Andrey V.

    2009-01-01

    The effect of electron polarization has been suggested to explain the exceptionally large length-to width aspect ratio (more than 3000) in recently observed C_60-based nanowires. The theoretical estimates performed in the present Letter show that at room temperature the effect of electron polariz...

  18. Electron transport through supported biomembranes at the nanoscale by conductive atomic force microscopy

    International Nuclear Information System (INIS)

    Casuso, I; Fumagalli, L; Samitier, J; Padros, E; Reggiani, L; Akimov, V; Gomila, G

    2007-01-01

    We present a reliable methodology to perform electron transport measurements at the nanoscale on supported biomembranes by conductive atomic force microscopy (C-AFM). It allows measurement of both (a) non-destructive conductive maps and (b) force controlled current-voltage characteristics in wide voltage bias range in a reproducible way. Tests experiments were performed on purple membrane monolayers, a two-dimensional (2D) crystal lattice of the transmembrane protein bacteriorhodopsin. Non-destructive conductive images show uniform conductivity of the membrane with isolated nanometric conduction defects. Current-voltage characteristics under different compression conditions show non-resonant tunneling electron transport properties, with two different conduction regimes as a function of the applied bias, in excellent agreement with theoretical predictions. This methodology opens the possibility for a detailed study of electron transport properties of supported biological membranes, and of soft materials in general

  19. Electron transport through supported biomembranes at the nanoscale by conductive atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Casuso, I [Department Electronica, Universitat de Barcelona and Laboratori de Nanobioenginyeria-IBEC, Parc CientIfic de Barcelona, Barcelona (Spain); Fumagalli, L [Department Electronica, Universitat de Barcelona and Laboratori de Nanobioenginyeria-IBEC, Parc CientIfic de Barcelona, Barcelona (Spain); Samitier, J [Department Electronica, Universitat de Barcelona and Laboratori de Nanobioenginyeria-IBEC, Parc CientIfic de Barcelona, Barcelona (Spain); Padros, E [Unitat de BiofIsica, Departamento de BioquImica i de Biologia Molecular, Facultat de Medicina i Centre d' Estudis en BiofIsica, Universitat Autonoma de Barcelona, Barcelona (Spain); Reggiani, L [CNR-INFM National Nanotechnology Laboratory, Dipartimento di Ingegneria dell' Innovazione, Universita di Lecce, Lecce (Italy); Akimov, V [CNR-INFM National Nanotechnology Laboratory, Dipartimento di Ingegneria dell' Innovazione, Universita di Lecce, Lecce (Italy); Gomila, G [Department Electronica, Universitat de Barcelona and Laboratori de Nanobioenginyeria-IBEC, Parc CientIfic de Barcelona, Barcelona (Spain)

    2007-11-21

    We present a reliable methodology to perform electron transport measurements at the nanoscale on supported biomembranes by conductive atomic force microscopy (C-AFM). It allows measurement of both (a) non-destructive conductive maps and (b) force controlled current-voltage characteristics in wide voltage bias range in a reproducible way. Tests experiments were performed on purple membrane monolayers, a two-dimensional (2D) crystal lattice of the transmembrane protein bacteriorhodopsin. Non-destructive conductive images show uniform conductivity of the membrane with isolated nanometric conduction defects. Current-voltage characteristics under different compression conditions show non-resonant tunneling electron transport properties, with two different conduction regimes as a function of the applied bias, in excellent agreement with theoretical predictions. This methodology opens the possibility for a detailed study of electron transport properties of supported biological membranes, and of soft materials in general.

  20. Laser ablation under different electron heat conduction models in inertial confinement fusion

    Science.gov (United States)

    Li, Shuanggui; Ren, Guoli; Huo, Wen Yi

    2018-06-01

    In this paper, we study the influence of three different electron heat conduction models on the laser ablation of gold plane target. Different from previous studies, we concentrate on the plasma conditions, the conversion efficiency from laser into soft x rays and the scaling relation of mass ablation, which are relevant to hohlraum physics study in indirect drive inertial confinement fusion. We find that the simulated electron temperature in corona region is sensitive to the electron heat conduction models. For different electron heat conduction models, there are obvious differences in magnitude and spatial profile of electron temperature. For the flux limit model, the calculated conversion efficiency is sensitive to flux limiters. In the laser ablation of gold, most of the laser energies are converted into x rays. So the scaling relation of mass ablation rate is quite different from that of low Z materials.

  1. Significant Electronic Thermal Transport in the Conducting Polymer Poly(3,4‐ethylenedioxythiophene)

    DEFF Research Database (Denmark)

    Weathers, Annie; Khan, Zia Ullah; Brooke, Robert

    2015-01-01

    Suspended microdevices are employed to measure the in-plane electrical conductivity, thermal conductivity, and Seebeck coefficient of suspended poly(3,4-ethylenedioxythiophene) (PEDOT) thin films. The measured thermal conductivity is higher than previously reported for PEDOT and generally increases...... with the electrical conductivity. The increase exceeds that predicted by the Wiedemann–Franz law for metals and can be explained by significant electronic thermal transport in PEDOT....

  2. Inkjet-printed conductive features for rapid integration of electronic circuits in centrifugal microfluidics

    CSIR Research Space (South Africa)

    Kruger, J

    2015-05-01

    Full Text Available This work investigates the properties of conductive circuits inkjet-printed onto the polycarbonate discs used in CD-based centrifugal microfluidics, contributing towards rapidly prototyped electronic systems in smart ubiquitous biosensors, which...

  3. Nonlinear Right-Hand Polarized Wave in Plasma in the Electron Cyclotron Resonance Region

    Science.gov (United States)

    Krasovitskiy, V. B.; Turikov, V. A.

    2018-05-01

    The propagation of a nonlinear right-hand polarized wave along an external magnetic field in subcritical plasma in the electron cyclotron resonance region is studied using numerical simulations. It is shown that a small-amplitude plasma wave excited in low-density plasma is unstable against modulation instability with a modulation period equal to the wavelength of the excited wave. The modulation amplitude in this case increases with decreasing detuning from the resonance frequency. The simulations have shown that, for large-amplitude waves of the laser frequency range propagating in plasma in a superstrong magnetic field, the maximum amplitude of the excited longitudinal electric field increases with the increasing external magnetic field and can reach 30% of the initial amplitude of the electric field in the laser wave. In this case, the energy of plasma electrons begins to substantially increase already at magnetic fields significantly lower than the resonance value. The laser energy transferred to plasma electrons in a strong external magnetic field is found to increase severalfold compared to that in isotropic plasma. It is shown that this mechanism of laser radiation absorption depends only slightly on the electron temperature.

  4. Polarization of electron-beam irradiated LDPE films: contribution to charge generation and transport

    Science.gov (United States)

    Banda, M. E.; Griseri, V.; Teyssèdre, G.; Le Roy, S.

    2018-04-01

    Electron-beam irradiation is an alternative way to generate charges in insulating materials, at controlled position and quantity, in order to monitor their behaviour in regard to transport phenomena under the space charge induced electric field or external field applied. In this study, low density polyethylene (LDPE) films were irradiated by a 80 keV electron-beam with a flux of 1 nA cm‑2 during 10 min in an irradiation chamber under vacuum conditions, and were then characterized outside the chamber using three experimental methods. The electrical behaviour of the irradiated material was assessed by space charge measurements using the pulsed electro-acoustic (PEA) method under dc stress. The influence of the applied electric field polarity and amplitude has been tested in order to better understand the charge behaviour after electron-beam irradiation. Fourier transform infra-red spectroscopy (FTIR) and photoluminescence (PL) measurements were performed to evaluate the impact of the electron beam irradiation, i.e. deposited charges and energy, on the chemical structure of the irradiated samples. The present results show that the electrical behaviour in LDPE after irradiation is mostly driven by charges, i.e. by physical process functions of the electric field, and that changes in the chemical structure seems to be mild.

  5. Spin effects in the screening and Auger neutralization of He+ ions in a spin-polarized electron gas

    International Nuclear Information System (INIS)

    Alducin, M.; Diez Muino, R.; Juaristi, J.I.

    2005-01-01

    The screening of a He + ion embedded in a free electron gas is studied for different spin-polarizations of the medium. Density functional theory and the local spin density approximation are used to calculate the induced electronic density for each spin orientation, i.e. parallel or antiparallel to the spin of the electron bound to the ion. Since both the He + ion and the electron gas are spin-polarized, we analyze in detail the spin state of the screening cloud for the two different possibilities: the spin of the bound electron can be parallel to either the majority spin or the minority spin in the medium. Finally, the spin-dependent Kohn-Sham orbitals are used to calculate the Auger neutralization rate of the He + ion. The polarization of the Auger excited electron is influenced by the spin-polarization of the medium. The results are discussed in terms of the spin-dependent screening and the indistinguishability of electrons with the same spin state

  6. Quantum effects on the formation of negative hydrogen ion by polarization electron capture in partially ionized dense hydrogen plasmas

    International Nuclear Information System (INIS)

    Jung, Young-Dae; Kato, Daiji

    2009-05-01

    The quantum effects on the formation of the negative hydrogen ion (H - ) by the polarization electron capture process are investigated in partially ionized dense hydrogen plasmas. It is shown that the quantum effect strongly suppresses the electron capture radius as well as the cross section for the formation of the negative hydrogen ion. In addition, it has been found that the electron capture position is receded from the center of the projectile with decreasing the quantum effect of the plasma. (author)

  7. Determination of thermodynamic affinities of various polar olefins as hydride, hydrogen atom, and electron acceptors in acetonitrile.

    Science.gov (United States)

    Cao, Ying; Zhang, Song-Chen; Zhang, Min; Shen, Guang-Bin; Zhu, Xiao-Qing

    2013-07-19

    A series of 69 polar olefins with various typical structures (X) were synthesized and the thermodynamic affinities (defined in terms of the molar enthalpy changes or the standard redox potentials in this work) of the polar olefins obtaining hydride anions, hydrogen atoms, and electrons, the thermodynamic affinities of the radical anions of the polar olefins (X(•-)) obtaining protons and hydrogen atoms, and the thermodynamic affinities of the hydrogen adducts of the polar olefins (XH(•)) obtaining electrons in acetonitrile were determined using titration calorimetry and electrochemical methods. The pure C═C π-bond heterolytic and homolytic dissociation energies of the polar olefins (X) in acetonitrile and the pure C═C π-bond homolytic dissociation energies of the radical anions of the polar olefins (X(•-)) in acetonitrile were estimated. The remote substituent effects on the six thermodynamic affinities of the polar olefins and their related reaction intermediates were examined using the Hammett linear free-energy relationships; the results show that the Hammett linear free-energy relationships all hold in the six chemical and electrochemical processes. The information disclosed in this work could not only supply a gap of the chemical thermodynamics of olefins as one class of very important organic unsaturated compounds but also strongly promote the fast development of the chemistry and applications of olefins.

  8. Measurement of Coherent Emission and Linear Polarization of Photons by Electrons in the Strong Fields of Aligned Crystals

    CERN Document Server

    Apyan, A.; Badelek, B.; Ballestrero, S.; Biino, C.; Birol, I.; Cenci, P.; Connell, S.H.; Eichblatt, S.; Fonseca, T.; Freund, A.; Gorini, B.; Groess, R.; Ispirian, K.; Ketel, T.J.; Kononets, Yu.V.; Lopez, A.; Mangiarotti, A.; van Rens, B.; Sellschop, J.P.F.; Shieh, M.; Sona, P.; Strakhovenko, V.; Uggerhoj, E.; Uggerhj, Ulrik Ingerslev; Unel, G.; Velasco, M.; Vilakazi, Z.Z.; Wessely, O.; Kononets, Yu.V.

    2004-01-01

    We present new results regarding the features of high energy photon emission by an electron beam of 178 GeV penetrating a 1.5 cm thick single Si crystal aligned at the Strings-Of-Strings (SOS) orientation. This concerns a special case of coherent bremsstrahlung where the electron interacts with the strong fields of successive atomic strings in a plane and for which the largest enhancement of the highest energy photons is expected. The polarization of the resulting photon beam was measured by the asymmetry of electron-positron pair production in an aligned diamond crystal analyzer. By the selection of a single pair the energy and the polarization of individual photons could be measured in an the environment of multiple photons produced in the radiator crystal. Photons in the high energy region show less than 20% linear polarization at the 90% confidence level.

  9. Magnetoresistance of tungsten thin wafer at the multichannel surface scattering of conduction electrons

    International Nuclear Information System (INIS)

    Lutsishin, P.P.; Nakhodkin, T.N.

    1982-01-01

    The magnetoresistance of tungsten thin wafer with the (110) surface was studied at the adsorption of tungsten dioxide. The method of low-energy electron diffraction was used to study the symmetry of ordered surface structures. Using the method of the magnetoresistance measurement the character of the scattering of conduction electrons was investigated. THe dependence of magnetoresistance on the surface concentration of tungsten dioxide correlated w1th the structure of the surface layer of atoms, what was explained with allowance for diffraction of conduction electrons at the metal boundary. The magnetoresistance maximum for the (2x2) structure, which characterised decrease in surface conduction under the conditions of static skin effect, was explained by multichannel mirror reflection with the recombinations of electron and ho.le sections of Fermi Surface

  10. Effects Of Spontaneous And Piezoelectric Polarization On The Electronic Properties Of AlGaN/GaN Heterostructures

    International Nuclear Information System (INIS)

    Demir, M.

    2010-01-01

    Nitride containing semiconductors and their alloys are used to produce hetero structures where materials with different energy gaps are grown on top of each other so that quantum wells capable of holding free electrons in two dimensions are formed. The carriers in the wells are free to move along the hetero interface but their motion in the direction of growth is restricted. While the density of electron gas depends on the doping concentration and the dimensions of the hetero structure among others, another important parameter that determines the electron density is the spontaneous polarization in the material and piezoelectric polarization near the hetero interface. Polarization is so effective that in some cases it is possible to get electron concentrations as high as 10 1 2-10 1 3 cm - 2 even in the absence of any intentional doping. In this study the electronic properties of an AlGaN/GaN structure is investigated by solving the Poisson/Schroedinger equation self-consistently in the modulation doped hetero structure. The effect of spacer, doping concentration, dimensions of the structure and temperature and especially the spontaneous and piezoelectric polarizations on the electronic properties are investigated.

  11. Influence on electron coherence from quantum electromagnetic fields in the presence of conducting plates

    International Nuclear Information System (INIS)

    Hsiang, J.-T.; Lee, D.-S.

    2006-01-01

    The influence of electromagnetic vacuum fluctuations in the presence of the perfectly conducting plate on electrons is studied with an interference experiment. The evolution of the reduced density matrix of the electron is derived by the method of influence functional. We find that the plate boundary anisotropically modifies vacuum fluctuations that in turn affect the electron coherence. The path plane of the interference is chosen either parallel or normal to the plate. In the vicinity of the plate, we show that the coherence between electrons due to the boundary is enhanced in the parallel configuration, but reduced in the normal case. The presence of the second parallel plate is found to boost these effects. The potential relation between the amplitude change and phase shift of interference fringes is pointed out. The finite conductivity effect on electron coherence is discussed

  12. Anomalous conductivity and electron heating in a plasma unstable to the two-stream instability

    International Nuclear Information System (INIS)

    Clark, W.H.M.; Hamberger, S.M.

    1979-01-01

    An experiment to excite the electron-ion two-stream instability in a cylindrical Q-machine plasma column is described. The mechanism for establishing a large pulsed electron drift velocity in the plasma by applying a potential difference between the end electrodes is discussed. The pulsed current-voltage characteristic of the plasma column and the temporal evolution of the electron density, drift velocity and thermal velocity are measured. In contrast with the behaviour of some computer simulations of the two-stream instability, the plasma exhibits a constant conductivity and the electron thermal velocity increases to values far in excess of the drift velocity. The electrical dissipation is consistent with the increase of the electron thermal energy, both indicating an anomalous conductivity of the same order as an empirical scaling found in earlier experiments on a toroidal discharge. (author)

  13. Role of temperature on static correlational properties in a spin-polarized electron gas

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Priya; Moudgil, R. K., E-mail: rkmoudgil@kuk.ac.in [Department of Physics, Kurukshetra University, Kurukshetra – 136 119 (India); Kumar, Krishan [S. D. College (Lahore), Ambala Cantt. - 133001 (India)

    2016-05-06

    We have studied the effect of temperature on the static correlational properties of a spin-polarized three-dimensional electron gas (3DEG) over a wide coupling and temperature regime. This problem has been very recently studied by Brown et al. using the restricted path-integral Monte Carlo (RPIMC) technique in the warm-dense regime. To this endeavor, we have used the finite temperature version of the dynamical mean-field theory of Singwi et al, the so-called quantum STLS (qSTLS) approach. The static density structure factor and the static pair-correlation function are calculated, and compared with the RPIMC simulation data. We find an excellent agreement with the simulation at high temperature over a wide coupling range. However, the agreement is seen to somewhat deteriorate with decreasing temperature. The pair-correlation function is found to become small negative for small electron separation. This may be attributed to the inadequacy of the mean-field theory in dealing with the like spin electron correlations in the strong-coupling domain. A nice agreement with RPIMC data at high temperature seems to arise due to weakening of both the exchange and coulomb correlations with rising temperature.

  14. Conductance oscillation in graphene-nanoribbon-based electronic Fabry-Perot resonators

    International Nuclear Information System (INIS)

    Zhang Yong; Han Mei; Shen Linjiang

    2010-01-01

    By using the tight-binding approximation and the Green's function method, the quantum conductance of the Fabry-Perot-like electronic resonators composed of zigzag and metallic armchair edge graphene nanoribbons (GNRs) was studied numerically. Obtained results show that due to Fabry-Perot-like electronic interference, the conductance of the GNR resonators oscillates periodically with the Fermi energy. The effects of disorders and coupling between the electrodes and the GNR on conductance oscillations were explored. It is found that the conductance oscillations appear at the strong coupling and become resonant peaks as the coupling is very weak. It is also found that the strong disorders in the GNR can smear the conductance oscillation periods. In other words, the weak coupling and the strong disorders all can blur the conductance oscillations, making them unclearly distinguished.

  15. Model-independent analysis of polarization effects in elastic electron-deuteron scattering in presence of two-photon exchange

    International Nuclear Information System (INIS)

    Gakh, G.I.; Tomasi-Gustafsson, E.

    2006-01-01

    The general spin structure of the matrix element, taking into account the 2-photon exchange contribution, for the elastic electron (positron) - deuteron scattering has been derived using general symmetry properties of the hadron electromagnetic interaction, such as P-, C- and T-invariances as well as lepton helicity conservation in QED at high energy. Taking into account also crossing symmetry, the amplitudes of e ± d scattering can be parametrized in terms of fifteen real functions. The expressions for the differential cross section and for all polarization observables are given in terms of these functions. We consider the case of an arbitrary polarized deuteron target and polarized electron beam (both longitudinal and transverse). The transverse polarization of the electron beam induces a single-spin asymmetry which is non-zero in presence of 2-photon exchange. It is shown that elastic deuteron electromagnetic form factors can still be extracted in presence of 2 photon exchange, from the measurements of the differential cross sections and of one polarization observable (for example, the tensor asymmetry) for electron and positron deuteron elastic scattering, in the same kinematical conditions. (authors)

  16. Surface-conduction electron-emitter characteristics and fabrication based on vertically aligned carbon nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Yi-Ting [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Li, Kuan-Wei [Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Honda, Shin-ichi [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Lin, Pao-Hung; Huang, Ying-Sheng [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Lee, Kuei-Yi, E-mail: kylee@mail.ntust.edu.tw [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China); Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan (China)

    2017-06-01

    Graphical abstract: The pattern design provides a new structure of surface-conduction electron-emitter display (SED). Delta-star shaped vertically aligned CNT (VACNT) arrays with 20o tips can simultaneously provide three emitters to bombard the sides of equilateral triangles pattern of VACNT, which produces numerous secondary electrons and enhance the SED efficiency. - Highlights: • The carbon nanotube (CNT) has replaced palladium oxide (PdO) as the electrode material for surface-conduction electron-emitter (SCE) applications. • The vertically aligned CNT (VACNT) arrays with 20° tips of the delta-star arrangement are used as cathodes that easily emit electrons. The cathode pattern simultaneously provides three emitters to bombard the sides of equilateral triangles pattern of VACNT. • The VACNT arrays were covered with magnesium oxide (MgO) nanostructures to promote the surface-conduction electron-emitter display (SED) efficiency (η). • The η was stably maintained in the 75–85% range. The proposed design provides a facile new method for developing SED applications. - Abstract: The carbon nanotube (CNT) has replaced palladium oxide (PdO) as the electrode material for surface-conduction electron-emitter (SCE) applications. Vertically aligned CNT arrays with a delta-star arrangement were patterned and synthesized onto a quartz substrate using photolithography and thermal chemical vapor deposition. Delta-star shaped VACNT arrays with 20° tips are used as cathodes that easily emit electrons because of their high electrical field gradient. In order to improve the field emission and secondary electrons (SEs) in SCE applications, magnesium oxide (MgO) nanostructures were coated onto the VACNT arrays to promote the surface-conduction electron-emitter display (SED) efficiency (η). According to the definition of η in SCE applications, in this study, the η was stably maintained in the 75–85% range. The proposed design provides a facile new method for

  17. Electronic-Optical Amplifier in the measurement of light polarization plane

    International Nuclear Information System (INIS)

    Miranda Diaz, Lazaro

    2009-01-01

    This paper analyzes the behavior of the output response of two electronic-optical amplifiers with constant amplitude and phase variable, in which photodiodes each them are arranged spatially 90th each other and both with their faces detection parallel to the axis of light transmission. Outward both amplifiers are going to a digital circuit that compares the fronts outputs to the front of the pulse signal that feeds the light source, to finally obtain the difference in time when fronts of light capture the photodiodes. This configuration permit to analyze the influence of the geometric arrangement of the system optical and understand the principle of why the diodes with their faces parallel to the axis of light transmission are capable of capturing variations of this, and even detect the rotation of the plane of light polarized. (Author)

  18. Formation of negative hydrogen ion: polarization electron capture and nonthermal shielding.

    Science.gov (United States)

    Ki, Dae-Han; Jung, Young-Dae

    2012-09-07

    The influence of the nonthermal shielding on the formation of the negative hydrogen ion (H(-)) by the polarization electron capture are investigated in partially ionized generalized Lorentzian plasmas. The Bohr-Lindhard method has been applied to obtain the negative hydrogen formation radius and cross section as functions of the collision energy, de Broglie wave length, Debye length, impact parameter, and spectral index of the plasma. The result shows that the nonthermal character of the plasma enhances the formation radius of the negative hydrogen, especially, for small Debye radii. It is found that the nonthermal effect increases the formation cross section of the negative hydrogen. It is also found that the maximum position of the formation cross section approaches to the collision center with an increase of the spectral index. In addition, it is found that the formation cross section significantly decreases with an increase of the Debye length, especially, for small spectral indices.

  19. Formation of negative hydrogen ion: Polarization electron capture and nonthermal shielding

    International Nuclear Information System (INIS)

    Ki, Dae-Han; Jung, Young-Dae

    2012-01-01

    The influence of the nonthermal shielding on the formation of the negative hydrogen ion (H − ) by the polarization electron capture are investigated in partially ionized generalized Lorentzian plasmas. The Bohr-Lindhard method has been applied to obtain the negative hydrogen formation radius and cross section as functions of the collision energy, de Broglie wave length, Debye length, impact parameter, and spectral index of the plasma. The result shows that the nonthermal character of the plasma enhances the formation radius of the negative hydrogen, especially, for small Debye radii. It is found that the nonthermal effect increases the formation cross section of the negative hydrogen. It is also found that the maximum position of the formation cross section approaches to the collision center with an increase of the spectral index. In addition, it is found that the formation cross section significantly decreases with an increase of the Debye length, especially, for small spectral indices.

  20. Tuning the properties of an MgO layer for spin-polarized electron transport

    Science.gov (United States)

    Zhao, Chong-Jun; Ding, Lei; Zhao, Zhi-Duo; Zhang, Peng; Cao, Xing-Zhong; Wang, Bao-Yi; Zhang, Jing-Yan; Yu, Guang-Hua

    2014-08-01

    The influence of substrate temperature and annealing on quality/microstructural evolution of MgO, as well as the resultant magnetoresistance (MR) ratio, has been investigated. It has been found that the crystallinity of MgO in the MgO/NiFe/MgO heterostructures gradually improves with increasing substrate temperature. This behavior facilitates the transport of spin-polarized electrons, resulting in a high MR value. After annealing, the formation of vacancy clusters in MgO layers observed through positron annihilation spectroscopy leads to an increase in MR at different levels because of the crystallinity improvement of MgO. However, these vacancy clusters as another important defect can limit further improvement in MR.

  1. Investigations of a Cretaceous limestone with spectral induced polarization and scanning electron microscopy

    DEFF Research Database (Denmark)

    Johansson, Sara; Sparrembom, Charlotte; Fiandaca, Gianluca

    2017-01-01

    limestone was carried out in the Kristianstad basin, Sweden. The time domain IP data was processed with a recently developed method in order to suppress noise from the challenging urban setting in the survey area. The processing also enabled extraction of early decay times resulting in broader spectra...... in early time ranges for bedrock characterization. The inverted sections showed variations within the limestone that could be caused by variations in texture and composition. Samples from a deep drilling in the Kristianstad basin were investigated with scanning electron microscopy and energy dispersive X......Characterization of varying bedrock properties is a common need in various contexts, ranging from large infrastructure pre-investigations to environmental protection. A direct current resistivity and time domain induced polarization (IP) survey aiming to characterize properties of a Cretaceous...

  2. Compact quadrupole triplet for the S-DALINAC polarized electron injector SPIN

    Energy Technology Data Exchange (ETDEWEB)

    Eckardt, C.; Eichhorn, R.; Enders, J.; Hessler, C.; Poltoratska, Y. [Inst. fuer Kernphysik, Technische Univ. Darmstadt (Germany); Ackermann, W.; Mueller, W.F.O.; Steiner, B.; Weiland, T. [Inst. fuer Theorie Elektromagnetischer Felder, Technische Univ. Darmstadt (Germany)

    2007-07-01

    An ultra compact quadrupole triplet for the S-DALINAC Polarized Electron Injector SPIN has been developed. This development is due to limiting spatial restrictions. Each individual quadrupole has a length of 8 mm, affixed by two 2 mm aluminum plates, resulting in a length of only 12 mm per quadrupole. The gaps between each quadrupole are set to 18 mm, therefore the complete triplet has a total length of only 72 mm. The quadrupole design includes a large aperture, suitable for CF 35 beam pipes. As fringe fields reach far info neighboring yokes, the assembly requires simulation by a beam dynamics tool for optimal weighting of the current excitation. Measurement of the magnetic field distribution is compared to numerical values and the quadrupole strength is calculated. (orig.)

  3. Polarization developments

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist

  4. Multiple stable states of a periodically driven electron spin in a quantum dot using circularly polarized light

    Science.gov (United States)

    Korenev, V. L.

    2011-06-01

    The periodical modulation of circularly polarized light with a frequency close to the electron spin resonance frequency induces a sharp change of the single electron spin orientation. Hyperfine interaction provides a feedback, thus fixing the precession frequency of the electron spin in the external and the Overhauser field near the modulation frequency. The nuclear polarization is bidirectional and the electron-nuclear spin system (ENSS) possesses a few stable states. The same physics underlie the frequency-locking effect for two-color and mode-locked excitations. However, the pulsed excitation with mode-locked laser brings about the multitudes of stable states in ENSS in a quantum dot. The resulting precession frequencies of the electron spin differ in these states by the multiple of the modulation frequency. Under such conditions ENSS represents a digital frequency converter with more than 100 stable channels.

  5. Self-similar variables and the problem of nonlocal electron heat conductivity

    International Nuclear Information System (INIS)

    Krasheninnikov, S.I.; Bakunin, O.G.

    1993-10-01

    Self-similar solutions of the collisional electron kinetic equation are obtained for the plasmas with one (1D) and three (3D) dimensional plasma parameter inhomogeneities and arbitrary Z eff . For the plasma parameter profiles characterized by the ratio of the mean free path of thermal electrons with respect to electron-electron collisions, γ T , to the scale length of electron temperature variation, L, one obtains a criterion for determining the effect that tail particles with motion of the non-diffusive type have on the electron heat conductivity. For these conditions it is shown that the use of a open-quotes symmetrizedclose quotes kinetic equation for the investigation of the strong nonlocal effect of suprathermal electrons on the electron heat conductivity is only possible at sufficiently high Z eff (Z eff ≥ (L/γ T ) 1/2 ). In the case of 3D inhomogeneous plasma (spherical symmetry), the effect of the tail electrons on the heat transport is less pronounced since they are spread across the radius r

  6. Theory of current-induced spin polarization in an electron gas

    Science.gov (United States)

    Gorini, Cosimo; Maleki Sheikhabadi, Amin; Shen, Ka; Tokatly, Ilya V.; Vignale, Giovanni; Raimondi, Roberto

    2017-05-01

    We derive the Bloch equations for the spin dynamics of a two-dimensional electron gas in the presence of spin-orbit coupling. For the latter we consider both the intrinsic mechanisms of structure inversion asymmetry (Rashba) and bulk inversion asymmetry (Dresselhaus), and the extrinsic ones arising from the scattering from impurities. The derivation is based on the SU(2) gauge-field formulation of the Rashba-Dresselhaus spin-orbit coupling. Our main result is the identification of a spin-generation torque arising from Elliot-Yafet scattering, which opposes a similar term arising from Dyakonov-Perel relaxation. Such a torque, which to the best of our knowledge has gone unnoticed so far, is of basic nature, i.e., should be effective whenever Elliott-Yafet processes are present in a system with intrinsic spin-orbit coupling, irrespective of further specific details. The spin-generation torque contributes to the current-induced spin polarization (CISP), also known as inverse spin-galvanic or Edelstein effect. As a result, the behavior of the CISP turns out to be more complex than one would surmise from consideration of the internal Rashba-Dresselhaus fields alone. In particular, the symmetry of the current-induced spin polarization does not necessarily coincide with that of the internal Rashba-Dresselhaus field, and an out-of-plane component of the CISP is generally predicted, as observed in recent experiments. We also discuss the extension to the three-dimensional electron gas, which may be relevant for the interpretation of experiments in thin films.

  7. Studies on possibilities of polymer composites with conductive nanomaterials application in wearable electronics

    Science.gov (United States)

    Gralczyk, Kinga; Janczak, D.; Dybowska-Sarapuk, Ł.; Lepak, S.; Wróblewski, G.; Jakubowska, M.

    2017-08-01

    In the last few years there has been a growing interest in wearable electronic products, which are generating considerable interest especially in sport and medical industries. But rigid electronics is not comfortable to wear, so things like stretchable substrates, interconnects and electronic devices might help. Flexible electronics could adjust to the curves of a human body and allow the users to move freely. The objective of this paper is to study possibilities of polymer composites with conductive nanomaterials application in wearable electronics. Pastes with graphene, silver nanoplates and carbon nanotubes were manufactured and then interconnects were screen-printed on the surfaces of polyethylene terephthalate (PET) and fabric. Afterwards, the resistance and mechanical properties of samples were examined, also after washing them in a washing machine. It has been found that the best material for the conductive phase is silver. Traces printed directly on the fabric using conductive composites with one functional phase (silver nanoplates or graphene or carbon nanotubes) are too fragile to use them as a common solution in wearable electronics. Mechanical properties can be improved not only by adding carbon nanotubes or graphene to the silver paste, but also by printing additional layer of graphene paste or carbon nanotube paste onto silver layer. In fact, these solutions are not sufficient enough to solve a problem of using these composites in wearable electronics.

  8. On the interplay of morphology and electronic conductivity of rotationally spun carbon fiber mats

    Science.gov (United States)

    Opitz, Martin; Go, Dennis; Lott, Philipp; Müller, Sandra; Stollenwerk, Jochen; Kuehne, Alexander J. C.; Roling, Bernhard

    2017-09-01

    Carbon-based materials are used as electrode materials in a wide range of electrochemical applications, e.g., in batteries, supercapacitors, and fuel cells. For these applications, the electronic conductivity of the materials plays an important role. Currently, porous carbon materials with complex morphologies and hierarchical pore structures are in the focus of research. The complex morphologies influence the electronic transport and may lead to an anisotropic electronic conductivity. In this paper, we unravel the influence of the morphology of rotationally spun carbon fiber mats on their electronic conductivity. By combining experiments with finite-element simulations, we compare and evaluate different electrode setups for conductivity measurements. While the "bar-type method" with two parallel electrodes on the same face of the sample yields information about the intrinsic conductivity of the carbon fibers, the "parallel-plate method" with two electrodes on opposite faces gives information about the electronic transport orthogonal to the faces. Results obtained for the van-der-Pauw method suggest that this method is not well suited for understanding morphology-transport relations in these materials.

  9. Quasi 2D electronic states with high spin-polarization in centrosymmetric MoS2 bulk crystals

    Science.gov (United States)

    Gehlmann, Mathias; Aguilera, Irene; Bihlmayer, Gustav; Młyńczak, Ewa; Eschbach, Markus; Döring, Sven; Gospodarič, Pika; Cramm, Stefan; Kardynał, Beata; Plucinski, Lukasz; Blügel, Stefan; Schneider, Claus M.

    2016-06-01

    Time reversal dictates that nonmagnetic, centrosymmetric crystals cannot be spin-polarized as a whole. However, it has been recently shown that the electronic structure in these crystals can in fact show regions of high spin-polarization, as long as it is probed locally in real and in reciprocal space. In this article we present the first observation of this type of compensated polarization in MoS2 bulk crystals. Using spin- and angle-resolved photoemission spectroscopy (ARPES), we directly observed a spin-polarization of more than 65% for distinct valleys in the electronic band structure. By additionally evaluating the probing depth of our method, we find that these valence band states at the point in the Brillouin zone are close to fully polarized for the individual atomic trilayers of MoS2, which is confirmed by our density functional theory calculations. Furthermore, we show that this spin-layer locking leads to the observation of highly spin-polarized bands in ARPES since these states are almost completely confined within two dimensions. Our findings prove that these highly desired properties of MoS2 can be accessed without thinning it down to the monolayer limit.

  10. Towards seamlessly-integrated textile electronics: methods to coat fabrics and fibers with conducting polymers for electronic applications.

    Science.gov (United States)

    Allison, Linden; Hoxie, Steven; Andrew, Trisha L

    2017-06-29

    Traditional textile materials can be transformed into functional electronic components upon being dyed or coated with films of intrinsically conducting polymers, such as poly(aniline), poly(pyrrole) and poly(3,4-ethylenedioxythiophene). A variety of textile electronic devices are built from the conductive fibers and fabrics thus obtained, including: physiochemical sensors, thermoelectric fibers/fabrics, heated garments, artificial muscles and textile supercapacitors. In all these cases, electrical performance and device ruggedness is determined by the morphology of the conducting polymer active layer on the fiber or fabric substrate. Tremendous variation in active layer morphology can be observed with different coating or dyeing conditions. Here, we summarize various methods used to create fiber- and fabric-based devices and highlight the influence of the coating method on active layer morphology and device stability.

  11. Bending of conjugated molecular wires and its effect on electron conduction properties

    International Nuclear Information System (INIS)

    Das, Bidisa

    2010-01-01

    The electronic structure and electron transport properties of simple conjugated molecular wires like oligophenylene ethynylene (OPE) and oligophenylene vinylene (OPV) are studied under compression. If artificially confined to a given shorter length, the oligomers tend to bend and bending causes a loss in the overlap of the conjugated molecular orbitals. Theoretical modeling of electronic transport has been carried out for all undistorted and compressed OPE/OPV oligomers. OPV exists in step-like or V-like conformations and they have the same stability with very similar frontier molecular orbitals. The conductances of these molecular wires are calculated when inserted between two gold probes and the conductances for OPV are found to be comparable to OPE when the interfaces are same. The conductance decreases with bending due to the gradual loss in overlap of the molecular orbitals. It is also found that the conductances of the molecular wires decrease very strongly if the terminal sulfur atom is simultaneously bonded to hydrogen and a gold surface, thus reflecting the importance of the interface in determining the conductance in two-probe systems. From the conductance studies it may be concluded that if one or more benzene rings of OPE are rotated from coplanar conditions, the orthogonal molecular orbitals may completely block the electronic transport, rendering the molecule insulating.

  12. First measurement of the electric formfactor of the neutron in the exclusive quasielastic scattering of polarized electrons from polarized 3He

    International Nuclear Information System (INIS)

    Meyerhoff, M.; Eyl, D.; Frey, A.; Andresen, H.G.; Annand, J.R.M.; Aulenbacher, K.; Becker, J.; Blume-Werry, J.; Dombo, T.; Drescher, P.; Ducret, J.E.; Fischer, H.; Grabmayr, P.; Hall, S.; Hartmann, P.; Hehl, T.; Heil, W.; Hoffmann, J.; Kellie, J.D.; Klein, F.; Leduc, M.; Moeller, H.; Nachtigall, C.; Ostrick, M.; Otten, E.W.; Owens, R.O.; Pluetzer, S.; Reichert, E.; Rohe, D.; Schaefer, M.; Schearer, L.D.; Schmieden, H.; Steffens, K.; Surkau, R.; Walcher, T.

    1995-01-01

    A first measurement of the asymmetry in quasielastic scattering of longitudinally polarized electrons from a polarized 3 He gas target in coincidence with the knocked out neutron is reported. This measurement was made feasible by the cw beam of the 855 meV Mainz Microtron MAMI. It allows a determination of the electric formfactor of the neutron G n E independent of binding effects to first order. At bar Q 2 =0.31 (GeV/c) 2 two asymmetries bar A parallel (rvec S He parallel rvec q) and bar A perpendicular (rvec S He perpendicular rvec q) have been measured giving bar A parallel =(-7.40±0.73%) and bar A perpendicular =(0.89±0.30)%. The ratio bar A perpendicular /bar A parallel is independent of the absolute value of the electron and target polarization and yields G n E =0.035±0.012±0.005. copyright 1995 American Institute of Physics

  13. SLAC's Polarized Electron Source LaserSystem and Minimization of Helicity Correlations for the E-158 Parity Violation Experiment

    CERN Document Server

    Humensky, T

    2002-01-01

    SLAC E-158 is an experiment designed to make the first measurement of parity violation in Moeller scattering. E-158 will measure the right-left cross-section asymmetry, A sub L sub R sup M sup o sup e sup l sup l sup e sup r , in the elastic scattering of a 45-GeV polarized electron beam off unpolarized electrons in a liquid hydrogen target. E-158 plans to measure the expected Standard Model asymmetry of approx 10 sup - sup 7 to an accuracy of better than 10 sup - sup 8. To make this measurement, the polarized electron source requires for operation an intense circularly polarized laser beam and the ability to quickly switch between right- and left-helicity polarization states with minimal right-left helicity-correlated asymmetries in the resulting beam parameters (intensity, position, angle, spot size, and energy), sup b sup e sup a sup m A sub L sub R 's. This laser beam is produced by a unique SLAC-designed flashlamp-pumped Ti:Sapphire laser and is propagated through a carefully designed set of polarization...

  14. Improved Electron Yield and Spin-Polarization from III-V Photocathodes Via Bias Enhanced Carrier Drift

    International Nuclear Information System (INIS)

    Mulhollan, Gregory A.; Bierman, John; Brachmann, Axel; Clendenin, James E.; Garwin, Edward; Kirby, Robert; Luh, Dah-An

    2005-01-01

    Spin-polarized electrons are commonly used in high energy physics. Future work will benefit from greater polarization. Polarizations approaching 90% have been achieved at the expense of yield. The primary paths to higher polarization are material design and electron transport. Our work addresses the latter. Photoexcited electrons may be preferentially emitted or suppressed by an electric field applied across the active region. We are tuning this forward bias for maximum polarization and yield, together with other parameters, e.g., doping profile. Preliminary measurements have been carried out on bulk and thin film GaAs. As expected, the yield change far from the bandgap is quite large for bulk material. The bias is applied to the bottom (non-activated) side of the cathode so that the accelerating potential as measured with respect to the ground potential chamber walls is unchanged for different front-to-back cathode bias values. The size of the bias to cause an appreciable effect is rather small reflecting the low drift kinetic energy in the zero bias case

  15. Carbon doped PDMS: conductance stability over time and implications for additive manufacturing of stretchable electronics

    International Nuclear Information System (INIS)

    Tavakoli, Mahmoud; Rocha, Rui; Osorio, Luis; Almeida, Miguel; De Almeida, Anibal; Ramachandran, Vivek; Tabatabai, Arya; Lu, Tong; Majidi, Carmel

    2017-01-01

    Carbon doped PDMS (cPDMS), has been used as a conductive polymer for stretchable electronics. Compared to liquid metals, cPDMS is low cost and is easier to process or to print with an additive manufacturing process. However, changes on the conductance of the carbon based conductive PDMS (cPDMS) were observed over time, in particular after integration of cPDMS and the insulating polymer. In this article we investigate the process parameters that lead to improved stability over conductance of the cPDMS over time. Slight modifications to the fabrication process parameters were conducted and changes on the conductance of the samples for each method were monitored. Results suggested that change of the conductance happens mostly after integration of a pre-polymer over a cured cPDMS, and not after integration of the cPDMS over a cured insulating polymer. We show that such changes can be eliminated by adjusting the integration priority between the conductive and insulating polymers, by selecting the right curing temperature, changing the concentration of the carbon particles and the thickness of the conductive traces, and when possible by changing the insulating polymer material. In this way, we obtained important conclusions regarding the effect of these parameters on the change of the conductance over time, that should be considered for additive manufacturing of soft electronics. Also, we show that these changes can be possibly due to the diffusion from PDMS into cPDMS. (paper)

  16. Self-assembly of an electronically conductive network through microporous scaffolds.

    Science.gov (United States)

    Sebastian, H Bri; Bryant, Steven L

    2017-06-15

    Electron transfer spanning significant distances through a microporous structure was established via the self-assembly of an electronically conductive iridium oxide nanowire matrix enveloping the pore walls. Microporous formations were simulated using two scaffold materials of varying physical and chemical properties; paraffin wax beads, and agar gel. Following infiltration into the micropores, iridium nanoparticles self-assembled at the pore wall/ethanol interface. Subsequently, cyclic voltammetry was employed to electrochemically crosslink the metal, erecting an interconnected, and electronically conductive metal oxide nanowire matrix. Electrochemical and spectral characterization techniques confirmed the formation of oxide nanowire matrices encompassing lengths of at least 1.6mm, 400× distances previously achieved using iridium nanoparticles. Nanowire matrices were engaged as biofuel cell anodes, where electrons were donated to the nanowires by a glucose oxidizing enzyme. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Electronic structure, Born effective charges and spontaneous polarization in magnetoelectric gallium ferrite

    International Nuclear Information System (INIS)

    Roy, Amritendu; Garg, Ashish; Mukherjee, Somdutta; Gupta, Rajeev; Prasad, Rajendra; Auluck, Sushil

    2011-01-01

    We present a theoretical study of the structure-property correlation in gallium ferrite, based on first-principles calculations followed by a subsequent comparison with experiments. The local spin density approximation (LSDA + U) of the density functional theory has been used to calculate the ground state structure, electronic band structure, density of states and Born effective charges. The calculations reveal that the ground state structure is orthorhombic Pc 2 1 n having A-type antiferromagnetic spin configuration, with lattice parameters matching well with those obtained experimentally. Plots of the partial density of states of constituent ions exhibit noticeable hybridization of Fe 3d, Ga 4s, Ga 4p and O 2p states. However, the calculated charge density and electron localization function show a largely ionic character of the Ga/Fe-O bonds which is also supported by a lack of any significant anomaly in the calculated Born effective charges with respect to the corresponding nominal ionic charges. The calculations show a spontaneous polarization of ∼ 59 μC cm -2 along the b-axis which is largely due to asymmetrically placed Ga1, Fe1, O1, O2 and O6 ions.

  18. The electronic conductance of polypyrrole (PPy molecular wires and emergence of Fano resonance phenomena

    Directory of Open Access Journals (Sweden)

    M Mardaani

    2012-06-01

    Full Text Available In this paper, we studied the electronic conductance of a polypyrrole polymer, which is embedded between two semi-infinite simple chains by using Green’s function technique in tight-binding approach. We first reduced the center polymer to a one dimensional chain with renormalized onsite and hopping energies by renormalization method. Then, we calculated the system conductivity as a function of incoming electron energy, polymer length and contact hopping terms. The results showed that by increasing polymer length and decreasing contact hopping energies, the conductance decreases in the gap regions. This means that for larger gaps, the electron tunneling happens with more difficulty. Moreover, at the resonance area, due to the existence of nitrogen atom in the polymer cyclic structure, the Fano resonance will emerge. Furthermore, the polymer can behave like a metallic chain by variation of the value of nitrogen on-site term.

  19. Interfacial Nb-substitution induced anomalous enhancement of polarization and conductivity in BaTiO3 ferroelectric tunnel junctions

    Directory of Open Access Journals (Sweden)

    H. F. Li

    2014-12-01

    Full Text Available Using density functional theory (DFT method combined with non-equilibrium Green’s function approach, we systematically investigated the structural, ferroelectric and electronic transport properties of Pt/BaTiO3/Pt ferroelectric tunnel junctions (FTJ with the interface atomic layers doped by charge neutral NbTi substitution. It is found that interfacial NbTi substitution will produce several anomalous effects such as the vanishing of ferroelectric critical thickness and the decrease of junction resistance against tunneling current. Consequently, the thickness of the ferroelectric thin film (FTF in the FTJ can be reduced, and both the electroresistance effect and sensitivity to external bias of the FTJ are enhanced. Our calculations indicate that the enhancements of conductivity and ferroelectric distortion can coexist in FTJs, which should be important for applications of functional electronic devices based on FTJs.

  20. Compton scattering and electron-atom scattering in an elliptically polarized laser field of relativistic radiation power

    International Nuclear Information System (INIS)

    Panek, P.; Kaminski, J.Z.; Ehlotzky, F.

    2003-01-01

    Presently available laser sources can yield powers for which the ponderomotive energy of an electron U p can be equal to or even larger than the rest energy mc 2 of an electron. Therefore it has become of interest to consider fundamental radiation-induced or assisted processes in such powerful laser fields. In the present work we consider laser-induced Compton scattering and laser-assisted electron atom scattering in such fields, assuming that the laser beam has arbitrary elliptic polarization. We investigate in detail the angular and polarisation dependence of the differential cross-sections of the two laser-induced or laser-assisted nonlinear processes as a function of the order N of absorbed or emitted laser photons ω. The present work is a generalization of our previous analysis of Compton scattering and electron-atom scattering in a linearly polarized laser field. (authors)

  1. Effect of the dynamic core-electron polarization of CO molecules on high-order harmonic generation

    Science.gov (United States)

    Le, Cam-Tu; Hoang, Van-Hung; Tran, Lan-Phuong; Le, Van-Hoang

    2018-04-01

    We theoretically investigate the influence of dynamic core-electron polarization (DCeP) of CO molecules on high-order harmonic generation (HHG) by solving the time-dependent Schrödinger equation (TDSE) within the single-active-electron (SAE) approximation. The effect of DCeP is shown to depend strongly on the molecular orientation angle θ . Particularly, compared to the calculations without DCeP, the inclusion of this effect gives rise to an enhancement of harmonic intensity at θ =0° when the electric field aligns along the O-C direction and to a suppression at θ =180° when the field heads in the opposite direction. Meanwhile, when the electric field is perpendicular to the molecular axis, the effect is almost insignificant. The phenomenon is thought to be linked to the ionization process. However, this picture is not completed yet. By solving the TDSE within the SAE approximation and conducting a classical simulation, we are able to obtain the ionization probability as well as the ionization rate and prove that HHG, in fact, receives a major contribution from electrons ionized at only a certain time interval, rather than throughout the whole pulse propagation. Including DCeP, the variation of the ionization rate in this interval highly correlates to that of the HHG intensity. To better demonstrate the origin of this manifestation, we also show the alternation DCeP makes on the effective potential that corresponds to the observed change in the ionization rate and consequently the HHG intensity. Our results confirm previous studies' observations and, more importantly, provide the missing physical explanation. With the role of DCeP now better understood for the entire range of the orientation angle, this effect can be handled more conveniently for calculating the HHG of other targets.

  2. Polarization-dependent pump-probe studies in atomic fine-structure levels: towards the production of spin-polarized electrons

    International Nuclear Information System (INIS)

    Sokell, E.; Zamith, S.; Bouchene, M.A.; Girard, B.

    2000-01-01

    The precession of orbital and spin angular momentum vectors has been observed in a pump-probe study of the 4P fine-structure states of atomic potassium. A femtosecond pump pulse prepared a coherent superposition of the two fine-structure components. A time-delayed probe pulse then ionized the system after it had been allowed to evolve freely. Oscillations recorded in the ion signal reflect the evolution of the orientation of the orbital and spin angular momentum due to spin-orbit coupling. This interpretation gives physical insight into the cause of the half-period phase shift observed when the relative polarizations of the laser pulses were changed from parallel to perpendicular. Finally, it is shown that these changes in the orientation of the spin momentum vector of the system can be utilized to produce highly spin-polarized free electrons on the femtosecond scale. (author)

  3. Polarized electrons from GaAs for parity nonconservation studies and Moeller scattering at 250 MeV

    International Nuclear Information System (INIS)

    Cates, G.D. Jr.

    1987-01-01

    A description is given of a polarized electron source based on photoemission from GaAs with circularly polarized light, which was developed for use in the study of parity nonconservation (PNC) in e- 12 C scattering at 250 MeV at the MIT Bates Linear Accelerator Center. A multi-chamber vacuum system houses up to four GaAs crystals simultaneously, and is contained in a Faraday cage to provide 365 KeV in electrostatic acceleration. Stable operation is achieved through the use of a modulated cw laser. The PNC experiment is discussed, particularly with regards to its requirements on the source. The peak current from the source is 20 mA, resulting in a current in excess of 6 mA at high energy. The electron beam polarization has been measured to be 0.36 ± 0.004 using Moeller scattering at 250 MeV

  4. Analysis of secondary electron emission for conducting materials using 4-grid LEED/AES optics

    International Nuclear Information System (INIS)

    Patino, M I; Wirz, R E; Raitses, Y; Koel, B E

    2015-01-01

    A facility utilizing 4-grid optics for LEED/AES (low energy electron diffraction/Auger electron spectroscopy) was developed to measure the total secondary electron yield and secondary electron energy distribution function for conducting materials. The facility and experimental procedure were validated with measurements of 50–500 eV primary electrons impacting graphite. The total yield was calculated from measurements of the secondary electron current (i) from the sample and (ii) from the collection assembly, by biasing each surface. Secondary electron yield results from both methods agreed well with each other and were within the spread of previous results for the total yield from graphite. Additionally, measurements of the energy distribution function of secondary electrons from graphite are provided for a wider range of incident electron energies. These results can be used in modeling plasma-wall interactions in plasmas bounded by graphite walls, such as are found in plasma thrusters, and divertors and limiters of magnetic fusion devices. (paper)

  5. Localized electron density enhancements in the high-altitude polar ionosphere and their relationships with storm-enhanced density (SED plumes and polar tongues of ionization (TOI

    Directory of Open Access Journals (Sweden)

    Y. Kitanoya

    2011-02-01

    Full Text Available Events of localized electron density increase in the high-altitude (>3000 km polar ionosphere are occasionally identified by the thermal plasma instruments on the Akebono satellite. In this paper, we investigate the vertical density structure in one of such events in detail using simultaneous observations by the Akebono and DMSP F15 satellites, the SuperDARN radars, and a network of ground Global Positioning System (GPS receivers, and the statistical characteristics of a large number (>10 000 of such events using Akebono data over half of an 11-year solar cycle. At Akebono altitude, the parallel drift velocity is remarkably low and the O+ ion composition ratio remarkably high, inside the high plasma-density regions at high altitude. Detailed comparisons between Akebono, DMSP ion velocity and density, and GPS total electron content (TEC data suggest that the localized plasma density increase observed at high altitude on Akebono was likely connected with the polar tongue of ionization (TOI and/or storm enhanced density (SED plume observed in the F-region ionosphere. Together with the SuperDARN plasma convection map these data suggest that the TOI/SED plume penetrated into the polar cap due to anti-sunward convection and the plume existed in the same convection channel as the dense plasma at high altitude; in other words, the two were probably connected to each other by the convecting magnetic field lines. The observed features are consistent with the observed high-density plasma being transported from the mid-latitude ionosphere or plasmasphere and unlikely a part of the polar wind population.

  6. Balancing Hole and Electron Conduction in Ambipolar Split-Gate Thin-Film Transistors.

    Science.gov (United States)

    Yoo, Hocheon; Ghittorelli, Matteo; Lee, Dong-Kyu; Smits, Edsger C P; Gelinck, Gerwin H; Ahn, Hyungju; Lee, Han-Koo; Torricelli, Fabrizio; Kim, Jae-Joon

    2017-07-10

    Complementary organic electronics is a key enabling technology for the development of new applications including smart ubiquitous sensors, wearable electronics, and healthcare devices. High-performance, high-functionality and reliable complementary circuits require n- and p-type thin-film transistors with balanced characteristics. Recent advancements in ambipolar organic transistors in terms of semiconductor and device engineering demonstrate the great potential of this route but, unfortunately, the actual development of ambipolar organic complementary electronics is currently hampered by the uneven electron (n-type) and hole (p-type) conduction in ambipolar organic transistors. Here we show ambipolar organic thin-film transistors with balanced n-type and p-type operation. By manipulating air exposure and vacuum annealing conditions, we show that well-balanced electron and hole transport properties can be easily obtained. The method is used to control hole and electron conductions in split-gate transistors based on a solution-processed donor-acceptor semiconducting polymer. Complementary logic inverters with balanced charging and discharging characteristics are demonstrated. These findings may open up new opportunities for the rational design of complementary electronics based on ambipolar organic transistors.

  7. Creation of High Mobility Two-Dimensional Electron Gases via Strain Induced Polarization at an Otherwise Nonpolar Complex Oxide Interface

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Trier, Felix; Kasama, Takeshi

    2015-01-01

    The discovery of two-dimensional electron gases (2DEGs) in SrTiO3-based heterostructures provides new opportunities for nanoelectronics. Herein, we create a new type of oxide 2DEG by the epitaxial-strain-induced polarization at an otherwise nonpolar perovskite-type interface of CaZrO3/SrTiO3. Rem...

  8. The asymmetry in electroproduction of the Δ(1232) by polarized electrons and the structure of the weak neutral current

    International Nuclear Information System (INIS)

    Hossain, A.; Chaudhury, T.K.; Nath, L.M.

    1983-08-01

    The R-L asymmetry in electroproduction of the Δ(1232) by longitudinally polarized electrons, which is, a priori, a parity violating effect, has been discussed in the framework of the SU(2)xU(1) symmetry. Our predictions are related to and expected to be useful in the determination of the structure of the weak neutral current. (author)

  9. Effects of laser-polarization and wiggler magnetic fields on electron acceleration in laser-cluster interaction

    Science.gov (United States)

    Singh Ghotra, Harjit; Kant, Niti

    2018-06-01

    We examine the electron dynamics during laser-cluster interaction. In addition to the electrostatic field of an individual cluster and laser field, we consider an external transverse wiggler magnetic field, which plays a pivotal role in enhancing the electron acceleration. Single-particle simulation has been presented with a short pulse linearly polarized as well as circularly polarized laser pulses for electron acceleration in a cluster. The persisting Coulomb field allows the electron to absorb energy from the laser field. The stochastically heated electron finds a weak electric field at the edge of the cluster from where it is ejected. The wiggler magnetic field connects the regions of the stochastically heated, ejected electron from the cluster and high energy gain by the electron from the laser field outside the cluster. This increases the field strength and hence supports the electron to meet the phase of the laser field for enhanced acceleration. A long duration resonance appears with an optimized magnetic wiggler field of about 3.4 kG. Hence, the relativistic energy gain by the electron is enhanced up to a few 100 MeV with an intense short pulse laser with an intensity of about 1019 W cm‑2 in the presence of a wiggler magnetic field.

  10. Modes of interaction between nanostructured metal and a conducting mirror as a function of separation and incident polarization

    Science.gov (United States)

    Bonnie, F.; Arnold, M. D.; Smith, G. B.; Gentle, A. R.

    2013-09-01

    The optical resonances that occur in nanostructured metal layers are modulated in thin film stacks if the nanostructured layer is separated from a reflecting conducting layer by various thicknesses of thin dielectric. We have measured and modeled the optical response of interacting silver layers, with alumina spacer thickness ranging from a few nm to 50 nm, for s- and p-polarized incident light, and a range of incident angles. Standard thin film models, including standard effective medium models for the nanostructured layer, will break down for spacer thickness below a critical threshold. For example, with polarisation in the film plane and some nano-islands, it may occur at around 10 nm depending on spacer refractive index. Of particular interest here are novel effects observed with the onset of percolation in the nanolayer. Hot spot effects can be modified by nearby mirrors. Other modes to consider include (a) a two-particle mode involving a particle and its mirror image (b) A Fano resonance from hybridisation of localized and de-localised plasmon modes (c) a Babinet's core-(partial) shell particle with metal core-dielectric shell in metal (d) spacing dependent phase modulation (e) the impact of field gradients induced by the mirror at the nano-layer.

  11. The electron-spin--nuclear-spin interaction studied by polarized neutron scattering.

    Science.gov (United States)

    Stuhrmann, Heinrich B

    2007-11-01

    Dynamic nuclear spin polarization (DNP) is mediated by the dipolar interaction of paramagnetic centres with nuclear spins. This process is most likely to occur near paramagnetic centres at an angle close to 45 degrees with respect to the direction of the external magnetic field. The resulting distribution of polarized nuclear spins leads to an anisotropy of the polarized neutron scattering pattern, even with randomly oriented radical molecules. The corresponding cross section of polarized coherent neutron scattering in terms of a multipole expansion is derived for radical molecules in solution. An application using data of time-resolved polarized neutron scattering from an organic chromium(V) molecule is tested.

  12. A Biomimetic Conductive Tendril for Ultrastretchable and Integratable Electronics, Muscles, and Sensors.

    Science.gov (United States)

    Cheng, Yin; Wang, Ranran; Chan, Kwok Hoe; Lu, Xin; Sun, Jing; Ho, Ghim Wei

    2018-04-24

    Adaptive tendril coiling of climbing plants has long inspired the artificial soft microsystem for actuation and morphing. The current bionic research efforts on tendril coiling focus on either the preparation of materials with the coiling geometry or the design of self-shaping materials. However, the realization of two key functional features of the tendril, the spring-like buffering connection and the axial contraction, remains elusive. Herein, we devise a conductive tendril by fusing conductive yarns into tendril configuration, bypassing the prevailing conductivity constraints and mechanical limitations. The conductive tendril not only inherits an electrophysiology buffering mechanics with exceptional conductance retention ability against extreme stretching but also exhibits excellent contractive actuation performance. The integrative design of the ultraelastic conductive tendril shows a combination of compliant mobility, actuation, and sensory capabilities. Such smart biomimetic material holds great prospects in the fields of ultrastretchable electronics, artificial muscles, and wearable bioelectronic therapeutics.

  13. Simultaneous production of spin-polarized ions/electrons based on two-photon ionization of laser-ablated metallic atoms

    International Nuclear Information System (INIS)

    Nakajima, Takashi; Yonekura, Nobuaki; Matsuo, Yukari; Kobayashi, Tohru; Fukuyama, Yoshimitsu

    2003-01-01

    We demonstrate the simultaneous production of spin-polarized ions/electrons using two-color, two-photon ionization of laser-ablated metallic atoms. Specifically, we have applied the developed technique to laser-ablated Sr atoms, and found that the electron-spin polarization of Sr + ions, and accordingly, the spin polarization of photoelectrons is 64%±9%, which is in good agreement with the theoretical prediction we have recently reported [T. Nakajima and N. Yonekura, J. Chem. Phys. 117, 2112 (2002)]. Our experimental results open up a simple way toward the construction of a spin-polarized dual ion/electron source

  14. Stretchable, Twisted Conductive Microtubules for Wearable Computing, Robotics, Electronics, and Healthcare.

    Science.gov (United States)

    Do, Thanh Nho; Visell, Yon

    2017-05-11

    Stretchable and flexible multifunctional electronic components, including sensors and actuators, have received increasing attention in robotics, electronics, wearable, and healthcare applications. Despite advances, it has remained challenging to design analogs of many electronic components to be highly stretchable, to be efficient to fabricate, and to provide control over electronic performance. Here, we describe highly elastic sensors and interconnects formed from thin, twisted conductive microtubules. These devices consist of twisted assemblies of thin, highly stretchable (>400%) elastomer tubules filled with liquid conductor (eutectic gallium indium, EGaIn), and fabricated using a simple roller coating process. As we demonstrate, these devices can operate as multimodal sensors for strain, rotation, contact force, or contact location. We also show that, through twisting, it is possible to control their mechanical performance and electronic sensitivity. In extensive experiments, we have evaluated the capabilities of these devices, and have prototyped an array of applications in several domains of stretchable and wearable electronics. These devices provide a novel, low cost solution for high performance stretchable electronics with broad applications in industry, healthcare, and consumer electronics, to emerging product categories of high potential economic and societal significance.

  15. Electronic-Reconstruction-Enhanced Tunneling Conductance at Terrace Edges of Ultrathin Oxide Films.

    Science.gov (United States)

    Wang, Lingfei; Kim, Rokyeon; Kim, Yoonkoo; Kim, Choong H; Hwang, Sangwoon; Cho, Myung Rae; Shin, Yeong Jae; Das, Saikat; Kim, Jeong Rae; Kalinin, Sergei V; Kim, Miyoung; Yang, Sang Mo; Noh, Tae Won

    2017-11-01

    Quantum mechanical tunneling of electrons across ultrathin insulating oxide barriers has been studied extensively for decades due to its great potential in electronic-device applications. In the few-nanometers-thick epitaxial oxide films, atomic-scale structural imperfections, such as the ubiquitously existed one-unit-cell-high terrace edges, can dramatically affect the tunneling probability and device performance. However, the underlying physics has not been investigated adequately. Here, taking ultrathin BaTiO 3 films as a model system, an intrinsic tunneling-conductance enhancement is reported near the terrace edges. Scanning-probe-microscopy results demonstrate the existence of highly conductive regions (tens of nanometers wide) near the terrace edges. First-principles calculations suggest that the terrace-edge geometry can trigger an electronic reconstruction, which reduces the effective tunneling barrier width locally. Furthermore, such tunneling-conductance enhancement can be discovered in other transition metal oxides and controlled by surface-termination engineering. The controllable electronic reconstruction can facilitate the implementation of oxide electronic devices and discovery of exotic low-dimensional quantum phases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The Effect of Electrical Polarization on Electronic Structure in LSM Electrodes: An Operando XAS, RIXS and XES Study

    DEFF Research Database (Denmark)

    Traulsen, Marie Lund; Carvalho, H.W.P.; Zielke, Philipp

    2017-01-01

    in the Mn K edge energy towards lower energies. The shift is assigned to a decrease in the average Mn oxidation state, which based on Kβ XES changes from 3.4 at open circuit voltage to 3.2 at −800 mV applied potential. Furthermore, RIXS rendered pronounced changes in the population of the Mn 3d orbitals...... (RIXS) at the Mn K-edge. The study of polarization induced changes in the electronic properties and structure has been carried out at 500°C in 10–20% O2 with electrical polarization applied in the range from −850 mV to 800 mV. Cathodic polarizations in the range −600 mV to −850 mV induced a shift......, due to filling of the Mn d-orbitals during the cathodic polarization. Overall, the study experimentally links the electrical polarization of LSM electrodes to the structural and electronic properties of Mn - these properties are expected to be of major importance for the electrocatalytic performance...

  17. Impact of molecular packing on electronic polarization in organic crystals: the case of pentacene vs TIPS-pentacene.

    Science.gov (United States)

    Ryno, Sean M; Risko, Chad; Brédas, Jean-Luc

    2014-04-30

    Polarization energy corresponds to the stabilization of the cation or anion state of an atom or molecule when going from the gas phase to the solid state. The decrease in ionization energy and increase in electron affinity in the solid state are related to the (electronic and nuclear) polarization of the surrounding atoms and molecules in the presence of a charged entity. Here, through a combination of molecular mechanics and quantum mechanics calculations, we evaluate the polarization energies in two prototypical organic semiconductors, pentacene and 6,13-bis(2-(tri-isopropylsilyl)ethynyl)pentacene (TIPS-pentacene). Comparison of the results for the two systems reveals the critical role played by the molecular packing configurations in the determination of the polarization energies and provides physical insight into the experimental data reported by Lichtenberger and co-workers (J. Amer. Chem. Soc. 2010, 132, 580; J. Phys. Chem. C 2010, 114, 13838). Our results underline that the impact of packing configurations, well established in the case of the charge-transport properties, also extends to the polarization properties of π-conjugated materials.

  18. Evaporation equipment with electron beam heating for the evaporation of metals and other conducting materials

    International Nuclear Information System (INIS)

    Mueller, P.

    1977-01-01

    Equipment for the evaporation of metals and other conducting materials by electron beam heating is to be improved by surrou nding the evaporation equipment with a grid, which has a negative voltage compared to the cathode. This achieves the state where the cathode is hit and damaged less by the ions formed, so that its life period is prolonged. (UWI) [de

  19. Vertex corrections to the mean-field electrical conductivity in disordered electron systems

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Vladislav; Janiš, Václav

    2013-01-01

    Roč. 25, č. 17 (2013), "175502-1"-"175502-10" ISSN 0953-8984 Institutional support: RVO:68378271 Keywords : disordered electron systems * electrical conductivity * vertex corrections Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.223, year: 2013

  20. Dynamic tunneling force microscopy for characterizing electronic trap states in non-conductive surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wang, R.; Williams, C. C., E-mail: clayton@physics.utah.edu [Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112 (United States)

    2015-09-15

    Dynamic tunneling force microscopy (DTFM) is a scanning probe technique for real space mapping and characterization of individual electronic trap states in non-conductive films with atomic scale spatial resolution. The method is based upon the quantum mechanical tunneling of a single electron back and forth between a metallic atomic force microscopy tip and individual trap states in completely non-conducting surface. This single electron shuttling is measured by detecting the electrostatic force induced on the probe tip at the shuttling frequency. In this paper, the physical basis for the DTFM method is unfolded through a physical model and a derivation of the dynamic tunneling signal as a function of several experimental parameters is shown. Experimental data are compared with the theoretical simulations, showing quantitative consistency and verifying the physical model used. The experimental system is described and representative imaging results are shown.

  1. Enhancing the Electronic Conductivity of Vanadium-tellurite Glasses by Tuning the Redox State

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Yue, Yuanzheng

    Transition metal oxides are used in a variety of electronic purposes, e.g., vanadium tellurite as cathode material in high-power demanding batteries. By tuning the redox state of vanadium, it is possible to achieve a lower internal resistance within the entire battery unit, thus a higher capacity....... In this work we vary the redox state of a given vanadium tellurite system by performing post heat-treatment in controlled atmosphere. This process is in theory not limited only to varying electronic conductivity, but also varying the glass structure, and hence, changing properties of the glasses, e.g, thermal...... and mechanical properties. Finally we give insight into the relation between the redox state and electronic conductivity....

  2. Epitaxial engineering of polar ɛ-Ga2O3 for tunable two-dimensional electron gas at the heterointerface

    Science.gov (United States)

    Cho, Sung Beom; Mishra, Rohan

    2018-04-01

    We predict the formation of a polarization-induced two-dimensional electron gas (2DEG) at the interface of ɛ-Ga2O3 and CaCO3, wherein the density of the 2DEG can be tuned by reversing the spontaneous polarization in ɛ-Ga2O3, for example, with an applied electric field. ɛ-Ga2O3 is a polar and metastable ultra-wide band-gap semiconductor. We use density-functional theory (DFT) calculations and coincidence-site lattice model to predict the region of epitaxial strain under which ɛ-Ga2O3 can be stabilized over its other competing polymorphs and suggest promising substrates. Using group-theoretical methods and DFT calculations, we show that ɛ-Ga2O3 is a ferroelectric material where the spontaneous polarization can be reversed through a non-polar phase by using an electric field. Based on the calculated band alignment of ɛ-Ga2O3 with various substrates, we show the formation of a 2DEG with a high sheet charge density of 1014 cm-2 at the interface with CaCO3 due to the spontaneous and piezoelectric polarization in ɛ-Ga2O3, which makes the system attractive for high-power and high-frequency applications.

  3. Electronic and ionic conductivities and point defects in ytterbium sesquioxide at high temperature

    International Nuclear Information System (INIS)

    Carpentier, J.-L.; Lebrun, A.; Perdu, F.; Tellier, P.

    1982-01-01

    From the study of complex impedance diagrams applied to a symmetric cell Pt-Yb 2 O 3 -Pt, the authors have shown the mixed character of electrical conduction within the ytterbium sesquioxide. The measurements were performed at thermodynamic equilibrium in the temperature range from 1423 to 1623 K and the partial pressure of oxygen range from 10 -12 to 1 atm. The variations of ionic and electronic conductivity as a function of Psub(O 2 ) were interpreted in terms of four different point defects in the general case of a Frenkel disorder. The relative contributions and the activation energies of conduction of these different defects were determined. (author)

  4. Optical and electronic properties of 2 H -Mo S2 under pressure: Revealing the spin-polarized nature of bulk electronic bands

    Science.gov (United States)

    Brotons-Gisbert, Mauro; Segura, Alfredo; Robles, Roberto; Canadell, Enric; Ordejón, Pablo; Sánchez-Royo, Juan F.

    2018-05-01

    Monolayers of transition-metal dichalcogenide semiconductors present spin-valley locked electronic bands, a property with applications in valleytronics and spintronics that is usually believed to be absent in their centrosymmetric (as the bilayer or bulk) counterparts. Here we show that bulk 2 H -Mo S2 hides a spin-polarized nature of states determining its direct band gap, with the spin sequence of valence and conduction bands expected for its single layer. This relevant finding is attained by investigating the behavior of the binding energy of A and B excitons under high pressure, by means of absorption measurements and density-functional-theory calculations. These results raise an unusual situation in which bright and dark exciton degeneracy is naturally broken in a centrosymmetric material. Additionally, the phonon-assisted scattering process of excitons has been studied by analyzing the pressure dependence of the linewidth of discrete excitons observed at the absorption coefficient edge of 2 H -Mo S2 . Also, the pressure dependence of the indirect optical transitions of bulk 2 H -Mo S2 has been analyzed by absorption measurements and density-functional-theory calculations. These results reflect a progressive closure of the indirect band gap as pressure increases, indicating that metallization of bulk Mo S2 may occur at pressures higher than 26 GPa.

  5. Electronically conductive perovskite-based oxide nanoparticles and films for optical sensing applications

    Science.gov (United States)

    Ohodnicki, Jr., Paul R; Schultz, Andrew M

    2015-04-28

    The disclosure relates to a method of detecting a change in a chemical composition by contacting a electronically conducting perovskite-based metal oxide material with a monitored stream, illuminating the electronically conducting perovskite-based metal oxide with incident light, collecting exiting light, monitoring an optical signal based on a comparison of the incident light and the exiting light, and detecting a shift in the optical signal. The electronically conducting perovskite-based metal oxide has a perovskite-based crystal structure and an electronic conductivity of at least 10.sup.-1 S/cm, where parameters are specified at the gas stream temperature. The electronically conducting perovskite-based metal oxide has an empirical formula A.sub.xB.sub.yO.sub.3-.delta., where A is at least a first element at the A-site, B is at least a second element at the B-site, and where 0.8perovskite-based oxides include but are not limited to La.sub.1-xSr.sub.xCoO.sub.3, La.sub.1-xSr.sub.xMnO.sub.3, LaCrO.sub.3, LaNiO.sub.3, La.sub.1-xSr.sub.xMn.sub.1-yCr.sub.yO.sub.3, SrFeO.sub.3, SrVO.sub.3, La-doped SrTiO.sub.3, Nb-doped SrTiO.sub.3, and SrTiO.sub.3-.delta..

  6. Visualizing One-Dimensional Electronic States and their Scattering in Semi-conducting Nanowires

    Science.gov (United States)

    Beidenkopf, Haim; Reiner, Jonathan; Norris, Andrew; Nayak, Abhay Kumar; Avraham, Nurit; Shtrikman, Hadas

    One-dimensional electronic systems constitute a fascinating playground for the emergence of exotic electronic effects and phases, within and beyond the Tomonaga-Luttinger liquid paradigm. More recently topological superconductivity and Majorana modes were added to that long list of phenomena. We report scanning tunneling microscopy and spectroscopy measurements conducted on pristine, epitaxialy grown InAs nanowires. We resolve the 1D electronic band structure manifested both via Van-Hove singularities in the local density-of-states, as well as by the quasi-particle interference patterns, induced by scattering from surface impurities. By studying the scattering of the one-dimensional electronic states off various scatterers, including crystallographic defects and the nanowire end, we identify new one-dimensional relaxation regimes and yet unexplored effects of interactions. Some of these may bear implications on the topological superconducting state and Majorana modes therein. The authors acknowledge support from the Israeli Science Foundation (ISF).

  7. Quantum Theory of Conducting Matter Newtonian Equations of Motion for a Bloch Electron

    CERN Document Server

    Fujita, Shigeji

    2007-01-01

    Quantum Theory of Conducting Matter: Newtonian Equations of Motion for a Bloch Electron targets scientists, researchers and graduate-level students focused on experimentation in the fields of physics, chemistry, electrical engineering, and material sciences. It is important that the reader have an understanding of dynamics, quantum mechanics, thermodynamics, statistical mechanics, electromagnetism and solid-state physics. Many worked-out problems are included in the book to aid the reader's comprehension of the subject. The Bloch electron (wave packet) moves by following the Newtonian equation of motion. Under an applied magnetic field B the electron circulates around the field B counterclockwise or clockwise depending on the curvature of the Fermi surface. The signs of the Hall coefficient and the Seebeck coefficient are known to give the sign of the major carrier charge. For alkali metals, both are negative, indicating that the carriers are "electrons." These features arise from the Fermi surface difference...

  8. Convective and conduction heat transfer study on a mig-type electron gun

    International Nuclear Information System (INIS)

    Patire Junior, H.; Barroso, J.J.

    1996-01-01

    A convective and conducting heat transfer study of a magnetron injection electron gun has been made to minimize the temperature distribution in the gun elements while keeping the required operating temperature at 1000 0 C of the emitter. Appropriate materials were selected to reduce thermal losses and to improve the gun design from a constructional point of view aiming at extending the capabilities of the electron gun. A thermal probe to determine the air velocity and the convective heat transfer coefficient has been constructed to determine the external boundary condition of the ceramic shell and external flanges. A study the contact resistance for all the gun elements has been made to minimize the conduction thermal losses. A software has been used to simulate a thermal model considering the three processes of thermal transfer, namely, conduction, convection and radiation and the influence of the physical properties of the materials used. (author). 7 refs., 5 figs., 1 tab

  9. Percolation model for electron conduction in films of metal nanoparticles linked by organic molecules

    International Nuclear Information System (INIS)

    Muller, K.H.; Herrmann, J.; Raguse, B.; Baxter, G.; Reda, T.

    2002-01-01

    Full text: We have investigated theoretically and experimentally the temperature dependence of the conductance of films of Au nanoparticles linked by alkane dithiol molecules in the temperature range between 5 K and 300 K. Conduction in these films is due to tunneling of single electrons between neighbouring metal nanoparticles. During tunnelling an electron has to overcome the Coulomb charging energy. We find that the observed temperature dependence of the conductance is non-Arrhenius like and can be described in terms of a percolation theory which takes account of disorder in the system. Disorder in our nanoparticle films is caused by variations in the nanoparticle size, fluctuations in the separation gaps between adjacent nanoparticles and by offset charges. To explain in detail our experimental data, a wide distribution of separation gaps and charging energies is needed. We find that a wide Coulomb charging energy distribution can arise from random offset charges even if the nanoparticle size distribution is narrow

  10. Acceleration of polarized electrons in the Bonn electron-accelerator facility ELSA; Beschleunigung polarisierter Elektronen in der Bonner Elektronen-Beschleunigeranlage ELSA

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, M.

    2001-12-01

    The future medium energy physics program at the electron stretcher accelerator ELSA of Bonn University mainly relies on experiments using polarized electrons in the energy range from 1 to 3.2 GeV. To prevent depolarization during acceleration in the circular accelerators several depolarizing resonances have to be corrected for. Intrinsic resonances are compensated using two pulsed betatron tune jump quadrupoles. The influence of imperfection resonances is successfully reduced applying a dynamic closed orbit correction in combination with an empirical harmonic correction on the energy ramp. Both types of resonances and the correction techniques have been studied in detail. The imperfection resonances were used to calibrate the energy of the stretcher ring with high accuracy. A new technique to extract the beam with horizontal oriented polarization was sucessfully installed. For all energies a polarized electron beam with more than 50% polarization can now be supplied to the experiments at ELSA, which is demonstrated by measurements using a Moeller polarimeter installed in the external beamline. (orig.)

  11. Development of a Polarized Electron Gun Based on an S-Band PWT Photoinjector

    CERN Document Server

    Clendenin, J E; Yu, D; Newsham, D; Luo, Y; Smirnov, A

    2003-01-01

    An RF polarized electron gun utilizing the unique features of an integrated, plane-wave-transformer (PWT) photoelectron injector [1] is being developed by DULY Research Inc. in collaboration with SLAC. Modifications to a DULY S-band device [2] include: a re-design of the photocathode/RF backplane interface to accommodate a GaAs cathode; change in the design of the vacuum ports to provide 10-11 Torr operation; the inclusion of a load-lock photocathode replacement system to allow for reactivation and cessation of the GaAs photocathode in a vacuum; and alteration of the magnet field coils to make room for the load-lock. The use of a stainless steel outer tank and cooling rods without copper plating may also provide better vacuum performance at the expense of diminished Q factor. The effectiveness of both the standard cooling rods and synthetic diamond heat sinks for disk cooling is investigated for future linear collider applications operating at a rep rate of 180 Hz and a bunch charge of 2 nC.

  12. B meson physics with polarized electron beams at linear colliders running at the Z0

    International Nuclear Information System (INIS)

    Atwood, W.B.

    1988-12-01

    The expected large cross section for e + e - → Z 0 and subsequent decay to b/bar b/ quarks makes the Z 0 an attractive placeto pursue B meson physics. The cross section for b-quark production at the Z 0 is compared to resonance production at the Υ/sub 4s/ and Υ/sub 5s/. In addition the big electroweak asymmetries, thought to exist in Z 0 decays to b/bar b/ quarks with polarized electron beams, provide an outstanding handle for observation of such effects as B 0 - /bar B/ 0 mixing. In this paper, the feasibility of such measurements is investigated and, with relatively small samples of Z 0 's (a few hundred thousand), both B/sub d/ and B/sub s/ meson mixing are shown to be measurable. The subject of CP violation in neutral B mesons is discussed last, but presently such measurements seem to be out of reach. 7 refs., 7 figs., 3 tabs

  13. Thermal conductivity of graphene with defects induced by electron beam irradiation

    Science.gov (United States)

    Malekpour, Hoda; Ramnani, Pankaj; Srinivasan, Srilok; Balasubramanian, Ganesh; Nika, Denis L.; Mulchandani, Ashok; Lake, Roger K.; Balandin, Alexander A.

    2016-07-01

    We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ~7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 1010 cm-2 to 1.8 × 1011 cm-2 the thermal conductivity decreases from ~(1.8 +/- 0.2) × 103 W mK-1 to ~(4.0 +/- 0.2) × 102 W mK-1 near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ~400 W mK-1. The thermal conductivity dependence on the defect density is analyzed using the Boltzmann transport equation and molecular dynamics simulations. The results are important for understanding phonon - point defect scattering in two-dimensional systems and for practical applications of graphene in thermal management.We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ~7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 1010 cm-2 to 1.8 × 1011 cm-2 the thermal conductivity decreases from ~(1.8 +/- 0.2) × 103 W mK-1 to ~(4.0 +/- 0.2) × 102 W mK-1 near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ~400 W mK-1. The thermal conductivity dependence on the defect density is

  14. The electronic conduction of glass and glass ceramics containing various transition metal oxides

    International Nuclear Information System (INIS)

    Yoshida, T.; Matsuno, Y.

    1980-01-01

    Nb 2 O 5 -V 2 O 5 -P 2 O 5 glasses containing only Group Va oxides have been investigated to elucidate their electronic conduction and structure, as compared with other glasses obtained by the addition of various transition metal oxides to vanadium phosphate. The P 2 O 5 introduction for Nb 2 O 5 in this glass with the same amount of V 2 O 5 increased the conductivity about two times. Glass ceramics having high conductivity increased by two orders of magnitude and the activation energy for conduction decreased from about 0.5 to 0.2 eV. The crystals were confirmed to be (V,Nb) 2 O 5 and Nb phosphate, one of which was highly conductive and developed a pillar-like shape with a length of more than 20 μm. (orig.)

  15. Electronic thermal conductivity of 2-dimensional circular-pore metallic nanoporous materials

    International Nuclear Information System (INIS)

    Huang, Cong-Liang; Lin, Zi-Zhen; Luo, Dan-Chen; Huang, Zun

    2016-01-01

    The electronic thermal conductivity (ETC) of 2-dimensional circular-pore metallic nanoporous material (MNM) was studied here for its possible applications in thermal cloaks. A simulation method based on the free-electron-gas model was applied here without considering the quantum effects. For the MNM with circular nanopores, there is an appropriate nanopore size for thermal conductivity tuning, while a linear relationship exists for this size between the ETC and the porosity. The appropriate nanopore diameter size will be about one times that of the electron mean free path. The ETC difference along different directions would be less than 10%, which is valuable when estimating possible errors, because the nanoscale-material direction could not be controlled during its application. Like nanoparticles, the ETC increases with increasing pore size (diameter for nanoparticles) while the porosity was fixed, until the pore size reaches about four times that of electron mean free path, at which point the ETC plateaus. The specular coefficient on the surface will significantly impact the ETC, especially for a high-porosity MNM. The ETC can be decreased by 30% with a tuning specular coefficient. - Highlights: • For metallic nanoporous materials, there is an appropriate pore size for thermal conductivity tuning. • ETC increases with increasing pore size until pore size reaches about four times EMFP. • The ETC difference between different directions will be less than 10%. • The ETC can be decreased by 30% with tuning specular coefficient.

  16. Electronic and ionic conductivity studies on microwave synthesized glasses containing transition metal ions

    Directory of Open Access Journals (Sweden)

    Basareddy Sujatha

    2017-01-01

    Full Text Available Glasses in the system xV2O5·20Li2O·(80 − x [0.6B2O3:0.4ZnO] (where 10 ≤ x ≤ 50 have been prepared by a simple microwave method. Microwave synthesis of materials offers advantages of efficient transformation of energy throughout the volume in an effectively short time. Conductivity in these glasses was controlled by the concentration of transition metal ion (TMI. The dc conductivity follows Arrhenius law and the activation energies determined by regression analysis varies with the content of V2O5 in a non-linear passion. This non-linearity is due to different conduction mechanisms operating in the investigated glasses. Impedance and electron paramagnetic resonance (EPR spectroscopic studies were performed to elucidate the nature of conduction mechanism. Cole–cole plots of the investigated glasses consist of (i single semicircle with a low frequency spur, (ii two depressed semicircles and (iii single semicircle without spur, which suggests the operation of two conduction mechanisms. EPR spectra reveal the existence of electronic conduction between aliovalent vanadium sites. Further, in highly modified (10V2O5 mol% glasses Li+ ion migration dominates.

  17. Gamma- and electron dose response of the electrical conductivity of polyaniline based polymer blends

    International Nuclear Information System (INIS)

    Sevil, U.A.; Gueven, O.; Slezsak, I.

    2002-01-01

    Complete text of publication follows. Conducting polymers, also known as 'synthetic metals' have been the subject of widespread investigations over the past decade due to their very promising characteristics. Polyaniline (PANI) holds a special position among conducting polymers in that its most highly conducting doped form can be reached by protonic acid doping or oxidative doping. It was published earlier, that the electrical conductivity of some polyaniline based polymer composites increases to a significant extent when irradiated to gamma, electron or UV radiation. The aim of the present study was to measure the high frequency conductivity of blended films of PANI with poly(vinylchloride), PVC, and chlorinated poly(propylene) irradiated in air to different doses. In order to find the most suitable composition od these composites the mass percentage of PANI within the PPCl and PVC matrix was changed between 5 - 30%. These samples were then gamma irradiated and the induced electrical conductivity was measured in the 1 kHz - 1 MHz frequency range to determine the most sensitive evaluation conditions. After selecting both the most suitable measuring conditions as well as the blend compositions the dose response of the chosen samples was determined in the dose range of 10 - 250 kGy. With respect to potential dosimetry application the effect of electron irradiation, the effect of irradiation temperature and the stability of the irradiated samples have also been investigated

  18. Electronic structure effects on stability and quantum conductance in 2D gold nanowires

    International Nuclear Information System (INIS)

    Kashid, Vikas; Shah, Vaishali; Salunke, H. G.

    2011-01-01

    In this study, we have investigated the stability and conductivity of unsupported, two-dimensional infinite gold nanowires using ab initio density functional theory (DFT). Two-dimensional ribbon-like nanowires with 1–5 rows of gold atoms in the non-periodic direction and with different possible structures have been considered. The nanowires with >2 rows of atoms exhibit dimerization, similar to finite wires, along the non-periodic direction. Our results show that in these zero thickness nanowires, the parallelogram motif is the most stable. A comparison between parallelogram- and rectangular-shaped nanowires of increasing width indicates that zero thickness (111) oriented wires have a higher stability over (100). A detailed analysis of the electronic structure, reveals that the (111) oriented structures show increased delocalization of s and p electrons in addition to a stronger delocalization of the d electrons and hence are the most stable. The density of states show that the nanowires are metallic and conducting except for the double zigzag structure, which is semiconducting. Conductance calculations show transmission for a wide range of energies in all the stable nanowires with more than two rows of atoms. The conductance channels are not purely s and have strong contributions from the d levels, and weak contributions from the p levels.

  19. Quantum transport through disordered 1D wires: Conductance via localized and delocalized electrons

    International Nuclear Information System (INIS)

    Gopar, Víctor A.

    2014-01-01

    Coherent electronic transport through disordered systems, like quantum wires, is a topic of fundamental and practical interest. In particular, the exponential localization of electron wave functions-Anderson localization-due to the presence of disorder has been widely studied. In fact, Anderson localization, is not an phenomenon exclusive to electrons but it has been observed in microwave and acoustic experiments, photonic materials, cold atoms, etc. Nowadays, many properties of electronic transport of quantum wires have been successfully described within a scaling approach to Anderson localization. On the other hand, anomalous localization or delocalization is, in relation to the Anderson problem, a less studied phenomenon. Although one can find signatures of anomalous localization in very different systems in nature. In the problem of electronic transport, a source of delocalization may come from symmetries present in the system and particular disorder configurations, like the so-called Lévy-type disorder. We have developed a theoretical model to describe the statistical properties of transport when electron wave functions are delocalized. In particular, we show that only two physical parameters determine the complete conductance distribution

  20. Spin-polarized structural, elastic, electronic and magnetic properties of half-metallic ferromagnetism in V-doped ZnSe

    Science.gov (United States)

    Monir, M. El Amine.; Baltache, H.; Murtaza, G.; Khenata, R.; Ahmed, Waleed K.; Bouhemadou, A.; Omran, S. Bin; Seddik, T.

    2015-01-01

    Based on first principles spin-polarized density functional theory, the structural, elastic electronic and magnetic properties of Zn1-xVxSe (for x=0.25, 0.50, 0.75) in zinc blende structure have been studied. The investigation was done using the full-potential augmented plane wave method as implemented in WIEN2k code. The exchange-correlation potential was treated with the generalized gradient approximation PBE-GGA for the structural and elastic properties. Moreover, the PBE-GGA+U approximation (where U is the Hubbard correlation terms) is employed to treat the "d" electrons properly. A comparative study between the band structures, electronic structures, total and partial densities of states and local moments calculated within both GGA and GGA+U schemes is presented. The analysis of spin-polarized band structure and density of states shows the half-metallic ferromagnetic character and are also used to determine s(p)-d exchange constants N0α (conduction band) and N0β (valence band) due to Se(4p)-V(3d) hybridization. It has been clearly evidence that the magnetic moment of V is reduced from its free space change value of 3 μB and the minor atomic magnetic moment on Zn and Se are generated.