WorldWideScience

Sample records for conditions simulating plasma

  1. Plasma-material interaction under simulated disruption conditions

    International Nuclear Information System (INIS)

    Arkhipov, N.I.; Bakhtin, V.P.; Safronov, V.M.; Toporkov, D.A.; Vasenin, S.G.; Wurz, H.; Zhitlukhin, A.M.

    1995-01-01

    Sudden evaporation of divertor plate surface under high heat load during tokamak plasma disruption instantaneously produces a vapor shield. The cloud of vaporized material prevents the divertor plates from the bulk of incoming energy flux and thus reduces the further material erosion. Dynamics and effectiveness of the vapor shield are studied experimentally at the 2MK-200 facility under simulated disruption conditions. (orig.)

  2. Magnetohydrodynamic simulation study of plasma jets and plasma-surface contact in coaxial plasma accelerators

    Science.gov (United States)

    Subramaniam, Vivek; Raja, Laxminarayan L.

    2017-06-01

    Recent experiments by Loebner et al. [IEEE Trans. Plasma Sci. 44, 1534 (2016)] studied the effect of a hypervelocity jet emanating from a coaxial plasma accelerator incident on target surfaces in an effort to mimic the transient loading created during edge localized mode disruption events in fusion plasmas. In this paper, we present a magnetohydrodynamic (MHD) numerical model to simulate plasma jet formation and plasma-surface contact in this coaxial plasma accelerator experiment. The MHD system of equations is spatially discretized using a cell-centered finite volume formulation. The temporal discretization is performed using a fully implicit backward Euler scheme and the resultant stiff system of nonlinear equations is solved using the Newton method. The numerical model is employed to obtain some key insights into the physical processes responsible for the generation of extreme stagnation conditions on the target surfaces. Simulations of the plume (without the target plate) are performed to isolate and study phenomena such as the magnetic pinch effect that is responsible for launching pressure pulses into the jet free stream. The simulations also yield insights into the incipient conditions responsible for producing the pinch, such as the formation of conductive channels. The jet-target impact studies indicate the existence of two distinct stages involved in the plasma-surface interaction. A fast transient stage characterized by a thin normal shock transitions into a pseudo-steady stage that exhibits an extended oblique shock structure. A quadratic scaling of the pinch and stagnation conditions with the total current discharged between the electrodes is in qualitative agreement with the results obtained in the experiments. This also illustrates the dominant contribution of the magnetic pressure term in determining the magnitude of the quantities of interest.

  3. Boundary conditions for plasma fluid models at the magnetic presheath entrance

    International Nuclear Information System (INIS)

    Loizu, J.; Ricci, P.; Halpern, F. D.; Jolliet, S.

    2012-01-01

    The proper boundary conditions at the magnetic presheath entrance for plasma fluid turbulence models based on the drift approximation are derived, focusing on a weakly collisional plasma sheath with T i ≪T e and a magnetic field oblique to a totally absorbing wall. First, the location of the magnetic presheath entrance is rigorously derived. Then boundary conditions at the magnetic presheath entrance are analytically deduced for v ||i , v ||e , n, φ, T e , and for the vorticity ω=∇ ⊥ 2 φ. The effects of E × B and diamagnetic drifts on the boundary conditions are also investigated. Kinetic simulations are performed that confirm the analytical results. Finally, the new set of boundary conditions is implemented in a three-dimensional global fluid code for the simulation of plasma turbulence and, as an example, the results of a tokamak scrape-off layer simulation are discussed. The framework presented can be generalized to obtain boundary conditions at the magnetic presheath entrance in more complex scenarios.

  4. Disruption simulation for the EAST plasma

    International Nuclear Information System (INIS)

    Niu Xingping; Wu Bin

    2007-01-01

    The disruptions due to vertical displacement event for the EAST plasma are simulated in this article by using the TSC program. Meanwhile, the evolutions of the halo current and stress on vacuum vessel are calculated; the disruptions at different initial conditions are compared with each other, and killer pellet injection is simulated for the device fast shutting-down. (authors)

  5. Advanced plasma flow simulations of cathodic-arc and ferroelectric plasma sources for neutralized drift compression experiments

    Directory of Open Access Journals (Sweden)

    Adam B. Sefkow

    2008-07-01

    Full Text Available Large-space-scale and long-time-scale plasma flow simulations are executed in order to study the spatial and temporal evolution of plasma parameters for two types of plasma sources used in the neutralized drift compression experiment (NDCX. The results help assess the charge neutralization conditions for ion beam compression experiments and can be employed in more sophisticated simulations, which previously neglected the dynamical evolution of the plasma. Three-dimensional simulations of a filtered cathodic-arc plasma source show the coupling efficiency of the plasma flow from the source to the drift region depends on geometrical factors. The nonuniform magnetic topology complicates the well-known general analytical considerations for evaluating guiding-center drifts, and particle-in-cell simulations provide a self-consistent evaluation of the physics in an otherwise challenging scenario. Plasma flow profiles of a ferroelectric plasma source demonstrate that the densities required for longitudinal compression experiments involving ion beams are provided over the drift length, and are in good agreement with measurements. Simulations involving azimuthally asymmetric plasma creation conditions show that symmetric profiles are nevertheless achieved at the time of peak on-axis plasma density. Also, the ferroelectric plasma expands upstream on the thermal expansion time scale, and therefore avoids the possibility of penetration into the acceleration gap and transport sections, where partial neutralization would increase the beam emittance. Future experiments on NDCX will investigate the transverse focusing of an axially compressing intense charge bunch to a sub-mm spot size with coincident focal planes using a strong final-focus solenoid. In order to fill a multi-tesla solenoid with the necessary high-density plasma for beam charge neutralization, the simulations predict that supersonically injected plasma from the low-field region will penetrate and

  6. 2D statistical analysis of Non-Diffusive transport under attached and detached plasma conditions of the linear divertor simulator

    International Nuclear Information System (INIS)

    Tanaka, H.; Ohno, N.; Tsuji, Y.; Kajita, S.

    2010-01-01

    We have analyzed the 2D convective motion of coherent structures, which is associated with plasma blobs, under attached and detached plasma conditions of a linear divertor simulator, NAGDIS-II. Data analysis of probes and a fast-imaging camera by spatio-temporal correlation with three decomposition and proper orthogonal decomposition (POD) was carried out to determine the basic properties of coherent structures detached from a bulk plasma column. Under the attached plasma condition, the spatio-temporal correlation with three decomposition based on the probe measurement showed that two types of coherent structures with different sizes detached from the bulk plasma and the azimuthally localized structure radially propagated faster than the larger structure. Under the detached plasma condition, movies taken by the fast-imaging camera clearly showed the dynamics of a 2D spiral structure at peripheral regions of the bulk plasma; this dynamics caused the broadening of the plasma profile. The POD method was used for the data processing of the movies to obtain low-dimensional mode shapes. It was found that the m=1 and m=2 ring-shaped coherent structures were dominant. Comparison between the POD analysis of both the movie and the probe data suggested that the coherent structure could be detached from the bulk plasma mainly associated with the m=2 fluctuation. This phenomena could play an important role in the reduction of the particle and heat flux as well as the plasma recombination processes in plasma detachment (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Space plasma simulation chamber

    International Nuclear Information System (INIS)

    1986-01-01

    Scientific results of experiments and tests of instruments performed with the Space Plasma Simulation Chamber and its facility are reviewed in the following six categories. 1. Tests of instruments on board rockets, satellites and balloons. 2. Plasma wave experiments. 3. Measurements of plasma particles. 4. Optical measurements. 5. Plasma production. 6. Space plasms simulations. This facility has been managed under Laboratory Space Plasma Comittee since 1969 and used by scientists in cooperative programs with universities and institutes all over country. A list of publications is attached. (author)

  8. Simulation of cold plasma in a chamber under high- and low-frequency voltage conditions for a capacitively coupled plasma

    Institute of Scientific and Technical Information of China (English)

    Hao Daoxin; Cheng Jia; Ji Linhong; Sun Yuchun

    2012-01-01

    The characteristics of cold plasma,especially for a dual-frequency capacitively coupled plasma (CCP),play an important role for plasma enhanced chemical vapor deposition,which stimulates further studies using different methods.In this paper,a 2D fluid model was constructed for N2 gas plasma simulations with CFD-ACE+,a commercial multi-physical software package.First,the distributions of electric potential (Epot),electron number density (Ne),N number density (N) and electron temperature (Te) are described under the condition of high frequency (HF),13.56 MHz,HF voltage,300 V,and low-frequency (LF) voltage,0 V,particularly in the sheath.Based on this,the influence of HF on Ne is further discussed under different HF voltages of 200 V,300 V,400 V,separately,along with the influence of LF,0.3 MHz,and various LF voltages of 500 V,600 V,700 V.The results show that sheaths of about 3 mm are formed near the two electrodes,in which Epot and Te vary extensively with time and space,while in the plasma bulk Epot changes synchronously with an electric potential of about 70 V and Te varies only in a small range.N is also modulated by the radio frequency,but the relative change in N is small.Ne varies only in the sheath,while in the bulk it is steady at different time steps.So,by comparing Ne in the plasma bulk at the steady state,we can see that Ne will increase when HF voltage increases.Yet,Ne will slightly decrease with the increase of LF voltage.At the same time,the homogeneity will change in both x and y directions.So both HF and LF voltages should be carefully considered in order to obtain a high-density,homogeneous plasma.

  9. Binary-collision-approximation simulation for noble gas irradiation onto plasma facing materials

    International Nuclear Information System (INIS)

    Saito, Seiki; Nakamura, Hiroaki; Takayama, Arimichi; Ito, Atsushi M

    2014-01-01

    A number of experiments show that helium plasma constructs filament (fuzz) structures whose diameter is in nanometer-scale on the tungsten material under the suitable experimental condition. In this paper, binary-collision-approximation-based simulation is performed to reveal the mechanism and the conditions of fuzz formation of tungsten material under plasma irradiation. The irradiation of the plasma of hydrogen, deuterium, and tritium, and also the plasma of noble gas such as helium, neon, and argon atoms are investigated. The possibility of fuzz formation is discussed on the simulation result of penetration depth of the incident atoms

  10. Simulating plasma production from hypervelocity impacts

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, Alex, E-mail: alexcf@stanford.edu; Close, Sigrid [Stanford University, Aeronautics and Astronautics, 496 Lomita Mall, Stanford, California 94305 (United States); Mathias, Donovan [NASA Ames Research Center, Bldg. 258, Moffett Field, California 94035 (United States)

    2015-09-15

    Hypervelocity particles, such as meteoroids and space debris, routinely impact spacecraft and are energetic enough to vaporize and ionize themselves and as well as a portion of the target material. The resulting plasma rapidly expands into the surrounding vacuum. While plasma measurements from hypervelocity impacts have been made using ground-based technologies such as light gas guns and Van de Graaff dust accelerators, some of the basic plasma properties vary significantly between experiments. There have been both ground-based and in-situ measurements of radio frequency (RF) emission from hypervelocity impacts, but the physical mechanism responsible and the possible connection to the impact-produced plasma are not well understood. Under certain conditions, the impact-produced plasma can have deleterious effects on spacecraft electronics by providing a new current path, triggering an electrostatic discharge, causing electromagnetic interference, or generating an electromagnetic pulse. Multi-physics simulations of plasma production from hypervelocity impacts are presented. These simulations incorporate elasticity and plasticity of the solid target, phase change and plasma formation, and non-ideal plasma physics due to the high density and low temperature of the plasma. A smoothed particle hydrodynamics method is used to perform a continuum dynamics simulation with these additional physics. By examining a series of hypervelocity impacts, basic properties of the impact produced plasma plume (density, temperature, expansion speed, charge state) are determined for impactor speeds between 10 and 72 km/s. For a large range of higher impact speeds (30–72 km/s), we find the temperature is unvarying at 2.5 eV. We also find that the plasma plume is weakly ionized for impact speeds less than 14 km/s and fully ionized for impact speeds greater than 20 km/s, independent of impactor mass. This is the same velocity threshold for the detection of RF emission in recent

  11. Labotratory Simulation Experiments of Cometary Plasma

    OpenAIRE

    MINAMI, S.; Baum, P. J.; Kamin, G.; White, R. S.; 南, 繁行

    1986-01-01

    Laboratory simulation experiment to study the interaction between a cometary plasma and the solar wind has been performed using the UCR-T 1 space simulation facility at the Institute of Geophysics and Planetary Physics, the University of California, Riverside. Light emitting plasma composed of Sr, Ba and/or C simulating cometary coma plasma is produced by a plasma emitter which interacts with intense plasma flow produced by a co-axial plasma gun simulating the solar wind. The purpose of this ...

  12. A suitable boundary condition for bounded plasma simulation without sheath resolution

    International Nuclear Information System (INIS)

    Parker, S.E.; Procassini, R.J.; Birdsall, C.K.; Cohen, B.I.

    1993-01-01

    We have developed a technique that allows for a sheath boundary layer without having to resolve the inherently small space and time scales of the sheath region. We refer to this technique as the logical sheath boundary condition. This boundary condition, when incorporated into a direct-implicit particle code, permits large space- and time-scale simulations of bounded systems, which would otherwise be impractical on current supercomputers. The lack of resolution of the collector sheath potential drop obtained from conventional implicit simulations at moderate values of ω pe Δt and Δz/λ De provides the motivation for the development of the logical sheath boundary condition. The algorithm for use of the logical sheath boundary condition in a particle simulation is presented. Results from simulations which use the logical sheath boundary condition are shown to compare reasonably well with those from an analytic theory and simulations in which the sheath is resolved

  13. PIC Simulations of Hypersonic Plasma Instabilities

    Science.gov (United States)

    Niehoff, D.; Ashour-Abdalla, M.; Niemann, C.; Decyk, V.; Schriver, D.; Clark, E.

    2013-12-01

    The plasma sheaths formed around hypersonic aircraft (Mach number, M > 10) are relatively unexplored and of interest today to both further the development of new technologies and solve long-standing engineering problems. Both laboratory experiments and analytical/numerical modeling are required to advance the understanding of these systems; it is advantageous to perform these tasks in tandem. There has already been some work done to study these plasmas by experiments that create a rapidly expanding plasma through ablation of a target with a laser. In combination with a preformed magnetic field, this configuration leads to a magnetic "bubble" formed behind the front as particles travel at about Mach 30 away from the target. Furthermore, the experiment was able to show the generation of fast electrons which could be due to instabilities on electron scales. To explore this, future experiments will have more accurate diagnostics capable of observing time- and length-scales below typical ion scales, but simulations are a useful tool to explore these plasma conditions theoretically. Particle in Cell (PIC) simulations are necessary when phenomena are expected to be observed at these scales, and also have the advantage of being fully kinetic with no fluid approximations. However, if the scales of the problem are not significantly below the ion scales, then the initialization of the PIC simulation must be very carefully engineered to avoid unnecessary computation and to select the minimum window where structures of interest can be studied. One method of doing this is to seed the simulation with either experiment or ion-scale simulation results. Previous experiments suggest that a useful configuration for studying hypersonic plasma configurations is a ring of particles rapidly expanding transverse to an external magnetic field, which has been simulated on the ion scale with an ion-hybrid code. This suggests that the PIC simulation should have an equivalent configuration

  14. Simulating Sources of Superstorm Plasmas

    Science.gov (United States)

    Fok, Mei-Ching

    2008-01-01

    We evaluated the contributions to magnetospheric pressure (ring current) of the solar wind, polar wind, auroral wind, and plasmaspheric wind, with the surprising result that the main phase pressure is dominated by plasmaspheric protons. We used global simulation fields from the LFM single fluid ideal MHD model. We embedded the Comprehensive Ring Current Model within it, driven by the LFM transpolar potential, and supplied with plasmas at its boundary including solar wind protons, polar wind protons, auroral wind O+, and plasmaspheric protons. We included auroral outflows and acceleration driven by the LFM ionospheric boundary condition, including parallel ion acceleration driven by upward currents. Our plasmasphere model runs within the CRCM and is driven by it. Ionospheric sources were treated using our Global Ion Kinetics code based on full equations of motion. This treatment neglects inertial loading and pressure exerted by the ionospheric plasmas, and will be superceded by multifluid simulations that include those effects. However, these simulations provide new insights into the respective role of ionospheric sources in storm-time magnetospheric dynamics.

  15. Simulations of radiative shocks and jet formation in laboratory plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Velarde, P; Gonzalez, M; GarcIa-Fernandez, C; Oliva, E [Instituto de Fusion Nuclear, Universidad Politcnica de Madrid, Madrid (Spain) (Spain); Kasperczuk, A; Pisarczyk, T [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland) (Poland); Ullschmied, J [Institute of Plasma Physics AS CR, Prague (Czech Republic) (Czech Republic); Stehle, C [LERMA, Observatoire de Paris, Meudon (France) (France); Rus, B [Institute of Physics, PALS Center, Prague (Czech Republic) (Czech Republic); GarcIa-Senz, D; Bravo, E; Relano, A [Departament de Fisica i Enginyeria Nuclear. Universitat Politecnica de Catalunya. Barcelona (Spain) (Spain)], E-mail: velarde@din.upm.es

    2008-05-01

    We present the simulations of two relevant hydrodynamical problems related to astrophysical phenomena performed by three different codes. The numerical results from these codes will be compared in order to test both the numerical method implemented inside them and the influence of the physical phenomena simulated by the codes. Under some conditions laser produced plasmas could be scaled to the typical conditions prevailing in astrophysical plasmas. Therefore, such similarity allows to use existing laser facilities and numerical codes suitable to a laser plasma regime, for studying astrophysical proccesses. The codes are the radiation fluid dynamic 2D ARWEN code and the 3D HERACLES, and, without radiation energy transport, a Smoothed-Particle Hydrodynamics (SPH) code. These codes use different numerical techniques and have overlapping range of application, from laser produced plasmas to astrophysical plasmas. We also present the first laser experiments obtaining cumulative jets with a velocity higher than 100 km/s.

  16. Nonlinear plasma wave models in 3D fluid simulations of laser-plasma interaction

    Science.gov (United States)

    Chapman, Thomas; Berger, Richard; Arrighi, Bill; Langer, Steve; Banks, Jeffrey; Brunner, Stephan

    2017-10-01

    Simulations of laser-plasma interaction (LPI) in inertial confinement fusion (ICF) conditions require multi-mm spatial scales due to the typical laser beam size and durations of order 100 ps in order for numerical laser reflectivities to converge. To be computationally achievable, these scales necessitate a fluid-like treatment of light and plasma waves with a spatial grid size on the order of the light wave length. Plasma waves experience many nonlinear phenomena not naturally described by a fluid treatment, such as frequency shifts induced by trapping, a nonlinear (typically suppressed) Landau damping, and mode couplings leading to instabilities that can cause the plasma wave to decay rapidly. These processes affect the onset and saturation of stimulated Raman and Brillouin scattering, and are of direct interest to the modeling and prediction of deleterious LPI in ICF. It is not currently computationally feasible to simulate these Debye length-scale phenomena in 3D across experimental scales. Analytically-derived and/or numerically benchmarked models of processes occurring at scales finer than the fluid simulation grid offer a path forward. We demonstrate the impact of a range of kinetic processes on plasma reflectivity via models included in the LPI simulation code pF3D. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. B2.5-Eunomia simulations of Pilot-PSI plasmas

    International Nuclear Information System (INIS)

    Wieggers, R.C.; Coster, D.P.; Groen, P.W.C.; Blank, H.J. de; Goedheer, W.J.

    2013-01-01

    The B2.5-Eunomia code is used to simulate the plasma and neutral species in and around a Pilot-PSI plasma beam. B2.5, part of the SOLPS5.0 code package, is a multi-fluid plasma code for the scrape-off layer. Eunomia is a newly developed non-linear Monte Carlo transport code that solves the neutral equilibrium, given a background plasma. Eunomia is developed to simulate the relevant neutral species in Pilot-PSI and Magnum-PSI, linear devices that study plasma surface interactions in conditions expected in the ITER divertor. Results show the influence of the neutral species on the Pilot-PSI plasma beam. We show that a fluid description for the neutrals is not sufficient and Eunomia is needed to describe Pilot-PSI. The treatment of individual vibrational states of molecular hydrogen as separate species is crucial to match the experiment

  18. Laboratory simulation of space plasma phenomena*

    Science.gov (United States)

    Amatucci, B.; Tejero, E. M.; Ganguli, G.; Blackwell, D.; Enloe, C. L.; Gillman, E.; Walker, D.; Gatling, G.

    2017-12-01

    Laboratory devices, such as the Naval Research Laboratory's Space Physics Simulation Chamber, are large-scale experiments dedicated to the creation of large-volume plasmas with parameters realistically scaled to those found in various regions of the near-Earth space plasma environment. Such devices make valuable contributions to the understanding of space plasmas by investigating phenomena under carefully controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. By working in collaboration with in situ experimentalists to create realistic conditions scaled to those found during the observations of interest, the microphysics responsible for the observed events can be investigated in detail not possible in space. To date, numerous investigations of phenomena such as plasma waves, wave-particle interactions, and particle energization have been successfully performed in the laboratory. In addition to investigations such as plasma wave and instability studies, the laboratory devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this presentation, we will describe several examples of the laboratory investigation of space plasma waves and instabilities and diagnostic development. *This work supported by the NRL Base Program.

  19. Large-scale numerical simulations of plasmas

    International Nuclear Information System (INIS)

    Hamaguchi, Satoshi

    2004-01-01

    The recent trend of large scales simulations of fusion plasma and processing plasmas is briefly summarized. Many advanced simulation techniques have been developed for fusion plasmas and some of these techniques are now applied to analyses of processing plasmas. (author)

  20. Numerical simulation of a novel non-transferred arc plasma torch operating with nitrogen

    International Nuclear Information System (INIS)

    Hiremath, Gavisiddayya; Kandasamy, Ramachandran; Ganesh, Ravi

    2015-01-01

    High power plasma torches with higher electro-thermal efficiency are required for industrial applications. To increase the plasma power and electrothermal efficiency, conventional torches are being modified to operate with molecular gases such as air and nitrogen. Since increasing arc current enhances the heat loss to the anode, torches are being developed to operate under high voltage and low current. The plasma flow dynamics and electromagnetic coupling with plasma flow inside the torch etc. are highly complex and knowledge on the same is required to develop high torches with higher efficiency. Unfortunately detailed experimentation on the same is very difficult. Numerical modeling and simulation is one of the best tools to understand the physics involved in such complex processes. A 2D numerical model is developed to simulate the characteristics of the plasma inside the torch. Though plasma is not in local thermodynamic equilibrium (LTE) close to the electrodes, LTE is assumed everywhere in the plasma to avoid complex and time consuming calculations. Other valid assumptions used in the model are plasma flow is optically thin, laminar and incompressible. Flow, energy and electromagnetic equations are solved with appropriate boundary conditions and volume sources using SIMPLE algorithm with finite volume method. Temperature dependent thermophysical properties of nitrogen are used for the simulations. Simulations are carried out for different experimental conditions. The effects of arc current, gas flow rate of plasma generating gas and sheath gas injected above the bottom anode on the arc voltage, electrothermal efficiency of the torch, plasma temperature and plasma velocity are simulated. Predicted results are compared with experimental results. (author)

  1. Core-SOL simulations of L-mode tokamak plasma discharges using BALDUR code

    Directory of Open Access Journals (Sweden)

    Yutthapong Pinanroj

    2014-04-01

    Full Text Available Core-SOL simulations were carried out of plasma in tokamak reactors operating in a low confinement mode (L-mode, for various conditions that match available experimental data. The simulation results were quantitatively compared against experimental data, showing that the average RMS errors for electron temperature, ion temperature, and electron density were lower than 16% or less for 14 L-mode discharges from two tokamaks named DIII-D and TFTR. In the simulations, the core plasma transport was described using a combination of neoclassical transport calculated by NCLASS module and anomalous transport by Multi-Mode-Model version 2001 (MMM2001. The scrape-off-layer (SOL is the small amount of residual plasma that interacts with the tokamak vessel, and was simulated by integrating the fluid equations, including sources, along open field lines. The SOL solution provided the boundary conditions of core plasma region on low confinement mode (L-mode. The experimental data were for 14 L-mode discharges and from two tokamaks, named DIII-D and TFTR.

  2. Particle-in-cell plasma simulations of the modified two-stream instability

    Directory of Open Access Journals (Sweden)

    K. Schlegel

    1994-08-01

    Full Text Available We model the modified two-stream plasma instability occurring in the ionospheric E-region using a 2.5-dimensional particle-in-cell code. Compared to previous similar work we concentrate on simulated quantities that can easily be measured in the real ionosphere by coherent radars or rockets, such as the Doppler velocity, the backscattered power, backscattered spectra, aspect angle behaviour and electron temperature enhancement. Despite using a relatively small simulation model, we obtain remarkably good agreement between actual observed and simulated plasma parameters. The advantage of such a small system is that we were able to perform (other than in previous related work many simulation runs with different sets of input parameters, thus studying the unstable plasma under various conditions.

  3. Simulation of an ITER-like dissipative divertor plasma with a combined edge plasma Navier-Stokes neutral model

    International Nuclear Information System (INIS)

    Knoll, D.A.; McHugh, P.R.; Krasheninnikov, S.I.; Sigmar, D.J.

    1996-01-01

    A combined edge plasma/Navier-Stokes neutral transport model is used to simulate dissipative divertor plasmas in the collisional limit for neutrals on a simplified two-dimensional slab geometry with ITER-like plasma conditions and scale lengths. The neutral model contains three momentum equations which are coupled to the plasma through ionization, recombination, and ion-neutral elastic collisions. The neutral transport coefficients are evaluated including both ion-neutral and neutral-neutral collisions. (orig.)

  4. Combined core/boundary layer plasma transport simulations in tokamaks

    International Nuclear Information System (INIS)

    Prinja, A.K.; Schafer, R.F. Jr.; Conn, R.W.; Howe, H.C.

    1987-01-01

    Significant new numerical results are presented from self-consistent core and boundary or scrape-off layer plasma simulations with 3-D neutral transport calculations. For a symmetric belt limiter it is shown that, for plasma conditions considered here, the pump limiter collection efficiency increases from 11% to 18% of the core efflux as a result of local reionization of blade deflected neutrals. This hitherto unobserved effect causes a significant amplification of upstream ion flux entering the pump limiter. Results from coupling of an earlier developed two-zone edge plasma model ODESSA to the PROCTR core plasma simulation code indicates that intense recycling divertor operation may not be possible because of stagnation of upstream flow velocity. This results in a self-consistent reduction of density gradient in an intermediate region between the central plasma and separatrix, and a concomitant reduction of core-efflux. There is also evidence of increased recycling at the first wall. (orig.)

  5. Plasma theory and simulation research

    International Nuclear Information System (INIS)

    Birdsall, C.K.

    1989-01-01

    Our research group uses both theory and simulation as tools in order to increase the understanding of instabilities, heating, diffusion, transport and other phenomena in plasmas. We also work on the improvement of simulation, both theoretically and practically. Our focus has been more and more on the plasma edge (the ''sheath''), interactions with boundaries, leading to simulations of whole devices (someday a numerical tokamak)

  6. Comparing simulation of plasma turbulence with experiment

    International Nuclear Information System (INIS)

    Ross, David W.; Bravenec, Ronald V.; Dorland, William; Beer, Michael A.; Hammett, G. W.; McKee, George R.; Fonck, Raymond J.; Murakami, Masanori; Burrell, Keith H.; Jackson, Gary L.; Staebler, Gary M.

    2002-01-01

    The direct quantitative correspondence between theoretical predictions and the measured plasma fluctuations and transport is tested by performing nonlinear gyro-Landau-fluid simulations with the GRYFFIN (or ITG) code [W. Dorland and G. W. Hammett, Phys. Fluids B 5, 812 (1993); M. A. Beer and G. W. Hammett, Phys. Plasmas 3, 4046 (1996)]. In an L-mode reference discharge in the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)], which has relatively large fluctuations and transport, the turbulence is dominated by ion temperature gradient (ITG) modes. Trapped electron modes and impurity drift waves also play a role. Density fluctuations are measured by beam emission spectroscopy [R. J. Fonck, P. A. Duperrex, and S. F. Paul, Rev. Sci. Instrum. 61, 3487 (1990)]. Experimental fluxes and corresponding diffusivities are analyzed by the TRANSP code [R. J. Hawryluk, in Physics of Plasmas Close to Thermonuclear Conditions, edited by B. Coppi, G. G. Leotta, D. Pfirsch, R. Pozzoli, and E. Sindoni (Pergamon, Oxford, 1980), Vol. 1, p. 19]. The shape of the simulated wave number spectrum is close to the measured one. The simulated ion thermal transport, corrected for ExB low shear, exceeds the experimental value by a factor of 1.5 to 2.0. The simulation overestimates the density fluctuation level by an even larger factor. On the other hand, the simulation underestimates the electron thermal transport, which may be accounted for by modes that are not accessible to the simulation or to the BES measurement

  7. Time-dependent plasma behavior triggered by a pulsed electron gun under conditions of beam-plasma-discharge

    International Nuclear Information System (INIS)

    Szuszczewicz, E.P.; Lin, C.S.

    1982-01-01

    This chapter reports on experiments whose purpose was to simulate spaceborne applications of energetic electron guns while exploring the ''in situ'' diagnostics of time-dependent beam-plasma behavior under pulsed electron gun conditions. Beam-plasma-discharge (BPD), the BPD afterglow that exists after gun-pulse termination, and the plasma decay process are considered. It is concluded that there is a rapid enhancement in plasma density as the gas turns on; that during the pulse-ON time a quasi-steady-state BPD can be maintained with characteristics identical with its dc counterpart; that in the period immediately following gun-pulse termination the plasma loss process is dominated by cross-field radial diffusion; and that the afterglow plasma is within + or -10% of being an isodensity contour

  8. Electrical conductivity of the thermal dusty plasma under the conditions of a hybrid plasma environment simulation facility

    Science.gov (United States)

    Zhukhovitskii, Dmitry I.; Petrov, Oleg F.; Hyde, Truell W.; Herdrich, Georg; Laufer, Rene; Dropmann, Michael; Matthews, Lorin S.

    2015-05-01

    We discuss the inductively heated plasma generator (IPG) facility in application to the generation of the thermal dusty plasma formed by the positively charged dust particles and the electrons emitted by them. We develop a theoretical model for the calculation of plasma electrical conductivity under typical conditions of the IPG. We show that the electrical conductivity of dusty plasma is defined by collisions with the neutral gas molecules and by the electron number density. The latter is calculated in the approximations of an ideal and strongly coupled particle system and in the regime of weak and strong screening of the particle charge. The maximum attainable electron number density and corresponding maximum plasma electrical conductivity prove to be independent of the particle emissivity. Analysis of available experiments is performed, in particular, of our recent experiment with plasma formed by the combustion products of a propane-air mixture and the CeO2 particles injected into it. A good correlation between the theory and experimental data points to the adequacy of our approach. Our main conclusion is that a level of the electrical conductivity due to the thermal ionization of the dust particles is sufficiently high to compete with that of the potassium-doped plasmas.

  9. Numerical simulation of edge plasma in tokamak

    International Nuclear Information System (INIS)

    Chen Yiping; Qiu Lijian

    1996-02-01

    The transport process and transport property of plasma in edge layer of Tokamak are simulated by solving numerically two-dimensional and multi-fluid plasma transport equations using suitable simulation code. The simulation results can show plasma parameter distribution characteristics in the area of edge layer, especially the characteristics near the first wall and divertor target plate. The simulation results play an important role in the design of divertor and first wall of Tokamak. (2 figs)

  10. Study on Characteristics of Constricted DC Plasma Using Particle-In-Cell Simulator

    International Nuclear Information System (INIS)

    Jo, Jong Gap; Park, Yeong Shin; Hwang, Yong Seok

    2010-01-01

    In dc glow discharge, when anode size is smaller than cathode, very small and bright plasma ball occurs in front of anode. This plasma is called constricted dc plasma and characterized by a high plasma density in positive glow, so called plasma ball, compared to the conventional dc plasma. For the reason, this plasma is utilized to ion or electron beam sources since the beam currents are enhanced by the dense anode glow. However, correlations between characteristics of the plasma (plasma density, electron temperature and space potential) and discharge conditions (anode size, discharge voltage, discharge current, pressure) have been a little investigated definitely clear in previous study because of the trouble of a diagnosis. The plasma ball which is the most essential part of the constricted plasma is too small to diagnose precisely without disturbing plasma. Therefore, we tried to analyze the constricted plasma through computer simulation with Particle-In-Cell (PIC) code. In this study, simulation result of constricted dc plasma as well as conventional dc glow discharge will be addressed and compared with each others

  11. Plasma Simulation Program

    Energy Technology Data Exchange (ETDEWEB)

    Greenwald, Martin

    2011-10-04

    Many others in the fusion energy and advanced scientific computing communities participated in the development of this plan. The core planning team is grateful for their important contributions. This summary is meant as a quick overview the Fusion Simulation Program's (FSP's) purpose and intentions. There are several additional documents referenced within this one and all are supplemental or flow down from this Program Plan. The overall science goal of the DOE Office of Fusion Energy Sciences (FES) Fusion Simulation Program (FSP) is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in International Thermonuclear Experimental Reactor (ITER) research and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. [1]. Initial FSP research will focus on two critical Integrated Science Application (ISA) areas: ISA1, the plasma edge; and ISA2, whole device modeling (WDM) including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a

  12. Integrated core-SOL simulations of L-mode plasma in ITER and Indian demo

    International Nuclear Information System (INIS)

    Wisitsorasak, Apiwat; Onjun, Thawatchai; Kanjanaput, Wittawat

    2015-01-01

    Core-SOL simulations are carried out using 1.5D BALDUR integrated predictive modeling code to investigate tokamak plasma in ITER and Indian DEMO reactors operating in low confinement mode (L-Mode). In each simulation, the plasma current, temperature, and density profiles in both core and SOL region are evolved self-consistency. The SOL is simulated by integrating the fluid equations, including sources, along the field lines. The solutions in SOL subsequently provide as the boundary conditions of core plasma region on low-confinement mode. The core plasma transport model is described using a combination of anomalous transport by Multi-Mode-Model version 2001 (MMM2001) and neoclassical transport calculated by NCLASS module together with the toroidal velocity based on the torque due to Neoclassical Toroidal Viscosity (NTV). In addition, a sensitivity analysis is explored by varying plasma parameters, such as plasma density and auxiliary heating power. Furthermore, the ignition tests are conducted to observed plasma response in each design after shutting down an auxiliary heating. (author)

  13. Plasma modelling and numerical simulation

    International Nuclear Information System (INIS)

    Van Dijk, J; Kroesen, G M W; Bogaerts, A

    2009-01-01

    Plasma modelling is an exciting subject in which virtually all physical disciplines are represented. Plasma models combine the electromagnetic, statistical and fluid dynamical theories that have their roots in the 19th century with the modern insights concerning the structure of matter that were developed throughout the 20th century. The present cluster issue consists of 20 invited contributions, which are representative of the state of the art in plasma modelling and numerical simulation. These contributions provide an in-depth discussion of the major theories and modelling and simulation strategies, and their applications to contemporary plasma-based technologies. In this editorial review, we introduce and complement those papers by providing a bird's eye perspective on plasma modelling and discussing the historical context in which it has surfaced. (editorial review)

  14. Plasma focus matching conditions

    International Nuclear Information System (INIS)

    Soliman, H.M.; Masoud, M.M.; Elkhalafawy, T.A.

    1988-01-01

    A snow-plough and slug models have been used to obtain the optimum matching conditions of the plasma in the focus. The dimensions of the plasma focus device are, inner electrode radius = 2 cm, outer electrode radius = 5.5 cm, and its length = 8 cm. It was found that the maximum magnetic energy of 12.26 kJ has to be delivered to plasma focus whose density is 10 19 /cm 3 at focusing time of 2.55 μs and with total external inductance of 24.2 n H. The same method is used to evaluate the optimum matching conditions for the previous coaxial discharge system which had inner electrode radius = 1.6 cm, outer electrode radius = 3.3 cm and its length = 31.5 cm. These conditions are charging voltage = 12 kV, capacity of the condenser bank = 430 μf, plasma focus density = 10 19 /cm 3 focusing time = 8 μs and total external inductance = 60.32 n H.3 fig., 2 tab

  15. Dynamical Simulation of Recycling and Particle Fueling in TJ-II Plasmas

    International Nuclear Information System (INIS)

    Lopez-Bruna, D.; Ferreira, J. A.; Tabares, F. L.; Castejon, F.; Guasp, J.

    2007-01-01

    With the aim of improving the calculation tools for transport analysis in TJ-II plasmas, in this work we analyze the simplified model for a kinetic equation that ASTRA uses to calculate the neutral particle distribution in the plasma. Next, we act on the boundary conditions for this kinetic equation (particularly on the neutral density in the plasma boundary) so we can simulate the recycling conditions for the TJ-II in a simple way. With the resulting transport models we can easily analyze the sensibility of these plasmas to the cold gas puffing depending on the recycling conditions. These transport models evidence the problem of density control in the TJ-II. Likewise, we estimate the importance of recycling in the plasmas heated by energetic neutral beam injection. The experimentally observed increments in density when the energetic neutrals are injected would respond, according to the calculations here presented, to a large increment of the neutrals influx that cannot be explained by the beam itself. (Author) 22 refs

  16. Numerical simulation in plasma physics

    International Nuclear Information System (INIS)

    Samarskii, A.A.

    1980-01-01

    Plasma physics is not only a field for development of physical theories and mathematical models but also an object of application of the computational experiment comprising analytical and numerical methods adapted for computers. The author considers only MHD plasma physics problems. Examples treated are dissipative structures in plasma; MHD model of solar dynamo; supernova explosion simulation; and plasma compression by a liner. (Auth.)

  17. Importance of Resolving the Spectral Support of Beam-plasma Instabilities in Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Shalaby, Mohamad; Broderick, Avery E. [Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1 (Canada); Chang, Philip [Department of Physics, University of Wisconsin-Milwaukee, 1900 E. Kenwood Boulevard, Milwaukee, WI 53211 (United States); Pfrommer, Christoph [Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Lamberts, Astrid [Theoretical Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Puchwein, Ewald, E-mail: mshalaby@live.ca [Institute of Astronomy and Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom)

    2017-10-20

    Many astrophysical plasmas are prone to beam-plasma instabilities. For relativistic and dilute beams, the spectral support of the beam-plasma instabilities is narrow, i.e., the linearly unstable modes that grow with rates comparable to the maximum growth rate occupy a narrow range of wavenumbers. This places stringent requirements on the box-sizes when simulating the evolution of the instabilities. We identify the implied lower limits on the box size imposed by the longitudinal beam plasma instability, i.e., typically the most stringent condition required to correctly capture the linear evolution of the instabilities in multidimensional simulations. We find that sizes many orders of magnitude larger than the resonant wavelength are typically required. Using one-dimensional particle-in-cell simulations, we show that the failure to sufficiently resolve the spectral support of the longitudinal instability yields slower growth and lower levels of saturation, potentially leading to erroneous physical conclusion.

  18. Importance of Resolving the Spectral Support of Beam-plasma Instabilities in Simulations

    International Nuclear Information System (INIS)

    Shalaby, Mohamad; Broderick, Avery E.; Chang, Philip; Pfrommer, Christoph; Lamberts, Astrid; Puchwein, Ewald

    2017-01-01

    Many astrophysical plasmas are prone to beam-plasma instabilities. For relativistic and dilute beams, the spectral support of the beam-plasma instabilities is narrow, i.e., the linearly unstable modes that grow with rates comparable to the maximum growth rate occupy a narrow range of wavenumbers. This places stringent requirements on the box-sizes when simulating the evolution of the instabilities. We identify the implied lower limits on the box size imposed by the longitudinal beam plasma instability, i.e., typically the most stringent condition required to correctly capture the linear evolution of the instabilities in multidimensional simulations. We find that sizes many orders of magnitude larger than the resonant wavelength are typically required. Using one-dimensional particle-in-cell simulations, we show that the failure to sufficiently resolve the spectral support of the longitudinal instability yields slower growth and lower levels of saturation, potentially leading to erroneous physical conclusion.

  19. New methods in plasma simulation

    International Nuclear Information System (INIS)

    Mason, R.J.

    1990-01-01

    The development of implicit methods of particle-in-cell (PIC) computer simulation in recent years, and their merger with older hybrid methods have created a new arsenal of simulation techniques for the treatment of complex practical problems in plasma physics. The new implicit hybrid codes are aimed at transitional problems that lie somewhere between the long time scale, high density regime associated with MHD modeling, and the short time scale, low density regime appropriate to PIC particle-in-cell techniques. This transitional regime arises in ICF coronal plasmas, in pulsed power plasma switches, in Z-pinches, and in foil implosions. Here, we outline how such a merger of implicit and hybrid methods has been carried out, specifically in the ANTHEM computer code, and demonstrate the utility of implicit hybrid simulation in applications. 25 refs., 5 figs

  20. Toward a first-principles integrated simulation of tokamak edge plasmas

    International Nuclear Information System (INIS)

    Chang, C S; Klasky, Scott A; Cummings, Julian; Samtaney, Ravi; Shoshani, A.; Sugiyama, L.; Keyes, David E; Ku, Seung-Hoe; Park, G.; Parker, Scott; Podhorszki, Norbert; Strauss, H.; Abbasi, H.; Adams, Mark; Barreto, Roselyne D; Bateman, Glenn; Bennett, K.; Chen, Yang; D'Azevedo, Eduardo; Docan, Ciprian; Ethier, Stephane; Feibush, E.; Greengard, Leslie; Hahm, Taik Soo; Hinton, Fred; Jin, Chen; Khan, A.; Kritz, Arnold; Krstic, Predrag S; Lao, T.; Lee, Wei-Li; Lin, Zhihong; Lofstead, J.; Mouallem, P. A.; Nagappan, M.; Pankin, A.; Parashar, Manish; Pindzola, Michael S.; Reinhold, Carlos O; Schultz, David Robert; Schwan, Karsten; Silver, D.; Sim, A.; Stotler, D.

    2008-01-01

    Performance of the ITER is anticipated to be highly sensitive to the edge plasma condition. The edge pedestal in ITER needs to be predicted from an integrated simulation of the necessary first principles, multi-scale physics codes. The mission of the SciDAC Fusion Simulation Project (FSP) Prototype Center for Plasma Edge Simulation (CPES) is to deliver such a code integration framework by (1) building new kinetic codes XGC0 and XGC1, which can simulate the edge pedestal buildup; (2) using and improving the existing MHD codes ELITE, M3D-OMP, M3D-MPP and NIMROD, for study of large-scale edge instabilities called Edge Localized Modes (ELMs); and (3) integrating the codes into a framework using cutting-edge computer science technology. Collaborative effort among physics, computer science, and applied mathematics within CPES has created the first working version of the End-to-end Framework for Fusion Integrated Simulation (EFFIS), which can be used to study the pedestal-ELM cycles

  1. Boundary Plasma Turbulence Simulations for Tokamaks

    International Nuclear Information System (INIS)

    Xu, X.; Umansky, M.; Dudson, B.; Snyder, P.

    2008-05-01

    The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T e ; T i ) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics

  2. The effect of pre-plasma formation under nonlocal transport conditions for ultra-relativistic laser-plasma interaction

    Science.gov (United States)

    Holec, M.; Nikl, J.; Vranic, M.; Weber, S.

    2018-04-01

    Interaction of high-power lasers with solid targets is in general strongly affected by the limited contrast available. The laser pre-pulse ionizes the target and produces a pre-plasma which can strongly modify the interaction of the main part of the laser pulse with the target. This is of particular importance for future experiments which will use laser intensities above 1021 W cm-2 and which are subject to the limited contrast. As a consequence the main part of the laser pulse will be modified while traversing the pre-plasma, interacting with it partially. A further complication arises from the fact that the interaction of a high-power pre-pulse with solid targets very often takes place under nonlocal transport conditions, i.e. the characteristic mean-free-path of the particles and photons is larger than the characteristic scale-lengths of density and temperature. The classical diffusion treatment of radiation and heat transport in the hydrodynamic model is then insufficient for the description of the pre-pulse physics. These phenomena also strongly modify the formation of the pre-plasma which in turn affects the propagation of the main laser pulse. In this paper nonlocal radiation-hydrodynamic simulations are carried out and serve as input for subsequent kinetic simulations of ultra-high intensity laser pulses interacting with the plasma in the ultra-relativistic regime. It is shown that the results of the kinetic simulations differ considerably whether a diffusive or nonlocal transport is used for the radiation-hydrodynamic simulations.

  3. A treecode to simulate dust-plasma interactions

    Science.gov (United States)

    Thomas, D. M.; Holgate, J. T.

    2017-02-01

    The interaction of a small object with surrounding plasma is an area of plasma-physics research with a multitude of applications. This paper introduces the plasma octree code pot, a microscopic simulator of a spheroidal dust grain in a plasma. pot uses the Barnes-Hut treecode algorithm to perform N-body simulations of electrons and ions in the vicinity of a chargeable spheroid, employing also the Boris particle-motion integrator and Hutchinson’s reinjection algorithm from SCEPTIC; a description of the implementation of all three algorithms is provided. We present results from pot simulations of the charging of spheres in magnetised plasmas, and of spheroids in unmagnetized plasmas. The results call into question the validity of using the Boltzmann relation in hybrid PIC codes. Substantial portions of this paper are adapted from chapters 4 and 5 of the first author’s recent PhD dissertation.

  4. Conditional Eddies in Plasma Turbulence

    DEFF Research Database (Denmark)

    Johnsen, H.; Pécseli, H.L.; Trulsen, J.

    1987-01-01

    Low‐frequency electrostatic turbulence generated by the ion–ion beam instability was investigated experimentally in a double‐plasma device. Real time signals were recorded and examined by a conditional statistical analysis. Conditionally averaged potential distributions reveal the formation...... and propagation of structures with a relatively long lifetime. Various methods for making a conditional analysis are discussed and compared. The results are discussed with reference to ion phase space vortices and clump formation in collisionless plasmas....

  5. Computer simulation of phenomena in plasma via particles

    International Nuclear Information System (INIS)

    Alves, M.V.; Bittencourt, J.A.

    1988-06-01

    The method of plasma computer simulation via particles has become an efficient tool to investigate the time and spatial evolution of various physical phenomena in plasmas. This method is based on the study of the individual plasma particle motions interacting with one another and with the externally applied fields. Although fairly simple, it allows a non-linear analysis of complex plasma physical phenomena and to obtain diagnostics even for regions of the system where experimental measurements would be difficult to make. In this report, a general view of the electrostatic one-dimensional computer code ES1, originally developed by A. Bruce Langdon, is presented. The main mathematical artifice in this code is the use of a spatial grid in which various plasma particles are represented by ''superparticles'', using a given shape function. The principal characteristics of the model, the approximations made and the mathematical methods used to solve the equations involved, are described. The specification of the input parameters which characterize the system, the initial conditions and the graphic diagnostics which can be utilized, are also described. Results are presented illustrating graphically the behavior of the plasma oscillations, the two-stream instability and the beam-plasma instability. (author) [pt

  6. Simulation of laser interaction with ablative plasma and hydrodynamic behavior of laser supported plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tong Huifeng; Yuan Hong [Institute of Fluid Physics, Chinese Academy of Engineering Physics, P.O. Box 919-101, Mianyang, Sichuan 621900 (China); Tang Zhiping [CAS Key Laboratory for Mechanical Behavior and Design of Materials, Department of Mechanics and Mechanical Engineering, University of Science and Technology of China, Hefei 230026 (China)

    2013-01-28

    When an intense laser beam irradiates on a solid target, ambient air ionizes and becomes plasma, while part of the target rises in temperature, melts, vaporizes, ionizes, and yet becomes plasma. A general Godunov finite difference scheme WENO (Weighted Essentially Non-Oscillatory Scheme) with fifth-order accuracy is used to simulate 2-dimensional axis symmetrical laser-supported plasma flow field in the process of laser ablation. The model of the calculation of ionization degree of plasma and the interaction between laser beam and plasma are considered in the simulation. The numerical simulations obtain the profiles of temperature, density, and velocity at different times which show the evolvement of the ablative plasma. The simulated results show that the laser energy is strongly absorbed by plasma on target surface and that the velocity of laser supported detonation (LSD) wave is half of the ideal LSD value derived from Chapman-Jouguet detonation theory.

  7. Numerical simulation of collision-free plasma using Vlasov hybrid simulation

    International Nuclear Information System (INIS)

    Nunn, D.

    1990-01-01

    A novel scheme for the numerical simulation of wave particle interactions in space plasmas has been developed. The method, termed VHS or Vlasov Hybrid Simulation, is applicable to hot collision free plasmas in which the unperturbed distribution functions is smooth and free of delta function singularities. The particle population is described as a continuous Vlasov fluid in phase space-granularity and collisional effects being ignored. In traditional PIC/CIC codes the charge/current due to each simulation particle is assigned to a fixed spatial grid. In the VHS method the simulation particles sample the Vlasov fluid and provide information about the value of distribution function (F(r,v) at random points in phase space. Values of F are interpolated from the simulation particles onto a fixed grid in velocity/position or phase space. With distribution function defined on a phase space grid the plasma charge/current field is quickly calculated. The simulation particles serve only to provide information, and thus the particle population may be dynamic. Particles no longer resonant with the wavefield may be discarded from the simulation, and new particles may be inserted into the Vlasov fluid where required

  8. Simulation models for tokamak plasmas

    International Nuclear Information System (INIS)

    Dimits, A.M.; Cohen, B.I.

    1992-01-01

    Two developments in the nonlinear simulation of tokamak plasmas are described: (A) Simulation algorithms that use quasiballooning coordinates have been implemented in a 3D fluid code and a 3D partially linearized (Δf) particle code. In quasiballooning coordinates, one of the coordinate directions is closely aligned with that of the magnetic field, allowing both optimal use of the grid resolution for structures highly elongated along the magnetic field as well as implementation of the correct periodicity conditions with no discontinuities in the toroidal direction. (B) Progress on the implementation of a likeparticle collision operator suitable for use in partially linearized particle codes is reported. The binary collision approach is shown to be unusable for this purpose. The algorithm under development is a complete version of the test-particle plus source-field approach that was suggested and partially implemented by Xu and Rosenbluth

  9. Numerical simulation of plasmas

    International Nuclear Information System (INIS)

    Dnestrovskii, Y.N.; Kostomarov, D.P.

    1986-01-01

    This book contains a modern consistent and systematic presentation of numerical computer simulation of plasmas in controlled thermonuclear fusion. The authors focus on the Soviet research in mathematical modelling of Tokamak plasmas, and present kinetic hydrodynamic and transport models with special emphasis on the more recent hybrid models. Compared with the first edition (in Russian) this book has been greatly revised and updated. (orig./WL)

  10. Models for Predicting Boundary Conditions in L-Mode Tokamak Plasma

    International Nuclear Information System (INIS)

    Siriwitpreecha, A.; Onjun, T.; Suwanna, S.; Poolyarat, N.; Picha, R.

    2009-07-01

    Full text: The models for predicting temperature and density of ions and electrons at boundary conditions in L-mode tokamak plasma are developed using an empirical approach and optimized against the experimental data obtained from the latest public version of the International Pedestal Database (version 3.2). It is assumed that the temperature and density at boundary of L-mode plasma are functions of engineering parameters such as plasma current, toroidal magnetic field, total heating power, line averaged density, hydrogenic particle mass (A H ), major radius, minor radius, and elongation at the separatrix. Multiple regression analysis is carried out for these parameters with 86 data points in L-mode from Aug (61) and JT60U (25). The RMSE of temperature and density at boundary of L-mode plasma are found to be 24.41% and 18.81%, respectively. These boundary models are implemented in BALDUR code, which will be used to simulate the L-mode plasma in the tokamak

  11. Simulation of plasma erosion opening switches

    International Nuclear Information System (INIS)

    Mason, R.J.; Jones, M.E.

    1988-01-01

    The plasma erosion opening switch (PEOS) has been studied with the ANTHEM and ISIS implicit simulation codes. The switch consists of plasma fill injected into a transmission line. The plasma initially shorts out the circuit, but eventually it is removed by self-electrical forces, allowing for the delivery of energy to a load. ANTHEM models the plasma by multiple fluids with electron inertia retained, or by the particle-in-cell (PIC) technique. ISIS is an optimized PIC code. Both codes determine electric and magnetic fields by the implicit moment method. This allows for the study of long time full-switch behavior with simulational zone sizes and time steps that are large compared to a Debye length and plasma period, respectively. Thus, the authors have modeled switch behavior at densities ranging from 5 x 10 11 to 5 x 10 14 electrons/cm -3 over drive pulses ranging from 5 to 250 ns. Here, the magnetic field rose linearly from zero to 0.8 or 3.0 Tesla. Switch gaps spanned from 1.0 to 8.0 cm, and inner radii ranged from 0.5 to 20.0 cm. Opening dynamics is shown to depend sensitively on the assumed electron emission thresholds at the cathode, and on the effective conductivity of the anode. The particle simulations predict broader current channels than the multi-fluid calculations - reasons for this are discussed. The effect of numerical diffusion in implicit simulations is examined. The response to realistic load impedances (10 Ohms for Sandia National Laboratory's PBFA II accelerator) of the opening characteristics is described. Advantages from plasma fill near the load are investigated. The action of preset initial magnetic fields aligned with the power flow, and of trigger magnetic fields for controlled removal of the plasma is discussed

  12. 3D nonlinear MHD simulations of ultra-low q plasmas

    International Nuclear Information System (INIS)

    Bonfiglio, D.; Cappello, S.; Piovan, R.; Zanotto, L.; Zuin, M.

    2008-01-01

    Magnetohydrodynamic (MHD) phenomena occurring in the ultra-low safety factor (ULq) configuration are investigated by means of 3D nonlinear MHD simulations. The ULq configuration, a screw pinch characterized by the edge safety factor q edge in the interval 0 edge edge values which are about the major rational numbers, suggesting plasma self-organization. Similar behaviour is observed in experimental ULq discharges, like those recently obtained exploiting the flexibility of the RFX-mod device. The transition of q edge from a major rational number to the next one occurs together with the development of a kink deformation of the plasma column, whose stabilization yields a nearly axisymmetric state with a rather flat q profile. Numerical simulations also show that it is possible to sustain either of the two conditions, namely, the saturated kink helical configuration and the axisymmetric one, by forcing q edge at a suitable value. Finally, the effects of this MHD phenomenology on the confinement properties of ULq plasmas are discussed.

  13. Effects of plasma jet parameters, ionization, thermal conduction, and radiation on stagnation conditions of an imploding plasma liner

    Science.gov (United States)

    Stanic, Milos

    The disciplines of High Energy Density Physics (HEDP) and Inertial Confinement Fusion (ICF) are characterized by hypervelocity implosions and strong shocks. The Plasma Liner Experiment (PLX) is focused on reaching HEDP and/or ICF relevant regimes in excess of 1 Mbar peak pressure by the merging and implosion of discrete plasma jets, as a potentially efficient path towards these extreme conditions in a laboratory. In this work we have presented the first 3D simulations of plasma liner, formation, and implosion by the merging of discrete plasma jets in which ionization, thermal conduction, and radiation are all included in the physics model. The study was conducted by utilizing a smoothed particle hydrodynamics code (SPHC) and was a part of the plasma liner experiment (PLX). The salient physics processes of liner formation and implosion are studied, namely vacuum propagation of plasma jets, merging of the jets (liner forming), implosion (liner collapsing), stagnation (peak pressure), and expansion (rarefaction wave disassembling the target). Radiative transport was found to significantly reduce the temperature of the liner during implosion, thus reducing the thermal expansion rates and leaving more pronounced gradients in the plasma liner during the implosion compared with ideal hydrodynamic simulations. These pronounced gradients lead to a greater sensitivity of initial jet geometry and symmetry on peak pressures obtained. Accounting for ionization and transport, many cases gave higher peak pressures than the ideal hydrodynamic simulations. Scaling laws were developed accordingly, creating a non-dimensional parameter space in which performance of an imploding plasma jet liner can be estimated. It is shown that HEDP regimes could be reached with ≈ 5 MJ of liner energy, which would translate to roughly 10 to 20 MJ of stored (capacitor) energy. This is a potentially significant improvement over the currently available means via ICF of achieving HEDP and nuclear

  14. Particle simulation of a two-dimensional electrostatic plasma

    International Nuclear Information System (INIS)

    Patel, K.

    1989-01-01

    Computer simulation is a growing field of research and plasma physics is one of the important areas where it is being applied today. This report describes the particle method of simulating a two-dimensional electrostatic plasma. The methods used to discretise the plasma equations and integrate the equations of motion are outlined. The algorithm used in building a simulation program is described. The program is applied to simulating the Two-stream Instability occurring within an infinite plasma. The results of the simulation are presented. The growth rate of the instability as simulated is in excellent agreement with the growth rate as calculated using linear theory. Diagnostic techniques used in interpreting the data generated by the simulation program are discussed. A comparison of the computing environment of the ND and PC from a user's viewpoint is presented. It is observed that the PC is an acceptable computing tool for certain (non-trivial) physics problems, and that more extensive use of its computing power should be made. (author). 5 figs

  15. Towards a realistic plasma simulation code

    International Nuclear Information System (INIS)

    Anderson, D.V.

    1991-06-01

    Several new developments in the technology of simulating plasmas, both in particle and fluid models, now allow a stage of synthesis in which many of these advances can be combined into one simulation model. Accuracy and efficiency are the criteria to be satisfied in this quest. We want to build on the following research: 1. the development of the δf method of Barnes. 2. The moving node Galerkin model of Glasser, Miller and Carlson. 3. Particle moving schemes on unstructured grids by Ambrosiano and Bradon. 4. Particle simulations using sorted particles Anderson and Shumaker. Rather than being competing developments,these presumably can be combined into one computational model. We begin by summarizing the physics model for the plasma. The Vlasov equation can be solved as an initial value problem by integrating the plasma distribution function forward in time. 5 refs

  16. Controlling Laser Plasma Instabilities Using Temporal Bandwidths Under Shock Ignition Relevant Conditions

    Science.gov (United States)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2017-10-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temporal bandwidth under plasma conditions relevant to experiments on the Nike laser with induced spatial incoherence (ISI). With ISI, the instantaneous laser intensity can be 3-4 times larger than the average intensity, leading to the excitation of additional TPD modes and producing electrons with larger angular spread. In our simulations, we observe that although ISI can increase the interaction regions for short bursts of time, time-averaged (over many pico-seconds) laser plasma interactions can be reduced by a factor of 2 in systems with sufficiently large bandwidths (where the inverse bandwidth is comparable with the linear growth time). We will quantify these effects and investigate higher dimensional effects such as laser speckles and the effects of Coulomb collisions. Work supported by NRL, NNSA, and NSF.

  17. Plasma physics via particle simulation

    International Nuclear Information System (INIS)

    Birdsall, C.K.

    1981-01-01

    Plasmas are studied by following the motion of many particles in applied and self fields, analytically, experimentally and computationally. Plasmas for magnetic fusion energy devices are very hot, nearly collisionless and magnetized, with scale lengths of many ion gyroradii and Debye lengths. The analytic studies of such plasmas are very difficult as the plasma is nonuniform, anisotropic and nonlinear. The experimental studies have become very expensive in time and money, as the size, density and temperature approach fusion reactor values. Computational studies using many particles and/or fluids have complemented both theories and experiments for many years and have progressed to fully three dimensional electromagnetic models, albeit with hours of running times on the fastest largest computers. Particle simulation methods are presented in some detail, showing particle advance from acceleration to velocity to position, followed by calculation of the fields from charge and current densities and then further particle advance, and so on. Limitations due to the time stepping and use of a spatial grid are given, to avoid inaccuracies and instabilities. Examples are given for an electrostatic program in one dimension of an orbit averaging program, and for a three dimensional electromagnetic program. Applications of particle simulations of plasmas in magnetic and inertial fusion devices continue to grow, as well as to plasmas and beams in peripheral devices, such as sources, accelerators, and converters. (orig.)

  18. A fully-implicit Particle-In-Cell Monte Carlo Collision code for the simulation of inductively coupled plasmas

    Science.gov (United States)

    Mattei, S.; Nishida, K.; Onai, M.; Lettry, J.; Tran, M. Q.; Hatayama, A.

    2017-12-01

    We present a fully-implicit electromagnetic Particle-In-Cell Monte Carlo collision code, called NINJA, written for the simulation of inductively coupled plasmas. NINJA employs a kinetic enslaved Jacobian-Free Newton Krylov method to solve self-consistently the interaction between the electromagnetic field generated by the radio-frequency coil and the plasma response. The simulated plasma includes a kinetic description of charged and neutral species as well as the collision processes between them. The algorithm allows simulations with cell sizes much larger than the Debye length and time steps in excess of the Courant-Friedrichs-Lewy condition whilst preserving the conservation of the total energy. The code is applied to the simulation of the plasma discharge of the Linac4 H- ion source at CERN. Simulation results of plasma density, temperature and EEDF are discussed and compared with optical emission spectroscopy measurements. A systematic study of the energy conservation as a function of the numerical parameters is presented.

  19. The feasibility of TEA CO2 laser-induced plasma for spectrochemical analysis of geological samples in simulated Martian conditions

    Science.gov (United States)

    Savovic, Jelena; Stoiljkovic, Milovan; Kuzmanovic, Miroslav; Momcilovic, Milos; Ciganovic, Jovan; Rankovic, Dragan; Zivkovic, Sanja; Trtica, Milan

    2016-04-01

    The present work studies the possibility of using pulsed Transversely Excited Atmospheric (TEA) carbon dioxide laser as an energy source for laser-induced breakdown spectroscopy (LIBS) analysis of rocks under simulated Martian atmospheric conditions. Irradiation of a basaltic rock sample with the laser intensity of 56 MW cm- 2, in carbon-dioxide gas at a pressure of 9 mbar, created target plasma with favorable conditions for excitation of all elements usually found in geological samples. Detection limits of minor constituents (Ba, Cr, Cu, Mn, Ni, Sr, V, and Zr) were in the 3 ppm-30 ppm range depending on the element. The precision varied between 5% and 25% for concentration levels of 1% to 10 ppm, respectively. Generally, the proposed relatively simple TEA CO2 laser-LIBS system provides good sensitivity for geological studies under reduced CO2 pressure.

  20. Stability of magnetite nanoparticles with different coatings in a simulated blood plasma

    Energy Technology Data Exchange (ETDEWEB)

    Favela-Camacho, Sarai E.; Pérez-Robles, J. Francisco [Center for Research and Advanced Studies of National Polytechnic Institute, CINVESTAV-Querétaro Unit (Mexico); García-Casillas, Perla E. [Autonomous University of Juarez, Department of Materials Science, Institute of Engineering and Technology (Mexico); Godinez-Garcia, Andrés, E-mail: andgodinez@xanum.uam.mx [Universidad Autónoma Metropolitana, Departamento de Ingeniería de Procesos e Hidráulica (Mexico)

    2016-07-15

    Magnetite nanoparticles (MNPs) have demonstrated to be a potential platform for simultaneous anticancer drug delivery and magnetic resonance imaging (MRI). However, magnetite is unstable at the blood plasma conditions. Therefore, to study their stability in a broad range of particle size, the MNPs were synthesized using two methods, the fast injection co-precipitation method (FIC) and the reflux co-precipitation method (RC). The MNPs obtained by the RC and the FIC methods have an average size of agglomerates of 200 and 45 nm respectively. They were dispersed using sodium citrate as surfactant and were coated with silica and chitosan. A total of four kind of coated MNPs were synthesized: magnetite/sodium citrate, magnetite/silica, magnetite/sodium citrate/silica and magnetite/sodium citrate/silica/chitosan. Different samples of the coated MNPs were immersed in a simulated blood plasma solution (Phosphate-Buffered Saline, PBS, Gibco{sup ®}), for periods of 24, 48 and 72 h. Inductively coupled plasma (ICP) technique was used to analyze the composition of the simulated plasma after those periods of time. The obtained results suggest that the uncoated samples showed an appreciable weight loss, and the iron composition in the simulated plasma increased. This last means that the used coatings avoid iron dissolution from the MNPs.Graphical abstract.

  1. Fluid simulation for two laser beams co-propagating in underdense plasma

    International Nuclear Information System (INIS)

    Mahdy, A.I.

    2004-09-01

    2D simulations code was constructed in order simulate the interactions of two co-propagating laser beams with underdense plasma. Simulations results at different laser intensities and separation-distances between the beams centroids were presented. In the results the effects of the laser intensities on the self-focusing and merging of the propagating beams were shown. In addition, the influence of increasing the separation-distance on the beams stability and trajectories were studied. A comparison with previous simulations at similar conditions was carried out in order to evaluate the numerical technique used to solve the basic equations. (author)

  2. Advanced ST plasma scenario simulations for NSTX

    International Nuclear Information System (INIS)

    Kessel, C.E.; Synakowski, E.J.; Gates, D.A.; Kaye, S.M.; Menard, J.; Phillips, C.K.; Taylor, G.; Wilson, R.; Harvey, R.W.; Mau, T.K.

    2005-01-01

    Integrated scenario simulations are done for NSTX that address four primary milestones for developing advanced ST configurations: high β and high β N inductive discharges to study all aspects of ST physics in the high beta regime; non-inductively sustained discharges for flattop times greater than the skin time to study the various current drive techniques; non-inductively sustained discharges at high βfor flattop times much greater than a skin time which provides the integrated advanced ST target for NSTX; and non-solenoidal startup and plasma current rampup. The simulations done here use the Tokamak Simulation Code (TSC) and are based on a discharge 109070. TRANSP analysis of the discharge provided the thermal diffusivities for electrons and ions, the neutral beam (NB) deposition profile and other characteristics. CURRAY is used to calculate the High Harmonic Fast Wave (HHFW) heating depositions and current drive. GENRAY/CQL3D is used to establish the heating and CD deposition profiles for electron Bernstein waves (EBW). Analysis of the ideal MHD stability is done with JSOLVER, BALMSC, and PEST2. The simulations indicate that the integrated advanced ST plasma is reachable, obtaining stable plasmas with β ∼ 40% at β N 's of 7.7-9, I P = 1.0 MA and B T = 0.35 T. The plasma is 100% non-inductive and has a flattop of 4 skin times. The resulting global energy confinement corresponds to a multiplier of H 98(y,2 ) = 1.5. The simulations have demonstrated the importance of HHFW heating and CD, EBW off-axis CD, strong plasma shaping, density control, and early heating/H-mode transition for producing and optimizing these plasma configurations (author)

  3. Computer simulations of plasma-biomolecule and plasma-tissue interactions for a better insight in plasma medicine

    Science.gov (United States)

    Neyts, Erik C.; Yusupov, Maksudbek; Verlackt, Christof C.; Bogaerts, Annemie

    2014-07-01

    Plasma medicine is a rapidly evolving multidisciplinary field at the intersection of chemistry, biochemistry, physics, biology, medicine and bioengineering. It holds great potential in medical, health care, dentistry, surgical, food treatment and other applications. This multidisciplinary nature and variety of possible applications come along with an inherent and intrinsic complexity. Advancing plasma medicine to the stage that it becomes an everyday tool in its respective fields requires a fundamental understanding of the basic processes, which is lacking so far. However, some major advances have already been made through detailed experiments over the last 15 years. Complementary, computer simulations may provide insight that is difficult—if not impossible—to obtain through experiments. In this review, we aim to provide an overview of the various simulations that have been carried out in the context of plasma medicine so far, or that are relevant for plasma medicine. We focus our attention mostly on atomistic simulations dealing with plasma-biomolecule interactions. We also provide a perspective and tentative list of opportunities for future modelling studies that are likely to further advance the field.

  4. Theory and simulation of laser plasma coupling

    International Nuclear Information System (INIS)

    Kruer, W.L.

    1979-01-01

    The theory and simulation of these coupling processes are considered. Particular emphasis is given to their nonlinear evolution. First a brief introduction to computer simulation of plasmas using particle codes is given. Then the absorption of light via the generation of plasma waves is considered, followed by a discussion of stimulated scattering of intense light. Finally these calculations are compared with experimental results

  5. Multi-dimensional PIC-simulations of parametric instabilities for shock-ignition conditions

    Directory of Open Access Journals (Sweden)

    Riconda C.

    2013-11-01

    Full Text Available Laser-plasma interaction is investigated for conditions relevant for the shock-ignition (SI scheme of inertial confinement fusion using two-dimensional particle-in-cell (PIC simulations of an intense laser beam propagating in a hot, large-scale, non-uniform plasma. The temporal evolution and interdependence of Raman- (SRS, and Brillouin- (SBS, side/backscattering as well as Two-Plasmon-Decay (TPD are studied. TPD is developing in concomitance with SRS creating a broad spectrum of plasma waves near the quarter-critical density. They are rapidly saturated due to plasma cavitation within a few picoseconds. The hot electron spectrum created by SRS and TPD is relatively soft, limited to energies below one hundred keV.

  6. Two-dimensional Simulations of Correlation Reflectometry in Fusion Plasmas

    International Nuclear Information System (INIS)

    Valeo, E.J.; Kramer, G.J.; Nazikian, R.

    2001-01-01

    A two-dimensional wave propagation code, developed specifically to simulate correlation reflectometry in large-scale fusion plasmas is described. The code makes use of separate computational methods in the vacuum, underdense and reflection regions of the plasma in order to obtain the high computational efficiency necessary for correlation analysis. Simulations of Tokamak Fusion Test Reactor (TFTR) plasma with internal transport barriers are presented and compared with one-dimensional full-wave simulations. It is shown that the two-dimensional simulations are remarkably similar to the results of the one-dimensional full-wave analysis for a wide range of turbulent correlation lengths. Implications for the interpretation of correlation reflectometer measurements in fusion plasma are discussed

  7. Particle-in-cell simulations of Hall plasma thrusters

    Science.gov (United States)

    Miranda, Rodrigo; Ferreira, Jose Leonardo; Martins, Alexandre

    2016-07-01

    Hall plasma thrusters can be modelled using particle-in-cell (PIC) simulations. In these simulations, the plasma is described by a set of equations which represent a coupled system of charged particles and electromagnetic fields. The fields are computed using a spatial grid (i.e., a discretization in space), whereas the particles can move continuously in space. Briefly, the particle and fields dynamics are computed as follows. First, forces due to electric and magnetic fields are employed to calculate the velocities and positions of particles. Next, the velocities and positions of particles are used to compute the charge and current densities at discrete positions in space. Finally, these densities are used to solve the electromagnetic field equations in the grid, which are interpolated at the position of the particles to obtain the acting forces, and restart this cycle. We will present numerical simulations using software for PIC simulations to study turbulence, wave and instabilities that arise in Hall plasma thrusters. We have sucessfully reproduced a numerical simulation of a SPT-100 Hall thruster using a two-dimensional (2D) model. In addition, we are developing a 2D model of a cylindrical Hall thruster. The results of these simulations will contribute to improve the performance of plasma thrusters to be used in Cubesats satellites currenty in development at the Plasma Laboratory at University of Brasília.

  8. Two-dimensional particle-in-cell simulation of the expansion of a plasma into a rarefied medium

    Energy Technology Data Exchange (ETDEWEB)

    Sarri, G; Quinn, K; Kourakis, I; Borghesi, M [Centre for Plasma Physics, The Queens University of Belfast, Belfast BT7 1NN (United Kingdom); Murphy, G C; Drury, L O C [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Dieckmann, M E; Ynnerman, A [Department of Science and Technology (ITN), Linkoeping University, 60174 Norrkoping (Sweden); Bret, A, E-mail: gsarri01@qub.ac.uk [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)

    2011-07-15

    The expansion of a dense plasma through a more rarefied ionized medium has been studied by means of two-dimensional particle-in-cell simulations. The initial conditions involve a density jump by a factor of 100, located in the middle of an otherwise equally dense electron-proton plasma with uniform proton and electron temperatures of 10 eV and 1 keV, respectively. Simulations show the creation of a purely electrostatic collisionless shock together with an ion-acoustic soliton tied to its downstream region. The shock front is seen to evolve in filamentary structures consistently with the onset of the ion-ion instability. Meanwhile, an un-magnetized drift instability is triggered in the core part of the dense plasma. Such results explain recent experimental laser-plasma experiments, carried out in similar conditions, and are of intrinsic relevance to non-relativistic shock scenarios in the solar and astrophysical systems.

  9. Two-dimensional particle-in-cell simulation of the expansion of a plasma into a rarefied medium

    International Nuclear Information System (INIS)

    Sarri, G; Quinn, K; Kourakis, I; Borghesi, M; Murphy, G C; Drury, L O C; Dieckmann, M E; Ynnerman, A; Bret, A

    2011-01-01

    The expansion of a dense plasma through a more rarefied ionized medium has been studied by means of two-dimensional particle-in-cell simulations. The initial conditions involve a density jump by a factor of 100, located in the middle of an otherwise equally dense electron-proton plasma with uniform proton and electron temperatures of 10 eV and 1 keV, respectively. Simulations show the creation of a purely electrostatic collisionless shock together with an ion-acoustic soliton tied to its downstream region. The shock front is seen to evolve in filamentary structures consistently with the onset of the ion-ion instability. Meanwhile, an un-magnetized drift instability is triggered in the core part of the dense plasma. Such results explain recent experimental laser-plasma experiments, carried out in similar conditions, and are of intrinsic relevance to non-relativistic shock scenarios in the solar and astrophysical systems.

  10. Presheath profiles in simulated tokamak edge plasmas

    International Nuclear Information System (INIS)

    LaBombard, B.; Conn, R.W.; Hirooka, Y.; Lehmer, R.; Leung, W.K.; Nygren, R.E.; Ra, Y.; Tynan, G.

    1988-04-01

    The PISCES plasma surface interaction facility at UCLA generates plasmas with characteristics similar to those found in the edge plasmas of tokamaks. Steady state magnetized plasmas produced by this device are used to study plasma-wall interaction phenomena which are relevant to tokamak devices. We report here progress on some detailed investigations of the presheath region that extends from a wall surface into these /open quotes/simulated tokamak/close quotes/ edge plasma discharges along magnetic field lines

  11. Higher order multipoles and splines in plasma simulations

    International Nuclear Information System (INIS)

    Okuda, H.; Cheng, C.Z.

    1978-01-01

    The reduction of spatial grid effects in plasma simulations has been studied numerically using higher order multipole expansions and the spline method in one dimension. It is found that, while keeping the higher order moments such as quadrupole and octopole moments substantially reduces the grid effects, quadratic and cubic splines in general have better stability properties for numerical plasma simulations when the Debye length is much smaller than the grid size. In particular the spline method may be useful in three-dimensional simulations for plasma confinement where the grid size in the axial direction is much greater than the Debye length. (Auth.)

  12. Higher-order multipoles and splines in plasma simulations

    International Nuclear Information System (INIS)

    Okuda, H.; Cheng, C.Z.

    1977-12-01

    Reduction of spatial grid effects in plasma simulations has been studied numerically using higher order multipole expansions and spline method in one dimension. It is found that, while keeping the higher order moments such as quadrupole and octopole moments substantially reduces the grid effects, quadratic and cubic splines in general have better stability properties for numerical plasma simulations when the Debye length is much smaller than the grid size. In particular, spline method may be useful in three dimensional simulations for plasma confinement where the grid size in the axial direction is much greater than the Debye length

  13. Numerical simulation of the plasma current quench following a disruptive energy loss

    International Nuclear Information System (INIS)

    Strickler, D.J.; Peng, Y.K.M.; Holmes, J.A.; Miller, J.B.; Rothe, K.E.

    1983-11-01

    The plasma electromagnetic interaction with poloidal field coils and nearby passive conductor loops during the current quench following a disruptive loss of plasma energy is simulated. By solving a differential/algebraic system consisting of a set of circuit equations (including the plasma circuit) coupled to a plasma energy balance equation and an equilibrium condition, the electromagnetic consequences of an abrupt thermal quench are observed. Limiters on the small and large major radium sides of the plasma are assumed to define the plasma cross section. The presence of good conductors near the plasma and a small initial distance (i.e., 5 to 10% of the plasma minor radius) between the plasma edge and an inboard limiter are shown to lead to long current decay times. For a plasma with an initial major radius R/sub o/ = 4.3 m, aspect ratio A = 3.6, and current I/sub P/ = 4.0 MA, introducing nearby passive conductors lengthens the current decay from milliseconds to hundreds of milliseconds

  14. Advanced ST Plasma Scenario Simulations for NSTX

    International Nuclear Information System (INIS)

    Kessel, C.E.; Synakowski, E.J.; Gates, D.A.; Harvey, R.W.; Kaye, S.M.; Mau, T.K.; Menard, J.; Phillips, C.K.; Taylor, G.; Wilson, R.

    2004-01-01

    Integrated scenario simulations are done for NSTX [National Spherical Torus Experiment] that address four primary milestones for developing advanced ST configurations: high β and high β N inductive discharges to study all aspects of ST physics in the high-beta regime; non-inductively sustained discharges for flattop times greater than the skin time to study the various current-drive techniques; non-inductively sustained discharges at high β for flattop times much greater than a skin time which provides the integrated advanced ST target for NSTX; and non-solenoidal start-up and plasma current ramp-up. The simulations done here use the Tokamak Simulation Code (TSC) and are based on a discharge 109070. TRANSP analysis of the discharge provided the thermal diffusivities for electrons and ions, the neutral-beam (NB) deposition profile, and other characteristics. CURRAY is used to calculate the High Harmonic Fast Wave (HHFW) heating depositions and current drive. GENRAY/CQL3D is used to establish the heating and CD [current drive] deposition profiles for electron Bernstein waves (EBW). Analysis of the ideal-MHD stability is done with JSOLVER, BALMSC, and PEST2. The simulations indicate that the integrated advanced ST plasma is reachable, obtaining stable plasmas with β ∼ 40% at β N 's of 7.7-9, I P = 1.0 MA, and B T = 0.35 T. The plasma is 100% non-inductive and has a flattop of 4 skin times. The resulting global energy confinement corresponds to a multiplier of H 98(y,2) 1.5. The simulations have demonstrated the importance of HHFW heating and CD, EBW off-axis CD, strong plasma shaping, density control, and early heating/H-mode transition for producing and optimizing these plasma configurations

  15. Simulation of rarefied low pressure RF plasma flow around the sample

    Science.gov (United States)

    Zheltukhin, V. S.; Shemakhin, A. Yu

    2017-01-01

    The paper describes a mathematical model of the flow of radio frequency plasma at low pressure. The hybrid mathematical model includes the Boltzmann equation for the neutral component of the RF plasma, the continuity and the thermal equations for the charged component. Initial and boundary conditions for the corresponding equations are described. The electron temperature in the calculations is 1-4 eV, atoms temperature in the plasma clot is (3-4) • 103 K, in the plasma jet is (3.2-10) • 102 K, the degree of ionization is 10-7-10-5, electron density is 1015-1019 m-3. For calculations plasma parameters is developed soft package on C++ program language, that uses the OpenFOAM library package. Simulations for the vacuum chamber in the presence of a sample and the free jet flow were carried out.

  16. The Integrated Plasma Simulator: A Flexible Python Framework for Coupled Multiphysics Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Foley, Samantha S [ORNL; Elwasif, Wael R [ORNL; Bernholdt, David E [ORNL

    2011-11-01

    High-fidelity coupled multiphysics simulations are an increasingly important aspect of computational science. In many domains, however, there has been very limited experience with simulations of this sort, therefore research in coupled multiphysics often requires computational frameworks with significant flexibility to respond to the changing directions of the physics and mathematics. This paper presents the Integrated Plasma Simulator (IPS), a framework designed for loosely coupled simulations of fusion plasmas. The IPS provides users with a simple component architecture into which a wide range of existing plasma physics codes can be inserted as components. Simulations can take advantage of multiple levels of parallelism supported in the IPS, and can be controlled by a high-level ``driver'' component, or by other coordination mechanisms, such as an asynchronous event service. We describe the requirements and design of the framework, and how they were implemented in the Python language. We also illustrate the flexibility of the framework by providing examples of different types of simulations that utilize various features of the IPS.

  17. Collisional Damping of Electron Bernstein Waves and its Mitigation by Evaporated Lithium Conditioning in Spherical-Tokamak Plasmas

    International Nuclear Information System (INIS)

    Diem, S. J.; Caughman, J. B.; Taylor, G.; Efthimion, P. C.; Kugel, H.; LeBlanc, B. P.; Phillips, C. K.; Preinhaelter, J.; Urban, J.; Sabbagh, S. A.

    2009-01-01

    The first experimental verification of electron Bernstein wave (EBW) collisional damping, and its mitigation by evaporated Li conditioning, in an overdense spherical-tokamak plasma has been observed in the National Spherical Torus Experiment (NSTX). Initial measurements of EBW emission, coupled from NSTX plasmas via double-mode conversion to O-mode waves, exhibited <10% transmission efficiencies. Simulations show 80% of the EBW energy is dissipated by collisions in the edge plasma. Li conditioning reduced the edge collision frequency by a factor of 3 and increased the fundamental EBW transmission to 60%.

  18. Development of Integrated Simulation System for Helical Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Y.; Yokoyama, M.; Nakajima, N.; Fukuyama, A.; Watanabe, K. Y.; Funaba, H.; Suzuki, Y.; Murakami, S.; Ida, K.; Sakakibara, S.; Yamada, H.

    2005-07-01

    Recent progress of computers (parallel/vector-parallel computers, PC clusters, for example) and numerical codes for helical plasmas like three-dimensional MHD equilibrium codes, combined with the development of the plasma diagnostics technique, enable us to do the detailed theoretical analyses of the individual experimental observations. Now, it is pointed out that the experimental data analysis from the viewpoints of integrated physics is an important issue to understand the confinement physics globally. In addition to that, there are international movements towards the integrated numerical simulation study. One is several proposals of integrated modeling of burning tokamak plasmas, motivated by the ITER activity. The integrated numerical simulation will be a good help to draw up new experimental plans especially for burning plasma experiments. Another movement is international collaborations on the confinement database and neoclassical transport in helical plasmas/stellarators. These backgrounds motivate us to start the development of the integrated simulation system which has a modular structure and user-friendly interfaces. The integrated simulation system, which is based on the hierarchical and multi-scale (time and space) modeling, will also be a platform for theoreticians to test their own model such as turbulent transport model. In this paper, we will show the strategy of developing the integrated simulation system and present status of the development. Especially, we discuss the modeling of the time evolution of the plasma net current profile, which is equivalent to the time evolution of the rotational transform profile, in the resistive time scale. (Author)

  19. Theory and Simulations of Solar System Plasmas

    Science.gov (United States)

    Goldstein, Melvyn L.

    2011-01-01

    "Theory and simulations of solar system plasmas" aims to highlight results from microscopic to global scales, achieved by theoretical investigations and numerical simulations of the plasma dynamics in the solar system. The theoretical approach must allow evidencing the universality of the phenomena being considered, whatever the region is where their role is studied; at the Sun, in the solar corona, in the interplanetary space or in planetary magnetospheres. All possible theoretical issues concerning plasma dynamics are welcome, especially those using numerical models and simulations, since these tools are mandatory whenever analytical treatments fail, in particular when complex nonlinear phenomena are at work. Comparative studies for ongoing missions like Cassini, Cluster, Demeter, Stereo, Wind, SDO, Hinode, as well as those preparing future missions and proposals, like, e.g., MMS and Solar Orbiter, are especially encouraged.

  20. Electron cloud simulation of the ECR plasma

    International Nuclear Information System (INIS)

    Racz, R.; Biri, S.; Palinkas, J.

    2011-01-01

    Complete text of publication follows. The plasma of the Electron Cyclotron Resonance Ion Source (ECRIS) of ATOMKI is being continuously investigated by different diagnostic methods: using small-sized probes or taking X-ray and visible light photographs. In 2011 three articles were published by our team in a special edition of the IEEE Transactions on Plasma Science (Special Issue on Images in Plasma Science) describing our X-ray and visible light measurements and plasma modeling and simulating studies. Simulation is in many cases the base for the analysis of the photographs. The outcomes of the X-ray and visible light experiments were presented already in earlier issues of the Atomki Annual Report, therefore in this year we concentrate on the results of the simulating studies. The spatial distribution of the three main electron components (cold, warm and hot electron clouds) of the ECR plasmas was simulated by TrapCAD code. TrapCAD is a 'limited' plasma simulation code. The spatial and energy evolution of a large number of electrons can be realistically followed; however, these particles are independent, and no particle interactions are included. In ECRISs, the magnetic trap confines the electrons which keep together the ion component by their space charge. The electrons gain high energies while the ions remain very cold throughout the whole process. Thus, the spatial and energy simulation of the electron component gives much important and numerical information even for the ions. The electron components of ECRISs can artificially be grouped into three populations: cold, warm, and hot electrons. Cold electrons (1-200 eV) have not been heated by the microwave; they are mainly responsible for the visible light emission of the plasma. The energized warm electrons (several kiloelectronvolts) are able to ionize atoms and ions and they are mainly responsible for the characteristic Xray photons emitted by the plasma. Electrons having much higher energy than necessary for

  1. Visualization techniques in plasma numerical simulations

    International Nuclear Information System (INIS)

    Kulhanek, P.; Smetana, M.

    2004-01-01

    Numerical simulations of plasma processes usually yield a huge amount of raw numerical data. Information about electric and magnetic fields and particle positions and velocities can be typically obtained. There are two major ways of elaborating these data. First of them is called plasma diagnostics. We can calculate average values, variances, correlations of variables, etc. These results may be directly comparable with experiments and serve as the typical quantitative output of plasma simulations. The second possibility is the plasma visualization. The results are qualitative only, but serve as vivid display of phenomena in the plasma followed-up. An experience with visualizing electric and magnetic fields via Line Integral Convolution method is described in the first part of the paper. The LIC method serves for visualization of vector fields in two dimensional section of the three dimensional plasma. The field values can be known only in grid points of three-dimensional grid. The second part of the paper is devoted to the visualization techniques of the charged particle motion. The colour tint can be used for particle temperature representation. The motion can be visualized by a trace fading away with the distance from the particle. In this manner the impressive animations of the particle motion can be achieved. (author)

  2. PIC Simulation of Laser Plasma Interactions with Temporal Bandwidths

    Science.gov (United States)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2015-11-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temperal bandwidths under conditions relevant to current and future shock ignition experiments on the NIKE laser. Our simulations show that, for sufficiently large bandwidth, the saturation level, and the distribution of hot electrons, can be effected by the addition of temporal bandwidths (which can be accomplished in experiments using smoothing techniques such as SSD or ISI). We will show that temporal bandwidth along play an important role in the control of LPI's in these lasers and discuss future directions. This work is conducted under the auspices of NRL.

  3. On the Validity of Continuum Computational Fluid Dynamics Approach Under Very Low-Pressure Plasma Spray Conditions

    Science.gov (United States)

    Ivchenko, Dmitrii; Zhang, Tao; Mariaux, Gilles; Vardelle, Armelle; Goutier, Simon; Itina, Tatiana E.

    2018-01-01

    Plasma spray physical vapor deposition aims to substantially evaporate powders in order to produce coatings with various microstructures. This is achieved by powder vapor condensation onto the substrate and/or by deposition of fine melted powder particles and nanoclusters. The deposition process typically operates at pressures ranging between 10 and 200 Pa. In addition to the experimental works, numerical simulations are performed to better understand the process and optimize the experimental conditions. However, the combination of high temperatures and low pressure with shock waves initiated by supersonic expansion of the hot gas in the low-pressure medium makes doubtful the applicability of the continuum approach for the simulation of such a process. This work investigates (1) effects of the pressure dependence of thermodynamic and transport properties on computational fluid dynamics (CFD) predictions and (2) the validity of the continuum approach for thermal plasma flow simulation under very low-pressure conditions. The study compares the flow fields predicted with a continuum approach using CFD software with those obtained by a kinetic-based approach using a direct simulation Monte Carlo method (DSMC). It also shows how the presence of high gradients can contribute to prediction errors for typical PS-PVD conditions.

  4. Simulation of rarefied low pressure RF plasma flow around the sample

    International Nuclear Information System (INIS)

    Zheltukhin, V S; Shemakhin, A Yu

    2017-01-01

    The paper describes a mathematical model of the flow of radio frequency plasma at low pressure. The hybrid mathematical model includes the Boltzmann equation for the neutral component of the RF plasma, the continuity and the thermal equations for the charged component. Initial and boundary conditions for the corresponding equations are described. The electron temperature in the calculations is 1-4 eV, atoms temperature in the plasma clot is (3-4) • 10 3 K, in the plasma jet is (3.2-10) • 10 2 K, the degree of ionization is 10 -7 -10 -5 , electron density is 10 15 -10 19 m -3 . For calculations plasma parameters is developed soft package on C++ program language, that uses the OpenFOAM library package. Simulations for the vacuum chamber in the presence of a sample and the free jet flow were carried out. (paper)

  5. Numerical simulation of plasma vertical position stabilization in ITER

    International Nuclear Information System (INIS)

    Astapkovich, A.M.; Sadakov, S.N.

    1992-01-01

    The paper deals with numerical simulation of plasma vertical position stabilization in ITER. The calculations are performed using EDDY C-2 code by the method of direct numerical simulation of transient electromagnetic processes taking into account the evolution of plasma position, cross-section shape and full plasma current. When simulating free vertical plasma drift in ITER with twin passive stabilization loops, it was shown that account of the effects of cross-section deformation and plasma current alternations results in almost two fold degradation of passive stabilization parameters as compared to the calculations for 'rigid displacement' model. In terms of methodology, the account of the effects of cross section deformation and plasma current alternations requires clarification of the definitions for reverse increment of vertical instability and for stability margin coefficient. The simulation of plasma pinch return to equilibrium position after the closure of control coils allows to assess the required parameters of active control system and demonstrate the effect of screen current reverse in twin loops. The obtained results were used to develop the ITER conceptual design and affected the choice of the concept of twin passive loops and new positron of control coils as the basis approaches. 11 refs.; 12 figs.; 1 tab

  6. Two-dimensional single fluid MHD simulations of plasma opening switches

    International Nuclear Information System (INIS)

    Roderick, N.F.; Payne, S.S.; Peterkin, R.E. Jr.; Frese, M.H.; Hussey, T.W.

    1989-01-01

    Simulations of plasma opening switch have been made using two-dimensional, single fluid, magnetohydrodynamic codes HAM and MACH2. A variety of mechanisms for magnetic field penetration have been investigated. These include plasma convection, classical and microturbulent resistive diffusion, and Hall effect transport. We find that plasma microturbulent models are necessary to explain the broad current channels observed in experiments. Both heuristic and consistent microturbulent models are able to explain observed channel widths and penetration features. The best results are obtained for a consistent model that includes the Buneman, ion acoustic, and lower hybrid microturbulent collision frequencies and threshold conditions. Maximum microturbulent collision frequencies of 5 ω p , are typical. Field transport and current channel profiles are in excellent agreement with experimental observations for GAMBLE I, GAMBLE II, and SUPERMITE experiments. Dominant field penetration mechanisms and center of mass plasma motion are current and density dependent. Including the Hall effect enhanced field penetration. Center of mass motion is negligible for the GAMBLE I experiments but significant for the GAMBLE II conditions. Scaling of plasma opening time with switch length and density can be fit by linear representations for lengths from 0.03 m to 0.24 m and ion densities from 10 18 m -3 to 1.5 times 10 19 m -3 . 15 refs., 7 figs., 1 tab

  7. Simulation of dust voids in complex plasmas

    Science.gov (United States)

    Goedheer, W. J.; Land, V.

    2008-12-01

    In dusty radio-frequency (RF) discharges under micro-gravity conditions often a void is observed, a dust free region in the discharge center. This void is generated by the drag of the positive ions pulled out of the discharge by the electric field. We have developed a hydrodynamic model for dusty RF discharges in argon to study the behaviour of the void and the interaction between the dust and the plasma background. The model is based on a recently developed theory for the ion drag force and the charging of the dust. With this model, we studied the plasma inside the void and obtained an understanding of the way it is sustained by heat generated in the surrounding dust cloud. When this heating mechanism is suppressed by lowering the RF power, the plasma density inside the void decreases, even below the level where the void collapses, as was recently shown in experiments on board the International Space Station. In this paper we present results of simulations of this collapse. At reduced power levels the collapsed central cloud behaves as an electronegative plasma with corresponding low time-averaged electric fields. This enables the creation of relatively homogeneous Yukawa balls, containing more than 100 000 particles. On earth, thermophoresis can be used to balance gravity and obtain similar dust distributions.

  8. Conditional Eddies in Plasma Turbulence

    DEFF Research Database (Denmark)

    Johnsen, Helene; Pécseli, Hans; Trulsen, J.

    1986-01-01

    Conditional structures, or eddies, in turbulent flows are discussed with special attention to electrostatic turbulence in plasmas. The potential variation of these eddies is obtained by sampling the fluctuations only when a certain condition is satisfied in a reference point. The resulting...

  9. Implicit particle simulation of electromagnetic plasma phenomena

    International Nuclear Information System (INIS)

    Kamimura, T.; Montalvo, E.; Barnes, D.C.; Leboeuf, J.N.; Tajima, T.

    1986-11-01

    A direct method for the implicit particle simulation of electromagnetic phenomena in magnetized, multi-dimensional plasmas is developed. The method is second-order accurate for ωΔt < 1, with ω a characteristic frequency and time step Δt. Direct time integration of the implicit equations with simplified space differencing allows the consistent inclusion of finite particle size. Decentered time differencing of the Lorentz force permits the efficient simulation of strongly magnetized plasmas. A Fourier-space iterative technique for solving the implicit field corrector equation, based on the separation of plasma responses perpendicular and parallel to the magnetic field and longitudinal and transverse to the wavevector, is described. Wave propagation properties in a uniform plasma are in excellent agreement with theoretical expectations. Applications to collisionless tearing and coalescence instabilities further demonstrate the usefulness of the algorithm. (author)

  10. One-dimensional plasma simulation studies

    International Nuclear Information System (INIS)

    Friberg, Ari; Virtamo, Jorma

    1976-01-01

    Some basic plasma phenomena are studied by a one-dimensional electrostatic simulation code. A brief description of the code and its application to a test problem is given. The experiments carried out include Landau damping of an excited wave, particle retardation by smoothed field and beam-plasma instability. In each case, the set-up of the experiment is described and the results are compared with theoretical predictions. In the theoretical discussions, the oscillatory behaviour found in the Landau damping experiment is explained, an explicit formula for the particle retardation rate is derived and a rudimentary picture of the beam-plasma instability in terms of quasilinear theory is given. (author)

  11. Electromagnetic ''particle-in-cell'' plasma simulation

    International Nuclear Information System (INIS)

    Langdon, A.B.

    1985-01-01

    ''PIC'' simulation tracks particles through electromagnetic fields calculated self-consistently from the charge and current densities of the particles themselves, external sources, and boundaries. Already used extensively in plasma physics, such simulations have become useful in the design of accelerators and their r.f. sources. 5 refs

  12. Simulations of Hall reconnection in partially ionized plasmas

    Science.gov (United States)

    Innocenti, Maria Elena; Jiang, Wei; Lapenta, Giovanni

    2017-04-01

    Magnetic reconnection occurs in the Hall, partially ionized regime in environments as diverse as molecular clouds, protostellar disks and regions of the solar chromosphere. While much is known about Hall reconnection in fully ionized plasmas, Hall reconnection in partially ionized plasmas is, in comparison, still relatively unexplored. This notwithstanding the fact that partial ionization is expected to affect fundamental processes in reconnection such as the transition from the slow, fluid to the fast, kinetic regime, the value of the reconnection rate and the dimensions of the diffusion regions [Malyshkin and Zweibel 2011 , Zweibel et al. 2011]. We present here the first, to our knowledge, fully kinetic simulations of Hall reconnection in partially ionized plasmas. The interaction of electrons and ions with the neutral background is realistically modelled via a Monte Carlo plug-in coded into the semi-implicit, fully kinetic code iPic3D [Markidis 2010]. We simulate a plasma with parameters compatible with the MRX experiments illustrated in Zweibel et al. 2011 and Lawrence et al. 2013, to be able to compare our simulation results with actual experiments. The gas and ion temperature is T=3 eV, the ion to electron temperature ratio is Tr=0.44, ion and electron thermal velocities are calculated accordingly resorting to a reduced mass ratio and a reduced value of the speed of light to reduce the computational costs of the simulations. The initial density of the plasma is set at n= 1.1 1014 cm-3 and is then left free to change during the simulation as a result of gas-plasma interaction. A set of simulations with initial ionisation percentage IP= 0.01, 0.1, 0.2, 0.6 is presented and compared with a reference simulation where no background gas is present (full ionization). In this first set of simulations, we assume to be able to externally control the initial relative densities of gas and plasma. Within this parameter range, the ion but not the electron population is

  13. Numerical simulation of electrostatic waves in plasmas

    International Nuclear Information System (INIS)

    Erz, U.

    1981-08-01

    In this paper the propagation of electrostatic waves in plasmas and the non-linear interactions, which occur in the case of large wave amplitudes, are studied using a new numerical method for plasma simulation. This mathematical description is based on the Vlasov-model. Changes in the distribution-function are taken into account and thus plasma kinetic effects can be treated. (orig./HT) [de

  14. Comparing DINA code simulations with TCV experimental plasma equilibrium responses

    International Nuclear Information System (INIS)

    Khayrutdinov, R.R.; Lister, J.B.; Lukash, V.E.; Wainwright, J.P.

    2000-08-01

    The DINA non-linear time dependent simulation code has been validated against an extensive set of plasma equilibrium response experiments carried out on the TCV tokamak. Limited and diverted plasmas are found to be well modelled during the plasma current flat top. In some simulations the application of the PF coil voltage stimulation pulse sufficiently changed the plasma equilibrium that the vertical position feedback control loop became unstable. This behaviour was also found in the experimental work, and cannot be reproduced using linear time-independent models. A single null diverted plasma discharge was also simulated from start-up to shut-down and the results were found to accurately reproduce their experimental equivalents. The most significant difference noted was the penetration time of the poloidal flux, leading to a delayed onset of sawtoothing in the DINA simulation. The complete set of frequency stimulation experiments used to measure the open loop tokamak plasma equilibrium response was also simulated using DINA and the results were analysed in an identical fashion to the experimental data. The frequency response of the DINA simulations agrees with the experimental results. Comparisons with linear models are also discussed to identify areas of good and only occasionally less good agreement. (author)

  15. Reconnection conditions for a coaxial plasma gun

    International Nuclear Information System (INIS)

    Berk, H.L.; Hammer, J.H.; Shearer, J.W.

    1982-01-01

    A fluid model for the flow conditions necessary to form a compact torus from the plasma ejected by a coaxial plasma gun is developed. This is done by finding the conditions for which the steady-flow equations break down. Results are found for two cases; variable external flux and variable outer-wall radius

  16. Time-dependent simulations of feedback stabilization of neoclassical tearing modes in KSTAR plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyungjin [Department of Nuclear Engineering, Seoul National University, Seoul (Korea, Republic of); Na, Yong-Su, E-mail: ysna@snu.ac.kr [Department of Nuclear Engineering, Seoul National University, Seoul (Korea, Republic of); Kim, Hyun-Seok [Department of Nuclear Engineering, Seoul National University, Seoul (Korea, Republic of); Maraschek, M. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching bei München (Germany); Park, Y.S. [Department of Applied Physics and Applied Mathematics, Columbia University, New York (United States); Stober, J. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching bei München (Germany); Terzolo, L. [National Fusion Research Institute, Daejeon (Korea, Republic of); Zohm, H. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching bei München (Germany)

    2014-06-15

    A simulation is performed for feedback stabilization of neoclassical tearing mode (NTM) by electron cyclotron current drive (ECCD) for KSTAR in preparation for experiments. An integrated numerical system is constructed by coupling plasma transport, NTM stability, and heating and current drive modules and applied to a KSTAR plasma by assuming similar experimental conditions as ASDEX Upgrade to predict NTM behaviors in KSTAR. System identification is made with database produced by predictive simulations with this integrated numerical system so that three plasma response models are extracted which describe the relation between the EC poloidal launcher angle and the island width in KSTAR. Among them, the P1DI model exhibiting the highest fit accuracy is selected for designing a feedback controller based on the classical Proportional–Integral–Derivative (PID) concept. The controller is coupled with the integrated numerical system and applied to a simulation of NTM stabilization. It is observed that the controller can search and fully stabilize the mode even though the poloidal launch angle is misaligned with the island initially.

  17. Macroscale implicit electromagnetic particle simulation of magnetized plasmas

    International Nuclear Information System (INIS)

    Tanaka, Motohiko.

    1988-01-01

    An electromagnetic and multi-dimensional macroscale particle simulation code (MACROS) is presented which enables us to make a large time and spatial scale kinetic simulation of magnetized plasmas. Particle ions, finite mass electrons with the guiding-center approximation and a complete set of Maxwell equations are employed. Implicit field-particle coupled equations are derived in which a time-decentered (slightly backward) finite differential scheme is used to achieve stability for large time and spatial scales. It is shown analytically that the present simulation scheme suppresses high frequency electromagnetic waves and that it accurately reproduces low frequency waves in the plasma. These properties are verified by numerical examination of eigenmodes in a 2-D thermal equilibrium plasma and by that of the kinetic Alfven wave. (author)

  18. Kinetic simulations in plasmas: a general view and some applications

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Maria Virginia [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma]. E-mail: alves@plasma.inpe.br

    1999-07-01

    In these lecture notes we talk about kinetic simulations plasma physics. We present a general view of the different approach that can be given to kinetic plasmas depending on the physical problem to be investigated. Some applications of kinetic simulations to space plasma phenomena and Pierce electrodes are introduced. (author)

  19. Kinetic simulations in plasmas: a general view and some applications

    International Nuclear Information System (INIS)

    Alves, Maria Virginia

    1999-01-01

    In these lecture notes we talk about kinetic simulations plasma physics. We present a general view of the different approach that can be given to kinetic plasmas depending on the physical problem to be investigated. Some applications of kinetic simulations to space plasma phenomena and Pierce electrodes are introduced. (author)

  20. Polymerization by plasma: surface treatment and plasma simulation

    International Nuclear Information System (INIS)

    Morales C, J.

    2001-01-01

    One of the general objectives that are developed by the group of polymers semiconductors in the laboratory of polymers of the UAM-Iztapalapa is to study the surface treatment for plasma of different materials. Framed in this general objective, in this work three lines of investigation have been developed, independent one of other that converge in the general objective. The first one tries about the modeling one and evaluation of the microscopic parameters of operation of the polymerization reactor. The second are continuation of the study of conductive polymers synthesized by plasma and the third are an application of the treatment for plasma on natural fibers. In the first one it lines it is carried out the characterization and simulation of the parameters of operation of the polymerization reactor for plasma. They are determined the microscopic parameters of operation of the reactor experimentally like they are the electronic temperature, the potential of the plasma and the density average of electrons using for it an electrostatic Langmuir probe. In the simulation, starting from the Boltzmann transport equation it thinks about the flowing pattern and the electronic temperature, the ions density is obtained and of electrons. The data are compared obtained experimentally with the results of the simulation. In second line a study is presented about the influence of the temperature on the electric conductivity of thin films doped with iodine, of poly aniline (P An/I) and poly pyrrole (P Py/I). The films underwent heating-cooling cycles. The conductivity of P An/I and P Py/I in function of the temperature it is discussed based on the Arrhenius model, showing that it dominates the model of homogeneous conductivity. It is also synthesized a polymer bi-layer of these two elements and a copolymer random poly aniline-poly pyrrole, of the first one it the behavior of its conductivity discusses with the temperature and of the second, the conductivity is discussed in

  1. LDA measurements under plasma conditions

    International Nuclear Information System (INIS)

    Lesinski, J.; Mizera-Lesinska, B.; Fanton, J.C.; Boulos, M.I.

    1979-01-01

    A study was made of the application of Laser Doppler Anemometry (LDA) for the measurement of the fluid and particle velocities under plasma conditions. The flow configuration, is that of a dc plasma jet called the principal jet, in which an alumina powder of a mean particle diameter of 115 μm and a standard deviation of 11.3 μm was injected using a secondary jet. The plasma jet immerged from a 7.1 mm ID nozzle while that of the secondary jet was 2 nm in diameter. The secondary jet was introduced at the nozzle level of the plasma jet directed 90 0 to its axis. Details of the nozzle and the gas flow system are shown in Figure 2

  2. A domain-decomposed multi-model plasma simulation of collisionless magnetic reconnection

    Science.gov (United States)

    Datta, I. A. M.; Shumlak, U.; Ho, A.; Miller, S. T.

    2017-10-01

    Collisionless magnetic reconnection is a process relevant to many areas of plasma physics in which energy stored in magnetic fields within highly conductive plasmas is rapidly converted into kinetic and thermal energy. Both in natural phenomena such as solar flares and terrestrial aurora as well as in magnetic confinement fusion experiments, the reconnection process is observed on timescales much shorter than those predicted by a resistive MHD model. As a result, this topic is an active area of research in which plasma models with varying fidelity have been tested in order to understand the proper physics explaining the reconnection process. In this research, a hybrid multi-model simulation employing the Hall-MHD and two-fluid plasma models on a decomposed domain is used to study this problem. The simulation is set up using the WARPXM code developed at the University of Washington, which uses a discontinuous Galerkin Runge-Kutta finite element algorithm and implements boundary conditions between models in the domain to couple their variable sets. The goal of the current work is to determine the parameter regimes most appropriate for each model to maintain sufficient physical fidelity over the whole domain while minimizing computational expense. This work is supported by a Grant from US AFOSR.

  3. Calculation for laser-produced plasmas conditions of thin middle-Z targets: Pt.I

    International Nuclear Information System (INIS)

    Peng Huimin; Zhang Guoping; Sheng Jiatian; Shao Yunfeng; Zhang Yinchun

    1988-01-01

    An one-dimentional non-LTE laser irradiated code was used to simulate the laser-produced plasmas conditions of thin middle Z targets with high intensities (about 10 13 W/cm 2 ) irradiation. Following physical processes are considered: bremsstrahlung, radiative ionization, collisional ionization by electrons and their inverse processes, Compton scattering. Fokker-Planck approximtaion is used in Compton scattering; the thermal flux limits are taken for electrons and ions in the calculating, and the multigroup flux-limited diffusion approximation is taken for the radiative transport equations. The average-atom model is used to calculate the population probabilities of atoms. Laser absorption via inverse bremsstrahlung is considered to be the most important in the simulation. Using laser beams with intensities 5 x 10 13 W/cm 2 and 1 x 10 14 W/cm 2 , λ L = 0.53 μm, τ = 450 ps to irradiate thin Se target from single-side and double-sides separately, the computational results for laser-produced plasmas conditions are well agree with experimental results

  4. 3D nonlinear numerical simulation of the current-convective instability in detached diverter plasma

    Science.gov (United States)

    Stepanenko, Alexander; Krasheninnikov, Sergei

    2017-10-01

    One of the possible mechanisms responsible for strong radiation fluctuations observed in the recent experiments with detached plasmas at ASDEX Upgrade [Potzel et al., Nuclear Fusion, 2014] can be related to the onset of the current-convective instability (CCI) driven by strong asymmetry of detachment in the inner and outer tokamak divertors [Krasheninnikov and Smolyakov, PoP, 2016]. In this study we present the first results of 3D nonlinear numerical simulations of the CCI in divertor plasma for the conditions relevant to the AUG experiment. The general physical model used to simulate the CCI, qualitative estimates for the instability characteristic growth rate and transverse wavelengths derived for plasma, which is spatially inhomogeneous both across and along the magnetic field lines, are presented. The simulation results, demonstrating nonlinear dynamics of the CCI, provide the frequency spectra of turbulent divertor plasma fluctuations showing good agreement with the available experimental data. This material is based upon the work supported by the U.S. Department of Energy under Award No. DE-FG02-04ER54739 at UCSD and by the Russian Ministry of Education and Science Grant No. 14.Y26.31.0008 at MEPhI.

  5. Development of a flight simulator for the control of plasma discharges

    International Nuclear Information System (INIS)

    Ravenel, N.; Artaud, J.F.; Bremond, S.; Guillerminet, B.; Huynh, P.; Moreau, P.; Signoret, J.

    2010-01-01

    The feedback control of fusion experiments in tokamak devices is entering a new area driven by the increase of control requirements for obtaining burning plasmas under safe operation conditions. A project aiming at setting up a flight simulator for the development of advanced controllers has started last year at CEA. This simulator will reuse most of the components of the European Integrated Tokamak Modelling (ITM) simulation platform. Thus, it will benefit from the development made by the task force and it will be able to offer a development platform for the new controllers of present day European tokamaks and future machines. This paper provides an overview of the architecture of the simulator. The functional specifications of the simulator have been defined and the needs in interface implementation are analysed as well.

  6. Simulating Magnetized Laboratory Plasmas with Smoothed Particle Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jeffrey N. [Univ. of California, Davis, CA (United States)

    2009-01-01

    The creation of plasmas in the laboratory continues to generate excitement in the physics community. Despite the best efforts of the intrepid plasma diagnostics community, the dynamics of these plasmas remains a difficult challenge to both the theorist and the experimentalist. This dissertation describes the simulation of strongly magnetized laboratory plasmas with Smoothed Particle Hydrodynamics (SPH), a method born of astrophysics but gaining broad support in the engineering community. We describe the mathematical formulation that best characterizes a strongly magnetized plasma under our circumstances of interest, and we review the SPH method and its application to astrophysical plasmas based on research by Phillips [1], Buerve [2], and Price and Monaghan [3]. Some modifications and extensions to this method are necessary to simulate terrestrial plasmas, such as a treatment of magnetic diffusion based on work by Brookshaw [4] and by Atluri [5]; we describe these changes as we turn our attention toward laboratory experiments. Test problems that verify the method are provided throughout the discussion. Finally, we apply our method to the compression of a magnetized plasma performed by the Compact Toroid Injection eXperiment (CTIX) [6] and show that the experimental results support our computed predictions.

  7. Simulation of plasma double-layer structures

    International Nuclear Information System (INIS)

    Borovsky, J.E.; Joyce, G.

    1982-01-01

    Electrostatic plasma double layers are numerically simulated by means of a magnetized 2 1/2-dimensional particle-in-cell method. The investigation of planar double layers indicates that these one-dimensional potential structures are susceptible to periodic disruption by instabilities in the low-potential plasmas. Only a slight increase in the double-layer thickness with an increase in its obliqueness to the magnetic field is observed. Weak magnetization results in the double-layer electric-field alignment of accelerated particles and strong magnetization results in their magnetic-field alignment. The numerial simulations of spatially periodic two-dimensional double layers also exhibit cyclical instability. A morphological invariance in two-dimensional double layers with respect to the degree of magnetization implies that the potential structures scale with Debye lengths rather than with gyroradii. Electron-beam excited electrostatic electron-cyclotron waves and (ion-beam driven) solitary waves are present in the plasmas adjacent to the double layers

  8. Plasma simulations using the Car-Parrinello method

    International Nuclear Information System (INIS)

    Clerouin, J.; Zerah, G.; Benisti, D.; Hansen, J.P.

    1990-01-01

    A simplified version of the Car-Parrinello method, based on the Thomas-Fermi (local density) functional for the electrons, is adapted to the simulation of the ionic dynamics in dense plasmas. The method is illustrated by an explicit application to a degenerate one-dimensional hydrogen plasma

  9. Predictable topography simulation of SiO2 etching by C5F8 gas combined with a plasma simulation, sheath model and chemical reaction model

    International Nuclear Information System (INIS)

    Takagi, S; Onoue, S; Iyanagi, K; Nishitani, K; Shinmura, T; Kanoh, M; Itoh, H; Shioyama, Y; Akiyama, T; Kishigami, D

    2003-01-01

    We have developed a simulation for predicting reactive ion etching (RIE) topography, which is a combination of plasma simulation, the gas reaction model, the sheath model and the surface reaction model. The simulation is applied to the SiO 2 etching process of a high-aspect-ratio contact hole using C 5 F 8 gas. A capacitively coupled plasma (CCP) reactor of an 8-in. wafer was used in the etching experiments. The baseline conditions are RF power of 1500 W and gas pressure of 4.0 Pa in a gas mixture of Ar, O 2 and C 5 F 8 . The plasma simulation reproduces the tendency that CF 2 radical density increases rapidly and the electron density decreases gradually with increasing gas flow rate of C 5 F 8 . In the RIE topography simulation, the etching profiles such as bowing and taper shape at the bottom are reproduced in deep holes with aspect ratios greater than 19. Moreover, the etching profile, the dependence of the etch depth on the etching time, and the bottom diameter can be predicted by this simulation

  10. Hybrid simulation of shock formation for super-Alfvénic expansion of laser ablated debris through an ambient, magnetized plasma

    International Nuclear Information System (INIS)

    Clark, S. E.; Schaeffer, D. B.; Everson, E. T.; Bondarenko, A. S.; Constantin, C. G.; Niemann, C.; Winske, D.

    2013-01-01

    Two-dimensional hybrid simulations of perpendicular collisionless shocks are modeled after potential laboratory conditions that are attainable in the LArge Plasma Device (LAPD) at the University of California, Los Angeles Basic Plasma Science Facility. The kJ class 1053 nm Nd:Glass Raptor laser will be used to ablate carbon targets in the LAPD with on-target energies of 100-500 J. The ablated debris ions will expand into ambient, partially ionized hydrogen or helium. A parameter study is performed via hybrid simulation to determine possible conditions that could lead to shock formation in future LAPD experiments. Simulation results are presented along with a comparison to an analytical coupling parameter

  11. Simulation of uranium and plutonium oxides compounds obtained in plasma

    Science.gov (United States)

    Novoselov, Ivan Yu.; Karengin, Alexander G.; Babaev, Renat G.

    2018-03-01

    The aim of this paper is to carry out thermodynamic simulation of mixed plutonium and uranium oxides compounds obtained after plasma treatment of plutonium and uranium nitrates and to determine optimal water-salt-organic mixture composition as well as conditions for their plasma treatment (temperature, air mass fraction). Authors conclude that it needs to complete the treatment of nitric solutions in form of water-salt-organic mixtures to guarantee energy saving obtainment of oxide compounds for mixed-oxide fuel and explain the choice of chemical composition of water-salt-organic mixture. It has been confirmed that temperature of 1200 °C is optimal to practice the process. Authors have demonstrated that condensed products after plasma treatment of water-salt-organic mixture contains targeted products (uranium and plutonium oxides) and gaseous products are environmental friendly. In conclusion basic operational modes for practicing the process are showed.

  12. Studies of the ablated plasma from experimental plasma gun disruption simulations

    International Nuclear Information System (INIS)

    Rockett, P.D.; Hunter, J.A.; Bradley, J.T. III; Gahl, J.M.; Litunovsky, V.N.; Ovchinnokov, I.B.; Ljublin, B.V.; Kuznetsov, B.E.; Titov, V.A.; Zhitlukhin, A.; Arkhipov, K.; Bakhtin, V.; Toporkov, D.

    1995-01-01

    Extensive simulations of tokamak disruptions have provided a picture of material erosion that is limited by the transfer of energy from the incident plasma to the armor solid surface through a dense plasma shield. Radiation spectra were recorded in the VUV and in the visible at the Efremov Laboratories on VIKA using graphite targets. The VUV data were recorded with a Sandia Labs transmission grating spectrograph, covering 1-40 nm. Plasma parameters were evaluated with incident plasma energy densities varying from 10-100 MJ/m 2 . A second transmission grating spectrograph was taken to 2MK-200 at TRINITI to study the plasma-material interface in magnetic cusp plasma. Target materials included POCO graphite, ATJ graphite, boron nitride, and plasma-sprayed tungsten. Detailed spectra were recorded with a spatial resolution of similar 1 mm. Time-resolved data with 40-200 ns resolution was also recorded. The data from both plasma gun facilities demonstrated that the hottest plasma region was sitting several millimeters above the armor tile surface. ((orig.))

  13. Exact Turbulence Law in Collisionless Plasmas: Hybrid Simulations

    Science.gov (United States)

    Hellinger, P.; Verdini, A.; Landi, S.; Franci, L.; Matteini, L.

    2017-12-01

    An exact vectorial law for turbulence in homogeneous incompressible Hall-MHD is derived and tested in two-dimensional hybrid simulations of plasma turbulence. The simulations confirm the validity of the MHD exact law in the kinetic regime, the simulated turbulence exhibits a clear inertial range on large scales where the MHD cascade flux dominates. The simulation results also indicate that in the sub-ion range the cascade continues via the Hall term and that the total cascade rate tends to decrease at around the ion scales, especially in high-beta plasmas. This decrease is like owing to formation of non-thermal features, such as collisionless ion energization, that can not be retained in the Hall MHD approximation.

  14. TSC plasma halo simulation of a DIII-D vertical displacement episode

    International Nuclear Information System (INIS)

    Sayer, R.O.; Peng, Y.K.M.; Jardin, S.C.

    1993-01-01

    A benchmark of the Tokamak Simulation Code (TSC) plasma halo model has been achieved by calibration against a DIII-D vertical displacement episode (VDE) consisting of vertical drift, thermal quench and current quench. With a suitable halo surrounding the main plasma, the TSC predictions are in good agreement with experimental results for the plasma current decay, plasma trajectory, toroidal and poloidal vessel currents, and for the magnetic probe and flux loop values for the entire VDE. Simulations with no plasma halo yield much faster vertical motion and significantly worse agreement with the magnetics and flux loop data than do halo simulations. (author). 12 refs, 13 figs

  15. Hybrid simulations of plasma transport by Kelvin-Helmholtz instability at the magnetopause: magnetic shear

    Energy Technology Data Exchange (ETDEWEB)

    Cowee, Misa M [Los Alamos National Laboratory; Winske, Dan [Los Alamos National Laboratory; Gary, S Peter [Los Alamos National Laboratory

    2009-01-01

    Two-dimensional hybrid (kinetic ions, massless fluid electrons) simulations of the Kelvin Helmholtz Instability (KHI) for a magnetopause configuration with a magnetic shear across the boundary are carried out to examine how the transport of magnetosheath plasma into the magnetosphere is affected by the shear field. Low magnetic shear conditions where the magnetosheath magnetic field is within 30{sup o} of northward is included in the simulations because KHI is thought to be important for plasma transport only for northward or near-northward interplanetary magnetic field orientations. The simulations show that coherent vortices can grow for these near-northward angles, and that they are sometimes more coherent than for pure northward conditions because the turbulence which breaks-down these vortices is reduced when there are magnetic tension forces. With increasing magnetic shear angle, the growth rate is reduced, and the vortices do not grow to as large of size which reduces the plasma transport. By tracking the individual particle motions diffusion coefficients can be obtained for the system, where the diffusion is not classical in nature but instead has a time dependence resulting from both the increasingly large-scale vortex motion and the small-scale turbulence generated in the break-down of the instabilities. Results indicate that diffusion on the order of 10{sup 9} m{sup 2}/s could possibly be generated by KHI on the flanks of the magnetosphere.

  16. Laser-Plasma Modeling Using PERSEUS Extended-MHD Simulation Code for HED Plasmas

    Science.gov (United States)

    Hamlin, Nathaniel; Seyler, Charles

    2017-10-01

    We discuss the use of the PERSEUS extended-MHD simulation code for high-energy-density (HED) plasmas in modeling the influence of Hall and electron inertial physics on laser-plasma interactions. By formulating the extended-MHD equations as a relaxation system in which the current is semi-implicitly time-advanced using the Generalized Ohm's Law, PERSEUS enables modeling of extended-MHD phenomena (Hall and electron inertial physics) without the need to resolve the smallest electron time scales, which would otherwise be computationally prohibitive in HED plasma simulations. We first consider a laser-produced plasma plume pinched by an applied magnetic field parallel to the laser axis in axisymmetric cylindrical geometry, forming a conical shock structure and a jet above the flow convergence. The Hall term produces low-density outer plasma, a helical field structure, flow rotation, and field-aligned current, rendering the shock structure dispersive. We then model a laser-foil interaction by explicitly driving the oscillating laser fields, and examine the essential physics governing the interaction. This work is supported by the National Nuclear Security Administration stewardship sciences academic program under Department of Energy cooperative agreements DE-FOA-0001153 and DE-NA0001836.

  17. Modeling of subtle kinetic processes in plasma simulation

    International Nuclear Information System (INIS)

    Sydora, R.D.; Decyk, V.K.; Dawson, J.M.

    1988-01-01

    A new diagnostic method for plasma simulation models is presented which enables one to probe the subtle dielectric properties of the plasma medium. The procedure involves the removal of the background plasma response in order to isolate the effects of small perturbing influences which are externally added. We have found the technique accurately describes fundamental kinetic plasma behavior such as the shielding of individual test charges and currents. Wave emission studies and drag of test particles has been carried out in explicit particle algorithms as well as large time step implicit and gyrokinetic models. Accurate plasma behavior is produced and it is possible to investigate in detail, processes which can be compared with plasma kinetic theory. The technique of subtraction is not only limited to particle simulation models but also can be used in MHD or fluid models where resolution is difficult due to the intensity of the background response relative to the phenomena one is interested in measuring, such as a weakly grouwing instability or nonlinear mode coupling effect. (author)

  18. Review on plasmas in extraordinary media: plasmas in cryogenic conditions and plasmas in supercritical fluids

    Science.gov (United States)

    Stauss, Sven; Muneoka, Hitoshi; Terashima, Kazuo

    2018-02-01

    Plasma science and technology has enabled advances in very diverse fields: micro- and nanotechnology, chemical synthesis, materials fabrication and, more recently, biotechnology and medicine. While many of the currently employed plasma tools and technologies are very advanced, the types of plasmas used in micro- and nanofabrication pose certain limits, for example, in treating heat-sensitive materials in plasma biotechnology and plasma medicine. Moreover, many physical properties of plasmas encountered in nature, and especially outer space, i.e. very-low-temperature plasmas or plasmas that occur in high-density media, are not very well understood. The present review gives a short account of laboratory plasmas generated under ’extreme’ conditions: at cryogenic temperatures and in supercritical fluids. The fundamental characteristics of these cryogenic plasmas and cryoplasmas, and plasmas in supercritical fluids, especially supercritical fluid plasmas, are presented with their main applications. The research on such exotic plasmas is expected to lead to further understanding of plasma physics and, at the same time, enable new applications in various technological fields.

  19. Studies of the ablated plasma from experimental plasma gun disruption simulations

    International Nuclear Information System (INIS)

    Rockett, P.D.; Hunter, J.A.; Bradley, J.T.

    1994-01-01

    Extensive simulations of Tokamak disruptions have provided a picture of material erosion that is limited by the transfer of energy from the incident plasma to the armor solid surface through a dense vapor shield. Radiation spectra were recorded in the VUV and in the visible at the Efremov Laboratories on VIKA using graphite targets. The VUV data were recorded with a Sandia Labs transmission grating spectrograph, covering 1--40 nm. Plasma parameters were evaluated with incident plasma energy densities varying from 1--10 kJ/cm 2 . A second transmission grating spectrograph was taken to 2MK-200 at TRINITI to study the plasma-material interface in magnetic cusp plasma. Target materials included POCO graphite, ATJ graphite, boron nitride, and plasma-sprayed tungsten. Detailed spectra were recorded with a spatial resolution of ∼1 mm resolution. Time-resolved data with 40--200 ns resolution was also recorded. The data from both plasma gun facilities demonstrated that the hottest plasma region was sitting several millimeters above the armor tile surface

  20. Alteration of five organic compounds by glow discharge plasma and UV light under simulated Mars conditions

    Science.gov (United States)

    Hintze, Paul E.; Buhler, Charles R.; Schuerger, Andrew C.; Calle, Luz M.; Calle, Carlos I.

    2010-08-01

    The Viking missions to Mars failed to detect any organic material in regolith samples. Since then, several removal mechanisms of organic material have been proposed. Two of these proposed methods are removal due to exposure to plasmas created in dust devils and exposure to UV irradiation. The experiments presented here were performed to identify similarities between the two potential removal mechanisms and to identify any compounds produced from these mechanisms that would have been difficult for the Viking instruments to detect. Five organic compounds, phenanthrene, octadecane, octadecanoic acid, decanophenone and benzoic acid, were exposed to a glow discharge plasma created in simulated martian atmospheres as might be present in dust devils, and to UV irradiation similar to that found at the surface of Mars. Glow discharge exposure was carried out in a chamber with 6.9 mbar pressure of a Mars like gas composed mostly of carbon dioxide. The plasma was characterized using emission spectroscopy and found to contain cations and excited neutral species including carbon dioxide, carbon monoxide, and nitrogen. UV irradiation experiments were performed in a Mars chamber which simulates the temperature, pressure, atmospheric composition, and UV fluence rates of equatorial Mars. The non-volatile residues left after each exposure were characterized by mass loss, infrared spectroscopy and high resolution mass spectrometry. Oxidized, higher molecular weight versions of the parent compounds containing carbonyl, hydroxyl and alkenyl functional groups were identified. The presence of these oxidized compounds suggests that searches for organic material in soils on Mars use instrumentation suitable for detection of compounds which contain the above functional groups. Discussions of possible reaction mechanisms are given.

  1. Numerical simulation of the anomalous transport at the plasma-edge

    International Nuclear Information System (INIS)

    Pohn, E.

    2001-03-01

    In addition to the classical transport which is caused by Coloumb-collisions two further transport mechanisms take place in an inhomogeneous magnetically confined thermonuclear fusion-plasma, the neoclassical and the anomalous transport. The anomalous transport is caused by collective motion of the plasma-particles respectively turbulence and essentially affects the energy-confinement-time of the plasma. The energy-confinement-time in turn constitutes an important criterion with respect to the feasibility of using nuclear fusion for energy production. The anomalous transport is theoretically not yet well understood. By means of numerical simulations of the anomalous transport in the plasma edge, it is the intention of this work to contribute to the understanding of this transport mechanism. The Vlasov-Poisson-system constitutes the starting point for all performed simulations. This system consists of kinetic equations, which model for each particle-species the motion of the particles composing the plasma in six-dimensional phase-space. A coupling of these kinetic equations occurs due to the Poisson-equation, resulting in a nonlinear system of differential equations. The time evolution of this system was calculated numerically. On the one hand, simulations were performed where the whole velocity-space was retained. This fully-kinetic model was applied for the spatially one- as well as two-dimensional case. In the one-dimensional case only the radial direction of the plasma-edge was modeled, i.e. the direction along which the plasma joins to the vacuum. When performing the spatially two-dimensional simulations, in addition the poloidal direction has been regarded. A second set of simulations was performed using a gyro-kinetic model. In this model only the velocity-component parallel to the magnetic field vector is retained. The components perpendicular to the magnetic field vector, which are responsible for the gyration of particles, are omitted from phase-space but

  2. Dynamical Simulation of Recycling and Particle Fueling in TJ-II Plasmas; Simulacion Dinamica del Reciclado y de la Inyeccion de Particulas en los Plasmas del TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Bruna, D; Ferreira, J A; Tabares, F L; Castejon, F; Guasp, J

    2007-07-20

    With the aim of improving the calculation tools for transport analysis in TJ-II plasmas, in this work we analyze the simplified model for a kinetic equation that ASTRA uses to calculate the neutral particle distribution in the plasma. Next, we act on the boundary conditions for this kinetic equation (particularly on the neutral density in the plasma boundary) so we can simulate the recycling conditions for the TJ-II in a simple way. With the resulting transport models we can easily analyze the sensibility of these plasmas to the cold gas puffing depending on the recycling conditions. These transport models evidence the problem of density control in the TJ-II. Likewise, we estimate the importance of recycling in the plasmas heated by energetic neutral beam injection. The experimentally observed increments in density when the energetic neutrals are injected would respond, according to the calculations here presented, to a large increment of the neutrals influx that cannot be explained by the beam itself. (Author) 22 refs.

  3. Comparison the Results of Numerical Simulation And Experimental Results for Amirkabir Plasma Focus Facility

    Science.gov (United States)

    Goudarzi, Shervin; Amrollahi, R.; Niknam Sharak, M.

    2014-06-01

    In this paper the results of the numerical simulation for Amirkabir Mather-type Plasma Focus Facility (16 kV, 36μF and 115 nH) in several experiments with Argon as working gas at different working conditions (different discharge voltages and gas pressures) have been presented and compared with the experimental results. Two different models have been used for simulation: five-phase model of Lee and lumped parameter model of Gonzalez. It is seen that the results (optimum pressures and current signals) of the Lee model at different working conditions show better agreement than lumped parameter model with experimental values.

  4. Comparison the results of numerical simulation and experimental results for Amirkabir plasma focus facility

    International Nuclear Information System (INIS)

    Goudarzi, Shervin; Amrollahi, R; Sharak, M Niknam

    2014-01-01

    In this paper the results of the numerical simulation for Amirkabir Mather-type Plasma Focus Facility (16 kV, 36μF and 115 nH) in several experiments with Argon as working gas at different working conditions (different discharge voltages and gas pressures) have been presented and compared with the experimental results. Two different models have been used for simulation: five-phase model of Lee and lumped parameter model of Gonzalez. It is seen that the results (optimum pressures and current signals) of the Lee model at different working conditions show better agreement than lumped parameter model with experimental values.

  5. Complex Plasma Research Under Extreme Conditions

    International Nuclear Information System (INIS)

    Ishihara, Osamu

    2008-01-01

    Complex plasma research under extreme conditions is described. The extreme conditions include low-dimensionality for self-organized structures of dust particles, dust magnetization in high magnetic field, criticality in phase transition, and cryogenic environment for Coulomb crystals and dust dynamics.

  6. Guiding-center models for edge plasmas and numerical simulations of isolated plasma filaments

    International Nuclear Information System (INIS)

    Madsen, Jens

    2010-09-01

    The work presented in this thesis falls into two categories: development of reduced dynamical models applicable to edge turbulence in magnetically confined fusion plasmas and numerical simulations of isolated plasma filaments in the scrape-off layer region investigating the influence of finite Larmor radius effects on the radial plasma transport. The coexistence of low-frequency fluctuations, having length scales comparable to the ion gyroradius, steep pressure gradients and strong E x B flows in the edge region of fusion plasmas violates the standard gyrokinetic ordering. In this thesis two models are presented that overcome some of the difficulties associated with the development of reduced dynamical models applicable to the edge. Second order guiding-center coordinates are derived using the phasespace Lie transform method. Using a variational principle the corresponding Vlasov-Maxwell equations expressed in guiding-center coordinates are derived including a local energy theorem. The second order terms describe lowest order finite Larmor radius effects. This set of equations might be relevant for edge plasmas due to the capability of capturing strong E x B flows and lowest order finite Larmor radius effects self-consistently. Next, an extension of the existing gyrokinetic formalism with strong flows is presented. In this work the background electric fields is dynamical, whereas earlier contributions did only incorporate a stationary electric field. In an ordering relevant for edge plasma turbulence, fully electromagnetic second order gyrokinetic coordinates and the corresponding gyrokinetic Vlasov-Maxwell equations are derived, including a local energy theorem. By taking the polarization and magnetization densities in the drift kinetic limit, we present the gyrokinetic Vlasov-Maxwell equations in a more tractable form, which could be relevant for direct numerical simulations of edge plasma turbulence. Finally, an investigation of the influence of finite Larmor

  7. Guiding-center models for edge plasmas and numerical simulations of isolated plasma filaments

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, Jens

    2010-09-15

    The work presented in this thesis falls into two categories: development of reduced dynamical models applicable to edge turbulence in magnetically confined fusion plasmas and numerical simulations of isolated plasma filaments in the scrape-off layer region investigating the influence of finite Larmor radius effects on the radial plasma transport. The coexistence of low-frequency fluctuations, having length scales comparable to the ion gyroradius, steep pressure gradients and strong E x B flows in the edge region of fusion plasmas violates the standard gyrokinetic ordering. In this thesis two models are presented that overcome some of the difficulties associated with the development of reduced dynamical models applicable to the edge. Second order guiding-center coordinates are derived using the phasespace Lie transform method. Using a variational principle the corresponding Vlasov-Maxwell equations expressed in guiding-center coordinates are derived including a local energy theorem. The second order terms describe lowest order finite Larmor radius effects. This set of equations might be relevant for edge plasmas due to the capability of capturing strong E x B flows and lowest order finite Larmor radius effects self-consistently. Next, an extension of the existing gyrokinetic formalism with strong flows is presented. In this work the background electric fields is dynamical, whereas earlier contributions did only incorporate a stationary electric field. In an ordering relevant for edge plasma turbulence, fully electromagnetic second order gyrokinetic coordinates and the corresponding gyrokinetic Vlasov-Maxwell equations are derived, including a local energy theorem. By taking the polarization and magnetization densities in the drift kinetic limit, we present the gyrokinetic Vlasov-Maxwell equations in a more tractable form, which could be relevant for direct numerical simulations of edge plasma turbulence. Finally, an investigation of the influence of finite Larmor

  8. Modeling and simulation of plasma materials processing devices

    International Nuclear Information System (INIS)

    Graves, D.B.

    1996-01-01

    Plasma processing has emerged as a central technology in the manufacture of integrated circuits (ICs) and related industries. These plasmas are weakly to partially ionized gases, typically operated at a few to several hundred mTorr gas pressure, with neutral temperatures ranging from room temperature to 500 degrees K. Electron mean energies are typically a few eV and ion energies in the bulk plasma are about 0.05-0.5 eV. Positive ions axe accelerated in the sheaths to impact surfaces with energies ranging from about 10 eV to hundreds of eV. These energetic ions profoundly affect rates of surface chemical reactions. One of the consequences of the recent rapid growth in the IC industry has been a greater focus on manufacturing productivity. The capital costs of equipment that is used in manufacturing IC's has become a large fraction of the ∼ $1 billion cost of building a wafer fab. There is now a strong economic incentive to develop workstation-based simulations of plasma chemical reactors in order to design, optimize and control plasma reactors. I will summarize efforts to develop such models, including electromagnetic coupling, and transport and kinetics of charged and neutral species. Length and time scale disparities in the plasma tool challenge current simulation approaches, and I will address strategies to attack aspects of this problem. In addition, I will present some of our recent efforts to exploit molecular dynamics simulations employing empirical potentials to get hints about qualitative mechanisms and ideas on how to formulate rate expressions for plasma-surface chemical processes. Video illustrations of selected sets of ion trajectories impacting near-surface regions of the substrate will be presented

  9. Integrated heat transport simulation of high ion temperature plasma of LHD

    International Nuclear Information System (INIS)

    Murakami, S.; Yamaguchi, H.; Sakai, A.

    2014-10-01

    A first dynamical simulation of high ion temperature plasma with carbon pellet injection of LHD is performed by the integrated simulation GNET-TD + TASK3D. NBI heating deposition of time evolving plasma is evaluated by the 5D drift kinetic equation solver, GNET-TD and the heat transport of multi-ion species plasma (e, H, He, C) is studied by the integrated transport simulation code, TASK3D. Achievement of high ion temperature plasma is attributed to the 1) increase of heating power per ion due to the temporal increase of effective charge, 2) reduction of effective neoclassical transport with impurities, 3) reduction of turbulence transport. The reduction of turbulence transport is most significant contribution to achieve the high ion temperature and the reduction of the turbulent transport from the L-mode plasma (normal hydrogen plasma) is evaluated to be a factor about five by using integrated heat transport simulation code. Applying the Z effective dependent turbulent reduction model we obtain a similar time behavior of ion temperature after the C pellet injection with the experimental results. (author)

  10. Computer simulation of complexity in plasmas

    International Nuclear Information System (INIS)

    Hayashi, Takaya; Sato, Tetsuya

    1998-01-01

    By making a comprehensive comparative study of many self-organizing phenomena occurring in magnetohydrodynamics and kinetic plasmas, we came up with a hypothetical grand view of self-organization. This assertion is confirmed by a recent computer simulation for a broader science field, specifically, the structure formation of short polymer chains, where the nature of the interaction is completely different from that of plasmas. It is found that the formation of the global orientation order proceeds stepwise. (author)

  11. Simulation of some nonstationary astrophysical processes in laser-produced-plasma experiments

    International Nuclear Information System (INIS)

    Antonov, V.M.; Zakharov, Yu.P.; Orishich, A.M.; Ponomarenko, A.G.; Posukh, V.G.

    1985-01-01

    Preliminary results and calibration are reported on the astrophysical plasma dynamics simulator. This apparatus creates a spherical plasma cloud by the irradiation of a perlon filament target from two radial opposite directions by pulses of highly ionized background plasma in a high-vacuum chamber with diameter of 1.2 m and length of 5 m. The spherical plasma cloud simulates the exploding peripheric part of a supernova, expanding into the interstellar medium. (author)

  12. LDRD Final Report: Adaptive Methods for Laser Plasma Simulation

    International Nuclear Information System (INIS)

    Dorr, M R; Garaizar, F X; Hittinger, J A

    2003-01-01

    The goal of this project was to investigate the utility of parallel adaptive mesh refinement (AMR) in the simulation of laser plasma interaction (LPI). The scope of work included the development of new numerical methods and parallel implementation strategies. The primary deliverables were (1) parallel adaptive algorithms to solve a system of equations combining plasma fluid and light propagation models, (2) a research code implementing these algorithms, and (3) an analysis of the performance of parallel AMR on LPI problems. The project accomplished these objectives. New algorithms were developed for the solution of a system of equations describing LPI. These algorithms were implemented in a new research code named ALPS (Adaptive Laser Plasma Simulator) that was used to test the effectiveness of the AMR algorithms on the Laboratory's large-scale computer platforms. The details of the algorithm and the results of the numerical tests were documented in an article published in the Journal of Computational Physics [2]. A principal conclusion of this investigation is that AMR is most effective for LPI systems that are ''hydrodynamically large'', i.e., problems requiring the simulation of a large plasma volume relative to the volume occupied by the laser light. Since the plasma-only regions require less resolution than the laser light, AMR enables the use of efficient meshes for such problems. In contrast, AMR is less effective for, say, a single highly filamented beam propagating through a phase plate, since the resulting speckle pattern may be too dense to adequately separate scales with a locally refined mesh. Ultimately, the gain to be expected from the use of AMR is highly problem-dependent. One class of problems investigated in this project involved a pair of laser beams crossing in a plasma flow. Under certain conditions, energy can be transferred from one beam to the other via a resonant interaction with an ion acoustic wave in the crossing region. AMR provides an

  13. Numerical Simulation of Plasma Antenna with FDTD Method

    International Nuclear Information System (INIS)

    Chao, Liang; Yue-Min, Xu; Zhi-Jiang, Wang

    2008-01-01

    We adopt cylindrical-coordinate FDTD algorithm to simulate and analyse a 0.4-m-long column configuration plasma antenna. FDTD method is useful for solving electromagnetic problems, especially when wave characteristics and plasma properties are self-consistently related to each other. Focus on the frequency from 75 MHz to 400 MHz, the input impedance and radiation efficiency of plasma antennas are computed. Numerical results show that, different from copper antenna, the characteristics of plasma antenna vary simultaneously with plasma frequency and collision frequency. The property can be used to construct dynamically reconBgurable antenna. The investigation is meaningful and instructional for the optimization of plasma antenna design

  14. Numerical simulation of plasma antenna with FDTD method

    International Nuclear Information System (INIS)

    Liang Chao; Xu Yuemin; Wang Zhijiang

    2008-01-01

    We adopt cylindrical-coordinate FDTD algorithm to simulate and analyse a 0.4-m-long column configuration plasma antenna. FDTD method is useful for solving electromagnetic problems, especially when wave characteristics and plasma properties are self-consistently related to each other. Focus on the frequency from 75 MHz to 400 MHz, the input impedance and radiation efficiency of plasma antennas are computed. Numerical results show that, different from copper antenna, the characteristics of plasma antenna vary simultaneously with plasma frequency and collision frequency. The property can be used to construct dynamically reconfigurable antenna. The investigation is meaningful and instructional for the optimization of plasma antenna design. (authors)

  15. Low-latitude plasma drifts from a simulation of the global atmospheric dynamo

    International Nuclear Information System (INIS)

    Crain, D.J.; Heelis, R.A.; Bailey, G.J.; Richmond, A.D.

    1993-01-01

    The authors work with a dynamo model to address questions about plasma drifts in the E region, primarily at low latitudes. Tidal winds have been known to have a big influence on electric fields in the E region, and magnetic fields and ion drifts in the equatorial F region. Recent work has centered on self consistency in simulations, using realistic wind distributions, 3-D current distributions, and more accurate measures of the currents and conductivities. The wind dynamo in the ionosphere is well accepted as the main source of electric fields in the low and mid latitudes. The authors present a self consistent model of the plasma distribution and the dynamo driven electric potential distribution. Their results are compared with other simulations. A major concern in their model was reproducing ion drift observations in the equatorial region. Their conclusion is that the F region plays a significant role in the low latitude dyanamo effects, much larger than was previously assumed. When they build into their model realistic ionospheric conditions, allow for appropriate wind distributions, and allow a self consistent redistribution of plasma in the night, they find the model simulates measured ion drifts more closely. Their model is normalized against observations at Jicamarca. By allowing E x B drifts in the ionosphere, and F region zonal winds they can reproduce many of the night changes in the ion drifts at Jicamarca

  16. Vaporization studies of plasma interactive materials in simulated plasma disruption events

    International Nuclear Information System (INIS)

    Stone, C.A. IV; Croessmann, C.D.; Whitley, J.B.

    1988-03-01

    The melting and vaporization that occur when plasma facing materials are subjected to a plasma disruption will severely limit component lifetime and plasma performance. A series of high heat flux experiments was performed on a group of fusion reactor candidate materials to model material erosion which occurs during plasma disruption events. The Electron Beam Test System was used to simulate single disruption and multiple disruption phenomena. Samples of aluminum, nickel, copper, molybdenum, and 304 stainless steel were subjected to a variety of heat loads, ranging from 100 to 400 msec pulses of 8 to 18 kWcm 2 . It was found that the initial surface temperature of a material strongly influences the vaporization process and that multiple disruptions do not scale linearly with respect to single disruption events. 2 refs., 9 figs., 5 tabs

  17. Modeling and simulation of melt-layer erosion during a plasma disruption

    International Nuclear Information System (INIS)

    Hassanein, A.; Belan, V.; Konkashbaev, I.; Nikandrov, L.; Safronov, V.; Zhitlukhin, A.; Litunovsky, V.

    1997-01-01

    Metallic plasma-facing components (PFCs) e.g. beryllium and tungsten, will be subjected to severe melting during plasma instabilities such as disruptions, edge-localized modes and high power excursions. Because of the greater thickness of the resulting melt layers relative to that of the surface vaporization, the potential loss of the developing melt-layer can significantly shorten PFC lifetime, severely contaminate the plasma and potentially prevent successful operation of the tokamak reactor. Mechanisms responsible for melt-layer loss during plasma instabilities are being modeled and evaluated. Of particular importance are hydrodynamic instabilities developed in the liquid layer due to various forces such as those from magnetic fields, plasma impact momentum, vapor recoil and surface tension. Another mechanism found to contribute to melt-layer splashing loss is volume bubble boiling, which can result from overheating of the liquid layer. To benchmark these models, several new experiments were designed and performed in different laboratory devices for this work; the SPLASH codes) are generally in good agreement with the experimental results. The effect of in-reactor disruption conditions, which do not exist in simulation experiments, on melt-layer erosion is discussed. (orig.)

  18. Particle Simulation of Pulsed Plasma Thruster Plumes

    National Research Council Canada - National Science Library

    Boyd, Ian

    2002-01-01

    .... Our modeling had made progress in al aspects of simulating these complex devices including Teflon ablation, plasma formation, electro-magnetic acceleration, plume expansion, and particulate transport...

  19. A numerical study of plasma detachment conditions in JET divertor plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Simonini, R; Corrigan, G; Radford, G; Spence, J; Taroni, A; Weber, S [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    Simulation results obtained with the EDGE2D/U code confirm that for a given particle inventory in the SOL (including the divertor), the main parameter determining whether or not particle, momentum and energy detachment occurs, is the residual power P - P{sub lost}, where P is the total power entering the SOL and P{sub lost} is the power lost by transport to walls and by volume losses in the SOL outside the region where detachment takes place. For particle contents leading to reasonable values of the separatrix mid-plane density, detachment is found if the residual power is low enough. Typically the residual power must be inferior to 3 MW for good detachment, with the exact value depending on the geometry of the divertor, the transport assumptions and the neutral recirculation scheme. The results show that divertor plasma conditions relevant for the study of power exhaust and impurity control problems are possible in JET. 9 refs., 2 figs., 1 tab.

  20. Progress in Development of the ITER Plasma Control System Simulation Platform

    Science.gov (United States)

    Walker, Michael; Humphreys, David; Sammuli, Brian; Ambrosino, Giuseppe; de Tommasi, Gianmaria; Mattei, Massimiliano; Raupp, Gerhard; Treutterer, Wolfgang; Winter, Axel

    2017-10-01

    We report on progress made and expected uses of the Plasma Control System Simulation Platform (PCSSP), the primary test environment for development of the ITER Plasma Control System (PCS). PCSSP will be used for verification and validation of the ITER PCS Final Design for First Plasma, to be completed in 2020. We discuss the objectives of PCSSP, its overall structure, selected features, application to existing devices, and expected evolution over the lifetime of the ITER PCS. We describe an archiving solution for simulation results, methods for incorporating physics models of the plasma and physical plant (tokamak, actuator, and diagnostic systems) into PCSSP, and defining characteristics of models suitable for a plasma control development environment such as PCSSP. Applications of PCSSP simulation models including resistive plasma equilibrium evolution are demonstrated. PCSSP development supported by ITER Organization under ITER/CTS/6000000037. Resistive evolution code developed under General Atomics' Internal funding. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.

  1. Simulation of damage to tokamaks plasma facing components during intense abnormal power deposition

    International Nuclear Information System (INIS)

    Genco, F.; Hassanein, A.

    2014-01-01

    Highlights: • HEIGHTS-PIC a new technique based on particle in cell method to study disruptions events, ELMS and VDE is benchmarked in this paper with the use of the MK-200 experiments. • Disruptions simulations results for erosion and erosion rate are proposed showing good agreement with published experimental available data for such conditions. • Results are also compared with other published results produced by FOREV1/FOREV2 computer package and the original HEIGHTS computer package. • Accuracy of the simulations results is proposed with specific aim to address the use of number of super particles adopted versus computational time. - Abstract: Intense power deposition on plasma facing components (PFC) is expected in tokamaks during loss of confinement events such as disruptions, vertical displacement events (VDE), runaway electrons (RE), or during normal operating conditions such as edge-localized modes (ELM). These highly energetic events are damaging enough to hinder long term operation and may not be easily mitigated without loss of structural or functional performance of the PFC. Surface erosion, melted/ablated-vaporized material splashing, and material transport into the bulk plasma are reliability-threatening for the machine and system performance. A novel particle-in-cell (PIC) technique has been developed and integrated into the existing HEIGHTS package in order to obtain a global view of the plasma evolution upon energy impingement. This newly developed PIC technique is benchmarked against plasma gun experimental data, the original HEIGHTS computer package, and laser experiments. Benchmarking results are shown in this paper for various relevant reactor and experimental devices. The evolution of the plasma vapor cloud is followed temporally and results are explained and commented as a function of the computational time needed and the accuracy of the calculation

  2. Ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a hot strongly magnetized plasma

    OpenAIRE

    Liu, Wei; Hsu, Scott C.

    2010-01-01

    We present results from three-dimensional ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a uniform hot strongly magnetized plasma, with the aim of providing insight into core fueling of a tokamak with parameters relevant for ITER and NSTX (National Spherical Torus Experiment). Unmagnetized dense plasma jet injection is similar to compact toroid injection but with much higher plasma density and total mass, and consequently lower required injection velocit...

  3. MED101: a laser-plasma simulation code. User guide

    International Nuclear Information System (INIS)

    Rodgers, P.A.; Rose, S.J.; Rogoyski, A.M.

    1989-12-01

    Complete details for running the 1-D laser-plasma simulation code MED101 are given including: an explanation of the input parameters, instructions for running on the Rutherford Appleton Laboratory IBM, Atlas Centre Cray X-MP and DEC VAX, and information on three new graphics packages. The code, based on the existing MEDUSA code, is capable of simulating a wide range of laser-produced plasma experiments including the calculation of X-ray laser gain. (author)

  4. Plasma burn-through simulations using the DYON code and predictions for ITER

    International Nuclear Information System (INIS)

    Kim, Hyun-Tae; Sips, A C C; De Vries, P C

    2013-01-01

    This paper will discuss simulations of the full ionization process (i.e. plasma burn-through), fundamental to creating high temperature plasma. By means of an applied electric field, the gas is partially ionized by the electron avalanche process. In order for the electron temperature to increase, the remaining neutrals need to be fully ionized in the plasma burn-through phase, as radiation is the main contribution to the electron power loss. The radiated power loss can be significantly affected by impurities resulting from interaction with the plasma facing components. The DYON code is a plasma burn-through simulator developed at Joint European Torus (JET) (Kim et al and EFDA-JET Contributors 2012 Nucl. Fusion 52 103016, Kim, Sips and EFDA-JET Contributors 2013 Nucl. Fusion 53 083024). The dynamic evolution of the plasma temperature and plasma densities including the impurity content is calculated in a self-consistent way using plasma wall interaction models. The recent installation of a beryllium wall at JET enabled validation of the plasma burn-through model in the presence of new, metallic plasma facing components. The simulation results of the plasma burn-through phase show a consistent good agreement against experiments at JET, and explain differences observed during plasma initiation with the old carbon plasma facing components. In the International Thermonuclear Experimental Reactor (ITER), the allowable toroidal electric field is restricted to 0.35 (V m −1 ), which is significantly lower compared to the typical value (∼1 (V m −1 )) used in the present devices. The limitation on toroidal electric field also reduces the range of other operation parameters during plasma formation in ITER. Thus, predictive simulations of plasma burn-through in ITER using validated model is of crucial importance. This paper provides an overview of the DYON code and the validation, together with new predictive simulations for ITER using the DYON code. (paper)

  5. Plasma theory and simulation. Quarterly progress report I, II, January 1-June 30, 1984

    International Nuclear Information System (INIS)

    Birdsall, C.K.

    1984-01-01

    Our group uses theory and simulation as tools in order to increase the understanding of instabilities, heating, transport, and other phenomena in plasmas. We also work on the improvement of simulation both theoretically and practically. Research in plasma theory and simulation has centered on the following: (1) electron Bernstein wave investigations; (2) simulation of plasma-sheath region, including ion reflection; (3) single ended plasma device, general behavior dc or ac; (4) single ended plasma device, unstable states; (5) corrections to time-independent Q-machine equilibria; (6) multifluid derivation of the Alfven ion-cyclotron linear dispersion relation; and (7) potential barrier between hot and cool plasmas

  6. Plasma depletion layer: its dependence on solar wind conditions and the Earth dipole tilt

    Directory of Open Access Journals (Sweden)

    Y. L. Wang

    2004-12-01

    Full Text Available The plasma depletion layer (PDL is a layer on the sunward side of the magnetopause with lower plasma density and higher magnetic field compared to their corresponding upstream magnetosheath values. It is believed that the PDL is controlled jointly by conditions in the solar wind plasma and the (IMF. In this study, we extend our former model PDL studies by systematically investigating the dependence of the PDL and the slow mode front on solar wind conditions using global MHD simulations. We first point out the difficulties for the depletion factor method and the plasma β method for defining the outer boundary of the plasma depletion layer. We propose to use the N/B ratio to define the PDL outer boundary, which can give the best description of flux tube depletion. We find a strong dependence of the magnetosheath environment on the solar wind magnetosonic Mach number. A difference between the stagnation point and the magnetopause derived from the open-closed magnetic field boundary is found. We also find a strong and complex dependence of the PDL and the slow mode front on the IMF Bz. A density structure right inside the subsolar magnetopause for higher IMF Bz;might be responsible for some of this dependence. Both the IMF tilt and clock angles are found to have little influence on the magnetosheath and the PDL structures. However, the IMF geometry has a much stronger influence on the slow mode fronts in the magnetosheath. Finally, the Earth dipole tilt is found to play a minor role for the magnetosheath geometry and the PDL along the Sun-Earth line. A complex slow mode front geometry is found for cases with different Earth dipole tilts. Comparisons between our results with those from some former studies are conducted, and consistencies and inconsistencies are found.

    Key words. Magnetospheric physics (magnetosheath, solar wind-magnetosphere interactions – Space plasma physics (numerical

  7. Numerical simulation of strong evaporation and condensation for plasma-facing materials

    International Nuclear Information System (INIS)

    Kunugi, T.; Yasuda, H.

    1994-01-01

    The thermal response of the divertor plate to the hard plasma disruptions had been analyzed numerically by the two dimensional transient heat transfer code. There are several studies of the vapor shielding effects on the thermal response to the plasma disruption. However, it was pointed out some discrepancies among the numerical results calculated by U.S., EC and Japan for the same disruption conditions by van der Laan. One of the authors studied the sensitivity of some parameters (i.e., the temperature dependency of the thermal properties, an evaporation coefficient and a saturated condensation ratio) of disruption erosion analysis. Though the authors expected that the variations in evaporation models lead to the large variety of the erosion, they gave no significant effects on the surface temperature, the evaporation and melt-layer thickness. In this paper, the authors will describe the development of the numerical simulation codes for the strong evaporation and condensation from the plasma facing materials (PFMs) such as carbon, tungsten and beryllium

  8. Electrostatic plasma simulation by Particle-In-Cell method using ANACONDA package

    International Nuclear Information System (INIS)

    Blandón, J S; Grisales, J P; Riascos, H

    2017-01-01

    Electrostatic plasma is the most representative and basic case in plasma physics field. One of its main characteristics is its ideal behavior, since it is assumed be in thermal equilibrium state. Through this assumption, it is possible to study various complex phenomena such as plasma oscillations, waves, instabilities or damping. Likewise, computational simulation of this specific plasma is the first step to analyze physics mechanisms on plasmas, which are not at equilibrium state, and hence plasma is not ideal. Particle-In-Cell (PIC) method is widely used because of its precision for this kind of cases. This work, presents PIC method implementation to simulate electrostatic plasma by Python, using ANACONDA packages. The code has been corroborated comparing previous theoretical results for three specific phenomena in cold plasmas: oscillations, Two-Stream instability (TSI) and Landau Damping(LD). Finally, parameters and results are discussed. (paper)

  9. Observations and Simulations of Formation of Broad Plasma Depletions Through Merging Process

    Science.gov (United States)

    Huang, Chao-Song; Retterer, J. M.; Beaujardiere, O. De La; Roddy, P. A.; Hunton, D.E.; Ballenthin, J. O.; Pfaff, Robert F.

    2012-01-01

    Broad plasma depletions in the equatorial ionosphere near dawn are region in which the plasma density is reduced by 1-3 orders of magnitude over thousands of kilometers in longitude. This phenomenon is observed repeatedly by the Communication/Navigation Outage Forecasting System (C/NOFS) satellite during deep solar minimum. The plasma flow inside the depletion region can be strongly upward. The possible causal mechanism for the formation of broad plasma depletions is that the broad depletions result from merging of multiple equatorial plasma bubbles. The purpose of this study is to demonstrate the feasibility of the merging mechanism with new observations and simulations. We present C/NOFS observations for two cases. A series of plasma bubbles is first detected by C/NOFS over a longitudinal range of 3300-3800 km around midnight. Each of the individual bubbles has a typical width of approx 100 km in longitude, and the upward ion drift velocity inside the bubbles is 200-400 m/s. The plasma bubbles rotate with the Earth to the dawn sector and become broad plasma depletions. The observations clearly show the evolution from multiple plasma bubbles to broad depletions. Large upward plasma flow occurs inside the depletion region over 3800 km in longitude and exists for approx 5 h. We also present the numerical simulations of bubble merging with the physics-based low-latitude ionospheric model. It is found that two separate plasma bubbles join together and form a single, wider bubble. The simulations show that the merging process of plasma bubbles can indeed occur in incompressible ionospheric plasma. The simulation results support the merging mechanism for the formation of broad plasma depletions.

  10. Conceptual Design and Simulation of a Miniature Plasma Focus

    International Nuclear Information System (INIS)

    Jafari, H.; Habibi, M.; Amrollahi, R.

    2012-01-01

    Design and construction of a miniature plasma focus device with 3.6 J of energy bank is reported. In design the device, some of very important parameters of designing such as plasma energy density and derive parameter was used. Regarding to the electrical and geometrical parameters of the device, a simulation is carried out by MATLAB software. Simulation results showed that the formation of the pinch have occurred at the moment of the peak discharge current.

  11. Formation of Plasma Around a Small Meteoroid: Simulation and Theory

    Science.gov (United States)

    Sugar, G.; Oppenheim, M. M.; Dimant, Y. S.; Close, S.

    2018-05-01

    High-power large-aperture radars detect meteors by reflecting radio waves off dense plasma that surrounds a hypersonic meteoroid as it ablates in the Earth's atmosphere. If the plasma density profile around the meteoroid is known, the plasma's radar cross section can be used to estimate meteoroid properties such as mass, density, and composition. This paper presents head echo plasma density distributions obtained via two numerical simulations of a small ablating meteoroid and compares the results to an analytical solution found in Dimant and Oppenheim (2017a, https://doi.org/10.1002/2017JA023960, 2017b, https://doi.org/10.1002/2017JA023963). The first simulation allows ablated meteoroid particles to experience only a single collision to match an assumption in the analytical solution, while the second is a more realistic simulation by allowing multiple collisions. The simulation and analytical results exhibit similar plasma density distributions. At distances much less than λT, the average distance an ablated particle travels from the meteoroid before a collision with an atmospheric particle, the plasma density falls off as 1/R, where R is the distance from the meteoroid center. At distances substantially greater than λT, the plasma density profile has an angular dependence, falling off as 1/R2 directly behind the meteoroid, 1/R3 in a plane perpendicular to the meteoroid's path that contains the meteoroid center, and exp[-1.5(R/λT2/3)]/R in front of the meteoroid. When used for calculating meteoroid masses, this new plasma density model can give masses that are orders of magnitude different than masses calculated from a spherically symmetric Gaussian distribution, which has been used to calculate masses in the past.

  12. New electromagnetic particle simulation code for the analysis of spacecraft-plasma interactions

    International Nuclear Information System (INIS)

    Miyake, Yohei; Usui, Hideyuki

    2009-01-01

    A novel particle simulation code, the electromagnetic spacecraft environment simulator (EMSES), has been developed for the self-consistent analysis of spacecraft-plasma interactions on the full electromagnetic (EM) basis. EMSES includes several boundary treatments carefully coded for both longitudinal and transverse electric fields to satisfy perfect conductive surface conditions. For the longitudinal component, the following are considered: (1) the surface charge accumulation caused by impinging or emitted particles and (2) the surface charge redistribution, such that the surface becomes an equipotential. For item (1), a special treatment has been adopted for the current density calculated around the spacecraft surface, so that the charge accumulation occurs exactly on the surface. As a result, (1) is realized automatically in the updates of the charge density and the electric field through the current density. Item (2) is achieved by applying the capacity matrix method. Meanwhile, the transverse electric field is simply set to zero for components defined inside and tangential to the spacecraft surfaces. This paper also presents the validation of EMSES by performing test simulations for spacecraft charging and peculiar EM wave modes in a plasma sheath.

  13. Simulation of MGI efficiency for plasma energy conversion into Ar radiation in JET and implications for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Pestchanyi, Serguei, E-mail: serguei.pestchanyi@kit.edu [Association EURATOM-KIT, Karlsruhe (Germany); Koslowski, Rudi; Reux, Cedric [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Lehnen, Michael [Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2015-10-15

    Highlights: • We simulated disruption mitigation using massive gas injection with the TOKES code. • Cross-reference analysis of JET experiments on MGI and their simulations have been done. • The analysis allows suggesting the mechanism for saturation of radiated energy fraction at 70–80%. • Rough extrapolation of the result on ITER conditions has been done. - Abstract: Effectiveness of massive gas injection (MGI) for mitigation of disruptive wall damage has been investigated. Cross-reference analysis of the available JET experiments on MGI and their simulations with the TOKES code allow suggesting that in JET conditions one can convert into radiation the electron thermal energy and the plasma current energy, but the ion thermal energy does not convert into radiation because of very ineffective excitation of injected noble gas (NG) ions by D ions and long equipartition time between D ions and electrons. The model assumes rather high electron temperature during current quench (CQ), which contradicts with its time duration. Rough extrapolation of the result on ITER conditions shows that one can expect irradiation of total plasma energy if CQ duration in ITER is not shorter as in JET.

  14. Numerical simulation of plasma processes driven by transverse ion heating

    Science.gov (United States)

    Singh, Nagendra; Chan, C. B.

    1993-01-01

    The plasma processes driven by transverse ion heating in a diverging flux tube are investigated with numerical simulation. The heating is found to drive a host of plasma processes, in addition to the well-known phenomenon of ion conics. The downward electric field near the reverse shock generates a doublestreaming situation consisting of two upflowing ion populations with different average flow velocities. The electric field in the reverse shock region is modulated by the ion-ion instability driven by the multistreaming ions. The oscillating fields in this region have the possibility of heating electrons. These results from the simulations are compared with results from a previous study based on a hydrodynamical model. Effects of spatial resolutions provided by simulations on the evolution of the plasma are discussed.

  15. Chaos in plasma simulation and experiment

    International Nuclear Information System (INIS)

    Watts, C.; Sprott, J.C.

    1993-09-01

    We investigate the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas using data from both numerical simulations and experiment. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos. These tools include phase portraits and Poincard sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulate the plasma dynamics. These are -the DEBS code, which models global RFP dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low,dimensional chaos and simple determinism. Experimental data were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or other simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system

  16. Chaos in plasma simulation and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Watts, C. [Texas Univ., Austin, TX (United States). Fusion Research Center; Newman, D.E. [Oak Ridge National Lab., TN (United States); Sprott, J.C. [Wisconsin Univ., Madison, WI (United States). Plasma Physics Research

    1993-09-01

    We investigate the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas using data from both numerical simulations and experiment. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos. These tools include phase portraits and Poincard sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulate the plasma dynamics. These are -the DEBS code, which models global RFP dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low,dimensional chaos and simple determinism. Experimental data were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or other simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system.

  17. Computer simulation of bounded plasmas

    International Nuclear Information System (INIS)

    Lawson, W.S.

    1987-01-01

    The problems of simulating a one-dimensional bounded plasma system using particles in a gridded space are systematically explored and solutions to them are given. Such problems include the injection of particles at the boundaries, the solution of Poisson's equation, and the inclusion of an external circuit between the confining boundaries. A recently discovered artificial cooling effect is explained as being a side-effect of quiet injection, and its potential for causing serious but subtle errors in bounded simulation is noted. The methods described in the first part of the thesis are then applied to the simulation of an extension of the Pierce diode problem, specifically a Pierce diode modified by an external circuit between the electrodes. The results of these simulations agree to high accuracy with theory when a theory exists, and also show some interesting chaotic behavior in certain parameter regimes. The chaotic behavior is described in detail

  18. Fluid simulations of ∇Te-driven turbulence and transport in boundary plasmas

    International Nuclear Information System (INIS)

    Xu, X.Q.

    1992-01-01

    It is clear that the edge plasma plays a crucial role in global tokamak confinement. This paper is a report on simulations of a new drift wave type instability driven by the electron temperature gradient in tokamak scrapeoff-layers (SOL). A 2d fluid code has been developed in order to explore the anomalous transport in the boundary plasmas. The simulation consists of a set of fluid equations for the vorticity ∇ perpendicular 2 φ, the electron density n c and the temperature T c in a shearless plasma slab confined by a uniform, straight magnetic field B z with two divertor (or limiter) plates intercepting the magnetic field. The model has two regions separated by a magnetic separatrix: in the edge region inside the separatrix, the model is periodic along the magnetic field while in the SOL region outside the separatrix, the magnetic field is taken to be of finite length with model boundary conditions at diverter plates. The simulation results show that the observed linear instability agrees well with theory, and that a saturated state of turbulence is reached. In saturated turbulence, clear evidence of the expected long-wavelength mode penetration into the edge is seen, an inverse cascade of wave energy is observed. The simulation results also show that amplitudes of potential and the electron temperature fluctuations are somewhat above and the heat flux are somewhat below those of the simplest mixing-length estimates, and furthermore the large-scale radial structures of fluctuation quantities indicate that the cross-field transport is not diffusive. After saturation, the electron density and temperature profiles are flattened. A self-consistent simulation to determine the microturbulent SOL electron temperature profile has been done, the results of which reasonably agree with the experimental measurements

  19. Effects of the current boundary conditions at the plasma-gun gap on density in SSPX

    Science.gov (United States)

    Kolesnikov, Roman; Lodestro, L. L.; Meyer, W. H.

    2012-10-01

    The Sustained Spheromak Physics Experiment (SSPX) was a toroidal magnetic-confinement device without toroidal magnetic-field coils or a central transformer but which generated core-plasma currents by dynamo processes driven by coaxial plasma-gun injection into a flux-conserving vessel. Record electron temperatures in a spheromak (Te˜500eV) were achieved, and final results of the SSPX program were reported in [1]. Plasma density, which depended strongly on wall conditions, was an important parameter in SSPX. It was observed that density rises with Igun and that confinement improved as the density was lowered. Shortly after the last experiments, a new feature was added to the Corsica code's solver used to reconstruct SSPX equilibria. Motivated by n=0 fields observed in NIMROD simulations of SSPX, an insulating boundary condition was implemented at the plasma-gun gap. Using this option we will perform new reconstructions of SSPX equilibria and look for correlations between the location of the separatrix (which moves up the gun wall and onto the insulating gap as Igun increases) and plasma density and magnetic-flux amplification [2].[4pt] [1] H. S. McLean, APS, DPP, Dallas, TX, 2008.[0pt] [2] E. B. Hooper et al., Nucl. Fusion 47, 1064 (2007).

  20. Multi-Accuracy-Level Burning Plasma Simulations

    International Nuclear Information System (INIS)

    Artaud, J. F.; Basiuk, V.; Garcia, J.; Giruzzi, G.; Huynh, P.; Huysmans, G.; Imbeaux, F.; Johner, J.; Scheider, M.

    2007-01-01

    The design of a reactor grade tokamak is based on a hierarchy of tools. We present here three codes that are presently used for the simulations of burning plasmas. At the first level there is a 0-dimensional code that allows to choose a reasonable range of global parameters; in our case the HELIOS code was used for this task. For the second level we have developed a mixed 0-D / 1-D code called METIS that allows to study the main properties of a burning plasma, including profiles and all heat and current sources, but always under the constraint of energy and other empirical scaling laws. METIS is a fast code that permits to perform a large number of runs (a run takes about one minute) and design the main features of a scenario, or validate the results of the 0-D code on a full time evolution. At the top level, we used the full 1D1/2 suite of codes CRONOS that gives access to a detailed study of the plasma profiles evolution. CRONOS can use a variety of modules for source terms and transport coefficients computation with different level of complexity and accuracy: from simple estimators to highly sophisticated physics calculations. Thus it is possible to vary the accuracy of burning plasma simulations, as a trade-off with computation time. A wide range of scenario studies can thus be made with CRONOS and then validated with post-processing tools like MHD stability analysis. We will present in this paper results of this multi-level analysis applied to the ITER hybrid scenario. This specific example will illustrate the importance of having several tools for the study of burning plasma scenarios, especially in a domain that present devices cannot access experimentally. (Author)

  1. Progress and improvement of KSTAR plasma control using model-based control simulators

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Sang-hee, E-mail: hahn76@nfri.re.kr [National Fusion Research Institute, 169-148 Gwahak-ro, yuseong-gu, Daejeon (Korea, Republic of); Welander, A.S. [General Atomics, San Diego, CA (United States); Yoon, S.W.; Bak, J.G. [National Fusion Research Institute, 169-148 Gwahak-ro, yuseong-gu, Daejeon (Korea, Republic of); Eidietis, N.W. [General Atomics, San Diego, CA (United States); Han, H.S. [National Fusion Research Institute, 169-148 Gwahak-ro, yuseong-gu, Daejeon (Korea, Republic of); Humphreys, D.A.; Hyatt, A. [General Atomics, San Diego, CA (United States); Jeon, Y.M. [National Fusion Research Institute, 169-148 Gwahak-ro, yuseong-gu, Daejeon (Korea, Republic of); Johnson, R.D. [General Atomics, San Diego, CA (United States); Kim, H.S.; Kim, J. [National Fusion Research Institute, 169-148 Gwahak-ro, yuseong-gu, Daejeon (Korea, Republic of); Kolemen, E.; Mueller, D. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Penaflor, B.G.; Piglowski, D.A. [General Atomics, San Diego, CA (United States); Shin, G.W. [University of Science and Technology, Daejeon (Korea, Republic of); Walker, M.L. [General Atomics, San Diego, CA (United States); Woo, M.H. [National Fusion Research Institute, 169-148 Gwahak-ro, yuseong-gu, Daejeon (Korea, Republic of)

    2014-05-15

    Superconducting tokamaks like KSTAR, EAST and ITER need elaborate magnetic controls mainly due to either the demanding experiment schedule or tighter hardware limitations caused by the superconducting coils. In order to reduce the operation runtime requirements, two types of plasma simulators for the KSTAR plasma control system (PCS) have been developed for improving axisymmetric magnetic controls. The first one is an open-loop type, which can reproduce the control done in an old shot by loading the corresponding diagnostics data and PCS setup. The other one, a closed-loop simulator based on a linear nonrigid plasma model, is designed to simulate dynamic responses of the plasma equilibrium and plasma current (I{sub p}) due to changes of the axisymmetric poloidal field (PF) coil currents, poloidal beta, and internal inductance. The closed-loop simulator is the one that actually can test and enable alteration of the feedback control setup for the next shot. The simulators have been used routinely in 2012 plasma campaign, and the experimental performances of the axisymmetric shape control algorithm are enhanced. Quality of the real-time EFIT has been enhanced by utilizations of the open-loop type. Using the closed-loop type, the decoupling scheme of the plasma current control and axisymmetric shape controls are verified through both the simulations and experiments. By combining with the relay feedback tuning algorithm, the improved controls helped to maintain the shape suitable for longer H-mode (10–16 s) with the number of required commissioning shots largely reduced.

  2. Integrated predictive modelling simulations of burning plasma experiment designs

    International Nuclear Information System (INIS)

    Bateman, Glenn; Onjun, Thawatchai; Kritz, Arnold H

    2003-01-01

    Models for the height of the pedestal at the edge of H-mode plasmas (Onjun T et al 2002 Phys. Plasmas 9 5018) are used together with the Multi-Mode core transport model (Bateman G et al 1998 Phys. Plasmas 5 1793) in the BALDUR integrated predictive modelling code to predict the performance of the ITER (Aymar A et al 2002 Plasma Phys. Control. Fusion 44 519), FIRE (Meade D M et al 2001 Fusion Technol. 39 336), and IGNITOR (Coppi B et al 2001 Nucl. Fusion 41 1253) fusion reactor designs. The simulation protocol used in this paper is tested by comparing predicted temperature and density profiles against experimental data from 33 H-mode discharges in the JET (Rebut P H et al 1985 Nucl. Fusion 25 1011) and DIII-D (Luxon J L et al 1985 Fusion Technol. 8 441) tokamaks. The sensitivities of the predictions are evaluated for the burning plasma experimental designs by using variations of the pedestal temperature model that are one standard deviation above and below the standard model. Simulations of the fusion reactor designs are carried out for scans in which the plasma density and auxiliary heating power are varied

  3. Analytical solutions and particle simulations of cross-field plasma sheaths

    International Nuclear Information System (INIS)

    Gerver, M.J.; Parker, S.E.; Theilhaber, K.

    1989-01-01

    Particles simulations have been made of an infinite plasma slab, bounded by absorbing conducting walls, with a magnetic field parallel to the walls. The simulations have been either 1-D, or 2-D, with the magnetic field normal to the simulation plane. Initially, the plasma has a uniform density between the walls, and there is a uniform source of ions and electrons to replace particles lost to the walls. In the 1-D case, there is no diffusion of the particle guiding centers, and the plasma remains uniform in density and potential over most of the slab, with sheaths about a Debye length wide where the potential rises to the wall potential. In the 2-D case, the density profile becomes parabolic, going almost to zero at the walls, and there is a quasineutral presheath in the bulk of the plasma, in addition to sheaths near the walls. Analytic expressions are found for the density and potential profiles in both cases, including, in the 2-D case, the magnetic presheath due to finite ion Larmor radius, and the effects of the guiding center diffusion rate being either much less than or much grater than the energy diffusion rate. These analytic expressions are shown to agree with the simulations. A 1-D simulation with Monte Carlo guiding center diffusion included gives results that are good agreement with the much more expensive 2-D simulation. 17 refs., 10 figs

  4. Simulation of burning plasma dynamics in ITER

    International Nuclear Information System (INIS)

    Wang, J.F.; Amano, T.; Ogawa, Y.; Inoue, N.

    1996-02-01

    Dynamics of burning plasma for various transient situations in ITER plasma has been simulated with a 1.5-dimensional up-down asymmetry Tokamak Transport Simulation Code (TTSC). We have mainly paid attention to intrinsic plasma transport processes such as the confinement improvement and the change of plasma profiles. It is shown that a large excursion of the fusion power takes place with a small improvement of the plasma confinement; e.g., an increase of the global energy confinement by a factor of 1.22 yields the fusion power excursion of ∼ 30% within a few seconds. Any feedback control of fueling D-T gas is difficult to respond to this short time scale of fusion power transient. The effect of the plasma profile on the fusion power excursion has been studied, by changing the particle transport denoted by the inward pinch parameter C V . It is found that the fusion power excursion is mild and slow, and the feedback control is quite effective in suppressing the fusion power excursion and in shortening the duration time of power transient in this case. The change in the pumping efficiency has also been studied and a large excursion of the fusion power has not been observed, because of the decrease in the fuel density itself in the case of the increase in the pumping efficiency, and the helium ash accumulation in the case of the decrease in the pumping efficiency. Finally it is shown that the MHD sawteeth activity leads to the fusion power fluctuation of ± 20%, although it is helpful for the helium ash exhaust. (author)

  5. Plasma-particle interaction effects in induction plasma modelling under dense loading conditions

    International Nuclear Information System (INIS)

    Proulx, P.; Mostaghimi, J.; Boulos, M.

    1983-07-01

    The injection of solid particles or aerosol droplets in the fire-ball of an inductively coupled plasma can substantially perturb the plasma and even quench it under high loading conditions. This can be mainly attributed to the local cooling of the plasma by the particles or their vapour cloud, combined with the possible change of the thermodynamic and transport properties of the plasma in the presence of the particle vapour. This paper reports the state-of-the-art in the mathematical modelling of the induction plasma. A particle-in-cell model is used in order to combine the continuum approach for the calculation of the flow, temperature and concentration fields in the plasma, with the stochastic single particle approach, for the calculation of the particle trajectories and temperature histories. Results are given for an argon induction plasma under atmospheric pressure in which fine copper particles are centrally injected in the coil region of the discharge

  6. Blood–plasma separation in Y-shaped bifurcating microfluidic channels: a dissipative particle dynamics simulation study

    International Nuclear Information System (INIS)

    Li, Xuejin; Karniadakis, George Em; Popel, Aleksander S

    2012-01-01

    The motion of a suspension of red blood cells (RBCs) flowing in a Y-shaped bifurcating microfluidic channel is investigated using a validated low-dimensional RBC model based on dissipative particle dynamics. Specifically, the RBC is represented as a closed torus-like ring of ten colloidal particles, which leads to efficient simulations of blood flow in microcirculation over a wide range of hematocrits. Adaptive no-slip wall boundary conditions were implemented to model hydrodynamic flow within a specific wall structure of diverging three-dimensional microfluidic channels, paying attention to controlling density fluctuations. Plasma skimming and the all-or-nothing phenomenon of RBCs in a bifurcating microfluidic channel have been investigated in our simulations for healthy and diseased blood, including the size of a cell-free layer on the daughter branches. The feed hematocrit level in the parent channel has considerable influence on blood–plasma separation. Compared to the blood–plasma separation efficiencies of healthy RBCs, malaria-infected stiff RBCs (iRBCs) have a tendency to travel into the low flow-rate daughter branch because of their different initial distribution in the parent channel. Our simulation results are consistent with previously published experimental results and theoretical predictions. (paper)

  7. Simulation of Main Plasma Parameters of a Cylindrical Asymmetric Capacitively Coupled Plasma Micro-Thruster using Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Amelia eGreig

    2015-01-01

    Full Text Available Computational fluid dynamics (CFD simulations of a radio-frequency (13.56 MHz electro-thermal capacitively coupled plasma (CCP micro-thruster have been performed using the commercial CFD-ACE+ package. Standard operating conditions of a 10 W, 1.5 Torr argon discharge were used to compare with previously obtained experimental results for validation. Results show that the driving force behind plasma production within the thruster is ion-induced secondary electrons ejected from the surface of the discharge tube, accelerated through the sheath to electron temperatures up to 33.5 eV. The secondary electron coefficient was varied to determine the effect on the discharge, with results showing that full breakdown of the discharge did not occur for coefficients coefficients less than or equal to 0.01.

  8. Simulation of plasma erosion opening switches

    International Nuclear Information System (INIS)

    Mason, R.J.; Jones, M.E.

    1988-01-01

    Recent progress in the modeling of Plasma Erosion Opening Switches is reviewed, and new results from both fluid and particle simulation compared. Three-fluid simulations with the ANTHEM code for switches on the NRL GAMBLE I machine and SNL PBFA II machine have shown strong dependence of the opening dynamics on the anode structure, the threshold for electron emission, on the possible presence of anomalous resistivity, and on advection of the magnetic field with cathode emitted electrons. Simulations with the implicit particle-in-cell code ISIS confirm these observations, but manifest broader current channels---in better agreement with GAMBLE I experimental results. 7 refs., 3 figs

  9. Streamlined Darwin simulation of nonneutral plasmas

    International Nuclear Information System (INIS)

    Hewett, D.W.; Boyd, J.K.

    1987-01-01

    Efficient, new algorithms that require less formal manipulation than previous implementations have been formulated for the numerical solution of the Darwin model. These new procedures reduce the effort required to achieve some of the advantages that the Darwin model offers. Because the Courant--Friedrichs--Lewy stability limit for radiation modes is eliminated, the Darwin model has the advantage of a substantially larger time-step. Further, without radiation modes, simulation results are less sensitive to enhanced particle fluctation noise. We discuss methods for calculating the magnetic field that avoid formal vector decomposition and offer a new procedure for finding the inductive electric field. This procedure avoids vector decomposition of plasma source terms and circumvents some source gradient issues that slow convergence. As a consequence, the numerical effort required for each of the field time-steps is reduced, and more importantly, the need to specify several nonintuitive boundary conditions is eliminated. copyright 1987 Academic Press, Inc

  10. Time parallelization of advanced operation scenario simulations of ITER plasma

    International Nuclear Information System (INIS)

    Samaddar, D; Casper, T A; Kim, S H; Houlberg, W A; Berry, L A; Elwasif, W R; Batchelor, D

    2013-01-01

    This work demonstrates that simulations of advanced burning plasma operation scenarios can be successfully parallelized in time using the parareal algorithm. CORSICA -an advanced operation scenario code for tokamak plasmas is used as a test case. This is a unique application since the parareal algorithm has so far been applied to relatively much simpler systems except for the case of turbulence. In the present application, a computational gain of an order of magnitude has been achieved which is extremely promising. A successful implementation of the Parareal algorithm to codes like CORSICA ushers in the possibility of time efficient simulations of ITER plasmas.

  11. First-principles equation-of-state table of silicon and its effects on high-energy-density plasma simulations

    Science.gov (United States)

    Hu, S. X.; Gao, R.; Ding, Y.; Collins, L. A.; Kress, J. D.

    2017-04-01

    Using density-functional theory-based molecular-dynamics simulations, we have investigated the equation of state for silicon in a wide range of plasma density and temperature conditions of ρ =0.001 -500 g /c m3 and T =2000 -108K . With these calculations, we have established a first-principles equation-of-state (FPEOS) table of silicon for high-energy-density (HED) plasma simulations. When compared with the widely used SESAME-EOS model (Table 3810), we find that the FPEOS-predicted Hugoniot is ˜20% softer; for off-Hugoniot plasma conditions, the pressure and internal energy in FPEOS are lower than those of SESAME EOS for temperatures above T ≈ 1-10 eV (depending on density), while the former becomes higher in the low-T regime. The pressure difference between FPEOS and SESAME 3810 can reach to ˜50%, especially in the warm-dense-matter regime. Implementing the FPEOS table of silicon into our hydrocodes, we have studied its effects on Si-target implosions. When compared with the one-dimensional radiation-hydrodynamics simulation using the SESAME 3810 EOS model, the FPEOS simulation showed that (1) the shock speed in silicon is ˜10% slower; (2) the peak density of an in-flight Si shell during implosion is ˜20% higher than the SESAME 3810 simulation; (3) the maximum density reached in the FPEOS simulation is ˜40% higher at the peak compression; and (4) the final areal density and neutron yield are, respectively, ˜30% and ˜70% higher predicted by FPEOS versus the traditional simulation using SESAME 3810. All of these features can be attributed to the larger compressibility of silicon predicted by FPEOS. These results indicate that an accurate EOS table, like the FPEOS presented here, could be essential for the precise design of targets for HED experiments.

  12. RF wave simulation for cold edge plasmas using the MFEM library

    Science.gov (United States)

    Shiraiwa, S.; Wright, J. C.; Bonoli, P. T.; Kolev, T.; Stowell, M.

    2017-10-01

    A newly developed generic electro-magnetic (EM) simulation tool for modeling RF wave propagation in SOL plasmas is presented. The primary motivation of this development is to extend the domain partitioning approach for incorporating arbitrarily shaped SOL plasmas and antenna to the TORIC core ICRF solver, which was previously demonstrated in the 2D geometry [S. Shiraiwa, et. al., "HISTORIC: extending core ICRF wave simulation to include realistic SOL plasmas", Nucl. Fusion in press], to larger and more complicated simulations by including a 3D realistic antenna and integrating RF rectified sheath potential model. Such an extension requires a scalable high fidelity 3D edge plasma wave simulation. We used the MFEM [http://mfem.org], open source scalable C++ finite element method library, and developed a Python wrapper for MFEM (PyMFEM), and then a radio frequency (RF) wave physics module in Python. This approach allows for building a physics layer rapidly, while separating the physics implementation being apart from the numerical FEM implementation. An interactive modeling interface was built on pScope [S Shiraiwa, et. al. Fusion Eng. Des. 112, 835] to work with an RF simulation model in a complicated geometry.

  13. Circuit Model Simulations for Ionospheric Plasma Response to High Potential System

    Directory of Open Access Journals (Sweden)

    Hwang-Jae Rhee

    2000-06-01

    Full Text Available When a deployed probe is biased by a high positive potential during a space experiment, the payload is induced to a negative voltage in order to balance the total current in the whole system. The return currents are due to the responding ions and secondary electrons on the payload surface. In order to understand the current collection mechanism, the process was simulated with a combination of resistor, inductor, and capacitor in SPICE program which was equivalent to the background plasma sheath. The simulation results were compared with experimental results from SPEAR-3 (Space Power Experiment Aboard Rocket-3. The return current curve in the simulation was compatible to the experimental result, and the simulation helped to predict the transient plasma response to a high voltage during the plasma sheath formation.

  14. Numerical Simulation of Plasma Actuator Using OpenFOAM

    OpenAIRE

    H. Yazdani; K. Ghorbanian

    2016-01-01

    This paper deals with modeling and simulation of the plasma actuator with OpenFOAM. Plasma actuator is one of the newest devices in flow control techniques which can delay separation by inducing external momentum to the boundary layer of the flow. The effects of the plasma actuators on the external flow are incorporated into Navier-Stokes computations as a body force vector which is obtained as a product of the net charge density and the electric field. In order to compute this body force vec...

  15. Diffusion of Magnetized Binary Ionic Mixtures at Ultracold Plasma Conditions

    Science.gov (United States)

    Vidal, Keith R.; Baalrud, Scott D.

    2017-10-01

    Ultracold plasma experiments offer an accessible means to test transport theories for strongly coupled systems. Application of an external magnetic field might further increase their utility by inhibiting heating mechanisms of ions and electrons and increasing the temperature at which strong coupling effects are observed. We present results focused on developing and validating a transport theory to describe binary ionic mixtures across a wide range of coupling and magnetization strengths relevant to ultracold plasma experiments. The transport theory is an extension of the Effective Potential Theory (EPT), which has been shown to accurately model correlation effects at these conditions, to include magnetization. We focus on diffusion as it can be measured in ultracold plasma experiments. Using EPT within the framework of the Chapman-Enskog expansion, the parallel and perpendicular self and interdiffusion coefficients for binary ionic mixtures with varying mass ratios are calculated and are compared to molecular dynamics simulations. The theory is found to accurately extend Braginskii-like transport to stronger coupling, but to break down when the magnetization strength becomes large enough that the typical gyroradius is smaller than the interaction scale length. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-16-1-0221.

  16. Adaptive grids and numerical fluid simulations for scrape-off layer plasmas

    International Nuclear Information System (INIS)

    Klingshirn, Hans-Joachim

    2010-01-01

    Magnetic confinement nuclear fusion experiments create plasmas with local temperatures in excess of 100 million Kelvin. In these experiments the scrape-off layer, which is the plasma region in direct contact with the device wall, is of central importance both for the quality of the energy confinement and the wall material lifetime. To study the behaviour of the scrape-off layer, in addition to experiments, numerical simulations are used. This work investigates the use of adaptive discretizations of space and compatible numerical methods for scrape-off layer simulations. The resulting algorithms allow dynamic adaptation of computational grids aligned to the magnetic fields to precisely capture the strongly anisotropic energy and particle transport in the plasma. The methods are applied to the multi-fluid plasma code B2, with the goal of reducing the runtime of simulations and extending the applicability of the code.

  17. TEMPEST simulations of the plasma transport in a single-null tokamak geometry

    International Nuclear Information System (INIS)

    Xu, X.Q.; Cohen, R.H.; Rognlien, T.D.; Bodi, K.; Krasheninnikov, S.

    2010-01-01

    We present edge kinetic ion transport simulations of tokamak plasmas in magnetic divertor geometry using the fully nonlinear (full-f) continuum code TEMPEST. Besides neoclassical transport, a term for divergence of anomalous kinetic radial flux is added to mock up the effect of turbulent transport. To study the relative roles of neoclassical and anomalous transport, TEMPEST simulations were carried out for plasma transport and flow dynamics in a single-null tokamak geometry, including the pedestal region that extends across the separatrix into the scrape-off layer and private flux region. A series of TEMPEST simulations were conducted to investigate the transition of midplane pedestal heat flux and flow from the neoclassical to the turbulent limit and the transition of divertor heat flux and flow from the kinetic to the fluid regime via an anomalous transport scan and a density scan. The TEMPEST simulation results demonstrate that turbulent transport (as modelled by large diffusion) plays a similar role to collisional decorrelation of particle orbits and that the large turbulent transport (large diffusion) leads to an apparent Maxwellianization of the particle distribution. We also show the transition of parallel heat flux and flow at the entrance to the divertor plates from the fluid to the kinetic regime. For an absorbing divertor plate boundary condition, a non-half-Maxwellian is found due to the balance between upstream radial anomalous transport and energetic ion endloss.

  18. Effect of liner non-uniformity on plasma instabilities in an inverse Z-pinch magnetized target fusion system: liner-on-plasma simulations and comparison with linear stability analysis

    International Nuclear Information System (INIS)

    Subhash, P V; Madhavan, S; Chaturvedi, S

    2008-01-01

    Two-dimensional (2D) magneto-hydrodynamic (MHD) liner-on-plasma computations have been performed to study the growth of instabilities in a magnetized target fusion system involving the cylindrical compression of an inverse Z-pinch target plasma by a metallic liner. The growth of modes in the plasma can be divided into two phases. During the first phase, the plasma continues to be Kadomtsev stable. The dominant mode in the liner instability is imposed upon the plasma in the form of a growing perturbation. This mode further transfers part of its energy to its harmonics. During the second phase, however, non-uniform implosion of the liner leads to axial variations in plasma quantities near the liner-plasma interface, such that certain regions of the plasma locally violate the Kadomtsev criteria. Further growth ofthe plasma modes is then due to plasma instability. The above numerical study has been complemented with a linear stability analysis for the plasma, the boundary conditions for this analysis being obtained from the liner-on-plasma simulation. The stability of axisymmetric modes in the first phase is found to satisfy the Kadomtsev condition Q 0 1 modes, using equilibrium profiles from the 2D MHD study, shows that their growth rates can exceed those for m=0 by as much as an order of magnitude

  19. Simulation of vibration-induced effect on plasma current measurement using a fiber optic current sensor.

    Science.gov (United States)

    Descamps, Frédéric; Aerssens, Matthieu; Gusarov, Andrei; Mégret, Patrice; Massaut, Vincent; Wuilpart, Marc

    2014-06-16

    An accurate measurement of the plasma current is of paramount importance for controlling the plasma magnetic equilibrium in tokamaks. Fiber optic current sensor (FOCS) technology is expected to be implemented to perform this task in ITER. However, during ITER operation, the vessel and the sensing fiber will be subject to vibrations and thus to time-dependent parasitic birefringence, which may significantly compromise the FOCS performance. In this paper we investigate the effects of vibrations on the plasma current measurement accuracy under ITER-relevant conditions. The simulation results show that in the case of a FOCS reflection scheme including a spun fiber and a Faraday mirror, the error induced by the vibrations is acceptable regarding the ITER current diagnostics requirements.

  20. Spectral Methods in Numerical Plasma Simulation

    DEFF Research Database (Denmark)

    Coutsias, E.A.; Hansen, F.R.; Huld, T.

    1989-01-01

    An introduction is given to the use of spectral methods in numerical plasma simulation. As examples of the use of spectral methods, solutions to the two-dimensional Euler equations in both a simple, doubly periodic region, and on an annulus will be shown. In the first case, the solution is expanded...

  1. Hot-plasma decoupling condition for long-wavelength modes

    International Nuclear Information System (INIS)

    Berk, H.L.; Van Dam, J.W.; Spong, D.

    1982-10-01

    The stability of layer modes is analyzed for z-pinch and bumpy cylinder models. These modes are long wavelength across the layer and flute-like along the field line. The stability condition can be expressed in terms of the ratio of hot to core plasma density. It is shown that to achieve conditions close to the Nelson, Lee-Van Dam core beta limit, one needs a considerably smaller hot to core plasma density than is required to achieve stability at zero core beta

  2. Compact toroidal plasmas: Simulations and theory

    International Nuclear Information System (INIS)

    Harned, D.S.; Hewett, D.W.; Lilliequist, C.G.

    1983-01-01

    Realistic FRC equilibria are calculated and their stability to the n=1 tilting mode is studied. Excluding kinetic effects, configurations ranging from elliptical to racetrack are unstable. Particle simulations of FRCs show that particle loss on open field lines can cause sufficient plasma rotation to drive the n=2 rotational instability. The allowed frequencies of the shear Alfven wave are calculated for use in heating of spheromaks. An expanded spheromak is introduced and its stability properties are studied. Transport calculations of CTs are described. A power balance model shows that many features of gun-generated CT plasmas can be explained by the dominance of impurity radiation. It is shown how the Taylor relaxation theory, applied to gun-generated CT plasmas, leads to the possibility of steady-state current drive. Lastly, applications of accelerated CTs are considered. (author)

  3. Progress on Beam-Plasma Effect Simulations in Muon Ionization Cooling Lattices

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James [IIT, Chicago; Snopok, Pavel [Fermilab

    2017-05-01

    New computational tools are essential for accurate modeling and simulation of the next generation of muon-based accelerators. One of the crucial physics processes specific to muon accelerators that has not yet been simulated in detail is beam-induced plasma effect in liquid, solid, and gaseous absorbers. We report here on the progress of developing the required simulation tools and applying them to study the properties of plasma and its effects on the beam in muon ionization cooling channels.

  4. Experimental simulation and numerical modeling of vapor shield formation and divertor material erosion for ITER typical plasma disruptions

    International Nuclear Information System (INIS)

    Wuerz, H.; Arkhipov, N.I.; Bakhtin, V.P.; Konkashbaev, I.; Landman, I.; Safronov, V.M.; Toporkov, D.A.; Zhitlukhin, A.M.

    1995-01-01

    The high divertor heat load during a tokamak plasma disruption results in sudden evaporation of a thin layer of divertor plate material, which acts as vapor shield and protects the target from further excessive evaporation. Formation and effectiveness of the vapor shield are theoretically modeled and are experimentally analyzed at the 2MK-200 facility under conditions simulating the thermal quench phase of ITER tokamak plasma disruptions. ((orig.))

  5. A Computational Framework for Efficient Low Temperature Plasma Simulations

    Science.gov (United States)

    Verma, Abhishek Kumar; Venkattraman, Ayyaswamy

    2016-10-01

    Over the past years, scientific computing has emerged as an essential tool for the investigation and prediction of low temperature plasmas (LTP) applications which includes electronics, nanomaterial synthesis, metamaterials etc. To further explore the LTP behavior with greater fidelity, we present a computational toolbox developed to perform LTP simulations. This framework will allow us to enhance our understanding of multiscale plasma phenomenon using high performance computing tools mainly based on OpenFOAM FVM distribution. Although aimed at microplasma simulations, the modular framework is able to perform multiscale, multiphysics simulations of physical systems comprises of LTP. Some salient introductory features are capability to perform parallel, 3D simulations of LTP applications on unstructured meshes. Performance of the solver is tested based on numerical results assessing accuracy and efficiency of benchmarks for problems in microdischarge devices. Numerical simulation of microplasma reactor at atmospheric pressure with hemispherical dielectric coated electrodes will be discussed and hence, provide an overview of applicability and future scope of this framework.

  6. On plasma radiative properties in stellar conditions

    International Nuclear Information System (INIS)

    Turck-Chieze, S.; Delahaye, F.; Gilles, D.; Loisel, G.; Piau, L.; Loisel, G.

    2009-01-01

    The knowledge of stellar evolution is evolving quickly thanks to an increased number of opportunities to scrutinize the stellar internal plasma properties by stellar seismology and by 1D and 3D simulations. These new tools help us to introduce the internal dynamical phenomena in stellar modeling. A proper inclusion of these processes supposes a real confidence in the microscopic physics used, partly checked by solar or stellar acoustic modes. In the present paper we first recall which fundamental physics has been recently verified by helioseismology. Then we recall that opacity is an important ingredient of the secular evolution of stars and we point out why it is necessary to measure absorption coefficients and degrees of ionization in the laboratory for some well identified astrophysical conditions. We examine two specific experimental conditions which are accessible to large laser facilities and are suitable to solve some interesting questions of the stellar community: are the solar internal radiative interactions properly estimated and what is the proper role of the opacity in the excitation of the non-radial modes in the envelop of the β Cepheids and the Be stars? At the end of the paper we point out the difficulties of the experimental approach that we need to overcome. (authors)

  7. Planned upgrade to the coaxial plasma source facility for high heat flux plasma flows relevant to tokamak disruption simulations

    International Nuclear Information System (INIS)

    Caress, R.W.; Mayo, R.M.; Carter, T.A.

    1995-01-01

    Plasma disruptions in tokamaks remain serious obstacles to the demonstration of economical fusion power. In disruption simulation experiments, some important effects have not been taken into account. Present disruption simulation experimental data do not include effects of the high magnetic fields expected near the PFCs in a tokamak major disruption. In addition, temporal and spatial scales are much too short in present simulation devices to be of direct relevance to tokamak disruptions. To address some of these inadequacies, an experimental program is planned at North Carolina State University employing an upgrade to the Coaxial Plasma Source (CPS-1) magnetized coaxial plasma gun facility. The advantages of the CPS-1 plasma source over present disruption simulation devices include the ability to irradiate large material samples at extremely high areal energy densities, and the ability to perform these material studies in the presence of a high magnetic field. Other tokamak disruption relevant features of CPS-1U include a high ion temperature, high electron temperature, and long pulse length

  8. Full Tokamak discharge simulation and kinetic plasma profile control for ITER

    International Nuclear Information System (INIS)

    Hee Kim, S.

    2009-10-01

    Understanding non-linearly coupled physics between plasma transport and free-boundary equilibrium evolution is essential to operating future tokamak devices, such as ITER and DEMO, in the advanced tokamak operation regimes. To study the non-linearly coupled physics, we need a simulation tool which can self-consistently calculate all the main plasma physics, taking the operational constraints into account. As the main part of this thesis work, we have developed a full tokamak discharge simulator by combining a non-linear free-boundary plasma equilibrium evolution code, DINA-CH, and an advanced transport modelling code, CRONOS. This tokamak discharge simulator has been used to study the feasibility of ITER operation scenarios and several specific issues related to ITER operation. In parallel, DINA-CH has been used to study free-boundary physics questions, such as the magnetic triggering of edge localized modes (ELMs) and plasma dynamic response to disturbances. One of the very challenging tasks in ITER, the active control of kinetic plasma profiles, has also been studied. In the part devoted to free-boundary tokamak discharge simulations, we have studied dynamic responses of the free-boundary plasma equilibrium to either external voltage perturbations or internal plasma disturbances using DINA-CH. Firstly, the opposite plasma behaviour observed in the magnetic triggering of ELMs between TCV and ASDEX Upgrade has been investigated. Both plasmas experience similar local flux surface expansions near the upper G-coil set and passive stabilization loop (PSL) when the ELMs are triggered, due to the presence of the PSLs located inside the vacuum vessel of ASDEX Upgrade. Secondly, plasma dynamic responses to strong disturbances anticipated in ITER are examined to study the capability of the feedback control system in rejecting the disturbances. Specified uncontrolled ELMs were controllable with the feedback control systems. However, the specifications for fast H-L mode

  9. Self-consistent kinetic simulations of lower hybrid drift instability resulting in electron current driven by fusion products in tokamak plasmas

    International Nuclear Information System (INIS)

    Cook, J W S; Chapman, S C; Dendy, R O; Brady, C S

    2011-01-01

    We present particle-in-cell (PIC) simulations of minority energetic protons in deuterium plasmas, which demonstrate a collective instability responsible for emission near the lower hybrid frequency and its harmonics. The simulations capture the lower hybrid drift instability in a parameter regime motivated by tokamak fusion plasma conditions, and show further that the excited electromagnetic fields collectively and collisionlessly couple free energy from the protons to directed electron motion. This results in an asymmetric tail antiparallel to the magnetic field. We focus on obliquely propagating modes excited by energetic ions, whose ring-beam distribution is motivated by population inversions related to ion cyclotron emission, in a background plasma with a temperature similar to that of the core of a large tokamak plasma. A fully self-consistent electromagnetic relativistic PIC code representing all vector field quantities and particle velocities in three dimensions as functions of a single spatial dimension is used to model this situation, by evolving the initial antiparallel travelling ring-beam distribution of 3 MeV protons in a background 10 keV Maxwellian deuterium plasma with realistic ion-electron mass ratio. These simulations provide a proof-of-principle for a key plasma physics process that may be exploited in future alpha channelling scenarios for magnetically confined burning plasmas.

  10. A Toroidally Symmetric Plasma Simulation code for design of position and shape control on tokamak plasmas

    International Nuclear Information System (INIS)

    Takase, Haruhiko; Senda, Ikuo

    1999-01-01

    A Toroidally Symmetric Plasma Simulation (TSPS) code has been developed for investigating the position and shape control on tokamak plasmas. The analyses of three-dimensional eddy currents on the conducting components around the plasma and the two-dimensional magneto-hydrodynamic (MHD) equilibrium are taken into account in this code. The code can analyze the plasma position and shape control during the minor disruption in which the deformation of plasma is not negligible. Using the ITER (International Thermonuclear Experimental Reactor) parameters, some examples of calculations are shown in this paper. (author)

  11. Auxiliary plasma heating and fueling models for use in particle simulation codes

    International Nuclear Information System (INIS)

    Procassini, R.J.; Cohen, B.I.

    1989-01-01

    Computational models of a radiofrequency (RF) heating system and neutral-beam injector are presented. These physics packages, when incorporated into a particle simulation code allow one to simulate the auxiliary heating and fueling of fusion plasmas. The RF-heating package is based upon a quasilinear diffusion equation which describes the slow evolution of the heated particle distribution. The neutral-beam injector package models the charge exchange and impact ionization processes which transfer energy and particles from the beam to the background plasma. Particle simulations of an RF-heated and a neutral-beam-heated simple-mirror plasma are presented. 8 refs., 5 figs

  12. Plasma conditions for non-Maxwellian electron distributions in high current discharges and laser-produced plasmas

    International Nuclear Information System (INIS)

    Whitney, K.G.; Pulsifer, P.E.

    1993-01-01

    Results from the standard quasilinear theory of ion-acoustic and Langmuir plasma microturbulence are incorporated into the kinetic theory of the electron distribution function. The theory is then applied to high current discharges and laser-produced plasmas, where either the current flow or the nonlinear laser-light absorption acts, respectively, as the energy source for the microturbulence. More specifically, the theory is applied to a selenium plasma, whose charge state is determined under conditions of collisional-radiative equilibrium, and plasma conditions are found under which microturbulence strongly influences the electron kinetics. In selenium, we show that this influence extends over a wide range of plasma conditions. For ion-acoustic turbulence, a criterion is derived, analogous to one previously obtained for laser heated plasmas, that predicts when Ohmic heating dominates over electron-electron collisions. This dominance leads to the generation of electron distributions with reduced high-energy tails relative to a Maxwellian distribution of the same temperature. Ion-acoustic turbulence lowers the current requirements needed to generate these distributions. When the laser heating criterion is rederived with ion-acoustic turbulence included in the theory, a similar reduction in the laser intensity needed to produce non-Maxwellian distributions is found. Thus we show that ion-acoustic turbulence uniformly (i.e., by the same numerical factor) reduces the electrical and heat conductivities, as well as the current (squared) and laser intensity levels needed to drive the plasma into non-Maxwellian states

  13. The numerical simulation of plasma flow in cylindrical resonant cavity of microwave plasma thruster

    International Nuclear Information System (INIS)

    Tang, J.-L.; He, H.-Q; Mao, G.-W.

    2004-01-01

    Microwave Plasma Thruster (MPT) is an electro-thermal propulsive device. MPT consists of microwave generator, gas storing and supplying system, resonant cavity and accelerative nozzle. It generates free-floating plasma brought by the microwave discharge breakdown gas in the resonant cavity, and the plasma exhausted from nozzle produces thrust. MPT has prospective application in spacecraft because of its advantages of high thrust, moderate specific impulse and high efficiency. In this paper, the numerical simulation of the coupling flow field of microwave plasma in resonant cavity under different frequencies will be discussed. The results of numerical simulation are as follows: 1) When the resonant model TM 011 was used, the higher the microwave frequency was, the smaller the size of MPT. The distribution of the electromagnetic field in small cavity, however, remain unchanged. 2) When the resonant model was used, the distribution of the temperature, the pressure and the electronic density in the resonant cavity remained unchanged under different resonant frequencies. 3) When the resonant frequency was increased with a fixed pressure distribution in a small cavity, compare to the MPT with lower frequency, the gas flow rate, the microwave power and the nozzle throat diameter of MPT all decreased. 4) The electromagnetic field in the cylindrical resonant cavity for all MPT with different frequencies was disturbed by the plasma formation. The strong disturbance happened in the region close to the plasma. (author)

  14. Continuation of the Application of Parallel PIC Simulations to Laser and Electron Transport Through Plasmas Under Conditions Relevant to ICF and SBSS

    International Nuclear Information System (INIS)

    Warren B Mori

    2007-01-01

    In 2006/2007 we continued to study several issues related to underdense laser-plasma interactions. We have been studying the onset and saturation of Raman backscatter for NIF conditions, nonlinear plasma oscillations, and the two-plasmon decay instability

  15. Integral simulation of the creation and expansion of a transonic argon plasma

    International Nuclear Information System (INIS)

    Peerenboom, K S C; Goedheer, W J; Van Dijk, J; Van der Mullen, J J A M

    2010-01-01

    A transonic argon plasma is studied in an integral simulation where both the plasma creation and expansion are incorporated in the same model. This integral approach allows for simulation of expanding plasmas where the Mach number is not known a priori. Results of this integral simulation are validated with semi-analytical models. Inside the creation region the results for the electron temperature, the heavy particle temperature and the electron density are compared with a global model of the creation region. In the expansion region, the simulation results of the compressible flow field are compared with predictions for the shock position. Both the results inside the creation region as well as in the expansion region are in good agreement with the semi-analytical models.

  16. Numerical simulation of cathode plasma dynamics in magnetically insulated vacuum transmission lines

    International Nuclear Information System (INIS)

    Thoma, C.; Genoni, T. C.; Welch, D. R.; Rose, D. V.; Clark, R. E.; Miller, C. L.; Stygar, W. A.; Kiefer, M. L.

    2015-01-01

    A novel algorithm for the simulation of cathode plasmas in particle-in-cell codes is described and applied to investigate cathode plasma evolution in magnetically insulated transmission lines (MITLs). The MITL electron sheath is modeled by a fully kinetic electron species. Electron and ion macroparticles, both modeled as fluid species, form a dense plasma which is initially localized at the cathode surface. Energetic plasma electron particles can be converted to kinetic electrons to resupply the electron flux at the plasma edge (the “effective” cathode). Using this model, we compare results for the time evolution of the cathode plasma and MITL electron flow with a simplified (isothermal) diffusion model. Simulations in 1D show a slow diffusive expansion of the plasma from the cathode surface. But in multiple dimensions, the plasma can expand much more rapidly due to anomalous diffusion caused by an instability due to the strong coupling of a transverse magnetic mode in the electron sheath with the expanding resistive plasma layer

  17. Field simulation of axisymmetric plasma screw pinches by alternating-direction-implicit methods

    International Nuclear Information System (INIS)

    Lambert, M.A.

    1996-06-01

    An axisymmetric plasma screw pinch is an axisymmetric column of ionized gaseous plasma radially confined by forces from axial and azimuthal currents driven in the plasma and its surroundings. This dissertation is a contribution to detailed, high resolution computer simulation of dynamic plasma screw pinches in 2-d rz-coordinates. The simulation algorithm combines electron fluid and particle-in-cell (PIC) ion models to represent the plasma in a hybrid fashion. The plasma is assumed to be quasineutral; along with the Darwin approximation to the Maxwell equations, this implies application of Ampere's law without displacement current. Electron inertia is assumed negligible so that advective terms in the electron momentum equation are ignored. Electrons and ions have separate scalar temperatures, and a scalar plasma electrical resistivity is assumed. Altemating-direction-implicit (ADI) methods are used to advance the electron fluid drift velocity and the magnetic fields in the simulation. The ADI methods allow time steps larger than allowed by explicit methods. Spatial regions where vacuum field equations have validity are determined by a cutoff density that invokes the quasineutral vacuum Maxwell equations (Darwin approximation). In this dissertation, the algorithm was first checked against ideal MM stability theory, and agreement was nicely demonstrated. However, such agreement is not a new contribution to the research field. Contributions to the research field include new treatments of the fields in vacuum regions of the pinch simulation. The new treatments predict a level of magnetohydrodynamic turbulence near the bulk plasma surface that is higher than predicted by other methods

  18. Propagation of localized structures in relativistic magnetized electron-positron plasmas using particle-in-cell simulations

    Energy Technology Data Exchange (ETDEWEB)

    López, Rodrigo A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción 4070386 (Chile); Muñoz, Víctor [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Viñas, Adolfo F. [Geospace Physics Laboratory, Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Valdivia, Juan A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA), Santiago 9170124 (Chile)

    2015-09-15

    We use a particle-in-cell simulation to study the propagation of localized structures in a magnetized electron-positron plasma with relativistic finite temperature. We use as initial condition for the simulation an envelope soliton solution of the nonlinear Schrödinger equation, derived from the relativistic two fluid equations in the strongly magnetized limit. This envelope soliton turns out not to be a stable solution for the simulation and splits in two localized structures propagating in opposite directions. However, these two localized structures exhibit a soliton-like behavior, as they keep their profile after they collide with each other due to the periodic boundary conditions. We also observe the formation of localized structures in the evolution of a spatially uniform circularly polarized Alfvén wave. In both cases, the localized structures propagate with an amplitude independent velocity.

  19. Propagation of localized structures in relativistic magnetized electron-positron plasmas using particle-in-cell simulations

    International Nuclear Information System (INIS)

    López, Rodrigo A.; Muñoz, Víctor; Viñas, Adolfo F.; Valdivia, Juan A.

    2015-01-01

    We use a particle-in-cell simulation to study the propagation of localized structures in a magnetized electron-positron plasma with relativistic finite temperature. We use as initial condition for the simulation an envelope soliton solution of the nonlinear Schrödinger equation, derived from the relativistic two fluid equations in the strongly magnetized limit. This envelope soliton turns out not to be a stable solution for the simulation and splits in two localized structures propagating in opposite directions. However, these two localized structures exhibit a soliton-like behavior, as they keep their profile after they collide with each other due to the periodic boundary conditions. We also observe the formation of localized structures in the evolution of a spatially uniform circularly polarized Alfvén wave. In both cases, the localized structures propagate with an amplitude independent velocity

  20. 3D hybrid simulation of the Titan's plasma environment

    Science.gov (United States)

    Lipatov, Alexander; Sittler, Edward, Jr.; Hartle, Richard

    2007-11-01

    Titan plays an important role as a simulation laboratory for multiscale kinetic plasma processes which are key processes in space and laboratory plasmas. A development of multiscale combined numerical methods allows us to use more realistic plasma models at Titan. In this report, we describe a Particle-Ion--Fluid-Ion--Fluid--Electron method of kinetic ion-neutral simulation code. This method takes into account charge-exchange and photoionization processes. The model of atmosphere of Titan was based on a paper by Sittler, Hartle, Vinas et al., [2005]. The background ions H^+, O^+ and pickup ions H2^+, CH4^+ and N2^+ are described in a kinetic approximation, where the electrons are approximated as a fluid. In this report we study the coupling between background ions and pickup ions on the multiple space scales determined by the ion gyroradiis. The first results of such a simulation of the dynamics of ions near Titan are discussed in this report and compared with recent measurements made by the Cassini Plasma Spectrometer (CAPS, [Hartle, Sittler et al., 2006]). E C Sittler Jr., R E Hartle, A F Vinas, R E Johnson, H T Smith and I Mueller-Wodarg, J. Geophys. Res., 110, A09302, 2005.R E Hartle, E C Sittler, F M Neubauer, R E Johnson, et al., Planet. Space Sci., 54, 1211, 2006.

  1. Harmonic effects on ion-bulk waves and simulation of stimulated ion-bulk-wave scattering in CH plasmas

    Science.gov (United States)

    Feng, Q. S.; Zheng, C. Y.; Liu, Z. J.; Cao, L. H.; Xiao, C. Z.; Wang, Q.; Zhang, H. C.; He, X. T.

    2017-08-01

    Ion-bulk (IBk) wave, a novel branch with a phase velocity close to the ion’s thermal velocity, discovered by Valentini et al (2011 Plasma Phys. Control. Fusion 53 105017), is recently considered as an important electrostatic activity in solar wind, and thus of great interest to space physics and also inertial confinement fusion. The harmonic effects on IBk waves has been researched by Vlasov simulation for the first time. The condition of excitation of the large-amplitude IBk waves is given. The nature of nonlinear IBk waves in the condition of kFeng scattering (SFS) has been proposed and also verified by Vlasov-Maxwell code. In CH plasmas, in addition to the stimulated Brillouin scattering from multi ion-acoustic waves, there exists SIBS simultaneously. This research gives an insight into the SIBS in the field of laser plasma interaction.

  2. One-dimensional hybrid-direct kinetic simulation of the discharge plasma in a Hall thruster

    International Nuclear Information System (INIS)

    Hara, Kentaro; Boyd, Iain D.; Kolobov, Vladimir I.

    2012-01-01

    In order to model the non-equilibrium plasma within the discharge region of a Hall thruster, the velocity distribution functions (VDFs) must be obtained accurately. A direct kinetic (DK) simulation method that directly solves the plasma Boltzmann equation can achieve better resolution of VDFs in comparison to particle simulations, such as the particle-in-cell (PIC) method that inherently include statistical noise. In this paper, a one-dimensional hybrid-DK simulation, which uses a DK simulation for heavy species and a fluid model for electrons, is developed and compared to a hybrid-PIC simulation. Time-averaged results obtained from the hybrid-DK simulation are in good agreement with hybrid-PIC results and experimental data. It is shown from a comparison of using a kinetic simulation and solving the continuity equation that modeling of the neutral atoms plays an important role for simulations of the Hall thruster discharge plasma. In addition, low and high frequency plasma oscillations are observed. Although the kinetic nature of electrons is not resolved due to the use of a fluid model, the hybrid-DK model provides spatially and temporally well-resolved plasma properties and an improved resolution of VDFs for heavy species with less statistical noise in comparison to the hybrid-PIC method.

  3. Numerical simulation of a DC double anode arc plasma torch

    International Nuclear Information System (INIS)

    Chen Lunjiang; Tang Deli; Zhu Hailong

    2012-01-01

    A 2D axisymmetric numerical simulation of DC double anode plasma torch was done by the computational fluid dynamics (CFD) software FLUENT to improve the efficiency of the waste treatment, which is on the basis of the magnetic fluid dynamics (MHD) theory and uses the method of magnetic vector potential, and the simulation method is based on SIMPLE algorithm. The temperature and speed distributions of the plasma, and so on were obtained. The results show that the temperature of plasma decreases with increasing the axial distance, and increases with increasing the amplitude of the arc current. The velocity first increases and then decreases with the axial distance increase, and increase with the arc current increase. The temperature and the speed at the export of the plasma torch both decrease when the radial distance increases. Those results are in agreement with the experimental results. (authors)

  4. Behaviour of plasma spray coatings under disruption simulation

    International Nuclear Information System (INIS)

    Brossa, F.; Rigon, G.; Looman, B.

    1988-01-01

    The behaviour of metallic and ceramic protective coatings under disruption simulations was studied correlating the damage with their physical and structural parameters. Plasma Spray (PS) and Vacuum Plasma Spray (VPS) were the techniques used for the production of the coatings. W-5% Re was selected for divertor plates, and TiC, TiO 2 , Al 2 O 3 , low-Z ceramic materials for the first wall protection on 316 SS, Cu and Al as substrates. An electron beam gun was used to simulate the plasma disruptions. The tests were carried out from 0.6 to 6 MJ/m 2 . The thermal effects were studied by metallographic and EDXA analysis. The damage was observed comparing the degree of protection provided by each coating to discover the minimum thickness necessary to prevent the underlying material from melting. Good protective coatings must have a high melting point, great porosity and low thermal conductivity. Such coatings act as thermal barriers, increasing the surface temperature and radiating back large parts of the energy. (orig.)

  5. Simulating the effects of plasma disruption with a 1 MA current pulse in a coaxial test fixture

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1985-01-01

    A test fixture for simulating plasma disruptions, comprising two coaxial cylinders, has been designed for use with Argonne's electromagnetic test facility FELIX. A pulsed power supply drives a half cycle sine wave current of 10 0 A through the test fixture generating fields of -1 . The coaxial structure is 140 cm long, has an outer cylinder with an OD of 78 cm and an inner cylinder with an OD of 8.3 cm. It is surrounded by the FELIX solenoid field of 1 T. This proposed upgrade of the FELIX facility should be useful for testing the effect of plasma disruption on First Wall-Blanket-Shield (FWBS) structures; a future upgrade of the solenoid field to 4 T will allow to simulate reactor conditions even better

  6. Simulating the effects of plasma disruption with A 1 MA current pulse in a coaxial test fixture

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1985-01-01

    A test fixture for simulating plasma disruptions, comprising two coaxial cylinders, has been designed for use with Argonne's electromagnetic test facility FELIX. A pulsed power supply drives a half cycle sine wave current of 10 0 A through the test fixture generating fields of -1 . The coaxial structure is 140 cm long, has an outer cylinder with an OD of 78 cm and an inner cylinder with an OD of 8.3 cm. It is surrounded by the FELIX solenoid field of 1 T. This proposed upgrade of the FELIX facility should be useful for testing the effect of plasma disruption on First Wall-Blanket-Shield (FWBS) structures; a future upgrade of the solenoid field to 4 T will allow to simulate reactor conditions even better

  7. Three-fluid magnetohydrodynamical simulation of plasma focus discharges

    International Nuclear Information System (INIS)

    Behler, K.; Bruhns, H.

    1987-01-01

    A two-dimensional, three-fluid code based on the two-fluid Potter code [Methods in Computational Physics (Academic, New York, 1970), Vol. 9, p. 340] was developed for simulating the plasma focus discharge. With this code it is possible to treat the neutral gas in addition to the plasma components and to model the ionization and recombination phenomena. Thus the sheet dynamics in a plasma focus can be studied and effects investigated such as the occurrence of residual gas (or plasma) density behind the current sheet in the run-down phase. This is a prerequisite to the occurrence of leak currents, which are one of the causes limiting the performance of large plasma focus devices. It is shown that fast operating foci with small dimensions behave favorably compared with the ''classical'' Mather focus [Methods of Experimental Physics (Academic, New York, 1971), Vol. 9B, p. 187] with long coaxial electrodes

  8. Computer simulation of plasma turbulence in open systems

    International Nuclear Information System (INIS)

    Sigov, Yu.S.

    1982-01-01

    A short review of the results of kinetic simulation of collective phenomena in open plasma systems with the variable total energy and number of particles, i.e., the particle and energy fluxes on boundary surfaces and/or their internal sources and channels is given. Three specific problems are considered in different detail for such systems in one-dimensional geometry: the generation and evolution of double layers in a currently unstable plasma; the collisionless relaxation of strongly non-equilibrium electron distributions; the Langmuir collapse and strong electrostatic turbulence in systems with parametric excitation of a plasma by an external pumping wave and with cooling the fast non-Maxwell electrons. In all these cases the non-linearity and a collective character of processes give examples of new dissipative plasma structures that essentially widen our idea about the nature of the plasma turbulence in non-homogeneous open systems. (Auth.)

  9. Propagation Diagnostic Simulations Using High-Resolution Equatorial Plasma Bubble Simulations

    Science.gov (United States)

    Rino, C. L.; Carrano, C. S.; Yokoyama, T.

    2017-12-01

    In a recent paper, under review, equatorial-plasma-bubble (EPB) simulations were used to conduct a comparative analysis of the EPB spectra characteristics with high-resolution in-situ measurements from the C/NOFS satellite. EPB realizations sampled in planes perpendicular to magnetic field lines provided well-defined EPB structure at altitudes penetrating both high and low-density regions. The average C/NOFS structure in highly disturbed regions showed nearly identical two-component inverse-power-law spectral characteristics as the measured EPB structure. This paper describes the results of PWE simulations using the same two-dimensional cross-field EPB realizations. New Irregularity Parameter Estimation (IPE) diagnostics, which are based on two-dimensional equivalent-phase-screen theory [A theory of scintillation for two-component power law irregularity spectra: Overview and numerical results, by Charles Carrano and Charles Rino, DOI: 10.1002/2015RS005903], have been successfully applied to extract two-component inverse-power-law parameters from measured intensity spectra. The EPB simulations [Low and Midlatitude Ionospheric Plasma DensityIrregularities and Their Effects on Geomagnetic Field, by Tatsuhiro Yokoyama and Claudia Stolle, DOI 10.1007/s11214-016-0295-7] have sufficient resolution to populate the structure scales (tens of km to hundreds of meters) that cause strong scintillation at GPS frequencies. The simulations provide an ideal geometry whereby the ramifications of varying structure along the propagation path can be investigated. It is well known path-integrated one-dimensional spectra increase the one-dimensional index by one. The relation requires decorrelation along the propagation path. Correlated structure would be interpreted as stochastic total-electron-content (TEC). The simulations are performed with unmodified structure. Because the EPB structure is confined to the central region of the sample planes, edge effects are minimized. Consequently

  10. Oxidation of laser-induced plasma species in different background conditions

    Science.gov (United States)

    Bator, Matthias; Schneider, Christof W.; Lippert, Thomas; Wokaun, Alexander

    2013-08-01

    The evolution of Lu and LuO species in a laser ablation plasma from different targets has been investigated by simultaneously performing mass spectrometry and plasma imaging. Ablation was achieved with a 248 nm KrF laser from a Lu, a Lu2O5 and a LuMnO3 target under different background gas conditions. Mass spectrometry measurements show very similar intensities and ratios for the respective species for all three targets under the same ablation conditions. This indicates only a small influence of the target on the final Lu and LuO contents in the plasma, with the major influence coming from collisions with the background gas. Furthermore, spatially, timely and spectrally resolved plasma imaging was utilized to clearly identify the shockwave at the plasma front as the main region for Lu oxidation. A strong decrease of Lu intensities together with a directly correlated increase of LuO was observed toward the outer regions of the plasma.

  11. PIC simulation of electron acceleration in an underdense plasma

    Directory of Open Access Journals (Sweden)

    S Darvish Molla

    2011-06-01

    Full Text Available One of the interesting Laser-Plasma phenomena, when the laser power is high and ultra intense, is the generation of large amplitude plasma waves (Wakefield and electron acceleration. An intense electromagnetic laser pulse can create plasma oscillations through the action of the nonlinear pondermotive force. electrons trapped in the wake can be accelerated to high energies, more than 1 TW. Of the wide variety of methods for generating a regular electric field in plasmas with strong laser radiation, the most attractive one at the present time is the scheme of the Laser Wake Field Accelerator (LWFA. In this method, a strong Langmuir wave is excited in the plasma. In such a wave, electrons are trapped and can acquire relativistic energies, accelerated to high energies. In this paper the PIC simulation of wakefield generation and electron acceleration in an underdense plasma with a short ultra intense laser pulse is discussed. 2D electromagnetic PIC code is written by FORTRAN 90, are developed, and the propagation of different electromagnetic waves in vacuum and plasma is shown. Next, the accuracy of implementation of 2D electromagnetic code is verified, making it relativistic and simulating the generating of wakefield and electron acceleration in an underdense plasma. It is shown that when a symmetric electromagnetic pulse passes through the plasma, the longitudinal field generated in plasma, at the back of the pulse, is weaker than the one due to an asymmetric electromagnetic pulse, and thus the electrons acquire less energy. About the asymmetric pulse, when front part of the pulse has smaller time rise than the back part of the pulse, a stronger wakefield generates, in plasma, at the back of the pulse, and consequently the electrons acquire more energy. In an inverse case, when the rise time of the back part of the pulse is bigger in comparison with that of the back part, a weaker wakefield generates and this leads to the fact that the electrons

  12. A methodology for the rigorous verification of plasma simulation codes

    Science.gov (United States)

    Riva, Fabio

    2016-10-01

    The methodology used to assess the reliability of numerical simulation codes constitutes the Verification and Validation (V&V) procedure. V&V is composed by two separate tasks: the verification, which is a mathematical issue targeted to assess that the physical model is correctly solved, and the validation, which determines the consistency of the code results, and therefore of the physical model, with experimental data. In the present talk we focus our attention on the verification, which in turn is composed by the code verification, targeted to assess that a physical model is correctly implemented in a simulation code, and the solution verification, that quantifies the numerical error affecting a simulation. Bridging the gap between plasma physics and other scientific domains, we introduced for the first time in our domain a rigorous methodology for the code verification, based on the method of manufactured solutions, as well as a solution verification based on the Richardson extrapolation. This methodology was applied to GBS, a three-dimensional fluid code based on a finite difference scheme, used to investigate the plasma turbulence in basic plasma physics experiments and in the tokamak scrape-off layer. Overcoming the difficulty of dealing with a numerical method intrinsically affected by statistical noise, we have now generalized the rigorous verification methodology to simulation codes based on the particle-in-cell algorithm, which are employed to solve Vlasov equation in the investigation of a number of plasma physics phenomena.

  13. Anthem simulation studies of the plasma opening switch

    International Nuclear Information System (INIS)

    Mason, R.J.

    1993-01-01

    For a deeper understanding of the physical processes governing the Plasma Opening Switch (POS) the authors use the ANTHEM 2D implicit simulation code to study: (1) ion dynamical effects on electrohydrodynamic (EHD) waves propagating along steep density interfaces in the switch plasmas. At radial interfaces where the density jumps toward the anode, these waves can drive a finger of magnetic field into the plasma toward the load. Ion dynamics can open the rear of such fingers into a wedge-like density gap. Then: (2) they examine ion effects in uniform switch plasmas. These first develop potential hill structures at the drive edge of the cathode from the competition between electron velocity advection and EHD magnetic exclusion waves. Magnetic pressure gradients at the hill periphery and EHD effects then establish a density gap propagating along the cathode with radial electron emission from its tip. Similar results are obtained under both multi-fluid and PIC modeling on the plasma components

  14. Turbulent transport modeling in the edge plasma of tokamaks: verification, validation, simulation and synthetic diagnostics

    International Nuclear Information System (INIS)

    Colin-Bellot, Clothilde

    2015-01-01

    The possibility to produce power by using magnetically confined fusion is a scientific and technological challenge. The perspective of ITER conveys strong signals to intensify modeling effort on magnetized fusion plasmas. The success of the fusion operation is conditioned by the quality of plasma confinement in the core of the reactor and by the control of plasma exhaust on the wall. Both phenomena are related to turbulent cross-field transport that is at the heart of the notion of magnetic confinement studies, particle and heat losses. The study of edge phenomena is therefore complicated by a particularly complex magnetic geometry.This calls for an improvement of our capacity to develop numerical tools able to reproduce turbulent transport properties reliable to predict particle and energy fluxes on the plasma facing components. This thesis introduces the TOKAM3X fluid model to simulate edge plasma turbulence. A special focus is made on the code Verification and the Validation. It is a necessary step before using a code as a predictive tool. Then new insights on physical properties of the edge plasma turbulence are explored. In particular, the poloidal asymmetries induced by turbulence and observed experimentally in the Low-Field-Side of the devices are investigated in details. Great care is dedicated to the reproduction of the MISTRAL base case which consists in changing the magnetic configuration and observing the impact on parallel flows in the poloidal plane. The simulations recover experimental measurements and provide new insights on the effect of the plasma-wall contact position location on the turbulent features, which were not accessible in experiments. (author) [fr

  15. Rotating structures in low temperature magnetized plasmas - Insight from particle simulations

    Directory of Open Access Journals (Sweden)

    Jean-Pierre eBoeuf

    2014-12-01

    Full Text Available The EXB configuration of various low temperature plasma devices is often responsible for the formation of rotating structures and instabilities leading to anomalous electron transport across the magnetic field. In these devices, electrons are strongly magnetized while ions are weakly or not magnetized and this leads to specific physical phenomena that are not present in fusion plasmas where both electrons and ions are strongly magnetized. In this paper we describe basic phenomena involving rotating plasma structures in simple configurations of low temperature EXB plasma devices on the basis of PIC-MCC (Particle-In-Cell Monte Carlo Collisions simulations. We focus on three examples: rotating electron vortices and rotating spokes in cylindrical magnetrons, and azimuthal electron-cyclotron drift instability in Hall thrusters. The simulations are not intended to give definite answers to the many physics issues related to low temperature EXB plasma devices but are used to illustrate and discuss some of the basic questions that need further studies.

  16. Fast Waves Mode Conversion and Energy Deposition in Simulated, Pre-Heated, Neoclassical, Tight Aspect Ratio Tokamak Plasmas

    International Nuclear Information System (INIS)

    Bruma, C.; Cuperman, S.; Komoshvili, K.

    1999-01-01

    Some basic aspects of wave-plasma interaction of interest for tight aspect ratio spherical tokamaks are investigated theoretically. The following scenario is considered: A. Fast magnetosonic waves are launched by an external antenna into a simulated spherical Tokamak plasma; these waves are converted to Alfven waves at points (layer) satisfying the Alfven resonance condition. B. The simulated spherical tokamaks-plasma has a circular cross-section and toroidicity effects are simulated by Grad-Shafranov type, radially dependent axial magnetic field and its shear. (J. Actual equilibrium profiles (magnetic field, pressure and current) observed in the low field side (LFS) of spherical tokamaks (viz., START at Culham, UK) are used. D. The study is based on the numerical solution of the full e.m. wave equation which includes a quite general resistive MHD dielectric tensor, with consideration of equilibrium current and neoclassical effects. Two kinds of results will be presented: I. Proofs validating the computational algorithm used and including convergence and energy conservation. II. Exact quantitative results concerning (i) the structure and space dependence of the mode-converted Alfven waves and (ii) the basic features of the deposited p over . The dependence of the results on the launched wave characteristics (wave numbers, frequency and intensity) as well as on those of the equilibrium plasma (equilibrium current, neoclassical resistivity and electron inertia) will be discussed

  17. Plasma environment of Titan: a 3-D hybrid simulation study

    Directory of Open Access Journals (Sweden)

    S. Simon

    2006-05-01

    Full Text Available Titan possesses a dense atmosphere, consisting mainly of molecular nitrogen. Titan's orbit is located within the Saturnian magnetosphere most of the time, where the corotating plasma flow is super-Alfvénic, yet subsonic and submagnetosonic. Since Titan does not possess a significant intrinsic magnetic field, the incident plasma interacts directly with the atmosphere and ionosphere. Due to the characteristic length scales of the interaction region being comparable to the ion gyroradii in the vicinity of Titan, magnetohydrodynamic models can only offer a rough description of Titan's interaction with the corotating magnetospheric plasma flow. For this reason, Titan's plasma environment has been studied by using a 3-D hybrid simulation code, treating the electrons as a massless, charge-neutralizing fluid, whereas a completely kinetic approach is used to cover ion dynamics. The calculations are performed on a curvilinear simulation grid which is adapted to the spherical geometry of the obstacle. In the model, Titan's dayside ionosphere is mainly generated by solar UV radiation; hence, the local ion production rate depends on the solar zenith angle. Because the Titan interaction features the possibility of having the densest ionosphere located on a face not aligned with the ram flow of the magnetospheric plasma, a variety of different scenarios can be studied. The simulations show the formation of a strong magnetic draping pattern and an extended pick-up region, being highly asymmetric with respect to the direction of the convective electric field. In general, the mechanism giving rise to these structures exhibits similarities to the interaction of the ionospheres of Mars and Venus with the supersonic solar wind. The simulation results are in agreement with data from recent Cassini flybys.

  18. Plasma environment of Titan: a 3-D hybrid simulation study

    Directory of Open Access Journals (Sweden)

    S. Simon

    2006-05-01

    Full Text Available Titan possesses a dense atmosphere, consisting mainly of molecular nitrogen. Titan's orbit is located within the Saturnian magnetosphere most of the time, where the corotating plasma flow is super-Alfvénic, yet subsonic and submagnetosonic. Since Titan does not possess a significant intrinsic magnetic field, the incident plasma interacts directly with the atmosphere and ionosphere. Due to the characteristic length scales of the interaction region being comparable to the ion gyroradii in the vicinity of Titan, magnetohydrodynamic models can only offer a rough description of Titan's interaction with the corotating magnetospheric plasma flow. For this reason, Titan's plasma environment has been studied by using a 3-D hybrid simulation code, treating the electrons as a massless, charge-neutralizing fluid, whereas a completely kinetic approach is used to cover ion dynamics. The calculations are performed on a curvilinear simulation grid which is adapted to the spherical geometry of the obstacle. In the model, Titan's dayside ionosphere is mainly generated by solar UV radiation; hence, the local ion production rate depends on the solar zenith angle. Because the Titan interaction features the possibility of having the densest ionosphere located on a face not aligned with the ram flow of the magnetospheric plasma, a variety of different scenarios can be studied. The simulations show the formation of a strong magnetic draping pattern and an extended pick-up region, being highly asymmetric with respect to the direction of the convective electric field. In general, the mechanism giving rise to these structures exhibits similarities to the interaction of the ionospheres of Mars and Venus with the supersonic solar wind. The simulation results are in agreement with data from recent Cassini flybys.

  19. Visualization of intermittent blobby plasma transport in attached and detached plasmas of the NAGDIS-II

    International Nuclear Information System (INIS)

    Ohno, Noriyasu; Furuta, Katsuhiro; Takamura, Shuichi

    2004-01-01

    We investigated the intermittent convective plasma transport in a attached and/or detached plasma condition of the linear divertor plasma simulator, NAGDIS-II. Images taken by a fast-imaging camera clearly show that in attached plasmas, blobs are peeled off the bulk plasma, and propagate outward with an azimuthal motion. In detached plasmas, plasma turbulence observed near the plasma recombining region drives strong intermittent radial plasma transport, which could broaden the radial density profile. (author)

  20. Particle-in-cell simulations of electron transport from plasma turbulence: recent progress in gyrokinetic particle simulations of turbulent plasmas

    International Nuclear Information System (INIS)

    Lin, Z; Rewoldt, G; Ethier, S; Hahm, T S; Lee, W W; Lewandowski, J L V; Nishimura, Y; Wang, W X

    2005-01-01

    Recent progress in gyrokinetic particle-in-cell simulations of turbulent plasmas using the gyrokinetic toroidal code (GTC) is surveyed. In particular, recent results for electron temperature gradient (ETG) modes and their resulting transport are presented. Also, turbulence spreading, and the effects of the parallel nonlinearity, are described. The GTC code has also been generalized for non-circular plasma cross-section, and initial results are presented. In addition, two distinct methods of generalizing the GTC code to be electromagnetic are described, along with preliminary results. Finally, a related code, GTC-Neo, for calculating neoclassical fluxes, electric fields, and velocities, are described

  1. Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications

    CERN Multimedia

    2005-01-01

    Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications

  2. Conditions for sustaining low-pressure plasma columns by travelling electromagnetic UHF waves

    International Nuclear Information System (INIS)

    Benova, E.; Zhelyazkov, I.

    1997-01-01

    The paper considers the conditions for sustaining low-pressure plasma columns by travelling electromagnetic waves in symmetric and dipolar modes, respectively. The treatment is fully electrodynamic. It is shown that the wave energy flux along the plasma column determines the conditions for sustaining the discharge. In particular as the plasma is sustained by a symmetric wave whose flux depends mainly on the radial distribution of the wave electric field whilst for a dipolar wave sustained plasma the flux is specified by the magnitude of the axial wave field component at the plasma-dielectric interface. (orig.)

  3. Implicit multi-fluid simulation of interpenetrating plasmas

    International Nuclear Information System (INIS)

    Rambo, P.W.; Denavit, J.

    1992-01-01

    A one dimensional simulation code for interpenetrating multi-component plasmas is presented. Separate fluid equations for multiple species and the Poisson equation for the electric field are solved implicitly to allow stable accurate solutions over a wide range of the time scale parameters ω p Δt and ν c Δt (ω p is the plasma frequency, ν c a typical collision frequency and Δt the time step). In regions where ω p Δt c Δt p Δt >>1 and/or ν c Δt>>1, the ambipolar and/or diffusion models are recovered. In regions of low collisionality, particles may be created and deleted which are followed using particle and cell techniques combined with scatter and drag due to collisions with the fluids. Applications of this code to interpenetrating laser generated plasmas are presented

  4. Plasma boundaries at Mars: a 3-D simulation study

    Directory of Open Access Journals (Sweden)

    A. Bößwetter

    2004-12-01

    Full Text Available The interaction of the solar wind with the ionosphere of planet Mars is studied using a three-dimensional hybrid model. Mars has only a weak intrinsic magnetic field, and consequently its ionosphere is directly affected by the solar wind. The gyroradii of the solar wind protons are in the range of several hundred kilometers and therefore comparable with the characteristic scales of the interaction region. Different boundaries emerge from the interaction of the solar wind with the continuously produced ionospheric heavy-ion plasma, which could be identified as a bow shock (BS, ion composition boundary (ICB and magnetic pile up boundary (MPB, where the latter both turn out to coincide. The simulation results regarding the shape and position of these boundaries are in good agreement with the measurements made by Phobos-2 and MGS spacecraft. It is shown that the positions of these boundaries depend essentially on the ionospheric production rate, the solar wind ram pressure, and the often unconsidered electron temperature of the ionospheric heavy ion plasma. Other consequences are rays of planetary plasma in the tail and heavy ion plasma clouds, which are stripped off from the dayside ICB region by some instability.

    Key words. Magnetospheric physics (solar wind interactions with unmagnetized bodies – Space plasma physics (discontinuities; numerical simulation studies

  5. Relativistic modeling capabilities in PERSEUS extended MHD simulation code for HED plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hamlin, Nathaniel D., E-mail: nh322@cornell.edu [438 Rhodes Hall, Cornell University, Ithaca, NY, 14853 (United States); Seyler, Charles E., E-mail: ces7@cornell.edu [Cornell University, Ithaca, NY, 14853 (United States)

    2014-12-15

    We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest hybrid X-pinch simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as X-pinches and laser-plasma interactions. By suitable formulation of the relativistic generalized Ohm’s law as an evolution equation, we have reduced the recovery of primitive variables, a major technical challenge in relativistic codes, to a straightforward algebraic computation. Our code recovers expected results in the non-relativistic limit, and reveals new physics in the modeling of electron beam acceleration following an X-pinch. Through the use of a relaxation scheme, relativistic PERSEUS is able to handle nine orders of magnitude in density variation, making it the first fluid code, to our knowledge, that can simulate relativistic HED plasmas.

  6. GYRO Simulations of Core Momentum Transport in DIII-D and JET Plasmas

    International Nuclear Information System (INIS)

    Budny, R.V.; Candy, J.; Waltz, R.E.

    2005-01-01

    Momentum, energy, and particle transport in DIII-D and JET ELMy H-mode plasmas is simulated with GYRO and compared with measurements analyzed using TRANSP. The simulated transport depends sensitively on the nabla(T(sub)i) turbulence drive and the nabla(E(sub)r) turbulence suppression inputs. With their nominal values indicated by measurements, the simulations over-predict the momentum and energy transport in the DIII-D plasmas, and under-predict in the JET plasmas. Reducing |nabla(T(sub)i)| and increasing |nabla(E(sub)r)| by up to 15% leads to approximate agreement (within a factor of two) for the DIII-D cases. For the JET cases, increasing |nabla(T(sub)i)| or reducing |nabla(E(sub)r)| results in approximate agreement for the energy flow, but the ratio of the simulated energy and momentum flows remains higher than measurements by a factor of 2-4

  7. Kinetic simulation on collisional bounded plasma

    International Nuclear Information System (INIS)

    Zhu, S.P.; Sato, Tetsuya; Tomita, Yukihiro; Hatori, Tadatsugu

    1998-01-01

    A self-consistent kinetic simulation model on collisional bounded plasma is presented. The electric field is given by solving Poisson equation and collisions among particles (including charged particles and neutral particles) are included. The excitation and ionization of neutral particle, and recombination are also contained in the present model. The formation of potential structure near a boundary for a discharge system was used as an application of this model. (author)

  8. Numerical simulation of laser filamentation in underdense plasma

    International Nuclear Information System (INIS)

    Yu Lichun; Chen Zhihua; Tu Qinfen

    2000-01-01

    Developing process of filamentation and effect of characteristic parameters in underdense plasma have been studied using numerical simulation method. Production and development of two-dimensional cylinder filamentation instability were presented clearly. The results indicate incidence laser intensity and plasma background density are important factors affecting convergent intensity. At the same time, it was showed that different laser wavelength or different electron background density could affect filamentation process. The results are consistent with theory and experiments of alien reports. It can provide reference for restraining filamentation

  9. Kinetic plasma simulation of ion beam extraction from an ECR ion source

    International Nuclear Information System (INIS)

    Elliott, S.M.; White, E.K.; Simkin, J.

    2012-01-01

    Designing optimized ECR (electron cyclotron resonance) ion beam sources can be streamlined by the accurate simulation of beam optical properties in order to predict ion extraction behavior. The complexity of these models, however, can make PIC-based simulations time-consuming. In this paper, we first describe a simple kinetic plasma finite element simulation of extraction of a proton beam from a permanent magnet hexapole ECR ion source. Second, we analyze the influence of secondary electrons generated by ion collisions in the residual gas on the space charge of a proton beam of a dual-solenoid ECR ion source. The finite element method (FEM) offers a fast modeling environment, allowing analysis of ion beam behavior under conditions of varying current density, electrode potential, and gas pressure. The new version of SCALA/TOSCA v14 permits the making of simulations in tens of minutes to a few hours on standard computer platforms without the need of particle-in-cell methods. The paper is followed by the slides of the presentation. (authors)

  10. Hybrid Simulations of Plasma-Neutral-Dust Interactions at Enceladus

    International Nuclear Information System (INIS)

    Omidi, N.; Russell, C. T.; Jia, Y. D.; Tokar, R. L.; Farrell, W. M.; Kurth, W. S.; Gurnett, D. A.; Leisner, J. S.

    2010-01-01

    Through ejection from its southern hemisphere, Enceladus is a dominant source of neutral gas and dust in Saturn's inner magnetosphere. The interaction of the corotating plasma with the gas and dust modifies the plasma environment around Enceladus. We use 3-D hybrid (kinetic ions, fluid electrons) simulations to examine the effects of gas and dust on the nature of the interaction region and use Cassini observations to constrain their properties.

  11. Vlasov Simulation of Electrostatic Solitary Structures in Multi-Component Plasmas

    Science.gov (United States)

    Umeda, Takayuki; Ashour-Abdalla, Maha; Pickett, Jolene S.; Goldstein, Melvyn L.

    2012-01-01

    Electrostatic solitary structures have been observed in the Earth's magnetosheath by the Cluster spacecraft. Recent theoretical work has suggested that these solitary structures are modeled by electron acoustic solitary waves existing in a four-component plasma system consisting of core electrons, two counter-streaming electron beams, and one species of background ions. In this paper, the excitation of electron acoustic waves and the formation of solitary structures are studied by means of a one-dimensional electrostatic Vlasov simulation. The present result first shows that either electron acoustic solitary waves with negative potential or electron phase-space holes with positive potential are excited in four-component plasma systems. However, these electrostatic solitary structures have longer duration times and higher wave amplitudes than the solitary structures observed in the magnetosheath. The result indicates that a high-speed and small free energy source may be needed as a fifth component. An additional simulation of a five-component plasma consisting of a stable four-component plasma and a weak electron beam shows the generation of small and fast electron phase-space holes by the bump-on-tail instability. The physical properties of the small and fast electron phase-space holes are very similar to those obtained by the previous theoretical analysis. The amplitude and duration time of solitary structures in the simulation are also in agreement with the Cluster observation.

  12. LOMEGA: a low frequency, field implicit method for plasma simulation

    International Nuclear Information System (INIS)

    Barnes, D.C.; Kamimura, T.

    1982-04-01

    Field implicit methods for low frequency plasma simulation by the LOMEGA (Low OMEGA) codes are described. These implicit field methods may be combined with particle pushing algorithms using either Lorentz force or guiding center force models to study two-dimensional, magnetized, electrostatic plasmas. Numerical results for ωsub(e)deltat>>1 are described. (author)

  13. Progress of laser-plasma interaction simulations with the particle-in-cell code

    International Nuclear Information System (INIS)

    Sakagami, Hitoshi; Kishimoto, Yasuaki; Sentoku, Yasuhiko; Taguchi, Toshihiro

    2005-01-01

    As the laser-plasma interaction is a non-equilibrium, non-linear and relativistic phenomenon, we must introduce a microscopic method, namely, the relativistic electromagnetic PIC (Particle-In-Cell) simulation code. The PIC code requires a huge number of particles to validate simulation results, and its task is very computation-intensive. Thus simulation researches by the PIC code have been progressing along with advances in computer technology. Recently, parallel computers with tremendous computational power have become available, and thus we can perform three-dimensional PIC simulations for the laser-plasma interaction to investigate laser fusion. Some simulation results are shown with figures. We discuss a recent trend of large-scale PIC simulations that enable direct comparison between experimental facts and computational results. We also discharge/lightning simulations by the extended PIC code, which include various atomic and relaxation processes. (author)

  14. Equilibrium statistical mechanics of strongly coupled plasmas by numerical simulation

    International Nuclear Information System (INIS)

    DeWitt, H.E.

    1977-01-01

    Numerical experiments using the Monte Carlo method have led to systematic and accurate results for the thermodynamic properties of strongly coupled one-component plasmas and mixtures of two nuclear components. These talks are intended to summarize the results of Monte Carlo simulations from Paris and from Livermore. Simple analytic expressions for the equation of state and other thermodynamic functions have been obtained in which there is a clear distinction between a lattice-like static portion and a thermal portion. The thermal energy for the one-component plasma has a simple power dependence on temperature, (kT)/sup 3 / 4 /, that is identical to Monte Carlo results obtained for strongly coupled fluids governed by repulsive l/r/sup n/ potentials. For two-component plasmas the ion-sphere model is shown to accurately represent the static portion of the energy. Electron screening is included in the Monte Carlo simulations using linear response theory and the Lindhard dielectric function. Free energy expressions have been constructed for one and two component plasmas that allow easy computation of all thermodynamic functions

  15. Three-dimensional two-fluid Braginskii simulations of the large plasma device

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Dustin M., E-mail: dustin.m.fisher.gr@dartmouth.edu; Rogers, Barrett N., E-mail: barrett.rogers@dartmouth.edu [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Rossi, Giovanni D.; Guice, Daniel S.; Carter, Troy A. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)

    2015-09-15

    The Large Plasma Device (LAPD) is modeled using the 3D Global Braginskii Solver code. Comparisons to experimental measurements are made in the low-bias regime in which there is an intrinsic E × B rotation of the plasma. In the simulations, this rotation is caused primarily by sheath effects and may be a likely mechanism for the intrinsic rotation seen in LAPD. Simulations show strong qualitative agreement with the data, particularly the radial dependence of the density fluctuations, cross-correlation lengths, radial flux dependence outside of the cathode edge, and camera imagery. Kelvin Helmholtz (KH) turbulence at relatively large scales is the dominant driver of cross-field transport in these simulations with smaller-scale drift waves and sheath modes playing a secondary role. Plasma holes and blobs arising from KH vortices in the simulations are consistent with the scale sizes and overall appearance of those in LAPD camera images. The addition of ion-neutral collisions in the simulations at previously theorized values reduces the radial particle flux by about a factor of two, from values that are somewhat larger than the experimentally measured flux to values that are somewhat lower than the measurements. This reduction is due to a modest stabilizing contribution of the collisions on the KH-modes driving the turbulent transport.

  16. Simulation Study of an Extended Density DC Glow Toroidal Plasma Source

    International Nuclear Information System (INIS)

    Granda-Gutierrez, E. E.; Piedad-Beneitez, A. de la; Lopez-Callejas, R.; Godoy-Cabrera, O. G.; Benitez-Read, J. S.; Pacheco-Sotelo, J. O.; Pena-Eguiluz, R.; Mercado-Cabrera, A.; Valencia A, R.; Barocio, S. R.

    2006-01-01

    Conventional wisdom assigns the DC glow discharge regime to plasma currents below ∼500 mA values, beyond which the discharge falls into the anomalous glow and the turbulent arc regimes. However, we have found evidence that, during toroidal discharges, this barrier can be ostensibly extended up to 800 mA. Thus, a computer simulation has been applied to the evolution of the main electrical characteristics of such a glow discharge plasma in a toroidal vessel in order to design and construct a respective voltage/current controlled source. This should be able to generate a DC plasma in the glow regime with which currents in the range 10-3-100 A can be experimented and 109-1010 cm-3 plasma densities can be achieved to PIII optimization purposes. The plasma is modelled as a voltage-controlled current source able to be turned on whenever the breakdown voltage is reached across the gap between the anode and the vessel wall. The simulation outcome fits well our experimental measurements showing that the plasma current obeys power laws that are dependent on the power current and other control variables such as the gas pressure

  17. Boundary conditions on the plasma emitter surface in the presence of a particle counter flow: I. Ion emitter

    Energy Technology Data Exchange (ETDEWEB)

    Astrelin, V. T., E-mail: V.T.Astrelin@inp.nsk.su; Kotelnikov, I. A. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation)

    2017-02-15

    Emission of positively charged ions from a plasma emitter irradiated by a counterpropagating electron beam is studied theoretically. A bipolar diode with a plasma emitter in which the ion temperature is lower than the electron temperature and the counter electron flow is extracted from the ion collector is calculated in the one-dimensional model. An analog of Bohm’s criterion for ion emission in the presence of a counterpropagating electron beam is derived. The limiting density of the counterpropagating beam in a bipolar diode operating in the space-charge-limited-emission regime is calculated. The full set of boundary conditions on the plasma emitter surface that are required for operation of the high-current optics module in numerical codes used to simulate charged particle sources is formulated.

  18. Third and fourth quarter progress report on plasma theory and simulation, July 1-December 31, 1986

    International Nuclear Information System (INIS)

    Birdsall, C.K.

    1987-01-01

    Our group uses theory and simulation as tools in order to increase the understanding of plasma instabilities, heating, transport, plasma-wall interactions, and large potentials in plasmas. We also work on the improvement of simulation both theoretically and practically

  19. The impact of boundary plasma conditions on the plasma performance of the Wendelstein 7-AS stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Grigull, P; Behrisch, R; Brakel, R; Burhenn, R; Elsner, A; Hacker, H; Hartfuss, H J; Herre, G; Hildebrandt, D; Jaenicke, R; Kisslinger, J; Maassberg, H; Mahn, C; Niedermeyer, H; Pech, P; Renner, H; Ringler, H; Rau, F; Roth, J; Sardei, F; Schneider, U; Wagner, F; Weller, A; Wobig, H; Wolff, H [Max-Planck-Inst. fuer Plasmaphysik, Garching (Germany); W7-AS Team; NBI Team; ECRH Group

    1992-12-01

    In the modular advanced stellarator W7-AS, the plasma performance and the main characteristics of the plasma-wall interaction are strongly affected by the three-dimensional edge topology. Both limiter- and separatrix-dominated configurations are possible. TiC and bulk-boronized limiter materials have been used. The impurity behaviour and the accessible plasma parameter ranges are compared for different limiter and wall conditions. With limiters, optimum plasma performance in currentless ECRF- or NBI-heated discharges was achieved with bulk-boronized graphite limiter material and boronized walls. Solid target sputter boronization, however, was found to be ineffective in comparison with boronization by He/B[sub 2]H[sub 6] glow discharge. For separatrix-dominated discharges, conditioning by wall coating has short-term effects only. Enhanced, localized plasma outflow to the wall due to islands at the boundary quickly erodes the layers. The possibility to develop a divertor concept is discussed. Basic properties of the plasma edge as derived from Langmuir probes and limiter calorimetry are described. Modeling is complicated by three-dimensionality. In a first approach, a 1D edge transport model on the basis of distinct flux bundles is applied. (orig.).

  20. Characterizing Hypervelocity Impact Plasma Through Experiments and Simulations

    Science.gov (United States)

    Close, Sigrid; Lee, Nicolas; Fletcher, Alex; Nuttall, Andrew; Hew, Monica; Tarantino, Paul

    2017-10-01

    Hypervelocity micro particles, including meteoroids and space debris with masses produce a strong electromagnetic pulse (EMP) with a broad frequency spectrum. Subsequent plasma oscillations resulting from instabilities can also emit significant power and may be responsible for many reported satellite anomalies. We present theory and recent results from ground-based impact tests aimed at characterizing hypervelocity impact plasma. We also show results from particle-in-cell (PIC) and computational fluid dynamics (CFD) simulations that allow us to extend to regimes not currently possible with ground-based technology. We show that significant impact-produced radio frequency (RF) emissions occurred in frequencies ranging from VHF through L-band and that these emissions were highly correlated with fast (>20 km/s) impacts that produced a fully ionized plasma.

  1. Computer simulation of a plasma focus device driven by a magnetic pulser

    Energy Technology Data Exchange (ETDEWEB)

    Georgescu, N; Zoita, V [Inst. of Physics and Technology of Radiation Devices, Bucharest (Romania); Larour, J [Ecole Polytechnique, Palaiseau (France). Lab. de Physique des Milieux Ionises

    1997-12-31

    A plasma focus device, driven by a magnetic pulse compression circuit, is simulated by using a PSPICE proffam. The elaborated program is much simpler than the other existing ones, which analyse the circuit by directly solving a system of integral-differential equations. The pre-pulse voltage and the high-voltage rise-times are obtained for a set of values of the bypass impedance (R or L). The optimum bypass impedance turns out to be an inductance. During the discharge period, the plasma load is considered as an LR impedance, each component being time dependent. A method is presented for giving us the possibility to introduce the time varying impedances in a PSPICE program. Finally, a set of simulation results (plasma current and voltage, plasma magnetic energy, plasma sheath mechanical energy, pinch voltage) is shown. The results are in good agreement with the classical experimental data. (author). 2 figs., 4 refs.

  2. Fluid simulations of ∇Te-driven turbulence and transport in boundary plasmas

    International Nuclear Information System (INIS)

    Xu, X.Q.; Cohen, R.H.

    1993-01-01

    This paper is a report on simulations of a new drift wave type instability driven by the electron temperature gradient in tokamak scrapeoff-layers (SOL). A 2D(x,y) fluid code has been developed in order to explore the anomalous transport in the boundary plasmas. The simulation consists of a set of fluid equations (in the electrostatic limit) for the vorticity ∇ perpendicular 2 φ, the electron density n e and the temperature T e in a shearless plasma slab confined by a uniform, straight magnetic field B z with two diverter (or limiter) plates intercepting the magnetic field. The model has two regions separated by a magnetic separatrix: in the edge region inside the separatrix, the model is periodic along the magnetic field while in the SOL region outside the separatrix, the magnetic field is taken to be of finite length with model (logical sheath) boundary conditions at diverter (or limiter) plates. The simulation results show that the observed linear instability agrees well with theory, and that a saturated state of turbulence is reached. In saturated turbulence, clear evidence of the expected long-wavelength mode penetration into the edge is seen, an inverse cascade of wave energy (toward both long wavelengths and low frequencies) is observed. The simulation results also show that amplitudes of potential and the electron temperature fluctuations are somewhat above and the heat flux are somewhat below those of the simplest mixing-length estimates. The results from the self-consistent simulations to determine the microturbulent SOL electron temperature profile agree reasonably with the experimental measurements. The effects on the mode of neutral gas collisions at the divertor sheath and comparisons with the ionization driven turbulence are discussed

  3. Investigations on plasma-microfield by means of plasma-computerized simulation

    International Nuclear Information System (INIS)

    Ottersbach, G.

    1983-01-01

    Due to the fact of different existing theories to describe the plasma-microfield and the unfeasibility of direct experimental measurements an attempt is made in this work to study some properties of the microfield in a plasma, which is formed by N/2 positively and N/2 negatively charged point-like particles, using the methods of computer simulation. Allready some 60 years ago the first and wellknown theory of the microfield has been presented by Holtsmark. In the meantime, however, many additional theoretical papers have been published, as for example the theory of Baranger and Mozer. As a common feature of all these theoretical models, the influence of the charge nearest to the point, where the field is evaluated, dominates the behaviour of the microfield, in spite of the long-range Coulomb field, just as in the case of the theory of Holtsmark. (orig.) [de

  4. Dynamic behavior of detached recombining plasmas during ELM-like plasma heat pulses in the divertor plasma simulator NAGDIS-II

    International Nuclear Information System (INIS)

    Uesugi, Y.; Hattori, N.; Nishijima, D.; Ohno, N.; Takamura, S.

    2001-01-01

    It has been recognized that the ELMs associated with a good confinement at the edge, such as H-mode, must bring an enormous energy to the divertor target plate through SOL and detached plasmas. The understanding of the ELM energy transport through SOL to the divertor target is rather poor at the moment, which leads to an ambiguous estimation of the deposited heat load on the divertor target in ITER. In the present work the ELM-like plasma heat pulse is generated by rf heating in a linear divertor plasma simulator. Energetic electrons with an energy range 10-40 eV are effectively generated by rf heating in low temperature plasmas with (T e )< ∼1 eV. It is observed experimentally that the energetic electrons ionize the highly excited Rydberg atoms quickly, bringing a rapid increase of the ion particle flux to the target, and make the detached plasmas attached to the target. Detailed physical processes about the interaction between the heat pulse with conduction and convection, and detached recombining plasmas are discussed

  5. A survey of elementary plasma instabilities and ECH wave noise properties relevant to plasma sounding by means of particle in cell simulations

    International Nuclear Information System (INIS)

    Dieckmann, M.E.

    1999-01-01

    In this work the emission of high amplitude wave packets into a plasma is examined. The plasma is modelled by an 1 1/2D electromagnetic and relativistic particle in cell code. The antenna is modelled by applying forced electrostatic field oscillations to a subset of the simulation grid cells. The emitted wave packets are followed in space and time. It is investigated how the wave packets are affected by instabilities. The detected instabilities affecting ECH waves have been identified as wave decay, nonlinear damping due to trapping and modulational instabilities. These instabilities have been discussed with hindsight to the plasma sounding experiment. A plasma sounder is an experiment emitting short wave packets into the ambient plasma and then it listens to the response. The assumption that the emitted waves are linear waves then allows to determine the plasma magnetic field strength, the electron density and possibly the electron thermal velocity from the response spectrum. The impact of the non-linear instabilities on the plasma wave response spectrum provided by a sounder have been predicted in this work and the predictions have been shown to match a wide range of experimental observations. A dependence of the instabilities on the simulation noise levels, for example the dependence of the wave interaction time in a wave decay on the noise electric field amplitudes, required it to investigate the simulation noise properties (spectral distribution) and to compare it to real plasma thermal noise. It has also been examined how a finite length antenna would filter the simulation noise. (author)

  6. Particle-in-cell Simulations of Raman Laser Amplification in Ionizing Plasmas

    International Nuclear Information System (INIS)

    Clark, Daniel S.; Fisch, Nathaniel J.

    2003-01-01

    By using the amplifying laser pulse in a plasma-based backward Raman laser amplifier to generate the plasma by photo-ionization of a gas simultaneous with the amplification process, possible instabilities of the pumping laser pulse can be avoided. Particle-in-cell simulations are used to study this amplification mechanism, and earlier results using more elementary models of the Raman interaction are verified [D.S. Clark and N.J. Fisch, Phys. Plasmas, 9 (6): 2772-2780, 2002]. The effects (unique to amplification in ionizing plasmas and not included in previous simulations) of blue-shifting of the pump and seed laser pulses and the generation of a wake are observed not significantly to impact the amplification process. As expected theoretically, the peak output intensity is found to be limited to I ∼ 10 17 W/cm 2 by forward Raman scattering of the amplifying seed. The integrity of the ionization front of the seed pulse against the development of a possible transverse modulation instability is also demonstrated

  7. Integral and Lagrangian simulations of particle and radiation transport in plasma

    International Nuclear Information System (INIS)

    Christlieb, A J; Hitchon, W N G; Lawler, J E; Lister, G G

    2009-01-01

    Accurate integral and Lagrangian models of transport in plasmas, in which the models reflect the actual physical behaviour as closely as possible, are presented. These methods are applied to the behaviour of particles and photons in plasmas. First, to show how these types of models arise in a wide range of plasma physics applications, an application to radiation transport in a lighting discharge is given. The radiation transport is solved self-consistently with a model of the discharge to provide what are believed to be very accurate 1D simulations of fluorescent lamps. To extend these integral methods to higher dimensions is computationally very costly. The wide utility of 'treecodes' in solving massive integral problems in plasma physics is discussed, and illustrated in modelling vortex formation in a Penning trap, where a remarkably detailed simulation of vortex formation in the trap is obtained. Extension of treecode methods to other integral problems such as radiation transport is under consideration.

  8. Fluid simulation of the conduction phase of the plasma erosion opening switch

    International Nuclear Information System (INIS)

    Grossmann, J.M.; Mosher, D.; Ottinger, P.F.

    1987-01-01

    The conduction phase of the plasma erosion openings switch (PEOS) is studied using a 1 1/2-D electromagnetic two-fluid code. The focus of this work is on understanding how two effects, a current-limiting model of electron emission, and the magnetic insulation of electrons at the cathode, determine current conduction in the plasma. Simulations are performed in the parameter regimes of the Gamble I, POP, and PBFA II pulsed power generators, and previous low-density, short-rise time simulations of the PEOS. Fluid code results are compared to a 1-D analytic theory and to the Gamble I and POP experiments. Good agreement between theory and simulation, but mixed agreement between simulation and experiment is found. Experimental Β-field measurements on POP show weaker j x Β compression than the simulation. Current penetration and plasma current channels qualitatively similar to experimental observation are found in the Gamble I regime. However, magnetic insulation of electrons emitted from the cathode bunches the electron flow into narrower current channels than observed experimentally. In several cases, the presence of an electron-scattering or energy-loss mechanism near the cathode must be invoked to overcome magnetic insulation and widen the current channels

  9. Multi-instrument observations of nightside plasma patches under conditions of IMF Bz positive

    Directory of Open Access Journals (Sweden)

    V. S. C. Howells

    2008-08-01

    Full Text Available Results are presented from two multi-instrument case studies showing patches of cold, long-lived plasma in the winter nightside ionosphere during times when the z-component of the Interplanetary Magnetic Field (IMF Bz was positive. These enhancements were coincident with the antisunward convective plasma drift, flowing from polar to nightside auroral latitudes. In the first case, on 5 December 2005 with IMF By negative, two regions of enhanced electron density were observed extended in MLT in the magnetic midnight sector separated by lower densities near midnight. It is likely that the earlier enhancement originated on the dayside near magnetic noon and was transported to the nightside sector in the convective flow, whilst the later feature originated in the morning magnetic sector. The lower densities separating the two enhancements were a consequence of a pair of lobe cells essentially blocking the direct antisunward cross polar flow from the dayside. A second case study on 4 February 2006 with IMF By positive revealed a single nightside enhancement likely to have originated in the morning magnetic sector. These multi-instrument investigations, incorporating observations by the EISCAT radar facility, the SuperDARN network and radio tomography, reveal that plasma flowing from the dayside can play a significant role in the nightside ionosphere under conditions of IMF Bz positive. The observations are reinforced by simulations of flux-tube transport and plasma decay.

  10. Materials surface modification by plasma bombardment under simultaneous erosion and redeposition conditions

    International Nuclear Information System (INIS)

    Hirooka, Y.; Goebel, D.M.; Conn, R.W.

    1986-07-01

    The first in-depth investigation of surface modification of materials by continuous, high-flux argon plasma bombardment under simultaneous erosion and redeposition conditions have been carried out for copper and 304 stainless steel using the PISCES facility. The plasma bombardment conditions are: incident ion flux range from 10 17 to 10 19 ions sec -1 cm -2 , total ion fluence is controlled between 10 19 and 10 22 ions cm -2 , electron temperature range from 5 to 15 eV, and plasma density range from 10 11 to 10 13 cm -3 . The incident ion energy is 100 eV. The sample temperature is between 300 and 700K. Under redeposition dominated conditions, the material erosion rate due to the plasma bombardment is significantly smaller (by a factor up to 10) than that can be expected from the classical ion beam sputtering yield data. It is found that surface morphologies of redeposited materials strongly depend on the plasma bombardment condition. The effect of impurities on surface morphology is elucidated in detail. First-order modelings are implemented to interpret the reduced erosion rate and the surface evolution. Also, fusion related surface properties of redeposited materials such as hydrogen reemission and plasma driven permeation have been characterized

  11. Hybrid Simulation of the Interaction of Europa's Atmosphere with the Jovian Plasma: Multiprocessor Simulations

    Science.gov (United States)

    Dols, V. J.; Delamere, P. A.; Bagenal, F.; Cassidy, T. A.; Crary, F. J.

    2014-12-01

    We model the interaction of Europa's tenuous atmosphere with the plasma of Jupiter's torus with an improved version of our hybrid plasma code. In a hybrid plasma code, the ions are treated as kinetic Macro-particles moving under the Lorentz force and the electrons as a fluid leading to a generalized formulation of Ohm's law. In this version, the spatial simulation domain is decomposed in 2 directions and is non-uniform in the plasma convection direction. The code is run on a multi-processor supercomputer that offers 16416 cores and 2GB Ram per core. This new version allows us to tap into the large memory of the supercomputer and simulate the full interaction volume (Reuropa=1561km) with a high spatial resolution (50km). Compared to Io, Europa's atmosphere is about 100 times more tenuous, the ambient magnetic field is weaker and the density of incident plasma is lower. Consequently, the electrodynamic interaction is also weaker and substantial fluxes of thermal torus ions might reach and sputter the icy surface. Molecular O2 is the dominant atmospheric product of this surface sputtering. Observations of oxygen UV emissions (specifically the ratio of OI 1356A / 1304A emissions) are roughly consistent with an atmosphere that is composed predominantely of O2 with a small amount of atomic O. Galileo observations along flybys close to Europa have revealed the existence of induced currents in a conducting ocean under the icy crust. They also showed that, from flyby to flyby, the plasma interaction is very variable. Asymmetries of the plasma density and temperature in the wake of Europa were also observed and still elude a clear explanation. Galileo mag data also detected ion cyclotron waves, which is an indication of heavy ion pickup close to the moon. We prescribe an O2 atmosphere with a vertical density column consistent with UV observations and model the plasma properties along several Galileo flybys of the moon. We compare our results with the magnetometer

  12. Numerical Simulation of Dual-Channel Communication of Column Plasma Antenna Excited by a Surface Wave

    International Nuclear Information System (INIS)

    Duanmu Gang; Zhao Changming; Liang Chao; Xu Yuemin

    2014-01-01

    This paper focuses on the application of plasma as wireless antenna. In order to reveal the radiation characteristics of column plasma antenna, we chose the finite-difference time-domain (FDTD) numerical analysis method to simulate radiation impedance and efficiencies of each channel for a few sets of plasma densities and plasma collision frequencies. Simulation results demonstrate that a plasma antenna shares similar characteristics with a metallic antenna in radiation impedance and efficiency of each channel when an appropriate setting is adopted. Unlike a metallic antenna, a plasma antenna is capable of realizing such functions as dynamic reconfiguration, digital control and dual-channel communication. Thus it is possible to carry out dual-channel communication by plasma antenna, indicating a new path for modern intelligent communication. (plasma technology)

  13. The influence of electrical resistivity, magnetic field strength, boundary conditions, and injection conditions on the behavior of the magnetically injected plasma in the PBFA-II opening switch

    International Nuclear Information System (INIS)

    Watrous, J.J.; Frese, M.H.

    1993-01-01

    The Plasma Opening Switch used on PBFA-II uses a source plasma which is injected into the inter-electrode gap along the field lines of a modest-strength applied poloidal magnetic field. The distribution of this plasma within the gap plays an important role in the behavior of the switch. Knowledge of this distribution is critical for performing relevant switch calculations and for interpreting experimental data. In the work reported here, the influence on that distribution of the plasma electrical resistivity, the applied magnetic field strength, and the boundary and injection conditions have been investigated with the 2 1/2-dimensional magnetohydrodynamics simulation code, MACH2. The injected plasma has density in the 10 14 cm -3 range and temperature in the several eV range. In this parameter regime, the classical collision time scale is on the order of 10 ns, which, when compared to the 100 ns time scale of the inflowing plasma, means that the plasma is classically collisionless. However, mechanisms other than classical collisions are likely to contribute to electrical resistivity. The authors have investigated the effect of an anomalous resistivity which scales with the plasma frequency, varying the scaling from the electron plasma frequency to the ion plasma frequency. They will compare these results with results based on the assumption of an ideal plasma, and discuss other anomalous resistivity models

  14. Plasma theory and simulation: Third and fourth quarterly progress report, July 1, 1986-December 31, 1986

    International Nuclear Information System (INIS)

    Birdsall, C.K.

    1986-01-01

    Our group uses theory and simulation as tools in order to increase the understanding of plasma instabilities, heating, transport, plasma-wall interactions, and large potentials in plasmas. We also work on the improvement of simulation both theoretically and practically. Two separate papers are included in this report

  15. Pellet injection and plasma behavior simulation code PEPSI

    International Nuclear Information System (INIS)

    Takase, Haruhiko; Tobita, Kenji; Nishio, Satoshi

    2003-08-01

    Fueling is one of the major issues on design of nuclear fusion reactor and the injection of solid hydrogen pellet to the core plasma is a useful method. On the design of a nuclear fusion reactor, it is necessary to determine requirements on the pellet size, the number of pellets, the injection speed and the injection cycle. PEllet injection and Plasma behavior SImulation code PEPSI has been developed to assess these parameters. PEPSI has two special features: 1) Adopting two numerical pellet models, Parks model and Strauss model, 2) Calculating fusion power and other plasma parameters in combination with a time-dependent one-dimensional transport model. This report describes the numerical models, numerical scheme, sequence of calculation, list of subroutines, list of variables and an example of calculation. (author)

  16. AETHER: A simulation platform for inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Turkoz, Emre, E-mail: emre.turkoz@boun.edu.tr; Celik, Murat

    2015-04-01

    An in-house code is developed to simulate the inductively coupled plasma (ICP). The model comprises the fluid, electromagnetic and transformer submodels. Fluid equations are solved to evaluate the plasma flow parameters, including the plasma and neutral densities, ion and neutral velocities, electron flux, electron temperature, and electric potential. The model relies on the ambipolar approximation and offers the evaluation of plasma parameters without solving the sheath region. The electromagnetic model handles the calculation of the electric and magnetic fields using the magnetic vector potential. The transformer model captures the effect of the matching circuit utilized in laboratory experiments for RF power deposition. The continuity and momentum equations are solved using finite volume method. The energy, electric potential, and magnetic vector potential equations are solved using finite difference method. The resulting linear systems of equations are solved with iterative solvers including Jacobi and GMRES. The code is written using the C++ programming language, it works in parallel and has graphical user interface. The model is applied to study ICP characteristics of a plasma confined within a cylindrical chamber with dielectric walls for two different power deposition cases. The results obtained from the developed model are verified using the plasma module of COMSOL Multiphysics. The model is also applied to a plasma source configuration, and it is demonstrated that there is an overall increase in the plasma potential when current is extracted from ICP with a biased wall electrode.

  17. Acquisition of data for plasma simulation by automated extraction of terminology from article abstracts

    International Nuclear Information System (INIS)

    Pichl, L.; Suzuki, Manabu; Murata, Masaki; Sasaki, Akira; Kato, Daiji; Murakami, Izumi; Rhee, Yongjoo

    2007-01-01

    Computer simulation of burning plasmas as well as computational plasma modeling in image processing requires a number of accurate data, in addition to a relevant model framework. To this aim, it is very important to recognize, obtain and evaluate data relevant for such a simulation from the literature. This work focuses on the simultaneous search of relevant data across various online databases, extraction of cataloguing and numerical information, and automatic recognition of specific terminology in the text retrieved. The concept is illustrated on the particular terminology of Atomic and Molecular data relevant to edge plasma simulation. The IAEA search engine GENIE and the NIFS search engine Joint Search 2 are compared and discussed. Accurate modeling of the imaged object is considered to be the ultimate challenge in improving the resolution limits of plasma imaging. (author)

  18. Comprehensive physical models and simulation package for plasma/material interactions during plasma instabilities

    International Nuclear Information System (INIS)

    Hassanein, A.; Konkashbaev, I.

    1999-01-01

    Damage to plasma-facing components (PFCs) from plasma instabilities remains a major obstacle to a successful tokamak concept. The extent of the damage depends on the detailed physics of the disrupting plasma, as well as on the physics of plasma-material interactions. A comprehensive computer package called high energy interaction with general heterogeneous target systems (HEIGHTS) has been developed and consists of several integrated computer models that follow the beginning of a plasma disruption at the scrape-off layer (SOL) through the transport of the eroded debris and splashed target materials to nearby locations as a result of the deposited energy. The package can study, for the first time, plasma-turbulent behavior in the SOL and predict the plasma parameters and conditions at the divertor plate. Full two-dimensional (2-D) comprehensive radiation magnetohydrodynamic (MHD) models are coupled with target thermodynamics and liquid hydrodynamics to evaluate the integrated response of plasma-facing materials. Factors that influence the lifetime of plasma-facing and nearby components, such as loss of vapor cloud confinement and vapor removal due to MHD effects, damage to nearby components due to intense vapor radiation, melt splashing, and brittle destruction of target materials, are also modeled and discussed. (orig.)

  19. Comprehensive physical models and simulation package for plasma/material interactions during plasma instabilities

    International Nuclear Information System (INIS)

    Hassanein, A.

    1998-01-01

    Damage to plasma-facing components (PFCS) from plasma instabilities remains a major obstacle to a successful tokamak concept. The extent of the damage depends on the detailed physics of the disrupting plasma, as well as on the physics of plasma-material interactions. A comprehensive computer package called High Energy Interaction with General Heterogeneous Target Systems (HEIGHTS) has been developed and consists of several integrated computer models that follow the beginning of a plasma disruption at the scrape-off layer (SOL) through the transport of the eroded debris and splashed target materials to nearby locations as a result of the deposited energy. The package can study, for the first time, plasma-turbulent behavior in the SOL and predict the plasma parameters and conditions at the divertor plate. Full two-dimensional (2-D) comprehensive radiation magnetohydrodynamic (MHD) models are coupled with target thermodynamics and liquid hydrodynamics to evaluate the integrated response of plasma-facing materials. Factors that influence the lifetime of plasma-facing and nearby components, such as loss of vapor-cloud confinement and vapor removal due to MHD effects, damage to nearby components due to intense vapor radiation, melt splashing, and brittle destruction of target materials, are also modeled and discussed

  20. Hybrid simulations of current-carrying instabilities in Z-pinch plasmas with sheared axial flow

    International Nuclear Information System (INIS)

    Sotnikov, Vladimir I.; Makhin, Volodymyr; Bauer, Bruno S.; Hellinger, Petr; Travnicek, Pavel; Fiala, Vladimir; Leboeuf, Jean-Noel

    2002-01-01

    The development of instabilities in z-pinch plasmas has been studied with three-dimensional (3D) hybrid simulations. Plasma equilibria without and with sheared axial flow have been considered. Results from the linear phase of the hybrid simulations compare well with linear Hall magnetohydrodynamics (MHD) calculations for sausage modes. The hybrid simulations show that sheared axial flow has a stabilizing effect on the development of both sausage and kink modes

  1. Reactivation of αμ in muon-catalyzed fusion under plasma conditions

    International Nuclear Information System (INIS)

    Jandel, M.; Froelich, P.; Larson, G.; Stodden, C.D.

    1989-01-01

    The reactivation efficiency of αμ slowing down in a deuterium-tritium plasma has been calculated for a broad range of plasma conditions. The plasma stopping power has been obtained from the random-phase approximation, which includes both the quantum mechanics of short-range collisions and collective effects due to long-range plasma interactions. It is shown that muon reactivation increases with increasing plasma temperature and density. Near-complete reactivation is, however, reached only at temperatures higher than 1000 eV

  2. Computational and experimental investigation of plasma deflagration jets and detonation shocks in coaxial plasma accelerators

    Science.gov (United States)

    Subramaniam, Vivek; Underwood, Thomas C.; Raja, Laxminarayan L.; Cappelli, Mark A.

    2018-02-01

    We present a magnetohydrodynamic (MHD) numerical simulation to study the physical mechanisms underlying plasma acceleration in a coaxial plasma gun. Coaxial plasma accelerators are known to exhibit two distinct modes of operation depending on the delay between gas loading and capacitor discharging. Shorter delays lead to a high velocity plasma deflagration jet and longer delays produce detonation shocks. During a single operational cycle that typically consists of two discharge events, the plasma acceleration exhibits a behavior characterized by a mode transition from deflagration to detonation. The first of the discharge events, a deflagration that occurs when the discharge expands into an initially evacuated domain, requires a modification of the standard MHD algorithm to account for rarefied regions of the simulation domain. The conventional approach of using a low background density gas to mimic the vacuum background results in the formation of an artificial shock, inconsistent with the physics of free expansion. To this end, we present a plasma-vacuum interface tracking framework with the objective of predicting a physically consistent free expansion, devoid of the spurious shock obtained with the low background density approach. The interface tracking formulation is integrated within the MHD framework to simulate the plasma deflagration and the second discharge event, a plasma detonation, formed due to its initiation in a background prefilled with gas remnant from the deflagration. The mode transition behavior obtained in the simulations is qualitatively compared to that observed in the experiments using high framing rate Schlieren videography. The deflagration mode is further investigated to understand the jet formation process and the axial velocities obtained are compared against experimentally obtained deflagration plasma front velocities. The simulations are also used to provide insight into the conditions responsible for the generation and sustenance of

  3. Simulations of the Effects of Jupiter's Plasma Torus on Io's Pele Plume

    Science.gov (United States)

    McDoniel, William; Goldstein, David B.; Varghese, Philip L.; Trafton, Laurence M.

    2014-11-01

    Io’s plumes rise hundreds of kilometers above its surface and sublimation atmosphere, presenting large targets for incoming ions from Jupiter’s plasma torus. The direct simulation Monte Carlo method is used to model the gas plume at Pele and its interaction with the Jovian plasma torus. Chemical reactions resulting from ion impacts in a plume change its composition and energy from the impacts changes the plume’s structure (asymmetrically). The presence of non-condensible daughter species in a warmer plume canopy produces a more diffuse deposition ring on Io’s surface, compared to simulations without plasma. Energized molecules also escape from the plume, forming a diffuse cloud of fast particles above the plume’s canopy, which may function to resupply the plasma torus and which suggests a mechanism for lofting other species to very high altitudes.

  4. Recent measurements of electron density profiles of plasmas in PLADIS I, a plasma disruption simulator

    International Nuclear Information System (INIS)

    Bradley, J. III; Sharp, G.; Gahl, J.M. Kuznetsov, V.; Rockett, P.; Hunter, J.

    1995-01-01

    Tokamak disruption simulation experiments are being conducted at the University of New Mexico (UNM) using the PLADIS I plasma gun system. PLADIS I is a high power, high energy coaxial plasma gun configured to produce an intense plasma beam. First wall candidate materials are placed in the beam path to determine their response under disruption relevant energy densities. An optically thick vapor shield plasma has been observed to form above the target surface in PLADIS I. Various diagnostics have been used to determine the characteristics of the incident plasma and the vapor shielding plasma. The cross sectional area of the incident plasma beam is a critical characteristic, as it is used in the calculation of the incident plasma energy density. Recently, a HeNe interferometer in the Mach-Zehnder configuration has been constructed and used to probe the electron density of the incident plasma beam and vapor shield plasma. The object beam of the interferometer is scanned across the plasma beam on successive shots, yielding line integrals of beam density on different chords through the plasma. Data from the interferometer is used to determine the electron density profile of the incident plasma beam as a function of beam radius. This data is then used to calculate the effective beam area. Estimates. of beam area, obtained from other diagnostics such as damage targets, calorimeter arrays and off-axis measurements of surface pressure, will be compared with data from the interferometer to obtain a better estimate of the beam cross sectional area

  5. Vacuum UV spectroscopy of armor erosion from plasma gun disruption simulation experiments

    International Nuclear Information System (INIS)

    Rockett, P.D.; Gahl, J.M.; Zhitlukhin, A.; Arkhipov, K.; Bakhtin, V.; Toporkov, D.; Ovchinnokov, I.; Kuznetsov, V.E.; Titov, V.A.

    1995-01-01

    Extensive simulations of tokamak disruptions have provided a picture of material erosion that is limited by the transfer of energy from the incident plasma to the armor solid surface through a dense vapor shield. Two transmission grating vacuum ultraviolet (VUV) spectrographs were designed and utilized to study the plasma-material interface in plasma gun simulation experiments. Target materials included POCO graphite, ATJ graphite, boron nitride and plasma-sprayed tungsten. Detailed spectra were recorded with a spatial resolution of ca. 0.7mm resolution on VIKA at Efremov and on 2MK-200 at Troitsk. Time-resolved data with 40-200ns resolution were then recorded along with the same spatial resolution on 2MK-200. The VIKA plasma gun directly illuminated a target with a high-intensity plasma pulse of 2-100MJm -2 with low-energy ions of ca. 100eV. The 2MK-200 plasma gun illuminated the target via a magnetic cusp that permitted only deuterium to pass with energies of ca. 1keV, but which produced a fairly low intensity of 2MJm -2 . Power densities on target ranged from 10 7 to 10 8 Wcm -2 . Emitted spectra were recorded from 15 to 450A over a distance from 0 to 7cm above the armor target surface. The data from both plasma gun facilities demonstrated that the hottest plasma region was sitting several millimeters above the armor tile surface. This apparently constituted the absorption region, which confirmed past computer simulations. Spectra indicated both the species and ionization level that were being ablated from the target, demonstrating impurity content, and showing plasma ablation velocity. Graphite samples clearly showed CV lines as well as impurity lines from O V and O VI. The BN tiles produced textbook examples of BIV and BV, and extensive NIV, V and VI lines. These are being compared with radiation-hydrodynamic calculations. (orig.)

  6. Numerical Simulation and Experimental Investigation of Multi-function Micro-plasma Jet and Alumina Particle Behaviour

    Directory of Open Access Journals (Sweden)

    Liu Gu

    2016-01-01

    Full Text Available Turbulent flow in multi-function micro-plasma spray, as well as the trajectories and state-changing course of alumina particles in the plasma jet were simulated. The distribution of temperature and velocity of the plasma jet and in-flight alumina particles is discussed. Calculations show that particles are heated and accelerated sufficiently by the plasma flame due to a longer travel time than that of external injection system, therefore, possess higher temperature and velocity. Alumina particles temperature and velocity increase rapidly along the jet axis at the initial stage, but then decrease gradually. The velocity and surface temperature of in-flight alumina particles are measured by Spray Watch-2i system. The velocity and surface temperature of alumina particles measured agree well with the simulation results, confirming that the simulation model is suitable for the prediction of the turbulent flow and the particle characteristics, which also reveals the superiority of the plasma spray gun in this multi-function micro-plasma spraying system.

  7. Application of powerful quasi-steady-state plasma accelerators for simulation of ITER transient heat loads on divertor surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tereshin, V I [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Bandura, A N [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Byrka, O V [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Chebotarev, V V [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Garkusha, I E [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Landman, I [Forschungszentrum Karlsruhe, IHM, Karlsruhe 76021 (Germany); Makhlaj, V A [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Neklyudov, I M [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Solyakov, D G [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Tsarenko, A V [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine)

    2007-05-15

    The paper presents the investigations of high power plasma interaction with material surfaces under conditions simulating the ITER disruptions and type I ELMs. Different materials were exposed to plasma with repetitive pulses of 250 {mu}s duration, the ion energy of up to 0.6 keV, and the heat loads varying in the 0.5-25 MJ m{sup -2} range. The plasma energy transfer to the material surface versus impact load has been analysed. The fraction of plasma energy that is absorbed by the target surface is rapidly decreased with the achievement of the evaporation onset for exposed targets. The distributions of evaporated material in front of the target surface and the thickness of the shielding layer are found to be strongly dependent on the target atomic mass. The surface analysis of tungsten targets exposed to quasi-steady-state plasma accelerators plasma streams is presented together with measurements of the melting onset load and evaporation threshold, and also of erosion patterns with increasing heat load and the number of plasma pulses.

  8. Multiple time-scale methods in particle simulations of plasmas

    International Nuclear Information System (INIS)

    Cohen, B.I.

    1985-01-01

    This paper surveys recent advances in the application of multiple time-scale methods to particle simulation of collective phenomena in plasmas. These methods dramatically improve the efficiency of simulating low-frequency kinetic behavior by allowing the use of a large timestep, while retaining accuracy. The numerical schemes surveyed provide selective damping of unwanted high-frequency waves and preserve numerical stability in a variety of physics models: electrostatic, magneto-inductive, Darwin and fully electromagnetic. The paper reviews hybrid simulation models, the implicitmoment-equation method, the direct implicit method, orbit averaging, and subcycling

  9. A simulation package for soft X-ray and EUV spectroscopy of astrophysical and laboratory plasmas in different environments

    International Nuclear Information System (INIS)

    Liang, G Y; Li, F; Wang, F L; Zhong, J Y; Zhao, G; Wu, Y

    2014-01-01

    Spectroscopic researches in astronomy are significantly dependent on theoretical modelling methods, such as Chianti, Xstar, Cloudy etc. Recently, a different research community - Laboratory Astrophysics tries to benchmark these theoretical models or simulate the astrophysical phenomenon directly in conditions accessed in ground laboratory. Those unavoidable differences between the astrophysical objects and laboratory provide a need for a self-consistent model to make a bridge for the two cases. So we setup a visualized simulation package for soft X-ray and EUV spectroscopy in astrophysical and laboratory plasmas.

  10. Parallel simulation of radio-frequency plasma discharges

    International Nuclear Information System (INIS)

    Fivaz, M.; Howling, A.; Ruegsegger, L.; Schwarzenbach, W.; Baeumle, B.

    1994-01-01

    The 1D Particle-In-Cell and Monte Carlo collision code XPDP1 is used to model radio-frequency argon plasma discharges. The code runs faster on a single-user parallel system called MUSIC than on a CRAY-YMP. The low cost of the MUSIC system allows a 24-hours-per-day use and the simulation results are available one to two orders of magnitude quicker than with a super computer shared with other users. The parallelization strategy and its implementation are discussed. Very good agreement is found between simulation results and measurements done in an experimental argon discharge. (author) 2 figs., 3 refs

  11. Particle-in-cell simulations of plasma accelerators and electron-neutral collisions

    Directory of Open Access Journals (Sweden)

    David L. Bruhwiler

    2001-10-01

    Full Text Available We present 2D simulations of both beam-driven and laser-driven plasma wakefield accelerators, using the object-oriented particle-in-cell code XOOPIC, which is time explicit, fully electromagnetic, and capable of running on massively parallel supercomputers. Simulations of laser-driven wakefields with low \\(∼10^{16} W/cm^{2}\\ and high \\(∼10^{18} W/cm^{2}\\ peak intensity laser pulses are conducted in slab geometry, showing agreement with theory and fluid simulations. Simulations of the E-157 beam wakefield experiment at the Stanford Linear Accelerator Center, in which a 30 GeV electron beam passes through 1 m of preionized lithium plasma, are conducted in cylindrical geometry, obtaining good agreement with previous work. We briefly describe some of the more significant modifications to XOOPIC required by this work, and summarize the issues relevant to modeling relativistic electron-neutral collisions in a particle-in-cell code.

  12. Forthcoming Break-Even Conditions of Tokamak Plasma Performance for Fusion Energy Development

    Science.gov (United States)

    Hiwatari, Ryoji; Okano, Kunihiko; Asaoka, Yoshiyuki; Tokimatsu, Koji; Konishi, Satoshi; Ogawa, Yuichi

    The present study reveals forthcoming break-even conditions of tokamak plasma performance for the fusion energy development. The first condition is the electric break-even condition, which means that the gross electric power generation is equal to the circulating power in a power plant. This is required for fusion energy to be recognized as a suitable candidate for an alternative energy source. As for the plasma performance (normalized beta value ΒN), confinement improvement factor for H-mode HH, the ratio of plasma density to Greenwald density fnGW), the electric break-even condition requires the simultaneous achievement of 1.2 market. By using a long-term world energy scenario, a break-even price for introduction of fusion energy in the year 2050 is estimated to lie between 65 mill/kWh and 135 mill/kWh under the constraint of 550 ppm CO2 concentration in the atmosphere. In the present study, this break-even price is applied to the economic break-even condition. However, because this break-even price is based on the present energy scenario including uncertainties, the economic break-even condition discussed here should not be considered the sufficient condition, but a necessary condition. Under the conditions of Btmax = 16 T, ηe = 40 %, plant availability 60 %, and a radial build with/without CS coil, the economic break-even condition requires ΒN ˜ 5.0 for 65 mill/kWh of lower break-even price case. Finally, the present study reveals that the demonstration of steady-state operation with ΒN ˜ 3.0 in the ITER project leads to the upper region of the break-even price in the present world energy scenario, which implies that it is necessary to improve the plasma performance beyond that of the ITER advanced plasma operation.

  13. Experiment and simulation on one-dimensional plasma photonic crystals

    International Nuclear Information System (INIS)

    Zhang, Lin; Ouyang, Ji-Ting

    2014-01-01

    The transmission characteristics of microwaves passing through one-dimensional plasma photonic crystals (PPCs) have been investigated by experiment and simulation. The PPCs were formed by a series of discharge tubes filled with argon at 5 Torr that the plasma density in tubes can be varied by adjusting the discharge current. The transmittance of X-band microwaves through the crystal structure was measured under different discharge currents and geometrical parameters. The finite-different time-domain method was employed to analyze the detailed properties of the microwaves propagation. The results show that there exist bandgaps when the plasma is turned on. The properties of bandgaps depend on the plasma density and the geometrical parameters of the PPCs structure. The PPCs can perform as dynamical band-stop filter to control the transmission of microwaves within a wide frequency range

  14. Sensitivity of the Boundary Plasma to the Plasma-Material Interface

    International Nuclear Information System (INIS)

    Canik, John M.; Tang, X.-Z.

    2017-01-01

    While the sensitivity of the scrape-off layer and divertor plasma to the highly uncertain cross-field transport assumptions is widely recognized, the plasma is also sensitive to the details of the plasma-material interface (PMI) models used as part of comprehensive predictive simulations. Here in this paper, these PMI sensitivities are studied by varying the relevant sub-models within the SOLPS plasma transport code. Two aspects are explored: the sheath model used as a boundary condition in SOLPS, and fast particle reflection rates for ions impinging on a material surface. Both of these have been the study of recent high-fidelity simulation efforts aimed at improving the understanding and prediction of these phenomena. It is found that in both cases quantitative changes to the plasma solution result from modification of the PMI model, with a larger impact in the case of the reflection coefficient variation. Finally, this indicates the necessity to better quantify the uncertainties within the PMI models themselves, and perform thorough sensitivity analysis to propagate these throughout the boundary model; this is especially important for validation against experiment, where the error in the simulation is a critical and less-studied piece of the code-experiment comparison.

  15. Kinetic Simulations of Plasma Energization and Particle Acceleration in Interacting Magnetic Flux Ropes

    Science.gov (United States)

    Du, S.; Guo, F.; Zank, G. P.; Li, X.; Stanier, A.

    2017-12-01

    The interaction between magnetic flux ropes has been suggested as a process that leads to efficient plasma energization and particle acceleration (e.g., Drake et al. 2013; Zank et al. 2014). However, the underlying plasma dynamics and acceleration mechanisms are subject to examination of numerical simulations. As a first step of this effort, we carry out 2D fully kinetic simulations using the VPIC code to study the plasma energization and particle acceleration during coalescence of two magnetic flux ropes. Our analysis shows that the reconnection electric field and compression effect are important in plasma energization. The results may help understand the energization process associated with magnetic flux ropes frequently observed in the solar wind near the heliospheric current sheet.

  16. Comparison of 2D simulations of detached divertor plasmas with divertor Thomson measurements in the DIII-D tokamak

    Directory of Open Access Journals (Sweden)

    T.D. Rognlien

    2017-08-01

    Full Text Available A modeling study is reported using new 2D data from DIII-D tokamak divertor plasmas and improved 2D transport model that includes large cross-field drifts for the numerically difficult low anomalous transport regime associated with the H-mode. The data set, which spans a range of plasma densities for both forward and reverse toroidal magnetic field (Bt, is provided by divertor Thomson scattering (DTS. Measurements utilizing X-point sweeping give corresponding 2D profiles of electron temperature (Te and density (ne across both divertor legs for individual discharges. The simulations focus on the open magnetic field-line regions, though they also include a small region of closed field lines. The calculations show the same features of in/out divertor plasma asymmetries as measured in the experiment, with the normal Bt direction (ion ∇B drift toward the X-point having higher ne and lower Te in the inner divertor leg than outer. Corresponding emission data for total radiated power shows a strong inner-divertor/outer-divertor asymmetry that is reproduced by the simulations. These 2D UEDGE transport simulations are enabled for steep-gradient H-mode conditions by newly implemented algorithms to control isolated grid-scale irregularities.

  17. Wall conditioning of the TBR-1 Tokamak by plasma generated by microwaves

    International Nuclear Information System (INIS)

    Elizondo, J.I.

    1986-01-01

    A new system of vaccum chamber wall conditioning in the TBR-1 Tokamak, using electron cyclotron resonance plasma of hydrogen for the discharge cleaning process is presented. The construction and performance of equipments are described, and the cleaning process to otimize the conditioning efficiency by chase of plasma parameters. (author) [pt

  18. Quantum Simulations of Strongly Coupled Quark-Gluon Plasma

    International Nuclear Information System (INIS)

    Filinov, V.S.; Bonitz, M.; Ivanov, Yu.B.

    2013-01-01

    In recent years, there has been an increasing interest in dynamics and thermodynamics of non-Abelian plasmas at both very high temperature and density. It is expected that a specific state of matter with unconfined quarks and gluons - the so called quark - gluon plasma (QGP) - can exist. The most fundamental way to compute properties of the strongly interacting matter is provided by the lattice QCD. Interpretation of these very complicated computations requires application of various QCD motivated, albeit schematic, models simulating various aspects of the full theory. Moreover, such models are needed in cases when the lattice QCD fails, e.g. at large baryon chemical potentials and out of equilibrium. A semi-classical approximation, based on a point like quasi-particle picture has been recently introduced in literature. It is expected that it allows to treat soft processes in the QGP which are not accessible by the perturbative means and the main features of non-Abelian plasmas can be understood in simple semi-classical terms without the difficulties inherent to a full quantum field theoretical analysis. Here we propose stochastic simulation of thermodynamics and kinetic properties for QGP in semi-classical approximation in the wide region of temperature, density and quasi-particles masses. We extend previous classical nonrelativistic simulations based on a color Coulomb interaction to the quantum regime and take into account the Fermi (Bose) statistics of quarks (gluons) and quantum degeneracy self-consistently. In grand canonical ensemble for finite and zero baryon chemical potential we use the direct quantum path integral Monte Carlo method (PIMC) developed for finite temperature within Feynman formulation of quantum mechanics to do calculations of internal energy, pressure and pair correlation functions. The QGP quasi-particles representing dressed quarks, antiquarks and gluons interact via color quantum Kelbg pseudopotential rigorously derived in for Coulomb

  19. Plasma theory and simulation: Quarterly progress report Nos. 1 and 2, January 1, 1986-June 30, 1986

    International Nuclear Information System (INIS)

    Birdsall, C.K.

    1986-01-01

    This quarterly report deals with General Plasma Theory and Simulation. Computer simulation of bounded plasma systems, with external circuits, is discussed in considerable detail. Artificial cooling of trapped electrons in bounded simulations was observed and is now attributed to noiseless injection; the cooling does not occur if random injection is used. This report also deals with Plasma-Wall Physics and Simulation. The collector and source sheaths at the boundaries of warm plasma are treated in detail, including ion reflection and secondary electron emission at the collector. The Kelvin-Helmholtz instability is observed in a self-consistent magnetized sheath, producing long-lived vortices which increase the particle transport to the wall dramatically

  20. 2D full wave simulation on electromagnetic wave propagation in toroidal plasma

    International Nuclear Information System (INIS)

    Hojo, Hitoshi; Uruta, Go; Nakayama, Kazunori; Mase, Atsushi

    2002-01-01

    Global full-wave simulation on electromagnetic wave propagation in toroidal plasma with an external magnetic field imaging a tokamak configuration is performed in two dimensions. The temporal behavior of an electromagnetic wave launched into plasma from a wave-guiding region is obtained. (author)

  1. Simulation models for computational plasma physics: Concluding report

    International Nuclear Information System (INIS)

    Hewett, D.W.

    1994-01-01

    In this project, the authors enhanced their ability to numerically simulate bounded plasmas that are dominated by low-frequency electric and magnetic fields. They moved towards this goal in several ways; they are now in a position to play significant roles in the modeling of low-frequency electromagnetic plasmas in several new industrial applications. They have significantly increased their facility with the computational methods invented to solve the low frequency limit of Maxwell's equations (DiPeso, Hewett, accepted, J. Comp. Phys., 1993). This low frequency model is called the Streamlined Darwin Field model (SDF, Hewett, Larson, and Doss, J. Comp. Phys., 1992) has now been implemented in a fully non-neutral SDF code BEAGLE (Larson, Ph.D. dissertation, 1993) and has further extended to the quasi-neutral limit (DiPeso, Hewett, Comp. Phys. Comm., 1993). In addition, they have resurrected the quasi-neutral, zero-electron-inertia model (ZMR) and began the task of incorporating internal boundary conditions into this model that have the flexibility of those in GYMNOS, a magnetostatic code now used in ion source work (Hewett, Chen, ICF Quarterly Report, July--September, 1993). Finally, near the end of this project, they invented a new type of banded matrix solver that can be implemented on a massively parallel computer -- thus opening the door for the use of all their ADI schemes on these new computer architecture's (Mattor, Williams, Hewett, submitted to Parallel Computing, 1993)

  2. Particle-in-cell Simulations of Raman Laser Amplification in Preformed Plasmas

    International Nuclear Information System (INIS)

    Clark, Daniel S.; Fisch, Nathaniel J.

    2003-01-01

    Two critical issues in the amplification of laser pulses by backward Raman scattering in plasma slabs are the saturation mechanism of the amplification effect (which determines the maximum attainable output intensity of a Raman amplifier) and the optimal plasma density for amplification. Previous investigations [V.M. Malkin, et al., Phys. Rev. Lett., 82 (22):4448-4451, 1999] identified forward Raman scattering and modulational instabilities of the amplifying seed as the likely saturation mechanisms and lead to an estimated unfocused output intensities of 10 17 W/cm 2 . The optimal density for amplification is determined by the competing constraints of minimizing the plasma density so as to minimize the growth rate of the instabilities leading to saturation but also maintaining the plasma sufficiently dense that the driven Langmuir wave responsible for backscattering does not break prematurely. Here, particle-in-cell code are simulations presented which verify that saturation of backward Raman amplification does occur at intensities of ∼10 17 W/cm 2 by forward Raman scattering and modulational instabilities. The optimal density for amplification in a plasma with the representative temperature of T(sub)e = 200 eV is also shown in these simulations to be intermediate between the cold plasma wave-breaking density and the density limit found by assuming a water bag electron distribution function

  3. Numerical simulation and analysis of electromagnetic-wave absorption of a plasma slab created by a direct-current discharge with gridded anode

    Science.gov (United States)

    Yuan, Chengxun; Tian, Ruihuan; Eliseev, S. I.; Bekasov, V. S.; Bogdanov, E. A.; Kudryavtsev, A. A.; Zhou, Zhongxiang

    2018-03-01

    In this paper, we present investigation of a direct-current discharge with a gridded anode from the point of view of using it as a means of creating plasma coating that could efficiently absorb incident electromagnetic (EM) waves. A single discharge cell consists of two parallel plates, one of which (anode) is gridded. Electrons emitted from the cathode surface are accelerated in the short interelectrode gap and are injected into the post-anode space, where they lose acquired energy on ionization and create plasma. Numerical simulations were used to investigate the discharge structure and obtain spatial distributions of plasma density in the post-anode space. The numerical model of the discharge was based on a simple hybrid approach which takes into account non-local ionization by fast electrons streaming from the cathode sheath. Specially formulated transparency boundary conditions allowed performing simulations in 1D. Simulations were carried out in air at pressures of 10 Torr and higher. Analysis of the discharge structure and discharge formation is presented. It is shown that using cathode materials with lower secondary emission coefficients can allow increasing the thickness of plasma slabs for the same discharge current, which can potentially enhance EM wave absorption. Spatial distributions of electron density obtained during simulations were used to calculate attenuation of an incident EM wave propagating perpendicularly to the plasma slab boundary. It is shown that plasma created by means of a DC discharge with a gridded anode can efficiently absorb EM waves in the low frequency range (6-40 GHz). Increasing gas pressure results in a broader range of wave frequencies (up to 500 GHz) where a considerable attenuation is observed.

  4. Simulation of plasma loading of high-pressure RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Yu, K. [Brookhaven National Lab. (BNL), Upton, NY (United States). Computational Science Initiative; Samulyak, R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Computational Science Initiative; Stony Brook Univ., NY (United States). Dept. of Applied Mathematics and Statistics; Yonehara, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Freemire, B. [Northern Illinois Univ., DeKalb, IL (United States)

    2018-01-11

    Muon beam-induced plasma loading of radio-frequency (RF) cavities filled with high pressure hydrogen gas with 1% dry air dopant has been studied via numerical simulations. The electromagnetic code SPACE, that resolves relevant atomic physics processes, including ionization by the muon beam, electron attachment to dopant molecules, and electron-ion and ion-ion recombination, has been used. Simulations studies have also been performed in the range of parameters typical for practical muon cooling channels.

  5. Simulation of plasma loading of high-pressure RF cavities

    Science.gov (United States)

    Yu, K.; Samulyak, R.; Yonehara, K.; Freemire, B.

    2018-01-01

    Muon beam-induced plasma loading of radio-frequency (RF) cavities filled with high pressure hydrogen gas with 1% dry air dopant has been studied via numerical simulations. The electromagnetic code SPACE, that resolves relevant atomic physics processes, including ionization by the muon beam, electron attachment to dopant molecules, and electron-ion and ion-ion recombination, has been used. Simulations studies have been performed in the range of parameters typical for practical muon cooling channels.

  6. Hybrid Simulation of Supersonic Flow of Weakly Ionized Plasma along Open Field Magnetic Line Effect of Background Pressure

    Science.gov (United States)

    Laosunthara, Ampan; Akatsuka, Hiroshi

    2016-09-01

    In previous study, we experimentally examined physical properties of supersonic flow of weakly ionized expanding arc-jet plasma through an open magnetic field line (Bmax 0.16T). We found supersonic velocity of helium plasma up to Mach 3 and the space potential drop at the end of the magnets. To understand the plasma in numerical point of view, the flows of ion and neutral are treated by particle-based Direct Simulation Monte Carlo (DSMC) method, electron is treated as a fluid. The previous numerical study, we assumed 2 conditions. Ion and electron temperatures were the same (LTE condition). Ion and electron velocities were the same (current-free condition). We found that ion velocity decreased by collision with residual gas molecules (background pressure). We also found that space potential changing with background pressure. In other words, it was indicated that electric field exists and the current-free assumption is not proper. In this study, we add electron continuity and electron momentum equations to obtain electron velocity and space potential. We find that space potential changing with background pressure slightly. It is indicated that electron is essential to space potential formation than ion.

  7. Full wave simulation of waves in ECRIS plasmas based on the finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania, Italy and Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell' Informazione, delle Infrastrutture e dell' Energia Sostenibile (DIIES), Via Graziella, I (Italy); Mascali, D.; Neri, L.; Castro, G.; Patti, G.; Celona, L.; Gammino, S.; Ciavola, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania (Italy); Di Donato, L. [Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica (DIEEI), Viale Andrea Doria 6, 95125 Catania (Italy); Sorbello, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania, Italy and Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica (DIEEI), Viale Andrea Doria 6, 95125 Catania (Italy); Isernia, T. [Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell' Informazione, delle Infrastrutture e dell' Energia Sostenibile (DIIES), Via Graziella, I-89100 Reggio Calabria (Italy)

    2014-02-12

    This paper describes the modeling and the full wave numerical simulation of electromagnetic waves propagation and absorption in an anisotropic magnetized plasma filling the resonant cavity of an electron cyclotron resonance ion source (ECRIS). The model assumes inhomogeneous, dispersive and tensorial constitutive relations. Maxwell's equations are solved by the finite element method (FEM), using the COMSOL Multiphysics{sup ®} suite. All the relevant details have been considered in the model, including the non uniform external magnetostatic field used for plasma confinement, the local electron density profile resulting in the full-3D non uniform magnetized plasma complex dielectric tensor. The more accurate plasma simulations clearly show the importance of cavity effect on wave propagation and the effects of a resonant surface. These studies are the pillars for an improved ECRIS plasma modeling, that is mandatory to optimize the ion source output (beam intensity distribution and charge state, especially). Any new project concerning the advanced ECRIS design will take benefit by an adequate modeling of self-consistent wave absorption simulations.

  8. Simulations of relativistic quantum plasmas using real-time lattice scalar QED

    Science.gov (United States)

    Shi, Yuan; Xiao, Jianyuan; Qin, Hong; Fisch, Nathaniel J.

    2018-05-01

    Real-time lattice quantum electrodynamics (QED) provides a unique tool for simulating plasmas in the strong-field regime, where collective plasma scales are not well separated from relativistic-quantum scales. As a toy model, we study scalar QED, which describes self-consistent interactions between charged bosons and electromagnetic fields. To solve this model on a computer, we first discretize the scalar-QED action on a lattice, in a way that respects geometric structures of exterior calculus and U(1)-gauge symmetry. The lattice scalar QED can then be solved, in the classical-statistics regime, by advancing an ensemble of statistically equivalent initial conditions in time, using classical field equations obtained by extremizing the discrete action. To demonstrate the capability of our numerical scheme, we apply it to two example problems. The first example is the propagation of linear waves, where we recover analytic wave dispersion relations using numerical spectrum. The second example is an intense laser interacting with a one-dimensional plasma slab, where we demonstrate natural transition from wakefield acceleration to pair production when the wave amplitude exceeds the Schwinger threshold. Our real-time lattice scheme is fully explicit and respects local conservation laws, making it reliable for long-time dynamics. The algorithm is readily parallelized using domain decomposition, and the ensemble may be computed using quantum parallelism in the future.

  9. Simulation of Plasma Jet Merger and Liner Formation within the PLX- α Project

    Science.gov (United States)

    Samulyak, Roman; Chen, Hsin-Chiang; Shih, Wen; Hsu, Scott

    2015-11-01

    Detailed numerical studies of the propagation and merger of high Mach number argon plasma jets and the formation of plasma liners have been performed using the newly developed method of Lagrangian particles (LP). The LP method significantly improves accuracy and mathematical rigor of common particle-based numerical methods such as smooth particle hydrodynamics while preserving their main advantages compared to grid-based methods. A brief overview of the LP method will be presented. The Lagrangian particle code implements main relevant physics models such as an equation of state for argon undergoing atomic physics transformation, radiation losses in thin optical limit, and heat conduction. Simulations of the merger of two plasma jets are compared with experimental data from past PLX experiments. Simulations quantify the effect of oblique shock waves, ionization, and radiation processes on the jet merger process. Results of preliminary simulations of future PLX- alpha experiments involving the ~ π / 2 -solid-angle plasma-liner configuration with 9 guns will also be presented. Partially supported by ARPA-E's ALPHA program.

  10. Nonideal plasmas as non-equilibrium media

    International Nuclear Information System (INIS)

    Morozov, I V; Norman, G E; Valuev, A A; Valuev, I A

    2003-01-01

    Various aspects of the collective behaviour of non-equilibrium nonideal plasmas are studied. The relaxation of kinetic energy to the equilibrium state is simulated by the molecular dynamics (MD) method for two-component non-degenerate strongly non-equilibrium plasmas. The initial non-exponential stage, its duration and the subsequent exponential stage of the relaxation process are studied for a wide range of ion charge, nonideality parameter and ion mass. A simulation model of the nonideal plasma excited by an electron beam is proposed. An approach is developed to calculate the dynamic structure factor in non-stationary conditions. Instability increment is obtained from MD simulations

  11. Simulated Irradiation of Samples in HFIR for use as Possible Test Materials in the MPEX (Material Plasma Exposure Experiment) Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Ronald James [ORNL; Rapp, Juergen [ORNL

    2014-01-01

    The importance of Plasma Material Interaction (PMI) is a major concern in fusion reactor design and analysis. The Material-Plasma Exposure eXperiment (MPEX) facility will explore PMI under fusion reactor plasma conditions. Samples with accumulated displacements per atom (DPA) damage produced by irradiations in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) will be studied in the MPEX facility. The project presented in this paper involved performing assessments of the induced radioactivity and resulting radiation fields of a variety of potential fusion reactor materials. The scientific code packages MCNP and SCALE were used to simulate irradiation of the samples in HFIR; generation and depletion of nuclides in the material and the subsequent composition, activity levels, gamma radiation fields, and resultant dose rates as a function of cooling time. These state-of-the-art simulation methods were used in addressing the challenge of the MPEX project to minimize the radioactive inventory in the preparation of the samples for inclusion in the MPEX facility.

  12. Axisymmetric MHD simulation of ITB crash and following disruption dynamics of Tokamak plasmas with high bootstrap current

    International Nuclear Information System (INIS)

    Takei, Nahoko; Tsutsui, Hiroaki; Tsuji-Iio, Shunji; Shimada, Ryuichi; Nakamura, Yukiharu; Kawano, Yasunori; Ozeki, Takahisa; Tobita, Kenji; Sugihara, Masayoshi

    2004-01-01

    Axisymmetric MHD simulation using the Tokamak Simulation Code demonstrated detailed disruption dynamics triggered by a crash of internal transport barrier in high bootstrap current, high β, reversed shear plasmas. Self-consistent time-evolutions of ohmic current bootstrap current and induced loop voltage profiles inside the disrupting plasma were shown from a view point of disruption characterization and mitigation. In contrast with positive shear plasmas, a particular feature of high bootstrap current reversed shear plasma disruption was computed to be a significant change of plasma current profile, which is normally caused due to resistive diffusion of the electric field induced by the crash of internal transport barrier in a region wider than the internal transport barrier. Discussion based on the simulation results was made on the fastest record of the plasma current quench observed in JT-60U reversed shear plasma disruptions. (author)

  13. Numerical simulation of current-free double layers created in a helicon plasma device

    Science.gov (United States)

    Rao, Sathyanarayan; Singh, Nagendra

    2012-09-01

    Two-dimensional simulations reveal that when radially confined source plasma with magnetized electrons and unmagnetized ions expands into diverging magnetic field B, a current-free double layer (CFDL) embedded in a conical density structure forms, as experimentally measured in the Australian helicon plasma device (HPD). The magnetized electrons follow the diverging B while the unmagnetized ions tend to flow directly downstream of the source, resulting in a radial electric field (E⊥) structure, which couples the ion and electron flows. Ions are transversely (radially) accelerated by E⊥ on the high potential side of the double layer in the CFDL. The accelerated ions are trapped near the conical surface, where E⊥ reverses direction. The potential structure of the CFDL is U-shaped and the plasma density is enhanced on the conical surface. The plasma density is severely depleted downstream of the parallel potential drop (φ||o) in the CFDL; the density depletion and the potential drop are related by quasi-neutrality condition, including the divergence in the magnetic field and in the plasma flow in the conical structure. The potential and density structures, the CFDL spatial size, its electric field strengths and the electron and ion velocities and energy distributions in the CFDL are found to be in good agreements with those measured in the Australian experiment. The applicability of our results to measured axial potential profiles in magnetic nozzle experiments in HPDs is discussed.

  14. Numerical simulation of neutral particle evolution in the plasma of a Tokamak

    International Nuclear Information System (INIS)

    Mercier, C.; Werkoff, F.

    1976-11-01

    A numerical code previously described is used to simulate the evolution of neutral particles in a cylindrical plasma. The influence of the incoming neutral energy on their repartition inside the plasma is briefly studied. The flux of the neutrals emitted by the plasma and hitting the wall is given as a function of the energy. The effect of various plasma parameters on the apparent value of the ion temperature obtained by analyzing the emitted neutral spectrum in a given direction is also studied [fr

  15. 3D simulation studies of tokamak plasmas using MHD and extended-MHD models

    International Nuclear Information System (INIS)

    Park, W.; Chang, Z.; Fredrickson, E.; Fu, G.Y.

    1996-01-01

    The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-β disruption studies in reversed shear plasmas using the MHD level MH3D code, ω *i stabilization and nonlinear island saturation of TAE mode using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D ++ code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree which agree well with experimental data

  16. Properties of Hermean plasma belt: Numerical simulations and comparison with MESSENGER data

    Czech Academy of Sciences Publication Activity Database

    Herčík, David; Trávníček, Pavel M.; Štverák, Štěpán; Hellinger, Petr

    2016-01-01

    Roč. 121, č. 1 (2016), s. 413-431 ISSN 2169-9380 Institutional support: RVO:68378289 Keywords : Mercury * plasma belt * numerical simulations Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.733, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/2015JA021938/full

  17. Plasma transport simulation modeling for helical confinement systems

    International Nuclear Information System (INIS)

    Yamazaki, K.; Amano, T.

    1991-08-01

    New empirical and theoretical transport models for helical confinement systems are developed based on the neoclassical transport theory including the effect of radial electric field and multi-helicity magnetic components, and the drift wave turbulence transport for electrostatic and electromagnetic modes, or the anomalous semi-empirical transport. These electron thermal diffusivities are compared with CHS (Compact Helical System) experimental data, which indicates that the central transport coefficient of the ECH plasma agrees with the neoclassical axi-symmetric value and the transport outside the half radius is anomalous. On the other hand, the transport of NBI-heated plasmas is anomalous in the whole plasma region. This anomaly is not explained by the electrostatic drift wave turbulence models in these flat-density-profile discharges. For the detailed prediction of plasma parameters in LHD (Large Helical Device), 3-D(dimensional) equilibrium/1-D transport simulations including empirical or drift wave turbulence models are carried out, which suggests that the global confinement time of LHD is determined mainly by the electron anomalous transport near the plasma edge region rather than the helical ripple transport in the core region. Even if the ripple loss can be eliminated, the increase of the global confinement is 10%. However, the rise in the central ion temperature is more than 20%. If the anomalous loss can be reduced to the half level of the present scaling, like so-called 'H-mode' of the tokamak discharge, the neoclassical ripple loss through the ion channel becomes important even in the plasma core. The 5% radial inward shift of the plasma column with respect to the major radius is effective for improving plasma confinement and raising more than 50% of the fusion product by reducing this neoclassical asymmetric ion transport loss and increasing 10% in the plasma radius. (author)

  18. Plasma structure change and intermittent fluctuation near magnetic island X-point under detached plasma condition in LHD

    International Nuclear Information System (INIS)

    Ohno, N.; Tsuji, Y.; Tanaka, H.; Masuzaki, S.; Kobayashi, M.; Akiyama, T.; Morisaki, T.; Motojima, G.; Narushima, Y.

    2014-10-01

    Plasma profiles and intermittent fluctuations near the helical divertor X-point and on a divertor plate were investigated using a fast scanning Langmuir probe and a probe array embedded on a divertor plate in detached divertor condition that was sustained by applying a resonant magnetic perturbation (RMP) field in LHD. When the RMP induced magnetic island X-point (n/m = 1/1) is located near the helical divertor X-point, the reduction of particle flux accompanied by the plasma detachment occurred near the helical divertor X-point (n/m = 2/10), which leads to the reduction of the particle flux at the strike point on the divertor plate. We also found that when the divertor plasma turned to be the detached condition, the enhanced plasma fluctuations were confirmed between the helical divertor X-point and ergodic region, which exhibited a dynamic behavior having a large amount of positive-spike components with highly intermittent property. (author)

  19. Gyrokinetic Electron and Fully Kinetic Ion Particle Simulation of Collisionless Plasma Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Yu Lin; Xueyi Wang; Liu Chen; Zhihong Lin

    2009-08-11

    Fully kinetic-particle simulations and hybrid simulations have been utilized for decades to investigate various fundamental plasma processes, such as magnetic reconnection, fast compressional waves, and wave-particle interaction. Nevertheless, due to disparate temporal and spatial scales between electrons and ions, existing fully kinetic-particle codes have to employ either unrealistically high electron-to-ion mass ratio, me/mi, or simulation domain limited to a few or a few ten's of the ion Larmor radii, or/and time much less than the global Alfven time scale in order to accommodate available computing resources. On the other hand, in the hybrid simulation, the ions are treated as fully kinetic particles but the electrons are treated as a massless fluid. The electron kinetic effects, e.g., wave-particle resonances and finite electron Larmor radius effects, are completely missing. Important physics, such as the electron transit time damping of fast compressional waves or the triggering mechanism of magnetic reconnection in collisionless plasmas is absent in the hybrid codes. Motivated by these considerations and noting that dynamics of interest to us has frequencies lower than the electron gyrofrequency, we planned to develop an innovative particle simulation model, gyrokinetic (GK) electrons and fully kinetic (FK) ions. In the GK-electron and FK-ion (GKe/FKi) particle simulation model, the rapid electron cyclotron motion is removed, while keeping finite electron Larmor radii, realistic me/mi ratio, wave-particle interactions, and off-diagonal components of electron pressure tensor. The computation power can thus be significantly improved over that of the full-particle codes. As planned in the project DE-FG02-05ER54826, we have finished the development of the new GK-electron and FK-ion scheme, finished its benchmark for a uniform plasma in 1-D, 2-D, and 3-D systems against linear waves obtained from analytical theories, and carried out a further convergence

  20. Gyrokinetic Electron and Fully Kinetic Ion Particle Simulation of Collisionless Plasma Dynamics

    International Nuclear Information System (INIS)

    Lin, Yu; Wang, Xueyi; Chen, Liu; Lin, Zhihong

    2009-01-01

    Fully kinetic-particle simulations and hybrid simulations have been utilized for decades to investigate various fundamental plasma processes, such as magnetic reconnection, fast compressional waves, and wave-particle interaction. Nevertheless, due to disparate temporal and spatial scales between electrons and ions, existing fully kinetic-particle codes have to employ either unrealistically high electron-to-ion mass ratio, me/mi, or simulation domain limited to a few or a few ten's of the ion Larmor radii, or/and time much less than the global Alfven time scale in order to accommodate available computing resources. On the other hand, in the hybrid simulation, the ions are treated as fully kinetic particles but the electrons are treated as a massless fluid. The electron kinetic effects, e.g., wave-particle resonances and finite electron Larmor radius effects, are completely missing. Important physics, such as the electron transit time damping of fast compressional waves or the triggering mechanism of magnetic reconnection in collisionless plasmas is absent in the hybrid codes. Motivated by these considerations and noting that dynamics of interest to us has frequencies lower than the electron gyrofrequency, we planned to develop an innovative particle simulation model, gyrokinetic (GK) electrons and fully kinetic (FK) ions. In the GK-electron and FK-ion (GKe/FKi) particle simulation model, the rapid electron cyclotron motion is removed, while keeping finite electron Larmor radii, realistic me/mi ratio, wave-particle interactions, and off-diagonal components of electron pressure tensor. The computation power can thus be significantly improved over that of the full-particle codes. As planned in the project DE-FG02-05ER54826, we have finished the development of the new GK-electron and FK-ion scheme, finished its benchmark for a uniform plasma in 1-D, 2-D, and 3-D systems against linear waves obtained from analytical theories, and carried out a further convergence test

  1. [Research on the identification method of LTE condition in the laser-induced plasma].

    Science.gov (United States)

    Fan, Juan-juan; Huang, Dan; Wang, Xin; Zhang, Lei; Ma, Wei-guang; Dong, Lei; Yin, Wang-bao; Jia, Suo-tang

    2014-12-01

    Because of the poor accuracy of the commonly used Boltzmann plot method and double-line method, the Boltzmann-Maxwell distribution combined with the Saha-Eggert formula is proposed to improve the measurement accuracy of the plasma temperature; the simple algorithm for determining the linewidth of the emission line was established according to the relationship between the area and the peak value of the Gaussian formula, and the plasma electron density was calculated through the Stark broadening of the spectral lines; the method for identifying the plasma local thermal equilibrium (LTE) condition was established based on the McWhirter criterion. The experimental results show that with the increase in laser energy, the plasma temperature and electron density increase linearly; when the laser energy changes within 127~510 mJ, the plasma electron density changes in the range of 1.30532X10(17)~1.87322X10(17) cm(-3), the plasma temperature changes in the range of 12586~12957 K, and all the plasma generated in this experiment meets the LTE condition threshold according to the McWhirter criterion. For element Al, there exist relatively few observable lines at the same ionization state in the spectral region of the spectrometer, thus it is unable to use the Boltzmann plane method to calculate temperature. One hundred sets of Al plasma spectra were used for temperature measurement by employing the Saha-Boltzmann method and the relative standard deviation (RSD) value is 0.4%, and compared with 1.3% of the double line method, the accuracy has been substantially increased. The methods proposed can be used for rapid plasma temperature and electron density calculation, the LTE condition identification, and are valuable in studies such as free calibration, spectral effectiveness analysis, spectral temperature correction, the best collection location determination, LTE condition distribution in plasma, and so on.

  2. Simulations of plasma heating caused by the coalescence of multiple current loops in a proton-boron fusion plasma

    International Nuclear Information System (INIS)

    Haruki, T.; Yousefi, H. R.; Sakai, J.-I.

    2010-01-01

    Two dimensional particle-in-cell simulations of a dense plasma focus were performed to investigate a plasma heating process caused by the coalescence of multiple current loops in a proton-boron-electron plasma. Recently, it was reported that the electric field produced during the coalescence of two current loops in a proton-boron-electron plasma heats up all plasma species; proton-boron nuclear fusion may therefore be achievable using a dense plasma focus device. Based on this work, the coalescence process for four and eight current loops was investigated. It was found that the return current plays an important role in both the current pinch and the plasma heating. The coalescence of four current loops led to the breakup of the return current from the pinched plasma, resulting in plasma heating. For the coalescence of eight current loops, the plasma was confined by the pinch but the plasma heating was smaller than the two and four loop cases. Therefore the heating associated with current loop coalescence depends on the number of initial current loops. These results are useful for understanding the coalescence of multiple current loops in a proton-boron-electron plasma.

  3. Chaos in reversed-field-pinch plasma simulation and experiment

    International Nuclear Information System (INIS)

    Watts, C.; Newman, D.E.; Sprott, J.C.

    1994-01-01

    We investigate the possibility that chaos and simple determinism are governing the dynamics of reversed-field-pinch (RFP) plasmas using data from both numerical simulations and experiment. A large repertoire of nonlinear-analysis techniques is used to identify low-dimensional chaos. These tools include phase portraits and Poincare sections, correlation dimension, the spectrum of Lyapunov exponents, and short-term predictability. In addition, nonlinear-noise-reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulate the plasma dynamics. These are the DEBS computer code, which models global RFP dynamics, and the dissipative trapped-electron-mode model, which models drift-wave turbulence. Data from both simulations show strong indications of low-dimensional chaos and simple determinism. Experimental data were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low-dimensional chaos or other simple determinism. Moreover, most of the analysis tools indicate that the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system

  4. Numerical simulation on current spike behaviour of JT-60U disruptive plasmas

    International Nuclear Information System (INIS)

    Takei, N; Nakamura, Y; Tsutsui, H; Yoshino, R; Kawano, Y; Ozeki, T; Tobita, K; Tsuji-Iio, S; Shimada, R; Jardin, S C

    2004-01-01

    Characteristics and underlying mechanisms for plasma current spikes, which have been frequently observed during the thermal quench of JT-60U disruptions, were investigated through tokamak simulation code simulations including the passive shell effects of the vacuum vessel. Positive shear and reversed shear (PS and RS) plasmas were shown to have various current spike features in the experiments, e.g. an impulsive increase in the plasma current (positive spike) in the majority of thermal quenches, and a sudden decrease (negative spike), that has been excluded from past consideration, as an exception. It was first clarified that the shell effects, which become significant especially at a strong pressure drop due to the thermal quench of high β p plasmas, play an important role in the current spike in accordance with the initial relation of the radial location between the plasma equilibria and the vacuum vessel. As a consequence, a negative current spike may appear at thermal quench when the plasma is positioned further out from the geometric centre of the vacuum vessel. It was also pointed out that a further lowering in the internal inductance, in contradiction to previous interpretation in the past, is a plausible candidate for the mechanism for positive current spikes observed even in RS plasmas. The new interpretation enables us to reason out the whole character of current spikes of JT-60U disruptions

  5. Full-wave Simulations of LH Wave Propagation in Toroidal Plasma with non-Maxwellian Electron Distributions

    International Nuclear Information System (INIS)

    Valeo, E.J.; Phillips, C.K.; Bonoli, P.T.; Wright, J.C.; Brambilla, M.

    2007-01-01

    The generation of energetic tails in the electron distribution function is intrinsic to lower-hybrid (LH) heating and current drive in weakly collisional magnetically confined plasma. The effects of these deformations on the RF deposition profile have previously been examined within the ray approximation. Recently, the calculation of full-wave propagation of LH waves in a thermal plasma has been accomplished using an adaptation of the TORIC code. Here, initial results are presented from TORIC simulations of LH propagation in a toroidal plasma with non-thermal electrons. The required efficient computation of the hot plasma dielectric tensor is accomplished using a technique previously demonstrated in full-wave simulations of ICRF propagation in plasma with non-thermal ions

  6. Development of high energy pulsed plasma simulator for plasma-lithium trench experiment

    Science.gov (United States)

    Jung, Soonwook

    To simulate detrimental events in a tokamak and provide a test-stand for a liquid lithium infused trench (LiMIT) device, a pulsed plasma source utilizing a theta pinch in conjunction with a coaxial plasma accelerator has been developed. An overall objective of the project is to develop a compact device that can produce 100 MW/m2 to 1 GW/m2 of plasma heat flux (a typical heat flux level in a major fusion device) in ~ 100 mus (≤ 0.1 MJ/m2) for a liquid lithium plasma facing component research. The existing theta pinch device, DEVeX, was built and operated for study on lithium vapor shielding effect. However, a typical plasma energy of 3 - 4 kJ/m2 is too low to study an interaction of plasma and plasma facing components in fusion devices. No or little preionized plasma, ringing of magnetic field, collisions of high energy particles with background gas have been reported as the main issues. Therefore, DEVeX is reconfigured to mitigate these issues. The new device is mainly composed of a plasma gun for a preionization source, a theta pinch for heating, and guiding magnets for a better plasma transportation. Each component will be driven by capacitor banks and controlled by high voltage / current switches. Several diagnostics including triple Langmuir probe, calorimeter, optical emission measurement, Rogowski coil, flux loop, and fast ionization gauge are used to characterize the new device. A coaxial plasma gun is manufactured and installed in the previous theta pinch chamber. The plasma gun is equipped with 500 uF capacitor and a gas puff valve. The increase of the plasma velocity with the plasma gun capacitor voltage is consistent with the theoretical predictions and the velocity is located between the snowplow model and the weak - coupling limit. Plasma energies measured with the calorimeter ranges from 0.02 - 0.065 MJ/m2 and increases with the voltage at the capacitor bank. A cross-check between the plasma energy measured with the calorimeter and the triple probe

  7. GPU based 3D feature profile simulation of high-aspect ratio contact hole etch process under fluorocarbon plasmas

    Science.gov (United States)

    Chun, Poo-Reum; Lee, Se-Ah; Yook, Yeong-Geun; Choi, Kwang-Sung; Cho, Deog-Geun; Yu, Dong-Hun; Chang, Won-Seok; Kwon, Deuk-Chul; Im, Yeon-Ho

    2013-09-01

    Although plasma etch profile simulation has been attracted much interest for developing reliable plasma etching, there still exist big gaps between current research status and predictable modeling due to the inherent complexity of plasma process. As an effort to address this issue, we present 3D feature profile simulation coupled with well-defined plasma-surface kinetic model for silicon dioxide etching process under fluorocarbon plasmas. To capture the realistic plasma surface reaction behaviors, a polymer layer based surface kinetic model was proposed to consider the simultaneous polymer deposition and oxide etching. Finally, the realistic plasma surface model was used for calculation of speed function for 3D topology simulation, which consists of multiple level set based moving algorithm, and ballistic transport module. In addition, the time consumable computations in the ballistic transport calculation were improved drastically by GPU based numerical computation, leading to the real time computation. Finally, we demonstrated that the surface kinetic model could be coupled successfully for 3D etch profile simulations in high-aspect ratio contact hole plasma etching.

  8. Forthcoming break-even conditions of tokamak plasma performance for fusion energy development

    International Nuclear Information System (INIS)

    Hiwatari, Ryoji; Okano, Kunihiko; Asaoka, Yoshiyuki; Tokimatsu, Koji; Konishi, Satoshi; Ogawa, Yuichi

    2005-01-01

    The present study reveals forthcoming break-even conditions of tokamak plasma performance for the fusion energy development. The first condition is the electric break-even condition, which means that the gross electric power generation is equal to the circulating power in a power plant. This is required for fusion energy to be recognized as a suitable candidate for an alternative energy source. As for the plasma performance (normalized beta value β N , confinement improvement factor for H-mode HH, the ratio of plasma density to Greenwald density fn GW ), the electric break-even condition requires the simultaneous achievement of 1.2 N GW tmax =16 T, thermal efficiency η e =30%, and current drive power P NBI N ∼1.8, HH≠1.0, and fn GW ∼0.9, which correspond to the ITER reference operation parameters, have a strong potential to achieve the electric break-even condition. The second condition is the economic break-even condition, which is required for fusion energy to be selected as an alternative energy source in the energy market. By using a long-term world energy scenario, a break-even price for introduction of fusion energy in the year 2050 is estimated to lie between 65 mill/kWh and 135 mill/kWh under the constraint of 550 ppm CO 2 concentration in the atmosphere. In the present study, this break-even price is applied to the economic break-even condition. However, because this break-even price is based on the present energy scenario including uncertainties, the economic break-even condition discussed here should not be considered the sufficient condition, but a necessary condition. Under the conditions of B tmax =16 T, η e =40%, plant availability 60%, and a radial build with/without CS coil, the economic break-even condition requires β N ∼5.0 for 65 mill/kWh of lower break-even price case. Finally, the present study reveals that the demonstration of steady-state operation with β N ∼3.0 in the ITER project leads to the upper region of the break

  9. Simulation of density measurements in plasma wakefields using photo acceleration

    CERN Document Server

    Kasim, Muhammad Firmansyah; Ceurvorst, Luke; Sadler, James; Burrows, Philip N; Trines, Raoul; Holloway, James; Wing, Matthew; Bingham, Robert; Norreys, Peter

    2015-01-01

    One obstacle in plasma accelerator development is the limitation of techniques to diagnose and measure plasma wakefield parameters. In this paper, we present a novel concept for the density measurement of a plasma wakefield using photon acceleration, supported by extensive particle in cell simulations of a laser pulse that copropagates with a wakefield. The technique can provide the perturbed electron density profile in the laser’s reference frame, averaged over the propagation length, to be accurate within 10%. We discuss the limitations that affect the measurement: small frequency changes, photon trapping, laser displacement, stimulated Raman scattering, and laser beam divergence. By considering these processes, one can determine the optimal parameters of the laser pulse and its propagation length. This new technique allows a characterization of the density perturbation within a plasma wakefield accelerator.

  10. Simulation of ionization effects for high-density positron drivers in future plasma wakefield experiments

    International Nuclear Information System (INIS)

    Bruhwiler, D.L.; Dimitrov, D.A.; Cary, J.R.; Esarey, E.; Leemans, W.P.

    2003-01-01

    The plasma wakefield accelerator (PWFA) concept has been proposed as a potential energy doubler for present or future electron-positron colliders. Recent particle-in-cell (PIC) simulations have shown that the self-fields of the required electron beam driver can tunnel ionize neutral Li, leading to plasma wake dynamics differing significantly from that of a preionized plasma. It has also been shown, for the case of a preionized plasma, that the plasma wake of a positron driver differs strongly from that of an electron driver. We will present new PIC simulations, using the OOPIC code, showing the effects of tunneling ionization on the plasma wake generated by high-density positron drivers. The results will be compared to previous work on electron drivers with tunneling ionization and positron drivers without ionization. Parameters relevant to the energy doubler and the upcoming E-164x experiment at the Stanford Linear Accelerator Center will be considered

  11. A finite-difference time-domain simulation of high power microwave generated plasma at atmospheric pressures

    International Nuclear Information System (INIS)

    Ford, Patrick J.; Beeson, Sterling R.; Krompholz, Hermann G.; Neuber, Andreas A.

    2012-01-01

    A finite-difference algorithm was developed to calculate several RF breakdown parameters, for example, the formative delay time that is observed between the initial application of a RF field to a dielectric surface and the formation of field-induced plasma interrupting the RF power flow. The analysis is focused on the surface being exposed to a background gas pressure above 50 Torr. The finite-difference algorithm provides numerical solutions to partial differential equations with high resolution in the time domain, making it suitable for simulating the time evolving interaction of microwaves with plasma; in lieu of direct particle tracking, a macroscopic electron density is used to model growth and transport. This approach is presented as an alternative to particle-in-cell methods due to its low complexity and runtime leading to more efficient analysis for a simulation of a microsecond scale pulse. The effect and development of the plasma is modeled in the simulation using scaling laws for ionization rates, momentum transfer collision rates, and diffusion coefficients, as a function of electric field, gas type and pressure. The incorporation of plasma material into the simulation involves using the Z-transform to derive a time-domain algorithm from the complex frequency-dependent permittivity of plasma. Therefore, the effect of the developing plasma on the instantaneous microwave field is calculated. Simulation results are compared with power measurements using an apparatus designed to facilitate surface flashover across a polycarbonate boundary in a controlled N 2 , air, or argon environment at pressures exceeding 50 Torr.

  12. Theoretical and Numerical Properties of a Gyrokinetic Plasma: Issues Related to Transport Time Scale Simulation

    International Nuclear Information System (INIS)

    Lee, W.W.

    2003-01-01

    Particle simulation has played an important role for the recent investigations on turbulence in magnetically confined plasmas. In this paper, theoretical and numerical properties of a gyrokinetic plasma as well as its relationship with magnetohydrodynamics (MHD) are discussed with the ultimate aim of simulating microturbulence in transport time scale using massively parallel computers

  13. Mercury's plasma belt: hybrid simulations results compared to in-situ measurements

    Science.gov (United States)

    Hercik, D.; Travnicek, P. M.; Schriver, D.; Hellinger, P.

    2012-12-01

    The presence of plasma belt and trapped particles region in the Mercury's inner magnetosphere has been questionable due to small dimensions of the magnetosphere of Mercury compared to Earth, where these regions are formed. Numerical simulations of the solar wind interaction with Mercury's magnetic field suggested that such a structure could be found also in the vicinity of Mercury. These results has been recently confirmed also by MESSENGER observations. Here we present more detailed analysis of the plasma belt structure and quasi-trapped particle population characteristics and behaviour under different orientations of the interplanetary magnetic field.The plasma belt region is constantly supplied with solar wind protons via magnetospheric flanks and tail current sheet region. Protons inside the plasma belt region are quasi-trapped in the magnetic field of Mercury and perform westward drift along the planet. This region is well separated by a magnetic shell and has higher average temperatures and lower bulk proton current densities than surrounding area. On the day side the population exhibits loss cone distribution function matching the theoretical loss cone angle. Simulations results are also compared to in-situ measurements acquired by MESSENGER MAG and FIPS instruments.

  14. Simulations of a dense plasma focus on a high impedance generator

    Science.gov (United States)

    Beresnyak, Andrey; Giuliani, John; Jackson, Stuart; Richardson, Steve; Swanekamp, Steve; Schumer, Joe; Commisso, Robert; Mosher, Dave; Weber, Bruce; Velikovich, Alexander

    2017-10-01

    We study the connection between plasma instabilities and fast ion acceleration for neutron production on a Dense Plasma Focus (DPF). The experiments will be performed on the HAWK generator (665 kA), which has fast rise time, 1.2 μs, and a high inductance, 607 nH. It is hypothesized that high impedance may enhance the neutron yield because the current will not be reduced during the collapse resulting in higher magnetization. To prevent upstream breakdown, we will inject plasma far from the insulator stack. We simulated rundown and collapse dynamics with Athena - Eulerian 3D, unsplit finite volume MHD code that includes shock capturing with Riemann solvers, resistive diffusion and the Hall term. The simulations are coupled to an equivalent circuit model for HAWK. We will report the dynamics and implosion time as a function of the initial injected plasma distribution and the implications of non-ideal effects. We also traced test particles in MHD fields and confirmed the presence of stochastic acceleration, which was limited by the size of the system and the strength of the magnetic field. Supported by DOE/NNSA and the Naval Research Laboratory Base Program.

  15. Species Entropies in the Kinetic Range of Collisionless Plasma Turbulence: Particle-in-cell Simulations

    Science.gov (United States)

    Gary, S. Peter; Zhao, Yinjian; Hughes, R. Scott; Wang, Joseph; Parashar, Tulasi N.

    2018-06-01

    Three-dimensional particle-in-cell simulations of the forward cascade of decaying turbulence in the relatively short-wavelength kinetic range have been carried out as initial-value problems on collisionless, homogeneous, magnetized electron-ion plasma models. The simulations have addressed both whistler turbulence at β i = β e = 0.25 and kinetic Alfvén turbulence at β i = β e = 0.50, computing the species energy dissipation rates as well as the increase of the Boltzmann entropies for both ions and electrons as functions of the initial dimensionless fluctuating magnetic field energy density ε o in the range 0 ≤ ε o ≤ 0.50. This study shows that electron and ion entropies display similar rates of increase and that all four entropy rates increase approximately as ε o , consistent with the assumption that the quasilinear premise is valid for the initial conditions assumed for these simulations. The simulations further predict that the time rates of ion entropy increase should be substantially greater for kinetic Alfvén turbulence than for whistler turbulence.

  16. 5-D simulation study of suprathermal electron transport in non-axisymmetric plasmas

    International Nuclear Information System (INIS)

    Murakami, S.; Idei, H.; Kubo, S.; Nakajima, N.; Okamoto, M.; Gasparino, U.; Maassberg, H.; Rome, M.; Marushchenko, N.

    2000-01-01

    ECRH driven transport of suprathermal electrons is studied in non-axisymmetric plasmas using a new Monte Carlo simulation technique in 5-D phase space. Two different phases of the ECRH driven transport of suprathermal electrons can be seen. The first is a rapid convective phase due to the direct radial motion of trapped electrons and the second is a slower phase due to the collisional transport. The important role of the radial transport of suprathermal electrons in the broadening of the ECRH deposition profile in W7-AS is clarified. The ECRH driven flux is also evaluated and considered in relation to the 'electron root' feature recently observed in W7-AS. It is found that, at low collisionalities, the ECRH driven flux due to the suprathermal electrons can play a dominant role in the condition of ambipolarity, and thus the observed electron root feature in W7-AS is thought to be driven by the radial (convective) flux of ECRH generated suprathermal electrons. A possible scenario for this type of electron root is considered for the LHD plasma. (author)

  17. 5D simulation study of suprathermal electron transport in non-axisymmetric plasmas

    International Nuclear Information System (INIS)

    Murakami, S.; Idei, H.; Kubo, S.; Nakajima, N.; Okamoto, M.; Gasparino, U.; Maassberg, H.; Rome, M.; Marushchenko, N.

    1999-01-01

    ECRH-driven transport of suprathermal electrons is studied in non-axisymmetric plasmas using a new Monte Carlo simulation technique in 5D phase space. Two different phases of the ECRH-driven transport of suprathermal electrons can be seen; one is a rapid convective phase due to the direct radial motion of trapped electrons and the other is a slower phase due to the collisional transport. The important role of the radial transport of suprathermal electrons in the broadening of the ECRH deposition profile is clarified in W7-AS. The ECRH driven flux is also evaluated and put in relation with the 'electron root' feature recently observed in W7-AS. It is found that, at low collisionalities, the ECRH driven flux due to the suprathermal electrons can play a dominant role in the condition of ambipolarity and, thus, the observed 'electron root' feature in W7-AS is thought to be driven by the radial (convective) flux of ECRH generated suprathermal electrons. The possible scenario of this 'ECRH-driven electron root' is considered in the LHD plasma. (author)

  18. Monte Carlo simulations for thermodynamical properties calculations of plasmas at thermodynamical equilibrium. Applications to opacity and equation of state calculations

    International Nuclear Information System (INIS)

    Gilles, D.

    2005-01-01

    This report is devoted to illustrate the power of a Monte Carlo (MC) simulation code to study the thermodynamical properties of a plasma, composed of classical point particles at thermodynamical equilibrium. Such simulations can help us to manage successfully the challenge of taking into account 'exactly' all classical correlations between particles due to density effects, unlike analytical or semi-analytical approaches, often restricted to low dense plasmas. MC simulations results allow to cover, for laser or astrophysical applications, a wide range of thermodynamical conditions from more dense (and correlated) to less dense ones (where potentials are long ranged type). Therefore Yukawa potentials, with a Thomas-Fermi temperature- and density-dependent screening length, are used to describe the effective ion-ion potentials. In this report we present two MC codes ('PDE' and 'PUCE') and applications performed with these codes in different fields (spectroscopy, opacity, equation of state). Some examples of them are discussed and illustrated at the end of the report. (author)

  19. Diagnostics of Particles emitted from a Laser generated Plasma: Experimental Data and Simulations

    Science.gov (United States)

    Costa, Giuseppe; Torrisi, Lorenzo

    2018-01-01

    The charge particle emission form laser-generated plasma was studied experimentally and theoretically using the COMSOL simulation code. The particle acceleration was investigated using two lasers at two different regimes. A Nd:YAG laser, with 3 ns pulse duration and 1010 W/cm2 intensity, when focused on solid target produces a non-equilibrium plasma with average temperature of about 30-50 eV. An Iodine laser with 300 ps pulse duration and 1016 W/cm2 intensity produces plasmas with average temperatures of the order of tens keV. In both cases charge separation occurs and ions and electrons are accelerated at energies of the order of 200 eV and 1 MeV per charge state in the two cases, respectively. The simulation program permits to plot the charge particle trajectories from plasma source in vacuum indicating how they can be deflected by magnetic and electrical fields. The simulation code can be employed to realize suitable permanent magnets and solenoids to deflect ions toward a secondary target or detectors, to focalize ions and electrons, to realize electron traps able to provide significant ion acceleration and to realize efficient spectrometers. In particular it was applied to the study two Thomson parabola spectrometers able to detect ions at low and at high laser intensities. The comparisons between measurements and simulation is presented and discussed.

  20. Outlook of multiple time and spatial scale simulation for understanding self-organizing phenomena in plasmas

    International Nuclear Information System (INIS)

    Hayashi, Takaya; Horiuchi, Ritoku; Watanabe, Kunihiko; Sato, Tetsuya

    2003-01-01

    The importance of the methodology of computer simulation has been recognized in plasma physics since the early era of computer evolution. In particular, the goal of simulation in this research field has been characterized by attempts to treat phenomena in a self-consistent manner as much as possible. Owing to the astonishing progress in recent supercomputer technology, we are now standing on a doorway to open a new stage in the simulation research in this direction, that is, an execution of multi-layer model simulation to understand complex phenomena in plasmas. (author)

  1. Precision of a FDTD method to simulate cold magnetized plasmas

    International Nuclear Information System (INIS)

    Pavlenko, I.V.; Melnyk, D.A.; Prokaieva, A.O.; Girka, I.O.

    2014-01-01

    The finite difference time domain (FDTD) method is applied to describe the propagation of the transverse electromagnetic waves through the magnetized plasmas. The numerical dispersion relation is obtained in a cold plasma approximation. The accuracy of the numerical dispersion is calculated as a function of the frequency of the launched wave and time step of the numerical grid. It is shown that the numerical method does not reproduce the analytical results near the plasma resonances for any chosen value of time step if there is not a dissipation mechanism in the system. It means that FDTD method cannot be applied straightforward to simulate the problems where the plasma resonances play a key role (for example, the mode conversion problems). But the accuracy of the numerical scheme can be improved by introducing some artificial damping of the plasma currents. Although part of the wave power is lost in the system in this case but the numerical scheme describes the wave processes in an agreement with analytical predictions.

  2. Viscosity calculated in simulations of strongly coupled dusty plasmas with gas friction

    International Nuclear Information System (INIS)

    Feng Yan; Goree, J.; Liu Bin

    2011-01-01

    A two-dimensional strongly coupled dusty plasma is modeled using Langevin and frictionless molecular dynamical simulations. The static viscosity η and the wave-number-dependent viscosity η(k) are calculated from the microscopic shear in the random motion of particles. A recently developed method of calculating the wave-number-dependent viscosity η(k) is validated by comparing the results of η(k) from the two simulations. It is also verified that the Green-Kubo relation can still yield an accurate measure of the static viscosity η in the presence of a modest level of friction as in dusty plasma experiments.

  3. Implementing particle-in-cell plasma simulation code on the BBN TC2000

    International Nuclear Information System (INIS)

    Sturtevant, J.E.; Maccabe, A.B.

    1990-01-01

    The BBN TC2000 is a multiple instruction, multiple data (MIMD) machine that combines a physically distributed memory with a logically shared memory programming environment using the unique Butterfly switch. Particle-In-Cell (PIC) plasma simulations model the interaction of charged particles with electric and magnetic fields. This paper describes the implementation of both a 1-D electrostatic and a 2 1/2-D electromagnetic PIC (particle-in-cell) plasma simulation code on a BBN TC2000. Performance is compared to implementations of the same code on the shared memory Sequent Balance and distributed memory Intel iPSC hypercube

  4. Experiments and Simulations of ITER-like Plasmas in Alcator C-Mod

    International Nuclear Information System (INIS)

    Wilson, R.; Kessel, C.E.; Wolfe, S.; Hutchinson, I.H.; Bonoli, P.; Fiore, C.; Hubbard, A.E.; Hughes, J.; Lin, Y.; Ma, Y.; Mikkelsen, D.; Reinke, M.; Scott, S.; Sips, A.C.C.; Wukitch, S.

    2010-01-01

    Alcator C-Mod is performing ITER-like experiments to benchmark and verify projections to 15 MA ELMy H-mode Inductive ITER discharges. The main focus has been on the transient ramp phases. The plasma current in C-Mod is 1.3 MA and toroidal field is 5.4 T. Both Ohmic and ion cyclotron (ICRF) heated discharges are examined. Plasma current rampup experiments have demonstrated that (ICRF and LH) heating in the rise phase can save voltseconds (V-s), as was predicted for ITER by simulations, but showed that the ICRF had no effect on the current profile versus Ohmic discharges. Rampdown experiments show an overcurrent in the Ohmic coil (OH) at the H to L transition, which can be mitigated by remaining in H-mode into the rampdown. Experiments have shown that when the EDA H-mode is preserved well into the rampdown phase, the density and temperature pedestal heights decrease during the plasma current rampdown. Simulations of the full C-Mod discharges have been done with the Tokamak Simulation Code (TSC) and the Coppi-Tang energy transport model is used with modified settings to provide the best fit to the experimental electron temperature profile. Other transport models have been examined also.

  5. Hybrid simulation of electrode plasmas in high-power diodes

    International Nuclear Information System (INIS)

    Welch, Dale R.; Rose, David V.; Bruner, Nichelle; Clark, Robert E.; Oliver, Bryan V.; Hahn, Kelly D.; Johnston, Mark D.

    2009-01-01

    New numerical techniques for simulating the formation and evolution of cathode and anode plasmas have been successfully implemented in a hybrid code. The dynamics of expanding electrode plasmas has long been recognized as a limiting factor in the impedance lifetimes of high-power vacuum diodes and magnetically insulated transmission lines. Realistic modeling of such plasmas is being pursued to aid in understanding the operating characteristics of these devices as well as establishing scaling relations for reliable extrapolation to higher voltages. Here, in addition to kinetic and fluid modeling, a hybrid particle-in-cell technique is described that models high density, thermal plasmas as an inertial fluid which transitions to kinetic electron or ion macroparticles above a prescribed energy. The hybrid technique is computationally efficient and does not require resolution of the Debye length. These techniques are first tested on a simple planar diode then applied to the evolution of both cathode and anode plasmas in a high-power self-magnetic pinch diode. The impact of an intense electron flux on the anode surface leads to rapid heating of contaminant material and diode impedance loss.

  6. Computer simulations of an oxygen inductively coupled plasma used for plasma-assisted atomic layer deposition

    International Nuclear Information System (INIS)

    Tinck, S; Bogaerts, A

    2011-01-01

    In this paper, an O 2 inductively coupled plasma used for plasma enhanced atomic layer deposition of Al 2 O 3 thin films is investigated by means of modeling. This work intends to provide more information about basic plasma properties such as species densities and species fluxes to the substrate as a function of power and pressure, which might be hard to measure experimentally. For this purpose, a hybrid model developed by Kushner et al is applied to calculate the plasma characteristics in the reactor volume for different chamber pressures ranging from 1 to 10 mTorr and different coil powers ranging from 50 to 500 W. Density profiles of the various oxygen containing plasma species are reported as well as fluxes to the substrate under various operating conditions. Furthermore, different orientations of the substrate, which can be placed vertically or horizontally in the reactor, are taken into account. In addition, special attention is paid to the recombination process of atomic oxygen on the different reactor walls under the stated operating conditions. From this work it can be concluded that the plasma properties change significantly in different locations of the reactor. The plasma density near the cylindrical coil is high, while it is almost negligible in the neighborhood of the substrate. Ion and excited species fluxes to the substrate are found to be very low and negligible. Finally, the orientation of the substrate has a minor effect on the flux of O 2 , while it has a significant effect on the flux of O. In the horizontal configuration, the flux of atomic oxygen can be up to one order of magnitude lower than in the vertical configuration.

  7. Characterisation of Plasma Vitrified Simulant Plutonium Contaminated Material Waste

    International Nuclear Information System (INIS)

    Hyatt, Neil C.; Morgan, Suzy; Stennett, Martin C.; Scales, Charlie R.; Deegan, David

    2007-01-01

    The potential of plasma vitrification for the treatment of a simulant Plutonium Contaminated Material (PCM) was investigated. It was demonstrated that the PuO 2 simulant, CeO 2 , could be vitrified in the amorphous calcium iron aluminosilicate component of the product slag with simultaneous destruction of the organic and polymer waste fractions. Product Consistency Tests conducted at 90 deg. C in de-ionised water and buffered pH 11 solution show the PCM slag product to be durable with respect to release of Ce. (authors)

  8. Simulation of density measurements in plasma wakefields using photon acceleration

    Directory of Open Access Journals (Sweden)

    Muhammad Firmansyah Kasim

    2015-03-01

    Full Text Available One obstacle in plasma accelerator development is the limitation of techniques to diagnose and measure plasma wakefield parameters. In this paper, we present a novel concept for the density measurement of a plasma wakefield using photon acceleration, supported by extensive particle in cell simulations of a laser pulse that copropagates with a wakefield. The technique can provide the perturbed electron density profile in the laser’s reference frame, averaged over the propagation length, to be accurate within 10%. We discuss the limitations that affect the measurement: small frequency changes, photon trapping, laser displacement, stimulated Raman scattering, and laser beam divergence. By considering these processes, one can determine the optimal parameters of the laser pulse and its propagation length. This new technique allows a characterization of the density perturbation within a plasma wakefield accelerator.

  9. Electron cyclotron resonance hydrogen/helium plasma characterization and simulation of pumping in tokamaks

    International Nuclear Information System (INIS)

    Outten, C.A.

    1992-01-01

    Electron Cyclotron Resonance (ECR) plasmas have been employed to simulate the plasma conditions at the edge of a tokamak in order to investigate hydrogen/helium uptake in thin metal films. The process of microwave power absorption, important to characterizing the ECR plasma source, was investigated by measuring the electron density and temperature with a Langmuir probe and optical spectroscopy as a function of the magnetic field gradient and incident microwave power. A novel diagnostic, carbon resistance probe, provided a direct measure of the ion energy and fluence while measurements from a Langmuir probe were used for comparison. The Langmuir probe gave a plasma potential minus floating potential of 30 ± 5 eV, in good agreement with the carbon resistance probe result of ion energy ≤ 40 eV. The measured ion energy was consistent with the ion energy predicted from a model based upon divergent magnetic field extraction. Also, based upon physical sputtering of the carbon, the hydrogen fluence rate was determined to be 1 x 10 16 /cm 2 -sec for 50 Watts of incident microwave power. ECR hydrogen/helium plasmas were used to study preferential pumping of helium in candidate materials for tokamak pump-limiters: nickel, vanadium, aluminum, and nickel/aluminum multi-layers. Nickel and vanadium exhibited similar pumping capacities whereas aluminum showed a reduced capacity due to increased sputtering. A helium retention model based upon ion implantation ranges and sputtering rates agreed with the experimental data. A new multilayer/bilayer pumping concept showed improved pumping above that for single element films

  10. Ground Simulations of Near-Surface Plasma Field and Charging at the Lunar Terminator

    Science.gov (United States)

    Polansky, J.; Ding, N.; Wang, J.; Craven, P.; Schneider, T.; Vaughn, J.

    2012-12-01

    Charging in the lunar terminator region is the most complex and is still not well understood. In this region, the surface potential is sensitively influenced by both solar illumination and plasma flow. The combined effects from localized shadow generated by low sun elevation angles and localized wake generated by plasma flow over the rugged terrain can generate strongly differentially charged surfaces. Few models currently exist that can accurately resolve the combined effects of plasma flow and solar illumination over realistic lunar terminator topographies. This paper presents an experimental investigation of lunar surface charging at the terminator region in simulated plasma environments in a vacuum chamber. The solar wind plasma flow is simulated using an electron bombardment gridded Argon ion source. An electrostatic Langmuir probe, nude Faraday probes, a floating emissive probe, and retarding potential analyzer are used to quantify the plasma flow field. Surface potentials of both conducting and dielectric materials immersed in the plasma flow are measured with a Trek surface potential probe. The conducting material surface potential will simultaneously be measured with a high impedance voltmeter to calibrate the Trek probe. Measurement results will be presented for flat surfaces and objects-on-surface for various angles of attack of the plasma flow. The implications on the generation of localized plasma wake and surface charging at the lunar terminator will be discussed. (This research is supported by the NASA Lunar Advanced Science and Exploration Research program.)

  11. HIDENEK: an implicit particle simulation of kinetic-MHD phenomena in three-dimensional plasmas

    International Nuclear Information System (INIS)

    Tanaka, Motohiko.

    1993-05-01

    An advanced 'kinetic-MHD' simulation method and its applications to plasma physics are given in this lecture. This method is quite suitable for studying strong nonlinear, kinetic processes associated with large space-scale, low-frequency electromagnetic phenomena of plasmas. A full set of the Maxwell equations, and the Newton-Lorentz equations of motion for particle ions and guiding-center electrons are adopted. In order to retain only the low-frequency waves and instabilities, implicit particle-field equations are derived. The present implicit-particle method is proved to reproduce the MHD eigenmodes such as Alfven, magnetosonic and kinetic Alfven waves in a thermally near-equilibrium plasma. In the second part of the lecture, several physics applications are shown. These include not only the growth of the instabilities of beam ions against the background plasmas and helical kink of the current, but they also demonstrate nonlinear results such as pitch-angle scattering of the ions. Recent progress in the simulation of the Kelvin-Helmholtz instability is also presented with a special emphasis on the mixing of plasma particles. (author)

  12. Plasma ignition and steady state simulations of the Linac4 H$^{-}$ ion source

    CERN Document Server

    Mattei, S; Yasumoto, M; Hatayama, A; Lettry, J; Grudiev, A

    2014-01-01

    The RF heating of the plasma in the Linac4 H- ion source has been simulated using an Particle-in-Cell Monte Carlo Collision method (PIC-MCC). This model is applied to investigate the plasma formation starting from an initial low electron density of 1012 m-3 and its stabilization at 1018 m-3. The plasma discharge at low electron density is driven by the capacitive coupling with the electric field generated by the antenna, and as the electron density increases the capacitive electric field is shielded by the plasma and induction drives the plasma heating process. Plasma properties such as e-/ion densities and energies, sheath formation and shielding effect are presented and provide insight to the plasma properties of the hydrogen plasma.

  13. Spectral methods in numerical plasma simulation

    International Nuclear Information System (INIS)

    Coutsias, E.A.; Hansen, F.R.; Huld, T.; Knorr, G.; Lynov, J.P.

    1989-01-01

    An introduction is given to the use of spectral methods in numerical plasma simulation. As examples of the use of spectral methods, solutions to the two-dimensional Euler equations in both a simple, doubly periodic region, and on an annulus will be shown. In the first case, the solution is expanded in a two-dimensional Fourier series, while a Chebyshev-Fourier expansion is employed in the second case. A new, efficient algorithm for the solution of Poisson's equation on an annulus is introduced. Problems connected to aliasing and to short wavelength noise generated by gradient steepening are discussed. (orig.)

  14. Agglomeration processes in carbonaceous dusty plasmas, experiments and numerical simulations

    International Nuclear Information System (INIS)

    Dap, S; Hugon, R; De Poucques, L; Bougdira, J; Lacroix, D; Patisson, F

    2010-01-01

    This paper deals with carbon dust agglomeration in radio frequency acetylene/argon plasma. Two studies, an experimental and a numerical one, were carried out to model dust formation mechanisms. Firstly, in situ transmission spectroscopy of dust clouds in the visible range was performed in order to observe the main features of the agglomeration process of the produced carbonaceous dust. Secondly, numerical simulation tools dedicated to understanding the achieved experiments were developed. A first model was used for the discretization of the continuous population balance equations that characterize the dust agglomeration process. The second model is based on a Monte Carlo ray-tracing code coupled to a Mie theory calculation of dust absorption and scattering parameters. These two simulation tools were used together in order to numerically predict the light transmissivity through a dusty plasma and make comparisons with experiments.

  15. Plasma transport simulation modelling for helical confinement systems

    International Nuclear Information System (INIS)

    Yamazaki, K.; Amano, T.

    1992-01-01

    New empirical and theoretical transport models for helical confinement systems are developed on the basis of the neoclassical transport theory, including the effect of the radial electric field and of multi-helicity magnetic components as well as the drift wave turbulence transport for electrostatic and electromagnetic modes or the anomalous semi-empirical transport. These electron thermal diffusivities are compared with experimental data from the Compact Helical System which indicate that the central transport coefficient of a plasma with electron cyclotron heating agrees with neoclassical axisymmetric value and the transport outside the half-radius is anomalous. On the other hand, the transport of plasmas with neutral beam injection heating is anomalous in the whole plasma region. This anomaly is not explained by the electrostatic drift wave turbulence models in these discharges with flat density profiles. For a detailed prediction of the plasma parameters in the Large Helical Device (LHD), 3-D equilibrium/1-D transport simulations including empirical or drift wave turbulence models are performed which suggest that the global confinement time of the LHD is determined mainly by the electron anomalous transport in the plasma edge region rather than by the helical ripple transport in the core region. Even if the ripple loss can be eliminated, the increase in global confinement is 10%. However, the rise in the central ion temperature is more than 20%. If the anomalous loss can be reduced to half of the value used in the present scaling, as is the case in the H-mode of tokamak discharges, the neoclassical ripple loss through the ion channel becomes important even in the plasma core. The 5% radial inward shift of the plasma column with respect to the major radius improves the plasma confinement and increases the fusion product by more than 50% by reducing the neoclassical asymmetric ion transport loss and increasing the plasma radius (10%). (author). 32 refs, 7 figs

  16. Engineering design of plasma generation devices using Elmer finite element simulation methods

    Directory of Open Access Journals (Sweden)

    Daniel Bondarenko

    2017-02-01

    Full Text Available Plasma generation devices are important technology for many engineering disciplines. The process for acquiring experience for designing plasma devices requires practice, time, and the right tools. The practice and time depend on the individual and the access to the right tools can be a limiting factor to achieve experience and to get an idea on the possible risks. The use of Elmer finite element method (FEM software for verifying plasma engineering design is presented as an accessible tool that can help modeling multi-physics and verifying plasma generation devices. Furthermore, Elmer FEM will be suitable for experienced engineer and can be used for determining the risks in a design or a process that use plasma. A physical experiment was conducted to demonstrate new features of plasma generation technology where results are compared with plasma simulation using Elmer FEM.

  17. Kinetic Simulations of Dense Plasma Focus Breakdown

    Science.gov (United States)

    Schmidt, A.; Higginson, D. P.; Jiang, S.; Link, A.; Povilus, A.; Sears, J.; Bennett, N.; Rose, D. V.; Welch, D. R.

    2015-11-01

    A dense plasma focus (DPF) device is a type of plasma gun that drives current through a set of coaxial electrodes to assemble gas inside the device and then implode that gas on axis to form a Z-pinch. This implosion drives hydrodynamic and kinetic instabilities that generate strong electric fields, which produces a short intense pulse of x-rays, high-energy (>100 keV) electrons and ions, and (in deuterium gas) neutrons. A strong factor in pinch performance is the initial breakdown and ionization of the gas along the insulator surface separating the two electrodes. The smoothness and isotropy of this ionized sheath are imprinted on the current sheath that travels along the electrodes, thus making it an important portion of the DPF to both understand and optimize. Here we use kinetic simulations in the Particle-in-cell code LSP to model the breakdown. Simulations are initiated with neutral gas and the breakdown modeled self-consistently as driven by a charged capacitor system. We also investigate novel geometries for the insulator and electrodes to attempt to control the electric field profile. The initial ionization fraction of gas is explored computationally to gauge possible advantages of pre-ionization which could be created experimentally via lasers or a glow-discharge. Prepared by LLNL under Contract DE-AC52-07NA27344.

  18. Thermal Simulations, Open Boundary Conditions and Switches

    Science.gov (United States)

    Burnier, Yannis; Florio, Adrien; Kaczmarek, Olaf; Mazur, Lukas

    2018-03-01

    SU(N) gauge theories on compact spaces have a non-trivial vacuum structure characterized by a countable set of topological sectors and their topological charge. In lattice simulations, every topological sector needs to be explored a number of times which reflects its weight in the path integral. Current lattice simulations are impeded by the so-called freezing of the topological charge problem. As the continuum is approached, energy barriers between topological sectors become well defined and the simulations get trapped in a given sector. A possible way out was introduced by Lüscher and Schaefer using open boundary condition in the time extent. However, this solution cannot be used for thermal simulations, where the time direction is required to be periodic. In this proceedings, we present results obtained using open boundary conditions in space, at non-zero temperature. With these conditions, the topological charge is not quantized and the topological barriers are lifted. A downside of this method are the strong finite-size effects introduced by the boundary conditions. We also present some exploratory results which show how these conditions could be used on an algorithmic level to reshuffle the system and generate periodic configurations with non-zero topological charge.

  19. Thermal Simulations, Open Boundary Conditions and Switches

    Directory of Open Access Journals (Sweden)

    Burnier Yannis

    2018-01-01

    Full Text Available SU(N gauge theories on compact spaces have a non-trivial vacuum structure characterized by a countable set of topological sectors and their topological charge. In lattice simulations, every topological sector needs to be explored a number of times which reflects its weight in the path integral. Current lattice simulations are impeded by the so-called freezing of the topological charge problem. As the continuum is approached, energy barriers between topological sectors become well defined and the simulations get trapped in a given sector. A possible way out was introduced by Lüscher and Schaefer using open boundary condition in the time extent. However, this solution cannot be used for thermal simulations, where the time direction is required to be periodic. In this proceedings, we present results obtained using open boundary conditions in space, at non-zero temperature. With these conditions, the topological charge is not quantized and the topological barriers are lifted. A downside of this method are the strong finite-size effects introduced by the boundary conditions. We also present some exploratory results which show how these conditions could be used on an algorithmic level to reshuffle the system and generate periodic configurations with non-zero topological charge.

  20. MAGNETIC NULL POINTS IN KINETIC SIMULATIONS OF SPACE PLASMAS

    International Nuclear Information System (INIS)

    Olshevsky, Vyacheslav; Innocenti, Maria Elena; Cazzola, Emanuele; Lapenta, Giovanni; Deca, Jan; Divin, Andrey; Peng, Ivy Bo; Markidis, Stefano

    2016-01-01

    We present a systematic attempt to study magnetic null points and the associated magnetic energy conversion in kinetic particle-in-cell simulations of various plasma configurations. We address three-dimensional simulations performed with the semi-implicit kinetic electromagnetic code iPic3D in different setups: variations of a Harris current sheet, dipolar and quadrupolar magnetospheres interacting with the solar wind, and a relaxing turbulent configuration with multiple null points. Spiral nulls are more likely created in space plasmas: in all our simulations except lunar magnetic anomaly (LMA) and quadrupolar mini-magnetosphere the number of spiral nulls prevails over the number of radial nulls by a factor of 3–9. We show that often magnetic nulls do not indicate the regions of intensive energy dissipation. Energy dissipation events caused by topological bifurcations at radial nulls are rather rare and short-lived. The so-called X-lines formed by the radial nulls in the Harris current sheet and LMA simulations are rather stable and do not exhibit any energy dissipation. Energy dissipation is more powerful in the vicinity of spiral nulls enclosed by magnetic flux ropes with strong currents at their axes (their cross sections resemble 2D magnetic islands). These null lines reminiscent of Z-pinches efficiently dissipate magnetic energy due to secondary instabilities such as the two-stream or kinking instability, accompanied by changes in magnetic topology. Current enhancements accompanied by spiral nulls may signal magnetic energy conversion sites in the observational data

  1. Low-temperature plasma simulations with the LSP PIC code

    Science.gov (United States)

    Carlsson, Johan; Khrabrov, Alex; Kaganovich, Igor; Keating, David; Selezneva, Svetlana; Sommerer, Timothy

    2014-10-01

    The LSP (Large-Scale Plasma) PIC-MCC code has been used to simulate several low-temperature plasma configurations, including a gas switch for high-power AC/DC conversion, a glow discharge and a Hall thruster. Simulation results will be presented with an emphasis on code comparison and validation against experiment. High-voltage, direct-current (HVDC) power transmission is becoming more common as it can reduce construction costs and power losses. Solid-state power-electronics devices are presently used, but it has been proposed that gas switches could become a compact, less costly, alternative. A gas-switch conversion device would be based on a glow discharge, with a magnetically insulated cold cathode. Its operation is similar to that of a sputtering magnetron, but with much higher pressure (0.1 to 0.3 Torr) in order to achieve high current density. We have performed 1D (axial) and 2D (axial/radial) simulations of such a gas switch using LSP. The 1D results were compared with results from the EDIPIC code. To test and compare the collision models used by the LSP and EDIPIC codes in more detail, a validation exercise was performed for the cathode fall of a glow discharge. We will also present some 2D (radial/azimuthal) LSP simulations of a Hall thruster. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.

  2. 3D simulation studies of tokamak plasmas using MHD and extended-MHD models

    International Nuclear Information System (INIS)

    Park, W.; Chang, Z.; Fredrickson, E.; Fu, G.Y.; Pomphrey, N.; Sugiyama, L.E.

    1997-01-01

    The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-β disruption studies in reversed shear plasmas using the MHD level MH3D code, ω *i stabilization and nonlinear island rotation studies using the two-fluid level MH3D-T code, studies of nonlinear saturation of TAE modes using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D ++ code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree well with experimental data

  3. Turbulence in collisionless plasmas: statistical analysis from numerical simulations with pressure anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Kowal, G [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, 05508-900, Sao Paulo (Brazil); Falceta-Goncalves, D A; Lazarian, A, E-mail: kowal@astro.iag.usp.br [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States)

    2011-05-15

    In recent years, we have experienced increasing interest in the understanding of the physical properties of collisionless plasmas, mostly because of the large number of astrophysical environments (e.g. the intracluster medium (ICM)) containing magnetic fields that are strong enough to be coupled with the ionized gas and characterized by densities sufficiently low to prevent the pressure isotropization with respect to the magnetic line direction. Under these conditions, a new class of kinetic instabilities arises, such as firehose and mirror instabilities, which have been studied extensively in the literature. Their role in the turbulence evolution and cascade process in the presence of pressure anisotropy, however, is still unclear. In this work, we present the first statistical analysis of turbulence in collisionless plasmas using three-dimensional numerical simulations and solving double-isothermal magnetohydrodynamic equations with the Chew-Goldberger-Low laws closure (CGL-MHD). We study models with different initial conditions to account for the firehose and mirror instabilities and to obtain different turbulent regimes. We found that the CGL-MHD subsonic and supersonic turbulences show small differences compared to the MHD models in most cases. However, in the regimes of strong kinetic instabilities, the statistics, i.e. the probability distribution functions (PDFs) of density and velocity, are very different. In subsonic models, the instabilities cause an increase in the dispersion of density, while the dispersion of velocity is increased by a large factor in some cases. Moreover, the spectra of density and velocity show increased power at small scales explained by the high growth rate of the instabilities. Finally, we calculated the structure functions of velocity and density fluctuations in the local reference frame defined by the direction of magnetic lines. The results indicate that in some cases the instabilities significantly increase the anisotropy of

  4. Turbulence in collisionless plasmas: statistical analysis from numerical simulations with pressure anisotropy

    International Nuclear Information System (INIS)

    Kowal, G; Falceta-Goncalves, D A; Lazarian, A

    2011-01-01

    In recent years, we have experienced increasing interest in the understanding of the physical properties of collisionless plasmas, mostly because of the large number of astrophysical environments (e.g. the intracluster medium (ICM)) containing magnetic fields that are strong enough to be coupled with the ionized gas and characterized by densities sufficiently low to prevent the pressure isotropization with respect to the magnetic line direction. Under these conditions, a new class of kinetic instabilities arises, such as firehose and mirror instabilities, which have been studied extensively in the literature. Their role in the turbulence evolution and cascade process in the presence of pressure anisotropy, however, is still unclear. In this work, we present the first statistical analysis of turbulence in collisionless plasmas using three-dimensional numerical simulations and solving double-isothermal magnetohydrodynamic equations with the Chew-Goldberger-Low laws closure (CGL-MHD). We study models with different initial conditions to account for the firehose and mirror instabilities and to obtain different turbulent regimes. We found that the CGL-MHD subsonic and supersonic turbulences show small differences compared to the MHD models in most cases. However, in the regimes of strong kinetic instabilities, the statistics, i.e. the probability distribution functions (PDFs) of density and velocity, are very different. In subsonic models, the instabilities cause an increase in the dispersion of density, while the dispersion of velocity is increased by a large factor in some cases. Moreover, the spectra of density and velocity show increased power at small scales explained by the high growth rate of the instabilities. Finally, we calculated the structure functions of velocity and density fluctuations in the local reference frame defined by the direction of magnetic lines. The results indicate that in some cases the instabilities significantly increase the anisotropy of

  5. The Validity of a Paraxial Approximation in the Simulation of Laser Plasma Interactions

    International Nuclear Information System (INIS)

    Hyole, E. M.

    2000-01-01

    The design of high-power lasers such as those used for inertial confinement fusion demands accurate modeling of the interaction between lasers and plasmas. In inertial confinement fusion, initial laser pulses ablate material from the hohlraum, which contains the target, creating a plasma. Plasma density variations due to plasma motion, ablating material and the ponderomotive force exerted by the laser on the plasma disrupt smooth laser propagation, undesirably focusing and scattering the light. Accurate and efficient computational simulations aid immensely in developing an understanding of these effects. In this paper, we compare the accuracy of two methods for calculating the propagation of laser light through plasmas. A full laser-plasma simulation typically consists of a fluid model for the plasma motion and a laser propagation model. These two pieces interact with each other as follows. First, given the plasma density, one propagates the laser with a refractive index determined by this density. Then, given the laser intensities, the calculation of one time step of the plasma motion provides a new density for the laser propagation. Because this procedure repeats over many time steps, each piece must be performed accurately and efficiently. In general, calculation of the light intensities necessitates the solution of the Helmholtz equation with a variable index of refraction. The Helmholtz equation becomes extremely difficult and time-consuming to solve as the problem size increases. The size of laser-plasma problems of present interest far exceeds current capabilities. To avoid solving the full Helmholtz equation one may use a partial approximation. Generally speaking the partial approximation applies when one expects negligible backscattering of the light and only mild scattering transverse to the direction of light propagation. This approximation results in a differential equation that is first-order in the propagation direction that can be integrated

  6. Three-dimensional simulation study of compact toroid injection into magnetized plasmas

    International Nuclear Information System (INIS)

    Yoshio Suzuki; Tomohiko Watanabe; Tetsuya Sato; Takaya Hayashi

    1999-01-01

    Three-dimensional dynamics of a compact toroid (CT), which is injected into a magnetized target plasma modeling a part of a fusion device is investigated by using magnetohydrodynamic numerical simulations. It is found that the injected CT penetrates into the device region, suffering from a tilting instability. In this process, magnetic reconnection between the CT magnetic field and the device magnetic field takes place, which disrupts the magnetic configuration of the CT. As a result, the high density plasma confined in the CT magnetic field is locally supplied in the device region. Furthermore, the authors examine the penetration depth of the CT high density plasma. And it is revealed that the CT high density plasma is decelerated by the device magnetic field through the compressional heating

  7. Repetitive plasma loads typical for ITER Type-I ELMS; simulation in QSPA Kh-50

    International Nuclear Information System (INIS)

    Tereshin, V.I.; Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V.; Garkusha, I.E.; Makhlaj, V.A.; Solyakov, D.G.; Tsarenko, A.V.; Landman, I.

    2005-01-01

    The power loads on current tokamaks associated with the Type I ELMs generally do not affect the lifetime of divertor elements. However, the ITER ELMs may lead to unacceptable lifetime; their loads are estimated as QELM(1-3) MJ/m 2 at t = 0.1-1 ms and the repetition frequency of an order of 1 Hz (∼ 400 ELMs during each ITER pulse). Such plasma energy loads expected for ITER ELMs are not achieved in existing tokamaks. Therefore powerful plasma accelerators are used at present for study of plasma-target interaction and for numerical models validation. Quasi-steady-state plasma accelerators (QSPA), which characterized by essentially longer duration of plasma stream generation in comparison with pulsed plasma guns, became especially attractive facilities for investigations of plasma-surface interaction in conditions of high heat loads simulating the ITER disruptions and ELMs. The paper presents experimental study of energy characteristics of the plasma streams generated with quasi-steady-state plasma accelerator QSPA Kh-50 and the main features of plasma interaction with material surfaces in dependence on plasma heat loads. The samples of pure sintered tungsten of EU trademark have been exposed to hydrogen plasma streams produced by the accelerator. To estimate the range of tolerable loads the effects of ELMs on the lifetime of plasma facing components have been experimentally simulated for large numbers of impacts with varying energy density. The experiments were performed with up to 450 pulses of the duration of 0.25 ms and the heat loads in the range of 0.5 - 1.2 MJ/m 2 . At this calorimetry (both at plasma stream and at the target surface), piezo-detectors as well as spectroscopy and interferometry measurements were applied to determine the impacting plasma parameters in different regimes of operation. A threshold character of morphological changes on the tungsten surface under the melting in respect to the pulses number is demonstrated. The number of initial

  8. Reactive gas control of non-stable plasma conditions

    International Nuclear Information System (INIS)

    Bellido-Gonzalez, V.; Daniel, B.; Counsell, J.; Monaghan, D.

    2006-01-01

    Most industrial plasma processes are dependant upon the control of plasma properties for repeatable and reliable production. The speed of production and range of properties achieved depend on the degree of control. Process control involves all the aspects of the vacuum equipment, substrate preparation, plasma source condition, power supplies, process drift, valves (inputs/outputs), signal and data processing and the user's understanding and ability. In many cases, some of the processes which involve the manufacturing of interesting coating structures, require a precise control of the process in a reactive environment [S.J. Nadel, P. Greene, 'High rate sputtering technology for throughput and quality', International Glass Review, Issue 3, 2001, p. 45. ]. Commonly in these circumstances the plasma is not stable if all the inputs and outputs of the system were to remain constant. The ideal situation is to move a process from set-point A to B in zero time and maintain the monitored signal with a fluctuation equal to zero. In a 'real' process that's not possible but improvements in the time response and energy delivery could be achieved with an appropriate algorithm structure. In this paper an advanced multichannel reactive plasma gas control system is presented. The new controller offers both high-speed gas control combined with a very flexible control structure. The controller uses plasma emission monitoring, target voltage or any process sensor monitoring as the input into a high-speed control algorithm for gas input. The control algorithm and parameters can be tuned to different process requirements in order to optimize response times

  9. A simulated plasma disruption experiment using a magneto-plasma-dynamic arcjet

    International Nuclear Information System (INIS)

    Madarame, H.; Sukegawa, T.; Okamoto, K.

    1991-01-01

    If a melt layer is expelled by a strong electromagnetic force from some places during a plasma disruption, the wall thickness is reduced there remarkably. Although this phenomenon is considered as a very important issue, it has not been studied so far because of its difficulty and complexity. In this study, the phenomenon was simulated using a magneto-plasma-dynamic (MPD) arcjet. The MPD arcjet was used as both a heat source and an electric current source. The current flowed radially in a stainless steel test piece installed in a transverse magnetic field. The circumferential electromagnetic force generated a swirl flow in the melt layer, causing a centrifugal force, which thinned the central part of the round region and formed a circular embankment on the fringe. A numerical code was developed which could calculate the melting, the evaporation and the melt layer movement by the centrifugal force and the beam pressure. The calculational results on the melting depth and the thickness reduction in the central part were compared with experiment. (orig.)

  10. The effects of particle recycling on the divertor plasma: A particle-in-cell with Monte Carlo collision simulation

    Science.gov (United States)

    Chang, Mingyu; Sang, Chaofeng; Sun, Zhenyue; Hu, Wanpeng; Wang, Dezhen

    2018-05-01

    A Particle-In-Cell (PIC) with Monte Carlo Collision (MCC) model is applied to study the effects of particle recycling on divertor plasma in the present work. The simulation domain is the scrape-off layer of the tokamak in one-dimension along the magnetic field line. At the divertor plate, the reflected deuterium atoms (D) and thermally released deuterium molecules (D2) are considered. The collisions between the plasma particles (e and D+) and recycled neutral particles (D and D2) are described by the MCC method. It is found that the recycled neutral particles have a great impact on divertor plasma. The effects of different collisions on the plasma are simulated and discussed. Moreover, the impacts of target materials on the plasma are simulated by comparing the divertor with Carbon (C) and Tungsten (W) targets. The simulation results show that the energy and momentum losses of the C target are larger than those of the W target in the divertor region even without considering the impurity particles, whereas the W target has a more remarkable influence on the core plasma.

  11. Numerical Simulation of the Time Evolution of Small-Scale Irregularities in the F-Layer Ionospheric Plasma

    Directory of Open Access Journals (Sweden)

    O. V. Mingalev

    2011-01-01

    Full Text Available Dynamics of magnetic field-aligned small-scale irregularities in the electron concentration, existing in the F-layer ionospheric plasma, is investigated with the help of a mathematical model. The plasma is assumed to be a rarefied compound consisting of electrons and positive ions and being in a strong, external magnetic field. In the applied model, kinetic processes in the plasma are simulated by using the Vlasov-Poisson system of equations. The system of equations is numerically solved applying a macroparticle method. The time evolution of a plasma irregularity, having initial cross-section dimension commensurable with a Debye length, is simulated during the period sufficient for the irregularity to decay completely. The results of simulation indicate that the small-scale irregularity, created initially in the F-region ionosphere, decays accomplishing periodic damped vibrations, with the process being collisionless.

  12. Simulation of electrical discharge in a 3.6 Joule miniature plasma focus device using SIMULINK

    International Nuclear Information System (INIS)

    Jafari, H.; Habibi, M.

    2014-01-01

    A novel technique has been developed and studied in this paper to simulate the electrical discharge circuit of a 3.6 J miniature plasma focus device (PFD) and investigate the effect of inductance variation on voltage spike and current dip. The technique is based on a correlation between the electrical discharge circuit and plasma dynamics in a very small PFD that operates at the energy of 3.6 J. The simulation inputs include the charging voltage, capacitor bank capacitance, current limiter resistance, bypass resistance as well as the time-dependent inductance and resistance of the plasma sheath which are calculated by assuming the plasma dynamics as transit times in going from one phase to the next. The variations of the most important elements in the circuit (i.e. the constant and breakdown inductances) and their effects on the current dip are studied in PFDs with low and high constant inductance. The model demonstrated for achieving a good pinch in the PFD, although the total inductance of the system should be low; however there is always an optimum inductance which causes an appropriate pinch. Furthermore, the electrical power produced by the pulsed power supply, the mechanical energy as well as the magnetic energy which are transferred into the plasma tube were obtained from simulation. The graph of electrical power demonstrated a high instantaneous increment in the power transferred into the plasma as one of the greatest advantages of the pulsed power supply. The simulation was performed using software tools within the MATLAB/SIMULINK simulation environment. The PFD, generating neutrons in the range of 10 6 to 10 10 neutrons per pulse will have substantial use in the physics and engineering applications. (authors)

  13. Simulation analysis of dust-particle transport in the peripheral plasma in the Large Helical Device

    International Nuclear Information System (INIS)

    Shoji, Mamoru; Masuzaki, Suguru; Kawamura, Gakushi; Yamada, Hiroshi; Tanaka, Yasunori; Uesugi, Yoshihiko; Pigarov, Alexander Yu.; Smirnov, Roman D.

    2014-01-01

    The function of the peripheral plasma in the Large Helical Device (LHD) on transport of dusts is investigated using a dust transport simulation code (DUSTT) in a non-axisymmetric geometry. The simulation shows that the transport of the dusts is dominated by the plasma flow (mainly by ion drag force) formed in the peripheral plasma. The trajectories of dusts are investigated in two probable situations: release of spherical iron dusts from the inboard side of the torus, and drop of spherical carbon dusts from a divertor plate installed near an edge of an upper port. The trajectories in these two situations are calculated in various sized dust cases. From a viewpoint of protection of the main plasma from dust penetration, it proves that there are two functions in the LHD peripheral plasma. One is sweeping of dusts by the effect of the plasma flow in the divertor legs, and another one is evaporation/sublimation of dusts by heat load onto the dusts in the ergodic layer. (author)

  14. Using numerical simulations to extract parameters of toroidal electron plasmas from experimental data

    DEFF Research Database (Denmark)

    Ha, B. N.; Stoneking,, M. R.; Marler, Joan

    2009-01-01

    Measurements of the image charge induced on electrodes provide the primary means of diagnosing plasmas in the Lawrence Non-neutral Torus II (LNT II) [Phys. Rev. Lett. 100, 155001 (2008)]. Therefore, it is necessary to develop techniques that determine characteristics of the electron plasma from......, as in the cylindrical case. In the toroidal case, additional information about the m=1 motion of the plasma can be obtained by analysis of the image charge signal amplitude and shape. Finally, results from the numerical simulations are compared to experimental data from the LNT II and plasma characteristics...

  15. Automated Boundary Conditions for Wind Tunnel Simulations

    Science.gov (United States)

    Carlson, Jan-Renee

    2018-01-01

    Computational fluid dynamic (CFD) simulations of models tested in wind tunnels require a high level of fidelity and accuracy particularly for the purposes of CFD validation efforts. Considerable effort is required to ensure the proper characterization of both the physical geometry of the wind tunnel and recreating the correct flow conditions inside the wind tunnel. The typical trial-and-error effort used for determining the boundary condition values for a particular tunnel configuration are time and computer resource intensive. This paper describes a method for calculating and updating the back pressure boundary condition in wind tunnel simulations by using a proportional-integral-derivative controller. The controller methodology and equations are discussed, and simulations using the controller to set a tunnel Mach number in the NASA Langley 14- by 22-Foot Subsonic Tunnel are demonstrated.

  16. Numerical simulations of counterstreaming plasmas and their relevance to interhemispheric flows

    International Nuclear Information System (INIS)

    Singh, N.; Schunk, R.W.

    1983-01-01

    The collisionless expansion of ccounterstreaming plasmas has been studied by solving the self-consistent set of Vlasov and Poisson equations in one dimension. The motivation for the study is to elucidate some of the basic physical processes which may occur during the initial refilling of depleted flux tubes after a magnetic storm. The simulation geometry consisted of two high-density H + -O + -electron plasmas (conjugate ionospheres) separated by a low density H + -electron plasma (equatorial plasmasphere). The temporal evolution of the expandinng plasmas and the electrostatic potential in the region between the two sources hass the following characteristics. The initially minor H + ions rapidly flow out of the source regions, creating counterstreaming density shock fronts which propagate at the Sagdeev Mach number for ion acoustic shocks (Mapprox.1.6). However, the shocks are preceded by suprathermal forerunner ions, which are the first to fill the ''equatorial'' region. When the counterstreaming ion acoustic shocks collide, the density in the equatorial region becomes nearly a constant, twice the value of the density in the individual shocks. The electrostatic potential distribution from the source plasmas to the midpoint of the expansion region displays an interesting feature. A potential hill forms near the midpoint after the arrival of the main density shock fronts. This localized potential hill plays an important role in the thermalization of the ion streams and may occur in the equatorial plasmasphere after magnetic storms. The numerical simulations indicate that the ion beams in the counterstreaming plasmas are remarkably stable with respect to the ion acoustic instability, which is in agreement with the linear instability theory

  17. Nonlinear vortex structures and Rayleigh instability condition in shear flow plasmas

    International Nuclear Information System (INIS)

    Haque, Q.; Saleem, H.; Mirza, A.M.

    2009-01-01

    Full text: It is shown that the shear flow produced by externally applied electric field can unstable the drift waves. Due to shear flow, the Rayleigh instability condition is modified, which is obtained for both electron-ion and electron-positron-ion plasmas. These shear flow driven drift waves can be responsible for large amplitude electrostatic fluctuations in tokamak edges. In the nonlinear regime, the stationary structures may appear in electron-positron-ion plasmas similar to electron-ion plasmas. The nonlinear vortex structures like counter rotating dipole vortices and vortex chains can be formed with the aid of special type of shear flows. The positrons can be used as a probe in laboratory plasmas, which make it a multi-component plasma. The presence of positrons in electron-ion plasma system can affect the speed and amplitude of the nonlinear vortex structures. This investigation can have application in both laboratory and astrophysical plasmas. (author)

  18. Observation and particle simulation of vaporized W, Mo, and Be in PISCES-B plasma for vapor-shielding studies

    Directory of Open Access Journals (Sweden)

    K. Ibano

    2017-08-01

    Full Text Available Interactions of Tungsten (W, Molybdenum (Mo, and Beryllium (Be vapors with a steady-state plasma were studied by the PISCES-B liner plasma experiments as well as Particle-In-Cell (PIC simulations for the understanding of vapor-shielding phenomena. Effective cooling of the plasma by laser-generated Be vapor was observed in PISCES-B. On the other hand, no apparent cooling was observed for W and Mo vapors. The PIC simulation explains these experimental observations of the difference between low-Z and high-Z vapors. Decrease of electron temperature due to the vapor ejection was observed in case of a simulation of the Be vapor. As for the W vapor, it was found that the plasma cooling is localized only near the wall at a higher electron density plasma (∼1019m−3. On the other hand, the appreciable plasma cooling can be observed in a lower density plasma (∼1018m−3 for the W vapor.

  19. Toward multi-scale simulation of reconnection phenomena in space plasma

    Science.gov (United States)

    Den, M.; Horiuchi, R.; Usami, S.; Tanaka, T.; Ogawa, T.; Ohtani, H.

    2013-12-01

    Magnetic reconnection is considered to play an important role in space phenomena such as substorm in the Earth's magnetosphere. It is well known that magnetic reconnection is controlled by microscopic kinetic mechanism. Frozen-in condition is broken due to particle kinetic effects and collisionless reconnection is triggered when current sheet is compressed as thin as ion kinetic scales under the influence of external driving flow. On the other hand configuration of the magnetic field leading to formation of diffusion region is determined in macroscopic scale and topological change after reconnection is also expressed in macroscopic scale. Thus magnetic reconnection is typical multi-scale phenomenon and microscopic and macroscopic physics are strongly coupled. Recently Horiuchi et al. developed an effective resistivity model based on particle-in-cell (PIC) simulation results obtained in study of collisionless driven reconnection and applied to a global magnetohydrodynamics (MHD) simulation of substorm in the Earth's magnetosphere. They showed reproduction of global behavior in substrom such as dipolarization and flux rope formation by global three dimensional MHD simulation. Usami et al. developed multi-hierarchy simulation model, in which macroscopic and microscopic physics are solved self-consistently and simultaneously. Based on the domain decomposition method, this model consists of three parts: a MHD algorithm for macroscopic global dynamics, a PIC algorithm for microscopic kinetic physics, and an interface algorithm to interlock macro and micro hierarchies. They verified the interface algorithm by simulation of plasma injection flow. In their latest work, this model was applied to collisionless reconnection in an open system and magnetic reconnection was successfully found. In this paper, we describe our approach to clarify multi-scale phenomena and report the current status. Our recent study about extension of the MHD domain to global system is presented. We

  20. Numerical simulation of nanosecond pulsed DBD in lean methane–air mixture for typical conditions in internal engines

    International Nuclear Information System (INIS)

    Takana, Hidemasa; Nishiyama, Hideya

    2014-01-01

    Detailed two-dimensional numerical simulations of a high energy loading nanosecond dc pulse DBD in a lean methane–air mixture were conducted for plasma-assisted combustion by integrating individual models of plasma chemistry, photoionization and energy loading. The DBD streamer propagation process with radical productions was clarified at 10 atm and 600 K as under the condition of actual internal engines at ignition. Energy is loaded to the streamer first by the formation of plasma channel and then ceased due to the self-shielding effect. Because of the inversed electric field in a discharge space during decrease in applied voltage, energy is loaded to the discharge again. It was found that higher energy is loaded to the DBD streamer for larger dielectric constant even at lower applied voltage, and higher number density of oxygen radical is produced at almost the same radical production efficiency. (paper)

  1. Effects of cold plasma treatment on alfalfa seed growth under simulated drought stress

    Science.gov (United States)

    Jinkui, FENG; Decheng, WANG; Changyong, SHAO; Lili, ZHANG; Xin, TANG

    2018-03-01

    The effect of different cold plasma treatments on the germination and seedling growth of alfalfa (Medicago sativa L.) seeds under simulated drought stress conditions was investigated. Polyethyleneglycol-6000 (PEG 6000)with the mass fraction of 0% (purified water), 5%, 10%, and 15% were applied to simulate the drought environment. The alfalfa seeds were treated with 15 different power levels ranged between 0-280 W for 15 s. The germination potential, germination rate, germination index, seedling root length, seedling height, and vigor index were investigated. Results indicated significant differences between treated with proper power and untreated alfalfa seeds. With the increase of treatment power, these indexes mentioned above almost presented bimodal curves. Under the different mass fractions of PEG 6000, results showed that the lower power led to increased germination, and the seedlings presented good adaptability to different drought conditions. Meanwhile, higher power levels resulted in a decreased germination rate. Seeds treated with 40 W resulted in higher germination potential, germination rate, seedling height, root length, and vigor index. Vigor indexes of the treated seeds under different PEG 6000 stresses increased by 38.68%, 43.91%, 74.34%, and 39.20% respectively compared to CK0-0, CK5-0, CK10-0, and CK15-0 (the control sample under 0%, 5%, 10%, and 15% PEG 6000). Therefore, 40 W was regarded as the best treatment in this research. Although the trend indexes of alfalfa seeds treated with the same power were statistically the same under different PEG 6000 stresses, the cold plasma treatment had a significant effect on the adaptability of alfalfa seeds in different drought environments. Thus, this kind of treatment is worth implementing to promote seed growth under drought situations.

  2. Application of quasi-steady-state plasma streams for simulation of ITER transient heat loads

    International Nuclear Information System (INIS)

    Bandura, A.N.; Chebotarev, V.V.; Garkusha, I.E.; Makhlaj, V.A.; Marchenko, A.K.; Solyakov, D.G.; Tereshin, V.I.; Trubchaninov, S.A.; Tsarenko, A.V.; Landman, I.

    2004-01-01

    The paper presents experimental investigations of energy characteristics of the plasma streams generated with quasi-steady-state plasma accelerator QSPA Kh-50 and adjustment of plasma parameters from the point of view its applicability for simulation of transient plasma heat loads expected for ITER disruptions and type I ELMs. Possibility of generation of high-power magnetized plasma streams with ion impact energy up to 0.6 keV, pulse length of 0.25 ms and heat loads varied in wide range from 0.5 to 30 MJ/m 2 has been demonstrated and some features of plasma interaction with tungsten targets in dependence on plasma heat loads are discussed. (author)

  3. A condition for scrape-off plasmas in self-sputtering

    International Nuclear Information System (INIS)

    Sengoku, Seio; Azumi, Masahumi; Matsumoto, Yasuo; Maeda, Hikosuke; Shimomura, Yasuo

    1978-10-01

    Behavior of self-sputtered impurities from limiters or divertor neutralizer plates was investigated. The upper limit of boundary plasma temperature determined under the condition that the impurities of wall materials was not on increase is shown to be low. (author)

  4. Simulations of beam-fueled supershot-like plasmas near ignition

    International Nuclear Information System (INIS)

    Budny, R.V.; Grisham, L.; Jassby, D.L.

    1992-01-01

    In certain conditions, neutral beam injection (NBI) and low recycling result in supershot plasmas. These are characterized by peaked density profiles and high central ion temperatures. We discuss the potential advantages of NBI fueled supershot-like plasmas in tokamaks operating near ignition. The goal is to investigate the feasibility of these plasmas to aid in the design of future advanced tokamaks. NBI has been very successful in advancing tokamak plasmas close to ignition conditions. The primary benefits of NBI are heating and particle fueling, but the plasma currents generated by the beam ions are also of considerable interest. The optimal injection energy E inj for the beam ions depends on the desired role of the NBI. For central particle fueling, E inj should be low to maximize the particle current at fixed P B , but high enough to penetrate to the center. For heating and current drive, higher E inj is preferable for deepest penetration. With the standard positive ion beam technology, the neutralization efficiency becomes too low for useful power densities if E inj is significantly greater than about 120 keV. Negative ion beam sources would be useful for heating and current drive at very high E inj (500 keV or more), but the fueling rate of NBI is too low to be practical. It seems generally accepted that future tokamaks which operate closer to ignition will have to be fueled and heated by means other than NBI since it is argued that the beams with low E inj cannot penetrate deeply into the dense plasmas of interest. (author) 3 refs., 4 figs

  5. Relativistic simulation of the Vlasov equation for plasma expansion into vacuum

    Directory of Open Access Journals (Sweden)

    H Abbasi

    2012-12-01

    Full Text Available   In this study, relativistic Vlasov simulation of plasma for expansion of collisionless plasma for into vacuum is presented. The model is based on 1+1 dimensional phase space and electrostatic approximation. For this purpose, the electron dynamics is studied by the relativistic Vlasov equation. Regardless of the ions temperature, fluid equations are used for their dynamics. The initial electrons distribution function is the relativistic Maxwellian. The results show that due to the electrons relativistic temperature, the process of the plasma expansion takes place faster, the resulting electric field is stronger and the ions are accelerated to higher velocities, in comparison to the non-relativistic case.

  6. Electronics Research Laboratory, Plasma Theory and Simulation Group annual progress report, January 1, 1989--December 31, 1989

    International Nuclear Information System (INIS)

    Birdsall, C.K.

    1989-01-01

    This is a brief progress report, covering our research in general plasma theory and simulation, plasma-wall physics theory and simulation, and code development. Reports written in this period are included with this mailing. A publications list plus abstracts for two major meetings are included

  7. Self-Adaptive Event-Driven Simulation of Multi-Scale Plasma Systems

    Science.gov (United States)

    Omelchenko, Yuri; Karimabadi, Homayoun

    2005-10-01

    Multi-scale plasmas pose a formidable computational challenge. The explicit time-stepping models suffer from the global CFL restriction. Efficient application of adaptive mesh refinement (AMR) to systems with irregular dynamics (e.g. turbulence, diffusion-convection-reaction, particle acceleration etc.) may be problematic. To address these issues, we developed an alternative approach to time stepping: self-adaptive discrete-event simulation (DES). DES has origin in operations research, war games and telecommunications. We combine finite-difference and particle-in-cell techniques with this methodology by assuming two caveats: (1) a local time increment, dt for a discrete quantity f can be expressed in terms of a physically meaningful quantum value, df; (2) f is considered to be modified only when its change exceeds df. Event-driven time integration is self-adaptive as it makes use of causality rules rather than parametric time dependencies. This technique enables asynchronous flux-conservative update of solution in accordance with local temporal scales, removes the curse of the global CFL condition, eliminates unnecessary computation in inactive spatial regions and results in robust and fast parallelizable codes. It can be naturally combined with various mesh refinement techniques. We discuss applications of this novel technology to diffusion-convection-reaction systems and hybrid simulations of magnetosonic shocks.

  8. Three-dimensional simulations of plasma turbulence in the RFX-mod scrape-off layer and comparison with experimental measurements

    Science.gov (United States)

    Riva, Fabio; Vianello, Nicola; Spolaore, Monica; Ricci, Paolo; Cavazzana, Roberto; Marrelli, Lionello; Spagnolo, Silvia

    2018-02-01

    The tokamak scrape-off layer (SOL) plasma dynamics is investigated in a circular limiter configuration with a low edge safety factor. Focusing on the experimental parameters of two ohmic tokamak inner-wall limited plasma discharges in RFX-mod [Sonato et al., Fusion Eng. Des. 74, 97 (2005)], nonlinear SOL plasma simulations are performed with the GBS code [Ricci et al., Plasma Phys. Controlled Fusion 54, 124047 (2012)]. The numerical results are compared with the experimental measurements, assessing the reliability of the GBS model in describing the RFX-mod SOL plasma dynamics. It is found that the simulations are able to quantitatively reproduce the RFX-mod experimental measurements of the electron plasma density, electron temperature, and ion saturation current density (jsat) equilibrium profiles. Moreover, there are indications that the turbulent transport is driven by the same instability in the simulations and in the experiment, with coherent structures having similar statistical properties. On the other hand, it is found that the simulation results are not able to correctly reproduce the floating potential equilibrium profile and the jsat fluctuation level. It is likely that these discrepancies are, at least in part, related to simulating only the tokamak SOL region, without including the plasma dynamics inside the last close flux surface, and to the limits of applicability of the drift approximation. The turbulence drive is then identified from the nonlinear simulations and with the linear theory. It results that the inertial drift wave is the instability driving most of the turbulent transport in the considered discharges.

  9. Artificial cooling due to quiet injection in bounded plasma particle simulations

    International Nuclear Information System (INIS)

    Lawson, W.S.

    1988-01-01

    An explanation is proposed for an artificial cooling effect seen in electrostatic particle-in-cell plasma simulations. The effect hinges on heat transport from the trapped electrons to fluctuations of the electric field, which are kept at a sub-thermal level through the continuous ''quiet'' injection of passing electrons. Further simulations are done which test and support the explanation. copyright 1988 Academic Press, Inc

  10. Methodology of modeling and measuring computer architectures for plasma simulations

    Science.gov (United States)

    Wang, L. P. T.

    1977-01-01

    A brief introduction to plasma simulation using computers and the difficulties on currently available computers is given. Through the use of an analyzing and measuring methodology - SARA, the control flow and data flow of a particle simulation model REM2-1/2D are exemplified. After recursive refinements the total execution time may be greatly shortened and a fully parallel data flow can be obtained. From this data flow, a matched computer architecture or organization could be configured to achieve the computation bound of an application problem. A sequential type simulation model, an array/pipeline type simulation model, and a fully parallel simulation model of a code REM2-1/2D are proposed and analyzed. This methodology can be applied to other application problems which have implicitly parallel nature.

  11. Simulation study of depositing the carbon film on nanoparticles in the magnetized methane plasma

    Science.gov (United States)

    Mohammadzadeh, Hosein; Pourali, Nima; Ebadi, Zahra

    2018-03-01

    Plasma coating of nanoparticles in low-temperature magnetized methane plasma is studied by a simulation approach. To this end, by using the global model, the electron temperature and concentration of different species considered in this plasma are determined in the center of a capacitively coupled discharge. Then, the plasma-wall transition region in the presence of an oblique magnetic field is simulated by the multi-component fluid description. Nanoparticles with different radii are injected into the transition region and surface deposition and heating models, as well as dynamics and charging models, are employed to examine the coating process. The results of the simulation show that the non-spherical growth of nanoparticles is affected by the presence of the magnetic field, as with passing time, an oscillating increase is seen in the thickness of the film deposited on nanoparticles. Also, it is shown that the uniformity of the deposited film is dependent on the rotation velocity of nanoparticles. Generally, the obtained results imply that the sphericity of nanoparticles and uniformity of the film coated on them are controllable by the magnitude and orientation of the magnetic field.

  12. MHD simulation study of compact toroid injection into magnetized plasmas

    International Nuclear Information System (INIS)

    Suzuki, Yoshio; Kishimoto, Yasuaki

    2000-01-01

    To understand the fuelling process in a fusion device by a compact toroid (CT) plasmoid injection method, we have carried out MHD numerical simulations where a spheromak-like CT (SCT) is injected into a magnetized target plasma region. So far, we revealed that the penetration depth of the SCT plasma becomes shorter than that estimated from the conducting sphere (CS) model, because in the simulation the Lorentz force of the target magnetic field sequentially decelerates the injected SCT while in the CS model only the magnetic pressure force acts as the deceleration mechanism. In this study, we represent the new theoretical model where the injected SCT is decelerated by both the magnetic pressure force and the magnetic tension force (we call it the non-slipping sphere (NS) model) and investigate in detail the deceleration mechanism of the SCT by comparison with simulation results. As a result, it is found that the decrease of the SCT kinetic energy in the simulation coincides with that in the NS model more than in the CS model. It means that not only the magnetic pressure force but also the magnetic tension force acts as the deceleration mechanism of the SCT. Furthermore, it is revealed that magnetic reconnection between the SCT magnetic field and the target magnetic field plays a role to relax the SCT deceleration. (author)

  13. Hybrid model for simulation of plasma jet injection in tokamak

    Science.gov (United States)

    Galkin, Sergei A.; Bogatu, I. N.

    2016-10-01

    Hybrid kinetic model of plasma treats the ions as kinetic particles and the electrons as charge neutralizing massless fluid. The model is essentially applicable when most of the energy is concentrated in the ions rather than in the electrons, i.e. it is well suited for the high-density hyper-velocity C60 plasma jet. The hybrid model separates the slower ion time scale from the faster electron time scale, which becomes disregardable. That is why hybrid codes consistently outperform the traditional PIC codes in computational efficiency, still resolving kinetic ions effects. We discuss 2D hybrid model and code with exact energy conservation numerical algorithm and present some results of its application to simulation of C60 plasma jet penetration through tokamak-like magnetic barrier. We also examine the 3D model/code extension and its possible applications to tokamak and ionospheric plasmas. The work is supported in part by US DOE DE-SC0015776 Grant.

  14. Influence of Low-Temperature Plasma Treatment on The Liquid Filtration Efficiency of Melt-Blown PP Nonwovens in The Conditions of Simulated Use of Respiratory Protective Equipment

    Directory of Open Access Journals (Sweden)

    Majchrzycka Katarzyna

    2017-06-01

    Full Text Available Filtering nonwovens produced with melt-blown technology are one of the most basic materials used in the construction of respiratory protective equipment (RPE against harmful aerosols, including bio- and nanoaerosols. The improvement of their filtering properties can be achieved by the development of quasi-permanent electric charge on the fibres. Usually corona discharge method is utilized for this purpose. In the presented study, it was assumed that the low-temperature plasma treatment could be applied as an alternative method for the manufacturing of conventional electret nonwovens for the RPE construction. Low temperature plasma treatment of polypropylene nonwovens was carried out with various process gases (argon, nitrogen, oxygen or air in a wide range of process parameters (gas flow velocity, time of treatment and power supplied to the reactor electrodes. After the modification, nonwovens were evaluated in terms of filtration efficiency of paraffin oil mist. The stability of the modification results was tested after 12 months of storage and after conditioning at elevated temperature and relative humidity conditions. Moreover, scanning electron microscopy and ATR-IR spectroscopy were used to assess changes in surface topography and chemical composition of the fibres. The modification of melt-blown nonwovens with nitrogen, oxygen and air plasma did not result in a satisfactory improvement of the filtration efficiency. In case of argon plasma treatment, up to 82% increase of filtration efficiency of paraffin oil mist was observed in relation to untreated samples. This effect was stable after 12 months of storage in normal conditions and after thermal conditioning in (70 ± 3°C for 24 h. The use of low-temperature plasma treatment was proven to be a promising improvement direction of filtering properties of nonwovens used for the protection of respiratory tract against harmful aerosols.

  15. ERO modeling of beryllium erosion by helium plasma in experiments at PISCES-B

    Directory of Open Access Journals (Sweden)

    D. Borodin

    2017-08-01

    Full Text Available The beryllium erosion by helium plasma irradiation is studied at the PISCES-B linear plasma device and interpreted using the accompanying simulations by the ERO code. The influence of plasma conditions and varying negative biasing of the Be plasma target on BeI and BeII absolute line intensities are reproduced in detail by the simulations. The synthetic axial line intensity shapes and line ratios match with experiment. This indicates that atomic data are quite accurate. The initial population state of quasi-metastable 3P level in BeI is found to be MS:GS= 0.33:1 for all conditions. The yields determined by the modeling interpretation are compared to the SDTrimSP code simulations in the binary collision approximation.

  16. Dust remobilization in fusion plasmas under steady state conditions

    NARCIS (Netherlands)

    Tolias, P.; Ratynskaia, S.; de Angeli, M.; De Temmerman, G.; Ripamonti, D.; Riva, G.; I. Bykov,; Shalpegin, A.; Vignitchouk, L.; Brochard, F.; Bystrov, K.; Bardin, S.; Litnovsky, A.

    2016-01-01

    The first combined experimental and theoretical studies of dust remobilization by plasma forces are reported. The main theoretical aspects of remobilization in fusion devices under steady state conditions are analyzed. In particular, the dominant role of adhesive forces is highlighted and generic

  17. Experience with simulator training for emergency conditions

    International Nuclear Information System (INIS)

    1987-12-01

    The training of operators by the use of simulators is common to most countries with nuclear power plants. Simulator training programmes are generally well developed, but their value can be limited by the age, type, size and capability of the simulator. Within these limits, most full scope simulators have a capability of training operators for a range of design basis accidents. It is recognized that human performance under accident conditions is difficult to predict or analyse, particularly in the area of severe accidents. These are rare events and by their very nature, unpredictable. Of importance, therefore, is to investigate the training of operators for severe accident conditions, and to examine ways in which simulators may be used in this task. The International Nuclear Safety Advisory Group (INSAG) has reviewed this field and the associated elements of human behaviour. It has recommended that activities are concentrated on this area. Initially it is encouraging the following objectives: i) To train operators for accident conditions including severe accidents and to strongly encourage the development and use of simulators for this purpose; ii) To improve the man-machine interface by the use of computer aids to the operator; iii) To develop human performance requirements for plant operating staff. As part of this work, the IAEA convened a technical committee on 15-19 September 1986 to review the experience with simulator training for emergency conditions, to review simulator modelling for severe accident training, to examine the role of human cognitive behaviour modelling, and to review guidance on accident scenarios. A substantial deviation may be a major fuel failure, a Loss of Coolant Accident (LOCA), etc. Examples of engineered safety features are: an Emergency Core Cooling System (ECCS), and Containment Systems. This report was prepared by the participants during the meeting and reviewed further in a Consultant's Meeting. It also includes papers which were

  18. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, L. M., E-mail: garrisonlm@ornl.gov; Egle, B. J. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831 (United States); Fusion Technology Institute, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States); Zenobia, S. J.; Kulcinski, G. L.; Santarius, J. F. [Fusion Technology Institute, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States)

    2016-08-15

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA–500 μA; the typical current used is 72 μA, which is an average flux of 9 × 10{sup 14} ions/(cm{sup 2} s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.

  19. Simulation of intense short-pulse laser-plasma interaction

    International Nuclear Information System (INIS)

    Yamagiwa, Mitsuru

    2000-01-01

    We have completed the massive parallelization of a 2-dimensional giga-particle code and have achieved a 530-fold acceleration rate with 512 processing elements (PE's). Using this we have implemented a simulation of the interaction of a solid thin film and a high intensity laser and have discovered a phenomenon in which high quality short pulses from the far ultraviolet to soft X-rays are generated at the back surface of the thin layer. We have also introduced the atomic process database code (Hullac) and have the possibility for high precision simulations of X-ray laser radiation. With respect to laser acceleration we have the possibility to quantitatively evaluate relativistic self-focusing assumed to occur in higher intensity fields. Ion acceleration from a solid target and an underdense plasma irradiated by an intense and an ultra intense laser, respectively, has also been studied by particle-in-cell (PIC) simulations. (author)

  20. Multi-grid Particle-in-cell Simulations of Plasma Microturbulence

    International Nuclear Information System (INIS)

    Lewandowski, J.L.V.

    2003-01-01

    A new scheme to accurately retain kinetic electron effects in particle-in-cell (PIC) simulations for the case of electrostatic drift waves is presented. The splitting scheme, which is based on exact separation between adiabatic and on adiabatic electron responses, is shown to yield more accurate linear growth rates than the standard df scheme. The linear and nonlinear elliptic problems that arise in the splitting scheme are solved using a multi-grid solver. The multi-grid particle-in-cell approach offers an attractive path, both from the physics and numerical points of view, to simulate kinetic electron dynamics in global toroidal plasmas

  1. Experimental benchmark of kinetic simulations of capacitively coupled plasmas in molecular gases

    Science.gov (United States)

    Donkó, Z.; Derzsi, A.; Korolov, I.; Hartmann, P.; Brandt, S.; Schulze, J.; Berger, B.; Koepke, M.; Bruneau, B.; Johnson, E.; Lafleur, T.; Booth, J.-P.; Gibson, A. R.; O'Connell, D.; Gans, T.

    2018-01-01

    We discuss the origin of uncertainties in the results of numerical simulations of low-temperature plasma sources, focusing on capacitively coupled plasmas. These sources can be operated in various gases/gas mixtures, over a wide domain of excitation frequency, voltage, and gas pressure. At low pressures, the non-equilibrium character of the charged particle transport prevails and particle-based simulations become the primary tools for their numerical description. The particle-in-cell method, complemented with Monte Carlo type description of collision processes, is a well-established approach for this purpose. Codes based on this technique have been developed by several authors/groups, and have been benchmarked with each other in some cases. Such benchmarking demonstrates the correctness of the codes, but the underlying physical model remains unvalidated. This is a key point, as this model should ideally account for all important plasma chemical reactions as well as for the plasma-surface interaction via including specific surface reaction coefficients (electron yields, sticking coefficients, etc). In order to test the models rigorously, comparison with experimental ‘benchmark data’ is necessary. Examples will be given regarding the studies of electron power absorption modes in O2, and CF4-Ar discharges, as well as on the effect of modifications of the parameters of certain elementary processes on the computed discharge characteristics in O2 capacitively coupled plasmas.

  2. Conditionings for boron-carbon plasma facing wall

    International Nuclear Information System (INIS)

    Hino, Tomoaki; Yamauchi, Yuji; Yamashina, Toshiro

    1994-01-01

    For plasma facing material with components of boron and carbon, the method of conditionings due to He discharge cleaning and baking is considered. The conditioning time required to suppress the hydrogen recycling is discussed. It is shown that the hydrogen trapped by the boron can be relatively easily removed only by the baking at 300degC or only by He discharge cleaning with current density of 0.1 mA/cm 2 . It is not easy to remove the hydrogen trapped by the carbon by the baking since the temperature required becomes 500degC. The current density required also becomes high, 1 mA/cm 2 , for the reduction of the hydrogen trapped by the carbon. (author)

  3. Damage to preheated tungsten targets after multiple plasma impacts simulating ITER ELMs

    Energy Technology Data Exchange (ETDEWEB)

    Garkusha, I.E. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine)], E-mail: garkusha@ipp.kharkov.ua; Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Landman, I. [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany); Makhlaj, V.A. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Pestchanyi, S. [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany); Tereshin, V.I. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine)

    2009-04-30

    The behavior of a preheated at 650 deg. C tungsten targets under repetitive ELM-like plasma pulses is studied in simulation experiments with the quasi-stationary plasma accelerator QSPA Kh-50. The targets have been exposed up to 350 pulses of the duration 0.25 ms and the surface heat loads either 0.45 MJ/m{sup 2} or 0.75 MJ/m{sup 2}, which is below and above the melting threshold, respectively. The development of surface morphology of the exposed targets as well as cracking and swelling at the surface is discussed. First comparisons of obtained experimental results with corresponding numerical simulations of the code PEGASUS-3D are presented.

  4. ''SensArray'' voltage sensor analysis in an inductively coupled plasma

    International Nuclear Information System (INIS)

    Titus, M. J.; Hsu, C. C.; Graves, D. B.

    2010-01-01

    A commercially manufactured PlasmaVolt sensor wafer was studied in an inductively coupled plasma reactor in an effort to validate sensor measurements. A pure Ar plasma at various powers (25-420 W), for a range of pressures (10-80 mT), and bias voltages (0-250 V) was utilized. A numerical sheath simulation was simultaneously developed in order to interpret experimental results. It was found that PlasmaVolt sensor measurements are proportional to the rf-current through the sheath. Under conditions such that the sheath impedance is dominantly capacitive, sensor measurements follow a scaling law derived from the inhomogeneous sheath model of Lieberman and Lichtenberg, [Principles of Plasma Discharges and Materials Processing (Wiley, New York, 2005)]. Under these conditions, sensor measurements are proportional to the square root of the plasma density at the plasma-sheath interface, the one-fourth root of the electron temperature, and the one-fourth root of the rf bias voltage. When the sheath impedance becomes increasingly resistive, the sensor measurements deviate from the scaling law and tend to be directly proportional to the plasma density. The measurements and numerical sheath simulation demonstrate the scaling behavior as a function of changing sheath impedance for various plasma conditions.

  5. Performance modelling of plasma microthruster nozzles in vacuum

    Science.gov (United States)

    Ho, Teck Seng; Charles, Christine; Boswell, Rod

    2018-05-01

    Computational fluid dynamics and plasma simulations of three geometrical variations of the Pocket Rocket radiofrequency plasma electrothermal microthruster are conducted, comparing pulsed plasma to steady state cold gas operation. While numerical limitations prevent plasma modelling in a vacuum environment, results may be obtained by extrapolating from plasma simulations performed in a pressurised environment, using the performance delta from cold gas simulations performed in both environments. Slip regime boundary layer effects are significant at these operating conditions. The present investigation targets a power budget of ˜10 W for applications on CubeSats. During plasma operation, the thrust force increases by ˜30% with a power efficiency of ˜30 μNW-1. These performance metrics represent instantaneous or pulsed operation and will increase over time as the discharge chamber attains thermal equilibrium with the heated propellant. Additionally, the sculpted nozzle geometry achieves plasma confinement facilitated by the formation of a plasma sheath at the nozzle throat, and fast recombination ensures a neutral exhaust plume that avoids the contamination of solar panels and interference with externally mounted instruments.

  6. State-space modeling of the radio frequency inductively-coupled plasma generator

    International Nuclear Information System (INIS)

    Dewangan, Rakesh Kumar; Punjabi, Sangeeta B; Mangalvedekar, H A; Lande, B K; Joshi, N K; Barve, D N

    2010-01-01

    Computational fluid dynamics models of RF-ICP are useful in understanding the basic transport phenomenon in an ICP torch under a wide variety of operating conditions. However, these models lack the ability to evaluate the effects of the plasma condition on the RF generator. In this paper, simulation of an induction plasma generator has been done using state space modelling by considering inductively coupled plasma as a part of RF network .The time dependent response of the RF-ICP generator circuit to given input excitation has been computed by extracting the circuit's state-space variables and their constraint matrices. MATLAB 7.1 software has been used to solve the state equations. The values of RF coil current, frequency and plasma power has been measured experimentally also at different plate bias voltage. The simulated model is able to predict RF coil current, frequency, plasma power, overall efficiency of the generator. The simulated and measured values are in agreement with each other. This model can prove useful as a design tool for the Induction plasma generator.

  7. X-ray lasing in colliding plasmas

    International Nuclear Information System (INIS)

    Clark, R.W.; Davis, J.; Velikovich, A.L.; Whitney, K.G.

    1997-01-01

    Conditions favorable for the achievement of population inversion and large gains in short-pulse laser-heated selenium have been reported on previously [K. G. Whitney et al., Phys. Rev. E 50, 468 (1994)]. However, the required density profiles to minimize refraction and amplification losses can be difficult to achieve in conventional laser heated blowoff plasmas. The feasibility of accelerating plasma with a laser, and letting it collide with a solid density wall plasma has been explored. The density of the resulting shocked plasma can be controlled and refraction can be reduced in this design. A radiation hydrodynamics model is used to simulate the collision of the laser produced selenium plasma with the wall plasma. The heating of the stagnated plasma with a short-pulse laser is then simulated, providing the hydrodynamic response of the selenium plasma and detailed configuration nonequilibrium atomic populations. From the results of these calculations, it appears feasible to create an x-ray lasing selenium plasma with gains in the J=0 endash 1 line at 182 Angstrom in excess of 100cm -1 . copyright 1997 American Institute of Physics

  8. Abstracts of international symposium on heat and mass transfer under plasma conditions

    International Nuclear Information System (INIS)

    1994-01-01

    The international symposium on heat and mass transfer under plasma conditions was held on 4-8 July 1994 in Cesme, Izmir, Turkey. The spesialists discussed heat and mass transfer in the field of plasma processing at the meeting. More than 70 papers were presented in the meeting

  9. Abstracts of international symposium on heat and mass transfer under plasma conditions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The international symposium on heat and mass transfer under plasma conditions was held on 4-8 July 1994 in Cesme, Izmir, Turkey. The spesialists discussed heat and mass transfer in the field of plasma processing at the meeting. More than 70 papers were presented in the meeting.

  10. The Darwin direct implicit particle-in-cell (DADIPIC) method for simulation of low frequency plasma phenomena

    International Nuclear Information System (INIS)

    Gibbons, M.R.; Hewett, D.W.

    1995-01-01

    We describe a new algorithm for simulating low frequency, kinetic phenomena in plasma. Darwin direct implicit particle-in-cell (DADIPIC), as its name implies, is a combination of the Darwin and direct implicit methods. Through the Darwin method the hyperbolic Maxwell's equations are reformulated into a set of elliptic equations. Propagating light waves do not exist in the formulation so the Courant constraint on the time step is eliminated. The direct implicit method is applied only to the electrostatic field with the result that electrostatic plasma oscillations do not have to be resolved for stability. With the elimination of these constraints spatial and temporal discretization can be much larger than that possible with explicit, electrodynamic PIC. We discuss the algorithms for pushing the particles and solving the fields in 2D cartesian geometry. We also detail boundary conditions for conductors and dielectrics. Finally, we present two test cases, electron cyclotron waves and collisionless heating in inductively coupled plasmas. For these test cases DADIPIC shows agreement with analytic kinetic theory and good energy conservation characteristics. 33 refs., 7 figs., 2 tabs

  11. Fast 2D Fluid-Analytical Simulation of IEDs and Plasma Uniformity in Multi-frequency CCPs

    Science.gov (United States)

    Kawamura, E.; Lieberman, M. A.; Graves, D. B.

    2014-10-01

    A fast 2D axisymmetric fluid-analytical model using the finite elements tool COMSOL is interfaced with a 1D particle-in-cell (PIC) code to study ion energy distributions (IEDs) in multi-frequency argon capacitively coupled plasmas (CCPs). A bulk fluid plasma model which solves the time-dependent plasma fluid equations is coupled with an analytical sheath model which solves for the sheath parameters. The fluid-analytical results are used as input to a PIC simulation of the sheath region of the discharge to obtain the IEDs at the wafer electrode. Each fluid-analytical-PIC simulation on a moderate 2.2 GHz CPU workstation with 8 GB of memory took about 15-20 minutes. The 2D multi-frequency fluid-analytical model was compared to 1D PIC simulations of a symmetric parallel plate discharge, showing good agreement. Fluid-analytical simulations of a 2/60/162 MHz argon CCP with a typical asymmetric reactor geometry were also conducted. The low 2 MHz frequency controlled the sheath width and voltage while the higher frequencies controlled the plasma production. A standing wave was observable at the highest frequency of 162 MHz. Adding 2 MHz power to a 60 MHz discharge or 162 MHz to a dual frequency 2 MHz/60 MHz discharge enhanced the plasma uniformity. This work was supported by the Department of Energy Office of Fusion Energy Science Contract DE-SC000193, and in part by gifts from Lam Research Corporation and Micron Corporation.

  12. Two-dimensional heat conducting simulation of plasma armatures

    International Nuclear Information System (INIS)

    Huerta, M.A.; Boynton, G.

    1991-01-01

    This paper reports on our development of a two-dimensional MHD code to simulate internal motions in a railgun plasma armature. The authors use the equations of resistive MHD, with Ohmic heating, and radiation heat transport. The authors use a Flux Corrected Transport code to advance all quantities in time. Our runs show the development of complex flows, subsequent shedding of secondary arcs, and a drop in the acceleration of the armature

  13. Simulation of Plasma Disruptions for HL-2M with the DINA Code

    International Nuclear Information System (INIS)

    Xue Lei; Duan Xu-Ru; Zheng Guo-Yao; Yan Shi-Lei; Liu Yue-Qiang; Dokuka, V. V.; Khayrutdinov, R. R.; Lukash, V. E.

    2015-01-01

    Plasma disruption is often an unavoidable aspect of tokamak operations. It may cause severe damage to in-vessel components such as the vacuum vessel conductors, the first wall and the divertor target plates. Two types of disruption, the hot-plasma vertical displacement event and the major disruption with a cold-plasma vertical displacement event, are simulated by the DINA code for HL-2M. The time evolutions of the plasma current, the halo current, the magnetic axis, the minor radius, the elongation as well as the electromagnetic force and eddy currents on the vacuum vessel during the thermal quench and the current quench are investigated. By comparing the electromagnetic forces before and after the disruption, we find that the disruption causes great damage to the vacuum vessel conductors. In addition, the hot-plasma vertical displacement event is more dangerous than the major disruption with the cold-plasma vertical displacement event. (paper)

  14. Path Integral Monte Carlo Simulations of Warm Dense Matter and Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Militzer, Burkhard [Univ. of California, Berkeley, CA (United States)

    2018-01-13

    New path integral Monte Carlo simulation (PIMC) techniques will be developed and applied to derive the equation of state (EOS) for the regime of warm dense matter and dense plasmas where existing first-principles methods cannot be applied. While standard density functional theory has been used to accurately predict the structure of many solids and liquids up to temperatures on the order of 10,000 K, this method is not applicable at much higher temperature where electronic excitations become important because the number of partially occupied electronic orbitals reaches intractably large numbers and, more importantly, the use of zero-temperature exchange-correlation functionals introduces an uncontrolled approximation. Here we focus on PIMC methods that become more and more efficient with increasing temperatures and still include all electronic correlation effects. In this approach, electronic excitations increase the efficiency rather than reduce it. While it has commonly been assumed such methods can only be applied to elements without core electrons like hydrogen and helium, we recently showed how to extend PIMC to heavier elements by performing the first PIMC simulations of carbon and water plasmas [Driver, Militzer, Phys. Rev. Lett. 108 (2012) 115502]. Here we propose to continue this important development to extend the reach of PIMC simulations to yet heavier elements and also lower temperatures. The goal is to provide a robust first-principles simulation method that can accurately and efficiently study materials with excited electrons at solid-state densities in order to access parts of the phase diagram such the regime of warm dense matter and plasmas where so far only more approximate, semi-analytical methods could be applied.

  15. Fast waves mode conversion and energy deposition in simulated, pre-heated, neoclassical, tight aspect ratio tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bruma, C.; Komoshvili, K. [Tel Aviv Univ. (Israel). School of Physics and Astronomy; Coll. of Judea and Samaria, Ariel (Israel); Cuperman, S. [Tel Aviv Univ. (Israel). School of Physics and Astronomy

    2000-11-01

    Some basic aspects of wave-plasma interaction of special interest for tight aspect ratio (spherical) tokamaks (ST's) are investigated numerically; these aspects include fast mode conversion and energy deposition. The study is based on the numerical solution of the full electro-magnetic (e.m.) wave equation which includes a quite general two-fluid, resistive MHD dielectric tensor, with consideration of equilibrium current and neoclassical effects. A generalized expression for the power absorption appropriate for the above scenario, with consideration of all the basic effects also present in the dielectric tensor-operator, was derived and used. The current-carrying ST-plasma has a circular cross-section and toroidicity effects are simulated by a Grad-Shafranov type, radially dependent axial magnetic field and its shear; however, the Shafranov shift is not considered. Actually, the equilibrium parameters and radial profiles (magnetic field, pressure and current) observed in the low field side (LFS) of spherical tokamaks (viz., START at Culham, UK) are used. Fast magnetosonic waves are launched from an external antenna into this simulated spherical tokamak plasma; these waves are converted to Alfven waves at points (layers) satisfying the Alfven resonance condition. Quantitative-results concerning (i) the structure and space dependence of the mode-converted Alfven waves and (ii) the basic features of the deposited power are presented. Their dependence on the equilibrium plasma current, neoclassical resistivity and electron inertia as well as on those of the antenna launched wave (wave numbers, frequency and current intensity) is systematically studied and discussed. (orig.)

  16. Fast waves mode conversion and energy deposition in simulated, pre-heated, neoclassical, tight aspect ratio tokamak plasmas

    International Nuclear Information System (INIS)

    Bruma, C.; Komoshvili, K.; Cuperman, S.

    2000-01-01

    Some basic aspects of wave-plasma interaction of special interest for tight aspect ratio (spherical) tokamaks (ST's) are investigated numerically; these aspects include fast mode conversion and energy deposition. The study is based on the numerical solution of the full electro-magnetic (e.m.) wave equation which includes a quite general two-fluid, resistive MHD dielectric tensor, with consideration of equilibrium current and neoclassical effects. A generalized expression for the power absorption appropriate for the above scenario, with consideration of all the basic effects also present in the dielectric tensor-operator, was derived and used. The current-carrying ST-plasma has a circular cross-section and toroidicity effects are simulated by a Grad-Shafranov type, radially dependent axial magnetic field and its shear; however, the Shafranov shift is not considered. Actually, the equilibrium parameters and radial profiles (magnetic field, pressure and current) observed in the low field side (LFS) of spherical tokamaks (viz., START at Culham, UK) are used. Fast magnetosonic waves are launched from an external antenna into this simulated spherical tokamak plasma; these waves are converted to Alfven waves at points (layers) satisfying the Alfven resonance condition. Quantitative-results concerning (i) the structure and space dependence of the mode-converted Alfven waves and (ii) the basic features of the deposited power are presented. Their dependence on the equilibrium plasma current, neoclassical resistivity and electron inertia as well as on those of the antenna launched wave (wave numbers, frequency and current intensity) is systematically studied and discussed. (orig.)

  17. Ion-surface interaction: simulation of plasma-wall interaction (ITER)

    International Nuclear Information System (INIS)

    Salou, Pierre

    2013-01-01

    The wall materials of magnetic confinement in fusion machines are exposed to an aggressive environment; the reactor blanket is bombarded with a high flux of particles extracted from the plasma, leading to the sputtering of surface material. This sputtering causes wall erosion as well as plasma contamination problems. In order to control fusion reactions in complex reactors, it is thus imperative to well understand the plasma-wall interactions. This work proposes the study of the sputtering of fusion relevant materials. We propose to simulate the charged particles influx by few keV single-charged ion beams. This study is based on the catcher method; to avoid any problem of pollution (especially in the case of carbon) we designed a new setup allowing an in situ Auger electron spectroscopy analysis. The results provide the evolution of the angular distribution of the sputtering yield as a function of the ion mass (from helium to xenon) and its energy (from 3 keV to 9 keV). (author) [fr

  18. Computational study of nonlinear plasma waves. I. Simulation model and monochromatic wave propagation

    International Nuclear Information System (INIS)

    Matsuda, Y.; Crawford, F.W.

    1975-01-01

    An economical low-noise plasma simulation model originated by Denavit is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation. These tests serve to establish the low-noise features of the model, and to verify the theoretical linear dispersion relation at wave energy levels as low as 10 -6 of the plasma thermal energy: Better quantitative results are obtained, for comparable computing time, than can be obtained by conventional particle simulation models, or direct solution of the Vlasov equation. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories

  19. Numerical simulation of plasma response to externally applied resonant magnetic perturbation on the J-TEXT tokamak

    Science.gov (United States)

    Bicheng, LI; Zhonghe, JIANG; Jian, LV; Xiang, LI; Bo, RAO; Yonghua, DING

    2018-05-01

    Nonlinear magnetohydrodynamic (MHD) simulations of an equilibrium on the J-TEXT tokamak with applied resonant magnetic perturbations (RMPs) are performed with NIMROD (non-ideal MHD with rotation, open discussion). Numerical simulation of plasma response to RMPs has been developed to investigate magnetic topology, plasma density and rotation profile. The results indicate that the pure applied RMPs can stimulate 2/1 mode as well as 3/1 mode by the toroidal mode coupling, and finally change density profile by particle transport. At the same time, plasma rotation plays an important role during the entire evolution process.

  20. Plasma properties

    International Nuclear Information System (INIS)

    Weitzner, H.

    1991-06-01

    The Magneto-Fluid Dynamics Division continues to study a broad range of problems originating in plasma physics. Its principal focus is fusion plasma physics, and most particularly topics of particular significance for the world magnetic fusion program. During the calendar year 1990 we explored a wide range of topics including RF-induced transport as a plasma control mechanism, edge plasma modelling, further statistical analysis of L and H mode tokamak plasmas, antenna design, simulation of the edge of a tokamak plasma and the L-H transition, interpretation of the CCT experimental results at UCLA, turbulent transport, studies in chaos, the validity of moment approximations to kinetic equations and improved neoclassical modelling. In more basic studies we examined the statistical mechanisms of Coulomb systems and applied plasma ballooning mode theory to conventional fluids in order to obtain novel fluid dynamics stability results. In space plasma physics we examined the problem of reconnection, the effect of Alfven waves in space environments, and correct formulation of boundary conditions of the Earth for waves in the ionosphere

  1. An EDDY/particle-in-cell simulation of erosion of plasma facing walls bombarded by a collisional plasma

    International Nuclear Information System (INIS)

    Inai, Kensuke; Ohya, Kaoru

    2011-01-01

    To investigate the erosion of a plasma-facing wall intersecting an oblique magnetic field, we performed a kinetic particle-in-cell (PIC) simulation of magnetized plasma, in which collision processes between charged and neutral particles were taken into account. Sheath formation and local physical quantities, such as the incident angle and energy distributions of plasma ions at the wall, were examined at a plasma density of 10 18 m -3 , a temperature of 10 eV, and a magnetic field strength of 5 T. The erosion rate of a carbon wall was calculated using the ion-solid interaction code EDDY. At a high neutral density (>10 20 m -3 ), the impact energy of the ions dropped below the threshold for physical sputtering, so that the sputtering yield was drastically decreased and wall erosion was strongly suppressed. Sputter erosion was also suppressed when the angle of the magnetic field with respect to the surface normal was sufficiently large. (author)

  2. Simulations of QCD and QED with C* boundary conditions

    Science.gov (United States)

    Hansen, Martin; Lucini, Biagio; Patella, Agostino; Tantalo, Nazario

    2018-03-01

    We present exploratory results from dynamical simulations of QCD in isolation, as well as QCD coupled to QED, with C* boundary conditions. In finite volume, the use of C* boundary conditions allows for a gauge invariant and local formulation of QED without zero modes. In particular we show that the simulations reproduce known results and that masses of charged mesons can be extracted in a completely gauge invariant way. For the simulations we use a modified version of the HiRep code. The primary features of the simulation code are presented and we discuss some details regarding the implementation of C* boundary conditions and the simulated lattice action. Preprint: CP3-Origins-2017-046 DNRF90, CERN-TH-2017-214

  3. Numerical simulation of electromagnetic fields and impedance of CERN LINAC4 H(-) source taking into account the effect of the plasma.

    Science.gov (United States)

    Grudiev, A; Lettry, J; Mattei, S; Paoluzzi, M; Scrivens, R

    2014-02-01

    Numerical simulation of the CERN LINAC4 H(-) source 2 MHz RF system has been performed taking into account a realistic geometry from 3D Computer Aided Design model using commercial FEM high frequency simulation code. The effect of the plasma has been added to the model by the approximation of a homogenous electrically conducting medium. Electric and magnetic fields, RF power losses, and impedance of the circuit have been calculated for different values of the plasma conductivity. Three different regimes have been found depending on the plasma conductivity: (1) Zero or low plasma conductivity results in RF electric field induced by the RF antenna being mainly capacitive and has axial direction; (2) Intermediate conductivity results in the expulsion of capacitive electric field from plasma and the RF power coupling, which is increasing linearly with the plasma conductivity, is mainly dominated by the inductive azimuthal electric field; (3) High conductivity results in the shielding of both the electric and magnetic fields from plasma due to the skin effect, which reduces RF power coupling to plasma. From these simulations and measurements of the RF power coupling on the CERN source, a value of the plasma conductivity has been derived. It agrees well with an analytical estimate calculated from the measured plasma parameters. In addition, the simulated and measured impedances with and without plasma show very good agreement as well demonstrating validity of the plasma model used in the RF simulations.

  4. Plasma transport near material boundaries

    International Nuclear Information System (INIS)

    Singer, C.E.

    1985-06-01

    The fluid theory of two-dimensional (2-d) plasma transport in axisymmetric devices is reviewed. The forces which produce flow across the magnetic field in a collisional plasma are described. These flows may lead to up-down asymmetries in the poloidal rotation and radial fluxes. Emphasis is placed on understanding the conditions under which the known 2-d plasma fluid equations provide a valid description of these processes. Attempts to extend the fluid treatment to less collisional, turbulent plasmas are discussed. A reduction to the 1-d fluid equations used in many computer simulations is possible when sources or boundary conditions provide a large enough radial scale length. The complete 1-d fluid equations are given in the text, and 2-d fluid equations are given in the Appendix

  5. Simulation of a dense plasma focus x-ray source

    International Nuclear Information System (INIS)

    Stark, R.A.

    1994-01-01

    The authors are performing simulations of the magnetohydrodynamics of a Dense Plasma Focus (DPF) x-ray source located at Science Research Laboratory (SRL), Alameda, CA, in order to optimize its performance. The SRL DPF, which was developed as a compact source for x-ray lithography, operates at 20 Hz, giving x-ray power (9--14 Angstroms) of 500 W using neon gas. The simulations are performed with the two dimensional MHD code MACH2, developed by Mission Research Corporation, with a steady state corona model as the equation of state. The results of studies of the sensitivity of x-ray output to charging voltage and current, and to initial gas density will be presented. These studies should indicate ways to optimize x-ray production efficiency. Simulations of various inner electrode configurations will also be presented

  6. A collision model in plasma particle simulations

    International Nuclear Information System (INIS)

    Ma Yanyun; Chang Wenwei; Yin Yan; Yue Zongwu; Cao Lihua; Liu Daqing

    2000-01-01

    In order to offset the collisional effects reduced by using finite-size particles, β particle clouds are used in particle simulation codes (β is the ratio of charge or mass of modeling particles to real ones). The method of impulse approximation (strait line orbit approximation) is used to analyze the scattering cross section of β particle clouds plasmas. The authors can obtain the relation of the value of a and β and scattering cross section (a is the radius of β particle cloud). By using this relation the authors can determine the value of a and β so that the collisional effects of the modeling system is correspondent with the real one. The authors can also adjust the values of a and β so that the authors can enhance or reduce the collisional effects fictitiously. The results of simulation are in good agreement with the theoretical ones

  7. Simulations of an ultracold, neutral plasma with equal mass for every charge

    International Nuclear Information System (INIS)

    Robicheaux, F; Bender, B J; Phillips, M A

    2014-01-01

    The results of a theoretical investigation of an ultracold, neutral plasma composed only of equal mass positive and negative charges are reported. In our simulations, the plasma is created by the fast dissociation of a neutral particle; each dissociation leads to one positive ion and one negative ion with the same mass as the positive ion. The temperature of the plasma is controlled by the relative energy of the dissociation. We studied the early time evolution of this system where the initial energy was tuned so that the plasma is formed in the strongly coupled regime. In particular, we present results on the temperature evolution and three body recombination. In the weakly coupled regime, we studied how an expanding plasma thermalizes and how the scattering between ions affects the expansion. Because the expansion causes the density to drop, the velocity distribution only evolves for a finite time with the final distribution depending on the number of particles and initial temperature of the plasma. (paper)

  8. Simulation study of generalized electron cyclotron harmonic waves and nonlinear scattering in a magnetized plasma

    International Nuclear Information System (INIS)

    Martinez, R.M.

    1983-01-01

    Part One examines the properties of electron cyclotron harmonic waves by means of computer simulation. The electromagnetic cyclotron harmonic modes not previously observed in simulation are emphasized and compared with the better known electrostatic (Bernstein) modes for perpendicular propagation. The investigation is performed by a spectrum analysis (both wavelength and frequency) of the thermal equilibrium electromagnetic fluctuation fields present in the simulation. A numerical solution of the fully electromagnetic dispersion relation shows that extreme frequency resolution is necessary to discern shifts of the electromagnetic mode frequencies from the cyclotron harmonics except at high plasma density or temperature. The simulation results show that at high plasma pressure the amplitude of the electromagnetic modes can become greater than that of the electrostatic modes. Part Two examines the interaction of an external electromagnetic wave with the electrostatic cylotron harmonic modes. The stimulated Raman scattering with an extraordinary wave as the pump is observed to occur in a wavelength regime where it would be prevented by Landau damping in an unmagnetized plasma

  9. Global gyrokinetic simulations of intrinsic rotation in ASDEX Upgrade Ohmic L-mode plasmas

    Science.gov (United States)

    Hornsby, W. A.; Angioni, C.; Lu, Z. X.; Fable, E.; Erofeev, I.; McDermott, R.; Medvedeva, A.; Lebschy, A.; Peeters, A. G.; The ASDEX Upgrade Team

    2018-05-01

    Non-linear, radially global, turbulence simulations of ASDEX Upgrade (AUG) plasmas are performed and the nonlinear generated intrinsic flow shows agreement with the intrinsic flow gradients measured in the core of Ohmic L-mode plasmas at nominal parameters. Simulations utilising the kinetic electron model show hollow intrinsic flow profiles as seen in a predominant number of experiments performed at similar plasma parameters. In addition, significantly larger flow gradients are seen than in a previous flux-tube analysis (Hornsby et al 2017 Nucl. Fusion 57 046008). Adiabatic electron model simulations can show a flow profile with opposing sign in the gradient with respect to a kinetic electron simulation, implying a reversal in the sign of the residual stress due to kinetic electrons. The shaping of the intrinsic flow is strongly determined by the density gradient profile. The sensitivity of the residual stress to variations in density profile curvature is calculated and seen to be significantly stronger than to neoclassical flows (Hornsby et al 2017 Nucl. Fusion 57 046008). This variation is strong enough on its own to explain the large variations in the intrinsic flow gradients seen in some AUG experiments. Analysis of the symmetry breaking properties of the turbulence shows that profile shearing is the dominant mechanism in producing a finite parallel wave-number, with turbulence gradient effects contributing a smaller portion of the parallel wave-vector.

  10. Simulation of the Plasma Meniscus with and without Space Charge using Triode Extraction System

    International Nuclear Information System (INIS)

    Abdel Rahman, M.M.; EI-Khabeary, H.

    2007-01-01

    In this work simulation of the singly charged argon ion trajectories for a variable plasma meniscus is studied with and without space charge for the triode extraction system by using SIMION 3D (Simulation of Ion Optics in Three Dimensions) version 7 personal computer program. Tbe influence of acceleration voltage applied to tbe acceleration electrode of the triode extraction system on the shape of the plasma meniscus has been determined. The plasma electrode is set at +5000 volt and the acceleration voltage applied to the acceleration electrode is varied from -5000 volt to +5000 volt. In the most of the concave and convex plasma shapes ion beam emittance can be calculated by using separate standard deviations of positions and elevations angles. Ion beam emittance as a function of the curvature of the plasma meniscus for different plasma shapes ( flat concave and convex ) without space change at acceleration voltage varied from -5000 volt to +5000 volt applied to the acceleration electrode of the triode extraction system has been investigated. Tbe influence of the extraction gap on ion beam emittance for a plasma concave shape of 3.75 mm without space charge at acceleration voltage, V a cc = -2000 volt applied to the acceleration electrode of the triode extraction system has been determined. Also the influence of space charge on ion beam emittance for variable plasma meniscus at acceleration voltage, V a cc = - 2000 volt applied to the acceleration electrode of. the triode extraction system has been studied

  11. Simulation of the plasma meniscus with and without space charge using triode extraction system

    International Nuclear Information System (INIS)

    Rahman, M.M.Abdel; El-Khabeary, H.

    2009-01-01

    In this work, simulation of the singly charged argon ion trajectories for a variable plasma meniscus is studied with and without space charge for the triode extraction system by using SIMION 3D (Simulation of Ion Optics in Three Dimensions) version 7 personal computer program. The influence of acceleration voltage applied to the acceleration electrode of the triode extraction system on the shape of the plasma meniscus has been determined. The plasma electrode is set at +5000 volt and the acceleration voltage applied to the acceleration electrode is varied from -5000 volt to +5000 volt. In the most of the concave and convex plasma shapes, ion beam emittance can be calculated by using separate standard deviations of positions and elevations angles. Ion beam emittance as a function of the curvature of the plasma meniscus for different plasma shapes ( flat, concave and convex ) without space charge at acceleration voltage varied from -5000 volt to +5000 volt applied to the acceleration electrode of the triode extraction system has been investigated. The influence of the extraction gap on ion beam emittance for a plasma concave shape of 3.75 mm without space charge at acceleration voltage, V acc = -2000 volt applied to the acceleration electrode of the triode extraction system has been determined. Also the influence of space charge on ion beam emittance for variable plasma meniscus at acceleration voltage, V acc = -2000 volt applied to the acceleration electrode of the triode extraction system has been studied. (author)

  12. A simulation of equatorial plasma bubble signatures on the OI 6300A nightglow meridional profile over Brazilian low latitude

    International Nuclear Information System (INIS)

    Nakamura, Y.; Sobral, J.H.A.; Abdu, M.A.

    1981-11-01

    A quantitative interpretation of the meridional propagation of the airglow disturbance for events that have their onsets well westward of the photometer observing longitude, representing the post growth phase of a bubble, is attempted by carrying out a numerical simulation of the phenomenon. Airglow intensity as a function of zenith angle in the photometer scanning range was calculated using electron density profiles perturbed by field aligned plasma bubble whose vertical velocity and electron density depletion profile were determined from a numerical simulation of the nonlinear Rayleigh-Taylor instability under ionospheric conditions that best represented those of the observing period and location. (L.C.) [pt

  13. Shearing Box Simulations of the MRI in a Collisionless Plasma

    International Nuclear Information System (INIS)

    Sharma, Prateek; Hammett, Gregory W.; Quataert, Eliot; Stone, James M.

    2005-01-01

    We describe local shearing box simulations of turbulence driven by the magnetorotational instability (MRI) in a collisionless plasma. Collisionless effects may be important in radiatively inefficient accretion flows, such as near the black hole in the Galactic Center. The MHD version of ZEUS is modified to evolve an anisotropic pressure tensor. A fluid closure approximation is used to calculate heat conduction along magnetic field lines. The anisotropic pressure tensor provides a qualitatively new mechanism for transporting angular momentum in accretion flows (in addition to the Maxwell and Reynolds stresses). We estimate limits on the pressure anisotropy due to pitch angle scattering by kinetic instabilities. Such instabilities provide an effective ''collision'' rate in a collisionless plasma and lead to more MHD-like dynamics. We find that the MRI leads to efficient growth of the magnetic field in a collisionless plasma, with saturation amplitudes comparable to those in MHD. In the saturated state, the anisotropic stress is comparable to the Maxwell stress, implying that the rate of angular momentum transport may be moderately enhanced in a collisionless plasma

  14. Simulation studies of plasma waves in the electron foreshock - The transition from reactive to kinetic instability

    Science.gov (United States)

    Dum, C. T.

    1990-01-01

    Particle simulation experiments were used to analyze the electron beam-plasma instability. It is shown that there is a transition from the reactive state of the electron beam-plasma instability to the kinetic instability of Langmuir waves. Quantitative tests, which include an evaluation of the dispersion relation for the evolving non-Maxwellian beam distribution, show that a quasi-linear theory describes the onset of this transition and applies again fully to the kinetic stage. This stage is practically identical to the late stage seen in simulations of plasma waves in the electron foreshock described by Dum (1990).

  15. Simulative research on the expansion of cathode plasma in high-current electron beam diode

    International Nuclear Information System (INIS)

    Xu Qifu; Liu Lie

    2012-01-01

    The expansion of cathode plasma has long been recognized as a limiting factor in the impedance lifetime of high-current electron beam diode. Realistic modeling of such plasma is of great necessity in order to discuss the dynamics of cathode plasma. Using the method of particle-in-cell, the expansion of cathode plasma is simulated in this paper by a scaled-down diode model. It is found that the formation of cathode plasma increases the current density in the diode. This consequently leads to the decrease of the potential at plasma front. Once the current density has been increased to a certain value, the potential at plasma front would then be equal to or lower than the plasma potential. Then the ions would move towards the anode, and the expansion of cathode plasma is thereby formed. Different factors affecting the plasma expansion velocity are discussed in this paper. It is shown that the decrease of proton genatation rate has the benefit of reducing the plasma expansion velocity.

  16. Response of HEPA filters to simulated-accident conditions

    International Nuclear Information System (INIS)

    Gregory, W.S.; Martin, R.A.; Smith, P.R.; Fenton, D.E.

    1982-01-01

    High-efficiency particulate air (HEPA) filters have been subjected to simulated accident conditions to determine their response to abnormal operating events. Both domestic and European standard and high-capacity filters have been evaluated to determine their response to simulated fire, explosion, and tornado conditions. The HEPA filter structural limitations for tornado and explosive loadings are discussed. In addition, filtration efficiencies during these accident conditions are reported for the first time. Our data indicate efficiencies between 80% and 90% for shock loadings below the structural limit level. We describe two types of testing for ineffective filtration - clean filters exposed to pulse-entrained aerosol and dirty filters exposed to tornado and shock pulses. Efficiency and material loss data are described. Also, the resonse of standard HEPA filters to simulated fire conditions is presented. We describe a unique method of measuring accumulated combustion products on the filter. Additionally, data relating to pressure drop vs accumulated mass during plugging are reported for simulated combustion aerosols. The effects of concentration and moisture levels on filter plugging were evaluated. We are obtaining all of the above data so that mathematical models can be developed for fire, explosion, and tornado accident analysis computer codes. These computer codes can be used to assess the response of nuclear air cleaning systems to accident conditions

  17. Plasma simulation studies using multilevel physics models

    International Nuclear Information System (INIS)

    Park, W.; Belova, E.V.; Fu, G.Y.

    2000-01-01

    The question of how to proceed toward ever more realistic plasma simulation studies using ever increasing computing power is addressed. The answer presented here is the M3D (Multilevel 3D) project, which has developed a code package with a hierarchy of physics levels that resolve increasingly complete subsets of phase-spaces and are thus increasingly more realistic. The rationale for the multilevel physics models is given. Each physics level is described and examples of its application are given. The existing physics levels are fluid models (3D configuration space), namely magnetohydrodynamic (MHD) and two-fluids; and hybrid models, namely gyrokinetic-energetic-particle/MHD (5D energetic particle phase-space), gyrokinetic-particle-ion/fluid-electron (5D ion phase-space), and full-kinetic-particle-ion/fluid-electron level (6D ion phase-space). Resolving electron phase-space (5D or 6D) remains a future project. Phase-space-fluid models are not used in favor of delta f particle models. A practical and accurate nonlinear fluid closure for noncollisional plasmas seems not likely in the near future

  18. Sub-kilometer Simulation of Equatorial Plasma Bubble and Comparison with Satellite Observations

    Science.gov (United States)

    Yokoyama, T.; Pfaff, R. F., Jr.; Stolle, C.; Su, S. Y.

    2016-12-01

    Equatorial plasma bubble (EPB) is a well-known phenomenon in the equatorial ionospheric F region. As it causes severe scintillation in the amplitude and phase of radio signals, it is important to understand and forecast the occurrence of EPB from a space weather point of view. The development of EPB is presently believed as an evolution of the generalized Rayleigh-Taylor instability. We have already developed a 3D high-resolution bubble (HIRB) model with a grid spacing of as small as 1 km and presented nonlinear growth of EPB which shows very turbulent internal structures such as bifurcation and pinching. Recent upgrade of the HIRB model has made it possible to conduct the simulation with sub-kilometer grid spacing. The simulation results can be compared with various in situ satellite observations such as plasma drift velocity, plasma density, magnetic field, and their structures and power spectra, e.g. from the C/NOFS, ROCSAT, CHAMP, or Swarm missions. Our initial results show encouraging agreement between model results and observational data.

  19. Simulated UO{sub 2} fuel containing CsI by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Wangle, T. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, Praha 1, 115 19 (Czech Republic); Tyrpekl, V. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Cologna, M., E-mail: marco.cologna@ec.europa.eu [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Somers, J. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany)

    2015-11-15

    Herein, an innovative preparation procedure has been deployed enabling, for the first time, the incorporation of volatile fission product simulant into highly dense nuclear fuel pellets. Highly volatile fission products were embedded in a dense UO{sub 2} matrix in the form of CsI by simply mixing starting materials and consolidation in a Spark Plasma Sintering step at 1000 °C with a 5 min dwell time. CsI particles were evenly distributed throughout the pellet and were located at the grain boundaries. The sintering rate is dependent on the O/U ratio of the powder. Addition of CsI also acts as a sintering aid, reducing the temperature of maximum densification. - Highlights: • A new method was developed to incorporation of volatile fission products simulants into dense nuclear fuel pellets. • CsI doped UO{sub 2} pellets were synthetized for the first time, by Spark Plasma Sintering. • The sintering rate in Spark Plasma Sintering is dependent on the O/U ratio of UO{sub 2+x}.

  20. Simulation of magnetic holes formation in the magnetosheath

    Science.gov (United States)

    Ahmadi, Narges; Germaschewski, Kai; Raeder, Joachim

    2017-12-01

    Magnetic holes have been frequently observed in the Earth's magnetosheath and are believed to be the consequence of the nonlinear evolution of the mirror instability. Mirror mode perturbations mainly form as magnetic holes in regions where the plasma is marginally mirror stable with respect to the linear instability criterion. We present an expanding box particle-in-cell simulation to mimic the changing conditions in the magnetosheath as the plasma is convected through it that produces mirror mode magnetic holes. We show that in the initial nonlinear evolution, where the plasma conditions are mirror unstable, the magnetic peaks are dominant, while later, as the plasma relaxes toward marginal stability, the fluctuations evolve into deep magnetic holes. While the averaged plasma parameters in the simulation remain close to the mirror instability threshold, the local plasma in the magnetic holes is highly unstable to mirror instability and locally mirror stable in the magnetic peaks.

  1. Impact of screening of resonant magnetic perturbations in three dimensional edge plasma transport simulations for DIII-D

    Czech Academy of Sciences Publication Activity Database

    Frerichs, H.; Reiter, D.; Schmitz, O.; Cahyna, Pavel; Evans, T.; Feng, Y.; Nardon, E.

    2012-01-01

    Roč. 19, č. 5 (2012), 052507-052507 ISSN 1070-664X R&D Projects: GA ČR GAP205/11/2341 Institutional research plan: CEZ:AV0Z20430508 Keywords : tokamak * TEXTOR * divertors * plasma boundary layers * plasma density * plasma magnetohydrodynamics * plasma simulation * plasma temperature * plasma toroidal confinement * plasma transport processes * Tokamak devices Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.376, year: 2012 http://pop.aip.org/resource/1/phpaen/v19/i5/p052507_s1

  2. ECR plasma photographs as a plasma diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Racz, R; Biri, S; Palinkas, J [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem ter 18/c (Hungary)

    2011-04-15

    Low, medium or highly charged ions delivered by electron cyclotron resonance (ECR) ion sources all are produced in the ECR plasma. In order to study such plasmas, high-resolution visible light plasma photographs were taken at the ATOMKI ECR ion source. An 8 megapixel digital camera was used to photograph plasmas made from He, methane, N, O, Ne, Ar, Kr, Xe gases and from their mixtures. The analysis of the photo series gave many qualitative and some valuable physical information on the nature of ECR plasmas. A comparison was made between the plasma photos and computer simulations, and conclusions were drawn regarding the cold electron component of the plasma. The warm electron component of similar simulation was compared with x-ray photos emitted by plasma ions. While the simulations are in good agreement with the photos, a significant difference was found between the spatial distribution of the cold and warm electrons.

  3. Plasma simulation in space propulsion : the helicon plasma thruster

    OpenAIRE

    Navarro Cavallé, Jaume

    2017-01-01

    The Helicon Plasma Thruster (HPT) is an electrodynamic rocket proposed in the early 2000s. It matches an Helicon Plasma Source (HPS), which ionizes the neutral gas and heats up the plasma, with aMagneticNozzle (MN),where the plasma is supersonically accelerated resulting in thrust. Although the core of this thruster inherits the knowledge on Helicon Plasma sources, dated from the seventies, the HPT technology is still not developed and remains below TRL 4. A deep review of the HPT State-of-ar...

  4. Two-and-one-half-dimensional magnetohydrodynamic simulations of the plasma sheet in the presence of oxygen ions: The plasma sheet oscillation and compressional Pc 5 waves

    International Nuclear Information System (INIS)

    Lu Li; Liu Zhenxing; Cao Jinbin

    2002-01-01

    Two-and-one-half-dimensional magnetohydrodynamic simulations of the multicomponent plasma sheet with the velocity curl term in the magnetic equation are represented. The simulation results can be summarized as follows: (1) There is an oscillation of the plasma sheet with the period on the order of 400 s (Pc 5 range); (2) the magnetic equator is a node of the magnetic field disturbance; (3) the magnetic energy integral varies antiphase with the internal energy integral; (4) disturbed waves have a propagating speed on the order of 10 km/s earthward; (5) the abundance of oxygen ions influences amplitude, period, and dissipation of the plasma sheet oscillation. It is suggested that the compressional Pc 5 waves, which are observed in the plasma sheet close to the magnetic equator, may be caused by the plasma sheet oscillation, or may be generated from the resonance of the plasma sheet oscillation with some Pc 5 perturbation waves coming from the outer magnetosphere

  5. Simulation of kinetic processes in the nuclear-excited helium non-ideal dusty plasma

    International Nuclear Information System (INIS)

    Budnik, A.P.; Kosarev, V.A.; Rykov, V.A.; Fortov, V.E.; Vladimirov, V.I.; Deputatova, L.V.

    2009-01-01

    The paper is devoted to the studying of kinetic processes in the nuclear-excited plasma of the helium gas with the fine uranium (or its chemical compounds) particles admixture. A new theoretical model for the mathematical simulation of the kinetic processes in dusty plasma of helium gas was developed. The main goal of this investigation is to determine possibilities of a creation of non-ideal dusty plasma, containing nano- and micro-particles, and excited by fission fragments (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Electron sub-cycling in particle simulation of plasma

    International Nuclear Information System (INIS)

    Adam, J.C.; Serveniere, A.G.; Langdon, A.B.

    1982-01-01

    A straightforward modification which reduces by half the computational cost of standard particle-in-cell algorithms for simulation of plasmas is described. The saving is obtained by integrating only the electrons through a number of time steps (sub-cycle) in order to resolve their evolution, while integrating the much slower ions only once per cycle, i.e., to match the time step of each species to their characteristic frequencies. A dispersion relation is derived which describes the numerical instabilities expected by sampling frequency arguments. Simulations support the broad features of the analytical results, viz., the maximum growth rate and domain of the instability, and its stabilization by the addition of weak damping. An implicit sub-cycling algorithm is suggested which may provide further saving while avoiding a limitation of implicit algorithms described elsewhere

  7. Instabilities in the plasma focus

    International Nuclear Information System (INIS)

    Kaeppeler, H.J.

    1975-03-01

    The plasma focus was studied by many research teams in view of a possible approach to controlled thermonuclear fusion. Though it is questionable whether the plasma focus will ever lead to a fusion reactor, it nevertheless constitutes a strong source of neutron, X- and gamma radiation for simulating fusion reactor conditions. Furthermore, the plasma focus yields very high temperatures (10 7 K) and densities (> 10 19 cm -3 ) and thus provides interesting conditions for the study of high density plasmas. This review paper starts with a description of the compression stage of the focussing plasma, using a snow-plough model. It is shown that sophisticated MHD calculations substantiate the snowplough theory, but are not suited to describe the phenomena in the final compressed stage. For this purpose, a particle-in-cell calculation is employed, yielding a beam-beam collision model for the neutron production. Experimental evidence indicates that neutron production is associated with the appearence of m = O instabilities and is the direct result of collisions between anomalously accelerated ions. One of the mechanisms of ion acceleration are strong local electric fields. Another possible mechanism can bee seen in beam-plasma instabilities caused by runaway electrons. The analytical derivation of the dispersion relation for plasma focus conditions including runaway effect is discussed (orig.) [de

  8. A monte carlo simulation model for the steady-state plasma in the scrape-off layer

    International Nuclear Information System (INIS)

    Wang, W.X.; Okamoto, M.; Nakajima, N.; Murakami, S.; Ohyabu, N.

    1995-12-01

    A new Monte Carlo simulation model for the scrape-off layer (SOL) plasma is proposed to investigate a feasibility of so-called 'high temperature divertor operation'. In the model, Coulomb collision effect is accurately described by a nonlinear Monte Carlo collision operator; a conductive heat flux into the SOL is effectively modelled via randomly exchanging the source particles and SOL particles; secondary electrons are included. The steady state of the SOL plasma, which satisfies particle and energy balances and the neutrality constraint, is determined in terms of total particle and heat fluxes across the separatrix, the edge plasma temperature, the secondary electron emission rate, and the SOL size. The model gives gross features of the SOL such as plasma temperatures and densities, the total sheath potential drop, and the sheath energy transmission factor. The simulations are performed for collisional SOL plasma to confirm the validity of the proposed model. It is found that the potential drop and the electron energy transmission factor are in close agreement with theoretical predictions. The present model can provide primarily useful information for collisionless SOL plasma which is difficult to be understood analytically. (author)

  9. Investigation of surface boundary conditions for continuum modeling of RF plasmas

    Science.gov (United States)

    Wilson, A.; Shotorban, B.

    2018-05-01

    This work was motivated by a lacking general consensus in the exact form of the boundary conditions (BCs) required on the solid surfaces for the continuum modeling of Radiofrequency (RF) plasmas. Various kinds of number and energy density BCs on solid surfaces were surveyed, and how they interacted with the electric potential BC to affect the plasma was examined in two fundamental RF plasma reactor configurations. A second-order local mean energy approximation with equations governing the electron and ion number densities and the electron energy density was used to model the plasmas. Zero densities and various combinations of drift, diffusion, and thermal fluxes were considered to set up BCs. It was shown that the choice of BC can have a significant impact on the sheath and bulk plasma. The thermal and diffusion fluxes to the surface were found to be important. A pure drift BC for dielectric walls failed to produce a sheath.

  10. Simulation of tokamak armour erosion and plasma contamination at intense transient heat fluxes in ITER

    Science.gov (United States)

    Landman, I. S.; Bazylev, B. N.; Garkusha, I. E.; Loarte, A.; Pestchanyi, S. E.; Safronov, V. M.

    2005-03-01

    For ITER, the potential material damage of plasma facing tungsten-, CFC-, or beryllium components during transient processes such as ELMs or mitigated disruptions are simulated numerically using the MHD code FOREV-2D and the melt motion code MEMOS-1.5D for a heat deposition in the range of 0.5-3 MJ/m 2 on the time scale of 0.1-1 ms. Such loads can cause significant evaporation at the target surface and a contamination of the SOL by the ions of evaporated material. Results are presented on carbon plasma dynamics in toroidal geometry and on radiation fluxes from the SOL carbon ions obtained with FOREV-2D. The validation of MEMOS-1.5D against the plasma gun tokamak simulators MK-200UG and QSPA-Kh50, based on the tungsten melting threshold, is described. Simulations with MEMOS-1.5D for a beryllium first wall that provide important details about the melt motion dynamics and typical features of the damage are reported.

  11. Automated detection and analysis of particle beams in laser-plasma accelerator simulations

    International Nuclear Information System (INIS)

    Ushizima, Daniela Mayumi; Geddes, C.G.; Cormier-Michel, E.; Bethel, E. Wes; Jacobsen, J.; Prabhat; Ruebel, O.; Weber, G.; Hamann, B.

    2010-01-01

    Numerical simulations of laser-plasma wakefield (particle) accelerators model the acceleration of electrons trapped in plasma oscillations (wakes) left behind when an intense laser pulse propagates through the plasma. The goal of these simulations is to better understand the process involved in plasma wake generation and how electrons are trapped and accelerated by the wake. Understanding of such accelerators, and their development, offer high accelerating gradients, potentially reducing size and cost of new accelerators. One operating regime of interest is where a trapped subset of electrons loads the wake and forms an isolated group of accelerated particles with low spread in momentum and position, desirable characteristics for many applications. The electrons trapped in the wake may be accelerated to high energies, the plasma gradient in the wake reaching up to a gigaelectronvolt per centimeter. High-energy electron accelerators power intense X-ray radiation to terahertz sources, and are used in many applications including medical radiotherapy and imaging. To extract information from the simulation about the quality of the beam, a typical approach is to examine plots of the entire dataset, visually determining the adequate parameters necessary to select a subset of particles, which is then further analyzed. This procedure requires laborious examination of massive data sets over many time steps using several plots, a routine that is unfeasible for large data collections. Demand for automated analysis is growing along with the volume and size of simulations. Current 2D LWFA simulation datasets are typically between 1GB and 100GB in size, but simulations in 3D are of the order of TBs. The increase in the number of datasets and dataset sizes leads to a need for automatic routines to recognize particle patterns as particle bunches (beam of electrons) for subsequent analysis. Because of the growth in dataset size, the application of machine learning techniques for

  12. Recent advances in modeling and simulation of the exposure and response of tungsten to fusion energy conditions

    Energy Technology Data Exchange (ETDEWEB)

    Marian, Jaime; Becquart, Charlotte S.; Domain, Christophe; Dudarev, Sergei L.; Gilbert, Mark R.; Kurtz, Richard J.; Mason, Daniel R.; Nordlund, Kai; Sand, Andrea E.; Snead, Lance L.; Suzudo, Tomoaki; Wirth, Brian D.

    2017-06-09

    Under the anticipated operating conditions for demonstration magnetic fusion reactors beyond ITER, structural materials will be exposed to unprecedented conditions of irradiation, heat flux, and temperature. While such extreme environments remain inaccessible experimentally, computational modeling and simulation can provide qualitative and quantitative insights into materials response and complement the available experimental measurements with carefully validated predictions. For plasma facing components such as the first wall and the divertor, tungsten (W) has been selected as the best candidate material due to its superior high-temperature and irradiation properties. In this paper we provide a review of recent efforts in computational modeling of W both as a plasma-facing material exposed to He deposition as well as a bulk structural material subjected to fast neutron irradiation. We use a multiscale modeling approach –commonly used as the materials modeling paradigm– to define the outline of the paper and highlight recent advances using several classes of techniques and their interconnection. We highlight several of the most salient findings obtained via computational modeling and point out a number of remaining challenges and future research directions

  13. Two-dimensional simulation of the hydromagnetic Rayleigh-Taylor instability in an imploding foil plasma

    International Nuclear Information System (INIS)

    Roderick, N.F.; Hussey, T.W.; Faehl, R.J.; Boyd, R.W.

    1978-01-01

    Two-dimensional (r-z) magnetohydrodynamic simulations of the electromagnetic implosion of metallic foil plasmas show, for certain initial configurations, a tendency to develop large-amplitude perturbations characteristic of the hydromagnetic Rayleigh-Taylor instability. These perturbations develop at the plasma magnetic field interface for plasma configurations where the density gradient scale length, the characteristic dimension for the instability, is short. The effects on the plasma dynamics of the implosion will be discussed for several initial foil configurations. In general, the growth rates and linear mode structure are found to be influenced by the plasma shell thickness and density gradient scale length, in agreement with theory. The most destructive modes are found to be those with wavelengths of the order of the plasma shell thickness

  14. DISAIN SIMULATOR AUTOMOTIVE AIR CONDITIONING UNTUK MENINGKATKAN KOMPETENSI MAHASISWA

    Directory of Open Access Journals (Sweden)

    Kamin Sumardi

    2015-08-01

    Full Text Available Perkembangan teknologi automotive air conditioning dan aplikasinya sangat cepat, salah satunya dengan menerapkan green technology. Penerapan green technology pada teknologi air conditioning, karena masih menggunakan refrigeran yang mengandung unsur kimia yang merusak lapisan ozon dan pemanasan global. Alih teknologi bidang air conditioning yang ramah lingkungan, belum dibarengi dengan ketersediaan tenaga kerja pada tingkat SMK dan perguruan tinggi yang memadai, baik kuantitas maupun kompetensinya. Pada level SMK dan perguruan tinggi, kompetensi akademik dan vokasional bidang automotive air conditioning harus terus ditingkatkan dan diperbaharui sesuai dengan perkembangan teknologinya. Penelitian ini bertujuan untuk menghasilkan simulator automotive air conditioner dan model pembelajaran tata udara pada otomotif berwawasan teknologi ramah lingkungan. Penelitian menggunakan metode research and development dengan langkah-langkah: studi pendahuluan, perencanaan, pengembangan melalui uji coba simulator, validasi, dan produk akhir. Simulator dibuat sesuai dengan kondisi di dunia kerja agar tidak terjadi miskonsepsi dan mala-praktek automotive air conditioning. Simulator ini dibuat secara kompak dan mobile atau dapat dipindah dan dibawa. Model pembelajaran disesuaikan dengan kebutuhan kompetensi yang dipersyaratkan. Hasil penelitian menunjukkan bahwa dengan bantuan simulator automotive air conditioner dan model pembelajaran yang tepat mahasiswa mampu menyerap konsep dan praktek lebih cepat 85%. Hasil belajar pada ranah afektif, kognitif, psikomotor dan kompetensi meningkat secara signifikan.

  15. Tungsten and carbon surface change under high dose plasma exposure

    International Nuclear Information System (INIS)

    Martynenko, Y.V.; Khripunov, B.I.; Petrov, V.B.

    2009-01-01

    Study of surface composition dynamics has been made on the LENTA linear plasma simulator. Experiments have been made on tungsten and carbon materials subjected to steady-state plasma exposure. The achieved ion doses on the surface were 10 21 ion cm -2 . WL 10 tungsten containing 1% of La2O3 oxide and titanium-doped graphite RG-T were studied. The following experimental conditions were varied in these experiments: energy of ions, surface temperature, working gas. Irradiations of tungsten WL 10 were executed in deuterium plasma at low ion energies (about 20 eV) and at 200 eV for temperatures below 340 K. Graphite RG-T was exposed at 1300 K. Elevated surface temperature (about 1050K) was also characteristic of experiments on tungsten sample under nitrogen plasma impact (simulated inter-ELMs condition). Surface microstructure modification has been observed and surface composition changes were found on the materials showing influence of high dose plasma irradiations on element redistribution in the near surface layers. (author)

  16. Development of GEM detector for plasma diagnostics application: simulations addressing optimization of its performance

    Science.gov (United States)

    Chernyshova, M.; Malinowski, K.; Kowalska-Strzęciwilk, E.; Czarski, T.; Linczuk, P.; Wojeński, A.; Krawczyk, R. D.

    2017-12-01

    The advanced Soft X-ray (SXR) diagnostics setup devoted to studies of the SXR plasma emissivity is at the moment a highly relevant and important for ITER/DEMO application. Especially focusing on the energy range of tungsten emission lines, as plasma contamination by W and its transport in the plasma must be understood and monitored for W plasma-facing material. The Gas Electron Multiplier, with a spatial and energy-resolved photon detecting chamber, based SXR radiation detection system under development by our group may become such a diagnostic setup considering and solving many physical, technical and technological aspects. This work presents the results of simulations aimed to optimize a design of the detector's internal chamber and its performance. The study of the effect of electrodes alignment allowed choosing the gap distances which maximizes electron transmission and choosing the optimal magnitudes of the applied electric fields. Finally, the optimal readout structure design was identified suitable to collect a total formed charge effectively, basing on the range of the simulated electron cloud at the readout plane which was in the order of ~ 2 mm.

  17. Simulation of particle nucleation and growth in transferred arc thermal plasma system

    International Nuclear Information System (INIS)

    Tak, A.K.; Das, A.K.

    2014-01-01

    A two dimensional model has been applied to analyze the arc-anode interaction and fluid flow in a transferred arc based system used for producing metal and ceramic nano-powder. Computational domain consists of an aluminium anode and a transferred arc plasma torch located in water cooled cylindrical chamber. Various user defined subroutines have been developed and interfaced to commercial CFD code to model the plasma flow in the torch and its interaction with anode. Computations were done for various arc currents and flow rates of plasma forming gas. Exchange of heat and current between plasma and anode is computed. Effect of electromagnetic forces on the fluid flow is analyzed. Spatial distribution of variables such as temperature, velocity, current density, Lorentz forces has also been computed. Simulations show a strong flow recirculation and resulting arc contraction near the anode surface. We have discussed how the change in fluid flow under electromagnetic forces will affect the rate of metal evaporation and flow of vapors in the plasma gas

  18. Database structure for plasma modeling programs

    International Nuclear Information System (INIS)

    Dufresne, M.; Silvester, P.P.

    1993-01-01

    Continuum plasma models often use a finite element (FE) formulation. Another approach is simulation models based on particle-in-cell (PIC) formulation. The model equations generally include four nonlinear differential equations specifying the plasma parameters. In simulation a large number of equations must be integrated iteratively to determine the plasma evolution from an initial state. The complexity of the resulting programs is a combination of the physics involved and the numerical method used. The data structure requirements of plasma programs are stated by defining suitable abstract data types. These abstractions are then reduced to data structures and a group of associated algorithms. These are implemented in an object oriented language (C++) as object classes. Base classes encapsulate data management into a group of common functions such as input-output management, instance variable updating and selection of objects by Boolean operations on their instance variables. Operations are thereby isolated from specific element types and uniformity of treatment is guaranteed. Creation of the data structures and associated functions for a particular plasma model is reduced merely to defining the finite element matrices for each equation, or the equations of motion for PIC models. Changes in numerical method or equation alterations are readily accommodated through the mechanism of inheritance, without modification of the data management software. The central data type is an n-relation implemented as a tuple of variable internal structure. Any finite element program may be described in terms of five relational tables: nodes, boundary conditions, sources, material/particle descriptions, and elements. Equivalently, plasma simulation programs may be described using four relational tables: cells, boundary conditions, sources, and particle descriptions

  19. 3D nonlinear magnetohydrodynamic simulations of macroscopic internal instabilities in tokamak plasmas

    International Nuclear Information System (INIS)

    Krebs, Isabel

    2017-01-01

    The Hybrid tokamak scenario provides favorable confinement and stability properties and is a candidate for an ITER Advanced tokamak scenario. It is characterized by low magnetic shear and a value of the safety factor (q) close to unity in the plasma core resulting in the absence of sawteeth. As transport calculations for some Hybrid discharges predict that the applied heat and current sources drive the value of q on axis below unity, there seems to be an unexplained mechanism which leads to a redistribution of the toroidal current density such that q∼1 is maintained in the center of the discharge. This mechanism is referred to as magnetic flux pumping. Besides the advantageous effect of preventing sawtoothing which also prevents the seeding of neoclassical tearing modes by sawteeth, magnetic flux pumping as well facilitates the drive of plasma current through external current sources. As the current density is automatically redistributed, current sources can be applied in the plasma center, where they are most efficient. The aim of this work is to contribute to the understanding of magnetic flux pumping in Hybrid discharges. A flux pumping mechanism is found in 3D non-linear MHD simulations leading to stationary states with a helically perturbed core and a at central safety factor profile with values close to unity. It is proposed earlier that the main effect responsible for this flux pumping mechanism is that the magnetic field and velocity perturbations resulting from a saturated quasi-interchange instability combine to generate an effective negative loop voltage via a dynamo effect. In this thesis, a large set of long-term 3D nonlinear single-fluid MHD simulations in toroidal geometry are presented which have been performed by means of the high-order finite element code M3D-C. The simulations result in asymptotic states that either exhibit sawtooth-like reconnection cycles, or correspond to sawtooth-free stationary states where the central safety factor is

  20. 3D nonlinear magnetohydrodynamic simulations of macroscopic internal instabilities in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, Isabel

    2017-08-08

    The Hybrid tokamak scenario provides favorable confinement and stability properties and is a candidate for an ITER Advanced tokamak scenario. It is characterized by low magnetic shear and a value of the safety factor (q) close to unity in the plasma core resulting in the absence of sawteeth. As transport calculations for some Hybrid discharges predict that the applied heat and current sources drive the value of q on axis below unity, there seems to be an unexplained mechanism which leads to a redistribution of the toroidal current density such that q∼1 is maintained in the center of the discharge. This mechanism is referred to as magnetic flux pumping. Besides the advantageous effect of preventing sawtoothing which also prevents the seeding of neoclassical tearing modes by sawteeth, magnetic flux pumping as well facilitates the drive of plasma current through external current sources. As the current density is automatically redistributed, current sources can be applied in the plasma center, where they are most efficient. The aim of this work is to contribute to the understanding of magnetic flux pumping in Hybrid discharges. A flux pumping mechanism is found in 3D non-linear MHD simulations leading to stationary states with a helically perturbed core and a at central safety factor profile with values close to unity. It is proposed earlier that the main effect responsible for this flux pumping mechanism is that the magnetic field and velocity perturbations resulting from a saturated quasi-interchange instability combine to generate an effective negative loop voltage via a dynamo effect. In this thesis, a large set of long-term 3D nonlinear single-fluid MHD simulations in toroidal geometry are presented which have been performed by means of the high-order finite element code M3D-C. The simulations result in asymptotic states that either exhibit sawtooth-like reconnection cycles, or correspond to sawtooth-free stationary states where the central safety factor is

  1. Laser plasma simulations of the generation processes of Alfven and collisionless shock waves in space plasma

    International Nuclear Information System (INIS)

    Prokopov, P A; Zakharov, Yu P; Tishchenko, V N; Shaikhislamov, I F; Boyarintsev, E L; Melekhov, A V; Ponomarenko, A G; Posukh, V G; Terekhin, V A

    2016-01-01

    Generation of Alfven waves propagating along external magnetic field B 0 and Collisionless Shock Waves propagating across B 0 are studied in experiments with laser- produced plasma and magnetized background plasma. The collisionless interaction of interpenetrating plasma flows takes place through a so-called Magnetic Laminar Mechanism (MLM) or Larmor Coupling. At the edge of diamagnetic cavity LP-ions produce induction electric field E φ which accelerates BP-ions while LP-ions rotate in opposite direction. The ions movement generates sheared azimuthal magnetic field B φ which could launches torsional Alfven wave. In previous experiments at KI-1 large scale facility a generation of strong perturbations propagating across B 0 with magnetosonic speed has been studied at a moderate value of interaction parameter δ∼0.3. In the present work we report on experiments at conditions of 5∼R2 and large Alfven-Mach number M A ∼10 in which strong transverse perturbations traveling at a scale of ∼1 m in background plasma at a density of ∼3*10 13 cm -3 is observed. At the same conditions but smaller M A ∼ 2 a generation, the structure and dynamic of Alfven wave with wavelength ∼0.5 m propagating along fields B 0 ∼100÷500 G for a distance of ∼2.5 m is studied. (paper)

  2. Relativistic initial conditions for N-body simulations

    Energy Technology Data Exchange (ETDEWEB)

    Fidler, Christian [Catholic University of Louvain—Center for Cosmology, Particle Physics and Phenomenology (CP3) 2, Chemin du Cyclotron, B-1348 Louvain-la-Neuve (Belgium); Tram, Thomas; Crittenden, Robert; Koyama, Kazuya; Wands, David [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom); Rampf, Cornelius, E-mail: christian.fidler@uclouvain.be, E-mail: thomas.tram@port.ac.uk, E-mail: rampf@thphys.uni-heidelberg.de, E-mail: robert.crittenden@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk, E-mail: david.wands@port.ac.uk [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, D–69120 Heidelberg (Germany)

    2017-06-01

    Initial conditions for (Newtonian) cosmological N-body simulations are usually set by re-scaling the present-day power spectrum obtained from linear (relativistic) Boltzmann codes to the desired initial redshift of the simulation. This back-scaling method can account for the effect of inhomogeneous residual thermal radiation at early times, which is absent in the Newtonian simulations. We analyse this procedure from a fully relativistic perspective, employing the recently-proposed Newtonian motion gauge framework. We find that N-body simulations for ΛCDM cosmology starting from back-scaled initial conditions can be self-consistently embedded in a relativistic space-time with first-order metric potentials calculated using a linear Boltzmann code. This space-time coincides with a simple ''N-body gauge'' for z < 50 for all observable modes. Care must be taken, however, when simulating non-standard cosmologies. As an example, we analyse the back-scaling method in a cosmology with decaying dark matter, and show that metric perturbations become large at early times in the back-scaling approach, indicating a breakdown of the perturbative description. We suggest a suitable ''forwards approach' for such cases.

  3. Simulation on change of generic satellite radar cross section via artificially created plasma sprays

    International Nuclear Information System (INIS)

    Chung, Shen Shou Max; Chuang, Yu-Chou

    2016-01-01

    Recent advancements in antisatellite missile technologies have proven the effectiveness of such attacks, and the vulnerability of satellites in such exercises inspires a new paradigm in RF Stealth techniques suitable for satellites. In this paper we examine the possibility of using artificially created plasma sprays on the surface of the satellite’s main body to alter its radar cross section (RCS). First, we briefly review past research related to RF Stealth using plasma. Next, we discuss the physics between electromagnetic waves and plasma, and the RCS number game in RF Stealth design. A comparison of RCS in a generic satellite and a more complicated model is made to illustrate the effect of the RCS number game, and its meaning for a simulation model. We also run a comparison between finite-difference-time-domain (FDTD) and multilevel fast multipole method (MLFMM) codes, and find the RCS results are very close. We then compare the RCS of the generic satellite and the plasma-covered satellite. The incident radar wave is a differentiated Gaussian monopulse, with 3 dB bandwidth between 1.2 GHz and 4 GHz, and we simulate three kinds of plasma density, with a characteristic plasma frequency ω P   =  0.1, 1, and 10 GHz. The electron-neutral collision frequency ν en is set at 0.01 GHz. We found the RCS of plasma-covered satellite is not necessarily smaller than the originally satellite. When ω P is 0.1 GHz, the plasma spray behaves like a dielectric, and there is minor reduction in the RCS. When ω P is 1 GHz, the X–Y cut RCS increases. When ω P is 10 GHz, the plasma behaves more like a metal to the radar wave, and stronger RCS dependency to frequency appears. Therefore, to use plasma as an RCS adjustment tool requires careful fine-tuning of plasma density and shape, in order to achieve the so-called plasma stealth effect. (paper)

  4. 2D simulations of hohlraum targets for laser-plasma experiments and ion stopping measurement in hot plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Basko, M.M. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany). ExtreMe Matter Institute EMMI; Maruhn, J.; Tauschwitz, Anna [Frankfurt Univ. (Germany); Novikov, V.G.; Grushin, A.S. [Keldysh Institute of Applied Mathematics, Moscow (Russian Federation)

    2011-12-15

    An attractive way to create uniform plasma states at high temperatures and densities is by using hohlraums - cavities with heavy-metal walls that are either directly or indirectly heated by intense laser pulses to x-ray temperatures of tens and hundreds electron volts. A sample material, whose plasma state is to be studied, can be placed inside such a hohlraum (usually in the form of a low-density foam) and uniformly heated to a high temperature. In this case a high-Z hohlraum enclosure serves a double purpose: it prevents the hot plasma from rapid disassembly due to hydrodynamic expansion and, at the same time, suppresses its rapid radiative cooling by providing high diffusive resistivity for X-rays. Of course, both the inertial and the thermal confinement of high-temperature plasmas can be achieved only for a limited period of time - on the order of nanoseconds for millimeter-scale hohlraums. Some time ago such hohlraum targets were proposed for measurements of the stopping power of hot dense plasmas for fast ions at GSI (Darmstadt). Theoretical modeling of hohlraum targets has always been a challenging task for computational physics because it should combine multidimensional hydrodynamic simulations with the solution of the spectral transfer equation for thermal radiation. In this work we report on our latest progress in this direction, namely, we present the results of 2D (two-dimensional) simulations with a newly developed radiation-hydrodynamics code RALEF-2D of two types of the hohlraum targets proposed for experiments on the PHELIX laser at GSI. The first configuration is a simple spherical hohlraum with gold walls and empty interior, which has two holes - one for laser beam entrance, and the other for diagnostics. The hohlraums of this type have already been used in several experimental sessions with the NHELIX and PHELIX lasers at GSI. The second type is a two-chamber cylindrical hohlraum with a characteristic {omega}-shaped cross-section of the enclosure

  5. SOLPS-ITER Study of neutral leakage and drift effects on the alcator C-Mod divertor plasma

    Directory of Open Access Journals (Sweden)

    W. Dekeyser

    2017-08-01

    Full Text Available As part of an effort to validate the edge plasma model in the SOLPS-ITER code suite under ITER-relevant divertor plasma and neutral conditions, we report on progress in the modeling of the Alcator C-Mod divertor plasma with the new code. We perform simulations with a complete drifts model and kinetic neutrals, including effects of neutral viscosity, ion-molecule collisions and Lyα-opaque conditions, but assuming a pure deuterium plasma. Through a series of simulations with varying divertor geometries, we show the importance of including neutal leakage paths through the divertor substructure on the divertor plasma solution. Moreover, the impact of drifts on inner-outer target asymmetries is assessed. Including both effects, we achieve excellent agreement between simulations and upstream and outer target Langmuir Probe data. In absence of strong volumetric losses due to e.g. impurity radiation in our simulations, the strong inner target detachment observed experimentally remains elusive in our modeling at present.

  6. 3D numerical simulations of negative hydrogen ion extraction using realistic plasma parameters, geometry of the extraction aperture and full 3D magnetic field map

    Science.gov (United States)

    Mochalskyy, S.; Wünderlich, D.; Ruf, B.; Franzen, P.; Fantz, U.; Minea, T.

    2014-02-01

    Decreasing the co-extracted electron current while simultaneously keeping negative ion (NI) current sufficiently high is a crucial issue on the development plasma source system for ITER Neutral Beam Injector. To support finding the best extraction conditions the 3D Particle-in-Cell Monte Carlo Collision electrostatic code ONIX (Orsay Negative Ion eXtraction) has been developed. Close collaboration with experiments and other numerical models allows performing realistic simulations with relevant input parameters: plasma properties, geometry of the extraction aperture, full 3D magnetic field map, etc. For the first time ONIX has been benchmarked with commercial positive ions tracing code KOBRA3D. A very good agreement in terms of the meniscus position and depth has been found. Simulation of NI extraction with different e/NI ratio in bulk plasma shows high relevance of the direct negative ion extraction from the surface produced NI in order to obtain extracted NI current as in the experimental results from BATMAN testbed.

  7. Breakdown of the Frozen-in Condition and Plasma Acceleration: Dynamical Theory

    Science.gov (United States)

    Song, Y.; Lysak, R. L.

    2007-12-01

    The magnetic reconnection hypothesis emphasizes the importance of the breakdown of the frozen-in condition, explains the strong dependence of the geomagnetic activity on the IMF, and approximates an average qualitative description for many IMF controlled effects in magnetospheric physics. However, some important theoretical aspects of reconnection, including its definition, have not been carefully examined. The crucial components of such models, such as the largely-accepted X-line reconnection picture and the broadly-used explanations of the breakdown of the frozen-in condition, lack complete theoretical support. The important irreversible reactive interaction is intrinsically excluded and overlooked in most reconnection models. The generation of parallel electric fields must be the result of a reactive plasma interaction, which is associated with the temporal changes and spatial gradients of magnetic and velocity shears (Song and Lysak, 2006). Unlike previous descriptions of the magnetic reconnection process, which depend on dissipative-type coefficients or some passive terms in the generalized Ohm's law, the reactive interaction is a dynamical process, which favors localized high magnetic and/or mechanical stresses and a low plasma density. The reactive interaction is often closely associated with the radiation of shear Alfvén waves and is independent of any assumed dissipation coefficients. The generated parallel electric field makes an irreversible conversion between magnetic energy and the kinetic energy of the accelerated plasma and the bulk flow. We demonstrate how the reactive interaction, e.g., the nonlinear interaction of MHD mesoscale wave packets at current sheets and in the auroral acceleration region, can create and support parallel electric fields, causing the breakdown of the frozen-in condition and plasma acceleration.

  8. Erosion products of ITER divertor materials under plasma disruption simulation

    Energy Technology Data Exchange (ETDEWEB)

    Guseva, M.I.; Gureev, V.M.; Kolbasov, B.N.; Korshunov, S.N.; Martynenko, Yu.V. E-mail: martyn@nfi.kiae.ru; Stolyarova, V.G.; Strunnikov, V.M.; Vasiliev, V.I

    2003-09-01

    Candidate ITER divertor armor materials: carbon-fiber-composite and four tungsten grades/alloys as well as mixed re-deposited W+Be and W+C layers were exposed in electrodynamic plasma accelerator MKT which provided a pulsed deuterium plasma flux simulating plasma disruptions with maximum ion energy of 1-2 keV, an energy density of 300 kJ/m{sup 2} per shot and a pulse duration of {approx}60 {mu}s. The number of pulses was from 2 to 10. The resultant erosion products were collected on a basalt filter and Si-collectors and studied in terms of morphology and size distribution using both scanning and transmission electron microscopy. Metal erosion products usually occurred in the form of spherical droplets, sometimes flakes. Their size distribution depended on the positioning of the collector. Simultaneously irradiated W, CFC and mixed W+Be targets appeared to have undergone a greater erosion than the same targets irradiated individually. Particles sized from 0.01 to 30 {mu}m were found on collectors and on a molten W-surface. A model of droplet emission and behavior in shielding plasma is provided.

  9. Monte Carlo simulations of ionization potential depression in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Stransky, M., E-mail: stransky@fzu.cz [Department of Radiation and Chemical Physics, Institute of Physics ASCR, Na Slovance 2, 182 21 Prague 8 (Czech Republic)

    2016-01-15

    A particle-particle grand canonical Monte Carlo model with Coulomb pair potential interaction was used to simulate modification of ionization potentials by electrostatic microfields. The Barnes-Hut tree algorithm [J. Barnes and P. Hut, Nature 324, 446 (1986)] was used to speed up calculations of electric potential. Atomic levels were approximated to be independent of the microfields as was assumed in the original paper by Ecker and Kröll [Phys. Fluids 6, 62 (1963)]; however, the available levels were limited by the corresponding mean inter-particle distance. The code was tested on hydrogen and dense aluminum plasmas. The amount of depression was up to 50% higher in the Debye-Hückel regime for hydrogen plasmas, in the high density limit, reasonable agreement was found with the Ecker-Kröll model for hydrogen plasmas and with the Stewart-Pyatt model [J. Stewart and K. Pyatt, Jr., Astrophys. J. 144, 1203 (1966)] for aluminum plasmas. Our 3D code is an improvement over the spherically symmetric simplifications of the Ecker-Kröll and Stewart-Pyatt models and is also not limited to high atomic numbers as is the underlying Thomas-Fermi model used in the Stewart-Pyatt model.

  10. Monte Carlo simulations of ionization potential depression in dense plasmas

    International Nuclear Information System (INIS)

    Stransky, M.

    2016-01-01

    A particle-particle grand canonical Monte Carlo model with Coulomb pair potential interaction was used to simulate modification of ionization potentials by electrostatic microfields. The Barnes-Hut tree algorithm [J. Barnes and P. Hut, Nature 324, 446 (1986)] was used to speed up calculations of electric potential. Atomic levels were approximated to be independent of the microfields as was assumed in the original paper by Ecker and Kröll [Phys. Fluids 6, 62 (1963)]; however, the available levels were limited by the corresponding mean inter-particle distance. The code was tested on hydrogen and dense aluminum plasmas. The amount of depression was up to 50% higher in the Debye-Hückel regime for hydrogen plasmas, in the high density limit, reasonable agreement was found with the Ecker-Kröll model for hydrogen plasmas and with the Stewart-Pyatt model [J. Stewart and K. Pyatt, Jr., Astrophys. J. 144, 1203 (1966)] for aluminum plasmas. Our 3D code is an improvement over the spherically symmetric simplifications of the Ecker-Kröll and Stewart-Pyatt models and is also not limited to high atomic numbers as is the underlying Thomas-Fermi model used in the Stewart-Pyatt model

  11. Computer simulation of kinetic properties of plasmas. Final report

    International Nuclear Information System (INIS)

    Denavit, J.

    1982-08-01

    The research was directed toward the development and testing of new numerical methods for particle and hybrid simulation of plasmas, and their application to physical problems of current significance to Magnetic Fusion Energy. This project will terminate on August 31, 1982 and this Final Report describes: (1) the research accomplished since the last renewal on October 1, 1981; and (2) a perspective of the work done since the beginning of the project in February 1972

  12. Atomic scale Monte Carlo simulations of BF3 plasma immersion ion implantation in Si

    International Nuclear Information System (INIS)

    La Magna, Antonino; Fisicaro, Giuseppe; Nicotra, Giuseppe; Spiegel, Yohann; Torregrosa, Frank

    2014-01-01

    We present a numerical model aimed to accurately simulate the plasma immersion ion implantation (PIII) process in micro and nano-patterned Si samples. The code, based on the Monte Carlo approach, is designed to reproduce all the relevant physical phenomena involved in the process. The particle based simulation technique is fundamental to efficiently compute the material modifications promoted by the plasma implantation at the atomic resolution. The accuracy in the description of the process kinetic is achieved linking (one to one) each virtual Monte Carlo event to each possible atomic phenomenon (e.g. ion penetration, neutral absorption, ion induced surface modification, etc.). The code is designed to be coupled with a generic plasma status, characterized by the particle types (ions and neutrals), their flow rates and their energy/angle distributions. The coupling with a Poisson solver allows the simulation of the correct trajectories of charged particles in the void regions of the micro-structures. The implemented model is able to predict the implantation 2D profiles and significantly support the process design. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Peculiarity of deuterium ions interaction with tungsten surface in the condition imitating combination of normal operation with plasma disruption in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Guseva, M.I. E-mail: martyn@nfi.kiae.ru; Vasiliev, V.I.; Gureev, V.M.; Danelyan, L.S.; Khirpunov, B.I.; Korshunov, S.N.; Kulikauskas, V.S.; Martynenko, Yu.V.; Petrov, V.B.; Strunnikov, V.N.; Stolyarova, V.G.; Zatekin, V.V.; Litnovsky, A.M

    2001-03-01

    Tungsten is a candidate material for the ITER divertor. For the simulation of ITER normal operation conditions in combination with plasma disruptions samples of various types of tungsten were exposed to both steady-state and high power pulsed deuterium plasmas. Tungsten samples were first exposed in a steady-state plasma with an ion current density {approx}10{sup 21} m{sup -2} s{sup -1} up to a dose of 10{sup 25} m{sup -2} at a temperature of 770 K. The energy of deuterium ions was 150 eV. The additional exposure of the samples to 10 pulses of deuterium plasma was performed in the electrodynamical plasma accelerator with an energy flux 0.45 MJ/m{sup 2} per pulse. Samples of four types of tungsten (W-1%La{sub 2}O{sub 3}, W-13I, monocrystalline W(1 1 1) and W-10%Re) were investigated. The least destruction of the surface was observed for W(1 1 1). The concentration of retained deuterium in tungsten decreased from 2.5x10{sup 19} m{sup -2} to 1.07x10{sup 19} m{sup -2} (for W(1 1 1)) as a result of the additional pulsed plasma irradiation. Investigation of the tungsten erosion products after the high power pulsed plasma shots was also carried out.

  14. Computer simulation of plasma behavior in open-ended linear theta machines. Scientific report 81-5

    International Nuclear Information System (INIS)

    Stover, E.K.

    1981-04-01

    Zero-dimensional and one-dimensional fluid plasma computer models have been developed to study the behavior of linear theta pinch plasmas. Computer simulation results generated from these codes are compared with data obtained from two theta pinch experiments so that significant machine plasma behavior can be identified. The experiments examined are a collisional experiment, T/sub i/ approx. 50 eV, n/sub e/ approx. 10 17 cm -3 , where the plasma mean-free-path was significantly less than the plasma column length, and a hot ion species experiment, T/sub i/ approx. 3 keV, n/sub e/ approx. 10 16 cm -3 , where the ion mean-free-path was on the order of the plasma column length

  15. A non-equilibrium simulation of thermal constriction in a cascaded arc hydrogen plasma

    International Nuclear Information System (INIS)

    Peerenboom, K S C; Goedheer, W J; Van Dijk, J; Kroesen, G M W

    2014-01-01

    The cascaded arc hydrogen plasma of Pilot-PSI is studied in a non-LTE model. We demonstrate that the effect of vibrationally excited molecules on the heavy-particle-assisted dissociation is crucial for obtaining thermal constriction. To the best of our knowledge, thermal constriction has not been obtained before in a non-LTE simulation. Probably, realistic numerical studies of this type of plasma were hindered by numerical problems, preventing the non-LTE simulations to show characteristic physical mechanisms such as thermal constriction. In this paper we show that with the help of appropriate numerical strategies thermal constriction can be obtained in a non-LTE simulation. To this end, a new source term linearization technique is developed, which ensures physical solutions even near chemical equilibrium where the composition is dominated by chemical source terms. Results of the model are compared with experiments on Pilot-PSI and show good agreement with pressure and voltage measurements in the source. (paper)

  16. Simulating plasma instabilities in SU(3) gauge theory

    International Nuclear Information System (INIS)

    Berges, Juergen; Gelfand, Daniil; Scheffler, Sebastian; Sexty, Denes

    2009-01-01

    We compute nonequilibrium dynamics of plasma instabilities in classical-statistical lattice gauge theory in 3+1 dimensions. The simulations are done for the first time for the SU(3) gauge group relevant for quantum chromodynamics. We find a qualitatively similar behavior as compared to earlier investigations in SU(2) gauge theory. The characteristic growth rates are about 25% lower for given energy density, such that the isotropization process is slower. Measured in units of the characteristic screening mass, the primary growth rate is independent of the number of colors.

  17. Value for money in particle-mesh plasma simulations

    International Nuclear Information System (INIS)

    Eastwood, J.W.

    1976-01-01

    The established particle-mesh method of simulating a collisionless plasma is discussed. Problems are outlined, and it is stated that given constraints on mesh size and particle number, the only way to adjust the compromise between dispersive forces, collision time and heating time is by altering the force calculating cycle. In 'value for money', schemes, matching of parts of the force calculation cycle is optimized. Interparticle forces are considered. Optimized combinations of elements of the force calculation cycle are compared. Following sections cover the dispersion relation, and comparisons with other schemes. (U.K.)

  18. Plasma simulation studies using multilevel physics models

    International Nuclear Information System (INIS)

    Park, W.; Belova, E.V.; Fu, G.Y.; Tang, X.Z.; Strauss, H.R.; Sugiyama, L.E.

    1999-01-01

    The question of how to proceed toward ever more realistic plasma simulation studies using ever increasing computing power is addressed. The answer presented here is the M3D (Multilevel 3D) project, which has developed a code package with a hierarchy of physics levels that resolve increasingly complete subsets of phase-spaces and are thus increasingly more realistic. The rationale for the multilevel physics models is given. Each physics level is described and examples of its application are given. The existing physics levels are fluid models (3D configuration space), namely magnetohydrodynamic (MHD) and two-fluids; and hybrid models, namely gyrokinetic-energetic-particle/MHD (5D energetic particle phase-space), gyrokinetic-particle-ion/fluid-electron (5D ion phase-space), and full-kinetic-particle-ion/fluid-electron level (6D ion phase-space). Resolving electron phase-space (5D or 6D) remains a future project. Phase-space-fluid models are not used in favor of δf particle models. A practical and accurate nonlinear fluid closure for noncollisional plasmas seems not likely in the near future. copyright 1999 American Institute of Physics

  19. A one-dimensional transport code for the simulation of D-T burning tokamak plasma

    International Nuclear Information System (INIS)

    Tone, Tatsuzo; Maki, Koichi; Kasai, Masao; Nishida, Hidetsugu

    1980-11-01

    A one-dimensional transport code for D-T burning tokamak plasma has been developed, which simulates the spatial behavior of fuel ions(D, T), alpha particles, impurities, temperatures of ions and electrons, plasma current, neutrals, heating of alpha and injected beam particles. The basic transport equations are represented by one generalized equation so that the improvement of models and the addition of new equations may be easily made. A model of burn control using a variable toroidal field ripple is employed. This report describes in detail the simulation model, numerical method and the usage of the code. Some typical examples to which the code has been applied are presented. (author)

  20. Experimental demonstration of Martian soil simulant removal from a surface using a pulsed plasma jet

    Science.gov (United States)

    Ticoş, C. M.; Scurtu, A.; Toader, D.; Banu, N.

    2015-03-01

    A plasma jet produced in a small coaxial plasma gun operated at voltages up to 2 kV and working in pure carbon dioxide (CO2) at a few Torr is used to remove Martian soil simulant from a surface. A capacitor with 0.5 mF is charged up from a high voltage source and supplies the power to the coaxial electrodes. The muzzle of the coaxial plasma gun is placed at a few millimeters near the dusty surface and the jet is fired parallel with the surface. Removal of dust is imaged in real time with a high speed camera. Mars regolith simulant JSC-Mars-1A with particle sizes up to 5 mm is used on different types of surfaces made of aluminium, cotton fabric, polyethylene, cardboard, and phenolic.

  1. Experimental demonstration of Martian soil simulant removal from a surface using a pulsed plasma jet.

    Science.gov (United States)

    Ticoş, C M; Scurtu, A; Toader, D; Banu, N

    2015-03-01

    A plasma jet produced in a small coaxial plasma gun operated at voltages up to 2 kV and working in pure carbon dioxide (CO2) at a few Torr is used to remove Martian soil simulant from a surface. A capacitor with 0.5 mF is charged up from a high voltage source and supplies the power to the coaxial electrodes. The muzzle of the coaxial plasma gun is placed at a few millimeters near the dusty surface and the jet is fired parallel with the surface. Removal of dust is imaged in real time with a high speed camera. Mars regolith simulant JSC-Mars-1A with particle sizes up to 5 mm is used on different types of surfaces made of aluminium, cotton fabric, polyethylene, cardboard, and phenolic.

  2. Revisiting linear plasma waves for finite value of the plasma parameter

    Science.gov (United States)

    Grismayer, Thomas; Fahlen, Jay; Decyk, Viktor; Mori, Warren

    2010-11-01

    We investigate through theory and PIC simulations the Landau-damping of plasma waves with finite plasma parameter. We concentrate on the linear regime, γφB, where the waves are typically small and below the thermal noise. We simulate these condition using 1,2,3D electrostatic PIC codes (BEPS), noting that modern computers now allow us to simulate cases where (nλD^3 = [1e2;1e6]). We study these waves by using a subtraction technique in which two simulations are carried out. In the first, a small wave is initialized or driven, in the second no wave is excited. The results are subtracted to provide a clean signal that can be studied. As nλD^3 is decreased, the number of resonant electrons can be small for linear waves. We show how the damping changes as a result of having few resonant particles. We also find that for small nλD^3 fluctuations can cause the electrons to undergo collisions that eventually destroy the initial wave. A quantity of interest is the the life time of a particular mode which depends on the plasma parameter and the wave number. The life time is estimated and then compared with the numerical results. A surprising result is that even for large values of nλD^3 some non-Vlasov discreteness effects appear to be important.

  3. Force field inside the void in complex plasmas under microgravity conditions

    International Nuclear Information System (INIS)

    Kretschmer, M.; Khrapak, S.A.; Zhdanov, S.K.; Thomas, H.M.; Morfill, G.E.; Fortov, V.E.; Lipaev, A.M.; Molotkov, V.I.; Ivanov, A.I.; Turin, M.V.

    2005-01-01

    Observations of complex plasmas under microgravity conditions onboard the International Space Station performed with the Plasma-Kristall experiment-Nefedov facility are reported. A weak instability of the boundary between the central void (region free of microparticles) and the microparticle cloud is observed at low gas pressures. The instability leads to periodic injections of a relatively small number of particles into the void region (by analogy this effect is called the 'trampoline effect'). The trajectories of injected particles are analyzed providing information on the force field inside the void. The experimental results are compared with theory which assumes that the most important forces inside the void are the electric and the ion drag forces. Good agreement is found clearly indicating that under conditions investigated the void formation is caused by the ion drag force

  4. Numerical simulation of meteorological conditions for peak pollution in Paris

    Energy Technology Data Exchange (ETDEWEB)

    Carissimo, B. [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches

    1997-06-01

    Results obtained on the simulation of meteorological conditions during two episodes of peak pollution in Paris are presented, one in the winter, the other in the summer. The A3UR air quality modelling system is first described followed by the MERCURE mesoscale meteorological model. The conditions of simulation are described. The results obtained on these two causes show satisfactory agreement, for example on the magnitude of the urban heat island which is correctly reproduced. In this study, several areas of progress have been identified: improvement of the altitude measurement network around cities, the simulation of light wind conditions and the simulation of formation and dissipation of fog. (author) 24 refs.

  5. Simulation study of MHD relaxation and reconnection processes in RFP plasma

    International Nuclear Information System (INIS)

    Kusano, Kanya; Kunimoto, Kaito; Suzuki, Yoshio; Tamano, Teruo; Sato, Tetsuya

    1991-01-01

    The authors have studied several nonlinear processes in RFP plasma through the use of 3D MHD simulations. In particular, they have shed light on: (1) dynamo and self-sustainment in reversed-field pinch (RFP), (2) phase locking process in MHD relaxation, and (3) the heating and acceleration in magnetic reconnection process. First, the contributions of the kink (m = 1) mode (linearly unstable) and of the m = 0 mode (driven by nonlinear coupling) to the dynamo are qualitatively evaluated using a high accuracy simulation. It is found that, if the free energy to drive kink instabilities is as small as that in the actual experimental plasma, the m = 0 modes, driven nonlinearly, play a more important role for the flux generation than the kink modes. Secondly, numerical simulations of the self-sustainment process in a RFP are performed. It is confirmed that the self-sustainment process is a coherent oscillating process composed of the MHD relaxation and the resistive diffusion processes. Toroidal phase locking process of kink modes is numerically observed in simulations of self-reversal and self-sustainment processes. It has characteristics similar to the slinky mode observed in the OHTE experiment. A detailed investigation reveals that nonlinear coupling between the most unstable two kink modes governs the entire dynamics in all kink modes and leads to the phase locking process. They find that reconnection can accelerate plasma over a local Alfven speed. This is a result of the fact that the magnetic field in the downstream area plays a similar role to de Laval nozzle. They also investigate the heating mechanisms in reconnection process. It is revealed that the viscous heating rate is as large as the joule heating rate in the reconnection process. This result implies that the viscous heating in the reconnection process is an important candidate for the mechanism to explain the RFP experiments where the ion temperatures is higher than the electron temperature

  6. Numerical simulation of heat transfer and fluid flow in a DC plasma-arc device for waste thermal treatment

    International Nuclear Information System (INIS)

    Deng, Jing; Li, Yaojian; Xu, Yongxiang; Sheng, Hongzhi

    2010-01-01

    In this work, Magnetic Fluid dynamics (MHD) model is used to stimulate the electromagnetic field, heat transfer and fluid flow in a DC non-transferred arc plasma torch. Through the coupled iterative computation about the electromagnetic equations described by magnetic vector potential format and the modified fluid dynamics equations, the electric potential, temperature and velocity distributions in the torch are obtained. The fluid-solid coupled computation method is applied to treat the electric current and heat transfer at the interface between the electrodes and fluid. The location of arc root attachment at the inside surface of anode and the arc voltage of the torch that we have predicted are very consistent with the corresponding experimental results. The calculated results of the torch are applied to the numerical simulation of the plasma jets under the laminar and turbulent condition. (author)

  7. A model for plasma discharges simulation in Tokamak devices

    International Nuclear Information System (INIS)

    Fonseca, Antonio M.M.; Silva, Ruy P. da; Galvao, Ricardo M.O.; Kusnetzov, Yuri; Nascimento, I.C.; Cuevas, Nelson

    2001-01-01

    In this work, a 'zero-dimensional' model for simulation of discharges in Tokamak machine is presented. The model allows the calculation of the time profiles of important parameters of the discharge. The model was applied to the TCABR Tokamak to study the influence of parameters and physical processes during the discharges. Basically it is constituted of five differential equations: two related to the primary and secondary circuits of the ohmic heating transformer and the other three conservation equations of energy, charge and neutral particles. From the physical model, a computer program has been built with the objective of obtaining the time profiles of plasma current, the current in the primary of the ohmic heating transformer, the electronic temperature, the electronic density and the neutral particle density. It was also possible, with the model, to simulate the effects of gas puffing during the shot. The results of the simulation were compared with the experimental results obtained in the TCABR Tokamak, using hydrogen gas

  8. Fully kinetic simulations of megajoule-scale dense plasma focus

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, A.; Link, A.; Tang, V.; Halvorson, C.; May, M. [Lawrence Livermore National Laboratory, Livermore California 94550 (United States); Welch, D. [Voss Scientific, LLC, Albuquerque, New Mexico 87108 (United States); Meehan, B. T.; Hagen, E. C. [National Security Technologies, LLC, Las Vegas, Nevada 89030 (United States)

    2014-10-15

    Dense plasma focus (DPF) Z-pinch devices are sources of copious high energy electrons and ions, x-rays, and neutrons. Megajoule-scale DPFs can generate 10{sup 12} neutrons per pulse in deuterium gas through a combination of thermonuclear and beam-target fusion. However, the details of the neutron production are not fully understood and past optimization efforts of these devices have been largely empirical. Previously, we reported on the first fully kinetic simulations of a kilojoule-scale DPF and demonstrated that both kinetic ions and kinetic electrons are needed to reproduce experimentally observed features, such as charged-particle beam formation and anomalous resistivity. Here, we present the first fully kinetic simulation of a MegaJoule DPF, with predicted ion and neutron spectra, neutron anisotropy, neutron spot size, and time history of neutron production. The total yield predicted by the simulation is in agreement with measured values, validating the kinetic model in a second energy regime.

  9. Simulation of cold magnetized plasmas with the 3D electromagnetic software CST Microwave Studio®

    Directory of Open Access Journals (Sweden)

    Louche Fabrice

    2017-01-01

    Full Text Available Detailed designs of ICRF antennas were made possible by the development of sophisticated commercial 3D codes like CST Microwave Studio® (MWS. This program allows for very detailed geometries of the radiating structures, but was only considering simple materials like equivalent isotropic dielectrics to simulate the reflection and the refraction of RF waves at the vacuum/plasma interface. The code was nevertheless used intensively, notably for computing the coupling properties of the ITER ICRF antenna. Until recently it was not possible to simulate gyrotropic medias like magnetized plasmas, but recent improvements have allowed programming any material described by a general dielectric or/and diamagnetic tensor. A Visual Basic macro was developed to exploit this feature and was tested for the specific case of a monochromatic plane wave propagating longitudinally with respect to the magnetic field direction. For specific cases the exact solution can be expressed in 1D as the sum of two circularly polarized waves connected by a reflection coefficient that can be analytically computed. Solutions for stratified media can also be derived. This allows for a direct comparison with MWS results. The agreement is excellent but accurate simulations for realistic geometries require large memory resources that could significantly restrict the possibility of simulating cold plasmas to small-scale machines.

  10. Simulation of cold magnetized plasmas with the 3D electromagnetic software CST Microwave Studio®

    Science.gov (United States)

    Louche, Fabrice; Křivská, Alena; Messiaen, André; Wauters, Tom

    2017-10-01

    Detailed designs of ICRF antennas were made possible by the development of sophisticated commercial 3D codes like CST Microwave Studio® (MWS). This program allows for very detailed geometries of the radiating structures, but was only considering simple materials like equivalent isotropic dielectrics to simulate the reflection and the refraction of RF waves at the vacuum/plasma interface. The code was nevertheless used intensively, notably for computing the coupling properties of the ITER ICRF antenna. Until recently it was not possible to simulate gyrotropic medias like magnetized plasmas, but recent improvements have allowed programming any material described by a general dielectric or/and diamagnetic tensor. A Visual Basic macro was developed to exploit this feature and was tested for the specific case of a monochromatic plane wave propagating longitudinally with respect to the magnetic field direction. For specific cases the exact solution can be expressed in 1D as the sum of two circularly polarized waves connected by a reflection coefficient that can be analytically computed. Solutions for stratified media can also be derived. This allows for a direct comparison with MWS results. The agreement is excellent but accurate simulations for realistic geometries require large memory resources that could significantly restrict the possibility of simulating cold plasmas to small-scale machines.

  11. Effects of the initial conditions on cosmological $N$-body simulations

    OpenAIRE

    L'Huillier, Benjamin; Park, Changbom; Kim, Juhan

    2014-01-01

    Cosmology is entering an era of percent level precision due to current large observational surveys. This precision in observation is now demanding more accuracy from numerical methods and cosmological simulations. In this paper, we study the accuracy of $N$-body numerical simulations and their dependence on changes in the initial conditions and in the simulation algorithms. For this purpose, we use a series of cosmological $N$-body simulations with varying initial conditions. We test the infl...

  12. Effect of alpha drift and instabilities on tokamak plasma edge conditions

    International Nuclear Information System (INIS)

    Miley, G.H.; Choi, C.K.

    1983-01-01

    As suprathermal fusion products slow down in a Tokamak, their average drift is inward. The effect of this drift on the alpha heating and thermalization profiles is examined. In smaller TFTR-type devices, heating in the outer region can be cut in half. Also, the fusion-product energy-distribution near the plasma edge has a positive slope with increasing energy, representing a possible driving mechanism for micro-instabilities. Another instability that can seriously affect outer plasma conditions and shear Alfven transport of alphas is also considered

  13. The ITER Plasma Control System Simulation Platform

    International Nuclear Information System (INIS)

    Walker, M.L.; Ambrosino, G.; De Tommasi, G.; Humphreys, D.A.; Mattei, M.; Neu, G.; Rapson, C.J.; Raupp, G.; Treutterer, W.; Welander, A.S.; Winter, A.

    2015-01-01

    Highlights: • A development and test environment called PCSSP has been constructed for the ITER PCS. • A description of requirements and use cases, a final design and software architecture design, users guide, and a prototype implementation have been delivered. • The prototype implementation was demonstrated at IO in December of 2013. • PCSSP will be deployed for alpha testing to the IO, the development group, and selected other ITER partners upon completion of the next development phase. - Abstract: The Plasma Control System Simulation Platform (PCSSP) is a highly flexible, modular, time-dependent simulation environment developed primarily to support development of the ITER Plasma Control System (PCS). It has been under development since 2011 and is scheduled for first release to users in the ITER Organization (IO) and at selected additional sites in 2015. Modules presently implemented in PCSSP enable exploration of axisymmetric evolution and control, basic kinetic control, and tearing mode suppression. A basic capability for generation of control-relevant events is included, enabling study of exception handling in the PCS, continuous controllers, and PCS architecture. While the control design focus of PCSSP applications tends to require only a moderate level of accuracy and complexity in modules, more complex codes can be embedded or connected to access higher accuracy if needed. This paper describes the background and motivation for PCSSP, provides an overview of the capabilities, architecture, and features of PCSSP, and discusses details of the PCSSP vision and its intended goals and application. Completed work, including architectural design, prototype implementation, reference documents, and IO demonstration of PCSSP, is summarized and example use of PCSSP is illustrated. Near-term high-level objectives are summarized and include preparation for release of an “alpha” version of PCSSP and preparation for the next development phase. High

  14. The ITER Plasma Control System Simulation Platform

    Energy Technology Data Exchange (ETDEWEB)

    Walker, M.L., E-mail: walker@fusion.gat.com [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Ambrosino, G.; De Tommasi, G. [CREATE/Università di Napoli Federico II, Napoli (Italy); Humphreys, D.A. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Mattei, M. [CREATE/Seconda Università di Napoli, Napoli (Italy); Neu, G.; Rapson, C.J.; Raupp, G.; Treutterer, W. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Welander, A.S. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Winter, A. [ITER Organization, Route de Vinon-sur-Verdon, 13115 St. Paul-lez-Durance (France)

    2015-10-15

    Highlights: • A development and test environment called PCSSP has been constructed for the ITER PCS. • A description of requirements and use cases, a final design and software architecture design, users guide, and a prototype implementation have been delivered. • The prototype implementation was demonstrated at IO in December of 2013. • PCSSP will be deployed for alpha testing to the IO, the development group, and selected other ITER partners upon completion of the next development phase. - Abstract: The Plasma Control System Simulation Platform (PCSSP) is a highly flexible, modular, time-dependent simulation environment developed primarily to support development of the ITER Plasma Control System (PCS). It has been under development since 2011 and is scheduled for first release to users in the ITER Organization (IO) and at selected additional sites in 2015. Modules presently implemented in PCSSP enable exploration of axisymmetric evolution and control, basic kinetic control, and tearing mode suppression. A basic capability for generation of control-relevant events is included, enabling study of exception handling in the PCS, continuous controllers, and PCS architecture. While the control design focus of PCSSP applications tends to require only a moderate level of accuracy and complexity in modules, more complex codes can be embedded or connected to access higher accuracy if needed. This paper describes the background and motivation for PCSSP, provides an overview of the capabilities, architecture, and features of PCSSP, and discusses details of the PCSSP vision and its intended goals and application. Completed work, including architectural design, prototype implementation, reference documents, and IO demonstration of PCSSP, is summarized and example use of PCSSP is illustrated. Near-term high-level objectives are summarized and include preparation for release of an “alpha” version of PCSSP and preparation for the next development phase. High

  15. Gyrokinetic simulation of finite-β plasmas on parallel architectures

    International Nuclear Information System (INIS)

    Reynders, J.V.W.

    1993-01-01

    Much research exists on the linear and non-linear properties of plasma microinstabilities induced by density and temperature gradients. There has been an interest in the electromagnetic or finite-β effects on these microinstabilities. This thesis focuses on the finite-β modification of an ion temperature gradient (ITG) driven microinstability in a two-dimensional shearless and sheared-slab geometries. A gyrokinetic model is employed in the numerical and analytic studies of this instability. Chapter 1 introduces the electromagnetic gyrokinetic model employed in the numerical and analytic studies of the ITG instability. Some discussion of the Klimontovich particle representation of the gyrokinetic Vlasov equation and a multiple scale model of the background plasma gradient is presented. Chapter 2 details the computational issues facing an electromagnetic gyrokinetic particle simulation of the ITG mode. An electromagnetic extension of the partially linearized algorithm is presented with a comparison of quiet particle initialization routines. Chapter 3 presents and compares algorithms for the gyrokinetic particle simulation technique on SIMD and MIMD computing platforms. Chapter 4 discusses electromagnetic gyrokinetic fluctuation theory and provides a comparison of analytic and numerical results. Chapter 5 contains a linear and a non-linear three-wave coupling analysis of the finite-β modified ITG mode in a shearless slab geometry. Comparisons are made with linear and partially linearized gyrokinetic simulation results. Chapter 6 presents results from a finite-β modified ITG mode in a sheared slab geometry. The linear dispersion relation is derived and results from an integral eigenvalue code are presented. Comparisons are made with the gyrokinetic particle code in a variety of limits with both adiabatic and non-adiabatic electrons. Evidence of ITG driven microtearing is presented

  16. Numerical simulations of a nonequilibrium argon plasma in a shock-tube experiment

    Science.gov (United States)

    Cambier, Jean-Luc

    1991-01-01

    A code developed for the numerical modeling of nonequilibrium radiative plasmas is applied to the simulation of the propagation of strong ionizing shock waves in argon gas. The simulations attempt to reproduce a series of shock-tube experiments which will be used to validate the numerical models and procedures. The ability to perform unsteady simulations makes it possible to observe some fluctuations in the shock propagation, coupled to the kinetic processes. A coupling mechanism by pressure waves, reminiscent of oscillation mechanisms observed in detonation waves, is described. The effect of upper atomic levels is also briefly discussed.

  17. Properties of Hermean plasma belt: Numerical simulations and comparison with MESSENGER data

    Czech Academy of Sciences Publication Activity Database

    Herčík, David; Trávníček, Pavel M.; Štverák, Štěpán; Hellinger, Petr

    2016-01-01

    Roč. 121, č. 1 (2016), s. 413-431 ISSN 2169-9380 Grant - others:European Commission(XE) 284515 Institutional support: RVO:67985815 ; RVO:68378289 Keywords : Mercury * plasma belt * numerical simulations Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.733, year: 2016

  18. Computer simulation of plasma behavior in open-ended linear theta machines. Scientific report 81-5

    Energy Technology Data Exchange (ETDEWEB)

    Stover, E. K.

    1981-04-01

    Zero-dimensional and one-dimensional fluid plasma computer models have been developed to study the behavior of linear theta pinch plasmas. Computer simulation results generated from these codes are compared with data obtained from two theta pinch experiments so that significant machine plasma behavior can be identified. The experiments examined are a collisional experiment, T/sub i/ approx. 50 eV, n/sub e/ approx. 10/sup 17/ cm/sup -3/, where the plasma mean-free-path was significantly less than the plasma column length, and a hot ion species experiment, T/sub i/ approx. 3 keV, n/sub e/ approx. 10/sup 16/ cm/sup -3/, where the ion mean-free-path was on the order of the plasma column length.

  19. Fokker-Planck simulations of interactions of femtosecond laser pulses with dense plasmas

    International Nuclear Information System (INIS)

    Drska, L.; Limpouch, J.; Liska, R.

    1993-01-01

    The interaction of femtosecond laser pulses with fully ionized solid-state density plasmas in the regime of the normal skin effect was investigated by means of numerical simulation. For short wavelength lasers and 120 fs FWHM laser pulses the regime of normal skin effect is shown to hold for peak intensities up to 10 17 W/cm 2 . Basic characteristics of the interaction are revealed and certain departures of the electron distribution function, of the plasma dielectric constant and of laser absorption from simplistic models are pointed out. (author) 1 tab., 4 figs., 14 refs

  20. Tungsten dust remobilization under steady-state and transient plasma conditions

    Directory of Open Access Journals (Sweden)

    S. Ratynskaia

    2017-08-01

    Full Text Available Remobilization is one of the most prominent unresolved fusion dust-relevant issues, strongly related to the lifetime of dust in plasma-wetted regions, the survivability of dust on hot plasma-facing surfaces and the formation of dust accumulation sites. A systematic cross-machine study has been initiated to investigate the remobilization of tungsten micron-size dust from tungsten surfaces implementing a newly developed technique based on controlled pre-adhesion by gas dynamics methods. It has been utilized in a number of devices and has provided new insights on remobilization under steady-state and transient conditions. The experiments are interpreted with contact mechanics theory and heat conduction models.

  1. Simulation Study of Structure and Properties of Plasma Liners for the PLX- α Project

    Science.gov (United States)

    Samulyak, Roman; Shih, Wen; Hsu, Scott; PLX-Alpha Team

    2017-10-01

    Detailed numerical studies of the propagation and merger of high-Mach-number plasma jets and the formation and implosion of plasma liners have been performed using the FronTier code in support of the Plasma Liner Experiment-ALPHA (PLX- α) project. Physics models include radiation, physical diffusion, plasma-EOS models, and an anisotropic diffusion model that mimics deviations from fully collisional hydrodynamics in outer layers of plasma jets. Detailed structure and non-uniformity of plasma liners of due to primary and secondary shock waves have been studies as well as averaged quantities of ram pressure and Mach number. Synthetic data from simulations have been compared with available experimental data from a multi-chord interferometer and survey and high-resolution spectrometers. Numerical studies of the sensitivity of liner properties to experimental errors in the initial masses of jets and the synchronization of plasma gun valves have also been performed. Supported by the ARPA-E ALPHA program.

  2. Discretely Integrated Condition Event (DICE) Simulation for Pharmacoeconomics.

    Science.gov (United States)

    Caro, J Jaime

    2016-07-01

    Several decision-analytic modeling techniques are in use for pharmacoeconomic analyses. Discretely integrated condition event (DICE) simulation is proposed as a unifying approach that has been deliberately designed to meet the modeling requirements in a straightforward transparent way, without forcing assumptions (e.g., only one transition per cycle) or unnecessary complexity. At the core of DICE are conditions that represent aspects that persist over time. They have levels that can change and many may coexist. Events reflect instantaneous occurrences that may modify some conditions or the timing of other events. The conditions are discretely integrated with events by updating their levels at those times. Profiles of determinant values allow for differences among patients in the predictors of the disease course. Any number of valuations (e.g., utility, cost, willingness-to-pay) of conditions and events can be applied concurrently in a single run. A DICE model is conveniently specified in a series of tables that follow a consistent format and the simulation can be implemented fully in MS Excel, facilitating review and validation. DICE incorporates both state-transition (Markov) models and non-resource-constrained discrete event simulation in a single formulation; it can be executed as a cohort or a microsimulation; and deterministically or stochastically.

  3. Shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures

    Science.gov (United States)

    Haxhimali, Tomorr; Rudd, Robert E.; Cabot, William H.; Graziani, Frank R.

    2015-11-01

    We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 1025 ions/cc. The motion of 30 000-120 000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We systematically study different mixtures through a series of simulations with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly coupled plasmas, the kinetic theory does not agree well with the MD results. We develop a simple model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated, ranging from moderately weakly coupled to moderately strongly coupled asymmetric plasma mixtures.

  4. Simulation of photons from plasmas for the applications to display devices

    Science.gov (United States)

    Lee, Hae June; Yoon, Hyun Jin; Lee, Jae Koo

    2007-07-01

    Numerical modeling of the photon transport of the ultraviolet (UV) and the visible lights are presented for plasma based display devices. The transport of UV lights which undergo resonance trapping by ground state atoms is solved by using the Holstein equation. After the UV lights are transformed to visible lights at the phosphor surfaces, the visible lights experience complicated traces inside the cell and finally are emitted toward the viewing window after having some power loss within the cell. A three-dimensional ray trace of the visible lights is calculated with a radiosity model. These simulations for the photons strengthen plasma discharge modeling for the application to display devices.

  5. The bactericidal effect of surface micro-discharge plasma under different ambient conditions

    International Nuclear Information System (INIS)

    Shimizu, T; Zimmermann, J L; Morfill, G E

    2011-01-01

    A series of experiments on the bactericidal properties of plasmas using a surface micro-discharge (SMD) device in an atmosphere under different ambient temperatures and humidities was carried out. This plasma dispenser was developed for use as a disinfection system in private and public places (hospitals, medical practices, etc). The bactericidal effect is due to the interplay of the plasma and the chemical products produced via interactions with O 2 /N 2 and H 2 O vapour in air. To use this device in different countries and therefore under various ambient conditions, it is important to understand its behaviour and efficiency, especially with respect to air temperature and humidity. The experimental results obtained in this study show that the bactericidal properties of the SMD plasma dispenser are not sensitive to the different temperatures and humidities.

  6. The bactericidal effect of surface micro-discharge plasma under different ambient conditions

    Science.gov (United States)

    Shimizu, T.; Zimmermann, J. L.; Morfill, G. E.

    2011-02-01

    A series of experiments on the bactericidal properties of plasmas using a surface micro-discharge (SMD) device in an atmosphere under different ambient temperatures and humidities was carried out. This plasma dispenser was developed for use as a disinfection system in private and public places (hospitals, medical practices, etc). The bactericidal effect is due to the interplay of the plasma and the chemical products produced via interactions with O2/N2 and H2O vapour in air. To use this device in different countries and therefore under various ambient conditions, it is important to understand its behaviour and efficiency, especially with respect to air temperature and humidity. The experimental results obtained in this study show that the bactericidal properties of the SMD plasma dispenser are not sensitive to the different temperatures and humidities.

  7. Nonlinear extraordinary wave in dense plasma

    Energy Technology Data Exchange (ETDEWEB)

    Krasovitskiy, V. B., E-mail: krasovit@mail.ru [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Turikov, V. A. [Russian University of Peoples’ Friendship (Russian Federation)

    2013-10-15

    Conditions for the propagation of a slow extraordinary wave in dense magnetized plasma are found. A solution to the set of relativistic hydrodynamic equations and Maxwell’s equations under the plasma resonance conditions, when the phase velocity of the nonlinear wave is equal to the speed of light, is obtained. The deviation of the wave frequency from the resonance frequency is accompanied by nonlinear longitudinal-transverse oscillations. It is shown that, in this case, the solution to the set of self-consistent equations obtained by averaging the initial equations over the period of high-frequency oscillations has the form of an envelope soliton. The possibility of excitation of a nonlinear wave in plasma by an external electromagnetic pulse is confirmed by numerical simulations.

  8. A hybrid-Vlasov model based on the current advance method for the simulation of collisionless magnetized plasma

    Czech Academy of Sciences Publication Activity Database

    Valentini, F.; Trávníček, Pavel; Califano, F.; Hellinger, Petr; Mangeney, A.

    2007-01-01

    Roč. 225, č. 1 (2007), s. 753-770 ISSN 0021-9991 Institutional research plan: CEZ:AV0Z30420517 Keywords : numerical simulations * hybrid simulations * Vlasov simulations Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.372, year: 2007

  9. Three dimensional simulation study of spheromak injection into magnetized plasmas

    International Nuclear Information System (INIS)

    Suzuki, Y.; Watanabe, T.H.; Sato, T.; Hayashi, T.

    2000-01-01

    The three dimensional dynamics of a spheromak-like compact toroid (SCT) plasmoid, which is injected into a magnetized target plasma region, is investigated by using MHD numerical simulations. It is found that the process of SCT penetration into this region is much more complicated than that which has been analysed so far by using a conducting sphere (CS) model. The injected SCT suffers from a tilting instability, which grows with a similar timescale to that of the SCT penetration. The instability is accompanied by magnetic reconnection between the SCT magnetic field and the target magnetic field, which disrupts the magnetic configuration of the SCT. Magnetic reconnection plays a role in supplying the high density plasma, initially confined in the SCT magnetic field, to the target region. The penetration depth of the SCT high density plasma is also examined. It is shown to be shorter than that estimated from the CS model. The SCT high density plasma is decelerated mainly by the Lorentz force of the target magnetic field, which includes not only the magnetic pressure force but also the magnetic tension force. Furthermore, by comparing the SCT plasmoid injection with the bare plasmoid injection, magnetic reconnection is considered to relax the magnetic tension force, i.e. the deceleration of the SCT plasmoid. (author)

  10. Comprehensive ab initio simulations of turbulence in ITER-relevant fusion plasmas

    International Nuclear Information System (INIS)

    Jenko, Frank

    2014-01-01

    The astonishing improvements achieved in supercomputing capabilities over the past two decades have allowed groundbreaking new insights into the physics of plasma turbulence. Even though much has been learned already, fundamental challenges related to predicting the performance of future fusion reactors still remain. In particular, today's fusion experiments routinely achieve a transition to a high-confinement mode (H-mode) with a strong transport barrier at the plasma boundary. Understanding the formation conditions of this barrier and its characteristic size and height are crucial to predicting the efficiency of future fusion reactors, but a fully consistent numerical treatment has still been lacking up to now. A main challenge in the treatment of such barriers is their extreme profile variation, implying their susceptibility to finite-size effects. Global simulation capabilities such as demonstrated within the framework of the present project are thus essential in order to understand the dynamics of the edge transport barrier. Both present and future projects employing the GENE code will build on the experience established within this SuperMUC project and tackle this challenging issue. Another increasingly important field relates to turbulence studies in stellarators, which represent an alternative machine design for future fusion applications. With its newly developed capability of studying turbulence in stellarator geometry (i.e. retaining magnetic geometry variations within a magnetic surface), the GENE code is uniquely suited for this problem. With the new German stellarator experiment Wendelstein 7-X nearing completion, existing predictions already made with GENE for stellarator turbulence will be put to the test, and possibilities for validation will emerge. Due to the complex magnetic geometry, stellarator turbulence simulations have extreme computational requirements and will thus continue to challenge the available supercomputing capabilities also in

  11. Conditions of the existence of 'short circuit' effect for plasma in a conducting cylinder

    International Nuclear Information System (INIS)

    Zhilinskij, A.P.; Kuteev, B.V.

    1975-01-01

    It has been experimentally established that in a cylindrical container with conducting side and end walls, the phenomenon of short circuit (the Symon effect) is not always realized. The short circuiting of plane end and of side surfaces causes an acceleration of a plasma decay only during the initial stage in a comparatively short time. Characteristic lifetimes during the late stage remain unchanged in this case. In conditions of a stable plasma they correspond to classical values of the plasma decay constant at the ambipolar diffusion of charged particles along and across force lines of a magnetic field. A fundamental change in the nature of the diffusion and a decrease of the plasma lifetime almost by two orders are realized in an instrument in which an end conducting wall for plasma in created with a short cylinder at the end of a solenoid in a sharply nonuniform magnetic field. The data obtained testify to the fact that the short circuit effect takes place in conditions when on boundaries of plasma the possibility of simultaneous flowing of unipolar electron flows along and of ion flows across a magnetic field is assured. The results of the experiments are compared with a theory

  12. Role of plasma enhanced atomic layer deposition reactor wall conditions on radical and ion substrate fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, Mark J., E-mail: msowa@ultratech.com [Ultratech/Cambridge NanoTech, 130 Turner Street, Building 2, Waltham, Massachusetts 02453 (United States)

    2014-01-15

    Chamber wall conditions, such as wall temperature and film deposits, have long been known to influence plasma source performance on thin film processing equipment. Plasma physical characteristics depend on conductive/insulating properties of chamber walls. Radical fluxes depend on plasma characteristics as well as wall recombination rates, which can be wall material and temperature dependent. Variations in substrate delivery of plasma generated species (radicals, ions, etc.) impact the resulting etch or deposition process resulting in process drift. Plasma enhanced atomic layer deposition is known to depend strongly on substrate radical flux, but film properties can be influenced by other plasma generated phenomena, such as ion bombardment. In this paper, the chamber wall conditions on a plasma enhanced atomic layer deposition process are investigated. The downstream oxygen radical and ion fluxes from an inductively coupled plasma source are indirectly monitored in temperature controlled (25–190 °C) stainless steel and quartz reactors over a range of oxygen flow rates. Etch rates of a photoresist coated quartz crystal microbalance are used to study the oxygen radical flux dependence on reactor characteristics. Plasma density estimates from Langmuir probe ion saturation current measurements are used to study the ion flux dependence on reactor characteristics. Reactor temperature was not found to impact radical and ion fluxes substantially. Radical and ion fluxes were higher for quartz walls compared to stainless steel walls over all oxygen flow rates considered. The radical flux to ion flux ratio is likely to be a critical parameter for the deposition of consistent film properties. Reactor wall material, gas flow rate/pressure, and distance from the plasma source all impact the radical to ion flux ratio. These results indicate maintaining chamber wall conditions will be important for delivering consistent results from plasma enhanced atomic layer deposition

  13. Gyrokinetic simulation study of magnetic island effects on neoclassical physics and micro-instabilities in a realistic KSTAR plasma

    Science.gov (United States)

    Kwon, Jae-Min; Ku, S.; Choi, M. J.; Chang, C. S.; Hager, R.; Yoon, E. S.; Lee, H. H.; Kim, H. S.

    2018-05-01

    We perform gyrokinetic simulations to study the effects of a stationary magnetic island on neoclassical flow and micro-instability in a realistic KSTAR plasma condition. Through the simulations, we aim to analyze a recent KSTAR experiment, which was to measure the details of poloidal flow and fluctuation around a stationary (2, 1) magnetic island [M. J. Choi et al., Nucl. Fusion 57, 126058 (2017)]. From the simulations, it is found that the magnetic island can significantly enhance the equilibrium E × B flow. The corresponding flow shearing is strong enough to suppress a substantial portion of ambient micro-instabilities, particularly ∇Te -driven trapped electron modes. This implies that the enhanced E × B flow can sustain a quasi-internal transport barrier for Te in an inner region neighboring the magnetic island. The enhanced E × B flow has a (2, 1) mode structure with a finite phase shift from the mode structure of the magnetic island. It is shown that the flow shear and the fluctuation suppression patterns implied from the simulations are consistent with the observations on the KSTAR experiment.

  14. Multiple point statistical simulation using uncertain (soft) conditional data

    Science.gov (United States)

    Hansen, Thomas Mejer; Vu, Le Thanh; Mosegaard, Klaus; Cordua, Knud Skou

    2018-05-01

    Geostatistical simulation methods have been used to quantify spatial variability of reservoir models since the 80s. In the last two decades, state of the art simulation methods have changed from being based on covariance-based 2-point statistics to multiple-point statistics (MPS), that allow simulation of more realistic Earth-structures. In addition, increasing amounts of geo-information (geophysical, geological, etc.) from multiple sources are being collected. This pose the problem of integration of these different sources of information, such that decisions related to reservoir models can be taken on an as informed base as possible. In principle, though difficult in practice, this can be achieved using computationally expensive Monte Carlo methods. Here we investigate the use of sequential simulation based MPS simulation methods conditional to uncertain (soft) data, as a computational efficient alternative. First, it is demonstrated that current implementations of sequential simulation based on MPS (e.g. SNESIM, ENESIM and Direct Sampling) do not account properly for uncertain conditional information, due to a combination of using only co-located information, and a random simulation path. Then, we suggest two approaches that better account for the available uncertain information. The first make use of a preferential simulation path, where more informed model parameters are visited preferentially to less informed ones. The second approach involves using non co-located uncertain information. For different types of available data, these approaches are demonstrated to produce simulation results similar to those obtained by the general Monte Carlo based approach. These methods allow MPS simulation to condition properly to uncertain (soft) data, and hence provides a computationally attractive approach for integration of information about a reservoir model.

  15. Impact of plasma triangularity and collisionality on electron heat transport in TCV L-mode plasmas

    International Nuclear Information System (INIS)

    Camenen, Y.; Pochelon, A.; Behn, R.; Bottino, A.; Bortolon, A.; Coda, S.; Karpushov, A.; Sauter, O.; Zhuang, G.

    2007-01-01

    The impact of plasma shaping on electron heat transport is investigated in TCV L-mode plasmas. The study is motivated by the observation of an increase in the energy confinement time with decreasing plasma triangularity which may not be explained by a change in the temperature gradient induced by changes in the geometry of the flux surfaces. The plasma triangularity is varied over a wide range, from positive to negative values, and various plasmas conditions are explored by changing the total electron cyclotron (EC) heating power and the plasma density. The mid-radius electron heat diffusivity is shown to significantly decrease with decreasing triangularity and, for similar plasma conditions, only half of the EC power is required at a triangularity of -0.4 compared with +0.4 to obtain the same temperature profile. Besides, the observed dependence of the electron heat diffusivity on the electron temperature, electron density and effective charge can be grouped in a unique dependence on the plasma effective collisionality. In summary, the electron heat transport level exhibits a continuous decrease with decreasing triangularity and increasing collisionality. Local gyro-fluid and global gyro-kinetic simulations predict that trapped electron modes are the most unstable modes in these EC heated plasmas with an effective collisionality ranging from 0.2 to 1. The modes stability dependence on the plasma triangularity is investigated

  16. Plasma disruption modeling and simulation

    International Nuclear Information System (INIS)

    Hassanein, A.

    1994-01-01

    Disruptions in tokamak reactors are considered a limiting factor to successful operation and reliable design. The behavior of plasma-facing components during a disruption is critical to the overall integrity of the reactor. Erosion of plasma facing-material (PFM) surfaces due to thermal energy dump during the disruption can severely limit the lifetime of these components and thus diminish the economic feasibility of the reactor. A comprehensive understanding of the interplay of various physical processes during a disruption is essential for determining component lifetime and potentially improving the performance of such components. There are three principal stages in modeling the behavior of PFM during a disruption. Initially, the incident plasma particles will deposit their energy directly on the PFM surface, heating it to a very high temperature where ablation occurs. Models for plasma-material interactions have been developed and used to predict material thermal evolution during the disruption. Within a few microseconds after the start of the disruption, enough material is vaporized to intercept most of the incoming plasma particles. Models for plasma-vapor interactions are necessary to predict vapor cloud expansion and hydrodynamics. Continuous heating of the vapor cloud above the material surface by the incident plasma particles will excite, ionize, and cause vapor atoms to emit thermal radiation. Accurate models for radiation transport in the vapor are essential for calculating the net radiated flux to the material surface which determines the final erosion thickness and consequently component lifetime. A comprehensive model that takes into account various stages of plasma-material interaction has been developed and used to predict erosion rates during reactor disruption, as well during induced disruption in laboratory experiments

  17. Hydrogenation properties of Zr films under various conditions of hydrogen plasma

    CERN Document Server

    Yan Guo Qiang; Zhou Zhu Ying; Zhao Guo Qing; Hu Pei Gang; Luo Shun Zhong; Peng Shu Ming; Ding Wei; Long Xing Gui

    2002-01-01

    The hydrogenation properties of Zr samples with and without an Ni overlayer under various plasma conditions were investigated by means of non-Rutherford backscattering and elastic recoil detection analysis. The theoretical maximum hydrogen capacity, 66.7 at%, could be achieved at a hydrogen absolute pressure of approx 2 Pa and a substrate temperature of approx 393K for a plasma irradiation of only 10 min; this was significantly greater than that for gas hydrogenation under the same hydrogen pressure and substrate temperature. It was also found that the C and O contamination on the sample surface strongly influences the hydrogenation, and that the maximum equilibrium hydrogen content drops dramatically with the increasing total contamination. In addition, the influence of the Ni overlayer on the plasma hydrogenation is discussed

  18. Design of a novel high efficiency antenna for helicon plasma sources

    Science.gov (United States)

    Fazelpour, S.; Chakhmachi, A.; Iraji, D.

    2018-06-01

    A new configuration for an antenna, which increases the absorption power and plasma density, is proposed for helicon plasma sources. The influence of the electromagnetic wave pattern symmetry on the plasma density and absorption power in a helicon plasma source with a common antenna (Nagoya) is analysed by using the standard COMSOL Multiphysics 5.3 software. In contrast to the theoretical model prediction, the electromagnetic wave does not represent a symmetric pattern for the common Nagoya antenna. In this work, a new configuration for an antenna is proposed which refines the asymmetries of the wave pattern in helicon plasma sources. The plasma parameters such as plasma density and absorption rate for a common Nagoya antenna and our proposed antenna under the same conditions are studied using simulations. In addition, the plasma density of seven operational helicon plasma source devices, having a common Nagoya antenna, is compared with the simulation results of our proposed antenna and the common Nagoya antenna. The simulation results show that the density of the plasma, which is produced by using our proposed antenna, is approximately twice in comparison to the plasma density produced by using the common Nagoya antenna. In fact, the simulation results indicate that the electric and magnetic fields symmetry of the helicon wave plays a vital role in increasing wave-particle coupling. As a result, wave-particle energy exchange and the plasma density of helicon plasma sources will be increased.

  19. FDTD simulation for plasma photonic crystals

    International Nuclear Information System (INIS)

    Liu Shaobin; Zhu Chuanxi; Yuan Naichang

    2005-01-01

    Plasma photonic crystals are artificially periodic structures, which are composed of plasmas and dielectric structures (or vacuum). In this paper, the piecewise linear current density recursive convolution (PLCDRC) finite-difference time-domain (FDTD) method is applied to study the plasma photonic crystals and those containing defects. In time-domain, the electromagnetic (EM) propagation process and reflection/transmission electric field of Gauss pulses passing through the plasma photonic crystals are investigated. In frequency-domain, the reflection and transmission coefficients of the pulses through the two kinds of crystals are computed. The results illustrate that the plasma photonic crystals mostly reflect for the EM wave of frequencies less than the plasma frequency, and mostly transmit for EM wave of frequencies higher than the plasma frequency. In high frequency domain, the plasma photonic crystals have photonic band gaps, which is analogous to the conventional photonic crystals. (authors)

  20. Simulation of QED effects in ultrahigh intensity laser-plasma interaction

    International Nuclear Information System (INIS)

    Kostyukov, I.; Nerush, E.

    2010-01-01

    Complete text of publication follows. Due to an impressive progress in laser technology, laser pulses with peak intensity of nearly 2 x 10 22 W/cm 2 are now available in laboratory. When the matter is irradiated by so intense laser pulses high energy density plasma is produced. Besides of fundamental interest such plasma is the efficient source of particles and radiation with extreme parameters that opens bright perspectives in developments of advanced particle accelerators, next generation of radiation sources, laboratory modelling of astrophysics phenomena etc. Even high laser intensity the radiation reaction and QED effects become important. One of the QED effects, which recently attracts much attention, is the electron-positron plasma creation in strong laser field. The plasma can be produced via electromagnetic cascades: the seeded charged particles is accelerated in the field of counter-propagating laser pulses, then they emit energetic photons, the photons by turn decay in the laser field and create electron-positron pairs. The pair particles accelerated in the laser field produce new generation of the photons and pairs. For self-consistent study of the electron-positron plasma dynamics in the laser field we develop 2D code based on particle-in-cell and Monte-Carlo methods. The electron, positron and photon dynamics as well as evolution of the plasma and laser fields are calculated by PIC technique while photon emission and pair production are calculated by Monte-Carlo method. We simulate pair production in the field of counter-propagating linearly polarized laser pulses. It is shown that for the laser intensity above threshold the plasma production becomes so intense that the laser pulse are strongly absorbed in the plasma. The laser intensity threshold and the rate of laser field absorption are calculated. Acknowledgements. This work has been supported by federal target 'The scientific and scientific-pedagogical personnel of innovation in Russia' and by