WorldWideScience

Sample records for conditioning deactivation thermal

  1. Heating, ventilating, and air conditioning deactivation thermal analysis of PUREX Plant

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.W.; Gregonis, R.A. [Westinghouse Hanford Company, Richland, WA (United States)

    1997-08-01

    Thermal analysis was performed for the proposed Plutonium Uranium Extraction Plant exhaust system after deactivation. The purpose of the analysis was to determine if enough condensation will occur to plug or damage the filtration components. A heat transfer and fluid flow analysis was performed to evaluate the thermal characteristics of the underground duct system, the deep-bed glass fiber filter No. 2, and the high-efficiency particulate air filters in the fourth filter building. The analysis is based on extreme variations of air temperature, relative humidity, and dew point temperature using 15 years of Hanford Site weather data as a basis. The results will be used to evaluate the need for the electric heaters proposed for the canyon exhaust to prevent condensation. Results of the analysis indicate that a condition may exist in the underground ductwork where the duct temperature can lead or lag changes in the ambient air temperature. This condition may contribute to condensation on the inside surfaces of the underground exhaust duct. A worst case conservative analysis was performed assuming that all of the water is removed from the moist air over the inside surface of the concrete duct area in the fully developed turbulent boundary layer while the moist air in the free stream will not condense. The total moisture accumulated in 24 hours is negligible. Water puddling would not be expected. The results of the analyses agree with plant operating experiences. The filters were designed to resist high humidity and direct wetting, filter plugging caused by slight condensation in the upstream duct is not a concern. 19 refs., 2 figs.

  2. Kinetic Analysis of Char Thermal Deactivation

    DEFF Research Database (Denmark)

    Zolin, Alfredo; Jensen, Anker; Dam-Johansen, Kim

    2001-01-01

    and demineralized Dietz from USA, and two alternative fuels, Danish leached straw and petroleum coke, were used in the experiments. The coal chars from demineralized Dietz, Illinois no. 6, and Cerrejon deactivate readily, whereas petroleum coke and Blair Athol show a relative high resistance to deactivation....... Leached straw deactivates significantly, but maintains at any heat-treatment temperature a higher reactivity than the other chars. The inertinite-rich coal Blair Athol is more resistant to deactivation than two vitrinite-rich coals of the same ASTM rank, Cerrejon and Illinois no. 6. Cerrejon and Illinois...

  3. Thermal stress analysis of sulfur deactivated solid oxide fuel cells

    Science.gov (United States)

    Zeng, Shumao; Parbey, Joseph; Yu, Guangsen; Xu, Min; Li, Tingshuai; Andersson, Martin

    2018-03-01

    Hydrogen sulfide in fuels can deactivate catalyst for solid oxide fuel cells, which has become one of the most critical challenges to stability. The reactions between sulfur and catalyst will cause phase changes, leading to increase in cell polarization and mechanical mismatch. A three-dimensional computational fluid dynamics (CFD) approach based on the finite element method (FEM) is thus used to investigate the polarization, temperature and thermal stress in a sulfur deactivated SOFC by coupling equations for gas-phase species, heat, momentum, ion and electron transport. The results indicate that sulfur in fuels can strongly affect the cell polarization and thermal stresses, which shows a sharp decrease in the vicinity of electrolyte when 10% nickel in the functional layer is poisoned, but they remain almost unchanged even when the poisoned Ni content was increased to 90%. This investigation is helpful to deeply understand the sulfur poisoning effects and also benefit the material design and optimization of electrode structure to enhance cell performance and lifetimes in various hydrocarbon fuels containing impurities.

  4. Boron deactivation in heavily boron-doped Czochralski silicon during rapid thermal anneal: Atomic level understanding

    International Nuclear Information System (INIS)

    Gao, Chao; Dong, Peng; Yi, Jun; Ma, Xiangyang; Yang, Deren; Lu, Yunhao

    2014-01-01

    The changes in hole concentration of heavily boron (B)-doped Czochralski silicon subjected to high temperature rapid thermal anneal (RTA) and following conventional furnace anneal (CFA) have been investigated. It is found that decrease in hole concentration, namely, B deactivation, is observed starting from 1050 °C and increases with RTA temperature. The following CFA at 300–500 °C leads to further B deactivation, while that at 600–800 °C results in B reactivation. It is supposed that the interaction between B atoms and silicon interstitials (I) thus forming BI pairs leads to the B deactivation during the high temperature RTA, and, moreover, the formation of extended B 2 I complexes results in further B deactivation in the following CFA at 300–500 °C. On the contrary, the dissociation of BI pairs during the following CFA at 600–800 °C enables the B reactivation. Importantly, the first-principles calculation results can soundly account for the above-mentioned supposition

  5. Boron deactivation in heavily boron-doped Czochralski silicon during rapid thermal anneal: Atomic level understanding

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Chao; Dong, Peng; Yi, Jun; Ma, Xiangyang, E-mail: luyh@zju.edu.cn, E-mail: mxyoung@zju.edu.cn; Yang, Deren [State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Lu, Yunhao, E-mail: luyh@zju.edu.cn, E-mail: mxyoung@zju.edu.cn [International Center for New-Structured Materials and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2014-01-20

    The changes in hole concentration of heavily boron (B)-doped Czochralski silicon subjected to high temperature rapid thermal anneal (RTA) and following conventional furnace anneal (CFA) have been investigated. It is found that decrease in hole concentration, namely, B deactivation, is observed starting from 1050 °C and increases with RTA temperature. The following CFA at 300–500 °C leads to further B deactivation, while that at 600–800 °C results in B reactivation. It is supposed that the interaction between B atoms and silicon interstitials (I) thus forming BI pairs leads to the B deactivation during the high temperature RTA, and, moreover, the formation of extended B{sub 2}I complexes results in further B deactivation in the following CFA at 300–500 °C. On the contrary, the dissociation of BI pairs during the following CFA at 600–800 °C enables the B reactivation. Importantly, the first-principles calculation results can soundly account for the above-mentioned supposition.

  6. Comparative study of pulsed electric field and thermal processing of apple juice with particular consideration of juice quality and enzyme deactivation.

    Science.gov (United States)

    Schilling, Susanne; Schmid, Sandra; Jäger, Henry; Ludwig, Michael; Dietrich, Helmut; Toepfl, Stefan; Knorr, Dietrich; Neidhart, Sybille; Schieber, Andreas; Carle, Reinhold

    2008-06-25

    As an alternative to thermal pasteurization, pulsed electric fields (PEF) were applied to apple juices on laboratory and pilot plant scale, investigating the effects on juice quality. PEF application still falls under the EU Novel Food Regulation. Consequently, extensive investigation of quality parameters is a prerequisite to prove substantial equivalence of juices resulting from the novel process and conventional production, respectively. Juice composition was not affected by PEF treatment. However, browning of the juices provided evidence of residual enzyme activities. On laboratory scale, complete deactivation of peroxidase (POD) and polyphenoloxidase (PPO) was achieved when PEF treatment and preheating of the juices to 60 degrees C were combined. Under these conditions, a synergistic effect of heat and PEF was observed. On pilot plant scale, maximum PPO deactivation of 48% was achieved when the juices were preheated to 40 degrees C and PEF-treated at 30 kV/cm (100 kJ/kg). Thus, minimally processed juices resulted from PEF processing, when applied without additional conventional thermal preservation. Since this product type was characterized by residual native enzyme activities and nondetectable levels of 5-hydroxymethylfurfural, also when preheating up to 40 degrees C was included, it ranged between fresh and pasteurized juices regarding consumers' expectation of freshness and shelf life. Consistent with comparable iron contents among all juice samples, no electrode corrosion was observed under the PEF conditions applied.

  7. Activation and deactivation in heavily boron-doped silicon

    International Nuclear Information System (INIS)

    Yoo, Seung-Han; Ro, Jae-Sang

    2003-01-01

    A shallow p + /n junction was formed using a ultra-low-energy (ULE) implanter. Activation by rapid thermal annealing (RTA) exhibited both solid phase epitaxy, in which the sheet resistance dropped rapidly, and reverse annealing, in a manner similar to furnace annealing. The temperature ranges in which these phenomena were observed, however, were higher in the case of RTA processing than they were in the case of furnace annealing due to the low thermal budget associated with the former. Deactivation phenomena were investigated for the shallow source/drain junction based on measurements of the post-annealing time and temperature following the RTA treatments. We found that the deactivation kinetics was divided into two regions. In the first regions, the rate of deactivation increased exponentially with the annealing temperature up to 850 .deg. C. In the second regions, it was found to decrease linearly with the annealing temperature beyond 850 .deg. C. We believe that the first region is kinetically limited while the second is thermodynamically limited. We also observed 'transient enhanced deactivation' an anomalous increase in the sheet resistance during the early stage of annealing at temperatures higher than 800 .deg. C. The activation energy for transient enhanced deactivation was measured to be in the 1.75 ∼ 1.87 eV range while that for normal deactivation was found to be between 3.49 and 3.69 eV.

  8. Deactivation of Escherichia coli by the plasma needle

    International Nuclear Information System (INIS)

    Sladek, R E J; Stoffels, E

    2005-01-01

    In this paper we present a parameter study on deactivation of Escherichia coli (E. coli) by means of a non-thermal plasma (plasma needle). The plasma needle is a small-sized (1 mm) atmospheric glow sustained by radio-frequency excitation. This plasma will be used to disinfect heat-sensitive objects; one of the intended applications is in vivo deactivation of dental bacteria: destruction of plaque and treatment of caries. We use E. coli films plated on agar dishes as a model system to optimize the conditions for bacterial destruction. Plasma power, treatment time and needle-to-sample distance are varied. Plasma treatment of E. coli films results in formation of a bacteria-free void with a size up to 12 mm. 10 4 -10 5 colony forming units are already destroyed after 10 s of treatment. Prolongation of treatment time and usage of high powers do not significantly improve the destruction efficiency: short exposure at low plasma power is sufficient. Furthermore, we study the effects of temperature increase on the survival of E. coli and compare it with thermal effects of the plasma. The population of E. coli heated in a warm water bath starts to decrease at temperatures above 40 deg. C. Sample temperature during plasma treatment has been monitored. The temperature can reach up to 60 deg. C at high plasma powers and short needle-to-sample distances. However, thermal effects cannot account for bacterial destruction at low power conditions. For safe and efficient in vivo disinfection, the sample temperature should be kept low. Thus, plasma power and treatment time should not exceed 150 mW and 60 s, respectively

  9. Deactivation of Escherichia coli by the plasma needle

    Energy Technology Data Exchange (ETDEWEB)

    Sladek, R E J; Stoffels, E [Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2005-06-07

    In this paper we present a parameter study on deactivation of Escherichia coli (E. coli) by means of a non-thermal plasma (plasma needle). The plasma needle is a small-sized (1 mm) atmospheric glow sustained by radio-frequency excitation. This plasma will be used to disinfect heat-sensitive objects; one of the intended applications is in vivo deactivation of dental bacteria: destruction of plaque and treatment of caries. We use E. coli films plated on agar dishes as a model system to optimize the conditions for bacterial destruction. Plasma power, treatment time and needle-to-sample distance are varied. Plasma treatment of E. coli films results in formation of a bacteria-free void with a size up to 12 mm. 10{sup 4}-10{sup 5} colony forming units are already destroyed after 10 s of treatment. Prolongation of treatment time and usage of high powers do not significantly improve the destruction efficiency: short exposure at low plasma power is sufficient. Furthermore, we study the effects of temperature increase on the survival of E. coli and compare it with thermal effects of the plasma. The population of E. coli heated in a warm water bath starts to decrease at temperatures above 40 deg. C. Sample temperature during plasma treatment has been monitored. The temperature can reach up to 60 deg. C at high plasma powers and short needle-to-sample distances. However, thermal effects cannot account for bacterial destruction at low power conditions. For safe and efficient in vivo disinfection, the sample temperature should be kept low. Thus, plasma power and treatment time should not exceed 150 mW and 60 s, respectively.

  10. Accelerating deactivation

    International Nuclear Information System (INIS)

    FISHBACK, K.M.

    1999-01-01

    In recent years, the focus of the U.S. Department of Energy (DOE) complex has shifted from defense production to facility stabilization, decommissioning, and environmental restoration. This shift from production to cleanup requires a parallel shift from operations-focused management to project-focused management for an efficient facility deactivation. In the operation-focused management organization, activities are planned and executed based on production goals and are typically repetitive and cyclic. In the project-focused management environment, activities are based on a defined scope/end objective, start date, and completion date. Since the workforce used to perform production operations is also usually relied onto perform facility deactivation, it is important to shift from an operations management approach to a project management approach. It is best if the transition is accomplished quickly so the project can move forward and workers don't spend a lot of energy anticipating change. Therefore, it is essential that managers, planners, and other workers understand the key elements associated with planning a deactivation project. This paper describes a planning approach that has been used successfully to plan deactivation projects consistent with the requirements provided in DOE Order 430.1A Life Cycle Asset Management and the companion Deactivation Implementation Guide, G430. 1A-3, while exceeding schedule expectations and reducing costs. Although the planning of a deactivation project closely mirrors the classic project planning for construction projects, there are unique variations associated with facility deactivation. The key elements of planning a deactivation project are discussed relative to scope, schedule, and cost. Management tools such as project metrics and histograms are discussed as desired outputs from the planning process. In addition, lessons learned from planning deactivation projects across the DOE complex are discussed relative to making the

  11. UO3 deactivation end point criteria

    International Nuclear Information System (INIS)

    Stefanski, L.D.

    1994-01-01

    The UO 3 Deactivation End Point Criteria are necessary to facilitate the transfer of the UO 3 Facility from the Office of Facility Transition and Management (EM-60) to the office of Environmental Restoration (EM-40). The criteria were derived from a logical process for determining end points for the systems and spaces at the UO 3 , Facility based on the objectives, tasks, and expected future uses pertinent to that system or space. Furthermore, the established criteria meets the intent and supports the draft guidance for acceptance criteria prepared by EM-40, open-quotes U.S. Department of Energy office of Environmental Restoration (EM-40) Decontamination and Decommissioning Guidance Document (Draft).close quotes For the UO 3 Facility, the overall objective of deactivation is to achieve a safe, stable and environmentally sound condition, suitable for an extended period, as quickly and economically as possible. Once deactivated, the facility is kept in its stable condition by means of a methodical surveillance and maintenance (S ampersand M) program, pending ultimate decontamination and decommissioning (D ampersand D). Deactivation work involves a range of tasks, such as removal of hazardous material, elimination or shielding of radiation fields, partial decontamination to permit access for inspection, installation of monitors and alarms, etc. it is important that the end point of each of these tasks be established clearly and in advance, for the following reasons: (1) End points must be such that the central element of the deactivation objective - to achieve stability - is unquestionably achieved. (2) Much of the deactivation work involves worker exposure to radiation or dangerous materials. This can be minimized by avoiding unnecessary work. (3) Each task is, in effect, competing for resources with other deactivation tasks and other facilities. By assuring that each task is appropriately bounded, DOE's overall resources can be used most fully and effectively

  12. Deactivation of Building 7602

    International Nuclear Information System (INIS)

    Yook, H.R.; Barnett, J.R.; Collins, T.L.

    1995-10-01

    The Department of Energy (DOE) has sponsored research and development programs in Building 7602 at Oak Ridge National Laboratory (ORNL) since 1984. This work focused on development of advanced technology for processing nuclear fuels. Building 7602 was used for engineering-scale tests using depleted and natural uranium to simulate the nuclear fuel. In April 1994 the DOE Office of Nuclear Energy (NE) sent supplemental FY 1994 guidance to ORNL stating that in FY 1995 and beyond, Building 7602 is considered surplus to NE programs and missions and shall be shut down (deactivated) and maintained in a radiologically and industrially safe condition with minimal surveillance and maintenance (S ampersand M). DOE-NE subsequently provided FY 1995 funding to support the deactivation activities. Deactivation of Building 7602 was initiated on October 1, 1994. The principal activity during the first quarter of FY 1995 was removal of process materials (chemicals and uranium) from the systems. The process systems were operated to achieve chemical solution concentrations needed for reuse or disposal of the solutions prior to removal of the materials from the systems. During this phase of deactivation the process materials processed and removed were: (1) Uranyl nitrate solution 30,178 L containing 4490 kg of uranium; (2) Nitric acid (neutralized) 9850 L containing less than 0.013 kg of uranium; (3) Organic solution 3346 L containing 265 kg of uranium; (4) Uranium oxide powder 95 kg; and (5) Miscellaneous chemicals. At the end of December 1994, the process systems and control systems were shut down and deactivated. Disposition of the process materials removed from the process systems in Building 7602 proved to be the most difficult part of the deactivation. An operational stand down and funding reductions at Y-12 prevented planned conversion of the uranyl nitrate solution to depleted uranium oxide powder. This led to disposal of the uranyl nitrate solution as waste

  13. Implementing RCRA during facility deactivation

    International Nuclear Information System (INIS)

    Lebaron, G.J.

    1997-01-01

    RCRA regulations require closure of permitted treatment, storage and disposal (TSD) facilities within 180 days after cessation of operations, and this may essentially necessitate decommissioning to complete closure. A more cost effective way to handle the facility would be to significantly reduce the risk to human health and the environment by taking it from its operational status to a passive, safe, inexpensive-to-maintain surveillance and maintenance condition (deactivation) prior to decommissioning. This paper presents an innovative approach to the cost effective deactivation of a large, complex chemical processing facility permitted under RCRA. The approach takes into account risks to the environment posed by this facility in comparison to risks posed by neighboring facilities at the site. The paper addresses the manner in which: 1) stakeholders and regulators were involved; 2) identifies a process by which the project proceeds and regulators and stakeholders were involved; 3) end points were developed so completion of deactivation was clearly identified at the beginning of the project, and 4) innovative practices were used to deactivate more quickly and cost effectively

  14. Application of extended Kalman filter to identification of enzymatic deactivation.

    Science.gov (United States)

    Caminal, G; Lafuente, J; López-Santín, J; Poch, M; Solà, C

    1987-02-01

    A recursive estimation scheme, the Extended Kalman Filter (EKF) technique, was applied to study enzymatic deactivation in the enzymatic hydrolysis of pretreated cellulose using a model previously developed by the authors. When no deactivation model was assumed, the results showed no variation with time for all the model parameters except for the maximum rate of cellobiose-to-glucose conversion (r'(m)).The r'(m) variation occurred in two zones with a grace period. A new model of enzymatic hydrolysis of pretreated cellulose deactivation was proposed and validated showing better behavior than the old deactivation model. This approach allows one to study enzyme deactivation without additional experiments and within operational conditions.

  15. N Reactor Deactivation Program Plan

    International Nuclear Information System (INIS)

    Walsh, J.L.

    1993-12-01

    This N Reactor Deactivation Program Plan is structured to provide the basic methodology required to place N Reactor and supporting facilities · in a radiologically and environmentally safe condition such that they can be decommissioned at a later date. Deactivation will be in accordance with facility transfer criteria specified in Department of Energy (DOE) and Westinghouse Hanford Company (WHC) guidance. Transition activities primarily involve shutdown and isolation of operational systems and buildings, radiological/hazardous waste cleanup, N Fuel Basin stabilization and environmental stabilization of the facilities. The N Reactor Deactivation Program covers the period FY 1992 through FY 1997. The directive to cease N Reactor preservation and prepare for decommissioning was issued by DOE to WHC on September 20, 1991. The work year and budget data supporting the Work Breakdown Structure in this document are found in the Activity Data Sheets (ADS) and the Environmental Restoration Program Baseline, that are prepared annually

  16. Radiation induced deactivation, post deactivation of horse radish peroxidase, glucose oxidase and the protective effect

    International Nuclear Information System (INIS)

    Yi Min; Zhong Qun; Chen Yiqing; Ha Hongfei

    1993-01-01

    In order to check the fact if the radiation induced post deactivation are possessed by all the enzymes, the radiation effects of horse radish peroxidase (HRP) and glucose oxidase (GOD) were investigated. It was found that in dilute aqueous solution the irradiated HRP has the post deactivation also. The effects of absorbed dose, initial HRP concentration in solution, atmosphere, temperature and additives (three kinds of complex agents: EDTA, CDTA and D) on the post deactivation of HRP were investigated. The regularity of post deactivation of HRP is similar with the catalase. Oxygen in enzyme samples is necessary for the post deactivation. 5 x 10 -3 mol/l of the three additives could control the phenomenon efficiently. Of course, the radiation deactivation of HRP was given as well. In the case of GOD the post deactivation was not found, although it's radiation deactivation is serious. It means that the radiation induced post deactivation is not a common phenomenon for all enzymes

  17. Deactivation of group III acceptors in silicon during keV electron irradiation

    International Nuclear Information System (INIS)

    Sah, C.; Sun, J.Y.; Tzou, J.J.; Pan, S.C.

    1983-01-01

    Experimental results on p-Si metal-oxide-semiconductor capacitors (MOSC's) are presented which demonstrate the electrical deactivation of the acceptor dopant impurity during 8-keV electron irradiation not only in boron but also aluminum and indium-doped silicon. The deactivation rates of the acceptors during the 8-keV electron irradiation are nearly independent of the acceptor impurity type. The final density of the remaining active acceptor approaches nonzero values N/sub infinity/, with N/sub infinity/(B) Al--H>In-H. These deactivation results are consistent with our hydrogen bond model. The thermal annealing or regeneration rate of the deactivated acceptors in the MOSC's irradiated by 8-keV electron is much smaller than that in the MOSC's that have undergone avalanche electron injection, indicating that the keV electron irradiation gives rise to stronger hydrogen-acceptor bond

  18. Deactivating a major nuclear fuels reprocessing facility

    International Nuclear Information System (INIS)

    LeBaron, G.J.

    1997-01-01

    This paper describes three key processes used in deactivating the Plutonium Uranium Extraction (PUREX) Facility, a large, complex nuclear reprocessing facility, 15 months ahead of schedule and $77 million under budget. The organization was reengineered to refine its business processes and more effectively organize around the deactivation work scope. Multi-disciplined work teams were formed to be self-sufficient and empowered to make decisions and perform work. A number of benefits were realized by reengineering. A comprehensive process to develop end points which clearly identified specific results and the post-project facility configuration was developed so all areas of a facility were addressed. Clear and specific end points allowed teams to focus on completing deactivation activities and helped ensure there were no unfulfilled end-of-project expectations. The RCRA regulations require closure of permitted facilities within 180 days after cessation of operations which may essentially necessitate decommissioning. A more cost effective approach was adopted which significantly reduced risk to human health and the environment by taking the facility to a passive, safe, inexpensive-to-maintain surveillance and maintenance condition (deactivation) prior to disposition. PUREX thus became the first large reprocessing facility with active TSD [treatment, storage, and disposal] units to be deactivated under the RCRA regulations

  19. Intention retrieval and deactivation following an acute psychosocial stressor.

    Directory of Open Access Journals (Sweden)

    Moritz Walser

    Full Text Available We often form intentions but have to postpone them until the appropriate situation for retrieval and execution has come, an ability also referred to as event-based prospective memory. After intention completion, our cognitive system has to deactivate no-more-relevant intention representations from memory to avoid interference with subsequent tasks. In everyday life, we frequently rely on these abilities also in stressful situations. Surprisingly, little is known about potential stress effects on these functions. Therefore, the present study aimed to examine the reliability of event-based prospective memory and of intention deactivation in conditions of acute psychosocial stress. To this aim, eighty-two participants underwent the Trier Social Stress Test, a standardized stress protocol, or a standardized control situation. Following this treatment, participants performed a computerized event-based prospective memory task with non-salient and focal prospective memory cues in order to assess prospective memory performance and deactivation of completed intentions. Although the stress group showed elevated levels of salivary cortisol as marker of a stress-related increase in hypothalamus-pituitary-adrenal axis activity throughout the cognitive testing period compared to the no-stress group, prospective memory performance and deactivation of completed intentions did not differ between groups. Findings indicate that cognitive control processes subserving intention retrieval and deactivation after completion may be mostly preserved even under conditions of acute stress.

  20. Gamification of learning deactivates the Default Mode Network

    Directory of Open Access Journals (Sweden)

    Paul Alexander Howard-Jones

    2016-01-01

    Full Text Available We hypothesised that embedding educational learning in a game would improve learning outcomes, with increased engagement and recruitment of cognitive resources evidenced by increased activation of working memory network (WMN and deactivation of Default Mode Network (DMN regions. In an fMRI study, we compared activity during periods of learning in three conditions that were increasingly game-like: Study-only (when periods of learning were followed by an exemplar question together with its correct answer, Self-quizzing (when periods of learning were followed by a multiple choice question in return for a fixed number of points and Game-based (when, following each period of learning, participants competed with a peer to answer the question for escalating, uncertain rewards. DMN hubs deactivated as conditions became more game-like, alongside greater self-reported engagement and, in the Game-based condition, higher learning scores. These changes did not occur with any detectable increase in WMN activity. Additionally, ventral striatal activation was associated with responding to questions and receiving positive question feedback. Results support the significance of DMN deactivation for educational learning, and are aligned with recent evidence suggesting DMN and WMN activity may not always be anti-correlated.

  1. Gamification of Learning Deactivates the Default Mode Network.

    Science.gov (United States)

    Howard-Jones, Paul A; Jay, Tim; Mason, Alice; Jones, Harvey

    2015-01-01

    We hypothesized that embedding educational learning in a game would improve learning outcomes, with increased engagement and recruitment of cognitive resources evidenced by increased activation of working memory network (WMN) and deactivation of default mode network (DMN) regions. In an fMRI study, we compared activity during periods of learning in three conditions that were increasingly game-like: Study-only (when periods of learning were followed by an exemplar question together with its correct answer), Self-quizzing (when periods of learning were followed by a multiple choice question in return for a fixed number of points) and Game-based (when, following each period of learning, participants competed with a peer to answer the question for escalating, uncertain rewards). DMN hubs deactivated as conditions became more game-like, alongside greater self-reported engagement and, in the Game-based condition, higher learning scores. These changes did not occur with any detectable increase in WMN activity. Additionally, ventral striatal activation was associated with responding to questions and receiving positive question feedback. Results support the significance of DMN deactivation for educational learning, and are aligned with recent evidence suggesting DMN and WMN activity may not always be anti-correlated.

  2. Deactivation and Regeneration of Commercial Type Fischer-Tropsch Co-Catalysts—A Mini-Review

    Directory of Open Access Journals (Sweden)

    Erling Rytter

    2015-03-01

    Full Text Available Deactivation of commercially relevant cobalt catalysts for Low Temperature Fischer-Tropsch (LTFT synthesis is discussed with a focus on the two main long-term deactivation mechanisms proposed: Carbon deposits covering the catalytic surface and re-oxidation of the cobalt metal. There is a great variety in commercial, demonstration or pilot LTFT operations in terms of reactor systems employed, catalyst formulations and process conditions. Lack of sufficient data makes it difficult to correlate the deactivation mechanism with the actual process and catalyst design. It is well known that long term catalyst deactivation is sensitive to the conditions the actual catalyst experiences in the reactor. Therefore, great care should be taken during start-up, shutdown and upsets to monitor and control process variables such as reactant concentrations, pressure and temperature which greatly affect deactivation mechanism and rate. Nevertheless, evidence so far shows that carbon deposition is the main long-term deactivation mechanism for most LTFT operations. It is intriguing that some reports indicate a low deactivation rate for multi-channel micro-reactors. In situ rejuvenation and regeneration of Co catalysts are economically necessary for extending their life to several years. The review covers information from open sources, but with a particular focus on patent literature.

  3. Sulfur deactivation of fatty ester hydrogenolysis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Brands, D.S.; U-A-Sai, G.; Poels, E.K.; Bliek, A. [Univ. of Amsterdam (Netherlands). Dept. of Chemical Engineering

    1999-08-15

    Trace organosulfur compounds present as natural impurities in oleochemical feedstocks may lead to activation of copper-containing catalysts applied for hydrogenolysis of esters toward fatty alcohols. In this paper, the sulfur deactivation of Cu/SiO{sub 2} and Cu/ZnO/SiO{sub 2} catalysts was studied in the liquid-phase hydrogenolysis of methyl palmitate. The rate of deactivation is fast and increases as a function of the sulfur-containing compound present: octadecanethiol {approx} dihexadecyl disulfide < benzyl isothiocyanate < methyl p-toluene sulfonate < dihexadecyl sulfide < dibenzothiophene. The rapid deactivation is caused by the fact that sulfur is quantitatively removed from the reaction mixture and because mainly surface sulfides are formed under hydrogenolysis conditions. The life time of a zinc-promoted catalyst is up to two times higher than that of the Cu/SiO{sub 2} catalyst, most likely due to zinc surface sulfide formation. The maximum sulfur coverage obtained after full catalyst deactivation with dibenzothiophene and dihexadecyl sulfide--the sulfur compounds that cause the fastest deactivation--may be as low as 0.07. This is due to the fact that decomposition of these compounds as well as the hydrogenolysis reaction itself proceeds on ensembles of copper atoms. Catalyst regeneration studies reveal that activity cannot be regained by reduction or combined oxidation/reduction treatments. XRD, TPR, and TPO results confirm that no distinct bulk copper or zinc sulfide or sulfate phases are present.

  4. Deactivation and regeneration of refinery catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    1979-08-01

    A discussion covers the mechanisms of catalyst aging, poisoning, coke deposition, and metals deposition; feedstock pretreatment to extend catalyst life; the effects of operating conditions; the effects of catalyst composition and structure on its stability; nonchemical deactivation processes; and methods of catalyst regeneration, including coke burn-off and solvent extraction.

  5. Regeneration of a deactivated USY alkylation catalyst using supercritical isobutane

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Ginosar; David N. Ghompson; Kyle C. Burch

    2005-01-01

    Off-line, in-situ alkylation activity recovery from a completely deactivated solid acid catalyst was examined in a continuous-flow reaction system employing supercritical isobutane. A USY zeolite catalyst was initially deactivated during the liquid phase alkylation of butene with isobutane in a single-pass reactor and then varying amounts of alkylation activity were recovered by passing supercritical isobutane over the catalyst bed at different reactivation conditions. Temperature, pressure and regeneration time were found to play important roles in the supercritical isobutane regeneration process when applied to a completely deactivated USY zeolite alkylation catalyst. Manipulation of the variables that influence solvent strength, diffusivity, surface desorption, hydride transfer rates, and coke aging, strongly influence regeneration effectiveness.

  6. PUREX Plant deactivation mission analysis report

    International Nuclear Information System (INIS)

    Lund, D.P.

    1995-01-01

    The purpose of the PUREX Deactivation Project mission analysis is to define the problem to be addressed by the PUREX mission, and to lay the ground work for further system definition. The mission analysis is an important first step in the System Engineering (SE) process. This report presents the results of the PUREX Deactivation Project mission analysis. The purpose of the PUREX Deactivation Project is to prepare PUREX for Decontamination and Decommissioning within a five year time frame. This will be accomplished by establishing a passively safe and environmentally secure configuration of the PUREX Plant, that can be preserved for a 10-year horizon. During deactivation, appropriate portions of the safety envelop will be maintained to ensure deactivation takes place in a safe and regulatory compliant manner

  7. PFP deactivation project management plan

    International Nuclear Information System (INIS)

    Bogen, D.M.

    1997-01-01

    This document identifies the overall approach for deactivation of the Plutonium Finishing Plant (PFP) Complex, excluding the vaults, and includes a draft set of End Point Criteria for all buildings being deactivated

  8. The role of silicon interstitials in the deactivation and reactivation of high concentration boron profiles

    Energy Technology Data Exchange (ETDEWEB)

    Aboy, Maria [Campus Miguel Delibes, University of Valladolid, 47011 Valladolid (Spain)]. E-mail: marabo@tel.uva.es; Pelaz, Lourdes [Campus Miguel Delibes, University of Valladolid, 47011 Valladolid (Spain); Marques, Luis A. [Campus Miguel Delibes, University of Valladolid, 47011 Valladolid (Spain); Lopez, Pedro [Campus Miguel Delibes, University of Valladolid, 47011 Valladolid (Spain); Barbolla, Juan [Campus Miguel Delibes, University of Valladolid, 47011 Valladolid (Spain); Venezia, V.C. [Philips Research Leuven, Leuven (Belgium); Duffy, R. [Philips Research Leuven, Leuven (Belgium); Griffin, Peter B. [Stanford University, Stanford, CA (United States)

    2004-12-15

    Boron cluster formation and dissolution in high concentration B profiles and the role of Si interstitials in these processes are analyzed by kinetic non-lattice Monte Carlo atomistic simulations. For this purpose, we use theoretical structures as simplifications of boron implants into preamorphized Si, followed by low-temperature solid phase epitaxial (SPE) regrowth or laser thermal annealing process. We observe that in the presence of high B concentrations (above 10{sup 20} cm{sup -3}), significant deactivation occurs during high temperature anneal, even in the presence of only equilibrium Si interstitials. The presence of additional Si interstitials from an end of range (EOR) damage region accelerates the deactivation process and makes B deactivation slightly higher. We show that B deactivation and reactivation processes can be clearly correlated to the evolution of Si interstitial defects at the EOR. The minimum level of activation occurs when the Si interstitial defects at EOR dissolve or form very stable defects.

  9. Study on radiation-induced deactivation and post-deactivation of some oxide-reductase in dilute aqueous solutions and protective effects: Pt. 2

    International Nuclear Information System (INIS)

    Ha Hongfei; Chen Yiqing

    1993-01-01

    The post-deactivation of irradiated catalase in dilute aqueous solution was found and investigated. Post-deactivation of irradiated catalase means that the catalase in dilute aqueous solution could not only be deactivated during γ-irradiation, but it has also been deactivated continuously for some time after the irradiated samples were taken out of the radiation field. No reports about this phenomenon in literature were searched up to now. The effects of absorbed dose, initial catalase concentration in solutions, atmosphere, temperature and additive on post-deactivation of catalase were investigated. H 2 O 2 produced by water radiolysis may attend the post-deactivation reaction in some way. Oxygen in enzyme samples in necessitous for the post-deactivation. 1 x 10 -4 to 5 x 10 -3 mol/L of CH 3 CH 2 OH, HCOONa and EDTA could control the post-deactivation efficiently

  10. PUREX/UO3 deactivation project management plan

    International Nuclear Information System (INIS)

    Washenfelder, D.J.

    1993-12-01

    From 1955 through 1990, the Plutonium-Uranium Extraction Plant (PUREX) provided the United States Department of Energy Hanford Site with nuclear fuel reprocessing capability. It operated in sequence with the Uranium Trioxide (UO 3 ) Plant, which converted the PUREX liquid uranium nitrate product to solid UO 3 powder. Final UO 3 Plant operation ended in 1993. In December 1992, planning was initiated for the deactivation of PUREX and UO 3 Plant. The objective of deactivation planning was to identify the activities needed to establish a passively safe, environmentally secure configuration at both plants, and ensure that the configuration could be retained during the post-deactivation period. The PUREX/UO 3 Deactivation Project management plan represents completion of the planning efforts. It presents the deactivation approach to be used for the two plants, and the supporting technical, cost, and schedule baselines. Deactivation activities concentrate on removal, reduction, and stabilization of the radioactive and chemical materials remaining at the plants, and the shutdown of the utilities and effluents. When deactivation is completed, the two plants will be left unoccupied and locked, pending eventual decontamination and decommissioning. Deactivation is expected to cost $233.8 million, require 5 years to complete, and yield $36 million in annual surveillance and maintenance cost savings

  11. Final deactivation project report on the Integrated Process Demonstration Facility, Building 7602 Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of this report is to document the condition of the Integrated Process Demonstration Facility (Building 7602) at Oak Ridge National Laboratory (ORNL) after completion of deactivation activities by the High Ranking Facilities Deactivation Project (HRFDP). This report identifies the activities conducted to place the facility in a safe and environmentally sound condition prior to transfer to the U.S. Department of Energy (DOE) Environmental Restoration EM-40 Program. This report provides a history and description of the facility prior to commencing deactivation activities and documents the condition of the building after completion of all deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance (S ampersand M) Plan, remaining hazardous and radioactive materials inventory, radiological controls, Safeguards and Security, and supporting documentation provided in the Office of Nuclear Material and Facility Stabilization Program (EM-60) Turnover package are discussed

  12. Planning for closure and deactivation of the EBR-II complex

    International Nuclear Information System (INIS)

    Michelbacher, J.A.; Henslee, S.P.; Poland, H.F.; Wells, P.B.

    1997-01-01

    In January 1994, DOE terminated the Integral Fast Reactor (IFR) Program. Argonne National Laboratory-West (ANL-W) prepared a detailed plan to put Experimental Breeder Reactor-II (EBR-II) in a safe condition, including removal of irradiated fueled subassemblies from the plant, transfer of subassemblies, and removal and stabilization of primary and secondary sodium liquid heat transfer metal. The goal of deactivation is to stabilize the EBR-II complex until decontamination and decommissioning (D ampersand D) is implemented, thereby minimizing maintenance and surveillance. Deactivation of a sodium cooled reactor presents unique concerns. Residual sodium in the primary and secondary systems must be either reacted or inerted to preclude concerns with explosive sodium-air reactions. Also, residual sodium on components will effectively solder these items in place, making removal unfeasible. Several special cases reside in the primary system, including primary cold traps, a cesium trap, a cover gas condenser, and systems containing sodium-potassium alloy. The sodium or sodium-potassium alloy in these components must be reacted in place or the components removed. The Sodium Components Maintenance Shop at ANL-W provides the capability for washing primary components, removing residual quantities of sodium while providing some decontamination capacity. Considerations need to be given to component removal necessary for providing access to primary tank internals for D ampersand D activities, removal of hazardous materials, and removal of stored energy sources. ANL-W's plan for the deactivation of EBR-II addresses these issues, providing for an industrially and radiologically safe complex, requiring minimal surveillance during the interim period between deactivation and D ampersand D. Throughout the deactivation and closure of the EBR-II complex, federal environmental concerns will be addressed, including obtaining the proper permits for facility condition and waste processing

  13. Deactivation of SCR catalysts in biomass fired power plants

    DEFF Research Database (Denmark)

    Olsen, Brian Kjærgaard

    composition and operating conditions, is not available. The main objective of the work presented in this thesis has been to conduct an in depth investigation of the deactivation mechanism of vanadia based SCR catalysts, when subjected to potassium rich aerosols. It has furthermore been a goal to suggest...... for up to 600 hours. The activity of fresh and exposed catalysts was measured in the temperature range 250-400 °C in a laboratory-scale reactor. All samples exposed for more than 240 hours proved to have deactivated significantly, however, catalysts exposed at 150 °C showed higher remaining activity......-scale setup at 350 °C for up to 1100 hours, and their activities were followed by in situ measurements. A 3%V2O5-7%WO3/TiO2 reference catalyst deactivated with a rate of 0.91 %/day during 960 hours of exposure, and a subsequent SEM-EDS analysis showed complete potassium penetration of the catalyst wall...

  14. Study on radiation-induced deactivation and post-deactivation of some oxidoreductases in dilute aqueous solution and protective effect: Pt. 1

    International Nuclear Information System (INIS)

    Chen Yiqing; Ha Hongfei

    1993-01-01

    In this work the radiation-induced deactivation of catalase in dilute aqueous solution was reported. The effects of irradiation atmosphere, temperature and original concentration of catalase in dilute aqueous solutions on the deactivation of catalase were investigated. The protective effect by some additives (CH 3 CH 2 OH, HCOONa and EDTA) to radiation deactivation in dilute aqueous solutions was also studied. Remarkable protective effect by those additives was observed. The mechanism of radiation deactivation and protective effect have been discussed

  15. PUREX Deactivation Health and Safety documentation

    Energy Technology Data Exchange (ETDEWEB)

    Dodd, E.N. III

    1995-01-01

    The purpose of the PUREX Deactivation Project is to establish a passively safe and environmentally secure configuration of PUREX at the Hanford Site, and to preserve that configuration for a 10-year horizon. The 10-year horizon is used to predict future maintenance requirements and represents they typical time duration expended to define, authorize, and initiate the follow-on Decontamination and Decommissioning (D&D) activities. This document was prepared to increase attention to worker safety issues during the deactivation project and, as such, identifies the documentation and programs associated with PUREX Deactivation Health and Safety.

  16. Thermal fragmentation and deactivation of combustion-generated soot particles

    KAUST Repository

    Raj, Abhijeet

    2014-09-01

    The effect of thermal treatment on diesel soot and on a commercial soot in an inert environment under isothermal conditions at intermediate temperatures (400-900°C) is studied. Two important phenomena are observed in both the soot samples: soot fragmentation leading to its mass loss, and loss of soot reactivity towards O2. Several experimental techniques such as high resolution transmission electron microscopy, electron energy loss spectroscopy, thermo-gravimetric analysis with mass spectrometry, elemental analysis, Fourier transform infrared spectroscopy and X-ray diffraction have been used to identify the changes in structures, functional groups such as oxygenates and aliphatics, σ and π bonding, O/C and H/C ratios, and crystallite parameters of soot particles, introduced by heat. A decrease in the size of primary particles and an increase in the average polycyclic aromatic hydrocarbon (PAH) size was observed in soots after thermal treatment. The activation energies of soot oxidation for thermally treated soot samples were found to be higher than those for the untreated ones at most conversion levels. The cyclic or acyclic aliphatics with sp3 hybridization were present in significant amounts in all the soot samples, but their concentration decreased with thermal treatment. Interestingly, the H/C and the O/C ratios of soot particles increased after thermal treatment, and thus, they do not support the decrease in soot reactivity. The increase in the concentration of oxygenates on soot surface indicate that their desorption from soot surface in the form of CO, CO2 and other oxygenated compounds may not be significant at the temperatures (400-900°C) studied in this work. © 2014 The Combustion Institute.

  17. Attention-induced deactivations in very low frequency EEG oscillations: differential localisation according to ADHD symptom status.

    Directory of Open Access Journals (Sweden)

    Samantha J Broyd

    Full Text Available BACKGROUND: The default-mode network (DMN is characterised by coherent very low frequency (VLF brain oscillations. The cognitive significance of this VLF profile remains unclear, partly because of the temporally constrained nature of the blood oxygen-level dependent (BOLD signal. Previously we have identified a VLF EEG network of scalp locations that shares many features of the DMN. Here we explore the intracranial sources of VLF EEG and examine their overlap with the DMN in adults with high and low ADHD ratings. METHODOLOGY/PRINCIPAL FINDINGS: DC-EEG was recorded using an equidistant 66 channel electrode montage in 25 adult participants with high- and 25 participants with low-ratings of ADHD symptoms during a rest condition and an attention demanding Eriksen task. VLF EEG power was calculated in the VLF band (0.02 to 0.2 Hz for the rest and task condition and compared for high and low ADHD participants. sLORETA was used to identify brain sources associated with the attention-induced deactivation of VLF EEG power, and to examine these sources in relation to ADHD symptoms. There was significant deactivation of VLF EEG power between the rest and task condition for the whole sample. Using s-LORETA the sources of this deactivation were localised to medial prefrontal regions, posterior cingulate cortex/precuneus and temporal regions. However, deactivation sources were different for high and low ADHD groups: In the low ADHD group attention-induced VLF EEG deactivation was most significant in medial prefrontal regions while for the high ADHD group this deactivation was predominantly localised to the temporal lobes. CONCLUSIONS/SIGNIFICANCE: Attention-induced VLF EEG deactivations have intracranial sources that appear to overlap with those of the DMN. Furthermore, these seem to be related to ADHD symptom status, with high ADHD adults failing to significantly deactivate medial prefrontal regions while at the same time showing significant attenuation of

  18. Environmental assessment for the deactivation of the N Reactor facilities. Revision 1

    International Nuclear Information System (INIS)

    1994-11-01

    This environmental assessment (EA) provides information for the US Department of Energy (DOE) to decide whether the Proposed Action for the N Reactor facilities warrants a Finding of No Significant Impact or requires the preparation of an environmental impact statement (EIS). The EA describes current conditions at the N Reactor facilities, the need to take action at the facilities, the elements of the Proposed Action and alternatives, and the potential environmental impacts. The N Reactor facilities are currently in a surveillance and maintenance program, and will eventually be decontaminated and decommissioned (D and D). Operation and maintenance of the facilities resulted in conditions that could adversely impact human health or the environment if left as is until final D and D. The Proposed Action would deactivate the facilities to remove the conditions that present a potential threat to human health and the environment and to reduce surveillance and maintenance requirements. The action would include surveillance and maintenance after deactivation. Deactivation would take about three years and would involve about 80 facilities. Surveillance and maintenance would continue until final D and D, which is expected to be complete for all facilities except the N Reactor itself by the year 2018

  19. Information Subsystem of Shadow Economy Deactivation

    OpenAIRE

    Filippova, Tatyana V.

    2015-01-01

    The article presents information subsystem of shadow economy deactivation aimed at minimizing negative effects caused by its reproduction. In Russia, as well as in other countries, efficient implementation of the suggested system of shadow economy deactivation can be ensured by the developed information subsystem.

  20. PUREX Deactivation Health and Safety documentation

    International Nuclear Information System (INIS)

    Dodd, E.N. III.

    1995-01-01

    The purpose of the PUREX Deactivation Project is to establish a passively safe and environmentally secure configuration of PUREX at the Hanford Site, and to preserve that configuration for a 10-year horizon. The 10-year horizon is used to predict future maintenance requirements and represents they typical time duration expended to define, authorize, and initiate the follow-on Decontamination and Decommissioning (D ampersand D) activities. This document was prepared to increase attention to worker safety issues during the deactivation project and, as such, identifies the documentation and programs associated with PUREX Deactivation Health and Safety

  1. Final Deactivation Project report on the Alpha Powder Facility, Building 3028, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-04-01

    This report documents the condition of the Alpha Powder Facility (APF), Building 3028, after completion of deactivation activities. Activities conducted to place the facility in a safe and environmentally sound condition for transfer to the U.S. Department of Energy (DOE) Office of Environmental Restoration (EM-40) program are outlined. A history and profile of the facility prior to commencing deactivation activities and a profile of the building after completion of deactivation activities are provided. Turnover items, such as the post-deactivation surveillance and maintenance (S ampersand M) plan, remaining hazardous materials, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided for in the DOE Nuclear Materials and Facility Stabilization Program (EM-60) turnover package are discussed

  2. Final Deactivation Project report on the Alpha Powder Facility, Building 3028, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This report documents the condition of the Alpha Powder Facility (APF), Building 3028, after completion of deactivation activities. Activities conducted to place the facility in a safe and environmentally sound condition for transfer to the U.S. Department of Energy (DOE) Office of Environmental Restoration (EM-40) program are outlined. A history and profile of the facility prior to commencing deactivation activities and a profile of the building after completion of deactivation activities are provided. Turnover items, such as the post-deactivation surveillance and maintenance (S&M) plan, remaining hazardous materials, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided for in the DOE Nuclear Materials and Facility Stabilization Program (EM-60) turnover package are discussed.

  3. Deactivation and Regeneration of Commercial Type Fischer-Tropsch Co-Catalysts—A Mini-Review

    OpenAIRE

    Erling Rytter; Anders Holmen

    2015-01-01

    Deactivation of commercially relevant cobalt catalysts for Low Temperature Fischer-Tropsch (LTFT) synthesis is discussed with a focus on the two main long-term deactivation mechanisms proposed: Carbon deposits covering the catalytic surface and re-oxidation of the cobalt metal. There is a great variety in commercial, demonstration or pilot LTFT operations in terms of reactor systems employed, catalyst formulations and process conditions. Lack of sufficient data makes it difficult to correlat...

  4. Deactivation and Storage Issues Shared by Fossil and Nuclear Facilities

    International Nuclear Information System (INIS)

    Thomas S. LaGuardia

    1998-01-01

    The deactivation of a power plant, be it nuclear or fossil fueled, requires that the facility be placed in a safe and stable condition to prevent unacceptable exposure of the public or the environment to hazardous materials until the facility can be decommissioned. The conditions at two Texas plants are examined. These plants are fossil fueled, but their conditions might be duplicated at a nuclear plant

  5. Attempts to deactivate tannins in fodder shrubs with physical and chemical treatments

    Energy Technology Data Exchange (ETDEWEB)

    Ben Salem, H. [Institut National de la Recherche Agronomique de Tunisie, Laboratoire des Productions Animales et Fourrageres, Ariana (Tunisia)]. E-mail: bensalem.hichem@iresa.agrinet.tn; Saghrouni, L. [Institut National de la Recherche Agronomique de Tunisie, Laboratoire des Productions Animales et Fourrageres, Ariana (Tunisia); Ecole Superieure d' Agriculture de Mateur, Mateur (Tunisia); Nefzaoui, A. [Institut National de la Recherche Agronomique de Tunisie, Laboratoire des Productions Animales et Fourrageres, Ariana (Tunisia)

    2005-08-19

    Chopping, water sprinkling, storage under aerobic and anaerobic conditions, urea, wood ash, activated charcoal and polyethylene glycol 4000 (PEG) treatments were evaluated for their efficiency in deactivating tannins in shrub foliage. In a first trial, fresh leaves of Acacia cyanophylla Lindl. (acacia) were stored after chopping or without chopping and spraying or without spraying with water under aerobic or anaerobic conditions. The plant material was stored for 1, 7 and 14 days and analysed thereafter for extractable total phenols (TP), extractable total tannins (TT) and extractable condensed tannins (CT) contents. Chopping and water spraying substantially decreased the levels of TP, TT and CT of acacia. The rate of tannin deactivation increased in acacia stored under anaerobic conditions. Acacia stored for 7 days exhibited lower TP, TT and CT contents than that stored for only 1 day. Compared to the 7-day storage period, there was a further non-significant decrease in the level of these phenolic compounds when the storage duration was extended to 14 days. The highest level of rumen degradation of crude protein (CP) in sheep rumen was obtained with chopped, water sprinkled acacia leaves stored under anaerobic conditions. The second trial investigated the effect of increasing levels of urea (0, 20, 40, 60 and 80 g/kg) and treatment duration (7, 14, 21 and 28 days) on CP, TP, TT and CT in acacia leaves. The 20 g/kg urea level was sufficient to totally deactivate tannins in acacia even with the shortest storage period, i.e. 7 days. However, urea treatment increased ash-free neutral detergent fibre content and did not improve in sacco acacia degradation. In the third trial air-dried 1 mm ground samples of acacia and kermes oak (Quercus coccifera L.) leaves were added to water (control), acacia wood ash, activated charcoal or PEG solutions (100 g/kg) at 1:10 (w/v) and shaken for 20 min. All these four treatments decreased TP, TT and CT contents and could be classified

  6. Nuclear fuel reprocessing deactivation plan for the Idaho Chemical Processing Plant, Revision 1

    International Nuclear Information System (INIS)

    Patterson, M.W.

    1994-10-01

    The decision was announced on April 28, 1992 to cease all United States Department of Energy (DOE) reprocessing of nuclear fuels. This decision leads to the deactivation of all fuels dissolution, solvent extraction, krypton gas recovery operations, and product denitration at the Idaho Chemical Processing Plant (ICPP). The reprocessing facilities will be converted to a safe and stable shutdown condition awaiting future alternate uses or decontamination and decommissioning (D ampersand D). This ICPP Deactivation Plan includes the scope of work, schedule, costs, and associated staffing levels necessary to achieve a safe and orderly deactivation of reprocessing activities and the Waste Calcining Facility (WCF). Deactivation activities primarily involve shutdown of operating systems and buildings, fissile and hazardous material removal, and related activities. A minimum required level of continued surveillance and maintenance is planned for each facility/process system to ensure necessary environmental, health, and safety margins are maintained and to support ongoing operations for ICPP facilities that are not being deactivated. Management of the ICPP was transferred from Westinghouse Idaho Nuclear Company, Inc. (WINCO) to Lockheed Idaho Technologies Company (LITCO) on October 1, 1994 as part of the INEL consolidated contract. This revision of the deactivation plan (formerly the Nuclear Fuel Reprocessing Phaseout Plan for the ICPP) is being published during the consolidation of the INEL site-wide contract and the information presented here is current as of October 31, 1994. LITCO has adopted the existing plans for the deactivation of ICPP reprocessing facilities and the plans developed under WINCO are still being actively pursued, although the change in management may result in changes which have not yet been identified. Accordingly, the contents of this plan are subject to revision

  7. Project management plan for the isotopes facilities deactivation project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-08-01

    Purpose of the deactivation project is to place former isotopes production facilities at ORNL in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance. This management plan was prepared to document project objectives, define organizational relationships and responsibilities, and outline the management control systems. The project has adopted the strategy of deactivating the simple facilities first. The plan provides a road map for the quality assurance program and identifies other documents supporting the Isotopes Facilities Deactivation Project

  8. Highly controlled nest homeostasis of honey bees helps deactivate phenolics in nectar

    Science.gov (United States)

    Liu, Fanglin; He, Jianzhong; Fu, Wenjun

    2005-06-01

    Honey bees have a highly developed nest homeostasis, for example, maintaining low CO2 levels and stable nest temperatures at 35°C.We investigate the role of nest homeostasis in deactivating phenolic compounds present in the nectar of Aloe littoralis. We show that the phenolic content in nectar was reduced (from 0.65% to 0.49%) after nectar was incubated in a nest of Apis cerana, and that it was reduced still more (from 0.65% to 0.37%) if nectar was mixed with hypopharyngeal gland proteins (HGP) of worker bees before being placed inside a nest. HGP had little effect on samples outside a nest, indicating that nest conditions are necessary for HGP to deactivate phenolics in nectar. Consequently, the highly controlled nest homeostasis of honey bees facilitates direct deactivation of phenolics in nectar, and plays a role in the action of HGP as well.

  9. An Analytical Technique to Determine the Potential for Moisture Accumulation in Deactivated Structures

    International Nuclear Information System (INIS)

    MINICHAN, RL

    2004-01-01

    This paper describes an analytical technique developed to predict an order of magnitude volume of moisture accumulation in massive structures after deactivation. This work was done to support deactivation of a Department of Energy nuclear materials processing facility. The structure is a four-story, concrete building with a rectangular footprint that is approximately 250m long by 37m wide by 22m high. Its walls are 1.2m thick. The building will be supplied with unconditioned ventilation air after deactivation. The objective of the work was to provide a cost effective engineering evaluation to determine if the un-conditioned ventilation air would result in condensate accumulating inside the building under study. The analysis described is a simple representation of a complex problem. The modeling method is discussed in sufficient detail to allow its application to the study of similar structures

  10. Data quality objectives for PUREX deactivation flushing

    International Nuclear Information System (INIS)

    Bhatia, R.K.

    1995-01-01

    This Data Quality Objection (DQO) defines the sampling and analysis requirements necessary to support the deactivation of the Plutonium-Uranium Extraction (PUREX) facility vessels that are regulated by WAC 173-303. Specifically, sampling and analysis requirements are identified for the flushing operations that are a major element of PUREX deactivation

  11. Final deactivation report on the Radioisotope Production Lab-E, Building 3032, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of this report is to document the condition of Bldg. 3032, after completion of deactivation activities as outlined by the Department of Energy (DOE) Office of Nuclear Materials and Facility Stabilization Program (EM-60) guidance documentation. This report outlines the activities conducted to place the facility in a safe and environmentally sound condition for transfer to the DOE Office of Environmental Restoration Program (EM-40). This report provides a history and profile of Bldg. 3032 prior to commencing deactivation activities and a profile of the building after completion of deactivation activities. Turnover items, such as the Postdeactivation Surveillance ampersand Maintenance Plan, remaining hazardous materials, radiological controls, Safeguards and Security, quality assurance, facility operations, and supporting documentation provided in the EM-60 turnover package are discussed. Building 3032 will be used as the Health Physics Office for the Isotopes Facilities Deactivation Program area and will require access for these offices and to facilitate required surveillance and maintenance (S ampersand M) activities to maintain the building safety envelope. Bldg. 3032 was stabilized during deactivation so that when transferred to the EM-40 program, only a minimal S ampersand M effort would be required to maintain the building safety envelope. All materials have been removed from the building, and all utility systems, piping, and alarms have been deactivated except electricity and steam needed for the office areas

  12. LMR deactivation information exchange

    International Nuclear Information System (INIS)

    Guttenberg, S.

    1998-01-01

    This report contains vugraphs of presentations given at the meeting. The topics covered include the following: FFTF Deactivation Strategy; Sodium Drain and Disposition; Sodium Processing; and Fuel Storage and Disposition

  13. Final deactivation project report on the Source Development Laboratory, building 3029, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-05-01

    The purpose of this report is to document the condition of Building 3029 after completion of deactivation activities as outlined by the DOE Nuclear Materials and Facility Stabilization Program (EM-60) guidance documentation. This report outlines the activities conducted to place the facility in a safe and environmentally sound condition for transfer to the DOE Office of Environmental Restoration (EM-40). This report provides a history and profile of the facility prior to commencing deactivation activities and a profile of the building after completion of deactivation activities. Turnover items, such as the post-deactivation surveillance and maintenance (S ampersand M) plan, remaining hazardous materials, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided in the EM-60 turnover package are discussed. Building 3029 will require access to facilitate required S ampersand M activities to maintain the building safety envelope. building 3029 was stabilized during deactivation so that when transferred to the EM-40 program, only a minimal S ampersand M effort would be required to maintain the building safety envelope. Other than the minimal S ampersand M activities, the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only to perform the required S ampersand M. 5 refs., 7 figs., 3 tabs

  14. Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S&M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S&M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the IFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of IFDP facilities was initiated in FY 1994 and will be completed in FY 1999. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $36M. The costs are summarized. Upon completion of deactivation, annual S&M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year.

  15. 1997 project of the year, PUREX deactivation project

    International Nuclear Information System (INIS)

    Bailey, R.W.

    1998-01-01

    At the end of 1992, the PUREX and UO 3 plants were deemed no longer necessary for the defense needs of the United States. Although no longer necessary, they were very costly to maintain in their post-operation state. The DOE embarked on a deactivation strategy for these plants to reduce the costs of providing continuous surveillance of the facilities and their hazards. Deactivation of the PUREX and UO 3 plants was estimated to take 5 years and cost $222.5 million and result in an annual surveillance and maintenance cost of $2 million. Deactivation of the PUREX/UO 3 plants officially began on October 1, 1993. The deactivation was 15 months ahead of the original schedule and $75 million under the original cost estimate. The annual cost of surveillance and maintenance of the plants was reduced to less than $1 million

  16. N Area Post-Deactivation ALARA Report

    International Nuclear Information System (INIS)

    Nellesen, A. L.

    1998-01-01

    This report provides information about a wide range of radiological work activities at the N Area Deactivation Project. The report is divided into sections that are based on specific N Area scopes of work. Each section contains specific information that was of significant radiological importance in completing N Area Deactivation work. The information presented in this report may be applicable and beneficial to similar projects throughout the U.S. Department of Energy (DOE) complex, and in commercial industry

  17. 340 waste handling complex: Deactivation project management plan

    International Nuclear Information System (INIS)

    Stordeur, R.T.

    1998-01-01

    This document provides an overview of the strategy for deactivating the 340 Waste Handling Complex within Hanford's 300 Area. The plan covers the period from the pending September 30, 1998 cessation of voluntary radioactive liquid waste (RLW) transfers to the 340 Complex, until such time that those portions of the 340 Complex that remain active beyond September 30, 1998, specifically, the Retention Process Sewer (RPS), can also be shut down and deactivated. Specific activities are detailed and divided into two phases. Phase 1 ends in 2001 after the core RLW systems have been deactivated. Phase 2 covers the subsequent interim surveillance of deactivated and stand-by components during the period of continued RPS operation, through the final transfer of the entire 340 Complex to the Environmental Restoration Contractor. One of several possible scenarios was postulated and developed as a budget and schedule planning case

  18. Robot Work Platform for Large Hot Cell Deactivation

    International Nuclear Information System (INIS)

    BITTEN, E.J.

    2000-01-01

    The 324 Building, located at the Hanford Site near Richland, Washington, is being deactivated to meet state and federal cleanup commitments. The facility is currently in its third year of a nine-year project to complete deactivation and closure for long-term surveillance and maintenance. The 324 building contains large hot cells that were used for high-radiation, high-contamination chemical process development and demonstrations. A major obstacle for the 324 deactivation project is the inability to effectively perform deactivation tasks within highly radioactive, contaminated environments. Current strategies use inefficient, resource intensive technologies that significantly impact the cost and schedule for deactivation. To meet mandated cleanup commitments, there is a need to deploy rapid, more efficient remote/robot technologies to minimize worker exposure, accelerate work tasks, and eliminate the need for multiple specialized tool design and procurement efforts. This paper describes the functions and performance requirements for a crane-deployed remote/robot Work Platform possessing full access capabilities. The remote/robot Work Platform will deploy commercially available off-the-shelf tools and end effectors to support Project cleanup goals and reduce overall project risk and cost. The intent of this system is to maximize the use of off-the-shelf technologies that minimize additional new, unproven, or novel designs. This paper further describes procurement strategy, the selection process, the selected technology, and the current status of the procurement and lessons learned. Funding, in part, has been provided by the US Department of Energy, Office of Science and Technology, Deactivation and Decommissioning Focus Area

  19. Thermal stability of intermediate band behavior in Ti implanted Si

    Energy Technology Data Exchange (ETDEWEB)

    Olea, J.; Pastor, D.; Martil, I.; Gonzalez-Diaz, G. [Dpto. De Fisica Aplicada III (Electricidad y Electronica), Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2010-11-15

    Ti implantation in Si with very high doses has been performed. Subsequent Pulsed Laser Melting (PLM) annealing produces good crystalline lattice with electrical transport properties that are well explained by the Intermediate Band (IB) theory. Thermal stability of this new material is analyzed by means of isochronal annealing in thermodynamic equilibrium conditions at increasing temperature. A progressive deactivation of the IB behavior is shown during thermal annealing, and structural and electrical measurements are reported in order to find out the origin of this result. (author)

  20. Metal-deactivating additives for liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Boneva, M.I. [Institute of Organic Chemistry, Sofia (Bulgaria); Ivanov, S.K.; Kalitchin, Z.D. [SciBulCom, Ltd., Sofia (Bulgaria); Tanielyan, S.K. [Seton Hall Univ., South Orange, NJ (United States); Terebenina, A.; Todorova, O.I. [Institute of Inorganic Chemistry, Sofia (Bulgaria)

    1995-05-01

    The metal-deactivating and the antioxidant properties of 1-phenyl-3-methylpyrazolone-5 derivatives have been investigated both in the model reaction of low temperature oxidation of ethylbenzene and in gasoline oxidation. The study of the ability of these derivatives to reduce the catalytic effect of copper naphthenate demonstrates that they are promising as metal deactivating additives for light fuels. Some of the pyrazolone compounds appear to be of special interest for the long-term storage of liquid fuels due to their action as multifunctional inhibitors.

  1. Reversible and irreversible deactivation of Cu-CHA NH3-SCR catalysts by SO2 and SO3

    DEFF Research Database (Denmark)

    Hammershøi, Peter S.; Jangjou, Yasser; Epling, William S.

    2018-01-01

    be divided into two parts: a reversible deactivation that is restored by the regeneration treatment, and an irreversible part. The irreversible deactivation does not affect the activation energy for NH3-SCR and display a 1:1 correlation with the S-content, consistent with deactivation by Cu-sulfate formation...... is always higher when exposed at 200 °C than at 550 °C, and in wet conditions, compared to a dry feed. The deactivation is predominantly reversible, making regeneration at 550 °C a realistic approach to handle S-poisoning in exhaust systems....

  2. Deactivation, Decontamination and Decommissioning Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, David Shane; Webber, Frank Laverne

    2001-07-01

    This report is a compilation of summary descriptions of Deactivation, Decontamination and Decommissioning, and Surveillance and Maintenance projects planned for inactive facilities and sites at the INEEL from FY-2002 through FY-2010. Deactivations of contaminated facilities will produce safe and stable facilities requiring minimal surveillance and maintenance pending further decontamination and decommissioning. Decontamination and decommissioning actions remove contaminated facilities, thus eliminating long-term surveillance and maintenance. The projects are prioritized based on risk to DOE-ID, the public, and the environment, and the reduction of DOE-ID mortgage costs and liability at the INEEL.

  3. Deactivation of Pacemaker: Ethical Approach or Managerial Failure?

    Directory of Open Access Journals (Sweden)

    Macková Marie

    2017-12-01

    Full Text Available The decision about the deactivation of a pacemaker must be the result of a multicriteria decision-making process where the legal, ethical and effectiveness aspects must be taken into account and delicately balanced, while also considering the risk of managerial failure. Academic as well as professional discussion is necessary because there is a whole range of question marks on this topic and all the aspects mentioned above. The aim of this paper is to contribute to the debate by presenting the views of Czech physicians about the possibility of deactivation of the pacemaker in patients in terminal states. Based on the results of our research, the following steps are recommended to enable the deactivation of pacemakers in the Czech environment. Before the patient’s own indication of pacemaker therapy, treatment should be discussed with the patient in detail, including complications and deactivation options. Czech ethical consultant services should be set up in Czech hospitals. And last but not least, they should take an opinion on this issue as well as the professional society.

  4. Deactivation of molybdate catalysts by nitrogen bases

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    1982-10-01

    Nitrogen bases present in petroleum deactivate the surface of molybdate catalysts. The detrimental effect is attributed either to interactions of the bases with Lewis sites via unpaired electrons on nitrogen or to their ability to remove proton from the surface. The later effect results in a decrease of concentration of Bronsted sites known to be active in catalytic reactions. This enhances rate of coke forming reactions. Resistence of molybdate catalysts to coke formation depends on the form and redistribution of active ingredients on the surface. This can be effected by conditions applied during preparation and pretreatment of the catalysts. Processing parameters used during catalytic hydrotreatment are also important; i.e., the coke formation is slow under conditions ensuring high rate of removal of basic nitrogen containing compounds.

  5. Final deactivation project report on the High Radiation Level Analytical Facility, Building 3019B at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of this report is to document the condition of the High Radiation Level Analytical Facility (Building 3019B) at Oak Ridge National Laboratory (ORNL) after completion of deactivation activities. This report identifies the activities conducted to place the facility in a safe and environmentally sound condition prior to transfer to the Environmental Restoration EM-40 Program. This document provides a history and description of the facility prior to the commencement of deactivation activities and documents the condition of the building after completion of all deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance (S ampersand M) Plan, remaining hazardous materials inventory, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided in the Nuclear Material and Facility Stabilization (EM-60) Turnover package are discussed. Building 3019B will require access to perform required S ampersand M activities to maintain the building safety envelope. Building 3019B was stabilized during deactivation so that when transferred to the EM-40 Program, only a minimal S ampersand M effort would be required to maintain the building safety envelope. Other than the minimal S ampersand M activities the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only to perform the required S ampersand M until decommissioning activities begin

  6. Final deactivation project report on the High Radiation Level Analytical Facility, Building 3019B at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The purpose of this report is to document the condition of the High Radiation Level Analytical Facility (Building 3019B) at Oak Ridge National Laboratory (ORNL) after completion of deactivation activities. This report identifies the activities conducted to place the facility in a safe and environmentally sound condition prior to transfer to the Environmental Restoration EM-40 Program. This document provides a history and description of the facility prior to the commencement of deactivation activities and documents the condition of the building after completion of all deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance (S&M) Plan, remaining hazardous materials inventory, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided in the Nuclear Material and Facility Stabilization (EM-60) Turnover package are discussed. Building 3019B will require access to perform required S&M activities to maintain the building safety envelope. Building 3019B was stabilized during deactivation so that when transferred to the EM-40 Program, only a minimal S&M effort would be required to maintain the building safety envelope. Other than the minimal S&M activities the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only to perform the required S&M until decommissioning activities begin.

  7. Project Management Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1995-04-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S ampersand M) and as quickly and economically as possible. Implementation and completion of the deactivation project will further reduce the already small risks to the environment and to public safety and health. Furthermore, the project should result in significant S ampersand M cost savings in the future. The IFDP management plan has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted a strategy to deactivate the simple facilities first, to reduce the scope of the project, and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify those activities, that best promote the project mission and result in largest cost savings. The Work Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory (Energy Systems 1994) defines the project schedule, the cost estimate, and the technical approach for the project

  8. Deactivation completed at historic Hanford Fuels Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S.

    1994-03-01

    This report discusses deactivation work which was completed as of March 31, 1994 at the 308 Fuels Development Laboratory (FDL) at the Hanford Site near Richland, Washington. The decision to deactivate the structure, formerly known as the Plutonium Fabrication Pilot Plant (PFPP), was driven by a 1980s Department of Energy (DOE) decision that plutonium fuels should not be fabricated in areas near the Site`s boundaries, as well as by changing facility structural requirements. Inventory transfer has been followed by the cleanout and stabilization of plutonium oxide (PuO{sub 2}) and enriched uranium oxide (UO{sub 2}) residues and powders in the facility`s equipment and duct work. The Hanford Site, located in southeastern Washington state, was one of America`s primary arsenals of nuclear defense production for nearly 50 years beginning in World War II. Approximately 53 metric tons of weapons grade plutonium, over half of the national supply and about one quarter of the world`s supply, were produced at Hanford between 1944 and 1989. Today, many Site buildings are undergoing deactivation, a precursor phase to decontamination and decommissioning (D&D). The primary difference between the two activities is that equipment and structural items are not removed or torn down in deactivation. However, utilities are disconnected, and special nuclear materials (SNM) as well as hazardous and pyrophoric substances are removed from structures undergoing this process.

  9. Deactivation completed at historic Hanford Fuels Laboratory

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1994-03-01

    This report discusses deactivation work which was completed as of March 31, 1994 at the 308 Fuels Development Laboratory (FDL) at the Hanford Site near Richland, Washington. The decision to deactivate the structure, formerly known as the Plutonium Fabrication Pilot Plant (PFPP), was driven by a 1980s Department of Energy (DOE) decision that plutonium fuels should not be fabricated in areas near the Site's boundaries, as well as by changing facility structural requirements. Inventory transfer has been followed by the cleanout and stabilization of plutonium oxide (PuO 2 ) and enriched uranium oxide (UO 2 ) residues and powders in the facility's equipment and duct work. The Hanford Site, located in southeastern Washington state, was one of America's primary arsenals of nuclear defense production for nearly 50 years beginning in World War II. Approximately 53 metric tons of weapons grade plutonium, over half of the national supply and about one quarter of the world's supply, were produced at Hanford between 1944 and 1989. Today, many Site buildings are undergoing deactivation, a precursor phase to decontamination and decommissioning (D ampersand D). The primary difference between the two activities is that equipment and structural items are not removed or torn down in deactivation. However, utilities are disconnected, and special nuclear materials (SNM) as well as hazardous and pyrophoric substances are removed from structures undergoing this process

  10. Integrated Project Management Planning for the Deactivation of the Savannah River Site F-Canyon Complex

    Energy Technology Data Exchange (ETDEWEB)

    Clark, T.G.

    2000-12-01

    This paper explains the planning process that is being utilized by the Westinghouse Savannah River Company to take the F-Canyon Complex facilities from operations to a deactivated condition awaiting final decommissioning.

  11. Structure of the Deactive State of Mammalian Respiratory Complex I.

    Science.gov (United States)

    Blaza, James N; Vinothkumar, Kutti R; Hirst, Judy

    2018-02-06

    Complex I (NADH:ubiquinone oxidoreductase) is central to energy metabolism in mammalian mitochondria. It couples NADH oxidation by ubiquinone to proton transport across the energy-conserving inner membrane, catalyzing respiration and driving ATP synthesis. In the absence of substrates, active complex I gradually enters a pronounced resting or deactive state. The active-deactive transition occurs during ischemia and is crucial for controlling how respiration recovers upon reperfusion. Here, we set a highly active preparation of Bos taurus complex I into the biochemically defined deactive state, and used single-particle electron cryomicroscopy to determine its structure to 4.1 Å resolution. We show that the deactive state arises when critical structural elements that form the ubiquinone-binding site become disordered, and we propose reactivation is induced when substrate binding to the NADH-reduced enzyme templates their reordering. Our structure both rationalizes biochemical data on the deactive state and offers new insights into its physiological and cellular roles. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Deactivation of the EBR-II complex

    Energy Technology Data Exchange (ETDEWEB)

    Michelbacher, J.A.; Earle, O.K.; Henslee, S.P. [and others

    1997-12-31

    In January of 1994, the Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to place the Experimental Breeder Reactor-II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The ultimate goal of the deactivation process is to place the EBR-II complex in a stable condition until a decontamination and decommissioning (D&D) plan can be prepared, thereby minimizing requirements for maintenance and surveillance and maximizing the amount of time for radioactive decay. The final closure state will be achieved in full compliance with federal, state and local environmental, safety, and health regulations and requirements. The decision to delay the development of a detailed D&D plan has necessitated this current action. The EBR-II is a pool-type reactor. The primary system contains approximately 87,000 gallons of sodium, while the secondary system has 13,000 gallons. In order to properly dispose of the sodium in compliance with the Resource Conservation and Recovery Act (RCRA), a facility has been built to react the sodium to a dry carbonate powder in a two stage process. Deactivation of a liquid metal fast breeder reactor (LMFBR) presents unique concerns. Residual amounts of sodium remaining in the primary and secondary systems must be either reacted or inerted to preclude future concerns with sodium-air reactions that generate explosive mixtures of hydrogen and leave corrosive compounds. Residual amounts of sodium on components will effectively {open_quotes}solder{close_quotes} components in place, making future operation or removal unfeasible.

  13. Deactivation of the EBR-II complex

    International Nuclear Information System (INIS)

    Michelbacher, J.A.; Earle, O.K.; Henslee, S.P.

    1997-01-01

    In January of 1994, the Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to place the Experimental Breeder Reactor-II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The ultimate goal of the deactivation process is to place the EBR-II complex in a stable condition until a decontamination and decommissioning (D ampersand D) plan can be prepared, thereby minimizing requirements for maintenance and surveillance and maximizing the amount of time for radioactive decay. The final closure state will be achieved in full compliance with federal, state and local environmental, safety, and health regulations and requirements. The decision to delay the development of a detailed D ampersand D plan has necessitated this current action. The EBR-II is a pool-type reactor. The primary system contains approximately 87,000 gallons of sodium, while the secondary system has 13,000 gallons. In order to properly dispose of the sodium in compliance with the Resource Conservation and Recovery Act (RCRA), a facility has been built to react the sodium to a dry carbonate powder in a two stage process. Deactivation of a liquid metal fast breeder reactor (LMFBR) presents unique concerns. Residual amounts of sodium remaining in the primary and secondary systems must be either reacted or inerted to preclude future concerns with sodium-air reactions that generate explosive mixtures of hydrogen and leave corrosive compounds. Residual amounts of sodium on components will effectively open-quotes solderclose quotes components in place, making future operation or removal unfeasible

  14. Life cycle baseline summary for ADS 6504IS Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-11-01

    The purpose of the Isotopes Facility Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S ampersand M) and as quickly and economically as possible. This baseline plan establishes the official target schedule for completing the deactivation work and the associated budget required for deactivation and the necessary S ampersand M. Deactivation of the facilities 3026C, 3026D, 3028, 3029, 3038E, 3038M, and 3038AHF, the Center Circle buildings 3047, 3517, and 7025 will continue though Fiscal Year (FY) 1999. The focus of the project in the early years will be on the smaller buildings that require less deactivation and can bring an early return in reducing S ampersand M costs. This baseline plan covers the period from FY1995 throughout FY2000. Deactivation will continue in various facilities through FY1999. A final year of S ampersand M will conclude the project in FY2000. The estimated total cost of the project during this period is $51M

  15. Prognostic value of posteromedial cortex deactivation in mild cognitive impairment.

    Directory of Open Access Journals (Sweden)

    Jeffrey R Petrella

    2007-10-01

    Full Text Available Normal subjects deactivate specific brain regions, notably the posteromedial cortex (PMC, during many tasks. Recent cross-sectional functional magnetic resonance imaging (fMRI data suggests that deactivation during memory tasks is impaired in Alzheimer's disease (AD. The goal of this study was to prospectively determine the prognostic significance of PMC deactivation in mild cognitive impairment (MCI.75 subjects (34 MCI, 13 AD subjects and 28 controls underwent baseline fMRI scanning during encoding of novel and familiar face-name pairs. MCI subjects were followed longitudinally to determine conversion to AD. Regression and analysis of covariance models were used to assess the effect of PMC activation/deactivation on conversion to dementia as well as in the longitudinal change in dementia measures. At longitudinal follow up of up to 3.5 years (mean 2.5+/-0.79 years, 11 MCI subjects converted to AD. The proportion of deactivators was significantly different across all groups: controls (79%, MCI-Nonconverters (73%, MCI-converters (45%, and AD (23% (p<0.05. Mean PMC activation magnitude parameter estimates, at baseline, were negative in the control (-0.57+/-0.12 and MCI-Nonconverter (-0.33+/-0.14 groups, and positive in the MCI-Converter (0.37+/-0.40 and AD (0.92+/-0.30 groups. The effect of diagnosis on PMC deactivation remained significant after adjusting for age, education and baseline Mini-Mental State Exam (p<0.05. Baseline PMC activation magnitude was correlated with change in dementia ratings from baseline.Loss of physiological functional deactivation in the PMC may have prognostic value in preclinical AD, and could aid in profiling subgroups of MCI subjects at greatest risk for progressive cognitive decline.

  16. PUREX/UO3 facilities deactivation lessons learned history

    International Nuclear Information System (INIS)

    Hamrick, D.G.; Gerber, M.S.

    1995-01-01

    The Plutonium-Uranium Extraction (PUREX) Facility operated from 1956-1972, from 1983-1988, and briefly during 1989-1990 to produce for national defense at the Hanford Site in Washington State. The Uranium Trioxide (UO 3 ) Facility operated at the Hanford Site from 1952-1972, 1984-1988, and briefly in 1993. Both plants were ordered to permanent shutdown by the U.S. Department of Energy (DOE) in December 1992, thus initiating their deactivation phase. Deactivation is that portion of a facility's life cycle that occurs between operations and final decontamination and decommissioning (D ampersand D). This document details the history of events, and the lessons learned, from the time of the PUREX Stabilization Campaign in 1989-1990, through the end of the first full fiscal year (FY) of the deactivation project (September 30, 1994)

  17. Rupture loop annex ion exchange RLAIX vault deactivation

    Energy Technology Data Exchange (ETDEWEB)

    Ham, J.E.; Harris, D.L., Westinghouse Hanford

    1996-08-01

    This engineering report documents the deactivation, stabilization and final conditions of the Rupture Loop Annex Ion Exchange (RLAIX) Vault located northwest of the 309 Building`s Plutonium Recycle Test Reactor (PRTR). Twelve ion exchange columns, piping debris, and column liquid were removed from the vault, packaged and shipped for disposal. The vault walls and floor were decontaminated, and portions of the vault were painted to fix loose contamination. Process piping and drains were plugged, and the cover blocks and rain cover were installed. Upon closure,the vault was empty, stabilized, isolated.

  18. Deactivation and regeneration of ZSM-5 zeolite in catalytic pyrolysis of plastic wastes

    International Nuclear Information System (INIS)

    Lopez, A.; Marco, I. de; Caballero, B.M.; Adrados, A.; Laresgoiti, M.F.

    2011-01-01

    Highlights: → Pyrolysis transforms plastic wastes in valuable liquids and gases useful as fuels or source of chemicals. → The use of ZSM-5 zeolite in pyrolysis favours the production of gases and of lighter and more aromatic liquids. → ZSM-5 zeolite is almost completely deactivated after one plastics pyrolysis experiment. → ZSM-5 zeolite used in plastic wastes pyrolysis can be regenerated by burning the deposited coke in an air stream. → Regenerated ZSM-5 recovers its activity and produces liquids and gases equivalent to those obtained with fresh catalyst. - Abstract: In this work, a study of the regeneration and reuse of ZSM-5 zeolite in the pyrolysis of a plastic mixture has been carried out in a semi-batch reactor at 440 deg. C. The results have been compared with those obtained with fresh-catalyst and in non-catalytic experiments with the same conditions. The use of fresh catalyst produces a significant change in both the pyrolysis yields and the properties of the liquids and gases obtained. Gases more rich in C3-C4 and H 2 are produced, as well as lower quantities of aromatic liquids if compared with those obtained in thermal decomposition. The authors have proved that after one pyrolysis experiment the zeolite loses quite a lot of its activity, which is reflected in both the yields and the products quality; however, this deactivation was found to be reversible since after regeneration heating at 550 deg. C in oxygen atmosphere, this catalyst recovered its initial activity, generating similar products and in equivalent proportions as those obtained with fresh catalyst.

  19. Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-08-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S and M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S and M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the EFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of EFDP Facilities was initiated in FY 1994 and will be completed in FY 2000. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $51M. The costs are summarized. Upon completion of deactivation, annual S and M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year

  20. The nonadiabatic deactivation paths of pyrrole

    International Nuclear Information System (INIS)

    Barbatti, Mario; Vazdar, Mario; Aquino, Adelia J. A.; Eckert-Maksic, Mirjana; Lischka, Hans

    2006-01-01

    Multireference configuration interaction (MRCI) calculations have been performed for pyrrole with the aim of providing an explanation for the experimentally observed photochemical deactivation processes. Potential energy curves and minima on the crossing seam were determined using the analytic MRCI gradient and nonadiabatic coupling features of the COLUMBUS program system. A new deactivation mechanism based on an out-of-plane ring deformation is presented. This mechanism directly couples the charge transfer 1 ππ* and ground states. It may be responsible for more than 50% of the observed photofragments of ππ*-excited pyrrole. The ring deformation mechanism should act complementary to the previously proposed NH-stretching mechanism, thus offering a more complete interpretation of the pyrrole photodynamics

  1. Anterior medial prefrontal cortex exhibits activation during task preparation but deactivation during task execution.

    Directory of Open Access Journals (Sweden)

    Hideya Koshino

    Full Text Available BACKGROUND: The anterior prefrontal cortex (PFC exhibits activation during some cognitive tasks, including episodic memory, reasoning, attention, multitasking, task sets, decision making, mentalizing, and processing of self-referenced information. However, the medial part of anterior PFC is part of the default mode network (DMN, which shows deactivation during various goal-directed cognitive tasks compared to a resting baseline. One possible factor for this pattern is that activity in the anterior medial PFC (MPFC is affected by dynamic allocation of attentional resources depending on task demands. We investigated this possibility using an event related fMRI with a face working memory task. METHODOLOGY/PRINCIPAL FINDINGS: Sixteen students participated in a single fMRI session. They were asked to form a task set to remember the faces (Face memory condition or to ignore them (No face memory condition, then they were given 6 seconds of preparation period before the onset of the face stimuli. During this 6-second period, four single digits were presented one at a time at the center of the display, and participants were asked to add them and to remember the final answer. When participants formed a task set to remember faces, the anterior MPFC exhibited activation during a task preparation period but deactivation during a task execution period within a single trial. CONCLUSIONS/SIGNIFICANCE: The results suggest that the anterior MPFC plays a role in task set formation but is not involved in execution of the face working memory task. Therefore, when attentional resources are allocated to other brain regions during task execution, the anterior MPFC shows deactivation. The results suggest that activation and deactivation in the anterior MPFC are affected by dynamic allocation of processing resources across different phases of processing.

  2. Annual evaluation of routine radiological survey/monitoring frequencies for the High Ranking Facilities Deactivating Project at Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-12-01

    The Bethel Valley Watershed at the Oak Ridge National Laboratory (ORNL) has several Environmental Management (EM) facilities that are designated for deactivation and subsequent decontamination and decommissioning (D and D). The Surplus Facilities Program at ORNL provides surveillance and maintenance support for these facilities as deactivation objectives are completed to reduce the risks associated with radioactive material inventories, etc. The Bechtel Jacobs Company LLC Radiological Control (RADCON) Program has established requirements for radiological monitoring and surveying radiological conditions in these facilities. These requirements include an annual evaluation of routine radiation survey and monitoring frequencies. Radiological survey/monitoring frequencies were evaluated for two High Ranking Facilities Deactivation Project facilities, the Bulk Shielding Facility and Tower Shielding Facility. Considerable progress has been made toward accomplishing deactivation objectives, thus the routine radiological survey/monitoring frequencies are being reduced for 1999. This report identifies the survey/monitoring frequency adjustments and provides justification that the applicable RADCON Program requirements are also satisfied

  3. Characterization and Regeneration of Pt-Catalysts Deactivated in Municipal Waste Flue Gas

    DEFF Research Database (Denmark)

    Rasmussen, Søren Birk; Kustov, Arkadii; Due-Hansen, Johannes

    2006-01-01

    Severe deactivation was observed for industrially aged catalysts used in waste incineration plants and tested in lab-scale. Possible compounds that cause deactivation of these Pt-based CO oxidation catalysts have been studied. Kinetic observations of industrial and model catalysts showed...... that siloxanes were the most severe catalyst poisons, although acidic sulfur compounds also caused deactivation. Furthermore, a method for on-site regeneration without shutdown of the catalytic flue gas cleaning system has been developed, i.e. an addition of H-2/N-2 gas to the off-gas can completely restore...... the activity of the deactivated catalysts. (c) 2006 Elsevier B.V. All rights reserved....

  4. Long term deactivation test of high dust SCR catalysts by straw co-firing

    Energy Technology Data Exchange (ETDEWEB)

    Weigang Lin; Degn Jensen, A.; Bjerkvig, J.

    2009-12-15

    The consequences of carbon dioxide induced global warming cause major concern worldwide. The consumption of energy produced with fossil fuels is the major factor that contributes to the global warming. Biomass is a renewable energy resource and has a nature of CO{sub 2} neutrality. Co-combustion of biomass in existing coal fired power plants can maintain high efficiency and reduce the emission of CO{sub 2} at same time. However, one of the problems faced by co-firing is deactivation of the SCR catalysts. Understanding of the mechanisms of deactivation of the catalyst elements at co-firing conditions is crucial for long term runs of the power plants. Twenty six SCR catalyst elements were exposed at two units (SSV3 and SSV4) in the Studstrup Power Plant for a long period. Both units co-fire coal and straw with a typical fraction of 8-10% straw on an energy basis during co-firing. SSV4 unit operated in co-firing mode most of the time; SSV3 unit co-fired straw half of the operating time. The main objective of this PSO-project is to gain knowledge of a long term influence on catalyst activity when co-firing straw in coal-fired power plants, thus, to improve the basis for operating the SCR-plants for NO{sub x}-reduction. The exposure time of the applied catalyst elements (HTAS and BASF) varied from approximately 5000 to 19000 hours in the power plant by exchanging the element two times. The activity of all elements was measured before and after exposure in a bench scale test rig at the Department of Chemical and Biochemical Engineering, Technical University of Denmark. The results show that the activity, estimated by exclusion of channel clogging of the elements, decreases gradually with the total exposure time. It appears that the exposure time under co-firing condition has little effect on the deactivation of the catalyst elements and no sharp decrease of the activity was observed. The average deactivation rate of the catalyst elements is 1.6 %/1000 hours. SEM

  5. Frontal brain deactivation during a non-verbal cognitive judgement bias test in sheep.

    Science.gov (United States)

    Guldimann, Kathrin; Vögeli, Sabine; Wolf, Martin; Wechsler, Beat; Gygax, Lorenz

    2015-02-01

    Animal welfare concerns have raised an interest in animal affective states. These states also play an important role in the proximate control of behaviour. Due to their potential to modulate short-term emotional reactions, one specific focus is on long-term affective states, that is, mood. These states can be assessed by using non-verbal cognitive judgement bias paradigms. Here, we conducted a spatial variant of such a test on 24 focal animals that were kept under either unpredictable, stimulus-poor or predictable, stimulus-rich housing conditions to induce differential mood states. Based on functional near-infrared spectroscopy, we measured haemodynamic frontal brain reactions during 10 s in which the sheep could observe the configuration of the cognitive judgement bias trial before indicating their assessment based on the go/no-go reaction. We used (generalised) mixed-effects models to evaluate the data. Sheep from the unpredictable, stimulus-poor housing conditions took longer and were less likely to reach the learning criterion and reacted slightly more optimistically in the cognitive judgement bias test than sheep from the predictable, stimulus-rich housing conditions. A frontal cortical increase in deoxy-haemoglobin [HHb] and a decrease in oxy-haemoglobin [O2Hb] were observed during the visual assessment of the test situation by the sheep, indicating a frontal cortical brain deactivation. This deactivation was more pronounced with the negativity of the test situation, which was reflected by the provenance of the sheep from the unpredictable, stimulus-poor housing conditions, the proximity of the cue to the negatively reinforced cue location, or the absence of a go reaction in the trial. It seems that (1) sheep from the unpredictable, stimulus-poor in comparison to sheep from the predictable, stimulus-rich housing conditions dealt less easily with the test conditions rich in stimuli, that (2) long-term housing conditions seemingly did not influence mood

  6. Deactivation of wastewater-derived N-nitrosodimethylamine precursors with chlorine dioxide oxidation and the effect of pH.

    Science.gov (United States)

    Uzun, Habibullah; Kim, Daekyun; Karanfil, Tanju

    2018-09-01

    In this study, the effect of chlorine dioxide (ClO 2 ) oxidation on the deactivation of wastewater (WW)-derived N-nitrosodimethylamine (NDMA) precursors was investigated under various conditions (i.e., ClO 2 application pH, dose and contact time). At pH 6.0, decreases in NDMA formation potentials (FPs) or occurrences (under uniform formation conditions [UFC]) were relatively low (NDMA FP removals were significant (up to ~85%) under the same oxidation conditions in WW-impacted waters at pH 7.8. This indicates that the majority of WW-derived NDMA precursors can be deactivated with ClO 2 oxidation above neutral pH. This was attributed to the better oxidative reaction of ClO 2 with amines that have lone pair electrons to be shared at higher oxidation pH conditions. In addition, relatively short oxidation periods with ClO 2 (i.e., ≤10 min) or low Ct (concentration × time, ~10 mg ∗ min/L) values were sufficient for the deactivation of WW-derived NDMA precursors. ClO 2 oxidation was effective in freshly WW-impacted waters. Natural attenuation processes (e.g., sorption, biodegradation, etc.) can change the reactivity of WW-derived NDMA precursors for oxidation with ClO 2 . The effect of ClO 2 on the removal of THM precursors was low (NDMA and regulated DBP formation during water treatment, especially for utilities treating WW-impacted water sources. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. ALARA review for the deactivation of 105-N Lift Station

    International Nuclear Information System (INIS)

    Nellesen, A.L.

    1997-01-01

    This ALARA review provides a description of the engineering and administrative controls used to manage personnel exposure and to control contamination levels and airborne radioactivity concentrations, while removing water, sludge, stabilizing surfaces, and all other associated work involved in the deactivation of the 105-N Lift Station. The lift station was used as a sump and received contaminated water from the 105-N Fuel Storage Basin weirs and contaminated drains in the 105-N Building. During operation water from the lift station was pumped to the 1310-N and 1325-N cribs. Deactivation of the lift station is a critical step in completing the deactivation of N-Area

  8. PUREX/UO{sub 3} facilities deactivation lessons learned history

    Energy Technology Data Exchange (ETDEWEB)

    Hamrick, D.G.; Gerber, M.S.

    1995-01-01

    The Plutonium-Uranium Extraction (PUREX) Facility operated from 1956-1972, from 1983-1988, and briefly during 1989-1990 to produce for national defense at the Hanford Site in Washington State. The Uranium Trioxide (UO{sub 3}) Facility operated at the Hanford Site from 1952-1972, 1984-1988, and briefly in 1993. Both plants were ordered to permanent shutdown by the U.S. Department of Energy (DOE) in December 1992, thus initiating their deactivation phase. Deactivation is that portion of a facility`s life cycle that occurs between operations and final decontamination and decommissioning (D&D). This document details the history of events, and the lessons learned, from the time of the PUREX Stabilization Campaign in 1989-1990, through the end of the first full fiscal year (FY) of the deactivation project (September 30, 1994).

  9. Final deactivation report on the radioisotope production Lab-C, Building 3030, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-08-01

    The purpose of this report is to document the condition of Bldg. 3030 completion of deactivation activities as outlined by the Department of Energy (DOE) Office of Nuclear Materials and Facility Stabilization Program (EM-60) guidance documentation. This report outlines the activities conducted to place the facility in a safe and environmentally sound condition for transfer to DOE's Office of Environmental Restoration Program (EM-40). This report provides profile of Bldg. 3030 before and after deactivation activities. Turnover items, such as the Postdeactivation Surveillance ampersand Maintenance Plan, remaining hazardous materials, radiological controls, Safeguards and Security, QA, facility operations, and supporting documentation provided in the Office of Nuclear Materials and Facility Stabilization Program (EM-60) Turnover package are discussed. Building 3030 will require access to facilitate required S ampersand M activities to maintain the building safety envelope. Building 3030 was stabilized during deactivation so that when transferred to the EM-40 program, only a minimal S ampersand M effort would be required to maintain the building's safety envelope. Other than the minimal S ampersand M activities, the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only for required S ampersand M. All materials have been removed from the building and the hot cell, and all utility systems, piping, and alarms have been deactivated

  10. Final deactivation report on the radioisotope production Lab-D, Building 3031, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-08-01

    The purpose of this report is to document the condition of Bldg. 3031 after completion of deactivation activities as outlined by the Department of Energy Office of Nuclear Materials and Facility Stabilization Program (EM-60) guidance documentation. This report outlines the activities conducted to place the facility in a safe and environmentally sound condition for transfer to the Department of Energy Office of Environmental Restoration (EM-40) Program. This report provides a profile of Bldg. 3031 before and after deactivation activities. Turnover items, such as the Postdeactivation Surveillance ampersand Maintenance Plan, remaining hazardous materials, radiological controls, Safeguards and Security, quality assurance, facility operations, and supporting documentation provided in the Office of Nuclear Materials and Facility Stabilization Program (EM-60) Turnover package, are discussed. Building 3031 will require access to facilitate required surveillance and maintenance activities to maintain the building safety envelope. Building 3031 was stabilized during deactivation so that when transferred to the EM-40 program, only a minimal surveillance and maintenance effort would be required to maintain the building safety envelope. Other than the minimal surveillance and maintenance activities, the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only to perform the required surveillance and maintenance. All materials have been removed from the building and the hot cell, and all utility systems, piping, and alarms have been deactivated

  11. Catalyst Deactivation and Regeneration Processes in Biogas Tri-Reforming Process. The Effect of Hydrogen Sulfide Addition

    Directory of Open Access Journals (Sweden)

    Urko Izquierdo

    2018-01-01

    Full Text Available This work studies Ni-based catalyst deactivation and regeneration processes in the presence of H2S under a biogas tri-reforming process for hydrogen production, which is an energy vector of great interest. 25 ppm of hydrogen sulfide were continuously added to the system in order to provoke an observable catalyst deactivation, and once fully deactivated two different regeneration processes were studied: a self-regeneration and a regeneration by low temperature oxidation. For that purpose, several Ni-based catalysts and a bimetallic Rh-Ni catalyst supported on alumina modified with CeO2 and ZrO2 were used as well as a commercial Katalco 57-5 for comparison purposes. Ni/Ce-Al2O3 and Ni/Ce-Zr-Al2O3 catalysts almost recovered their initial activity. For these catalysts, after the regeneration under oxidative conditions at low temperature, the CO2 conversions achieved—79.5% and 86.9%, respectively—were significantly higher than the ones obtained before sulfur poisoning—66.7% and 45.2%, respectively. This effect could be attributed to the support modification with CeO2 and the higher selectivity achieved for the Reverse Water-Gas-Shift (rWGS reaction after catalysts deactivation. As expected, the bimetallic Rh-Ni/Ce-Al2O3 catalyst showed higher resistance to deactivation and its sulfur poisoning seems to be reversible. In the case of the commercial and Ni/Zr-Al2O3 catalysts, they did not recover their activity.

  12. PUREX Plant deactivation function analysis report

    International Nuclear Information System (INIS)

    Lund, D.P.

    1995-09-01

    The document contains the functions, function definitions, function interfaces, function interface definitions, Input Computer Automated Manufacturing Definition (IDEFO) diagrams, and a function hierarchy chart that describe what needs to be performed to deactivate PUREX

  13. PUREX/UO3 facilities deactivation lessons learned history

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1997-01-01

    In May 1997, a historic deactivation project at the PUREX (Plutonium URanium EXtraction) facility at the Hanford Site in south-central Washington State concluded its activities (Figure ES-1). The project work was finished at $78 million under its original budget of $222.5 million, and 16 months ahead of schedule. Closely watched throughout the US Department of Energy (DOE) complex and by the US Department of Defense for the value of its lessons learned, the PUREX Deactivation Project has become the national model for the safe transition of contaminated facilities to shut down status

  14. 308 Building deactivation function analysis report

    International Nuclear Information System (INIS)

    Lund, D.P.

    1995-09-01

    The document contains the functions, function definitions, function interfaces, function interface definitions, Input Computer Automated Manufacturing Definition (IDEFO) diagrams, and a function hierarchy chart that describes what needs to be performed to deactivate the 308 Building

  15. 309 Building deactivation function analysis report

    International Nuclear Information System (INIS)

    Lund, D.P.

    1995-09-01

    The document contains the functions, function definitions, function interfaces, function interface definitions, Input Computer Automated Manufacturing Definition (IDEFO) diagrams, and a function hierarchy chart that describe what needs to be performed to deactivate the 309 Building

  16. Deactivation of nickel catalysts in the methanization of hydrogen/carbon monoxide mixtures under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zeeb, H P

    1979-01-01

    The deactivation course of nickel methanization catalysts was investigated in the temperature range of 310/sup 0/C to 370/sup 0/C and in the pressure region of 20 to 80 bar. Raising the CO partial pressure accelerated the deactivation whereas raising the H/sub 2/ partial pressure slowed it down. An influence of the temperature could not be clearly recognized. The deactivation got slower with greater dwell time and larger degree of conversion. Two hypotheses to explain the deactivation are given.

  17. Deactivation of the EBR-II complex

    International Nuclear Information System (INIS)

    Michelbacher, J.A.; Earle, O.K.; Henslee, S.P.; Wells, P.B.; Zahn, T.P.

    1996-01-01

    In January of 1994, the Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to place the Experimental Breeder Reactor-II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The ultimate goal of the deactivation process is to place the EBR-II complex in a stable condition until a decontamination and decommissioning (D and D) plan can be prepared, thereby minimizing requirements for maintenance and surveillance and maximizing the amount of time for radioactive decay. The final closure state will be achieved in full compliance with federal, state and local environmental, safety, and health regulations and requirements. The decision to delay the development of a detailed D and D plan has necessitated this current action

  18. Deactivation of the EBR-II complex

    Energy Technology Data Exchange (ETDEWEB)

    Michelbacher, J A; Earle, O K; Henslee, S P; Wells, P B; Zahn, T P

    1996-01-01

    In January of 1994, the Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to place the Experimental Breeder Reactor-II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The ultimate goal of the deactivation process is to place the EBR-II complex in a stable condition until a decontamination and decommissioning (D and D) plan can be prepared, thereby minimizing requirements for maintenance and surveillance and maximizing the amount of time for radioactive decay. The final closure state will be achieved in full compliance with federal, state and local environmental, safety, and health regulations and requirements. The decision to delay the development of a detailed D and D plan has necessitated this current action.

  19. Quaternion Based Thermal Condition Monitoring System

    Science.gov (United States)

    Wong, Wai Kit; Loo, Chu Kiong; Lim, Way Soong; Tan, Poi Ngee

    In this paper, we will propose a new and effective machine condition monitoring system using log-polar mapper, quaternion based thermal image correlator and max-product fuzzy neural network classifier. Two classification characteristics namely: peak to sidelobe ratio (PSR) and real to complex ratio of the discrete quaternion correlation output (p-value) are applied in the proposed machine condition monitoring system. Large PSR and p-value observe in a good match among correlation of the input thermal image with a particular reference image, while small PSR and p-value observe in a bad/not match among correlation of the input thermal image with a particular reference image. In simulation, we also discover that log-polar mapping actually help solving rotation and scaling invariant problems in quaternion based thermal image correlation. Beside that, log-polar mapping can have a two fold of data compression capability. Log-polar mapping can help smoother up the output correlation plane too, hence makes a better measurement way for PSR and p-values. Simulation results also show that the proposed system is an efficient machine condition monitoring system with accuracy more than 98%.

  20. Deactivation kinetics of acid-sensing ion channel 1a are strongly pH-sensitive.

    Science.gov (United States)

    MacLean, David M; Jayaraman, Vasanthi

    2017-03-21

    Acid-sensing ion channels (ASICs) are trimeric cation-selective ion channels activated by protons in the physiological range. Recent reports have revealed that postsynaptically localized ASICs contribute to the excitatory postsynaptic current by responding to the transient acidification of the synaptic cleft that accompanies neurotransmission. In response to such brief acidic transients, both recombinant and native ASICs show extremely rapid deactivation in outside-out patches when jumping from a pH 5 stimulus to a single resting pH of 8. Given that the resting pH of the synaptic cleft is highly dynamic and depends on recent synaptic activity, we explored the kinetics of ASIC1a and 1a/2a heteromers to such brief pH transients over a wider [H + ] range to approximate neuronal conditions better. Surprisingly, the deactivation of ASICs was steeply dependent on the pH, spanning nearly three orders of magnitude from extremely fast (pH 8 to very slow (>300 ms) at pH 7. This study provides an example of a ligand-gated ion channel whose deactivation is sensitive to agonist concentrations that do not directly activate the receptor. Kinetic simulations and further mutagenesis provide evidence that ASICs show such steeply agonist-dependent deactivation because of strong cooperativity in proton binding. This capacity to signal across such a large synaptically relevant bandwidth enhances the response to small-amplitude acidifications likely to occur at the cleft and may provide ASICs with the ability to shape activity in response to the recent history of the synapse.

  1. Project management plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory. Environmental Restoration Program

    International Nuclear Information System (INIS)

    1995-01-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place nineteen former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S ampersand M) and as quickly and economically as possible. Implementation and completion of the deactivation project win further reduce the already small risks to the environment and to public safety and health. Furthermore, the project should result in significant S ampersand M cost savings in the future. The IFDP management plan has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted a strategy to deactivate the simple facilities first, to reduce the scope of the project, and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify those activities that best promote the project mission and result in largest cost savings. The Work Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory (Energy Systems 1994) defines the project schedule, the cost estimate, and the technical approach for the project

  2. Deactivation of waste waters in the Czechoslovak Uranium Industry

    International Nuclear Information System (INIS)

    Priban, V.

    1978-01-01

    Deactivation techniques are described used for the treatment of waste waters from uranium mines and uranium chemical treatment plants. With treatment plant waters this is done either by precipitation of radium with barium sulfate or using multistage evaporating units. Mine waste waters are deactivated by sorption on ion exchangers; strongly basic anion exchangers, mostly Wofatit SBW, Varion AP or Ostion AU are used for uranium, while the strongly acidic Ostion KS is used for radium. (Z.M.)

  3. Hydrotreating catalyst deactivation by coke from SRC-II oil

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Y.; Kumata, F.; Massoth, F.E.

    1988-10-01

    Samples of a CoMo/Al/sub 2/O/sub 3/ catalyst were partially deactivated with SRC-II feed in an autoclave reactor to give coked samples of 5 to 18% C. The coked catalysts were analyzed for surface area, pore volume, coronene adsorption and diffusivity, and their catalytic activity determined for hydrodesulfurization (HDS), hydrodeoxygenation (HDO) and C-N hydrogenolysis (CNH) using model compounds. All of the above measurements decreased with increase in coke content. Property data indicate that some pores are blocked by coke and diffusivity results show narrowing of pore mouths with increasing coke content. Catalyst deactivation versus coke level was identical for HDS and HDO, but less for CNH. A simple model of coke deactivation was developed to relate activity to coke content. Coke is envisioned as forming wedge-like deposits in the catalyst pores. 11 refs., 5 figs., 3 tabs.

  4. Final deactivation report on the radioisotope production Lab-H, Building 3118, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-08-01

    This report outlines the activities conducted to place the facility in a safe and environmentally sound condition for transfer to the DOE Office of Environmental Restoration Program (EM-40). This report provides a history and profile of Bldg. 3118 prior to and after deactivation. Turnover items (e.g. Surveillance ampersand Maintenance Plant, remaining materials, etc.) are discussed. Building 3118 was stabilized during deactivation so that when transferred to the EM-40 program, only minimal S ampersand M is required (other than that, the building will be unoccupied and the exterior doors locked)

  5. Specialization in the default mode: Task-induced brain deactivations dissociate between visual working memory and attention.

    Science.gov (United States)

    Mayer, Jutta S; Roebroeck, Alard; Maurer, Konrad; Linden, David E J

    2010-01-01

    The idea of an organized mode of brain function that is present as default state and suspended during goal-directed behaviors has recently gained much interest in the study of human brain function. The default mode hypothesis is based on the repeated observation that certain brain areas show task-induced deactivations across a wide range of cognitive tasks. In this event-related functional resonance imaging study we tested the default mode hypothesis by comparing common and selective patterns of BOLD deactivation in response to the demands on visual attention and working memory (WM) that were independently modulated within one task. The results revealed task-induced deactivations within regions of the default mode network (DMN) with a segregation of areas that were additively deactivated by an increase in the demands on both attention and WM, and areas that were selectively deactivated by either high attentional demand or WM load. Attention-selective deactivations appeared in the left ventrolateral and medial prefrontal cortex and the left lateral temporal cortex. Conversely, WM-selective deactivations were found predominantly in the right hemisphere including the medial-parietal, the lateral temporo-parietal, and the medial prefrontal cortex. Moreover, during WM encoding deactivated regions showed task-specific functional connectivity. These findings demonstrate that task-induced deactivations within parts of the DMN depend on the specific characteristics of the attention and WM components of the task. The DMN can thus be subdivided into a set of brain regions that deactivate indiscriminately in response to cognitive demand ("the core DMN") and a part whose deactivation depends on the specific task. 2009 Wiley-Liss, Inc.

  6. Deactivation by carbon of iron catalysts for indirect liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, C.H.

    1990-10-11

    This report describes recent progress in a fundamental, three-year investigation of carbon formation and its effects on the activity and selectivity of promoted iron catalysts for Fischer-Tropsch (FT) synthesis, the objectives of which are: determine rates and mechanisms of carbon deactivation of unsupported Fe and Fe/K catalysts during CO hydrogenation over a range of CO concentrations, CO:H{sub 2} ratios, and temperatures; model the rates of deactivation of the same catalysts in fixed-bed reactors. During the thirteenth quarter design of software for a computer-automated reactor system to be used in the kinetic and deactivation studies was continued. Further progress was made toward the completion of the control language, control routines, and software for operating this system. Progress was also made on the testing of the system hardware and software. H{sub 2} chemisorption capacities and activity selectivity data were also measured for three iron catalysts promoted with 1% alumina. 47 refs., 8 figs., 1 tab.

  7. Rapid thermal conditioning of sewage sludge

    Science.gov (United States)

    Zheng, Jianhong

    Rapid thermal conditioning (RTC) is a developing technology recently applied to sewage sludge treatment. Sludge is heated rapidly to a reaction temperature (up to about 220sp°C) under sufficient pressure to maintain the liquid phase. Reaction is quenched after 10 to 30 seconds when the mixture of sludge and steam pass through a pressure let-down valve. This process reduces the amount of sludge requiring land disposal, eliminates the need for polymer coagulant, improves dewaterability, increases methane production, and further reduces the concentration of pathogens. The odor problem associated with traditional thermal conditioning processes is largely minimized. Ammonia removal is readily integrated with the process. For this research, a pilot unit was constructed capable of processing 90 liters of sludge per hour. Over 22 runs were made with this unit using sludge from New York City Water Pollution Control Plants (WPCP). Sludges processed in this equipment were tested to determine the effect of RTC operating conditions on sludge dewaterability, biodegradability, and other factors affecting the incorporation of RTC into wastewater treatment plants. Dewaterability of thermally conditioned sludge was assessed for cetrifugeability and filterability. Bench scale centrifugation was used for evaluating centrifugeability, pressure filtration and capillary suction time (CST) for filterability. A mathematical model developed for centrifuge dewatering was used to predict the effect of RTC on full scale centrifuge performance. Particle size distribution and solids density of raw and treated PDS were also analyzed. An observed increase in sludge solids density at least partially explains its improved centrifugeability. An investigation of thermally conditioned amino acids showed that the L-isomer is highly biodegradable while the D-isomers are generally less so. Glucose is highly biodegradable, but rapidly becomes refractory as thermal conditioning time is lengthened. This

  8. Effect of Steam Deactivation Severity of ZSM-5 Additives on LPG Olefins Production in the FCC Process.

    Science.gov (United States)

    Gusev, Andrey A; Psarras, Antonios C; Triantafyllidis, Konstantinos S; Lappas, Angelos A; Diddams, Paul A

    2017-10-21

    ZSM-5-containing catalytic additives are widely used in oil refineries to boost light olefin production and improve gasoline octanes in the Fluid Catalytic Cracking (FCC) process. Under the hydrothermal conditions present in the FCC regenerator (typically >700 °C and >8% steam), FCC catalysts and additives are subject to deactivation. Zeolites (e.g., Rare Earth USY in the base catalyst and ZSM-5 in Olefins boosting additives) are prone to dealumination and partial structural collapse, thereby losing activity, micropore surface area, and undergoing changes in selectivity. Fresh catalyst and additives are added at appropriate respective levels to the FCC unit on a daily basis to maintain overall targeted steady-state (equilibrated) activity and selectivity. To mimic this process under accelerated laboratory conditions, a commercial P/ZSM-5 additive was hydrothermally equilibrated via a steaming process at two temperatures: 788 °C and 815 °C to simulate moderate and more severe equilibration industrial conditions, respectively. n -Dodecane was used as probe molecule and feed for micro-activity cracking testing at 560 °C to determine the activity and product selectivity of fresh and equilibrated P-doped ZSM-5 additives. The fresh/calcined P/ZSM-5 additive was very active in C 12 cracking while steaming limited its activity, i.e., at catalyst-to-feed (C/F) ratio of 1, about 70% and 30% conversion was obtained with the fresh and steamed additives, respectively. A greater activity drop was observed upon increasing the hydrothermal deactivation severity due to gradual decrease of total acidity and microporosity of the additives. However, this change in severity did not result in any selectivity changes for the LPG (liquefied petroleum gas) olefins as the nature (Brønsted-to-Lewis ratio) of the acid/active sites was not significantly altered upon steaming. Steam deactivation of ZSM-5 had also no significant effect on aromatics formation which was enhanced at higher

  9. Effect of Steam Deactivation Severity of ZSM-5 Additives on LPG Olefins Production in the FCC Process

    Directory of Open Access Journals (Sweden)

    Andrey A. Gusev

    2017-10-01

    Full Text Available ZSM-5-containing catalytic additives are widely used in oil refineries to boost light olefin production and improve gasoline octanes in the Fluid Catalytic Cracking (FCC process. Under the hydrothermal conditions present in the FCC regenerator (typically >700 °C and >8% steam, FCC catalysts and additives are subject to deactivation. Zeolites (e.g., Rare Earth USY in the base catalyst and ZSM-5 in Olefins boosting additives are prone to dealumination and partial structural collapse, thereby losing activity, micropore surface area, and undergoing changes in selectivity. Fresh catalyst and additives are added at appropriate respective levels to the FCC unit on a daily basis to maintain overall targeted steady-state (equilibrated activity and selectivity. To mimic this process under accelerated laboratory conditions, a commercial P/ZSM-5 additive was hydrothermally equilibrated via a steaming process at two temperatures: 788 °C and 815 °C to simulate moderate and more severe equilibration industrial conditions, respectively. n-Dodecane was used as probe molecule and feed for micro-activity cracking testing at 560 °C to determine the activity and product selectivity of fresh and equilibrated P-doped ZSM-5 additives. The fresh/calcined P/ZSM-5 additive was very active in C12 cracking while steaming limited its activity, i.e., at catalyst-to-feed (C/F ratio of 1, about 70% and 30% conversion was obtained with the fresh and steamed additives, respectively. A greater activity drop was observed upon increasing the hydrothermal deactivation severity due to gradual decrease of total acidity and microporosity of the additives. However, this change in severity did not result in any selectivity changes for the LPG (liquefied petroleum gas olefins as the nature (Brønsted-to-Lewis ratio of the acid/active sites was not significantly altered upon steaming. Steam deactivation of ZSM-5 had also no significant effect on aromatics formation which was enhanced at

  10. Sensitivity of thermally treated Bacillus subtilis spores to subsequent irradiation

    International Nuclear Information System (INIS)

    Mostafa, S.A.; El-Zawahry, Y.A.; Awny, N.M.

    1986-01-01

    B. subtilis spores exposed to thermal treatment at 70 or 80 0 C for 1 hr were more sensitive to subsequent radiation exposure than non-heated spores. Deactivation of previously heated spores by increasing dose of 0-radiation followed an exponential function while, for non-heated spores a shoulder followed by exponential deactivation was noticed. Combined heat-radiation treatment exhibited a synergistic effect on spore deactivation at low irradiation doses, while at high irradiation doses, the effect was more or less additive. Added values of spore injury was higher for B. subtilis spores that received heat and radiation separately than the observed injury for spores that received combined treatment (heat followed by radiation). Results of spore deactivation and injury due to heat followed by radiation treatment are discussed in comparison to those of spores that received radiation-heat sequence

  11. Kinetics with deactivation of methylcyclohexane dehydrogenation for hydrogen energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Maria, G; Marin, A; Wyss, C; Mueller, S; Newson, E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The methylcyclohexane dehydrogenation step to recycle toluene and release hydrogen is being studied as part of a hydrogen energy storage project. The reaction is performed catalytically in a fixed bed reactor, and the efficiency of this step significantly determines overall system economics. The fresh catalyst kinetics and the deactivation of the catalyst by coke play an important role in the process analysis. The main reaction kinetics were determined from isothermal experiments using a parameter sensitivity analysis for model discrimination. An activation energy for the main reaction of 220{+-}11 kJ/mol was obtained from a two-parameter model. From non-isothermal deactivation in PC-controlled integral reactors, an activation energy for deactivation of 160 kJ/mol was estimated. A model for catalyst coke content of 3-17 weight% was compared with experimental data. (author) 3 figs., 6 refs.

  12. PUREX/UO{sub 3} facilities deactivation lessons learned: History

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S.

    1997-11-25

    In May 1997, a historic deactivation project at the PUREX (Plutonium URanium EXtraction) facility at the Hanford Site in south-central Washington State concluded its activities (Figure ES-1). The project work was finished at $78 million under its original budget of $222.5 million, and 16 months ahead of schedule. Closely watched throughout the US Department of Energy (DOE) complex and by the US Department of Defense for the value of its lessons learned, the PUREX Deactivation Project has become the national model for the safe transition of contaminated facilities to shut down status.

  13. A novel tarantula toxin stabilizes the deactivated voltage sensor of bacterial sodium channel.

    Science.gov (United States)

    Tang, Cheng; Zhou, Xi; Nguyen, Phuong Tran; Zhang, Yunxiao; Hu, Zhaotun; Zhang, Changxin; Yarov-Yarovoy, Vladimir; DeCaen, Paul G; Liang, Songping; Liu, Zhonghua

    2017-07-01

    Voltage-gated sodium channels (Na V s) are activated by transiting the voltage sensor from the deactivated to the activated state. The crystal structures of several bacterial Na V s have captured the voltage sensor module (VSM) in an activated state, but structure of the deactivated voltage sensor remains elusive. In this study, we sought to identify peptide toxins stabilizing the deactivated VSM of bacterial Na V s. We screened fractions from several venoms and characterized a cystine knot toxin called JZTx-27 from the venom of tarantula Chilobrachys jingzhao as a high-affinity antagonist of the prokaryotic Na V s Ns V Ba (nonselective voltage-gated Bacillus alcalophilus ) and NaChBac (bacterial sodium channel from Bacillus halodurans ) (IC 50 = 112 nM and 30 nM, respectively). JZTx-27 was more efficacious at weaker depolarizing voltages and significantly slowed the activation but accelerated the deactivation of Ns V Ba, whereas the local anesthetic drug lidocaine was shown to antagonize Ns V Ba without affecting channel gating. Mutation analysis confirmed that JZTx-27 bound to S3-4 linker of Ns V Ba, with F98 being the critical residue in determining toxin affinity. All electrophysiological data and in silico analysis suggested that JZTx-27 trapped VSM of Ns V Ba in one of the deactivated states. In mammalian Na V s, JZTx-27 preferably inhibited the inactivation of Na V 1.5 by targeting the fourth transmembrane domain. To our knowledge, this is the first report of peptide antagonist for prokaryotic Na V s. More important, we proposed that JZTx-27 stabilized the Ns V Ba VSM in the deactivated state and may be used as a probe to determine the structure of the deactivated VSM of Na V s.-Tang, C., Zhou, X., Nguyen, P. T., Zhang, Y., Hu, Z., Zhang, C., Yarov-Yarovoy, V., DeCaen, P. G., Liang, S., Liu, Z. A novel tarantula toxin stabilizes the deactivated voltage sensor of bacterial sodium channel. © FASEB.

  14. Mechanism of acetaldehyde-induced deactivation of microbial lipases

    Directory of Open Access Journals (Sweden)

    Jaeger Karl E

    2011-02-01

    Full Text Available Abstract Background Microbial lipases represent the most important class of biocatalysts used for a wealth of applications in organic synthesis. An often applied reaction is the lipase-catalyzed transesterification of vinyl esters and alcohols resulting in the formation of acetaldehyde which is known to deactivate microbial lipases, presumably by structural changes caused by initial Schiff-base formation at solvent accessible lysine residues. Previous studies showed that several lipases were sensitive toward acetaldehyde deactivation whereas others were insensitive; however, a general explanation of the acetaldehyde-induced inactivation mechanism is missing. Results Based on five microbial lipases from Candida rugosa, Rhizopus oryzae, Pseudomonas fluorescens and Bacillus subtilis we demonstrate that the protonation state of lysine ε-amino groups is decisive for their sensitivity toward acetaldehyde. Analysis of the diverse modification products of Bacillus subtilis lipases in the presence of acetaldehyde revealed several stable products such as α,β-unsaturated polyenals, which result from base and/or amino acid catalyzed aldol condensation of acetaldehyde. Our studies indicate that these products induce the formation of stable Michael-adducts at solvent-accessible amino acids and thus lead to enzyme deactivation. Further, our results indicate Schiff-base formation with acetaldehyde to be involved in crosslinking of lipase molecules. Conclusions Differences in stability observed with various commercially available microbial lipases most probably result from different purification procedures carried out by the respective manufacturers. We observed that the pH of the buffer used prior to lyophilization of the enzyme sample is of utmost importance. The mechanism of acetaldehyde-induced deactivation of microbial lipases involves the generation of α,β-unsaturated polyenals from acetaldehyde which subsequently form stable Michael-adducts with the

  15. Liquid metal reactor deactivation as applied to the experimental breeder reactor - II

    International Nuclear Information System (INIS)

    Earle, O. K.; Michelbacher, J. A.; Pfannenstiel, D. F.; Wells, P. B.

    1999-01-01

    The Experimental Breeder Reactor-II (EBR-II) at Argonne National Laboratory-West (ANL-W) was shutdown in September, 1994. This sodium cooled reactor had been in service since 1964, and by the US Department of Energy (DOE) mandate, was to be placed in an industrially and radiologically safe condition for ultimate decommissioning. The deactivation of a liquid metal reactor presents unique concerns. The first major task associated with the project was the removal of all fueled assemblies. In addition, sodium must be drained from systems and processed for ultimate disposal. Residual quantities of sodium remaining in systems must be deactivated or inerted to preclude future hazards associated with pyrophoricity and generation of potentially explosive hydrogen gas. A Sodium Process Facility (SPF) was designed and constructed to react the elemental sodium from the EBR-II primary and secondary systems to sodium hydroxide for disposal. This facility has a design capacity to allow the reaction of the complete inventory of sodium at ANL-W in less than two years. Additional quantities of sodium from the Fermi-1 reactor are also being treated at the SPF

  16. Model dependences of the deactivation of phytoplankton pigment excitation energy on environmental conditions in the sea

    Directory of Open Access Journals (Sweden)

    Mirosława Ostrowska

    2012-11-01

    Full Text Available A semi-empirical, physical models have been derived of the quantum yield ofthe deactivation processes (fluorescence, photosynthesis and heat productionof excited states in phytoplankton pigment molecules. Besides some alreadyknown models (photosynthesis and fluorescence, this novel approachincorporates the dependence of the dissipation yield of the excitation energyin phytoplankton pigment molecules on heat. The quantitative dependences ofthe quantum yields of these three processes on three fundamental parameters ofthe marine environment are defined: the chlorophyll concentration in the surface water layer Ca(0 (the basin trophicity,the irradiance PAR(z and the temperature temp(z at the study site.The model is complemented with two other relevant models describing thequantum yield of photosynthesis and of natural Sun-Induced Chlorophyll a Fluorescence (SICF in the sea, derived earlier by the author or with herparticipation on the basis of statistical analyses of a vast amount ofempirical material. The model described in the present paper enables theestimation of the quantum yields of phytoplankton pigment heat production forany region and season, in waters of any trophicity at different depths fromthe surface to depths of ca 60 m. The model can therefore be used to estimatethe yields of these deactivation processes in more than half the thickness ofthe euphotic zone in oligotrophic waters and in the whole thickness (anddeeper of this zone in mesotrophic and eutrophic waters. In particular theserelationships may be useful for a component analysis of the budget of lightenergy absorbed by phytoplankton pigments, namely, its utilization influorescence, photochemical quenching and nonphotochemical radiationlessdissipation - i.e. direct heat production.

  17. When higher activations reflect lower deactivations: a PET study in Alzheimer’s disease during encoding and retrieval in episodic memory

    Directory of Open Access Journals (Sweden)

    Alexandre eBejanin

    2012-05-01

    Full Text Available The aim of the present study was to explore the cerebral substrates of episodic memory disorders in Alzheimer’s disease (AD and investigate patients' hyperactivations frequently reported in the functional imaging literature. It remains unclear whether some of these hyperactivations reflect compensatory mechanisms or deactivation disturbances in the default mode network. Using positron emission tomography (15O-H2O, cerebral blood flow was measured in eleven ADs and twelve healthy elderly controls at rest and during encoding and stem-cued recall of verbal items. We performed subtractions analyses between the experimental and control conditions between groups. The average signal was extracted in regions showing hyperactivation in AD patients versus controls in both contrasts. To determine whether hyperactivations occurred in regions that were activated or deactivated during the memory tasks, we compared signal intensities between the experimental conditions versus rest. Our results showed reduced activation in ADs compared to controls in several core episodic memory regions, including the medial temporal structures, during both encoding and retrieval. ADs also showed hyperactivations compared to controls in a set of brain areas. Further analyses conducted on the signal extracted in these areas indicated that most of these hyperactivations in ADs actually reflected a failure of deactivation. Indeed, almost all of these regions were significantly more activated at rest than during the experimental conditions in controls, only one region presented a similar pattern of deactivation in ADs. Altogether, our findings suggest that hyperactivations in AD must be interpreted with caution and may not systematically reflect compensatory mechanisms. Although there has been evidence supporting the existence of genuine compensatory mechanisms, dysfunction within the default mode network may be responsible for part of the apparent hyperactivations reported in

  18. PUREX/UO3 Facilities deactivation lessons learned history

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S.

    1996-09-19

    Disconnecting the criticality alarm permanently in June 1996 signified that the hazards in the PUREX (plutonium-uranium extraction) plant had been so removed and reduced that criticality was no longer a credible event. Turning off the PUREX criticality alarm also marked a salient point in a historic deactivation project, 1 year before its anticipated conclusion. The PUREX/UO3 Deactivation Project began in October 1993 as a 5-year, $222.5- million project. As a result of innovations implemented during 1994 and 1995, the project schedule was shortened by over a year, with concomitant savings. In 1994, the innovations included arranging to send contaminated nitric acid from the PUREX Plant to British Nuclear Fuels, Limited (BNFL) for reuse and sending metal solutions containing plutonium and uranium from PUREX to the Hanford Site tank farms. These two steps saved the project $36.9- million. In 1995, reductions in overhead rate, work scope, and budget, along with curtailed capital equipment expenditures, reduced the cost another $25.6 million. These savings were achieved by using activity-based cost estimating and applying technical schedule enhancements. In 1996, a series of changes brought about under the general concept of ``reengineering`` reduced the cost approximately another $15 million, and moved the completion date to May 1997. With the total savings projected at about $75 million, or 33.7 percent of the originally projected cost, understanding how the changes came about, what decisions were made, and why they were made becomes important. At the same time sweeping changes in the cultural of the Hanford Site were taking place. These changes included shifting employee relations and work structures, introducing new philosophies and methods in maintaining safety and complying with regulations, using electronic technology to manage information, and, adopting new methods and bases for evaluating progress. Because these changes helped generate cost savings and were

  19. Vibrational deactivation and atom exchange in O(3P)+CO(X 1Σ+) collisions

    International Nuclear Information System (INIS)

    Kelley, J.D.; Thommarson, R.L.

    1977-01-01

    A quasiclassical Monte Carlo averaged trajectory study of the ground-state O, CO collision system is presented. An ''effective'' adiabatic potential surface is constructed using pertinent theoretical and experimental data. Vibrational deactivation rates for CO(v=1, 3) and atom exchange rates for CO(v=0, 1, 3) are calculated and compared with experimental data. The high-temperature (400 K< T<2000 K) and low-temperature (270 K< T<400 K) CO deactivation data, and the low-temperature (300 K< T<400 K) atom exchange data are all fit reasonably well by the calculation. However, comparison of the deactivation data to the atom exchange data suggests that at temperatures below 400 K an additional nonadiabatic mechanism may be contributing to the overall deactivation rate

  20. Dopamine Transporters in Striatum Correlate with Deactivation in the Default Mode Network during Visuospatial Attention

    International Nuclear Information System (INIS)

    Tomasi, D.; Fowler, J.; Tomasi, D.; Volkow, N.D.; Wang, R.L.; Telang, F.; Wang, Chang L.; Ernst, T.; Fowler, J.S.

    2009-01-01

    Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain) are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mode network (DMN). Thus, higher striatal DAT levels, which would result in an enhanced clearance of dopamine and hence weaker dopamine signals, would be associated to lower deactivation in the DMN during an attention task. For this purpose we assessed the relationship between DAT in striatum (measured with positron emission tomography and [ 11 C]cocaine used as DAT radiotracer) and brain activation and deactivation during a parametric visual attention task (measured with blood oxygenation level dependent functional magnetic resonance imaging) in healthy controls. We show that DAT availability in caudate and putamen had a negative correlation with deactivation in ventral parietal regions of the DMN (precuneus, BA 7) and a positive correlation with deactivation in a small region in the ventral anterior cingulate gyrus (BA 24/32). With increasing attentional load, DAT in caudate showed a negative correlation with load-related deactivation increases in precuneus. These findings provide evidence that dopamine transporters modulate neural activity in the DMN and anterior cingulate gyrus during visuospatial attention. Our findings suggest that dopamine modulates attention in part by regulating neuronal activity in posterior parietal cortex including precuneus (region involved in alertness) and cingulate gyrus (region deactivated in proportion to emotional interference). These findings suggest that the beneficial effects of stimulant medications (increase dopamine by blocking DAT) in inattention reflect in part their ability to facilitate the deactivation of the DMN.

  1. Thermal Dynamics of Xanthene Dye in Polymer Matrix Excited by Double Pulse Laser Radiation

    Science.gov (United States)

    Samusev, Ilia; Borkunov, Rodion; Tsarkov, Maksim; Konstantinova, Elizaveta; Antipov, Yury; Demin, Maksim; Bryukhanov, Valery

    2018-01-01

    Double-pulse laser excitation of the eosin and silver nanoparticles embedded into polymer media is known to be a method of electronic-vibrational energy deactivation kinetic process information obtaining and polymer thermal dynamics investigation. We have studied the vibrational relaxation processes in dye molecules (eosin) and nanoparticles in polyvinyl alcohol after two time-shifted laser pulses with fast and delayed fluorescence kinetics study. In order to simulate thermal and photophysical processes caused by double photon excitation, we solved heat transfer and energy deactivation differential equations numerically. The simulation allowed us to obtain the value of heat conductivity coefficient of polymer matrix.

  2. Differential deactivation during mentalizing and classification of autism based on default mode network connectivity.

    Directory of Open Access Journals (Sweden)

    Donna L Murdaugh

    Full Text Available The default mode network (DMN is a collection of brain areas found to be consistently deactivated during task performance. Previous neuroimaging studies of resting state have revealed reduced task-related deactivation of this network in autism. We investigated the DMN in 13 high-functioning adults with autism spectrum disorders (ASD and 14 typically developing control participants during three fMRI studies (two language tasks and a Theory-of-Mind (ToM task. Each study had separate blocks of fixation/resting baseline. The data from the task blocks and fixation blocks were collated to examine deactivation and functional connectivity. Deficits in the deactivation of the DMN in individuals with ASD were specific only to the ToM task, with no group differences in deactivation during the language tasks or a combined language and self-other discrimination task. During rest blocks following the ToM task, the ASD group showed less deactivation than the control group in a number of DMN regions, including medial prefrontal cortex (MPFC, anterior cingulate cortex, and posterior cingulate gyrus/precuneus. In addition, we found weaker functional connectivity of the MPFC in individuals with ASD compared to controls. Furthermore, we were able to reliably classify participants into ASD or typically developing control groups based on both the whole-brain and seed-based connectivity patterns with accuracy up to 96.3%. These findings indicate that deactivation and connectivity of the DMN were altered in individuals with ASD. In addition, these findings suggest that the deficits in DMN connectivity could be a neural signature that can be used for classifying an individual as belonging to the ASD group.

  3. Application, Deactivation, and Regeneration of Heterogeneous Catalysts in Bio-Oil Upgrading

    Directory of Open Access Journals (Sweden)

    Shouyun Cheng

    2016-12-01

    Full Text Available The massive consumption of fossil fuels and associated environmental issues are leading to an increased interest in alternative resources such as biofuels. The renewable biofuels can be upgraded from bio-oils that are derived from biomass pyrolysis. Catalytic cracking and hydrodeoxygenation (HDO are two of the most promising bio-oil upgrading processes for biofuel production. Heterogeneous catalysts are essential for upgrading bio-oil into hydrocarbon biofuel. Although advances have been achieved, the deactivation and regeneration of catalysts still remains a challenge. This review focuses on the current progress and challenges of heterogeneous catalyst application, deactivation, and regeneration. The technologies of catalysts deactivation, reduction, and regeneration for improving catalyst activity and stability are discussed. Some suggestions for future research including catalyst mechanism, catalyst development, process integration, and biomass modification for the production of hydrocarbon biofuels are provided.

  4. A Lumped Thermal Model Including Thermal Coupling and Thermal Boundary Conditions for High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2018-01-01

    Detailed thermal dynamics of high power IGBT modules are important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated thermal behavior in the IGBTs: The typically used...... thermal model based on one-dimensional RC lumps have limits to provide temperature distributions inside the device, moreover some variable factors in the real-field applications like the cooling and heating conditions of the converter cannot be adapted. On the other hand, the more advanced three......-dimensional thermal models based on Finite Element Method (FEM) need massive computations, which make the long-term thermal dynamics difficult to calculate. In this paper, a new lumped three-dimensional thermal model is proposed, which can be easily characterized from FEM simulations and can acquire the critical...

  5. Patients' perspective on deactivation of the implantable cardioverter-defibrillator near the end of life

    DEFF Research Database (Denmark)

    Pedersen, Susanne S.; Chaitsing, Rismy; Szili-Torok, Tamas

    2013-01-01

    (67%) completed the survey. Most patients (68%) were aware that it is possible to turn the ICD off, and 95% believed it is important to inform patients about the possibility. Of the patients completing the survey, 84% indicated a choice for or against deactivation. Psychological morbidity......Recent guidelines have emphasized the importance of discussing the issue of deactivation near the end of life with patients with an implantable cardioverter-defibrillator (ICD). Few studies have examined the patient perspective and patients' wishes. We examined patients' knowledge and wishes...... for information; and the prevalence and correlates of a favorable attitude toward deactivation. Three cohorts of ICD patients (n = 440) extracted from our institutional database were asked to complete a survey that included a vignette about deactivation near the end of life. Of the 440 patients approached, 294...

  6. 308 Building deactivation mission analysis report

    International Nuclear Information System (INIS)

    Lund, D.P.

    1995-01-01

    This report presents the results of the 308 Building (Fuels Development Laboratory) Deactivation Project mission analysis. Hanford systems engineering (SE) procedures call for a mission analysis. The mission analysis is an important first step in the SE process. The functions and requirements to successfully accomplish this mission, the selected alternatives and products will later be defined using the SE process

  7. 309 Building deactivation mission analysis report

    International Nuclear Information System (INIS)

    Lund, D.P.

    1995-01-01

    This report presents the results of the 309 Building (Plutonium Fuels Utilization Program) Deactivation Project mission analysis. Hanford systems engineering (SE) procedures call for a mission analysis. The mission analysis is an important first step in the SE process. The functions and requirements to successfully accomplish this mission, the selected alternatives and products will later be defined using the SE process

  8. Removal of toluene by sequential adsorption-plasma oxidation: Mixed support and catalyst deactivation.

    Science.gov (United States)

    Qin, Caihong; Huang, Xuemin; Zhao, Junjie; Huang, Jiayu; Kang, Zhongli; Dang, Xiaoqing

    2017-07-15

    A sequential adsorption-plasma oxidation system was used to remove toluene from simulated dry air using γ-Al 2 O 3 , HZSM-5, a mixture of the two materials or their supported Mn-Ag catalyst as adsorbents under atmospheric pressure and room temperature. After 120min of plasma oxidation, γ-Al 2 O 3 had a better carbon balance (∼75%) than HZSM-5, but the CO 2 yield of γ-Al 2 O 3 was only ∼50%; and there was some desorption of toluene when γ-Al 2 O 3 was used. When a mixture of HZSM-5 and γ-Al 2 O 3 with a mass ratio of 1/2 was used, the carbon balance was up to 90% and 82% of this was CO 2 . The adsorption performance and electric discharge characteristics of the mixed supports were tested in order to rationalize this high CO x yield. After seven cycles of sequential adsorption-plasma oxidation, support and Mn-Ag catalyst deactivation occurred. The support and catalyst were characterized before and after deactivation by SEM, a BET method, XRD, XPS and GC-MS in order to probe the mechanism of their deactivation. 97.6% of the deactivated supports and 76% of the deactivated catalysts could be recovered by O 2 temperature-programmed oxidation. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Influence of mass transport towards deactivation in tert-butyl-source driven isobutane/2-butene alkylation

    Energy Technology Data Exchange (ETDEWEB)

    Aschauer, S.J.; Jess, A. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering

    2011-07-01

    The deactivation of i-butane/trans-2-butene alkylation using tert-butyl-halide promoted ionic liquid catalysts is studied.Here, the mass transport was modified by varying the feed rate and the type of promoter addition. The experimental data show that the deactivation increases with increasing feed rate. Moreover, a biliquid foam is formed when feed rates above 1 g/min are adjusted. As the results indicate a strong influence of the biliquid foam and its formation on deactivation, both aspects are also discussed.When the promoter is added to the feed mixture an increase of conversion with time on stream is observed. A deactivation in continuous promoter addition mode could not be noted in the investigated time-on-stream range. (orig.)

  10. Charge separation technique for metal-oxide-silicon capacitors in the presence of hydrogen deactivated dopants

    International Nuclear Information System (INIS)

    Witczak, Steven C.; Winokur, Peter S.; Lacoe, Ronald C.; Mayer, Donald C.

    2000-01-01

    An improved charge separation technique for metal-oxide-silicon (MOS) capacitors is presented which accounts for the deactivation of substrate dopants by hydrogen at elevated irradiation temperatures or small irradiation biases. Using high-frequency capacitance-voltage (C-V) measurements, radiation-induced inversion voltage shifts are separated into components due to oxide trapped charge, interface traps and deactivated dopants, where the latter is computed from a reduction in Si capacitance. In the limit of no radiation-induced dopant deactivation, this approach reduces to the standard midgap charge separation technique used widely for the analysis of room-temperature irradiations. The technique is demonstrated on a p-type MOS capacitor irradiated with 60 Co γ-rays at 100 C and zero bias, where the dopant deactivation is significant

  11. Antioxidant Deactivation on Graphenic Nanocarbon Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinyuan [ORNL; Sen, Sujat [Brown University; Liu, Jingyu [Brown University; Kulaots, Indrek [Brown University; Geohegan, David B [ORNL; Kane, Agnes [Brown University; Puretzky, Alexander A [ORNL; Rouleau, Christopher M [ORNL; More, Karren Leslie [ORNL; Palmore, G. Tayhas R. [Brown University; Hurt, Robert H. [Brown University

    2011-01-01

    This article reports a direct chemical pathway for antioxidant deactivation on the surfaces of carbon nanomaterials. In the absence of cells, carbon nanotubes are shown to deplete the key physiological antioxidant glutathione (GSH) in a reaction involving dissolved dioxygen that yields the oxidized dimer, GSSG, as the primary product. In both chemical and electrochemical experiments, oxygen is only consumed at a significant steady-state rate in the presence of both nanotubes and GSH. GSH deactivation occurs for single- and multi-walled nanotubes, graphene oxide, nanohorns, and carbon black at varying rates that are characteristic of the material. The GSH depletion rates can be partially unified by surface area normalization, are accelerated by nitrogen doping, and suppressed by defect annealing or addition of proteins or surfactants. It is proposed that dioxygen reacts with active sites on graphenic carbon surfaces to produce surface-bound oxygen intermediates that react heterogeneously with glutathione to restore the carbon surface and complete a catalytic cycle. The direct catalytic reaction between nanomaterial surfaces and antioxidants may contribute to oxidative stress pathways in nanotoxicity, and the dependence on surface area and structural defects suggest strategies for safe material design.

  12. Commercial experience with facility deactivation to safe storage

    Energy Technology Data Exchange (ETDEWEB)

    Sype, T.T. [Sandia National Labs., Albuquerque, NM (United States); Fischer, S.R. [Los Alamos National Lab., NM (United States); Lee, J.H. Jr.; Sanchez, L.C.; Ottinger, C.A.; Pirtle, G.J. [Sandia National Labs., Albuquerque, NM (United States)

    1995-09-01

    The Department of Energy (DOE) has shutdown many production reactors; the Department has begun a major effort to also shutdown a wide variety of other nuclear facilities. Because so many facilities are being closed, it is necessary to place many of them into a safe- storage status, i.e., deactivation, before conducting decommissioning- for perhaps as long as 20 years. The challenge is to achieve this safe-storage condition in a cost-effective manner while remaining in compliance with applicable regulations. The DOE Office of Environmental Management, Office of Transition and Management, commissioned a lessons-learned study of commercial experience with safe storage and decommissioning. Although the majority of the commercial experience has been with reactors, many of the lessons learned presented in this document can provide insight into transitioning challenges that Will be faced by the DOE weapons complex.

  13. Commercial experience with facility deactivation to safe storage

    International Nuclear Information System (INIS)

    Sype, T.T.; Fischer, S.R.; Lee, J.H. Jr.; Sanchez, L.C.; Ottinger, C.A.; Pirtle, G.J.

    1995-09-01

    The Department of Energy (DOE) has shutdown many production reactors; the Department has begun a major effort to also shutdown a wide variety of other nuclear facilities. Because so many facilities are being closed, it is necessary to place many of them into a safe- storage status, i.e., deactivation, before conducting decommissioning- for perhaps as long as 20 years. The challenge is to achieve this safe-storage condition in a cost-effective manner while remaining in compliance with applicable regulations. The DOE Office of Environmental Management, Office of Transition and Management, commissioned a lessons-learned study of commercial experience with safe storage and decommissioning. Although the majority of the commercial experience has been with reactors, many of the lessons learned presented in this document can provide insight into transitioning challenges that Will be faced by the DOE weapons complex

  14. Health and safety plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-08-01

    This HASP describes the process for identifying the requirements, written safety documentation, and procedures for protecting personnel involved in the Isotopes Facilities Deactivation Project. Objective of this project is to place 19 former isotope production facilities at ORNL in a safe condition in anticipation of an extended period of minimum surveillance and maintenance

  15. Thalamic deactivation at sleep onset precedes that of the cerebral cortex in humans

    Science.gov (United States)

    Magnin, Michel; Rey, Marc; Bastuji, Hélène; Guillemant, Philippe; Mauguière, François; Garcia-Larrea, Luis

    2010-01-01

    Thalamic and cortical activities are assumed to be time-locked throughout all vigilance states. Using simultaneous intracortical and intrathalamic recordings, we demonstrate here that the thalamic deactivation occurring at sleep onset most often precedes that of the cortex by several minutes, whereas reactivation of both structures during awakening is synchronized. Delays between thalamus and cortex deactivations can vary from one subject to another when a similar cortical region is considered. In addition, heterogeneity in activity levels throughout the cortical mantle is larger than previously thought during the descent into sleep. Thus, asynchronous thalamo-cortical deactivation while falling asleep probably explains the production of hypnagogic hallucinations by a still-activated cortex and the common self-overestimation of the time needed to fall asleep. PMID:20142493

  16. The Approach of Emotional Deactivation of Prejudice

    Science.gov (United States)

    Boucher, Jean-Nil

    2011-01-01

    The aim of the approach of emotional deactivation is to help students reduce the prejudice they may feel towards diverse social groups. Be those groups homosexuals, people living with a disability or immigrants, the victims of prejudice are invited to come into classrooms and to confront the preconceptions that students have in their respect.…

  17. Cylinder deactivation for valve trains with roller finger follower; Zylinderabschaltung fuer Ventiltriebe mit Rollenschlepphebeln

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Hermann; Loch, Adam; Widmann, Richard [Mahle International GmbH, Stuttgart (Germany). Zentrale Voraussentwicklung; Kreussen, Gerhard; Rebbert, Martin [FEV Motorentechnik GmbH, Aachen (Germany). Abt. Dynamik; Meehsen, Daniel [FEV Motorentechnik GmbH, Aachen (Germany). Abt. Mechanik Versuch

    2009-04-15

    Cylinder deactivation increases efficiency of gasoline engines without negative effects in terms of exhaust gas emissions or driving dynamics. In particular, the advantageous cost/benefit ratio and great affinity to technologies currently used in gasoline engines support cylinder deactivation as the right path in meeting future market demands. The design and function of cylinder deactivation for valve trains with roller finger follower will be explained and examined with regard to functional aspects, such as stiffness, mass, and kinematic behavior. Based on initial results, design and production characteristics of this new technology are evaluated and technical control interactions in engine applications are presented by Mahle. (orig.)

  18. Real-time piscicide tracking using Rhodamine WT dye for support of application, transport, and deactivation strategies in riverine environments

    Science.gov (United States)

    Jackson, Patrick Ryan; Lageman, Jonathan D.

    2013-01-01

    Piscicide applications in riverine environments are complicated by the advection and dispersion of the piscicide by the flowing water. Proper deactivation of the fish toxin is required outside of the treatment reach to ensure that there is minimal collateral damage to fisheries downstream or in connecting and adjacent water bodies. In urban settings and highly managed waterways, further complications arise from the influence of industrial intakes and outfalls, stormwater outfalls, lock and dam operations, and general unsteady flow conditions. These complications affect the local hydrodynamics and ultimately the transport and fate of the piscicide. This report presents two techniques using Rhodamine WT dye for real-time tracking of a piscicide plume—or any passive contaminant—in rivers and waterways in natural and urban settings. Passive contaminants are those that are present in such low concentration that there is no effect (such as buoyancy) on the fluid dynamics of the receiving water body. These methods, when combined with data logging and archiving, allow for visualization and documentation of the application and deactivation process. Real-time tracking and documentation of rotenone applications in rivers and urban waterways was accomplished by encasing the rotenone plume in a plume of Rhodamine WT dye and using vessel-mounted submersible fluorometers together with acoustic Doppler current profilers (ADCP) and global positioning system (GPS) receivers to track the dye and map the water currents responsible for advection and dispersion. In this study, two methods were used to track rotenone plumes: (1) simultaneous injection of dye with rotenone and (2) delineation of the upstream and downstream boundaries of the treatment zone with dye. All data were logged and displayed on a shipboard laptop computer, so that survey personnel provided real-time feedback about the extent of the rotenone plume to rotenone application and deactivation personnel. Further

  19. Soot oxidation over NOx storage catalysts. Activity and deactivation

    International Nuclear Information System (INIS)

    Krishna, K.; Makkee, M.

    2006-01-01

    Soot oxidation activity and deactivation of NO x storage and reduction (NSR) catalysts containing Pt, K, and Ba supported on Al 2 O 3 , are studied under a variety of reaction conditions. K-containing catalysts decrease soot oxidation temperature with O 2 alone and the presence of Pt further enhance the activity due to synergetic effect. The active species responsible for synergism on Pt/K-Al 2 O 3 are unstable and cannot be regenerated. Soot oxidation temperature decreases by about 150 o C with NO+O 2 exhaust feed gas and under lean conditions NSR system acts as catalysed soot filter (CSF). The reactions that are mainly responsible for decreasing soot oxidation temperature are: (1) soot oxidation with NO 2 followed by NO recycles to NO 2 , and (2) soot oxidation with O 2 assisted by NO 2 . Only a part of the stored NO x that is decomposed at high temperatures under lean conditions is found to be useful for soot oxidation. NO x storage capacity of NSR catalysts decreases upon ageing under soot oxidising conditions. This will lead to a decreased soot oxidation activity on stored nitrate decomposition. Pt/K-Al 2 O 3 catalyst is more active, but least stable compared with Pt/Ba-Al 2 O 3 . (author)

  20. Adsorption and Deactivation Characteristics of Cu/ZnO-Based Catalysts for Methanol Synthesis from Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Natesakhawat, Sittichai; Ohodnicki, Paul R; Howard, Bret H; Lekse, Jonathan W; Baltrus, John P; Matranga, Christopher

    2013-07-09

    The adsorption and deactivation characteristics of coprecipitated Cu/ZnO-based catalysts were examined and correlated to their performance in methanol synthesis from CO₂ hydrogenation. The addition of Ga₂O₃ and Y₂O₃ promoters is shown to increase the Cu surface area and CO₂/H₂ adsorption capacities of the catalysts and enhance methanol synthesis activity. Infrared studies showed that CO₂ adsorbs spontaneously on these catalysts at room temperature as both monoand bi-dentate carbonate species. These weakly bound species desorb completely from the catalyst surface by 200 °C while other carbonate species persist up to 500 °C. Characterization using N₂O decomposition, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) with energy-dispersive X-ray spectroscopy (EDX) analysis clearly indicated that Cu sintering is the main cause of catalyst deactivation. Ga and Y promotion improves the catalyst stability by suppressing the agglomeration of Cu and ZnO particles under pretreatment and reaction conditions.

  1. Simulation of global warming effect on outdoor thermal comfort conditions

    Energy Technology Data Exchange (ETDEWEB)

    Roshan, G.R.; Ranjbar, F. [Univ. of Tehran (IR). Dept. of Physical Geography; Orosa, J.A. [Univ. of A Coruna (Spain). Dept. of Energy

    2010-07-01

    In the coming decades, global warming and increase in temperature, in different regions of the world, may change indoor and outdoor thermal comfort conditions and human health. The aim of this research was to study the effects of global warming on thermal comfort conditions in indoor ambiences in Iran. To study the increase in temperature, model for assessment of greenhouse-gas induced climate change scenario generator compound model has been used together with four scenarios and to estimate thermal comfort conditions, adaptive model of the American Society of Heating, Refrigerating and Air-Conditioning Engineers has been used. In this study, Iran was divided into 30 zones, outdoor conditions were obtained using meteorological data of 80 climatological stations and changes in neutral comfort conditions in 2025, 2050, 2075 and 2100 were predicted. In accordance with each scenario, findings from this study showed that temperature in the 30 zones will increase by 2100 to between 3.4 C and 5.6 C. In the coming decades and in the 30 studied zones, neutral comfort temperature will increase and be higher and more intense in the central and desert zones of Iran. The low increase in this temperature will be connected to the coastal areas of the Caspian and Oman Sea in southeast Iran. This increase in temperature will be followed by a change in thermal comfort and indoor energy consumption from 8.6 % to 13.1 % in air conditioning systems. As a result, passive methods as thermal inertia are proposed as a possible solution.

  2. Subclinical cognitive decline in middle-age is associated with reduced task-induced deactivation of the brain's default mode network

    DEFF Research Database (Denmark)

    Hansen, Naja Liv; Lauritzen, Martin; Mortensen, Erik Lykke

    2014-01-01

    range of neurodegenerative diseases involving cognitive symptoms, in conditions with increased risk of Alzheimer's disease, and even in advanced but healthy aging. Here, we investigated brain activation and deactivation during a visual-motor task in 185 clinically healthy males from a Danish birth......Cognitive abilities decline with age, but with considerable individual variation. The neurobiological correlate of this variation is not well described. Functional brain imaging studies have demonstrated reduced task-induced deactivation (TID) of the brain's default mode network (DMN) in a wide...... cohort, whose cognitive function was assessed in youth and midlife. Using each individual as his own control, we defined a group with a large degree of cognitive decline, and a control group. When correcting for effects of total cerebral blood flow and hemoglobin level, we found reduced TID...

  3. A thermal model for photovoltaic panels under varying atmospheric conditions

    International Nuclear Information System (INIS)

    Armstrong, S.; Hurley, W.G.

    2010-01-01

    The response of the photovoltaic (PV) panel temperature is dynamic with respect to the changes in the incoming solar radiation. During periods of rapidly changing conditions, a steady state model of the operating temperature cannot be justified because the response time of the PV panel temperature becomes significant due to its large thermal mass. Therefore, it is of interest to determine the thermal response time of the PV panel. Previous attempts to determine the thermal response time have used indoor measurements, controlling the wind flow over the surface of the panel with fans or conducting the experiments in darkness to avoid radiative heat loss effects. In real operating conditions, the effective PV panel temperature is subjected to randomly varying ambient temperature and fluctuating wind speeds and directions; parameters that are not replicated in controlled, indoor experiments. A new thermal model is proposed that incorporates atmospheric conditions; effects of PV panel material composition and mounting structure. Experimental results are presented which verify the thermal behaviour of a photovoltaic panel for low to strong winds.

  4. Monitoring Thermal Conditions in Footwear

    Science.gov (United States)

    Silva-Moreno, Alejandra. A.; Lopez Vela, Martín; Alcalá Ochoa, Noe

    2006-09-01

    Thermal conditions inside the foot were evaluated on a volunteer subject. We have designed and constructed an electronic system which can monitors temperature and humidity of the foot inside the shoe. The data is stored in a battery-powered device for later uploading to a host computer for data analysis. The apparatus potentially can be used to provide feedback to patients who are prone to having skin breakdowns.

  5. 300 Area fuel supply facilities deactivation function analysis report

    International Nuclear Information System (INIS)

    Lund, D.P.

    1995-09-01

    The document contains the functions, function definitions, function interfaces, function interface definitions, Input Computer Automated Manufacturing Definition (IDEFO) diagrams, and a function hierarchy chart that describe what needs to be performed to deactivate the 300 Area Fuel Supply Facilities

  6. Quenching-induced deactivation of photosensitizer by nanoencapsulation to improve phototherapy of cancer.

    Science.gov (United States)

    Zeisser-Labouèbe, Magali; Mattiuzzo, Marc; Lange, Norbert; Gurny, Robert; Delie, Florence

    2009-09-01

    Photodynamic therapy has emerged as a promising alternative to current cancer treatment. However, conventional photosensitizers have several limitations due to their unsuitable pharmaceutical formulations and lack of selectivity. Our strategy was to exploit the advantages of nanoparticles and the quenching-induced deactivation of the model photosensitizer hypericin to produce "activatable" drug delivery systems. Efficient fluorescence and activity quenching were achieved by increasing the drug-loading rate of nanoparticles. In vitro assays confirmed the reversibility of hypericin deactivation, as the hypericin fluorescence and photodynamic activity were recovered upon cell internalization.

  7. Impaired temporoparietal deactivation with working memory load in antipsychotic-naïve patients with first-episode schizophrenia

    DEFF Research Database (Denmark)

    Nejad, Ayna B; Ebdrup, Bjørn H; Siebner, Hartwig R

    2011-01-01

    Abstract Objectives. Neuroimaging studies have shown abnormal task-related deactivations during working memory (WM) in schizophrenia patients with recent emphasis on brain regions within the default mode network. Using fMRI, we tested whether antipsychotic-naïve schizophrenia patients were impaired...... load. These regions activated with the no WM load condition (0-back) in both groups. Conclusions. Because 0-back activation reflects verbal attention processes, patients' persistent activation in the 1-back and 2-back conditions may reflect an inability to shift cognitive strategy with onset of WM...

  8. Lifecycle baseline summary for ADS 6504IS isotopes facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-08-01

    The scope of this Activity Data Sheet (ADS) is to provide a detailed plan for the Isotopes Facilities Deactivation Project (IFDP) at the Oak Ridge National Laboratory (ORNL). This project places the former isotopes production facilities in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S ampersand M) until the facilities are included in the Decontamination and Decommissioning (D ampersand D) Program. The facilities included within this deactivation project are Buildings 3026-C, 3026-D, 3028, 3029, 3038-AHF, 3038-E, 3038-M, 3047, 3517, 7025, and the Center Circle Facilities (Buildings 3030, 3031, 3032, 3033, 3033-A, 3034, and 3118). The scope of deactivation identified in this Baseline Report include surveillance and maintenance activities for each facility, engineering, contamination control and structural stabilization of each facility, radioluminescent (RL) light removal in Building 3026, re-roofing Buildings 3030, 3118, and 3031, Hot Cells Cleanup in Buildings 3047 and 3517, Yttrium (Y) Cell and Barricades Cleanup in Building 3038, Glove Boxes ampersand Hoods Removal in Buildings 3038 and 3047, and Inventory Transfer in Building 3517. For a detailed description of activities within this Work Breakdown Structure (WBS) element, see the Level 6 and Level 7 Element Definitions in Section 3.2 of this report

  9. Thermal Analysis for Condition Monitoring of Machine Tool Spindles

    International Nuclear Information System (INIS)

    Clough, D; Fletcher, S; Longstaff, A P; Willoughby, P

    2012-01-01

    Decreasing tolerances on parts manufactured, or inspected, on machine tools increases the requirement to have a greater understanding of machine tool capabilities, error sources and factors affecting asset availability. Continuous usage of a machine tool during production processes causes heat generation typically at the moving elements, resulting in distortion of the machine structure. These effects, known as thermal errors, can contribute a significant percentage of the total error in a machine tool. There are a number of design solutions available to the machine tool builder to reduce thermal error including, liquid cooling systems, low thermal expansion materials and symmetric machine tool structures. However, these can only reduce the error not eliminate it altogether. It is therefore advisable, particularly in the production of high value parts, for manufacturers to obtain a thermal profile of their machine, to ensure it is capable of producing in tolerance parts. This paper considers factors affecting practical implementation of condition monitoring of the thermal errors. In particular is the requirement to find links between temperature, which is easily measureable during production and the errors which are not. To this end, various methods of testing including the advantages of thermal images are shown. Results are presented from machines in typical manufacturing environments, which also highlight the value of condition monitoring using thermal analysis.

  10. Epidemics in Adaptive Social Networks with Temporary Link Deactivation

    Science.gov (United States)

    Tunc, Ilker; Shkarayev, Maxim S.; Shaw, Leah B.

    2013-04-01

    Disease spread in a society depends on the topology of the network of social contacts. Moreover, individuals may respond to the epidemic by adapting their contacts to reduce the risk of infection, thus changing the network structure and affecting future disease spread. We propose an adaptation mechanism where healthy individuals may choose to temporarily deactivate their contacts with sick individuals, allowing reactivation once both individuals are healthy. We develop a mean-field description of this system and find two distinct regimes: slow network dynamics, where the adaptation mechanism simply reduces the effective number of contacts per individual, and fast network dynamics, where more efficient adaptation reduces the spread of disease by targeting dangerous connections. Analysis of the bifurcation structure is supported by numerical simulations of disease spread on an adaptive network. The system displays a single parameter-dependent stable steady state and non-monotonic dependence of connectivity on link deactivation rate.

  11. Mechanism of de-activation and clustering of B in Si at extremely high concentration

    International Nuclear Information System (INIS)

    Romano, L.; Piro, A.M.; Privitera, V.; Rimini, E.; Fortunato, G.; Svensson, B.G.; Foad, M.; Grimaldi, M.G.

    2006-01-01

    It is known that B deactivation and clustering occur in the presence of an excess of Si self-interstitials (Is). First principle calculations predicted the path of clusters growth, but the precursor complexes are too small to be visible even by the highest resolution microscopy. Channeling with nuclear reaction analyses allowed to detect the location of small B-Is complexes into the lattice formed as a consequence of the B interaction with the Is. In this work we extend this method to determine the complexes formed during the initial stage of B precipitation in Si doped at extremely high concentration (4 at%) and subjected to thermal treatment. The samples were prepared by excimer laser annealing (ELA) of Si implanted with 1 keV B. The thickness of the molten layer was 100 nm and the B profile was boxlike with a maximum hole concentration of ∼2 x 10 21 cm -3 . The electrical deactivation and carrier mobility of this metastable system has been studied as a function of subsequent annealing in the temperature range between 200 and 850 deg. C. Channeling analyses have been performed to investigate the B lattice location at the initial stage of precipitation. The difference, with respect to previous investigations, is the very small distance (<1 nm) between adjacent B atoms substitutional located in the lattice and the absence of Is that can be released during annealing, since the end of range defects were completely dissolved by ELA. In this way, information on the B complex evolution in a free-of-defects sample have been obtained

  12. Mathematics anxiety reduces default mode network deactivation in response to numerical tasks

    Directory of Open Access Journals (Sweden)

    Belinda ePletzer

    2015-04-01

    Full Text Available Mathematics anxiety is negatively related to mathematics performance, thereby threatening the professional success. Preoccupation with the emotional content of the stimuli may consume working memory resources, which may be reflected in decreased deactivation of areas associated with the default mode network (DMN activated during self-referential and emotional processing. The common problem is that math anxiety is usually associated with poor math performance, so that any group differences are difficult to interpret.Here we compared the BOLD-response of 18 participants with high (HMAs and 18 participants with low mathematics anxiety (LMAs matched for their mathematical performance to two numerical tasks (number comparison, number bisection. During both tasks, we found stronger deactivation within the DMN in LMAs compared to HMAs, while BOLD-response in task-related activation areas did not differ between HMAs and LMAs. The difference in DMN deactivation between the HMA and LMA group was more pronounced in stimuli with additional requirement on inhibitory functions, but did not differ between number magnitude processing and arithmetic fact retrieval.

  13. Mathematics anxiety reduces default mode network deactivation in response to numerical tasks.

    Science.gov (United States)

    Pletzer, Belinda; Kronbichler, Martin; Nuerk, Hans-Christoph; Kerschbaum, Hubert H

    2015-01-01

    Mathematics anxiety is negatively related to mathematics performance, thereby threatening the professional success. Preoccupation with the emotional content of the stimuli may consume working memory resources, which may be reflected in decreased deactivation of areas associated with the default mode network (DMN) activated during self-referential and emotional processing. The common problem is that math anxiety is usually associated with poor math performance, so that any group differences are difficult to interpret. Here we compared the BOLD-response of 18 participants with high (HMAs) and 18 participants with low mathematics anxiety (LMAs) matched for their mathematical performance to two numerical tasks (number comparison, number bisection). During both tasks, we found stronger deactivation within the DMN in LMAs compared to HMAs, while BOLD-response in task-related activation areas did not differ between HMAs and LMAs. The difference in DMN deactivation between the HMA and LMA group was more pronounced in stimuli with additional requirement on inhibitory functions, but did not differ between number magnitude processing and arithmetic fact retrieval.

  14. Thermal sensations and comfort investigations in transient conditions in tropical office.

    Science.gov (United States)

    Dahlan, Nur Dalilah; Gital, Yakubu Yau

    2016-05-01

    The study was done to identify affective and sensory responses observed as a result of hysteresis effects in transient thermal conditions consisting of warm-neutral and neutral - warm performed in a quasi-experiment setting. Air-conditioned building interiors in hot-humid areas have resulted in thermal discomfort and health risks for people moving into and out of buildings. Reports have shown that the instantaneous change in air temperature can cause abrupt thermoregulation responses. Thermal sensation vote (TSV) and thermal comfort vote (TCV) assessments as a consequence of moving through spaces with distinct thermal conditions were conducted in an existing single-story office in a hot-humid microclimate, maintained at an air temperature 24 °C (± 0.5), relative humidity 51% (± 7), air velocity 0.5 m/s (± 0.5), and mean radiant temperature (MRT) 26.6 °C (± 1.2). The measured office is connected to a veranda that showed the following semi-outdoor temperatures: air temperature 35 °C (± 2.1), relative humidity 43% (± 7), air velocity 0.4 m/s (± 0.4), and MRT 36.4 °C (± 2.9). Subjective assessments from 36 college-aged participants consisting of thermal sensations, preferences and comfort votes were correlated against a steady state predicted mean vote (PMV) model. Local skin temperatures on the forehead and dorsal left hand were included to observe physiological responses due to thermal transition. TSV for veranda-office transition showed that no significant means difference with TSV office-veranda transition were found. However, TCV collected from warm-neutral (-0.24, ± 1.2) and neutral-warm (-0.72, ± 1.3) conditions revealed statistically significant mean differences (p thermal transition after travel from warm-neutral-warm conditions did not replicate the hysteresis effects of brief, slightly cool, thermal sensations found in previous laboratory experiments. These findings also indicate that PMV is an acceptable alternative to predict thermal

  15. Effects of Thermal Annealing Conditions on Cupric Oxide Thin Film

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo Seon; Oh, Hee-bong; Ryu, Hyukhyun [Inje University, Gimhae (Korea, Republic of); Lee, Won-Jae [Dong-Eui University, Busan (Korea, Republic of)

    2015-07-15

    In this study, cupric oxide (CuO) thin films were grown on fluorine doped tin oxide(FTO) substrate by using spin coating method. We investigated the effects of thermal annealing temperature and thermal annealing duration on the morphological, structural, optical and photoelectrochemical properties of the CuO film. From the results, we could find that the morphologies, grain sizes, crystallinity and photoelectrochemical properties were dependent on the annealing conditions. As a result, the maximum photocurrent density of -1.47 mA/cm{sup 2} (vs. SCE) was obtained from the sample with the thermal annealing conditions of 500 ℃ and 40 min.

  16. Estimation of thermal sensation during varied air temperature conditions.

    Science.gov (United States)

    Katsuura, T; Tabuchi, R; Iwanaga, K; Harada, H; Kikuchi, Y

    1998-03-01

    Seven male students were exposed to four varied air temperature environments: hot (37 degrees C) to neutral (27 degrees C) (HN), neutral to hot (NH), cool (17 degrees C) to neutral (CN), and neutral to cool (NC). The air temperature was maintained at the first condition for 20 min, then was changed to the second condition after 15 min and was held there for 20 min. Each subject wore a T-shirt, briefs, trunks, and socks. Each sat on a chair and was continuously evaluated for thermal sensation, thermal comfort, and air velocity sensation. Some physiological and thermal parameters were also measured every 5 s during the experiment. The correlation between thermal sensation and skin temperature at 15 sites was found to be poor. The subjects felt much warmer during the rising phase of the air temperature (CN, NH) than during the descending phase (HN, NC) at a given mean skin temperature. However, thermal sensation at the same heat flux or at the same value of the difference between skin and air temperature (delta(Tsk - Ta)) was not so different among the four experimental conditions, and the correlation between thermal sensation and heat flux or delta(Tsk - Ta) was fairly good. The multiple regression equation of the thermal sensation (TS) on 15 sites of skin temperature (Tsk; degrees C) was calculated and the coefficient of determination (R*2) was found to be 0.656. Higher coefficients of determination were found in the equations of thermal sensation for the heat flux (H; kcal.m-2.h-1) at the right and left thighs of the subjects and on delta(Tsk - Ta) (degrees C) at 4 sites. They were as follows: TS = 2.04 - 0.016 Hright - 0.036 Hleft; R*2 = 0.717, TS = 1.649 + 0.013 delta(Tsk - Ta)UpperArm - 0.036 delta(Tsk - Ta)Chest - 0.223 delta(Tsk - Ta)Thigh-0.083 delta(Tsk - Ta)LowerLeg; R*2 = 0.752, respectively.

  17. 300 Area fuel supply facilities deactivation mission analysis report

    International Nuclear Information System (INIS)

    Lund, D.P.

    1995-01-01

    This report presents the results of the 300 Area fuel supply facilities (formerly call ''N reactor fuel fabrication facilities'') Deactivation Project mission analysis. Hanford systems engineering (SE) procedures call for a mission analysis. The mission analysis is an important first step in the SE process

  18. Combustion kinetics of the coke on deactivated dehydrogenation catalysts

    NARCIS (Netherlands)

    Luo, Sha; He, Songbo; Li, XianRu; Li, Jingqiu; Bi, Wenjun; Sun, Chenglin

    2015-01-01

    The coke combustion kinetics on the deactivated catalysts for long chain paraffin dehydrogenation was studied by the thermogravimetry and differential thermogravimetry (TG–DTG) technique. The amount and H/C mole ratio of the coke were determined by the TG and elemental analysis. And the

  19. On the Deactivation of Cobalt-based Fischer-Tropsch Catalysts

    NARCIS (Netherlands)

    Cats, K.H.

    2016-01-01

    The Fischer-Tropsch Synthesis (FTS) process is an attractive way to obtain synthetic liquid fuel from alternative energy sources such as natural gas, coal or biomass. However, the deactivation of the catalyst, consisting of cobalt nanoparticles supported on TiO2, currently hampers the industrial

  20. Criticality safety for deactivation of the Rover dry headend process

    International Nuclear Information System (INIS)

    Henrikson, D.J.

    1995-01-01

    The Rover dry headend process combusted Rover graphite fuels in preparation for dissolution and solvent extraction for the recovery of 235 U. At the end of the Rover processing campaign, significant quantities of 235 U were left in the dry system. The Rover Dry Headend Process Deactivation Project goal is to remove the remaining uranium bearing material (UBM) from the dry system and then decontaminate the cells. Criticality safety issues associated with the Rover Deactivation Project have been influenced by project design refinement and schedule acceleration initiatives. The uranium ash composition used for calculations must envelope a wide range of material compositions, and yet result in cost effective final packaging and storage. Innovative thinking must be used to provide a timely safety authorization basis while the project design continues to be refined

  1. 200 Area Deactivation Project Facilities Authorization Envelope Document

    International Nuclear Information System (INIS)

    DODD, E.N.

    2000-01-01

    Project facilities as required by HNF-PRO-2701, Authorization Envelope and Authorization Agreement. The Authorization Agreements (AA's) do not identify the specific set of environmental safety and health requirements that are applicable to the facility. Therefore, the facility Authorization Envelopes are defined here to identify the applicable requirements. This document identifies the authorization envelopes for the 200 Area Deactivation

  2. Immobilized glucose oxidase--catalase and their deactivation in a differential-bed loop reactor.

    Science.gov (United States)

    Prenosil, J E

    1979-01-01

    Glucose oxidase containing catalase was immobilized with a copolymer of phenylenediamine and glutaraldehyde on pumice and titania carrier to study the enzymatic oxidation of glucose in a differential-bed loop reactor. The reaction rate was found to be first order with respect to the concentration of limiting oxygen substrate, suggesting a strong external mass-transfer resistance for all the flow rates used. The partial pressure of oxygen was varied from 21.3 up to 202.6 kPa. The use of a differential-bed loop reactor for the determination of the active enzyme concentration in the catalyst with negligible internal pore diffusion resistance is shown. Catalyst deactivation was studied, especially with respect to the presence of catalase. It is believed that the hydrogen peroxide formed in the oxidation reaction deactivates catalase first; if an excess of catalase is present, the deactivation of glucose oxidase remains small. The mathematical model subsequently developed adequately describes the experimental results.

  3. The Study Of Deactivation And Regeneration Of A Fluid Cracking ...

    African Journals Online (AJOL)

    The Study Of Deactivation And Regeneration Of A Fluid Cracking Zeolite Catalysts. ... The catalytic activities of modified and unmodified sodium Y-Zeolites catalysts ... sample was seen to completely restore the catalytic activity of both samples.

  4. THERMAL COMFORT STUDY OF AN AIR-CONDITIONED DESIGN STUDIO IN TROPICAL SURABAYA

    Directory of Open Access Journals (Sweden)

    Agus Dwi Hariyanto

    2005-01-01

    Full Text Available This paper evaluates the current thermal comfort condition in an air-conditioned design studio using objective measurement and subjective assessment. Objective measurement is mainly to quantify the air temperature, MRT, relative humidity, and air velocity. Subjective assessment is conducted using a questionnaire to determine the occupants thermal comfort sensations and investigate their perception of the thermal comfort level. A design studio in an academic institution in Surabaya was chosen for the study. Results show that more than 80% of the occupants accepted the indoor thermal conditions even though both the environmental and comfort indices exceeded the limit of the standard (ASHRAE Standard 55 and ISO 7730. In addition, non-uniformity of spatial temperature was present in this studio. Some practical recommendations were made to improve the thermal comfort in the design studio.

  5. The N-terminal tail of hERG contains an amphipathic α-helix that regulates channel deactivation.

    Directory of Open Access Journals (Sweden)

    Chai Ann Ng

    Full Text Available The cytoplasmic N-terminal domain of the human ether-a-go-go related gene (hERG K+ channel is critical for the slow deactivation kinetics of the channel. However, the mechanism(s by which the N-terminal domain regulates deactivation remains to be determined. Here we show that the solution NMR structure of the N-terminal 135 residues of hERG contains a previously described Per-Arnt-Sim (PAS domain (residues 26-135 as well as an amphipathic α-helix (residues 13-23 and an initial unstructured segment (residues 2-9. Deletion of residues 2-25, only the unstructured segment (residues 2-9 or replacement of the α-helix with a flexible linker all result in enhanced rates of deactivation. Thus, both the initial flexible segment and the α-helix are required but neither is sufficient to confer slow deactivation kinetics. Alanine scanning mutagenesis identified R5 and G6 in the initial flexible segment as critical for slow deactivation. Alanine mutants in the helical region had less dramatic phenotypes. We propose that the PAS domain is bound close to the central core of the channel and that the N-terminal α-helix ensures that the flexible tail is correctly orientated for interaction with the activation gating machinery to stabilize the open state of the channel.

  6. Wall effect in deactivation of excited molecular oxygen {sup 1}{delta}g; Reiki sanso bunshi {sup 1}{delta}g no shikkatsu ni oyobosu hyomen hanno no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, S.; Hasegawa, Y.; Yamashita, I. [Mechanical Engineering Laboratory, Tsukuba (Japan)

    1993-10-25

    This paper discusses effects of surface reaction on deactivation of excited molecular oxygen in {sup 1}{Delta}g condition. Gaseous oxygen containing excited oxygen generated by microwave discharge at a concentration of less than 1% is flown into several kinds of tubes to be measured such as quartz tubes (with an inner diameter of about 10 mm), and the light emitting intensity of the excited oxygen was measured upstream and downstream of the tubes to be measured (with in-tube pressure of 1 Torr or 2 Torr) to derive its concentration change. The surface reaction on the tube wall was regarded as a primary reaction, and the concentration change of the excited oxygen in flows in the round tube (attributable to the surface reaction) was analyzed. With respect to effects of tube wall materials on deactivation of the excited molecular oxygen, the surface deactivation probability in the case of using low-activity materials has decreased in the order of Pyrex, PVC, quartz, PFA and PTFE. The surface deactivation probability in the case of using a metallic material, SUS316L, was about 1000 times larger than that in the quartz. 14 refs., 7 figs., 1 tab.

  7. Deactivation Studies of Rh/Ce0.8Zr0.2O2 Catalysts in Low Temperature Ethanol Steam Reforming

    Energy Technology Data Exchange (ETDEWEB)

    Platon, Alex; Roh, Hyun-Seog; King, David L.; Wang, Yong

    2007-10-30

    Rapid deactivation of Rh/Ce0.8Zr0.2O2 catalysts in low temperature ethanol steam reforming was studied. A significant build-up of carbonaceous intermediate, instead of carbon deposit, was observed at a lower reaction temperature which was attributed to the rapid catalyst deactivation. Co-feed experiments indicated that acetone and ethylene caused more severe catalyst deactivation than other oxygenates such as acidic acid and acetaldehyde.

  8. High-intensity erotic visual stimuli de-activate the primary visual cortex in women.

    Science.gov (United States)

    Huynh, Hieu K; Beers, Caroline; Willemsen, Antoon; Lont, Erna; Laan, Ellen; Dierckx, Rudi; Jansen, Monique; Sand, Michael; Weijmar Schultz, Willibrord; Holstege, Gert

    2012-06-01

    The primary visual cortex, Brodmann's area (BA 17), plays a vital role in basic survival mechanisms in humans. In most neuro-imaging studies in which the volunteers have to watch pictures or movies, the primary visual cortex is similarly activated independent of the content of the pictures or movies. However, in case the volunteers perform demanding non-visual tasks, the primary visual cortex becomes de-activated, although the amount of incoming visual sensory information is the same. Do low- and high-intensity erotic movies, compared to neutral movies, produce similar de-activation of the primary visual cortex? Brain activation/de-activation was studied by Positron Emission Tomography scanning of the brains of 12 healthy heterosexual premenopausal women, aged 18-47, who watched neutral, low- and high-intensity erotic film segments. We measured differences in regional cerebral blood flow (rCBF) in the primary visual cortex during watching neutral, low-intensity erotic, and high-intensity erotic film segments. Watching high-intensity erotic, but not low-intensity erotic movies, compared to neutral movies resulted in strong de-activation of the primary (BA 17) and adjoining parts of the secondary visual cortex. The strong de-activation during watching high-intensity erotic film might represent compensation for the increased blood supply in the brain regions involved in sexual arousal, also because high-intensity erotic movies do not require precise scanning of the visual field, because the impact is clear to the observer. © 2012 International Society for Sexual Medicine.

  9. Deactivation of Legionella Pneumophila in municipal wastewater by ozone generated in arrays of microchannel plasmas

    Science.gov (United States)

    Dong, Shengkun; Li, Jun; Kim, Min-Hwan; Cho, Jinhoon; Park, Sung-Jin; Nguyen, Thanh H.; Eden, J. Gary

    2018-06-01

    A greater than four log10 reduction in the concentration of Legionella pneumophila in municipal wastewater has been achieved in 1 min with ozone produced by a microchannel plasma reactor. Requiring less than 22 W of electrical power, and ambient air as the feedstock gas, the microplasma ozone generator is robust and a promising alternative to conventional corona and dielectric barrier discharge (DBD) technologies. Contrary to previous studies, the Ct model for pathogen deactivation (i.e. rate proportional to the product of the available disinfectant concentration and the exposure duration) is found to be valid for L. pneumophila. Accordingly, wastewater-specific Ct equations have been developed to predict the deactivation of L. pneumophila in the secondary wastewater environment. Inactivation of this pathogen was found to be dependent on temperature only in the absence of wastewater organic matter (WOM). In the presence of WOM, pathogen deactivation is controlled by the disinfection contact time, initial ozone concentration (varied between 15 and 281 µg l‑1), and initial WOM loading. The data reported here will assist in the implementation of plasma ozone generators for L. pneumophila deactivation in cooling towers, point-of-use systems, and wastewater reclamation facilities.

  10. Stability, Deactivation, and Regeneration of Chloroaluminate Ionic Liquid as Catalyst for Industrial C4 Alkylation

    Directory of Open Access Journals (Sweden)

    Xiang Li

    2017-12-01

    Full Text Available Alkylation of isobutane and 2-butene was carried out in a continuous unit using triethylamine hydrochloride (Et3NHCl-aluminum chloride (AlCl3 ionic liquid (IL as catalyst. The effects of impurities such as water, methanol, and diethyl ether on the stability of the catalytic properties and deactivation of the ionic liquid were studied in the continuous alkylation. In the Et3NHCl-2AlCl3 ionic liquid, only one half of the aluminum chloride could act as the active site. With a molar ratio of 1:1, the active aluminum chloride in the ionic liquid was deactivated by water by reaction or by diethyl ether through complexation while the complexation of aluminum chloride with two molecular proportions of methanol inactivated the active aluminum chloride in the ionic liquid. The deactivation of chloroaluminate ionic liquid was observed when the active aluminum chloride, i.e., one half of the total aluminum chloride in the ionic liquid, was consumed completely. The regeneration of the deactivated ionic liquid was also investigated and the catalytic activity could be recovered by means of replenishment with fresh aluminum chloride.

  11. 42 CFR 424.540 - Deactivation of Medicare billing privileges.

    Science.gov (United States)

    2010-10-01

    ... change in practice location, a change of any managing employee, and a change in billing services. A... 42 Public Health 3 2010-10-01 2010-10-01 false Deactivation of Medicare billing privileges. 424.540 Section 424.540 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND...

  12. Mediation Analysis of Mode Deactivation Therapy (Reanalysis and Interpretation)

    Science.gov (United States)

    Bass, Christopher K.; Apsche, Jack A.

    2013-01-01

    A key component of Mode Deactivation Therapy (MDT) is the development of self-awareness and regulatory skills by the client with the aim of helping adolescent males with conduct disordered behaviors, including sexually inappropriate behaviors and emotional dysregulation. The goal includes altering specific behaviors to fall within socially…

  13. Thermal Conditions in a Simulated Office Environment with Convective and Radiant Cooling Systems

    DEFF Research Database (Denmark)

    Mustakallio, Panu; Bolashikov, Zhecho Dimitrov; Kostov, Kalin

    2013-01-01

    velocity and turbulent intensity were measured and draft rate levels calculated in the room. Manikin-based equivalent temperature (MBET) was determined by two thermal manikins to identify the impact of the local thermal conditions generated by the studied systems on occupants’ thermal comfort. The results......The thermal conditions in a two person office room were measured with four air conditioning systems: chilled beam (CB), chilled beam with radiant panel (CBR), chilled ceiling with ceiling installed mixing ventilation (CCMV) and four desk partition mounted local radiant cooling panels with mixing...

  14. Analysis of the Impact of Early Exhaust Valve Opening and Cylinder Deactivation on Aftertreatment Thermal Management and Efficiency for Compression Ignition Engines

    OpenAIRE

    Roberts, Leighton Edward

    2014-01-01

    In order to meet strict emissions regulations, engine manufacturers have implemented aftertreatment technologies which reduce the tailpipe emissions from diesel engines. The effectiveness of most of these systems is limited when exhaust temperatures are low (usually below 200°C to 250°C). This is a problem for extended low load operation, such as idling and during cold start. Use of variable valve actuation, including early exhaust valve opening (EEVO) and cylinder deactivation (CDA), has bee...

  15. Deactivation of nickel hydroxide-gold modified electrodes

    OpenAIRE

    Caram, Bruno; Tucceri, Ricardo

    2013-01-01

    The aim of the present work was to study how the charge-transport process of a nickel hydroxide film electrochemically synthesized on a gold substrate is modified when the electrode is stored for a long time. It was found that nickel hydroxide films are deactivated under storage, that is, films became less conductive than films immediately prepared (nondeactivated). This study was carried out in the context of the rotating disc electrode voltammetry when the modified electrode contacts an ele...

  16. Characteristics of mordenite-type zeolite catalysts deactivated by SO{sub 2} for the reduction of NO with hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M.H.; Nam, I.S.; Kim, Y.G. [Pohang Univ. of Science and Technology/Research Inst. of Industrial Science and Technology, Pohang (Korea, Republic of)

    1998-10-25

    The deactivation of mordenite-type zeolite catalysts for the selective reduction of NO by hydrocarbons in the presence of SO{sub 2} was examined in a packed-bed flow reactor system. The physicochemical properties of the deactivated catalysts by SO{sub 2} were extensively characterized by TGA, TPSR, XPS, Raman, XANES, the measurements of surface area and elemental analysis. Not only the surface area and sulfur content of the deactivated catalysts, but their TGA and TPSR patterns strongly suggest the formation of a sulfur species as a deactivating agent on the catalyst surface. It is also observed that the sulfur species exists in the form of sulfate (SO{sub 4}{sup 2{minus}}) by XPS and Raman. It mainly causes the loss of NO removal activity of the catalysts. The sulfate species formed on the deactivated catalysts by SO{sub 2} did not significantly alter the chemical environment of the copper ions contained in the zeolite catalysts such as CuHM and CuNZA. It does not exist in the form of cupric sulfate pentahydrate on the catalyst surface as revealed by Cu K-edge absorption spectra of the catalysts.

  17. THERMAL COMFORT STUDY OF AN AIR-CONDITIONED DESIGN STUDIO IN TROPICAL SURABAYA

    OpenAIRE

    Agus Dwi Hariyanto

    2005-01-01

    This paper evaluates the current thermal comfort condition in an air-conditioned design studio using objective measurement and subjective assessment. Objective measurement is mainly to quantify the air temperature, MRT, relative humidity, and air velocity. Subjective assessment is conducted using a questionnaire to determine the occupants thermal comfort sensations and investigate their perception of the thermal comfort level. A design studio in an academic institution in Surabaya was chosen ...

  18. Expertise-related deactivation of the right temporoparietal junction during musical improvisation.

    Science.gov (United States)

    Berkowitz, Aaron L; Ansari, Daniel

    2010-01-01

    Musical training has been associated with structural changes in the brain as well as functional differences in brain activity when musicians are compared to nonmusicians on both perceptual and motor tasks. Previous neuroimaging comparisons of musicians and nonmusicians in the motor domain have used tasks involving prelearned motor sequences or synchronization with an auditorily presented sequence during the experiment. Here we use functional magnetic resonance imaging (fMRI) to examine expertise-related differences in brain activity between musicians and nonmusicians during improvisation--the generation of novel musical-motor sequences--using a paradigm that we previously used in musicians alone. Despite behaviorally matched performance, the two groups showed significant differences in functional brain activity during improvisation. Specifically, musicians deactivated the right temporoparietal junction (rTPJ) during melodic improvisation, while nonmusicians showed no change in activity in this region. The rTPJ is thought to be part of a ventral attentional network for bottom-up stimulus-driven processing, and it has been postulated that deactivation of this region occurs in order to inhibit attentional shifts toward task-irrelevant stimuli during top-down, goal-driven behavior. We propose that the musicians' deactivation of the rTPJ during melodic improvisation may represent a training-induced shift toward inhibition of stimulus-driven attention, allowing for a more goal-directed performance state that aids in creative thought.

  19. Thermal and Energy Performance of Conditioned Building Due To Insulated Sloped Roof

    Science.gov (United States)

    Irwan, Suhandi Syiful; Ahmed, Azni Zain; Zakaria, Nor Zaini; Ibrahim, Norhati

    2010-07-01

    For low-rise buildings in equatorial region, the roof is exposed to solar radiation longer than other parts of the envelope. Roofs are to be designed to reject heat and moderate the thermal impact. These are determined by the design and construction of the roofing system. The pitch of roof and the properties of construction affect the heat gain into the attic and subsequently the indoor temperature of the living spaces underneath. This finally influences the thermal comfort conditions of naturally ventilated buildings and cooling load of conditioned buildings. This study investigated the effect of insulated sloping roof on thermal energy performance of the building. A whole-building thermal energy computer simulation tool, Integrated Environmental Solution (IES), was used for the modelling and analyses. A building model with dimension of 4.0 m × 4.0 m × 3.0 m was designed with insulated roof and conventional construction for other parts of the envelope. A 75 mm conductive insulation material with thermal conductivity (k-value) of 0.034 Wm-1K-1 was installed underneath the roof tiles. The building was modelled with roof pitch angles of 0° , 15°, 30°, 45°, 60° and simulated for the month of August in Malaysian climate conditions. The profile for attic temperature, indoor temperature and cooling load were downloaded and evaluated. The optimum roof pitch angle for best thermal performance and energy saving was identified. The results show the pitch angle of 0° is able to mitigate the thermal impact to provide the best thermal condition with optimum energy savings. The maximum temperature difference between insulated and non-insulted roof for attic (AtticA-B) and indoor condition (IndoorA-B) is +7.8 °C and 0.4 °C respectively with an average energy monthly savings of 3.9 %.

  20. Experimental observation and investigation of reactor Cs-137 isotope deactivation in biological cells

    International Nuclear Information System (INIS)

    Vysotskii, V.I.; Tashyrev, A.B.; Kornilova, A.A.

    2007-01-01

    Complete text of publication follows. The problem of natural accelerated deactivation of radioactive waste (including deactivation in environmental) is studied. In the work the process of direct controlled deactivation of water mixture of selected different longlived radioactive isotopes in growing microbiological cultures has been studied. The process was connected with transmutation of long-lived active nuclei to non-radioactive isotopes during growth and metabolism of special microbiological MCT ('microbial catalyst-transmutator'). The MCT is the special granules that include: concentrated biomass of metabolically active microorganisms, sources of carbon and energy, phosphorus, nitrogen, etc., and gluing substances that keep all components in the form of granules stable in water solutions for a long period of time at any external conditions. The base of the MCT is microbe syntrophin associations of thousands different microorganism kinds that are in the state of complete symbiosis. These microorganisms appertain to different physiological groups that represent practically the whole variety of the microbe metabolism and relevantly all kinds of microbe accumulation mechanisms. The state of complete symbiosis of the syntrophin associations results on the possibility of maximal adaptation of the microorganisms' association to any external conditions change. The mechanism of nuclear transmutation in growing biological system is described in details in the book. The research has been carried out on the basis of the same distilled water that contained different long-lived reactor isotopes (e.g., Eu 154 , Eu 155 , Cs 137 , Am 241 ). In our experiments 8 identical closed glass flasks with 10 ml of the same active water in each were used. The 'microbial catalyst-transmutator' was placed in 7 glass flasks. In six different flasks different pure K, Ca, Mg, Na, Fe and P salts as single admixture were added to the active water. These chemical elements are vitally necessary

  1. Photon hormesis deactivates alpha-particle induced bystander effects between zebrafish embryos

    International Nuclear Information System (INIS)

    Ng, C.Y.P.; Cheng, S.H.; Yu, K.N.

    2017-01-01

    In the present work, we studied the effects of low-dose X-ray photons on the alpha-particle induced bystander effects between embryos of the zebrafish, Danio rerio. The effects on the naive whole embryos were studied through quantification of apoptotic signals (amounts of cells undergoing apoptosis) at 24 h post fertilization (hpf) using vital dye acridine orange staining, followed by counting the stained cells under a fluorescent microscope. We report data showing that embryos at 5 hpf subjected to a 4.4 mGy alpha-particle irradiation could release a stress signal into the medium, which could induce bystander effect in partnered naive embryos sharing the same medium. We also report that the bystander effect was deactivated when the irradiated embryos were subjected to a concomitant irradiation of 10 or 14 mGy of X-rays, but no such deactivation was achieved if the concomitant X-ray dose dropped to 2.5 or 5 mGy. In the present study, the significant drop in the amount of apoptotic signals on the embryos having received 4.4 mGy alpha particles together X-rays irradiation from 2.5 or 5 mGy to 10 or 14 mGy, together with the deactivation of RIBE with concomitant irradiation of 10 or 14 mGy of X-rays supported the participation of photon hormesis with an onset dose between 5 and 10 mGy, which might lead to removal of aberrant cells through early apoptosis or induction of high-fidelity DNA repair. As we found that photons and alpha particles could have opposite biological effects when these were simultaneously irradiated onto living organisms, these ionizing radiations could be viewed as two different environmental stressors, and the resultant effects could be regarded as multiple stressor effects. The present work presented the first study on a multiple stressor effect which occurred on bystander organisms. In other words, this was a non-targeted multiple stressor effect. The photon hormesis could also explain some failed attempts to observe neutron-induced bystander

  2. Acoustic Emission Analysis of Damage Progression in Thermal Barrier Coatings Under Thermal Cyclic Conditions

    Science.gov (United States)

    Appleby, Matthew; Zhu, Dongming; Morscher, Gregory

    2015-01-01

    Damage evolution of electron beam-physical vapor deposited (EBVD-PVD) ZrO2-7 wt.% Y2O3 thermal barrier coatings (TBCs) under thermal cyclic conditions was monitored using an acoustic emission (AE) technique. The coatings were heated using a laser heat flux technique that yields a high reproducibility in thermal loading. Along with AE, real-time thermal conductivity measurements were also taken using infrared thermography. Tests were performed on samples with induced stress concentrations, as well as calcium-magnesium-alumino-silicate (CMAS) exposure, for comparison of damage mechanisms and AE response to the baseline (as-produced) coating. Analysis of acoustic waveforms was used to investigate damage development by comparing when events occurred, AE event frequency, energy content and location. The test results have shown that AE accumulation correlates well with thermal conductivity changes and that AE waveform analysis could be a valuable tool for monitoring coating degradation and provide insight on specific damage mechanisms.

  3. Deactivation of vanadia-based commercial SCR catalysts by polyphosphoric acids

    DEFF Research Database (Denmark)

    Castellino, Francesco; Rasmussen, Søren Birk; Jensen, Anker Degn

    2008-01-01

    Commercial vanadia-based SCR monoliths have been exposed to flue gases in a pilot-scale Setup into which phosphoric acid has been added and the deactivation has been followed during the exposure time. Separate measurements by SMPS showed that the phosphoric acid formed polyphosphoric acid aerosols...

  4. Controlled-Deactivation CB1 Receptor Ligands as a Novel Strategy to Lower Intraocular Pressure

    Directory of Open Access Journals (Sweden)

    Sally Miller

    2018-05-01

    Full Text Available Nearly half a century has passed since the demonstration that cannabis and its chief psychoactive component Δ9-THC lowers intraocular pressure (IOP. Elevated IOP remains the chief hallmark and therapeutic target for glaucoma, a condition that places millions at risk of blindness. It is likely that Δ9-THC exerts much of its IOP-lowering effects via the activation of CB1 cannabinoid receptors. However, the initial promise of CB1 as a target for treating glaucoma has not thus far translated into a credible therapeutic strategy. We have recently shown that blocking monoacylglycerol lipase (MAGL, an enzyme that breaks the endocannabinoid 2-arachidonoyl glycerol (2-AG, substantially lowers IOP. Another strategy is to develop cannabinoid CB1 receptor agonists that are optimized for topical application to the eye. Recently we have reported on a controlled-deactivation approach where the “soft” drug concept of enzymatic deactivation was combined with a “depot effect” that is commonly observed with Δ9-THC and other lipophilic cannabinoids. This approach allowed us to develop novel cannabinoids with a predictable duration of action and is particularly attractive for the design of CB1 activators for ophthalmic use with limited or no psychoactive effects. We have tested a novel class of compounds using a combination of electrophysiology in autaptic hippocampal neurons, a well-characterized model of endogenous cannabinoid signaling, and measurements of IOP in a mouse model. We now report that AM7410 is a reasonably potent and efficacious agonist at CB1 in neurons and that it substantially (30% lowers IOP for as long as 5 h after a single topical treatment. This effect is absent in CB1 knockout mice. Our results indicate that the direct targeting of CB1 receptors with controlled-deactivation ligands is a viable approach to lower IOP in a murine model and merits further study in other model systems.

  5. Thermal and Hydrothermal Treatment of Silica Gels as Solid Stationary Phases in Gas Chromatography

    Directory of Open Access Journals (Sweden)

    Ashraf Yehia El-Naggar

    2013-01-01

    Full Text Available Silica gel was prepared and treated thermally and hydrothermally and was characterized as solid stationary phase in gas chromatography. The characteristics have been evaluated in terms of polarity, selectivity, and separation efficiencies. These parameters were used to assess the outer silica surface contributions and the degree of surface deactivation brought about by different treatment techniques. The parent silica elutes the paraffinic hydrocarbons with high efficiency of separation and elutes aromatic hydrocarbons with nearly good separation and has bad separation of alcohols. The calcined silica at 500°C and 1000°C has a pronounced effect on the separation of aromatic hydrocarbons compared with the parent silica and hydrothermal treatment of silica. With respect to alcohols separation, the obtained bad separations using treated and untreated silica reflect the little effect of the thermal and hydrothermal treatment on the silica surface deactivation.

  6. Deactivation of silica surfaces with a silanol-terminated polysiloxane; Structural characterization by inverse gas chromatography and solid-state NMR

    NARCIS (Netherlands)

    Scholten, A.B.; Haan, de J.W.; Janssen, J.G.M.; Ven, van de L.J.M.; Cramers, C.A.M.G.

    1997-01-01

    Retention gape deactivated with Silicone OV-1701-OH show good chromatographic performance and remarkable stability against water induced stationary phase degradrdation. In an attempt to better understand the findamentals off the deactivation process using silanol terminated polysiloxanes, a fumed

  7. Influence of thermal buoyancy on vertical tube bundle thermal density head predictions under transient conditions

    International Nuclear Information System (INIS)

    Lin, H.C.; Kasza, K.E.

    1984-01-01

    The thermal-hydraulic behavior of an LMFBR system under various types of plant transients is usually studied using one-dimensional (1-D) flow and energy transport models of the system components. Many of the transient events involve the change from a high to a low flow with an accompanying change in temperature of the fluid passing through the components which can be conductive to significant thermal bouyancy forces. Thermal bouyancy can exert its influence on system dynamic energy transport predictions through alterations of flow and thermal distributions which in turn can influence decay heat removal, system-response time constants, heat transport between primary and secondary systems, and thermal energy rejection at the reactor heat sink, i.e., the steam generator. In this paper the results from a comparison of a 1-D model prediction and experimental data for vertical tube bundle overall thermal density head and outlet temperature under transient conditions causing varying degrees of thermal bouyancy are presented. These comparisons are being used to generate insight into how, when, and to what degree thermal buoyancy can cause departures from 1-D model predictions

  8. Conditioned pain modulation dampens the thermal grill illusion.

    Science.gov (United States)

    Harper, D E; Hollins, M

    2017-10-01

    The thermal grill illusion (TGI) refers to the perception of burning heat and often pain that arises from simultaneous cutaneous application of innocuous warm and cool stimuli. This study utilized conditioned pain modulation (CPM) to help elucidate the TGI's underlying neural mechanisms, including the debated role of ascending nociceptive signals in generating the illusion. To trigger CPM, subjects placed the left hand in noxious cold (6 °C) water before placing the right volar forearm onto a thermal grill. Lower pain and unpleasantness ratings of the grill in this CPM run compared to those in a control run (i.e. 33 °C water) were taken as evidence of CPM. To determine whether CPM reduces noxious heat pain and illusory heat pain equally, an experimental group of subjects rated pain and unpleasantness of a grill consisting of innocuous alternating warm (42 °C) and cool (18 °C) bars, while a control group rated a grill with all bars controlled to a noxious temperature (45 °C). CPM produced significant and comparable reductions in pain, unpleasantness and perceived heat of both noxious heat and the TGI. This result suggests that the TGI results from signals in nociceptive dorsal horn convergent neurons, since CPM involves descending inhibition with high selectivity for this neuronal population. More broadly, CPM's ability to produce a shift in perceived thermal sensation of both noxious heat and the TGI from 'hot' to 'warm' implies that nociceptive signals generated by a cutaneous stimulus can contribute to its perceived thermal intensity. Conditioned pain modulation reduces the perceived painfulness, unpleasantness and heat of the thermal grill illusion and noxious heat similarly. The results have important theoretical implications for both types of pain. © 2017 European Pain Federation - EFIC®.

  9. Ice thermal storage air conditioning system for electric load leveling; Denryoku heijunka to hyochikunetsu system

    Energy Technology Data Exchange (ETDEWEB)

    Shigenaga, Y. [Daikin Industries Ltd., Osaka (Japan)

    1998-08-15

    Thermal storage air conditioning system is the one to use energy stored into thermal storing materials by using night electric power and to operate effective air conditioning. Therefore, as load can be treated by the stored energy, volume of the apparatus can be reduced. And, by reduction of the consumed power at day time, it can contribute to leveling of electric power demand. In general, there are two types in the thermal storage method: one is a method to store as thermal energy, and the other is that to store as chemical energy. For conditions required for the storing materials, important elements on their actual uses are not only physical properties such as large thermal storage per unit and easy thermal in- and out-puts, but also safety, long-term reliability, and easy receiving and economics containing future. The ice thermal storage air conditioning system is classified at the viewpoint of type of ice, kind of thermal storing medium, melting method on using cooling and heating, kinds of thermal medium on cooling and heating. 3 refs., 5 figs., 2 tabs.

  10. Numerical study on lithium titanate battery thermal response under adiabatic condition

    International Nuclear Information System (INIS)

    Sun, Qiujuan; Wang, Qingsong; Zhao, Xuejuan; Sun, Jinhua; Lin, Zijing

    2015-01-01

    Highlights: • The thermal behavior of lithium titanate battery during cycling was investigated. • The temperature rate in charging was less than that of discharging in the cycling. • The temperature difference was less than 0.02 °C at 0.5 C in adiabatic condition. • The temperature distribution and thermal runaway of the battery were predicted. - Abstract: To analyze the thermal behavior of 945 mA h lithium titanate battery during charging and discharging processes, the experimental and numerical studies are performed in this work. The cathode and anode of the 945 mA h lithium titanate soft package battery are the lithium nickel–cobalt–manganese-oxide and lithium titanate, respectively. In the experiment, an Accelerating Rate Calorimeter combined with battery cycler is employed to investigate the electrochemical–thermal behavior during charge–discharge cycling under the adiabatic condition. In numerical simulation, one electrochemical-thermal model is adopted to predict the thermal response and validated with the experimental results. From both experimental and simulated results, the profile of potential and current, the heat generation, the temperature, the temperature changing rate and the temperature distribution in the cell are obtained and thermal runaway is predicted. The analysis of the electrochemical and thermal behavior is beneficial for the commercial application of lithium titanate battery in the fields of electric vehicles and hybrid electric vehicles

  11. Thermal comfort index and infrared temperatures for lambs subjected to different environmental conditions

    Directory of Open Access Journals (Sweden)

    Tiago do Prado Paim

    2014-10-01

    Full Text Available There is an abundance of thermal indices with different input parameters and applicabilities. Infrared thermography is a promising technique for evaluating the response of animals to the environment and differentiating between genetic groups. Thus, the aim of this study was to evaluate superficial body temperatures of lambs from three genetic groups under different environmental conditions, correlating these with thermal comfort indices. Forty lambs (18 males and 22 females from three genetic groups (Santa Inês, Ile de France × Santa Inês and Dorper × Santa Inês were exposed to three climatic conditions: open air, housed and artificial heating. Infrared thermal images were taken weekly at 6h, 12h and 21h at the neck, front flank, rear flank, rump, nose, skull, trunk and eye. Four thermal comfort indices were calculated using environmental measurements including black globe temperature, air humidity and wind speed. Artificial warming, provided by infrared lamps and wind protection, conserved and increased the superficial body temperature of the lambs, thus providing lower daily thermal ranges. Artificial warming did not influence daily weight gain or mortality. Skin temperatures increased along with increases in climatic indices. Again, infrared thermography is a promising technique for evaluating thermal stress conditions and differentiating environments. However, the use of thermal imaging for understanding animal responses to environmental conditions requires further study.

  12. DMPD: Molecular mechanisms of macrophage activation and deactivation bylipopolysaccharide: roles of the receptor complex. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14609719 Molecular mechanisms of macrophage activation and deactivation bylipopolys...acol Ther. 2003 Nov;100(2):171-94. (.png) (.svg) (.html) (.csml) Show Molecular mechanisms of macrophage act...medID 14609719 Title Molecular mechanisms of macrophage activation and deactivation bylipopolysaccharide: ro

  13. Studies of Deactivation of Methanol to Formaldehyde Selective Oxidation Catalyst

    DEFF Research Database (Denmark)

    Raun, Kristian Viegaard; Schumann, Max; Høj, Martin

    This work presents a study of the deactivation behavior of Fe-Mo oxide catalyst during selective oxidation of methanol to formaldehyde in a period of 5 days. The structural changes in the catalyst have been investigated in situ for the initial 10 h by Raman spectroscopy, and the structure after 5...

  14. Deactivation of medial prefrontal and posterior cingulate cortex in anxiety disorders

    International Nuclear Information System (INIS)

    Zhao Xiaohu; Wang Peijun; Dong Ningxin; Li Chunbo; Wu Wenyuan; Hu Zhenghui; Tang Xiaowei

    2007-01-01

    Objective: We used blood oxygenation level dependent-functional MR imaging (BOLD- fMRI) to explore the characteristics of deactivation patterns in patients with anxiety disorders and the underlying neural mechanism of this disease. Methods: Ten patients and ten healthy controls participated the experiments. All subjects performed the trait portion of the State-Trait anxiety Inventory (STAI-T) prior to the fMRI scans. The subjects underwent noninvasive functional magnetic resonance imaging while listening actively to emotionally neutral words alternating with no words (experiment 1) and threat related-words alternating with emotionally neutral words (experiment2). During fMRI scanning, subjects were instructed to closely listen to each stimuli word and to silently make a judgment of the word's valence. Data were analyzed with statistical parametric mapping (SPM 99). Individual and group analysis were conducted. Results: Mean STAI-T score was significantly higher for patients group than that of controls (58 ± 8 for patients group and 33 ± 5 for controls, t=8.3, P<0.01). Our fMRI data revealed sets of deactivation brain regions in Experiment for patients and healthy controls, however, the deactivation can be found in experiment 2 only for patients. Interestingly, all the observed deactivation patterns were similar. The related areas compromise medial prefrontal cortex(BA 10, BA 24/32), posterior cingulate (BA 31/30) and Bilateral inferior parietal cortex (MPFC) (BA 39/40), which nearly overlapping with the organized default model network. Further more, the mean t values in the MPFC area (BA 24/32) was significantly higher for control group than that of patient (5.1 controls and 4.2 for patients, t=4.8, P=0.006), conversely, the mean t values in the posterior cingulate cortex(PCC) area was significantly higher for patients l than that of controls (4.9 controls and 5.8 for patients, t=2.4, P=0.026). Conclusion: Our observations suggest that the default model network

  15. Human-biometeorological conditions and thermal perception in a Mediterranean coastal park

    Science.gov (United States)

    Saaroni, Hadas; Pearlmutter, David; Hatuka, Tali

    2015-10-01

    This study looks at the interrelation of human-biometeorological conditions, physiological thermal stress and subjective thermal perception in the design and use of a new waterfront park in Tel-Aviv, Israel. Our initial assumption was that the park's design would embody a comprehensive response to the area's ever-increasing heat stress and water shortage. However, almost half of it is covered by grass lawns, irrigated with fresh water, while the remaining area is mainly covered with concrete paving, with minimal shading and sparse trees. We hypothesized that stressful thermal conditions would prevail in the park in the summer season and would be expressed in a high discomfort perception of its users. Thermo-physiological stress conditions in a typical summer month were compared with the subjective comfort perceptions of pedestrians surveyed in the park. It was found that even during mid-day hours, the level of thermal stress tends to be relatively mild, owing largely to the strong sea breeze and despite the high intensity of solar radiation. Moreover, it appears that the largely favorable perception of comfort among individuals may also result from socio-cultural aspects related to their satisfaction with the park's aesthetic attractiveness and in fact its very existence. Adaptive planning is proposed for such vulnerable regions, which are expected to experience further aggravation in thermal comfort due to global as well as localized warming trends.

  16. Catalytic Activity and Deactivation of SO2 Oxidation Catalysts in Simulated Power Plant Flue Gases

    DEFF Research Database (Denmark)

    Masters, Stephen G.; Chrissanthopoulos, Asthanassios; Eriksen, Kim Michael

    1997-01-01

    The catalyst deactivation and the simultaneious formation of compounds in commercial SO2 oxidation catalysts have been studied by combined activity measurements and in situ EPR spectroscopy in the temperature range 350-480 C in wet and dry simulated power plant flue gas.......The catalyst deactivation and the simultaneious formation of compounds in commercial SO2 oxidation catalysts have been studied by combined activity measurements and in situ EPR spectroscopy in the temperature range 350-480 C in wet and dry simulated power plant flue gas....

  17. Enthalpy estimation for thermal comfort and energy saving in air conditioning system

    International Nuclear Information System (INIS)

    Chu, C.-M.; Jong, T.-L.

    2008-01-01

    The thermal comfort control of a room must consider not only the thermal comfort level but also energy saving. This paper proposes an enthalpy estimation that is conducive for thermal comfort control and energy saving. The least enthalpy estimator (LEE) combines the concept of human thermal comfort with the theory of enthalpy to predict the load for a suitable setting pair in order to maintain more precisely the thermal comfort level and save energy in the air conditioning system

  18. Investigation on the Temporal Surface Thermal Conditions for Thermal Comfort Researches Inside A Vehicle Cabin Under Summer Season Climate

    Directory of Open Access Journals (Sweden)

    Zhang Wencan

    2016-01-01

    Full Text Available With the proposes of improving occupant's thermal comfort and reducing the air conditioning power consumption, the present research carried out a comprehensive study on the surface thermal conductions and their influence parameters. A numerical model was built considering the transient conduction, convective and radiation heat transfer inside a vehicle cabin. For more accurate simulation of the radiation heat transfer behaviors, the radiation was considered into two spectral bands (short wave and long wave radiation, and the solar radiation was calculated by two solar fluxes (beam and diffuse solar radiation. An experiment was conducted to validate the numerical approach, showing a good agreement with the surface temperature. The surface thermal conditions were numerically simulated. The results show that the solar radiation is the most important factor in determining the internal surface thermal conditions. Effects of the window glass properties and the car body surface conditions were investigated. The numerical calculation results indicate that reducing the transitivity of window glass can effectively reduce the internal surface temperature. And the reflectivity of the vehicle cabin also has an important influence on the surface temperature, however, it's not so obvious as comparison to the window glass.

  19. Work plan for the High Ranking Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-03-01

    The High Ranking Facilities Deactivation Project (HRFDP), commissioned by the US Department of Energy Nuclear Materials and Facility Stabilization Program, is to place four primary high-risk surplus facilities with 28 associated ancillary facilities at Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition as rapidly and economically as possible. The facilities will be deactivated and left in a condition suitable for an extended period of minimized surveillance and maintenance (S and M) prior to decontaminating and decommissioning (D and D). These four facilities include two reactor facilities containing spent fuel. One of these reactor facilities also contains 55 tons of sodium with approximately 34 tons containing activated sodium-22, 2.5 tons of lithium hydride, approximately 100 tons of potentially contaminated lead, and several other hazardous materials as well as bulk quantities of contaminated scrap metals. The other two facilities to be transferred include a facility with a bank of hot cells containing high levels of transferable contamination and also a facility containing significant quantities of uranyl nitrate and quantities of transferable contamination. This work plan documents the objectives, technical requirements, and detailed work plans--including preliminary schedules, milestones, and conceptual FY 1996 cost estimates--for the Oak Ridge National Laboratory (ORNL). This plan has been developed by the Environmental Restoration (ER) Program of Lockheed Martin Energy Systems (Energy Systems) for the US Department of Energy (DOE) Oak Ridge Operations Office (ORO)

  20. Work plan for the High Ranking Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The High Ranking Facilities Deactivation Project (HRFDP), commissioned by the US Department of Energy Nuclear Materials and Facility Stabilization Program, is to place four primary high-risk surplus facilities with 28 associated ancillary facilities at Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition as rapidly and economically as possible. The facilities will be deactivated and left in a condition suitable for an extended period of minimized surveillance and maintenance (S and M) prior to decontaminating and decommissioning (D and D). These four facilities include two reactor facilities containing spent fuel. One of these reactor facilities also contains 55 tons of sodium with approximately 34 tons containing activated sodium-22, 2.5 tons of lithium hydride, approximately 100 tons of potentially contaminated lead, and several other hazardous materials as well as bulk quantities of contaminated scrap metals. The other two facilities to be transferred include a facility with a bank of hot cells containing high levels of transferable contamination and also a facility containing significant quantities of uranyl nitrate and quantities of transferable contamination. This work plan documents the objectives, technical requirements, and detailed work plans--including preliminary schedules, milestones, and conceptual FY 1996 cost estimates--for the Oak Ridge National Laboratory (ORNL). This plan has been developed by the Environmental Restoration (ER) Program of Lockheed Martin Energy Systems (Energy Systems) for the US Department of Energy (DOE) Oak Ridge Operations Office (ORO).

  1. Thermal tests of a transport / Storage cask in buried conditions

    International Nuclear Information System (INIS)

    Yamakawa, H.; Gomi, Y.; Saegusa, T.; Ito, C.

    1998-01-01

    Thermal tests for a hypothetical accident which simulated accidents caused by building collapse in case of an earthquake were conducted using a full-scale dry type transport and storage cask (total heat load: 23 kW). The objectives of these tests were to clarify the heat transfer features of the buried cask under such accidents and the time limit for maintaining the thermal integrity of the cask. Moreover, thermal analyses of the test cask under the buried conditions were carried out on basis of experimental results to establish methodology for the thermal analysis. The characteristics of the test cask are described as well as the test method used. The heat transfer features of the buried cask under such accidents and a time for maintaining the thermal integrity of the cask have been obtained. (O.M.)

  2. Deactivation of hydrophobic catalysts for a hydrogen isotope exchange: Application of the time-on-stream theory

    International Nuclear Information System (INIS)

    Choi, Heui-Joo; Lee, Han Soo; Ahn, Do-Hee; Kim, Jeong-Guk; Kim, Wi-soo; Sohn, SoonHwan

    2005-01-01

    A recycle reactor was built for the purpose of characterizing newly developed hydrophobic catalysts for a hydrogen isotope exchange. The catalytic rate constants of two types of hydrophobic catalysts were measured at a 100% relative humidity. The catalytic rate constants were measured at 60 deg C for 28 days and both the catalysts showed very high initial catalytic rate constants. The measured deactivation profile showed that the catalytic rate constants of both the catalysts were almost identical for 28 days. The deactivation of the catalysts was modelled based upon the time-on-stream theory. The deactivation profiles of the catalysts were estimated by using the model for a period of three years. The results showed that both the catalysts had a good exchange capacity for hydrogen isotopes and they could be applicable to a tritium removal facility that will be built at the Wolsong nuclear power plants in the near future

  3. Soluble and immobilized catalase. Effect of pressure and inhibition on kinetics and deactivation.

    Science.gov (United States)

    Vasudevan, P T; Thakur, D S

    1994-12-01

    This article examines the effect of pressure on the steady-state kinetics and long-term deactivation of the enzyme catalase supported on porous alumina. The reaction studied is the decomposition of hydrogen peroxide. The results of studies carried out in a continuous stirred-tank reactor under isothermal conditions are presented and compared with results obtained for soluble catalase. For soluble catalase, it is found that in the range of pressures studied, the oxygen flow rate increases with increase in pressure up to a certain value and then decreases. Hydrogen peroxide concentration appears to have a strong influence on pressure effects. With immobilized catalase, the pressure effects are not as prominent. Fluorescent microscopy studies of the immobilized enzyme suggest that this is probably because of pore diffusional limitations.

  4. Green tide deactivation with layered-structure cuboids of Ag/CaTiO3 under UV light

    International Nuclear Information System (INIS)

    Lee, Soo-Wohn; Lozano-Sánchez, L.M.; Rodríguez-González, V.

    2013-01-01

    Graphical abstract: Synergic reasons such as mass transfer, morphology, biocide properties, UV-A photoresponse, and electron trapping that reduce recombination on Ag/CaTiO 3 nanocomposites, have the potential for the generation of reactive radicals that promote the fatal irreversible deactivation of Tetraselmis suecica algae in 12 min under UV-A irradiation. -- Highlights: • An alternative to deactivate harmful green tide is proposed by employing Ag/CaTiO 3 . • Particles of perovskite-like have rectangular prisms morphology with AgNPs ∼13 nm. • The cuboids achieve complete inactivation of Tetraselmis suecica algae in 12 min. • AgNPs functionalization induce fatal irreversible damages on the algae surface. -- Abstract: In this work, an alternative to deactivate noxious green tide Tetraselmis suecica in the short-term is proposed by employing Perovskite-like cube-shaped, crystalline CaTiO 3 semiconductors functionalized with atomic silver nanoparticles. CaTiO 3 was prepared by a microwave-assisted hydrothermal method and then Ag 0 NPs (1 wt% of CaTiO 3 ), were added by the photoreduction method. The XRD results show that crystalline CaTiO 3 has an orthorhombic unit cell with a Perovskite-like structure. Images obtained by FESEM and HRTEM microscopies show well-faceted CaTiO 3 rectangular prismatic morphology functionalizated with silver nanoparticles ∼13.5 nm. XPS and EDS-FESEM has confirmed the composition of CaTiO 3 and silver occurring mainly as reduced metal. The UV inactivation of noxious T. suecica with Ag/CaTiO 3 nanocomposites formed on bare materials results in complete deactivation of the algae in 12 min. The direct contact between harmful algae and Ag/CaTiO 3 nanocomposite is necessary to deactivate the algae and inhibits algae viability

  5. Identification and root cause analysis of cell culture media precipitates in the viral deactivation treatment with high-temperature/short-time method.

    Science.gov (United States)

    Cao, Xiaolin; Stimpfl, Gregory; Wen, Zai-Qing; Frank, Gregory; Hunter, Glenn

    2013-01-01

    High-temperature/short-time (HTST) treatment of cell culture media is one of the proven techniques used in the biopharmaceutical manufacturing industry for the prevention and mitigation of media viral contamination. With the HTST method, the formulated media is pasteurized (virus-deactivated) by heating and pumping the media continuously through the preset high-temperature holding tubes to achieve a specified period of time at a specific temperature. Recently, during the evaluation and implementation of HTST method in multiple Amgen, Inc. manufacturing facilities, media precipitates were observed in the tests of HTST treatments. The media precipitates may have adverse consequences such as clogging the HTST system, altering operating conditions and compromising the efficacy of viral deactivation, and ultimately affecting the media composition and cell growth. In this study, we report the identification of the composition of media precipitates from multiple media HTST runs using combined microspectroscopic methods including Raman, Fourier transform infrared spectroscopy, and scanning electron microscopy with energy-dispersive X-ray spectroscopy. The major composition in the precipitates was determined to be metal phosphates, including calcium phosphate, magnesium phosphate, and iron (III) phosphate. Based on the composition, stoichiometry, and root-cause study of media precipitations, methods were implemented for the mitigation and prevention of the occurrence of the media precipitation. Viral contamination in cell culture media is an important issue in the biopharmaceutical manufacturing industry and may have serious consequences on product quality, efficacy, and safety. High-temperature/short-time (HTST) treatment of cell culture media is one of the proven techniques used in the industry for the prevention and mitigation of media viral contamination. With the HTST method, the formulated media is pasteurized (virus-deactivated) by heating at preset conditions. This

  6. Influence of anomalous thermal losses of ignition conditions

    International Nuclear Information System (INIS)

    Coppi, B.; Tang, W.M.

    1986-05-01

    In the process of achieving ignition conditions, it is likely that microinstabilities, which lead to anomalous thermal transport of the fusing nuclei, will be present. When such phenomena are taken into account, an appropriate formulation of ignition criteria becomes necessary. In particular, a new type of plasma density limit is identified

  7. On the determination of the thermal comfort conditions of a metropolitan city underground railway.

    Science.gov (United States)

    Katavoutas, George; Assimakopoulos, Margarita N; Asimakopoulos, Dimosthenis N

    2016-10-01

    Although the indoor thermal comfort concept has received increasing research attention, the vast majority of published work has been focused on the building environment, such as offices, residential and non-residential buildings. The present study aims to investigate the thermal comfort conditions in the unique and complex underground railway environment. Field measurements of air temperature, air humidity, air velocity, globe temperature and the number of passengers were conducted in the modern underground railway of Athens, Greece. Environmental monitoring was performed in the interior of two types of trains (air-conditioned and forced air ventilation cabins) and on selected platforms during the summer period. The thermal comfort was estimated using the PMV (predicted mean vote) and the PPD (predicted percentage dissatisfied) scales. The results reveal that the recommended thermal comfort requirements, although at relatively low percentages are met only in air-conditioned cabins. It is found that only 33% of the PPD values in air-conditioned cabins can be classified in the less restrictive comfort class C, as proposed by ISO-7730. The thermal environment is "slightly warm" in air-conditioned cabins and "warm" in forced air ventilation cabins. In addition, differences of the thermal comfort conditions on the platforms are shown to be associated with the depth and the design characteristics of the stations. The average PMV at the station with small depth is 0.9 scale points higher than that of the station with great depth. The number of passengers who are waiting at the platforms during daytime reveals a U-shaped pattern for a deep level station and an inverted course of PMV for a small depth station. Further, preliminary observations are made on the distribution of air velocity on the platforms and on the impact of air velocity on the thermal comfort conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Impact of fluorine co-implantation on B deactivation and leakage currents in low and high energy Ge preamorphised p+n shallow junctions

    International Nuclear Information System (INIS)

    Girginoudi, D.; Tsiarapas, C.

    2008-01-01

    The impact of fluorine (F) co-implantation on boron (B) deactivation and B TED, as well as on the I-V characteristics of p + n shallow junctions, have been studied for low (10 keV) and high (70 keV) energy Ge preamorphised (PAI) n-type Si samples, that were annealed at 600 deg. C and 700 deg. C. Transmission electron microscopy revealed the existence of defects and dislocation loops (DLs) in the EOR region. It has been found that F stabilizes the EOR defect population via the increase of EOR defect density and the percentage of the stable DLs. This phenomenon is more pronounced when the preamorphisation is shallow (10 keV Ge energy). SIMS and sheet resistance measurements showed the formation of BICs, which implies B deactivation and increased B TED, especially in the shallow PAI samples and at the 700 deg. C annealing temperature. The role of F on B deactivation is multiplex: in the 70 keV PAI samples, and at 600 deg. C annealing temperature, F forms clusters with B causing further B deactivation. In the case of 700 deg. C annealing temperature, F probably forms fluorine-vacancy (F-V) clusters that trap silicon interstitials (Is), thus reducing the possibility of forming BICs and, therefore, resulting in B re-activation and suppression of B TED. Conversely, in the 10-keV PAI samples, and irrespective of the annealing temperature, F improves significantly the sheet resistance, and we suggest that this is a result of the contribution of two physical mechanisms: in the EOR region, F is trapped into DLs, which release less Is than other types of defects. In the amorphous part of Si, there are probably F-V clusters that trap the Is released from the EOR region. Although F in most cases improves B deactivation, it increases the reverse leakage currents, probably due to the stabilization of the EOR defects. As regards the carrier-transport mechanisms, it has been found that the dominant mechanism is the generation-recombination process under forward bias as well as under

  9. Brain activation and deactivation during location and color working memory tasks in 11-13-year-old children.

    Science.gov (United States)

    Vuontela, Virve; Steenari, Maija-Riikka; Aronen, Eeva T; Korvenoja, Antti; Aronen, Hannu J; Carlson, Synnöve

    2009-02-01

    Using functional magnetic resonance imaging (fMRI) and n-back tasks we investigated whether, in 11-13-year-old children, spatial (location) and nonspatial (color) information is differentially processed during visual attention (0-back) and working memory (WM) (2-back) tasks and whether such cognitive task performance, compared to a resting state, results in regional deactivation. The location 0-back task, compared to the color 0-back task, activated segregated areas in the frontal, parietal and occipital cortices whereas no differentially activated voxels were obtained when location and color 2-back tasks were directly contrasted. Several midline cortical areas were less active during 0- and 2-back task performance than resting state. The task-induced deactivation increased with task difficulty as demonstrated by larger deactivation during 2-back than 0-back tasks. The results suggest that, in 11-13-year-old children, the visual attentional network is differently recruited by spatial and nonspatial information processing, but the functional organization of cortical activation in WM in this age group is not based on the type of information processed. Furthermore, 11-13-year-old children exhibited a similar pattern of cortical deactivation that has been reported in adults during cognitive task performance compared to a resting state.

  10. Thermal resistivity of tungsten grades under fusion relevant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wirtz, M.; Linke, J.; Pintsuk, G. [Forschungszentrum Juelich (Germany). EURATOM Association

    2010-05-15

    Controlled nuclear fusion on earth is a very promising but also a very challenging task. Fusion devices like ITER and DEMO are major steps on the way of solving the energy problems of the future. However, the realisation of such thermonuclear fusion reactors still needs high efforts in many areas of research. One of the most critical issues is the field of in - vessel materials and components and in particular the plasma facing material (PFM). This not only has to be compatible to the heat sink material being able to withstand thermal fatigue loading conditions during steady state heat loading (up to 20 MW/m{sup 2}) but also has to withstand extreme thermal loads during transient events. The latter are divided into normal and off normal events, such as plasma disruptions or vertical displacement events (VDEs), resulting in irreversible damage of the material. Therefore they have to be avoided in future fusion devices by an improved plasma control. In contrast, edge localized modes (ELMs) occur during normal operation and are the result of complex plasma configuration. In the next step experiment ITER they are generated with a frequency of {>=} 1 Hz and a duration of 200 - 500 {mu}s depositing energies of {<=} 1 MJ/m{sup 2}. One of the most promising materials for the application as PFM in particular in the divertor region is tungsten. Its main advantages are a high thermal conductivity, a high melting temperature, a low tritium inventory and a low erosion rate. However there are some drawbacks like a high ductile to brittle transitions temperature (DBTT), its high atomic number Z and the remarkable neutron irradiation induced activation and degradation of its mechanical properties. The main aim of future R and D will be to understand the mechanisms of thermal induced damages and subsequently to minimize these types of damages. Therefore various tungsten grades have to be tested under fusion relevant conditions, e.g. by electron, ion or plasma beam exposure; the

  11. Simple method of calculating the transient thermal performance of composite material and its applicable condition

    Institute of Scientific and Technical Information of China (English)

    张寅平; 梁新刚; 江忆; 狄洪发; 宁志军

    2000-01-01

    Degree of mixing of composite material is defined and the condition of using the effective thermal diffusivity for calculating the transient thermal performance of composite material is studied. The analytical result shows that for a prescribed precision of temperature, there is a condition under which the transient temperature distribution in composite material can be calculated by using the effective thermal diffusivity. As illustration, for the composite material whose temperatures of both ends are constant, the condition is presented and the factors affecting the relative error of calculated temperature of composite materials by using effective thermal diffusivity are discussed.

  12. Brain deactivation in the outperformance in bimodal tasks: an FMRI study.

    Directory of Open Access Journals (Sweden)

    Tzu-Ching Chiang

    Full Text Available While it is known that some individuals can effectively perform two tasks simultaneously, other individuals cannot. How the brain deals with performing simultaneous tasks remains unclear. In the present study, we aimed to assess which brain areas corresponded to various phenomena in task performance. Nineteen subjects were requested to sequentially perform three blocks of tasks, including two unimodal tasks and one bimodal task. The unimodal tasks measured either visual feature binding or auditory pitch comparison, while the bimodal task required performance of the two tasks simultaneously. The functional magnetic resonance imaging (fMRI results are compatible with previous studies showing that distinct brain areas, such as the visual cortices, frontal eye field (FEF, lateral parietal lobe (BA7, and medial and inferior frontal lobe, are involved in processing of visual unimodal tasks. In addition, the temporal lobes and Brodmann area 43 (BA43 were involved in processing of auditory unimodal tasks. These results lend support to concepts of modality-specific attention. Compared to the unimodal tasks, bimodal tasks required activation of additional brain areas. Furthermore, while deactivated brain areas were related to good performance in the bimodal task, these areas were not deactivated where the subject performed well in only one of the two simultaneous tasks. These results indicate that efficient information processing does not require some brain areas to be overly active; rather, the specific brain areas need to be relatively deactivated to remain alert and perform well on two tasks simultaneously. Meanwhile, it can also offer a neural basis for biofeedback in training courses, such as courses in how to perform multiple tasks simultaneously.

  13. Human thermal comfort conditions and urban planning in hot-humid climates-The case of Cuba.

    Science.gov (United States)

    Rodríguez Algeciras, José Abel; Coch, Helena; De la Paz Pérez, Guillermo; Chaos Yeras, Mabel; Matzarakis, Andreas

    2016-08-01

    Climate regional characteristics, urban environmental conditions, and outdoors thermal comfort requirements of residents are important for urban planning. Basic studies of urban microclimate can provide information and useful resources to predict and improve thermal conditions in hot-humid climatic regions. The paper analyzes the thermal bioclimate and its influence as urban design factor in Cuba, using Physiologically Equivalent Temperature (PET). Simulations of wind speed variations and shade conditions were performed to quantify changes in thermal bioclimate due to possible modifications in urban morphology. Climate data from Havana, Camagüey, and Santiago of Cuba for the period 2001 to 2012 were used to calculate PET with the RayMan model. The results show that changes in meteorological parameters influence the urban microclimate, and consequently modify the thermal conditions in outdoors spaces. Shade is the predominant strategy to improve urban microclimate with more significant benefits in terms of PET higher than 30 °C. For climatic regions such as the analyzed ones, human thermal comfort can be improved by a wind speed modification for thresholds of PET above 30 °C, and by a wind speed decreases in conditions below 26 °C. The improvement of human thermal conditions is crucial for urban sustainability. On this regards, our study is a contribution for urban designers, due to the possibility of taking advantage of results for improving microclimatic conditions based on urban forms. The results may enable urban planners to create spaces that people prefer to visit, and also are usable in the reconfiguration of cities.

  14. Occupants' adaptive responses and perception of thermal environment in naturally conditioned university classrooms

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Runming [The School of Construction Management and Engineering, The University of Reading, Whiteknights, PO Box 219, Reading RG6 6AW (United Kingdom); The Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400042 (China); Liu, Jing [The School of Construction Management and Engineering, The University of Reading, Whiteknights, PO Box 219, Reading RG6 6AW (United Kingdom); Li, Baizhan [The Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400042 (China); Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment (Ministry of Education), Chongqing University, Chongqing 400042 (China)

    2010-03-15

    A year-long field study of the thermal environment in university classrooms was conducted from March 2005 to May 2006 in Chongqing, China. This paper presents the occupants' thermal sensation votes and discusses the occupants' adaptive response and perception of the thermal environment in a naturally conditioned space. Comparisons between the Actual Mean Vote (AMV) and Predicted Mean Vote (PMV) have been made as well as between the Actual Percentage of Dissatisfied (APD) and Predicted Percentage of Dissatisfied (PPD). The adaptive thermal comfort zone for the naturally conditioned space for Chongqing, which has hot summer and cold winter climatic characteristics, has been proposed based on the field study results. The Chongqing adaptive comfort range is broader than that of the ASHRAE Standard 55-2004 in general, but in the extreme cold and hot months, it is narrower. The thermal conditions in classrooms in Chongqing in summer and winter are severe. Behavioural adaptation such as changing clothing, adjusting indoor air velocity, taking hot/cold drinks, etc., as well as psychological adaptation, has played a role in adapting to the thermal environment. (author)

  15. Selective deactivation of M13 bacteriophage in E. Coli using femtosecond laser pulses

    CSIR Research Space (South Africa)

    Molukanele, P

    2011-09-01

    Full Text Available Potential for the selective deactivation of viruses while leaving the sensitive material such as the host cell unharmed was studied using a femtosecond laser system, and preliminary results are reported....

  16. β-Arrestin-dependent deactivation of mouse melanopsin.

    Directory of Open Access Journals (Sweden)

    Evan G Cameron

    Full Text Available In mammals, the expression of the unusual visual pigment, melanopsin, is restricted to a small subset of intrinsically photosensitive retinal ganglion cells (ipRGCs, whose signaling regulate numerous non-visual functions including sleep, circadian photoentrainment and pupillary constriction. IpRGCs exhibit attenuated electrical responses following sequential and prolonged light exposures indicative of an adaptational response. The molecular mechanisms underlying deactivation and adaptation in ipRGCs however, have yet to be fully elucidated. The role of melanopsin phosphorylation and β-arrestin binding in this adaptive process is suggested by the phosphorylation-dependent reduction of melanopsin signaling in vitro and the ubiquitous expression of β-arrestin in the retina. These observations, along with the conspicuous absence of visual arrestin in ipRGCs, suggest that a β-arrestin terminates melanopsin signaling. Here, we describe a light- and phosphorylation- dependent reduction in melanopsin signaling mediated by both β-arrestin 1 and β-arrestin 2. Using an in vitro calcium imaging assay, we demonstrate that increasing the cellular concentration of β-arrestin 1 and β-arrestin 2 significantly increases the rate of deactivation of light-activated melanopsin in HEK293 cells. Furthermore, we show that this response is dependent on melanopsin carboxyl-tail phosphorylation. Crosslinking and co-immunoprecipitation experiments confirm β-arrestin 1 and β-arrestin 2 bind to melanopsin in a light- and phosphorylation- dependent manner. These data are further supported by proximity ligation assays (PLA, which demonstrate a melanopsin/β-arrestin interaction in HEK293 cells and ipRGCs. Together, these results suggest that melanopsin signaling is terminated in a light- and phosphorylation-dependent manner through the binding of a β-arrestin within the retina.

  17. Heat exchange studies on coconut oil cells as thermal energy storage for room thermal conditioning

    Science.gov (United States)

    Sutjahja, I. M.; Putri, Widya A.; Fahmi, Z.; Wonorahardjo, S.; Kurnia, D.

    2017-07-01

    As reported by many thermal environment experts, room air conditioning might be controlled by thermal mass system. In this paper we discuss the performance of coconut oil cells as room thermal energy storage. The heat exchange mechanism of coconut oil (CO) which is one of potential organic Phase Change Material (PCM) is studied based on the results of temperature measurements in the perimeter and core parts of cells. We found that the heat exchange performance, i.e. heat absorption and heat release processes of CO cells are dominated by heat conduction in the sensible solid from the higher temperature perimeter part to the lower temperature core part and heat convection during the solid-liquid phase transition and sensible liquid phase. The capability of heat absorption as measured by the reduction of air temperature is not influenced by CO cell size. Besides that, the application of CO as the thermal mass has to be accompanied by air circulation to get the cool sensation of the room’s occupants.

  18. Between-hand difference in ipsilateral deactivation is associated with hand lateralization: fMRI mapping of 284 volunteers balanced for handedness

    Directory of Open Access Journals (Sweden)

    Nathalie eTzourio-Mazoyer

    2015-02-01

    Full Text Available In right-handers, an increase in the pace of dominant hand movement results in increased ipsilateral deactivation of the primary motor cortex (M1. By contrast, an increase in non-dominant hand movement frequency is associated with reduced ipsilateral deactivation. This pattern suggests that inhibitory processes support right hand dominance in right-handers and raises the issues of whether this phenomenon also supports left hand preference in left-handers, and/or whether it relates to asymmetry of manual ability in either group. Thanks to the BIL&GIN, a database dedicated to the investigation of hemispheric specialization, we studied the variation in M1 activity during right and left finger tapping tasks in a sample of 284 healthy participants balanced for handedness. An M1 fMRI localizer was defined for each participant as an 8 mm diameter sphere centered on the motor activation peak. Right-handers exhibited significantly larger deactivation of the ipsilateral M1 when moving their dominant hand than their non-dominant hand. In contrast, left-handers exhibited comparable ipsilateral M1 deactivation during either hand movement, reflecting a bilateral cortical specialization. This pattern is likely related to left-handers’ good performances with their right hand and consequent lower asymmetry in manual ability compared with right-handers. Finally, inter-individual analyses over the whole sample demonstrated that the larger the difference in manual skill across hands, the larger the difference in ipsilateral deactivation. Overall, we propose that difference in ipsilateral deactivation is a marker of difference in manual ability asymmetry reflecting differences in the strength of transcallosal inhibition when a given hand is moving.

  19. Chemicals and excess materials disposition during deactivation as a means of pollution prevention

    International Nuclear Information System (INIS)

    Godfrey, S.D.

    1998-01-01

    This paper presents several innovative and common sense approaches to pollution prevention that have been employed during facility deactivation at the Hanford Site in South Central Washington. It also presents several pollution prevention principles applicable to other projects. Innovative pollution prevention ideas employed at the Hanford site during facility deactivation included: (1) Recycling more than 185,000 gallons of radioactively contaminated nitric acid by sending it to an operating nuclear fuels reprocessing facility in England; (2) Recycling millions of pounds of chemicals and excess materials to other industries for reuse; (3) Evaporating flush water at a low rate and discharging it into the facility exhaust air stream to avoid discharging thousands of gallons of liquid to the soil column; and (4) Decontaminating and disposing of thousands of gallons of radioactively contaminated organic solvent waste to a RCRA licensed, power-producing, commercial incinerator. Common sense pollution prevention ideas that were employed include recycling office furniture, recycling paper from office files, and redeploying tools and miscellaneous process equipment. Additional pollution prevention occurred as the facility liquid and gaseous discharge streams were deactivated. From the facilities deactivation experiences at Hanford and the ensuing efforts to disposition excess chemicals and materials, several key pollution prevention principles should be considered at other projects and facilities, especially during the operational periods of the facility's mission. These principles include: Institute pollution prevention as a fundamental requirement early in the planning stage of a project or during the operational phase of a facility's mission; Promote recognition and implementation of pollution prevention initiatives; Instill pollution prevention as a value in all participants in the project or facility work scope; Minimize the amount of chemical products and materials

  20. Thermal Dehydration Kinetics of Gypsum and Borogypsum under Non-isothermal Conditions

    Institute of Scientific and Technical Information of China (English)

    I.Y.Elbeyli; S.Piskin

    2004-01-01

    Thermal dehydration of gypsum and borogypsum was investigated under nonisothermal conditions in air by using simultaneous thermogravimetric-differential thermal analyzer. Nonisothermal experiments were carried out at various linear heating rates. Kinetics of dehydration in the temperature range of 373-503 K were evaluated from the DTA (differential thermal analysis)-TGA (thermogravimetric analysis) data by means of Coats-Redfern,Kissinger and Doyle Equations. Values of the activation energy and the pre-exponential factor of the dehydration were calculated. The results of thermal experiments and kinetic parameters indicated that borogypsum is similar to gypsum from dehydration mechanism point of view although it consists of boron and small amount of alkali metal oxides.

  1. Theoretical and experimental investigations of thermal conditions of household biogas plant

    Directory of Open Access Journals (Sweden)

    Zhelykh Vasil

    2016-06-01

    Full Text Available The construction of domestic continuous bioreactor is proposed. The modeling of thermal modes of household biogas plant using graph theory was done. The correction factor taking into account with the influence of variables on its value was determined. The system of balance equations for the desired thermal conditions in the bioreactor was presented.

  2. Attention, emotion, and deactivation of default activity in inferior medial prefrontal cortex

    DEFF Research Database (Denmark)

    Geday, Jacob; Gjedde, Albert

    2008-01-01

    Attention deactivates the inferior medial prefrontal cortex (IMPC), but it is uncertain if emotions can attenuate this deactivation. To test the extent to which common emotions interfere with attention, we measured changes of a blood flow index of brain activity in key areas of the IMPC...... with positron emission tomography (PET) of labeled water (H(15)2O) uptake in brain of 14 healthy subjects. The subjects performed either a less demanding or a more demanding task of attention while they watched neutral and emotive images of people in realistic indoor or outdoor situations. In the less demanding...... cortices, revealed significant activation in the fusiform gyrus, independently of the task. In contrast, we found no effect of emotional content in the IMPC, where emotions failed to override the effect of the task. The results are consistent with a role of the IMPC in the selection among competitive...

  3. Epidemic Spread in Networks Induced by Deactivation Mechanism

    International Nuclear Information System (INIS)

    Yu Xiaoling; Wu Xiao; Zhang Duanming; Li Zhihao; Liang Fang; Wang Xiaoyu

    2008-01-01

    We have studied the topology and epidemic spreading behaviors on the networks in which deactivation mechanism and long-rang connection are coexisted. By means of numerical simulation, we find that the clustering coefficient C and the Pearson correlation coefficient r decrease with increasing long-range connection μ and the topological state of the network changes into that of BA model at the end (when μ = 1). For the Susceptible-Infect-Susceptible model of epidemics, the epidemic threshold can reach maximum value at μ = 0.4 and presents two different variable states around μ = 0.4

  4. Thermal properties of bentonite under extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Vasicek, R. [Czech Technical Univ., Centre of Experimental Geotechnics, Faculty of Civil Engineering, Prague (Czech Republic)

    2005-07-01

    Centre of Experimental Geotechnics (CEG) deals with the research of the behaviour of bentonite and clays. The measurement of thermal properties is not so frequent test in geotechnical laboratory but in relation to deep repository it is a part which should not be overlooked. The reason is the heat generated by canister with spent nuclear fuel and possible influence of the heat on the materials of the engineered barrier. In the initial stages following the burial of canister with the waste the barrier materials will be exposed to elevated temperature. According to existing information, these temperatures should not exceed 90 C. That heat can induce a creation of cracks and opening of joint between highly compacted blocks. It will predispose the bentonite barrier to penetration of water from surrounding towards to canister. Therefore easy removal of heat through the barrier is required. It is essential that the tests aimed at determining the real values of measured parameters are carried out in conditions identical with those anticipated in a future disposal system. These relatively complicated thermophysical tests are logical continuation of the simple ones, carried out under laboratory temperature and on not fully saturated samples without possibility to measure the swelling pressure. Thermophysical properties and swelling pressure are dominantly influenced by water content (which is influenced by temperature). Therefore is important to realize the tests under different moisture and thermal conditions. These tests are running at the APT-PO1 Analyser, designed to fulfill mentioned requirements - it allows measurement of thermal properties under temperature up to 200 C and swelling pressure up to 20 MPa. The device is capable to register the evolution of temperature, swelling and vapor pressure. The measurement of thermal conductivity and volume heat capacity is realized by the dynamic impulse method with point source of heat. Four types of tests are possible: at

  5. Guidelines on Thermal Comfort of Air Conditioned Indoor Environment

    Science.gov (United States)

    Miura, Toyohiko

    The thermal comfort of air conditioned indoor environment for workers depended, of course, on metabolic rate of work, race, sex, age, clothing, climate of the district and state of acclimatization. The attention of the author was directed to the seasonal variation and the sexual difference of comfortable temperature and a survey through a year was conducted on the thermal comfort, and health conditions of workers engaged in light work in a precision machine factory, in some office workers. Besides, a series of experiments were conducted for purpose of determinning the optimum temperature of cooling in summer time in relation to the outdoor temperature. It seemed that many of workers at present would prefer somewhat higher temperature than those before the World War II. Forty years ago the average homes and offices were not so well heated as today, and clothing worn on the average was considerably heavier.

  6. Family Mode Deactivation Therapy as a Manualized Cognitive Behavioral Therapy Treatment

    Science.gov (United States)

    Apsche, Jack A.; Bass, Christopher K.; Houston, Marsha-Ann

    2008-01-01

    This article examines the effectiveness of Mode Deactivation Family Therapy (MDT) in an outpatient setting as compared to Treatment as Usual (TAU). MDT is an evidence-based psychotherapy and has been shown to be effective treating adolescents with a variety of problems involving emotional disorder, physical and sexual aggression, as well as…

  7. Thermal shock behaviour of different tungsten grades under varying conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wirtz, Oliver Marius

    2012-07-19

    Thermonuclear fusion power plants are a promising option to ensure the energy supply for future generations, but in many fields of research enormous challenges have to be faced. A major step on the way to the prototype fusion reactor DEMO will be ITER which is build in Cadarache, southern France. One of the most critical issues is the field of in-vessel materials and components, in particular the plasma facing materials (PFM). PFMs that will be used in a device like ITER have to withstand severe environmental conditions in terms of steady state and transient thermal loads as well as high particle fluxes such as hydrogen, helium and neutrons. Candidate wall materials are beryllium, tungsten and carbon based materials like CFC (carbon fibre composite). Tungsten is the most promising material for an application in the divertor region with very severe loading conditions and it will most probably also be used as PFM for DEMO. Hence, this work focuses on the investigation of the thermal shock response of different tungsten grades in order to understand the damage mechanisms and to identify material parameters which influence this behaviour under ITER and DEMO relevant operation conditions. Therefore the microstructure and the mechanical and thermal properties of five industrially manufactured tungsten grades were characterised. All five tungsten grades were exposed to transient thermal events with very high power densities of up to 1.27 GWm{sup -2} at varying base temperatures between RT and 600 C in the electron beam device JUDITH 1. The pulse numbers were limited to a maximum of 1000 in order to avoid immoderate workload on the test facility and to have enough time to cover a wide range of loading conditions. The results of this damage mapping enable to define different damage and cracking thresholds for the investigated tungsten grades and to identify certain material parameters which influence the location of these thresholds and the distinction of the induced

  8. Thermal shock behaviour of different tungsten grades under varying conditions

    International Nuclear Information System (INIS)

    Wirtz, Oliver Marius

    2012-01-01

    Thermonuclear fusion power plants are a promising option to ensure the energy supply for future generations, but in many fields of research enormous challenges have to be faced. A major step on the way to the prototype fusion reactor DEMO will be ITER which is build in Cadarache, southern France. One of the most critical issues is the field of in-vessel materials and components, in particular the plasma facing materials (PFM). PFMs that will be used in a device like ITER have to withstand severe environmental conditions in terms of steady state and transient thermal loads as well as high particle fluxes such as hydrogen, helium and neutrons. Candidate wall materials are beryllium, tungsten and carbon based materials like CFC (carbon fibre composite). Tungsten is the most promising material for an application in the divertor region with very severe loading conditions and it will most probably also be used as PFM for DEMO. Hence, this work focuses on the investigation of the thermal shock response of different tungsten grades in order to understand the damage mechanisms and to identify material parameters which influence this behaviour under ITER and DEMO relevant operation conditions. Therefore the microstructure and the mechanical and thermal properties of five industrially manufactured tungsten grades were characterised. All five tungsten grades were exposed to transient thermal events with very high power densities of up to 1.27 GWm -2 at varying base temperatures between RT and 600 C in the electron beam device JUDITH 1. The pulse numbers were limited to a maximum of 1000 in order to avoid immoderate workload on the test facility and to have enough time to cover a wide range of loading conditions. The results of this damage mapping enable to define different damage and cracking thresholds for the investigated tungsten grades and to identify certain material parameters which influence the location of these thresholds and the distinction of the induced damages

  9. Bisphenol A Synthesis - Modeling of Industrial Reactor and Catalyst Deactivation

    Czech Academy of Sciences Publication Activity Database

    Prokop, Zdeněk; Hanková, Libuše; Jeřábek, Karel

    2004-01-01

    Roč. 60, - (2004), s. 77-83 Sp/Iss/ SI ISSN 1381-5148. [Asia-Pacific Congress on Catalysis /3./. Dalian, 12.10.2003-15.10.2003] R&D Projects: GA ČR GA104/02/1104 Institutional research plan: CEZ:AV0Z4072921 Keywords : bisphenol A * catalyst deactivation * ion exchanger catalyst Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.582, year: 2004

  10. Effects of growth conditions on thermal profiles during Czochralski silicon crystal growth

    Science.gov (United States)

    Choe, Kwang Su; Stefani, Jerry A.; Dettling, Theodore B.; Tien, John K.; Wallace, John P.

    1991-01-01

    An eddy current testing method was used to continuously monitor crystal growth process and investigate the effects of growth conditions on thermal profiles during Czochralski silicon crystal growth. The experimental concept was to monitor the intrinsic electrical conductivities of the growing crystal and deduce temperature values from them. In terms of the experiments, the effects of changes in growth parameters, which include the crystal and crucible rotation rates, crucible position, and pull rate, and hot-zone geometries were investigated. The results show that the crystal thermal profile could shift significantly as a function of crystal length if the closed-loop control fails to maintain a constant thermal condition. As a direct evidence to the effects of the melt flow on heat transfer processes, a thermal gradient minimum was observed when the crystal/crucible rotation combination was 20/-10 rpm cw. The thermal gradients in the crystal near the growth interface were reduced most by decreasing the pull rate or by reducing the radiant heat loss to the environment; a nearly constant axial thermal gradient was achieved when either the pull rate was decreased by half, the height of the exposed crucible wall was doubled, or a radiation shield was placed around the crystal. Under these conditions, the average axial thermal gradient along the surface of the crystal was about 4-5°C/mm. When compared to theoretical results found in literature, the axial profiles correlated well with the results of the models which included radiant interactions. However, the radial gradients estimated from three-frequency data were much higher than what were predicted by known theoretical models. This discrepancy seems to indicate that optical phenomenon within the crystal is significant and should be included in theoretical modeling.

  11. Deactivation of solid catalysts in liquid media: the case of leaching of active sites in biomass conversion reactions

    DEFF Research Database (Denmark)

    Sádaba, Irantzu; Lopez Granados, Manuel; Riisager, Anders

    2015-01-01

    This review is aimed to be a brief tutorial covering the deactivation of solid catalysts in the liquid phase, with specific focus on leaching, which can be especially helpful to researchers not familiarized with catalytic processes in the liquid phase. Leaching refers to the loss of active species....... However, as a consequence of the development of new processes for biorefineries, an increasing number of reactions deal with liquid media, and thus, the stability and reusability of a solid catalyst in this situation represent a huge challenge that requires specific attention. Leaching of active phases...... is particularly problematic because of its irreversibility and it can be one of the main causes of catalyst deactivation in liquid media, threatening the sustainability of the process. This tutorial review presents a survey of the main aspects concerning the deactivation due to leaching of active species from...

  12. Deactivation of La-Fe-ZSM-5 catalyst for selective catalytic reduction of NO with NH{sup 3}. Field study results

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Gongshin; Yang, Ralph T. [Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Chang, Ramsay; Cardoso, Sylvio [Air Pollution Control, Power Generation, Electric Power Research Institute, Palo Alto, CA 94304-1395 (United States); Smith, Randall A. [Fossil Energy Research Corporation, Laguna Hills, CA 92653 (United States)

    2004-11-08

    Results are summarized for a study on the effects of poisons on the La-Fe-ZSM-5 catalyst activity for the selective catalytic reduction of NO by ammonia. The deactivation of La-Fe-ZSM-5 honeycombs was studied in field tests. A honeycomb catalyst containing 25%La-Fe-ZSM-5 had an overall activity similar to that of a commercial vanadia honeycomb catalyst. Long-term activity test results show that the 25%La-Fe-ZSM-5 catalyst activity decreased to 50% after 300h and 25% after 1769h of on-stream flue gas exposure. The deactivation is correlated to the amounts of poisons deposited on the catalyst. Poisons include alkali and alkaline earth metals, As and Hg. Hg was found to be ion-exchanged from HgCl{sup 2} to form Hg-ZSM-5, and Hg was found to be among the strongest poisons. The poisoning effects of these elements appeared to be additive. Thus, from the chemical analysis of the deactivated catalyst, the deactivation of Fe-ZSM-5 can be predicted.

  13. INDOOR THERMAL CONDITION OF FACTORY BUILDING IN BANGLADESH

    Directory of Open Access Journals (Sweden)

    Muhammed Abdullah Al Sayem Khan

    2011-12-01

    Full Text Available Bangladesh is a developing country and has a lot of factories for different products for local use and also export to abroad. Garments industries are one of the top most items of exported items. A huge number of populations are working in garments industries. But these factories are not well designed in sense of the thermal environment. Workers experiences sickness related to indoor environment. The productions of these factories are affected due to employees’ health condition. The research is done in two different methods. One is empirical data collection using thermal data loggers and the other is questionnaire survey on the spots for three factory buildings. The field study was conducted in four different months of the same year during winter and summer period. Expected findings of this research are that the indoor environment is not comfortable for works at day time during summer season. This research will help the factory workers in providing a comfortable thermal environment and also help the employers or factory owners to increase their production margin.

  14. Sidewalk Landscape Structure and Thermal Conditions for Child and Adult Pedestrians

    Science.gov (United States)

    Kim, Young-Jae; Lee, Chanam; Kim, Jun-Hyun

    2018-01-01

    Walking is being promoted for health and transportation purposes across all climatic regions in the US and beyond. Despite this, an uncomfortable microclimate condition along sidewalks is one of the major deterrents of walking, and more empirical research is needed to determine the risks of heat exposure to pedestrians while walking. This study examined the effect of street trees and grass along sidewalks on air temperatures. A series of thermal images were taken at the average heights of adults and children in the US to objectively measure the air temperatures of 10 sidewalk segments in College Station, TX, USA. After controlling the other key physical environmental conditions, sidewalks with more trees or wider grass buffer areas had lower air temperatures than those with less vegetation. Children were exposed to higher temperatures due to the greater exposure or proximity to the pavement surface, which tends to have higher radiant heat. Multivariate regression analysis suggested that the configuration of trees and grass buffers along the sidewalks helped to promote pleasant thermal conditions and reduced the differences in ambient air temperatures measured at child and adult heights. This study suggests that street trees and vegetated ground help reduce the air temperatures, leading to more thermally comfortable environments for both child and adult pedestrians in warm climates. The thermal implications of street landscape require further attention by researchers and policy makers that are interested in promoting outdoor walking. PMID:29346312

  15. Effect of gamma irradiation on thermal inactivation and injury of Bacillus subtilis spores

    International Nuclear Information System (INIS)

    El-Zawahry, Y.A.; Mostafa, S.A.; Awny, N.M.

    1986-01-01

    Bacillus subtilis spores which received preliminary irradiation doses were more sensitive to subsequent heating than non-irradiated spores. The thermal inactivation increased by increasing any of exposure temperature, thermal exposure time or preliminary irradiation dose. The thermal (D T -) value was much higher for non-irradiated spores than the D TR value for the pre-thermal irradiated spores. The radiosensitizing effect was directly proportional to the preliminary irradiation dose. The pre-thermal irradiation treatment of B. subtilis spores resulted in a synergistic effect in spore deactivation. This synergistic effect increased gradually by increasing the preliminary irradiation dose and/or the thermal temperature from 60 to 80 0 C, but decreased for 90 0 C and for the longer exposure periods at any of the examined temperature. Thermal injury of B. subtilis spores was more for the non-irradiated than for the irradiated spores

  16. The importance of thermal loading conditions to waste package performance at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Nitao, J.J.

    1994-10-01

    Temperature and relative humidity are primary environmental factors affecting waste package corrosion rates for the potential repository in the unsaturated zone at Yucca Mountain, Nevada. Under ambient conditions, the repository environment is quite humid. If relative humidity is low enough (<70%), corrosion will be minimal. Under humid conditions, corrosion is reduced if the temperature is low (<60 C). Using the V-TOUGH code, the authors model thermo-hydrological flow to investigate the effect of repository heat on temperature and relative humidity in the repository for a wide range of thermal loads. These calculations indicate that repository heat may substantially reduce relative humidity on the waste package, over hundreds of years for low thermal loads and over tens of thousands of year for high thermal loads. Temperatures associated with a given relative humidity decrease with increasing thermal load. Thermal load distributions can be optimized to yield a more uniform reduction in relative humidity during the boiling period

  17. Deactivation of tracer-flo equipment thru retrieval of its radioactive Krypton-85 gas

    International Nuclear Information System (INIS)

    Domondon, D.B.; Rara, R.B.; Borras, A.M.

    1994-01-01

    Tracer-flo equipment must be cleared of Krypton-85 before these can be transported. The rules and regulations on safe transport of radioactive materials require Kr-85 gas to be transported in an approved container. A new innovative technique/procedure in deactivating tracer-flo equipment i.e., without separation of the Kr-85 from the nitrogen was developed by the authors. The developed procedure was successfully applied in four tracer-flo equipment of three (3) semiconductor firms. In the process, the three firms have saved about US$ 28,000.00 (P 800,000.00) if the deactivation were undertaken by a foreign service company. The Philippine Nuclear Research Institute (PNRI) retrieved about P 382,000.00 worth of Kr-85 that could be used in industrial applications such as leak tracing of buried pipes, etc. (author). 1 ref.; 5 figs

  18. Characterization of a thermoelectric cooler based thermal management system under different operating conditions

    International Nuclear Information System (INIS)

    Russel, M.K.; Ewing, D.; Ching, C.Y.

    2013-01-01

    The performance of a thermoelectric cooler (TEC) based thermal management system for an electronic packaging design that operates under a range of ambient conditions and system loads is examined using a standard model for the TEC and a thermal resistance network for the other components. Experiments were performed and it was found that the model predictions were in good agreement with the experimental results. An operating envelope is developed to characterize the TEC based thermal management system for peak and off peak operating conditions. Parametric studies were performed to analyze the effect of the number of TEC module(s) in the system, geometric factor of the thermo-elements and the cold to hot side thermal resistances on the system performance. The results showed that there is a tradeoff between the extent of off peak heat fluxes and ambient temperatures when the system can be operated at a low power penalty region and the maximum capacity of the system. - Highlights: ► A model was developed for thermal management systems using thermoelectric coolers. ► Model predictions were in good agreement with experimental results. ► An operating envelope was developed for peak and off peak conditions. ► The effect of the number of thermoelectric coolers on the system was determined.

  19. Mathematical model for thermal solar collectors by using magnetohydrodynamic Maxwell nanofluid with slip conditions, thermal radiation and variable thermal conductivity

    Directory of Open Access Journals (Sweden)

    Asif Mahmood

    Full Text Available Solar energy is the cleanest, renewable and most abundant source of energy available on earth. The main use of solar energy is to heat and cool buildings, heat water and to generate electricity. There are two types of solar energy collection system, the photovoltaic systems and the solar thermal collectors. The efficiency of any solar thermal system depend on the thermophysical properties of the operating fluids and the geometry/length of the system in which fluid is flowing. In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The flow is induced by a non-uniform stretching of the porous sheet and the uniform magnetic field is applied in the transverse direction to the flow. The non-Newtonian Maxwell fluid model is utilized for the working fluid along with slip boundary conditions. Moreover the high temperature effect of thermal radiation and temperature dependent thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for cu-water and TiO2-water nanofluids. Results are presented for the velocity and temperature profiles as well as the skin friction coefficient and Nusselt number and the discussion is concluded on the effect of various governing parameters on the motion, temperature variation, velocity gradient and the rate of heat transfer at the boundary. Keywords: Solar energy, Thermal collectors, Maxwell-nanofluid, Thermal radiation, Partial slip, Variable thermal conductivity

  20. Deactivation of Zeolite Catalyst H-ZSM-5 during Conversion of Methanol to Gasoline: Operando Time- and Space-Resolved X-ray Diffraction.

    Science.gov (United States)

    Rojo-Gama, Daniel; Mentel, Lukasz; Kalantzopoulos, Georgios N; Pappas, Dimitrios K; Dovgaliuk, Iurii; Olsbye, Unni; Lillerud, Karl Petter; Beato, Pablo; Lundegaard, Lars F; Wragg, David S; Svelle, Stian

    2018-03-15

    The deactivation of zeolite catalyst H-ZSM-5 by coking during the conversion of methanol to hydrocarbons was monitored by high-energy space- and time-resolved operando X-ray diffraction (XRD) . Space resolution was achieved by continuous scanning along the axial length of a capillary fixed bed reactor with a time resolution of 10 s per scan. Using real structural parameters obtained from XRD, we can track the development of coke at different points in the reactor and link this to a kinetic model to correlate catalyst deactivation with structural changes occurring in the material. The "burning cigar" model of catalyst bed deactivation is directly observed in real time.

  1. Three dimensional neutronic/thermal-hydraulic coupled simulation of MSR in transient state condition

    International Nuclear Information System (INIS)

    Zhou, Jianjun; Zhang, Daling; Qiu, Suizheng; Su, Guanghui; Tian, Wenxi; Wu, Yingwei

    2015-01-01

    Highlights: • Developed a three dimensional neutronic/thermal-hydraulic coupled transient analysis code for MSR. • Investigated the neutron distribution and thermal-hydraulic characters of the core under transient condition. • Analyzed three different transient conditions of inlet temperature drop, reactivity jump and pump coastdown. - Abstract: MSR (molten salt reactor) use liquid molten salt as coolant and fuel solvent, which was the only one liquid reactor of six Generation IV reactor types. As a liquid reactor the physical property of reactor was significantly influenced by fuel salt flow and the conventional analysis methods applied in solid fuel reactors are not applicable for this type of reactors. The present work developed a three dimensional neutronic/thermal-hydraulic coupled code investigated the neutronics and thermo-hydraulics characteristics of the core in transient condition based on neutron diffusion theory and numerical heat transfer. The code consists of two group neutron diffusion equations for fast and thermal neutron fluxes and six group balance equations for delayed neutron precursors. The code was separately validated by neutron benchmark and flow and heat transfer benchmark. Three different transient conditions was analyzed with inlet temperature drop, reactivity jump and pump coastdown. The results provide some valuable information in design and research this kind of reactor

  2. Evaluating Thermal Comfort in a Naturally Conditioned Office in a Temperate Climate Zone

    Directory of Open Access Journals (Sweden)

    Andrés Gallardo

    2016-07-01

    Full Text Available This study aims to determine the optimal approach for evaluating thermal comfort in an office that uses natural ventilation as the main conditioning strategy; the office is located in Quito-Ecuador. The performance of the adaptive model included in CEN Standard EN15251 and the traditional PMV model are compared with reports of thermal environment satisfaction surveys presented simultaneously to all occupants of the office to determine which of the two comfort models is most suitable to evaluate the thermal environment. The results indicate that office occupants have developed some degree of adaptation to the climatic conditions of the city where the office is located (which only demands heating operation, and tend to accept and even prefer lower operative temperatures than those considered optimum by applying the PMV model. This is an indication that occupants of naturally conditioned buildings are usually able to match their comfort temperature to their normal environment. Therefore, the application of the adaptive model included in CEN Standard EN15251 seems like the optimal approach for evaluating thermal comfort in naturally conditioned buildings, because it takes into consideration the adaptive principle that indicates that if a change occurs such as to produce discomfort, people tend to react in ways which restore their comfort.

  3. Three dimensional neutronic/thermal-hydraulic coupled simulation of MSR in transient state condition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianjun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China); College of Mechanical and Power Engineering, China Three Gorges University, No 8, Daxue road, Yichang, Hubei 443002 (China); Zhang, Daling, E-mail: dlzhang@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China); Qiu, Suizheng; Su, Guanghui; Tian, Wenxi; Wu, Yingwei [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China)

    2015-02-15

    Highlights: • Developed a three dimensional neutronic/thermal-hydraulic coupled transient analysis code for MSR. • Investigated the neutron distribution and thermal-hydraulic characters of the core under transient condition. • Analyzed three different transient conditions of inlet temperature drop, reactivity jump and pump coastdown. - Abstract: MSR (molten salt reactor) use liquid molten salt as coolant and fuel solvent, which was the only one liquid reactor of six Generation IV reactor types. As a liquid reactor the physical property of reactor was significantly influenced by fuel salt flow and the conventional analysis methods applied in solid fuel reactors are not applicable for this type of reactors. The present work developed a three dimensional neutronic/thermal-hydraulic coupled code investigated the neutronics and thermo-hydraulics characteristics of the core in transient condition based on neutron diffusion theory and numerical heat transfer. The code consists of two group neutron diffusion equations for fast and thermal neutron fluxes and six group balance equations for delayed neutron precursors. The code was separately validated by neutron benchmark and flow and heat transfer benchmark. Three different transient conditions was analyzed with inlet temperature drop, reactivity jump and pump coastdown. The results provide some valuable information in design and research this kind of reactor.

  4. Implementation and verification of a coupled fire model as a thermal boundary condition within P3/THERMAL

    International Nuclear Information System (INIS)

    Hensinger, D.M.; Gritzo, L.A.; Koski, J.A.

    1996-01-01

    A user-defined boundary condition subroutine has been implemented within P3/THERMAL to represent the heat flux between a noncombusting object and an engulfing fire. The heat flux calculations includes a simple 2D fire model in which energy and radiative heat transport equations are solved to produce estimates of the heat fluxes at the fire-object interface. These estimates reflect radiative coupling between a cold object and the flow of hot combustion gases which has been observed in fire experiments. The model uses a database of experimental pool fire measurements for far field boundary conditions and volumetric heat release rates. Taking into account the coupling between a structure and the fire is an improvement over the σT 4 approximation frequently used as a boundary condition for engineered system response and is the preliminary step in the development of a fire model with a predictive capability. This paper describes the implementation of the fire model as a P3/THERMAL boundary condition and presents the results of a verification calculation carried out using the model

  5. Assessment of monitored energy use and thermal comfort conditions in mosques in hot-humid climates

    Energy Technology Data Exchange (ETDEWEB)

    Al-Homoud, Mohammad S.; Abdou, Adel A.; Budaiwi, Ismail M. [Architectural Engineering Department, KFUPM, Dhahran 31261 (Saudi Arabia)

    2009-06-15

    In harsh climatic regions, buildings require air-conditioning in order to provide an acceptable level of thermal comfort. In many situations buildings are over cooled or the HVAC system is kept running for a much longer time than needed. In some other situations thermal comfort is not achieved due to improper operation practices coupled with poor maintenance and even lack it, and consequently inefficient air-conditioning systems. Mosques represent one type of building that is characterized by their unique intermittent operating schedule determined by prayer times, which vary continuously according to the local solar time. This paper presents the results of a study designed to monitor energy use and thermal comfort conditions of a number of mosques in a hot-humid climate so that both energy efficiency and the quality of thermal comfort conditions especially during occupancy periods in such intermittently operated buildings can be assessed accurately. (author)

  6. Thermal comfort in air-conditioned mosques in the dry desert climate

    Energy Technology Data Exchange (ETDEWEB)

    Al-ajmi, Farraj F. [Department of Civil Engineering, College of Technological Studies, Shuwaikh 70654 (Kuwait)

    2010-11-15

    In Kuwait, as in most countries with a typical dry desert climate, the summer season is long with a mean daily maximum temperature of 45 C. Centralized air-conditioning, which is generally deployed from the beginning of April to the end of October, can have tremendous impact on the amount of electrical energy utilized to mechanically control the internal environment in mosque buildings. The indoor air temperature settings for all types of air-conditioned buildings and mosque buildings in particular, are often calculated based on the analytical model of ASHRAE 55-2004 and ISO 7730. However, a field study was conducted in six air-conditioned mosque buildings during the summers of 2007 to investigate indoor climate and prayers thermal comfort in state of Kuwait. The paper presents statistical data about the indoor environmental conditions in Kuwait mosque buildings, together with an analysis of prayer thermal comfort sensations for a total of 140 subjects providing 140 sets of physical measurements and subjective questionnaires were used to collect data. Results show that the neutral temperature (T{sub n}) of the prayers is found to be 26.1 C, while that for PMV is 23.3 C. Discrepancy of these values is in fact about 2.8 C higher than those predicted by PMV model. Therefore, thermal comfort temperature in Kuwait cannot directly correlate with ISO 7730 and ASHRAE 55-2004 standards. Findings from this study should be considered when designing air conditioning for mosque buildings. This knowledge can contribute towards the development of future energy-related design codes for Kuwait. (author)

  7. Experimental study on occupant's thermal responses under the non-uniform conditions in vehicle cabin during the heating period

    Science.gov (United States)

    Zhang, Wencan; Chen, Jiqing; Lan, Fengchong

    2014-03-01

    The existing investigations on thermal comfort mostly focus on the thermal environment conditions, especially of the air-flow field and the temperature distributions in vehicle cabin. Less attention appears to direct to the thermal comfort or thermal sensation of occupants, even to the relationship between thermal conditions and thermal sensation. In this paper, a series of experiments were designed and conducted for understanding the non-uniform conditions and the occupant's thermal responses in vehicle cabin during the heating period. To accurately assess the transient temperature distribution in cabin in common daily condition, the air temperature at a number of positions is measured in a full size vehicle cabin under natural winter environment in South China by using a discrete thermocouples network. The occupant body is divided into nine segments, the skin temperature at each segment and the occupant's local thermal sensation at the head, body, upper limb and lower limb are monitored continuously. The skin temperature is observed by using a discrete thermocouples network, and the local thermal sensation is evaluated by using a seven-point thermal comfort survey questionnaire proposed by American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc(ASHRAE) Standard. The relationship between the skin temperature and the thermal sensation is discussed and regressed by statistics method. The results show that the interior air temperature is highly non-uniform over the vehicle cabin. The locations where the occupants sit have a significant effect on the occupant's thermal responses, including the skin temperature and the thermal sensation. The skin temperature and thermal sensation are quite different between body segments due to the effect of non-uniform conditions, clothing resistance, and the human thermal regulating system. A quantitative relationship between the thermal sensation and the skin temperature at each body segment of occupant in

  8. Dopaminergic Modulation of Medial Prefrontal Cortex Deactivation in Parkinson Depression

    Directory of Open Access Journals (Sweden)

    Anders H. Andersen

    2015-01-01

    Full Text Available Parkinson’s disease (PD is associated with emotional abnormalities. Dopaminergic medications ameliorate Parkinsonian motor symptoms, but less is known regarding the impact of dopaminergic agents on affective processing, particularly in depressed PD (dPD patients. The aim of this study was to examine the effects of dopaminergic pharmacotherapy on brain activation to emotional stimuli in depressed versus nondepressed Parkinson disease (ndPD patients. Participants included 18 ndPD patients (11 men, 7 women and 10 dPD patients (7 men, 3 women. Patients viewed photographs of emotional faces during functional MRI. Scans were performed while the patient was taking anti-Parkinson medication and the day after medication had been temporarily discontinued. Results indicate that dopaminergic medications have opposite effects in the prefrontal cortex depending upon depression status. DPD patients show greater deactivation in the ventromedial prefrontal cortex (VMPFC on dopaminergic medications than off, while ndPD patients show greater deactivation in this region off drugs. The VMPFC is in the default-mode network (DMN. DMN activity is negatively correlated with activity in brain systems used for external visual attention. Thus dopaminergic medications may promote increased attention to external visual stimuli among dPD patients but impede normal suppression of DMN activity during external stimulation among ndPD patients.

  9. Step changes and deactivation behaviour in the continuous decarboxylation of stearic acid

    DEFF Research Database (Denmark)

    Madsen, Anders Theilgaard; Rozmyslowicz, B.; Simakova, I.

    2011-01-01

    % conversion of pure stearic acid. Deactivation took place in H-2-deficient gas atmosphere, probably as a result of the formation of unsaturated products and coking in the pore system. Transient experiments with step changes were performed: 1 h was required for the step change to be visible in liquid sampling...

  10. Thermal advantage of tracking solar collectors under Danish weather conditions

    DEFF Research Database (Denmark)

    Andersen, Elsa; Dragsted, Janne; Furbo, Simon

    2010-01-01

    Theoretical investigations have been carried out with the aim to elucidate the thermal advantage of tracking solar collectors for different weather conditions in Kgs. Lyngby, Denmark (55.8°N), and for the weather conditions in Sisimiut, Greenland (66.9°N), just north of the arctic circle....... The investigations are based on calculations with a newly developed program. Measured weather data from a solar radiation measurement station at Technical University of Denmark in Kgs. Lyngby Denmark in the period 1990 to 2002 and the Danish Design Reference Year, DRY data file are used in the investigations....... The weather data used for Sisimiut are based on a Test Reference Year, TRY weather data file. The thermal advantages of different tracking strategies is investigated for two flat plate solar collectors with different efficiencies, operated at different temperature levels. The investigations show...

  11. Sintering Characteristics of Multilayered Thermal Barrier Coatings Under Thermal Gradient and Isothermal High Temperature Annealing Conditions

    Science.gov (United States)

    Rai, Amarendra K.; Schmitt, Michael P.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    Pyrochlore oxides have most of the relevant attributes for use as next generation thermal barrier coatings such as phase stability, low sintering kinetics and low thermal conductivity. One of the issues with the pyrochlore oxides is their lower toughness and therefore higher erosion rate compared to the current state-of-the-art TBC material, yttria (6 to 8 wt%) stabilized zirconia (YSZ). In this work, sintering characteristics were investigated for novel multilayered coating consisted of alternating layers of pyrochlore oxide viz Gd2Zr2O7 and t' low k (rare earth oxide doped YSZ). Thermal gradient and isothermal high temperature (1316 C) annealing conditions were used to investigate sintering and cracking in these coatings. The results are then compared with that of relevant monolayered coatings and a baseline YSZ coating.

  12. Comparative evaluation of thermal decomposition behavior and thermal stability of powdered ammonium nitrate under different atmosphere conditions.

    Science.gov (United States)

    Yang, Man; Chen, Xianfeng; Wang, Yujie; Yuan, Bihe; Niu, Yi; Zhang, Ying; Liao, Ruoyu; Zhang, Zumin

    2017-09-05

    In order to analyze the thermal decomposition characteristics of ammonium nitrate (AN), its thermal behavior and stability under different conditions are studied, including different atmospheres, heating rates and gas flow rates. The evolved decomposition gases of AN in air and nitrogen are analyzed with a quadrupole mass spectrometer. Thermal stability of AN at different heating rates and gas flow rates are studied by differential scanning calorimetry, thermogravimetric analysis, paired comparison method and safety parameter evaluation. Experimental results show that the major evolved decomposition gases in air are H 2 O, NH 3 , N 2 O, NO, NO 2 and HNO 3 , while in nitrogen, H 2 O, NH 3 , NO and HNO 3 are major components. Compared with nitrogen atmosphere, lower initial and end temperatures, higher heat flux and broader reaction temperature range are obtained in air. Meanwhile, higher air gas flow rate tends to achieve lower reaction temperature and to reduce thermal stability of AN. Self-accelerating decomposition temperature of AN in air is much lower than that in nitrogen. It is considered that thermostability of AN is influenced by atmosphere, heating rate and gas flow rate, thus changes of boundary conditions will influence its thermostability, which is helpful to its safe production, storage, transportation and utilization. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Thermal Simulations, Open Boundary Conditions and Switches

    Science.gov (United States)

    Burnier, Yannis; Florio, Adrien; Kaczmarek, Olaf; Mazur, Lukas

    2018-03-01

    SU(N) gauge theories on compact spaces have a non-trivial vacuum structure characterized by a countable set of topological sectors and their topological charge. In lattice simulations, every topological sector needs to be explored a number of times which reflects its weight in the path integral. Current lattice simulations are impeded by the so-called freezing of the topological charge problem. As the continuum is approached, energy barriers between topological sectors become well defined and the simulations get trapped in a given sector. A possible way out was introduced by Lüscher and Schaefer using open boundary condition in the time extent. However, this solution cannot be used for thermal simulations, where the time direction is required to be periodic. In this proceedings, we present results obtained using open boundary conditions in space, at non-zero temperature. With these conditions, the topological charge is not quantized and the topological barriers are lifted. A downside of this method are the strong finite-size effects introduced by the boundary conditions. We also present some exploratory results which show how these conditions could be used on an algorithmic level to reshuffle the system and generate periodic configurations with non-zero topological charge.

  14. Thermal Simulations, Open Boundary Conditions and Switches

    Directory of Open Access Journals (Sweden)

    Burnier Yannis

    2018-01-01

    Full Text Available SU(N gauge theories on compact spaces have a non-trivial vacuum structure characterized by a countable set of topological sectors and their topological charge. In lattice simulations, every topological sector needs to be explored a number of times which reflects its weight in the path integral. Current lattice simulations are impeded by the so-called freezing of the topological charge problem. As the continuum is approached, energy barriers between topological sectors become well defined and the simulations get trapped in a given sector. A possible way out was introduced by Lüscher and Schaefer using open boundary condition in the time extent. However, this solution cannot be used for thermal simulations, where the time direction is required to be periodic. In this proceedings, we present results obtained using open boundary conditions in space, at non-zero temperature. With these conditions, the topological charge is not quantized and the topological barriers are lifted. A downside of this method are the strong finite-size effects introduced by the boundary conditions. We also present some exploratory results which show how these conditions could be used on an algorithmic level to reshuffle the system and generate periodic configurations with non-zero topological charge.

  15. Innovative Work Practices and Lessons Learned at the N Area Deactivation Project

    International Nuclear Information System (INIS)

    Day, R.S.

    1999-01-01

    This report identifies many of the lessons learned, innovations,and effective work practices that derived from activities supporting the N Area Deactivation Project at the U.S. Department of Energy's (DOE) Hanford Site. The work practices discussed in this report may be applicable and beneficial to similar projects throughout the DOE complex

  16. Effect of fee-for-service air-conditioning management in balancing thermal comfort and energy usage.

    Science.gov (United States)

    Chen, Chen-Peng; Hwang, Ruey-Lung; Shih, Wen-Mei

    2014-11-01

    Balancing thermal comfort with the requirement of energy conservation presents a challenge in hot and humid areas where air-conditioning (AC) is frequently used in cooling indoor air. A field survey was conducted in Taiwan to demonstrate the adaptive behaviors of occupants in relation to the use of fans and AC in a school building employing mixed-mode ventilation where AC use was managed under a fee-for-service mechanism. The patterns of using windows, fans, and AC as well as the perceptions of students toward the thermal environment were examined. The results of thermal perception evaluation in relation to the indoor thermal conditions were compared to the levels of thermal comfort predicted by the adaptive models described in the American Society of Heating, Refrigerating, and Air-Conditioning Engineers Standard 55 and EN 15251 and to that of a local model for evaluating thermal adaption in naturally ventilated buildings. A thermal comfort-driven adaptive behavior model was established to illustrate the probability of fans/AC use at specific temperature and compared to the temperature threshold approach to illustrate the potential energy saving the fee-for-service mechanism provided. The findings of this study may be applied as a reference for regulating the operation of AC in school buildings of subtropical regions.

  17. Thermal conditions and functional requirements for molten fuel containment

    International Nuclear Information System (INIS)

    Kang, C.S.; Torri, A.

    1980-05-01

    This paper discusses the configuration and functional requirements for the molten fuel containment system (MFCS) in the GCFR demonstration plant design. Meltdown conditions following a loss of shutdown cooling (LOSC) accident were studied to define the core debris volume for a realistic meltdown case. Materials and thicknesses of the molten fuel container were defined. Stainless steel was chosen as the sacrificial material and magnesium oxide was chosen as the crucible material. Thermal conditions for an expected quasi-steady state were analyzed. Highlights of the functional requirements which directly affect the MFCS design are discussed

  18. Three-party quantum teleportation using thermal states in Heisenberg XX model with open boundary condition

    International Nuclear Information System (INIS)

    Bhan, Jaemi; Kwon, Younghun

    2007-01-01

    Recently Yeo showed that thermal states in Heisenberg XX model with periodic boundary condition could be used for three-party quantum teleportation. However it is hard to implement the periodic boundary condition in spin chain. So instead of imposing the periodic boundary condition, we consider open boundary condition in Heisenberg XX model and investigate the possibility of using thermal states in Heisenberg XX model with open boundary condition. Using this way, we find the best fidelity conditions to three known protocols in three-party quantum teleportation. It turns out that the best fidelity in every protocol would be 23

  19. The influence of local effects on thermal sensation under non-uniform environmental conditions — Gender differences in thermophysiology, thermal comfort and productivity during convective and radiant cooling

    DEFF Research Database (Denmark)

    Schellen, L.; Loomans, M.G.L.C.; de Wit, M.H.

    2012-01-01

    , thermal comfort and productivity in response to thermal non-uniform environmental conditions. Twenty healthy subjects (10 males and 10 females, age 20–29years) were exposed to two different experimental conditions: a convective cooling situation (CC) and a radiant cooling situation (RC). During...... the experiments physiological responses, thermal comfort and productivity were measured. The results show that under both experimental conditions the actual mean thermal sensation votes significantly differ from the PMV-index; the subjects are feeling colder than predicted. Furthermore, the females are more...... of the occupants. Non-uniform thermal conditions, which may occur due to application of high temperature cooling systems, can be responsible for discomfort. Contradictions in literature exist regarding the validity of the often used predicted mean vote (PMV) index for both genders, and the index is not intended...

  20. Functional connections between activated and deactivated brain regions mediate emotional interference during externally directed cognition.

    Science.gov (United States)

    Di Plinio, Simone; Ferri, Francesca; Marzetti, Laura; Romani, Gian Luca; Northoff, Georg; Pizzella, Vittorio

    2018-04-24

    Recent evidence shows that task-deactivations are functionally relevant for cognitive performance. Indeed, higher cognitive engagement has been associated with higher suppression of activity in task-deactivated brain regions - usually ascribed to the Default Mode Network (DMN). Moreover, a negative correlation between these regions and areas actively engaged by the task is associated with better performance. DMN regions show positive modulation during autobiographical, social, and emotional tasks. However, it is not clear how processing of emotional stimuli affects the interplay between the DMN and executive brain regions. We studied this interplay in an fMRI experiment using emotional negative stimuli as distractors. Activity modulations induced by the emotional interference of negative stimuli were found in frontal, parietal, and visual areas, and were associated with modulations of functional connectivity between these task-activated areas and DMN regions. A worse performance was predicted both by lower activity in the superior parietal cortex and higher connectivity between visual areas and frontal DMN regions. Connectivity between right inferior frontal gyrus and several DMN regions in the left hemisphere was related to the behavioral performance. This relation was weaker in the negative than in the neutral condition, likely suggesting less functional inhibitions of DMN regions during emotional processing. These results show that both executive and DMN regions are crucial for the emotional interference process and suggest that DMN connections are related to the interplay between externally-directed and internally-focused processes. Among DMN regions, superior frontal gyrus may be a key node in regulating the interference triggered by emotional stimuli. © 2018 Wiley Periodicals, Inc.

  1. Thermal stability of the immobilized fructosyltransferase from Rhodotorula sp

    Directory of Open Access Journals (Sweden)

    E Aguiar-Oliveira

    2011-09-01

    Full Text Available The thermal stability of the extracellular fructosyltransferase (FTase from Rhodotorula sp., recovered from cultivation medium by ethanol precipitation and immobilized onto niobium ore, was studied by Arrhenius plot, half - life profile, half - inactivation temperature (T50 and thermodynamic parameters. The Arrhenius plot showed two different behaviors with different deactivation energies (Ead only after immobilization, the transition occurring in the temperature interval between 51 and 52ºC. T50 for the free enzyme was estimated to be around 62ºC and, after immobilization, 66ºC. After 15 minutes at 52ºC, it was also possible to observe enzymatic activation for both the free and immobilized forms, but greater activation was achieved at pH 4.5 with the immobilized enzyme. Between 47 - 51ºC the immobilized enzyme was more stable than the free enzyme, with pH 6.0 being the more stable condition for the immobilized enzyme. However, above 52ºC the free form was more stable.

  2. Continuous-flow photocatalytic treatment of pharmaceutical micropollutants: Activity, inhibition, and deactivation of TiO2 photocatalysts in wastewater effluent

    KAUST Repository

    Carbonaro, Sean

    2013-01-01

    Titanium dioxide (TiO2) photocatalysts have been shown to be effective at degrading a wide range of organic micropollutants during short-term batch experiments conducted under ideal laboratory solution conditions (e.g., deionized water). However, little research has been performed regarding longer-term photocatalyst performance in more complex matrices representative of contaminated water sources (e.g., wastewater effluent, groundwater). Here, a benchtop continuous-flow reactor was developed for the purpose of studying the activity, inhibition, and deactivation of immobilized TiO2 photocatalysts during water treatment applications. As a demonstration, degradation of four pharmaceutical micropollutants (iopromide, acetaminophen, sulfamethoxazole, and carbamazepine) was monitored in both a pH-buffered electrolyte solution and a biologically treated wastewater effluent (WWE) to study the effects of non-target constituents enriched in the latter matrix. Reactor performance was shown to be stable over 7d when treating micropollutants in buffered electrolyte, with 7-d averaged kobs values (acetaminophen=0.97±0.10h-1; carbamazepine=0.50±0.04h-1; iopromide=0.49±0.03h-1; sulfamethoxazole=0.79±0.06h-1) agreeing closely with measurements from short-term circulating batch reactions. When reactor influent was switched to WWE, treatment efficiencies decreased to varying degrees (acetaminophen=40% decrease; carbamazepine=60%; iopromide=78%; sulfamethoxazole=54%). A large fraction of the catalyst activity was recovered upon switching back to the buffered electrolyte influent after 4d, suggesting that much of the observed decrease resulted from reversible inhibition by non-target constituents (e.g., scavenging of photocatalyst-generated OH). However, there was also a portion of the decrease in activity that was not recovered, indicating WWE constituents also contributed to photocatalyst deactivation (acetaminophen=6% deactivation; carbamazepine=24%; iopromide=16

  3. A Novel 3D Thermal Impedance Model for High Power Modules Considering Multi-layer Thermal Coupling and Different Heating/Cooling Conditions

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2015-01-01

    accurate temperature estimation either vertically or horizontally inside the power devices is still hard to identify. This paper investigates the thermal behavior of high power module in various operating conditions by means of Finite Element Method (FEM). A novel 3D thermal impedance network considering......Thermal management of power electronic devices is essential for reliable performance especially at high power levels. One of the most important activities in the thermal management and reliability improvement is acquiring the temperature information in critical points of the power module. However...

  4. Mathematical model for thermal and entropy analysis of thermal solar collectors by using Maxwell nanofluids with slip conditions, thermal radiation and variable thermal conductivity

    Science.gov (United States)

    Aziz, Asim; Jamshed, Wasim; Aziz, Taha

    2018-04-01

    In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The non-Newtonian Maxwell nanofluid model is utilized for the working fluid along with slip and convective boundary conditions and comprehensive analysis of entropy generation in the system is also observed. The effect of thermal radiation and variable thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for Cu-water and TiO2-water nanofluids. Results are presented for the velocity, temperature and entropy generation profiles, skin friction coefficient and Nusselt number. The discussion is concluded on the effect of various governing parameters on the motion, temperature variation, entropy generation, velocity gradient and the rate of heat transfer at the boundary.

  5. Conversion of methanol to hydrocarbons over conventional and mesoporous H-ZSM-5 and H-Ga-MFI: Major differences in deactivation behavior

    DEFF Research Database (Denmark)

    Mentzel, Uffe Vie; Højholt, Karen Thrane; Holm, Martin Spangsberg

    2012-01-01

    . In the methanol-to-hydrocarbons (MTH) process, H-ZSM-5 is subjected to coke formation leading to catalyst deactivation. Here we show that when the gallium containing zeotypes are employed in the MTH process, only insignificant amounts of coke are present in the deactivated catalysts, indicating distinct...... (hydrolysis) of the Ga&sbnd;O bonds in the zeolite structure rather than coke deposition....

  6. Identification of complex model thermal boundary conditions based on exterior temperature measurement

    International Nuclear Information System (INIS)

    Lu Jianming; Ouyang Guangyao; Zhang Ping; Rong Bojun

    2012-01-01

    Combining the advantages of the finite element software in temperature field analyzing with the multivariate function optimization arithmetic, a feasibility method based on the exterior temperature was proposed to get the thermal boundary conditions, which was required in temperature field analyzing. The thermal boundary conditions can be obtained only by some temperature measurement values. Taking the identification of the convection heat transfer coefficient of a high power density diesel engine cylinder head as an example, the calculation result shows that when the temperature measurement error was less than 0.5℃, the maximum relative error was less than 2%. It is shown that the new method was feasible (authors)

  7. INDOOR THERMAL CONDITION OF FACTORY BUILDING IN BANGLADESH

    OpenAIRE

    Muhammed Abdullah Al Sayem Khan; Mohd. Hamdan Ahmad; Tareef Hayat Khan

    2011-01-01

    Bangladesh is a developing country and has a lot of factories for different products for local use and also export to abroad. Garments industries are one of the top most items of exported items. A huge number of populations are working in garments industries. But these factories are not well designed in sense of the thermal environment. Workers experiences sickness related to indoor environment. The productions of these factories are affected due to employees’ health condition. The research i...

  8. Experimental study of human thermal sensation under hypobaric conditions in winter clothes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haiying; Hu, Songtao; Liu, Guodan [Department of Environment and Municipal Engineering, Qingdao Technological University, Qingdao (China); Li, Angui [Department of Environment and Municipal Engineering, Xi' an University of Architecture and Technology, Xi' an (China)

    2010-11-15

    Hypobaric conditions, with pressures about 20-30% below that at sea level, are often experienced at mountain resorts and plateau areas. The diffusive transfer of water evaporation increases at hypobaric conditions whereas dry heat loss by convection decreases. In order to clarify the effects of barometric on human thermal comfort, experiments are conducted in a decompression chamber where the air parameters were controllable. During experiments, air temperature is set at a constant of 20, air velocity is controlled at <0.1 m/s, 0.2 m/s, 0.25 m/s, and 0.3 m/s by stages. The barometric condition is examined stepwise for 1atm, 0.85 atm and 0.75 atm of simulated hypobaric conditions, which is equivalent to altitude of 0 m, 1300 m, and 2300 m respectively. Ten males and ten females in winter clothes participate in the experiments. Thermal sensations are measured with ASHRAE seven-point rating scales and skin temperatures were tested at each altitude. The main results are as follows: when the altitude rises, (1) the mean thermal sensation drops; (2) people become more sensitive to draught and expect lower air movements; (3) no significant change of mean skin temperature has been found. The results of the present study indicate that hypobaric environment tends to make people feel cooler. (author)

  9. Thermal conditions and perceived air quality in an air-conditioned auditorium

    Science.gov (United States)

    Polednik, Bernard; Guz, Łukasz; Skwarczyński, Mariusz; Dudzińska, Marzenna R.

    2016-07-01

    The study reports measurements of indoor air temperature (T) and relative humidity (RH), perceived air quality (PAQ) and CO2, fine aerosol particle number (PN) and mass (PM1) concentrations in an air conditioned auditorium. The measurements of these air physical parameters have been carried out in the unoccupied auditorium with the air conditioning system switched off (AC off mode) and in the unoccupied and occupied auditorium with the air conditioning system switched off during the night and switched on during the day (AC on/off mode). The average indoor air thermal parameters, CO2 concentration and the PAQ value (in decipols) were elevated, while average PM1 concentration was lower in the AC on/off mode. A statistically significant (p PAQ values and CO2 concentrations (r = 0.66 and r = 0.59, respectively) in that AC mode. A significant negative correlation has been observed between T and PN and PM1 concentrations (r = -0.38 and r = -0.49, respectively). In the AC off mode the above relations between T and the particle concentrations were not that unequivocal. These findings may be of importance as they indicate that in certain AC operation modes the indoor air quality deteriorates along with the variation of the indoor air microclimate and room occupation. This, in turn, may adversely affect the comfort and productivity of the users of air conditioned premises.

  10. Thermodynamic model of a thermal storage air conditioning system with dynamic behavior

    International Nuclear Information System (INIS)

    Fleming, Evan; Wen, Shaoyi; Shi, Li; Silva, Alexandre K. da

    2013-01-01

    Highlights: • We developed an automotive thermal storage air conditioning system model. • The thermal storage unit utilizes phase change materials. • We use semi-analytic solution to the coupled phase change and forced convection. • We model the airside heat exchange using the NTU method. • The system model can incorporate dynamic inputs, e.g. variable inlet airflow. - Abstract: A thermodynamic model was developed to predict transient behavior of a thermal storage system, using phase change materials (PCMs), for a novel electric vehicle climate conditioning application. The main objectives of the paper are to consider the system’s dynamic behavior, such as a dynamic air flow rate into the vehicle’s cabin, and to characterize the transient heat transfer process between the thermal storage unit and the vehicle’s cabin, while still maintaining accurate solution to the complex phase change heat transfer. The system studied consists of a heat transfer fluid circulating between either of the on-board hot and cold thermal storage units, which we refer to as thermal batteries, and a liquid–air heat exchanger that provides heat exchange with the incoming air to the vehicle cabin. Each thermal battery is a shell-and-tube configuration where a heat transfer fluid flows through parallel tubes, which are surrounded by PCM within a larger shell. The system model incorporates computationally inexpensive semi-analytic solution to the conjugated laminar forced convection and phase change problem within the battery and accounts for airside heat exchange using the Number of Transfer Units (NTUs) method for the liquid–air heat exchanger. Using this approach, we are able to obtain an accurate solution to the complex heat transfer problem within the battery while also incorporating the impact of the airside heat transfer on the overall system performance. The implemented model was benchmarked against a numerical study for a melting process and against full system

  11. Predicting thermal reference conditions for USA streams and rivers

    Science.gov (United States)

    Hill, Ryan A.; Hawkins, Charles P.; Carlisle, Daren M.

    2013-01-01

    Temperature is a primary driver of the structure and function of stream ecosystems. However, the lack of stream temperature (ST) data for the vast majority of streams and rivers severely compromises our ability to describe patterns of thermal variation among streams, test hypotheses regarding the effects of temperature on macroecological patterns, and assess the effects of altered STs on ecological resources. Our goal was to develop empirical models that could: 1) quantify the effects of stream and watershed alteration (SWA) on STs, and 2) accurately and precisely predict natural (i.e., reference condition) STs in conterminous USA streams and rivers. We modeled 3 ecologically important elements of the thermal regime: mean summer, mean winter, and mean annual ST. To build reference-condition models (RCMs), we used daily mean ST data obtained from several thousand US Geological Survey temperature sites distributed across the conterminous USA and iteratively modeled ST with Random Forests to identify sites in reference condition. We first created a set of dirty models (DMs) that related STs to both natural factors (e.g., climate, watershed area, topography) and measures of SWA, i.e., reservoirs, urbanization, and agriculture. The 3 models performed well (r2 = 0.84–0.94, residual mean square error [RMSE] = 1.2–2.0°C). For each DM, we used partial dependence plots to identify SWA thresholds below which response in ST was minimal. We then used data from only the sites with upstream SWA below these thresholds to build RCMs with only natural factors as predictors (r2 = 0.87–0.95, RMSE = 1.1–1.9°C). Use of only reference-quality sites caused RCMs to suffer modest loss of predictor space and spatial coverage, but this loss was associated with parts of ST response curves that were flat and, therefore, not responsive to further variation in predictor space. We then compared predictions made with the RCMs to predictions made with the DMs with SWA set to 0. For most

  12. Influence of thermal conditioning media on Charpy specimen test temperature

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Swain, R.L.; Berggren, R.G.

    1989-01-01

    The Charpy V-notch (CVN) impact test is used extensively for determining the toughness of structural materials. Research programs in many technologies concerned with structural integrity perform such testing to obtain Charpy energy vs temperature curves. American Society for Testing and Materials Method E 23 includes rather strict requirements regarding determination and control of specimen test temperature. It specifies minimum soaking times dependent on the use of liquids or gases as the medium for thermally conditioning the specimen. The method also requires that impact of the specimen occur within 5 s removal from the conditioning medium. It does not, however, provide guidance regarding choice of conditioning media. This investigation was primarily conducted to investigate the changes in specimen temperature which occur when water is used for thermal conditioning. A standard CVN impact specimen of low-alloy steel was instrumented with surface-mounted and embedded thermocouples. Dependent on the media used, the specimen was heated or cooled to selected temperatures in the range -100 to 100 degree C using cold nitrogen gas, heated air, acetone and dry ice, methanol and dry ice, heated oil, or heated water. After temperature stabilization, the specimen was removed from the conditioning medium while the temperatures were recorded four times per second from all thermocouples using a data acquisition system and a computer. The results show that evaporative cooling causes significant changes in the specimen temperatures when water is used for conditioning. Conditioning in the other media did not result in such significant changes. The results demonstrate that, even within the guidelines of E 23, significant test temperature changes can occur which may substantially affect the Charpy impact test results if water is used for temperature conditioning. 7 refs., 11 figs

  13. Kinetics of the permanent deactivation of the boron-oxygen complex in crystalline silicon as a function of illumination intensity

    Directory of Open Access Journals (Sweden)

    Verena Steckenreiter

    2017-03-01

    Full Text Available Based on contactless carrier lifetime measurements performed on p-type boron-doped Czochralski-grown silicon (Cz-Si wafers, we examine the rate constant Rde of the permanent deactivation process of the boron-oxygen-related defect center as a function of the illumination intensity I at 170°C. While at low illumination intensities, a linear increase of Rde on I is measured, at high illumination intensities, Rde seems to saturate. We are able to explain the saturation by assuming that Rde increases proportionally with the excess carrier concentration Δn and take the fact into account that at sufficiently high illumination intensities, the carrier lifetime decreases with increasing Δn and hence the slope of Δn(I decreases, leading to an apparent saturation. Importantly, on low-lifetime Cz-Si samples no saturation of the deactivation rate constant is observed for the same illumination intensities, proving that the deactivation is stimulated by the presence of excess electrons and not directly by the photons.

  14. Evaluation of thermal perception in schoolyards under Mediterranean climate conditions

    Science.gov (United States)

    Antoniadis, D.; Katsoulas, N.; Papanastasiou, D.; Christidou, V.; Kittas, C.

    2016-03-01

    The aim of this paper was to study qualitatively and quantitatively the thermal perception and corresponding heat stress conditions that prevail in two schoolyards in a coastal city in central Greece. For this purpose, meteorological parameters (i.e., wind speed, temperature, relative humidity, solar radiation) were recorded at 70 and 55 measuring points in the schoolyards, from 14:00 to 15:30 local time, during May and June of 2011. The measuring points were distributed so as to get measurements at points (a) directly exposed to the sun, (b) under the shadow of trees and building structures, and (c) near building structures. Cluster analysis was applied to group observations and revealed places that are microclimatically homogeneous. Thermal perception and heat stress conditions were assessed by means of the physiologically equivalent temperature (PET, °C), and the results are presented in relevant charts. The impact of material's albedo, radiation's reflection by structures and obstacles, and different tree species on thermal perception and heat stress conditions was also assessed. The analysis showed that trees triggered a reduction of incident solar radiation that ranged between 79 and 94 % depending on tree's species, crown dimension, tree height, and leaf area. PET values were mainly affected by solar radiation and wind speed. Trees caused a reduction of up to 37 % in PET values, while a 1-m s-1 increase in wind speed triggered a reduction of 3.7-5.0 °C in PET value. The effective shading area in the two schoolyards was small, being 27.5 and 11 %. The results of this study could be exploited by urban planning managers when designing or improving the outdoor environment of a school complex.

  15. REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES

    Energy Technology Data Exchange (ETDEWEB)

    Reilkoff, T. E.; Hetland, M. D.; O' Leary, E. M.

    2002-02-25

    The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

  16. Deactivation in Continuous Deoxygenation of C18-Fatty Feedstock over Pd/Sibunit

    DEFF Research Database (Denmark)

    Madsen, Anders Theilgaard; Rozmysłowicz, Bartosz; Mäki-Arvela, Päivi

    2013-01-01

    Catalytic continuous deoxygenation of stearic acid, ethyl stearate and tristearin without any solvents was investigated using Pd/Sibunit as a catalyst in a trickle bed reactor at 300 °C. The main emphasis was to investigate the effect of gas atmosphere and catalyst deactivation. In addition....... The relative ratios between stearic acid, ethyl stearate and tristearin conversions to alkanes after 3 days time-on-stream were 2.8/2.3/1.0, respectively using 5 % H2/Ar as a gas atmosphere, whereas rapid catalyst deactivation occurred with all substrates under H2-lacking atmosphere. The spent catalyst......’s specific surface area profile along the downward reactor was maximum in the middle of the catalyst beds with the highest pore shrinking in the beginning and at the end of the reactor catalyst segments in the case of stearic acid and tristearin deoxygenation whereas that decreased consecutively as ethyl...

  17. Electron microscopy study of the deactivation of nickel based catalysts for bio oil hydrodeoxygenation

    DEFF Research Database (Denmark)

    Gardini, Diego; Mortensen, Peter Mølgaard; Carvalho, Hudson W. P.

    2014-01-01

    Hydrodeoxygenation (HDO) is proposed as an efficient way to remove oxygen in bio-oil, improving its quality as a more sustainable alternative to conventional fuels in terms of CO2 neutrality and relative short production cycle [1]. Ni and Ni-MoS2 nanoparticles supported on ZrO2 show potential...... as high-pressure (100 bar) catalysts for purification of bio-oil by HDO. However, the catalysts deactivate in presence of sulfur, chlorine and potassium species, which are all naturally occurring in real bio-oil. The deactivation mechanisms of the Ni/ZrO2 have been investigated through scanning...... transmission electron microscopy (STEM), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Catalytic testing has been performed using guaiacol in 1-octanol acting as a model compound for bio-oil. Addition of sulphur (0.3 vol% octanethiol) in the feed...

  18. Mathematical model for thermal solar collectors by using magnetohydrodynamic Maxwell nanofluid with slip conditions, thermal radiation and variable thermal conductivity

    Science.gov (United States)

    Mahmood, Asif; Aziz, Asim; Jamshed, Wasim; Hussain, Sajid

    Solar energy is the cleanest, renewable and most abundant source of energy available on earth. The main use of solar energy is to heat and cool buildings, heat water and to generate electricity. There are two types of solar energy collection system, the photovoltaic systems and the solar thermal collectors. The efficiency of any solar thermal system depend on the thermophysical properties of the operating fluids and the geometry/length of the system in which fluid is flowing. In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The flow is induced by a non-uniform stretching of the porous sheet and the uniform magnetic field is applied in the transverse direction to the flow. The non-Newtonian Maxwell fluid model is utilized for the working fluid along with slip boundary conditions. Moreover the high temperature effect of thermal radiation and temperature dependent thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for cu-water and TiO2 -water nanofluids. Results are presented for the velocity and temperature profiles as well as the skin friction coefficient and Nusselt number and the discussion is concluded on the effect of various governing parameters on the motion, temperature variation, velocity gradient and the rate of heat transfer at the boundary.

  19. Effects of service condition on rolling contact fatigue failure mechanism and lifetime of thermal spray coatings—A review

    Science.gov (United States)

    Cui, Huawei; Cui, Xiufang; Wang, Haidou; Xing, Zhiguo; Jin, Guo

    2015-01-01

    The service condition determines the Rolling Contact Fatigue(RCF) failure mechanism and lifetime under ascertain material structure integrity parameter of thermal spray coating. The available literature on the RCF testing of thermal spray coatings under various condition services is considerable; it is generally difficult to synthesize all of the result to obtain a comprehensive understanding of the parameters which has a great effect on a thermal spray coating's resistance of RCF. The effects of service conditions(lubrication states, contact stresses, revolve speed, and slip ratio) on the changing of thermal spray coatings' contact fatigue lifetime is introduced systematically. The effects of different service condition on RCF failure mechanism of thermal spray coating from the change of material structure integrity are also summarized. Moreover, In order to enhance the RCF performance, the parameter optimal design formula of service condition and material structure integrity is proposed based on the effect of service condition on thermal spray coatings' contact fatigue lifetime and RCF failure mechanism. The shortage of available literature and the forecast focus in future researches are discussed based on available research. The explicit result of RCF lifetime law and parameter optimal design formula in term of lubrication states, contact stresses, revolve speed, and slip ratio, is significant to improve the RCF performance on the engineering application.

  20. Engineering Phase 2 and Phase 3 certification programs -- PUREX deactivation

    International Nuclear Information System (INIS)

    Walser, R.L.

    1994-01-01

    This document describes the training programs required to become a Phase 2 and Phase 3 certified engineer at PUREX during deactivation. With the change in mission, the PUREX engineering/certification training program is being revamped as discussed below. The revised program will be administered by PUREX Technical Training using existing courses and training materials. The program will comply with the requirements of the Department of Energy (DOE) order 5480.20A, ''Personnel Selection, Qualification, Training, and Staffing Requirements at DOE Reactor and Non-Reactor Nuclear Facilities.''

  1. Engineering Phase 2 and Phase 3 certification programs -- PUREX deactivation

    Energy Technology Data Exchange (ETDEWEB)

    Walser, R.L.

    1994-12-13

    This document describes the training programs required to become a Phase 2 and Phase 3 certified engineer at PUREX during deactivation. With the change in mission, the PUREX engineering/certification training program is being revamped as discussed below. The revised program will be administered by PUREX Technical Training using existing courses and training materials. The program will comply with the requirements of the Department of Energy (DOE) order 5480.20A, ``Personnel Selection, Qualification, Training, and Staffing Requirements at DOE Reactor and Non-Reactor Nuclear Facilities.``

  2. Thermal science under extreme conditions. Proceedings of the annual congress of the French Society of Thermal science - SFT 2012, 29 May-1 June, Bordeaux-Talence

    International Nuclear Information System (INIS)

    Gendrhi, Philippe; Perrin, Bernard; Journeau, Christophe; MOST, Jean-Michel; Nicolai, Philippe

    2012-06-01

    This publication proposes the contributions made during plenary sessions, and those made on various themes (Multi-physical couplings combustion; Contacts and interfaces; Natural, hybrid and forced convection, Energy and the environment; High temperatures and high flows; Metrology and identification; Micro- and nano-thermal science; Radiation; Control of systems and thermal process; System thermal science; Life thermal science; Transfer in multi-phase media; Transfer in porous media). Among the plenary session conferences some authors more particularly addressed the following issues: Thermal science at the heart of thermonuclear fusion (presentation of thermonuclear fusion by magnetic confinement); Thermal science of severe accidents of nuclear reactors (study of the thermal science of corium-water interaction which could result in a thermal detonation, study of corium baths at the vessel bottom or in interaction with the vessel well concrete, proposition of technological solutions for corium recovery); Fusion by inertial confinement and associated energy exchanges (case of inertial confinement by power lasers, presentation of needed conditions to obtain an energetic gain, of different energy and heat transfers under extreme conditions)

  3. Thermal-hydraulic analysis of PWR cores in transient condition

    International Nuclear Information System (INIS)

    Silva Galetti, M.R. da.

    1984-01-01

    A calculational methodology for thermal - hydraulic analysis of PWR cores under steady-state and transient condition was selected and made available to users. An evaluation of the COBRA-IIIP/MIT code, used for subchannel analysis, was done through comparison of the code results with experimental data on steady state and transient conditions. As a result, a comparison study allowing spatial and temporal localization of critical heat flux was obtained. A sensitivity study of the simulation model to variations in some empirically determined parameter is also presented. Two transient cases from Angra I FSAR were analysed, showing the evolution of minimum DNBR with time. (Author) [pt

  4. Mathematical Modelling of Thermal Process to Aquatic Environment with Different Hydrometeorological Conditions

    Directory of Open Access Journals (Sweden)

    Alibek Issakhov

    2014-01-01

    Full Text Available This paper presents the mathematical model of the thermal process from thermal power plant to aquatic environment of the reservoir-cooler, which is located in the Pavlodar region, 17 Km to the north-east of Ekibastuz town. The thermal process in reservoir-cooler with different hydrometeorological conditions is considered, which is solved by three-dimensional Navier-Stokes equations and temperature equation for an incompressible flow in a stratified medium. A numerical method based on the projection method, divides the problem into three stages. At the first stage, it is assumed that the transfer of momentum occurs only by convection and diffusion. Intermediate velocity field is solved by fractional steps method. At the second stage, three-dimensional Poisson equation is solved by the Fourier method in combination with tridiagonal matrix method (Thomas algorithm. Finally, at the third stage, it is expected that the transfer is only due to the pressure gradient. Numerical method determines the basic laws of the hydrothermal processes that qualitatively and quantitatively are approximated depending on different hydrometeorological conditions.

  5. Design parameters of a non-air-conditioned cinema hall for thermal comfort under arid-zone climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, G.N. (Indian Inst. of Tech., New Delhi (India). Centre for Energy Studies); Lugani, N. (Indian Inst. of Tech., New Delhi (India). Centre for Energy Studies); Singh, A.K. (Indian Inst. of Tech., New Delhi (India). Centre for Energy Studies)

    1993-01-01

    In this communication, a design of a cinema hall suitable for climatic conditions in an arid zone has been presented. The various cooling techniques, namely evaporative cooling, wind tower, ventilation/infiltration and natural cooling, have been incorporated in the design to achieve thermal comfort during the period of operation. The design parameters have been optimized on the basis of numerical computations after establishing an energy balance for each component of a cinema hall. It is observed that cooling treatment, i.e., a wind tower with a cooling pool on the roof provides reasonable thermal comfort inside the enclosure. (orig.)

  6. Impact of building forms on thermal performance and thermal comfort conditions in religious buildings in hot climates: a case study in Sharjah city

    Science.gov (United States)

    Mushtaha, Emad; Helmy, Omar

    2017-11-01

    The common system used for thermal regulation in mosques of United Arab Emirates (UAE) is the heating, ventilating and air-conditioning (HVAC) system. This system increases demands on energy consumption and increases CO2 emission. A passive design approach is one of the measures to reduce these problems. This study involved an analytical examination of building forms, followed by testing the impact of these forms on its thermal performance and indoor thermal comfort. The tests were conducted using energy simulations software packages. Passive parameters such as shading devices, thermal insulation and natural ventilation were applied in six cases, including the baseline case within each form. The obtained results showed a significant effect of mosque forms as well as passive design techniques on the thermal comfort within the structures. The findings confirmed that the use of passive design alone would not help achieve thermal comfort, but reduce the annual energy consumption by10%. By integrating a hybrid air-conditioning system as another supporting approach, the annual energy consumption could be reduced by 67.5%, which allows for the designing of a much smaller HVAC system.

  7. PETher - Physical Properties of Thermal Water under In-situ-Conditions

    Science.gov (United States)

    Herfurth, Sarah; Schröder, Elisabeth

    2016-04-01

    The objective of PETher, a research project funded by the German Federal Ministry for Economic Affairs and Energy (BMWi), is to experimentally determine thermo-physical properties (specific isobaric heat capacity, kinematic viscosity, density and thermal conductivity) of geothermal water in-situ-conditions (pressure, temperature, chemical composition including gas content of the brine) present in geothermal applications. Knowing these thermo-physical properties reduces the uncertainties with respect to estimating the thermal output and therefore the economic viability of the power plant. Up to now, only a limited number of measurements of selected physical properties have been made, usually under laboratory conditions and for individual geothermal plants. In-situ measured parameters, especially in the temperature range of 120°C and higher, at pressures of 20 bar and higher, as well as with a salinity of up to 250 g/l, are sparse to non-existing. Therefore, pure water properties are often used as reference data and for designing the power plant and its components. Currently available numerical models describing the thermo-physical properties are typically not valid for the conditions in geothermal applications and do not consider the substantial influence of the chemical composition of the thermal water. Also, actual geothermal waters have not been subject of detailed measurements systematically performed under operational conditions on a large-scale basis. Owing to the lack of reliable data, a validation of numerical models for investigating geothermal systems is not possible. In order to determine the dependency of the thermo-physical properties of geothermal water on temperature, pressure and salinity in-situ measurements are conducted. The measurements are taking place directly at several geothermal applications located in Germany's hydrogeothermal key regions. In order to do this, a mobile testing unit was developed and refined with instruments specifically

  8. Ionic liquids as silica deactivating agents in gas chromatography for direct analysis of primary amines in water.

    Science.gov (United States)

    Krzyżaniak, Agnieszka; Weggemans, Wilko; Schuur, Boelo; de Haan, André B

    2011-12-16

    Analysis of primary amines in aqueous samples remains a challenging analytical issue. The preferred approach by gas chromatography is hampered by interactions of free silanol groups with the highly reactive amine groups, resulting in inconsistent measurements. Here, we report a method for direct analysis of aliphatic amines and diamines in aqueous samples by gas chromatography (GC) with silanol deactivation using ionic liquids (ILs). ILs including trihexyl(tetradecyl)phosphonium bis 2,4,4-(trimethylpentyl)phosphinate (Cyphos IL-104), 1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide [pmim][Tf(2)N] and N″-ethyl-N,N,N',N'-tetramethylguanidinium tris(pentafluoroethyl)trifluorophosphate [etmg][FAP] were tested as deactivating media for the GC liner. Solutions of these ILs in methanol were injected in the system prior to the analysis of primary amines. Butane-1,4-diamine (putrescine, BDA) was used as a reference amine. The best results were obtained using the imidazolium IL [pmim][Tf(2)N]. With this deactivator, excellent reproducibility of the analysis was achieved, and the detection limit of BDA was as low as 1mM. The applicability of the method was proven for the analysis of two different primary amines (C4-C5) and pentane-1,5-diamine. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. DNS, LES and RANS of turbulent heat transfer in boundary layer with suddenly changing wall thermal conditions

    International Nuclear Information System (INIS)

    Hattori, Hirofumi; Yamada, Shohei; Tanaka, Masahiro; Houra, Tomoya; Nagano, Yasutaka

    2013-01-01

    Highlights: • We study the turbulent boundary layer with heat transfer by DNS. • Turbulent boundary layers with suddenly changing wall thermal conditions are observed. • The detailed turbulent statistics and structures in turbulent thermal boundary layer are discussed. • Turbulence models in LES and RANS are evaluated using DNS results. • LES and RANS are almost in good agreement with DNS results. -- Abstract: The objectives of this study are to investigate a thermal field in a turbulent boundary layer with suddenly changing wall thermal conditions by means of direct numerical simulation (DNS), and to evaluate predictions of a turbulence model in such a thermal field, in which DNS of spatially developing boundary layers with heat transfer can be conducted using the generation of turbulent inflow data as a method. In this study, two types of wall thermal condition are investigated using DNS and predicted by large eddy simulation (LES) and Reynolds-averaged Navier–Stokes equation simulation (RANS). In the first case, the velocity boundary layer only develops in the entrance of simulation, and the flat plate is heated from the halfway point, i.e., the adiabatic wall condition is adopted in the entrance, and the entrance region of thermal field in turbulence is simulated. Then, the thermal boundary layer develops along a constant temperature wall followed by adiabatic wall. In the second case, velocity and thermal boundary layers simultaneously develop, and the wall thermal condition is changed from a constant temperature to an adiabatic wall in the downstream region. DNS results clearly show the statistics and structure of turbulent heat transfer in a constant temperature wall followed by an adiabatic wall. In the first case, the entrance region of thermal field in turbulence can be also observed. Thus, both the development and the entrance regions in thermal fields can be explored, and the effects upstream of the thermal field on the adiabatic region are

  10. Investigation and deactivation of B Plant HEPA filters

    International Nuclear Information System (INIS)

    Roege, P.E.

    1997-01-01

    This paper describes the integrated approach used to manage environmental, safety, and health considerations related to the B Plant canyon exhaust air filters at the US Department of Energy (DOE) Hanford Site. The narrative illustrates the development and implementation of integrated safety management as applied to a facility and its systems undergoing deactivation. During their lifetime, the high efficiency particulate air (HEPA) filters prevented the release of significant quantities of radioactive materials into the air. As the material in B Plant AVESF accumulated on the filters, it created an unusual situation. Over long periods of time, the radiation dose from the filter loading, combined with aging and chemical exposure actually degrade those filters which were intended to protect against any release to the environment

  11. General 3D Lumped Thermal Model with Various Boundary Conditions for High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2016-01-01

    Accurate thermal dynamics modeling of high power Insulated Gate Bipolar Transistor (IGBT) modules is important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated...... thermal behaviors in the IGBTs. In this paper, a new three-dimensional (3D) lumped thermal model is proposed, which can easily be characterized from Finite Element Methods (FEM) based simulation and acquire the thermal distribution in critical points. Meanwhile the boundary conditions including...... the cooling system and power losses are modeled in the 3D thermal model, which can be adapted to different real field applications of power electronic converters. The accuracy of the proposed thermal model is verified by experimental results....

  12. Towards the control of car underhood thermal conditions

    International Nuclear Information System (INIS)

    Khaled, Mahmoud; Harambat, Fabien; Peerhossaini, Hassan

    2011-01-01

    The present paper reports an experimental study of the aerothermal phenomena in the vehicle underhood compartment as investigated by measuring temperature, convective heat flux, and radiative heat flux. Measurements are carried out on a passenger vehicle in wind tunnel S4 of Saint-Cyr-France. The underhood space is instrumented by 120 surface and air thermocouples and 20 fluxmeters. Measurements are performed for three thermal functioning conditions while the engine is in operation and the front wheels are positioned on the test facility with power-absorption-controlled rollers. In the thermal analysis, particular attention is given to measuring absorbed convective heat fluxes at component surfaces. It is shown that, in some components, the outside air entering the engine compartment (for cooling certain components) can in fact heat other components. This problem arises from the underhood architecture, specifically the positioning of some components downstream of warmer components in the same airflow. Optimized thermal management suggests placing these components further upstream or isolating them from the hot stream by deflectors. Given style constraints, however, the use of air deflectors is more suitable than underhood architectural changes. Much of the present paper is devoted to heat flux analysis of the specific thermal behaviours in the underhood compartment (especially the absorption of convective heat fluxes) and to a description of a new control approach exploiting air deflectors to optimize underhood aerothermal management. - Research highlights: → We present a physical analysis of particular underhood aerothermal behaviors. → In this analysis, convective heat flux absorption should be noted. → A new optimization procedure based on this physical analysis is proposed. → It entails airflow redistribution in the underhood through deflectors. → The new procedures are simple and easy to implement in the car underhood.

  13. The S4-S5 linker acts as a signal integrator for HERG K+ channel activation and deactivation gating.

    Directory of Open Access Journals (Sweden)

    Chai Ann Ng

    Full Text Available Human ether-à-go-go-related gene (hERG K(+ channels have unusual gating kinetics. Characterised by slow activation/deactivation but rapid inactivation/recovery from inactivation, the unique gating kinetics underlie the central role hERG channels play in cardiac repolarisation. The slow activation and deactivation kinetics are regulated in part by the S4-S5 linker, which couples movement of the voltage sensor domain to opening of the activation gate at the distal end of the inner helix of the pore domain. It has also been suggested that cytosolic domains may interact with the S4-S5 linker to regulate activation and deactivation kinetics. Here, we show that the solution structure of a peptide corresponding to the S4-S5 linker of hERG contains an amphipathic helix. The effects of mutations at the majority of residues in the S4-S5 linker of hERG were consistent with the previously identified role in coupling voltage sensor movement to the activation gate. However, mutations to Ser543, Tyr545, Gly546 and Ala548 had more complex phenotypes indicating that these residues are involved in additional interactions. We propose a model in which the S4-S5 linker, in addition to coupling VSD movement to the activation gate, also contributes to interactions that stabilise the closed state and a separate set of interactions that stabilise the open state. The S4-S5 linker therefore acts as a signal integrator and plays a crucial role in the slow deactivation kinetics of the channel.

  14. Thermal Performance for Wet Cooling Tower with Different Layout Patterns of Fillings under Typical Crosswind Conditions

    Directory of Open Access Journals (Sweden)

    Ming Gao

    2017-01-01

    Full Text Available A thermal-state model experimental study was performed in lab to investigate the thermal performance of a wet cooling tower with different kinds of filling layout patterns under windless and 0.4 m/s crosswind conditions. In this paper, the contrast analysis was focused on comparing a uniform layout pattern and one kind of optimal non-uniform layout pattern when the environmental crosswind speed is 0 m/s and 0.4 m/s. The experimental results proved that under windless conditions, the heat transfer coefficient and total heat rejection of circulating water for the optimal non-uniform layout pattern can enhance by approximately 40% and 28%, respectively, compared with the uniform layout pattern. It was also discovered that the optimal non-uniform pattern can dramatically relieve the influence of crosswind on the thermal performance of the tower when the crosswind speed is equal to 0.4 m/s. For the uniform layout pattern, the heat transfer coefficient under 0.4 m/s crosswind conditions decreased by 9.5% compared with the windless conditions, while that value lowered only by 2.0% for the optimal non-uniform layout pattern. It has been demonstrated that the optimal non-uniform layout pattern has the better thermal performance under 0.4 m/s crosswind condition.

  15. Direct measurement of thermal conductivity in solid iron at planetary core conditions.

    Science.gov (United States)

    Konôpková, Zuzana; McWilliams, R Stewart; Gómez-Pérez, Natalia; Goncharov, Alexander F

    2016-06-02

    The conduction of heat through minerals and melts at extreme pressures and temperatures is of central importance to the evolution and dynamics of planets. In the cooling Earth's core, the thermal conductivity of iron alloys defines the adiabatic heat flux and therefore the thermal and compositional energy available to support the production of Earth's magnetic field via dynamo action. Attempts to describe thermal transport in Earth's core have been problematic, with predictions of high thermal conductivity at odds with traditional geophysical models and direct evidence for a primordial magnetic field in the rock record. Measurements of core heat transport are needed to resolve this difference. Here we present direct measurements of the thermal conductivity of solid iron at pressure and temperature conditions relevant to the cores of Mercury-sized to Earth-sized planets, using a dynamically laser-heated diamond-anvil cell. Our measurements place the thermal conductivity of Earth's core near the low end of previous estimates, at 18-44 watts per metre per kelvin. The result is in agreement with palaeomagnetic measurements indicating that Earth's geodynamo has persisted since the beginning of Earth's history, and allows for a solid inner core as old as the dynamo.

  16. Activation and deactivation of neutral palladium(II) phosphinesulfonato polymerization catalysts

    KAUST Repository

    Rünzi, Thomas

    2012-12-10

    13C-Labeled ethylene polymerization (pre)catalysts [κ2-(anisyl)2P,O]Pd(13CH3)(L) (1-13CH3-L) (L = pyridine, dmso) based on di(2-anisyl)phosphine benzenesulfonate were used to assess the degree of incorporation of 13CH3 groups into the formed polyethylenes. Polymerizations of variable reaction time reveal that ca. 60-85% of the 13C-label is found in the polymer after already 1 min polymerization time, which provides evidence that the pre-equilibration between the catalyst precursor 1-13CH3-L and the active species 1-13CH3-(ethylene) is fast with respect to chain growth. The fraction of 1-13CH3-L that initiates chain growth is likely higher than the 60-85% determined from the 13C-labeled polymer chain ends since (a) chain walking results in in-chain incorporation of the 13C-label, (b) irreversible catalyst deactivation by formation of saturated (and partially volatile) alkanes diminishes the amount of 13CH3 groups incorporated into the polymer, and (c) palladium-bound 13CH3 groups, and more general palladium-bound alkyl(polymeryl) chains, partially transfer to phosphorus by reductive elimination. NMR and ESI-MS analyses of thermolysis reactions of 1-13CH3-L provide evidence that a mixture of phosphonium salts (13CH3)xP+(aryl)4-x (2-7) is formed in the absence of ethylene. In addition, isolation and characterization of the mixed bis(chelate) palladium complex [κ2-(anisyl)2P,O]Pd[κ2-(anisyl) (13CH3)P,O] (11) by NMR and X-ray diffraction analyses from these mixtures indicate that oxidative addition of phosphonium salts to palladium(0) species is also operative. The scrambling of palladium-bound carbyls and phosphorus-bound aryls is also relevant under NMR, as well as preparative reactor polymerization conditions exemplified by the X-ray diffraction analysis of [κ2-(anisyl)2P,O] Pd[κ2-(anisyl)(CH2CH3)P,O] (12) and [κ2-(anisyl)2P,O]Pd[κ2-(anisyl) ((CH2)3CH3)P,O] (13) isolated from pressure reactor polymerization experiments. In addition, ESI-MS analyses of reactor

  17. Numerical simulation of diurnally varying thermal environment in a street canyon under haze-fog conditions

    Science.gov (United States)

    Tan, Zijing; Dong, Jingliang; Xiao, Yimin; Tu, Jiyuan

    2015-10-01

    The impact of haze-fog on surface temperature, flow pattern, pollutant dispersion and pedestrian thermal comfort are investigated using computational fluid dynamics (CFD) approach based on a three-dimensional street canyon model under different haze-fog conditions. In this study, light extinction coefficient (Kex) is adopted to represent haze-fog pollution level. Numerical simulations are performed for different Kex values at four representative time events (1000 LST, 1300 LST, 1600 LST and 2000 LST). The numerical results suggest that the surface temperature is strongly affected by the haze-fog condition. Surface heating induced by the solar radiation is enhanced by haze-fog, as higher surface temperature is observed under thicker haze-fog condition. Moreover, the temperature difference between sunlit and shadow surfaces is reduced, while that for the two shadow surfaces is slightly increased. Therefore, the surface temperature among street canyon facets becomes more evenly distributed under heavy haze-fog conditions. In addition, flow patterns are considerably altered by different haze-fog conditions, especially for the afternoon (1600 LST) case, in which thermal-driven flow has opposite direction as that of the wind-driven flow direction. Consequently, pollutants such as vehicular emissions will accumulate at pedestrian level, and pedestrian thermal comfort may lower under thicker haze-fog condition.

  18. Influence of thermal charge preparation on coke comminution under blast-furnace operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shkoller, M.B.; Dinel' t, V.M.; Korchuganova, G.S.; Petrov, V.B.

    1983-01-01

    An investigation is described for the study of structural breakdown of coke by thermochemical action of alkali and alkaline-earth metal vapors under blast furnace operating conditions. Bench-scale test facilities are described in which a pair of coke samples are exposed to the metal vapors then subjected to gasification. Structural strength tests were performed before and after each experiment. Coke samples were obtained in either moist or thermally prepared condition. The value of thermal charge preparation (heat treatment of the coal at 150/sup 0/C in a fluidized bed) was established, since it shifts the pore size distribution to the smaller size, thereby retarding adsorption of the metal vapors. 16 references, 4 figures, 2 tables.

  19. Energy efficient hybrid nanocomposite-based cool thermal storage air conditioning system for sustainable buildings

    International Nuclear Information System (INIS)

    Parameshwaran, R.; Kalaiselvam, S.

    2013-01-01

    The quest towards energy conservative building design is increasingly popular in recent years, which has triggered greater interests in developing energy efficient systems for space cooling in buildings. In this work, energy efficient silver–titania HiTES (hybrid nanocomposites-based cool thermal energy storage) system combined with building A/C (air conditioning) system was experimentally investigated for summer and winter design conditions. HiNPCM (hybrid nanocomposite particles embedded PCM) used as the heat storage material has exhibited 7.3–58.4% of improved thermal conductivity than at its purest state. The complete freezing time for HiNPCM was reduced by 15% which was attributed to its improved thermophysical characteristics. Experimental results suggest that the effective energy redistribution capability of HiTES system has contributed for reduction in the chiller nominal cooling capacity by 46.3% and 39.6% respectively, under part load and on-peak load operating conditions. The HiTES A/C system achieved 27.3% and 32.5% of on-peak energy savings potential in summer and winter respectively compared to the conventional A/C system. For the same operating conditions, this system yield 8.3%, 12.2% and 7.2% and 10.2% of per day average and yearly energy conservation respectively. This system can be applied for year-round space conditioning application without sacrificing energy efficiency in buildings. - Highlights: • Energy storage is acquired by HiTES (hybrid nanocomposites-thermal storage) system. • Thermal conductivity of HiNPCM (hybrid nanocomposites-PCM) was improved by 58.4%. • Freezing time of HiNPCM was reduced by 15% that enabled improved energy efficiency. • Chiller nominal capacity was reduced by 46.3% and 39.6% in on-peak and part load respectively. • HiTES A/C system achieved appreciable energy savings in the range of 8.3–12.2%

  20. Effect of Material Composition and Environmental Condition on Thermal Characteristics of Conductive Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Pan Pan

    2017-02-01

    Full Text Available Conductive asphalt concrete with high thermal conductivity has been proposed to improve the solar energy collection and snow melting efficiencies of asphalt solar collector (ASC. This paper aims to provide some insight into choosing the basic materials for preparation of conductive asphalt concrete, as well as determining the evolution of thermal characteristics affected by environmental factors. The thermal properties of conductive asphalt concrete were studied by the Thermal Constants Analyzer. Experimental results showed that aggregate and conductive filler have a significant effect on the thermal properties of asphalt concrete, while the effect of asphalt binder was not evident due to its low proportion. Utilization of mineral aggregate and conductive filler with higher thermal conductivity is an efficient method to prepare conductive asphalt concrete. Moreover, change in thermal properties of asphalt concrete under different temperature and moisture conditions should be taken into account to determine the actual thermal properties of asphalt concrete. There was no noticeable difference in thermal properties of asphalt concrete before and after aging. Furthermore, freezing–thawing cycles strongly affect the thermal properties of conductive asphalt concrete, due to volume expansion and bonding degradation.

  1. Extended Catalyst Longevity Via Supercritical Isobutane Regeneration of a Partially Deactivated USY Alkylation Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Ginosar; David N. Thompson; Kyle C. Burch; David J. Zalewski

    2005-05-01

    Off-line, in situ activity recovery of a partially deactivated USY zeolite catalyst used for isobutane/butene alkylation was examined in a continuous-flow reaction system employing supercritical isobutane. Catalyst samples were deactivated in a controlled manner by running them to either to a fixed butene conversion level of 95% or a fixed time on stream of three hours, and then exposing the catalyst to supercritical isobutane to restore activity. Activity recovery was determined by comparing alkylation activity before and after the regeneration step. Both single and multiple regenerations were performed. Use of a 95% butene conversion level criterion to terminate the reaction step afforded 86% activity recovery for a single regeneration and provided nine sequential reaction steps for the multiple regeneration studies. Employing a fixed 3 h time on stream criterion resulted in nearly complete activity recovery for a single regeneration, and 24 reaction steps were demonstrated in sequence for the multiple regeneration process, producing only minor product yield declines per step. This resulted in a 12-fold increase in catalyst longevity versus unregenerated catalyst.

  2. Thermal conditions influence changes in body temperature induced by intragastric administration of capsaicin in mice.

    Science.gov (United States)

    Mori, Noriyuki; Urata, Tomomi; Fukuwatari, Tsutomu

    2016-08-01

    Capsaicin has been reported to have unique thermoregulatory actions. However, changes in core temperature after the administration of capsaicin are a controversial point. Therefore, we investigated the effects of environmental thermal conditions on changes in body temperature caused by capsaicin in mice. We showed that intragastric administration of 10 and 15 mg/kg capsaicin increased tail temperature and decreased colonic temperatures in the core temperature (CT)-constant and CT-decreasing conditions. In the CT-increasing condition, 15 mg/kg capsaicin increased tail temperature and decreased colonic temperature. However, 10 mg/kg capsaicin increased colonic temperature. Furthermore, the amount of increase in tail temperature was greater in the CT-decreasing condition and lower in the CT-increasing condition, compared with that of the CT-constant condition. These findings suggest that the changes in core temperature were affected by the environmental thermal conditions and that preliminary thermoregulation state might be more important than the constancy of temperature to evaluate the effects of heat diffusion and thermogensis.

  3. Characteristics of Syngas Auto-ignition at High Pressure and Low Temperature Conditions with Thermal Inhomogeneities

    KAUST Repository

    Pal, Pinaki; Mansfield, Andrew B.; Wooldridge, Margaret S.; Im, Hong G.

    2015-01-01

    Effects of thermal inhomogeneities on syngas auto-ignition at high-pressure low-temperature conditions, relevant to gas turbine operation, are investigated using detailed one-dimensional numerical simulations. Parametric tests are carried out for a range of thermodynamic conditions (T = 890-1100 K, P = 3-20 atm) and composition (Ф = 0.1, 0.5). Effects of global thermal gradients and localized thermal hot spots are studied. In the presence of a thermal gradient, the propagating reaction front transitions from spontaneous ignition to deflagration mode as the initial mean temperature decreases. The critical mean temperature separating the two distinct auto-ignition modes is computed using a predictive criterion and found to be consistent with front speed and Damkohler number analyses. The hot spot study reveals that compression heating of end-gas mixture by the propagating front is more pronounced at lower mean temperatures, significantly advancing the ignition delay. Moreover, the compression heating effect is dependent on the domain size.

  4. Characteristics of Syngas Auto-ignition at High Pressure and Low Temperature Conditions with Thermal Inhomogeneities

    KAUST Repository

    Pal, Pinaki

    2015-05-31

    Effects of thermal inhomogeneities on syngas auto-ignition at high-pressure low-temperature conditions, relevant to gas turbine operation, are investigated using detailed one-dimensional numerical simulations. Parametric tests are carried out for a range of thermodynamic conditions (T = 890-1100 K, P = 3-20 atm) and composition (Ф = 0.1, 0.5). Effects of global thermal gradients and localized thermal hot spots are studied. In the presence of a thermal gradient, the propagating reaction front transitions from spontaneous ignition to deflagration mode as the initial mean temperature decreases. The critical mean temperature separating the two distinct auto-ignition modes is computed using a predictive criterion and found to be consistent with front speed and Damkohler number analyses. The hot spot study reveals that compression heating of end-gas mixture by the propagating front is more pronounced at lower mean temperatures, significantly advancing the ignition delay. Moreover, the compression heating effect is dependent on the domain size.

  5. Comparison of different test methods to assess thermal stresses of metal oxide surge arresters under pollution conditions

    International Nuclear Information System (INIS)

    Bargigia, A.; de Nigris, M.; Pigini, A.; Sironi, A.

    1992-01-01

    The report deals with the research conducted by ENEL, the Italian Electricity Board, to assess the performance of zinc oxide surge arresters under pollution condition, with special reference to the consequent thermal stress on internal active parts which can affect the energy handling capabality of the arrester and may lead, in particular conditions, even to thermal runaway

  6. Part I: A Comparative Thermal Aging Study on the Regenerability of Rh/Al2O3 and Rh/CexOy-ZrO2 as Model Catalysts for Automotive Three Way Catalysts

    Directory of Open Access Journals (Sweden)

    Qinghe Zheng

    2015-10-01

    Full Text Available The rhodium (Rh component in automotive three way catalysts (TWC experiences severe thermal deactivation during fuel shutoff, an engine mode (e.g., at downhill coasting used for enhancing fuel economy. In a subsequent switch to a slightly fuel rich condition, in situ catalyst regeneration is accomplished by reduction with H2 generated through steam reforming catalyzed by Rh0 sites. The present work reports the effects of the two processes on the activity and properties of 0.5% Rh/Al2O3 and 0.5% Rh/CexOy-ZrO2 (CZO as model catalysts for Rh-TWC. A very brief introduction of three way catalysts and system considerations is also given. During simulated fuel shutoff, catalyst deactivation is accelerated with increasing aging temperature from 800 °C to 1050 °C. Rh on a CZO support experiences less deactivation and faster regeneration than Rh on Al2O3. Catalyst characterization techniques including BET surface area, CO chemisorption, TPR, and XPS measurements were applied to examine the roles of metal-support interactions in each catalyst system. For Rh/Al2O3, strong metal-support interactions with the formation of stable rhodium aluminate (Rh(AlO2y complex dominates in fuel shutoff, leading to more difficult catalyst regeneration. For Rh/CZO, Rh sites were partially oxidized to Rh2O3 and were relatively easy to be reduced to active Rh0 during regeneration.

  7. Catalyst Deactivation and Regeneration in Low Temperature Ethanol Steam Reforming with Rh/CeO2-ZrO2 Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Hyun-Seog; Platon, Alex; Wang, Yong; King, David L.

    2006-08-01

    Rh/CeO2-ZrO2 catalysts with various CeO2/ZrO2 ratios have been applied to H2 production from ethanol steam reforming at low temperatures. The catalysts all deactivated with time on stream (TOS) at 350 C. The addition of 0.5% K has a beneficial effect on catalyst stability, while 5% K has a negative effect on catalytic activity. The catalyst could be regenerated considerably even at ambient temperature and could recover its initial activity after regeneration above 200 C with 1% O2. The results are most consistent with catalyst deactivation due to carbonaceous deposition on the catalyst.

  8. The effect of atmospheric thermal conditions and urban thermal pollution on all-cause and cardiovascular mortality in Bangladesh

    International Nuclear Information System (INIS)

    Burkart, Katrin; Schneider, Alexandra; Breitner, Susanne; Khan, Mobarak Hossain; Kraemer, Alexander; Endlicher, Wilfried

    2011-01-01

    This study assessed the effect of temperature and thermal atmospheric conditions on all-cause and cardiovascular mortality in Bangladesh. In particular, differences in the response to elevated temperatures between urban and rural areas were investigated. Generalized additive models (GAMs) for daily death counts, adjusted for trend, season, day of the month and age were separately fitted for urban and rural areas. Breakpoint models were applied for determining the increase in mortality above and below a threshold (equivalent) temperature. Generally, a 'V'-shaped (equivalent) temperature-mortality curve with increasing mortality at low and high temperatures was observed. Particularly, urban areas suffered from heat-related mortality with a steep increase above a specific threshold. This adverse heat effect may well increase with ongoing urbanization and the intensification of the urban heat island due to the densification of building structures. Moreover, rising temperatures due to climate change could aggravate thermal stress. - Highlights: → Temperature exhibits a strong influence on mortality in Bangladesh. → Mortality increases at low and high end of the temperature range. → Temperature is increased in the urban area of Dhaka, particular during summer. → Urban areas are facing increased risk of heat-related mortality. → Urbanization and climate change are likely to increase heat-related mortality. - Mortality in Bangladesh is strongly affected by thermal atmospheric conditions with particularly urban areas facing excess mortality above a specific threshold temperature.

  9. Distinctive Spectral Features of Exciton and Excimer States in the Ultrafast Electronic Deactivation of the Adenine Dinucleotide

    Science.gov (United States)

    Stuhldreier, Mayra C.; Röttger, Katharina; Temps, Friedrich

    We report the observation by transient absorption spectroscopy of distinctive spectro-temporal signatures of delocalized exciton versus relaxed, weakly bound excimer states in the ultrafast electronic deactivation after UV photoexcitation of the adenine dinucleotide.

  10. Thermodynamic model of a thermal storage air conditioning system with dynamic behavior

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, E; Wen, SY; Shi, L; da Silva, AK

    2013-12-01

    A thermodynamic model was developed to predict transient behavior of a thermal storage system, using phase change materials (PCMs), for a novel electric vehicle climate conditioning application. The main objectives of the paper are to consider the system's dynamic behavior, such as a dynamic air flow rate into the vehicle's cabin, and to characterize the transient heat transfer process between the thermal storage unit and the vehicle's cabin, while still maintaining accurate solution to the complex phase change heat transfer. The system studied consists of a heat transfer fluid circulating between either of the on-board hot and cold thermal storage units, which we refer to as thermal batteries, and a liquid-air heat exchanger that provides heat exchange with the incoming air to the vehicle cabin. Each thermal battery is a shell-and-tube configuration where a heat transfer fluid flows through parallel tubes, which are surrounded by PCM within a larger shell. The system model incorporates computationally inexpensive semianalytic solution to the conjugated laminar forced convection and phase change problem within the battery and accounts for airside heat exchange using the Number of Transfer Units (NTUs) method for the liquid-air heat exchanger. Using this approach, we are able to obtain an accurate solution to the complex heat transfer problem within the battery while also incorporating the impact of the airside heat transfer on the overall system performance. The implemented model was benchmarked against a numerical study for a melting process and against full system experimental data for solidification using paraffin wax as the PCM. Through modeling, we demonstrate the importance of capturing the airside heat exchange impact on system performance, and we investigate system response to dynamic operating conditions, e.g., air recirculation. (C) 2013 Elsevier Ltd. All rights reserved.

  11. Effect of Galleries on Thermal Conditions of Urban Open Areas

    Directory of Open Access Journals (Sweden)

    Shahab Kariminia

    2016-06-01

    Full Text Available Computer simulations were performed by ENVI-met model along with physical measurements in two urban squares under hot summer conditions in Isfahan, central Iran. Each scenario concentrated on adding or extending galleries in each square. The results confirmed the role of galleries on thermal conditions; however, it was found that the effectiveness of this strategy depends on the square geometry. It presented higher efficiency for the small square with higher H/W ratio. This solution is advisable for smaller squares and when the peripheral parts are frequently used compared to the middle areas. Galleries are most efficient when allowing enough natural ventilation.

  12. EXAMINATION OF THE SIMULATED THERMAL CONDITIONS IN A POPULAR PLAYGROUND RELATED TO THE HUMAN REACTIONS AND THE JUDGMENT OF THE AREA DESIGN

    Directory of Open Access Journals (Sweden)

    L.A. ÉGERHÁZI

    2013-03-01

    Full Text Available In the field of urban bioclimatology an important and timely research direction today is to examine the thermal conditions of public places. In our study, human thermal comfort analysis was performed in a modern and well-attended children playground located in Szeged (Hungary. The aim of the paper is to reveal the changes in the thermal comfort conditions between two seasons and also the resulting subjective thermal reactions of visitors in this relatively small area. Thermal comfort conditions were quantified by the Physiologically Equivalent Temperature (PET. For typical summer and autumn days of 2011 numerical simulations of thermal comfort conditions in the playground were carried out by means of the urban microclimate model ENVI-met. Spatial distribution of the simulated PET, i.e. thermal stress maps were created in two different times of the selected days in order to characterize the distinct microclimatological conditions appearing in the area. The relationship between the momentary spatial patterns of visitors and the thermal conditions was also under investigation. Additionally, onsite questionnaire survey was implemented which highlights the people’s subjective evaluation related to the design of the playground.

  13. Validation of the thermal balance of Laguna Verde turbine under conditions of extended power increase

    International Nuclear Information System (INIS)

    Castaneda G, M. A.; Cruz B, H. J.; Mercado V, J. J.; Cardenas J, J. B.; Garcia de la C, F. M.

    2012-10-01

    The present work is a continuation of the task: Modeling of the vapor cycle of Laguna Verde with the PEPSE code to conditions of thermal power licensed at present (2027 MWt) in which the modeling of the vapor cycle of the nuclear power plant of Laguna Verde was realized with PEPSE code (Performance Evaluation of Power System Efficiencies). Once reached the conditions of nominal operation of extended power increase, operating both units to 2371 MWt; after the tests phase of starting-up and operation is necessary to carry out a verification of the proposed design of the vapor cycle for the new operation conditions. All this, having in consideration that the vapor cycle designer only knows the detail of the prospective performance of the main turbine, for all the other components (for example pumps, heat inter changers, valves, reactor, humidity separators and re-heaters, condensers, etc.) makes generic suppositions based on engineering judgment. This way carries out the calculations of thermal balance to determine the guaranteed gross power. The purpose of the present work is to comment the detail of the validation carried out of the specific thermal balance (thermal kit) of the nuclear power plant, making use of the design characteristics of the different components that conform the vapor cycle. (Author)

  14. Effects of Urban Configuration on Human Thermal Conditions in a Typical Tropical African Coastal City

    Directory of Open Access Journals (Sweden)

    Emmanuel Lubango Ndetto

    2013-01-01

    Full Text Available A long-term simulation of urban climate was done using the easily available long-term meteorological data from a nearby synoptic station in a tropical coastal city of Dar es Salaam, Tanzania. The study aimed at determining the effects of buildings’ height and street orientations on human thermal conditions at pedestrian level. The urban configuration was represented by a typical urban street and a small urban park near the seaside. The simulations were conducted in the microscale applied climate model of RayMan, and results were interpreted in terms of the thermal comfort parameters of mean radiant (Tmrt and physiologically equivalent (PET temperatures. PET values, high as 34°C, are observed to prevail during the afternoons especially in the east-west oriented streets, and buildings’ height of 5 m has less effect on the thermal comfort. The optimal reduction of Tmrt and PET values for pedestrians was observed on the nearly north-south reoriented streets and with increased buildings’ height especially close to 100 m. Likewise, buildings close to the park enhance comfort conditions in the park through additional shadow. The study provides design implications and management of open spaces like urban parks in cities for the sake of improving thermal comfort conditions for pedestrians.

  15. ALARA Review for the Deactivation of the 107-N Pump Well

    International Nuclear Information System (INIS)

    Edwards, T.A.

    1998-01-01

    This as low as reasonably achievable (ALARA) review provides a description of the engineering and administrative controls used during the completion of deactivation work at the 107-N Building. This ALARA assessment focuses on the 107-N Building pump well. The level of contamination found in the pump well has been estimated to be approximately 830 mRad/hr beta and 680,000 disintegrations per minute (dpm) alpha per large area wipe. As part of the characterization of the water and sediment, samples were taken to determine the isotopic distribution

  16. Deactivation of V2O5-WO3-TiO2 SCR catalyst at a biomass-fired combined heat and power plant

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Anker; Johnsson, Jan Erik

    2005-01-01

    . Three catalyst elements were exposed at 350 °C, and one element was exposed at 250 °C for comparison. The catalyst activity was measured in the reactor at the exposure temperature by addition of NH3 and extra NO. The activity, in terms of a first-order rate constant, dropped by 52% after about 1140 h...... indicating a very fast deactivation compared to coal firing. It was also found that the reactor temperature was not of importance for the deactivation rate. SEM-EDX analysis showed that particle deposition and pore blocking contributed to the deactivation by decreasing the diffusion rate of NO and NH3...... decreased as a function of exposure time, which reveals that Brøndsted acid sites had reacted with potassium compounds and thereby rendered inactive. When washed by 0.5 M H2SO4 the regenerated catalyst regains a higher activity than that of the fresh catalyst at temperatures higher than 300 °C, but even...

  17. Automatic Traffic Data Collection under Varying Lighting and Temperature Conditions in Multimodal Environments: Thermal versus Visible Spectrum Video-Based Systems

    Directory of Open Access Journals (Sweden)

    Ting Fu

    2017-01-01

    Full Text Available Vision-based monitoring systems using visible spectrum (regular video cameras can complement or substitute conventional sensors and provide rich positional and classification data. Although new camera technologies, including thermal video sensors, may improve the performance of digital video-based sensors, their performance under various conditions has rarely been evaluated at multimodal facilities. The purpose of this research is to integrate existing computer vision methods for automated data collection and evaluate the detection, classification, and speed measurement performance of thermal video sensors under varying lighting and temperature conditions. Thermal and regular video data was collected simultaneously under different conditions across multiple sites. Although the regular video sensor narrowly outperformed the thermal sensor during daytime, the performance of the thermal sensor is significantly better for low visibility and shadow conditions, particularly for pedestrians and cyclists. Retraining the algorithm on thermal data yielded an improvement in the global accuracy of 48%. Thermal speed measurements were consistently more accurate than for the regular video at daytime and nighttime. Thermal video is insensitive to lighting interference and pavement temperature, solves issues associated with visible light cameras for traffic data collection, and offers other benefits such as privacy, insensitivity to glare, storage space, and lower processing requirements.

  18. The Orosomucoid 1 protein is involved in the vitamin D – mediated macrophage de-activation process

    Energy Technology Data Exchange (ETDEWEB)

    Gemelli, Claudia, E-mail: claudia.gemelli@unimore.it [Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena (Italy); Center for Regenerative Medicine, University of Modena and Reggio Emilia, Via Gottardi 100, 41125 Modena (Italy); Martello, Andrea; Montanari, Monica; Zanocco Marani, Tommaso; Salsi, Valentina; Zappavigna, Vincenzo; Parenti, Sandra; Vignudelli, Tatiana; Selmi, Tommaso; Ferrari, Sergio; Grande, Alexis [Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena (Italy)

    2013-12-10

    Orosomucoid 1 (ORM1), also named Alpha 1 acid glycoprotein A (AGP-A), is an abundant plasma protein characterized by anti-inflammatory and immune-modulating properties. The present study was designed to identify a possible correlation between ORM1 and Vitamin D3 (1,25(OH)2D3), a hormone exerting a widespread effect on cell proliferation, differentiation and regulation of the immune system. In particular, the data described here indicated that ORM1 is a 1,25(OH)2D3 primary response gene, characterized by the presence of a VDRE element inside the 1 kb sequence of its proximal promoter region. This finding was demonstrated with gene expression studies, Chromatin Immunoprecipitation and luciferase transactivation experiments and confirmed by VDR full length and dominant negative over-expression. In addition, several experiments carried out in human normal monocytes demonstrated that the 1,25(OH)2D3 – VDR – ORM1 pathway plays a functional role inside the macrophage de-activation process and that ORM1 may be considered as a signaling molecule involved in the maintenance of tissue homeostasis and remodeling. - Highlights: • ORM1 is a Vitamin D primary response gene. • VD and its receptor VDR are involved in the de-activation process mediated by human resident macrophages. • The signaling pathway VD-VDR-ORM1 plays an important role in the control of macrophage de-activation process. • ORM1 may be defined as a signaling molecule implicated in the maintenance of tissue homeostasis and remodeling.

  19. The Orosomucoid 1 protein is involved in the vitamin D – mediated macrophage de-activation process

    International Nuclear Information System (INIS)

    Gemelli, Claudia; Martello, Andrea; Montanari, Monica; Zanocco Marani, Tommaso; Salsi, Valentina; Zappavigna, Vincenzo; Parenti, Sandra; Vignudelli, Tatiana; Selmi, Tommaso; Ferrari, Sergio; Grande, Alexis

    2013-01-01

    Orosomucoid 1 (ORM1), also named Alpha 1 acid glycoprotein A (AGP-A), is an abundant plasma protein characterized by anti-inflammatory and immune-modulating properties. The present study was designed to identify a possible correlation between ORM1 and Vitamin D3 (1,25(OH)2D3), a hormone exerting a widespread effect on cell proliferation, differentiation and regulation of the immune system. In particular, the data described here indicated that ORM1 is a 1,25(OH)2D3 primary response gene, characterized by the presence of a VDRE element inside the 1 kb sequence of its proximal promoter region. This finding was demonstrated with gene expression studies, Chromatin Immunoprecipitation and luciferase transactivation experiments and confirmed by VDR full length and dominant negative over-expression. In addition, several experiments carried out in human normal monocytes demonstrated that the 1,25(OH)2D3 – VDR – ORM1 pathway plays a functional role inside the macrophage de-activation process and that ORM1 may be considered as a signaling molecule involved in the maintenance of tissue homeostasis and remodeling. - Highlights: • ORM1 is a Vitamin D primary response gene. • VD and its receptor VDR are involved in the de-activation process mediated by human resident macrophages. • The signaling pathway VD-VDR-ORM1 plays an important role in the control of macrophage de-activation process. • ORM1 may be defined as a signaling molecule implicated in the maintenance of tissue homeostasis and remodeling

  20. Integrated project management plan for the Plutonium Finishing Plant stabilization and deactivation project

    International Nuclear Information System (INIS)

    SINCLAIR, J.C.

    1999-01-01

    This document sets forth the plans, organization, and control systems for managing the PFP Stabilization and Deactivation Project, and includes the top level cost and schedule baselines. The project includes the stabilization of Pu-bearing materials, storage, packaging, and transport of these and other nuclear materials, surveillance and maintenance of facilities and systems relied upon for storage of the materials, and transition of the facilities in the PFP Complex

  1. Fitness-driven deactivation in network evolution

    International Nuclear Information System (INIS)

    Xu, Xin-Jian; Peng, Xiao-Long; Fu, Xin-Chu; Small, Michael

    2010-01-01

    Individual nodes in evolving real-world networks typically experience growth and decay—that is, the popularity and influence of individuals peaks and then fades. In this paper, we study this phenomenon via an intrinsic nodal fitness function and an intuitive ageing mechanism. Each node of the network is endowed with a fitness which represents its activity. All the nodes have two discrete stages: active and inactive. The evolution of the network combines the addition of new active nodes randomly connected to existing active ones and the deactivation of old active nodes with a possibility inversely proportional to their fitnesses. We obtain a structured exponential network when the fitness distribution of the individuals is homogeneous and a structured scale-free network with heterogeneous fitness distributions. Furthermore, we recover two universal scaling laws of the clustering coefficient for both cases, C(k) ∼ k −1 and C ∼ n −1 , where k and n refer to the node degree and the number of active individuals, respectively. These results offer a new simple description of the growth and ageing of networks where intrinsic features of individual nodes drive their popularity, and hence degree

  2. Studies of Deactivation of Methanol to Formaldehyde Selective Oxidation Catalyst

    DEFF Research Database (Denmark)

    Raun, Kristian Viegaard; Schumann, Max; Høj, Martin

    Formaldehyde (CH2O) may be synthesized industrially by selective oxidation of methanol over an iron-molybdate (Fe-Mo) oxide catalyst according to: CH3OH + ½O2 →CH2O + H2O. The reaction is normally carried out in a multitubular reactor with excess of air at 250-400 °C (yield = 90-95 %), known...... the activity of the catalyst [2]. Pure MoO3 in itself has low activity. Literature from the last decades agrees that the major reason for the deactivation is loss of molybdenum from the catalyst. Molybdenum forms volatile species with methanol, which can leave behind Mo poor zones. The catalyst is usually...

  3. Differences between young adults and elderly in thermal comfort, productivity, and thermal physiology in response to a moderate temperature drift and a steady-state condition

    NARCIS (Netherlands)

    Schellen, L.; Marken Lichtenbelt, van W.D.; Loomans, M.G.L.C.; Toftum, J.; Wit, de M.H.

    2010-01-01

    Results from naturally ventilated buildings show that allowing the indoor temperature to drift does not necessarily result in thermal discomfort and may allow for a reduction in energy use. However, for stationary conditions, several studies indicate that the thermal neutral temperature and optimum

  4. The effect of copper, MDA, and accelerated aging on jet fuel thermal stability as measured by the gravimetric JFTOT

    Energy Technology Data Exchange (ETDEWEB)

    Pande, S.G. [Geo-Centers, Inc., Ft. Washington, MD (United States); Hardy, D.R. [Navy Technology Center for Safety and Survivability, Washington, DC (United States)

    1995-05-01

    Thermally unstable jet fuels pose operational problems. In order to adequately identify such fuels, factors that realistically impact on thermal stability were examined. Evaluation was based on a quantitative method of measuring thermal stability, viz., NRL`s recently developed gravimetric JFTOT. This method gives a quantitative measurement of both the strip deposit and filterables formed. The pertinent factors examined, included the individual and interactive effects of: soluble copper, MDA (metal deactivator), and aging. The latter was accelerated to simulate field conditions of approximately six months aging at ambient temperature and pressure. The results indicate that the individual and interactive effects of copper, MDA, and accelerated aging appear to be fuel dependent. Based on the results, the three test fuels examined (one JP-8 and two JP-5s) were categorized as exhibiting very good, typical, and poor thermal stabilities, respectively. For both the very good and poor thermal stability fuels, the effect of copper in conjunction with accelerated aging did not significantly increase the total thermal deposits of the neat fuels. In contrast, for the typical thermal stability fuel, the combined effects of copper and accelerated aging, did. Furthermore, the addition of MDA prior to aging of the copper-doped, typical stability fuel significantly counteracted the adverse effect of copper and aging. A similar beneficial effect of MDA was not observed for the poor stability fuel. These results focus on the compositional differences among fuels and the need to elucidate these differences (physical and chemical) for a better understanding and prediction of their performance.

  5. Deactivation and cleanout of the 308 Fuels Laboratory and the 232-Z Incinerator at the Hanford site

    International Nuclear Information System (INIS)

    Gerber, M.S.; Bliss, R.J.

    1994-12-01

    This paper describes the deactivation and source term reduction activities conducted over the recent past in two plutonium-contaminated Hanford Site buildings: the 308 Fuels Development Laboratory and the 232-Z Incinerator. Both of these facilities belong to the U.S. Department of Energy, and the projects are unique success stories carried out in direct support of EM-60 functions and requirements. In both cases the buildings, for different reasons, contained unacceptable amounts of plutonium, and were stabilized and placed in a safe, pre-D ampersand D (decontamination and decommissioning) mode. The concept of deactivation as the last step in the operating life of a facility will be discussed. The need for and requirements of EM-60 transition between operations and D ampersand D, the costs savings, techniques, regulations and lessons learned also will be discussed. This paper describes the strategies that led to successful source term reduction: accurate characterization, cooperation among different divisions within DOE and the Hanford Site, attention to regulations (especially unique in this case since the 232-Z Incinerator has been nominated as a Historic Structure to the National Register of Historic Places), and stakeholder concerns involving the proximity of the 308 Building to the Columbia River. The paper also weaves in the history, missions, and plutonium accumulation of the two buildings. The lessons learned are cogent to many other present and future deactivation activities across the DOE complex and indeed across the world

  6. Idaho Chemical Processing Plant and Plutonium-Uranium Extraction Plant phaseout/deactivation study

    International Nuclear Information System (INIS)

    Patterson, M.W.; Thompson, R.J.

    1994-01-01

    The decision to cease all US Department of Energy (DOE) reprocessing of nuclear fuels was made on April 28, 1992. This study provides insight into and a comparison of the management, technical, compliance, and safety strategies for deactivating the Idaho Chemical Processing Plant (ICPP) at Westinghouse Idaho Nuclear Company (WINCO) and the Westinghouse Hanford Company (WHC) Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this study is to ensure that lessons-learned and future plans are coordinated between the two facilities

  7. A real time study on condition monitoring of distribution transformer using thermal imager

    Science.gov (United States)

    Mariprasath, T.; Kirubakaran, V.

    2018-05-01

    The transformer is one of the critical apparatus in the power system. At any cost, a few minutes of outages harshly influence the power system. Hence, prevention-based maintenance technique is very essential. The continuous conditioning and monitoring technology significantly increases the life span of the transformer, as well as reduces the maintenance cost. Hence, conditioning and monitoring of transformer's temperature are very essential. In this paper, a critical review has been made on various conditioning and monitoring techniques. Furthermore, a new method, hot spot indication technique, is discussed. Also, transformer's operating condition is monitored by using thermal imager. From the thermal analysis, it is inferred that major hotspot locations are appearing at connection lead out; also, the bushing of the transformer is the very hottest spot in transformer, so monitoring the level of oil is essential. Alongside, real time power quality analysis has been carried out using the power analyzer. It shows that industrial drives are injecting current harmonics to the distribution network, which causes the power quality problem on the grid. Moreover, the current harmonic limit has exceeded the IEEE standard limit. Hence, the adequate harmonics suppression technique is need an hour.

  8. Experimental analysis of the thermal entrainment factor of air curtains in vertical open display cabinets for different ambient air conditions

    International Nuclear Information System (INIS)

    Gaspar, Pedro Dinis; Carrilho Goncalves, L.C.; Pitarma, R.A.

    2011-01-01

    The vertical open refrigerated display cabinets suffer alterations of their thermal performance and energy efficiency due to variations of ambient air conditions. The air curtain provides an aerothermodynamics insulation effect that can be evaluated by the thermal entrainment factor calculation as an engineering approximation or by the calculus of all sensible and latent thermal loads. This study presents the variation of heat transfer rate and thermal entrainment factor obtained through experimental tests carried out for different ambient air conditions, varying air temperature, relative humidity, velocity and its direction relatively to the display cabinet frontal opening. The thermal entrainment factor are analysed and compared with the total sensible and latent heats results for the experimental tests. From an engineering point of view, it is concluded that thermal entrainment factor cannot be used indiscriminately, although its use is suitable to design better cabinet under the same climate class condition.

  9. Silica supported palladium nanoparticles for the decarboxylation of high-acid feedstocks: Design, deactivation and regeneration

    Science.gov (United States)

    Ping, Eric Wayne

    2011-12-01

    The major goals of this thesis were to (1) design and synthesize a supported catalyst with well-defined monodisperse palladium nanoparticles evenly distributed throughout an inorganic oxide substrate with tunable porosity characteristics, (2) demonstrate the catalytic activity of this material in the decarboxylation of long chain fatty acids and their derivatives to make diesel-length hydrocarbons, (3) elucidate the deactivation mechanism of supported palladium catalysts under decarboxylation conditions via post mortem catalyst characterization and develop a regeneration methodology thereupon, and (4) apply this catalytic system to a real low-value biofeedstock. Initial catalyst designs were based on the SBA-15 silica support, but in an effort to maximize loading and minimize mass transfer limitations, silica MCF was synthesized as catalyst support. Functionalization with various silane ligands yielded a surface that facilitated even distribution of palladium precursor salts throughout the catalyst particle, and, after reduction, monodisperse palladium nanoparticles approximately 2 nm in diameter. Complete characterization was performed on this Pd-MCF catalyst. The Pd-MCF catalyst showed high one-time activity in the decarboxylation of fatty acids to hydrocarbons in dodecane at 300°C. Hydrogen was found to be an unnecessary reactant in the absence of unsaturations, but was required in their presence---full hydrogenation of the double bonds occurs before any decarboxylation can take place. The Pd-MCF also exhibited good activity for alkyl esters and glycerol, providing a nice hypothetical description of a stepwise reaction pathway for catalytic decarboxylation of acids and their derivatives. As expected, the Pd-MCF catalyst experienced severe deactivation after only one use. Substantial effort was put into elucidating the nature of this deactivation via post mortem catalyst characterization. H2 chemisorption confirmed a loss of active surface area, but TEM and

  10. Synergistic effect of metal deactivator and antioxidant on oxidation stability of metal contaminated Jatropha biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Sarin, Amit [Department of Applied Sciences, Amritsar College of Engineering and Technology, Amritsar 143001 (India); Arora, Rajneesh; Singh, N.P. [Punjab Technical University, Jalandhar (India); Sarin, Rakesh; Malhotra, R.K. [Indian Oil Corporation Ltd., R and D Centre, Sector-13, Faridabad 121007 (India); Sharma, Meeta [Indian Oil Corporation Ltd., R and D Centre, Sector-13, Faridabad 121007 (India); University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Kashmere Gate, Delhi 110403 (India); Khan, Arif Ali [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Kashmere Gate, Delhi 110403 (India)

    2010-05-15

    Biodiesel is relatively unstable on storage and European biodiesel standard EN-14214 calls for determining oxidation stability at 110 C with a minimum induction time of 6 h by the Rancimat method (EN-14112). According to proposed National Mission on biodiesel in India, we have undertaken studies on stability of biodiesel from tree borne non-edible oil seeds Jatropha. Neat Jatropha biodiesel exhibited oxidation stability of 3.95 h. It is found possible to meet the desired EN specification for neat Jatropha biodiesel and metal contaminated Jatropha biodiesel by using antioxidants; it will have a cost implication, as antioxidants are costly chemicals. Research was conducted to increase the oxidation stability of metal contaminated Jatropha biodiesel by doping metal deactivator with antioxidant, with varying concentrations in order to meet the aforementioned standard required for oxidation stability. It was found that usage of antioxidant can be reduced by 30-50%, therefore the cost, even if very small amount of metal deactivator is doped in Jatropha biodiesel to meet EN-14112 specification. (author)

  11. Non-thermal plasma mills bacteria: Scanning electron microscopy observations

    International Nuclear Information System (INIS)

    Lunov, O.; Churpita, O.; Zablotskii, V.; Jäger, A.; Dejneka, A.; Deyneka, I. G.; Meshkovskii, I. K.; Syková, E.; Kubinová, Š.

    2015-01-01

    Non-thermal plasmas hold great promise for a variety of biomedical applications. To ensure safe clinical application of plasma, a rigorous analysis of plasma-induced effects on cell functions is required. Yet mechanisms of bacteria deactivation by non-thermal plasma remain largely unknown. We therefore analyzed the influence of low-temperature atmospheric plasma on Gram-positive and Gram-negative bacteria. Using scanning electron microscopy, we demonstrate that both Gram-positive and Gram-negative bacteria strains in a minute were completely destroyed by helium plasma. In contrast, mesenchymal stem cells (MSCs) were not affected by the same treatment. Furthermore, histopathological analysis of hematoxylin and eosin–stained rat skin sections from plasma–treated animals did not reveal any abnormalities in comparison to control ones. We discuss possible physical mechanisms leading to the shred of bacteria under non-thermal plasma irradiation. Our findings disclose how helium plasma destroys bacteria and demonstrates the safe use of plasma treatment for MSCs and skin cells, highlighting the favorability of plasma applications for chronic wound therapy

  12. Thermal design of a modern, air-conditioned, single-floor, solar-powered desert house

    KAUST Repository

    Serag-Eldin, M. A.

    2011-01-01

    The paper presents a thermal analysis of a single-floor, solar-powered desert house. The house is air-conditioned and provides all modern comforts and facilities. Electrical power, which drives the entire energy system, is generated by roof

  13. Thermal Behavior of Aerospace Spur Gears in Normal and Loss-of-Lubrication Conditions

    Science.gov (United States)

    Handschuh, Robert F.

    2015-01-01

    Testing of instrumented spur gears operating at aerospace rotorcraft conditions was conducted. The instrumented gears were operated in a normal and in a loss-of-lubrication environment. Thermocouples were utilized to measure the temperature at various locations on the test gears and a test utilized a full-field, high-speed infrared thermal imaging system. Data from thermocouples was recorded during all testing at 1 hertz. One test had the gears shrouded and a second test was run without the shrouds to permit the infrared thermal imaging system to take data during loss-of-lubrication operation. Both tests using instrumented spur gears were run in normal and loss-of-lubrication conditions. Also the result from four other loss-of-lubrication tests will be presented. In these tests two different torque levels were used while operating at the same rotational speed (10000 revolutions per minute).

  14. Continuous-flow photocatalytic treatment of pharmaceutical micropollutants: Activity, inhibition, and deactivation of TiO2 photocatalysts in wastewater effluent

    KAUST Repository

    Carbonaro, Sean; Sugihara, Matthew N.; Strathmann, Timothy J.

    2013-01-01

    for the purpose of studying the activity, inhibition, and deactivation of immobilized TiO2 photocatalysts during water treatment applications. As a demonstration, degradation of four pharmaceutical micropollutants (iopromide, acetaminophen, sulfamethoxazole

  15. Spent fuel transport cask thermal evaluation under normal and accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, G. [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy); Lo Frano, R., E-mail: rosa.lofrano@ing.unipi.i [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy); Forasassi, G. [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy)

    2010-06-15

    The casks used for transport of nuclear materials, especially the spent fuel element (SPE), must be designed according to rigorous acceptance criteria and standards requirements, e.g. the International Atomic Energy Agency ones, in order to provide protection to people and environment against radiation exposure particularly in a severe accident scenario. The aim of this work was the evaluation of the integrity of a spent fuel cask under both normal and accident scenarios transport conditions, such as impact and rigorous fire events, in according to the IAEA accident test requirements. The thermal behaviour and the temperatures distribution of a Light Water Reactor (LWR) spent fuel transport cask are presented in this paper, especially with reference to the Italian cask designed by AGN, which was characterized by a cylindrical body, with water or air inside the internal cavity, and two lateral shock absorbers. Using the finite element code ANSYS a series of thermal analyses (steady-state and transient thermal analyses) were carried out in order to obtain the maximum fuel temperature and the temperatures field in the body of the cask, both in normal and in accidents scenario, considering all the heat transfer modes between the cask and the external environment (fire in the test or air in the normal conditions) as well as inside the cask itself. In order to follow the standards requirements, the thermal analyses in accidents scenarios were also performed adopting a deformed shape of the shock absorbers to simulate the mechanical effects of a previous IAEA 9 m drop test event. Impact tests on scale models of the shock absorbers have already been conducted in the past at the Department of Mechanical, Nuclear and Production Engineering, University of Pisa, in the '80s. The obtained results, used for possible new licensing approval purposes by the Italian competent Authority of the cask for PWR spent fuel cask transport by the Italian competent Authority, are

  16. A One Year Study of Mode Deactivation Therapy: Adolescent Residential Patients with Conduct and Personality Disorders

    Science.gov (United States)

    Murphy, Christopher J.; Siv, Alexander M.

    2011-01-01

    This case study is to evaluate the effectiveness of Mode Deactivation Therapy (MDT) implementation in a child and adolescent residential treatment unit and provide preliminary effectiveness data on MDT versus treatment as usual (TAU). This case study compared the efficacy of two treatment methodologies for adolescent males in residential treatment…

  17. Cerebral cortex classification by conditional random fields applied to intraoperative thermal imaging

    Directory of Open Access Journals (Sweden)

    Hoffmann Nico

    2016-09-01

    Full Text Available Intraoperative thermal neuroimaging is a novel intraoperative imaging technique for the characterization of perfusion disorders, neural activity and other pathological changes of the brain. It bases on the correlation of (sub-cortical metabolism and perfusion with the emitted heat of the cortical surface. In order to minimize required computational resources and prevent unwanted artefacts in subsequent data analysis workflows foreground detection is a important preprocessing technique to differentiate pixels representing the cerebral cortex from background objects. We propose an efficient classification framework that integrates characteristic dynamic thermal behaviour into this classification task to include additional discriminative features. The first stage of our framework consists of learning this representation of characteristic thermal time-frequency behaviour. This representation models latent interconnections in the time-frequency domain that cover specific, yet a priori unknown, thermal properties of the cortex. In a second stage these features are then used to classify each pixel’s state with conditional random fields. We quantitatively evaluate several approaches to learning high-level features and their impact to the overall prediction accuracy. The introduction of high-level features leads to a significant accuracy improvement compared to a baseline classifier.

  18. Analysis Thermal Comfort Condition in Complex Residential Building, Case Study: Chiangmai, Thailand

    Science.gov (United States)

    Juangjandee, Warangkana

    2017-10-01

    Due to the increasing need for complex residential buildings, it appears that people migrate into the high-density urban areas because the infrastructural facilities can be easily found in the modern metropolitan areas. Such rapid growth of urbanization creates congested residential buildings obstructing solar radiation and wind flow, whereas most urban residents spend 80-90% of their time indoor. Furthermore, the buildings were mostly built with average materials and construction detail. This causes high humidity condition for tenants that could promote mould growth. This study aims to analyse thermal comfort condition in complex residential building, Thailand for finding the passive solution to improve indoor air quality and respond to local conditions. The research methodology will be in two folds: 1) surveying on case study 2) analysis for finding the passive solution of reducing humidity indoor air The result of the survey indicated that the building need to find passive solution for solving humidity problem, that can be divided into two ways which raising ventilation and indoor temperature including increasing wind-flow ventilation and adjusting thermal temperature, for example; improving building design and stack driven ventilation. For raising indoor temperature or increasing mean radiant temperature, daylight can be passive solution for complex residential design for reducing humidity and enhance illumination indoor space simultaneous.

  19. Mass Spectrometric Determination of the Effect of Surface Deactivation on Membranes Used for In-Situ Sampling of Cerebrospinal Fluid (CSF

    Directory of Open Access Journals (Sweden)

    Torgny Undin

    2018-05-01

    Full Text Available In this paper, a strategy for structured monitoring of surface modifications to control protein adsorption to membrane structures is presented. The already established on-surface enzymatic digestion (oSED method combined with nano-liquid chromatography and tandem mass spectrometry (LC-MS/MS analysis was employed for the analysis of proteins in ventricular cerebrospinal fluid (vCSF from neurointensive care patients. Protein adsorption was studied by in-situ sampling in a temporally resolved manner on both immobilized native and Pluronic-deactivated membranes. Deactivation was significantly reducing the protein adsorption but it also induced novel selective properties of the surface. The proposed versatile strategy will facilitate protein-biomaterial, protein-polymer, protein-protein interaction studies in the future.

  20. Thermal conditions in selected urban and semi-natural habitats, important for the forensic entomology.

    Science.gov (United States)

    Michalski, Marek; Nadolski, Jerzy

    2018-06-01

    A long-term study on thermal conditions in selected urban and semi-natural habitats, where human corpses are likely to be found, was conducted in the city of Lodz (Central Poland). Thermal data were collected during two years at nine sites and compared with corresponding data from the nearest permanent meteorological station at Lodz Airport (ICAO code: EPLL). The conditions closest to those at the meteorological station prevailed in the deciduous forest, coefficient of determination R 2 for those sets of data was above 0.96. The open field was characterized by high daily amplitudes, especially during spring, while the site in the allotment gardens was characterized by relatively high winter temperatures. The conditions prevailing in all closed space sites were very diverse and only slightly similar to the external ones. The most distinct site was an unheated basement in a tenement house, where temperature was almost always above 0°C and daily amplitudes were negligible. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. EXAMINATION OF THE SIMULATED THERMAL CONDITIONS IN A POPULAR PLAYGROUND RELATED TO THE HUMAN REACTIONS AND THE JUDGMENT OF THE AREA DESIGN

    OpenAIRE

    L.A. ÉGERHÁZI; A. KOVÁCS; N. KÁNTOR; J. UNGER

    2013-01-01

    In the field of urban bioclimatology an important and timely research direction today is to examine the thermal conditions of public places. In our study, human thermal comfort analysis was performed in a modern and well-attended children playground located in Szeged (Hungary). The aim of the paper is to reveal the changes in the thermal comfort conditions between two seasons and also the resulting subjective thermal reactions of visitors in this relatively small area. Thermal comfort conditi...

  2. Variability of thermal and precipitation conditions in the growing season in Poland in the years 1966-2015

    Science.gov (United States)

    Tomczyk, Arkadiusz M.; Szyga-Pluta, Katarzyna

    2018-03-01

    The aim of the study was to identify the thermal and precipitation conditions and their changes in the growing season in Poland in the years 1966-2015. Data on average daily air temperature and daily precipitation totals for 30 stations from the period of 1966-2015 were used. The data were obtained from the collections of the Institute of Meteorology and Water Management—National Research Institute. The growing season was defined as the period of average daily air temperature ≥ 5 °C. The mathematical formulas proposed by Gumiński (1948) were used to determine its start and end dates. In the growing season in Poland in the years 1966-2015, there were more significant changes in the thermal conditions than there were in the precipitation conditions. In terms of long-term trends over the study period, thermal conditions during the growing season are characterised by an increase in mean air temperature, an increase in the sum of air temperatures and an increasing occurrence of seasons classified as above-normal seasons. Precipitation conditions of the growing season show large temporal and spatial variations in precipitation and a predominance of normal conditions. The changes in precipitation were not statistically significant, except for Świnoujście.

  3. Investigation on the asymmetry of thermal condition and grain defect formation in the customary directional solidification process

    International Nuclear Information System (INIS)

    Ma, D; Wu, Q; Hollad, S; Bührig-Polaczek, A

    2012-01-01

    In the present study, the non-uniformity of the thermal condition and the corresponding grain defect formation in the customary Bridgman process were investigated. The casting clusters in radial alignment were directionally solidified in a Bridgman furnace. It was found that in the casting cluster, the shadow side facing the central rod was ineffectively heated in the hot zone and ineffectively cooled in the cooling zone during withdrawal, compared with the heater side facing the furnace heater. The metallographic examination of the simplified turbine blades exhibited that the platforms on the shadow side are very prone to stray grain formation, while the heater side reveals a markedly lower tendency for that. The asymmetric thermal condition causes the asymmetrical formation of these grain defects. This non-uniformity of the thermal condition should be minimized as far as possible, in order to effectively optimize the quality of the SC superalloy components.

  4. Measured versus calculated thermal conductivity of high-grade metamorphic rocks – inferences on the thermal properties of the lower crust at ambient and in-situ conditions

    DEFF Research Database (Denmark)

    Ray, Labani; Förster, Hans-Jürgen; Förster, Andrea

    in the literature are applied. Thus, if appropriate samples (in terms of sample size or physical-chemical-mechanical condition) for laboratory measurement are not available, bulk TC of high-grade metamorphic rocks with low anisotropy and porosity could be satisfactorily good assessed from modal mineralogy, using......The bulk thermal conductivity (TC) of 26 rock samples representing felsic, intermediate and mafic granulites, from the Southern Granulite Province, India, is measured at dry and saturated conditions with the optical-scanning method. Thermal conductivity is also calculated from modal mineralogy...... (determined by XRD and EPMA), applying mixing models commonly used in thermal studies. Most rocks are fine- to medium -grained equigranular in texture. All samples are isotropic to weakly anisotropic and possess low porosities (

  5. Hypothetical accident conditions, free drop and thermal tests: Specification 6M

    International Nuclear Information System (INIS)

    Blankenship, R.W.

    1980-05-01

    The 30 gallon Specification 6M shipping container with rolled-top food pack cans as inner containers is evaluated under conditions required by 10 CFR 71.42. One kilogram of depleted uranium as UO 2 was packaged in each of the inner containers. After completion of a free drop test and a simulated thermal test, the maximum observed leakage of UO 2 for the following week was 3.2 μg. This leakage is well below the allowable leakage per week for most plutonium isotopic mixtures. Using the examples provided, any plutonium isotopic mixture can be easily compared with the allowable leakage per week. Test conditions and results are reported

  6. Mechanism of deactivation of triplet-excited riboflavin by ascorbate, carotenoids, and tocopherols in homogeneous and heterogeneous aqueous food model systems.

    Science.gov (United States)

    Cardoso, Daniel R; Olsen, Karsten; Skibsted, Leif H

    2007-07-25

    Tocopherols (alpha, beta, gamma, and delta) and Trolox were found to deactivate triplet-excited riboflavin in homogeneous aqueous solution (7:3 v/v tert-butanol/water) with second-order reaction rates close to diffusion control [k2 between 4.8 x 10(8) (delta-tocopherol) and 6.2 x 10(8) L mol(-1) s(-1) (Trolox) at 24.0 +/- 0.2 degrees C] as determined by laser flash photolysis transient absorption spectroscopy. In aqueous buffer (pH 6.4) the rate constant for Trolox was 2.6 x 10(9) L mol(-1) s1 and comparable to the rate constant found for ascorbate (2.0 x 10(9) L mol(-1) s(-1)). The deactivation rate constant was found to be inferior in heterogeneous systems as shown for alpha-tocopherol and Trolox in aqueous Tween-20 emulsion (approximately by a factor of 4 compared to 7:3 v/v tert-butanol/water). Neither beta-carotene (7:3 v/v tert-butanol/water and Tween-20 emulsion), lycopene (7:3 v/v tert-butanol/water), nor crocin (aqueous buffer at pH 6.4, 7:3 v/v tert-butanol/water, and Tween-20 emulsion) showed any quenching on the triplet excited state of riboflavin. Therefore, all carotenoids seem to reduce the formation of triplet-excited riboflavin through an inner-filter effect. Activation parameters were based on the temperature dependence of the triplet-excited deactivation between 15 and 35 degrees C, and the isokinetic behavior, which was found to include purine derivatives previously studied, confirms a common deactivation mechanism with a bimolecular diffusion-controlled encounter with electron (or hydrogen atom) transfer as rate-determining step. DeltaH for deactivation by ascorbic acid, Trolox, and homologue tocopherols (ranging from 18 kJ mol(-1) for Trolox in Tween-20 emulsion to 184 kJ mol(-1) for ascorbic acid in aqueous buffer at pH 6.4) showed a linear dependence on DeltaS (ranging from -19 J mol(-1) K(-1) for Trolox in aqueous buffer at pH 6.4 to +550 J mol(-1) K(-1) for ascorbic acid in aqueous buffer pH 6.4). Among photooxidation products from the

  7. Deactivation of the E. coli pH stress sensor CadC by cadaverine.

    Science.gov (United States)

    Haneburger, Ina; Fritz, Georg; Jurkschat, Nicole; Tetsch, Larissa; Eichinger, Andreas; Skerra, Arne; Gerland, Ulrich; Jung, Kirsten

    2012-11-23

    At acidic pH and in the presence of lysine, the pH sensor CadC activates transcription of the cadBA operon encoding the lysine/cadaverine antiporter CadB and the lysine decarboxylase CadA. In effect, these proteins contribute to acid stress adaptation in Escherichia coli. cadBA expression is feedback inhibited by cadaverine, and a cadaverine binding site is predicted within the central cavity of the periplasmic domain of CadC on the basis of its crystallographic analysis. Our present study demonstrates that this site only partially accounts for the cadaverine response in vivo. Instead, evidence for a second, pivotal binding site was collected, which overlaps with the pH-responsive patch of amino acids located at the dimer interface of the periplasmic domain. The temporal response of the E. coli Cad module upon acid shock was measured and modeled for two CadC variants with mutated cadaverine binding sites. These studies supported a cascade-like binding and deactivation model for the CadC dimer: binding of cadaverine within the pair of central cavities triggers a conformational transition that exposes two further binding sites at the dimer interface, and the occupation of those stabilizes the inactive conformation. Altogether, these data represent a striking example for the deactivation of a pH sensor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Consideration of loading conditions initiated by thermal transients in PWR pressure vessels

    International Nuclear Information System (INIS)

    Azodi; Glahn; Kersting; Schulz; Jansky.

    1983-01-01

    This report describes the present state of PWR-plants in the Federal Republic of Germany with respect to - the design of the primary pressure boundary - the analysis of thermal transients and resulting loads - the material conditions and neutron fluence - the requirements for protection against fast fracture. The experimental and analytical research and development programs are delineated together with some foreign R and D programs. It is shown that the parameters investigated (loading condition, crack shape and orientation etc.) cover a broad range. Extensive analytical investigations are emphasized. (orig./RW) [de

  9. In-Pile thermal fatigue of First Wall mock-ups under ITER relevant conditions

    International Nuclear Information System (INIS)

    Blom, F.; Schmalz, F.; Kamer, S.; Ketema, D.J.

    2006-01-01

    The objective of this study is to perform in-pile thermal fatigue testing of three actively cooled First Wall (FW) mock-ups to check the effect of neutron irradiation on the Be/CuCrZr joints under representative FW operation conditions. Three FW mock-ups with Beryllium armor tiles will be neutron irradiated at 1 dpa (in Be) with parallel thermal fatigue testing for 30,000 cycles. The temperatures, stress distributions and stress amplitudes at the Be/CuCrZr interface of the mock-ups will be as close as possible to the values calculated for ITER FW panels. For this objective the PWM mocks-up subjected to thermal fatigue will be integrated with high density (W) plates on the Be-side to provide heat flux by nuclear heating. The assembly will be placed in the pool-side facility of the HFR and thermal cycling is then arranged by mechanical movement towards and from the core box. As the thermal design of the irradiation rig is very critical a pilot-irradiation will be performed to cross check the models used in the thermal design of the rig. The project is currently in the design phase of both the pilot and actual irradiation rig. The irradiation of the actual rig is planned to start at mid 2007 and last for two years. (author)

  10. Deactivation of Streptococcus mutans Biofilms on a Tooth Surface Using He Dielectric Barrier Discharge at Atmospheric Pressure

    International Nuclear Information System (INIS)

    Molnar Imola; Papp Judit; Simon Alpar; Anghel Sorin Dan

    2013-01-01

    This paper presents a study of the effect of the low temperature atmospheric helium dielectric barrier discharge (DBD) on the Streptococcus mutans biofilms formed on tooth surface. Pig jaws were also treated by plasma to detect if there is any harmful effect on the gingiva. The plasma was characterized by using optical emission spectroscopy. Experimental data indicated that the discharge is very effective in deactivating Streptococcus mutans biofilms. It can destroy them with an average decimal reduction time (D-time) of 19 s and about 98% of them were killed after a treatment time of 30 s. According to the survival curve kinetic an overall 32 s treatment time would be necessary to perform a complete sterilization. The experimental results presented in this study indicated that the helium dielectric barrier discharge, in plan-parallel electrode configuration, could be a very effective tool for deactivation of oral bacteria and might be a promising technique in various dental clinical applications.

  11. Deactivation of Streptococcus mutans Biofilms on a Tooth Surface Using He Dielectric Barrier Discharge at Atmospheric Pressure

    Science.gov (United States)

    Imola, Molnar; Judit, Papp; Alpar, Simon; Sorin, Dan Anghel

    2013-06-01

    This paper presents a study of the effect of the low temperature atmospheric helium dielectric barrier discharge (DBD) on the Streptococcus mutans biofilms formed on tooth surface. Pig jaws were also treated by plasma to detect if there is any harmful effect on the gingiva. The plasma was characterized by using optical emission spectroscopy. Experimental data indicated that the discharge is very effective in deactivating Streptococcus mutans biofilms. It can destroy them with an average decimal reduction time (D-time) of 19 s and about 98% of them were killed after a treatment time of 30 s. According to the survival curve kinetic an overall 32 s treatment time would be necessary to perform a complete sterilization. The experimental results presented in this study indicated that the helium dielectric barrier discharge, in plan-parallel electrode configuration, could be a very effective tool for deactivation of oral bacteria and might be a promising technique in various dental clinical applications.

  12. Characterization of deactivated catalytic cracking catalyst and evaluation as absorbent material

    International Nuclear Information System (INIS)

    Valt, R.B.G.; Kaminari, N.M.S.; Cordeiro, B.; Ponte, M.J.J.S.; Ponte, H.A.

    2010-01-01

    One of the main uses of catalysts in the petroleum industry is in step catalytic cracking, which after use and regeneration cycles generates large quantities of waste material. In this research the deactivated FCC catalyst was characterized before and after the electrokinetic remediation process, in order to assess the change of its structure and possible adsorptive capacity. Analyses of X-Ray Fluorescence Spectroscopy, Scanning Electron Microscopy and BET surface area measurement were performed. The analysis showed no structural change due to the process employed and that electrokinetic remediation has recovered 42% of adsorption capacity of the material, by removing about 89% of heavy metals adhered initially in the catalyst surface. (author)

  13. Thermo-active building systems and sound absorbers: Thermal comfort under real operation conditions

    DEFF Research Database (Denmark)

    Köhler, Benjamin; Rage, Nils; Chigot, Pierre

    2018-01-01

    Radiant systems are established today and have a high ecological potential in buildings while ensuring thermal comfort. Free-hanging sound absorbers are commonly used for room acoustic control, but can reduce the heat exchange when suspended under an active slab. The aim of this study...... is to evaluate the impact on thermal comfort of horizontal and vertical free-hanging porous sound absorbers placed in rooms of a building cooled by Thermo-Active Building System (TABS), under real operation conditions. A design comparing five different ceiling coverage ratios and two room types has been...... implemented during three measurement periods. A clear correlation between increase of ceiling coverage ratio and reduction of thermal comfort could not be derived systematically for each measurement period and room type, contrarily to what was expected from literature. In the first two monitoring periods...

  14. Thermal performance evaluation of a massive brick wall under real weather conditions via the Conduction Transfer function method

    Directory of Open Access Journals (Sweden)

    Emilio Sassine

    2017-12-01

    Full Text Available The reliable estimation of buildings energy needs for cooling and heating is essential for any eventual thermal improvement of the envelope or the HVAC equipment. This paper presents an interesting method to evaluate the thermal performance of a massive wall by using the frequency-domain regression (FDR method to calculate CTF coefficients by means of the Fourier transform. The method is based on the EN ISO 13786 (2007 procedure by using the Taylor expansion for the elements of the heat matrix. Numerical results were validated through an experimental heating box with stochastic boundary conditions on one side of the wall representing real weather conditions and constant temperature profile on the other side representing the inside ambiance in real cases. Finally, a frequency analysis was performed in order to assess the validity and accuracy of the method used. The results show that development to the second order is sufficient to predict the thermal behavior of the studied massive wall in the range of frequencies encountered in the building applications (one hour time step. This method is useful for thermal transfer analysis in real weather conditions where the outside temperature is stochastic; it also allows the evaluation of the thermal performance of a wall through a frequency analysis.

  15. Long time experience with deactivation and regeneration of DENOX catalysts and evaluation with the Internet database LEONID; Langzeiterfahrung mit der Deaktivierung und Regeneration von DENOX-Katalysatoren sowie Auswertung mit der Internet-Datenbank LEONID

    Energy Technology Data Exchange (ETDEWEB)

    Brandenstein, J.; Dieckmann, H.J.; Gutberlet, H. [E.ON Engineering GmbH, Gelsenkirchen (Germany)

    2008-07-01

    The paper gives an overview over the long-term catalyst deactivation and the main reasons for catalyst aging. The chemical composition of de-activated catalysts provides information on the optimum catalyst regeneration process. The long-term deactivation behaviour of regenerated catalysts is compared to new catalysts. All characteristic catalyst features are listed in an online 'LEONID'-database, developed by E.ON Engineering. The database provides the basis for long-term catalyst management of all connected SCR systems. (orig.)

  16. Family Mode Deactivation Therapy in a Residential Setting: Treating Adolescents with Conduct Disorder and Multi-Axial Diagnosis

    Science.gov (United States)

    Apsche, Jack A.; Bass, Christopher K.; Zeiter, J. Scott; Houston, Marsha Ann

    2008-01-01

    Mode Deactivation Therapy (MDT) has been shown to be an effective treatment for a variety of adolescent disorders including emotional dysregulation, behavioral dysregulation, physical aggression, sexual aggression, and many harmful symptoms of anxiety and traumatic stress. MDT Family Therapy has been effective in reducing family disharmony in case…

  17. Thermal hydraulic conditions inducing incipient cracking in the 900 MWe unit 93 D reactor coolant pump shafts

    International Nuclear Information System (INIS)

    Bore, C.

    1995-01-01

    From 1987, 900 MWe plant operating feedback revealed cracking in the lower part of the reactor coolant pump shafts, beneath the thermal ring. Metallurgical examinations established that this was due to a thermal fatigue phenomenon known as thermal crazing, occurring after a large number of cycles. Analysis of thermal hydraulic conditions initiating the cracks does not allow exact quantification of the thermal load inducing cracking. Only qualitative analyses are thus possible, the first of which, undertaken by the pump manufacturer, Jeumont Industrie, showed that the cracks could not be due to the major transients (stop-start, injection cut-off), which were too few in number. Another explanation was then put forward: the thermal ring, shrunk onto the shaft it is required to protect against thermal shocks, loosens to allow an alternating downflow of cold water from the shaft seals and an upflow of hot water from the primary system. However, approximate calculations showed that the flow involved would be too slight to initiate the cracking observed. A more stringent analysis undertaken with the 2D flow analysis code MELODIE subsequently refuted the possibility of alternating flows beneath the ring establishing that only a hot water upflow occurred due to a 'viscosity pump' phenomenon. Crack initiation was finally considered to be due to flowrate variations beneath the ring, with the associated temperature fluctuations. This flowrate fluctuation could be due to an unidentified transient phenomenon or to a variation in pump operating conditions. This analysis of the hydraulic conditions initiating the cracks disregards shaft surface residual stresses. These are tensile stresses and show that loads less penalizing than those initially retained could cause incipient cracking. Thermal ring modifications to reduce these risks were proposed and implemented. In addition, final metallurgical treatment of the shafts was altered and implemented. In addition, final metallurgical

  18. The effect of opioid receptor blockade on the neural processing of thermal stimuli.

    Directory of Open Access Journals (Sweden)

    Eszter D Schoell

    Full Text Available The endogenous opioid system represents one of the principal systems in the modulation of pain. This has been demonstrated in studies of placebo analgesia and stress-induced analgesia, where anti-nociceptive activity triggered by pain itself or by cognitive states is blocked by opioid antagonists. The aim of this study was to characterize the effect of opioid receptor blockade on the physiological processing of painful thermal stimulation in the absence of cognitive manipulation. We therefore measured BOLD (blood oxygen level dependent signal responses and intensity ratings to non-painful and painful thermal stimuli in a double-blind, cross-over design using the opioid receptor antagonist naloxone. On the behavioral level, we observed an increase in intensity ratings under naloxone due mainly to a difference in the non-painful stimuli. On the neural level, painful thermal stimulation was associated with a negative BOLD signal within the pregenual anterior cingulate cortex, and this deactivation was abolished by naloxone.

  19. Fracture appraisal of large scale glass block under various realistic thermal conditions

    International Nuclear Information System (INIS)

    Laude, F.; Vernaz, E.; Saint-Gaudens, M.

    1982-06-01

    Fracturing of nuclear waste glass caused primarily by thermal and residual stresses during cooling increases the potential leaching surface area and the number of small particles. A theoretical study shows that it is possible to calculate the stresses created but it is difficult to evaluate the state of fracture. Theoretical results are completed by an experimental study with inactive industrial scale glass blocks. The critical stages of its thermal history are simulated and the total surface area of the pieces is measured by comparison of leaching rate of the fractured glass with known samples in the same conditions. Quenching due to water impact, air cooling in a storage fit and experimental reassembly of fractured glass by re-heating are examined

  20. Development of RETRAN-03/MOV code for thermal-hydraulic analysis of nuclear reactor under moving conditions

    International Nuclear Information System (INIS)

    Kim, Hak Jae; Park, Goon Cherl

    1996-01-01

    Nuclear ship reactors have several; features different from land-based PWR's. Especially, effects of ship motions on reactor thermal-hydraulics and good load following capability for abrupt load changes are essential characteristics of nuclear ship reactors. This study modified the RETRAN-03 to analyze the thermal-hydraulic transients under three-dimensional ship motions, named RETRAN-03/MOV in order to apply to future marine reactors. First Japanese nuclear ship MUTSU reactor have been analyzed under various ship motions to verify this code. Calculations have been performed under rolling,heaving and stationary inclination conditions during normal operation. Also, the natural circulation has been analyzed, which can provide the decay heat removed to ensure the passive safety of marine reactors. As results, typical thermal-hydraulic characteristics of marine reactors such as flow rate oscillations and S/G water level oscillations have been successfully simulated at various conditions. 7 refs., 11 figs. (author)

  1. Energy managemant through PCM based thermal storage system for building air-conditioning: Tidel Park, Chennai

    International Nuclear Information System (INIS)

    Nallusamy, N.; Sampath, S.; Velraj, R.

    2006-01-01

    Many modern building are designed for air-conditioning and the amount of electrical energy required for providing air-conditioning can be very significant especially in the tropics. Conservation of energy is major concern to improve the overall efficiency of the system. Integration is energy storage with the conventional system gives a lot of potential for energy saving and long-term economics. Thermal energy storage systems can improve energy management and help in matching supply and demand patterns. In the present work, a detailed study has been done on the existing thermal energy storage system used in the air-conditioning system in Tidel Park, Chennai. The present study focuses on the cool energy storage system. The modes of operation and advantages of such a system for energy management are highlighted. The reason for the adoption of combined storage system and the size of the storage medium in the air-conditioning plant are analyzed. The possibility of using this concept in other cooling and heating applications, such as storage type solar water heating system, has been explored

  2. Catalyst Deactivation Simulation Through Carbon Deposition in Carbon Dioxide Reforming over Ni/CaO-Al2O3 Catalyst

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2011-11-01

    Full Text Available Major problem in CO2 reforming of methane (CORM process is coke formation which is a carbonaceous residue that can physically cover active sites of a catalyst surface and leads to catalyst deactivation. A key to develop a more coke-resistant catalyst lies in a better understanding of the methane reforming mechanism at a molecular level. Therefore, this paper is aimed to simulate a micro-kinetic approach in order to calculate coking rate in CORM reaction. Rates of encapsulating and filamentous carbon formation are also included. The simulation results show that the studied catalyst has a high activity, and the rate of carbon formation is relatively low. This micro-kinetic modeling approach can be used as a tool to better understand the catalyst deactivation phenomena in reaction via carbon deposition. Copyright © 2011 BCREC UNDIP. All rights reserved.(Received: 10th May 2011; Revised: 16th August 2011; Accepted: 27th August 2011[How to Cite: I. Istadi, D.D. Anggoro, N.A.S. Amin, and D.H.W. Ling. (2011. Catalyst Deactivation Simulation Through Carbon Deposition in Carbon Dioxide Reforming over Ni/CaO-Al2O3 Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 6 (2: 129-136. doi:10.9767/bcrec.6.2.1213.129-136][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.2.1213.129-136 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/1213 ] | View in  |  

  3. Emotional and cognitive processing of narratives and individual appraisal styles: recruitment of cognitive control networks vs. modulation of deactivations

    Directory of Open Access Journals (Sweden)

    Enrico eBenelli

    2012-08-01

    Full Text Available Research in psychotherapy has shown that the frequency of use of specific classes of words (such as terms with emotional valence in descriptions of scenes of affective relevance is a possible indicator of psychological affective functioning. Using functional magnetic resonance imaging, we investigated the neural correlates of these linguistic markers in narrative texts depicting core aspects of emotional experience in human interaction, and their modulation by individual differences in the propensity to use these markers. Emotional words activated both lateral and medial aspects of the prefrontal cortex, as in previous studies of instructed emotion regulation and in consistence with recruitment of effortful control processes. However, individual differences in the spontaneous use of emotional terms in characterizing the stimulus material were prevalently associated with modulation of the signal in the perigenual cortex, in the retrosplenial cortex and precuneus, and the anterior insula/ventrolateral prefrontal cortex. Modulation of signal by the presence of these textual markers or individual differences mostly involved areas deactivated by the main task, thus further differentiating neural correlates of these appraisal styles from those associated with effortful control. These findings are discussed in the context of reports in the literature of modulations of deactivations, which suggest their importance in orienting attention and generation of response in the presence of emotional information. These findings suggest that deactivations may play a functional role in emotional appraisal and may contribute to characterizing different appraisal styles.

  4. Modeling of composite synthesis in conditions of controlled thermal explosion

    Science.gov (United States)

    Kukta, Yaroslav; Knyazeva, Anna

    2017-12-01

    The paper proposes the model for the titanium-based composite synthesis from powders of titanium and carbon of non-stoichiometric composition. The model takes into account the mixture heating from chamber walls, the dependence of liquidus and solidus temperatures on the composition of reacting mixture and the formation of possible irreversible phases. The reaction retardation by the reaction product is taken into consideration in kinetic laws. As an example, the results of temperature and conversion level calculation are presented for the system Ti-C with the summary reaction for different temperatures of chamber walls heating. It was revealed that the reaction retardation being the reaction product can be the cause of incomplete conversion in the thermal explosion conditions. Non-stoichiometric composition leads to the conditions of degenerated mode when some additional heating is necessary to complete the reaction.

  5. Dynamic thermal environment and thermal comfort.

    Science.gov (United States)

    Zhu, Y; Ouyang, Q; Cao, B; Zhou, X; Yu, J

    2016-02-01

    Research has shown that a stable thermal environment with tight temperature control cannot bring occupants more thermal comfort. Instead, such an environment will incur higher energy costs and produce greater CO2 emissions. Furthermore, this may lead to the degeneration of occupants' inherent ability to combat thermal stress, thereby weakening thermal adaptability. Measured data from many field investigations have shown that the human body has a higher acceptance to the thermal environment in free-running buildings than to that in air-conditioned buildings with similar average parameters. In naturally ventilated environments, occupants have reported superior thermal comfort votes and much greater thermal comfort temperature ranges compared to air-conditioned environments. This phenomenon is an integral part of the adaptive thermal comfort model. In addition, climate chamber experiments have proven that people prefer natural wind to mechanical wind in warm conditions; in other words, dynamic airflow can provide a superior cooling effect. However, these findings also indicate that significant questions related to thermal comfort remain unanswered. For example, what is the cause of these phenomena? How we can build a comfortable and healthy indoor environment for human beings? This article summarizes a series of research achievements in recent decades, tries to address some of these unanswered questions, and attempts to summarize certain problems for future research. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Thermal Transport and Entropy Production Mechanisms in a Turbulent Round Jet at Supercritical Thermodynamic Conditions

    Directory of Open Access Journals (Sweden)

    Florian Ries

    2017-08-01

    Full Text Available In the present paper, thermal transport and entropy production mechanisms in a turbulent round jet of compressed nitrogen at supercritical thermodynamic conditions are investigated using a direct numerical simulation. First, thermal transport and its contribution to the mixture formation along with the anisotropy of heat fluxes and temperature scales are examined. Secondly, the entropy production rates during thermofluid processes evolving in the supercritical flow are investigated in order to identify the causes of irreversibilities and to display advantageous locations of handling along with the process regimes favorable to mixing. Thereby, it turned out that (1 the jet disintegration process consists of four main stages under supercritical conditions (potential core, separation, pseudo-boiling, turbulent mixing, (2 causes of irreversibilities are primarily due to heat transport and thermodynamic effects rather than turbulence dynamics and (3 heat fluxes and temperature scales appear anisotropic even at the smallest scales, which implies that anisotropic thermal diffusivity models might be appropriate in the context of both Reynolds-averaged Navier–Stokes (RANS and large eddy simulation (LES approaches while numerically modeling supercritical fluid flows.

  7. Combined structural and functional imaging reveals cortical deactivations in grapheme-colour synaesthesia

    Directory of Open Access Journals (Sweden)

    Erik eO'Hanlon

    2013-10-01

    Full Text Available Synaesthesia is a heritable condition in which particular stimuli generate specific and consistent sensory percepts or associations in another modality or processing stream. Functional neuroimaging studies have identified potential correlates of these experiences, including, in some but not all cases, the hyperactivation of visuotemporal areas and of parietal areas thought to be involved in perceptual binding. Structural studies have identified a similarly variable spectrum of differences between synaesthetes and controls. However, it remains unclear the extent to which these neural correlates reflect the synaesthetic experience itself or additional phenotypes associated with the condition. Here, we acquired both structural and functional neuroimaging data comparing thirteen grapheme-colour synaesthetes with eleven non-synaesthetes. Using voxel-based morphometry and diffusion tensor imaging, we identify a number of clusters of increased volume of grey matter, of white matter or of increased fractional anisotropy in synaesthetes versus controls. To assess the possible involvement of these areas in the synaesthetic experience, we used nine areas of increased grey matter volume as regions of interest in an fMRI experiment that characterised the contrast in response to stimuli which induced synaesthesia (i.e. letters versus those which did not (non-meaningful symbols. Two of these areas, in left lateral occipital cortex and in postcentral gyrus, showed sensitivity to this contrast in synaesthetes but not controls. Unexpectedly, in both regions, the letter stimuli produced a strong negative BOLD signal in synaesthetes. An additional whole-brain fMRI analysis identified fourteen areas, three of which were driven mainly by a negative BOLD response to letters in synaesthetes. Our findings suggest that cortical deactivations may be involved in the conscious experience of internally generated synaesthetic percepts

  8. Numerical simulation of time-dependent deformations under hygral and thermal transient conditions

    International Nuclear Information System (INIS)

    Roelfstra, P.E.

    1987-01-01

    Some basic concepts of numerical simulation of the formation of the microstructure of HCP are outlined. The aim is to replace arbitrary terms like aging by more realistic terms like bond density in the xerogel and bonds between hydrating particles of HCP. Actual state parameters such as temperature, humidity and degree of hydration can be determined under transient hygral and thermal conditions by solving numerically a series of appropriate coupled differential equations with given boundary conditions. Shrinkage of a composite structure without crack formation, based on calculated moisture distributions, has been determined with numerical concrete codes. The influence of crack formation, tensile strain-hardening and softening on the total deformation of a quasi-homogeneous drying material has been studied by means of model based on FEM. The difference between shrinkage without crack formation and shrinkage with crack formation can be quantified. Drying shrinkage and creep of concrete cannot be separated. The total deformation depends on the superimposed stress fields. Transient hygral deformation can be realistically predicted if the concept of point properties is applied rigorously. Transient thermal deformation has to be dealt with in the same way. (orig./HP)

  9. Design of Embedded Metal Catalysts via Reverser Micro-Emulsion System: a Way to Suppress Catalyst Deactivation by Metal Sintering

    KAUST Repository

    Al Mana, Noor

    2016-01-01

    are embedded inside the protecting shell have attracted a lot of researchers working in the field of catalysis owing to their enhanced physical and chemical properties suppress catalyst deactivation. Also, a new active site generated at the interface between

  10. A dynamic model for air-based photovoltaic thermal systems working under real operating conditions

    International Nuclear Information System (INIS)

    Sohel, M. Imroz; Ma, Zhenjun; Cooper, Paul; Adams, Jamie; Scott, Robert

    2014-01-01

    Highlights: • A dynamic model suitable for air-based photovoltaic thermal (PVT) systems is presented. • The model is validated with PVT data from two unique buildings. • The simulated output variables match very well with the experimental data. • The performance of the PVT system under changing working condition is analysed. - Abstract: In this paper a dynamic model suitable for simulating real operating conditions of air-based photovoltaic thermal (PVT) systems is presented. The performance of the model is validated by using the operational data collected from the building integrated photovoltaic (PVT) systems installed in two unique buildings. The modelled air outlet temperature and electrical power match very well with the experimental data. In Solar Decathlon house PVT, the average (RMS) error in air outlet temperatures was 4.2%. The average (RMS) error in electrical power was also 4.2%. In the Sustainable Buildings Research Centre PVT, the average errors (RMS) of PV and air temperatures were 3.8% and 2.2%, respectively. The performance of the PVT system under changing working condition is also analysed in this paper. The analysis includes the effect of ambient air temperature, air inlet temperature, air flow rate and solar irradiation on thermal, electrical, first law and second law efficiencies. Both the thermal and the 1st law efficiencies almost linearly increased with the increase of the ambient temperature. However, the PVT electrical efficiency and the second law efficiency decreased with the increase of the ambient temperature. All efficiencies expect the second law efficiency decreased with increase of the PVT air inlet temperature. The second law efficiency first increased and then reduced. With increasing the air flow rate all the efficiencies increased. The electrical and second law efficiencies become less sensitive when the air flow rate exceeded 300 l/s. Both the thermal and the 1st law efficiencies decreased while the electrical

  11. PREPARATION, CHARACTERIZATION, ACTIVITY, DEACTIVATION, AND REGENERATION TESTS OF CoO-MoO/ZnO AND CoO-MoO/ZnO-ACTIVATED ZEOLITE CATALYSTS FOR THE HYDROGEN PRODUCTION FROM FUSEL OIL

    Directory of Open Access Journals (Sweden)

    Wega Trisunaryanti

    2010-06-01

    Full Text Available Preparation, characterization, activation, deactivation, and regeneration tests of CoO-MoO/ZnO and CoO-MoO/ZnO-Activated Zeolite (AZ catalysts for the hydrogen production using steam reforming of alcohols in fusel oil have been conducted. Both catalysts were prepared by impregnation of Co and Mo onto ZnO or ZnO-AZ powder then followed by calcination at 400 °C for 5 h under N2 stream. The BET method and pyridine adsorption were used for catalysts characterization. The study of activation, deactivation, and regeneration of catalysts were conducted by using steam reforming method in the semi flow reactor. The reaction condition were: weight ratio of catalysts/feed = 0.1, temperature: 450 °C, duration: 45 min. The gas product was trapped in a 250 mL vacuum pyrex bottle filled with 50 mL of 4 M NaOH solution and analyzed by GC with TCD system to determine H2 existance and HCl titration to determine CO2 produced during the process that was dissolved in NaOH solution. The results showed that CoO-MoO/ZnO-AZ catalyst produced higher gas conversion than CoO-MoO/ZnO catalyst. However, it had short catalyst lifetime due to its high amount of coke deposited during the process. The regeneration test could enhance the catalyst activity. The gas product consisted of H2 (14.70% and CO2 (24.41%.   Keywords: fusel oil, steam reforming, deactivation, regeneration, hydrogen production.

  12. Thermal energy recovery of air conditioning system--heat recovery system calculation and phase change materials development

    International Nuclear Information System (INIS)

    Gu Zhaolin; Liu Hongjuan; Li Yun

    2004-01-01

    Latent heat thermal energy storage systems can be used to recover the rejected heat from air conditioning systems, which can be used to generate low-temperature hot water. It decreases not only the consumption of primary energy for heating domestic hot water but also the calefaction to the surroundings due to the rejection of heat from air conditioning systems. A recovery system using phase change materials (PCMs) to store the rejected (sensible and condensation) heat from air conditioning system has been developed and studied, making up the shortage of other sensible heat storage system. Also, PCMs compliant for heat recovery of air conditioning system should be developed. Technical grade paraffin wax has been discussed in this paper in order to develop a paraffin wax based PCM for the recovery of rejected heat from air conditioning systems. The thermal properties of technical grade paraffin wax and the mixtures of paraffin wax with lauric acid and with liquid paraffin (paraffin oil) are investigated and discussed, including volume expansion during the phase change process, the freezing point and the heat of fusion

  13. Do sex, body size and reproductive condition influence the thermal preferences of a large lizard? A study in Tupinambis merianae.

    Science.gov (United States)

    Cecchetto, Nicolas Rodolfo; Naretto, Sergio

    2015-10-01

    Body temperature is a key factor in physiological processes, influencing lizard performances; and life history traits are expected to generate variability of thermal preferences in different individuals. Gender, body size and reproductive condition may impose specific requirements on preferred body temperatures. If these three factors have different physiological functions and thermal requirements, then the preferred temperature may represent a compromise that optimizes these physiological functions. Therefore, the body temperatures that lizards select in a controlled environment may reflect a temperature that maximizes their physiological needs. The tegu lizard Tupinambis merianae is one of the largest lizards in South America and has wide ontogenetic variation in body size and sexual dimorphism. In the present study we evaluate intraspecific variability of thermal preferences of T. merianae. We determined the selected body temperature and the rate at which males and females attain their selected temperature, in relation to body size and reproductive condition. We also compared the behavior in the thermal gradient between males and females and between reproductive condition of individuals. Our study show that T. merianae selected body temperature within a narrow range of temperatures variation in the laboratory thermal gradient, with 36.24±1.49°C being the preferred temperature. We observed no significant differences between sex, body size and reproductive condition in thermal preferences. Accordingly, we suggest that the evaluated categories of T. merianae have similar thermal requirements. Males showed higher rates to obtain heat than females and reproductive females, higher rates than non-reproductive ones females. Moreover, males and reproductive females showed a more dynamic behavior in the thermal gradient. Therefore, even though they achieve the same selected temperature, they do it differentially. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Heat inactivation kinetics of Hypocrea orientalis β-glucosidase with enhanced thermal stability by glucose.

    Science.gov (United States)

    Xu, Xin-Qi; Shi, Yan; Wu, Xiao-Bing; Zhan, Xi-Lan; Zhou, Han-Tao; Chen, Qing-Xi

    2015-11-01

    Thermal inactivation kinetics of Hypocrea orientalis β-glucosidase and effect of glucose on thermostability of the enzyme have been determined in this paper. Kinetic studies showed that the thermal inactivation was irreversible and first-order reaction. The microscopic rate constants for inactivation of free enzyme and substrate-enzyme complex were both determined, which suggested that substrates can protect β-glucosidase against thermal deactivation effectively. On the other hand, glucose was found to protect β-glucosidase from heat inactivation to remain almost whole activity below 70°C at 20mM concentration, whereas the apparent inactivation rate of BG decreased to be 0.3×10(-3)s(-1) in the presence of 5mM glucose, smaller than that of sugar-free enzyme (1.91×10(-3)s(-1)). The intrinsic fluorescence spectra results showed that glucose also had stabilizing effect on the conformation of BG against thermal denaturation. Docking simulation depicted the interaction mode between glucose and active residues of the enzyme to produce stabilizing effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Monitoring Thermal Performance of Hollow Bricks with Different Cavity Fillers in Difference Climate Conditions

    Science.gov (United States)

    Pavlík, Zbyšek; Jerman, Miloš; Fořt, Jan; Černý, Robert

    2015-03-01

    Hollow brick blocks have found widespread use in the building industry during the last decades. The increasing requirements to the thermal insulation properties of building envelopes given by the national standards in Europe led the brick producers to reduce the production of common solid bricks. Brick blocks with more or less complex systems of internal cavities replaced the traditional bricks and became dominant on the building ceramics market. However, contrary to the solid bricks where the thermal conductivity can easily be measured by standard methods, the complex geometry of hollow brick blocks makes the application of common techniques impossible. In this paper, a steady-state technique utilizing a system of two climatic chambers separated by a connecting tunnel for sample positioning is used for the determination of the thermal conductivity, thermal resistance, and thermal transmittance ( U value) of hollow bricks with the cavities filled by air, two different types of mineral wool, polystyrene balls, and foam polyurethane. The particular brick block is provided with the necessary temperature- and heat-flux sensors and thermally insulated in the tunnel. In the climatic chambers, different temperatures are set. After steady-state conditions are established in the measuring system, the effective thermal properties of the brick block are calculated using the measured data. Experimental results show that the best results are achieved with hydrophilic mineral wool as a cavity filler; the worst performance exhibits the brick block with air-filled cavities.

  16. Nuclear power plant accident simulations of gasket materials under simultaneous radiation plus thermal plus mechanical stress conditions

    International Nuclear Information System (INIS)

    Gillen, K.T.; Malone, G.M.

    1997-07-01

    In order to probe the response of silicone door gasket materials to a postulated severe accident in an Italian nuclear power plant, compression stress relaxation (CSR) and compression set (CS) measurements were conducted under combined radiation (approximately 6 kGy/h) and temperature (up to 230 degrees C) conditions. By making some reasonable initial assumptions, simplified constant temperature and dose rates were derived that should do a reasonable job of simulating the complex environments for worst-case severe events that combine overall aging plus accidents. Further simplification coupled with thermal-only experiments allowed us to derive thermal-only conditions that can be used to achieve CSR and CS responses similar to those expected from the combined environments that are more difficult to simulate. Although the thermal-only simulations should lead to sealing forces similar to those expected during a severe accident, modulus and density results indicate that significant differences in underlying chemistry are expected for the thermal-only and the combined environment simulations. 15 refs., 31 figs., 15 tabs

  17. Development of Boundary Condition Independent Reduced Order Thermal Models using Proper Orthogonal Decomposition

    Science.gov (United States)

    Raghupathy, Arun; Ghia, Karman; Ghia, Urmila

    2008-11-01

    Compact Thermal Models (CTM) to represent IC packages has been traditionally developed using the DELPHI-based (DEvelopment of Libraries of PHysical models for an Integrated design) methodology. The drawbacks of this method are presented, and an alternative method is proposed. A reduced-order model that provides the complete thermal information accurately with less computational resources can be effectively used in system level simulations. Proper Orthogonal Decomposition (POD), a statistical method, can be used to reduce the order of the degree of freedom or variables of the computations for such a problem. POD along with the Galerkin projection allows us to create reduced-order models that reproduce the characteristics of the system with a considerable reduction in computational resources while maintaining a high level of accuracy. The goal of this work is to show that this method can be applied to obtain a boundary condition independent reduced-order thermal model for complex components. The methodology is applied to the 1D transient heat equation.

  18. Thermal properties of nuclear matter under the periodic boundary condition

    International Nuclear Information System (INIS)

    Otuka, Naohiko; Ohnishi, Akira

    1999-01-01

    We present the thermal properties of nuclear matter under the periodic boundary condition by the use of our hadronic nucleus-nucleus cascade model (HANDEL) which is developed to treat relativistic heavy-ion collisions from BNL-AGS to CERN-SPS. We first show some results of p-p scattering calculation in our new version which is improved in order to treat isospin ratio and multiplicity more accurately. We then display the results of calculation of nuclear matter with baryon density ρ b = 0.77 fm 3 at some energy densities. Time evolution of particle abundance and temperature are shown. (author)

  19. Rapid localized deactivation of self-assembled monolayers by propagation-controlled laser-induced plasma and its application to self-patterning of electronics and biosensors

    Science.gov (United States)

    Kim, Jongsu; Kwon, Seung-Gab; Back, Seunghyun; Kang, Bongchul

    2018-03-01

    We present a novel laser-induced surface treatment process to rapidly control the spatial wettabilities of various functional solutions with submicron to micron resolutions. Ultrathin hydrophobic self-assembled monolayers (SAMs) that little absorb typical laser lights due to short penetration depth were selectively deactivated by instantaneous interaction with laser-induced metallic plasmas. The spatial region of the deactivated SAM, which corresponds to process resolution, is adjustable by controlling the spatial propagation of the plasma. This method leads to the parallel formation of hydrophilic functional solutions on glass substrates with a minimum resolution on the submicron scale. To show its feasibility in device engineering fields, this method was applied to the cost-effective fabrication of electronics and biosensors. Rapid self-patterning of electronic and biological functional solutions (silver nanoparticle solution and streptavidin protein solution) was successfully realized by selective deactivation of two different SAMs (tridecafluoro-1,1,2,2-tetrahydrooctyltrichlorosilane (FOTS) for electronics and the hetero-hybrid SAM (octadecyltrichlorosilane (OTS)/2-[methoxy(polyethyleneoxy)propyl] trichlorosilane (PEG)) for biosensors). As a result, this method can be exploited for the rapid and low-cost fabrication of various thin film devices such as electronics, biosensors, energy, displays, and photonics.

  20. Temperature and Thermal Expansion Analysis of the Cooling Roller Based on the Variable Heat Flux Boundary Condition

    Science.gov (United States)

    Li, Yongkang; Yang, Yang; He, Changyan

    2018-06-01

    Planar flow casting (PFC) is a primary method for preparing an amorphous ribbon. The qualities of the amorphous ribbon are significantly influenced by the temperature and thermal expansion of the cooling roller. This study proposes a new approach to analyze the three-dimensional temperature and thermal expansion of the cooling roller using variable heat flux that acted on the cooling roller as a boundary condition. First, a simplified two-dimensional model of the PFC is developed to simulate the distribution of the heat flux in the circumferential direction with the software FLUENT. The resulting heat flux is extended to be three-dimensional in the ribbon's width direction. Then, the extended heat flux is imported as the boundary condition by the CFX Expression Language, and the transient temperature of the cooling roller is analyzed in the CFX software. Next, the transient thermal expansion of the cooling roller is simulated through the thermal-structural coupling method. Simulation results show that the roller's temperature and expansion are unevenly distributed, reach the peak value in the middle width direction, and the quasi-steady state of the maximum temperature and thermal expansion are achieved after approximately 50 s and 150 s of casting, respectively. The minimum values of the temperature and expansion are achieved when the roller has a thickness of 45 mm. Finally, the reliability of the approach proposed is verified by measuring the roller's thermal expansion on the spot. This study provides theoretical guidance for the roller's thermal expansion prediction and the gap adjustment in the PFC.

  1. Thermal processing of conditioned waste and fuel substitutes; Thermische Behandlung vorbehandelter Abfaelle und Ersatzbrennstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Velden, F. van der; Engweiler, J. [Von Roll Umwelttechnik AG, Zurich (Switzerland)

    1998-12-31

    Different technologies for the thermal processing of mechanical-biologically conditioned waste are described and compared in terms of cost and flexibility. (orig.) [Deutsch] Es werden verschiedene Technologien der thermischen Behandlung mechanisch-biologisch vorbehandelter Abfaelle vorgestellt und im Hinblick auf Kosten und Flexibilitaet verglichen. (orig.)

  2. Expression for the thermal H-mode energy confinement time under ELM-free conditions

    International Nuclear Information System (INIS)

    Ryter, F.; Gruber, O.; Kardaun, O.J.W.F.; Menzler, H.P.; Wagner, F.; Schissel, D.P.; DeBoo, J.C.; Kaye, S.M.

    1992-07-01

    The design of future tokamaks, which are supposed to reach ignition with the H-mode, requires a reliable scaling expression for the H-mode energy confinement time. In the present work, an H-mode scaling expression for the thermal plasma energy confinement time has been developed by combining data from four existing divertor tokamaks, ASDEX, DIII-D, JET and PBX-M. The plasma conditions, which were as similar as possible to ensure a coherent set of data, were ELM-free deuterium discharges heated by deuterium neutral beam injection. By combining four tokamaks, the parametric dependence of the thermal energy confinement on the main plasma parameters, including the three main geometrical variables, was determined. (orig./WL)

  3. Psychosocial versus physiological stress – meta-analyses on deactivations and activations of the neural correlates of stress reactions

    Science.gov (United States)

    Kogler, Lydia; Mueller, Veronika I.; Chang, Amy; Eickhoff, Simon B.; Fox, Peter T.; Gur, Ruben C.; Derntl, Birgit

    2015-01-01

    Stress is present in everyday life in various forms and situations. Two stressors frequently investigated are physiological and psychosocial stress. Besides similar subjective and hormonal responses, it has been suggested that they also share common neural substrates. The current study used activation-likelihood-estimation meta-analysis to test this assumption by integrating results of previous neuroimaging studies on stress processing. Reported results are cluster-level FWE corrected. The inferior frontal gyrus (IFG) and the anterior insula (AI) were the only regions that demonstrated overlapping activation for both stressors. Analysis of physiological stress showed consistent activation of cognitive and affective components of pain processing such as the insula, striatum, or the middle cingulate cortex. Contrarily, analysis across psychosocial stress revealed consistent activation of the right superior temporal gyrus and deactivation of the striatum. Notably, parts of the striatum appeared to be functionally specified: the dorsal striatum was activated in physiological stress, whereas the ventral striatum was deactivated in psychosocial stress. Additional functional connectivity and decoding analyses further characterized this functional heterogeneity and revealed higher associations of the dorsal striatum with motor regions and of the ventral striatum with reward processing. Based on our meta-analytic approach, activation of the IFG and the AI seems to indicate a global neural stress reaction. While physiological stress activates a motoric fight-or-flight reaction, during psychosocial stress attention is shifted towards emotion regulation and goal-directed behavior, and reward processing is reduced. Our results show the significance of differentiating physiological and psychosocial stress in neural engagement. Furthermore, the assessment of deactivations in addition to activations in stress research is highly recommended. PMID:26123376

  4. Hybrid heating systems optimization of residential environment to have thermal comfort conditions by numerical simulation.

    Science.gov (United States)

    Jahantigh, Nabi; Keshavarz, Ali; Mirzaei, Masoud

    2015-01-01

    The aim of this study is to determine optimum hybrid heating systems parameters, such as temperature, surface area of a radiant heater and vent area to have thermal comfort conditions. DOE, Factorial design method is used to determine the optimum values for input parameters. A 3D model of a virtual standing thermal manikin with real dimensions is considered in this study. Continuity, momentum, energy, species equations for turbulent flow and physiological equation for thermal comfort are numerically solved to study heat, moisture and flow field. K - ɛRNG Model is used for turbulence modeling and DO method is used for radiation effects. Numerical results have a good agreement with the experimental data reported in the literature. The effect of various combinations of inlet parameters on thermal comfort is considered. According to Pareto graph, some of these combinations that have significant effect on the thermal comfort require no more energy can be used as useful tools. A better symmetrical velocity distribution around the manikin is also presented in the hybrid system.

  5. Effects of thermal underwear on thermal and subjective responses in winter.

    Science.gov (United States)

    Choi, Jeong-Wha; Lee, Joo-Young; Kim, So-Young

    2003-01-01

    This study was conducted to obtain basic data in improving the health of Koreans, saving energy and protecting environments. This study investigated the effects of wearing thermal underwear for keeping warm in the office in winter where temperature is not as low as affecting work efficiency, on thermoregulatory responses and subjective sensations. In order to create an environment where every subject feels the same thermal sensation, two experimental conditions were selected through preliminary experiments: wearing thermal underwear in 18 degrees C air (18-condition) and not wearing thermal underwear in 23 degrees C air (23-condition). Six healthy male students participated in this study as experiment subjects. Measurement items included rectal temperature (T(re)), skin temperature (T(sk)), clothing microclimate temperature (T(cm)), thermal sensation and thermal comfort. The results are as follows: (1) T(re) of all subjects was maintained constant at 37.1 degrees C under both conditions, indicating no significant differences. (2) (T)(sk) under the 18-condition and the 23-condition were 32.9 degrees C and 33.7 degrees C, respectively, indicating a significant level of difference (pcomfortable under both conditions. It was found (T)(sk) decreased due to a drop in the skin temperature of hands and feet, and the subjects felt cooler wearing only one layer of normal thermal underwear at 18 degrees C. Yet, the thermal comfort level, T(re) and T(cm) of chest part under the 18-condition were the same as those under the 23-condition. These results show that the same level of comfort, T(re) and T(cm) can be maintained as that of an environment about 5 degrees C higher in the office in winter, by wearing one layer of thermal underwear. In this regard, this study suggests that lowering indoor temperature by wearing thermal underwear in winter can contribute to saving energy and improving health.

  6. Human biometeorological analysis of the thermal conditions of the hot Turkish city of Şanliurfa

    Science.gov (United States)

    Toy, Süleyman; Aytaç, Ahmet Serdar; Kántor, Noémi

    2018-01-01

    This paper offers a throughout human biometeorological assessment about the thermal conditions of Şanliurfa in one of the hottest parts of Turkey, in the hottest period of the year (from April to October), and a comparative analysis of three built-up types (urban, suburban and rural). Therefore, the values of physiologically equivalent temperature (PET), one of the most extensively used indices, were calculated from basic climate data with the help of the RayMan model. It was found by regarding the resulted mean PET values and the occurrence frequency of extreme heat stress periods (PET values above 41 °C) that the urban area exhibited the most unfavourable properties, followed by the suburban and rural areas. We also found very severe heat stress conditions in the summer, which may be explained by the torrid and arid climate, calm air conditions and the lack of abundant vegetation. Aiming to optimise human thermal conditions, thereby improving local life quality and facilitating international tourism, increment of vegetated areas and water surfaces would be required and, of course, highlighting the traditional methods taking into account the important aspects of sustainability.

  7. A quantitative sensitivity analysis on the behaviour of common thermal indices under hot and windy conditions in Doha, Qatar

    Science.gov (United States)

    Fröhlich, Dominik; Matzarakis, Andreas

    2016-04-01

    Human thermal perception is best described through thermal indices. The most popular thermal indices applied in human bioclimatology are the perceived temperature (PT), the Universal Thermal Climate Index (UTCI), and the physiologically equivalent temperature (PET). They are analysed focusing on their sensitivity to single meteorological input parameters under the hot and windy meteorological conditions observed in Doha, Qatar. It can be noted, that the results for the three indices are distributed quite differently. Furthermore, they respond quite differently to modifications in the input conditions. All of them show particular limitations and shortcomings that have to be considered and discussed. While the results for PT are unevenly distributed, UTCI shows limitations concerning the input data accepted. PET seems to respond insufficiently to changes in vapour pressure. The indices should therefore be improved to be valid for several kinds of climates.

  8. Thermal cycling fatigue of organic thermal interface materials using a thermal-displacement measurement technique

    Science.gov (United States)

    Steill, Jason Scott

    The long term reliability of polymer-based thermal interface materials (TIM) is essential for modern electronic packages which require robust thermal management. The challenge for today's materials scientists and engineers is to maximize the heat flow from integrated circuits through a TIM and out the heat sink. Thermal cycling of the electronic package and non-uniformity in the heat flux with respect to the plan area can lead to void formation and delamination which re-introduces inefficient heat transfer. Measurement and understanding at the nano-scale is essential for TIM development. Finding and documenting the evolution of the defects is dependent upon a full understanding of the thermal probes response to changing environmental conditions and the effects of probe usage. The response of the thermal-displacement measurement technique was dominated by changes to the environment. Accurate measurement of the thermal performance was hindered by the inability to create a model system and control the operating conditions. This research highlights the need for continued study into the probe's thermal and mechanical response using tightly controlled test conditions.

  9. Energetic performance analysis of a commercial water-based photovoltaic thermal system (PV/T) under summer conditions

    Science.gov (United States)

    Nardi, I.; Ambrosini, D.; de Rubeis, T.; Paoletti, D.; Muttillo, M.; Sfarra, S.

    2017-11-01

    In the last years, the importance of integrating the production of electricity with the production of sanitary hot water led to the development of new solutions, i.e. PV/T systems. It is well known that hybrid photovoltaic-thermal systems, able to produce electricity and thermal energy at the same time with better energetic performance in comparison with two separate systems, present many advantages for application in a residential building. A PV/T is constituted generally by a common PV panel with a metallic pipe, in which fluid flows. Pipe accomplishes two roles: it absorbs the heat from the PV panel, thus increasing, or at least maintaining its efficiency; furthermore, it stores the heat for sanitary uses. In this work, the thermal and electrical efficiencies of a commercial PV/T panel have been evaluated during the summer season in different days, to assess the effect of environmental conditions on the system total efficiency. Moreover, infrared thermographic diagnosis in real time has been effected during the operating mode in two conditions: with cooling and without cooling; cooling was obtained by natural flowing water. This analysis gave information about the impact of a non-uniform temperature distribution on the thermal and electrical performance. Furthermore, measurements have been performed in two different operating modes: 1) production of solely electrical energy and 2) simultaneous production of thermal and electrical energy. Finally, total efficiency is largely increased by using a simple solar concentrator nearby the panel.

  10. Importance of initial buoyancy field on evolution of mantle thermal structure: Implications of surface boundary conditions

    Directory of Open Access Journals (Sweden)

    Petar Glišović

    2015-01-01

    Full Text Available Although there has been significant progress in the seismic imaging of mantle heterogeneity, the outstanding issue that remains to be resolved is the unknown distribution of mantle temperature anomalies in the distant geological past that give rise to the present-day anomalies inferred by global tomography models. To address this question, we present 3-D convection models in compressible and self-gravitating mantle initialised by different hypothetical temperature patterns. A notable feature of our forward convection modelling is the use of self-consistent coupling of the motion of surface tectonic plates to the underlying mantle flow, without imposing prescribed surface velocities (i.e., plate-like boundary condition. As an approximation for the surface mechanical conditions before plate tectonics began to operate we employ the no-slip (rigid boundary condition. A rigid boundary condition demonstrates that the initial thermally-dominated structure is preserved, and its geographical location is fixed during the evolution of mantle flow. Considering the impact of different assumed surface boundary conditions (rigid and plate-like on the evolution of thermal heterogeneity in the mantle we suggest that the intrinsic buoyancy of seven superplumes is most-likely resolved in the tomographic images of present-day mantle thermal structure. Our convection simulations with a plate-like boundary condition reveal that the evolution of an initial cold anomaly beneath the Java-Indonesian trench system yields a long-term, stable pattern of thermal heterogeneity in the lowermost mantle that resembles the present-day Large Low Shear Velocity Provinces (LLSVPs, especially below the Pacific. The evolution of subduction zones may be, however, influenced by the mantle-wide flow driven by deeply-rooted and long-lived superplumes since Archean times. These convection models also detect the intrinsic buoyancy of the Perm Anomaly that has been identified as a unique

  11. Step Changes and Deactivation Behavior in the Continuous Decarboxylation of Stearic Acid

    DEFF Research Database (Denmark)

    Madsen, Anders Theilgaard; Rozmysłowicz, Bartosz; Simakova, Irina L.

    2011-01-01

    Deoxygenation of dilute and concentrated stearic acid over 2% Pd/C beads was performed in a continuous reactor at 300 °C and 20 bar pressure of Ar or 5% H2/Ar. Stable operation was obtained in 5% H2 atmosphere, with 95% conversion of 10 mol % dilute stearic acid in dodecane and 12% conversion...... of pure stearic acid. Deactivation took place in H2-deficient gas atmosphere, probably as a result of the formation of unsaturated products and coking in the pore system. Transient experiments with step changes were performed: 1 h was required for the step change to be visible in liquid sampling, whereas...

  12. Standard Guide for Post-Deactivation Surveillance and Maintenance of Radiologically Contaminated Facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide outlines a method for developing a Surveillance and Maintenance (S&M) plan for inactive nuclear facilities. It describes the steps and activities necessary to prevent loss or release of radioactive or hazardous materials, and to minimize physical risks between the deactivation phase and the start of facility decontamination and decommissioning (D&D). 1.2 The primary concerns for S&M are related to (1) animal intrusion, (2) structural integrity degradation, (3) water in-leakage, (4) contamination migration, (5) unauthorized personnel entry, and (6) theft/intrusion. This document is intended to serve as a guide only, and is not intended to modify existing regulations.

  13. Isotopes facilities deactivation project at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Eversole, R.E.

    1997-01-01

    The production and distribution of radioisotopes for medical, scientific, and industrial applications has been a major activity at Oak Ridge National Laboratory (ORNL) since the late 1940s. As the demand for many of these isotopes grew and their sale became profitable, the technology for the production of the isotopes was transferred to private industry, and thus, many of the production facilities at ORNL became underutilized. In 1989, the U.S. Department of Energy (DOE) instructed ORNL to identify and prepare various isotopes production facilities for safe shutdown. In response, ORNL identified 19 candidate facilities for shutdown and established the Isotopes Facilities Shutdown Program. In 1993, responsibility for the program was transitioned from the DOE Office of Nuclear Energy to the DOE Office of Environmental Management and Uranium Enrichment Operation's Office of Facility Transition and Management. The program was retitled the Isotopes Facilities Deactivation Project (IFDP), and implementation responsibility was transferred from ORNL to the Lockheed Martin Energy Systems, Inc. (LMES), Environmental Restoration (ER) Program

  14. Isotopes facilities deactivation project at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Eversole, R.E.

    1997-05-01

    The production and distribution of radioisotopes for medical, scientific, and industrial applications has been a major activity at Oak Ridge National Laboratory (ORNL) since the late 1940s. As the demand for many of these isotopes grew and their sale became profitable, the technology for the production of the isotopes was transferred to private industry, and thus, many of the production facilities at ORNL became underutilized. In 1989, the U.S. Department of Energy (DOE) instructed ORNL to identify and prepare various isotopes production facilities for safe shutdown. In response, ORNL identified 19 candidate facilities for shutdown and established the Isotopes Facilities Shutdown Program. In 1993, responsibility for the program was transitioned from the DOE Office of Nuclear Energy to the DOE Office of Environmental Management and Uranium Enrichment Operation`s Office of Facility Transition and Management. The program was retitled the Isotopes Facilities Deactivation Project (IFDP), and implementation responsibility was transferred from ORNL to the Lockheed Martin Energy Systems, Inc. (LMES), Environmental Restoration (ER) Program.

  15. Large Ferrierite Crystals as Models for Catalyst Deactivation during Skeletal Isomerisation of Oleic Acid : Evidence for Pore Mouth Catalysis

    NARCIS (Netherlands)

    Wiedemann, Sophie C. C.; Ristanovic, Zoran; Whiting, Gareth T.; Marthala, V. R. Reddy; Kaerger, Joerg; Weitkamp, Jens; Wels, Bas; Bruijnincx, Pieter C. A.; Weckhuysen, Bert M.

    2016-01-01

    Large zeolite crystals of ferrierite have been used to study the deactivation, at the single particle level, of the alkyl isomerisation catalysis of oleic acid and elaidic acid by a combination of visible micro-spectroscopy and fluorescence microscopy (both polarised wide-field and confocal modes).

  16. The effect of atmospheric thermal conditions and urban thermal pollution on all-cause and cardiovascular mortality in Bangladesh.

    Science.gov (United States)

    Burkart, Katrin; Schneider, Alexandra; Breitner, Susanne; Khan, Mobarak Hossain; Krämer, Alexander; Endlicher, Wilfried

    2011-01-01

    This study assessed the effect of temperature and thermal atmospheric conditions on all-cause and cardiovascular mortality in Bangladesh. In particular, differences in the response to elevated temperatures between urban and rural areas were investigated. Generalized additive models (GAMs) for daily death counts, adjusted for trend, season, day of the month and age were separately fitted for urban and rural areas. Breakpoint models were applied for determining the increase in mortality above and below a threshold (equivalent) temperature. Generally, a 'V'-shaped (equivalent) temperature-mortality curve with increasing mortality at low and high temperatures was observed. Particularly, urban areas suffered from heat-related mortality with a steep increase above a specific threshold. This adverse heat effect may well increase with ongoing urbanization and the intensification of the urban heat island due to the densification of building structures. Moreover, rising temperatures due to climate change could aggravate thermal stress. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Stochastic simulation of PWR vessel integrity for pressurized thermal shock conditions

    International Nuclear Information System (INIS)

    Jackson, P.S.; Moelling, D.S.

    1984-01-01

    A stochastic simulation methodology is presented for performing probabilistic analyses of Pressurized Water Reactor vessel integrity. Application of the methodology to vessel-specific integrity analyses is described in the context of Pressurized Thermal Shock (PTS) conditions. A Bayesian method is described for developing vessel-specific models of the density of undetected volumetric flaws from ultrasonic inservice inspection results. Uncertainty limits on the probabilistic results due to sampling errors are determined from the results of the stochastic simulation. An example is provided to illustrate the methodology

  18. A Comparative Experimental Study of Fixed Temperature and Fixed Heat Flux Boundary Conditions in Turbulent Thermal Convection

    Science.gov (United States)

    Huang, Shi-Di; Wang, Fei; Xi, Heng-Dong; Xia, Ke-Qing

    2014-11-01

    We report an experimental study of the influences of thermal boundary condition in turbulent thermal convection. Two configurations were examined: one was fixed heat flux at the bottom boundary and fixed temperature at the top (HC cells); the other was fixed temperature at both boundaries (CC cells). It is found that the flow strength in the CC cells is on average 9% larger than that in the HC ones, which could be understood as change in plume emission ability under different boundary conditions. It is further found, rather surprisingly, that flow reversals of the large-scale circulation occur more frequently in the CC cell, despite a stronger large-scale flow and more uniform temperature distribution over the boundaries. These findings provide new insights into turbulent thermal convection and should stimulate further studies, especially experimental ones. This work is supported by the Hong Kong Research Grants Council under Grant No. CUHK 403712.

  19. Investigation of film boiling thermal hydraulics under FCI conditions. Results of a numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Dinh, A.T.; Nourgaliev, R.R.; Sehgal, B.R. [Div. of Nuclear Power Safety Royal Inst. of Tech. (RIT), Brinellvaegen 60, 10044 Stockholm (Sweden)

    1998-01-01

    Film boiling on the surface of a high-temperature melt jet or of a melt particle is one of key phenomena governing the physics of fuel-coolant interactions (FCIs) which may occur during the course of a severe accident in a light water reactor (LWR). A number of experimental and analytical studies have been performed, in the past, to address film boiling heat transfer and the accompanying hydrodynamic aspects. Most of the experiments have, however, been performed for temperature and heat flux conditions, which are significantly lower than the prototypic conditions. For ex-vessel FCIs, high liquid subcooling can significantly affect the FCI thermal hydraulics. Presently, there are large uncertainties in predicting natural-convection film boiling of subcooled liquids on high-temperature surfaces. In this paper, research conducted at the Division of Nuclear Power Safety, Royal Institute of Technology (RIT/NPS), Stockholm, concerning film-boiling thermal hydraulics under FCI condition is presented. Notably, the focus is placed on the effects of (1) water subcooling, (2) high-temperature steam properties, (3) the radiation heat transfer and (4) mixing zone boiling dynamics, on the vapor film characteristics. Numerical investigations are performed using a novel CFD modeling concept named as the local-homogeneous-slip model (LHSM). Results of the analytical and numerical studies are discussed with respect to boiling dynamics under FCI conditions. (author)

  20. Evaluation of Haney-Type Surface Thermal Boundary Conditions Using a Coupled Atmosphere and Ocean Model

    National Research Council Canada - National Science Library

    Chu, Peter C; Chen, Yuchun; Lu, Shihua

    2001-01-01

    ... (Russell et al,, 1995) was used to verify the validity of Haney-type surface thermal boundary condition, which linearly connects net downward surface heat flux Q to air / sea temperature difference DeltaT by a relaxation coefficient K...

  1. Normal conditions of transport thermal analysis and testing of a Type B drum package

    International Nuclear Information System (INIS)

    Jerrell, J.W.; Alstine, M.N. van; Gromada, R.J.

    1995-01-01

    Increasing the content limits of radioactive material packagings can save money and increase transportation safety by decreasing the total number of shipments required to transport large quantities of material. The contents of drum packages can be limited by unacceptable containment vessel pressures and temperatures due to the thermal properties of the insulation. The purpose of this work is to understand and predict the effects of insulation properties on containment system performance. The type B shipping container used in the study is a double containment fiberboard drum package. The package is primarily used to transport uranium and plutonium metals and oxides. A normal condition of transport (NCT) thermal test was performed to benchmark an NCT analysis of the package. A 21 W heater was placed in an instrumented package to simulate the maximum source decay heat. The package reached thermal equilibrium 120 hours after the heater was turned on. Testing took place indoors to minimize ambient temperature fluctuations. The thermal analysis of the package used fiberboard properties reported in the literature and resulted in temperature significantly greater than those measured during the test. Details of the NCT test will be described and transient temperatures at key thermocouple locations within the package will be presented. Analytical results using nominal fiberboard properties will be presented. Explanations of the results and the attempt to benchmark the analysis will be presented. The discovery that fiberboard has an anisotropic thermal conductivity and its effect on thermal performance will also be discussed

  2. Diurnal Thermal Behavior of Photovoltaic Panel with Phase Change Materials under Different Weather Conditions

    Directory of Open Access Journals (Sweden)

    Jae-Han Lim

    2017-12-01

    Full Text Available The electric power generation efficiency of photovoltaic (PV panels depends on the solar irradiation flux and the operating temperature of the solar cell. To increase the power generation efficiency of a PV system, this study evaluated the feasibility of phase change materials (PCMs to reduce the temperature rise of solar cells operating under the climate in Seoul, Korea. For this purpose, two PCMs with different phase change characteristics were prepared and the phase change temperatures and thermal conductivities were compared. The diurnal thermal behavior of PV panels with PCMs under the Seoul climate was evaluated using a 2-D transient thermal analysis program. This paper discusses the heat flow characteristics though the PV cell with PCMs and the effects of the PCM types and macro-packed PCM (MPPCM methods on the operating temperatures under different weather conditions. Selection of the PCM type was more important than the MMPCM methods when PCMs were used to enhance the performance of PV panels and the mean operating temperature of PV cell and total heat flux from the surface could be reduced by increasing the heat transfer rate through the honeycomb grid steel container for PCMs. Considering the mean operating temperature reduction of 4 °C by PCM in this study, an efficiency improvement of approximately 2% can be estimated under the weather conditions of Seoul.

  3. Selective Deactivation of M13 Bacteriophage in E. Coli using Femtosecond Laser Pulses

    CSIR Research Space (South Africa)

    Molukanele, P

    2010-09-01

    Full Text Available Deactivation of M13 Bacteriophage in E. Coli using Femtosecond Laser Pulses P. Molukanele 1, 3, A. Du Plessis 1, T. Roberts 1, L. Botha 1, M. Khati 2,3, W. Campos 2, 3 1CSIR National Laser Centre, Femtosecond Science group, Pretoria, South Africa 2CSIR... that is about 1 ?m long and 5-6 nm in diameter. Its host Escherichia coli (E.coli), is approximately 2-6 ?m long and 1-1.5 ?m in diameter, see figure 1 below. Figure 1: Schematic representations of M13 bacteriophage and its host E.coli...

  4. Selective Deactivation of Gibberellins below the Shoot Apex is Critical to Flowering but Not to Stem Elongation of Lolium

    DEFF Research Database (Denmark)

    King, Rod W; Mander, Lewis N; Asp, Torben

    2008-01-01

    in their effectiveness for flowering because they are deactivated by C-2 hydroxylation below the shoot apex. In contrast, GA5 is effective because of its structural protection at C-2. Excised vegetative shoot tips rapidly degrade [14C]GA1, [14C]GA4, and [14C]GA20 (>80% in 6 h), but not [14C]GA5. Coincidentally, genes...... encoding two 2β-oxidases and a putative 16-17-epoxidase were most expressed just below the shoot apex (4 mm), expression of these GA deactivation genes is reduced, so allowing GA1 and GA4 to promote sub-apical stem elongation. Subsequently, GA degradation declines...... in florally induced shoot tips and these GAs can become active for floral development. Structural changes which stabilize GA4 confirm the link between florigenicity and restricted GA 2β-hydroxylation (e.g. 2 -hydroxylation and C-2 di-methylation). Additionally, a 2-oxidase inhibitor (Trinexapac Ethyl...

  5. PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION

    International Nuclear Information System (INIS)

    JOHNSTON GA

    2008-01-01

    Fluor Hanford, Inc. (FH) is proud to submit the Plutonium Finishing Plant (PFP) 241-Z liquid Waste Treatment Facility Deactivation and Demolition (D and D) Project for consideration by the Project Management Institute as Project of the Year for 2008. The decommissioning of the 241-Z Facility presented numerous challenges, many of which were unique with in the Department of Energy (DOE) Complex. The majority of the project budget and schedule was allocated for cleaning out five below-grade tank vaults. These highly contaminated, confined spaces also presented significant industrial safety hazards that presented some of the most hazardous work environments on the Hanford Site. The 241-Z D and D Project encompassed diverse tasks: cleaning out and stabilizing five below-grade tank vaults (also called cells), manually size-reducing and removing over three tons of process piping from the vaults, permanently isolating service utilities, removing a large contaminated chemical supply tank, stabilizing and removing plutonium-contaminated ventilation ducts, demolishing three structures to grade, and installing an environmental barrier on the demolition site . All of this work was performed safely, on schedule, and under budget. During the deactivation phase of the project between November 2005 and February 2007, workers entered the highly contaminated confined-space tank vaults 428 times. Each entry (or 'dive') involved an average of three workers, thus equaling approximately 1,300 individual confined -space entries. Over the course of the entire deactivation and demolition period, there were no recordable injuries and only one minor reportable skin contamination. The 241-Z D and D Project was decommissioned under the provisions of the 'Hanford Federal Facility Agreement and Consent Order' (the Tri-Party Agreement or TPA), the 'Resource Conservation and Recovery Act of 1976' (RCRA), and the 'Comprehensive Environmental Response, Compensation, and Liability Act of 1980

  6. Infrared survey of 50 buildings constructed during 100 years: thermal performances and damage conditions

    Science.gov (United States)

    Ljungberg, Sven-Ake

    1995-03-01

    Different building constructions and craftsmanship give rise to different thermal performance and damage conditions. The building stock of most industrial countries consists of buildings of various age, and constructions, from old historic buildings with heavy stone or wooden construction, to new buildings with heavy or light concrete construction, or modern steel or wooden construction. In this paper the result from a detailed infrared survey of 50 buildings from six Swedish military camps is presented. The presentation is limited to a comparison of thermal performance and damage conditions of buildings of various ages, functions, and constructions, of a building period of more than 100 years. The result is expected to be relevant even to civilian buildings. Infrared surveys were performed during 1992-1993, with airborne, and mobile short- and longwave infrared systems, out- and indoor thermography. Interpretation and analysis of infrared data was performed with interactive image and analyzing systems. Field inspections were carried out with fiber optics system, and by ocular inspections. Air-exchange rate was measured in order to quantify air leakages through the building envelope, indicated in thermograms. The objects studied were single-family houses, barracks, office-, service-, school- and exercise buildings, military hotels and restaurants, aircraft hangars, and ship factory buildings. The main conclusions from this study are that most buildings from 1880 - 1940 have a solid construction with a high quality of craftsmanship, relatively good thermal performance, due to extremely thick walls, and adding insulation at the attic floor. From about 1940 - 1960 the quality of construction, thermal performance and craftsmanship seem to vary a lot. Buildings constructed during the period of 1960 - 1990 have in general the best thermal performance due to a better insulation capacity, however, also one finds here the greatest variety of problems. The result from this

  7. Modeling the Influence of Diffusion-Controlled Reactions and Residual Termination and Deactivation on the Rate and Control of Bulk ATRP at High Conversions

    Directory of Open Access Journals (Sweden)

    Ali Mohammad Rabea

    2015-04-01

    Full Text Available In high-conversion atom transfer radical polymerization (ATRP, all the reactions, such as radical termination, radical deactivation, dormant chain activation, monomer propagation, etc. could become diffusion controlled sooner or later, depending on relative diffusivities of the involved reacting species. These diffusion-controlled reactions directly affect the rate of polymerization and the control of polymer molecular weight. A model is developed to investigate the influence of diffusion-controlled reactions on the high conversion ATRP kinetics. Model simulation reveals that diffusion-controlled termination slightly increases the rate, but it is the diffusion-controlled deactivation that causes auto-acceleration in the rate (“gel effect” and loss of control. At high conversions, radical chains are “trapped” because of high molecular weight. However, radical centers can still migrate through (1 radical deactivation–activation cycles and (2 monomer propagation, which introduce “residual termination” reactions. It is found that the “residual termination” does not have much influence on the polymerization kinetics. The migration of radical centers through propagation can however facilitate catalytic deactivation of radicals, which improves the control of polymer molecular weight to some extent. Dormant chain activation and monomer propagation also become diffusion controlled and finally stop the polymerization when the system approaches its glass state.

  8. Thermal Conditions in the City of Poznań (Poland during Selected Heat Waves

    Directory of Open Access Journals (Sweden)

    Marek Półrolniczak

    2018-01-01

    Full Text Available The aim of the study was to characterise the occurrence of hot days and heat waves in Poznań in the 1966–2015 period, as well as to describe the thermal conditions in the city during selected heat waves between 2008 and 2015. The basis of the study was the daily maximum and minimum air temperature values for Poznań–Ławica station from 1966–2015 and the daily values of air temperature from eight measuring points located in the city in various land types from 2008 to 2015. A hot day was defined as a day with Tmax above the 95th annual percentile (from 1966 to 2015, while a heat wave was assumed to be at least five consecutive hot days. The research study conducted shows the increase of Tmax, number of hot days and frequency of heat waves in Poznań over the last 50 years. Across the area of the city (differentiation of urban area types according to Urban Atlas 2012, there was a great diversity of thermal conditions during the heat waves analysed.

  9. The effect of barrier layer-mediated catalytic deactivation in vertically aligned carbon nanotube growth

    International Nuclear Information System (INIS)

    Patole, S P; Yu, Seong-Man; Shin, Dong-Wook; Yoo, Ji-Beom; Kim, Ha-Jin; Han, In-Taek; Kwon, Kee-Won

    2010-01-01

    The effect of Al-barrier layer-mediated Fe-catalytic deactivation in vertically aligned carbon nanotube (CNT) growth was studied. The substrate surface morphology, catalytic diffusion and barrier layer oxidation were found to be dependent on the annealing temperature of the barrier layer, which ultimately affects CNT growth. The annealed barrier layer without complete oxidation was found to be suitable for top to bottom super aligned CNT arrays. The highest average CNT growth rate of up to 3.88 μm s -1 was observed using this simple approach. Details of the analysis are also presented.

  10. A dynamic switching strategy for air-conditioning systems operated in light-thermal-load conditions

    International Nuclear Information System (INIS)

    Lin, Jin-Long; Yeh, T.-J.; Hwang, Wei-Yang

    2009-01-01

    Recently, modern air-conditioners have begun to incorporate variable-speed compressors and variable-opening expansion valves, together with feedback control to improve the performance and energy efficiency. However, for the compressor there usually exists a low-speed limit below which its speed can not be continuously modulated unless it is completely turned off. When the air-conditioning system is operated in light-thermal-load conditions, the low-speed limit causes the compressor to run in an on-off manner which can significantly degrade the performance and efficiency. In this paper, a dynamic switching strategy is proposed for such scenarios. The strategy is basically an integration of a cascading control structure, an intuitive switching strategy, and a dynamic compensator. While the control structure provides the nominal performance, the intuitive switching strategy and the dynamic compensator together can account for the compressor's low-speed limitation. Theoretical analysis reveals that when the output matrix of the dynamic compensator is chosen properly, the proposed strategy can effectively reduce the output error caused by the on-off operation of the compressor. Experiments also demonstrate that the proposed strategy can simultaneously provide better regulation for the indoor temperature and improve the energy efficiency at steady state.

  11. The Borexino Thermal Monitoring & Management System and simulations of the fluid-dynamics of the Borexino detector under asymmetrical, changing boundary conditions

    Science.gov (United States)

    Bravo-Berguño, D.; Mereu, R.; Cavalcante, P.; Carlini, M.; Ianni, A.; Goretti, A.; Gabriele, F.; Wright, T.; Yokley, Z.; Vogelaar, R. B.; Calaprice, F.; Inzoli, F.

    2018-03-01

    A comprehensive monitoring system for the thermal environment inside the Borexino neutrino detector was developed and installed in order to reduce uncertainties in determining temperatures throughout the detector. A complementary thermal management system limits undesirable thermal couplings between the environment and Borexino's active sections. This strategy is bringing improved radioactive background conditions to the region of interest for the physics signal thanks to reduced fluid mixing induced in the liquid scintillator. Although fluid-dynamical equilibrium has not yet been fully reached, and thermal fine-tuning is possible, the system has proven extremely effective at stabilizing the detector's thermal conditions while offering precise insights into its mechanisms of internal thermal transport. Furthermore, a Computational Fluid-Dynamics analysis has been performed, based on the empirical measurements provided by the thermal monitoring system, and providing information into present and future thermal trends. A two-dimensional modeling approach was implemented in order to achieve a proper understanding of the thermal and fluid-dynamics in Borexino. It was optimized for different regions and periods of interest, focusing on the most critical effects that were identified as influencing background concentrations. Literature experimental case studies were reproduced to benchmark the method and settings, and a Borexino-specific benchmark was implemented in order to validate the modeling approach for thermal transport. Finally, fully-convective models were applied to understand general and specific fluid motions impacting the detector's Active Volume.

  12. Thermal fatigue testing of a diffusion-bonded beryllium divertor mock-up under ITER relevant conditions

    International Nuclear Information System (INIS)

    Youchison, D.L.; Guiniiatouline, R.; Watson, R.D.

    1994-01-01

    Thermal response and thermal fatigue tests of four 5 mm thick beryllium tiles on a Russian divertor mock-up were completed on the Electron Beam Test System at Sandia National Laboratories. The beryllium tiles were diffusion bonded onto an OFHC copper saddleblock and a DSCu (MAGT) tube containing a porous coating. Thermal response tests were performed on the tiles to an absorbed heat flux of 5 MW/m 2 and surface temperatures near 300 degrees C using 1.4 MPa water at 5.0 m/s flow velocity and an inlet temperature of 8-15 degrees C. One tile was exposed to incrementally increasing heat fluxes up to 9.5 MW/m 2 and surface temperatures up to 690 degrees C before debonding at 10 MW/m 2 . A third tile debonded after 9200 thermal fatigue cycles at 5 MW/m 2 , while another debonded after 6800 cycles. In all cases, fatigue failure occurred in the intermetallic layers between the beryllium and copper. No fatigue cracking of the bulk beryllium was observed. During thermal cycling, a gradual loss of porous coating produced increasing sample temperatures. These experiments indicate that diffusion-bonded beryllium tiles can survive several thousand thermal cycles under ITER relevant conditions without failure. However, the reliability of the diffusion bonded Joint remains a serious issue

  13. Studies in the statistical and thermal properties of hadronic matter under some extreme conditions

    International Nuclear Information System (INIS)

    Chase, K.C.; Mekjian, A.Z.; Bhattacharyya, P.

    1997-01-01

    The thermal and statistical properties of hadronic matter under some extreme conditions are investigated using an exactly solvable canonical ensemble model. A unified model describing both the fragmentation of nuclei and the thermal properties of hadronic matter is developed. Simple expressions are obtained for quantities such as the hadronic equation of state, specific heat, compressibility, entropy, and excitation energy as a function of temperature and density. These expressions encompass the fermionic aspect of nucleons, such as degeneracy pressure and Fermi energy at low temperatures and the ideal gas laws at high temperatures and low density. Expressions are developed which connect these two extremes with behavior that resembles an ideal Bose gas with its associated Bose condensation. In the thermodynamic limit, an infinite cluster exists below a certain critical condition in a manner similar to the sudden appearance of the infinite cluster in percolation theory. The importance of multiplicity fluctuations is discussed and some recent data from the EOS collaboration on critical point behavior of nuclei can be accounted for using simple expressions obtained from the model. copyright 1997 The American Physical Society

  14. Hypothetical accident conditions free drop and thermal tests USA/5791/BLF (ERDA-AL)

    International Nuclear Information System (INIS)

    Blankenship, R.W.

    1980-05-01

    The USA/5791/BLF (ERDA-AL) shipping container with rolled-top food pack cans as inner containers is evaluated under conditions required by 10 CFR 71.42. One kilogram of depleted uranium as UO 2 was packaged in each of the inner containers. After completion of a free drop test and a simulated thermal test, the maximum observed leakage of UO 2 for the following week was 3.0 μg. This leakage is well below the allowable leakage per week for most plutonium isotopic mixtures. Using the examples provided, any plutonium isotopic mixture can be easily compared with the allowable leakage per week. Test conditions and results are reported

  15. Thermal behaviour of high burnup PWR fuel under different fill gas conditions

    International Nuclear Information System (INIS)

    Tverberg, T.

    2001-01-01

    During its more than 40 years of existence, a large number of experiments have been carried out at the Halden Reactor Project focusing on different aspects related to nuclear reactor fuel. During recent years, the fuels testing program has mainly been focusing on aspects related to high burnup, in particular in terms of fuel thermal performance and fission gas release, and often involving reinstrumentation of commercially irradiated fuel. The paper describes such an experiment where a PWR rod, previously irradiated in a commercial reactor to a burnup of ∼50 MWd/kgUO 2 , was reinstrumented with a fuel central oxide thermocouple and a cladding extensometer together with a high pressure gas flow line, allowing for different fill gas compositions and pressures to be applied. The paper focuses on the thermal behaviour of such LWR rods with emphasis on how different fill gas conditions influence the fuel temperatures and gap conductance. Rod growth rate was also monitored during the irradiation in the Halden reactor. (author)

  16. Assessment of thermal load on transported goats administered with ascorbic acid during the hot-dry conditions

    Science.gov (United States)

    Minka, N. S.; Ayo, J. O.

    2012-03-01

    The major factor in the induction of physiological stress during road transportation of livestock is the complex fluctuations of the thermal transport microenvironment, encountered when animals are transported across different ecological zones. Recommended guidelines on optimum "on-board" conditions in which goats should be transported are lacking, and there are no acceptable ranges and limits for the thermal loads to which goats may be subjected during long-distance road transportation in hot-dry conditions. Panting score (PS), rectal temperature (RT), heart rate (HR) and respiratory rate (RR) were employed as reliable stress indices to assess the effects of different thermal loads, measured as temperature humidity index (THI), encountered in the vehicle during 12 h of road transportation of 40 goats, and to suggest the administration of 100 mg/kg body weight of ascorbic acid (AA) as an ameliorating agent. The results obtained showed that the PS, RT, HR and RR rose above normal reference values with increase in the THI and journey duration. The rise in PS value, which is a visual indicator of the severity of thermal load, was the most pronounced. The results suggest that values of THI in the vehicle up to 94.6 constitute no risk, while at of 100 it presents a moderate risk and above 100 may result in severe stress. The relationships between the thermal load and the physiological variables were positive and significant ( P goats. The results demonstrated that administration of 100 mg/kg body weight of AA before road transportation mitigated the risk of adverse effects of high THI values and other stress factors due to road transportation in goats.

  17. Effect of thermal treatment conditions on properties of vanadium molybdenum oxide catalyst in acrolein oxidation reaction to acrylic acid

    International Nuclear Information System (INIS)

    Gorshkova, T.P.; Tarasova, D.V.; Olen'kova, I.P.; Andrushkevich, T.V.; Nikoro, T.A.

    1984-01-01

    The effect of thermal treatment conditions (temperature and gas medium) on properties of vanadium molybdenum oxide catalyst in acrolein oxidation reaction to acrylic acid is investigated. It is shown that active and selective catalysts are formed in the course of thermal decomposition of the drying product of ammonium metavanadate and paramolybdate under the conditions ensuring the vanadium ion reduction up to tetravalent state with conservation of molybdenum oxidation degree equal to 6. It is possible to realize it either by treatment of the catalyst calcinated in the air flow at 300 deg by the reaction mixture at the activation stage or by gas-reducer flow treatment at 280 deg. Thermal treatment in the reducing medium of the oxidized catalyst does not lead to complete regeneration of its properties

  18. Regeneration of Pt-catalysts deactivated in municipal waste flue gas with H2/N2 and the effect of regeneration step on the SCR catalyst

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes; Rasmussen, Søren Birk; Kustov, Arkadii

    Municipal waste flue gas was previously found to deactivate the Pt-based CO oxidation catalyst severely. In the specific case studied, siloxanes were found to cause the deactivation. An on-site method for complete regeneration of the catalyst activity was found without shutdown of the flue gas...... stream, i.e. by in situ treatment of the Pt-catalyst by reductive H2-gas. However, introduction of H2 gas in the gas stream could also affect other units in the tail pipe gas cleaning system. Of special interest here, is the effect of hydrogen gas on the performance of the deNOx + SCR catalytic process...

  19. Metallurgical properties of reduced activation martensitic steel Eurofer'97 in the as-received condition and after thermal ageing

    International Nuclear Information System (INIS)

    Fernandez, P.; Lancha, A.M.; Lapena, J.; Serrano, M.; Hernandez-Mayoral, M.

    2002-01-01

    This paper describes the microstructural studies and the mechanical testing (hardness, tensile and charpy tests) performed on the Eurofer'97 steel in the as-received condition and after thermal ageing treatments up to 600 deg. C. In addition, fracture toughness tests on the as-received condition have been carried out in order to determine the Master Curve. During the thermal ageing treatments studied (500 deg. C/5000 h and 600 deg. C/1000 h) the general microstructure of the steel (tempered martensite with M 23 C 6 and MX precipitates) remained stable. Only a slight growth of the particles has been observed. In terms of mechanical properties, the Eurofer'97 steel exhibited similar values of tensile properties (tensile and yield strength) and ductile-brittle transition temperature regardless of the material condition studied.

  20. Cooling Performance Characteristics of the Stack Thermal Management System for Fuel Cell Electric Vehicles under Actual Driving Conditions

    Directory of Open Access Journals (Sweden)

    Ho-Seong Lee

    2016-04-01

    Full Text Available The cooling performance of the stack radiator of a fuel cell electric vehicle was evaluated under various actual road driving conditions, such as highway and uphill travel. The thermal stability was then optimized, thereby ensuring stable operation of the stack thermal management system. The coolant inlet temperature of the radiator in the highway mode was lower than that associated with the uphill mode because the corresponding frontal air velocity was higher than obtained in the uphill mode. In both the highway and uphill modes, the coolant temperatures of the radiator, operated under actual road driving conditions, were lower than the allowable limit (80 °C; this is the maximum temperature at which stable operation of the stack thermal management system of the fuel cell electric vehicle could be maintained. Furthermore, under actual road driving conditions in uphill mode, the initial temperature difference (ITD between the coolant temperature and air temperature of the system was higher than that associated with the highway mode; this higher ITD occurred even though the thermal load of the system in uphill mode was greater than that corresponding to the highway mode. Since the coolant inlet temperature is expected to exceed the allowable limit (80 °C in uphill mode under higher ambient temperature with air conditioning system operation, the FEM design layout should be modified to improve the heat capacity. In addition, the overall volume of the stack cooling radiator is 52.2% higher than that of the present model and the coolant inlet temperature of the improved radiator is 22.7% lower than that of the present model.

  1. Investigation of Thermal Comfort Conditions in Higher Education Facilities: A Case Study for Engineering Faculty in Edirne

    Directory of Open Access Journals (Sweden)

    E. Mıhlayanlar

    2017-02-01

    Full Text Available In this study, a higher education institution in Edirne (Trakya University Engineering Faculty is investigated for indoor thermal comfort conditions of the classrooms (indoor temperature, relative humidity, average radiant temperature, “Satisfaction from thermal environment” (PMV and “Dissatisfaction from thermal environment” (PPD. The classrooms in the institution are heated by a central heating system and utilise natural ventilation system. Measurements were taken with the proper devices at the same time of the weekdays during lecture times in winter (heating season in December. The results obtained from measurements are given in graphics and compared with the values given in ASHRAE 55 and ISO 7730 standards.

  2. Deactivation of Cellulase at the Air-Liquid Interface Is the Main Cause of Incomplete Cellulose Conversion at Low Enzyme Loadings.

    Science.gov (United States)

    Bhagia, Samarthya; Dhir, Rachna; Kumar, Rajeev; Wyman, Charles E

    2018-01-22

    Amphiphilic additives such as bovine serum albumin (BSA) and Tween have been used to improve cellulose hydrolysis by cellulases. However, there has been a lack of clarity to explain their mechanism of action in enzymatic hydrolysis of pure or low-lignin cellulosic substrates. In this work, a commercial Trichoderma reesei enzyme preparation and the amphiphilic additives BSA and Tween 20 were applied for hydrolysis of pure Avicel cellulose. The results showed that these additives only had large effects on cellulose conversion at low enzyme to substrate ratios when the reaction flasks were shaken. Furthermore, changes in the air-liquid interfacial area profoundly affected cellulose conversion, but surfactants reduced or prevented cellulase deactivation at the air-liquid interface. Not shaking the flasks or adding low amounts of surfactant resulted in near theoretical cellulose conversion at low enzyme loadings given enough reaction time. At low enzyme loadings, hydrolysis of cellulose in lignocellulosic biomass with low lignin content suffered from enhanced enzyme deactivation at the air-liquid interface.

  3. Evaluation of Enzymatically Modified Soy Protein Isolate Film Forming Solution and Film at Different Manufacturing Conditions.

    Science.gov (United States)

    Mohammad Zadeh, Elham; O'Keefe, Sean F; Kim, Young-Teck; Cho, Jin-Hun

    2018-04-01

    The effects of transglutaminase on soy protein isolate (SPI) film forming solution and films were investigated by rheological behavior and physicochemical properties based on different manufacturing conditions (enzyme treatments, enzyme incubation times, and protein denaturation temperatures). Enzymatic crosslinking reaction and changes in molecular weight distribution were confirmed by viscosity measurement and SDS-PAGE, respectively, compared to 2 controls: the nonenzyme treated and the deactivated enzyme treated. Films treated with both the enzyme and the deactivated enzyme showed significant increase in tensile strength (TS), percent elongation (%E), and initial contact angle of films compared to the nonenzyme control film due to the bulk stabilizers in the commercial enzyme. Water absorption property, protein solubility, Fourier transform infrared (FTIR) and X-ray diffraction (XRD) spectroscopy revealed that enzyme treated SPI film matrix in the molecular structure level, resulted in the changes in physicochemical properties. Based on our observation, the enzymatic treatment at appropriate conditions is a practical and feasible way to control the physical properties of protein based biopolymeric film for many different scientific and industrial areas. Enzymes can make bridges selectively among different amino acids in the structure of protein matrix. Therefore, protein network is changed after enzyme treatment. The behavior of biopolymeric materials is dependent on the network structure to be suitable in different applications such as bioplastics applied in food and pharmaceutical products. In the current research, transglutaminase, as an enzyme, applied in soy protein matrix in different types of forms, activated and deactivated, and different preparation conditions to investigate its effects on different properties of the new bioplastic film. © 2018 Institute of Food Technologists®.

  4. Thermal analysis on NAC-STC spent fuel transport cask under different transport conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yumei [Institute of Process Equipment, Zhejiang University, Hangzhou (China); Yang, Jian, E-mail: zdhjkz@zju.edu.cn [Institute of Process Equipment, Zhejiang University, Hangzhou (China); Xu, Chao; Wang, Weiping [Institute of Process Equipment, Zhejiang University, Hangzhou (China); Ma, Zhijun [Department of Material Engineering, South China University of Technology, Guangzhou (China)

    2013-12-15

    Highlights: • Spent fuel cask was investigated as a whole instead of fuel assembly alone. • The cask was successfully modeled and meshed after several simplifications. • Equivalence method was used to calculate the properties of parts. • Both the integral thermal field and peak values are captured to verify safety. • The temperature variations of key parts were also plotted. - Abstract: Transport casks used for conveying spent nuclear fuel are inseparably related to the safety of the whole reprocessing system for spent nuclear fuel. Thus they must be designed according to rigorous safety standards including thermal analysis. In this paper, for NAC-STC cask, a finite element model is established based on some proper simplifications on configurations and the heat transfer mechanisms. Considering the complex components and gaps, the equivalence method is presented to define their material properties. Then an equivalent convection coefficient is introduced to define boundary conditions. Finally, the temperature field is captured and analyzed under both normal and accident transport conditions by using ANSYS software. The validity of numerical calculation is given by comparing its results with theoretical calculation. Obtaining the integral distribution laws of temperature and peak temperature values of all vital components, the security of the cask can be evaluated and verified.

  5. Deconvolution of Thermal Emissivity Spectra of Mercury to their Endmember Counterparts measured in Simulated Mercury Surface Conditions

    Science.gov (United States)

    Varatharajan, I.; D'Amore, M.; Maturilli, A.; Helbert, J.; Hiesinger, H.

    2017-12-01

    The Mercury Radiometer and Thermal Imaging Spectrometer (MERTIS) payload of ESA/JAXA Bepicolombo mission to Mercury will map the thermal emissivity at wavelength range of 7-14 μm and spatial resolution of 500 m/pixel [1]. Mercury was also imaged at the same wavelength range using the Boston University's Mid-Infrared Spectrometer and Imager (MIRSI) mounted on the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii with the minimum spatial coverage of 400-600km/spectra which blends all rocks, minerals, and soil types [2]. Therefore, the study [2] used quantitative deconvolution algorithm developed by [3] for spectral unmixing of this composite thermal emissivity spectrum from telescope to their respective areal fractions of endmember spectra; however, the thermal emissivity of endmembers used in [2] is the inverted reflectance measurements (Kirchhoff's law) of various samples measured at room temperature and pressure. Over a decade, the Planetary Spectroscopy Laboratory (PSL) at the Institute of Planetary Research (PF) at the German Aerospace Center (DLR) facilitates the thermal emissivity measurements under controlled and simulated surface conditions of Mercury by taking emissivity measurements at varying temperatures from 100-500°C under vacuum conditions supporting MERTIS payload. The measured thermal emissivity endmember spectral library therefore includes major silicates such as bytownite, anorthoclase, synthetic glass, olivine, enstatite, nepheline basanite, rocks like komatiite, tektite, Johnson Space Center lunar simulant (1A), and synthetic powdered sulfides which includes MgS, FeS, CaS, CrS, TiS, NaS, and MnS. Using such specialized endmember spectral library created under Mercury's conditions significantly increases the accuracy of the deconvolution model results. In this study, we revisited the available telescope spectra and redeveloped the algorithm by [3] by only choosing the endmember spectral library created at PSL for unbiased model

  6. Optimum thermal sizing and operating conditions for once through steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Kunwoo; Ju, Kyongin; Im, Inyoung; Kim, Eunkee [KEPCO Engineering and Construction Company., Inc., Daejeon (Korea, Republic of)

    2014-10-15

    The steam generator is designed to be optimized so as to remove heat and to produce steam vapor. Because of its importance, theoretical and experimental researches have been performed on forced convection boiling heat transfer. The purpose of this study is to predict the thermal behavior and to perform optimum thermal sizing of once through steam generator. To estimate the tube thermal sizing and operating conditions of the steam generator, the analytical modeling is employed on the basis of the empirical correlation equations and theory. The optimized algorithm model, Non-dominated Sorting Genetic Algorithm (NSGA)-II, uses for this analysis. This research is focused on the design of in-vessel steam generator. An one dimensional analysis code is developed to evaluate previous researches and to optimize steam generator design parameters. The results of one-dimensional analysis need to be verified with experimental data. Goals of multi-objective optimization are to minimize tube length, pressure drop and tube number. Feedwater flow rate up to 115.425kg/s is selected so as to have margin of feedwater temperature 20 ..deg. C. For the design of 200MWth once through steam generator, it is evaluated that the tube length shall be over 12.0m for the number of tubes, 2500ea, and the length of the tube shall be over 8.0m for the number of tubes, 4500ea. The parallel coordinates chart can be provided to determine the optimal combination of number of tube, pressure drop, tube diameter and length.

  7. Creep and Environmental Durability of EBC/CMCs Under Imposed Thermal Gradient Conditions

    Science.gov (United States)

    Appleby, Matthew; Morscher, Gregory N.; Zhu, Dongming

    2013-01-01

    Interest in SiC fiber-reinforced SiC ceramic matrix composite (CMC) environmental barrier coating (EBC) systems for use in high temperature structural applications has prompted the need for characterization of material strength and creep performance under complex aerospace turbine engine environments. Stress-rupture tests have been performed on SiC/SiC composites systems, with varying fiber types and coating schemes to demonstrate material behavior under isothermal conditions. Further testing was conducted under exposure to thermal stress gradients to determine the effect on creep resistance and material durability. In order to understand the associated damage mechanisms, emphasis is placed on experimental techniques as well as implementation of non-destructive evaluation; including electrical resistivity monitoring. The influence of environmental and loading conditions on life-limiting material properties is shown.

  8. Functional MRI Assessment of Task-Induced Deactivation of the Default Mode Network in Alzheimer’s Disease and At-Risk Older Individuals

    Directory of Open Access Journals (Sweden)

    Maija Pihlajamäki

    2009-01-01

    Full Text Available Alzheimer’s disease (AD is the most common form of dementia in old age, and is characterized by prominent impairment of episodic memory. Recent functional imaging studies in AD have demonstrated alterations in a distributed network of brain regions supporting memory function, including regions of the default mode network. Previous positron emission tomography studies of older individuals at risk for AD have revealed hypometabolism of association cortical regions similar to the metabolic abnormalities seen in AD patients. In recent functional magnetic resonance imaging (fMRI studies of AD, corresponding brain default mode regions have also been found to demonstrate an abnormal fMRI task-induced deactivation response pattern. That is, the relative decreases in fMRI signal normally observed in the default mode regions in healthy subjects performing a cognitive task are not seen in AD patients, or may even be reversed to a paradoxical activation response. Our recent studies have revealed alterations in the pattern of deactivation also in elderly individuals at risk for AD by virtue of their APOE e4 genotype, or evidence of mild cognitive impairment (MCI. In agreement with recent reports from other groups, these studies demonstrate that the pattern of fMRI task-induced deactivation is progressively disrupted along the continuum from normal aging to MCI and to clinical AD and more impaired in e4 carriers compared to non-carriers. These findings will be discussed in the context of current literature regarding functional imaging of the default network in AD and at-risk populations.

  9. Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior

    Science.gov (United States)

    Cellulose nanowhiskers were prepared by sulfuric acid hydrolysis from coconut husk fibers which had previously been submitted to a delignification process. The effects of preparation conditions on the thermal and morphological behavior of the nanocrystals were investigated. Cellulose nanowhisker sus...

  10. N,N-Diethyl-1-Tosyl-3-Indoleglyoxylamide as a Dienophile in Diels-Alder Reactions. Hyperbaric vs. Thermal Conditions

    Directory of Open Access Journals (Sweden)

    B. Biolatto

    2000-03-01

    Full Text Available Under high pressure conditions, the Diels-Alder reaction involving N,N-diethyl-1-tosyl-3-indoleglyoxylamide and 1-(N-acetyl-N-propylamino-1,3-butadiene produces a highly functionalized intermediate for the synthesis of Indole Alkaloids, in shorter times and higher yields than under thermal conditions.

  11. Effect of controlled deactivation on the thermochemical characteristics of hydrogen adsorption on skeletal nickel from sodium hydroxide-water solutions

    Science.gov (United States)

    Prozorov, D. A.; Lukin, M. V.; Ulitin, M. V.

    2013-04-01

    Differential heats of adsorption in a wide range of surface coverage and maximum amounts of adsorbed hydrogen are determined by adsorption calorimetry on partially deactivated skeletal nickel from aqueous solutions of sodium hydroxide. The effect of the composition of solutions on the values of limiting adsorption and adsorption equilibria of individual forms of hydrogen is shown.

  12. Effect of mode of operation on hydrogen production from glycerol at thermal neutral conditions: Thermodynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pairojpiriyakul, Thirasak; Soottitantawat, Apinan; Arpornwichanop, Amornchai; Assabumrungrat, Suttichai [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University (Thailand); Kiatkittipong, Worapon [Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University (Thailand); Wiyaratn, Wisitsree [Department of Production Technology Education, Faculty of Industrial Education and Technology, King Mongkut' s University of Technology Thonburi (Thailand); Laosiripojana, Navadol [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi (Thailand); Croiset, Eric [Department of Chemical Engineering, University of Waterloo (Canada)

    2010-10-15

    Thermodynamic analysis of hydrogen production from glycerol under thermal neutral conditions is studied in this work. Heat requirement from the process can be achieved from the exothermic reaction of glycerol with oxygen in air fed to the system. Two modes of operation for air feeding are considered including (i) Single-feed mode in which air is fed in combination with water and glycerol to the reformer, and (ii) Split-feed mode in which air and part of glycerol is fed to a combustor in order to generate heat. The thermal neutral conditions are considered for two levels including Reformer and System levels. It was found that the H{sub 2} yield from both modes is not significantly different at the Reformer level. In contrast, the difference becomes more pronounced at the System level. Single-feed and Split-feed modes offer high H{sub 2} yield in low (600-900 K) and high (900-1200 K) temperature ranges, respectively. The maximum H{sub 2} yields are 5.67 (water to glycerol ratio, WGR = 12, oxygen to glycerol ratio, OGR = 0.37, T = 900 K, Split-feed mode), and 3.28 (WGR = 3, OGR = 1.40, T = 900 K, Single-feed mode), for the Reformer and System levels, respectively. The difference between H{sub 2} yields in both levels mainly arises from the huge heat demand for preheating feeds in the System level, and therefore, a higher amount of air is needed to achieve the thermal neutral condition. Split-feed mode is a favorable choice in term of H{sub 2} purity because the gas product is not diluted with N{sub 2} from the air. The use of pure O{sub 2} and afterburner products (ABP) stream were also considered at the System level. The maximum H{sub 2} yield becomes 3.75 (WGR = 5.21, OGR = 1.28, T = 900 K, Split-feed mode) at thermal neutral condition when utilizing heat from the ABP stream. Finally comparisons between the different modes and levels are addressed in terms of yield of by-products, and carbon formation. (author)

  13. Evaluating local and overall thermal comfort in buildings using thermal manikins

    Energy Technology Data Exchange (ETDEWEB)

    Foda, E.

    2012-07-01

    Evaluation methods of human thermal comfort that are based on whole-body heat balance with its surroundings may not be adequate for evaluations in non-uniform thermal conditions. Under these conditions, the human body's segments may experience a wide range of room physical parameters and the evaluation of the local (segmental) thermal comfort becomes necessary. In this work, subjective measurements of skin temperature were carried out to investigate the human body's local responses due to a step change in the room temperature; and the variability in the body's local temperatures under different indoor conditions and exposures as well as the physiological steady state local temperatures. Then, a multi-segmental model of human thermoregulation was developed based on these findings to predict the local skin temperatures of individuals' body segments with a good accuracy. The model predictability of skin temperature was verified for steady state and dynamic conditions using measured data at uniform neutral, cold and warm as well as different asymmetric thermal conditions. The model showed very good predictability with average absolute deviation ranged from 0.3-0.8 K. The model was then implemented onto the control system of the thermal manikin 'THERMINATOR' to adjust the segmental skin temperature set-points based on the indoor conditions. This new control for the manikin was experimentally validated for the prediction of local and overall thermal comfort using the equivalent temperature measure. THERMINATOR with the new control mode was then employed in the evaluation of localized floor-heating system variants towards maximum energy efficiency. This aimed at illustrating a design strategy using the thermal manikin to find the optimum geometry and surface area of a floor-heater for a single seated person. Furthermore, a psychological comfort model that is based on local skin temperature was adapted for the use with the model of human

  14. Electro-thermal Modeling of Modern Power Devices for Studying Abnormal Operating Conditions

    DEFF Research Database (Denmark)

    Wu, Rui

    in industrial power electronic systems in the range above 10 kW. The failure of IGBTs can be generally classified as catastrophic failures and wear out failures. A wear out failure is mainly induced by accumulated degradation with time, while a catastrophic failure is triggered by a single-event abnormal....... The objective of this project has been to model and predict the electro-thermal behavior of IGBT power modules under abnormal conditions, especially short circuits. A thorough investigation on catastrophic failure modes and mechanisms of modern power semiconductor devices, including IGBTs and power diodes, has...

  15. Robust Vehicle Detection under Various Environmental Conditions Using an Infrared Thermal Camera and Its Application to Road Traffic Flow Monitoring

    Directory of Open Access Journals (Sweden)

    Toshiyuki Nakamiya

    2013-06-01

    Full Text Available We have already proposed a method for detecting vehicle positions and their movements (henceforth referred to as “our previous method” using thermal images taken with an infrared thermal camera. Our experiments have shown that our previous method detects vehicles robustly under four different environmental conditions which involve poor visibility conditions in snow and thick fog. Our previous method uses the windshield and its surroundings as the target of the Viola-Jones detector. Some experiments in winter show that the vehicle detection accuracy decreases because the temperatures of many windshields approximate those of the exterior of the windshields. In this paper, we propose a new vehicle detection method (henceforth referred to as “our new method”. Our new method detects vehicles based on tires’ thermal energy reflection. We have done experiments using three series of thermal images for which the vehicle detection accuracies of our previous method are low. Our new method detects 1,417 vehicles (92.8% out of 1,527 vehicles, and the number of false detection is 52 in total. Therefore, by combining our two methods, high vehicle detection accuracies are maintained under various environmental conditions. Finally, we apply the traffic information obtained by our two methods to traffic flow automatic monitoring, and show the effectiveness of our proposal.

  16. Robust vehicle detection under various environmental conditions using an infrared thermal camera and its application to road traffic flow monitoring.

    Science.gov (United States)

    Iwasaki, Yoichiro; Misumi, Masato; Nakamiya, Toshiyuki

    2013-06-17

    We have already proposed a method for detecting vehicle positions and their movements (henceforth referred to as "our previous method") using thermal images taken with an infrared thermal camera. Our experiments have shown that our previous method detects vehicles robustly under four different environmental conditions which involve poor visibility conditions in snow and thick fog. Our previous method uses the windshield and its surroundings as the target of the Viola-Jones detector. Some experiments in winter show that the vehicle detection accuracy decreases because the temperatures of many windshields approximate those of the exterior of the windshields. In this paper, we propose a new vehicle detection method (henceforth referred to as "our new method"). Our new method detects vehicles based on tires' thermal energy reflection. We have done experiments using three series of thermal images for which the vehicle detection accuracies of our previous method are low. Our new method detects 1,417 vehicles (92.8%) out of 1,527 vehicles, and the number of false detection is 52 in total. Therefore, by combining our two methods, high vehicle detection accuracies are maintained under various environmental conditions. Finally, we apply the traffic information obtained by our two methods to traffic flow automatic monitoring, and show the effectiveness of our proposal.

  17. Plug-in hybrid electric vehicle LiFePO4 battery life implications of thermal management, driving conditions, and regional climate

    Science.gov (United States)

    Yuksel, Tugce; Litster, Shawn; Viswanathan, Venkatasubramanian; Michalek, Jeremy J.

    2017-01-01

    Battery degradation strongly depends on temperature, and many plug-in electric vehicle applications employ thermal management strategies to extend battery life. The effectiveness of thermal management depends on the design of the thermal management system as well as the battery chemistry, cell and pack design, vehicle system characteristics, and operating conditions. We model a plug-in hybrid electric vehicle with an air-cooled battery pack composed of cylindrical LiFePO4/graphite cells and simulate the effect of thermal management, driving conditions, regional climate, and vehicle system design on battery life. We estimate that in the absence of thermal management, aggressive driving can cut battery life by two thirds; a blended gas/electric-operation control strategy can quadruple battery life relative to an all-electric control strategy; larger battery packs can extend life by an order of magnitude relative to small packs used for all-electric operation; and batteries last 73-94% longer in mild-weather San Francisco than in hot Phoenix. Air cooling can increase battery life by a factor of 1.5-6, depending on regional climate and driving patterns. End of life criteria has a substantial effect on battery life estimates.

  18. Investigation of bacterial transport in the large-block test, a thermally perturbed block of Topopah Spring tuff

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.I.; Meike, A.; Chuu, Y.J.; Sawvel, A.; Lin, W.

    1999-07-01

    Transport of bacteria is investigated as part of the Large-Block Test (LBT), a thermally perturbed block of Topopah Spring tuff. Two bacterial species, Bacillus subtilis and Arthrobacter oxydans, were isolated from the Yucca Mountain Tuff. Natural mutants that can grow under the simultaneous presence of the two antibiotics, streptomycin and rifampicin, were selected from these species by laboratory procedures, cultured, and injected into the five heater boreholes of the large block hours before heating was initiated. The temperature, as measured 5 cm above one of the heater boreholes, rose slowly over a matter of months to a maximum of 142 C and to 60 C at the top and bottom of the block. Samples were collected from boreholes located approximately 5 ft below the injection points. Double-drug-resistant microbes also appeared in the heater boreholes where the temperature had been sustainably high throughout the test. The number of double-drug-resistant bacteria that were identified in the collection boreholes increased with time until the heater was deactivated. Negative indications in the collection holes after the heater was deactivated support the supposition that these bacteria were the species that were injected. An apparent homogeneous distribution among the collection boreholes suggests no pattern to the migration of bacteria through the block. The relationship between bacterial migration and the movement of water is not yet understood. These observations indicate the possibility of rapid bacterial transport in a thermally perturbed geologic setting. The implications for colloid transport need to be reviewed.

  19. Investigation of bacterial transport in the large-block test, a thermally perturbed block of Topopah Spring tuff

    International Nuclear Information System (INIS)

    Chen, C.I.; Meike, A.; Chuu, Y.J.; Sawvel, A.; Lin, W.

    1999-01-01

    Transport of bacteria is investigated as part of the Large-Block Test (LBT), a thermally perturbed block of Topopah Spring tuff. Two bacterial species, Bacillus subtilis and Arthrobacter oxydans, were isolated from the Yucca Mountain Tuff. Natural mutants that can grow under the simultaneous presence of the two antibiotics, streptomycin and rifampicin, were selected from these species by laboratory procedures, cultured, and injected into the five heater boreholes of the large block hours before heating was initiated. The temperature, as measured 5 cm above one of the heater boreholes, rose slowly over a matter of months to a maximum of 142 C and to 60 C at the top and bottom of the block. Samples were collected from boreholes located approximately 5 ft below the injection points. Double-drug-resistant microbes also appeared in the heater boreholes where the temperature had been sustainably high throughout the test. The number of double-drug-resistant bacteria that were identified in the collection boreholes increased with time until the heater was deactivated. Negative indications in the collection holes after the heater was deactivated support the supposition that these bacteria were the species that were injected. An apparent homogeneous distribution among the collection boreholes suggests no pattern to the migration of bacteria through the block. The relationship between bacterial migration and the movement of water is not yet understood. These observations indicate the possibility of rapid bacterial transport in a thermally perturbed geologic setting. The implications for colloid transport need to be reviewed

  20. Numerical investigations of buoyancy-driven natural ventilation in a simple atrium building and its effect on the thermal comfort conditions

    International Nuclear Information System (INIS)

    Hussain, Shafqat; Oosthuizen, Patrick H.

    2012-01-01

    In the present study use of solar-assisted buoyancy-driven natural ventilation in a simple atrium building is explored numerically with particular emphasis on the thermal comfort conditions in the building. Initially various geometric configurations of the atrium space were considered in order to investigate airflows and temperature distributions in the building using a validated computational fluid dynamics (CFD) model. The Reynolds Averaged Navier–Stokes (RANS) modelling approach with the SST-k–ω turbulence model and the Discrete Transfer Radiation Model (DTRM) was used for the investigations. The steady-state governing equations were solved using a commercial CFD solver FLUENT © . From the numerical results obtained, it was noted that an atrium space integrated with a solar chimney would be a relatively better option to be used in an atrium building. In the geometry selected, the performance of the building in response to various changes in design parameters was investigated. The produced airflows and temperature distributions were then used to evaluate indoor thermal comfort conditions in terms of the thermal comfort indices, i.e. the well-known predicted mean vote (PMV) index, its modifications especially for natural ventilation, predicted percent dissatisfied (PPD) index and Percent dissatisfied (PD) factor due to draft. It was found that the thermal conditions in the occupied areas of the building developed as a result of the use of solar-assisted buoyancy-driven ventilation for the particular values of the design parameters selected are mostly in the comfortable zone. Finally, it is demonstrated that the proposed methodology leads to reliable thermal comfort predictions, while the effect of various design variables on the performance of the building is easily recognized. - Highlights: ► Numerical investigations were carried for the use of buoyancy-driven displacement ventilation in a simple atrium building. ► Effect of various atrium

  1. System and method of cylinder deactivation for optimal engine torque-speed map operation

    Science.gov (United States)

    Sujan, Vivek A; Frazier, Timothy R; Follen, Kenneth; Moon, Suk-Min

    2014-11-11

    This disclosure provides a system and method for determining cylinder deactivation in a vehicle engine to optimize fuel consumption while providing the desired or demanded power. In one aspect, data indicative of terrain variation is utilized in determining a vehicle target operating state. An optimal active cylinder distribution and corresponding fueling is determined from a recommendation from a supervisory agent monitoring the operating state of the vehicle of a subset of the total number of cylinders, and a determination as to which number of cylinders provides the optimal fuel consumption. Once the optimal cylinder number is determined, a transmission gear shift recommendation is provided in view of the determined active cylinder distribution and target operating state.

  2. The investigation of deactivation the tailings from sulphate uranium technology

    International Nuclear Information System (INIS)

    Nikonov, V.I.; Knjazev, O.I.; Ruzin, L.I.; Smolnya, T.A.

    2001-01-01

    The purpose of investigation is to decrease contamination of the environment from wastes, produced on treatment of uranium ores by traditional sulphate uranium technology. In the result of treatment the sulphate uranium leaching cakes by 1-3 M chloride or nitrate of alkali-earth metals solutions, the content of radium decrease till (2.4 - 3.0) x 10 -8 Ci/kg. Produced deactivating solutions in which the content of radium-226 and other natural radionuclides exceeds of ten times the limit of tolerance safe concentrations for water (5.4 x 10 -11 Ci/l Ra-226) further may be treated by sorption or extraction. Due to the reason we pay our attention to the class of non-traditional ion-exchangers, which is the micellar wastes from production of antibiotics (MPW). The problems of it's utilization is very acute. MPW from antibiotics generates everyday is amount of tens tones (on dried mass), contents till 80% of moisture and include in solid phase 50 - 95 % organics in the work we used MPW from erythromycin in form of dried powder with size of particles to 0.05 - 0.16 mm. The possibility of radionuclides extraction by mixture of D2EHPA with TBP or TOPO for nitric deactivated solutions are investigated. It was received the complete extraction Th-230 into organic phase and next concentration with high content of isotope Th-230. Ra-D and Po are not recovered by the extractant. Using the extractant preliminary saturated with barium permit to extract completely Ra from solution. The method purification of technological solutions from activity with using solid extractants - TVEKS was developed. The TVEKS samples on styren-divinylbenzen copolymer base with size 1.0 - 1.5 mm were synthesized. The solid carrier was impregnated by D2EHPA or PN-1200 extractant solution in kerosene and used for extraction of radioactive elements (mainly Ra) from chloride acid solutions with summary activity 8.7 x 10 -10 Ci/l. TVEKS was activated by barium to capacity 1-3 mg/l for increasing purification

  3. Thermal analysis of the modified Hallum Nuclear Power Facility cask using experimentally obtained thermal boundary conditions corresponding to an engulfing open pool fire

    International Nuclear Information System (INIS)

    Longenbaugh, R.S.; Sanchez, L.C.; Gregory, J.J.

    1987-08-01

    This report presents the two-dimensional heat transfer analysis of an open pool fire surrounding a modified radioactive materials transport cask. The cask is an older cask that was used by the Hallum Nuclear Power Facility (HNPF). The HNPF cask did not have a neutron shielding region but was modified to include one for testing purposes. Analysis of the thermal effects of an engulfing open pool fire was performed with the use of the heat transfer code Q/TRAN, which had previously been used in thermal benchmarking problems for spent nuclear fuel casks. Boundary condition data for the analysis were derived from experimental open pool fire tests of large-scale calorimeter test articles performed at SNL that produced information about cask surface heat flux versus surface temperature relationships. Data analysis was directed toward a determination of the thermal response of the cask, particularly the extent of lead melt since lead is used within the HNPF cask's gamma-shielding region. Parameters, such as surface emissivity and internal heat generation rate, can affect the results of the thermal analysis which control the amount of lead melt. A parameter sensitivity analysis was performed using a one-dimensional model to describe how surface emissivity and internal heat generation rates affect the temperature distribution within the cask. The information from this analysis was used to determine the range of parameters for the two-dimensional thermal analysis. 13 refs., 57 figs., 8 tabs

  4. Selective oxidation of methyl {alpha}-D-glucopyranoside with oxygen over supported platinum: Kinetic modeling in the presence of deactivation by overoxidation of the catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Vleeming, J.H.; Kuster, B.F.M.; Marin, G.B. [Eindhoven Univ. of Technology (Netherlands)

    1997-09-01

    The selective oxidation of alcohols and carbohydrates with molecular oxygen in aqueous media is an industrial and environmental attractive process. A kinetic model is presented, which describes the platinum-catalyzed selective oxidation of methyl {alpha}-D-glucopyranoside to sodium methyl {alpha}-D-glucuronate with molecular oxygen in the presence of deactivation by overoxidation. Overoxidation is completely reversible and most adequately described by a reversible transformation of oxygen adatoms into inactive subsurface oxygen. A clear distinction is made between the rapid establishment of the steady-state degree of coverage by the reaction intermediates at the platinum surface and the much slower reversible process of overoxidation. This clear distinction is reflected in the rate equation, which can be written as the product of an initial rate and a deactivation function. The deactivation function is given as a function of the degree of coverage by inactive subsurface oxygen. The rate-determining step in the selective oxidation consists of the reaction between dissociatively chemisorbed oxygen and physisorbed methyl {alpha}-D-glucopyranoside. The corresponding standard activation entropy and enthalpy amount to respectively {minus}111 {+-} 12 J/mol K and 51 {+-} 4 kJ/mol. The standard reaction entropy for the transformation of oxygen atoms into subsurface oxygen amounts to {minus}35 {+-} 16 J/mol K and the standard reaction enthalpy to {minus}36 {+-} 15 kJ/mol.

  5. System and method of providing quick thermal comfort with reduced energy by using directed spot conditioning

    Science.gov (United States)

    Wang, Mingyu; Kadle, Prasad S.; Ghosh, Debashis; Zima, Mark J.; Wolfe, IV, Edward; Craig, Timothy D

    2016-10-04

    A heating, ventilation, and air conditioning (HVAC) system and a method of controlling a HVAC system that is configured to provide a perceived comfortable ambient environment to an occupant seated in a vehicle cabin. The system includes a nozzle configured to direct an air stream from the HVAC system to the location of a thermally sensitive portion of the body of the occupant. The system also includes a controller configured to determine an air stream temperature and an air stream flow rate necessary to establish the desired heat supply rate for the sensitive portion and provide a comfortable thermal environment by thermally isolating the occupant from the ambient vehicle cabin temperature. The system may include a sensor to determine the location of the sensitive portion. The nozzle may include a thermoelectric device to heat or cool the air stream.

  6. DEACTIVATION AND DECOMMISSIONING ENVIRONMENTAL STRATEGY FOR THE PLUTONIUM FINISHING PLANT COMPLEX, HANFORD NUCLEAR RESERVATION

    International Nuclear Information System (INIS)

    Hopkins, A.M.; Heineman, R.; Norton, S.; Miller, M.; Oates, L.

    2003-01-01

    Maintaining compliance with environmental regulatory requirements is a significant priority in successful completion of the Plutonium Finishing Plant (PFP) Nuclear Material Stabilization (NMS) Project. To ensure regulatory compliance throughout the deactivation and decommissioning of the PFP complex, an environmental regulatory strategy was developed. The overall goal of this strategy is to comply with all applicable environmental laws and regulations and/or compliance agreements during PFP stabilization, deactivation, and eventual dismantlement. Significant environmental drivers for the PFP Nuclear Material Stabilization Project include the Tri-Party Agreement; the Resource Conservation and Recovery Act of 1976 (RCRA); the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA); the National Environmental Policy Act of 1969 (NEPA); the National Historic Preservation Act (NHPA); the Clean Air Act (CAA), and the Clean Water Act (CWA). Recent TPA negotiation s with Ecology and EPA have resulted in milestones that support the use of CERCLA as the primary statutory framework for decommissioning PFP. Milestones have been negotiated to support the preparation of Engineering Evaluations/Cost Analyses for decommissioning major PFP buildings. Specifically, CERCLA EE/CA(s) are anticipated for the following scopes of work: Settling Tank 241-Z-361, the 232-Z Incinerator, , the process facilities (eg, 234-5Z, 242, 236) and the process facility support buildings. These CERCLA EE/CA(s) are for the purpose of analyzing the appropriateness of the slab-on-grade endpoint Additionally, agreement was reached on performing an evaluation of actions necessary to address below-grade structures or other structures remaining after completion of the decommissioning of PFP. Remaining CERCLA actions will be integrated with other Central Plateau activities at the Hanford site

  7. Influence of the thermal boundary conditions on the flow and the isotope separation of a gas centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, P.

    1981-11-01

    The axisymmetric steady gas flow in a so called thermally driven ultracentrifuge at total reflux and its /sup 235/UF/sub 6/-/sup 238/UF/sub 6/- separating characteristics are treated numerically. The top and the bottom end-caps are thermally conducting and kept at temperatures generally depending on radius. Regarding the side-wall temperature conditions, three cases will be considered: (1) insulated side-wall; (2) side-wall at constant temperature; (3) linear temperature profile continuously joining the end-plate temperatures. 20 figures, 2 tables.

  8. Multiregion, multigroup collision probability method with white boundary condition for light water reactor thermalization calculations

    International Nuclear Information System (INIS)

    Ozgener, B.; Ozgener, H.A.

    2005-01-01

    A multiregion, multigroup collision probability method with white boundary condition is developed for thermalization calculations of light water moderated reactors. Hydrogen scatterings are treated by Nelkin's kernel while scatterings from other nuclei are assumed to obey the free-gas scattering kernel. The isotropic return (white) boundary condition is applied directly by using the appropriate collision probabilities. Comparisons with alternate numerical methods show the validity of the present formulation. Comparisons with some experimental results indicate that the present formulation is capable of calculating disadvantage factors which are closer to the experimental results than alternative methods

  9. Thermal convection in a closed cavity in zero-gravity space conditions with stationary magnetic forces

    International Nuclear Information System (INIS)

    Lyubimova, T; Mailfert, A

    2013-01-01

    The paper deals with the investigation of thermo-magnetic convection in a paramagnetic liquid subjected to a non-uniform magnetic field in weightlessness conditions. Indeed, in zero-g space conditions such as realized in International Space Station (ISS), or in artificial satellite, or in free-flight space vessels, the classical thermo-gravitational convection in fluid disappears. In any cases, it may be useful to restore the convective thermal exchange inside fluids such as liquid oxygen. In this paper, the restoration of heat exchange by the way of creation of magnetic convection is numerically studied.

  10. Influence of Thermal Treatment Conditions on the Properties of Dental Silicate Cements

    Directory of Open Access Journals (Sweden)

    Georgeta Voicu

    2016-02-01

    Full Text Available In this study the sol-gel process was used to synthesize a precursor mixture for the preparation of silicate cement, also called mineral trioxide aggregate (MTA cement. This mixture was thermally treated under two different conditions (1400 °C/2 h and 1450 °C/3 h followed by rapid cooling in air. The resulted material (clinker was ground for one hour in a laboratory planetary mill (v = 150 rot/min, in order to obtain the MTA cements. The setting time and mechanical properties, in vitro induction of apatite formation by soaking in simulated body fluid (SBF and cytocompatibility of the MTA cements were assessed in this study. The hardening processes, nature of the reaction products and the microstructural characteristics were also investigated. The anhydrous and hydrated cements were characterized by different techniques e.g., X-ray diffraction (XRD, scanning electron microscopy (SEM, infrared spectroscopy (FT-IR and thermal analysis (DTA-DTG-TG. The setting time of the MTA cement obtained by thermal treatment at 1400 °C/2 h (MTA1 was 55 min and 15 min for the MTA cement obtained at 1450 °C/3 h (MTA2. The compressive strength values were 18.5 MPa (MTA1 and 22.9 MPa (MTA2. Both MTA cements showed good bioactivity (assessed by an in vitro test, good cytocompatibility and stimulatory effect on the proliferation of cells.

  11. Thermal denaturation of sunflower globulins in low moisture conditions

    International Nuclear Information System (INIS)

    Rouilly, A.; Orliac, O.; Silvestre, F.; Rigal, L.

    2003-01-01

    DSC analysis in pressure resisting pans of sunflower oil cake makes appear the endothermic peak of sunflower globulins denaturation. Its temperature decreases from 189.5 to 119.9 deg. C while the corresponding enthalpy increases from 2.6 to 3.3 J/g of sample, or from 6.7 to 12.2 J/g of dry protein, when the samples moisture content varies from 0 to 30.0% of the total weight. The plot of the denaturation temperature versus the moisture content is not linear but has a rounded global shape and seems to follow the hydration behavior of the proteins, modeled with the sorption isotherm. As it can be seen on scanning electron microscopy (SEM) micrographs, protein corpuscles 'melt' after such a thermal treatment and large aggregates form by coagulation. Moisture dependence of the 'fusion' temperature of native proteic organization, in low moisture conditions, offers so a new characterization method for the use of vegetable proteins in agro-materials

  12. Thermal denaturation of sunflower globulins in low moisture conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rouilly, A.; Orliac, O.; Silvestre, F.; Rigal, L

    2003-03-05

    DSC analysis in pressure resisting pans of sunflower oil cake makes appear the endothermic peak of sunflower globulins denaturation. Its temperature decreases from 189.5 to 119.9 deg. C while the corresponding enthalpy increases from 2.6 to 3.3 J/g of sample, or from 6.7 to 12.2 J/g of dry protein, when the samples moisture content varies from 0 to 30.0% of the total weight. The plot of the denaturation temperature versus the moisture content is not linear but has a rounded global shape and seems to follow the hydration behavior of the proteins, modeled with the sorption isotherm. As it can be seen on scanning electron microscopy (SEM) micrographs, protein corpuscles 'melt' after such a thermal treatment and large aggregates form by coagulation. Moisture dependence of the 'fusion' temperature of native proteic organization, in low moisture conditions, offers so a new characterization method for the use of vegetable proteins in agro-materials.

  13. PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSTON GA

    2008-01-15

    Fluor Hanford, Inc. (FH) is proud to submit the Plutonium Finishing Plant (PFP) 241-Z liquid Waste Treatment Facility Deactivation and Demolition (D&D) Project for consideration by the Project Management Institute as Project of the Year for 2008. The decommissioning of the 241-Z Facility presented numerous challenges, many of which were unique with in the Department of Energy (DOE) Complex. The majority of the project budget and schedule was allocated for cleaning out five below-grade tank vaults. These highly contaminated, confined spaces also presented significant industrial safety hazards that presented some of the most hazardous work environments on the Hanford Site. The 241-Z D&D Project encompassed diverse tasks: cleaning out and stabilizing five below-grade tank vaults (also called cells), manually size-reducing and removing over three tons of process piping from the vaults, permanently isolating service utilities, removing a large contaminated chemical supply tank, stabilizing and removing plutonium-contaminated ventilation ducts, demolishing three structures to grade, and installing an environmental barrier on the demolition site . All of this work was performed safely, on schedule, and under budget. During the deactivation phase of the project between November 2005 and February 2007, workers entered the highly contaminated confined-space tank vaults 428 times. Each entry (or 'dive') involved an average of three workers, thus equaling approximately 1,300 individual confined -space entries. Over the course of the entire deactivation and demolition period, there were no recordable injuries and only one minor reportable skin contamination. The 241-Z D&D Project was decommissioned under the provisions of the 'Hanford Federal Facility Agreement and Consent Order' (the Tri-Party Agreement or TPA), the 'Resource Conservation and Recovery Act of 1976' (RCRA), and the 'Comprehensive Environmental Response, Compensation, and

  14. Activated and deactivated functional brain areas in the Deqi state: A functional MRI study.

    Science.gov (United States)

    Huang, Yong; Zeng, Tongjun; Zhang, Guifeng; Li, Ganlong; Lu, Na; Lai, Xinsheng; Lu, Yangjia; Chen, Jiarong

    2012-10-25

    We compared the activities of functional regions of the brain in the Deqi versus non-Deqi state, as reported by physicians and subjects during acupuncture. Twelve healthy volunteers received sham and true needling at the Waiguan (TE5) acupoint. Real-time cerebral functional MRI showed that compared with non-sensation after sham needling, true needling activated Brodmann areas 3, 6, 8, 9, 10, 11, 13, 20, 21, 37, 39, 40, 43, and 47, the head of the caudate nucleus, the parahippocampal gyrus, thalamus and red nucleus. True needling also deactivated Brodmann areas 1, 2, 3, 4, 5, 6, 7, 9, 10, 18, 24, 31, 40 and 46.

  15. A study of paint sludge deactivation by pyrolysis reactions

    Directory of Open Access Journals (Sweden)

    Muniz L.A.R.

    2003-01-01

    Full Text Available The production of large quantities of paint sludge is a serious environmental problem. This work evaluates the use of pyrolysis reaction as a process for deactivating paint sludge that generates a combustible gas phase, a solvent liquid phase and an inert solid phase. These wastes were classified into three types: water-based solvent (latex resin and solvents based on their resins (alkyd and polyurethane. An electrically heated stainless steel batch reactor with a capacity of 579 mL and a maximum pressure of 30 atm was used. Following the reactor, a flash separator, which was operated at atmospheric pressure, partially condensed and separated liquid and gas products. Pressure and temperature were monitored on-line by a control and data acquisition system, which adjusted the heating power supplied to the pyrolysis reactor. Reactions followed an experimental design with two factors (reaction time and temperature and three levels (10, 50 and 90 minutes; 450, 550 and 650degreesC. The response variables were liquid and solid masses and net heat of combustion. The optimal operational range for the pyrolysis process was obtained for each response variable. A significant reduction in total mass of solid waste was obtained.

  16. An inverse method for calculation of thermal inertia and heat gain in air conditioning and refrigeration systems

    International Nuclear Information System (INIS)

    Fayazbakhsh, M.A.; Bagheri, F.; Bahrami, M.

    2015-01-01

    Highlights: • An inverse method is proposed to calculate thermal inertia in HVAC-R systems. • Real-time thermal loads are estimated using the proposed intelligent algorithm. • Calculation algorithm is validated with on-site measurements. • Freezer duty cycle data are extracted only based on temperature measurements. - Abstract: A new inverse method is proposed for estimation of thermal inertia and heat gain in air conditioning and refrigeration systems using on-site temperature measurements. The method is applied on a walk-in freezer room of a restaurant in Surrey, British Columbia, Canada during one week of its regular operation. The thermal inertia and instantaneous heat gain are calculated and the results are validated using actual information of the materials inside the freezer room. The proposed method can be implemented in intelligent control systems designed for new and existing HVAC-R systems to improve their overall energy efficiency and reduce their environmental impacts

  17. TPX vacuum vessel transient thermal and stress conditions

    International Nuclear Information System (INIS)

    Feldshteyn, Y.; Dinkevich, S.; Feng, T.; Majumder, D.

    1995-01-01

    The TPX vacuum vessel provides the vacuum boundary for the plasma and the mechanical support for the internal components. Another function of the vacuum vessel is to contain neutron shielding water in the double wall space during normal operation. This double wall space serves as a heat reservoir for the entire vacuum vessel during bakeout. The vacuum vessel and the internal components are subjected to thermal stresses induced by a nonuniform temperature distribution within the structure during bakeout. A successful Conceptual Design Review in March 1993 has established superheated steam as the heating source of the vacuum vessel. A transient bakeout mode of the vacuum vessel and in-vessel components has been analyzed to evaluate transient period duration, proper temperature level, actual thermal stresses and performance of the steam equipment. Thermally, the vacuum vessel structure may be considered as an adiabatic system because it is perfectly insulated by the strong surrounding vacuum and multiple layers of superinsulation. Important aspects of the analysis are described herein

  18. CHAR CRYSTALLINE TRANSFORMATIONS DURING COAL COMBUSTION AND THEIR IMPLICATIONS FOR CARBON BURNOUT

    Energy Technology Data Exchange (ETDEWEB)

    ROBERT H. HURT

    1998-09-08

    temperatures approaching 3000 o C. For the measurement of temperature histories an optical diagnostic is being developed that offers sufficient spatial resolution to distinguish the sample temperature from the substrate temperature. The optical diagnostic is based on a CID camera, a high-power lens, and movable mirrors to projecting multiple, filtered images onto a single chip. Oxidation kinetics are measured on the heat treated samples by a nonisothermal TGA technique. Task 2 Thermal deactivation kinetics. The goal of this task is to quantify thermal char deactivation as a function of temperature history and parent coal, with an emphasis on inert environments at temperatures and times found in combustion systems. The results are to be cast in the form of deactivation kinetics useful for incorporation in combustion models. Task 3 Crystal structure characterization. Crystal structure characterization provides important insight into the mechanisms of thermal char deactivation, and the degree of crystalline transformations has shown a strong correlation with reactivity changes in recent combustion studies [Davis et al., 1992, Beeley et al., 1996]. This task seeks to improve our understanding of char carbon crystalline transformations under combustion conditions by analyzing a large set of HRTEM fringe images for a series of flame-generated chars whose reactivities have been previously reported [Hurt et al., 1995, Beeley et al., 1996]. As a first step, a new technique is being developed for the quantitative analysis of fringe images, extending previous work to allow measurement of a complete set of crystal structure parameters including mean layer size, mean stacking height, interlayer spacing, layer curvature, amorphous fraction, and degree of anisotropy. The resulting database will revealing, at a very fundamental level, the basic differences in char crystal structure due to parent coal rank and to temperature history in the range of interest to combustion systems.

  19. Deactivation by polysiloxane and phenyl containing disilazane : a 29Si CP-MAS NMR study after the formation of polysiloxane chains at the surface

    NARCIS (Netherlands)

    Hetem, M.J.J.; Rutten, G.A.F.M.; Ven, van de L.J.M.; Haan, de J.W.; Cramers, C.A.M.G.

    1988-01-01

    A high degree of deactivation of glass and fused-silica capillary column walls is attainable by means of high temperature silylation (HTS) with or without a preceding leaching process. HTS with a phenyl containing disilazane, diphenyltetramethyldisilazane (DPTMDS), and polydimethylsiloxane (PDMS)

  20. Thermal comfort in air-conditioned buildings in hot and humid climates--why are we not getting it right?

    Science.gov (United States)

    Sekhar, S C

    2016-02-01

    While there are plenty of anecdotal experiences of overcooled buildings in summer, evidence from field studies suggests that there is indeed an issue of overcooling in tropical buildings. The findings suggest that overcooled buildings are not a consequence of occupant preference but more like an outcome of the HVAC system design and operation. Occupants' adaptation in overcooled indoor environments through additional clothing cannot be regarded as an effective mitigating strategy for cold thermal discomfort. In the last two decades or so, several field studies and field environmental chamber studies in the tropics provided evidence for occupants' preference for a warmer temperature with adaptation methods such as elevated air speeds. It is important to bear in mind that indoor humidity levels are not compromised as they could have an impact on the inhaled air condition that could eventually affect perceived air quality. This review article has attempted to track significant developments in our understanding of the thermal comfort issues in air-conditioned office and educational buildings in hot and humid climates in the last 25 years, primarily on occupant preference for thermal comfort in such climates. The issue of overcooled buildings, by design intent or otherwise, is discussed in some detail. Finally, the article has explored some viable adaptive thermal comfort options that show considerable promise for not only improving thermal comfort in tropical buildings but are also energy efficient and could be seen as sustainable solutions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Synthesis of ZnWO{sub 4} Electrode with tailored facets: Deactivating the Microorganisms through Photoelectrocatalytic methods

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Su [Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026 (China); Zhou, Feng, E-mail: zhoufeng99@mails.tsinghua.edu.cn [Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026 (China); Huang, Naibao; Liu, Yujun; He, Qiuchen; Tian, Yu; Yang, Yifan [Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026 (China); Ye, Fei [Department of Materials Science and Engineering, Dalian University of Technology, Dalian 116026 (China)

    2017-01-01

    Highlights: • ZnWO{sub 4} with different exposed facets was synthesized by the hydrothermal method. • The reactive facets were tailored by varying the solution pH. • The photoelectrocatalysis was more efficient in deactivating the microorganism. - Abstract: The exotic invasive species from the ballast water in the ship will bring about serious damages to ecosystem. Photocatalyst films have been widely studied for sterilization. In this study, ZnWO{sub 4} with different exposed facets was synthesized by hydrothermal method, and ZnWO{sub 4} film electrodes have been applied in ballast water treatment through the electro-assisted photocatalytic system. Then the samples were investigated by X-ray diffraction (XRD), X-ray photo-electron spectroscopy (XPS), Field emission on scanning electron microcopy (FE-SEM), Transmission electron microscopy (TEM), UV–vis diffuse reflectance spectroscopy (DRS), BET specific surface area analysis, Fourier transform infrared (FT-IR) and Electrochemical impedance spectra (EIS). ZnWO{sub 4} with an appropriate exposure of (0 1 1) facets ratio exhibited the best photocatalytic and photoelectrocatalytic activities. The microorganisms deactivated completely in 10 min by ZnWO{sub 4} films with 3 V bias. The mechanisms of (0 1 1) facets enhanced the photocatalytic and photoelectrocatalytic activities which were deduced based on the calculated result from the first principles. Simultaneously, appropriate exposed facets and applied bias could reduce the recombination of the photogenerated electron-hole pairs, and improve the photocatalytic activities of ZnWO{sub 4}.

  2. Ultraviolet photoemission spectroscopy of hydrogen complex deactivation on InP:Zn(1 0 0) surfaces

    International Nuclear Information System (INIS)

    Williams, M.D.; Williams, S.C.; Yasharahla, S.A.; Jallow, N.

    2007-01-01

    Ultraviolet photoemission spectroscopy is used to study the kinetics of the H-Zn complex deactivation in Zn doped InP(1 0 0). Hydrogen injected into the material electronically passivates the local carrier concentration. Reverse-biased anneals of the InP under ultra-high vacuum show a dramatic change in the work function of the material with increasing temperature. Spectral features are also shown to be sensitive to sample temperature. To our knowledge, we show the first view of hydrogen retrapping at the surface using photoemission spectroscopy. A simple photoelectron threshold energy analysis shows the state of charge compensation of the material

  3. Study and modelling of deactivation by coke in catalytic reforming of hydrocarbons on Pt-Sn/Al{sub 2}O{sub 3} catalyst; La microbalance inertielle: etude et modelisation cinetique de la desactivation par le coke en reformage catalytique des hydrocarbures sur catalyseur Pt-Sn/Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mathieu-Deghais, S.

    2004-07-01

    Catalytic reforming is the refining process that produces gasoline with a high octane number. During a reforming operation, undesired side reactions promote the formation of carbon deposits (coke) on the surface of the catalyst. As the reactions proceed, the coke accumulation leads to a progressive decrease of the catalyst activity and to a change in its selectivity. Getting this phenomenon under control is interesting to optimize the industrial plants. This work aims to improve the comprehension and the modeling of coke formation and its deactivating effect on reforming reactions, while working under conditions chosen within a range as close as possible to the industrial conditions of the regenerative process. The experimental study is carried out with a micro unit that is designed to observe simultaneously the coke formation and its influence on the catalyst activity. A vibrational microbalance reactor (TEOM - Tapered Element Oscillating Microbalance) is used to provide continuous monitoring of coke. On-line gas chromatography is used to observe the catalyst activity and selectivity as a function of the coke content. The coking experiments are performed on a fresh Pt-Sn/alumina catalyst, with mixtures of hydrocarbon molecules of 7 carbon atoms as hydrocarbon feeds. The coking tests permitted to highlight the operating parameters that may affect the amount of coke, and to identify the hydrocarbon molecules that behave as coke intermediate. A kinetic model for coke formation could be developed through the compilation of these results. The catalytic activity analysis permitted to point out the coke effect on both of the active phases of the catalyst, to construct a simplified reforming kinetic model that simulates the catalyst activity under the reforming conditions, and to quantify deactivation via deactivation functions. (author)

  4. Energy metrics of photovoltaic/thermal and earth air heat exchanger integrated greenhouse for different climatic conditions of India

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Sujata; Tiwari, G.N. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India)

    2010-10-15

    In this paper, a study is carried out to evaluate the annual thermal and exergy performance of a photovoltaic/thermal (PV/T) and earth air heat exchanger (EAHE) system, integrated with a greenhouse, located at IIT Delhi, India, for different climatic conditions of Srinagar, Mumbai, Jodhpur, New Delhi and Bangalore. A comparison is made of various energy metrics, such as energy payback time (EPBT), electricity production factor (EPF) and life cycle conversion efficiency (LCCE) of the system by considering four weather conditions (a-d type) for five climatic zones. The embodied energy and annual energy outputs have been used for evaluation of the energy metrics. The annual overall thermal energy, annual electrical energy savings and annual exergy was found to be best for the climatic condition of Jodhpur at 29,156.8 kWh, 1185 kWh and 1366.4 kWh, respectively when compared with other weather stations covered in the study, due to higher solar intensity I and sunshine hours, and is lowest for Srinagar station. The results also showed that energy payback time for Jodhpur station is lowest at 16.7 years and highest for Srinagar station at 21.6 years. Electricity production factor (EPF) is highest for Jodhpur, i.e. 2.04 and Life cycle conversion efficiency (LCCE) is highest for Srinagar station. It is also observed that LCCE increases with increase in life cycle. (author)

  5. Chiral separation of methoxamine and lobeline in capillary zone electrophoresis using ethylbenzene-deactivated fused-silica capillary columns and cyclodextrins as buffer additives.

    Science.gov (United States)

    Russo, M V

    2002-08-01

    The complete chiral separation of methoxamine and lobeline was achieved by capillary zone electrophoresis on an ethylbenzene-deactivated fused-silica capillary column and with cyclodextrins (CDs) as buffer additives. Among the CDs investigated in this study, i.e. alpha-CD, beta-CD, dimethyl-beta-CD, hydroxypropyl-beta-CD and gamma-CD, all the three beta-type CDs showed chiral recognition on the two drugs investigated. Under the investigated conditions, the baseline chiral separation of methoxamine can be achieved with 90 mM Tris-H3PO4 (pH 2.5) containing 11.5 mM of the three beta-type CDs, with dimethyl-beta-CD giving the best resolution, whereas the baseline chiral separation of lobeline can be realized by using 90 mM Tris-H3PO4 buffer (pH 2.5) containing 5.8 mM dimethyl-beta-CD or 29.5 mM hydroxypropyl-beta-CD.

  6. Effects of source, water conditioning and thermal treatment on ...

    African Journals Online (AJOL)

    at 15 % moisture content amounting to 61.3 MJ was the optimum thermal treatment for achieving germination of 69 %. R. heudelotii seeds soaked in water for 15 days at moisture content of 24 % over dry weight followed by thermal treatment improved germination by 22 %. The highest germination of 79 % was obtained for ...

  7. Influence of Urban Microclimate on Air-Conditioning Energy Needs and Indoor Thermal Comfort in Houses

    Directory of Open Access Journals (Sweden)

    Feng-Chi Liao

    2015-01-01

    Full Text Available A long-term climate measurement was implemented in the third largest city of Taiwan, for the check of accuracy of morphing approach on generating the hourly data of urban local climate. Based on observed and morphed meteorological data, building energy simulation software EnergyPlus was used to simulate the cooling energy consumption of an air-conditioned typical flat and the thermal comfort level of a naturally ventilated typical flat. The simulated results were used to quantitatively discuss the effect of urban microclimate on the energy consumption as well as thermal comfort of residential buildings. The findings of this study can serve as a reference for city planning and energy management divisions to study urban sustainability strategies in the future.

  8. Final deactivation report on the tritium target facility, Building 7025, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-08-01

    This report includes a history and profile of Bldg. 7025 before and after completion of deactivation. It also discusses turnover items, such as the Postdeactivation Surveillance ampersand Maintenance Plan, remaining hazardous materials, radiological controls, Safeguards and Security, quality assurance, facility operations, and supporting documentation in the EM-60 Turnover package. Other than minimal S ampersand M activities, the building will be unoccupied and the exterior doors locked (access only for the required S ampersand M)

  9. Dynamic thermal reaction analysis of wall structures in various cooling operation conditions

    International Nuclear Information System (INIS)

    Yan, Biao; Long, Enshen; Meng, Xi

    2015-01-01

    Highlights: • Four different envelop structures are separately built in the same test building. • Cooling temperature and operation time were chosen as perturbations. • State Space Method is used to analyze the influence of wall sequence order. • The numerical models are validated by the comparisons of theory and test results. • The contrast of temperature change of different envelop structures was stark. - Abstract: This paper proposes a methodology of performance assessing of envelops under different cooling operation conditions, by focusing on indoor temperature change and dynamic thermal behavior performance of walls. To obtain a general relationship between the thermal environment change and the reaction of envelop, variously insulated walls made with the same insulation material are separately built in the same wall of a testing building with the four different structures, namely self-heat insulation (full insulation material), exterior insulation, internal insulation and intermediate insulation. The advantage of this setting is that the test targets are exposed to the same environmental variables, and the tests results are thus comparable. The target responses to two types of perturbations, cooling temperature and operation time were chosen as the important variations in the tests. Parameters of cooling set temperature of 22 °C and 18 °C, operation and restoring time 10 min and 15 min are set in the test models, and discussed with simulation results respectively. The results reveal that the exterior insulation and internal insulation are more sensitive to thermal environment change than self-heat insulation and intermediate insulation.

  10. Biological indication of production condition influence on the staff of State Specialized Enterprise for radioactive waste management and desactivation "Complex" in Chornobyl exclusion zone

    Directory of Open Access Journals (Sweden)

    L. V. Tarasenko

    2013-03-01

    Full Text Available Results of comparative cytogenetical examination of two groups are presented. First group is staff from two workshops (RAW management and RAW deactivation of SJE “Complex” in Chornobyl exclusion zone. Second group consists of the persons who had no mutagenic factors influence during their professional activity (condi-tional control. Classical chromosome analysis method was used. It was found chromosome damages frequency in staff is significantly higher than spontaneous level in conditional control group. Professional experience dura-tion and external exposure integral doses of both workshops staff do not differ. Staff of RAW deactivation work-shop, who is additionally influenced by chemical and physical factors, has significantly higher chromosome ab-erration frequency, particularly due to specific cytogenetical markers of exposure. Correlation between external exposure integral doses and total chromosome aberration frequency, chromosome type aberration frequency, stabile interchromosomal exchanges frequency was found.

  11. The relationship between bioclimatic thermal stress and subjective thermal sensation in pedestrian spaces

    Science.gov (United States)

    Pearlmutter, David; Jiao, Dixin; Garb, Yaakov

    2014-12-01

    Outdoor thermal comfort has important implications for urban planning and energy consumption in the built environment. To better understand the relation of subjective thermal experience to bioclimatic thermal stress in such contexts, this study compares micrometeorological and perceptual data from urban spaces in the hot-arid Negev region of Israel. Pedestrians reported on their thermal sensation in these spaces, whereas radiation and convection-related data were used to compute the Index of Thermal Stress (ITS) and physiologically equivalent temperature (PET). The former is a straightforward characterization of energy exchanges between the human body and its surroundings, without any conversion to an "equivalent temperature." Although the relation of ITS to subjective thermal sensation has been analyzed in the past under controlled indoor conditions, this paper offers the first analysis of this relation in an outdoor setting. ITS alone can account for nearly 60 % of the variance in pedestrians' thermal sensation under outdoor conditions, somewhat more than PET. A series of regressions with individual contextual variables and ITS identified those factors which accounted for additional variance in thermal sensation, whereas multivariate analyses indicated the considerable predictive power ( R-square = 0.74) of models including multiple contextual variables in addition to ITS. Our findings indicate that pedestrians experiencing variable outdoor conditions have a greater tolerance for incremental changes in thermal stress than has been shown previously under controlled indoor conditions, with a tapering of responses at high values of ITS. However, the thresholds of ITS corresponding to thermal "neutrality" and thermal "acceptability" are quite consistent regardless of context.

  12. A questionnaire survey on sleeping thermal environment and bedroom air conditioning in high-rise residences in Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Z. [Institute of Heating, Ventilation, Air Conditioning and Gas Engineering, Tongji University, Shanghai (China); Deng, S. [Department of Building Services Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR (China)

    2006-07-01

    This paper reports on the results of a questionnaire survey on sleeping thermal environment and bedroom air conditioning in high-rise residential buildings in Hong Kong. The survey aimed at investigating the current situation of sleeping thermal environment and bedroom air conditioning, in order to gather relevant background information to develop strategies for bedroom air conditioning in the subtropics. It focused on the use patterns and types of bedroom air conditioning systems used, human factors such as the use of bedding and sleep wear during sleep, preference for indoor air temperature settings in bedrooms, ventilation control at nighttime with room air conditioner (RAC) turned on, etc. The results of the survey showed that most of the respondents would prefer a relatively low indoor air temperature at below 24 {sup o}C. Most of the respondents might however not be satisfied with the indoor air quality (IAQ) in bedrooms in Hong Kong. On the other hand, 68% of the respondents did not use any ventilation control intentionally during their sleep with their RACs turned on. A lack of knowledge of the ventilation control devices provided on window type room air conditioners (WRACs) indicated an urgent need for user education. (author)

  13. Thermal behavior and failure mechanism of lithium ion cells during overcharge under adiabatic conditions

    International Nuclear Information System (INIS)

    Ye, Jiana; Chen, Haodong; Wang, Qingsong; Huang, Peifeng; Sun, Jinhua; Lo, Siuming

    2016-01-01

    Highlights: • The modified adiabatic method is used to measure the heat generation under overcharge. • Side reactions contribute 80% heat to thermal runaway in the cases with cycling rate below 1.0 C. • The inflection and maximum voltages increase linearly with the increasing current rates. • The decomposed products of cathode materials are soluble with that of SiO_x. • Lithium plating on anode is due to changes of distance between the cathode and anode. - Abstract: Cells in battery packs are easily overcharged when battery management system (BMS) is out of order, causing thermal runaway. However, the traditional calorimetry could not estimate dynamic overcharging heat release. In this study, commercial LiCoO_2 + Li(Ni_0_._5Co_0_._2Mn_0_._3)O_2/C + SiO_x cells are employed to investigate the dynamic thermal behaviors during overcharge under adiabatic condition by combining a multi-channel battery cycler with an accelerating rate calorimeter. The results indicate that overcharging with galvanostatic - potentiostatic - galvanostatic regime is more dangerous than that with galvanostatic way. Side reactions contribute 80% heat to thermal runaway in cases below 1.0 C charging rate. To prevent the thermal runaway, the effective methods should be taken within 2 min to cool down the batteries as soon as the cells pass inflection point voltage. Hereinto, the inflection and maximum voltages increase linearly with the increasing current rates. By scanning electron microscope and energy dispersive spectrometer, the decomposed products of cathode materials are suspected to be soluble with SiOx. The overcharge induced decomposition reaction of Li(Ni_0_._5Co_0_._2Mn_0_._3)O_2 is also proposed. These results can provide support for the safety designs of lithium ion batteries and BMS.

  14. Transmutation of stable isotopes and deactivation of radioactive waste in growing biological systems

    International Nuclear Information System (INIS)

    Vysotskii, Vladimir I.; Kornilova, Alla A.

    2013-01-01

    Highlights: ► The phenomena of isotope transmutation in growing microbiological cultures were investigated. ► Transmutation in microbiological associations is 20 times more effective than in pure cultures. ► Transmutation of radioactive nuclei to stable isotopes in such associations was investigated. ► The most accelerated rate of Cs 137 to stable Ba 138 isotope transmutation was 310 days. ► “Microbiological deactivation” may be used for deactivation of Chernobyl and Fukushima areas. - Abstract: The report presents the results of qualifying examinations of stable and radioactive isotopes transmutation processes in growing microbiological cultures. It is shown that transmutation of stable isotopes during the process of growth of microbiological cultures, at optimal conditions in microbiological associations, is 20 times more effective than the same transmutation process in the form of “one-line” (pure) microbiological cultures. In the work, the process of direct, controlled decontamination of highly active intermediate lifetime and long-lived reactor isotopes (reactor waste) through the process of growing microbiological associations has been studied. In the control experiment (flask with active water but without microbiological associations), the “usual” law of nuclear decay applies, and the life-time of Cs 137 isotope was about 30 years. The most rapidly increasing decay rate, which occurred with a lifetime τ * ≈ 310 days (involving an increase in rate, and decrease in lifetime by a factor of 35 times) was observed in the presence of Ca salt in closed flask with active water contained Cs 137 solution and optimal microbiological association

  15. A methodology for on-line calculation of temperature and thermal stress under non-linear boundary conditions

    International Nuclear Information System (INIS)

    Botto, D.; Zucca, S.; Gola, M.M.

    2003-01-01

    In the literature many works have been written dealing with the task of on-line calculation of temperature and thermal stress for machine components and structures, in order to evaluate fatigue damage accumulation and estimate residual life. One of the most widespread methodologies is the Green's function technique (GFT), by which machine parameters such as fluid temperatures, pressures and flow rates are converted into metal temperature transients and thermal stresses. However, since the GFT is based upon the linear superposition principle, it cannot be directly used in the case of varying heat transfer coefficients. In the present work, a different methodology is proposed, based upon CMS for temperature transient calculation and upon the GFT for the related thermal stress evaluation. This new approach allows variable heat transfer coefficients to be accounted for. The methodology is applied for two different case studies, taken from the literature: a thick pipe and a nozzle connected to a spherical head, both subjected to multiple convective boundary conditions

  16. Thermal decomposition of hydroxylamine: Isoperibolic calorimetric measurements at different conditions

    International Nuclear Information System (INIS)

    Adamopoulou, Theodora; Papadaki, Maria I.; Kounalakis, Manolis; Vazquez-Carreto, Victor; Pineda-Solano, Alba; Wang, Qingsheng; Mannan, M.Sam

    2013-01-01

    Highlights: • Hydroxylamine thermal decomposition enthalpy was measured using larger quantities. • The rate at which heat is evolved depends on hydroxylamine concentration. • Decomposition heat is strongly affected by the conditions and the selected baseline. • The need for enthalpy measurements using a larger reactant mass is pinpointed. • Hydroxylamine decomposition in the presence of argon is much faster than in air. -- Abstract: Thermal decomposition of hydroxylamine, NH 2 OH, was responsible for two serious accidents. However, its reactive behavior and the synergy of factors affecting its decomposition are not being understood. In this work, the global enthalpy of hydroxylamine decomposition has been measured in the temperature range of 130–150 °C employing isoperibolic calorimetry. Measurements were performed in a metal reactor, employing 30–80 ml solutions containing 1.4–20 g of pure hydroxylamine (2.8–40 g of the supplied reagent). The measurements showed that increased concentration or temperature, results in higher global enthalpies of reaction per unit mass of reactant. At 150 °C, specific enthalpies as high as 8 kJ per gram of hydroxylamine were measured, although in general they were in the range of 3−5 kJ g −1 . The accurate measurement of the generated heat was proven to be a cumbersome task as (a) it is difficult to identify the end of decomposition, which after a fast initial stage, proceeds very slowly, especially at lower temperatures and (b) the environment of gases affects the reaction rate

  17. Thermal decomposition of hydroxylamine: Isoperibolic calorimetric measurements at different conditions

    Energy Technology Data Exchange (ETDEWEB)

    Adamopoulou, Theodora [Department of Environmental and Natural Resources Management, University of Western Greece (formerly of University of Ioannina), Seferi 2, Agrinio GR30100 (Greece); Papadaki, Maria I., E-mail: mpapadak@cc.uoi.gr [Department of Environmental and Natural Resources Management, University of Western Greece (formerly of University of Ioannina), Seferi 2, Agrinio GR30100 (Greece); Kounalakis, Manolis [Department of Environmental and Natural Resources Management, University of Western Greece (formerly of University of Ioannina), Seferi 2, Agrinio GR30100 (Greece); Vazquez-Carreto, Victor; Pineda-Solano, Alba [Mary Kay O’Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A and M University, College Station, TX 77843 (United States); Wang, Qingsheng [Department of Fire Protection and Safety and Department of Chemical Engineering, Oklahoma State University, 494 Cordell South, Stillwater, OK 74078 (United States); Mannan, M.Sam [Mary Kay O’Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A and M University, College Station, TX 77843 (United States)

    2013-06-15

    Highlights: • Hydroxylamine thermal decomposition enthalpy was measured using larger quantities. • The rate at which heat is evolved depends on hydroxylamine concentration. • Decomposition heat is strongly affected by the conditions and the selected baseline. • The need for enthalpy measurements using a larger reactant mass is pinpointed. • Hydroxylamine decomposition in the presence of argon is much faster than in air. -- Abstract: Thermal decomposition of hydroxylamine, NH{sub 2}OH, was responsible for two serious accidents. However, its reactive behavior and the synergy of factors affecting its decomposition are not being understood. In this work, the global enthalpy of hydroxylamine decomposition has been measured in the temperature range of 130–150 °C employing isoperibolic calorimetry. Measurements were performed in a metal reactor, employing 30–80 ml solutions containing 1.4–20 g of pure hydroxylamine (2.8–40 g of the supplied reagent). The measurements showed that increased concentration or temperature, results in higher global enthalpies of reaction per unit mass of reactant. At 150 °C, specific enthalpies as high as 8 kJ per gram of hydroxylamine were measured, although in general they were in the range of 3−5 kJ g{sup −1}. The accurate measurement of the generated heat was proven to be a cumbersome task as (a) it is difficult to identify the end of decomposition, which after a fast initial stage, proceeds very slowly, especially at lower temperatures and (b) the environment of gases affects the reaction rate.

  18. Internal thermotopography and shifts in general thermal balance in man under special heat transfer conditions

    Science.gov (United States)

    Gorodinskiy, S. M.; Gramenitskiy, P. M.; Kuznets, Y. I.; Ozerov, O. Y.; Yakovleva, E. V.; Groza, P.; Kozlovskiy, S.; Naremski, Y.

    1974-01-01

    Thermal regulation for astronauts working in pressure suits in open space provides for protection by a system of artificial heat removal and compensation to counteract possible changes in the heat regulating function of the human body that occur under the complex effects of space flight conditions. Most important of these factors are prolonged weightlessness, prolonged limitation of motor activity, and possible deviations of microclimatic environmental parameters.

  19. Thermal conditions of the grape growing season within the North-Eastern steppe land of Ukraine (on the example of Kharkiv region

    Directory of Open Access Journals (Sweden)

    Борис Шуліка

    2016-10-01

    Full Text Available The article analyzes the results of the thermal conditions observations within the North-Eastern steppe land of Ukraine as one of the most important factors for successful cultivation of grapes, thus providing crop productivity. Considering the effect of thermal factors, it can be noted that the intensity and speed of life processes of plants are well- defined under temperature conditions only in the circumstances where other environmental factors are not limited. The thermal regime was initially taken into account in practice in XVII century. In XIX century the agro-climatic areas to grow grapes were determined in North-Eastern steppe land of Ukraine. Detailed studies of agro-climatic conditions of specific areas can more thoroughly to make conclusions and recommendations for the cultivation of grapes as a whole in the territory, and specifically in those areas were given. In studying the thermal balance of the territory the average and extreme temperature should be paid attention to. Characteristic features of the thermal regime are given in this paper based on the study of atmospheric phenomena, geomorphology and territories with radiation influence and water flow regime. Thermal treatment is subjected to anthropogenic influence, and in cultivating tenants can use appropriate agricultural practices (conceal bushes, warm soil and air, and even crops in protective ground, in greenhouses. Characteristically, technology of greenhouses growers is even used in Kherson region. These data can be used in neighborhood and the adjacent areas, especially they are useful for the practice of growing grapes. The possibility of successful cultivation of dozens of grape varieties in the North-Eastern steppe land of Ukraine has been well-grounded.

  20. Influence of Absorption of Thermal Radiation in the Surface Water Film on the Characteristics and Ignition Conditions

    Directory of Open Access Journals (Sweden)

    Syrodoy Samen V.

    2016-01-01

    Full Text Available The results of the mathematical modeling of homogeneous particle ignition process of coal-water fuel covered with water film have been presented in article. The set co-occurring physical (inert heating, evaporation of water film and thermochemical (thermal degradation, inflammation process have been considered. Heat inside the film has been considered as the model of radiation-conductive heat transfer. Delay times have been determined according to the results of numerical modeling of the ignition. It has been shown that the water film can have a significant impact on performance and the ignition conditions. It has been found that heating main fuel layer occurs in the process of evaporation of water film. For this reason, the next (after the evaporation of the water film thermal preparation (coal heating, thermal decomposition of the organic part of the fuel and inflammation occur faster.

  1. Unsteady Casson nanofluid flow over a stretching sheet with thermal radiation, convective and slip boundary conditions

    Directory of Open Access Journals (Sweden)

    Ibukun Sarah Oyelakin

    2016-06-01

    Full Text Available In this paper we report on combined Dufour and Soret effects on the heat and mass transfer in a Casson nanofluid flow over an unsteady stretching sheet with thermal radiation and heat generation. The effects of partial slip on the velocity at the boundary, convective thermal boundary condition, Brownian and thermophoresis diffusion coefficients on the concentration boundary condition are investigated. The model equations are solved using the spectral relaxation method. The results indicate that the fluid flow, temperature and concentration profiles are significantly influenced by the fluid unsteadiness, the Casson parameter, magnetic parameter and the velocity slip. The effect of increasing the Casson parameter is to suppress the velocity and temperature growth. An increase in the Dufour parameter reduces the flow temperature, while an increase in the value of the Soret parameter causes increase in the concentration of the fluid. Again, increasing the velocity slip parameter reduces the velocity profile whereas increasing the heat generation parameter increases the temperature profile. A validation of the work is presented by comparing the current results with existing literature.

  2. Thermal hydraulic conditions inducing incipient cracking in the 900 MWe unit 93 D reactor coolant pump shafts; Pompes primaires 93 D des tranches de 900 MW. Conditions thermo-hydrauliques d`amorcage des fissures d`arbres

    Energy Technology Data Exchange (ETDEWEB)

    Bore, C.

    1995-12-31

    From 1987, 900 MWe plant operating feedback revealed cracking in the lower part of the reactor coolant pump shafts, beneath the thermal ring. Metallurgical examinations established that this was due to a thermal fatigue phenomenon known as thermal crazing, occurring after a large number of cycles. Analysis of thermal hydraulic conditions initiating the cracks does not allow exact quantification of the thermal load inducing cracking. Only qualitative analyses are thus possible, the first of which, undertaken by the pump manufacturer, Jeumont Industrie, showed that the cracks could not be due to the major transients (stop-start, injection cut-off), which were too few in number. Another explanation was then put forward: the thermal ring, shrunk onto the shaft it is required to protect against thermal shocks, loosens to allow an alternating downflow of cold water from the shaft seals and an upflow of hot water from the primary system. However, approximate calculations showed that the flow involved would be too slight to initiate the cracking observed. A more stringent analysis undertaken with the 2D flow analysis code MELODIE subsequently refuted the possibility of alternating flows beneath the ring establishing that only a hot water upflow occurred due to a `viscosity pump` phenomenon. Crack initiation was finally considered to be due to flowrate variations beneath the ring, with the associated temperature fluctuations. This flowrate fluctuation could be due to an unidentified transient phenomenon or to a variation in pump operating conditions. This analysis of the hydraulic conditions initiating the cracks disregards shaft surface residual stresses. These are tensile stresses and show that loads less penalizing than those initially retained could cause incipient cracking. Thermal ring modifications to reduce these risks were proposed and implemented. In addition, final metallurgical treatment of the shafts was altered and implemented. (Abstract Truncated)

  3. Thermal and economical optimization of air conditioning units with vapor compression refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Sanaye, S.; Malekmohammadi, H.R. [Iran University of Science and Technology, Tehran (Iran). Dept. of Mechanical Engineering

    2004-09-01

    A new method of thermal and economical optimum design of air conditioning units with vapor compression refrigeration system, is presented. Such a system includes compressor, condenser, evaporator, centrifugal and axial fans. Evaporator and condenser temperatures, their heating surface areas (frontal surface area and number of tubes), centrifugal and axial fan powers, and compressor power are among the design variables. The data provided by manufacturers for fan (volume flow rate versus pressure drop) and compressor power (using evaporator and condenser temperatures) was used to choose these components directly from available data for consumers. To study the performance of the system under various situations, and implementing the optimization procedure, a simulation program including all thermal and geometrical parameters was developed. The objective function for optimization was the total cost per unit cooling load of the system including capital investment for components as well as the required electricity cost. To find the system design parameters, this objective function was minimized by Lagrange multipliers method. The effects of changing the cooling load on optimal design parameters were studied. (author)

  4. A Review and Empirical Comparison of Two Treatments for Adolescent Males with Conduct and Personality Disorder: Mode Deactivation Therapy and Cognitive Behavior Therapy

    Science.gov (United States)

    Apsche, Jack A.; Bass, Christopher K.; Jennings, Jerry L.; Siv, Alexander M.

    2005-01-01

    This research study compared the efficacy of two treatment methodologies for adolescent males in residential treatment with conduct disorders and/or personality dysfunctions and documented problems with physical and sexual aggression. The results showed that Mode Deactivation Therapy, an advanced form of cognitive behavioral therapy based on…

  5. Empirical Comparison of Three Treatments for Adolescent Males with Physical and Sexual Aggression: Mode Deactivation Therapy, Cognitive Behavior Therapy and Social Skills Training

    Science.gov (United States)

    Apsche, Jack A.; Bass, Christopher K.; Jennings, Jerry L.; Murphy, Christopher J.; Hunter, Linda A.; Siv, Alexander M.

    2005-01-01

    This research study compared the efficacy of three treatment methodologies for adolescent males in residential treatment with conduct disorders and/or personality dysfunctions and documented problems with physical and sexual aggression. The results showed that Mode Deactivation Therapy, an advanced form of cognitive behavioral therapy based on…

  6. A novel human body exergy consumption formula to determine indoor thermal conditions for optimal human performance in office buildings

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Zhao, Jianing; Olesen, Bjarne W.

    2013-01-01

    In this paper, a novel human body exergy consumption formula was derived strictly according to Gagge's two-node thermal transfer model. The human body exergy consumption calculated by the formula was compared with values calculated using Shukuya's formula for a typical office environment....... The results show that human body exergy consumption calculated by either of these formulas reaches a minimum under the same thermal condition. It is shown that this is in accordance with expectation. The relation between human performance and human body exergy consumption was studied by analyzing the data...... obtained in simulated office environments in winter. The results show that human body exergy consumption and human performance are inversely as operative temperature changes from 17 to 28°C or human thermal sensation changes from −1.0 to +1.4, and that optimum thermal comfort cannot be expected to lead...

  7. Effect of the combined stress on the life of components under thermal cycling conditions

    International Nuclear Information System (INIS)

    Zuchowski, R.; Zietkowski, L.

    1987-01-01

    The life of structural components subjected to temperature changes is affected, among other factors, by the nature of the stress field. If life prediction for axially stressed components can be accomplished with a number of well established techniques, the behaviour under a complex state of stress and varying temperature conditions still is the object of intensive research. The present study was aimed at assessing the influence of the stress field upon the life of specimens made of chromium-nickel H23N18 steel under thermal cycling conditions. The designation of steel is in accordance with Polish Standards. The experiments were made on thin-walled tubular specimens loaded with various combinations of a static axial force and a static torque. (orig./GL)

  8. Dynamic environmental transmission electron microscopy observation of platinum electrode catalyst deactivation in a proton-exchange-membrane fuel cell.

    Science.gov (United States)

    Yoshida, Kenta; Xudong, Zhang; Bright, Alexander N; Saitoh, Koh; Tanaka, Nobuo

    2013-02-15

    Spherical-aberration-corrected environmental transmission electron microscopy (AC-ETEM) was applied to study the catalytic activity of platinum/amorphous carbon electrode catalysts in proton-exchange-membrane fuel cells (PEMFCs). These electrode catalysts were characterized in different atmospheres, such as hydrogen and air, and a conventional high vacuum of 10(-5) Pa. A high-speed charge coupled device camera was used to capture real-time movies to dynamically study the diffusion and reconstruction of nanoparticles with an information transfer down to 0.1 nm, a time resolution below 0.2 s and an acceleration voltage of 300 kV. With such high spatial and time resolution, AC-ETEM permits the visualization of surface-atom behaviour that dominates the coalescence and surface-reconstruction processes of the nanoparticles. To contribute to the development of robust PEMFC platinum/amorphous carbon electrode catalysts, the change in the specific surface area of platinum particles was evaluated in hydrogen and air atmospheres. The deactivation of such catalysts during cycle operation is a serious problem that must be resolved for the practical use of PEMFCs in real vehicles. In this paper, the mechanism for the deactivation of platinum/amorphous carbon electrode catalysts is discussed using the decay rate of the specific surface area of platinum particles, measured first in a vacuum and then in hydrogen and air atmospheres for comparison.

  9. Analysis of Reactor Pressurized Thermal Shock Conditions Considering Upgrading of Systems Important to Safety

    International Nuclear Information System (INIS)

    Mazurok, A.S; Vyshemirskyij, M.P.

    2015-01-01

    The paper analyzes conditions of pressurized thermal shock on the reactor pressure vessel taking into account upgrading of the emergency core cooling system and primary overpressure protection system. For representative accident scenarios, calculation and comparative analysis was carried out. These scenarios include a small leak from the hot leg and PRZ SV stuck opening with re closure after 3600 sec and 3 SG heat transfer tube rupture. The efficiency of mass flow control by valves on the pump head (emergency core cooling systems) and cold overpressure protection (primary overpressure protection system) was analyzed. The thermal hydraulic model for RELAP5/Mod3.2 code with detailed downcomer (DC) model and changes in accordance with upgrades was used for calculations. Detailed (realistic) modeling of piping and equipment was performed. The upgrades prevent excessive primary cooling and, consequently, help to preserve the RPV integrity and to avoid the formation of a through crack, which can lead to a severe accident

  10. Thermal modeling of nickel-hydrogen battery cells operating under transient orbital conditions

    Science.gov (United States)

    Schrage, Dean S.

    1991-01-01

    An analytical study of the thermal operating characteristics of nickel-hydrogen battery cells is presented. Combined finite-element and finite-difference techniques are employed to arrive at a computationally efficient composite thermal model representing a series-cell arrangement operating in conjunction with a radiately coupled baseplate and coldplate thermal bus. An aggressive, low-mass design approach indicates that thermal considerations can and should direct the design of the thermal bus arrangement. Special consideration is given to the potential for mixed conductive and convective processes across the hydrogen gap. Results of a compressible flow model are presented and indicate the transfer process is suitably represented by molecular conduction. A high-fidelity thermal model of the cell stack (and related components) indicates the presence of axial and radial temperature gradients. A detailed model of the thermal bus reveals the thermal interaction of individual cells and is imperative for assessing the intercell temperature gradients.

  11. Large Ferrierite Crystals as Models for Catalyst Deactivation during Skeletal Isomerisation of Oleic Acid : Evidence for Pore Mouth Catalysis

    OpenAIRE

    Wiedemann, Sophie C. C.; Ristanovic, Zoran; Whiting, Gareth T.; Marthala, V. R. Reddy; Kaerger, Joerg; Weitkamp, Jens; Wels, Bas; Bruijnincx, Pieter C. A.; Weckhuysen, Bert M.

    2016-01-01

    Large zeolite crystals of ferrierite have been used to study the deactivation, at the single particle level, of the alkyl isomerisation catalysis of oleic acid and elaidic acid by a combination of visible micro-spectroscopy and fluorescence microscopy (both polarised wide-field and confocal modes). The large crystals did show the desired activity, albeit only traces of the isomerisation product were obtained and low conversions were achieved compared to commercial ferrierite powders. This lim...

  12. Position-dependent deuterium isotope effect on photoisomerization of ammineaquarhodium(III) complexes: identification of the excited-state vibronic deactivation mode

    International Nuclear Information System (INIS)

    Skibsted, L.H.

    1987-01-01

    cis to trans Photoisomerization quantum yields are increased by a factor of approximately two by deuteriation of co-ordinated water in tetra-amminediaquarhodium, but are almost insensitive to deuteriation of co-ordinated water in tetra-ammineaquachlororhodium and to deuteriation of co-ordinated ammonia in either complex; this identifies the dominating nonradiative deactivation mode (competing with the excited-state rearrangement) as a hydrogen-oxygen vibration in an excited-state intermediate of reduced co-ordination number. (author)

  13. Thermal performance of marketed SDHW systems under laboratory conditions

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa; Fan, Jianhua

    A test facility for solar domestic hot water systems, SDHW systems was established at the Technical University of Denmark in 1992. During the period 1992-2012 21 marketed SDHW systems, 16 systems from Danish manufacturers and 5 systems from manufacturers from abroad, have been tested in the test...... comfort, avoiding simple errors, using the low flow principle and heat stores with a high degree of thermal stratification and by using components with good thermal characteristics....

  14. Adaptive thermal comfort for buildings in Portugal based on occupants' thermal perception

    Energy Technology Data Exchange (ETDEWEB)

    Matias, L.; Pina Santos, C.; Rebelo, M. [LNEC National Laboratory for Civil Engineering, Lisbon (Portugal); Almeida, S. [FCT Foundation for Science and Technology, Lisbon (Portugal); Correia Guedes, M. [IST Higher Technical Inst., Lisbon (Portugal)

    2009-07-01

    The use of air conditioning systems in Portugal has increased in recent years. Most new service buildings are equipped with mechanical air conditioning systems, either due to commercial reasons, productivity, or due to high internal thermal loads, and solar gains through windows. However, a large percentage of older service buildings are still naturally ventilated. In ASHRAE 55 thermal comfort standard, an adaptive model was adopted as an optional method for determining acceptable thermal conditions in naturally conditioned spaces. Recently, Portugal's National Laboratory for Civil Engineering (LNEC) initiated an interdisciplinary research study in this field. The research team of physicists, social scientists, and civil engineers developed better modeling of adaptive thermal strategies. This paper described the adaptive approach that defined indoor thermal comfort requirements applicable to Portuguese buildings. The study focused on assessing, in real use conditions, indoor environments and the response of occupants of office and educational buildings, and homes for the elderly. The results were obtained from 285 field surveys carried out on 40 buildings and a set of 2367 questionnaires completed by occupants. Field surveys assessed and measured the main indoor environmental parameters during summer, winter and mid-season. This paper included the results of the analysis to the occupants' thermal perception and expectation, by relating them to both measured and collected indoor thermal environments and outdoor climate. The relation between the occupants' thermal sensation and preference was analysed for different types of activities, throughout different seasons. Results showed that occupants may tolerate broader temperature ranges than those indicated in current standards, particularly in the heating season. 10 refs., 3 tabs., 9 figs.

  15. A comparison between the IAEA Safety Series 6 thermal environment and a proposed alternative thermal environment

    International Nuclear Information System (INIS)

    Wix, S.D.; Koski, J.A.

    1994-01-01

    The present regulations for packaging and transportation of radioactive materials, IAEA Safety Series No. 6; 1985, establish specific criteria for the thermal environment of a hypothetical accident. The regulation states: The scope of this paper is to examine the effects on modeling that result with the Fry proposed thermal boundary conditions. The examination is accomplished by comparing thermal model results using the current IAEA specified thermal environment and the Fry proposed thermal boundary conditions

  16. Protection against cold in prehospital care-thermal insulation properties of blankets and rescue bags in different wind conditions.

    Science.gov (United States)

    Henriksson, Otto; Lundgren, J Peter; Kuklane, Kalev; Holmér, Ingvar; Bjornstig, Ulf

    2009-01-01

    In a cold, wet, or windy environment, cold exposure can be considerable for an injured or ill person. The subsequent autonomous stress response initially will increase circulatory and respiratory demands, and as body core temperature declines, the patient's condition might deteriorate. Therefore, the application of adequate insulation to reduce cold exposure and prevent body core cooling is an important part of prehospital primary care, but recommendations for what should be used in the field mostly depend on tradition and experience, not on scientific evidence. The objective of this study was to evaluate the thermal insulation properties in different wind conditions of 12 different blankets and rescue bags commonly used by prehospital rescue and ambulance services. The thermal manikin and the selected insulation ensembles were setup inside a climatic chamber in accordance to the modified European Standard for assessing requirements of sleeping bags. Fans were adjusted to provide low (value, Itr (m2 C/Wclo; where C = degrees Celcius, and W = watts), was calculated from ambient air temperature (C), manikin surface temperature (C), and heat flux (W/m2). In the low wind condition, thermal insulation of the evaluated ensembles correlated to thickness of the ensembles, ranging from 2.0 to 6.0 clo (1 clo = 0.155 m2 C/W), except for the reflective metallic foil blankets that had higher values than expected. In moderate and high wind conditions, thermal insulation was best preserved for ensembles that were windproof and resistant to the compressive effect of the wind, with insulation reductions down to about 60-80% of the original insulation capacity, whereas wind permeable and/or lighter materials were reduced down to about 30-50% of original insulation capacity. The evaluated insulation ensembles might all be used for prehospital protection against cold, either as single blankets or in multiple layer combinations, depending on ambient temperatures. However, with extended

  17. Measurement of thermal transmittance of opaque facade wall relationship with meteorological conditions

    Directory of Open Access Journals (Sweden)

    Antunović Biljana S.

    2015-01-01

    Full Text Available This paper presents the results of measurements of thermal transmittance or as otherwise called U-value [W/m2⋅K] of opaque facade wall of preschool institution built in 1977. The building has an incomplete technical documentation according to which considered wall was built of brick and masonry mortar. Thermal characteristics of the incorporated materials have not been specified. Considering that in the period of building construction JUS standards was used, a possible range of calculated U-vales was obtained (1,241-1,404 W/m2·K. Measurements were performed in accordance with ISO 9869 during three time periods with the resulting U-values (1,269±0,276 W/m2·K; 1,025±0,175 W/m2·K; 1,200±0,212 W/m2·K that do not differ from each other within experimental uncertainty. Furthermore, the correlation of the measured U-values and meteorological conditions that prevailed during the measurements was analyzed. In the second measurement period, the average values of the total cloud cover and low cloud cover were less, and the average duration of sunshine was longer than in the other two measurement periods.

  18. Efficacy of Thermally Conditioned Sisal FRP Composite on the Shear Characteristics of Reinforced Concrete Beams

    Directory of Open Access Journals (Sweden)

    Tara Sen

    2013-01-01

    Full Text Available The development of commercially viable composites based on natural resources for a wide range of applications is on the rise. Efforts include new methods of production and the utilization of natural reinforcements to make biodegradable composites with lignocellulosic fibers, for various engineering applications. In this work, thermal conditioning of woven sisal fibre was carried out, followed by the development of woven sisal fibre reinforced polymer composite system, and its tensile and flexural behaviour was characterized. It was observed that thermal conditioning improved the tensile strength and the flexural strength of the woven sisal fibre composites, which were observed to bear superior values than those in the untreated ones. Then, the efficacy of woven sisal fibre reinforced polymer composite for shear strengthening of reinforced concrete beams was evaluated using two types of techniques: full and strip wrapping techniques. Detailed analysis of the load deflection behaviour and fracture study of reinforced concrete beams strengthened with woven sisal under shearing load were carried out, and it was concluded that woven sisal FRP strengthened beams, underwent very ductile nature of failure, without any delamination or debonding of sisal FRP, and also increased the shear strength and the first crack load of the reinforced concrete beams.

  19. Quantum thermal rectification to design thermal diodes and transistors

    Energy Technology Data Exchange (ETDEWEB)

    Joulain, Karl; Ezzahri, Younes; Ordonez-Miranda, Jose [Univ. de Poitiers, Futuroscope Chasseneuil (France). Inst. Pprime, CNRS

    2017-05-01

    We study in this article how heat can be exchanged between two-level systems, each of them being coupled to a thermal reservoir. Calculations are performed solving a master equation for the density matrix using the Born-Markov approximation. We analyse the conditions for which a thermal diode and a thermal transistor can be obtained as well as their optimisation.

  20. Thermal comfort

    CSIR Research Space (South Africa)

    Osburn, L

    2010-01-01

    Full Text Available Thermal comfort is influenced by environmental parameters as well as other influences including asymmetric heating and cooling conditions. Additionally, some aspects of thermal comfort may be exploited so as to enable a building to operate within a...