WorldWideScience

Sample records for conditional forebrain inactivation

  1. Behavioral characterization of cereblon forebrain-specific conditional null mice: a model for human non-syndromic intellectual disability.

    Science.gov (United States)

    Rajadhyaksha, Anjali M; Ra, Stephen; Kishinevsky, Sarah; Lee, Anni S; Romanienko, Peter; DuBoff, Mariel; Yang, Chingwen; Zupan, Bojana; Byrne, Maureen; Daruwalla, Zeeba R; Mark, Willie; Kosofsky, Barry E; Toth, Miklos; Higgins, Joseph J

    2012-01-15

    A nonsense mutation in the human cereblon gene (CRBN) causes a mild type of autosomal recessive non-syndromic intellectual disability (ID). Animal studies show that crbn is a cytosolic protein with abundant expression in the hippocampus (HPC) and neocortex (CTX). Its diverse functions include the developmental regulation of ion channels at the neuronal synapse, the mediation of developmental programs by ubiquitination, and a target for herpes simplex type I virus in HPC neurons. To test the hypothesis that anomalous CRBN expression leads to HPC-mediated memory and learning deficits, we generated germ-line crbn knock-out mice (crbn(-/-)). We also inactivated crbn in forebrain neurons in conditional knock-out mice in which crbn exons 3 and 4 are deleted by cre recombinase under the direction of the Ca(2+)/calmodulin-dependent protein kinase II alpha promoter (CamKII(cre/+), crbn(-/-)). crbn mRNA levels were negligible in the HPC, CTX, and cerebellum (CRBM) of the crbn(-/-) mice. In contrast, crbn mRNA levels were reduced 3- to 4-fold in the HPC, CTX but not in the CRBM in CamKII(cre/+), crbn(-/-) mice as compared to wild type (CamKII(cre/+), crbn(+/+)). Contextual fear conditioning showed a significant decrease in the percentage of freezing time in CamKII(cre/+), crbn(-/-) and crbn(-/-) mice while motor function, exploratory motivation, and anxiety-related behaviors were normal. These findings suggest that CamKII(cre/+), crbn(-/-) mice exhibit selective HPC-dependent deficits in associative learning and supports the use of these mice as in vivo models to study the functional consequences of CRBN aberrations on memory and learning in humans.

  2. Deletion of forebrain glycine transporter 1 enhances conditioned freezing to a reliable, but not an ambiguous, cue for threat in a conditioned freezing paradigm.

    Science.gov (United States)

    Dubroqua, Sylvain; Singer, Philipp; Yee, Benjamin K

    2014-10-15

    Enhanced expression of Pavlovian aversive conditioning but not appetitive conditioning may indicate a bias in the processing of threatening or fearful events. Mice with disruption of glycine transporter 1 (GlyT1) in forebrain neurons exhibit such a bias, but they are at the same time highly sensitive to manipulations that hinder the development of the conditioned response (CR) suggesting that the mutation may modify higher cognitive processes that extract predictive information between environmental cues. Here, we further investigated the development of fear conditioning in forebrain neuronal GlyT1 knockout mice when the predictiveness of a tone stimulus for foot-shock was rendered ambiguous by interspersing [tone→no shock] trials in-between [tone→shock] trials during acquisition. The CR to the ambiguous tone CS (conditioned stimulus) was compared with that generated by an unambiguous CS that was always followed by the shock US (unconditioned stimulus) during acquisition. We showed that rendering the CS ambiguous as described significantly attenuated the CR in the mutants, but it was not sufficient to modify the CR in the control mice. It is concluded that disruption of GlyT1 in forebrain neurons does not increase the risk of forming spurious and potentially maladaptive fear associations.

  3. Conditional Knockout of Breast Carcinoma Amplified Sequence 2 (BCAS2) in Mouse Forebrain Causes Dendritic Malformation via β-catenin

    Science.gov (United States)

    Huang, Chu-Wei; Chen, Yi-Wen; Lin, Yi-Rou; Chen, Po-Han; Chou, Meng-Hsuan; Lee, Li-Jen; Wang, Pei-Yu; Wu, June-Tai; Tsao, Yeou-Ping; Chen, Show-Li

    2016-01-01

    Breast carcinoma amplified sequence 2 (BCAS2) is a core component of the hPrP19 complex that controls RNA splicing. Here, we performed an exon array assay and showed that β-catenin is a target of BCAS2 splicing regulation. The regulation of dendrite growth and morphology by β-catenin is well documented. Therefore, we generated conditional knockout (cKO) mice to eliminate the BCAS2 expression in the forebrain to investigate the role of BCAS2 in dendrite growth. BCAS2 cKO mice showed a microcephaly-like phenotype with a reduced volume in the dentate gyrus (DG) and low levels of learning and memory, as evaluated using Morris water maze analysis and passive avoidance, respectively. Golgi staining revealed shorter dendrites, less dendritic complexity and decreased spine density in the DG of BCAS2 cKO mice. Moreover, the cKO mice displayed a short dendrite length in newborn neurons labeled by DCX, a marker of immature neurons, and BrdU incorporation. To further examine the mechanism underlying BCAS2-mediated dendritic malformation, we overexpressed β-catenin in BCAS2-depleted primary neurons and found that the dendritic growth was restored. In summary, BCAS2 is an upstream regulator of β-catenin gene expression and plays a role in dendrite growth at least partly through β-catenin. PMID:27713508

  4. Plastic and stable electrophysiological properties of adult avian forebrain song-control neurons across changing breeding conditions.

    Science.gov (United States)

    Meitzen, John; Weaver, Adam L; Brenowitz, Eliot A; Perkel, David J

    2009-05-20

    Steroid sex hormones drive changes in the nervous system and behavior in many animal taxa, but integrating the former with the latter remains challenging. One useful model system for meeting this challenge is seasonally breeding songbirds. In these species, plasma testosterone levels rise and fall across the seasons, altering song behavior and causing dramatic growth and regression of the song-control system, a discrete set of nuclei that control song behavior. Whereas the cellular mechanisms underlying changes in nucleus volume have been studied as a model for neural growth and degeneration, it is unknown whether these changes in neural structure are accompanied by changes in electrophysiological properties other than spontaneous firing rate. Here we test the hypothesis that passive and active neuronal properties in the forebrain song-control nuclei HVC and RA change across breeding conditions. We exposed adult male Gambel's white-crowned sparrows to either short-day photoperiod or long-day photoperiod and systemic testosterone to simulate nonbreeding and breeding conditions, respectively. We made whole-cell recordings from RA and HVC neurons in acute brain slices. We found that RA projection neuron membrane time constant, capacitance, and evoked and spontaneous firing rates were all increased in the breeding condition; the measured electrophysiological properties of HVC interneurons and projection neurons were stable across breeding conditions. This combination of plastic and stable intrinsic properties could directly impact the song-control system's motor control across seasons, underlying changes in song stereotypy. These results provide a valuable framework for integrating how steroid hormones modulate cellular physiology to change behavior.

  5. Post-Weaning, Forebrain-Specific Perturbation of the Oxytocin System Impairs Fear Conditioning

    OpenAIRE

    Pagani, Jerome H.; Lee, Heon-Jin; Young, W. Scott

    2011-01-01

    Oxytocin (Oxt) and vasopressin (Avp) are important for a wide variety of behaviors and the use of transgenic mice lacking the peptides or their receptors, particularly when their loss is spatially and temporally manipulated, offers an opportunity to closely examine their role in a particular behavior. We used a cued fear conditioning paradigm to examine associative learning in three lines of transgenic mice: mice that constitutively lack vasopressin 1a (Avpr1a−/−) or Oxt receptors (Oxtr−/−) a...

  6. Inactivation model equations and their associated parameter values obtained under static acid stress conditions cannot be used directly for predicting inactivation under dynamic conditions.

    Science.gov (United States)

    Janssen, M; Verhulst, A; Valdramidis, V; Devlieghere, F; Van Impe, J F; Geeraerd, A H

    2008-11-30

    Organic acids (e.g., lactic acid, acetic acid and citric acid) are popular preservatives. In this study, the Listeria innocua inactivation is investigated under dynamic conditions of pH and undissociated lactic acid ([LaH]). A combined primary (Weibull-type) and secondary model developed for the L. innocua inactivation under static conditions [Janssen, M., Geeraerd, A.H., Cappuyns, A., Garcia-Gonzalez, L., Schockaert, G., Van Houteghem, N., Vereecken, K.M., Debevere, J., Devlieghere, F., Van Impe, J.F., 2007. Individual and combined effects of pH and lactic acid concentration on L. innocua inactivation: development of a predictive model and assessment of experimental variability. Applied and Environmental Microbiology 73(5), 1601-1611] was applied to predict the microbial inactivation under dynamic conditions. Because of its non-autonomous character, two approaches were proposed for the application of the Weibull-type model to dynamic conditions. The results quantitatively indicated that the L. innocua cell population was able to develop an induced acid stress resistance under dynamic conditions of pH and [LaH]. From a modeling point of view, it needs to be stressed that (i) inactivation model equations and associated parameter values, derived under static conditions, may not be suitable for use as such under dynamic conditions, and (ii) non-autonomous dynamic models reveal additional technical intricacies in comparison with autonomous models.

  7. Inactivation of VHSV by Percolation and Salt Under Experimental Conditions

    DEFF Research Database (Denmark)

    Skall, Helle Frank; Olesen, Niels Jørgen; Jørgensen, Claus

    2012-01-01

    At the moment the only legal method in Denmark to sanitize wastewater from fish cutting plants is by percolation. To evaluate the inactivation effect of percolation on VHSV an experimental examination was initiated. A column packed with gravel as top- and bottom layer (total of 22 cm) and a mid l...

  8. Inactivation of VHSV by Percolation and Salt Under Experimental Conditions

    OpenAIRE

    Skall, Helle Frank; Olesen, Niels Jørgen; Jørgensen, Claus

    2012-01-01

    At the moment the only legal method in Denmark to sanitize wastewater from fish cutting plants is by percolation. To evaluate the inactivation effect of percolation on VHSV an experimental examination was initiated. A column packed with gravel as top- and bottom layer (total of 22 cm) and a mid layer consisting of dug sand (76 cm) was used for the trial. Over a period of 18 h 3.9 x 1010 TCID50 VHSV was supplied to the column, where after normal tap water was supplied for the rest of the trial...

  9. Inactivation of VHSV by infiltration and salt under experimental conditions

    OpenAIRE

    Skall, Helle Frank; Jørgensen, Claus; Olesen, Niels Jørgen

    2014-01-01

    At the moment the only legal method in Denmark to sanitize wastewater from fish cutting plants is by infiltration. To evaluate the inactivation effect of infiltration on VHSV an experimental examination was initiated. A column packed with gravel as top- and bottom layer (total of 22 cm) and a mid layer consisting of dug sand (76 cm) was used for the trial. Over a period of 18 h 3.9 x 1010 TCID50 VHSV was supplied to the column, where after normal tap water was supplied for the rest of the tri...

  10. Inactivation of VHSV by infiltration and salt under experimental conditions

    DEFF Research Database (Denmark)

    Skall, Helle Frank; Jørgensen, Claus; Olesen, Niels Jørgen

    2014-01-01

    . In order to answer this question a small trial was set up. VHSV and NaCl was added to cell culture medium with 10% foetal bovine serum, in order to mimic a “dirty” environment, to obtain from 1.9% to 20.9% NaCl and kept in the dark at 4°C. Samples were titrated after 5 min, 1 h and 20 h. No reduction......At the moment the only legal method in Denmark to sanitize wastewater from fish cutting plants is by infiltration. To evaluate the inactivation effect of infiltration on VHSV an experimental examination was initiated. A column packed with gravel as top- and bottom layer (total of 22 cm) and a mid...... be a valuable method to sanitize VHSV infected water. Changes in temperature, pH, earth types in the area used for infiltration etc. may change the virus reduction, though. As some of the fish cutting plants are also smoking rainbow trout fillets, the question arose whether a brine solution will inactivate VHSV...

  11. Efficacy of scallop shell powders and slaked lime for inactivating avian influenza virus under harsh conditions.

    Science.gov (United States)

    Thammakarn, Chanathip; Tsujimura, Misato; Satoh, Keisuke; Hasegawa, Tomomi; Tamura, Miho; Kawamura, Akinobu; Ishida, Yuki; Suguro, Atsushi; Hakim, Hakimullah; Ruenphet, Sakchai; Takehara, Kazuaki

    2015-10-01

    The efficacy and stability of scallop shell powder (SSP) were investigated, in terms of its capacity to inactivate avian influenza virus (AIV), and compared with slaked lime (SL). An environmental simulation was conducted by emulating sunlight and wet-dry conditions. The powders were collected at consecutive 2-week intervals under sunlight and upon every resuspension. These materials were tested by mixing them with AIV and incubating the mixture for 3 min or 20 h, followed by AIV titration. At the same time, a pH buffering test was conducted by neutralization with Tris-HCl. The results revealed that SSP and SL have high alkalinity and excellent ability to inactivate AIV. In a simulated harsh environment, SSP and SL retained a satisfactory ability to inactivate AIV within 20 h throughout the experimental procedure. However, SSP was able to inactivate AIV during a short contact period (3 min), even under harsh conditions, and it was more resistant than SL to neutralization.

  12. Induction of ovarian leiomyosarcomas in mice by conditional inactivation of Brca1 and p53.

    Directory of Open Access Journals (Sweden)

    Bridget A Quinn

    Full Text Available BACKGROUND: Approximately one out of every ten cases of epithelial ovarian cancer (EOC is inherited. The majority of inherited cases of EOC result from mutations in the breast cancer associated gene 1 (BRCA1. In addition to mutation of BRCA1, mutation of the p53 gene is often found in patients with inherited breast and ovarian cancer syndrome. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the role of loss of function of BRCA1 and p53 in ovarian cancer development using mouse models with conditionally expressed alleles of Brca1 and/or p53. Our results show that ovary-specific Cre-recombinase-mediated conditional inactivation of both Brca1(LoxP/LoxP and p53(LoxP/LoxP resulted in ovarian or reproductive tract tumor formation in 54% of mice, whereas conditional inactivation of either allele alone infrequently resulted in tumors (< or =5% of mice. In mice with conditionally inactivated Brca1(LoxP/LoxP and p53(LoxP/LoxP, ovarian tumors arose after long latency with the majority exhibiting histological features consistent with high grade leiomyosarcomas lacking expression of epithelial, follicular or lymphocyte markers. In addition, tumors with conditional inactivation of both Brca1(LoxP/LoxP and p53(LoxP/LoxP exhibited greater genomic instability compared to an ovarian tumor with inactivation of only p53(LoxP/LoxP. CONCLUSIONS/SIGNIFICANCE: Although conditional inactivation of both Brca1 and p53 results in ovarian tumorigenesis, our results suggest that additional genetic alterations or alternative methods for targeting epithelial cells of the ovary or fallopian tube for conditional inactivation of Brca1 and p53 are required for the development of a mouse model of Brca1-associated inherited EOC.

  13. Inactivation of enteropathogenic E. coli by solar disinfection (SODIS) under simulated sunlight conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ubomba-Jaswa, E; Boyle, M A R; McGuigan, K G [Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2 (Ireland)], E-mail: kmcguigan@rcsi.ie

    2008-02-01

    Solar Disinfection (SODIS) is a low cost water treatment method currently used in communities that do not have year round access to safe water. However, there is still reluctance in widespread adoption of this treatment method due to a number of limitations. An important limitation is the lack of SODIS inactivation studies on some waterborne pathogens in the developing world. SODIS inactivation of enteropathogenic E. coli (EPEC), a major cause of infantile diarrhoea is reported for the first time under simulated sunlight conditions and following a natural temperature profile. EPEC was exposed to simulated sunlight (885Wm{sup -2}) for periods up to a cumulative time of 4 hours. Inactivation was determined by a log reduction in growth of the organisms. The temperature (deg. C) of the water was taken at every time point. After 4 hours exposure EPEC was completely inactivated (7 log reduction) by SODIS. Imposing a realistic water temperature profile (min-max) concomitant with irradiation produces a greater kill of EPEC. Maintaining simulated sunlight experiments at a high fixed temperature may result in over-estimation of inactivation. Following a natural water temperature profile will result in more reliable inactivation comparable with those that might be obtained under natural sunlight conditions.

  14. Inactivation of enteropathogenic E. coli by solar disinfection (SODIS) under simulated sunlight conditions

    Science.gov (United States)

    Ubomba-Jaswa, E.; Boyle, M. A. R.; McGuigan, K. G.

    2008-02-01

    Solar Disinfection (SODIS) is a low cost water treatment method currently used in communities that do not have year round access to safe water. However, there is still reluctance in widespread adoption of this treatment method due to a number of limitations. An important limitation is the lack of SODIS inactivation studies on some waterborne pathogens in the developing world. SODIS inactivation of enteropathogenic E. coli (EPEC), a major cause of infantile diarrhoea is reported for the first time under simulated sunlight conditions and following a natural temperature profile. EPEC was exposed to simulated sunlight (885Wm-2) for periods up to a cumulative time of 4 hours. Inactivation was determined by a log reduction in growth of the organisms. The temperature (°C) of the water was taken at every time point. After 4 hours exposure EPEC was completely inactivated (7 log reduction) by SODIS. Imposing a realistic water temperature profile (min-max) concomitant with irradiation produces a greater kill of EPEC. Maintaining simulated sunlight experiments at a high fixed temperature may result in over --estimation of inactivation. Following a natural water temperature profile will result in more reliable inactivation comparable with those that might be obtained under natural sunlight conditions.

  15. Inactivation of nitric oxide by cytochrome c oxidase under steady-state oxygen conditions.

    Science.gov (United States)

    Unitt, David C; Hollis, Veronica S; Palacios-Callender, Miriam; Frakich, Nanci; Moncada, Salvador

    2010-03-01

    We have developed a respiration chamber that allows intact cells to be studied under controlled oxygen (O(2)) conditions. The system measures the concentrations of O(2) and nitric oxide (NO) in the cell suspension, while the redox state of cytochrome c oxidase is continuously monitored optically. Using human embryonic kidney cells transfected with a tetracycline-inducible NO synthase we show that the inactivation of NO by cytochrome c oxidase is dependent on both O(2) concentration and electron turnover of the enzyme. At a high O(2) concentration (70 microM), and while the enzyme is in turnover, NO generated by the NO synthase upon addition of a given concentration of l-arginine is partially inactivated by cytochrome c oxidase and does not affect the redox state of the enzyme or consumption of O(2). At low O(2) (15 microM), when the cytochrome c oxidase is more reduced, inactivation of NO is decreased. In addition, the NO that is not inactivated inhibits the cytochrome c oxidase, further reducing the enzyme and lowering O(2) consumption. At both high and low O(2) concentrations the inactivation of NO is decreased when sodium azide is used to inhibit cytochrome c oxidase and decrease electron turnover.

  16. Forebrain neurogenesis: From embryo to adult

    Science.gov (United States)

    Dennis, Daniel; Picketts, David; Slack, Ruth S.; Schuurmans, Carol

    2017-01-01

    A satellite symposium to the Canadian Developmental Biology Conference 2016 was held on March 16–17, 2016 in Banff, Alberta, Canada, entitled Forebrain Neurogenesis: From embryo to adult. The Forebrain Neurogenesis symposium was a focused, high-intensity meeting, bringing together the top Canadian and international researchers in the field. This symposium reported the latest breaking news, along with ‘state of the art’ techniques to answer fundamental questions in developmental neurobiology. Topics covered ranged from stem cell regulation to neurocircuitry development, culminating with a session focused on neuropsychiatric disorders. Understanding the underlying causes of neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD) is of great interest as diagnoses of these conditions are climbing at alarming rates. For instance, in 2012, the Centers for Disease Control reported that the prevalence rate of ASD in the U.S. was 1 in 88; while more recent data indicate that the number is as high as 1 in 68 (Centers for Disease Control and Prevention MMWR Surveillance Summaries. Vol. 63. No. 2). Similarly, the incidence of ASD is on the rise in Canada, increasing from 1 in 150 in 2000 to 1 in 63 in 2012 in southeastern Ontario (Centers for Disease Control and Prevention). Currently very little is known regarding the deficits underlying these neurodevelopmental conditions. Moreover, the development of effective therapies is further limited by major gaps in our understanding of the fundamental processes that regulate forebrain development and adult neurogenesis. The Forebrain Neurogenesis satellite symposium was thus timely, and it played a key role in advancing research in this important field, while also fostering collaborations between international leaders, and inspiring young researchers.

  17. Radiation inactivation of microorganisms on food materials with different dry conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ryomoto, Yasuhisa; Ito, Hitoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-09-01

    The effect of dry condition of food materials such as spices or herbs with grain or powder were investigated for inactivation of microorganisms by gamma-rays or electron-beams. Radiation sensitivities on endospores of Bacillus pumilus and B. cereus at polished rice, whole black pepper and glass fiber filter dried with additives of 2% peptone + 1% glycerin were almost equivalent, and D{sub 10} values of gamma-rays were obtained to be 1.8 - 2.2 kGy for B. pumilus and 1.2 - 1.3 kGy for B. cereus, respectively. However, D{sub 10} value was decreased to 1.6 kGy for B. pumilus and 1.0 kGy for B. cereus in white pepper powder, and increased significantly as 2.6 kGy for B. pumilus and 1.8 kGy for B. cereus in senna herb powder. In the case of B. megaterium, Enterobacter cloacae and Escherichia coli, D{sub 10} values were increased at all of food materials even in white pepper powder compared with glass fiber filter with additives. These results are indicating that glycerin and related radical scavengers in food components protect the bacteria such as B. megaterium, Ent. cloacae and E. coli more significantly from effects of radiation than B. pumilus or B. cereus. The increase of radiation resistance of these bacteria should be responsible also to the amount of oxygen penetration in bacterial cells which dried at different conditions. On the irradiation of electron-beams, radiation resistance of all of bacteria increased more significantly than gamma-rays which depending to dose rate effects on bacteria. However, increase of radiation resistance was not observed at Aspergillus oryzae in all of food materials at different dry conditions. (author)

  18. Effectiveness of low concentration electrolyzed water to inactivate foodborne pathogens under different environmental conditions.

    Science.gov (United States)

    Rahman, S M E; Ding, Tian; Oh, Deog-Hwan

    2010-05-15

    Strong acid electrolyzed water (SAEW) has a very limited application due to its low pH value (4.0, 5.0, 6.0 and 9.0) and temperatures (4, 15, 23, 35 and 50 degrees C) were determined. Reductions of bacterial populations of 1.7 to 6.6 log(10) CFU/mL in various treated conditions in cell suspensions were observed after treatment with LcEW and SAEW, compared to the untreated control. Dip washing (1 min at 35 degrees C) of lettuce leaves in both electrolyzed water resulted in 2.5 to 4.0 log(10) CFU/g compared to the unwashed control. Strong inactivation effects were observed in LcEW, and no significant difference (p>0.05) was observed between LcEW and SAEW. The effective form of chlorine compounds in LcEW was almost exclusively hypochlorous acid (HOCl), which has strong antimicrobial activity and leaves no residuals due to the low concentration of residual chlorine. Thus, LcEW could be widely applied as a new sanitizer in the food industry.

  19. Comparative safety study of three inactivated BTV-8 vaccines in sheep and cattle under field conditions.

    Science.gov (United States)

    Gethmann, J; Hüttner, K; Heyne, H; Probst, C; Ziller, M; Beer, M; Hoffmann, B; Mettenleiter, T C; Conraths, F J

    2009-06-24

    After massive epidemics of bluetongue disease in 2006 and 2007, Germany has started a compulsory vaccination program against bluetongue virus serotype 8 (BTV-8). Since the available vaccines had not yet been registered and only limited data were available on their performance, a safety study was conducted with three different inactivated monovalent vaccines under consideration for use in Germany. A total of 1007 sheep and 893 cattle were vaccinated and subsequently compared with 638 control animals (324 sheep and 314 cattle). During the study, all animals remained in good health condition. After the initial immunisation, only local swellings were observed in a small number of animals. Following revaccination, several sheep developed more distinct local reactions and a temporary rise in body temperature. Severe systemic reactions were not detected in any of the study groups. Among cattle, neither fever, nor a decrease in milk production and only temporary low-grade local reactions were observed. Overall, our results demonstrate a high level of safety of all vaccines tested.

  20. Optimization of Inactivation Conditions of High Hydrostatic Pressure Using Response Surface Methodology

    Institute of Scientific and Technical Information of China (English)

    GAO Yu-long; WANG Yun-xiang; JIANG Han-hu

    2004-01-01

    Response surface methodology(RSM)was employed in the present work and a second order quadratic equation for high hydrostatic pressure(HHP)inactivation was built.The adequacy of the model equation for predicting the optimum response values was verified effectively by the validation data.Effects of temperature,pressure,and pressure holding time on HHP inactivation of Escherichia coli ATCC 8739 were explored.By analyzing the response surface plots and their corresponding contour plots as well as solving the quadratic equation,the optimum process parameters for inactivation E.coli of six log cycles were obtained as:temperature 32.2℃,pressure 346.4 MPa,and pressure holding time 12.6 min.

  1. Inactivation of the central nucleus of the amygdala blocks classical conditioning but not conditioning-specific reflex modification of rabbit heart rate.

    Science.gov (United States)

    Burhans, Lauren B; Schreurs, Bernard G

    2013-02-01

    Heart rate (HR) conditioning in rabbits is a widely used model of classical conditioning of autonomic responding that is noted for being similar to the development of conditioned heart rate slowing (bradycardia) in humans. We have shown previously that in addition to HR changes to a tone conditioned stimulus (CS), the HR reflex itself can undergo associative change called conditioning-specific reflex modification (CRM) that manifests when tested in the absence of the CS. Because CRM resembles the conditioned bradycardic response to the CS, we sought to determine if HR conditioning and CRM share a common neural substrate. The central nucleus of the amygdala (CeA) is a critical part of the pathway through which conditioned bradycardia is established. To test whether the CeA is also involved in the acquisition and/or expression of CRM, we inactivated the CeA with muscimol during HR conditioning or CRM testing. CeA inactivation blocked HR conditioning without completely preventing CRM acquisition or expression. These results suggest that the CeA may therefore only play a modulatory role in CRM. Theories on the biological significance of conditioned bradycardia suggest that it may represent a state of hypervigilance that facilitates the detection of new and changing contingencies in the environment. We relate these ideas to our results and discuss how they may be relevant to the hypersensitivity observed in fear conditioning disorders like post-traumatic stress.

  2. Pre-Training Reversible Inactivation of the Basal Amygdala (BA Disrupts Contextual, but Not Auditory, Fear Conditioning, in Rats.

    Directory of Open Access Journals (Sweden)

    Elisa Mari Akagi Jordão

    Full Text Available The basolateral amygdala complex (BLA, including the lateral (LA, basal (BA and accessory basal (AB nuclei, is involved in acquisition of contextual and auditory fear conditioning. The BA is one of the main targets for hippocampal information, a brain structure critical for contextual learning, which integrates several discrete stimuli into a single configural representation. Congruent with the hodology, selective neurotoxic damage to the BA results in impairments in contextual, but not auditory, fear conditioning, similarly to the behavioral impairments found after hippocampal damage. This study evaluated the effects of muscimol-induced reversible inactivation of the BA during a simultaneous contextual and auditory fear conditioning training on later fear responses to both the context and the tone, tested separately, without muscimol administration. As compared to control rats micro-infused with vehicle, subjects micro-infused with muscimol before training exhibited, during testing without muscimol, significant reduction of freezing responses to the conditioned context, but not to the conditioned tone. Therefore, reversible inactivation of the BA during training impaired contextual, but not auditory fear conditioning, thus confirming and extending similar behavioral observations following selective neurotoxic damage to the BA and, in addition, revealing that this effect is not related to the lack of a functional BA during testing.

  3. In vitro studies of different irradiation conditions for Photodynamic inactivation of Helicobacter pylori.

    Science.gov (United States)

    Simon, C; Mohrbacher, C; Hüttenberger, D; Bauer-Marschall, I; Krickhahn, C; Stachon, A; Foth, H-J

    2014-12-01

    Helicobacter pylori (HP) infections are considered to be the main cause for chronic gastritis and gastric ulcers, whereby more than half of the world's population is nowadays infected. The increased use of antibiotics is leading to an enhanced resistance. Photodynamic inactivation of bacteria seems to be a potential alternative for antibiotic therapies. In our study we used the photosensitizer Chlorin e6 (Ce6) in combination with red light-emitting diodes to inactivate HP in vitro. Ce6 uptake is determined by spectroscopy. Furthermore diverse experiments of different concentrations in the range of 0-100 μM of the photosensitizer and exposure times up to 300 s are carried out in order to find optimal irradiation parameters (wavelength: 660 nm, power density: 9 mW/cm(2), absorbed dose: up to 2.7 J/cm(2)). The data show a significant reduction after already a few seconds of illumination, even with a low Ce6 concentration in the sub-μM-region. At a concentration of 100 μM a nearly total inactivation (6-log10-reduction) of HP was achieved within 60s of irradiation.

  4. Genetic interplay between the transcription factors Sp8 and Emx2 in the patterning of the forebrain

    Directory of Open Access Journals (Sweden)

    Stoykova Anastasia

    2007-04-01

    Full Text Available Abstract Background The forebrain consists of multiple structures necessary to achieve elaborate functions. Proper patterning is, therefore, a prerequisite for the generation of optimal functional areas. Only a few factors have been shown to control the genetic networks that establish early forebrain patterning. Results and conclusion Using conditional inactivation, we show that the transcription factor Sp8 has an essential role in the molecular and functional patterning of the developing telencephalon along the anteroposterior axis by modulating the expression gradients of Emx2 and Pax6. Moreover, Sp8 is essential for the maintenance of ventral cell identity in the septum and medial ganglionic eminence (MGE. This is probably mediated through a positive regulatory interaction with Fgf8 in the medial wall, and Nkx2.1 in the rostral MGE anlage, and independent of SHH and WNT signaling. Furthermore, Sp8 is required during corticogenesis to sustain a normal progenitor pool, and to control preplate splitting, as well as the specification of cellular diversity within distinct cortical layers.

  5. Effect of post-treatment conditions on the inactivation of helminth eggs (Ascaris suum) after the composting process.

    Science.gov (United States)

    Darimani, Hamidatu S; Ito, Ryusei; Maiga, Ynoussa; Sou, Mariam; Funamizu, Naoyuki; Maiga, Amadou H

    2016-01-01

    Safe and appropriate disposal of human waste is a basic requirement for sanitation and protection of public health. For proper sanitation and nutrient recovery, it is necessary to ensure effective treatment methods to complete pathogen destruction in excreta prior to reuse. Composting toilets convert faeces to a reusable resource such as fertilizer or humus for organic agriculture. A composting toilet for rural Burkina Faso was created by modifying a commercial model available in Japan to improve hygiene and increase food production. The toilet has shown to result in a degraded final product, but its effectiveness for pathogen destruction was unclear due to low temperatures generated from the toilet. This study aimed to sanitize compost withdrawn from the composting toilet for food production by setting post-treatment conditions. The inactivation kinetics of Ascaris suum eggs, selected as an indicator for helminth eggs, was determined during post-treatment at different temperatures (30°C, 40°C, 50°C and 60°C) with varying moisture contents (MC) (50%, 60% and 70%). The treatment of compost in a possible additional post-treatment after the composting process was tried in the laboratory test. Inactivation of A. suum eggs was fast with greater than two log reductions achieved within 2 h for temperature 50°C and 50% MC and greater than three log reductions for temperature 60°C and 50% MC within 3 h. Statistical analysis showed the significant impact of temperature and moisture on the inactivation rates of A. suum eggs. The post-treatment can efficiently increase helminth eggs destruction prior to reuse.

  6. Influence of prior growth conditions, pressure treatment parameters, and recovery conditions on the inactivation and recovery of Listeria monocytogenes, Escherichia coli, and Salmonella Typhimurium in turkey meat.

    Science.gov (United States)

    Juck, Greg; Neetoo, Hudaa; Beswick, Ethan; Chen, Haiqiang

    2012-02-01

    The relatively high prevalence of Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella enterica serovar Typhimurium in various food products is of great concern to the food industry. The objective of this study was to determine the pressure-inactivation of the pathogens in a representative food model as affected by prior growth temperature, physiological age of the culture, pressure level and treatment temperature. The effect of post-treatment conditions (incubation temperature and gas atmosphere) on the bacterial recovery was also determined. The pathogens being studied were inoculated into sterile turkey breast meat to a final level of ca. 3 logCFU/g and then grown to two stages, the early stage (representative of exponential phase) and late stage (representative of stationary phase), at 15, 25, 35, and 40 °C. Turkey meat samples were pressure-treated at 400 and 600 MPa for 2 min at initial sample temperatures of 4, 20 and 40 °C. Following treatment, bacterial counts in the samples were determined aerobically or anaerobically at incubation temperatures of 15, 25, 35, and 40 °C. Pressure inactivation of the bacterial pathogens increased as a function of the pressure levels and treatment temperatures. Generally speaking, early stage cells were more resistant than late stage cells (Ppressure treatment and recovery conditions of the bacteria after pressure treatment when considering the adequacy of pressure treatments to enhance the microbiological safety of foods. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Unilateral inactivation of the basolateral amygdala attenuates context-induced renewal of Pavlovian-conditioned alcohol-seeking.

    Science.gov (United States)

    Chaudhri, N; Woods, C A; Sahuque, L L; Gill, T M; Janak, P H

    2013-09-01

    Environmental contexts associated with drug use promote craving in humans and drug-seeking in animals. We hypothesized that the basolateral amygdala (BLA) itself as well as serial connectivity between the BLA and nucleus accumbens core (NAC core) were required for context-induced renewal of Pavlovian-conditioned alcohol-seeking. Male Long-Evans rats were trained to discriminate between two conditioned stimuli (CS): a CS+ that was paired with ethanol (EtOH, 20%, v/v) delivery into a fluid port (0.2 mL/CS+, 3.2 mL per session) and a CS- that was not. Entries into the port during each CS were measured. Next, rats received extinction in a different context where both cues were presented without EtOH. At test, responding to the CS+ and CS- without EtOH was evaluated in the prior training context. Control subjects showed a selective increase in CS+ responding relative to extinction, indicative of renewal. This effect was blocked by pre-test, bilateral inactivation of the BLA using a solution of GABA receptor agonists (0.1 mm muscimol and 1.0 mm baclofen; M/B; 0.3 μL per side). Renewal was also attenuated following unilateral injections of M/B into the BLA, combined with either M/B, the dopamine D1 receptor antagonist SCH 23390 (0.6 μg per side) or saline infusion in the contralateral NAC core. Hence, unilateral BLA inactivation was sufficient to disrupt renewal, highlighting a critical role for functional activity in the BLA in enabling the reinstatement of alcohol-seeking driven by an alcohol context.

  8. Inactivation of Escherichia coli, Bacteriophage MS2, and Bacillus Spores under UV/H2O2 and UV/Peroxydisulfate Advanced Disinfection Conditions.

    Science.gov (United States)

    Sun, Peizhe; Tyree, Corey; Huang, Ching-Hua

    2016-04-19

    Ultraviolet light (UV) combined with peroxy chemicals, such as H2O2 and peroxydisulfate (PDS), have been considered potentially highly effective disinfection processes. This study investigated the inactivation of Escherichia coli, bacteriophage MS2, and Bacillus subtilis spores as surrogates for pathogens under UV/H2O2 and UV/PDS conditions, with the aim to provide further understanding of UV-based advanced disinfection processes (ADPs). Results showed that one additional log of inactivation of E. coli was achieved with 0.3 mM H2O2 or PDS at 5.2 × 10(-5) Einstein·L(-1) photo fluence (at 254 nm) compared with UV irradiation alone. Addition of H2O2 and PDS greatly enhanced the inactivation rate of MS2 by around 15 folds and 3 folds, respectively, whereas the inactivation of B. subtilis spores was slightly enhanced. Reactive species responsible for the inactivation were identified to be •OH, SO4(·-), and CO3(·-) based on manipulation of solution conditions. The CT value of each reactive species was calculated with respect to each microbial surrogate, which showed that the disinfection efficacy ranked as •OH > SO4(·-) > CO3(·-) ≫ O2(·-)/HO2(·). A comprehensive dynamic model was developed and successfully predicted the inactivation of the microbial surrogates in surface water and wastewater matrices. The concepts of UV-efficiency and EE/O were employed to provide a cost-effective evaluation for UV-based ADPs. Overall, the present study suggests that it will be beneficial to upgrade UV disinfection to UV/H2O2 ADP for the inactivation of viral pathogens.

  9. Factors Regulating the Effects of Hippocampal Inactivation on Renewal of Conditional Fear after Extinction

    Science.gov (United States)

    Corcoran, Kevin A.; Maren, Stephen

    2004-01-01

    After extinction of fear to a Pavlovian conditional stimulus (CS), contextual stimuli come to regulate the expression of fear to that CS. There is growing evidence that the context dependence of memory retrieval after extinction involves the hippocampus. In the present experiment, we examine whether hippocampal involvement in memory retrieval…

  10. From pluripotency to forebrain patterning: an in vitro journey astride embryonic stem cells.

    Science.gov (United States)

    Lupo, Giuseppe; Bertacchi, Michele; Carucci, Nicoletta; Augusti-Tocco, Gabriella; Biagioni, Stefano; Cremisi, Federico

    2014-08-01

    Embryonic stem cells (ESCs) have been used extensively as in vitro models of neural development and disease, with special efforts towards their conversion into forebrain progenitors and neurons. The forebrain is the most complex brain region, giving rise to several fundamental structures, such as the cerebral cortex, the hypothalamus, and the retina. Due to the multiplicity of signaling pathways playing different roles at distinct times of embryonic development, the specification and patterning of forebrain has been difficult to study in vivo. Research performed on ESCs in vitro has provided a large body of evidence to complement work in model organisms, but these studies have often been focused more on cell type production than on cell fate regulation. In this review, we systematically reassess the current literature in the field of forebrain development in mouse and human ESCs with a focus on the molecular mechanisms of early cell fate decisions, taking into consideration the specific culture conditions, exogenous and endogenous molecular cues as described in the original studies. The resulting model of early forebrain induction and patterning provides a useful framework for further studies aimed at reconstructing forebrain development in vitro for basic research or therapy.

  11. Lesions of the basal forebrain cholinergic system in mice disrupt idiothetic navigation.

    Directory of Open Access Journals (Sweden)

    Adam S Hamlin

    Full Text Available Loss of integrity of the basal forebrain cholinergic neurons is a consistent feature of Alzheimer's disease, and measurement of basal forebrain degeneration by magnetic resonance imaging is emerging as a sensitive diagnostic marker for prodromal disease. It is also known that Alzheimer's disease patients perform poorly on both real space and computerized cued (allothetic or uncued (idiothetic recall navigation tasks. Although the hippocampus is required for allothetic navigation, lesions of this region only mildly affect idiothetic navigation. Here we tested the hypothesis that the cholinergic medial septo-hippocampal circuit is important for idiothetic navigation. Basal forebrain cholinergic neurons were selectively lesioned in mice using the toxin saporin conjugated to a basal forebrain cholinergic neuronal marker, the p75 neurotrophin receptor. Control animals were able to learn and remember spatial information when tested on a modified version of the passive place avoidance test where all extramaze cues were removed, and animals had to rely on idiothetic signals. However, the exploratory behaviour of mice with cholinergic basal forebrain lesions was highly disorganized during this test. By contrast, the lesioned animals performed no differently from controls in tasks involving contextual fear conditioning and spatial working memory (Y maze, and displayed no deficits in potentially confounding behaviours such as motor performance, anxiety, or disturbed sleep/wake cycles. These data suggest that the basal forebrain cholinergic system plays a specific role in idiothetic navigation, a modality that is impaired early in Alzheimer's disease.

  12. Study on Toxicity Reduction and Potency Induction in Whole-cell Pertussis Vaccine by Developing a New Optimal Inactivation Condition Processed on Bordetella pertussis

    Science.gov (United States)

    Mohammadpour Dounighi, Naser; Razzaghi-Abyane, Mehdi; Nofeli, Mojtaba; Zolfagharian, Hossein; Shahcheraghi, Fereshteh

    2016-01-01

    Background Whooping cough is caused by Bordetella pertussis, and it remains a public health concern. Whole-cell pertussis vaccines have been commonly employed for expanded immunization. There is no doubt of the efficacy of whole cell pertussis vaccine, but it is necessary to improve the vaccine to decrease its toxicity. Objectives In this study, an inactivation process of dealing with pertussis bacteria is optimized in order to decrease the bacteria content in human doses of vaccines and reduce the vaccine’s toxicity. Materials and Methods The bacterial suspensions of pertussis strains 509 and 134 were divided into 21 sample parts from F1 to F21 and inactivated under different conditions. The inactivated suspensions of both strains were tested for opacity, non-viability, agglutination, purity, and sterility; the same formulation samples that passed quality tests were then pooled together. The pool of inactivated suspensions were analyzed for sterility, agglutination, opacity, specific toxicity, and potency. Results The harvest of both bacterial strains showed purity. The opacity of various samples were lost under different treatment conditions by heat from 8% to 12%, formaldehyde 6% to 8%, glutaraldehyde 6% to 8%, and thimerosal 5% to 8%. Tests on suspensions after inactivation and on pooled suspensions showed inactivation conditions not degraded agglutinins of both strains. The samples of F2, F4, F8, F12, F15, and F17 passed the toxicity test. The potency (ED50) of these samples showed following order F17 > F12 > F8 > F15, F4 > F2, and F17 revealed higher potency compared to other formulations. Conclusions It can be concluded that F17 showed desirable outcomes in the toxicity test and good immunogenicity with a low bacterial number content. Consequently, lower adverse effects and good immunogenicity are foreseeable for vaccine preparation with this method. PMID:27679704

  13. Inactivating the infralimbic but not prelimbic medial prefrontal cortex facilitates the extinction of appetitive Pavlovian conditioning in Long-Evans rats.

    Science.gov (United States)

    Mendoza, J; Sanio, C; Chaudhri, N

    2015-02-01

    The infralimbic medial prefrontal cortex (IL) has been posited as a common node in distinct neural circuits that mediate the extinction of appetitive and aversive conditioning. However, appetitive extinction is typically assessed using instrumental conditioning procedures, whereas the extinction of aversive conditioning is customarily studied using Pavlovian assays. The role of the IL in the extinction of appetitive Pavlovian conditioning remains underexplored. We investigated the involvement of the IL and prelimbic medial prefrontal cortex (PrL) in appetitive extinction in Pavlovian and instrumental conditioning assays in male, Long-Evans rats. Following acquisition, a gamma-aminobutyric acid agonist solution (0.03 nmol muscimol; 0.3 nmol baclofen; 0.3 μl/side) was bilaterally microinfused into the IL or PrL to pharmacologically inactivate each region before the first extinction session. Compared to saline, PrL inactivation did not affect the acquisition of extinction or the recall of extinction memory 24-h later. IL inactivation caused a more rapid extinction of Pavlovian conditioning, but had no effect on the extinction of instrumental conditioning or extinction recall. IL inactivation during a Pavlovian conditioning session in which conditioned stimulus (CS) trials were paired with sucrose did not affect CS-elicited behaviour, but increased responding during intervals that did not contain the CS. The same manipulation did not impact lever pressing for sucrose. These findings suggest that the IL may normally maintain Pavlovian conditioned responding when an anticipated appetitive CS is unexpectedly withheld, and that this region has distinct roles in the expression of Pavlovian conditioning when an appetitive unconditioned stimulus is either presented or omitted.

  14. Hippocampus and two-way active avoidance conditioning: Contrasting effects of cytotoxic lesion and temporary inactivation.

    Science.gov (United States)

    Wang, Jia; Bast, Tobias; Wang, Yu-Cong; Zhang, Wei-Ning

    2015-12-01

    Hippocampal lesions tend to facilitate two-way active avoidance (2WAA) conditioning, where rats learn to cross to the opposite side of a conditioning chamber to avoid a tone-signaled footshock. This classical finding has been suggested to reflect that hippocampus-dependent place/context memory inhibits 2WAA (a crossing response to the opposite side is inhibited by the memory that this is the place where a shock was received on the previous trial). However, more recent research suggests other aspects of hippocampal function that may support 2WAA learning. More specifically, the ventral hippocampus has been shown to contribute to behavioral responses to aversive stimuli and to positively modulate the meso-accumbens dopamine system, whose activation has been implicated in 2WAA learning. Permanent hippocampal lesions may not reveal these contributions because, following complete and permanent loss of hippocampal output, other brain regions may mediate these processes or because deficits could be masked by lesion-induced extra-hippocampal changes, including an upregulation of accumbal dopamine transmission. Here, we re-examined the hippocampal role in 2WAA learning in Wistar rats, using permanent NMDA-induced neurotoxic lesions and temporary functional inhibition by muscimol or tetrodotoxin (TTX) infusion. Complete hippocampal lesions tended to facilitate 2WAA learning, whereas ventral (VH) or dorsal hippocampal (DH) lesions had no effect. In contrast, VH or DH muscimol or TTX infusions impaired 2WAA learning. Ventral infusions caused an immediate impairment, whereas after dorsal infusions rats showed intact 2WAA learning for 40-50 min, before a marked deficit emerged. These data show that functional inhibition of ventral hippocampus disrupts 2WAA learning, while the delayed impairment following dorsal infusions may reflect the time required for drug diffusion to ventral hippocampus. Overall, using temporary functional inhibition, our study shows that the ventral

  15. Conditional inactivation of PDCD2 induces p53 activation and cell cycle arrest

    Directory of Open Access Journals (Sweden)

    Celine J. Granier

    2014-08-01

    Full Text Available PDCD2 (programmed cell death domain 2 is a highly conserved, zinc finger MYND domain-containing protein essential for normal development in the fly, zebrafish and mouse. The molecular functions and cellular activities of PDCD2 remain unclear. In order to better understand the functions of PDCD2 in mammalian development, we have examined PDCD2 activity in mouse blastocyst embryos, as well as in mouse embryonic stem cells (ESCs and embryonic fibroblasts (MEFs. We have studied mice bearing a targeted PDCD2 locus functioning as a null allele through a splicing gene trap, or as a conditional knockout, by deletion of exon2 containing the MYND domain. Tamoxifen-induced knockout of PDCD2 in MEFs, as well as in ESCs, leads to defects in progression from the G1 to the S phase of cell cycle, associated with increased levels of p53 protein and p53 target genes. G1 prolongation in ESCs was not associated with induction of differentiation. Loss of entry into S phase of the cell cycle and marked induction of nuclear p53 were also observed in PDCD2 knockout blastocysts. These results demonstrate a unique role for PDCD2 in regulating the cell cycle and p53 activation during early embryonic development of the mouse.

  16. Conditional Inactivation of Pten with EGFR Overexpression in Schwann Cells Models Sporadic MPNST

    Directory of Open Access Journals (Sweden)

    Vincent W. Keng

    2012-01-01

    Full Text Available The genetic mechanisms involved in the transformation from a benign neurofibroma to a malignant sarcoma in patients with neurofibromatosis-type-1- (NF1-associated or sporadic malignant peripheral nerve sheath tumors (MPNSTs remain unclear. It is hypothesized that many genetic changes are involved in transformation. Recently, it has been shown that both phosphatase and tensin homolog (PTEN and epidermal growth factor receptor (EGFR play important roles in the initiation of peripheral nerve sheath tumors (PNSTs. In human MPNSTs, PTEN expression is often reduced, while EGFR expression is often induced. We tested if these two genes cooperate in the evolution of PNSTs. Transgenic mice were generated carrying conditional floxed alleles of Pten, and EGFR was expressed under the control of the 2′,3′-cyclic nucleotide 3′phosphodiesterase (Cnp promoter and a desert hedgehog (Dhh regulatory element driving Cre recombinase transgenic mice (Dhh-Cre. Complete loss of Pten and EGFR overexpression in Schwann cells led to the development of high-grade PNSTs. In vitro experiments using immortalized human Schwann cells demonstrated that loss of PTEN and overexpression of EGFR cooperate to increase cellular proliferation and anchorage-independent colony formation. This mouse model can rapidly recapitulate PNST onset and progression to high-grade PNSTs, as seen in sporadic MPNST patients.

  17. Optimization of Combined Pulsed Electric Fields and Mild Temperature Processing Conditions for Red Apple Juice Polyphenol Oxidase and Peroxidase Inactivation

    Directory of Open Access Journals (Sweden)

    Wendy Katiyo

    2014-05-01

    Full Text Available The effect on Polyphenol Oxidase (PPO and Peroxidase (POD enzyme activity in red apple juice was evaluated after combined Pulsed Electric Fields (PEF and mild temperature processing using a response surface methodology. Changes in color were also analyzed and compared with thermally treated and unpasteurized juices. The studied factors were electric field strength (10-30 kV/cm, treatment time (200-1000 µs and temperature (20-60°C. A significant second-order response function covering the whole range of experimental conditions was obtained for each enzyme. Treatments conducted at 30 kV/cm, 1000 µs and 60°C led to red apple juice with the lowest residual enzyme activity (0.04 and 0.16 for PPO and POD, respectively. Overall change in color was significantly lower (p<0.05, in comparison with severe thermal treatments. It was feasible to achieve comparable enzyme inactivation and better preserve natural juice color by this hurdle technique.

  18. Reversible inactivation of the entorhinal cortex disrupts the establishment and expression of latent inhibition of cued fear conditioning in C57BL/6 mice.

    Science.gov (United States)

    Lewis, Michael C; Gould, Thomas J

    2007-01-01

    For latent inhibition, preexposure to a conditioned stimulus (CS) prior to training with an unconditioned stimulus (US) results in decreased conditioned responses (CRs) to the CS at the time of testing. The mechanism by which decreased CRs occurs, however, is unknown; CS preexposure may interfere with subsequent conditioning, or modulate the expression of CRs. Previous research has suggested that the entorhinal cortex (EC) is necessary for latent inhibition of a variety of tasks. However, no studies have specifically compared the role of the EC in acquisition vs. expression of latent inhibition. The present study used reversible inactivation of the EC to address this issue. The GABA agonist muscimol (0.5 microg/side) was directly infused into the EC of mice prior to CS preexposure, training, or testing. Our results indicate that muscimol inactivation of the EC before CS preexposure disrupts latent inhibition of cued fear conditioning. Importantly, this same dose of muscimol did not disrupt cued fear conditioning, nor did it affect latent inhibition when infused into the subiculum. Furthermore, inactivation of the EC at testing disrupted the expression of latent inhibition of cued fear conditioning; that is, CS preexposed mice that received entorhinal cortical muscimol infusion at testing showed CRs compared to saline-infused CS preexposed mice. These findings suggest that repeated preexposure to the CS during latent inhibition may alter entorhinal cortical activity thereby allowing the EC to exert inhibitory control over the expression of CRs during testing of CS preexposed mice.

  19. Direct generation of titanium dioxide nanoparticles dispersion under supercritical conditions for photocatalytic active thermoplastic surfaces for microbiological inactivation

    Energy Technology Data Exchange (ETDEWEB)

    Zydziak, Nicolas, E-mail: nicolas.zydziak@kit.edu [Polymer Engineering Department, Fraunhofer Institute of Chemical Technology, Joseph-von-Fraunhofer-Str. 7, 76327 Pfinztal (Germany); Zanin, Maria-Helena Ambrosio [Laboratory of Chemical Processes and Particle Technology Bionanomanufacturing, Institute for Technological Research of the State of São Paulo – IPT, Av. Prof. Almeida Prado 532, Cidade Universitária, CEP 05508-901 São Paulo, SP (Brazil); Trick, Iris [Environmental Biotechnology and Bioprocess Engineering Department, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstrasse 12, 70569 Stuttgart (Germany); Hübner, Christof [Polymer Engineering Department, Fraunhofer Institute of Chemical Technology, Joseph-von-Fraunhofer-Str. 7, 76327 Pfinztal (Germany)

    2015-03-01

    Thermoplastic poly(propylene) (PP) and acrylonitrile-butadiene-styrene (ABS) surfaces were coated with silica based films via the sol–gel process, containing titanium dioxide (TiO{sub 2}) as photocatalyst. TiO{sub 2} was previously synthesized via sol–gel and treated under supercritical conditions in water dispersions. The characterization of the TiO{sub 2} dispersions was performed via disc centrifuge to determine the particle size and via Raman spectroscopy and X-Ray Diffraction (XRD) to characterize the crystallinity of TiO{sub 2}. The synthesized TiO{sub 2} dispersions and commercially available TiO{sub 2} particles were incorporated in silica based films which were synthesized under acidic or basic conditions, leading to dense or porous films respectively. The morphology of the films was characterized via Scanning Electron Microscopy (SEM). The incorporation of synthesized TiO{sub 2} in the coating led to photocatalytically more active thermoplastic surfaces than films formulated with commercially available TiO{sub 2} as determined via dye discoloration test. A microbiological test performed with Sarcina lutea confirmed this result and showed an inactivation factor of 6 (99.9999%) after 24 h UV irradiation, for synthesized TiO{sub 2} incorporated in acidic formulated silica layer on ABS surfaces. - Highlights: • We report about photocatalytic layers formulated on thermoplastic surfaces. • We synthesized silica layer and TiO{sub 2} via sol–gel and supercritical treatment. • Amorphous, crystalline and commercial dispersions were generated and characterized. • The morphology of dense and porous photocatalytic layers is observed via SEM. • Discoloration and microbiological tests correlate activity and surface morphology.

  20. The impact of dose, irradiance and growth conditions on Aspergillus niger (renamed A. brasiliensis) spores low-pressure (LP) UV inactivation.

    Science.gov (United States)

    Taylor-Edmonds, Lizbeth; Lichi, Tovit; Rotstein-Mayer, Adi; Mamane, Hadas

    2015-01-01

    The use of Aspergillus niger (A. niger) fungal spores as challenge organism for UV reactor validation studies is attractive due to their high UV-resistance and non-pathogenic nature. However A. niger spores UV dose-response was dependent upon sporulation conditions and did not follow the Bunsen-Roscoe Principle of time-dose reciprocity. Exposure to 8 h of natural sunlight for 10 consecutive days increased UV resistance when compared to spores grown solely in dark conditions. Application of 250 mJ cm(-2) at high irradiance (0.11 mW cm(-2)) resulted in a 2-log inactivation; however, at low irradiance (0.022 mW cm(-2)) a 1-log inactivation was achieved. In addition, surface electron microscopy (SEM) images revealed morphological changes between the control and UV exposed spores in contrast to other well accepted UV calibrated test organisms, which show no morphological difference with UV exposure.

  1. Developmental specification of forebrain cholinergic neurons.

    Science.gov (United States)

    Allaway, Kathryn C; Machold, Robert

    2017-01-01

    Striatal cholinergic interneurons and basal forebrain cholinergic projection neurons, which together comprise the forebrain cholinergic system, regulate attention, memory, reward pathways, and motor activity through the neuromodulation of multiple brain circuits. The importance of these neurons in the etiology of neurocognitive disorders has been well documented, but our understanding of their specification during embryogenesis is still incomplete. All forebrain cholinergic projection neurons and interneurons appear to share a common developmental origin in the embryonic ventral telencephalon, a region that also gives rise to GABAergic projection neurons and interneurons. Significant progress has been made in identifying the key intrinsic and extrinsic factors that promote a cholinergic fate in this precursor population. However, how cholinergic interneurons and projection neurons differentiate from one another during development, as well as how distinct developmental programs contribute to heterogeneity within those two classes, is not yet well understood. In this review we summarize the transcription factors and signaling molecules known to play a role in the specification and early development of striatal and basal forebrain cholinergic neurons. We also discuss the heterogeneity of these populations and its possible developmental origins. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Estradiol selectively enhances auditory function in avian forebrain neurons.

    Science.gov (United States)

    Caras, Melissa L; O'Brien, Matthew; Brenowitz, Eliot A; Rubel, Edwin W

    2012-12-01

    Sex steroids modulate vertebrate sensory processing, but the impact of circulating hormone levels on forebrain function remains unclear. We tested the hypothesis that circulating sex steroids modulate single-unit responses in the avian telencephalic auditory nucleus, field L. We mimicked breeding or nonbreeding conditions by manipulating plasma 17β-estradiol levels in wild-caught female Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii). Extracellular responses of single neurons to tones and conspecific songs presented over a range of intensities revealed that estradiol selectively enhanced auditory function in cells that exhibited monotonic rate level functions to pure tones. In these cells, estradiol treatment increased spontaneous and maximum evoked firing rates, increased pure tone response strengths and sensitivity, and expanded the range of intensities over which conspecific song stimuli elicited significant responses. Estradiol did not significantly alter the sensitivity or dynamic ranges of cells that exhibited non-monotonic rate level functions. Notably, there was a robust correlation between plasma estradiol concentrations in individual birds and physiological response properties in monotonic, but not non-monotonic neurons. These findings demonstrate that functionally distinct classes of anatomically overlapping forebrain neurons are differentially regulated by sex steroid hormones in a dose-dependent manner.

  3. Microglia Modulate Wiring of the Embryonic Forebrain

    Directory of Open Access Journals (Sweden)

    Paola Squarzoni

    2014-09-01

    Full Text Available Dysfunction of microglia, the tissue macrophages of the brain, has been associated with the etiology of several neuropsychiatric disorders. Consistently, microglia have been shown to regulate neurogenesis and synaptic maturation at perinatal and postnatal stages. However, microglia invade the brain during mid-embryogenesis and thus could play an earlier prenatal role. Here, we show that embryonic microglia, which display a transiently uneven distribution, regulate the wiring of forebrain circuits. Using multiple mouse models, including cell-depletion approaches and cx3cr1−/−, CR3−/−, and DAP12−/− mutants, we find that perturbing microglial activity affects the outgrowth of dopaminergic axons in the forebrain and the laminar positioning of subsets of neocortical interneurons. Since defects in both dopamine innervation and cortical networks have been linked to neuropsychiatric diseases, our study provides insights into how microglial dysfunction can impact forebrain connectivity and reveals roles for immune cells during normal assembly of brain circuits.

  4. A user-friendly and scalable process to prepare a ready-to-use inactivated vaccine: the example of heartwater in ruminants under tropical conditions.

    Science.gov (United States)

    Marcelino, Isabel; Lefrançois, Thierry; Martinez, Dominique; Giraud-Girard, Ken; Aprelon, Rosalie; Mandonnet, Nathalie; Gaucheron, Jérôme; Bertrand, François; Vachiéry, Nathalie

    2015-01-29

    The use of cheap and thermoresistant vaccines in poor tropical countries for the control of animal diseases is a key issue. Our work aimed at designing and validating a process for the large-scale production of a ready-to-use inactivated vaccine for ruminants. Our model was heartwater caused by the obligate intracellular bacterium Ehrlichia ruminantium (ER). The conventional inactivated vaccine against heartwater (based on whole bacteria inactivated with sodium azide) is prepared immediately before injection, using a syringe-extrusion method with Montanide ISA50. This is a fastidious time-consuming process and it limits the number of vaccine doses available. To overcome these issues, we tested three different techniques (syringe, vortex and homogenizer) and three Montanide ISA adjuvants (50, 70 and 70M). High-speed homogenizer was the optimal method to emulsify ER antigens with both ISA70 and 70M adjuvants. The emulsions displayed a good homogeneity (particle size below 1 μm and low phase separation), conductivity below 10 μS/cm and low antigen degradation at 4 °C for up to 1 year. The efficacy of the different formulations was then evaluated during vaccination trials on goats. The inactivated ER antigens emulsified with ISA70 and ISA70M in a homogenizer resulted in 80% and 100% survival rates, respectively. A cold-chain rupture assay using ISA70M+ER was performed to mimic possible field conditions exposing the vaccine at 37 °C for 4 days before delivery. Surprisingly, the animal survival rate was still high (80%). We also observed that the MAP-1B antibody response was very similar between animals vaccinated with ISA70+ER and ISA70M+ER emulsions, suggesting a more homogenous antigen distribution and presentation in these emulsions. Our work demonstrated that the combination of ISA70 or ISA70M and homogenizer is optimal for the production of an effective ready-to-use inactivated vaccine against heartwater, which could easily be produced on an industrial scale.

  5. Forebrain substrates of reward and motivation.

    Science.gov (United States)

    Wise, Roy A

    2005-12-01

    Electrical stimulation of the medial forebrain bundle can reward arbitrary acts or motivate biologically primitive, species-typical behaviors like feeding or copulation. The subsystems involved in these behaviors are only partially characterized, but they appear to transsynaptically activate the mesocorticolimbic dopamine system. Basal function of the dopamine system is essential for arousal and motor function; phasic activation of this system is rewarding and can potentiate the effectiveness of reward-predictors that guide learned behaviors. This system is phasically activated by most drugs of abuse and such activation contributes to the habit-forming actions of these drugs.

  6. Transient inactivation of the pigeon hippocampus or the nidopallium caudolaterale during extinction learning impairs extinction retrieval in an appetitive conditioning paradigm.

    Science.gov (United States)

    Lengersdorf, Daniel; Stüttgen, Maik C; Uengoer, Metin; Güntürkün, Onur

    2014-05-15

    The majority of experiments exploring context-dependent extinction learning employ Pavlovian fear conditioning in rodents. Since mechanisms of appetitive and aversive learning are known to differ at the neuronal level, we sought to investigate extinction learning in an appetitive setting. Working with pigeons, we established a within-subject ABA renewal paradigm based on Rescorla (Q J Exp Psychol 61:1793) and combined it with pharmacological interventions during extinction. From the fear conditioning literature, it is known that both prefrontal cortex and the hippocampus are core structures for context-specific extinction learning. Accordingly, we transiently inactivated the nidopallium caudolaterale (NCL, a functional analogue of mammalian prefrontal cortex) and the hippocampus in separate experiments by intracranial infusion of the sodium-channel blocker tetrodotoxin immediately before extinction training. We find that TTX in both structures non-specifically suppresses conditioned responding, as revealed by a reduction of response rate to both the extinguished conditioned stimulus and a control stimulus which remained reinforced throughout the experiment. Furthermore, TTX during extinction training impaired later extinction retrieval assessed under drug-free conditions. This was true when responding to the extinguished stimulus was assessed in the context of extinction but not when tested in the context of acquisition, although both contexts were matched with respect to their history of conditioning. These results indicate that both NCL and hippocampus are involved in extinction learning under appetitive conditions or, more specifically, in the consolidation of extinction memory, and that their contribution to extinction is context-specific.

  7. Investigation of optimum ohmic heating conditions for inactivation of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in apple juice.

    Science.gov (United States)

    Park, Il-Kyu; Ha, Jae-Won; Kang, Dong-Hyun

    2017-05-19

    Control of foodborne pathogens is an important issue for the fruit juice industry and ohmic heating treatment has been considered as one of the promising antimicrobial interventions. However, to date, evaluation of the relationship between inactivation of foodborne pathogens and system performance efficiency based on differing soluble solids content of apple juice during ohmic heating treatment has not been well studied. This study aims to investigate effective voltage gradients of an ohmic heating system and corresponding sugar concentrations (°Brix) of apple juice for inactivating major foodborne pathogens (E. coli O157:H7, S. Typhimurium, and L. monocytogenes) while maintaining higher system performance efficiency. Voltage gradients of 30, 40, 50, and 60 V/cm were applied to 72, 48, 36, 24, and 18 °Brix apple juices. At all voltage levels, the lowest heating rate was observed in 72 °Brix apple juice and a similar pattern of temperature increase was shown in18-48 °Brix juice samples. System performance coefficients (SPC) under two treatment conditions (30 V/cm in 36 °Brix or 60 V/cm in 48 °Brix juice) were relatively greater than for other combinations. Meanwhile, 5-log reductions of the three foodborne pathogens were achieved after treatment for 60 s in 36 °Brix at 30 V/cm, but this same reduction was observed in 48 °Brix juice at 60 V/cm within 20 s without affecting product quality. With respect to both bactericidal efficiency and SPC values, 60 V/cm in 48 °Brix was the most effective ohmic heating treatment combination for decontaminating apple juice concentrates.

  8. Efficacy of various pasteurization time-temperature conditions in combination with homogenization on inactivation of Mycobacterium avium subsp. paratuberculosis in milk.

    Science.gov (United States)

    Grant, Irene R; Williams, Alan G; Rowe, Michael T; Muir, D Donald

    2005-06-01

    The effect of various pasteurization time-temperature conditions with and without homogenization on the viability of Mycobacterium avium subsp. paratuberculosis was investigated using a pilot-scale commercial high-temperature, short-time (HTST) pasteurizer and raw milk spiked with 10(1) to 10(5) M. avium subsp. paratuberculosis cells/ml. Viable M. avium subsp. paratuberculosis was cultured from 27 (3.3%) of 816 pasteurized milk samples overall, 5 on Herrold's egg yolk medium and 22 by BACTEC culture. Therefore, in 96.7% of samples, M. avium subsp. paratuberculosis had been completely inactivated by HTST pasteurization, alone or in combination with homogenization. Heat treatments incorporating homogenization at 2,500 lb/in2, applied upstream (as a separate process) or in hold (at the start of a holding section), resulted in significantly fewer culture-positive samples than pasteurization treatments without homogenization (P homogenization was estimated to be 4.0 to 5.2 log10. The impact of homogenization on clump size distribution in M. avium subsp. paratuberculosis broth suspensions was subsequently assessed using a Mastersizer X spectrometer. These experiments demonstrated that large clumps of M. avium subsp. paratuberculosis cells were reduced to single-cell or "miniclump" status by homogenization at 2,500 lb/in2. Consequently, when HTST pasteurization was being applied to homogenized milk, the M. avium subsp. paratuberculosis cells would have been present as predominantly declumped cells, which may possibly explain the greater inactivation achieved by the combination of pasteurization and homogenization.

  9. Impact of two DNA repair pathways, homologous recombination and non-homologous end joining, on bacterial spore inactivation under simulated martian environmental conditions

    Science.gov (United States)

    Moeller, Ralf; Schuerger, Andrew C.; Reitz, Günther; Nicholson, Wayne L.

    2011-09-01

    Spores of Bacillus subtilis were used as a model system to study the impact of the two major DNA double-strand break (DSB) repair mechanisms [homologous recombination (HR) and non-homologous end-joining (NHEJ)] on the survivability of air-dried mono- and multilayers of bacterial spores under a simulated martian environment; i.e., an environment with low temperature (-10 °C), pure CO 2 atmosphere (99.99% CO 2), 200-1100 nm UV-VIS-NIR radiation, and 0.69 kPa pressure. Spores in multilayers exhibited low inactivation rates compared to monolayers, mainly due to shadowing effects of overlying spores. Simulated martian UV irradiation reduced dramatically spore viability, whereas when shielded from martian UV radiation, spores deficient in NHEJ- and HR-mediated DNA repair were significantly more sensitive to simulated martian environmental conditions than were wild-type spores. In addition, NHEJ-deficient spores were consistently more sensitive than HR-deficient spores to simulated Mars environmental conditions, suggesting that DSBs were an important type of DNA damage. The results indicated that both HR and NHEJ provide an efficient set of DNA repair pathways ensuring spore survival after exposure to simulated martian environmental conditions.

  10. Patterning of the chick forebrain anlage by the prechordal plate.

    Science.gov (United States)

    Pera, E M; Kessel, M

    1997-10-01

    We analysed the role of the prechordal plate in forebrain development of chick embryos in vivo. After transplantation to uncommitted ectoderm a prechordal plate induces an ectopic, dorsoventrally patterned, forebrain-like vesicle. Grafting laterally under the anterior neural plate causes ventralization of the lateral side of the forebrain, as indicated by a second expression domain of the homeobox gene NKX2.1. Such a lateral ventralization cannot be induced by the secreted factor Sonic Hedgehog alone, as this is only able to distort the ventral forebrain medially. Removal of the prechordal plate does not reduce the rostrocaudal extent of the anterior neural tube, but leads to significant narrowing and cyclopia. Excision of the head process results in the caudal expansion of the NKX2.1 expression in the ventral part of the anterior neural tube, while PAX6 expression in the dorsal part remains unchanged. We suggest that there are three essential steps in early forebrain patterning, which culminate in the ventralization of the forebrain. First, anterior neuralization occurs at the primitive streak stage, when BMP-4-antagonizing factors emanate from the node and spread in a planar fashion to induce anterior neural ectoderm. Second, the anterior translocation of organizer-derived cells shifts the source of neuralizing factors anteriorly, where the relative concentration of BMP-4-antagonists is thus elevated, and the medial part of the prospective forebrain becomes competent to respond to ventralizing factors. Third, the forebrain anlage is ventralized by signals including Sonic Hedgehog, thereby creating a new identity, the prospective hypothalamus, which splits the eye anlage into two lateral domains.

  11. Experimental investigation of integrated air purifying technology for bioaerosol removal and inactivation in central air-conditioning system

    Institute of Scientific and Technical Information of China (English)

    ZHENG Xiaohong; LIU Hongmin; YE Xiaojiang; LI Kejun; WANG Ruzhu; ZHAO Liping; Lisa. X. Xu; CHEN Yazhu; JIN Xinqiao; GU Bo; BAI Jingfeng

    2004-01-01

    In this research, high voltage static electricity and ultraviolet technologies were integrated to an air purifying device which can be used to trap and kill airborne bacteria and viruses in central air-conditioning systems. An experimental platform was built to mimic the central air system, in which the efficacy of the newly built device was examined. In addition to the standard physical and chemical tests, bacteriophages were used to simulate airborne viruses in the experimental system. The bacteriophage suspension was aerosolized into the air with ultrasonic wave atomization. The result showed that more than 86% removal efficiency of micro-particles (<10 micron in diameter) were removed after the device was in operation in a building and more than 95% of bacteriophages in the experimental system. It is concluded that the integrated air purifier is suitable for controlling air quality and preventing virus transmission through the central air system.

  12. Mosaic Subventricular Origins of Forebrain Oligodendrogenesis

    Science.gov (United States)

    Azim, Kasum; Berninger, Benedikt; Raineteau, Olivier

    2016-01-01

    In the perinatal as well as the adult CNS, the subventricular zone (SVZ) of the forebrain is the largest and most active source of neural stem cells (NSCs) that generates neurons and oligodendrocytes (OLs), the myelin forming cells of the CNS. Recent advances in the field are beginning to shed light regarding SVZ heterogeneity, with the existence of spatially segregated microdomains that are intrinsically biased to generate phenotypically distinct neuronal populations. Although most research has focused on this regionalization in the context of neurogenesis, newer findings underline that this also applies for the genesis of OLs under the control of specific patterning molecules. In this mini review, we discuss the origins as well as the mechanisms that induce and maintain SVZ regionalization. These come in the flavor of specific signaling ligands and subsequent initiation of transcriptional networks that provide a basis for subdividing the SVZ into distinct lineage-specific microdomains. We further emphasize canonical Wnts and FGF2 as essential signaling pathways for the regional genesis of OL progenitors from NSCs of the dorsal SVZ. This aspect of NSC biology, which has so far received little attention, may unveil new avenues for appropriately recruiting NSCs in demyelinating diseases. PMID:27047329

  13. Mosaic subventricular origins of forebrain oligodendroglia

    Directory of Open Access Journals (Sweden)

    Kasum eAzim

    2016-03-01

    Full Text Available In the perinatal as well as the adult CNS, the subventricular zone (SVZ of the forebrain is the largest and most active source of neural stem cells (NSCs that generates neurons and oligodendrocytes (OLs, the myelin forming cells of the CNS. Recent advances in the field are beginning to shed light regarding SVZ heterogeneity, with the existence of spatially segregated microdomains that are intrinsically biased to generate phenotypically distinct neuronal populations. Although most research has focused on this regionalization in the context of neurogenesis, newer findings underline that this also applies for the genesis of OLs under the control of specific patterning molecules. In this mini review, we discuss the origins as well as the mechanisms that induce and maintain SVZ regionalization. These come in the flavor of specific signaling ligands and subsequent initiation of transcriptional networks that provide a basis for subdividing the SVZ into distinct lineage-specific microdomains. We further emphasize canonical Wnt and FGF2 as essential signaling pathways for the regional genesis of OL progenitors from NSCs of the dorsal SVZ. This aspect of NSC biology, which has so far received little attention, may unveil new avenues for appropriately recruiting NSCs in demyelinating diseases.

  14. Conditional inactivation of Upstream Binding Factor reveals its epigenetic functions and the existence of a somatic nucleolar precursor body.

    Directory of Open Access Journals (Sweden)

    Nourdine Hamdane

    2014-08-01

    Full Text Available Upstream Binding Factor (UBF is a unique multi-HMGB-box protein first identified as a co-factor in RNA polymerase I (RPI/PolI transcription. However, its poor DNA sequence selectivity and its ability to generate nucleosome-like nucleoprotein complexes suggest a more generalized role in chromatin structure. We previously showed that extensive depletion of UBF reduced the number of actively transcribed ribosomal RNA (rRNA genes, but had little effect on rRNA synthesis rates or cell proliferation, leaving open the question of its requirement for RPI transcription. Using gene deletion in mouse, we now show that UBF is essential for embryo development beyond morula. Conditional deletion in cell cultures reveals that UBF is also essential for transcription of the rRNA genes and that it defines the active chromatin conformation of both gene and enhancer sequences. Loss of UBF prevents formation of the SL1/TIF1B pre-initiation complex and recruitment of the RPI-Rrn3/TIF1A complex. It is also accompanied by recruitment of H3K9me3, canonical histone H1 and HP1α, but not by de novo DNA methylation. Further, genes retain penta-acetyl H4 and H2A.Z, suggesting that even in the absence of UBF the rRNA genes can maintain a potentially active state. In contrast to canonical histone H1, binding of H1.4 is dependent on UBF, strongly suggesting that it plays a positive role in gene activity. Unexpectedly, arrest of rRNA synthesis does not suppress transcription of the 5S, tRNA or snRNA genes, nor expression of the several hundred mRNA genes implicated in ribosome biogenesis. Thus, rRNA gene activity does not coordinate global gene expression for ribosome biogenesis. Loss of UBF also unexpectedly induced the formation in cells of a large sub-nuclear structure resembling the nucleolar precursor body (NPB of oocytes and early embryos. These somatic NPBs contain rRNA synthesis and processing factors but do not associate with the rRNA gene loci (NORs.

  15. Chick homeobox gene cDlx expression demarcates the forebrain anlage, indicating the onset of forebrain regional specification at gastrulation.

    Science.gov (United States)

    Borghjid, S; Siddiqui, M A

    2000-01-01

    Here we describe the isolation and characterization of a chick homeobox-containing gene, cDlx, which shows greater than 85% homology to the homeodomain of other vertebrate Distal-less genes. Northern blot analysis and in situ hybridization studies reveal that cDlx expression is developmentally regulated and is tissue specific. In particular, the developmental expression pattern is characterized by an early appearance of cDlx transcript in the prospective forebrain region of gastrulating embryos. During neurulation, cDlx is consistently expressed in a spatially restricted domain in the presumptive ventral forebrain region of the neural plate that will give rise to the hypothalamus and the adenohypophysis. Our data support the notion that members of the Dlx gene family are part of a homeobox gene code in forebrain pattern formation and suggest that regional specification of the forebrain occurs at much earlier stages than previously thought. The homeobox gene cDlx may thus play a role in defining forebrain regional identity as early as gastrulation.

  16. Adhesive/Repulsive Codes in Vertebrate Forebrain Morphogenesis

    Directory of Open Access Journals (Sweden)

    Florencia Cavodeassi

    2014-08-01

    Full Text Available The last fifteen years have seen the identification of some of the mechanisms involved in anterior neural plate specification, patterning, and morphogenesis, which constitute the first stages in the formation of the forebrain. These studies have provided us with a glimpse into the molecular mechanisms that drive the development of an embryonic structure, and have resulted in the realization that cell segregation in the anterior neural plate is essential for the accurate progression of forebrain morphogenesis. This review summarizes the latest advances in our understanding of mechanisms of cell segregation during forebrain development, with and emphasis on the impact of this process on the morphogenesis of one of the anterior neural plate derivatives, the eyes.

  17. Pengembangan Vaksin Inaktif Tetelo Genotipe VII Isolat Lokal pada Kondisi Laboratorium. (DEVELOPMENT OF TETELO INACTIVATED VACCINE GENOTYPE VII LOCAL ISOLATE IN LABORATORY CONDITION

    Directory of Open Access Journals (Sweden)

    Risa Indriani

    2016-11-01

    Full Text Available Tetelo/Newcastle disease (ND inactive vaccine of genotipe VII virus local isolate have been developedin laboratory condition and compared with commercial ND vaccine. A total of 200 commercial layer chickenat 4 weeks age were divided into four groups, that were (1 vaccinated with ND genotype VII Indonesia/GTT/11, (2 vaccinated with commercial ND vaccine genotype VII, (3 vaccinated with commercial genotypeVI and (4 unvaccinated as control group. After two weeks post vaccination, 10 chicken from each groupwere sellected randomly and challenged with 105 EID50 per 0,1 mL of ND virus genotype VII Indonesian/GTT/11 by intramuscular. Chicken were observed, and swab were collected from oropharyngeal and cloacaat 2, 5, 7, 12 and 14 days post challenge. The result of this study showed inactived vaccine genotype VIIIndonesia/GTT/11 can induced a good antibody titer response to vaccinated chicken with mean titer 7.30log2 and CI 6.3 to 7.8, while commercial ND vaccine genotipe VII was 5.30 log2 with CI 3.8-6.7, andcommercial genotype VI was 4.8 log2 with CI 4.1-5.4. The level of protection which determined by noclinical signs, mortality and viral shedding showed 100% protection in chicken vaccinated with Indonesia/GTT/11 and commercial genotype VII were 100%, compared with control chicken, and vaccined commercialND vaccine genotype VII, compared with control chicken. While in chicken vaccinated commercial NDvaccine genotype VI showed viral shedding on day two post challenge, but there were no clinical sign andmortality. Based on this results, Indonesia/GTT/11 genotype VII ND vaccine could be used as an alternativeND vaccine to protect chicken from infection of ND virus genotype VII in the field.

  18. SOD isoforms play no role in lifespan in ad lib or dietary restricted conditions, but mutational inactivation of SOD-1 reduces life extension by cold.

    Science.gov (United States)

    Yen, Kelvin; Patel, Harshil B; Lublin, Alex L; Mobbs, Charles V

    2009-03-01

    The free radical theory of aging is one of the most prominent theories of aging and senescence, but has yet to be definitively proven. If free radicals are the cause of senescence, then the cellular anti-oxidant system should play a large role in lifespan determination. Because superoxide dismutase (SOD) plays a central role in detoxifying superoxide radicals, we have examined the effects of mutational inactivation of each isoform of sod on normal lifespan and lifespan extension by dietary restriction (DR) or cold-/hypothermic-induced longevity (CHIL). We find no significant decrease in lifespan for control worms or worms undergoing DR when sod isoforms are knocked-out even though sod mutational inactivation produces hypersensitivity to paraquat. In contrast, sod-1 inactivation significantly reduces lifespan extension by CHIL, suggesting that CHIL requires a specific genetic program beyond simple reduction in metabolic rate. Furthermore, CHIL paradoxically increases lifespan while reducing resistance to oxidative stress, further disassociating oxidative stress resistance and lifespan.

  19. Long-term inhibition of Rho-kinase restores the LTP impaired in chronic forebrain ischemia rats by regulating GABAA and GABAB receptors.

    Science.gov (United States)

    Huang, L; Zhao, L B; Yu, Z Y; He, X J; Ma, L P; Li, N; Guo, L J; Feng, W Y

    2014-09-26

    We previously demonstrated that inactivation of Rho-kinase by hydroxyfasudil could impact N-methyl-d-aspartate (NMDA) excitatory interneurons in the hippocampus and attenuate the spatial learning and memory dysfunction of rats caused by chronic forebrain hypoperfusion ischemia. Complementary interactions between the excitatory neurotransmitter glutamate and the inhibitory neurotransmitter GABA form the molecular basis of synaptic plasticity and cognitive performance. However, whether the GABAergic inhibitory interneurons are involved in the mechanisms underlying these processes remains unclear. Here, we further examined the role of GABAergic interneurons in the neuroprotective effect of the Rho-kinase inhibitor. Chronic forebrain ischemia was induced in Wistar rats by bilateral common carotid artery occlusion (BCAO). The general synaptic transmission and long-term potentiation (LTP) of hippocampal CA3 neurons were evaluated at 30 days after sham surgery or BCAO. Real-time PCR and Western blot analyses were conducted to determine the effect of the Rho-kinase inhibitor hydroxyfasudil on GABAergic inhibitory interneuron expression and function after ischemia. Hydroxyfasudil showed no significant effect on general synaptic transmission, but it could abolish the inhibition of LTP induced by chronic forebrain ischemia. Moreover, the mRNA and protein levels of GABAA and GABAB in three brain regions after ischemia were markedly decreased, and hydroxyfasudil could up-regulate all mRNA and protein expression levels in these areas except for GABAA mRNA in the cerebral cortex and striatum. Using phosphorylation antibodies against specific sites on the GABAA and GABAB receptors, we further demonstrated that hydroxyfasudil could inhibit GABAergic interneuron phosphorylation triggered by the theta burst stimulation. In summary, our results indicated that the inactivation of Rho-kinase could enhance GABAA and GABAB expressions by different mechanisms to guarantee the induction of

  20. Impact of basal forebrain cholinergic inputs on basolateral amygdala neurons.

    Science.gov (United States)

    Unal, Cagri T; Pare, Denis; Zaborszky, Laszlo

    2015-01-14

    In addition to innervating the cerebral cortex, basal forebrain cholinergic (BFc) neurons send a dense projection to the basolateral nucleus of the amygdala (BLA). In this study, we investigated the effect of near physiological acetylcholine release on BLA neurons using optogenetic tools and in vitro patch-clamp recordings. Adult transgenic mice expressing cre-recombinase under the choline acetyltransferase promoter were used to selectively transduce BFc neurons with channelrhodopsin-2 and a reporter through the injection of an adeno-associated virus. Light-induced stimulation of BFc axons produced different effects depending on the BLA cell type. In late-firing interneurons, BFc inputs elicited fast nicotinic EPSPs. In contrast, no response could be detected in fast-spiking interneurons. In principal BLA neurons, two different effects were elicited depending on their activity level. When principal BLA neurons were quiescent or made to fire at low rates by depolarizing current injection, light-induced activation of BFc axons elicited muscarinic IPSPs. In contrast, with stronger depolarizing currents, eliciting firing above ∼ 6-8 Hz, these muscarinic IPSPs lost their efficacy because stimulation of BFc inputs prolonged current-evoked afterdepolarizations. All the effects observed in principal neurons were dependent on muscarinic receptors type 1, engaging different intracellular mechanisms in a state-dependent manner. Overall, our results suggest that acetylcholine enhances the signal-to-noise ratio in principal BLA neurons. Moreover, the cholinergic engagement of afterdepolarizations may contribute to the formation of stimulus associations during fear-conditioning tasks where the timing of conditioned and unconditioned stimuli is not optimal for the induction of synaptic plasticity.

  1. Influence of oxygen tension on dopaminergic differentiation of human fetal stem cells of midbrain and forebrain origin.

    Science.gov (United States)

    Krabbe, Christina; Bak, Sara Thornby; Jensen, Pia; von Linstow, Christian; Martínez Serrano, Alberto; Hansen, Claus; Meyer, Morten

    2014-01-01

    Neural stem cells (NSCs) constitute a promising source of cells for transplantation in Parkinson's disease (PD), but protocols for controlled dopaminergic differentiation are not yet available. Here we investigated the influence of oxygen on dopaminergic differentiation of human fetal NSCs derived from the midbrain and forebrain. Cells were differentiated for 10 days in vitro at low, physiological (3%) versus high, atmospheric (20%) oxygen tension. Low oxygen resulted in upregulation of vascular endothelial growth factor and increased the proportion of tyrosine hydroxylase-immunoreactive (TH-ir) cells in both types of cultures (midbrain: 9.1 ± 0.5 and 17.1 ± 0.4 (Pcells). Regardless of oxygen levels, the content of TH-ir cells with mature neuronal morphologies was higher for midbrain as compared to forebrain cultures. Proliferative Ki67-ir cells were found in both types of cultures, but the relative proportion of these cells was significantly higher for forebrain NSCs cultured at low, as compared to high, oxygen tension. No such difference was detected for midbrain-derived cells. Western blot analysis revealed that low oxygen enhanced β-tubulin III and GFAP expression in both cultures. Up-regulation of β-tubulin III was most pronounced for midbrain cells, whereas GFAP expression was higher in forebrain as compared to midbrain cells. NSCs from both brain regions displayed less cell death when cultured at low oxygen tension. Following mictrotransplantation into mouse striatal slice cultures predifferentiated midbrain NSCs were found to proliferate and differentiate into substantial numbers of TH-ir neurons with mature neuronal morphologies, particularly at low oxygen. In contrast, predifferentiated forebrain NSCs microtransplanted using identical conditions displayed little proliferation and contained few TH-ir cells, all of which had an immature appearance. Our data may reflect differences in dopaminergic differentiation capacity and region-specific requirements

  2. File list: His.Neu.10.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.Forebrain mm9 Histone Neural Forebrain SRX093315,SRX377672,SRX3776...70,SRX377678,SRX377676,SRX093314,SRX377674 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.10.AllAg.Forebrain.bed ...

  3. File list: ALL.Neu.50.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Forebrain mm9 All antigens Neural Forebrain SRX093315,SRX377672,SR...SRX377671,SRX377674,SRX669235 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Forebrain.bed ...

  4. File list: His.Neu.50.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.AllAg.Forebrain mm9 Histone Neural Forebrain SRX093315,SRX377672,SRX3776...70,SRX377678,SRX377676,SRX093314,SRX377674 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.50.AllAg.Forebrain.bed ...

  5. File list: InP.Neu.05.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.05.AllAg.Forebrain mm9 Input control Neural Forebrain SRX669236,SRX377679,S...RX377677,SRX377675,SRX377673,SRX377671 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.05.AllAg.Forebrain.bed ...

  6. File list: His.Neu.20.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Forebrain mm9 Histone Neural Forebrain SRX093315,SRX377672,SRX3776...70,SRX377678,SRX377676,SRX093314,SRX377674 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.AllAg.Forebrain.bed ...

  7. File list: InP.Neu.10.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.10.AllAg.Forebrain mm9 Input control Neural Forebrain SRX377679,SRX669236,S...RX377677,SRX377675,SRX377673,SRX377671 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.10.AllAg.Forebrain.bed ...

  8. File list: His.Neu.05.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Forebrain mm9 Histone Neural Forebrain SRX093315,SRX377678,SRX3776...72,SRX377670,SRX377676,SRX377674,SRX093314 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.05.AllAg.Forebrain.bed ...

  9. File list: ALL.Neu.10.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Forebrain mm9 All antigens Neural Forebrain SRX093315,SRX377672,SR...SRX377673,SRX377671,SRX317036 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Forebrain.bed ...

  10. File list: InP.Neu.50.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.50.AllAg.Forebrain mm9 Input control Neural Forebrain SRX377679,SRX377675,S...RX377677,SRX377673,SRX669236,SRX377671 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.50.AllAg.Forebrain.bed ...

  11. File list: ALL.Neu.05.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Forebrain mm9 All antigens Neural Forebrain SRX002660,SRX093315,SR...SRX377673,SRX669235,SRX377671 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Forebrain.bed ...

  12. File list: ALL.Neu.20.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Forebrain mm9 All antigens Neural Forebrain SRX093315,SRX377672,SR...SRX377674,SRX317036,SRX377671 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Forebrain.bed ...

  13. File list: InP.Neu.20.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.20.AllAg.Forebrain mm9 Input control Neural Forebrain SRX377677,SRX377675,S...RX377679,SRX377673,SRX669236,SRX377671 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.20.AllAg.Forebrain.bed ...

  14. Dynamic expression of MEIS1 homeoprotein in E14.5 forebrain and differentiated forebrain-derived neural stem cells.

    Science.gov (United States)

    Barber, Benjamin A; Liyanage, Vichithra R B; Zachariah, Robby M; Olson, Carl O; Bailey, Melissa A G; Rastegar, Mojgan

    2013-10-01

    Central nervous system development is controlled by highly conserved homeoprotein transcription factors including HOX and TALE (Three Amino acid Loop Extension). TALE proteins are primarily known as HOX-cofactors and play key roles in cell proliferation, differentiation and organogenesis. MEIS1 is a TALE member with established expression in the developing central nervous system. MEIS1 is essential for embryonic development and Meis1 knockout mice dies at embryonic day (E) 14.5. However, Meis1/MEIS1 expression in the devolving forebrain, at this critical time-point has not been studied. Here, for the first time we characterize the region-specific expression of MEIS1 in E14.5 mouse forebrain, filling the gap of MEIS1 expression profile between E12.5 and E16.5. Previously, we reported MEIS1 transcriptional regulatory role in neuronal differentiation and established forebrain-derived neural stem cells (NSC) for gene therapy application of neuronal genes. Here, we show the dynamic expression of Meis1/MEIS1 during the differentiation of forebrain-derived NSC toward a glial lineage. Our results show that Meis1/MEIS1 expression is induced during NSC differentiation and is expressed in both differentiated neurons and astrocytes. Confirming these results, we detected MEIS1 expression in primary cultures of in vivo differentiated cortical neurons and astrocytes. We further demonstrate Meis1/MEIS1 expression relative to other TALE family members in the forebrain-derived NSC in the absence of Hox genes. Our data provide evidence that forebrain-derived NSC can be used as an accessible in vitro model to study the expression and function of TALE proteins, supporting their potential role in modulating NSC self-renewal and differentiation.

  15. Inactivation of Escherichia coli O157:H7 in Beef Roasts Cooked in Conventional or Convection Ovens or in a Slow Cooker under Selected Conditions.

    Science.gov (United States)

    Gill, C O; Devos, J; Badoni, M; Yang, X

    2016-02-01

    Inactivation of Escherichia coli O157:H7 in beef roasts cooked under selected cooking conditions was evaluated. Eye of round roasts were each inoculated at five sites in the central plane with a five-strain cocktail of E. coli O157:H7 at ca. 6.3 log CFU per site and cooked to center temperatures of 56 to 71°C in a convection oven set at 120, 140, 180, or 200°C, in a conventional oven set at 120 or 210°C, and in a slow cooker set on high or low. Prime rib roasts were each inoculated at 10 sites throughout the roast with the same E. coli O157:H7 cocktail at ca. 6.6 log CFU per site and cooked in the conventional oven set at 140 or 180°C to center temperatures of 58 to 71°C. The number of sites yielding E. coli O157:H7 after cooking decreased with increasing roast center temperature for the eye of round roasts cooked in the convection oven or in the slow cooker at a given setting, but this trend was not apparent for roasts of either type cooked in the conventional oven. Reductions of E. coli O157 in both types of roasts were generally less at the center than at other locations, particularly locations closer to the surface of the meat. When eye of round roasts were cooked to the same center temperature in the convection oven, the reduction of E. coli O157:H7 increased with increasing oven temperature up to 180°C and decreased after that. The reduction of E. coli O157:H7 in replicate roasts cooked under conditions in which the organism was not eliminated during cooking mostly differed by >1 log CFU per site. However, E. coli O157:H7 was not recovered from any of the inoculation sites when eye of round roasts were cooked to 65, 60, 60, or 63°C in the convection oven set at 120, 140, 180, and 200°C, respectively; cooked to 63 or 71°C in the conventional oven set at 120 and 210°C, respectively; or cooked to 63°C in the slow cooker set at high or low. For prime rib roasts, E. coli O157:H7 was not recovered from any of the inoculation sites in roasts cooked to 71

  16. Adult forebrain NMDA receptors gate social motivation and social memory.

    Science.gov (United States)

    Jacobs, Stephanie; Tsien, Joe Z

    2017-02-01

    Motivation to engage in social interaction is critical to ensure normal social behaviors, whereas dysregulation in social motivation can contribute to psychiatric diseases such as schizophrenia, autism, social anxiety disorders and post-traumatic stress disorder (PTSD). While dopamine is well known to regulate motivation, its downstream targets are poorly understood. Given the fact that the dopamine 1 (D1) receptors are often physically coupled with the NMDA receptors, we hypothesize that the NMDA receptor activity in the adult forebrain principal neurons are crucial not only for learning and memory, but also for the proper gating of social motivation. Here, we tested this hypothesis by examining sociability and social memory in inducible forebrain-specific NR1 knockout mice. These mice are ideal for exploring the role of the NR1 subunit in social behavior because the NR1 subunit can be selectively knocked out after the critical developmental period, in which NR1 is required for normal development. We found that the inducible deletion of the NMDA receptors prior to behavioral assays impaired, not only object and social recognition memory tests, but also resulted in profound deficits in social motivation. Mice with ablated NR1 subunits in the forebrain demonstrated significant decreases in sociability compared to their wild type counterparts. These results suggest that in addition to its crucial role in learning and memory, the NMDA receptors in the adult forebrain principal neurons gate social motivation, independent of neuronal development. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Forebrain Mechanisms of Nociception and Pain: Analysis through Imaging

    Science.gov (United States)

    Casey, Kenneth L.

    1999-07-01

    Pain is a unified experience composed of interacting discriminative, affective-motivational, and cognitive components, each of which is mediated and modulated through forebrain mechanisms acting at spinal, brainstem, and cerebral levels. The size of the human forebrain in relation to the spinal cord gives anatomical emphasis to forebrain control over nociceptive processing. Human forebrain pathology can cause pain without the activation of nociceptors. Functional imaging of the normal human brain with positron emission tomography (PET) shows synaptically induced increases in regional cerebral blood flow (rCBF) in several regions specifically during pain. We have examined the variables of gender, type of noxious stimulus, and the origin of nociceptive input as potential determinants of the pattern and intensity of rCBF responses. The structures most consistently activated across genders and during contact heat pain, cold pain, cutaneous laser pain or intramuscular pain were the contralateral insula and anterior cingulate cortex, the bilateral thalamus and premotor cortex, and the cerebellar vermis. These regions are commonly activated in PET studies of pain conducted by other investigators, and the intensity of the brain rCBF response correlates parametrically with perceived pain intensity. To complement the human studies, we developed an animal model for investigating stimulus-induced rCBF responses in the rat. In accord with behavioral measures and the results of human PET, there is a progressive and selective activation of somatosensory and limbic system structures in the brain and brainstem following the subcutaneous injection of formalin. The animal model and human PET studies should be mutually reinforcing and thus facilitate progress in understanding forebrain mechanisms of normal and pathological pain.

  18. Inactivation Data.xlsx

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data set is a spreadsheet that contains results of inactivation experiments that were conducted to to determine the effectiveness of chlorine in inactivating B....

  19. Inactivation of Caliciviruses

    Science.gov (United States)

    Nims, Raymond; Plavsic, Mark

    2013-01-01

    The Caliciviridae family of viruses contains clinically important human and animal pathogens, as well as vesivirus 2117, a known contaminant of biopharmaceutical manufacturing processes employing Chinese hamster cells. An extensive literature exists for inactivation of various animal caliciviruses, especially feline calicivirus and murine norovirus. The caliciviruses are susceptible to wet heat inactivation at temperatures in excess of 60 °C with contact times of 30 min or greater, to UV-C inactivation at fluence ≥30 mJ/cm2, to high pressure processing >200 MPa for >5 min at 4 °C, and to certain photodynamic inactivation approaches. The enteric caliciviruses (e.g.; noroviruses) display resistance to inactivation by low pH, while the non-enteric species (e.g.; feline calicivirus) are much more susceptible. The caliciviruses are inactivated by a variety of chemicals, including alcohols, oxidizing agents, aldehydes, and β-propiolactone. As with inactivation of viruses in general, inactivation of caliciviruses by the various approaches may be matrix-, temperature-, and/or contact time-dependent. The susceptibilities of the caliciviruses to the various physical and chemical inactivation approaches are generally similar to those displayed by other small, non-enveloped viruses, with the exception that the parvoviruses and circoviruses may require higher temperatures for inactivation, while these families appear to be more susceptible to UV-C inactivation than are the caliciviruses. PMID:24276023

  20. Inactivation of Caliciviruses

    Directory of Open Access Journals (Sweden)

    Raymond Nims

    2013-03-01

    Full Text Available The Caliciviridae family of viruses contains clinically important human and animal pathogens, as well as vesivirus 2117, a known contaminant of biopharmaceutical manufacturing processes employing Chinese hamster cells. An extensive literature exists for inactivation of various animal caliciviruses, especially feline calicivirus and murine norovirus. The caliciviruses are susceptible to wet heat inactivation at temperatures in excess of 60 °C with contact times of 30 min or greater, to UV-C inactivation at fluence ≥30 mJ/cm2, to high pressure processing >200 MPa for >5 min at 4 °C, and to certain photodynamic inactivation approaches. The enteric caliciviruses (e.g.; noroviruses display resistance to inactivation by low pH, while the non-enteric species (e.g.; feline calicivirus are much more susceptible. The caliciviruses are inactivated by a variety of chemicals, including alcohols, oxidizing agents, aldehydes, and β-propiolactone. As with inactivation of viruses in general, inactivation of caliciviruses by the various approaches may be matrix-, temperature-, and/or contact time-dependent. The susceptibilities of the caliciviruses to the various physical and chemical inactivation approaches are generally similar to those displayed by other small, non-enveloped viruses, with the exception that the parvoviruses and circoviruses may require higher temperatures for inactivation, while these families appear to be more susceptible to UV-C inactivation than are the caliciviruses.

  1. Forebrain GABAergic projections to locus coeruleus in mouse.

    Science.gov (United States)

    Dimitrov, Eugene L; Yanagawa, Yuchio; Usdin, Ted B

    2013-07-01

    The noradrenergic locus coeruleus (LC) regulates arousal, memory, sympathetic nervous system activity, and pain. Forebrain projections to LC have been characterized in rat, cat, and primates, but not systematically in mouse. We surveyed mouse forebrain LC-projecting neurons by examining retrogradely labeled cells following LC iontophoresis of Fluoro-Gold and anterograde LC labeling after forebrain injection of biotinylated dextran amine or viral tracer. Similar to other species, the central amygdalar nucleus (CAmy), anterior hypothalamus, paraventricular nucleus, and posterior lateral hypothalamic area (PLH) provide major LC inputs. By using mice expressing green fluorescent protein in γ-aminobutyric acid (GABA)ergic neurons, we found that more than one-third of LC-projecting CAmy and PLH neurons are GABAergic. LC colocalization of biotinylated dextran amine, following CAmy or PLH injection, with either green fluorescent protein or glutamic acid decarboxylase (GAD)65/67 immunoreactivity confirmed these GABAergic projections. CAmy injection of adeno-associated virus encoding channelrhodopsin-2-Venus showed similar fiber labeling and association with GAD65/67-immunoreactive (ir) and tyrosine hydroxylase (TH)-ir neurons. CAmy and PLH projections were densest in a pericoerulear zone, but many fibers entered the LC proper. Close apposition between CAmy GABAergic projections and TH-ir processes suggests that CAmy GABAergic neurons may directly inhibit noradrenergic principal neurons. Direct LC neuron targeting was confirmed by anterograde transneuronal labeling of LC TH-ir neurons following CAmy or PLH injection of a herpes virus that expresses red fluorescent protein following activation by Cre recombinase in mice that express Cre recombinase in GABAergic neurons. This description of GABAergic projections from the CAmy and PLH to the LC clarifies important forebrain sources of inhibitory control of central nervous system noradrenergic activity.

  2. Shp2 in forebrain neurons regulates synaptic plasticity, locomotion, and memory formation in mice.

    Science.gov (United States)

    Kusakari, Shinya; Saitow, Fumihito; Ago, Yukio; Shibasaki, Koji; Sato-Hashimoto, Miho; Matsuzaki, Yasunori; Kotani, Takenori; Murata, Yoji; Hirai, Hirokazu; Matsuda, Toshio; Suzuki, Hidenori; Matozaki, Takashi; Ohnishi, Hiroshi

    2015-05-01

    Shp2 (Src homology 2 domain-containing protein tyrosine phosphatase 2) regulates neural cell differentiation. It is also expressed in postmitotic neurons, however, and mutations of Shp2 are associated with clinical syndromes characterized by mental retardation. Here we show that conditional-knockout (cKO) mice lacking Shp2 specifically in postmitotic forebrain neurons manifest abnormal behavior, including hyperactivity. Novelty-induced expression of immediate-early genes and activation of extracellular-signal-regulated kinase (Erk) were attenuated in the cerebral cortex and hippocampus of Shp2 cKO mice, suggestive of reduced neuronal activity. In contrast, ablation of Shp2 enhanced high-K(+)-induced Erk activation in both cultured cortical neurons and synaptosomes, whereas it inhibited that induced by brain-derived growth factor in cultured neurons. Posttetanic potentiation and paired-pulse facilitation were attenuated and enhanced, respectively, in hippocampal slices from Shp2 cKO mice. The mutant mice also manifested transient impairment of memory formation in the Morris water maze. Our data suggest that Shp2 contributes to regulation of Erk activation and synaptic plasticity in postmitotic forebrain neurons and thereby controls locomotor activity and memory formation.

  3. Forebrain activation in REM sleep: an FDG PET study.

    Science.gov (United States)

    Nofzinger, E A; Mintun, M A; Wiseman, M; Kupfer, D J; Moore, R Y

    1997-10-03

    Rapid eye movement (REM) sleep is a behavioral state characterized by cerebral cortical activation with dreaming as an associated behavior. The brainstem mechanisms involved in the generation of REM sleep are well-known, but the forebrain mechanisms that might distinguish it from waking are not well understood. We report here a positron emission tomography (PET) study of regional cerebral glucose utilization in the human forebrain during REM sleep in comparison to waking in six healthy adult females using the 18F-deoxyglucose method. In REM sleep, there is relative activation, shown by increased glucose utilization, in phylogenetically old limbic and paralimbic regions which include the lateral hypothalamic area, amygdaloid complex, septal-ventral striatal areas, and infralimbic, prelimbic, orbitofrontal, cingulate, entorhinal and insular cortices. The largest area of activation is a bilateral, confluent paramedian zone which extends from the septal area into ventral striatum, infralimbic, prelimbic, orbitofrontal and anterior cingulate cortex. There are only small and scattered areas of apparent deactivation. These data suggest that an important function of REM sleep is the integration of neocortical function with basal forebrain-hypothalamic motivational and reward mechanisms. This is in accordance with views that alterations in REM sleep in psychiatric disorders, such as depression, may reflect dysregulation in limbic and paralimbic structures.

  4. Basal forebrain thermoregulatory mechanism modulates auto-regulated sleep

    Directory of Open Access Journals (Sweden)

    Hruda N Mallick

    2012-06-01

    Full Text Available Regulation of body temperature and sleep are two physiological mechanisms that are vital for our survival. Interestingly neural structures implicated in both these functions are common. These areas include the medial preoptic area, the lateral preoptic area, the ventrolateral preoptic area, the median preoptic nucleus and the medial septum, which form part of the basal forebrain.When given a choice, rats prefer to stay at an ambient temperature of 270C, though the maximum sleep was observed when they were placed at 300C. Ambient temperature around 270C should be considered as the thermoneutral temperature for rats in all sleep studies. At this temperature the diurnal oscillations of sleep and body temperature are properly expressed. The warm sensitive neurons of the preoptic area mediate the increase in sleep at 300C. Promotion of sleep during the rise in ambient temperature from 270C to 300C, serve a thermoregulatory function. Autonomous thermoregulatory changes in core body temperature and skin temperature could act as an input signal to modulate neuronal activity in sleep-promoting brain areas. The studies presented here show that the neurons of the basal forebrain play a key role in regulating sleep. Basal forebrain thermoregulatory system is a part of the global homeostatic sleep regulatory mechanism, which is auto-regulated.

  5. Astaxanthin limits fish oil-related oxidative insult in the anterior forebrain of Wistar rats: putative anxiolytic effects?

    Science.gov (United States)

    Mattei, Rita; Polotow, Tatiana G; Vardaris, Cristina V; Guerra, Beatriz A; Leite, José Roberto; Otton, Rosemari; Barros, Marcelo P

    2011-09-01

    The habitual consumption of marine fish is largely associated to human mental health. Fish oil is particularly rich in n-3 polyunsaturated fatty acids that are known to play a role in several neuronal and cognitive functions. In parallel, the orange-pinkish carotenoid astaxanthin (ASTA) is found in salmon and displays important antioxidant and anti-inflammatory properties. Many neuronal dysfunctions and anomalous psychotic behavior (such as anxiety, depression, etc.) have been strongly related to the higher sensitivity of cathecolaminergic brain regions to oxidative stress. Thus, the aim of this work was to study the combined effect of ASTA and fish oil on the redox status in plasma and in the monoaminergic-rich anterior forebrain region of Wistar rats with possible correlations with the anxiolytic behavior. Upon fish oil supplementation, the downregulation of superoxide dismutase and catalase activities combined to increased "free" iron content resulted in higher levels of lipid and protein oxidation in the anterior forebrain of animals. Such harmful oxidative modifications were hindered by concomitant supplementation with ASTA despite ASTA-related antioxidant protection was mainly observed in plasma. Although it is clear that ASTA properly crosses the brain-blood barrier, our data also address a possible indirect role of ASTA in restoring basal oxidative conditions in anterior forebrain of animals: by improving GSH-based antioxidant capacity of plasma. Preliminary anxiolytic tests performed in the elevated plus maze are in alignment with our biochemical observations.

  6. Basal forebrain degeneration precedes and predicts the cortical spread of Alzheimer's pathology

    OpenAIRE

    Schmitz, Taylor W.; Nathan Spreng, R.; Weiner, Michael W.; Aisen, Paul; Petersen, Ronald; Jack, Clifford R; Jagust, William; Trojanowki, John Q.; Toga, Arthur W; Beckett, Laurel; Green, Robert C.; Saykin, Andrew J.; Morris, John; Leslie M Shaw; Khachaturian, Zaven

    2016-01-01

    There is considerable debate whether Alzheimer's disease (AD) originates in basal forebrain or entorhinal cortex. Here we examined whether longitudinal decreases in basal forebrain and entorhinal cortex grey matter volume were interdependent and sequential. In a large cohort of age-matched older adults ranging from cognitively normal to AD, we demonstrate that basal forebrain volume predicts longitudinal entorhinal degeneration. Models of parallel degeneration or entorhinal origin received ne...

  7. Inactivation of Viruses by Benzalkonium Chloride

    Science.gov (United States)

    Armstrong, J. A.; Froelich, E. J.

    1964-01-01

    Benzalkonium chloride (as Roccal or Zephiran) was found to inactivate influenza, measles, canine distemper, rabies, fowl laryngotracheitis, vaccinia, Semliki Forest, feline pneumonitis, meningopneumonitis, and herpes simplex viruses after 10 min of exposure at 30 C or at room temperature. Poliovirus and encephalomyocarditis virus were not inactivated under the same conditions. It was concluded that all viruses tested were sensitive except members of the picorna group. The literature was reviewed. PMID:4288740

  8. Visualization of the medial forebrain bundle using diffusion tensor imaging

    Directory of Open Access Journals (Sweden)

    Ardian eHana

    2015-10-01

    Full Text Available Diffusion tensor imaging is a technique that enables physicians the portrayal of white matter tracts in vivo. We used this technique in order to depict the medial forebrain bundle in 15 consecutive patients between 2012 and 2015. Men and women of all ages were included. There were 6 women and 9 men. The mean age was 58,6 years (39-77. Nine patients were candidates for an eventual deep brain stimulation. Eight of them suffered from Parkinson`s disease and one had multiple sclerosis. The remaining 6 patients suffered from different lesions which were situated in the frontal lobe. These were 2 metastasis, 2 meningiomas, 1 cerebral bleeding and 1 glioblastoma. We used a 3DT1-sequence for the navigation. Furthermore T2- and DTI- sequences were performed. The FOV was 200 x 200 mm², slice thickness 2 mm, and an acquisition matrix of 96 x 96 yielding nearly isotropic voxels of 2 x 2 x 2 mm. 3-Tesla-MRI was carried out strictly axial using 32 gradient directions and one b0-image. We used Echo-Planar-Imaging (EPI and ASSET parallel imaging with an acceleration factor of 2. b-value was 800 s/mm². The maximal angle was 50°. Additional scanning time was less than 9 minutes. We were able to visualize the medial forebrain bundle in 12 of our patients bilaterally and in the remaining 3 patients we depicted the medial forebrain bundle on one side. It was the contralateral side of the lesion. These were 2 meningiomas and one metastasis. Portrayal of the medial forebrain bundle is possible for everyday routine for neurosurgical interventions. As part of the reward circuitry it might be of substantial importance for neurosurgeons during deep brain stimulation in patients with psychiatric disorders. Furthermore it might explain at a certain extent character changes in patients with lesions in the frontal lobe. Surgery in this part of the brain should always take the preservation of this white matter tract into account.

  9. Basal Forebrain Cholinergic System and Orexin Neurons: Effects on Attention

    Science.gov (United States)

    Villano, Ines; Messina, Antonietta; Valenzano, Anna; Moscatelli, Fiorenzo; Esposito, Teresa; Monda, Vincenzo; Esposito, Maria; Precenzano, Francesco; Carotenuto, Marco; Viggiano, Andrea; Chieffi, Sergio; Cibelli, Giuseppe; Monda, Marcellino; Messina, Giovanni

    2017-01-01

    The basal forebrain (BF) cholinergic system has an important role in attentive functions. The cholinergic system can be activated by different inputs, and in particular, by orexin neurons, whose cell bodies are located within the postero-lateral hypothalamus. Recently the orexin-producing neurons have been proved to promote arousal and attention through their projections to the BF. The aim of this review article is to summarize the evidence showing that the orexin system contributes to attentional processing by an increase in cortical acetylcholine release and in cortical neurons activity. PMID:28197081

  10. Rabbit Forebrain cholinergic system : Morphological characterization of nuclei and distribution of cholinergic terminals in the cerebral cortex and hippocampus

    NARCIS (Netherlands)

    Varga, C; Hartig, W; Grosche, J; Luiten, PGM; Seeger, J; Brauer, K; Harkany, T; Härtig, Wolfgang; Keijser, Jan N.

    2003-01-01

    Although the rabbit brain, in particular the basal forebrain cholinergic system, has become a common model for neuropathological changes associated with Alzheimer's disease, detailed neuroanatomical studies on the morphological organization of basal forebrain cholinergic nuclei and on their output p

  11. Microbial Inactivation by Ultrasound Assisted Supercritical Fluids

    Science.gov (United States)

    Benedito, Jose; Ortuño, Carmen; Castillo-Zamudio, Rosa Isela; Mulet, Antonio

    A method combining supercritical carbon dioxide (SC-CO2) and high power ultrasound (HPU) has been developed and tested for microbial/enzyme inactivation purposes, at different process conditions for both liquid and solid matrices. In culture media, using only SC-CO2, the inactivation rate of E. coli and S. cerevisiae increased with pressure and temperature; and the total inactivation (7-8 log-cycles) was attained after 25 and 140 min of SC-CO2 (350 bar, 36 °C) treatment, respectively. Using SC-CO2+HPU, the time for the total inactivation of both microorganisms was reduced to only 1-2 min, at any condition selected. The SC-CO2+HPU inactivation of both microorganisms was slower in juices (avg. 4.9 min) than in culture media (avg. 1.5 min). In solid samples (chicken, turkey ham and dry-cured pork cured ham) treated with SC-CO2 and SC-CO2+HPU, the inactivation rate of E. coli increased with temperature. The application of HPU to the SC-CO2 treatments accelerated the inactivation rate of E. coli and that effect was more pronounced in treatments with isotonic solution surrounding the solid food samples. The application of HPU enhanced the SC-CO2 inactivation mechanisms of microorganisms, generating a vigorous agitation that facilitated the CO2 solubilization and the mass transfer process. The cavitation generated by HPU could damage the cell walls accelerating the extraction of vital constituents and the microbial death. Thus, using the combined technique, reasonable industrial processing times and mild process conditions could be used which could result into a cost reduction and lead to the minimization in the food nutritional and organoleptic changes.

  12. Demonstration of muscarinic acetylcholine receptor-like immunoreactivity in the rat forebrain and upper brainstem

    NARCIS (Netherlands)

    Zee, E.A. van der; Matsuyama, T.; Strosberg, A.D.; Traber, J.; Luiten, P.G.M.

    1989-01-01

    The distribution of muscarinic acetylcholine receptor protein (mAChR) in the rat forebrain and upper brainstem was described by using a monoclonal antibody (M35) raised against mAChR purified from bovine forebrain homogenates. A method is investigated for light microscopic (LM) and electronmicroscop

  13. Behavioral performance of rats following transient forebrain ischemia.

    Science.gov (United States)

    Volpe, B T; Pulsinelli, W A; Tribuna, J; Davis, H P

    1984-01-01

    Rats subjected to transient forebrain ischemic injury by the method of four vessel occlusion (4-VO) develop irreversible injury to select populations of vulnerable neurons which include pyramidal cells in the CA-1 region of the hippocampus. This brain area is thought to be crucial for learning and memory. Rats subjected to 30 minutes of 4-VO, and then cerebral reperfusion were tested on a radial 8-arm maze task after they had recovered. The data shows that both 4-VO and control animals improve their performance over trials, but that 4-VO rats are impaired on "working" and "reference" tasks. The data suggest that 4-VO rats' impaired "working" performance is permanent, compared to their transient "reference" impairment. Alterations in sensorimotor activity could not account for these performance deficits since control and 4-VO rats demonstrated equivalent choice time per maze arm. Performance deficits in rats following forebrain ischemic injury may be similar to some of the cognitive deficits found in humans survivors of cerebral hypoxia-ischemia.

  14. Dcc regulates asymmetric outgrowth of forebrain neurons in zebrafish.

    Directory of Open Access Journals (Sweden)

    Jingxia Gao

    Full Text Available The guidance receptor DCC (deleted in colorectal cancer ortholog UNC-40 regulates neuronal asymmetry development in Caenorhabditis elegans, but it is not known whether DCC plays a role in the specification of neuronal polarity in vertebrates. To examine the roles of DCC in neuronal asymmetry regulation in vertebrates, we studied zebrafish anterior dorsal telencephalon (ADt neuronal axons. We generated transgenic zebrafish animals expressing the photo-convertible fluorescent protein Kaede in ADt neurons and then photo-converted Kaede to label specifically the ADt neuron axons. We found that ADt axons normally project ventrally. Knock down of Dcc function by injecting antisense morpholino oligonucleotides caused the ADt neurons to project axons dorsally. To examine the axon projection pattern of individual ADt neurons, we labeled single ADt neurons using a forebrain-specific promoter to drive fluorescent protein expression. We found that individual ADt neurons projected axons dorsally or formed multiple processes after morpholino knock down of Dcc function. We further found that knock down of the Dcc ligand, Netrin1, also caused ADt neurons to project axons dorsally. Knockdown of Neogenin1, a guidance receptor closely related to Dcc, enhanced the formation of aberrant dorsal axons in embryos injected with Dcc morpholino. These experiments provide the first evidence that Dcc regulates polarized axon initiation and asymmetric outgrowth of forebrain neurons in vertebrates.

  15. Pseudomonas aeruginosa capability to recruit zinc under conditions of limited metal availability is affected by inactivation of the ZnuABC transporter

    Science.gov (United States)

    D'Orazio, Melania; Mastropasqua, Maria Chiara; Cerasi, Mauro; Pacello, Francesca; Consalvo, Ada; Chirullo, Barbara; Mortensen, Brittany; Skaar, Eric P.; Ciavardelli, Domenico; Pasquali, Paolo; Battistoni, Andrea

    2015-01-01

    The ability of a large number of bacterial pathogens to multiply in the infected host and cause disease is dependent on their ability to express high affinity zinc importers. In many bacteria ZnuABC, a transporter of the ABC family, plays a central role in the process of zinc uptake in zinc poor environments, including the tissues of the infected host. To initiate an investigation into the relevance of the zinc uptake apparatus for Pseudomonas aeruginosa pathogenicity, we have generated a znuA mutant in the PA14 strain. We have found that this mutant strain displays a limited growth defect in zinc depleted media. The znuA mutant strain is more sensitive than the wild type strain to calprotectin-mediated growth inhibition, but both the strains are highly resistant to this zinc sequestering antimicrobial protein. Moreover, intracellular zinc content is not evidently affected by inactivation of the ZnuABC transporter. These findings suggest that P. aeruginosa is equipped with redundant mechanisms for the acquisition of zinc that might favor P. aeruginosa colonization of environments containing low levels of this metal. Nonetheless, deletion of znuA affects alginate production, reduces the activity of extracellular zinc-containing proteases, including LasA, LasB and Protease IV, and decreases the ability of P. aeruginosa to disseminate during systemic infections. These results indicate that efficient zinc acquisition is critical for the expression of various virulence features typical of P. aeruginosa and that ZnuABC also plays an important role in zinc homeostasis in this microorganism. PMID:25751674

  16. Cholinergic basal forebrain structures are involved in the mediation of the arousal effect of noradrenaline.

    Science.gov (United States)

    Lelkes, Zoltán; Porkka-Heiskanen, Tarja; Stenberg, Dag

    2013-12-01

    Cholinergic basal forebrain structures are implicated in cortical arousal and regulation of the sleep-wake cycle. Cholinergic neurones are innervated by noradrenergic terminals, noradrenaline excites them via alpha-1 receptors and microinjection of noradrenaline into the basal forebrain enhances wakefulness. However, it is not known to what extent the cholinergic versus non-cholinergic basal forebrain projection neurones contribute to the arousing effects of noradrenaline. To elucidate the roles of cholinergic basal forebrain structures we administered methoxamine, an alpha-1-adrenergic agonist into the basal forebrain, in intact animals and again after selective destruction of the basal forebrain cholinergic cells by 192 IgG-saporin. In eight male Han-Wistar rats implanted with electroencephalogram/electromyogram electrodes, a microdialysis probe targeted into the basal forebrain was perfused with artificial cerebrospinal fluid for 6 h on a baseline day, and with cerebrospinal fluid in the first and with methoxamine in the second 3-h period of the subsequent day. The sleep-wake activity was recorded for 24 h on both days. Saporin was then injected into the basal forebrain and 2 weeks later the same experimental schedule (with cerebrospinal fluid and methoxamine) was repeated. In the intact animals, methoxamine exhibited a robust arousing effect and non-rapid eye movement (NREM) and REM sleep was suppressed. Lesioning of the basal forebrain cholinergic neurones abolished almost completely the NREM sleep-suppressing effect of methoxamine, whereas the REM sleep-suppressing effect remained intact. Thus, the basal forebrain cholinergic neurones mediate, at least in part, cortical arousal and non-REM sleep-suppression, but they are not involved in the REM sleep-suppressing effects of noradrenaline. © 2013 European Sleep Research Society.

  17. Efficient in vivo electroporation of the postnatal rodent forebrain.

    Directory of Open Access Journals (Sweden)

    Camille Boutin

    Full Text Available Functional gene analysis in vivo represents still a major challenge in biomedical research. Here we present a new method for the efficient introduction of nucleic acids into the postnatal mouse forebrain. We show that intraventricular injection of DNA followed by electroporation induces strong expression of transgenes in radial glia, neuronal precursors and neurons of the olfactory system. We present two proof-of-principle experiments to validate our approach. First, we show that expression of a human isoform of the neural cell adhesion molecule (hNCAM-140 in radial glia cells induces their differentiation into cells showing a neural precursor phenotype. Second, we demonstrate that p21 acts as a cell cycle inhibitor for postnatal neural stem cells. This approach will represent an important tool for future studies of postnatal neurogenesis and of neural development in general.

  18. Expressional changes in cerebrovascular receptors after experimental transient forebrain ischemia

    DEFF Research Database (Denmark)

    Johansson, Sara; Povlsen, Gro Klitgaard; Edvinsson, Lars

    2012-01-01

    of vasoconstrictive endothelin and 5-hydroxytryptamine receptors in cerebral arteries. Experimental transient forebrain ischemia of varying durations was induced in male wistar rats, followed by reperfusion for 48 hours. Neurological function was assessed daily by three different tests and cerebrovascular expression......Global ischemic stroke is one of the most prominent consequences of cardiac arrest, since the diminished blood flow to the brain results in cell damage and sometimes permanently impaired neurological function. The post-arrest period is often characterised by cerebral hypoperfusion due to subacute...... the insult, a phenomenon that leads to increased contraction of cerebral arteries, reduced perfusion of the affected area and worsened ischemic damage. Based on these findings, the aim of the present study was to investigate if transient global cerebral ischemia is associated with upregulation...

  19. Dynamic behaviour of human neuroepithelial cells in the developing forebrain

    Science.gov (United States)

    Subramanian, Lakshmi; Bershteyn, Marina; Paredes, Mercedes F.; Kriegstein, Arnold R.

    2017-01-01

    To understand how diverse progenitor cells contribute to human neocortex development, we examined forebrain progenitor behaviour using timelapse imaging. Here we find that cell cycle dynamics of human neuroepithelial (NE) cells differ from radial glial (RG) cells in both primary tissue and in stem cell-derived organoids. NE cells undergoing proliferative, symmetric divisions retract their basal processes, and both daughter cells regrow a new process following cytokinesis. The mitotic retraction of the basal process is recapitulated by NE cells in cerebral organoids generated from human-induced pluripotent stem cells. In contrast, RG cells undergoing vertical cleavage retain their basal fibres throughout mitosis, both in primary tissue and in older organoids. Our findings highlight developmentally regulated changes in mitotic behaviour that may relate to the role of RG cells to provide a stable scaffold for neuronal migration, and suggest that the transition in mitotic dynamics can be studied in organoid models. PMID:28139695

  20. Patterns of cell death in the perinatal mouse forebrain.

    Science.gov (United States)

    Mosley, Morgan; Shah, Charisma; Morse, Kiriana A; Miloro, Stephen A; Holmes, Melissa M; Ahern, Todd H; Forger, Nancy G

    2017-01-01

    The importance of cell death in brain development has long been appreciated, but many basic questions remain, such as what initiates or terminates the cell death period. One obstacle has been the lack of quantitative data defining exactly when cell death occurs. We recently created a "cell death atlas," using the detection of activated caspase-3 (AC3) to quantify apoptosis in the postnatal mouse ventral forebrain and hypothalamus, and found that the highest rates of cell death were seen at the earliest postnatal ages in most regions. Here we have extended these analyses to prenatal ages and additional brain regions. We quantified cell death in 16 forebrain regions across nine perinatal ages from embryonic day (E) 17 to postnatal day (P) 11 and found that cell death peaks just after birth in most regions. We found greater cell death in several regions in offspring delivered vaginally on the day of parturition compared with those of the same postconception age but still in utero at the time of collection. We also found massive cell death in the oriens layer of the hippocampus on P1 and in regions surrounding the anterior crossing of the corpus callosum on E18 as well as the persistence of large numbers of cells in those regions in adult mice lacking the pro-death Bax gene. Together these findings suggest that birth may be an important trigger of neuronal cell death and identify transient cell groups that may undergo wholesale elimination perinatally. J. Comp. Neurol. 525:47-64, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Learning and the motivation to eat: forebrain circuitry.

    Science.gov (United States)

    Petrovich, Gorica D

    2011-09-26

    Appetite and eating are not only controlled by energy needs, but also by extrinsic factors that are not directly related to energy balance. Environmental signals that acquire motivational properties through associative learning-learned cues-can override homeostatic signals and stimulate eating in sated states, or inhibit eating in states of hunger. Such influences are important, as environmental factors are believed to contribute to the increased susceptibility to overeating and the rise in obesity in the developed world. Similarly, environmental and social factors contribute to the onset and maintenance of anorexia nervosa and other eating disorders through interactions with the individual genetic background. Nevertheless, how learning enables environmental signals to control feeding, and the underlying brain mechanisms are poorly understood. We developed two rodent models to study how learned cues are integrated with homeostatic signals within functional forebrain networks, and how these networks are modulated by experience. In one model, a cue previously paired with food when an animal was hungry induces eating in sated rats. In the other model, food-deprived rats inhibit feeding when presented with a cue that signals danger, a tone previously paired with footshocks. Here evidence will be reviewed that the forebrain network formed by the amygdala, lateral hypothalamus and medial prefrontal cortex mediates cue-driven feeding, while a parallel amygdalar circuitry mediates suppression of eating by the fear cue. Findings from the animal models may be relevant for understanding aspects of human appetite and eating, and maladaptive mechanisms that could lead to overeating and anorexia. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Mu Opioid Receptors in Gamma-Aminobutyric Acidergic Forebrain Neurons Moderate Motivation for Heroin and Palatable Food.

    Science.gov (United States)

    Charbogne, Pauline; Gardon, Olivier; Martín-García, Elena; Keyworth, Helen L; Matsui, Aya; Mechling, Anna E; Bienert, Thomas; Nasseef, Taufiq; Robé, Anne; Moquin, Luc; Darcq, Emmanuel; Ben Hamida, Sami; Robledo, Patricia; Matifas, Audrey; Befort, Katia; Gavériaux-Ruff, Claire; Harsan, Laura-Adela; von Elverfeldt, Dominik; Hennig, Jurgen; Gratton, Alain; Kitchen, Ian; Bailey, Alexis; Alvarez, Veronica A; Maldonado, Rafael; Kieffer, Brigitte L

    2017-05-01

    Mu opioid receptors (MORs) are central to pain control, drug reward, and addictive behaviors, but underlying circuit mechanisms have been poorly explored by genetic approaches. Here we investigate the contribution of MORs expressed in gamma-aminobutyric acidergic forebrain neurons to major biological effects of opiates, and also challenge the canonical disinhibition model of opiate reward. We used Dlx5/6-mediated recombination to create conditional Oprm1 mice in gamma-aminobutyric acidergic forebrain neurons. We characterized the genetic deletion by histology, electrophysiology, and microdialysis; probed neuronal activation by c-Fos immunohistochemistry and resting-state functional magnetic resonance imaging; and investigated main behavioral responses to opiates, including motivation to obtain heroin and palatable food. Mutant mice showed MOR transcript deletion mainly in the striatum. In the ventral tegmental area, local MOR activity was intact, and reduced activity was only observed at the level of striatonigral afferents. Heroin-induced neuronal activation was modified at both sites, and whole-brain functional networks were altered in live animals. Morphine analgesia was not altered, and neither was physical dependence to chronic morphine. In contrast, locomotor effects of heroin were abolished, and heroin-induced catalepsy was increased. Place preference to heroin was not modified, but remarkably, motivation to obtain heroin and palatable food was enhanced in operant self-administration procedures. Our study reveals dissociable MOR functions across mesocorticolimbic networks. Thus, beyond a well-established role in reward processing, operating at the level of local ventral tegmental area neurons, MORs also moderate motivation for appetitive stimuli within forebrain circuits that drive motivated behaviors. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Effect of ischemic preconditioning on antioxidant status in the gerbil hippocampal CA1 region after transient forebrain ischemia.

    Science.gov (United States)

    Park, Seung Min; Park, Chan Woo; Lee, Tae-Kyeong; Cho, Jeong Hwi; Park, Joon Ha; Lee, Jae-Chul; Chen, Bai Hui; Shin, Bich-Na; Ahn, Ji Hyeon; Tae, Hyun-Jin; Shin, Myoung Cheol; Ohk, Taek Geun; Cho, Jun Hwi; Won, Moo-Ho; Choi, Soo Young; Kim, In Hye

    2016-07-01

    Ischemic preconditioning (IPC) is a condition of sublethal transient global ischemia and exhibits neuroprotective effects against subsequent lethal ischemic insult. We, in this study, examined the neuroprotective effects of IPC and its effects on immunoreactive changes of antioxidant enzymes including superoxide dismutase (SOD) 1 and SOD2, catalase (CAT) and glutathione peroxidase (GPX) in the gerbil hippocampal CA1 region after transient forebrain ischemia. Pyramidal neurons of the stratum pyramidale (SP) in the hippocampal CA1 region of animals died 5 days after lethal transient ischemia without IPC (8.6% (ratio of remanent neurons) of the sham-operated group); however, IPC prevented the pyramidal neurons from subsequent lethal ischemic injury (92.3% (ratio of remanent neurons) of the sham-operated group). SOD1, SOD2, CAT and GPX immunoreactivities in the sham-operated animals were easily detected in pyramidal neurons in the stratum pyramidale (SP) of the hippocampal CA1 region, while all of these immunoreactivities were rarely detected in the stratum pyramidale at 5 days after lethal transient ischemia without IPC. Meanwhile, their immunoreactivities in the sham-operated animals with IPC were similar to (SOD1, SOD2 and CAT) or higher (GPX) than those in the sham-operated animals without IPC. Furthermore, their immunoreactivities in the stratum pyramidale of the ischemia-operated animals with IPC were steadily maintained after lethal ischemia/reperfusion. Results of western blot analysis for SOD1, SOD2, CAT and GPX were similar to immunohistochemical data. In conclusion, IPC maintained or increased the expression of antioxidant enzymes in the stratum pyramidale of the hippocampal CA1 region after subsequent lethal transient forebrain ischemia and IPC exhibited neuroprotective effects in the hippocampal CA1 region against transient forebrain ischemia.

  4. Inactivation of the Anterior Cingulate Cortex Impairs Extinction of Rabbit Jaw Movement Conditioning and Prevents Extinction-Related Inhibition of Hippocampal Activity

    Science.gov (United States)

    Griffin, Amy L.; Berry, Stephen D.

    2004-01-01

    Although past research has highlighted the involvement of limbic structures such as the anterior cingulate cortex (ACC) and hippocampus in learning, few have addressed the nature of their interaction. The current study of rabbit jaw movement conditioning used a combination of reversible lesions and electrophysiology to examine the involvement of…

  5. Efficacy of Various Pasteurization Time-Temperature Conditions in Combination with Homogenization on Inactivation of Mycobacterium avium subsp. paratuberculosis in Milk

    OpenAIRE

    Grant, Irene R.; Williams, Alan G.; Rowe, Michael T.; Muir, D. Donald

    2005-01-01

    The effect of various pasteurization time-temperature conditions with and without homogenization on the viability of Mycobacterium avium subsp. paratuberculosis was investigated using a pilot-scale commercial high-temperature, short-time (HTST) pasteurizer and raw milk spiked with 101 to 105 M. avium subsp. paratuberculosis cells/ml. Viable M. avium subsp. paratuberculosis was cultured from 27 (3.3%) of 816 pasteurized milk samples overall, 5 on Herrold's egg yolk medium and 22 by BACTEC cult...

  6. Neurodevelopment genes in lampreys reveal trends for forebrain evolution in craniates.

    Directory of Open Access Journals (Sweden)

    Adèle Guérin

    Full Text Available The forebrain is the brain region which has undergone the most dramatic changes through vertebrate evolution. Analyses conducted in lampreys are essential to gain insight into the broad ancestral characteristics of the forebrain at the dawn of vertebrates, and to understand the molecular basis for the diversifications that have taken place in cyclostomes and gnathostomes following their splitting. Here, we report the embryonic expression patterns of 43 lamprey genes, coding for transcription factors or signaling molecules known to be involved in cell proliferation, stemcellness, neurogenesis, patterning and regionalization in the developing forebrain. Systematic expression patterns comparisons with model organisms highlight conservations likely to reflect shared features present in the vertebrate ancestors. They also point to changes in signaling systems -pathways which control the growth and patterning of the neuroepithelium-, which may have been crucial in the evolution of forebrain anatomy at the origin of vertebrates.

  7. Complex and dynamic patterns of Wnt pathway gene expression in the developing chick forebrain

    Directory of Open Access Journals (Sweden)

    Lumsden Andrew

    2009-09-01

    Full Text Available Abstract Background Wnt signalling regulates multiple aspects of brain development in vertebrate embryos. A large number of Wnts are expressed in the embryonic forebrain; however, it is poorly understood which specific Wnt performs which function and how they interact. Wnts are able to activate different intracellular pathways, but which of these pathways become activated in different brain subdivisions also remains enigmatic. Results We have compiled the first comprehensive spatiotemporal atlas of Wnt pathway gene expression at critical stages of forebrain regionalisation in the chick embryo and found that most of these genes are expressed in strikingly dynamic and complex patterns. Several expression domains do not respect proposed compartment boundaries in the developing forebrain, suggesting that areal identities are more dynamic than previously thought. Using an in ovo electroporation approach, we show that Wnt4 expression in the thalamus is negatively regulated by Sonic hedgehog (Shh signalling from the zona limitans intrathalamica (ZLI, a known organising centre of forebrain development. Conclusion The forebrain is exposed to a multitude of Wnts and Wnt inhibitors that are expressed in a highly dynamic and complex fashion, precluding simple correlative conclusions about their respective functions or signalling mechanisms. In various biological systems, Wnts are antagonised by Shh signalling. By demonstrating that Wnt4 expression in the thalamus is repressed by Shh from the ZLI we reveal an additional level of interaction between these two pathways and provide an example for the cross-regulation between patterning centres during forebrain regionalisation.

  8. Expanded expression of Sonic Hedgehog in Astyanax cavefish: multiple consequences on forebrain development and evolution.

    Science.gov (United States)

    Menuet, Arnaud; Alunni, Alessandro; Joly, Jean-Stéphane; Jeffery, William R; Rétaux, Sylvie

    2007-03-01

    Ventral midline Sonic Hedgehog (Shh) signalling is crucial for growth and patterning of the embryonic forebrain. Here, we report how enhanced Shh midline signalling affects the evolution of telencephalic and diencephalic neuronal patterning in the blind cavefish Astyanax mexicanus, a teleost fish closely related to zebrafish. A comparison between cave- and surface-dwelling forms of Astyanax shows that cavefish display larger Shh expression in all anterior midline domains throughout development. This does not affect global forebrain regional patterning, but has several important consequences on specific regions and neuronal populations. First, we show expanded Nkx2.1a expression and higher levels of cell proliferation in the cavefish basal diencephalon and hypothalamus. Second, we uncover an Nkx2.1b-Lhx6-GABA-positive migratory pathway from the subpallium to the olfactory bulb, which is increased in size in cavefish. Finally, we observe heterochrony and enlarged Lhx7 expression in the cavefish basal forebrain. These specific increases in olfactory and hypothalamic forebrain components are Shh-dependent and therefore place the telencephalic midline organisers in a crucial position to modulate forebrain evolution through developmental events, and to generate diversity in forebrain neuronal patterning.

  9. Forebrain commissures and visual memory: a new approach.

    Science.gov (United States)

    Doty, R W; Ringo, J L; Lewine, J D

    1988-08-01

    The primary purpose of these exploratory experiments was to determine: (1) whether the forebrain commissures can provide full accessibility of the mnemonic store to either hemisphere when the taks involves memory for 'events' (images) rather than, as in essentially all previous tests on split-brain animals, memory for 'rules' (discrimination habits); and (2) whether the anterior commissure (AC) alone is capable of such function. Macaques, with optic chiasm transected to allow limitation of direct visual input to one or the other hemisphere, were trained on tasks requiring recognition of previously viewed photographic slides. For one task, delayed-matching-to-sample (DMTS), the animal was presented with a 'sample' image, and then 0-15s later was required to choose that image in preference to a second image concurrently displayed. On the other task, running recognition (RR), a series of images was presented, some of which were repetitions of images previously seen in that session, and the animal was required to signal its recognition of these repetitions. For either task the initial presentation could be made to one eye and hemisphere, and subsequent recognition required of the other. In such circumstance, if all forebrain commissures were divided, such interhemispheric recognition was no longer possible. For the DMTS task if either the AC or 5 mm of the splenium of the corpus callosum were available, interhemispheric recognition was basically equivalent to that using the same eye and hemisphere. However, interhemispheric accuracy with the RR task, while well above chance levels, was consistently inferior to that achieved intrahemispherically when complex scenes or objects were viewed. This is probably a consequence mostly of the differing visual fields of the two eyes, since interhemispheric accuracy was greatly improved by use of images having approximately identical right and left halves. No consistent hemispheric specialization nor difference in direction of

  10. Deletion of glycine transporter 1 (GlyT1) in forebrain neurons facilitates reversal learning: enhanced cognitive adaptability?

    Science.gov (United States)

    Singer, Philipp; Boison, Detlev; Möhler, Hanns; Feldon, Joram; Yee, Benjamin K

    2009-10-01

    Local availability of glycine near N-methyl-D-aspartate receptors (NMDARs) is partly regulated by neuronal glycine transporter 1 (GlyT1), which can therefore modulate NMDAR function because binding to the glycine site of the NMDAR is necessary for channel activation. Disrupting GlyT1 in forebrain neurons has been shown to enhance Pavlovian conditioning and object recognition memory. Here, the authors report that the same genetic manipulation facilitated reversal learning in the water maze test of reference memory, but did not lead to any clear improvement in a working memory version of the water maze test. Facilitation in a nonspatial discrimination reversal task conducted on a T maze was also observed, supporting the conclusion that forebrain neuronal GlyT1 may modulate the flexibility in (new) learning and relevant mnemonic functions. One possibility is that these phenotypes may reflect reduced susceptibility to certain forms of proactive interference. This may be relevant for the suggested clinical application of GlyT1 inhibitors in the treatment of cognitive deficits, including schizophrenia, which is characterized by cognitive inflexibility in addition to the positive symptoms of the disease.

  11. Descending projections from the basal forebrain to the orexin neurons in mice.

    Science.gov (United States)

    Agostinelli, Lindsay J; Ferrari, Loris L; Mahoney, Carrie E; Mochizuki, Takatoshi; Lowell, Bradford B; Arrigoni, Elda; Scammell, Thomas E

    2017-05-01

    The orexin (hypocretin) neurons play an essential role in promoting arousal, and loss of the orexin neurons results in narcolepsy, a condition characterized by chronic sleepiness and cataplexy. The orexin neurons excite wake-promoting neurons in the basal forebrain (BF), and a reciprocal projection from the BF back to the orexin neurons may help promote arousal and motivation. The BF contains at least three different cell types (cholinergic, glutamatergic, and γ-aminobutyric acid (GABA)ergic neurons) across its different regions (medial septum, diagonal band, magnocellular preoptic area, and substantia innominata). Given the neurochemical and anatomical heterogeneity of the BF, we mapped the pattern of BF projections to the orexin neurons across multiple BF regions and neuronal types. We performed conditional anterograde tracing using mice that express Cre recombinase only in neurons producing acetylcholine, glutamate, or GABA. We found that the orexin neurons are heavily apposed by axon terminals of glutamatergic and GABAergic neurons of the substantia innominata (SI) and magnocellular preoptic area, but there was no innervation by the cholinergic neurons. Channelrhodopsin-assisted circuit mapping (CRACM) demonstrated that glutamatergic SI neurons frequently form functional synapses with the orexin neurons, but, surprisingly, functional synapses from SI GABAergic neurons were rare. Considering their strong reciprocal connections, BF and orexin neurons likely work in concert to promote arousal, motivation, and other behaviors. J. Comp. Neurol. 525:1668-1684, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. The Effect of Conditional Inactivation of Beta 1 Integrins using Twist 2 Cre, Osterix Cre and Osteocalcin Cre Lines on Skeletal Phenotype

    Science.gov (United States)

    Shekaran, Asha; Shoemaker, James T.; Kavanaugh, Taylor E.; Lin, Angela S.; LaPlaca, Michelle C.; Fan, Yuhong; Guldberg, Robert E.; García, Andrés J.

    2014-01-01

    Skeletal development and growth are complex processes regulated by multiple microenvironmental cues, including integrin-ECM interactions. The β1 sub-family of integrins is the largest integrin sub-family and constitutes the main integrin binding partners of collagen I, the major ECM component of bone. As complete β1 integrin integrin knockout results in embryonic lethality, studies of β1 integrin function in vivo rely on tissue-specific gene deletions. While multiple in vitro studies indicate that β1 integrins are crucial regulators of osteogenesis and mineralization, in vivo osteoblast-specific perturbations of β1 integrins have resulted in mild and sometimes contradictory skeletal phenotypes. To further investigate the role of β1 integrins on skeletal phenotype, we used the Twist2-Cre, Osterix-Cre and Osteocalcin-Cre lines to generate conditional β1 integrin deletions, where cre is expressed primarily in mesenchymal condensation, pre-osteoblast, and mature osteoblast lineage cells respectively within these lines. Mice with Twist2-specific β1 integrin disruption were smaller, had impaired skeletal development, especially in the craniofacial and vertebral tissues at E19.5, and did not survive beyond birth. Osterix-specific β1 integrin deficiency resulted in viable mice which were normal at birth but displayed early defects in calvarial ossification, incisor eruption and growth as well as femoral bone mineral density, structure, and mechanical properties. Although these defects persisted into adulthood, they became milder with age. Finally, a lack of β1 integrins in mature osteoblasts and osteocytes resulted in minor alterations to femur structure but had no effect on mineral density, biomechanics or fracture healing. Taken together, our data indicate that β1 integrin expression in early mesenchymal condensations play an important role in skeletal ossification, while β1 integrin-ECM interactions in pre-osteoblast, odontoblast- and hypertrophic

  13. Regional energy balance in rat brain after transient forebrain ischemia.

    Science.gov (United States)

    Pulsinelli, W A; Duffy, T E

    1983-05-01

    Phosphocreatine, ATP, and glucose were severely depleted, and the lactate levels were increased in the paramedian neocortex, dorsal-lateral striatum, and CA1 zone of hippocampus of rats exposed to 30 min of forebrain ischemia. Upon recirculation of the brain, phosphocreatine, ATP, and lactate concentrations recovered to control values in the paramedian neocortex and CA1 zone of hippocampus and to near-control values in the striatum. The phosphocreatine and ATP concentrations then fell and the lactate levels rose in the striatum after 6-24 h, and in the CA1 zone of hippocampus after 24-72 h. The initial recovery and subsequent delayed changes in the phosphocreatine, ATP, and lactate concentrations in the striatum and hippocampus coincided with the onset and progression of morphological injury in these brain regions. The results suggest that cells in these regions regain normal or near-normal mitochondrial function and are viable, in terms of energy production, for many hours before unknown mechanisms cause irreversible neuronal before unknown mechanisms cause irreversible neuronal injury.

  14. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    Energy Technology Data Exchange (ETDEWEB)

    Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; Bloch, B. (Universite de Bordeaux II (France))

    1990-01-01

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons.

  15. Probing forebrain to hindbrain circuit functions in Xenopus.

    Science.gov (United States)

    Kelley, Darcy B; Elliott, Taffeta M; Evans, Ben J; Hall, Ian C; Leininger, Elizabeth C; Rhodes, Heather J; Yamaguchi, Ayako; Zornik, Erik

    2017-01-01

    The vertebrate hindbrain includes neural circuits that govern essential functions including breathing, blood pressure and heart rate. Hindbrain circuits also participate in generating rhythmic motor patterns for vocalization. In most tetrapods, sound production is powered by expiration and the circuitry underlying vocalization and respiration must be linked. Perception and arousal are also linked; acoustic features of social communication sounds-for example, a baby's cry-can drive autonomic responses. The close links between autonomic functions that are essential for life and vocal expression have been a major in vivo experimental challenge. Xenopus provides an opportunity to address this challenge using an ex vivo preparation: an isolated brain that generates vocal and breathing patterns. The isolated brain allows identification and manipulation of hindbrain vocal circuits as well as their activation by forebrain circuits that receive sensory input, initiate motor patterns and control arousal. Advances in imaging technologies, coupled to the production of Xenopus lines expressing genetically encoded calcium sensors, provide powerful tools for imaging neuronal patterns in the entire fictively behaving brain, a goal of the BRAIN Initiative. Comparisons of neural circuit activity across species (comparative neuromics) with distinctive vocal patterns can identify conserved features, and thereby reveal essential functional components.

  16. Dopaminergic neuronal differentiation from the forebrain-derived human neural stem cells induced in cultures by using a combination of BMP-7 and pramipexole with growth factors

    Directory of Open Access Journals (Sweden)

    Hongna eYang

    2016-04-01

    Full Text Available Transplantation of dopaminergic (DA neurons is considered to be the most promising therapeutic strategy for replacing degenerated dopamine cells in the midbrain of Parkinson’s disease (PD, thereby restoring normal neural circuit function and slow clinical progression of the disease. Human neural stem cells (hNSCs derived from fetal forebrain are thought to be the important cell sources for producing DA neurons because of their multipotency for differentiation and long-term expansion property in cultures. However, low DA differentiation of the forebrain-derived hNSCs limited their therapeutic potential in PD. In the current study, we explored a combined application of Pramipexole (PRX, bone morphogenetic proteins 7 (BMP-7, and growth factors, including acidic fibroblast factor (aFGF, forskolin, and phorbol-12-myristae-13-acetate (TPA, to induce differentiation of forebrain-derived hNSCs towards DA neurons in cultures. We found that DA neuron-associated genes, including Nurr1, Neurogenin2 (Ngn2, and tyrosine hydroxylase (TH were significantly increased after 24h of differentiation by RT-PCR analysis (p<0.01. Fluorescent examination showed that about 25% of cells became TH-positive neurons at 24h, about 5% of cells became VMAT2 (vascular monoamine transporter 2-positive neurons, and less than 5% of cells became DAT (dopamine transporter-positive neurons at 72h following differentiation in cultures. Importantly, these TH-, VMAT2- and DAT-expressing neurons were able to release dopamine into cultures under both of the basal and evoked conditions. Dopamine levels released by DA neurons produced using our protocol were significantly higher compared to the control groups (P<0.01, as examined by ELISA. Our results demonstrated that the combination of PRX, BMP-7, and growth factors was able to greatly promote differentiation of the forebrain-derived hNSCs into DA-releasing neurons.

  17. Shear induced inactivation of a-amylase in a plain shear field

    NARCIS (Netherlands)

    Veen, van der M.E.; Iersel, van D.G.; Goot, van der A.J.; Boom, R.M.

    2004-01-01

    A newly developed shearing device was used to study shear-induced inactivation of thermostable alpha-amylase in a plain shear field, under conditions comparable to extrusion. The results show that the inactivation can be described well with a first-order process, in which the inactivation energy lar

  18. Shear induced inactivation of a-amylase in a plain shear field

    NARCIS (Netherlands)

    Veen, van der M.E.; Iersel, van D.G.; Goot, van der A.J.; Boom, R.M.

    2004-01-01

    A newly developed shearing device was used to study shear-induced inactivation of thermostable alpha-amylase in a plain shear field, under conditions comparable to extrusion. The results show that the inactivation can be described well with a first-order process, in which the inactivation energy

  19. Inactivation of Escherichia coli phage by pulsed electric field treatment and analysis of inactivation mechanism

    Science.gov (United States)

    Tanino, Takanori; Yoshida, Tomoki; Sakai, Kazuki; Ohshima, Takayuki

    2013-03-01

    Inactivation of bacteriophage by pulsed electric field (PEF) treatment, one of the effective procedures for bacteria nonthermal inactivation, was studied. Model phage particles Escherichia coli bacteriophages M13mp18 and λ phage, were successfully inactivated by PEF treatment. The survival ratios of both bacteriophages decreased depending on the PEF treatment time when applied peak voltage was 5 or 7 kV, and the survival ratios after 12 min PEF treatment were 10-4 - 10-5. Electrophoresis analyses of biological molecules of inactivated λ phage detected no degradation of total protein and genomic DNA. These results suggested that the factor of phage inactivation by PEF treatment was not based on the degradation of protein or DNA, but on the destruction of phage particle structure. Sensitivity of E. coli phage to PEF treatment was compared with that of E. coli cell. Phage and MV1184 cell were treated with same condition PEF at 5 kV, respectively. After 12 min treatment, the survival ration of λ phage and MV1184 were 4.0 × 10-5 and 1.7 × 10-3, respectively. The survival ratio of phage was lower than that of MV1184. E. coli cell is more tolerant to inactivation with PEF treatment than coli phage.

  20. Pathway for interferon-gamma to promote the differentiation of cholinergic neurons in rat embryonic basal forebrain/septal nuclei

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: The supernatant of interferon-gamma (IFN γ ) co-cultured with neonatal rat cortical glia can promote the cells in embryonic basal forebrain/septal nuclei to differentiate into cholinergic neurons, but the mechanism is still unclear.OBJECTIVE: To analyze the pathways for IFN γ to promote the differentiation of primarily cultured cholinergic neurons in rat embryonic basal forebrain/septal nuclei through culture in different conditioned medium.DESIGN: A controlled experiment taking cells as the observational target.SETTINGS: Department of Biochemistry and Molecular Biology, Youjiang Medical College for Nationalities; Department of Cell Biology, Beijing University Health Science Center.MATERIALS: Sixty-four pregnant Wistar rats for 16 days (250 - 350 g) and 84 Wistar rats (either male or female, 5 - 7 g) of 0 - 1 day after birth were provided by the experimental animal department of Beijing University Health Science Center. Rat IFN γ were provided by Gibco Company; Glial fibrillary acidic protein by Huamei Company.METHODS: The experiments were carried out in the Department of Cell Biology, Beijing University Health Science Center and Daheng Image Company of Chinese Academy of Science from July 1995 to December 2002. ① Interventions: The nerve cells in the basal forebrain/septal nuclei of the pregnant Wistar rats for 16 days were primarily cultured, and then divided into four groups: Blank control group (not any supernatant and medium was added); Control group (added by mixed glial cell or astrocyte conditioned medium); IFN γ group (added by mixed glial cell or astrocyte conditioned medium+IFN γ ). Antibody group (added by mixed glial cell or astrocyte conditioned medium+IFN γ +Ab-IFN γ ). Mixed glial cell or astrocyte conditioned medium was prepared using cerebral cortex of Wistar rats of 0 - 1 day after birth. ② Evaluation: The immunohistochemical method was used to perform the choline acetyltransferase (ChAT) staining of cholinergic neurons

  1. Hydrazine inactivates bacillus spores

    Science.gov (United States)

    Schubert, Wayne; Plett, G. A.; Yavrouian, A. H.; Barengoltz, J.

    2005-01-01

    Planetary Protection places requirements on the maximum number of viable bacterial spores that may be delivered by a spacecraft to another solar system body. Therefore, for such space missions, the spores that may be found in hydrazine are of concern. A proposed change in processing procedures that eliminated a 0.2 um filtration step propmpted this study to ensure microbial contamination issue existed, especially since no information was found in the literature to substantiate bacterial spore inactivation by hydrazine.

  2. Association of basal forebrain volumes and cognition in normal aging.

    Science.gov (United States)

    Wolf, D; Grothe, M; Fischer, F U; Heinsen, H; Kilimann, I; Teipel, S; Fellgiebel, A

    2014-01-01

    The basal forebrain cholinergic system (BFCS) is known to undergo moderate neurodegenerative alterations during normal aging and severe atrophy in Alzheimer's disease (AD). It has been suggested that functional and structural alterations of the BFCS mediate cognitive performance in normal aging and AD. But, it is still unclear to what extend age-associated cognitive decline can be related to BFCS in normal aging. We analyzed the relationship between BFCS volume and cognition using MRI and a comprehensive neuropsychological test battery in a cohort of 43 healthy elderly subjects spanning the age range from 60 to 85 years. Most notably, we found significant associations between general intelligence and BFCS volumes, specifically within areas corresponding to posterior nuclei of the nucleus basalis of Meynert (Ch4p) and the nucleus subputaminalis (NSP). Associations between specific cognitive domains and BFCS volumes were less pronounced. Supplementary analyses demonstrated that especially the volume of NSP but also the volume of Ch4p was related to the volume of widespread temporal, frontal, and parietal gray and white matter regions. Volumes of these gray and white matter regions were also related to general intelligence. Higher volumes of Ch4p and NSP may enhance the effectiveness of acetylcholine supply in related gray and white matter regions underlying general intelligence and hence explain the observed association between the volume of Ch4p as well as NSP and general intelligence. Since general intelligence is known to attenuate the degree of age-associated cognitive decline and the risk of developing late-onset AD, the BFCS might, besides the specific contribution to the pathophysiology in AD, constitute a mechanism of brain resilience in normal aging.

  3. Cholinergic Neurons Excite Cortically Projecting Basal Forebrain GABAergic Neurons

    Science.gov (United States)

    Yang, Chun; McKenna, James T.; Zant, Janneke C.; Winston, Stuart; Basheer, Radhika

    2014-01-01

    The basal forebrain (BF) plays an important role in the control of cortical activation and attention. Understanding the modulation of BF neuronal activity is a prerequisite to treat disorders of cortical activation involving BF dysfunction, such as Alzheimer's disease. Here we reveal the interaction between cholinergic neurons and cortically projecting BF GABAergic neurons using immunohistochemistry and whole-cell recordings in vitro. In GAD67-GFP knock-in mice, BF cholinergic (choline acetyltransferase-positive) neurons were intermingled with GABAergic (GFP+) neurons. Immunohistochemistry for the vesicular acetylcholine transporter showed that cholinergic fibers apposed putative cortically projecting GABAergic neurons containing parvalbumin (PV). In coronal BF slices from GAD67-GFP knock-in or PV-tdTomato mice, pharmacological activation of cholinergic receptors with bath application of carbachol increased the firing rate of large (>20 μm diameter) BF GFP+ and PV (tdTomato+) neurons, which exhibited the intrinsic membrane properties of cortically projecting neurons. The excitatory effect of carbachol was blocked by antagonists of M1 and M3 muscarinic receptors in two subpopulations of BF GABAergic neurons [large hyperpolarization-activated cation current (Ih) and small Ih, respectively]. Ion substitution experiments and reversal potential measurements suggested that the carbachol-induced inward current was mediated mainly by sodium-permeable cation channels. Carbachol also increased the frequency of spontaneous excitatory and inhibitory synaptic currents. Furthermore, optogenetic stimulation of cholinergic neurons/fibers caused a mecamylamine- and atropine-sensitive inward current in putative GABAergic neurons. Thus, cortically projecting, BF GABAergic/PV neurons are excited by neighboring BF and/or brainstem cholinergic neurons. Loss of cholinergic neurons in Alzheimer's disease may impair cortical activation, in part, through disfacilitation of BF cortically

  4. [Inactivation of T4 phage in water environment using proteinase].

    Science.gov (United States)

    Lü, Wen-zhou; Yang, Qing-xiang; Zhang, Yu; Yang, Min; Zhu, Chun-fang

    2004-09-01

    The inactivation effectiveness of proteinase to viruses was investigated by using T4 phage as a model virus. The results showed that the inactivation effectiveness of proteinase to T4 phage was obvious. In the optimum conditions and 67.5 u/mL concentration, the inactivation rate of proteinase K to T4 phage in sterilized water and in sewage achieved 99.4% and 49.4% respectively in an hour, and achieved >99.9% and 81.1% in three hours. The inactivation rate of the industrial proteinase 1398 to T4 phage in sterilized water achieved 74.4% in an hour. The effects of pH and temperature on the inactivation effectiveness was not evident.

  5. New insight into the role of the β3 subunit of the GABAA-R in development, behavior, body weight regulation, and anesthesia revealed by conditional gene knockout

    Directory of Open Access Journals (Sweden)

    Hileman Stanley M

    2007-10-01

    Full Text Available Abstract Background The β3 subunit of the γ-aminobutyric acid type A receptor (GABAA-R has been reported to be important for palate formation, anesthetic action, and normal nervous system function. This subunit has also been implicated in the pathogenesis of Angelman syndrome and autism spectrum disorder. To further investigate involvement of this subunit, we previously produced mice with a global knockout of β3. However, developmental abnormalities, compensation, reduced viability, and numerous behavioral abnormalities limited the usefulness of that murine model. To overcome many of these limitations, a mouse line with a conditionally inactivated β3 gene was engineered. Results Gene targeting and embryonic stem cell technologies were used to create mice in which exon 3 of the β3 subunit was flanked by loxP sites (i.e., floxed. Crossing the floxed β3 mice to a cre general deleter mouse line reproduced the phenotype of the previously described global knockout. Pan-neuronal knockout of β3 was achieved by crossing floxed β3 mice to Synapsin I-cre transgenic mice. Palate development was normal in pan-neuronal β3 knockouts but ~61% died as neonates. Survivors were overtly normal, fertile, and were less sensitive to etomidate. Forebrain selective knockout of β3 was achieved using α CamKII-cre transgenic mice. Palate development was normal in forebrain selective β3 knockout mice. These knockouts survived the neonatal period, but ~30% died between 15–25 days of age. Survivors had reduced reproductive fitness, reduced sensitivity to etomidate, were hyperactive, and some became obese. Conclusion Conditional inactivation of the β3 gene revealed novel insight into the function of this GABAA-R subunit. The floxed β3 knockout mice described here will be very useful for conditional knockout studies to further investigate the role of the β3 subunit in development, ethanol and anesthetic action, normal physiology, and pathophysiologic processes.

  6. Fgf16 is required for specification of GABAergic neurons and oligodendrocytes in the zebrafish forebrain.

    Directory of Open Access Journals (Sweden)

    Ayumi Miyake

    Full Text Available Fibroblast growth factor (Fgf signaling plays crucial roles in various developmental processes including those in the brain. We examined the role of Fgf16 in the formation of the zebrafish brain. The knockdown of fgf16 decreased cell proliferation in the forebrain and midbrain. fgf16 was also essential for development of the ventral telencephalon and diencephalon, whereas fgf16 was not required for dorsoventral patterning in the midbrain. fgf16 was additionally required for the specification and differentiation of γ-aminobutyric acid (GABAergic interneurons and oligodendrocytes, but not for those of glutamatergic neurons in the forebrain. Cross talk between Fgf and Hedgehog (Hh signaling was critical for the specification of GABAergic interneurons and oligodendrocytes. The expression of fgf16 in the forebrain was down-regulated by the inhibition of Hh and Fgf19 signaling, but not by that of Fgf3/Fgf8 signaling. The fgf16 morphant phenotype was similar to that of the fgf19 morphant and embryos blocked Hh signaling. The results of the present study indicate that Fgf16 signaling, which is regulated by the downstream pathways of Hh-Fgf19 in the forebrain, is involved in forebrain development.

  7. Inactivation of Bacillus atrophaeus by OH radicals

    Science.gov (United States)

    Ono, Ryo; Yonetamari, Kenta; Tokumitsu, Yusuke; Yonemori, Seiya; Yasuda, Hachiro; Mizuno, Akira

    2016-08-01

    The inactivation of Bacillus atrophaeus by OH radicals is measured. This study aims to evaluate the bactericidal effects of OH radicals produced by atmospheric-pressure nonthermal plasma widely used for plasma medicine; however, in this study, OH radicals are produced by vacuum ultraviolet (VUV) photolysis of water vapor instead of plasma to allow the production of OH radicals with almost no other reactive species. A 172 nm VUV light from a Xe2 excimer lamp irradiates a He-H2O mixture flowing in a quartz tube to photodissociate H2O to produce OH, H, O, HO2, H2O2, and O3. The produced reactive oxygen species (ROS) flow out of the quartz tube nozzle to the bacteria on an agar plate and cause inactivation. The inactivation by OH radicals among the six ROS is observed by properly setting the experimental conditions with the help of simulations calculating the ROS densities. A 30 s treatment with approximately 0.1 ppm OH radicals causes visible inactivation.

  8. Estradiol replacement enhances sleep deprivation-induced c-Fos immunoreactivity in forebrain arousal regions of ovariectomized rats.

    Science.gov (United States)

    Deurveilher, S; Cumyn, E M; Peers, T; Rusak, B; Semba, K

    2008-10-01

    To understand how female sex hormones influence homeostatic mechanisms of sleep, we studied the effects of estradiol (E(2)) replacement on c-Fos immunoreactivity in sleep/wake-regulatory brain areas after sleep deprivation (SD) in ovariectomized rats. Adult rats were ovariectomized and implanted subcutaneously with capsules containing 17beta-E(2) (10.5 microg; to mimic diestrous E(2) levels) or oil. After 2 wk, animals with E(2) capsules received a single subcutaneous injection of 17beta-E(2) (10 microg/kg; to achieve proestrous E(2) levels) or oil; control animals with oil capsules received an oil injection. Twenty-four hours later, animals were either left undisturbed or sleep deprived by "gentle handling" for 6 h during the early light phase, and killed. E(2) treatment increased serum E(2) levels and uterus weights dose dependently, while attenuating body weight gain. Regardless of hormonal conditions, SD increased c-Fos immunoreactivity in all four arousal-promoting areas and four limbic and neuroendocrine nuclei studied, whereas it decreased c-Fos labeling in the sleep-promoting ventrolateral preoptic nucleus (VLPO). Low and high E(2) treatments enhanced the SD-induced c-Fos immunoreactivity in the laterodorsal subnucleus of the bed nucleus of stria terminalis and the tuberomammillary nucleus, and in orexin-containing hypothalamic neurons, with no effect on the basal forebrain and locus coeruleus. The high E(2) treatment decreased c-Fos labeling in the VLPO under nondeprived conditions. These results indicate that E(2) replacement modulates SD-induced or spontaneous c-Fos expression in sleep/wake-regulatory and limbic forebrain nuclei. These modulatory effects of E(2) replacement on neuronal activity may be, in part, responsible for E(2)'s influence on sleep/wake behavior.

  9. Pressure-Inactivated Virus: A Promising Alternative for Vaccine Production.

    Science.gov (United States)

    Silva, Jerson L; Barroso, Shana P C; Mendes, Ygara S; Dumard, Carlos H; Santos, Patricia S; Gomes, Andre M O; Oliveira, Andréa C

    2015-01-01

    In recent years, many applications in diverse scientific fields with various purposes have examined pressure as a thermodynamic parameter. Pressure studies on viruses have direct biotechnological applications. Currently, most studies that involve viral inactivation by HHP are found in the area of food engineering and focus on the inactivation of foodborne viruses. Nevertheless, studies of viral inactivation for other purposes have also been conducted. HHP has been shown to be efficient in the inactivation of many viruses of clinical importance and the use of HHP approach has been proposed for the development of animal and human vaccines. Several studies have demonstrated that pressure can result in virus inactivation while preserving immunogenic properties. Viruses contain several components that can be susceptible to the effects of pressure. HHP has been a valuable tool for assessing viral structure function relationships because the viral structure is highly dependent on protein-protein interactions. In the case of small icosahedral viruses, incremental increases in pressure produce a progressive decrease in the folding structure when moving from assembled capsids to ribonucleoprotein intermediates (in RNA viruses), free dissociated units (dimers and/or monomers) and denatured monomers. High pressure inactivates enveloped viruses by trapping their particles in a fusion-like intermediate state. The fusogenic state, which is characterized by a smaller viral volume, is the final conformation promoted by HHP, in contrast with the metastable native state, which is characterized by a larger volume. The combined effects of high pressure with other factors, such as low or subzero temperature, pH and agents in sub-denaturing conditions (urea), have been a formidable tool in the assessment of the component's structure, as well as pathogen inactivation. HHP is a technology for the production of inactivated vaccines that are free of chemicals, safe and capable of inducing

  10. Population Dynamics of Viral Inactivation

    Science.gov (United States)

    Freeman, Krista; Li, Dong; Behrens, Manja; Streletzky, Kiril; Olsson, Ulf; Evilevitch, Alex

    We have investigated the population dynamics of viral inactivation in vitrousing time-resolved cryo electron microscopy combined with light and X-ray scattering techniques. Using bacteriophage λ as a model system for pressurized double-stranded DNA viruses, we found that virions incubated with their cell receptor eject their genome in a stochastic triggering process. The triggering of DNA ejection occurs in a non synchronized manner after the receptor addition, resulting in an exponential decay of the number of genome-filled viruses with time. We have explored the characteristic time constant of this triggering process at different temperatures, salt conditions, and packaged genome lengths. Furthermore, using the temperature dependence we determined an activation energy for DNA ejections. The dependences of the time constant and activation energy on internal DNA pressure, affected by salt conditions and encapsidated genome length, suggest that the triggering process is directly dependent on the conformational state of the encapsidated DNA. The results of this work provide insight into how the in vivo kinetics of the spread of viral infection are influenced by intra- and extra cellular environmental conditions. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1252522.

  11. Dynamics of X Chromosome Inactivation

    NARCIS (Netherlands)

    F. Loos (Friedemann)

    2015-01-01

    markdownabstract__Abstract__ Dosage compensation evolved to account for the difference in expression of sex chromosome-linked genes. In mammals dosage compensation is achieved by inactivation of one X chromosome during early female embryogenesis in a process called X chromosome inactivation (XCI).

  12. Inactivation of Microorganisms

    Science.gov (United States)

    Alzamora, Stella Maris; Guerrero, Sandra N.; Schenk, Marcela; Raffellini, Silvia; López-Malo, Aurelio

    Minimal processing techniques for food preservation allow better retention of product flavor, texture, color, and nutrient content than comparable conventional treatments. A wide range of novel alternative physical factors have been intensely investigated in the last two decades. These physical factors can cause inactivation of microorganisms at ambient or sublethal temperatures (e.g., high hydrostatic pressure, pulsed electric fields, ultrasound, pulsed light, and ultraviolet light). These technologies have been reported to reduce microorganism population in foods while avoiding the deleterious effects of severe heating on quality. Among technologies, high-energy ultrasound (i.e., intensities higher than 1 W/cm2, frequencies between 18 and 100 kHz) has attracted considerable interest for food preservation applications (Mason et al., 1996; Povey and Mason, 1998).

  13. Roles of forebrain GABA receptors in controlling vasopressin secretion and related phenomena under basal and hyperosmotic circumstances in conscious rats.

    Science.gov (United States)

    Yamaguchi, Ken'ichi; Yamada, Takaho

    2008-09-05

    Although the anteroventral third ventricular region (AV3V), a forebrain area essential for homeostatic responses, includes receptors for gamma-aminobutyric acid (GABA), the roles of these receptors in controlling vasopressin (AVP) secretion and related phenomena have not been clarified as yet. This study aimed to pursue this problem in conscious rats implanted with indwelling catheters. Cerebral injection sites were determined histologically. Applications of bicuculline, a GABA(A) receptor antagonist, to the AV3V induced prompt and marked augmentations in plasma AVP, osmolality, glucose, arterial pressure and heart rate, without affecting plasma electrolytes. Such phenomena did not occur when phaclofen, a GABA(B) receptor antagonist, was applied to the AV3V. All of the effects of AV3V-administered bicuculline were abolished by preadministration of the GABA(A) receptor agonist muscimol. Preadministration of either MK-801 or NBQX, ionotropic glutamatergic receptor antagonists, was also potent to abolish the AVP response to AV3V bicuculline. When hypertonic saline was infused intravenously, plasma AVP increased progressively, in parallel with rises in plasma osmolality, sodium and arterial pressure. AV3V application of muscimol or baclofen, a GABA(B) receptor agonist, was found to abolish the response of plasma AVP, without inhibiting that of the osmolality or sodium. The response of arterial pressure was also blocked by muscimol treatment, but not by baclofen treatment. Based on these results, we concluded that, under basal conditions, GABA receptors in the AV3V or vicinity may tonically operate to attenuate AVP secretion and cardiovascular functions through mechanisms associated with glutamatergic activity, and that plasma hyperosmolality may cause facilitation of AVP release by decreasing forebrain GABAergic activity.

  14. Serotonin 5-HT7 receptor increases the density of dendritic spines and facilitates synaptogenesis in forebrain neurons.

    Science.gov (United States)

    Speranza, Luisa; Labus, Josephine; Volpicelli, Floriana; Guseva, Daria; Lacivita, Enza; Leopoldo, Marcello; Bellenchi, Gian Carlo; di Porzio, Umberto; Bijata, Monika; Perrone-Capano, Carla; Ponimaskin, Evgeni

    2017-06-01

    Precise control of dendritic spine density and synapse formation is critical for normal and pathological brain functions. Therefore, signaling pathways influencing dendrite outgrowth and remodeling remain a subject of extensive investigations. Here, we report that prolonged activation of the serotonin 5-HT7 receptor (5-HT7R) with selective agonist LP-211 promotes formation of dendritic spines and facilitates synaptogenesis in postnatal cortical and striatal neurons. Critical role of 5-HT7R in neuronal morphogenesis was confirmed by analysis of neurons isolated from 5-HT7R-deficient mice and by pharmacological inactivation of the receptor. Acute activation of 5-HT7R results in pronounced neurite elongation in postnatal striatal and cortical neurons, thus extending previous data on the morphogenic role of 5-HT7R in embryonic and hippocampal neurons. We also observed decreased number of spines in neurons with either genetically (i.e. 5-HT7R-knock-out) or pharmacologically (i.e. antagonist treatment) blocked 5-HT7R, suggesting that constitutive 5-HT7R activity is critically involved in the spinogenesis. Moreover, cyclin-dependent kinase 5 and small GTPase Cdc42 were identified as important downstream effectors mediating morphogenic effects of 5-HT7R in neurons. Altogether, our data suggest that the 5-HT7R-mediated structural reorganization during the postnatal development might have a crucial role for the development and plasticity of forebrain areas such as cortex and striatum, and thereby can be implicated in regulation of the higher cognitive functions. Read the Editorial Highlight for this article on page 644. © 2017 International Society for Neurochemistry.

  15. Inactivation of Lassa, Marburg, and Ebola viruses by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, L.H.; McCormick, J.B.; Johnson, K.M.

    1982-10-01

    Because of the cumbersome conditions experienced in a maximum containment laboratory, methods for inactivating highly pathogenic viruses were investigated. The infectivity of Lassa, Marburg, and Ebola viruses was inactivated without altering the immunological activity after radiation with /sup 60/Co gamma rays. At 4 degrees C, Lassa virus was the most difficult to inactivate with a rate of 5.3 X 10(-6) log 50% tissue culture infective dose per rad of /sup 60/Co radiation, as compared with 6.8 X 10(-6) log 50% tissue culture infective dose per rad for Ebola virus and 8.4 X 10(-6) log 50% tissue culture infective dose per rad for Marburg virus. Experimental inactivation curves, as well as curves giving the total radiation needed to inactivate a given concentration of any of the three viruses, are presented. We found this method of inactivation to be superior to UV light or beta-propiolactone inactivation and now routinely use it for preparation of material for protein-chemistry studies or for preparation of immunological reagents.

  16. Inactivation of Lassa, Marburg, and Ebola viruses by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, L.H.; McCormick, J.B.; Johnson, K.M.

    1982-10-01

    Because of the cumbersome conditions experienced in a maximum containment laboratory, methods for inactivating highly pathogenic viruses were investigated. The infectivity of Lassa, Marburg, and Ebola viruses was inactivated without altering the immunological activity after radiation with /sup 60/CO gamma rays. At 4 degrees C, Lassa virus was the most difficult to inactivate with a rate of 5.3 X 10(-6) log 50% tissue culture infective dose per rad of /sup 60/CO radiation, as compared with 6.8 X 10(-6) log 50% tissue culture infective dose per rad for Ebola virus and 8.4 X 10(-6) log 50% tissue culture infective dose per rad for Marburg virus. Experimental inactivation curves, as well as curves giving the total radiation needed to inactivate a given concentration of any of the three viruses, are presented. The authors found this method of inactivation to be superior to UV light or beta-propiolactone inactivation and now routinely use it for preparation of material for protein-chemistry studies or for preparation of immunological reagents.

  17. Ablation of Ca(V2.1 voltage-gated Ca²⁺ channels in mouse forebrain generates multiple cognitive impairments.

    Directory of Open Access Journals (Sweden)

    Robert Theodor Mallmann

    Full Text Available Voltage-gated Ca(V2.1 (P/Q-type Ca²⁺ channels located at the presynaptic membrane are known to control a multitude of Ca²⁺-dependent cellular processes such as neurotransmitter release and synaptic plasticity. Our knowledge about their contributions to complex cognitive functions, however, is restricted by the limited adequacy of existing transgenic Ca(V2.1 mouse models. Global Ca(V2.1 knock-out mice lacking the α1 subunit Cacna1a gene product exhibit early postnatal lethality which makes them unsuitable to analyse the relevance of Ca(V2.1 Ca²⁺ channels for complex behaviour in adult mice. Consequently we established a forebrain specific Ca(V2.1 knock-out model by crossing mice with a floxed Cacna1a gene with mice expressing Cre-recombinase under the control of the NEX promoter. This novel mouse model enabled us to investigate the contribution of Ca(V2.1 to complex cognitive functions, particularly learning and memory. Electrophysiological analysis allowed us to test the specificity of our conditional knock-out model and revealed an impaired synaptic transmission at hippocampal glutamatergic synapses. At the behavioural level, the forebrain-specific Ca(V2.1 knock-out resulted in deficits in spatial learning and reference memory, reduced recognition memory, increased exploratory behaviour and a strong attenuation of circadian rhythmicity. In summary, we present a novel conditional Ca(V2.1 knock-out model that is most suitable for analysing the in vivo functions of Ca(V2.1 in the adult murine forebrain.

  18. Motivational salience signal in the basal forebrain is coupled with faster and more precise decision speed.

    Science.gov (United States)

    Avila, Irene; Lin, Shih-Chieh

    2014-03-01

    The survival of animals depends critically on prioritizing responses to motivationally salient stimuli. While it is generally believed that motivational salience increases decision speed, the quantitative relationship between motivational salience and decision speed, measured by reaction time (RT), remains unclear. Here we show that the neural correlate of motivational salience in the basal forebrain (BF), defined independently of RT, is coupled with faster and also more precise decision speed. In rats performing a reward-biased simple RT task, motivational salience was encoded by BF bursting response that occurred before RT. We found that faster RTs were tightly coupled with stronger BF motivational salience signals. Furthermore, the fraction of RT variability reflecting the contribution of intrinsic noise in the decision-making process was actively suppressed in faster RT distributions with stronger BF motivational salience signals. Artificially augmenting the BF motivational salience signal via electrical stimulation led to faster and more precise RTs and supports a causal relationship. Together, these results not only describe for the first time, to our knowledge, the quantitative relationship between motivational salience and faster decision speed, they also reveal the quantitative coupling relationship between motivational salience and more precise RT. Our results further establish the existence of an early and previously unrecognized step in the decision-making process that determines both the RT speed and variability of the entire decision-making process and suggest that this novel decision step is dictated largely by the BF motivational salience signal. Finally, our study raises the hypothesis that the dysregulation of decision speed in conditions such as depression, schizophrenia, and cognitive aging may result from the functional impairment of the motivational salience signal encoded by the poorly understood noncholinergic BF neurons.

  19. Nitric oxide activates leak K+ currents in the presumed cholinergic neuron of basal forebrain.

    Science.gov (United States)

    Kang, Youngnam; Dempo, Yoshie; Ohashi, Atsuko; Saito, Mitsuru; Toyoda, Hiroki; Sato, Hajime; Koshino, Hisashi; Maeda, Yoshinobu; Hirai, Toshihiro

    2007-12-01

    Learning and memory are critically dependent on basal forebrain cholinergic (BFC) neuron excitability, which is modulated profoundly by leak K(+) channels. Many neuromodulators closing leak K(+) channels have been reported, whereas their endogenous opener remained unknown. We here demonstrate that nitric oxide (NO) can be the endogenous opener of leak K(+) channels in the presumed BFC neurons. Bath application of 1 mM S-nitroso-N-acetylpenicillamine (SNAP), an NO donor, induced a long-lasting hyperpolarization, which was often interrupted by a transient depolarization. Soluble guanylyl cyclase inhibitors prevented SNAP from inducing hyperpolarization but allowed SNAP to cause depolarization, whereas bath application of 0.2 mM 8-bromoguanosine-3',5'-cyclomonophosphate (8-Br-cGMP) induced a similar long-lasting hyperpolarization alone. These observations indicate that the SNAP-induced hyperpolarization and depolarization are mediated by the cGMP-dependent and -independent processes, respectively. When examined with the ramp command pulse applied at -70 mV under the voltage-clamp condition, 8-Br-cGMP application induced the outward current that reversed at K(+) equilibrium potential (E(K)) and displayed Goldman-Hodgkin-Katz rectification, indicating the involvement of voltage-independent K(+) current. By contrast, SNAP application in the presumed BFC neurons either dialyzed with the GTP-free internal solution or in the presence of 10 muM Rp-8-bromo-beta-phenyl-1,N(2)-ethenoguanosine 3',5'-cyclic monophosphorothioate sodium salt, a protein kinase G (PKG) inhibitor, induced the inward current that reversed at potentials much more negative than E(K) and close to the reversal potential of Na(+)-K(+) pump current. These observations strongly suggest that NO activates leak K(+) channels through cGMP-PKG-dependent pathway to markedly decrease the excitability in BFC neurons, while NO simultaneously causes depolarization by the inhibition of Na(+)-K(+) pump through ATP

  20. Antagonism of Muscarinic Acetylcholine Receptors Alters Synaptic ERK Phosphorylation in the Rat Forebrain.

    Science.gov (United States)

    Mao, Li-Min; Wang, Henry H; Wang, John Q

    2016-12-28

    Acetylcholine (ACh) is a key transmitter in the mesocorticolimbic circuit. By interacting with muscarinic ACh receptors (mAChR) enriched in the circuit, ACh actively regulates various neuronal and synaptic activities. The extracellular signal-regulated kinase (ERK) is one of members of the mitogen-activated protein kinase family and is subject to the regulation by dopamine receptors, although the regulation of ERKs by limbic mAChRs is poorly understood. In this study, we investigated the role of mAChRs in the regulation of ERK phosphorylation (activation) in the mesocorticolimbic system of adult rat brains in vivo. We targeted a sub-pool of ERKs at synaptic sites. We found that a systemic injection of the mAChR antagonist scopolamine increased phosphorylation of synaptic ERKs in the striatum (caudate putamen and nucleus accumbens) and medial prefrontal cortex (mPFC). Increases in ERK phosphorylation in both forebrain regions were rapid and transient. Notably, pretreatment with a dopamine D1 receptor (D1R) antagonist SCH23390 blocked the scopolamine-stimulated ERK phosphorylation in these brain regions, while a dopamine D2 receptor antagonist eticlopride did not. Scopolamine and SCH23390 did not change the amount of total ERK proteins. These results demonstrate that mAChRs inhibit synaptic ERK phosphorylation in striatal and mPFC neurons under normal conditions. Blockade of this inhibitory mAChR tone leads to the upregulation of ERK phosphorylation likely through a mechanism involving the level of D1R activity.

  1. Hypocretin/orexin antagonism enhances sleep-related adenosine and GABA neurotransmission in rat basal forebrain.

    Science.gov (United States)

    Vazquez-DeRose, Jacqueline; Schwartz, Michael D; Nguyen, Alexander T; Warrier, Deepti R; Gulati, Srishti; Mathew, Thomas K; Neylan, Thomas C; Kilduff, Thomas S

    2016-03-01

    Hypocretin/orexin (HCRT) neurons provide excitatory input to wake-promoting brain regions including the basal forebrain (BF). The dual HCRT receptor antagonist almorexant (ALM) decreases waking and increases sleep. We hypothesized that HCRT antagonists induce sleep, in part, through disfacilitation of BF neurons; consequently, ALM should have reduced efficacy in BF-lesioned (BFx) animals. To test this hypothesis, rats were given bilateral IgG-192-saporin injections, which predominantly targets cholinergic BF neurons. BFx and intact rats were then given oral ALM, the benzodiazepine agonist zolpidem (ZOL) or vehicle (VEH) at lights-out. ALM was less effective than ZOL at inducing sleep in BFx rats compared to controls. BF adenosine (ADO), γ-amino-butyric acid (GABA), and glutamate levels were then determined via microdialysis from intact, freely behaving rats following oral ALM, ZOL or VEH. ALM increased BF ADO and GABA levels during waking and mixed vigilance states, and preserved sleep-associated increases in GABA under low and high sleep pressure conditions. ALM infusion into the BF also enhanced cortical ADO release, demonstrating that HCRT input is critical for ADO signaling in the BF. In contrast, oral ZOL and BF-infused ZOL had no effect on ADO levels in either BF or cortex. ALM increased BF ADO (an endogenous sleep-promoting substance) and GABA (which is increased during normal sleep), and required an intact BF for maximal efficacy, whereas ZOL blocked sleep-associated BF GABA release, and required no functional contribution from the BF to induce sleep. ALM thus induces sleep by facilitating the neural mechanisms underlying the normal transition to sleep.

  2. In vivo labeling of rabbit cholinergic basal forebrain neurons with fluorochromated antibodies

    NARCIS (Netherlands)

    Hartig, W; Varga, C; Kacza, J; Grosche, J; Seeger, J; Luiten, PGM; Brauer, K; Harkany, T; Härtig, Wolfgang

    2002-01-01

    Cholinergic basal forebrain neurons (CBFN) expressing the low-affinity neurotrophin receptor p75 (p75(NTR)) were previously selectively labeled in vivo with carbocyanine 3 (Cy3)-tagged anti-p75(NTR), but the applied 192IgG-conjugates recognized p75(NTR) only in rat The antibody ME 20.4 raised agains

  3. Fgf19 regulated by Hh signaling is required for zebrafish forebrain development.

    Science.gov (United States)

    Miyake, Ayumi; Nakayama, Yoshiaki; Konishi, Morichika; Itoh, Nobuyuki

    2005-12-01

    Fibroblast growth factor (Fgf) signaling plays important roles in brain development. Fgf3 and Fgf8 are crucial for the formation of the forebrain and hindbrain. Fgf8 is also required for the midbrain to form. Here, we identified zebrafish Fgf19 and examined its roles in brain development by knocking down Fgf19 function. We found that Fgf19 expressed in the forebrain, midbrain and hindbrain was involved in cell proliferation and cell survival during embryonic brain development. Fgf19 was also essential for development of the ventral telencephalon and diencephalon. Regional specification is linked to cell type specification. Fgf19 was also essential for the specification of gamma-aminobutyric acid (GABA)ergic interneurons and oligodendrocytes generated in the ventral telencephalon and diencephalon. The cross talk between Fgf and Hh signaling is critical for brain development. In the forebrain, Fgf19 expression was down-regulated on inhibition of Hh but not of Fgf3/Fgf8, and overexpression of Fgf19 rescued partially the phenotype on inhibition of Hh. The present findings indicate that Fgf19 signaling is crucial for forebrain development by interacting with Hh and provide new insights into the roles of Fgf signaling in brain development.

  4. Effects of heavy ions on rabbit tissues: damage to the forebrain

    Energy Technology Data Exchange (ETDEWEB)

    Cox, A.B.; Keng, P.C.; Lee, A.C.; Lett, J.T. (Colorado State Univ., Fort Collins (USA). Dept. of Radiology and Radiation Biology)

    1982-10-01

    As part of a study of progressive radiation effects in normal tissues, the forebrains of New Zealand white rabbits (Oryctolagus cuniculus) (about 6 weeks old) were irradiated locally with single acute doses of /sup 60/Co ..gamma..-photons (LETsub(infinity)=0.3 keV/..mu..m), Ne ions (LETsub(infinity)=35+-3 keV/..mu..m) or Ar ions (LETsub(infinity)=90+-5 keV/..mu..m). Other rabbits received fractionated doses of /sup 60/Co ..gamma..-photons according to a standard radiotherapeutic protocol. Irradiated rabbits and appropriately aged controls were sacrificed at selected intervals, and whole sagittal sections of their brains were examined for pathological changes. Forebrain damage was scored with subjective indices based on histological differences between the anterior (irradiated) and posterior (unirradiated) regions of the brain. Those indices ranged from zero (no apparent damage) to five (severe infarctions, etc.). At intermediate levels of forebrain damage, the relative biological effectiveness (r.b.e.) of each heavy ion was similar to that found for alopecia and cataractogenesis, and the early expression of the damage was also accelerated as the LETsub(infinity) increased. Late deterioration of the forebrain appeared also to be accelerated by increasing LETsub(infinity), although its accurate quantification was not possible because other priorities in the overall experimental design limited systematic sacrifice of the animals.

  5. TDP-43 pathology in the basal forebrain and hypothalamus of patients with amyotrophic lateral sclerosis.

    Science.gov (United States)

    Cykowski, Matthew D; Takei, Hidehiro; Schulz, Paul E; Appel, Stanley H; Powell, Suzanne Z

    2014-12-24

    Amyotrophic lateral sclerosis is a neurodegenerative disease characterized clinically by motor symptoms including limb weakness, dysarthria, dysphagia, and respiratory compromise, and pathologically by inclusions of transactive response DNA-binding protein 43 kDa (TDP-43). Patients with amyotrophic lateral sclerosis also may demonstrate non-motor symptoms and signs of autonomic and energy dysfunction as hypermetabolism and weight loss that suggest the possibility of pathology in the forebrain, including hypothalamus. However, this region has received little investigation in amyotrophic lateral sclerosis. In this study, the frequency, topography, and clinical associations of TDP-43 inclusion pathology in the basal forebrain and hypothalamus were examined in 33 patients with amyotrophic lateral sclerosis: 25 men and 8 women; mean age at death of 62.7 years, median disease duration of 3.1 years (range of 1.3 to 9.8 years). TDP-43 pathology was present in 11 patients (33.3%), including components in both basal forebrain (n=10) and hypothalamus (n=7). This pathology was associated with non-motor system TDP-43 pathology (Χ2=17.5, p=0.00003) and bulbar symptoms at onset (Χ2=4.04, p=0.044), but not age or disease duration. Furthermore, TDP-43 pathology in the lateral hypothalamic area was associated with reduced body mass index (W=11, p=0.023). This is the first systematic demonstration of pathologic involvement of the basal forebrain and hypothalamus in amyotrophic lateral sclerosis. Furthermore, the findings suggest that involvement of the basal forebrain and hypothalamus has significant phenotypic associations in amyotrophic lateral sclerosis, including site of symptom onset, as well as deficits in energy metabolism with loss of body mass index.

  6. Inactivation of protozoan parasites in food, water, and environmental systems.

    Science.gov (United States)

    Erickson, Marilyn C; Ortega, Ynes R

    2006-11-01

    Protozoan parasites can survive under ambient and refrigerated storage conditions when associated with a range of substrates. Consequently, various treatments have been used to inactivate protozoan parasites (Giardia, Cryptosporidium, and Cyclospora) in food, water, and environmental systems. Physical treatments that affect survival or removal of protozoan parasites include freezing, heating, filtration, sedimentation, UV light, irradiation, high pressure, and ultrasound. Ozone is a more effective chemical disinfectant than chlorine or chlorine dioxide for inactivation of protozoan parasites in water systems. However, sequential inactivation treatments can optimize existing treatments through synergistic effects. Careful selection of methods to evaluate inactivation treatments is needed because many studies that have employed vital dye stains and in vitro excystation have produced underestimations of the effectiveness of these treatments.

  7. A systematic approach to determine global thermal inactivation parameters for various food pathogens

    NARCIS (Netherlands)

    Asselt, van E.D.; Zwietering, M.H.

    2006-01-01

    Thermal inactivation of pathogens has been studied extensively, which has resulted in a wide range of D- and z-values. Estimating the inactivation rate for a specific condition based on these reported values is difficult, since one has to select representative conditions, and data obtained exactly a

  8. Influenza Vaccine, Inactivated or Recombinant

    Science.gov (United States)

    ... die from flu, and many more are hospitalized.Flu vaccine can:keep you from getting flu, make flu ... inactivated or recombinant influenza vaccine?A dose of flu vaccine is recommended every flu season. Children 6 months ...

  9. conditions

    Directory of Open Access Journals (Sweden)

    M. Venkatesulu

    1996-01-01

    Full Text Available Solutions of initial value problems associated with a pair of ordinary differential systems (L1,L2 defined on two adjacent intervals I1 and I2 and satisfying certain interface-spatial conditions at the common end (interface point are studied.

  10. Rapid inactivation of SARS-like coronaviruses.

    Energy Technology Data Exchange (ETDEWEB)

    Kapil, Sanjay (Kansas State University, Manhattan, KS); Oberst, R. D. (Kansas State University, Manhattan, KS); Bieker, Jill Marie; Tucker, Mark David; Souza, Caroline Ann; Williams, Cecelia Victoria

    2004-03-01

    Chemical disinfection and inactivation of viruses is largely understudied, but is very important especially in the case of highly infectious viruses. The purpose of this LDRD was to determine the efficacy of the Sandia National Laboratories developed decontamination formulations against Bovine Coronavirus (BCV) as a surrogate for the coronavirus that causes Severe Acute Respiratory Syndrome (SARS) in humans. The outbreak of SARS in late 2002 resulted from a highly infectious virus that was able to survive and remain infectious for extended periods. For this study, preliminary testing with Escherichia coli MS-2 (MS-2) and Escherichia coli T4 (T4) bacteriophages was conducted to develop virucidal methodology for verifying the inactivation after treatment with the test formulations following AOAC germicidal methodologies. After the determination of various experimental parameters (i.e. exposure, concentration) of the formulations, final testing was conducted on BCV. All experiments were conducted with various organic challenges (horse serum, bovine feces, compost) for results that more accurately represent field use condition. The MS-2 and T4 were slightly more resistant than BCV and required a 2 minute exposure while BCV was completely inactivated after a 1 minute exposure. These results were also consistent for the testing conducted in the presence of the various organic challenges indicating that the test formulations are highly effective for real world application.

  11. Development of glucocorticoid receptor regulation in the rat forebrain: Implications for adverse effects of glucocorticoids in preterm infants

    Science.gov (United States)

    Glucocorticoids are the consensus treatment to avoid respiratory distress in preterm infants but there is accumulating evidence that these agents evoke long-term neurobehavioral deficits. Earlier, we showed that the developing rat forebrain is far more sensitive to glucocorticoi...

  12. Brain Barriers and a Subpopulation of Astroglial Progenitors of Developing Human Forebrain Are Immunostained for the Glycoprotein YKL-40

    DEFF Research Database (Denmark)

    Bjørnbak, Camilla; Brøchner, Christian B; Larsen, Lars A

    2014-01-01

    YKL-40, a glycoprotein involved in cell differentiation, has been associated with neurodevelopmental disorders, angiogenesis, neuroinflammation and glioblastomas. We evaluated YKL-40 protein distribution in the early human forebrain using double-labeling immunofluorescence and immunohistochemistry...

  13. High pressure inactivation of Brettanomyces bruxellensis in red wine.

    Science.gov (United States)

    van Wyk, Sanelle; Silva, Filipa V M

    2017-05-01

    Brettanomyces bruxellensis ("Brett") is a major spoilage concern for the wine industry worldwide, leading to undesirable sensory properties. Sulphur dioxide, is currently the preferred method for wine preservation. However, due to its negative effects on consumers, the use of new alternative non-thermal technologies are increasingly being investigated. The aim of this study was to determine and model the effect of high pressure processing (HPP) conditions and yeast strain on the inactivation of "Brett" in Cabernet Sauvignon wine. Processing at 200 MPa for 3 min resulted in 5.8 log reductions. However higher pressure is recommended to achieve high throughput in the wine industry, for example >6.0 log reductions were achieved after 400 MPa for 5 s. The inactivation of B. bruxellensis is pressure and time dependent, with increased treatment time and pressure leading to increased yeast inactivation. It was also found that yeast strain had a significant effect on HPP inactivation, with AWRI 1499 being the most resistant strain. The Weibull model successfully described the HPP "Brett" inactivation. HPP is a viable alternative for the inactivation of B. bruxellensis in wine, with the potential to reduce the industry's reliance on sulphur dioxide.

  14. Thermal Inactivation of Feline Calicivirus in Pet Food Processing.

    Science.gov (United States)

    Haines, J; Patel, M; Knight, A I; Corley, D; Gibson, G; Schaaf, J; Moulin, J; Zuber, S

    2015-12-01

    Extrusion is the most common manufacturing process used to produce heat-treated dry dog and cat food (pet food) for domestic use and international trade. Due to reoccurring outbreaks of notifiable terrestrial animal diseases and their impact on international trade, experiments were undertaken to demonstrate the effectiveness of heat-treated extruded pet food on virus inactivation. The impact of extrusion processing in a pet food matrix on virus inactivation has not been previously reported and very few inactivation studies have examined the thermal inactivation of viruses in complex food matrices. The feline calicivirus vaccine strain FCV F-9 was used as a surrogate model RNA virus pathogen. Small-scale heat inactivation experiments using animal-derived pet food raw materials showed that a > 4 log10 reduction (log10 R) in infectivity occurred at 70 °C prior to reaching the minimum extrusion manufacturing operating temperature of 100 °C. As anticipated, small-scale pressure studies at extrusion pressure (1.6 MPa) showed no apparent effect on FCV F-9 inactivation. Additionally, FCV F-9 was shown not to survive the acidic conditions used to produce pet food palatants of animal origin that are typically used as a coating after the extrusion process.

  15. Comparative study of lacosamide and classical sodium channel blocking antiepileptic drugs on sodium channel slow inactivation.

    Science.gov (United States)

    Niespodziany, Isabelle; Leclère, Nathalie; Vandenplas, Catherine; Foerch, Patrik; Wolff, Christian

    2013-03-01

    Many antiepileptic drugs (AEDs) exert their therapeutic activity by modifying the inactivation properties of voltage-gated sodium (Na(v) ) channels. Lacosamide is unique among AEDs in that it selectively enhances the slow inactivation component. Although numerous studies have investigated the effects of AEDs on Na(v) channel inactivation, a direct comparison of results cannot be made because of varying experimental conditions. In this study, the effects of different AEDs on Na(v) channel steady-state slow inactivation were investigated under identical experimental conditions using whole-cell patch-clamp in N1E-115 mouse neuroblastoma cells. All drugs were tested at 100 μM, and results were compared with those from time-matched control groups. Lacosamide significantly shifted the voltage dependence of Na(v) current (I(Na) ) slow inactivation toward more hyperpolarized potentials (by -33 ± 7 mV), whereas the maximal fraction of slow inactivated channels and the curve slope did not differ significantly. Neither SPM6953 (lacosamide inactive enantiomer), nor carbamazepine, nor zonisamide affected the voltage dependence of I(Na) slow inactivation, the maximal fraction of slow inactivated channels, or the curve slope. Phenytoin significantly increased the maximal fraction of slow inactivated channels (by 28% ± 9%) in a voltage-independent manner but did not affect the curve slope. Lamotrigine slightly increased the fraction of inactivated currents (by 15% ± 4%) and widened the range of the slow inactivation voltage dependence. Lamotrigine and rufinamide induced weak, but significant, shifts of I(Na) slow inactivation toward more depolarized potentials. The effects of lacosamide on Na(v) channel slow inactivation corroborate previous observations that lacosamide has a unique mode of action among AEDs that act on Na(v) channels.

  16. Rabbit Forebrain cholinergic system: Morphological characterization of nuclei and distribution of cholinergic terminals in the cerebral cortex and hippocampus

    OpenAIRE

    C. Varga; Hartig, W.; Grosche, J.; Luiten, PGM; Seeger, J.; K. Brauer; Harkany, T.; Härtig, Wolfgang; Keijser, Jan N.

    2003-01-01

    Although the rabbit brain, in particular the basal forebrain cholinergic system, has become a common model for neuropathological changes associated with Alzheimer's disease, detailed neuroanatomical studies on the morphological organization of basal forebrain cholinergic nuclei and on their output pathways are still awaited. Therefore, we performed quantitative choline acetyltransferase (ChAT) immunocytochemistry to localize major cholinergic nuclei and to determine the number of respective c...

  17. Distribution of glutamine synthetase in the chick forebrain: implications for passive avoidance memory formation.

    Science.gov (United States)

    O'Dowd, B S; Ng, K T; Robinson, S R

    1997-01-01

    The glial enzyme glutamine synthetase (GS) converts glutamate to glutamine; the latter is used by neurons for the resynthesis of glutamate and GABA. We have used a monoclonal antibody to GS to examine the regional distribution of this enzyme in the forebrains of day-old chicks. GS was detected in glia throughout the rostral and caudal regions of the forebrain and was particularly intense in the hippocampus, area parahippocampus and parts of the hyperstriatal and paleostriatal complex, regions widely considered to be involved in memory formation. Thus, our data provide an anatomical framework for the conclusion that neurons require the support of glia in order to restock their glutamate and/or GABA transmitter supplies during memory processing.

  18. Clonally Related Forebrain Interneurons Disperse Broadly across Both Functional Areas and Structural Boundaries.

    Science.gov (United States)

    Mayer, Christian; Jaglin, Xavier H; Cobbs, Lucy V; Bandler, Rachel C; Streicher, Carmen; Cepko, Constance L; Hippenmeyer, Simon; Fishell, Gord

    2015-09-02

    The medial ganglionic eminence (MGE) gives rise to the majority of mouse forebrain interneurons. Here, we examine the lineage relationship among MGE-derived interneurons using a replication-defective retroviral library containing a highly diverse set of DNA barcodes. Recovering the barcodes from the mature progeny of infected progenitor cells enabled us to unambiguously determine their respective lineal relationship. We found that clonal dispersion occurs across large areas of the brain and is not restricted by anatomical divisions. As such, sibling interneurons can populate the cortex, hippocampus striatum, and globus pallidus. The majority of interneurons appeared to be generated from asymmetric divisions of MGE progenitor cells, followed by symmetric divisions within the subventricular zone. Altogether, our findings uncover that lineage relationships do not appear to determine interneuron allocation to particular regions. As such, it is likely that clonally related interneurons have considerable flexibility as to the particular forebrain circuits to which they can contribute.

  19. Role of tissue plasminogen activator/plasmin cascade in delayed neuronal death after transient forebrain ischemia.

    Science.gov (United States)

    Takahashi, Hiroshi; Nagai, Nobuo; Urano, Tetsumei

    We studied the possible involvement of the tissue plasminogen activator (t-PA)/plasmin system on both delayed neuronal death in the hippocampus and the associated enhancement of locomotor activity in rats, after transient forebrain ischemia induced by a four-vessel occlusion (FVO). Seven days after FVO, locomotor activity was abnormally increased and, after 10 days, pyramidal cells were degraded in the CA1 region of the hippocampus. FVO increased the t-PA antigen level and its activity in the hippocampus, which peaked at 4 h. Both the enhanced locomotor activity and the degradation of pyramidal cells were significantly suppressed by intracerebroventricular injection of aprotinin, a plasmin inhibitor, at 4 h but not during FVO. These results suggest the importance of the t-PA/plasmin cascade during the early pathological stages of delayed neuronal death in the hippocampus following transient forebrain ischemia.

  20. Toward a neurobiology of auditory object perception: What can we learn from the songbird forebrain?

    Institute of Scientific and Technical Information of China (English)

    Kai LU; David S. VICARIO

    2011-01-01

    In the acoustic world,no sounds occur entirely in isolation; they always reach the ears in combination with other sounds.How any given sound is discriminated and perceived as an independent auditory object is a challenging question in neuroscience.Although our knowledge of neural processing in the auditory pathway has expanded over the years,no good theory exists to explain how perception of auditory objects is achieved.A growing body of evidence suggests that the selectivity of neurons in the auditory forebrain is under dynamic modulation,and this plasticity may contribute to auditory object perception.We propose that stimulus-specific adaptation in the auditory forebrain of the songbird (and perhaps in other systems) may play an important role in modulating sensitivity in a way that aids discrimination,and thus can potentially contribute to auditory object perception [Current Zoology 57 (6):671-683,2011].

  1. Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration.

    Directory of Open Access Journals (Sweden)

    Zofeyah L McBrayer

    Full Text Available To investigate the role of Bone Morphogenic Protein Receptor Type II (BMPRII in learning, memory, and exploratory behavior in mice, a tissue-specific knockout of BMPRII in the post-natal hippocampus and forebrain was generated. We found that BMPRII mutant mice had normal spatial learning and memory in the Morris water maze, but showed significantly reduced swimming speeds with increased floating behavior. Further analysis using the Porsolt Swim Test to investigate behavioral despair did not reveal any differences in immobility between mutants and controls. In the Elevated Plus Maze, BMPRII mutants and Smad4 mutants showed reduced anxiety, while in exploratory tests, BMPRII mutants showed more interest in object exploration. These results suggest that loss of BMPRII in the mouse hippocampus and forebrain does not disrupt spatial learning and memory encoding, but instead impacts exploratory and anxiety-related behaviors.

  2. Brain-derived neurotrophic factor (BDNF) overexpression in the forebrain results in learning and memory impairments.

    Science.gov (United States)

    Cunha, Carla; Angelucci, Andrea; D'Antoni, Angela; Dobrossy, Mate D; Dunnett, Stephen B; Berardi, Nicoletta; Brambilla, Riccardo

    2009-03-01

    In this study we analyzed the effect on behavior of a chronic exposure to brain-derived neurotrophic factor (BDNF), by analysing a mouse line overexpressing BDNF under the alphaCaMKII promoter, which drives the transgene expression exclusively to principal neurons of the forebrain. BDNF transgenic mice and their WT littermates were examined with a battery of behavioral tests, in order to evaluate motor coordination, learning, short and long-term memory formation. Our results demonstrate that chronic BDNF overexpression in the central nervous system (CNS) causes learning deficits and short-term memory impairments, both in spatial and instrumental learning tasks. This observation suggests that a widespread increase in BDNF in forebrain networks may result in adverse effects on learning and memory formation.

  3. Molecular taxonomy of major neuronal classes in the adult mouse forebrain.

    Science.gov (United States)

    Sugino, Ken; Hempel, Chris M; Miller, Mark N; Hattox, Alexis M; Shapiro, Peter; Wu, Caizi; Huang, Z Josh; Nelson, Sacha B

    2006-01-01

    Identifying the neuronal cell types that comprise the mammalian forebrain is a central unsolved problem in neuroscience. Global gene expression profiles offer a potentially unbiased way to assess functional relationships between neurons. Here, we carried out microarray analysis of 12 populations of neurons in the adult mouse forebrain. Five of these populations were chosen from cingulate cortex and included several subtypes of GABAergic interneurons and pyramidal neurons. The remaining seven were derived from the somatosensory cortex, hippocampus, amygdala and thalamus. Using these expression profiles, we were able to construct a taxonomic tree that reflected the expected major relationships between these populations, such as the distinction between cortical interneurons and projection neurons. The taxonomic tree indicated highly heterogeneous gene expression even within a single region. This dataset should be useful for the classification of unknown neuronal subtypes, the investigation of specifically expressed genes and the genetic manipulation of specific neuronal circuit elements.

  4. Basal forebrain cholinergic input is not essential for lesion-induced plasticity in mature auditory cortex.

    Science.gov (United States)

    Kamke, Marc R; Brown, Mel; Irvine, Dexter R F

    2005-11-23

    The putative role of the basal forebrain cholinergic system in mediating lesion-induced plasticity in topographic cortical representations was investigated. Cholinergic immunolesions were combined with unilateral restricted cochlear lesions in adult cats, demonstrating the consequence of cholinergic depletion on lesion-induced plasticity in primary auditory cortex (AI). Immunolesions almost eliminated the cholinergic input to AI, while cochlear lesions produced broad high-frequency hearing losses. The results demonstrate that the near elimination of cholinergic input does not disrupt reorganization of the tonotopic representation of the lesioned (contralateral) cochlea in AI and does not affect the normal representation of the unlesioned (ipsilateral) cochlea. It is concluded that cholinergic basal forebrain input to AI is not essential for the occurrence of lesion-induced plasticity in AI.

  5. Regional cerebral blood flow and glucose metabolism following transient forebrain ischemia.

    Science.gov (United States)

    Pulsinelli, W A; Levy, D E; Duffy, T E

    1982-05-01

    Progressive brain damage after transient cerebral ischemia may be related to changes in postischemic cerebral blood flow and metabolism. Regional cerebral blood flow (rCBF) and cerebral glucose utilization (rCGU) were measured in adult rats prior to, during (only rCBF), and serially after transient forebrain ischemia. Animals were subjected to 30 minutes of forebrain ischemia by occluding both common carotid arteries 24 hours after cauterizing the vertebral arteries. Regional CBF was measured by the indicator-fractionation technique using 4-iodo-[14C]-antipyrine. Regional CGU was measured by the 2-[14C]deoxyglucose method. The results were correlated with the distribution and progression of ischemic neuronal damage in animals subjected to an identical ischemic insult. Cerebral blood flow to forebrain after 30 minutes of moderate to severe ischemia (less than 10% control CBF) was characterized by 5 to 15 minutes of hyperemia; rCBF then fell below normal and remained low for as long as 24 hours. Post-ischemic glucose utilization in the forebrain, except in the hippocampus, was depressed below control values at 1 hour and either remained low (neocortex, striatum) or gradually rose to normal (white matter) by 48 hours. In the hippocampus, glucose utilization equaled the control value at 1 hour and fell below control between 24 and 48 hours. The appearance of moderate to severe morphological damage in striatum and hippocampus coincided with a late rise of rCBF above normal and with a fall of rCGU; the late depression of rCGU was usually preceded by a period during which metabolism was increased relative to adjacent tissue. Further refinement of these studies may help identify salvageable brain after ischemia and define ways to manipulate CBF and metabolism in the treatment of stroke.

  6. Brain-derived neurotrophic factor signaling is altered in the forebrain of Engrailed-2 knockout mice.

    Science.gov (United States)

    Zunino, G; Messina, A; Sgadò, P; Baj, G; Casarosa, S; Bozzi, Y

    2016-06-02

    Engrailed-2 (En2), a homeodomain transcription factor involved in regionalization and patterning of the midbrain and hindbrain regions has been associated to autism spectrum disorders (ASDs). En2 knockout (En2(-/-)) mice show ASD-like features accompanied by a significant loss of GABAergic subpopulations in the hippocampus and neocortex. Brain-derived neurotrophic factor (BDNF) is a crucial factor for the postnatal development of forebrain GABAergic neurons, and altered GABA signaling has been hypothesized to underlie the symptoms of ASD. Here we sought to determine whether interneuron loss in the En2(-/-) forebrain might be related to altered expression of BDNF and its signaling receptors. We first evaluated the expression of different BDNF mRNA isoforms in the neocortex and hippocampus of wild-type (WT) and En2(-/-) mice. Quantitative RT-PCR showed a marked down-regulation of several splicing variants of BDNF mRNA in the neocortex but not hippocampus of adult En2(-/-) mice, as compared to WT controls. Accordingly, levels of mature BDNF protein were lower in the neocortex but not hippocampus of En2(-/-) mice, as compared to WT. Increased levels of phosphorylated TrkB and decreased levels of p75 receptor were also detected in the neocortex of mutant mice. Accordingly, the expression of low density lipoprotein receptor (LDLR) and RhoA, two genes regulated via p75 was significantly altered in forebrain areas of mutant mice. These data indicate that BDNF signaling alterations might be involved in the anatomical changes observed in the En2(-/-) forebrain and suggest a pathogenic role of altered BDNF signaling in this mouse model of ASD.

  7. Activation of the Basal Forebrain by the Orexin/Hypocretin Neurons: Orexin International Symposium

    OpenAIRE

    Arrigoni, Elda; Mochizuki, Takatoshi; Scammell, Thomas E.

    2009-01-01

    The orexin neurons play an essential role in driving arousal and in maintaining normal wakefulness. Lack of orexin neurotransmission produces a chronic state of hypoarousal characterized by excessive sleepiness, frequent transitions between wake and sleep, and episodes of cataplexy. A growing body of research now suggests that the basal forebrain (BF) may be a key site through which the orexin-producing neurons promote arousal. Here we review anatomical, pharmacological and electrophysiologic...

  8. Angiotensin type 1a receptors in the forebrain subfornical organ facilitate leptin-induced weight loss through brown adipose tissue thermogenesis.

    Science.gov (United States)

    Young, Colin N; Morgan, Donald A; Butler, Scott D; Rahmouni, Kamal; Gurley, Susan B; Coffman, Thomas M; Mark, Allyn L; Davisson, Robin L

    2015-04-01

    Elevations in brain angiotensin-II cause increased energy expenditure and a lean phenotype. Interestingly, the metabolic effects of increased brain angiotensin-II mimic the actions of leptin, suggesting an interaction between the two systems. Here we demonstrate that angiotensin-type 1a receptors (AT1aR) in the subfornical organ (SFO), a forebrain structure emerging as an integrative metabolic center, play a key role in the body weight-reducing effects of leptin via brown adipose tissue (BAT) thermogenesis. Cre/LoxP technology coupled with targeted viral delivery to the SFO in a mouse line bearing a conditional allele of the Agtr1a gene was utilized to determine the interaction between leptin and SFO AT1aR in metabolic regulation. Selective deletion of AT1aR in the SFO attenuated leptin-induced weight loss independent of changes in food intake or locomotor activity. This was associated with diminished leptin-induced increases in core body temperature, blunted upregulation of BAT thermogenic markers, and abolishment of leptin-mediated sympathetic activation to BAT. These data identify a novel interaction between angiotensin-II and leptin in the control of BAT thermogenesis and body weight, and highlight a previously unrecognized role for the forebrain SFO in metabolic regulation.

  9. Forebrain deletion of αGDI in adult mice worsens the pre-synaptic deficit at cortico-lateral amygdala synaptic connections.

    Directory of Open Access Journals (Sweden)

    Veronica Bianchi

    Full Text Available The GDI1 gene encodes αGDI, which retrieves inactive GDP-bound RAB from membranes to form a cytosolic pool awaiting vesicular release. Mutations in GDI1 are responsible for X-linked Intellectual Disability. Characterization of the Gdi1-null mice has revealed alterations in the total number and distribution of hippocampal and cortical synaptic vesicles, hippocampal short-term synaptic plasticity and specific short-term memory deficits in adult mice, which are possibly caused by alterations of different synaptic vesicle recycling pathways controlled by several RAB GTPases. However, interpretation of these studies is complicated by the complete ablation of Gdi1 in all cells in the brain throughout development. In this study, we generated conditionally gene-targeted mice in which the knockout of Gdi1 is restricted to the forebrain, hippocampus, cortex and amygdala and occurs only during postnatal development. Adult mutant mice reproduce the short-term memory deficit previously reported in Gdi1-null mice. Surprisingly, the delayed ablation of Gdi1 worsens the pre-synaptic phenotype at cortico-amygdala synaptic connections compared to Gdi1-null mice. These results suggest a pivotal role of αGDI via specific RAB GTPases acting specifically in forebrain regions at the pre-synaptic sites involved in memory formation.

  10. Inactivation of pectin methylesterase by immobilized trypsins from cunner fish and bovine pancreas.

    Science.gov (United States)

    Li, Dan; Matos, Madyu; Simpson, Benjamin K

    2013-01-01

    Immobilized cunner fish trypsin was used to inactivate pectin methylesterase (PME). The effects of different reaction conditions (e.g., incubation time, PME concentration, and temperature) on PME inactivation and kinetics of inactivation were investigated. Temperature, incubation time, and PME concentration significantly affected the extent of PME inactivation. Generally, higher temperature, longer incubation time, and low PME concentration caused more PME inactivation. The immobilized fish trypsin had higher capacity to inactivate PME than immobilized bovine trypsin. The inactivation efficiency of the immobilized fish trypsin was about 20% higher than that of its bovine counterpart. However, PME inactivated by both trypsins regained partial activity during storage at 4°C, with immobilized fish trypsin-treated PME regaining more of its original activity than the immobilized bovine trypsin-treated PME. Heat-denatured PME was hydrolyzed more extensively by immobilized fish trypsin than by its bovine counterpart. The rate constants increased, whereas the D-values decreased with temperature for both immobilized fish and bovine trypsins. The inactivation rate constants of immobilized fish trypsin at all the temperatures investigated (i.e., 15-35°C) were higher than those of immobilized bovine trypsin. Furthermore, the activation energy (Ea ) of PME inactivation by immobilized fish trypsin was lower than that of immobilized bovine trypsin.

  11. CBP regulates the differentiation of interneurons from ventral forebrain neural precursors during murine development.

    Science.gov (United States)

    Tsui, David; Voronova, Anastassia; Gallagher, Denis; Kaplan, David R; Miller, Freda D; Wang, Jing

    2014-01-15

    The mechanisms that regulate appropriate genesis and differentiation of interneurons in the developing mammalian brain are of significant interest not only because interneurons play key roles in the establishment of neural circuitry, but also because when they are deficient, this can cause epilepsy. In this regard, one genetic syndrome that is associated with deficits in neural development and epilepsy is Rubinstein-Taybi Syndrome (RTS), where the transcriptional activator and histone acetyltransferase CBP is mutated and haploinsufficient. Here, we have asked whether CBP is necessary for the appropriate genesis and differentiation of interneurons in the murine forebrain, since this could provide an explanation for the epilepsy that is associated with RTS. We show that CBP is expressed in neural precursors within the embryonic medial ganglionic eminence (MGE), an area that generates the vast majority of interneurons for the cortex. Using primary cultures of MGE precursors, we show that knockdown of CBP causes deficits in differentiation of these precursors into interneurons and oligodendrocytes, and that overexpression of CBP is by itself sufficient to enhance interneuron genesis. Moreover, we show that levels of the neurotransmitter synthesis enzyme GAD67, which is expressed in inhibitory interneurons, are decreased in the dorsal and ventral forebrain of neonatal CBP(+/-) mice, indicating that CBP plays a role in regulating interneuron development in vivo. Thus, CBP normally acts to ensure the differentiation of appropriate numbers of forebrain interneurons, and when its levels are decreased, this causes deficits in interneuron development, providing a potential explanation for the epilepsy seen in individuals with RTS.

  12. Widespread expression of BDNF but not NT3 by target areas of basal forebrain cholinergic neurons

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, H.S.; Hains, J.M.; Laramee, G.R.; Rosenthal, A.; Winslow, J.W. (Genentech, San Francisco, CA (USA))

    1990-10-12

    Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) are homologs of the well-known neurotrophic factor nerve growth factor. The three members of this family display distinct patterns of target specificity. To examine the distribution in brain of messenger RNA for these molecules, in situ hybridization was performed. Cells hybridizing intensely to antisense BDNF probe were located throughout the major targets of the rat basal forebrain cholinergic system, that is, the hippocampus, amygdala, and neocortex. Strongly hybridizing cells were also observed in structures associated with the olfactory system. The distribution of NT3 mRNA in forebrain was much more limited. Within the hippocampus, labeled cells were restricted to CA2, the most medial portion of CA1, and the dentate gyrus. In human hippocampus, cells expressing BDNF and mRNA are distributed in a fashion similar to that observed in the rat. These findings point to both basal forebrain cholinergic cells and olfactory pathways as potential central targets for BDNF.

  13. Forebrain neuroanatomy of the neonatal and juvenile dolphin (T. truncatus and S. coeruloalba).

    Science.gov (United States)

    Parolisi, Roberta; Peruffo, Antonella; Messina, Silvia; Panin, Mattia; Montelli, Stefano; Giurisato, Maristella; Cozzi, Bruno; Bonfanti, Luca

    2015-01-01

    Knowledge of dolphin functional neuroanatomy mostly derives from post-mortem studies and non-invasive approaches (i.e., magnetic resonance imaging), due to limitations in experimentation on cetaceans. As a consequence the availability of well-preserved tissues for histology is scarce, and detailed histological analyses are referred mainly to adults. Here we studied the neonatal/juvenile brain in two species of dolphins, the bottlenose dolphin (Tursiops truncatus) and the striped dolphin (Stenella coeruleoalba), with special reference to forebrain regions. We analyzed cell density in subcortical nuclei, white/gray matter ratio, and myelination in selected regions at different anterior-posterior levels of the whole dolphin brain at different ages, to better define forebrain neuroanatomy and the developmental stage of the dolphin brain around birth. The analyses were extended to the periventricular germinal layer and the cerebellum, whose delayed genesis of the granule cell layer is a hallmark of postnatal development in the mammalian nervous system. Our results establish an atlas of the young dolphin forebrain and, on the basis of occurrence/absence of delayed neurogenic layers, confirm the stage of advanced brain maturation in these animals with respect to most terrestrial mammals.

  14. Activity of basal forebrain neurons in the rat during motivated behaviors.

    Science.gov (United States)

    Mink, J W; Sinnamon, H M; Adams, D B

    1983-04-01

    The activity of single neurons in the basal forebrain was recorded in the freely-moving rat with moveable fine-wire electrodes. Neural activity was observed while the water-deprived male rat was exposed to three different types of motivating stimuli that elicit locomotion in a running wheel: an estrous female rat; a drinking tube containing water; and grasping and lifting by the experimenter. The neural activity was also observed when the subject was presented with standardized sensory tests and during single pulse stimulation of other brain structures. A majority of the 76 neurons recorded in the forebrain changed their firing rate during orienting and/or locomotion in general (23 neurons) or during behavior related to only one of the specific motivational contexts: the conspecific female (4 neurons); water (7 neurons); or grasp by the experimenter (8 neurons). Whereas the neurons related to orienting and/or locomotion in general were scattered through various brain structures, those neurons related to specific motivational contexts were concentrated in specific areas: the sexually dimorphic nucleus of the medial preoptic area (conspecific female); lateral septum (water); and lateral preoptic area (water and grasp). The present results, although based on relatively few neurons, are consonant with results of research using other techniques. This indicates that analyses at the level of the single neuron promise to be useful for understanding the role of the basal forebrain in motivational systems.

  15. Forebrain neuroanatomy of the neonatal and juvenile dolphin (T. truncatus and S. coeruloalba)

    Science.gov (United States)

    Parolisi, Roberta; Peruffo, Antonella; Messina, Silvia; Panin, Mattia; Montelli, Stefano; Giurisato, Maristella; Cozzi, Bruno; Bonfanti, Luca

    2015-01-01

    Knowledge of dolphin functional neuroanatomy mostly derives from post-mortem studies and non-invasive approaches (i.e., magnetic resonance imaging), due to limitations in experimentation on cetaceans. As a consequence the availability of well-preserved tissues for histology is scarce, and detailed histological analyses are referred mainly to adults. Here we studied the neonatal/juvenile brain in two species of dolphins, the bottlenose dolphin (Tursiops truncatus) and the striped dolphin (Stenella coeruleoalba), with special reference to forebrain regions. We analyzed cell density in subcortical nuclei, white/gray matter ratio, and myelination in selected regions at different anterior–posterior levels of the whole dolphin brain at different ages, to better define forebrain neuroanatomy and the developmental stage of the dolphin brain around birth. The analyses were extended to the periventricular germinal layer and the cerebellum, whose delayed genesis of the granule cell layer is a hallmark of postnatal development in the mammalian nervous system. Our results establish an atlas of the young dolphin forebrain and, on the basis of occurrence/absence of delayed neurogenic layers, confirm the stage of advanced brain maturation in these animals with respect to most terrestrial mammals. PMID:26594155

  16. Localization of tyrosine hydroxylase immunoreactive neurons in the forebrain of the guppy Poecilia reticulata.

    Science.gov (United States)

    Parafati, M; Senatori, O; Nicotra, A

    2009-10-01

    The current study reports for the first time the distribution of tyrosine hydroxylase immunoreactive (TH-ir) neurons in the forebrain of the guppy Poecilia reticulata. Numerous small TH-ir neurons were observed in the olfactory bulbs, located mainly in the periphery of the bulbs. The TH-ir telencephalic neurons are localized in the ventral telencephalic area where they are grouped in three distinct nuclei (Vv,Vd and Vp) composed of a small number of cells forming a continuous strip. The largest number of forebrain TH-ir neurons was observed in the diencephalon where both small and larger neurons are present. Diencephalic TH-ir neurons are subdivided in large nuclei located in the preoptic region (nSC, nPOp and nPOm), the thalamus (nDM), the pretectal region (nPPv and nAP), the hypothalamus (nPP and nRP) and the posterior tuberculum (nPT). Many diencephalic nuclei are distributed in periventricular regions and no TH-ir cells were observed in the paraventricular organ. A comparative analysis indicates that the present observations are consistent with the general pattern of TH-ir neurons distribution reported for the forebrain of other teleosts, but with some interspecies variability present, mainly in the diencephalon. This paper also provides valuable neuroanatomical information for P. reticulata, a teleost frequently used in toxicological tests, for future studies investigating the effects of environmental pollutants on the catecholaminergic system.

  17. Forebrain neuroanatomy of the neonatal and juvenile dolphin (T. truncatus & S. coeruloalba

    Directory of Open Access Journals (Sweden)

    Roberta eParolisi

    2015-11-01

    Full Text Available Knowledge of dolphin functional neuroanatomy mostly derives from post-mortem studies and non-invasive approaches (i.e. magnetic resonance imaging, due to limitations in experimentation on cetaceans. As a consequence the availability of well-preserved tissues for histology is scarce, and detailed histological analyses are referred mainly to adults. Here we studied the neonatal/juvenile brain in two species of dolphins, the bottlenose dolphin (Tursiops truncatus and the striped dolphin (Stenella coeruleoalba, with special reference to forebrain regions. We analyzed cell density in subcortical nuclei, white/grey matter ratio, and myelination in selected regions at different anterior-posterior levels of the whole dolphin brain at different ages, to better define forebrain neuroanatomy and the developmental stage of the dolphin brain around birth. The analysis were extended to the periventricular germinal layer and the cerebellum, whose delayed genesis of the granule cell layer is a hallmark of postnatal development in the mammalian nervous system. Our results establish an atlas of the young dolphin forebrain and, on the basis of occurrence/absence of delayed neurogenic layers, confirm the stage of advanced brain maturation in these animals with respect to most terrestrial mammals.

  18. Modelling fungal solid-state fermentation: The role of inactivation kinetics

    NARCIS (Netherlands)

    Smits, J.P.; Sonsbeek, H.M. van; Knol, W.; Tramper, J.; Geelhoed, W.; Peeters, M.; Rinzema, A.

    1999-01-01

    The theoretical mathematical models described in this paper are used to evaluate the effects of fungal biomass inactivation kinetics on a non- isothermal tray solid-state fermentation (SSF). The inactivation kinetics, derived from previously reported experiments done under isothermal conditions and

  19. Novel AAV-based rat model of forebrain synucleinopathy shows extensive pathologies and progressive loss of cholinergic interneurons.

    Directory of Open Access Journals (Sweden)

    Patrick Aldrin-Kirk

    Full Text Available Synucleinopathies, characterized by intracellular aggregation of α-synuclein protein, share a number of features in pathology and disease progression. However, the vulnerable cell population differs significantly between the disorders, despite being caused by the same protein. While the vulnerability of dopamine cells in the substantia nigra to α-synuclein over-expression, and its link to Parkinson's disease, is well studied, animal models recapitulating the cortical degeneration in dementia with Lewy-bodies (DLB are much less mature. The aim of this study was to develop a first rat model of widespread progressive synucleinopathy throughout the forebrain using adeno-associated viral (AAV vector mediated gene delivery. Through bilateral injection of an AAV6 vector expressing human wild-type α-synuclein into the forebrain of neonatal rats, we were able to achieve widespread, robust α-synuclein expression with preferential expression in the frontal cortex. These animals displayed a progressive emergence of hyper-locomotion and dysregulated response to the dopaminergic agonist apomorphine. The animals receiving the α-synuclein vector displayed significant α-synuclein pathology including intra-cellular inclusion bodies, axonal pathology and elevated levels of phosphorylated α-synuclein, accompanied by significant loss of cortical neurons and a progressive reduction in both cortical and striatal ChAT positive interneurons. Furthermore, we found evidence of α-synuclein sequestered by IBA-1 positive microglia, which was coupled with a distinct change in morphology. In areas of most prominent pathology, the total α-synuclein levels were increased to, on average, two-fold, which is similar to the levels observed in patients with SNCA gene triplication, associated with cortical Lewy body pathology. This study provides a novel rat model of progressive cortical synucleinopathy, showing for the first time that cholinergic interneurons are vulnerable

  20. Loss of BAF (mSWI/SNF Complexes Causes Global Transcriptional and Chromatin State Changes in Forebrain Development

    Directory of Open Access Journals (Sweden)

    Ramanathan Narayanan

    2015-12-01

    Full Text Available BAF (Brg/Brm-associated factors complexes play important roles in development and are linked to chromatin plasticity at selected genomic loci. Nevertheless, a full understanding of their role in development and chromatin remodeling has been hindered by the absence of mutants completely lacking BAF complexes. Here, we report that the loss of BAF155/BAF170 in double-conditional knockout (dcKO mice eliminates all known BAF subunits, resulting in an overall reduction in active chromatin marks (H3K9Ac, a global increase in repressive marks (H3K27me2/3, and downregulation of gene expression. We demonstrate that BAF complexes interact with H3K27 demethylases (JMJD3 and UTX and potentiate their activity. Importantly, BAF complexes are indispensable for forebrain development, including proliferation, differentiation, and cell survival of neural progenitor cells. Our findings reveal a molecular mechanism mediated by BAF complexes that controls the global transcriptional program and chromatin state in development.

  1. Esterase resistant to inactivation by heavy metals

    KAUST Repository

    El, Dorry Hamza

    2014-09-25

    EstATII is an esterase that a halotolerant, thermophilic and resistant to a spectrum of heavy metals including toxic concentration of metals. It was isolated from the lowest convective layer of the Atlantis II Red Sea brine pool. The Atlantis II brine pool is an extreme environment that possesses multiple harsh conditions such as; high temperature, salinity, pH and high concentration of metals, including toxic heavy metals. A fosmid metagenomic library using DNA isolated from the lowest convective layer this pool was used to identify EstATII. Polynucleotides encoding EstATII and similar esterases are disclosed and can be used to make EstATII. EstATII or compositions or apparatuses that contain it may be used in various processes employing lipases/esterases especially when these processes are performed under harsh conditions that inactivate other kinds of lipases or esterases.

  2. Functional conservation of a forebrain enhancer from the elephant shark (Callorhinchus milii in zebrafish and mice

    Directory of Open Access Journals (Sweden)

    Tay Boon-Hui

    2010-05-01

    Full Text Available Abstract Background The phylogenetic position of the elephant shark (Callorhinchus milii is particularly relevant to study the evolution of genes and gene regulation in vertebrates. Here we examine the evolution of Dlx homeobox gene regulation during vertebrate embryonic development with a particular focus on the forebrain. We first identified the elephant shark sequence orthologous to the URE2 cis -regulatory element of the mouse Dlx1/Dlx2 locus (herein named CmURE2. We then conducted a comparative study of the sequence and enhancer activity of CmURE2 with that of orthologous regulatory sequences from zebrafish and mouse. Results The CmURE2 sequence shows a high percentage of identity with its mouse and zebrafish counterparts but is overall more similar to mouse URE2 (MmURE2 than to zebrafish URE2 (DrURE2. In transgenic zebrafish and mouse embryos, CmURE2 displayed enhancer activity in the forebrain that overlapped with that of DrURE2 and MmURE2. However, we detected notable differences in the activity of the three sequences in the diencephalon. Outside of the forebrain, CmURE2 shows enhancer activity in areas such as the pharyngeal arches and dorsal root ganglia where its' counterparts are also active. Conclusions Our transgenic assays show that part of the URE2 enhancer activity is conserved throughout jawed vertebrates but also that new characteristics have evolved in the different groups. Our study demonstrates that the elephant shark is a useful outgroup to study the evolution of regulatory mechanisms in vertebrates and to address how changes in the sequence of cis -regulatory elements translate into changes in their regulatory activity.

  3. Forebrain development in fetal MRI: evaluation of anatomical landmarks before gestational week 27.

    Science.gov (United States)

    Schmook, Maria T; Brugger, Peter C; Weber, Michael; Kasprian, Gregor; Nemec, Stefan; Krampl-Bettelheim, Elisabeth; Prayer, Daniela

    2010-06-01

    Forebrain malformations include some of the most severe developmental anomalies and require early diagnosis. The proof of normal or abnormal prosencephalic development may have an influence on further management in the event of a suspected fetal malformation. The purpose of this retrospective study was to evaluate the detectability of anatomical landmarks of forebrain development using in vivo fetal magnetic resonance imaging (MRI) before gestational week (gw) 27. MRI studies of 83 singleton fetuses (gw 16-26, average +/- sd: gw 22 +/- 2) performed at 1.5 Tesla were assessed. T2-weighted (w) fast spin echo, T1w gradient-echo and diffusion-weighted sequences were screened for the detectability of anatomical landmarks as listed below. The interhemispheric fissure, ocular bulbs, corpus callosum, infundibulum, chiasm, septum pellucidum (SP), profile, and palate were detectable in 95%, 95%, 89%, 87%, 82%, 81%, 78%, 78% of cases. Olfactory tracts were more easily delineated than bulbs and sulci (37% versus 18% and 8%), with significantly higher detection rates in the coronal plane. The pituitary gland could be detected on T1w images in 60% with an increasing diameter with gestational age (p = 0.041). The delineation of olfactory tracts (coronal plane), chiasm, SP and pituitary gland were significantly increased after week 21 (p < 0.05). Pathologies were found in 28% of cases. This study provides detection rates for anatomical landmarks of forebrain development with fetal MRI before gw 27. Several anatomical structures are readily detectable with routine fetal MRI sequences; thus, if these landmarks are not delineable, it should raise the suspicion of a pathology. Recommendations regarding favorable sequences/planes are provided.

  4. Forebrain development in fetal MRI: evaluation of anatomical landmarks before gestational week 27

    Energy Technology Data Exchange (ETDEWEB)

    Schmook, Maria T.; Weber, Michael; Kasprian, Gregor; Nemec, Stefan; Prayer, Daniela [Medical University of Vienna, Department of Radiology/Division of Neuro- and Musculoskeletal Radiology, Vienna (Austria); Brugger, Peter C. [Medical University of Vienna, Integrative Morphology Group, Center for Anatomy and Cell Biology, Vienna (Austria); Krampl-Bettelheim, Elisabeth [Department of Obstetrics and Gynecology / Division of Obstetrics and Feto-maternal Medicine, Vienna (Austria)

    2010-06-15

    Forebrain malformations include some of the most severe developmental anomalies and require early diagnosis. The proof of normal or abnormal prosencephalic development may have an influence on further management in the event of a suspected fetal malformation. The purpose of this retrospective study was to evaluate the detectability of anatomical landmarks of forebrain development using in vivo fetal magnetic resonance imaging (MRI) before gestational week (gw) 27. MRI studies of 83 singleton fetuses (gw 16-26, average {+-}sd: gw 22 {+-} 2) performed at 1.5 Tesla were assessed. T2-weighted (w) fast spin echo, T1w gradient-echo and diffusion-weighted sequences were screened for the detectability of anatomical landmarks as listed below. The interhemispheric fissure, ocular bulbs, corpus callosum, infundibulum, chiasm, septum pellucidum (SP), profile, and palate were detectable in 95%, 95%, 89%, 87%, 82%, 81%, 78%, 78% of cases. Olfactory tracts were more easily delineated than bulbs and sulci (37% versus 18% and 8%), with significantly higher detection rates in the coronal plane. The pituitary gland could be detected on T1w images in 60% with an increasing diameter with gestational age (p=0.041). The delineation of olfactory tracts (coronal plane), chiasm, SP and pituitary gland were significantly increased after week 21 (p<0.05). Pathologies were found in 28% of cases. This study provides detection rates for anatomical landmarks of forebrain development with fetal MRI before gw 27. Several anatomical structures are readily detectable with routine fetal MRI sequences; thus, if these landmarks are not delineable, it should raise the suspicion of a pathology. Recommendations regarding favorable sequences/planes are provided. (orig.)

  5. Cell death atlas of the postnatal mouse ventral forebrain and hypothalamus: effects of age and sex.

    Science.gov (United States)

    Ahern, Todd H; Krug, Stefanie; Carr, Audrey V; Murray, Elaine K; Fitzpatrick, Emmett; Bengston, Lynn; McCutcheon, Jill; De Vries, Geert J; Forger, Nancy G

    2013-08-01

    Naturally occurring cell death is essential to the development of the mammalian nervous system. Although the importance of developmental cell death has been appreciated for decades, there is no comprehensive account of cell death across brain areas in the mouse. Moreover, several regional sex differences in cell death have been described for the ventral forebrain and hypothalamus, but it is not known how widespread the phenomenon is. We used immunohistochemical detection of activated caspase-3 to identify dying cells in the brains of male and female mice from postnatal day (P) 1 to P11. Cell death density, total number of dying cells, and regional volume were determined in 16 regions of the hypothalamus and ventral forebrain (the anterior hypothalamus, arcuate nucleus, anteroventral periventricular nucleus, medial preoptic nucleus, paraventricular nucleus, suprachiasmatic nucleus, and ventromedial nucleus of the hypothalamus; the basolateral, central, and medial amygdala; the lateral and principal nuclei of the bed nuclei of the stria terminalis; the caudate-putamen; the globus pallidus; the lateral septum; and the islands of Calleja). All regions showed a significant effect of age on cell death. The timing of peak cell death varied between P1 to P7, and the average rate of cell death varied tenfold among regions. Several significant sex differences in cell death and/or regional volume were detected. These data address large gaps in the developmental literature and suggest interesting region-specific differences in the prevalence and timing of cell death in the hypothalamus and ventral forebrain. Copyright © 2013 Wiley Periodicals, Inc.

  6. Newly identified patterns of Pax2 expression in the developing mouse forebrain

    Directory of Open Access Journals (Sweden)

    Mason John O

    2008-08-01

    Full Text Available Abstract Background The availability of specific markers expressed in different regions of the developing nervous system provides a useful tool for the study of mouse mutants. One such marker, the transcription factor Pax2, is expressed at the midbrain-hindbrain boundary and in the cerebellum, spinal cord, retina, optic stalk, and optic chiasm. We recently described a group of diencephalic cells that express Pax2 as early as embryonic day (E 10.5, and become part of the eminentia thalami by E11.5. The discovery of this previously undescribed cell population prompted us to examine Pax2 protein expression in the developing mouse forebrain in more detail. Results We determined the expression pattern of Pax2 in the forebrain of wild type mouse embryos between E10.5 and postnatal day (P 15. Pax2 expression was detected in the septum of the basal forebrain, hypothalamus, eminentia thalami and in the subfornical organ. To evaluate Pax2 as a marker for septal cells, we examined Pax2 expression in Pax6Sey/Sey mutants, which have an enlarged septum. We found that Pax2 clearly marks a population of septal cells equivalent to that seen in wild types, indicating its utility as a marker of septal identity. These cells did not express the GABAergic marker calbindin nor the cholinergic marker choline acetyltransferase and were not detectable after P15. Conclusion Pax2 is expressed in populations of cells within the developing septum, hypothalamus, and eminentia thalami. It seems especially useful as a marker of the telencephalic septum, because of its early, strong and characteristic expression in this structure. Further, its expression is maintained in the enlarged septum of Pax6Sey/Sey mutants.

  7. Song exposure regulates known and novel microRNAs in the zebra finch auditory forebrain

    Directory of Open Access Journals (Sweden)

    Kim Jong H

    2011-05-01

    Full Text Available Abstract Background In an important model for neuroscience, songbirds learn to discriminate songs they hear during tape-recorded playbacks, as demonstrated by song-specific habituation of both behavioral and neurogenomic responses in the auditory forebrain. We hypothesized that microRNAs (miRNAs or miRs may participate in the changing pattern of gene expression induced by song exposure. To test this, we used massively parallel Illumina sequencing to analyse small RNAs from auditory forebrain of adult zebra finches exposed to tape-recorded birdsong or silence. Results In the auditory forebrain, we identified 121 known miRNAs conserved in other vertebrates. We also identified 34 novel miRNAs that do not align to human or chicken genomes. Five conserved miRNAs showed significant and consistent changes in copy number after song exposure across three biological replications of the song-silence comparison, with two increasing (tgu-miR-25, tgu-miR-192 and three decreasing (tgu-miR-92, tgu-miR-124, tgu-miR-129-5p. We also detected a locus on the Z sex chromosome that produces three different novel miRNAs, with supporting evidence from Northern blot and TaqMan qPCR assays for differential expression in males and females and in response to song playbacks. One of these, tgu-miR-2954-3p, is predicted (by TargetScan to regulate eight song-responsive mRNAs that all have functions in cellular proliferation and neuronal differentiation. Conclusions The experience of hearing another bird singing alters the profile of miRNAs in the auditory forebrain of zebra finches. The response involves both known conserved miRNAs and novel miRNAs described so far only in the zebra finch, including a novel sex-linked, song-responsive miRNA. These results indicate that miRNAs are likely to contribute to the unique behavioural biology of learned song communication in songbirds.

  8. The forebrain of the blind cave fish Astyanax hubbsi (Characidae). I. General anatomy of the telencephalon.

    Science.gov (United States)

    Riedel, G

    1997-01-01

    This paper presents a survey of the cell groups in the telencephalon of the teleost Astyanax hubbsi, based on series of transverse sections stained with the Nissl-Klüver-Barrera and Bodian procedures. The work was conducted for two reasons. Firstly, it was intended to determine the contribution of the forebrain of blind cave fish to certain forms of behavior. An understanding of the anatomy of the telencephalic organization is essential for such a neuroethological approach. The second purpose was to provide the cytoarchitectural basis for the experimental analysis of the fiber connectivity of the telencephalon of A. hubbsi. Furthermore, information about the forebrain of characids is widely lacking, and this study may thus provide important knowledge about the cellular organization of characid forebrains for comparative anatomists. The brain of A. hubbsi is slender and elongated. Both optic nerves and optic tectum are reduced. Three longitudinal sulci-s. ypsiliformis, s. externus and s. limitans telencephali-can be distinguished in the telencephalon. A fiber lamina reaching from the s. externus to the s. limitans telencephali separates the area dorsalis (D) from the area ventralis telencephali (V). The two hemispheres are connected by fibers decussating in the anterior commissure. Although cross sections revealed no distinct fiber laminae between cytoarchitectonic components, 17 cell masses could be delineated: ten of these belong to D, seven to V. The topological analysis yielded the following results. The dorsal telencephalon D consists of three longitudinal columns, termed pars medialis (Dm), pars dorsalis and centralis (Dd and Dc) considered together, and par lateralis (Dl), which converge into a uniform posterior part (Dp). The columns can be divided into several subregions: Dm1 and Dm2, as well as Dlv and Dld, precommissurally, Dm3 and Dm4 postcommisurally. At polus posterior levels nucleus tenia can be identified. The ventral telencephalon (V) is arranged

  9. Tolerance of nestin+ cholinergic neurons in the basal forebrain against colchicine-induced cytotoxicity

    Institute of Scientific and Technical Information of China (English)

    Jing Yu; Kaihua Guo; Dongpei Li; Jinhai Duan; Juntao Zou; Junhua Yang; Zhibin Yao

    2011-01-01

    In the present study we injected colchicine into the lateral ventricle of Sprague-Dawley rats to investigate the effects of colchicine on the number of different-type neurons in the basal forebrain and to search for neurons resistant to injury. After colchicine injection, the number of nestin+ cholinergic neurons was decreased at 1 day, but increased at 3 days and peaked at 14-28 days. The quantity of nestin- cholinergic neurons, parvalbumin-positive neurons and choline acetyl transferase-positive neurons decreased gradually. Our results indicate that nestin+ cholinergic neurons possess better tolerance to colchicine-induced neurotoxicity.

  10. FEF inactivation with improved optogenetic methods.

    Science.gov (United States)

    Acker, Leah; Pino, Erica N; Boyden, Edward S; Desimone, Robert

    2016-11-15

    Optogenetic methods have been highly effective for suppressing neural activity and modulating behavior in rodents, but effects have been much smaller in primates, which have much larger brains. Here, we present a suite of technologies to use optogenetics effectively in primates and apply these tools to a classic question in oculomotor control. First, we measured light absorption and heat propagation in vivo, optimized the conditions for using the red-light-shifted halorhodopsin Jaws in primates, and developed a large-volume illuminator to maximize light delivery with minimal heating and tissue displacement. Together, these advances allowed for nearly universal neuronal inactivation across more than 10 mm(3) of the cortex. Using these tools, we demonstrated large behavioral changes (i.e., up to several fold increases in error rate) with relatively low light power densities (≤100 mW/mm(2)) in the frontal eye field (FEF). Pharmacological inactivation studies have shown that the FEF is critical for executing saccades to remembered locations. FEF neurons increase their firing rate during the three epochs of the memory-guided saccade task: visual stimulus presentation, the delay interval, and motor preparation. It is unclear from earlier work, however, whether FEF activity during each epoch is necessary for memory-guided saccade execution. By harnessing the temporal specificity of optogenetics, we found that FEF contributes to memory-guided eye movements during every epoch of the memory-guided saccade task (the visual, delay, and motor periods).

  11. Bacterial inactivation of the anticancer drug doxorubicin.

    Science.gov (United States)

    Westman, Erin L; Canova, Marc J; Radhi, Inas J; Koteva, Kalinka; Kireeva, Inga; Waglechner, Nicholas; Wright, Gerard D

    2012-10-26

    Microbes are exposed to compounds produced by members of their ecological niche, including molecules with antibiotic or antineoplastic activities. As a result, even bacteria that do not produce such compounds can harbor the genetic machinery to inactivate or degrade these molecules. Here, we investigated environmental actinomycetes for their ability to inactivate doxorubicin, an aminoglycosylated anthracycline anticancer drug. One strain, Streptomyces WAC04685, inactivates doxorubicin via a deglycosylation mechanism. Activity-based purification of the enzymes responsible for drug inactivation identified the NADH dehydrogenase component of respiratory electron transport complex I, which was confirmed by gene inactivation studies. A mechanism where reduction of the quinone ring of the anthracycline by NADH dehydrogenase leads to deglycosylation is proposed. This work adds anticancer drug inactivation to the enzymatic inactivation portfolio of actinomycetes and offers possibilities for novel applications in drug detoxification. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. The effects of ionic strength and organic matter on virus inactivation at low temperatures: general likelihood uncertainty estimation (GLUE) as an alternative to least-squares parameter optimization for the fitting of virus inactivation models

    Science.gov (United States)

    Mayotte, Jean-Marc; Grabs, Thomas; Sutliff-Johansson, Stacy; Bishop, Kevin

    2017-06-01

    This study examined how the inactivation of bacteriophage MS2 in water was affected by ionic strength (IS) and dissolved organic carbon (DOC) using static batch inactivation experiments at 4 °C conducted over a period of 2 months. Experimental conditions were characteristic of an operational managed aquifer recharge (MAR) scheme in Uppsala, Sweden. Experimental data were fit with constant and time-dependent inactivation models using two methods: (1) traditional linear and nonlinear least-squares techniques; and (2) a Monte-Carlo based parameter estimation technique called generalized likelihood uncertainty estimation (GLUE). The least-squares and GLUE methodologies gave very similar estimates of the model parameters and their uncertainty. This demonstrates that GLUE can be used as a viable alternative to traditional least-squares parameter estimation techniques for fitting of virus inactivation models. Results showed a slight increase in constant inactivation rates following an increase in the DOC concentrations, suggesting that the presence of organic carbon enhanced the inactivation of MS2. The experiment with a high IS and a low DOC was the only experiment which showed that MS2 inactivation may have been time-dependent. However, results from the GLUE methodology indicated that models of constant inactivation were able to describe all of the experiments. This suggested that inactivation time-series longer than 2 months were needed in order to provide concrete conclusions regarding the time-dependency of MS2 inactivation at 4 °C under these experimental conditions.

  13. Overexpression of Parkinson’s Disease-Associated Mutation LRRK2 G2019S in Mouse Forebrain Induces Behavioral Deficits and α-Synuclein Pathology

    Science.gov (United States)

    Grima, Jonathan C.; Chen, Guanxing; Swing, Debbie; Tessarollo, Lino

    2017-01-01

    Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been identified as an unambiguous cause of late-onset, autosomal-dominant familial Parkinson’s disease (PD) and LRRK2 mutations are the strongest genetic risk factor for sporadic PD known to date. A number of transgenic mice expressing wild-type or mutant LRRK2 have been described with varying degrees of LRRK2-related abnormalities and modest pathologies. None of these studies directly addressed the role of the kinase domain in the changes observed and none of the mice present with robust features of the human disease. In an attempt to address these issues, we created a conditional LRRK2 G2019S (LRRK2 GS) mutant and a functionally negative control, LRRK2 G2019S/D1994A (LRRK2 GS/DA). Expression of LRRK2 GS or LRRK2 GS/DA was conditionally controlled using the tet-off system in which the presence of tetracycline-transactivator protein (tTA) with a CAMKIIα promoter (CAMKIIα-tTA) induced expression of TetP-LRRK2 GS or TetP-LRRK2 GS/DA in the mouse forebrain. Overexpression of LRRK2 GS in mouse forebrain induced behavioral deficits and α-synuclein pathology in a kinase-dependent manner. Similar to other genetically engineered LRRK2 GS mice, there was no significant loss of dopaminergic neurons. These mice provide an important new tool to study neurobiological changes associated with the increased kinase activity from the LRRK2 G2019S mutation, which may ultimately lead to a better understanding of not only the physiologic actions of LRRK2, but also potential pathologic actions that underlie LRRK2 GS-associated PD.

  14. Inactivated Schmallenberg virus prototype vaccines.

    Science.gov (United States)

    Wernike, Kerstin; Nikolin, Veljko M; Hechinger, Silke; Hoffmann, Bernd; Beer, Martin

    2013-08-02

    Schmallenberg virus (SBV), a novel Orthobunyavirus, is an insect-transmitted pathogen and was first described in Europe in 2011. SBV causes a mild transient disease in adult ruminants, but severe foetal malformation and stillbirth were observed after an infection of naive cows and ewes, which is responsible for considerable economic losses. The virus is now widely distributed in Europe, and no vaccines were available to stop transmission and spread. In the present study, 16 calves and 25 sheep, the major target species of SBV infection, were vaccinated twice 3 weeks apart with one of 5 newly developed, inactivated vaccine candidates. Six calves and 5 sheep were kept as unvaccinated controls. All animals were clinically, serologically and virologically examined before and after challenge infection. Immunisation with the inactivated preparations resulted in a neutralising antibody response three weeks after the second vaccination without any side effects. The number of animals that seroconverted in each group and the strength of the antibody response were dependent on the cell line used for virus growth and on the viral titre prior to inactivation. Four vaccine prototypes completely prevented RNAemia after challenge infection, a fifth candidate reduced RNAemia considerably. Although further evaluations e.g. regarding duration of immunity will be necessary, the newly developed vaccines are promising candidates for the prevention of SBV-infection and could be a valuable tool in SBV control strategies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Hydrazine vapor inactivates Bacillus spores

    Science.gov (United States)

    Schubert, Wayne W.; Engler, Diane L.; Beaudet, Robert A.

    2016-05-01

    NASA policy restricts the total number of bacterial spores that can remain on a spacecraft traveling to any planetary body which might harbor life or have evidence of past life. Hydrazine, N2H4, is commonly used as a propellant on spacecraft. Hydrazine as a liquid is known to inactivate bacterial spores. We have now verified that hydrazine vapor also inactivates bacterial spores. After Bacillus atrophaeus ATCC 9372 spores deposited on stainless steel coupons were exposed to saturated hydrazine vapor in closed containers, the spores were recovered from the coupons, serially diluted, pour plated and the surviving bacterial colonies were counted. The exposure times required to reduce the spore population by a factor of ten, known as the D-value, were 4.70 ± 0.50 h at 25 °C and 2.85 ± 0.13 h at 35 °C. These inactivation rates are short enough to ensure that the bioburden of the surfaces and volumes would be negligible after prolonged exposure to hydrazine vapor. Thus, all the propellant tubing and internal tank surfaces exposed to hydrazine vapor do not contribute to the total spore count.

  16. Distinct Correlation Structure Supporting a Rate-Code for Sound Localization in the Owl’s Auditory Forebrain

    Science.gov (United States)

    2017-01-01

    Abstract While a topographic map of auditory space exists in the vertebrate midbrain, it is absent in the forebrain. Yet, both brain regions are implicated in sound localization. The heterogeneous spatial tuning of adjacent sites in the forebrain compared to the midbrain reflects different underlying circuitries, which is expected to affect the correlation structure, i.e., signal (similarity of tuning) and noise (trial-by-trial variability) correlations. Recent studies have drawn attention to the impact of response correlations on the information readout from a neural population. We thus analyzed the correlation structure in midbrain and forebrain regions of the barn owl’s auditory system. Tetrodes were used to record in the midbrain and two forebrain regions, Field L and the downstream auditory arcopallium (AAr), in anesthetized owls. Nearby neurons in the midbrain showed high signal and noise correlations (RNCs), consistent with shared inputs. As previously reported, Field L was arranged in random clusters of similarly tuned neurons. Interestingly, AAr neurons displayed homogeneous monotonic azimuth tuning, while response variability of nearby neurons was significantly less correlated than the midbrain. Using a decoding approach, we demonstrate that low RNC in AAr restricts the potentially detrimental effect it can have on information, assuming a rate code proposed for mammalian sound localization. This study harnesses the power of correlation structure analysis to investigate the coding of auditory space. Our findings demonstrate distinct correlation structures in the auditory midbrain and forebrain, which would be beneficial for a rate-code framework for sound localization in the nontopographic forebrain representation of auditory space. PMID:28674698

  17. Acoustic imprinting leads to differential 2-deoxy-D-glucose uptake in the chick forebrain.

    Science.gov (United States)

    Maier, V; Scheich, H

    1983-01-01

    This report describes experiments in which successful acoustic imprinting correlates with differential uptake of D-2-deoxy[14C]glucose in particular forebrain areas that are not considered primarily auditory. Newly hatched guinea chicks (Numida meleagris meleagris) were imprinted by playing 1.8-kHz or 2.5-kHz tone bursts for prolonged periods. Those chicks were considered to be imprinted who approached the imprinting stimulus (emitted from a loudspeaker) and preferred it over a new stimulus in a simultaneous discrimination test. In the 2-deoxy-D-glucose experiment all chicks, imprinted and naive, were exposed to 1.8-kHz tone bursts for 1 hr. As shown by the autoradiographic analysis of the brains, neurons in the 1.8-kHz isofrequency plane of the auditory "cortex" (field L) were activated in all chicks, whether imprinted or not. However, in the most rostral forebrain striking differences were found. Imprinted chicks showed an increased 2-deoxy-D-glucose uptake in three areas, as compared to naive chicks: (i) the lateral neostriatum and hyperstriatum ventrale, (ii) a medial magnocellular field (medial neostriatum/hyperstriatum ventrale), and (iii) the most dorsal layers of the hyperstriatum. Based on these findings we conclude that these areas are involved in the processing of auditory stimuli once they have become meaningful by experience. Images PMID:6574519

  18. Basal forebrain neurons suppress amygdala kindling via cortical but not hippocampal cholinergic projections in rats.

    Science.gov (United States)

    Ferencz, I; Leanza, G; Nanobashvili, A; Kokaia, M; Lindvall, O

    2000-06-01

    Intraventricular administration of the immunotoxin 192 IgG-saporin in rats has been shown to cause a selective loss of cholinergic afferents to the hippocampus and cortical areas, and to facilitate seizure development in hippocampal kindling. Here we demonstrate that this lesion also accelerates seizure progression when kindling is induced by electrical stimulations in the amygdala. However, whereas intraventricular 192 IgG-saporin facilitated the development of the initial stages of hippocampal kindling, the same lesion promoted the late stages of amygdala kindling. To explore the role of various parts of the basal forebrain cholinergic system in amygdala kindling, selective lesions of the cholinergic projections to either hippocampus or cortex were produced by intraparenchymal injections of 192 IgG-saporin into medial septum/vertical limb of the diagonal band or nucleus basalis, respectively. Cholinergic denervation of the cortical regions caused acceleration of amygdala kindling closely resembling that observed after the more widespread lesion induced by intraventricular 192 IgG-saporin. In contrast, removal of the cholinergic input to the hippocampus had no effect on the development of amygdala kindling. These data indicate that basal forebrain cholinergic neurons suppress kindling elicited from amygdala, and that this dampening effect is mediated via cortical but not hippocampal projections.

  19. Conservation of spatial memory function in the pallial forebrain of reptiles and ray-finned fishes.

    Science.gov (United States)

    Rodríguez, Fernando; López, J Carlos; Vargas, J Pedro; Gómez, Yolanda; Broglio, Cristina; Salas, Cosme

    2002-04-01

    The hippocampus of mammals and birds is critical for spatial memory. Neuroanatomical evidence indicates that the medial cortex (MC) of reptiles and the lateral pallium (LP) of ray-finned fishes could be homologous to the hippocampus of mammals and birds. In this work, we studied the effects of lesions to the MC of turtles and to the LP of goldfish in spatial memory. Lesioned animals were trained in place, and cue maze tasks and crucial probe and transfer tests were performed. In experiment 1, MC-lesioned turtles in the place task failed to locate the goal during trials in which new start positions were used, whereas sham animals navigated directly to the goal independently of start location. In contrast, no deficit was observed in cue learning. In experiment 2, LP lesion produced a dramatic impairment in goldfish trained in the place task, whereas medial and dorsal pallium lesions did not decrease accuracy. In addition, none of these pallial lesions produced deficits in cue learning. These results indicate that lesions to the MC of turtles and to the LP of goldfish, like hippocampal lesions in mammals and birds, selectively impair map-like memory representations of the environmental space. Thus, the forebrain structures of reptiles and teleost fish neuroanatomically equivalent to the mammalian and avian hippocampus also share a central role in spatial cognition. Present results suggest that the presence of a hippocampus-dependent spatial memory system is a primitive feature of the vertebrate forebrain that has been conserved through evolution.

  20. Developmental activity variations of DNA polymerase α,δ,ε in mouse forebrains and spleens

    Institute of Scientific and Technical Information of China (English)

    杨荣武; 陆长德

    1995-01-01

    The levels of DNA polymerase α,δ,ε were examined in the neonatal mouse forebrains andspleens.The levels of DNA polymerase α were determined by the difference of polymerase activity in theabsence and the presence of α specific inhibitor,BuPdGTP,or its monoclonal antibody.The levels of DNApolymerase δ were determined in H · A fractions after separating it from the other two enzymes.The levelsof DNA polymerase ε were identified in H · A fractions by the use of α-monoclonal antibody or BuPdGTP.Results showed that in the mouse forebrain DNA polymerase α,δ,ε activities are the highest before birth,decline sharply following birth and are very low on the 8th day and hardly detectable on the 17th day;as forthe mouse spleen,however,DNA polymerase α,δ,ε activities are the lowest at birth,increase rapidly afterbirth and reach their maxima on the 8th day and then decline gradually but remain in higher levels.Theseresults not only prove that DNA polymerase α and δ take part in cell DNA replication but also suggest thatDNA polymerase ε is involved in DNA replication.

  1. Hierarchical prediction errors in midbrain and basal forebrain during sensory learning.

    Science.gov (United States)

    Iglesias, Sandra; Mathys, Christoph; Brodersen, Kay H; Kasper, Lars; Piccirelli, Marco; den Ouden, Hanneke E M; Stephan, Klaas E

    2013-10-16

    In Bayesian brain theories, hierarchically related prediction errors (PEs) play a central role for predicting sensory inputs and inferring their underlying causes, e.g., the probabilistic structure of the environment and its volatility. Notably, PEs at different hierarchical levels may be encoded by different neuromodulatory transmitters. Here, we tested this possibility in computational fMRI studies of audio-visual learning. Using a hierarchical Bayesian model, we found that low-level PEs about visual stimulus outcome were reflected by widespread activity in visual and supramodal areas but also in the midbrain. In contrast, high-level PEs about stimulus probabilities were encoded by the basal forebrain. These findings were replicated in two groups of healthy volunteers. While our fMRI measures do not reveal the exact neuron types activated in midbrain and basal forebrain, they suggest a dichotomy between neuromodulatory systems, linking dopamine to low-level PEs about stimulus outcome and acetylcholine to more abstract PEs about stimulus probabilities.

  2. Fine-Tuning Circadian Rhythms: The Importance of Bmal1 Expression in the Ventral Forebrain

    Science.gov (United States)

    Mieda, Michihiro; Hasegawa, Emi; Kessaris, Nicoletta; Sakurai, Takeshi

    2017-01-01

    Although, the suprachiasmatic nucleus (SCN) of the hypothalamus acts as the central clock in mammals, the circadian expression of clock genes has been demonstrated not only in the SCN, but also in peripheral tissues and brain regions outside the SCN. However, the physiological roles of extra-SCN circadian clocks in the brain remain largely elusive. In response, we generated Nkx2.1-Bmal1−/− mice in which Bmal1, an essential clock component, was genetically deleted specifically in the ventral forebrain, including the preoptic area, nucleus of the diagonal band, and most of the hypothalamus except the SCN. In these mice, as expected, PER2::LUC oscillation was drastically attenuated in the explants of mediobasal hypothalamus, whereas it was maintained in those of the SCN. Although, Nkx2.1-Bmal1−/− mice were rhythmic and nocturnal, they showed altered patterns of locomotor activity during the night in a 12:12-h light:dark cycle and during subjective night in constant darkness. Control mice were more active during the first half than the second half of the dark phase or subjective night, whereas Nkx2.1-Bmal1−/− mice showed the opposite pattern of locomotor activity. Temporal patterns of sleep-wakefulness and feeding also changed accordingly. Such results suggest that along with mechanisms in the SCN, local Bmal1–dependent clocks in the ventral forebrain are critical for generating precise temporal patterns of circadian behaviors.

  3. Origin and immunolesioning of cholinergic basal forebrain innervation of cat primary auditory cortex.

    Science.gov (United States)

    Kamke, Marc R; Brown, Mel; Irvine, Dexter R F

    2005-08-01

    Numerous studies have implicated the cholinergic basal forebrain (cBF) in the modulation of auditory cortical responses. This study aimed to accurately define the sources of cBF input to primary auditory cortex (AI) and to assess the efficacy of a cholinergic immunotoxin in cat. Three anaesthetized cats received multiple injections of horseradish-peroxidase conjugated wheatgerm-agglutin into physiologically identified AI. Following one to two days survival, tetramethylbenzidine histochemistry revealed the greatest number of retrogradely labeled cells in ipsilateral putamen, globus pallidus and internal capsule, and smaller numbers in more medial nuclei of the basal forebrain (BF). Concurrent choline acetyltransferase immunohistochemistry showed that almost 80% of the retrogradely labeled cells in BF were cholinergic, with the vast majority of these cells arising from the more lateral BF nuclei identified above. In the second part of the study, unilateral intraparenchymal injections of the cholinergic immunotoxin ME20.4-SAP were made into the putamen/globus pallidus nuclei of six cats. Immuno- and histochemistry revealed a massive reduction in the number of cholinergic cells in and around the targeted area, and a corresponding reduction in the density of cholinergic fibers in auditory cortex. These results are discussed in terms of their implications for investigations of the role of the cBF in cortical plasticity.

  4. Loss of MeCP2 From Forebrain Excitatory Neurons Leads to Cortical Hyperexcitation and Seizures

    Science.gov (United States)

    Zhang, Wen; Peterson, Matthew; Beyer, Barbara; Frankel, Wayne N.

    2014-01-01

    Mutations of MECP2 cause Rett syndrome (RTT), a neurodevelopmental disorder leading to loss of motor and cognitive functions, impaired social interactions, and seizure at young ages. Defects of neuronal circuit development and function are thought to be responsible for the symptoms of RTT. The majority of RTT patients show recurrent seizures, indicating that neuronal hyperexcitation is a common feature of RTT. However, mechanisms underlying hyperexcitation in RTT are poorly understood. Here we show that deletion of Mecp2 from cortical excitatory neurons but not forebrain inhibitory neurons in the mouse leads to spontaneous seizures. Selective deletion of Mecp2 from excitatory but not inhibitory neurons in the forebrain reduces GABAergic transmission in layer 5 pyramidal neurons in the prefrontal and somatosensory cortices. Loss of MeCP2 from cortical excitatory neurons reduces the number of GABAergic synapses in the cortex, and enhances the excitability of layer 5 pyramidal neurons. Using single-cell deletion of Mecp2 in layer 2/3 pyramidal neurons, we show that GABAergic transmission is reduced in neurons without MeCP2, but is normal in neighboring neurons with MeCP2. Together, these results suggest that MeCP2 in cortical excitatory neurons plays a critical role in the regulation of GABAergic transmission and cortical excitability. PMID:24523563

  5. Inducible forebrain-specific ablation of the transcription factor Creb during adulthood induces anxiety but no spatial/contextual learning deficits

    Directory of Open Access Journals (Sweden)

    Miriam Annika Vogt

    2014-11-01

    Full Text Available The cyclic AMP (cAMP-response element binding protein (CREB is an activity-dependent transcription factor playing a role in synaptic plasticity, learning and memory, and emotional behavior. However, the impact of Creb ablation on rodent behavior is vague as e.g. memory performance of different Creb mutant mice depends on the specific type of mutation per se but additionally on the background and learning protocol differences. Here we present the first targeted ablation of CREB induced during adulthood selectively in principal forebrain neurons in a pure background strain of C57BL/6 mice. All hippocampal principal neurons exhibited lack of CREB expression. Mutant mice showed a severe anxiety phenotype in the openfield and novel object exploration test as well as in the Dark-Light Box Test, but unaltered hippocampus-dependent long-term memory in the Morris water maze and in context dependent fear conditioning. On the molecular level, CREB ablation led to CREM up regulation in the hippocampus and frontal cortex which may at least in part compensate for the loss of CREB. BDNF, a postulated CREB target gene, was down regulated in the frontal lobe but not in the hippocampus; neurogenesis remained unaltered. Our data indicate that in the adult mouse forebrain the late onset of CREB ablation can, in case of memory functionality, be compensated for and is not essential for memory consolidation and retrieval during adulthood. In contrast, the presence of CREB protein during adulthood seems to be pivotal for the regulation of emotional behavior.

  6. Studies on the inactivation of human parvovirus 4.

    Science.gov (United States)

    Baylis, Sally A; Tuke, Philip W; Miyagawa, Eiji; Blümel, Johannes

    2013-10-01

    Human parvovirus 4 (PARV4) is a novel parvovirus, which like parvovirus B19 (B19V) can be a contaminant of plasma pools used to prepare plasma-derived medicinal products. Inactivation studies of B19V have shown that it is more sensitive to virus inactivation strategies than animal parvoviruses. However, inactivation of PARV4 has not yet been specifically addressed. Treatment of parvoviruses by heat or low-pH conditions causes externalization of the virus genome. Using nuclease treatment combined with real-time polymerase chain reaction, the extent of virus DNA externalization was used as an indirect measure of the inactivation of PARV4, B19V, and minute virus of mice (MVM) by pasteurization of albumin and by low-pH treatment. Infectivity studies were performed in parallel for B19V and MVM. PARV4 showed greater resistance to pasteurization and low-pH treatment than B19V, although PARV4 was not as resistant as MVM. There was a 2- to 3-log reduction of encapsidated PARV4 DNA after pasteurization and low-pH treatment. In contrast, B19V was effectively inactivated while MVM was stable under these conditions. Divalent cations were found to have a stabilizing effect on PARV4 capsids. In the absence of divalent cations, even at neutral pH, there was a reduction of PARV4 titer, an effect not observed for B19V or MVM. In the case of heat treatment and incubation at low pH, PARV4 shows intermediate resistance when compared to B19V and MVM. Divalent cations seem important for stabilizing PARV4 virus particles. © 2013 American Association of Blood Banks.

  7. Developmental suppression of forebrain trkA receptors and attentional capacities in aging rats: A longitudinal study.

    Science.gov (United States)

    Yegla, Brittney; Parikh, Vinay

    2017-09-29

    Basal forebrain (BF) cholinergic neurons innervating the cortex regulate cognitive, specifically attentional, processes. Cholinergic atrophy and cognitive decline occur at an accelerated pace in age-related neurodegenerative disorders such as Alzheimer's disease; however, the mechanism responsible for this phenomenon remains unknown. Here we hypothesized that developmental suppression of nerve growth factor signaling, mediated via tropomyosin-related kinase A (trkA) receptors, would escalate age-related attentional vulnerability. An adeno-associated viral vector expressing trkA shRNA (AAV-trkA) was utilized to knockdown trkA receptors in postnatal rats at an ontogenetic time point when cortical cholinergic inputs mature, and the impact of this manipulation on performance was assessed in animals maintained on an operant attention task throughout adulthood and until old (24 months) age. A within-subject comparison across different time points illustrated a gradual age-related decline in attentional capacities. However, the performance under baseline and distracted conditions did not differ between the AAV-trkA-infused and animals infused with a vector expressing shRNA against the control protein luciferase at any time point. Additional analysis of cholinergic measures conducted at 24 months showed that the capacity of cholinergic terminals to release acetylcholine following a depolarizing stimulus, cortical cholinergic fiber density and BF cholinergic cell size remained comparable between the two groups. Contrary to our predictions, these data indicate that developmental BF trkA disruption does not impact age-related changes in attentional functions. It is possible that life-long engagement in cognitive activity might have potentially rescued the developmental insults on the cholinergic system, thus preserving attentional capacities in advanced age. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Dysfunction of the RAR/RXR signaling pathway in the forebrain impairs hippocampal memory and synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Nomoto Masanori

    2012-02-01

    Full Text Available Abstract Background Retinoid signaling pathways mediated by retinoic acid receptor (RAR/retinoid × receptor (RXR-mediated transcription play critical roles in hippocampal synaptic plasticity. Furthermore, recent studies have shown that treatment with retinoic acid alleviates age-related deficits in hippocampal long-term potentiation (LTP and memory performance and, furthermore, memory deficits in a transgenic mouse model of Alzheimer's disease. However, the roles of the RAR/RXR signaling pathway in learning and memory at the behavioral level have still not been well characterized in the adult brain. We here show essential roles for RAR/RXR in hippocampus-dependent learning and memory. In the current study, we generated transgenic mice in which the expression of dominant-negative RAR (dnRAR could be induced in the mature brain using a tetracycline-dependent transcription factor and examined the effects of RAR/RXR loss. Results The expression of dnRAR in the forebrain down-regulated the expression of RARβ, a target gene of RAR/RXR, indicating that dnRAR mice exhibit dysfunction of the RAR/RXR signaling pathway. Similar with previous findings, dnRAR mice displayed impaired LTP and AMPA-mediated synaptic transmission in the hippocampus. More importantly, these mutant mice displayed impaired hippocampus-dependent social recognition and spatial memory. However, these deficits of LTP and memory performance were rescued by stronger conditioning stimulation and spaced training, respectively. Finally, we found that pharmacological blockade of RARα in the hippocampus impairs social recognition memory. Conclusions From these observations, we concluded that the RAR/RXR signaling pathway greatly contributes to learning and memory, and LTP in the hippocampus in the adult brain.

  9. cGMP activates a pH-sensitive leak K+ current in the presumed cholinergic neuron of basal forebrain.

    Science.gov (United States)

    Toyoda, Hiroki; Saito, Mitsuru; Sato, Hajime; Dempo, Yoshie; Ohashi, Atsuko; Hirai, Toshihiro; Maeda, Yoshinobu; Kaneko, Takeshi; Kang, Youngnam

    2008-05-01

    In an earlier study, we demonstrated that nitric oxide (NO) causes the long-lasting membrane hyperpolarization in the presumed basal forebrain cholinergic (BFC) neurons by cGMP-PKG-dependent activation of leak K+ currents in slice preparations. In the present study, we investigated the ionic mechanisms underlying the long-lasting membrane hyperpolarization with special interest in the pH sensitivity because 8-Br-cGMP-induced K+ current displayed Goldman-Hodgkin-Katz rectification characteristic of TWIK-related acid-sensitive K+ (TASK) channels. When examined with the ramp command pulse depolarizing from -130 to -40 mV, the presumed BFC neurons displayed a pH-sensitive leak K+ current that was larger in response to pH decrease from 8.3 to 7.3 than in response to pH decrease from 7.3 to 6.3. This K+ current was similar to TASK1 current in its pH sensitivity, whereas it was highly sensitive to Ba(2+), unlike TASK1 current. The 8-Br-cGMP-induced K+ currents in the presumed BFC neurons were almost completely inhibited by lowering external pH to 6.3 as well as by bath application of 100 microM Ba(2+), consistent with the nature of the leak K+ current expressed in the presumed BFC neurons. After 8-Br-cGMP application, the K+ current obtained by pH decrease from 7.3 to 6.3 was larger than that obtained by pH decrease from pH 8.3 to 7.3, contrary to the case seen in the control condition. These observations strongly suggest that 8-Br-cGMP activates a pH- and Ba(2+)-sensitive leak K+ current expressed in the presumed BFC neurons by modulating its pH sensitivity.

  10. Forebrain overexpression of CaMKII abolishes cingulate long term depression and reduces mechanical allodynia and thermal hyperalgesia

    Directory of Open Access Journals (Sweden)

    Tsien Joe Z

    2006-06-01

    Full Text Available Abstract Activity-dependent synaptic plasticity is known to be important in learning and memory, persistent pain and drug addiction. Glutamate NMDA receptor activation stimulates several protein kinases, which then trigger biochemical cascades that lead to modifications in synaptic efficacy. Genetic and pharmacological techniques have been used to show a role for Ca2+/calmodulin-dependent kinase II (CaMKII in synaptic plasticity and memory formation. However, it is not known if increasing CaMKII activity in forebrain areas affects behavioral responses to tissue injury. Using genetic and pharmacological techniques, we were able to temporally and spatially restrict the over expression of CaMKII in forebrain areas. Here we show that genetic overexpression of CaMKII in the mouse forebrain selectively inhibits tissue injury-induced behavioral sensitization, including allodynia and hyperalgesia, while behavioral responses to acute noxious stimuli remain intact. CaMKII overexpression also inhibited synaptic depression induced by a prolonged repetitive stimulation in the ACC, suggesting an important role for CaMKII in the regulation of cingulate neurons. Our results suggest that neuronal CaMKII activity in the forebrain plays a role in persistent pain.

  11. Lhx2 and Lhx9 determine neuronal differentiation and compartition in the caudal forebrain by regulating Wnt signaling.

    Directory of Open Access Journals (Sweden)

    Daniela Peukert

    2011-12-01

    Full Text Available Initial axial patterning of the neural tube into forebrain, midbrain, and hindbrain primordia occurs during gastrulation. After this patterning phase, further diversification within the brain is thought to proceed largely independently in the different primordia. However, mechanisms that maintain the demarcation of brain subdivisions at later stages are poorly understood. In the alar plate of the caudal forebrain there are two principal units, the thalamus and the pretectum, each of which is a developmental compartment. Here we show that proper neuronal differentiation of the thalamus requires Lhx2 and Lhx9 function. In Lhx2/Lhx9-deficient zebrafish embryos the differentiation process is blocked and the dorsally adjacent Wnt positive epithalamus expands into the thalamus. This leads to an upregulation of Wnt signaling in the caudal forebrain. Lack of Lhx2/Lhx9 function as well as increased Wnt signaling alter the expression of the thalamus specific cell adhesion factor pcdh10b and lead subsequently to a striking anterior-posterior disorganization of the caudal forebrain. We therefore suggest that after initial neural tube patterning, neurogenesis within a brain compartment influences the integrity of the neuronal progenitor pool and border formation of a neuromeric compartment.

  12. Distribution of neurotensin/neuromedin N mRNA in rat forebrain: Unexpected abundance in hippocampus and subiculum

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, M.J.; Miller, M.A.; Dorsa, D.M.; Bullock, B.P.; Helloni, R.H. Jr.; Dobner, P.R.; Leeman, S.E. (Univ. of Massachusetts Medical Center, Worcester (USA))

    1989-07-01

    The authors have used in situ hybridization to determine the regional distribution of mRNA encoding the neurotensin/neuromedin N (NT/N) precursor in the forebrain of the adult male rat. Cells containing NT/N mRNA are widely distributed in the forebrain. These areas include the septum, bed nucleus of the stria terminalis, preoptic area, hypothalamus, amygdala, accumbens nucleus, caudate-putamen, and piriform and retrosplenial cortex. In general, the regional distribution of NT/N mRNA corresponds to the previously determined distribution of neurotensin-immunoreactive cell bodies; however, several notable exceptions were observed. The most striking difference occurs specifically in the CA1 region of the hippocampus, where intense labeling is associated with the pyramidal cell layer despite the reported absence of neurotensin-immunoreactive cells in this region. A second major discrepancy between NT/N mRNA abundance and neurotensin-immunoreactivity occurs in the intensely labeled subiculum, a region that contains only scattered neurotensin-immunoreactive cells in the adult. These results suggest that, in specific regions of the forebrain, NT/N precursor is processed to yield products other than neurotensin. In addition, these results provide an anatomical basis for studying the physiological regulation of NT/N mRNA levels in the forebrain.

  13. DIFFERENTIAL FOS-PROTEIN INDUCTION IN RAT FOREBRAIN REGIONS AFTER ACUTE AND LONG-TERM HALOPERIDOL AND CLOZAPINE TREATMENT

    NARCIS (Netherlands)

    SEBENS, JB; KOCH, T; TERHORST, GJ; KORF, J

    1995-01-01

    Both acute and long-term effects of haloperidol and clozapine on Fos-like immunoreactive nuclei in several rat forebrain areas were quantified. Rats were treated with saline (1 ml/kg.day, control), haloperidol (1 mg/kg.day) and clozapine (20 mg/kg.day) i.p. for 21 days. Two hours before perfusion fi

  14. The basal forebrain cholinergic system in aging and dementia : Rescuing cholinergic neurons from neurotoxic amyloid-beta 42 with memantine

    NARCIS (Netherlands)

    Nyakas, Csaba; Granic, Ivica; Halmy, Laszlo G.; Banerjee, Pradeep; Luiten, Paul G. M.

    2011-01-01

    The dysfunction and loss of basal forebrain cholinergic neurons and their cortical projections are among the earliest pathological events in the pathogenesis of Alzheimer's disease (AD). The evidence pointing to cholinergic impairments come from studies that report a decline in the activity of choli

  15. Long-term effects of cholinergic basal forebrain lesions on neuropeptide Y and somatostatin immunoreactivity in rat neocortex

    NARCIS (Netherlands)

    Gaykema, R.P.A.; Compaan, J.C.; Nyakas, C.; Horvath, E.; Luiten, P.G.M.

    1989-01-01

    The effect of cholinergic basal forebrain lesions on immunoreactivity to somatostatin (SOM-i) and neuropeptide-Y (NPY-i) was investigated in the rat parietal cortex, 16-18 months after multiple bilateral ibotenic acid injections in the nucleus basalis complex. As a result of the lesion, the choliner

  16. X-chromosome inactivation and escape

    Indian Academy of Sciences (India)

    Christine M. Disteche; Joel B. Berletch

    2015-12-01

    X-chromosome inactivation, which was discovered by Mary Lyon in 1961 results in random silencing of one X chromosome in female mammals. This review is dedicated to Mary Lyon, who passed away last year. She predicted many of the features of X inactivation, for e.g., the existence of an X inactivation center, the role of L1 elements in spreading of silencing and the existence of genes that escape X inactivation. Starting from her published work here we summarize advances in the field.

  17. Inactivation of human and simian rotaviruses by chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Shiaw (Brookhaven National Lab., Upton, NY (USA)); Vaughn, J.M. (Univ. of New England College of Medicine, Biddeford, ME (USA))

    1990-05-01

    The inactivation of single-particle stocks of human (type 2, Wa) and simian (SA-11) rotaviruses by chlorine dioxide was investigated. Experiments were conducted at 4{degree}C in a standard phosphate-carbonate buffer. Both virus types were rapidly inactivated, within 20 s under alkaline conditions, when chlorine dioxide concentrations ranging from 0.05 to 0.2 mg/liter were used. Similar reductions of 10{sup 5}-fold in infectivity required additional exposure time of 120 s at 0.2 mg/liter for Wa and at 0.5 mg/liter for SA-11, respectively, at pH 6.0. The inactivation of both virus types was moderate a neutral pH, and the sensitivities to chlorine dioxide were similar. The observed enhancement of virucidal efficiency with increasing pH was contrary to earlier findings with chlorine- and ozone-treated rotavirus particles, where efficiencies decreased with increasing alkalinity. Comparison of 99.9% virus inactivation times revealed ozone to be the most effective virucidal agent among these three disinfectants.

  18. Inactivation of human and simian rotaviruses by chlorine dioxide.

    Science.gov (United States)

    Chen, Y S; Vaughn, J M

    1990-01-01

    The inactivation of single-particle stocks of human (type 2, Wa) and simian (SA-11) rotaviruses by chlorine dioxide was investigated. Experiments were conducted at 4 degrees C in a standard phosphate-carbonate buffer. Both virus types were rapidly inactivated, within 20 s under alkaline conditions, when chlorine dioxide concentrations ranging from 0.05 to 0.2 mg/liter were used. Similar reductions of 10(5)-fold in infectivity required additional exposure time of 120 s at 0.2 mg/liter for Wa and at 0.5 mg/liter for SA-11, respectively, at pH 6.0. The inactivation of both virus types was moderate at neutral pH, and the sensitivities to chlorine dioxide were similar. The observed enhancement of virucidal efficiency with increasing pH was contrary to earlier findings with chlorine- and ozone-treated rotavirus particles, where efficiencies decreased with increasing alkalinity. Comparison of 99.9% virus inactivation times revealed ozone to be the most effective virucidal agent among these three disinfectants. PMID:2160222

  19. Inactivation of Pseudomonas aeruginosa biofilm by dense phase carbon dioxide.

    Science.gov (United States)

    Mun, Sungmin; Jeong, Jin-Seong; Kim, Jaeeun; Lee, Youn-Woo; Yoon, Jeyong

    2009-01-01

    Dense phase carbon dioxide (DPCD) is one of the most promising techniques available to control microorganisms as a non-thermal disinfection method. However, no study on the efficiency of biofilm disinfection using DPCD has been reported. The efficiency of DPCD in inactivating Pseudomonas aeruginosa biofilm, which is known to have high antimicrobial resistance, was thus investigated. P. aeruginosa biofilm, which was not immersed in water but was completely wet, was found to be more effectively inactivated by DPCD treatment, achieving a 6-log reduction within 7 min. The inactivation efficiency increased modestly with increasing pressure and temperature. This study also reports that the water-unimmersed condition is one of the most important operating parameters in achieving efficient biofilm control by DPCD treatment. In addition, observations by confocal laser scanning microscopy revealed that DPCD treatment not only inactivated biofilm cells on the glass coupons but also caused detachment of the biofilm following weakening of its structure as a result of the DPCD treatment; this is an added benefit of DPCD treatment.

  20. Inactivation of Chironomid Larvae with Chlorine Dioxide and Chlorine

    Institute of Scientific and Technical Information of China (English)

    SUN Xin-bin; CUI Fu-yi

    2008-01-01

    Chironomid larvae propagate prolifically in eutrophic water body and they cannot be exterminated by conventional disinfection process.The inactivation effects of chlorine and chlorine dioxide on Chironomid larvae were investigated and some boundary values in practice were determined under conditions of various oxidant dosage,organic precursor concentration and pH value.In addition,removal effect of differmt pre-oxidation combined with coagulation process on Chironomid larvae in law water was evaluated.It was found that chlorine dioxide possessed better inactivation effect than chlorine.Complete inactivation of Chironomid larvae in raw water was resulted by 1.5mg/L of chlorine dioxide with 30min of contact time. Additionally,the ocgallic precursor concentration,pH value had little influence on the inactivation effect.The coagulation jar test showed that Chironomid larvae in the raw water could be completely ronxwed by chlorine dioxide pre-oxidation in combination with the omgulation process at chlorine dioxide dosage of 0.8 mg/L.

  1. Microwave inactivation of Escherichia coli in healthcare waste.

    Science.gov (United States)

    Tonuci, L R S; Paschoalatto, C F P R; Pisani, R

    2008-01-01

    Public healthcare wastes from the city of Ribeirão Preto, SP, Brazil, pre-sterilised in an autoclave, were inoculated with 5 x 10(5) microorganisms of the species Escherichia coli in vegetative form for microwave processing on a laboratory scale. An analysis was made of the influence of radiation exposure time (15, 25, 30 and 40 min) and power per waste mass unit (60, 80 and 100 W/kg) on the percentage of inactivation of the microorganisms at an incoming waste moisture level of 50%. The experimental results were adjusted based on Chick's law. The activation energies and the Arrhenius pre-exponential factors were determined by the least squares method. The kinetic parameters obtained allow one to predict the degree of inactivation achieved with E. coli in typical healthcare waste, based on the radiation exposure time and temperature. For example, the waste disinfection time required for the inactivation level equivalent to 4Log 10 was estimated to range from 48 to 53 min for wastes processed at 100 W/kg and at temperatures of 90-105 degrees C, respectively. Thus, under the operational conditions of the equipment currently used in Ribeirão Preto, the process of inactivation is probably ineffective, since the exposure time to radiation is only 30 min at the average power of approximately 80 W/kg.

  2. Glycine receptor α3 and α2 subunits mediate tonic and exogenous agonist-induced currents in forebrain.

    Science.gov (United States)

    McCracken, Lindsay M; Lowes, Daniel C; Salling, Michael C; Carreau-Vollmer, Cyndel; Odean, Naomi N; Blednov, Yuri A; Betz, Heinrich; Harris, R Adron; Harrison, Neil L

    2017-08-22

    Neuronal inhibition can occur via synaptic mechanisms or through tonic activation of extrasynaptic receptors. In spinal cord, glycine mediates synaptic inhibition through the activation of heteromeric glycine receptors (GlyRs) composed primarily of α1 and β subunits. Inhibitory GlyRs are also found throughout the brain, where GlyR α2 and α3 subunit expression exceeds that of α1, particularly in forebrain structures, and coassembly of these α subunits with the β subunit appears to occur to a lesser extent than in spinal cord. Here, we analyzed GlyR currents in several regions of the adolescent mouse forebrain (striatum, prefrontal cortex, hippocampus, amygdala, and bed nucleus of the stria terminalis). Our results show ubiquitous expression of GlyRs that mediate large-amplitude currents in response to exogenously applied glycine in these forebrain structures. Additionally, tonic inward currents were also detected, but only in the striatum, hippocampus, and prefrontal cortex (PFC). These tonic currents were sensitive to both strychnine and picrotoxin, indicating that they are mediated by extrasynaptic homomeric GlyRs. Recordings from mice deficient in the GlyR α3 subunit (Glra3(-/-)) revealed a lack of tonic GlyR currents in the striatum and the PFC. In Glra2(-/Y) animals, GlyR tonic currents were preserved; however, the amplitudes of current responses to exogenous glycine were significantly reduced. We conclude that functional α2 and α3 GlyRs are present in various regions of the forebrain and that α3 GlyRs specifically participate in tonic inhibition in the striatum and PFC. Our findings suggest roles for glycine in regulating neuronal excitability in the forebrain.

  3. Ontogenetic distribution of the transcription factor Nkx2.2 in the developing forebrain of Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Laura eDominguez

    2011-03-01

    Full Text Available The expression of the Nkx2.2 gene is involved in the organization of the alar-basal boundary in the forebrain of vertebrates. Its expression in different diencephalic and telencephalic regions, helped to define distinct progenitor domains in mouse and chick. Here we investigated the pattern of Nkx2.2 protein distribution throughout the development of the forebrain of the anuran amphibian, Xenopus laevis. We used immunohistochemical and in situ hybridization techniques for its detection in combination with other essential territorial markers in the forebrain. No expression was observed in the telencephalon. In the alar hypothalamus, Nkx2.2 positive cells were scattered in the suprachiasmatic territory, but also in the supraoptoparaventricular area, as defined by the expression of the transcription factor Otp and the lack of xDll4. In the basal hypothalamus Nkx2.2 expressing cells were localized in the tuberal region, with the exception of the arcuate nucleus, rich in Otp expressing cells. In the diencephalon it was expressed in all three prosomeres (P1-P3 and not in the zona limitans intrathalamica. The presence of Nkx2.2 expressing cells in P3 was restricted to the alar portion, as well as in prosomere P2, whereas in P1 the Nkx2.2 expressing cells were located in the basal plate and identified the alar/basal boundary. These results showed that Nkx2.2 and Sonic hedgehog are expressed in parallel adjacent stripes along the anterior-posterior axis. The results of this study showed a conserved distribution pattern of Nkx2.2 among vertebrates, crucial to recognize subdivisions that are otherwise indistinct, and supported the relevance of this transcription factor in the organization of the forebrain, particularly in the delineation of the alar/basal boundary of the forebrain.

  4. Hippocampal Sclerosis but Not Normal Aging or Alzheimer Disease Is Associated With TDP-43 Pathology in the Basal Forebrain of Aged Persons.

    Science.gov (United States)

    Cykowski, Matthew D; Takei, Hidehiro; Van Eldik, Linda J; Schmitt, Frederick A; Jicha, Gregory A; Powell, Suzanne Z; Nelson, Peter T

    2016-05-01

    Transactivating responsive sequence (TAR) DNA-binding protein 43-kDa (TDP-43) pathology has been described in various brain diseases, but the full anatomical distribution and clinical and biological implications of that pathology are incompletely characterized. Here, we describe TDP-43 neuropathology in the basal forebrain, hypothalamus, and adjacent nuclei in 98 individuals (mean age, 86 years; median final mini-mental state examination score, 27). On examination blinded to clinical and pathologic diagnoses, we identified TDP-43 pathology that most frequently involved the ventromedial basal forebrain in 19 individuals (19.4%). As expected, many of these brains had comorbid pathologies including those of Alzheimer disease (AD), Lewy body disease (LBD), and/or hippocampal sclerosis of aging (HS-Aging). The basal forebrain TDP-43 pathology was strongly associated with comorbid HS-Aging (odds ratio = 6.8, p = 0.001), whereas there was no significant association between basal forebrain TDP-43 pathology and either AD or LBD neuropathology. In this sample, there were some cases with apparent preclinical TDP-43 pathology in the basal forebrain that may indicate that this is an early affected area in HS-Aging. We conclude that TDP-43 pathology in the basal forebrain is strongly associated with HS-Aging. These results raise questions about a specific pathogenetic relationship between basal forebrain TDP-43 and non-HS-Aging comorbid diseases (AD and LBD).

  5. Nanoscale structural and mechanical analysis of Bacillus anthracis spores inactivated with rapid dry heating.

    Science.gov (United States)

    Xing, Yun; Li, Alex; Felker, Daniel L; Burggraf, Larry W

    2014-03-01

    Effective killing of Bacillus anthracis spores is of paramount importance to antibioterrorism, food safety, environmental protection, and the medical device industry. Thus, a deeper understanding of the mechanisms of spore resistance and inactivation is highly desired for developing new strategies or improving the known methods for spore destruction. Previous studies have shown that spore inactivation mechanisms differ considerably depending upon the killing agents, such as heat (wet heat, dry heat), UV, ionizing radiation, and chemicals. It is believed that wet heat kills spores by inactivating critical enzymes, while dry heat kills spores by damaging their DNA. Many studies have focused on the biochemical aspects of spore inactivation by dry heat; few have investigated structural damages and changes in spore mechanical properties. In this study, we have inactivated Bacillus anthracis spores with rapid dry heating and performed nanoscale topographical and mechanical analysis of inactivated spores using atomic force microscopy (AFM). Our results revealed significant changes in spore morphology and nanomechanical properties after heat inactivation. In addition, we also found that these changes were different under different heating conditions that produced similar inactivation probabilities (high temperature for short exposure time versus low temperature for long exposure time). We attributed the differences to the differential thermal and mechanical stresses in the spore. The buildup of internal thermal and mechanical stresses may become prominent only in ultrafast, high-temperature heat inactivation when the experimental timescale is too short for heat-generated vapor to efficiently escape from the spore. Our results thus provide direct, visual evidences of the importance of thermal stresses and heat and mass transfer to spore inactivation by very rapid dry heating.

  6. Whole-Brain Monosynaptic Afferent Inputs to Basal Forebrain Cholinergic System

    Science.gov (United States)

    Hu, Rongfeng; Jin, Sen; He, Xiaobin; Xu, Fuqiang; Hu, Ji

    2016-01-01

    The basal forebrain cholinergic system (BFCS) robustly modulates many important behaviors, such as arousal, attention, learning and memory, through heavy projections to cortex and hippocampus. However, the presynaptic partners governing BFCS activity still remain poorly understood. Here, we utilized a recently developed rabies virus-based cell-type-specific retrograde tracing system to map the whole-brain afferent inputs of the BFCS. We found that the BFCS receives inputs from multiple cortical areas, such as orbital frontal cortex, motor cortex, and insular cortex, and that the BFCS also receives dense inputs from several subcortical nuclei related to motivation and stress, including lateral septum, central amygdala, paraventricular nucleus of hypothalamus, dorsal raphe, and parabrachial nucleus. Interestingly, we found that the BFCS receives inputs from the olfactory areas and the entorhinal–hippocampal system. These results greatly expand our knowledge about the connectivity of the mouse BFCS and provided important preliminary indications for future exploration of circuit function. PMID:27777554

  7. GRK5 Deficiency Leads to Selective Basal Forebrain Cholinergic Neuronal Vulnerability.

    Science.gov (United States)

    He, Minchao; Singh, Prabhakar; Cheng, Shaowu; Zhang, Qiang; Peng, Wei; Ding, XueFeng; Li, Longxuan; Liu, Jun; Premont, Richard T; Morgan, Dave; Burns, Jeffery M; Swerdlow, Russell H; Suo, William Z

    2016-05-19

    Why certain diseases primarily affect one specific neuronal subtype rather than another is a puzzle whose solution underlies the development of specific therapies. Selective basal forebrain cholinergic (BFC) neurodegeneration participates in cognitive impairment in Alzheimer's disease (AD), yet the underlying mechanism remains elusive. Here, we report the first recapitulation of the selective BFC neuronal loss that is typical of human AD in a mouse model termed GAP. We created GAP mice by crossing Tg2576 mice that over-express the Swedish mutant human β-amyloid precursor protein gene with G protein-coupled receptor kinase-5 (GRK5) knockout mice. This doubly defective mouse displayed significant BFC neuronal loss at 18 months of age, which was not observed in either of the singly defective parent strains or in the wild type. Along with other supporting evidence, we propose that GRK5 deficiency selectively renders BFC neurons more vulnerable to degeneration.

  8. Calcium imaging of basal forebrain activity during innate and learned behaviors

    Directory of Open Access Journals (Sweden)

    Thomas Clarke Harrison

    2016-05-01

    Full Text Available The basal forebrain (BF plays crucial roles in arousal, attention, and memory, and its impairment is associated with a variety of cognitive deficits. The BF consists of cholinergic, GABAergic, and glutamatergic neurons. Electrical or optogenetic stimulation of BF cholinergic neurons enhances cortical processing and behavioral performance, but the natural activity of these cells during behavior is only beginning to be characterized. Even less is known about GABAergic and glutamatergic neurons. Here, we performed microendoscopic calcium imaging of BF neurons as mice engaged in spontaneous behaviors in their home cages (innate or performed a go/no-go auditory discrimination task (learned. Cholinergic neurons were consistently excited during movement, including running and licking, but GABAergic and glutamatergic neurons exhibited diverse responses. All cell types were activated by overt punishment, either inside or outside of the discrimination task. These findings reveal functional similarities and distinctions between BF cell types during both spontaneous and task-related behaviors.

  9. Learning-related changes in Fos-like immunoreactivity in the chick forebrain after imprinting.

    Science.gov (United States)

    McCabe, B J; Horn, G

    1994-01-01

    The intermediate and medial part of the hyperstriatum ventrale (IMHV) is a part of the chick forebrain that is critical for the learning process of imprinting and may be a site of information storage. Chicks were either trained on an imprinting stimulus or dark-reared. Trained chicks were classified as good or poor learners by their preference score (a measure of the strength of imprinting). A monoclonal antibody against the immediate early gene product Fos was applied to sections through IMHV and other forebrain regions. In the IMHV, significantly more immunopositive nuclei were counted in good learners than in poor learners or dark-reared chicks. There was a positive correlation between counts of labeled nuclei and preference score that was not attributable to sensory activity per se, locomotor activity during training, or a predisposition to learn well; rather, the results indicated that the change in Fos immunoreactivity in the IMHV was related to learning. In the hyperstriatum accessorium, significantly fewer immunopositive nuclei were counted in good learners than in poor learners or in dark-reared chicks. In the dorsolateral hippocampal region, more immunopositive nuclei were counted in trained than in dark-reared chicks. No significant effects of training were found in the anterior hyperstriatum ventrale, lobus parolfactorius, neostriatum, medial hippocampal region, or ventrolateral hippocampal region, but counts in this last region were positively correlated with training approach. The results for IMHV implicate Fos or Fos-related proteins in memory processes and pave the way for the identification of the cell types that show the learning-related increase in gene expression. Images PMID:7972076

  10. Temporal profile of neuronal damage in a model of transient forebrain ischemia.

    Science.gov (United States)

    Pulsinelli, W A; Brierley, J B; Plum, F

    1982-05-01

    This study examined the temporal profile of ischemic neuronal damage following transient bilateral forebrain ischemia in the rat model of four-vessel occlusion. Wistar rats were subjected to transient but severe forebrain ischemia by permanently occluding the vertebral arteries and 24 hours later temporarily occluding the common carotid arteries for 10, 20, or 30 minutes. Carotid artery blood flow was restored and the rats were killed by perfusion-fixation after 3, 6, 24, and 72 hours. Rats with postischemic convulsions were discarded. Ischemic neuronal damage was graded in accordance with conventional neuropathological criteria. Ten minutes of four-vessel occlusion produced scattered ischemic cell change in the cerebral hemispheres of most rats. The time to onset of visible neuronal damage varied among brain regions and in some regions progressively worsened with time. After 30 minutes of ischemia, small to medium-sized striatal neurons were damaged early while the initiation of visible damage to hippocampal neurons in the h1 zone was delayed for 3 to 6 hours. The number of damaged neurons in neocortex (layer 3, layers 5 and 6, or both) and hippocampus (h1, h3-5, paramedian zone) increased significantly (p less than 0.01) between 24 and 72 hours. The unique delay in onset of ischemic cell change and the protracted increase in its incidence between 24 and 72 hours could reflect either delayed appearance of ischemic change in previously killed neurons or a delayed insult that continued to jeopardize compromised but otherwise viable neurons during the postischemic period.

  11. Forebrain-specific ablation of phospholipase Cγ1 causes manic-like behavior.

    Science.gov (United States)

    Yang, Y R; Jung, J H; Kim, S-J; Hamada, K; Suzuki, A; Kim, H J; Lee, J H; Kwon, O-B; Lee, Y K; Kim, J; Kim, E-K; Jang, H-J; Kang, D-S; Choi, J-S; Lee, C J; Marshall, J; Koh, H-Y; Kim, C-J; Seok, H; Kim, S H; Choi, J H; Choi, Y-B; Cocco, L; Ryu, S H; Kim, J-H; Suh, P-G

    2017-01-31

    Manic episodes are one of the major diagnostic symptoms in a spectrum of neuropsychiatric disorders that include schizophrenia, obsessive-compulsive disorder and bipolar disorder (BD). Despite a possible association between BD and the gene encoding phospholipase Cγ1 (PLCG1), its etiological basis remains unclear. Here, we report that mice lacking phospholipase Cγ1 (PLCγ1) in the forebrain (Plcg1(f/f); CaMKII) exhibit hyperactivity, decreased anxiety-like behavior, reduced depressive-related behavior, hyperhedonia, hyperphagia, impaired learning and memory and exaggerated startle responses. Inhibitory transmission in hippocampal pyramidal neurons and striatal dopamine receptor D1-expressing neurons of Plcg1-deficient mice was significantly reduced. The decrease in inhibitory transmission is likely due to a reduced number of γ-aminobutyric acid (GABA)-ergic boutons, which may result from impaired localization and/or stabilization of postsynaptic CaMKII (Ca(2+)/calmodulin-dependent protein kinase II) at inhibitory synapses. Moreover, mutant mice display impaired brain-derived neurotrophic factor-tropomyosin receptor kinase B-dependent synaptic plasticity in the hippocampus, which could account for deficits of spatial memory. Lithium and valproate, the drugs presently used to treat mania associated with BD, rescued the hyperactive phenotypes of Plcg1(f/f); CaMKII mice. These findings provide evidence that PLCγ1 is critical for synaptic function and plasticity and that the loss of PLCγ1 from the forebrain results in manic-like behavior.Molecular Psychiatry advance online publication, 31 January 2017; doi:10.1038/mp.2016.261.

  12. Multiple Mechanisms for Processing Reward Uncertainty in the Primate Basal Forebrain.

    Science.gov (United States)

    Ledbetter, Noah M; Chen, Charles D; Monosov, Ilya E

    2016-07-27

    The ability to use information about the uncertainty of future outcomes is critical for adaptive behavior in an uncertain world. We show that the basal forebrain (BF) contains at least two distinct neural-coding strategies to support this capacity. The dorsal-lateral BF, including the ventral pallidum (VP), contains reward-sensitive neurons, some of which are selectively suppressed by uncertain-reward predictions (U(-)). In contrast, the medial BF (mBF) contains reward-sensitive neurons, some of which are selectively enhanced (U(+)) by uncertain-reward predictions. In a two-alternative choice-task, U(-) neurons were selectively suppressed while monkeys chose uncertain options over certain options. During the same choice-epoch, U(+) neurons signaled the subjective reward value of the choice options. Additionally, after the choice was reported, U(+) neurons signaled reward uncertainty until the choice outcome. We suggest that uncertainty-related suppression of VP may participate in the mediation of uncertainty-seeking actions, whereas uncertainty-related enhancement of the mBF may direct cognitive resources to monitor and learn from uncertain-outcomes. To survive in an uncertain world, we must approach uncertainty and learn from it. Here we provide evidence for two mostly distinct mechanisms for processing uncertainty about rewards within different subregions of the primate basal forebrain (BF). We found that uncertainty suppressed the representation of certain (or safe) reward values by some neurons in the dorsal-lateral BF, in regions occupied by the ventral pallidum. This uncertainty-related suppression was evident as monkeys made risky choices. We also found that uncertainty-enhanced the activity of many medial BF neurons, most prominently after the monkeys' choices were completed (as they awaited uncertain outcomes). Based on these findings, we propose that different subregions of the BF could support action and learning under uncertainty in distinct but

  13. Immunohistochemical organization of the forebrain in the white sturgeon, Acipenser transmontanus.

    Science.gov (United States)

    Piñuela, Carmen; Northcutt, R Glenn

    2007-01-01

    The distribution of substance P (SP), leucine-enkephalin (LENK), serotonin (5HT), dopamine (DA), and tyrosine hydroxylase (TH) was examined in the forebrain of the white sturgeon in order to evaluate several anatomical hypotheses based on cytoarchitectonics, and to gain a better understanding of the evolution of the forebrain in ray-finned fishes. The subpallium of the telencephalon has the highest concentration of the neuropeptides SP and LENK, allowing the pallial-subpallial border to be easily distinguished. The distribution of dopamine is similar to that of serotonin in the subpallium, fibers positive for these transmitters are particularly dense in the dorsal and ventral divisions of the subpallium. In addition, a small population of DA- and 5HT-positive cell bodies--which appear to be unique to sturgeons--was identified at the level of the anterior commissure. The internal granular layer of the olfactory bulbs had large numbers of TH-positive cell bodies and fibers, as did the rostral subpallium. The occurrence of cell bodies positive for LENK in the dorsal nucleus of the rostral subpallium supports the hypothesis that this nucleus is homologous to the striatum in other vertebrates. This is further reinforced by the apparent origin of an ascending dopaminergic pathway from cells in the posterior tubercle that are likely homologous to the ventral tegmental area/substantia nigra in land vertebrates. Finally, the differential distribution of SP and TH in the pallium supports the hypothesis that the pallium, or area dorsalis, can be divided medially into a rostral division (Dm), a caudal division (Dp) that is the main pallial target of secondary olfactory projections, and a narrow lateral division (Dd+Dl) immediately adjacent to the attachment of the tela choroidea along the entire rostrocaudal length of the telencephalic hemisphere.

  14. Transient forebrain ischemia-induced neuronal degeneration in fascia dentata transplants.

    Science.gov (United States)

    Tønder, N; Aznar, S; Johansen, F F

    1994-01-01

    Fascia dentata tissue blocks from newborn rats were grafted into one-week-old, ibotenic acid-induced lesions of the fascia dentata, or the normal fascia dentata of adult rats. After at least 2 months survival the recipient rats were subjected to 10 min of forebrain ischemia (4-vessel occlusion), and examined 2 or 4 days later for neuronal degeneration in the host hippocampi and the transplants, by silver staining and immunohistochemistry. Transplants survived well in both normal and lesioned host brains, with easily recognizable subfields and layers and presence of normal types of principal and non-principal neurons. As expected, argyrophilic, degenerating neurons were present in the pyramidal cell layer of CAl and CA3c of the non-grafted contralateral host hippocampus and in the contralateral dentate hilus (CA4). In the hilus the degeneration corresponded to the loss of somatostatin-immunoreactive neurons, while parvalbumin-immunoreactive neurons were spared. In the dentate transplants degenerating neurons were observed in the granule cell layer, the hilus and the adjacent CA3 pyramidal cell layer. There was no obvious loss of either somatostatin- or parvalbumin-immunoreactive neurons. The degeneration varied considerably between transplants, from a few to large groups of silver stained neurons, but this difference did not display any obvious relation to grafting into normal or lesioned hosts, the exact location of the grafts or the general organization and distribution of intrinsic or extrinsic host afferents in the grafts. The results demonstrate that both ischemia-susceptible and -resistant types of neurons grafted to normal and lesioned adult rat brains are susceptible to transient forebrain ischemia after transplantation. In spite of an extensive reorganization of transplant nerve connections, the physiologicalbiochemical mechanisms necessary for the induction of ischemic cell death were accordingly present in the transplants.

  15. Development of Contagious Caprine Pleuropneumonia Inactivated Vaccine( M1601 Strain)

    Institute of Scientific and Technical Information of China (English)

    Zhao; Ping; He; Ying; Chu; Yuefeng; Gao; Pengcheng; Zhang; Xuan; Lu; Zhongxin

    2014-01-01

    Three batches of contagious caprine pleuropneumonia inactivated vaccine( M1601 strain) developed by the laboratory were studied from the aspects of safety,minimum immune dose,immunity duration and storage life. The results showed that the vaccine was safe to goats under different physiological conditions.Regardless of lambs or adult goats,the minimum immune dose was 3 m L,and the immunity duration and the storage life were 6 and 12 months,respectively.

  16. Reversible Inactivation and Desiccation Tolerance of Silicified Viruses

    Energy Technology Data Exchange (ETDEWEB)

    Laidler, James J.; Shugart, Jessica A.; Cady, Sherry L.; Bahjat, Keith S.; Stedman, Kenneth M.

    2013-11-19

    Long-distance host-independent virus dispersal is poorly understood, especially for viruses found in isolated ecosystems. To demonstrate a possible dispersal mechanism, we show that bacteriophage T4, archaeal virus SSV-K and Vaccinia are reversibly inactivated by mineralization in silica under conditions similar to volcanic hot springs. By contrast, bacteriophage PRD1 is not silicified. Moreover silicification provides viruses with remarkable desiccation resistance, which could allow extensive aerial dispersal.

  17. Reversible inactivation and desiccation tolerance of silicified viruses.

    Science.gov (United States)

    Laidler, James R; Shugart, Jessica A; Cady, Sherry L; Bahjat, Keith S; Stedman, Kenneth M

    2013-12-01

    Long-distance host-independent virus dispersal is poorly understood, especially for viruses found in isolated ecosystems. To demonstrate a possible dispersal mechanism, we show that bacteriophage T4, archaeal virus Sulfolobus spindle-shaped virus Kamchatka, and vaccinia virus are reversibly inactivated by mineralization in silica under conditions similar to volcanic hot springs. In contrast, bacteriophage PRD1 is not silicified. Moreover, silicification provides viruses with remarkable desiccation resistance, which could allow extensive aerial dispersal.

  18. Inactivation Effect of Antibiotic-Resistant Gene Using Chlorine Disinfection

    Directory of Open Access Journals (Sweden)

    Takashi Furukawa

    2017-07-01

    Full Text Available The aim of this study was to elucidate the inactivation effects on the antibiotic-resistance gene (vanA of vancomycin-resistant enterococci (VRE using chlorination, a disinfection method widely used in various water treatment facilities. Suspensions of VRE were prepared by adding VRE to phosphate-buffered saline, or the sterilized secondary effluent of a wastewater treatment plant. The inactivation experiments were carried out at several chlorine concentrations and stirring time. Enterococci concentration and presence of vanA were determined. The enterococci concentration decreased as chlorine concentrations and stirring times increased, with more than 7.0 log reduction occurring under the following conditions: 40 min stirring at 0.5 mg Cl2/L, 20 min stirring at 1.0 mg Cl2/L, and 3 min stirring at 3.0 mg Cl2/L. In the inactivation experiment using VRE suspended in secondary effluent, the culturable enterococci required much higher chlorine concentration and longer treatment time for complete disinfection than the cases of suspension of VRE. However, vanA was detected in all chlorinated suspensions of VRE, even in samples where no enterococcal colonies were present on the medium agar plate. The chlorine disinfection was not able to destroy antibiotic-resistance genes, though it can inactivate and decrease bacterial counts of antibiotic-resistant bacteria (ARB. Therefore, it was suggested that remaining ARB and/or antibiotic-resistance gene in inactivated bacterial cells after chlorine disinfection tank could be discharged into water environments.

  19. Thermal inactivation kinetics of hepatitis A virus in spinach.

    Science.gov (United States)

    Bozkurt, Hayriye; Ye, Xiaofei; Harte, Federico; D'Souza, Doris H; Davidson, P Michael

    2015-01-16

    Leafy vegetables have been recognized as important vehicles for the transmission of foodborne viral pathogens. To control hepatitis A viral foodborne illness outbreaks associated with mildly heated (e.g., blanched) leafy vegetables such as spinach, generation of adequate thermal processes is important both for consumers and the food industry. Therefore, the objectives of this study were to determine the thermal inactivation behavior of hepatitis A virus (HAV) in spinach, and provide insights on HAV inactivation in spinach for future studies and industrial applications. The D-values calculated from the first-order model (50-72 °C) ranged from 34.40 ± 4.08 to 0.91 ± 0.12 min with a z-value of 13.92 ± 0.87 °C. The calculated activation energy value was 162 ± 11 kJ/mol. Using the information generated in the present study and the thermal parameters of industrial blanching conditions for spinach as a basis (100 °C for 120-180 s), the blanching of spinach in water at 100 °C for 120-180 s under atmospheric conditions will provide greater than 6 log reduction of HAV. The results of this study may be useful to the frozen food industry in designing blanching conditions for spinach to inactivate or control hepatitis A virus outbreaks. Copyright © 2014. Published by Elsevier B.V.

  20. Glucose 6-phosphate regulates hepatic glycogenolysis through inactivation of phosphorylase.

    Science.gov (United States)

    Aiston, Susan; Andersen, Birgitte; Agius, Loranne

    2003-06-01

    High glucose concentration suppresses hepatic glycogenolysis by allosteric inhibition and dephosphorylation (inactivation) of phosphorylase-a. The latter effect is attributed to a direct effect of glucose on the conformation of phosphorylase-a. Although glucose-6-phosphate (G6P), like glucose, stimulates dephosphorylation of phosphorylase-a by phosphorylase phosphatase, its physiological role in regulating glycogenolysis in intact hepatocytes has not been tested. We show in this study that metabolic conditions associated with an increase in G6P, including glucokinase overexpression and incubation with octanoate or dihydroxyacetone, cause inactivation of phosphorylase. The latter conditions also inhibit glycogenolysis. The activity of phosphorylase-a correlated inversely with the G6P concentration within the physiological range. The inhibition of glycogenolysis and inactivation of phosphorylase-a caused by 10 mmol/l glucose can be at least in part counteracted by inhibition of glucokinase with 5-thioglucose, which lowers G6P. In conclusion, metabolic conditions that alter the hepatic G6P content affect glycogen metabolism not only through regulation of glycogen synthase but also through regulation of the activation state of phosphorylase. Dysregulation of G6P in diabetes by changes in activity of glucokinase or glucose 6-phosphatase may be a contributing factor to impaired suppression of glycogenolysis by hyperglycemia.

  1. Behavioral inspiratory inhibition: inactivated and activated respiratory cells.

    Science.gov (United States)

    Orem, J

    1989-11-01

    1. Eleven adult cats were trained to stop inspiration in response to a conditioning stimulus. The conditioning stimuli were presented at the onset of inspiration at intervals of approximately 20-30 s. Intratracheal pressures, diaphragmatic activity, and the extracellular activity of single medullary respiratory neurons were recorded while the animals performed this response. 2. Inactivation of the diaphragm to the conditioning stimuli occurred at latencies that varied from 40 to 110 ms and averaged 74 +/- 32 (SD) ms. 3. The subjects of this report are 38 inspiratory neurons that were inactivated and 19 cells that were activated when inspiration was stopped behaviorally. These cells were located in the region of n. ambiguus and the ventrolateral n. of tractus solitarius. 4. The inspiratory cells that were inactivated behaviorally had the following characteristics: 1) Most had an augmenting inspiratory profile with (n = 14) or without (n = 9) postinspiratory activity. Other types were inspiratory throughout (n = 5), decrementing inspiratory (n = 3), tonic inspiratory (n = 4), early inspiratory (n = 2), and expiratory-inspiratory (n = 1). 2) Their mean discharge rate was 39 +/- 2.7 (SE) Hz. 3) The latency of their inactivation in response to the task averaged 81 +/- 4.9 (SE) ms, and 4) Their activity corresponded closely to breathing not only during the behavioral response but also during eupnea (eta 2 = 0.62 +/- 0.04, mean +/- SE) and respiratory acts such as sneezing, sniffing, meowing, and purring. 5. The cells that were activated when inspiration was stopped behaviorally had the following characteristics. 1) As a group, they had discharge profiles related to every phase of the respiratory cycle. 2) They were recorded in the same region as, and often simultaneously with, respiratory cells that were inactivated. 3) Their activity patterns were highly variable such that the signal strength and consistency of the respiratory component of that activity were weak (eta 2

  2. Food-associated cues alter forebrain functional connectivity as assessed with immediate early gene and proenkephalin expression

    Directory of Open Access Journals (Sweden)

    Landry Charles F

    2007-04-01

    Full Text Available Abstract Background Cues predictive of food availability are powerful modulators of appetite as well as food-seeking and ingestive behaviors. The neurobiological underpinnings of these conditioned responses are not well understood. Monitoring regional immediate early gene expression is a method used to assess alterations in neuronal metabolism resulting from upstream intracellular and extracellular signaling. Furthermore, assessing the expression of multiple immediate early genes offers a window onto the possible sequelae of exposure to food cues, since the function of each gene differs. We used immediate early gene and proenkephalin expression as a means of assessing food cue-elicited regional activation and alterations in functional connectivity within the forebrain. Results Contextual cues associated with palatable food elicited conditioned motor activation and corticosterone release in rats. This motivational state was associated with increased transcription of the activity-regulated genes homer1a, arc, zif268, ngfi-b and c-fos in corticolimbic, thalamic and hypothalamic areas and of proenkephalin within striatal regions. Furthermore, the functional connectivity elicited by food cues, as assessed by an inter-regional multigene-expression correlation method, differed substantially from that elicited by neutral cues. Specifically, food cues increased cortical engagement of the striatum, and within the nucleus accumbens, shifted correlations away from the shell towards the core. Exposure to the food-associated context also induced correlated gene expression between corticostriatal networks and the basolateral amygdala, an area critical for learning and responding to the incentive value of sensory stimuli. This increased corticostriatal-amygdalar functional connectivity was absent in the control group exposed to innocuous cues. Conclusion The results implicate correlated activity between the cortex and the striatum, especially the nucleus

  3. Photodynamic inactivation of mammalian viruses and bacteriophages.

    Science.gov (United States)

    Costa, Liliana; Faustino, Maria Amparo F; Neves, Maria Graça P M S; Cunha, Angela; Almeida, Adelaide

    2012-07-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process.

  4. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    Directory of Open Access Journals (Sweden)

    Liliana Costa

    2012-06-01

    Full Text Available Photodynamic inactivation (PDI has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process.

  5. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    Science.gov (United States)

    Costa, Liliana; Faustino, Maria Amparo F.; Neves, Maria Graça P. M. S.; Cunha, Ângela; Almeida, Adelaide

    2012-01-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process. PMID:22852040

  6. Inactivation of murine norovirus by chemical biocides on stainless steel

    Directory of Open Access Journals (Sweden)

    Steinmann Jörg

    2009-07-01

    Full Text Available Abstract Background Human norovirus (NoV causes more than 80% of nonbacterial gastroenteritis in Europe and the United States. NoV transmission via contaminated surfaces may be significant for the spread of viruses. Therefore, measures for prevention and control, such as surface disinfection, are necessary to interrupt the dissemination of human NoV. Murine norovirus (MNV as a surrogate for human NoV was used to study the efficacy of active ingredients of chemical disinfectants for virus inactivation on inanimate surfaces. Methods The inactivating properties of different chemical biocides were tested in a quantitative carrier test with stainless steel discs without mechanical action. Vacuum-dried MNV was exposed to different concentrations of alcohols, peracetic acid (PAA or glutaraldehyde (GDA for 5 minutes exposure time. Detection of residual virus was determined by endpoint-titration on RAW 264.7 cells. Results PAA [1000 ppm], GDA [2500 ppm], ethanol [50% (v/v] and 1-propanol [30% (v/v] were able to inactivate MNV under clean conditions (0.03% BSA on the carriers by ≥ 4 log10 within 5 minutes exposure time, whereas 2-propanol showed a reduced effectiveness even at 60% (v/v. Furthermore, there were no significant differences in virus reduction whatever interfering substances were used. When testing with ethanol, 1- and 2-propanol, results under clean conditions were nearly the same as in the presence of dirty conditions (0.3% BSA plus 0.3% erythrocytes. Conclusion Products based upon PAA, GDA, ethanol and 1-propanol should be used for NoV inactivation on inanimate surfaces. Our data provide valuable information for the development of strategies to control NoV transmission via surfaces.

  7. Evaluation of Virus Inactivation by Formaldehyde to Enhance Biosafety of Diagnostic Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Lars Möller

    2015-02-01

    Full Text Available Formaldehyde (FA fixation of infectious samples is a well-established protocol in diagnostic electron microscopy of viruses. However, published experimental data that demonstrate virus inactivation by these fixation procedures are lacking. Usually, fixation is performed immediately before the sample preparation for microscopy. The fixation procedure should transform viruses in a non–infectious but nonetheless structurally intact form in order to allow a proper diagnosis based on morphology. FA provides an essential advantage in comparison to other disinfectants, because it preserves the ultrastructure of biological material without interfering significantly with the preparation (i.e., the negative staining and the detection of viruses. To examine the efficiency of FA inactivation, we used Vaccinia virus, Human adenovirus and Murine norovirus as models and treated them with FA under various conditions. Critical parameters for the inactivation efficiency were the temperature, the duration of the FA treatment, and the resistance of the virus in question. Our results show that FA inactivation at low temperature (4 °C bears a high risk of incomplete inactivation. Higher temperatures (25 °C are more efficient, although they still require rather long incubation times to fully inactivate a complex and highly robust virus like Vaccinia. A protocol, which applied 2% buffered FA for 60 min and a temperature–shift from 25 to 37 °C after 30 min was efficient for the complete inactivation of all test viruses, and therefore has the potential to improve both biosafety and speed of diagnostic electron microscopy.

  8. Weed seed inactivation in soil mesocosms via biosolarization with mature compost and tomato processing waste amendments.

    Science.gov (United States)

    Achmon, Yigal; Fernández-Bayo, Jesús D; Hernandez, Katie; McCurry, Dlinka G; Harrold, Duff R; Su, Joey; Dahlquist-Willard, Ruth M; Stapleton, James J; VanderGheynst, Jean S; Simmons, Christopher W

    2017-05-01

    Biosolarization is a fumigation alternative that combines passive solar heating with amendment-driven soil microbial activity to temporarily create antagonistic soil conditions, such as elevated temperature and acidity, that can inactivate weed seeds and other pest propagules. The aim of this study was to use a mesocosm-based field trial to assess soil heating, pH, volatile fatty acid accumulation and weed seed inactivation during biosolarization. Biosolarization for 8 days using 2% mature green waste compost and 2 or 5% tomato processing residues in the soil resulted in accumulation of volatile fatty acids in the soil, particularly acetic acid, and >95% inactivation of Brassica nigra and Solanum nigrum seeds. Inactivation kinetics data showed that near complete weed seed inactivation in soil was achieved within the first 5 days of biosolarization. This was significantly greater than the inactivation achieved in control soils that were solar heated without amendment or were amended but not solar heated. The composition and concentration of organic matter amendments in soil significantly affected volatile fatty acid accumulation at various soil depths during biosolarization. Combining solar heating with organic matter amendment resulted in accelerated weed seed inactivation compared with either approach alone. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Investigation of Low-Pressure Ultraviolet Radiation on Inactivation of Rhabitidae Nematode from Water

    Directory of Open Access Journals (Sweden)

    Mohammad Hadi Dehghani

    2013-03-01

    Full Text Available Background: Rhabditidae is a family of free-living nematodes. Free living nematodes due to their active movement and resistance to chlorination, do not remove in conventional water treatment processes thus can be entered to distribution systems and cause adverse health effects. Ultraviolet radiation (UV can be used as a method of inactivating for these organisms. This cross sectional study was done to investigate the efficiency of ultraviolet lamp in the inactivation of free living nematode in water.Methods: The effects of radation time, turbidity, pH and temperature were invistigated in this study. Ultraviolet lamp used in this study was a 11 W lamp and intensity of this lamp was 24 µw / cm2.Results: Radiation time required to achieve 100% efficiency for larvae nematode and adults was 9 and 10 minutes respectively. There was a significant correlation between the increase in radiation time, temperature rise and turbidity reduction with inactivation efficiency of lamp (P<0.001. Increase of turbidity up 25 NTU decreased inactivation efficiency of larvae and adult nematodes from 100% to 66% and 100% to 64% respectively. Change in pH range from 6 to 9 did not affect the efficiency of inactivation. With increasing temperature inactivation rate increased. Also the effect of the lamp on inactivation of larvae nematod was mor than adults.Conclusions: It seems that with requiring the favorable conditions low-pressure ultraviolet radiation systems can be used for disinfection of water containing Rhabitidae nematode.

  10. Inactivation of infectious bovine rhinotracheitis virus by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nonomiya, Takashi; Yamashiro, Tomio; Tsutsumi, Takamasa (Animal Quarantine Service, Yokohama (Japan)); Ito, Hitoshi; Ishigaki, Isao

    1990-10-01

    Radiation inactivation of Infectious Boivne Rhinotracheitis (IBR) virus was investigated by suspending in a commercial preparation medium (c.p.m.) or IBR antibody free serum and irradiated at room temperature or dry ice frozen condition. Normal pooled serum was also analysed by electrophoresis with cellulose acetate membrane after irradiation at frozen and non-frozen condition. The virus inactivation was determined by MDBK cell line which 50 % tissue culture infectious dose (TCID{sub 50}) was calculated by Behrens Kaerber method. D{sub 10} value at non-frozen condition in serum was obtained as 1.1-1.2 kGy and that in c.p.m. was 1.3-1.4 kGy. On the other hand, D{sub 10} value was increased to 3.4-3.6 kGy in serum and 3.9 kGy in c.p.m. at frozen condition. On the irradiation effect of bovine serum, four peaks of albumin, {alpha}, {beta} and {gamma}-globulin fraction were obtained from non-irradiation and irradiated serum up to 2 kGy at non-frozen condition by electrophoresis. More than 4 kGy irradiation, the peaks of globulin fractions became not clear and at more than 8 kGy, changed to one large peak. On the other hand, these changes of electrophoretic patterns were not observed even at 30 kGy irradiation in frozen condition. From these results, necessary dose was decided as 20-25 kGy at frozen condition for inactivation of IBR virus in serum. (author).

  11. Effect of formaldehyde inactivation on poliovirus.

    Science.gov (United States)

    Wilton, Thomas; Dunn, Glynis; Eastwood, David; Minor, Philip D; Martin, Javier

    2014-10-01

    Inactivated polio vaccines, which have been used in many countries for more than 50 years, are produced by treating live poliovirus (PV) with formaldehyde. However, the molecular mechanisms underlying virus inactivation are not well understood. Infection by PV is initiated by virus binding to specific cell receptors, which results in viral particles undergoing sequential conformational changes that generate altered structural forms (135S and 80S particles) and leads to virus cell entry. We have analyzed the ability of inactivated PV to bind to the human poliovirus receptor (hPVR) using various techniques such as ultracentrifugation, fluorescence-activated cell sorting flow cytometry and real-time reverse transcription-PCR (RT-PCR). The results showed that although retaining the ability to bind to hPVR, inactivated PV bound less efficiently in comparison to live PV. We also found that inactivated PV showed resistance to structural conversion in vitro, as judged by measuring changes in antigenicity, the ability to bind to hPVR, and viral RNA release at high temperature. Furthermore, viral RNA from inactivated PV was shown to be modified, since cDNA yields obtained by RT-PCR amplification were severely reduced and no infectious virus was recovered after RNA transfection into susceptible cells. Importance: This study represents a novel insight into the molecular mechanisms responsible for poliovirus inactivation. We show that inactivation with formaldehyde has an effect on early steps of viral replication as it reduces the ability of PV to bind to hPVR, decreases the sensitivity of PV to convert to 135S particles, and abolishes the infectivity of its viral RNA. These changes are likely responsible for the loss of infectivity shown by PV following inactivation. Techniques used in this study represent new approaches for the characterization of inactivated PV products and could be useful in developing improved methods for the production and quality control testing of

  12. Angiotensin type 1a receptors in the forebrain subfornical organ facilitate leptin-induced weight loss through brown adipose tissue thermogenesis

    Directory of Open Access Journals (Sweden)

    Colin N. Young

    2015-04-01

    Conclusions: These data identify a novel interaction between angiotensin-II and leptin in the control of BAT thermogenesis and body weight, and highlight a previously unrecognized role for the forebrain SFO in metabolic regulation.

  13. In situ studies of microbial inactivation during high pressure processing

    Science.gov (United States)

    Maldonado, Jose Antonio; Schaffner, Donald W.; Cuitiño, Alberto M.; Karwe, Mukund V.

    2016-01-01

    High pressure processing (HPP) has been shown to reduce microbial concentration in foods. The mechanisms of microbial inactivation by HPP have been associated with damage to cell membranes. The real-time response of bacteria to HPP was measured to elucidate the mechanisms of inactivation, which can aid in designing more effective processes. Different pressure cycling conditions were used to expose Enterobacter aerogenes cells to HPP. Propidium iodide (PI) was used as a probe, which fluoresces after penetrating cells with damaged membranes and binding with nucleic acids. A HPP vessel with sapphire windows was used for measuring fluorescence in situ. Membrane damage was detected during pressurization and hold time, but not during depressurization. The drop in fluorescence was larger than expected after pressure cycles at higher pressure and longer times. This indicated possible reversible disassociation of ribosomes resulting in additional binding of PI to exposed RNA under pressure and its release after depressurization.

  14. Conditional inactivation of the DNA damage response gene Hus1 in mouse testis reveals separable roles for components of the RAD9-RAD1-HUS1 complex in meiotic chromosome maintenance.

    Directory of Open Access Journals (Sweden)

    Amy M Lyndaker

    Full Text Available The RAD9-RAD1-HUS1 (9-1-1 complex is a heterotrimeric PCNA-like clamp that responds to DNA damage in somatic cells by promoting DNA repair as well as ATR-dependent DNA damage checkpoint signaling. In yeast, worms, and flies, the 9-1-1 complex is also required for meiotic checkpoint function and efficient completion of meiotic recombination; however, since Rad9, Rad1, and Hus1 are essential genes in mammals, little is known about their functions in mammalian germ cells. In this study, we assessed the meiotic functions of 9-1-1 by analyzing mice with germ cell-specific deletion of Hus1 as well as by examining the localization of RAD9 and RAD1 on meiotic chromosomes during prophase I. Hus1 loss in testicular germ cells resulted in meiotic defects, germ cell depletion, and severely compromised fertility. Hus1-deficient primary spermatocytes exhibited persistent autosomal γH2AX and RAD51 staining indicative of unrepaired meiotic DSBs, synapsis defects, an extended XY body domain often encompassing partial or whole autosomes, and an increase in structural chromosome abnormalities such as end-to-end X chromosome-autosome fusions and ruptures in the synaptonemal complex. Most of these aberrations persisted in diplotene-stage spermatocytes. Consistent with a role for the 9-1-1 complex in meiotic DSB repair, RAD9 localized to punctate, RAD51-containing foci on meiotic chromosomes in a Hus1-dependent manner. Interestingly, RAD1 had a broader distribution that only partially overlapped with RAD9, and localization of both RAD1 and the ATR activator TOPBP1 to the XY body and to unsynapsed autosomes was intact in Hus1 conditional knockouts. We conclude that mammalian HUS1 acts as a component of the canonical 9-1-1 complex during meiotic prophase I to promote DSB repair and further propose that RAD1 and TOPBP1 respond to unsynapsed chromatin through an alternative mechanism that does not require RAD9 or HUS1.

  15. Conditional inactivation of the DNA damage response gene Hus1 in mouse testis reveals separable roles for components of the RAD9-RAD1-HUS1 complex in meiotic chromosome maintenance.

    Science.gov (United States)

    Lyndaker, Amy M; Lim, Pei Xin; Mleczko, Joanna M; Diggins, Catherine E; Holloway, J Kim; Holmes, Rebecca J; Kan, Rui; Schlafer, Donald H; Freire, Raimundo; Cohen, Paula E; Weiss, Robert S

    2013-01-01

    The RAD9-RAD1-HUS1 (9-1-1) complex is a heterotrimeric PCNA-like clamp that responds to DNA damage in somatic cells by promoting DNA repair as well as ATR-dependent DNA damage checkpoint signaling. In yeast, worms, and flies, the 9-1-1 complex is also required for meiotic checkpoint function and efficient completion of meiotic recombination; however, since Rad9, Rad1, and Hus1 are essential genes in mammals, little is known about their functions in mammalian germ cells. In this study, we assessed the meiotic functions of 9-1-1 by analyzing mice with germ cell-specific deletion of Hus1 as well as by examining the localization of RAD9 and RAD1 on meiotic chromosomes during prophase I. Hus1 loss in testicular germ cells resulted in meiotic defects, germ cell depletion, and severely compromised fertility. Hus1-deficient primary spermatocytes exhibited persistent autosomal γH2AX and RAD51 staining indicative of unrepaired meiotic DSBs, synapsis defects, an extended XY body domain often encompassing partial or whole autosomes, and an increase in structural chromosome abnormalities such as end-to-end X chromosome-autosome fusions and ruptures in the synaptonemal complex. Most of these aberrations persisted in diplotene-stage spermatocytes. Consistent with a role for the 9-1-1 complex in meiotic DSB repair, RAD9 localized to punctate, RAD51-containing foci on meiotic chromosomes in a Hus1-dependent manner. Interestingly, RAD1 had a broader distribution that only partially overlapped with RAD9, and localization of both RAD1 and the ATR activator TOPBP1 to the XY body and to unsynapsed autosomes was intact in Hus1 conditional knockouts. We conclude that mammalian HUS1 acts as a component of the canonical 9-1-1 complex during meiotic prophase I to promote DSB repair and further propose that RAD1 and TOPBP1 respond to unsynapsed chromatin through an alternative mechanism that does not require RAD9 or HUS1.

  16. Sex-differential selection and the evolution of X inactivation strategies.

    Directory of Open Access Journals (Sweden)

    Tim Connallon

    2013-04-01

    Full Text Available X inactivation--the transcriptional silencing of one X chromosome copy per female somatic cell--is universal among therian mammals, yet the choice of which X to silence exhibits considerable variation among species. X inactivation strategies can range from strict paternally inherited X inactivation (PXI, which renders females haploid for all maternally inherited alleles, to unbiased random X inactivation (RXI, which equalizes expression of maternally and paternally inherited alleles in each female tissue. However, the underlying evolutionary processes that might account for this observed diversity of X inactivation strategies remain unclear. We present a theoretical population genetic analysis of X inactivation evolution and specifically consider how conditions of dominance, linkage, recombination, and sex-differential selection each influence evolutionary trajectories of X inactivation. The results indicate that a single, critical interaction between allelic dominance and sex-differential selection can select for a broad and continuous range of X inactivation strategies, including unequal rates of inactivation between maternally and paternally inherited X chromosomes. RXI is favored over complete PXI as long as alleles deleterious to female fitness are sufficiently recessive, and the criteria for RXI evolution is considerably more restrictive when fitness variation is sexually antagonistic (i.e., alleles deleterious to females are beneficial to males relative to variation that is deleterious to both sexes. Evolutionary transitions from PXI to RXI also generally increase mean relative female fitness at the expense of decreased male fitness. These results provide a theoretical framework for predicting and interpreting the evolution of chromosome-wide expression of X-linked genes and lead to several useful predictions that could motivate future studies of allele-specific gene expression variation.

  17. Influence of interferon-gamma on the differentiation of cholinergic neurons in rat embryonic basal forebrain and septal nuclei

    Institute of Scientific and Technical Information of China (English)

    Yanhong Luo; Lin An

    2006-01-01

    BACKGROUND: Interferon-gamma (IFN-γ) can make neurons in basal forebrain and septal nuclei differentiate into cholinergic neurons by treating the cells in cerebral cortex of newborn rats, without the inhibition from IFN-γ antibody. The important effect of IFN-γ on the development and differentiation of neurons has been found by some scholars.OBJ ECTIVE:To investigate whether IFN-γ has differentiational effect on cholinergic neurons in basal forebrain and septal nuclei, and make clear that the increased number of cholinergic neurons is resulted by cell differentiation or cell proliferation.DESIGN: Controlled observation trial.SETTING: Department of Cell Biology, Medical School, Beijing University.MATERIALS: Sixty-eight female Wistar rats at embryonic 16 days, weighing 250 to 350 g, were enrolled in this study, and they were provided by the Experimental Animal Center, Medical School, Beijing University.IFN-γ was the product of Gibco Company.METHODS: This study was carried out in the Department of Cell Biology, Medical School, Beijing University and Daheng Image Company of Chinese Academy of Sciences during September 1995 to December 2002.The female Wistar rats at embryonic 16 days were sacrificed, and their fetuses were taken out. Primary culture of the isolated basal forebrain and septal nuclei was performed. The cultured nerve cells were assigned into 3 groups: control group (nothing added), IFN-γ group(1×105 U/L interferon), IFN-γ+ IFN-γ antibody group (1 ×105 U/L IFN-γ± IFN-γ antibody). The specific marker enzyme (choline acetyl transferase) of cholinergic neuron was stained with immunohistochemical method. Choline acetyl transferase positive cells were counted, and 14C-acetyl CoA was used as substrate to detect the activity of choline acetyl transferase, so as to reflect the differentiational effect of IFN-γ on cholinergic neuron in basal forebrain and septal nuclei. Flow cytometry was used to analyze cell circle and detect the proliferation of

  18. Loss of forebrain MTCH2 decreases mitochondria motility and calcium handling and impairs hippocampal-dependent cognitive functions

    Science.gov (United States)

    Ruggiero, Antonella; Aloni, Etay; Korkotian, Eduard; Zaltsman, Yehudit; Oni-Biton, Efrat; Kuperman, Yael; Tsoory, Michael; Shachnai, Liat; Levin-Zaidman, Smadar; Brenner, Ori; Segal, Menahem; Gross, Atan

    2017-01-01

    Mitochondrial Carrier Homolog 2 (MTCH2) is a novel regulator of mitochondria metabolism, which was recently associated with Alzheimer’s disease. Here we demonstrate that deletion of forebrain MTCH2 increases mitochondria and whole-body energy metabolism, increases locomotor activity, but impairs motor coordination and balance. Importantly, mice deficient in forebrain MTCH2 display a deficit in hippocampus-dependent cognitive functions, including spatial memory, long term potentiation (LTP) and rates of spontaneous excitatory synaptic currents. Moreover, MTCH2-deficient hippocampal neurons display a deficit in mitochondria motility and calcium handling. Thus, MTCH2 is a critical player in neuronal cell biology, controlling mitochondria metabolism, motility and calcium buffering to regulate hippocampal-dependent cognitive functions. PMID:28276496

  19. Effects of oral 5-hydroxytryptophan on a standardized planning task: insight into possible dopamine/serotonin interactions in the forebrain.

    Science.gov (United States)

    Gendle, Mathew H; Young, Erica L; Romano, Alexandra C

    2013-05-01

    Several studies have suggested that exogenous administration of the serotonin precursor 5-hydroxytryptophan (5-HTP) can result in the ectopic production of serotonin in dopaminergic neurons and a concomitant reduction in dopamine release. This study tested this hypothesis using the Tower of London (TOL), a test of planning and executive control that is sensitive to changes in forebrain dopamine activity, but insensitive to alterations in serotonin. A sample of 68 undergraduates participated, and each received either three 50-mg 5-HTP capsules or placebos, and completed the TOL following a set absorption period. 5-HTP significantly lengthened the average time needed to complete each of the 10 trials of the TOL. 5-HTP did not affect accuracy on this task. Oral exogenous 5-HTP disrupts dopaminergic function in the human forebrain. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Excitatory Hindbrain-Forebrain Communication Is Required for Cisplatin-Induced Anorexia and Weight Loss.

    Science.gov (United States)

    Alhadeff, Amber L; Holland, Ruby A; Zheng, Huiyuan; Rinaman, Linda; Grill, Harvey J; De Jonghe, Bart C

    2017-01-11

    Cisplatin chemotherapy is commonly used to treat cancer despite severe energy balance side effects. In rats, cisplatin activates nucleus tractus solitarius (NTS) projections to the lateral parabrachial nucleus (lPBN) and calcitonin-gene related peptide (CGRP) projections from the lPBN to the central nucleus of the amygdala (CeA). We demonstrated previously that CeA glutamate receptor signaling mediates cisplatin-induced anorexia and body weight loss. Here, we used neuroanatomical tracing, immunofluorescence, and confocal imaging to demonstrate that virtually all NTS→lPBN and lPBN→CeA CGRP projections coexpress vesicular glutamate transporter 2 (VGLUT2), providing evidence that excitatory projections mediate cisplatin-induced energy balance dysregulation. To test whether lPBN→CeA projection neurons are required for cisplatin-induced anorexia and weight loss, we inhibited these neurons chemogenetically using a retrograde Cre-recombinase-expressing canine adenovirus-2 in combination with Cre-dependent inhibitory Designer Receptors Exclusive Activated by Designer Drugs (DREADDs) before cisplatin treatment. Inhibition of lPBN→CeA neurons attenuated cisplatin-induced anorexia and body weight loss significantly. Using a similar approach, we additionally demonstrated that inhibition of NTS→lPBN neurons attenuated cisplatin-induced anorexia and body weight loss significantly. Together, our data support the view that excitatory hindbrain-forebrain projections are necessary for cisplatin's untoward effects on energy intake, elucidating a key neuroanatomical circuit driving pathological anorexia and weight loss that accompanies chemotherapy treatment. Chemotherapy treatments are commonly used to treat cancers despite accompanying anorexia and weight loss that may limit treatment adherence and reduce patient quality of life. Strikingly, we lack a neural understanding of, and effective treatments for, chemotherapy-induced anorexia and weight loss. The current data

  1. Vulnerability of mossy fiber targets in the rat hippocampus to forebrain ischemia.

    Science.gov (United States)

    Hsu, M; Buzsáki, G

    1993-09-01

    Much of the work on forebrain ischemia in the hippocampus has focused on the phenomenon of delayed neuronal death in CA1. It is established that dentate granule cells and CA3 pyramidal cells are resistant to ischemia. However, much less is known about interneuronal involvement in CA3 or ischemic injury in the dentate hilus other than the fact that somatostatin neurons in the latter lose their immunoreactivity. We combined two sensitive methods--heat-shock protein (HSP72) immunocytochemistry and a newly developed Gallyas silver stain for demonstrating impaired cytoskeletal elements--to investigate the extent of ischemic damage to CA3 and the dentate hilus using the four-vessel-occlusion model for inducing forebrain ischemia. HSP72-like immunoreactivity was induced in neuronal populations previously shown to be vulnerable to ischemia. In addition, a distinct subset of interneurons in CA3 was also extremely sensitive to ischemia, even more so than the CA1 pyramidal cells. These neurons are located in the stratum lucidum of CA3 and possess a very high density of dendritic spines. In silver preparations, they were among the first to be impregnated as "dark" neurons, before CA1 pyramidal cells; microglial reaction was also initiated first in the stratum lucidum of CA3. Whereas CA1 damage was most prominent in the septal half of the hippocampus, hilar and CA3 interneuronal damage had a more extensive dorsoventral distribution. Our results also show a far greater extent of damage in hilar neurons than previously reported. At least four hilar cell types were consistently compromised: mossy cells, spiny fusiform cells, sparsely spiny fusiform cells, and long-spined multipolar cells. A common denominator of the injured neurons in CA3 and the hilus was the presence of spines on their dendrites, which in large part accounted for the far greater number of mossy fiber terminals they receive than their non-spiny neighbors. We suggest that the differential vulnerability of neuronal

  2. Bacteria and fungi inactivation by photocatalysis under UVA irradiation: liquid and gas phase.

    Science.gov (United States)

    Rodrigues-Silva, Caio; Miranda, Sandra M; Lopes, Filipe V S; Silva, Mário; Dezotti, Márcia; Silva, Adrián M T; Faria, Joaquim L; Boaventura, Rui A R; Vilar, Vítor J P; Pinto, Eugénia

    2017-03-01

    In the last decade, environmental risks associated with wastewater treatment plants (WWTPs) have become a concern in the scientific community due to the absence of specific legislation governing the occupational exposure limits (OEL) for microorganisms present in indoor air. Thus, it is necessary to develop techniques to effectively inactivate microorganisms present in the air of WWTPs facilities. In the present work, ultraviolet light A radiation was used as inactivation tool. The microbial population was not visibly reduced in the bioaerosol by ultraviolet light A (UVA) photolysis. The UVA photocatalytic process for the inactivation of microorganisms (bacteria and fungi, ATCC strains and isolates from indoor air samples of a WWTP) using titanium dioxide (TiO2 P25) and zinc oxide (ZnO) was tested in both liquid-phase and airborne conditions. In the slurry conditions at liquid phase, P25 showed a better performance in inactivation. For this reason, gas-phase assays were performed in a tubular photoreactor packed with cellulose acetate monolithic structures coated with P25. The survival rate of microorganisms under study decreased with the catalyst load and the UVA exposure time. Inactivation of fungi was slower than resistant bacteria, followed by Gram-positive bacteria and Gram-negative bacteria. Graphical abstract Inactivation of fungi and bacteria in gas phase by photocatalitic process performed in a tubular photoreactor packed with cellulose acetate monolith structures coated with TiO2.

  3. Forebrain patterns of c-Fos and FosB induction during cancer-associated anorexia-cachexia in rat.

    Science.gov (United States)

    Konsman, Jan Pieter; Blomqvist, Anders

    2005-05-01

    Forebrain structures are necessary for the initiation of food intake and its coupling to energy expenditure. The cancer-related anorexia-cachexia syndrome is typified by a prolonged increase in metabolic rate resulting in body weight loss which, paradoxically, is accompanied by reduced food intake. The aim of the present work was to study the forebrain expression of Fos proteins as activation markers and thus to identify potential neurobiological mechanisms favouring catabolic processes or modulating food intake in rats suffering from cancer-related anorexia-cachexia. Neurons in forebrain structures showing most pronounced induction of Fos proteins were further identified neurochemically. To provoke anorexia-cachexia, cultured Morris hepatoma 7777 cells were injected subcutaneously in Buffalo rats. This resulted in a slowly growing tumour inducing approximately 7% body weight loss and a 20% reduction in food intake when the tumour represented 1-2% of body mass. Anorexia-cachexia in these animals was found to be accompanied by Fos induction in several hypothalamic nuclei including the paraventricular and ventromedial hypothalamus, in the parastrial nucleus, the amygdala, the bed nucleus of the stria terminalis, ventral striatal structures and the piriform and somatosensory cortices. Neurochemical identification revealed that the vast majority of FosB-positive neurons in the nucleus accumbens, ventral caudate-putamen and other ventral striatal structures contained prodynorphin or proenkephalin mRNA. These findings indicate that forebrain structures that are part of neuronal networks modulating catabolic pathways and food ingestion are activated during tumour-associated anorexia-cachexia and may contribute to the lack of compensatory eating in response to weight loss characterizing this syndrome.

  4. The Role of Basal Forebrain in Rat Somatosensory Cortex: Impact on Cholinergic Innervation, Sensory Information Processing, and Tactile Discrimination

    Science.gov (United States)

    1993-05-28

    noradrenergic neurons, as well as from the cholinergic neurons of the brainstem tegmentum (Jones and Cuello , 1989). This suggests that final control over...Jones, B. E., & Cuello , A. C. (1989). Afferents to the basal forebrain cholinergic cell area from pontomesencephalic- catecholamine, serotonin, and...organization in mouse barrel cortex. Brain Research, 165, 327-332. 160 Sofroniew, M. V., Eckenstein, Fo, Thoenen, Ho, & Cuello , A. C. (1982

  5. Rabbit forebrain cholinergic system: morphological characterization of nuclei and distribution of cholinergic terminals in the cerebral cortex and hippocampus.

    Science.gov (United States)

    Varga, Csaba; Härtig, Wolfgang; Grosche, Jens; Keijser, Jan; Luiten, Paul G M; Seeger, Johannes; Brauer, Kurt; Harkany, Tibor

    2003-06-09

    Although the rabbit brain, in particular the basal forebrain cholinergic system, has become a common model for neuropathological changes associated with Alzheimer's disease, detailed neuroanatomical studies on the morphological organization of basal forebrain cholinergic nuclei and on their output pathways are still awaited. Therefore, we performed quantitative choline acetyltransferase (ChAT) immunocytochemistry to localize major cholinergic nuclei and to determine the number of respective cholinergic neurons in the rabbit forebrain. The density of ChAT-immunoreactive terminals in layer V of distinct neocortical territories and in hippocampal subfields was also measured. Another cholinergic marker, the low-affinity neurotrophin receptor (p75(NTR)), was also employed to identify subsets of cholinergic neurons. Double-immunofluorescence labeling of ChAT and p75(NTR), calbindin D-28k (CB), parvalbumin, calretinin, neuronal nitric oxide synthase (nNOS), tyrosine hydroxylase, or substance P was used to elucidate the neuroanatomical borders of cholinergic nuclei and to analyze the neurochemical complexity of cholinergic cell populations. Cholinergic projection neurons with heterogeneous densities were found in the medial septum, vertical and horizontal diagonal bands of Broca, ventral pallidum, and magnocellular nucleus basalis (MBN)/substantia innominata (SI) complex; cholinergic interneurons were observed in the caudate nucleus, putamen, accumbens nucleus, and olfactory tubercule, whereas the globus pallidus was devoid of cholinergic nerve cells. Cholinergic interneurons were frequently present in the hippocampus and to a lesser extent in cerebral cortex. Cholinergic projection neurons, except those localized in SI, abundantly expressed p75(NTR), and a subset of cholinergic neurons in posterior MBN was immunoreactive for CB and nNOS. A strict laminar distribution pattern of cholinergic terminals was recorded both in the cerebral cortex and in CA1-CA3 and dentate gyrus

  6. Ribosome Inactivating Proteins from Rosaceae.

    Science.gov (United States)

    Shang, Chenjing; Rougé, Pierre; Van Damme, Els J M

    2016-08-22

    Ribosome-inactivating proteins (RIPs) are widespread among higher plants of different taxonomic orders. In this study, we report on the RIP sequences found in the genome/transcriptome of several important Rosaceae species, including many economically important edible fruits such as apple, pear, peach, apricot, and strawberry. All RIP domains from Rosaceae share high sequence similarity with conserved residues in the catalytic site and the carbohydrate binding sites. The genomes of Malus domestica and Pyrus communis contain both type 1 and type 2 RIP sequences, whereas for Prunus mume, Prunus persica, Pyrus bretschneideri, and Pyrus communis a complex set of type 1 RIP sequences was retrieved. Heterologous expression and purification of the type 1 as well as the type 2 RIP from apple allowed to characterize the biological activity of the proteins. Both RIPs from Malus domestica can inhibit protein synthesis. Furthermore, molecular modelling suggests that RIPs from Rosaceae possess three-dimensional structures that are highly similar to the model proteins and can bind to RIP substrates. Screening of the recombinant type 2 RIP from apple on a glycan array revealed that this type 2 RIP interacts with terminal sialic acid residues. Our data suggest that the RIPs from Rosaceae are biologically active proteins.

  7. Chlordiazepoxide-induced released responding in extinction and punishment-conflict procedures is not altered by neonatal forebrain norepinephrine depletion.

    Science.gov (United States)

    Bialik, R J; Pappas, B A; Pusztay, W

    1982-02-01

    The effects of chlordiazepoxide (CDZ) in extinction and punishment-conflict tasks were examined in rats after neonatal systemic administration of 6-hydroxydopamine (6-OHDA) to deplete forebrain norepinephrine (NE). At about 70 days of age the rats were water deprived and trained for three days to drink in a novel apparatus. On the fourth day (test day) drinking was either extinguished by elimination of water from the drinking tube or punished by lick-contingent shock. Just prior to this test session half of the vehicle and half of the 6-OHDA treated rats were given an injection of CDZ (8 mg/kg IP). Both the injection of CDZ and forebrain NE depletion prolonged responding during extinction and reduced the suppressant effects of punishment in male rats, and these effects were of similar magnitude. Furthermore, CDZ was as effective in neonatal 6-OHDA treated male rats as in vehicle treated rats indicating that decreased transmission is ascending NE fibers caused by CDZ is not solely responsible for its behavioral effects in extinction and conflict tasks. Rather, these effects may involve cooperative mediation by both noradrenergic and serotonergic forebrain terminals. Unexpectedly, CDZ's anti-extinction effect was absent in female rats and its anti-conflict effect observed only in NE depleted females.

  8. Slit-Robo signals regulate pioneer axon pathfinding of the tract of the postoptic commissure in the mammalian forebrain.

    Science.gov (United States)

    Ricaño-Cornejo, Itzel; Altick, Amy L; García-Peña, Claudia M; Nural, Hikmet Feyza; Echevarría, Diego; Miquelajáuregui, Amaya; Mastick, Grant S; Varela-Echavarría, Alfredo

    2011-10-01

    During early vertebrate forebrain development, pioneer axons establish a symmetrical scaffold descending longitudinally through the rostral forebrain, thus forming the tract of the postoptic commissure (TPOC). In mouse embryos, this tract begins to appear at embryonic day 9.5 (E9.5) as a bundle of axons tightly constrained at a specific dorsoventral level. We have characterized the participation of the Slit chemorepellants and their Robo receptors in the control of TPOC axon projection. In E9.5-E11.5 mouse embryos, Robo1 and Robo2 are expressed in the nucleus origin of the TPOC (nTPOC), and Slit expression domains flank the TPOC trajectory. These findings suggested that these proteins are important factors in the dorsoventral positioning of the TPOC axons. Consistently with this role, Slit2 inhibited TPOC axon growth in collagen gel cultures, and interfering with Robo function in cultured embryos induced projection errors in TPOC axons. Moreover, absence of both Slit1 and Slit2 or Robo1 and Robo2 in mutant mouse embryos revealed aberrant TPOC trajectories, resulting in abnormal spreading of the tract and misprojections into both ventral and dorsal tissues. These results reveal that Slit-Robo signaling regulates the dorsoventral position of this pioneer tract in the developing forebrain.

  9. Inactivation of jack bean urease by allicin.

    Science.gov (United States)

    Juszkiewicz, Adam; Zaborska, Wiesława; Sepioł, Janusz; Góra, Maciej; Zaborska, Anna

    2003-10-01

    Allicin--diallyl thiosulfinate--is the main biologically active component of freshly crushed garlic. Allicin was synthesized as described elsewhere and was tested for its inhibitory ability against jack bean urease in 20 mM phosphate buffer, pH 7.0 at 22 degrees C. The results indicate that allicin is an enzymatic inactivator. The loss of urease activity was irreversible, time- and concentration dependent and the kinetics of the inactivation was biphasic; each phase, obeyed pseudo-first-order kinetics. The rate constants for inactivation were measured for the fast and slow phases and for several concentrations of allicin. Thiol reagents, and competitive inhibitor (boric acid) protected the enzyme from loss of enzymatic activity. The studies demonstrate that urease inactivation results from the reaction between allicin and the SH-group, situated in the urease active site (Cys592).

  10. Photosensitizers mediated photodynamic inactivation against virus particles.

    Science.gov (United States)

    Sobotta, Lukasz; Skupin-Mrugalska, Paulina; Mielcarek, Jadwiga; Goslinski, Tomasz; Balzarini, Jan

    2015-01-01

    Viruses cause many diseases in humans from the rather innocent common cold to more serious or chronic, life-threatening infections. The long-term side effects, sometimes low effectiveness of standard pharmacotherapy and the emergence of drug resistance require a search for new alternative or complementary antiviral therapeutic approaches. One new approach to inactivate microorganisms is photodynamic antimicrobial chemotherapy (PACT). PACT has evolved as a potential method to inactivate viruses. The great challenge for PACT is to develop a methodology enabling the effective inactivation of viruses while leaving the host cells as untouched as possible. This review aims to provide some main directions of antiviral PACT, taking into account different photosensitizers, which have been widely investigated as potential antiviral agents. In addition, several aspects concerning PACT as a tool to assure viral inactivation in human blood products will be addressed.

  11. Chromosomal gene inactivation in the green sulfur bacterium Chlorobium tepidum by natural transformation

    DEFF Research Database (Denmark)

    Frigaard, N-U; Bryant, D A

    2001-01-01

    Conditions for inactivating chromosomal genes of Chlorobium tepidum by natural transformation and homologous recombination were established. As a model, mutants unable to perform nitrogen fixation were constructed by interrupting nifD with various antibiotic resistance markers. Growth of wild...

  12. Overexpression of SIRT1 in mouse forebrain impairs lipid/glucose metabolism and motor function.

    Directory of Open Access Journals (Sweden)

    Dongmei Wu

    Full Text Available SIRT1 plays crucial roles in glucose and lipid metabolism, and has various functions in different tissues including brain. The brain-specific SIRT1 knockout mice display defects in somatotropic signaling, memory and synaptic plasticity. And the female mice without SIRT1 in POMC neuron are more sensitive to diet-induced obesity. Here we created transgenic mice overexpressing SIRT1 in striatum and hippocampus under the control of CaMKIIα promoter. These mice, especially females, exhibited increased fat accumulation accompanied by significant upregulation of adipogenic genes in white adipose tissue. Glucose tolerance of the mice was also impaired with decreased Glut4 mRNA levels in muscle. Moreover, the SIRT1 overexpressing mice showed decreased energy expenditure, and concomitantly mitochondria-related genes were decreased in muscle. In addition, these mice showed unusual spontaneous physical activity pattern, decreased activity in open field and rotarod performance. Further studies demonstrated that SIRT1 deacetylated IRS-2, and upregulated phosphorylation level of IRS-2 and ERK1/2 in striatum. Meanwhile, the neurotransmitter signaling in striatum and the expression of endocrine hormones in hypothalamus and serum T3, T4 levels were altered. Taken together, our findings demonstrate that SIRT1 in forebrain regulates lipid/glucose metabolism and motor function.

  13. Comparison and optimization of hiPSC forebrain cortical differentiation protocols.

    Science.gov (United States)

    Muratore, Christina R; Srikanth, Priya; Callahan, Dana G; Young-Pearse, Tracy L

    2014-01-01

    Several protocols have been developed for human induced pluripotent stem cell neuronal differentiation. We compare several methods for forebrain cortical neuronal differentiation by assessing cell morphology, immunostaining and gene expression. We evaluate embryoid aggregate vs. monolayer with dual SMAD inhibition differentiation protocols, manual vs. AggreWell aggregate formation, plating substrates, neural progenitor cell (NPC) isolation methods, NPC maintenance and expansion, and astrocyte co-culture. The embryoid aggregate protocol, using a Matrigel substrate, consistently generates a high yield and purity of neurons. NPC isolation by manual selection, enzymatic rosette selection, or FACS all are efficient, but exhibit some differences in resulting cell populations. Expansion of NPCs as neural aggregates yields higher cell purity than expansion in a monolayer. Finally, co-culture of iPSC-derived neurons with astrocytes increases neuronal maturity by day 40. This study directly compares commonly employed methods for neuronal differentiation of iPSCs, and can be used as a resource for choosing between various differentiation protocols.

  14. Comparison and optimization of hiPSC forebrain cortical differentiation protocols.

    Directory of Open Access Journals (Sweden)

    Christina R Muratore

    Full Text Available Several protocols have been developed for human induced pluripotent stem cell neuronal differentiation. We compare several methods for forebrain cortical neuronal differentiation by assessing cell morphology, immunostaining and gene expression. We evaluate embryoid aggregate vs. monolayer with dual SMAD inhibition differentiation protocols, manual vs. AggreWell aggregate formation, plating substrates, neural progenitor cell (NPC isolation methods, NPC maintenance and expansion, and astrocyte co-culture. The embryoid aggregate protocol, using a Matrigel substrate, consistently generates a high yield and purity of neurons. NPC isolation by manual selection, enzymatic rosette selection, or FACS all are efficient, but exhibit some differences in resulting cell populations. Expansion of NPCs as neural aggregates yields higher cell purity than expansion in a monolayer. Finally, co-culture of iPSC-derived neurons with astrocytes increases neuronal maturity by day 40. This study directly compares commonly employed methods for neuronal differentiation of iPSCs, and can be used as a resource for choosing between various differentiation protocols.

  15. Reference and working memory of rats following hippocampal damage induced by transient forebrain ischemia.

    Science.gov (United States)

    Davis, H P; Tribuna, J; Pulsinelli, W A; Volpe, B T

    1986-01-01

    Acquisition of reference and working memory was evaluated in an animal model of cerebral ischemia. Rats were subjected to 30 minutes of transient forebrain ischemia, allowed to recover, and then tested for 95 trials on an 8-arm maze with 5 arms baited. During the 95 trials post ischemic (PI) rats made significantly more working and reference errors than controls (p less than 0.05). However, an analysis of the last 20 trials (75-95) showed that while PI rats and control rats had comparable reference memory (p greater than 0.8). PI rats tended to have a persistent working memory deficit compared to controls (p less than 0.06). Subsequent morphologic analysis showed that PI rats had almost complete loss of pyramidal neurons in the anterior CA1 region of the hippocampus, moderate to severe loss in mid-dorsal posterior hippocampus, and less damage to the dorsolateral striatum. These results suggest that the PI animal is a reasonable model for the permanent behavioral impairment and pathologic damage found in some human survivors of cardiac arrest.

  16. Computational perspectives on forebrain microcircuits implicated in reinforcement learning, action selection, and cognitive control.

    Science.gov (United States)

    Bullock, Daniel; Tan, Can Ozan; John, Yohan J

    2009-01-01

    Abundant new information about signaling pathways in forebrain microcircuits presents many challenges, and opportunities for discovery, to computational neuroscientists who strive to bridge from microcircuits to flexible cognition and action. Accurate treatment of microcircuit pathways is especially critical for creating models that correctly predict the outcomes of candidate neurological therapies. Recent models are trying to specify how cortical circuits that enable planning and voluntary actions interact with adaptive subcortical microcircuits in the basal ganglia. The basal ganglia are strongly implicated in reinforcement learning, and in all behavior and cognition over which the frontal lobes exert flexible control. The persisting role of the basal ganglia shows that ancient vertebrate designs for motivated action selection proved adaptable enough to support many "modern" behavioral innovations, including fluent generation of language and speech. This paper summarizes how recent models have incorporated realistic representations of microcircuit features, and have begun to trace their computational implications. Also summarized are recent empirical discoveries that provide guidance regarding how to formulate the rules for synaptic modification that govern learning in cortico-striatal pathways. Such efforts are contributing to an emerging synthesis based on an interlocking set of computational hypotheses regarding cortical interactions with basal ganglia and thalamic nuclei. These hypotheses specify how specialized microcircuits solve learning and control problems inherent to the brain's parallel design.

  17. Birds have primate-like numbers of neurons in the forebrain

    Science.gov (United States)

    Olkowicz, Seweryn; Kocourek, Martin; Lučan, Radek K.; Porteš, Michal; Fitch, W. Tecumseh; Herculano-Houzel, Suzana; Němec, Pavel

    2016-01-01

    Some birds achieve primate-like levels of cognition, even though their brains tend to be much smaller in absolute size. This poses a fundamental problem in comparative and computational neuroscience, because small brains are expected to have a lower information-processing capacity. Using the isotropic fractionator to determine numbers of neurons in specific brain regions, here we show that the brains of parrots and songbirds contain on average twice as many neurons as primate brains of the same mass, indicating that avian brains have higher neuron packing densities than mammalian brains. Additionally, corvids and parrots have much higher proportions of brain neurons located in the pallial telencephalon compared with primates or other mammals and birds. Thus, large-brained parrots and corvids have forebrain neuron counts equal to or greater than primates with much larger brains. We suggest that the large numbers of neurons concentrated in high densities in the telencephalon substantially contribute to the neural basis of avian intelligence. PMID:27298365

  18. The amygdala and basal forebrain as a pathway for motivationally guided attention.

    Science.gov (United States)

    Peck, Christopher J; Salzman, C Daniel

    2014-10-08

    Visual stimuli associated with rewards attract spatial attention. Neurophysiological mechanisms that mediate this process must register both the motivational significance and location of visual stimuli. Recent neurophysiological evidence indicates that the amygdala encodes information about both of these parameters. Furthermore, the firing rate of amygdala neurons predicts the allocation of spatial attention. One neural pathway through which the amygdala might influence attention involves the intimate and bidirectional connections between the amygdala and basal forebrain (BF), a brain area long implicated in attention. Neurons in the rhesus monkey amygdala and BF were therefore recorded simultaneously while subjects performed a detection task in which the stimulus-reward associations of visual stimuli modulated spatial attention. Neurons in BF were spatially selective for reward-predictive stimuli, much like the amygdala. The onset of reward-predictive signals in each brain area suggested different routes of processing for reward-predictive stimuli appearing in the ipsilateral and contralateral fields. Moreover, neurons in the amygdala, but not BF, tracked trial-to-trial fluctuations in spatial attention. These results suggest that the amygdala and BF could play distinct yet inter-related roles in influencing attention elicited by reward-predictive stimuli.

  19. A songbird forebrain area potentially involved in auditory discrimination and memory formation

    Indian Academy of Sciences (India)

    Raphael Pinaud; Thomas A Terleph

    2008-03-01

    Songbirds rely on auditory processing of natural communication signals for a number of social behaviors, including mate selection, individual recognition and the rare behavior of vocal learning – the ability to learn vocalizations through imitation of an adult model, rather than by instinct. Like mammals, songbirds possess a set of interconnected ascending and descending auditory brain pathways that process acoustic information and that are presumably involved in the perceptual processing of vocal communication signals. Most auditory areas studied to date are located in the caudomedial forebrain of the songbird and include the thalamo-recipient field L (subfields L1, L2 and L3), the caudomedial and caudolateral mesopallium (CMM and CLM, respectively) and the caudomedial nidopallium (NCM). This review focuses on NCM, an auditory area previously proposed to be analogous to parts of the primary auditory cortex in mammals. Stimulation of songbirds with auditory stimuli drives vigorous electrophysiological responses and the expression of several activity-regulated genes in NCM. Interestingly, NCM neurons are tuned to species-specific songs and undergo some forms of experience-dependent plasticity in-vivo. These activity-dependent changes may underlie long-term modifications in the functional performance of NCM and constitute a potential neural substrate for auditory discrimination. We end this review by discussing evidence that suggests that NCM may be a site of auditory memory formation and/or storage.

  20. NKCC1 controls GABAergic signaling and neuroblast migration in the postnatal forebrain

    Directory of Open Access Journals (Sweden)

    Murray Kerren

    2011-02-01

    Full Text Available Abstract From an early postnatal period and throughout life there is a continuous production of olfactory bulb (OB interneurons originating from neuronal precursors in the subventricular zone. To reach the OB circuits, immature neuroblasts migrate along the rostral migratory stream (RMS. In the present study, we employed cultured postnatal mouse forebrain slices and used lentiviral vectors to label neuronal precursors with GFP and to manipulate the expression levels of the Na-K-2Cl cotransporter NKCC1. We investigated the role of this Cl- transporter in different stages of postnatal neurogenesis, including neuroblast migration and integration in the OB networks once they have reached the granule cell layer (GCL. We report that NKCC1 activity is necessary for maintaining normal migratory speed. Both pharmacological and genetic manipulations revealed that NKCC1 maintains high [Cl-]i and regulates the resting membrane potential of migratory neuroblasts whilst its functional expression is strongly reduced at the time cells reach the GCL. As in other developing systems, NKCC1 shapes GABAA-dependent signaling in the RMS neuroblasts. Also, we show that NKCC1 controls the migration of neuroblasts in the RMS. The present study indeed indicates that the latter effect results from a novel action of NKCC1 on the resting membrane potential, which is independent of GABAA-dependent signaling. All in all, our findings show that early stages of the postnatal recruitment of OB interneurons rely on precise, orchestrated mechanisms that depend on multiple actions of NKCC1.

  1. Increased innervation of forebrain targets by midbrain dopaminergic neurons in the absence of FGF-2.

    Science.gov (United States)

    Rumpel, R; Baron, O; Ratzka, A; Schröder, M-L; Hohmann, M; Effenberg, A; Claus, P; Grothe, C

    2016-02-09

    Fibroblast growth factors (FGFs) regulate development and maintenance, and reduce vulnerability of neurons. FGF-2 is essential for survival of midbrain dopaminergic (DA) neurons and is responsible for their dysplasia and disease-related degeneration. We previously reported that FGF-2 is involved in adequate forebrain (FB) target innervation by these neurons in an organotypic co-culture model. It remains unclear, how this ex-vivo phenotype relates to the in vivo situation, and which FGF-related signaling pathway is involved in this process. Here, we demonstrate that lack of FGF-2 results in an increased volume of the striatal target area in mice. We further add evidence that the low molecular weight (LMW) FGF-2 isoform is responsible for this phenotype, as this isoform is predominantly expressed in the embryonic ventral midbrain (VM) as well as in postnatal striatum (STR) and known to act via canonical transmembrane FGF receptor (FGFR) activation. Additionally, we confirm that the phenotype with an enlarged FB-target area by DA neurons can be mimicked in an ex-vivo explant model by inhibiting the canonical FGFR signaling, which resulted in decreased extracellular signal-regulated kinase (ERK) activation, while AKT activation remained unchanged.

  2. Interaction of basal forebrain cholinergic neurons with the glucocorticoid system in stress regulation and cognitive impairment.

    Science.gov (United States)

    Paul, Saswati; Jeon, Won Kyung; Bizon, Jennifer L; Han, Jung-Soo

    2015-01-01

    A substantial number of studies on basal forebrain (BF) cholinergic neurons (BFCN) have provided compelling evidence for their role in the etiology of stress, cognitive aging, Alzheimer's disease (AD), and other neurodegenerative diseases. BFCN project to a broad range of cortical sites and limbic structures, including the hippocampus, and are involved in stress and cognition. In particular, the hippocampus, the primary target tissue of the glucocorticoid stress hormones, is associated with cognitive function in tandem with hypothalamic-pituitary-adrenal (HPA) axis modulation. The present review summarizes glucocorticoid and HPA axis research to date in an effort to establish the manner in which stress affects the release of acetylcholine (ACh), glucocorticoids, and their receptor in the context of cognitive processes. We attempt to provide the molecular interactive link between the glucocorticoids and cholinergic system that contributes to BFCN degeneration in stress-induced acceleration of cognitive decline in aging and AD. We also discuss the importance of animal models in facilitating such studies for pharmacological use, to which could help decipher disease states and propose leads for pharmacological intervention.

  3. Forebrain Ischemia Triggers GABAergic System Degeneration in Substantia Nigra at Chronic Stages in Rats

    Directory of Open Access Journals (Sweden)

    B. Lin

    2010-01-01

    Full Text Available The long-term consequences of forebrain ischemia include delayed Parkinson's syndrome. This study revealed delayed neurodegeneration in the substantia nigra 8 weeks after 12.5 minutes of global ischemia in rat brain. Following neuronal loss of 30–40% in central and dorsolateral striatum at day 3, neuronal damage in the substantia nigra (SN was assessed at 4–8 weeks using immunohistochemistry for glutamate decarboxylase 67 (GAD67, vesicular GABA transporter (VGAT, and calretinin (CR. At day 56, the optical density of GAD67-, but not VGAT-, immunoreactivity in substantia nigra pars reticulata (SNR—significantly decreased. CR-neurons concentrated in substantia nigra pars compacta (SNC were reduced by 27% from day 3 (n=5 to day 56 (n=7, ANOVA, p<.01. Movement coordination was impaired at day 56, as evaluated using beam-walking test (time-to-traverse 5.6±1.2 sec versus 11.8±5.4 sec; sham versus ischemia, p<.05, n=5, and 7, resp.. Our results demonstrate delayed impairment of the GABAergic system components in SN and associated with movement deficits after global ischemia.

  4. Localisation of glycine receptors in the human forebrain, brainstem, and cervical spinal cord: an immunohistochemical review

    Directory of Open Access Journals (Sweden)

    Kristin Baer

    2009-11-01

    Full Text Available Inhibitory neurotransmitter receptors for glycine (GlyR are heteropentameric chloride ion channels that are comprised of four functional subunits, alpha1-3 and beta and that facilitate fast-response, inhibitory neurotransmission in the mammalian brain and spinal cord. We have investigated the distribution of GlyRs in the human forebrain, brainstem, and cervical spinal cord using immunohistochemistry at light and confocal laser scanning microscopy levels. This review will summarize the present knowledge on the GlyR distribution in the human brain using our established immunohistochemical techniques. The results of our immunohistochemical labeling studies demonstrated GlyR immunoreactivity (IR throughout the human basal ganglia, substantia nigra, various pontine regions, rostral medulla oblongata and the cervical spinal cord present as intense and abundant punctate IR along the membranes of the neuronal soma and dendrites. This work is part of a systematic study of inhibitory neurotransmitter receptor distribution in the human CNS, and provides a basis for additional detailed physiological and pharmacological studies on the inter-relationship of GlyR, GABAAR and gephyrin in the human brain. This basic mapping exercise, we believe, will provide important baselines for the testing of future pharmacotherapies and drug regimes that modulate neuroinhibitory systems. These findings provide new information for understanding the complexity of glycinergic functions in the human brain, which will translate into the contribution of inhibitory mechanisms in paroxysmal disorders and neurodegenerative diseases such as Epilepsy, Huntington's and Parkinson’s Disease and Motor Neuron Disease.

  5. Basal forebrain motivational salience signal enhances cortical processing and decision speed

    Directory of Open Access Journals (Sweden)

    Sylvina M Raver

    2015-10-01

    Full Text Available The basal forebrain (BF contains major projections to the cerebral cortex, and plays a well-documented role in arousal, attention, decision-making, and in modulating cortical activity. BF neuronal degeneration is an early event in Alzheimer’s disease and dementias, and occurs in normal cognitive aging. While the BF is best known for its population of cortically projecting cholinergic neurons, the region is anatomically and neurochemically diverse, and also contains prominent populations of non-cholinergic projection neurons. In recent years, increasing attention has been dedicated to these non-cholinergic BF neurons in order to better understand how non-cholinergic BF circuits control cortical processing and behavioral performance. In this review, we focus on a unique population of putative non-cholinergic BF neurons that encodes the motivational salience of stimuli with a robust ensemble bursting response. We review recent studies that describe the specific physiological and functional characteristics of these BF salience-encoding neurons in behaving animals. These studies support the unifying hypothesis whereby BF salience-encoding neurons act as a gain modulation mechanism of the decision-making process to enhance cortical processing of behaviorally relevant stimuli, and thereby facilitate faster and more precise behavioral responses. This function of BF salience-encoding neurons represents a critical component in determining which incoming stimuli warrant an animal’s attention, and is therefore a fundamental and early requirement of behavioral flexibility.

  6. Specification of Region-Specific Neurons Including Forebrain Glutamatergic Neurons from Human Induced Pluripotent Stem Cells

    Science.gov (United States)

    Martins-Taylor, Kristen; Wang, Xiaofang; Zhang, Zheng; Park, Jung Woo; Zhan, Shuning; Kronenberg, Mark S.; Lichtler, Alexander; Liu, Hui-Xia; Chen, Fang-Ping; Yue, Lixia; Li, Xue-Jun; Xu, Ren-He

    2010-01-01

    Background Directed differentiation of human induced pluripotent stem cells (hiPSC) into functional, region-specific neural cells is a key step to realizing their therapeutic promise to treat various neural disorders, which awaits detailed elucidation. Methodology/Principal Findings We analyzed neural differentiation from various hiPSC lines generated by others and ourselves. Although heterogeneity in efficiency of neuroepithelial (NE) cell differentiation was observed among different hiPSC lines, the NE differentiation process resembles that from human embryonic stem cells (hESC) in morphology, timing, transcriptional profile, and requirement for FGF signaling. NE cells differentiated from hiPSC, like those from hESC, can also form rostral phenotypes by default, and form the midbrain or spinal progenitors upon caudalization by morphogens. The rostrocaudal neural progenitors can further mature to develop forebrain glutamatergic projection neurons, midbrain dopaminergic neurons, and spinal motor neurons, respectively. Typical ion channels and action potentials were recorded in the hiPSC-derived neurons. Conclusions/Significance Our results demonstrate that hiPSC, regardless of how they were derived, can differentiate into a spectrum of rostrocaudal neurons with functionality, which supports the considerable value of hiPSC for study and treatment of patient-specific neural disorders. PMID:20686615

  7. Interaction of basal forebrain cholinergic neurons with the glucocorticoid system in stress regulation and cognitive impairment

    Directory of Open Access Journals (Sweden)

    Saswati ePaul

    2015-04-01

    Full Text Available A substantial number of studies on basal forebrain cholinergic neurons (BFCN have provided compelling evidence for their role in the etiology of stress, cognitive aging, Alzheimer’s disease (AD, and other neurodegenerative diseases. BFCN project to a broad range of cortical sites and limbic structures, including the hippocampus, and are involved in stress and cognition. In particular, the hippocampus, the primary target tissue of the glucocorticoid stress hormones, is associated with cognitive function in tandem with hypothalamic-pituitary-adrenal (HPA axis modulation. The present review summarizes glucocorticoid and HPA axis research to date in an effort to establish the manner in which stress affects the release of acetylcholine, glucocorticoids, and their receptor in the context of cognitive processes. We attempt to provide the molecular interactive link between the glucocorticoids and cholinergic system that contributes to BFCN degeneration in stress-induced acceleration of cognitive decline in aging and AD. We also discuss the importance of animal models in facilitating such studies for pharmacological use, which could help decipher disease states and propose leads for pharmacological intervention.

  8. Longitudinal measures of cholinergic forebrain atrophy in the transition from healthy aging to Alzheimer's disease.

    Science.gov (United States)

    Grothe, Michel; Heinsen, Helmut; Teipel, Stefan

    2013-04-01

    Recent evidence from cross-sectional in vivo imaging studies suggests that atrophy of the cholinergic basal forebrain (BF) in Alzheimer's disease (AD) can be distinguished from normal age-related degeneration even at predementia stages of the disease. Longitudinal study designs are needed to specify the dynamics of BF degeneration in the transition from normal aging to AD. We applied recently developed techniques for in vivo volumetry of the BF to serial magnetic resonance imaging scans of 82 initially healthy elderly individuals (60-93 years) and 50 patients with very mild AD (Clinical Dementia Rating score = 0.5) that were clinically followed over an average of 3 ± 1.5 years. BF atrophy rates were found to be significantly higher than rates of global brain shrinkage even in cognitively stable healthy elderly individuals. Compared with healthy control subjects, very mild AD patients showed reduced BF volumes at baseline and increased volume loss over time. Atrophy of the BF was more pronounced in progressive patients compared with those that remained stable. The cholinergic BF undergoes disproportionate degeneration in the aging process, which is further increased by the presence of AD.

  9. Transcriptional Networks Controlled by NKX2-1 in the Development of Forebrain GABAergic Neurons.

    Science.gov (United States)

    Sandberg, Magnus; Flandin, Pierre; Silberberg, Shanni; Su-Feher, Linda; Price, James D; Hu, Jia Sheng; Kim, Carol; Visel, Axel; Nord, Alex S; Rubenstein, John L R

    2016-09-21

    The embryonic basal ganglia generates multiple projection neurons and interneuron subtypes from distinct progenitor domains. Combinatorial interactions of transcription factors and chromatin are thought to regulate gene expression. In the medial ganglionic eminence, the NKX2-1 transcription factor controls regional identity and, with LHX6, is necessary to specify pallidal projection neurons and forebrain interneurons. Here, we dissected the molecular functions of NKX2-1 by defining its chromosomal binding, regulation of gene expression, and epigenetic state. NKX2-1 binding at distal regulatory elements led to a repressed epigenetic state and transcriptional repression in the ventricular zone. Conversely, NKX2-1 is required to establish a permissive chromatin state and transcriptional activation in the sub-ventricular and mantle zones. Moreover, combinatorial binding of NKX2-1 and LHX6 promotes transcriptionally permissive chromatin and activates genes expressed in cortical migrating interneurons. Our integrated approach provides a foundation for elucidating transcriptional networks guiding the development of the MGE and its descendants.

  10. Brainstem stimulation increases functional connectivity of basal forebrain-paralimbic network in isoflurane-anesthetized rats.

    Science.gov (United States)

    Pillay, Siveshigan; Liu, Xiping; Baracskay, Péter; Hudetz, Anthony G

    2014-09-01

    Brain states and cognitive-behavioral functions are precisely controlled by subcortical neuromodulatory networks. Manipulating key components of the ascending arousal system (AAS), via deep-brain stimulation, may help facilitate global arousal in anesthetized animals. Here we test the hypothesis that electrical stimulation of the oral part of the pontine reticular nucleus (PnO) under light isoflurane anesthesia, associated with loss of consciousness, leads to cortical desynchronization and specific changes in blood-oxygenation-level-dependent (BOLD) functional connectivity (FC) of the brain. BOLD signals were acquired simultaneously with frontal epidural electroencephalogram before and after PnO stimulation. Whole-brain FC was mapped using correlation analysis with seeds in major centers of the AAS. PnO stimulation produced cortical desynchronization, a decrease in δ- and θ-band power, and an increase in approximate entropy. Significant increases in FC after PnO stimulation occurred between the left nucleus Basalis of Meynert (NBM) as seed and numerous regions of the paralimbic network. Smaller increases in FC were present between the central medial thalamic nucleus and retrosplenium seeds and the left caudate putamen and NBM. The results suggest that, during light anesthesia, PnO stimulation preferentially modulates basal forebrain-paralimbic networks. We speculate that this may be a reflection of disconnected awareness.

  11. Large-Scale Network Organisation in the Avian Forebrain: A Connectivity Matrix and Theoretical Analysis

    Directory of Open Access Journals (Sweden)

    Murray eShanahan

    2013-07-01

    Full Text Available Many species of birds, including pigeons, possess demonstrable cognitive capacities, and some are capable of cognitive feats matching those of apes. Since mammalian cortex is laminar while the avian telencephalon is nucleated, it is natural to ask whether the brains of these two cognitively capable taxa, despite their apparent anatomical dissimilarities, might exhibit common principles of organisation on some level. Complementing recent investigations of macro-scale brain connectivity in mammals, including humans and macaques, we here present the first large-scale wiring diagram for the forebrain of a bird. Using graph theory, we show that the pigeon telencephalon is organised along similar lines to that of a mammal. Both are modular, small-world networks with a connective core of hub nodes that includes prefrontal-like and hippocampal structures. These hub nodes are, topologically speaking, the most central regions of the pigeon's brain, as well as being the most richly connected, implying a crucial role in information flow. Overall, our analysis suggests that indeed, despite the absence of cortical layers and close to 300 million years of separate evolution, the connectivity of the avian brain conforms to the same organisational principles as the mammalian brain.

  12. Specification of region-specific neurons including forebrain glutamatergic neurons from human induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Hui Zeng

    Full Text Available BACKGROUND: Directed differentiation of human induced pluripotent stem cells (hiPSC into functional, region-specific neural cells is a key step to realizing their therapeutic promise to treat various neural disorders, which awaits detailed elucidation. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed neural differentiation from various hiPSC lines generated by others and ourselves. Although heterogeneity in efficiency of neuroepithelial (NE cell differentiation was observed among different hiPSC lines, the NE differentiation process resembles that from human embryonic stem cells (hESC in morphology, timing, transcriptional profile, and requirement for FGF signaling. NE cells differentiated from hiPSC, like those from hESC, can also form rostral phenotypes by default, and form the midbrain or spinal progenitors upon caudalization by morphogens. The rostrocaudal neural progenitors can further mature to develop forebrain glutamatergic projection neurons, midbrain dopaminergic neurons, and spinal motor neurons, respectively. Typical ion channels and action potentials were recorded in the hiPSC-derived neurons. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that hiPSC, regardless of how they were derived, can differentiate into a spectrum of rostrocaudal neurons with functionality, which supports the considerable value of hiPSC for study and treatment of patient-specific neural disorders.

  13. Olfactory tubercle stimulation alters odor preference behavior and recruits forebrain reward and motivational centers

    Directory of Open Access Journals (Sweden)

    Brynn J FitzGerald

    2014-03-01

    Full Text Available Rodents show robust behavioral responses to odors, including strong preferences or aversions for certain odors. The neural mechanisms underlying the effects of odors on these behaviors in animals are not well understood. Here, we provide an initial proof-of-concept study into the role of the olfactory tubercle (OT, a structure with known anatomical connectivity with both brain reward and olfactory structures, in regulating odor-motivated behaviors. We implanted c57bl/6 male mice with an ipsilateral bipolar electrode into the OT to administer electric current and thereby yield gross activation of the OT. We confirmed that electrical stimulation of the OT was rewarding, with mice frequently self-administering stimulation on a fixed ratio schedule. In a separate experiment, mice were presented with either fox urine or peanut odors in a three-chamber preference test. In absence of OT stimulation, significant preference for the peanut odor chamber was observed which was abolished in the presence of OT stimulation. Perhaps providing a foundation for this modulation in behavior, we found that OT stimulation significantly increased the number of c-Fos positive neurons in not only the OT, but also in forebrain structures essential to motivated behaviors, including the nucleus accumbens and lateral septum. The present results support the notion that the OT is integral to the display of motivated behavior and possesses the capacity to modulate odor hedonics either by directly altering odor processing or perhaps by indirect actions on brain reward and motivation structures.

  14. Microwave inactivation of Bacillus atrophaeus spores in healthcare waste.

    Science.gov (United States)

    Oliveira, E A; Nogueira, N G P; Innocentini, M D M; Pisani, R

    2010-11-01

    Public healthcare wastes from the region of Ribeirão Preto, Brazil, pre-sterilized in an autoclave, were inoculated with spores of Bacillus atrophaeus for microwave processing on a laboratory scale. The influence of waste moisture (40%, 50% and 60% wet basis), presence of surfactant, power per unit mass of waste (100, 150 and 200 W/kg) and radiation exposure time (from 5 to 40 min) on the heating curves was investigated. The most favorable conditions for waste heating with respect to moisture and use of surfactant were then applied in an experimental analysis of the degree of inactivation of B. atrophaeus spores as a function of time and power per unit mass of waste. Based on Chick's and Arrhenius laws, the experimental results were adjusted by the least squares method to determine the activation energies (9203-5782 J/mol) and the Arrhenius pre-exponential factor (0.23 min(-1)). The kinetic parameters thus obtained enabled us to predict the degree of inactivation achieved for B. atrophaeus spores in typical healthcare waste. The activation energy was found to decrease as the power per waste mass increased, leading to the conclusion that, in addition to the thermal effect on the inactivation of B. atrophaeus spores, there was an effect inherent to radiation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Transient inactivation of orbitofrontal cortex blocks reinforcer devaluation in macaques.

    Science.gov (United States)

    West, Elizabeth A; DesJardin, Jacqueline T; Gale, Karen; Malkova, Ludise

    2011-10-19

    The orbitofrontal cortex (OFC) and its interactions with the basolateral amygdala (BLA) are critical for goal-directed behavior, especially for adapting to changes in reward value. Here we used a reinforcer devaluation paradigm to investigate the contribution of OFC to this behavior in four macaques. Subjects that had formed associations between objects and two different primary reinforcers (foods) were presented with choices of objects overlying the two different foods. When one of the two foods was devalued by selective satiation, the subjects shifted their choices toward the objects that represented the nonsated food reward (devaluation effect). Transient inactivation of OFC by infusions of the GABA(A) receptor agonist muscimol into area 13 blocked the devaluation effect: the monkeys did not reduce their selection of objects associated with the devalued food. This effect was observed when OFC was inactivated during both satiation and the choice test, and during the choice test only. This supports our hypothesis that OFC activity is required during the postsatiety object choice period to guide the selection of objects. This finding sharply contrasts with the role of BLA in the same devaluation process (Wellman et al., 2005). Whereas activity in BLA was required during the selective satiation procedure, it was not necessary for guiding the subsequent object choice. Our results are the first to demonstrate that transient inactivation of OFC is sufficient to disrupt the devaluation effect, and to document a role for OFC distinct from that of BLA for the conditioned reinforcer devaluation process in monkeys.

  16. Inactivation of human myeloperoxidase by hydrogen peroxide.

    Science.gov (United States)

    Paumann-Page, Martina; Furtmüller, Paul G; Hofbauer, Stefan; Paton, Louise N; Obinger, Christian; Kettle, Anthony J

    2013-11-01

    Human myeloperoxidase (MPO) uses hydrogen peroxide generated by the oxidative burst of neutrophils to produce an array of antimicrobial oxidants. During this process MPO is irreversibly inactivated. This study focused on the unknown role of hydrogen peroxide in this process. When treated with low concentrations of H2O2 in the absence of reducing substrates, there was a rapid loss of up to 35% of its peroxidase activity. Inactivation is proposed to occur via oxidation reactions of Compound I with the prosthetic group or amino acid residues. At higher concentrations hydrogen peroxide acts as a suicide substrate with a rate constant of inactivation of 3.9 × 10(-3) s(-1). Treatment of MPO with high H2O2 concentrations resulted in complete inactivation, Compound III formation, destruction of the heme groups, release of their iron, and detachment of the small polypeptide chain of MPO. Ten of the protein's methionine residues were oxidized and the thermal stability of the protein decreased. Inactivation by high concentrations of H2O2 is proposed to occur via the generation of reactive oxidants when H2O2 reacts with Compound III. These mechanisms of inactivation may occur inside neutrophil phagosomes when reducing substrates for MPO become limiting and could be exploited when designing pharmacological inhibitors.

  17. Conditional inactivation of Myc impairs development of the exocrine pancreas.

    Science.gov (United States)

    Nakhai, Hassan; Siveke, Jens T; Mendoza-Torres, Lidia; Schmid, Roland M

    2008-10-01

    Recent studies have shown that Wnt/beta-catenin signaling is essential for development of the exocrine pancreas, but the role of beta-catenin-dependent target genes such as Myc during pancreatic development is not well known. Here, we show that tissue-specific deletion of Myc causes a slightly accelerated differentiation of pancreatic epithelial cells into endocrine cells and perturbs the proliferation of pancreatic progenitors and acinar precursor cells during early development, resulting in a severe reduction of the epithelial cell mass of pancreatic buds and an extensive acinar hypoplasia. Loss of Myc does not affect the expression of the tissue-specific transcription factor PTF1a, which is required for the differentiation of acinar cells. In contrast to its role for exocrine cell growth, the development of endocrine cell lineages is not significantly disturbed. These data suggest that Myc is required for the expansion of the exocrine pancreas. Our observations are consistent with the findings in beta-catenin-deficient pancreas, suggesting that Wnt/beta-catenin signaling affects the proliferation of pancreatic epithelial cells and acinar precursors through its target gene Myc.

  18. Visible-light-driven photocatalytic inactivation of Escherichia coli by magnetic Fe2O3-AgBr.

    Science.gov (United States)

    Ng, Tsz Wai; Zhang, Lisha; Liu, Jianshe; Huang, Guocheng; Wang, Wei; Wong, Po Keung

    2016-03-01

    Bacterial inactivation by magnetic photocatalyst receives increasing interests for the ease recovery and reuse of photocatalysts. This study investigated bacterial inactivation by a magnetic photocatalysts, Fe2O3-AgBr, under the irradiation of a commercially available light emitting diode lamp. The effects of different factors on the inactivation of Escherichia coli were also evaluated, in term of the efficiency in inactivation. The results showed that Fe2O3-AgBr was able to inactivate both Gram negative (E. coli) and Gram positive (Staphylococcus aureus) bacteria. Bacterial inactivation by Fe2O3-AgBr was more favorable under high temperature and alkaline pH. Presence of Ca(2+) promoted the bacterial inactivation while the presence of [Formula: see text] was inhibitory. The mechanisms of photocatalytic bacterial inactivation were systemically studied and the effects of the presence of various specific reactive species scavengers and argon suggest that Fe2O3-AgBr inactivate bacterial cells by the oxidation of H2O2 generated from the photo-generated electron and direct oxidation of photo-generated hole. The detection of different reactive species further supported the proposed mechanisms. The results provide information for the evaluation of bacterial inactivation performance of Fe2O3-AgBr under different conditions. More importantly, bacterial inactivation for five consecutive cycles demonstrated Fe2O3-AgBr exhibited highly stable bactericidal activity and suggest that the magnetic Fe2O3-AgBr has great potential for water disinfection.

  19. Effect of intracellular Ca2+ and action potential duration on L-type Ca2+ channel inactivation and recovery from inactivation in rabbit cardiac myocytes.

    Science.gov (United States)

    Altamirano, Julio; Bers, Donald M

    2007-07-01

    Ca(2+) current (I(Ca)) recovery from inactivation is necessary for normal cardiac excitation-contraction coupling. In normal hearts, increased stimulation frequency increases force, but in heart failure (HF) this force-frequency relationship (FFR) is often flattened or reversed. Although reduced sarcoplasmic reticulum Ca(2+)-ATPase function may be involved, decreased I(Ca) availability may also contribute. Longer action potential duration (APD), slower intracellular Ca(2+) concentration ([Ca(2+)](i)) decline, and higher diastolic [Ca(2+)](i) in HF could all slow I(Ca) recovery from inactivation, thereby decreasing I(Ca) availability. We measured the effect of different diastolic [Ca(2+)](i) on I(Ca) inactivation and recovery from inactivation in rabbit cardiac myocytes. Both I(Ca) and Ba(2+) current (I(Ba)) were measured. I(Ca) decay was accelerated only at high diastolic [Ca(2+)](i) (600 nM). I(Ba) inactivation was slower but insensitive to [Ca(2+)](i). Membrane potential dependence of I(Ca) or I(Ba) availability was not affected by [Ca(2+)](i) <600 nM. Recovery from inactivation was slowed by both depolarization and high [Ca(2+)](i). We also used perforated patch with action potential (AP)-clamp and normal Ca(2+) transients, using various APDs as conditioning pulses for different frequencies (and to simulate HF APD). Recovery of I(Ca) following longer APD was increasingly incomplete, decreasing I(Ca) availability. Trains of long APs caused a larger I(Ca) decrease than short APD at the same frequency. This effect on I(Ca) availability was exacerbated by slowing twitch [Ca(2+)](i) decline by approximately 50%. We conclude that long APD and slower [Ca(2+)](i) decline lead to cumulative inactivation limiting I(Ca) at high heart rates and might contribute to the negative FFR in HF, independent of altered Ca(2+) channel properties.

  20. The use of chlorine dioxide for the inactivation of copepod zooplankton in drinking water treatment.

    Science.gov (United States)

    Lin, Tao; Chen, Wei; Cai, Bo

    2014-01-01

    The presence of zooplankton in drinking water treatment system may cause a negative effect on the aesthetic value of drinking water and may also increase the threat to human health due to they being the carriers of bacteria. Very little research has been done on the effects of copepod inactivation and the mechanisms involved in this process. In a series of bench-scale experiments we used a response surface method to assess the sensitivity of copepod to inactivation when chlorine dioxide (ClO₂) was used as a disinfectant. We also assessed the effects of the ClO₂dosage, exposure time, organic matter concentration and temperature. Results indicated that the inactivation rate improved with increasing dosage, exposure time and temperature, whereas it decreased with increasing organic matter concentration. Copepod inactivation was more sensitive to the ClO₂dose than that to the exposure time, while being maintained at the same Ct-value conditions. The activation energy at different temperatures revealed that the inactivation of copepods with ClO₂was temperature-dependent. The presence of organic matter resulted in a lower available dose as well as a shorter available exposure time, which resulted in a decrease in inactivation efficiency.

  1. The inactivation of Chlorella spp. with dielectric barrier discharge in gas-liquid mixture

    Science.gov (United States)

    Song, Dan; Sun, Bing; Zhu, Xiaomei; Yan, Zhiyu; Liu, Hui; Liu, Yongjun

    2013-03-01

    The inactivation of Chlorella spp. with high voltage and frequency pulsed dielectric barrier discharge in hybrid gas-liquid reactor with a suspension electrode was studied experimentally. In the hybrid gas-liquid reactor, a steel plate was used as high voltage electrode while a quartz plate as a dielectric layer, another steel plate placing in the aqueous solution worked as a whole ground electrode. A suspension electrode is installed near the surface of solution between high voltage and ground electrode to make the dielectric barrier discharge uniform and stable, the discharge gap was between the quartz plate and the surface of the water. The effect of peak voltage, treatment time, the initial concentration of Chlorella spp. and conductivity of solution on the inactivation rate of Chlorella spp. was investigated, and the inactivation mechanism of Chlorella spp. preliminarily was studied. Utilizing this system inactivation of Chlorella spp., the inactivation rate increased with increasing of peak voltage, treatment time and electric conductivity. It was found that the inactivation rate of Chlorella spp. arrived at 100% when the initial concentration was 4 × 106 cells mL-1, and the optimum operation condition required a peak voltage of 20 kV, a treatment time of 10 min and a frequency of 7 kHz. Though the increasing of initial concentration of the Chlorella spp. contributed to the addition of interaction probability between the Chlorella spp. and O3, H2O2, high-energy electrons, UV radiation and other active substances, the total inactivation number raise, but the inactivation rate of the Chlorella spp. decreased.

  2. Inactivation of pathogenic bacteria in food matrices: high pressure processing, photodynamic inactivation and pressure-assisted photodynamic inactivation

    Science.gov (United States)

    Cunha, A.; Couceiro, J.; Bonifácio, D.; Martins, C.; Almeida, A.; Neves, M. G. P. M. S.; Faustino, M. A. F.; Saraiva, J. A.

    2017-09-01

    Traditional food processing methods frequently depend on the application of high temperature. However, heat may cause undesirable changes in food properties and often has a negative impact on nutritional value and organoleptic characteristics. Therefore, reducing the microbial load without compromising the desirable properties of food products is still a technological challenge. High-pressure processing (HPP) can be classified as a cold pasteurization technique, since it is a non-thermal food preservation method that uses hydrostatic pressure to inactivate spoilage microorganisms. At the same time, it increases shelf life and retains the original features of food. Photodynamic inactivation (PDI) is also regarded as promising approach for the decontamination of food matrices. In this case, the inactivation of bacterial cells is achieved by the cytotoxic effects of reactive oxygens species (ROS) produced from the combined interaction of a photosensitizer molecule, light and oxygen. This short review examines some recent developments on the application of HPP and PDI with food-grade photosensitizers for the inactivation of listeriae, taken as a food pathogen model. The results of a proof-of-concept trial of the use of high-pressure as a coadjutant to increase the efficiency of photodynamic inactivation of bacterial endospores is also addressed.

  3. Cross-species affective functions of the medial forebrain bundle-implications for the treatment of affective pain and depression in humans.

    Science.gov (United States)

    Coenen, Volker A; Schlaepfer, Thomas E; Maedler, Burkhard; Panksepp, Jaak

    2011-10-01

    Major depression (MD) might be conceptualized as pathological under-arousal of positive affective systems as parts of a network of brain regions assessing, reconciling and storing emotional stimuli versus an over-arousal of parts of the same network promoting separation-distress/GRIEF. In this context depression can be explained as an emotional pain state that is the result of a disregulation of several sub-systems that under physiological conditions are concerned with bodily or emotional homeostasis of the human organism in a social context. Physiologically, homeostasis is maintained by influences of the SEEKING system represented - amongst others - by the medial forebrain bundle (MFB). Neuroimaging studies show that the MFB has a proven access to the GRIEF/Sadness system. A functional decoupling of these systems with a dysfunctional GRIEF pathway might result in MD. Therewith GRIEF and SEEKING/PLEASURE systems play important roles as opponents in maintenance of emotional homeostasis. Chronic electrical modulation of the reward SEEKING pathways with deep brain stimulation might show anti-depressive effects in humans suffering from MD by re-initiating an emotional equilibrium (of higher or lower activity) between these opposing systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Bacterial contamination of platelet concentrates: pathogen detection and inactivation methods

    Directory of Open Access Journals (Sweden)

    Dana Védy

    2009-04-01

    Full Text Available Whereas the reduction of transfusion related viral transmission has been a priority during the last decade, bacterial infection transmitted by transfusion still remains associated to a high morbidity and mortality, and constitutes the most frequent infectious risk of transfusion. This problem especially concerns platelet concentrates because of their favorable bacterial growth conditions. This review gives an overview of platelet transfusion-related bacterial contamination as well as on the different strategies to reduce this problem by using either bacterial detection or inactivation methods.

  5. Inactivation of enteroviruses in sewage with ozone

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, O.E.; Bogdanov, M.V.; Kazantseva, V.A.; Gabrilevskaia, L.N.; Kodkind, G.K.H.

    The study of ozone inactivation of enteroviruses in sewage showed the presence in sewage of suspensions of organic origin and bacterial flora to influence the rate of inactivation. The inactivation rate of poliomyelitis virus in sewage free from organic suspension and bacterial flora was significantly higher than that in sewage containing such suspension and bacterial flora. The inactivation rate of enteroviruses was found not to depend upon the protein and salt composition and pH of sewage or strain appurtenance of viruses. The inactivation rate of enteroviruses directly depended upon the dose of ozone and time of contact with it. Differences in the resistance of different types of poliomyelitis virus, ECHO and Coxsackie viruses to the effect of ozone are likely exist. These differences are manifested within the range of relatively small doses of ozone. E. coli is more resistant to ozone than entero-viruses. The results of laboratory studies were used to choose the regimen of sanitation of urban sewage to be used in technological cycles of industrial enterprises.

  6. Genes that escape from X inactivation.

    Science.gov (United States)

    Berletch, Joel B; Yang, Fan; Xu, Jun; Carrel, Laura; Disteche, Christine M

    2011-08-01

    To achieve a balanced gene expression dosage between males (XY) and females (XX), mammals have evolved a compensatory mechanism to randomly inactivate one of the female X chromosomes. Despite this chromosome-wide silencing, a number of genes escape X inactivation: in women about 15% of X-linked genes are bi-allelically expressed and in mice, about 3%. Expression from the inactive X allele varies from a few percent of that from the active allele to near equal expression. While most genes have a stable inactivation pattern, a subset of genes exhibit tissue-specific differences in escape from X inactivation. Escape genes appear to be protected from the repressive chromatin modifications associated with X inactivation. Differences in the identity and distribution of escape genes between species and tissues suggest a role for these genes in the evolution of sex differences in specific phenotypes. The higher expression of escape genes in females than in males implies that they may have female-specific roles and may be responsible for some of the phenotypes observed in X aneuploidy.

  7. Evidence for the involvement of two areas of the zebra finch forebrain in sexual imprinting.

    Science.gov (United States)

    Rollenhagen, A; Bischof, H J

    2000-03-01

    Sexual imprinting in male zebra finches is a two-step process, including an acquisition period early in life and a stabilization process normally occuring during the first courtship attempts of the male. During the acquisition period, a young male learns about its social environment. During stabilization, which can be delayed experimentally until day 100, it develops a preference for the appropriate object for courtship behavior on the basis of its previous and acute experience. Thereafter, this preference cannot be altered again. Exploring the physiological basis for imprinting, we have previously shown that the neurons of two forebrain areas (ANC and HAD) increase their spine density in the course of the stabilization process, while in two other areas (MNH and LNH) a decrease of spine density can be observed. With the present experiments, we tested the idea that the spine density decrease in MNH and LNH is the anatomical manifestation of the imprinting process. Previous behavioral experiments have shown that exposure to a nestbox after 100 days of age stabilizes the sexual preference of a zebra finch male as well as does exposure to a female. The present study shows that nestbox exposure also reduces the spine density in MNH and LNH, but has no effect on ANC and HAD. It has also been shown previously that treating males with an antiandrogen between days 40 and 100 affects the final preference of a male. The present experiment indicates that the same treatment affects spine growth during development in MNH and LNH and prevents the increase of spine density within HAD and ANC normally induced by exposure to a female. The results are interpreted as strong evidence for the involvement of MNH and LNH in sexual imprinting. Copyright 2000 Academic Press.

  8. ZENK expression in a restricted forebrain area correlates negatively with preference for an imprinted stimulus.

    Science.gov (United States)

    Huchzermeyer, Christine; Husemann, Pamela; Lieshoff, Carsten; Bischof, Hans-Joachim

    2006-07-15

    Sexual imprinting is an early learning process by which young birds acquire the characteristics of a potential sexual partner. The physiological basis of this learning process is an irreversible reduction of dendritic spines in two forebrain areas, the LNM (lateral nido-mesopallium) and the MNM (medial nido-mesopallium). The aim of the present study was to investigate whether these two brain areas are activated if the imprinted stimulus is presented to the adult bird after the end of the sensitive period. One group of zebra finch males was reared by their own parents. These birds, as adults, showed an exclusive preference for their own species in choice tests between a zebra finch and a Bengalese finch female. If exposed as adults to a zebra finch female, LNM and MNM showed lower activation, as measured by ZENK expression, compared to males exposed to a Bengalese finch female. A second group was reared by Bengalese finches and was exposed at day 100 to a zebra finch female for 1 week. As shown earlier, this regime leads to mixed choices, the birds are courting Bengalese and zebra finch females with a fixed ratio (preference score). If these birds were exposed to a zebra finch female as adults, the ZENK expression within LNM was much higher compared to group 1, and it showed a strong tendency to correlate negatively with the preference score: Birds with higher zebra finch preference showed lower activation compared to those with a low zebra finch and a high Bengalese finch preference. We propose that higher ZENK activation in group 2 is due to the rearing by a foster species which may result in a more complex neuronal network. The negative relation between activation and preference score may be explained by special properties of the LNM and MNM networks.

  9. Distinct neuronal populations in the basal forebrain encode motivational salience and movement

    Directory of Open Access Journals (Sweden)

    Irene eAvila

    2014-12-01

    Full Text Available Basal forebrain (BF is one of the largest cortically-projecting neuromodulatory systems in the mammalian brain, and plays a key role in attention, arousal, learning and memory. The cortically projecting BF neurons, comprised of mainly magnocellular cholinergic and GABAergic neurons, are widely distributed across several brain regions that spatially overlap with the ventral striatopallidal system at the ventral pallidum (VP. As a first step toward untangling the respective functions of spatially overlapping BF and VP systems, the goal of this study was to comprehensively characterize the behavioral correlates and physiological properties of heterogeneous neuronal populations in the BF region. We found that, while rats performed a reward-biased simple reaction time task, distinct neuronal populations encode either motivational salience or movement information. The motivational salience of attended stimuli is encoded by phasic bursting activity of a large population of slow-firing neurons that have large, broad, and complex action potential waveforms. In contrast, two other separate groups of neurons encode movement-related information, and respectively increase and decrease firing rates while rats maintained fixation. These two groups of neurons mostly have higher firing rates and small, narrow action potential waveforms. These results support the conclusion that multiple neurophysiologically distinct neuronal populations in the BF region operate independently of each other as parallel functional circuits. These observations also caution against interpreting neuronal activity in this region as a homogeneous population reflecting the function of either BF or VP alone. We suggest that salience- and movement-related neuronal populations likely correspond to BF corticopetal neurons and VP neurons, respectively.

  10. Glucose metabolism and neurogenesis in the gerbil hippocampus after transient forebrain ischemia

    Science.gov (United States)

    Yoo, Dae Young; Lee, Kwon Young; Park, Joon Ha; Jung, Hyo Young; Kim, Jong Whi; Yoon, Yeo Sung; Won, Moo-Ho; Choi, Jung Hoon; Hwang, In Koo

    2016-01-01

    Recent evidence exists that glucose transporter 3 (GLUT3) plays an important role in the energy metabolism in the brain. Most previous studies have been conducted using focal or hypoxic ischemia models and have focused on changes in GLUT3 expression based on protein and mRNA levels rather than tissue levels. In the present study, we observed change in GLUT3 immunoreactivity in the adult gerbil hippocampus at various time points after 5 minutes of transient forebrain ischemia. In the sham-operated group, GLUT3 immunoreactivity in the hippocampal CA1 region was weak, in the pyramidal cells of the CA1 region increased in a time-dependent fashion 24 hours after ischemia, and in the hippocampal CA1 region decreased significantly between 2 and 5 days after ischemia, with high level of GLUT3 immunoreactivity observed in the CA1 region 10 days after ischemia. In a double immunofluorescence study using GLUT3 and glial-fibrillary acidic protein (GFAP), we observed strong GLUT3 immunoreactivity in the astrocytes. GLUT3 immunoreactivity increased after ischemia and peaked 7 days in the dentate gyrus after ischemia/reperfusion. In a double immunofluorescence study using GLUT3 and doublecortin (DCX), we observed low level of GLUT3 immunoreactivity in the differentiated neuroblasts of the subgranular zone of the dentate gyrus after ischemia. GLUT3 immunoreactivity in the sham-operated group was mainly detected in the subgranular zone of the dentate gyrus. These results suggest that the increase in GLUT3 immunoreactivity may be a compensatory mechanism to modulate glucose level in the hippocampal CA1 region and to promote adult neurogenesis in the dentate gyrus. PMID:27651772

  11. Altered mitochondrial respiration in selectively vulnerable brain subregions following transient forebrain ischemia in the rat.

    Science.gov (United States)

    Sims, N R; Pulsinelli, W A

    1987-11-01

    Mitochondrial respiratory function, assessed from the rate of oxygen uptake by homogenates of rat brain subregions, was examined after 30 min of forebrain ischemia and at recirculation periods of up to 48 h. Ischemia-sensitive regions which develop extensive neuronal loss during the recirculation period (dorsal-lateral striatum, CA1 hippocampus) were compared with ischemia-resistant areas (paramedian neocortex, CA3 plus CA4 hippocampus). All areas showed reductions (to 53-69% of control) during ischemia for oxygen uptake rates determined in the presence of ADP or an uncoupling agent, which then recovered within 1 h of cerebral recirculation. In the ischemia-resistant regions, oxygen uptake rates remained similar to control values for at least 48 h of recirculation. After 3 h of recirculation, a significant decrease in respiratory activity (measured in the presence of ADP or uncoupling agent) was observed in the dorsal-lateral striatum which progressed to reductions of greater than 65% of the initial activity by 24 h. In the CA1 hippocampus, oxygen uptake rates were unchanged for 24 h, but were significantly reduced (by 30% in the presence of uncoupling agent) at 48 h. These alterations parallel the development of histological evidence of ischemic cell change determined previously and apparently precede the appearance of differential changes between sensitive and resistant regions in the content of high-energy phosphate compounds. These results suggest that alterations of mitochondrial activity are a relatively early change in the development of ischemic cell death and provide a sensitive biochemical marker for this process.

  12. Electrophysiological changes of CA3 neurons and dentate granule cells following transient forebrain ischemia.

    Science.gov (United States)

    Howard, E M; Gao, T M; Pulsinelli, W A; Xu, Z C

    1998-07-06

    The electrophysiological responses of CA3 pyramidal neurons and dentate granule (DG) cells in rat hippocampus were studied after transient forebrain ischemia using intracellular recording and staining techniques in vivo. Approximately 5 min of ischemic depolarization was induced using 4-vessel occlusion method. The spike threshold and rheobase of CA3 neurons remained unchanged up to 12 h following reperfusion. No significant change in spike threshold was observed in DG cells but the rheobase transiently increased 6-9 h after ischemia. The input resistance and time constant of CA3 neurons increased 0-3 h after ischemia and returned to control ranges at later time periods. The spontaneous firing rate in CA3 neurons transiently decreased shortly following reperfusion, while that of DG cells progressively decreased after ischemia. In CA3 neurons, the amplitude and slope of excitatory postsynaptic potentials (EPSPs) transiently decreased 0-3 h after reperfusion, and the stimulus intensity threshold for EPSPs transiently increased at the same time. No significant changes in amplitude and slope of EPSPs were observed in DG cells, but the stimulus intensity threshold for EPSPs slightly increased shortly after reperfusion. The present study demonstrates that the excitability of CA3 pyramidal neurons and DG cells after 5 min ischemic depolarization is about the same as control levels, whereas the synaptic transmission to these cells was transiently suppressed after the ischemic insult. These results suggest that synaptic transmission is more sensitive to ischemia than membrane properties, and the depression of synaptic transmission may be a protective mechanism against ischemic insults.

  13. Reduced Cholinergic Basal Forebrain Integrity Links Neonatal Complications and Adult Cognitive Deficits After Premature Birth.

    Science.gov (United States)

    Grothe, Michel J; Scheef, Lukas; Bäuml, Josef; Meng, Chun; Daamen, Marcel; Baumann, Nicole; Zimmer, Claus; Teipel, Stefan; Bartmann, Peter; Boecker, Henning; Wolke, Dieter; Wohlschläger, Afra; Sorg, Christian

    2017-07-15

    Prematurely born individuals have an increased risk for long-term neurocognitive impairments. In animal models, development of the cholinergic basal forebrain (cBF) is selectively vulnerable to adverse effects of perinatal stressors, and impaired cBF integrity results in lasting cognitive deficits. We hypothesized that cBF integrity is impaired in prematurely born individuals and mediates adult cognitive impairments associated with prematurity. We used magnetic resonance imaging-based volumetric assessments of a cytoarchitectonically defined cBF region of interest to determine differences in cBF integrity between 99 adults who were born very preterm and/or with very low birth weight and 106 term-born control subjects from the same birth cohort. Magnetic resonance imaging-derived cBF volumes were studied in relation to neonatal clinical complications after delivery and intelligence measures (IQ) in adulthood. In adults who were born very preterm and/or with very low birth weight, cBF volumes were significantly reduced compared with term-born adults (-4.5% [F1,202 = 11.82, p = .001]). Lower cBF volume in adults who were born very preterm and/or with very low birth weight was specifically associated with both neonatal complications (rpart,92 = -.35, p premature birth and links neonatal complications with long-term cognitive outcome. Data suggest that cholinergic system abnormalities may play a relevant role for long-term neurocognitive impairments associated with premature delivery. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. Mechanisms underlying the basal forebrain enhancement of top-down and bottom-up attention.

    Science.gov (United States)

    Avery, Michael C; Dutt, Nikil; Krichmar, Jeffrey L

    2014-03-01

    Both attentional signals from frontal cortex and neuromodulatory signals from basal forebrain (BF) have been shown to influence information processing in the primary visual cortex (V1). These two systems exert complementary effects on their targets, including increasing firing rates and decreasing interneuronal correlations. Interestingly, experimental research suggests that the cholinergic system is important for increasing V1's sensitivity to both sensory and attentional information. To see how the BF and top-down attention act together to modulate sensory input, we developed a spiking neural network model of V1 and thalamus that incorporated cholinergic neuromodulation and top-down attention. In our model, activation of the BF had a broad effect that decreases the efficacy of top-down projections and increased the reliance of bottom-up sensory input. In contrast, we demonstrated how local release of acetylcholine in the visual cortex, which was triggered through top-down gluatmatergic projections, could enhance top-down attention with high spatial specificity. Our model matched experimental data showing that the BF and top-down attention decrease interneuronal correlations and increase between-trial reliability. We found that decreases in correlations were primarily between excitatory-inhibitory pairs rather than excitatory-excitatory pairs and suggest that excitatory-inhibitory decorrelation is necessary for maintaining low levels of excitatory-excitatory correlations. Increased inhibitory drive via release of acetylcholine in V1 may then act as a buffer, absorbing increases in excitatory-excitatory correlations that occur with attention and BF stimulation. These findings will lead to a better understanding of the mechanisms underyling the BF's interactions with attention signals and influences on correlations.

  15. Effects of olanzapine on regional C-Fos expression in rat forebrain.

    Science.gov (United States)

    Robertson, G S; Fibiger, H C

    1996-02-01

    Compared to typical antipsychotic drugs, clozapine produces a unique pattern of Fos-like immunoreactive neurons in the rat forebrain. It has been proposed, therefore, that this approach may be useful in identifying other agents with clozapine's therapeutic profile. In the present study, we examined the ability of olanzapine to increase the number of Fos-like immunoreactive neurons in the striatum, nucleus accumbens, lateral septal nucleus, and prefrontal cortex. Olanzapine (5, 10 mg/kg) produced dose-dependent increases in the number of Fos-positive neurons in the nucleus accumbens and lateral septal nucleus, important components of the limbic system that may mediate some of the therapeutic actions of neuroleptics. Olanzapine also produced dose-dependent increases in the number of Fos-positive neurons in the dorsolateral striatum, an effect that correlates with the ability of neuroleptics to produce extrapyramidal side-effects. The effects of olanzapine on regional c-fos expression are not therefore identical to clozapine, which is without effect in the dorsolateral striatum. However, olanzapine-induced increases in the dorsolateral striatum were considerably smaller than those generated in the nucleus accumbens suggesting that at low, potentially therapeutic doses olanzapine may not generate significant extrapyramidal side effects. Olanzapine also increased the number of Fos-positive neurons in medical prefrontal cortex, an action unique to clozapine and a few other atypical antipsychotics. These findings are consistent with the hypothesis that olanzapine is an atypical antipsychotic in the sense that it does not produce significant extrapyramidal side-effects at low therapeutic doses. However, extrapyramidal side-effects at higher doses can be predicted by these results. Finally, olanzapine's actions in the medial prefrontal cortex may be predictive of a clozapine-like profile with respect to actions on negative symptoms in schizophrenia. Additional clinical

  16. Temperature manipulation of neuronal dynamics in a forebrain motor control nucleus

    Science.gov (United States)

    Mindlin, Gabriel B.

    2017-01-01

    Different neuronal types within brain motor areas contribute to the generation of complex motor behaviors. A widely studied songbird forebrain nucleus (HVC) has been recognized as fundamental in shaping the precise timing characteristics of birdsong. This is based, among other evidence, on the stretching and the “breaking” of song structure when HVC is cooled. However, little is known about the temperature effects that take place in its neurons. To address this, we investigated the dynamics of HVC both experimentally and computationally. We developed a technique where simultaneous electrophysiological recordings were performed during temperature manipulation of HVC. We recorded spontaneous activity and found three effects: widening of the spike shape, decrease of the firing rate and change in the interspike interval distribution. All these effects could be explained with a detailed conductance based model of all the neurons present in HVC. Temperature dependence of the ionic channel time constants explained the first effect, while the second was based in the changes of the maximal conductance using single synaptic excitatory inputs. The last phenomenon, only emerged after introducing a more realistic synaptic input to the inhibitory interneurons. Two timescales were present in the interspike distributions. The behavior of one timescale was reproduced with different input balances received form the excitatory neurons, whereas the other, which disappears with cooling, could not be found assuming poissonian synaptic inputs. Furthermore, the computational model shows that the bursting of the excitatory neurons arises naturally at normal brain temperature and that they have an intrinsic delay at low temperatures. The same effect occurs at single synapses, which may explain song stretching. These findings shed light on the temperature dependence of neuronal dynamics and present a comprehensive framework to study neuronal connectivity. This study, which is based on

  17. Adenosine Inhibits the Excitatory Synaptic Inputs to Basal Forebrain Cholinergic, GABAergic and Parvalbumin Neurons in mice

    Directory of Open Access Journals (Sweden)

    Chun eYang

    2013-06-01

    Full Text Available Coffee and tea contain the stimulants caffeine and theophylline. These compounds act as antagonists of adenosine receptors. Adenosine promotes sleep and its extracellular concentration rises in association with prolonged wakefulness, particularly in the basal forebrain (BF region involved in activating the cerebral cortex. However, the effect of adenosine on identified BF neurons, especially non-cholinergic neurons, is incompletely understood. Here we used whole-cell patch-clamp recordings in mouse brain slices prepared from two validated transgenic mouse lines with fluorescent proteins expressed in GABAergic or parvalbumin (PV neurons to determine the effect of adenosine. Whole-cell recordings were made BF cholinergic neurons and from BF GABAergic & PV neurons with the size (>20 µm and intrinsic membrane properties (prominent H-currents corresponding to cortically projecting neurons. A brief (2 min bath application of adenosine (100 μM decreased the frequency but not the amplitude of spontaneous excitatory postsynaptic currents in all groups of BF cholinergic, GABAergic and PV neurons we recorded. In addition, adenosine decreased the frequency of miniature EPSCs in BF cholinergic neurons. Adenosine had no effect on the frequency of spontaneous inhibitory postsynaptic currents in cholinergic neurons or GABAergic neurons with large H-currents but reduced them in a group of GABAergic neurons with smaller H-currents. All effects of adenosine were blocked by a selective, adenosine A1 receptor antagonist, cyclopentyltheophylline (CPT, 1 μM. Adenosine had no postsynaptic effects. Taken together, our work suggests that adenosine promotes sleep by an A1-receptor mediated inhibition of glutamatergic inputs to cortically-projecting cholinergic and GABA/PV neurons. Conversely, caffeine and theophylline promote attentive wakefulness by inhibiting these A1 receptors in BF thereby promoting the high-frequency oscillations in the cortex required for

  18. Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain.

    Science.gov (United States)

    Marsicano, G; Lutz, B

    1999-12-01

    Cannabinoids can modulate motor behaviour, learning and memory, cognition and pain perception. These effects correlate with the expression of the cannabinoid receptor 1 (CB1) and with the presence of endogenous cannabinoids in the brain. In trying to obtain further insights into the mechanisms underlying the modulatory effects of cannabinoids, CB1-positive neurons were determined in the murine forebrain at a single cell resolution. We performed a double in situ hybridization study to detect mRNA of CB1 in combination with mRNA of glutamic acid decarboxylase 65k, neuropeptide cholecystokinin (CCK), parvalbumin, calretinin and calbindin D28k, respectively. Our results revealed that CB1-expressing cells can be divided into distinct neuronal subpopulations. There is a clear distinction between neurons containing CB1 mRNA either at high levels or low levels. The majority of high CB1-expressing cells are GABAergic (gamma-aminobutyric acid) neurons belonging mainly to the cholecystokinin-positive and parvalbumin-negative type of interneurons (basket cells) and, to a lower extent, to the calbindin D28k-positive mid-proximal dendritic inhibitory interneurons. Only a fraction of low CB1-expressing cells is GABAergic. In the hippocampus, amygdala and entorhinal cortex area, CB1 mRNA is present at low but significant levels in many non-GABAergic cells that can be considered as projecting principal neurons. Thus, a complex mechanism appears to underlie the modulatory effects of cannabinoids. They might act on principal glutamatergic circuits as well as modulate local GABAergic inhibitory circuits. CB1 is very highly coexpressed with CCK. It is known that cannabinoids and CCK often have opposite effects on behaviour and physiology. Therefore, we suggest that a putative cross-talk between cannabinoids and CCK might exist and will be relevant to better understanding of physiology and pharmacology of the cannabinoid system.

  19. Grey matter atrophy of basal forebrain and hippocampus in mild cognitive impairment.

    Science.gov (United States)

    Zhang, Haobo; Trollor, Julian N; Wen, Wei; Zhu, Wanlin; Crawford, John D; Kochan, Nicole A; Slavin, Melissa J; Brodaty, Henry; Reppermund, Simone; Kang, Kristan; Mather, Karen A; Sachdev, Perminder S

    2011-05-01

    The basal forebrain area (BFA) is closely connected to the hippocampus by virtue of cholinergic neuronal projections. Structural neuroimaging studies have shown reduced volumes of both structures in Alzheimer's disease and its prodromal stage mild cognitive impairment (MCI), but generally not in the same investigation. By combining voxel based morphometry and region of interest methods, we measured the grey matter (GM) volumes of the two brain regions with the goal of elucidating their contributions to MCI and its two subtypes (amnestic MCI and non-amnestic MCI) in an elderly epidemiological sample. The results replicated previous findings that the atrophies of both brain regions were associated with an increased likelihood of MCI and its two subtypes. However, in a regression model for the prediction of MCI with GM volumes for both regions used as predictors, only hippocampal atrophy remained significant. Two possible interpretations for this pattern of results were discussed. One is that the observed correlation between BFA atrophy and MCI is spurious and due to the hippocampal atrophy correlated with both. Alternatively, our observation is consistent with the possibility that BFA atrophy has a causal effect on MCI, which is mediated via its influence on hippocampal atrophy. Furthermore, we found that the left hippocampal atrophy had a stronger effect than the right hippocampus and bilateral BFA in the prediction of amnestic MCI occurrence when the four unilateral areas were entered into one regression model. In addition, a slight but statistically significant difference was found in the left hippocampal volume between APOE ε4 allele carriers and non-carriers, consistent with prior studies.

  20. Glucose metabolism and neurogenesis in the gerbil hippocampus after transient forebrain ischemia

    Institute of Scientific and Technical Information of China (English)

    Dae Young Yoo; Kwon Young Lee; Joon Ha Park; Hyo Young Jung; Jong Whi Kim; Yeo Sung Yoon; Moo-Ho Won; Jung Hoon Choi; In Koo Hwang

    2016-01-01

    Recent evidence exists that glucose transporter 3 (GLUT3) plays an important role in the energy metabo-lism in the brain. Most previous studies have been conducted using focal or hypoxic ischemia models and have focused on changes in GLUT3 expression based on protein and mRNA levels rather than tissue levels. In the present study, we observed change in GLUT3 immunoreactivity in the adult gerbil hippocampus at various time points after 5 minutes of transient forebrain ischemia. In the sham-operated group, GLUT3 immunoreactivity in the hippocampal CA1 region was weak, in the pyramidal cells of the CA1 region in-creased in a time-dependent fashion 24 hours after ischemia, and in the hippocampal CA1 region decreased signiifcantly between 2 and 5 days after ischemia, with high level of GLUT3 immunoreactivity observed in the CA1 region 10 days after ischemia. In a double immunolfuorescence study using GLUT3 and gli-al-ifbrillary acidic protein (GFAP), we observed strong GLUT3 immunoreactivity in the astrocytes. GLUT3 immunoreactivity increased after ischemia and peaked 7 days in the dentate gyrus after ischemia/reperfu-sion. In a double immunolfuorescence study using GLUT3 and doublecortin (DCX), we observed low level of GLUT3 immunoreactivity in the differentiated neuroblasts of the subgranular zone of the dentate gyrus after ischemia. GLUT3 immunoreactivity in the sham-operated group was mainly detected in the subgran-ular zone of the dentate gyrus. These results suggest that the increase in GLUT3 immunoreactivity may be a compensatory mechanism to modulate glucose level in the hippocampal CA1 region and to promote adult neurogenesis in the dentate gyrus.

  1. CHOLINERGIC NEURONS OF THE BASAL FOREBRAIN MEDIATE BIOCHEMICAL AND ELECTROPHYSIOLOGICAL MECHANISMS UNDERLYING SLEEP HOMEOSTASIS

    Science.gov (United States)

    Kalinchuk, Anna V.; Porkka-Heiskanen, Tarja; McCarley, Robert W.; Basheer, Radhika

    2015-01-01

    The tight coordination of biochemical and electrophysiological mechanisms underlies the homeostatic sleep pressure (HSP) produced by sleep deprivation (SD). We have reported that during SD the levels of inducible nitric oxide synthase (iNOS), extracellular nitric oxide (NO), adenosine [AD]ex, lactate [Lac]ex and pyruvate [Pyr]ex increase in the basal forebrain (BF). However, it is not clear whether all of them contribute to HSP leading to increased electroencephalogram (EEG) delta activity during non-rapid eye movement (NREM) recovery sleep (RS) following SD. Previously, we showed that NREM delta increase evident during RS depends on the presence of BF cholinergic (ChBF) neurons. Here, we investigated the role of ChBF cells in coordination of biochemical and EEG changes seen during SD and RS in the rat. Increases in low theta power (5–7Hz), but not high theta (7–9Hz), during SD correlated with the increase in NREM delta power during RS, and with the changes in nitrate/nitrite [NOx]ex and [AD]ex. Lesions of ChBF cells using IgG 192-saporin prevented increases in [NOx]ex, [AD]ex and low theta activity, during SD, but did not prevent increases in [Lac]ex and [Pyr]ex. Infusion of NO donor DETA NONOate into the saporin-treated BF failed to increase NREM RS and delta power, suggesting ChBF cells are important for mediating NO homeostatic effects. Finally, SD-induced iNOS was mostly expressed in ChBF cells, and the intensity of iNOS induction correlated with the increase in low theta activity. Together, our data indicate ChBF cells are important in regulating the biochemical and EEG mechanisms that contribute to HSP. PMID:25369989

  2. The medial forebrain bundle as a target for deep brain stimulation for obsessive-compulsive disorder.

    Science.gov (United States)

    Coenen, Volker A; Schlaepfer, Thomas E; Goll, Peter; Reinacher, Peter C; Voderholzer, Ulrich; Tebartz van Elst, Ludger; Urbach, Horst; Freyer, Tobias

    2017-06-01

    Deep brain stimulation (DBS) is a promising putative modality for the treatment of refractory psychiatric disorders such as major depression and obsessive-compulsive disorder (OCD). Several targets have been posited; however, a clear consensus on differential efficacy and possible modes of action remain unclear. DBS to the supero-lateral branch of the medial forebrain bundle (slMFB) has recently been introduced for major depression (MD). Due to our experience with slMFB stimulation for MD, and because OCD might be related to similar dysfunctions of the reward system, treatment with slMFB DBS seams meaningful. Here we describe our first 2 cases together with a hypothetical mode of action. We describe diffusion tensor imaging (DTI) fiber tractographically (FT)-assisted implantation of the bilateral DBS systems in 2 male patients. In a selected literature overview, we discuss the possible mode of action. Both patients were successfully implanted and stimulated. The follow-up time was 12 months. One patient showed a significant response (Yale-Brown Obsessive-Compulsive Scale [YBOCS] reduction by 35%); the other patient reached remission criteria 3 months after surgery (YBOCS<14) and showed mild OCD just above the remission criterion at 12 months follow-up. While the hypermetabolism theory for OCD involves the cortico-striato-thalamo-cortical (CSTC) network, we think that there is clinical evidence that the reward system plays a crucial role. Our findings suggest an important role of this network in mechanisms of disease development and recovery. In this uncontrolled case series, continuous bilateral DBS to the slMFB led to clinically significant improvements of ratings of OCD severity. Ongoing research focuses on the role of the reward system in OCD, and its yet-underestimated role in this underlying neurobiology of the disease.

  3. Effects of Ohmic Heating, Including Electric Field Intensity and Frequency, on Thermal Inactivation of Bacillus subtilis Spores.

    Science.gov (United States)

    Murashita, Suguru; Kawamura, Shuso; Koseki, Shigenobu

    2017-01-01

    Methods for microbial inactivation are important in the food industry; however, conventional external heating (CH) reduces food quality. Accordingly, the nonthermal effects of ohmic heating (OH) on Bacillus subtilis spores in a sodium chloride aqueous solution at 101°C (i.e., the boiling point), as well as the effects of electric field intensity and frequency during OH, were investigated. Survival kinetics were compared between OH and external CH. The inactivation effect on B. subtilis was greater for all electric field conditions (5, 10, and 20 V/cm) than for CH. In particular, 20 V/cm showed a significantly higher inactivation effect (P 0.05) in survival kinetics between 20, 40, and 60 kHz; B. subtilis spores were inactivated more efficiently as the frequency increased. B. subtilis spores were almost completely inactivated at 14 to 16 min for the 60-kHz treatment, but spores were still alive at 20 and 40 kHz for the same treatment times. These results demonstrated that OH inactivates B. subtilis spores more effectively than CH. OH conditions with high electric field intensities and high frequencies resulted in efficient B. subtilis spore inactivation.

  4. Visceral hyperalgesia induced by forebrain-specific suppression of native Kv7/KCNQ/M-current in mice

    Directory of Open Access Journals (Sweden)

    Bian Xiling

    2011-10-01

    Full Text Available Abstract Background Dysfunction of brain-gut interaction is thought to underlie visceral hypersensitivity which causes unexplained abdominal pain syndromes. However, the mechanism by which alteration of brain function in the brain-gut axis influences the perception of visceral pain remains largely elusive. In this study we investigated whether altered brain activity can generate visceral hyperalgesia. Results Using a forebrain specific αCaMKII promoter, we established a line of transgenic (Tg mice expressing a dominant-negative pore mutant of the Kv7.2/KCNQ2 channel which suppresses native KCNQ/M-current and enhances forebrain neuronal excitability. Brain slice recording of hippocampal pyramidal neurons from these Tg mice confirmed the presence of hyperexcitable properties with increased firing. Behavioral evaluation of Tg mice exhibited increased sensitivity to visceral pain induced by intraperitoneal (i.p. injection of either acetic acid or magnesium sulfate, and intracolon capsaicin stimulation, but not cutaneous sensation for thermal or inflammatory pain. Immunohistological staining showed increased c-Fos expression in the somatosensory SII cortex and insular cortex of Tg mice that were injected intraperitoneally with acetic acid. To mimic the effect of cortical hyperexcitability on visceral hyperalgesia, we injected KCNQ/M channel blocker XE991 into the lateral ventricle of wild type (WT mice. Intracerebroventricular injection of XE991 resulted in increased writhes of WT mice induced by acetic acid, and this effect was reversed by co-injection of the channel opener retigabine. Conclusions Our findings provide evidence that forebrain hyperexcitability confers visceral hyperalgesia, and suppression of central hyperexcitability by activation of KCNQ/M-channel function may provide a therapeutic potential for treatment of abdominal pain syndromes.

  5. Long-lasting novelty-induced neuronal reverberation during slow-wave sleep in multiple forebrain areas.

    Directory of Open Access Journals (Sweden)

    Sidarta Ribeiro

    2004-01-01

    Full Text Available The discovery of experience-dependent brain reactivation during both slow-wave (SW and rapid eye-movement (REM sleep led to the notion that the consolidation of recently acquired memory traces requires neural replay during sleep. To date, however, several observations continue to undermine this hypothesis. To address some of these objections, we investigated the effects of a transient novel experience on the long-term evolution of ongoing neuronal activity in the rat forebrain. We observed that spatiotemporal patterns of neuronal ensemble activity originally produced by the tactile exploration of novel objects recurred for up to 48 h in the cerebral cortex, hippocampus, putamen, and thalamus. This novelty-induced recurrence was characterized by low but significant correlations values. Nearly identical results were found for neuronal activity sampled when animals were moving between objects without touching them. In contrast, negligible recurrence was observed for neuronal patterns obtained when animals explored a familiar environment. While the reverberation of past patterns of neuronal activity was strongest during SW sleep, waking was correlated with a decrease of neuronal reverberation. REM sleep showed more variable results across animals. In contrast with data from hippocampal place cells, we found no evidence of time compression or expansion of neuronal reverberation in any of the sampled forebrain areas. Our results indicate that persistent experience-dependent neuronal reverberation is a general property of multiple forebrain structures. It does not consist of an exact replay of previous activity, but instead it defines a mild and consistent bias towards salient neural ensemble firing patterns. These results are compatible with a slow and progressive process of memory consolidation, reflecting novelty-related neuronal ensemble relationships that seem to be context- rather than stimulus-specific. Based on our current and previous results

  6. Transgenic up-regulation of alpha-CaMKII in forebrain leads to increased anxiety-like behaviors and aggression

    Directory of Open Access Journals (Sweden)

    Hasegawa Shunsuke

    2009-03-01

    Full Text Available Abstract Background Previous studies have demonstrated essential roles for alpha-calcium/calmodulin-dependent protein kinase II (alpha-CaMKII in learning, memory and long-term potentiation (LTP. However, previous studies have also shown that alpha-CaMKII (+/- heterozygous knockout mice display a dramatic decrease in anxiety-like and fearful behaviors, and an increase in defensive aggression. These findings indicated that alpha-CaMKII is important not only for learning and memory but also for emotional behaviors. In this study, to understand the roles of alpha-CaMKII in emotional behavior, we generated transgenic mice overexpressing alpha-CaMKII in the forebrain and analyzed their behavioral phenotypes. Results We generated transgenic mice overexpressing alpha-CaMKII in the forebrain under the control of the alpha-CaMKII promoter. In contrast to alpha-CaMKII (+/- heterozygous knockout mice, alpha-CaMKII overexpressing mice display an increase in anxiety-like behaviors in open field, elevated zero maze, light-dark transition and social interaction tests, and a decrease in locomotor activity in their home cages and novel environments; these phenotypes were the opposite to those observed in alpha-CaMKII (+/- heterozygous knockout mice. In addition, similarly with alpha-CaMKII (+/- heterozygous knockout mice, alpha-CaMKII overexpressing mice display an increase in aggression. However, in contrast to the increase in defensive aggression observed in alpha-CaMKII (+/- heterozygous knockout mice, alpha-CaMKII overexpressing mice display an increase in offensive aggression. Conclusion Up-regulation of alpha-CaMKII expression in the forebrain leads to an increase in anxiety-like behaviors and offensive aggression. From the comparisons with previous findings, we suggest that the expression levels of alpha-CaMKII are associated with the state of emotion; the expression level of alpha-CaMKII positively correlates with the anxiety state and strongly affects

  7. Orexin-A facilitates emergence of the rat from isoflurane anesthesia via mediation of the basal forebrain.

    Science.gov (United States)

    Zhang, Li-Na; Yang, Cen; Ouyang, Peng-Rong; Zhang, Zhi-Chao; Ran, Ming-Zi; Tong, Li; Dong, Hai-Long; Liu, Yong

    2016-08-01

    Previous studies have demonstrated that orexinergic neurons involve in promoting emergence from anesthesia of propofol, an intravenous anesthetics, while whether both of orexin-A and orexin-B have promotive action on emergence via mediation of basal forebrain (BF) in isoflurane anesthesia has not been elucidated. In this study, we observed c-Fos expressions in orexinergic neurons following isoflurane inhalation (for 0, 30, 60, and 120min) and at the time when the righting reflex returned after the cessation of anesthesia. The plasma concentrations of orexin-A and -B in anesthesia-arousal process were measured by radioimmunoassay. Orexin-A and -B (30 or 100pmol) or the orexin receptor-1 and -2 antagonist SB-334867A and TCS-OX2-29 (5 or 20μg) were microinjected into the basal forebrain respectively. The effects of them on the induction (loss of the righting reflex) and the emergence time (return of the righting reflex) under isoflurane anesthesia were observed. The results showed that the numbers of c-Fos-immunoreactive orexinergic neurons in the hypothalamus decreased over time with continued isoflurane inhalation, but restored at emergence. Similar alterations were observed in changes of plasma orexin-A concentrations but not in orexin-B during emergence. Administration of orexins had no effect on the induction time, but orexin-A facilitated the emergence of rats from isoflurane anesthesia while orexin-B didn't. Conversely, microinjection of the orexin receptor-1 antagonist SB-334867A delayed emergence from isoflurane anesthesia. The results indicate that orexin-A plays a promotive role in the emergence of isoflurane anesthesia and this effect is mediated by the basal forebrain.

  8. Very fast (and safe) inactivation of foot-and-mouth disease virus and enteroviruses by a combination of binary ethyleneimine and formaldehyde.

    Science.gov (United States)

    Barteling, S J; Cassim, N I

    2004-01-01

    For FMD vaccine production, inactivation of the FMD virus is the most critical step. Formerly, from 1940 onwards, the virus was inactivated with formaldehyde. This inactivation was relatively slow, about 0.2 - 0.3 log 10 per hour. Because formaldehyde not only reacts with the virus produced but with many other components in the medium, such as proteins and amino acids, its concentration can become rate-limiting and inactivation plots may show tailing-off, resulting in residual infectivity. Many of the bad stories of post-vaccination outbreaks date back to the use of formaldehyde-inactivated vaccines (e.g. the outbreaks in France in 1981 and in Eastern Germany causing the Danish outbreak in 1982). Much faster and safer inactivation was obtained with aziridines and in the 1980s binary ethyleneimine (BEI) was introduced in practically all vaccine production laboratories. If inactivation plots are made of every production batch, as is now required by the European Pharmacopoeia, and these plots show proper inactivation rates, vaccines can considered to be completely safe. Under optimal conditions, inactivation rates are in the range of 0.5 - 1.0 log 10 per hour. In general, the inactivation takes 40-48 hours,which will guarantee complete inactivation of all virus particles in a batch. Since formaldehyde (FA), the 'classical' inactivating agent, inactivates at a rate of 0.3 logs per hour only, a significant contribution of FA to the inactivation of BEI can hardly be expected. However, here it is shown that FA added during the BEI-inactivation process strongly augments inactivation rates with a hundred to thousand-times (to 2.5-3.5 logs per hour). This will enable inactivation during a working day or just overnight with even higher safety levels of the vaccines. Also, it is known that formaldehyde cross-links viral proteins which will stabilise the antigen. The short inactivation times will limit proteolytic destruction of 146 S antigen and increase antigen yields. It is

  9. Inactivation of foodborne microorganisms using engineered water nanostructures (EWNS).

    Science.gov (United States)

    Pyrgiotakis, Georgios; Vasanthakumar, Archana; Gao, Ya; Eleftheriadou, Mary; Toledo, Eduardo; DeAraujo, Alice; McDevitt, James; Han, Taewon; Mainelis, Gediminas; Mitchell, Ralph; Demokritou, Philip

    2015-03-17

    Foodborne diseases caused by the consumption of food contaminated with pathogenic microorganisms or their toxins have very serious economic and public health consequences. Here, we explored the effectiveness of a recently developed intervention method for inactivation of microorganisms on fresh produce, and food production surfaces. This method utilizes Engineered Water Nanostructures (EWNS) produced by electrospraying of water vapor. EWNS possess unique properties; they are 25 nm in diameter, remain airborne in indoor conditions for hours, contain Reactive Oxygen Species (ROS) and have very strong surface charge (on average 10 e/structure). Here, their efficacy in inactivating representative foodborne bacteria such as Escherichia coli, Salmonella enterica, and Listeria innocua, on stainless steel surfaces and on organic tomatoes, was assessed. The inactivation was facilitated using two different exposure approaches in order to optimize the delivery of EWNS to bacteria: (1) EWNS were delivered on the surfaces by diffusion and (2) a "draw through" Electrostatic Precipitator Exposure System (EPES) was developed and characterized for EWNS delivery to surfaces. Using the diffusion approach and an EWNS concentration of 24,000 #/cm3, the bacterial concentrations on the surfaces were reduced, depending on the bacterium and the surface type, by values ranging between 0.7 to 1.8 logs. Using the EPES approach and for an aerosol concentration of 50,000 #/cm3 at 90 min of exposure, results show a 1.4 log reduction for E. coli on organic tomato surfaces, as compared to the control (same conditions in regards to temperature and Relative Humidity). Furthermore, for L. innocua, the dose-response relationship was demonstrated and found to be a 0.7 and 1.2 logs removal at 12,000 and 23,000 #/cm3, respectively. The results presented here indicate that this novel, chemical-free, and environmentally friendly intervention method holds potential for development and application in the

  10. The hallucinogen d-lysergic acid diethylamide (d-LSD) induces the immediate-early gene c-Fos in rat forebrain.

    Science.gov (United States)

    Frankel, Paul S; Cunningham, Kathryn A

    2002-12-27

    The hallucinogen d-lysergic acid diethylamide (d-LSD) evokes dramatic somatic and psychological effects. In order to analyze the neural activation induced by this unique psychoactive drug, we tested the hypothesis that expression of the immediate-early gene product c-Fos is induced in specific regions of the rat forebrain by a relatively low, behaviorally active, dose of d-LSD (0.16 mg/kg, i.p.); c-Fos protein expression was assessed at 30 min, and 1, 2 and 4 h following d-LSD injection. A time- and region-dependent expression of c-Fos was observed with a significant increase (PLSD administration. These data demonstrate a unique pattern of c-Fos expression in the rat forebrain following a relatively low dose of d-LSD and suggest that activation of these forebrain regions contributes to the unique behavioral effects of d-LSD. Copyright 2002 Elsevier Science B.V.

  11. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB{sub 1} receptors and apoptotic cell death

    Energy Technology Data Exchange (ETDEWEB)

    Tomiyama, Ken-ichi; Funada, Masahiko, E-mail: mfunada@ncnp.go.jp

    2014-01-01

    The abuse of herbal products containing synthetic cannabinoids has become an issue of public concern. The purpose of this paper was to evaluate the acute cytotoxicity of synthetic cannabinoids on mouse brain neuronal cells. Cytotoxicity induced by synthetic cannabinoid (CP-55,940, CP-47,497, CP-47,497-C8, HU-210, JWH-018, JWH-210, AM-2201, and MAM-2201) was examined using forebrain neuronal cultures. These synthetic cannabinoids induced cytotoxicity in the forebrain cultures in a concentration-dependent manner. The cytotoxicity was suppressed by preincubation with the selective CB{sub 1} receptor antagonist AM251, but not with the selective CB{sub 2} receptor antagonist AM630. Furthermore, annexin-V-positive cells were found among the treated forebrain cells. Synthetic cannabinoid treatment induced the activation of caspase-3, and preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity. These synthetic cannabinoids induced apoptosis through a caspase-3-dependent mechanism in the forebrain cultures. Our results indicate that the cytotoxicity of synthetic cannabinoids towards primary neuronal cells is mediated by the CB{sub 1} receptor, but not by the CB{sub 2} receptor, and further suggest that caspase cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. In conclusion, excessive synthetic cannabinoid abuse may present a serious acute health concern due to neuronal damage or deficits in the brain. - Highlights: • Synthetic cannabinoids (classical cannabinoids, non-classical cannabinoids, and aminoalkylindole derivatives) induce cytotoxicity in mouse forebrain cultures. • Synthetic cannabinoid-induced cytotoxicity towards forebrain cultures is mediated by the CB{sub 1} receptor, but not by the CB{sub 2} receptor, and involves caspase-dependent apoptosis. • A high concentration of synthetic cannabinoids may be toxic to neuronal cells that express CB{sub 1} receptors.

  12. Kinetics and Mechanism of Protein Tyrosine Phosphatase 1B (PTP1B) Inactivation by Acrolein

    Science.gov (United States)

    Seiner, Derrick R.; LaButti, Jason N.; Gates, Kent S.

    2010-01-01

    Human cells are exposed to the electrophilic α,β-unsaturated aldehyde acrolein from a variety of sources. Reaction of acrolein with functionally critical protein thiol residues can yield important biological consequences. Protein tyrosine phosphatases (PTPs) are an important class of cysteine-dependent enzymes whose reactivity with acrolein previously has not been well characterized. These enzymes catalyze the dephosphorylation of phosphotyrosine residues on proteins via a phosphocysteine intermediate. PTPs work in tandem with protein tyrosine kinases to regulate a number of critically important mammalian signal transduction pathways. We find that acrolein is a potent time-dependent inactivator of the enzyme PTP1B (kinact = 0.02 ± 0.005 s−1, KI = 2.3 ± 0.6 × 10−4 M). Enzyme activity does not return upon gel filtration of the inactivated enzyme and addition of the competitive phosphatase inhibitor vanadate slows inactivation of PTP1B by acrolein. Together these observations suggest that acrolein covalently modifies the active site of PTP1B. Mass spectrometric analysis reveals that acrolein modifies the catalytic cysteine residue at the active site of the enzyme. Aliphatic aldehydes such as glyoxal, acetaldehyde, and propanal are relatively weak inactivators of PTP1B under the conditions employed here. Similarly, unsaturated aldehydes such as crotonaldehyde and 3-methyl-2-butenal bearing substitution at the alkene terminus are poor inactivators of the enzyme. Overall, the data suggest that enzyme inactivation occurs via conjugate addition of the catalytic cysteine residue to the carbon-carbon double bond of acrolein. The results indicate that inactivation of PTPs should be considered as a possible contributor to the diverse biological activities of acrolein and structurally-related α,β-unsaturated aldehydes. PMID:17655273

  13. Kinetics and mechanism of protein tyrosine phosphatase 1B inactivation by acrolein.

    Science.gov (United States)

    Seiner, Derrick R; LaButti, Jason N; Gates, Kent S

    2007-09-01

    Human cells are exposed to the electrophilic alpha,beta-unsaturated aldehyde acrolein from a variety of sources. The reaction of acrolein with functionally critical protein thiol residues can yield important biological consequences. Protein tyrosine phosphatases (PTPs) are an important class of cysteine-dependent enzymes whose reactivity with acrolein previously has not been well-characterized. These enzymes catalyze the dephosphorylation of phosphotyrosine residues on proteins via a phosphocysteine intermediate. PTPs work in tandem with protein tyrosine kinases to regulate a number of critically important mammalian signal transduction pathways. We find that acrolein is a potent time-dependent inactivator of the enzyme PTP1B ( k inact = 0.02 +/- 0.005 s (-1) and K I = 2.3 +/- 0.6 x 10 (-4) M). The enzyme activity does not return upon gel filtration of the inactivated enzyme, and addition of the competitive phosphatase inhibitor vanadate slows inactivation of PTP1B by acrolein. Together, these observations suggest that acrolein covalently modifies the active site of PTP1B. Mass spectrometric analysis reveals that acrolein modifies the catalytic cysteine residue at the active site of the enzyme. Aliphatic aldehydes such as glyoxal, acetaldehyde, and propanal are relatively weak inactivators of PTP1B under the conditions employed here. Similarly, unsaturated aldehydes such as crotonaldehyde and 3-methyl-2-butenal bearing substitution at the alkene terminus are poor inactivators of the enzyme. Overall, the data suggest that enzyme inactivation occurs via conjugate addition of the catalytic cysteine residue to the carbon-carbon double bond of acrolein. The results indicate that inactivation of PTPs should be considered as a possible contributor to the diverse biological activities of acrolein and structurally related alpha,beta-unsaturated aldehydes.

  14. C. botulinum inactivation kinetics implemented in a computational model of a high-pressure sterilization process.

    Science.gov (United States)

    Juliano, Pablo; Knoerzer, Kai; Fryer, Peter J; Versteeg, Cornelis

    2009-01-01

    High-pressure, high-temperature (HPHT) processing is effective for microbial spore inactivation using mild preheating, followed by rapid volumetric compression heating and cooling on pressure release, enabling much shorter processing times than conventional thermal processing for many food products. A computational thermal fluid dynamic (CTFD) model has been developed to model all processing steps, including the vertical pressure vessel, an internal polymeric carrier, and food packages in an axis-symmetric geometry. Heat transfer and fluid dynamic equations were coupled to four selected kinetic models for the inactivation of C. botulinum; the traditional first-order kinetic model, the Weibull model, an nth-order model, and a combined discrete log-linear nth-order model. The models were solved to compare the resulting microbial inactivation distributions. The initial temperature of the system was set to 90 degrees C and pressure was selected at 600 MPa, holding for 220 s, with a target temperature of 121 degrees C. A representation of the extent of microbial inactivation throughout all processing steps was obtained for each microbial model. Comparison of the models showed that the conventional thermal processing kinetics (not accounting for pressure) required shorter holding times to achieve a 12D reduction of C. botulinum spores than the other models. The temperature distribution inside the vessel resulted in a more uniform inactivation distribution when using a Weibull or an nth-order kinetics model than when using log-linear kinetics. The CTFD platform could illustrate the inactivation extent and uniformity provided by the microbial models. The platform is expected to be useful to evaluate models fitted into new C. botulinum inactivation data at varying conditions of pressure and temperature, as an aid for regulatory filing of the technology as well as in process and equipment design.

  15. Investigation of UV-TiO2 photocatalysis and its mechanism in Bacillus subtilis spore inactivation.

    Science.gov (United States)

    Zhang, Yiqing; Zhou, Lingling; Zhang, Yongji

    2014-09-01

    The inactivation levels of Bacillus subtilis spores for various disinfection processes (ultraviolet (UV), TiO2 and UV-TiO2) were compared. The results showed that the inactivation effect of B. subtilis spores by UV treatment alone was far below that for bacteria without endospores. TiO2 alone in the dark, as a control experiment, exhibited almost no inactivation effect. Compared with UV treatment alone, the inactivation effect increased significantly with the addition of TiO2. Increases of the UV irradiance and TiO2 concentration both contributed to the increase of the inactivation effect. Lipid peroxidation was found to be the underlying mechanism of inactivation. Malondialdehyde (MDA), the degradation product of lipid peroxidation, was used as an index to determine the extent of the reaction. The MDA concentration surged surprisingly to 3.24nmol/mg dry cell with the combination disinfection for 600sec (0.10mW/cm(2) irradiance and 10mg/L TiO2). In contrast, for UV alone or TiO2 in the dark, the MDA concentration was 0.38 and 0.25nmol/mg dry cell, respectively, under the same conditions. This indicated that both UV and TiO2 were essential for lipid peroxidation. Changes in cell ultrastructure were observed by transmission electron microscopy. The cell membrane was heavily damaged and cellular contents were completely lysed with the UV-TiO2 process, suggesting that lipid peroxidation was the root of the enhancement in inactivation efficiency.

  16. Pulsed electric field inactivation in a microreactor

    NARCIS (Netherlands)

    Fox, M.B.

    2006-01-01

    Pulsed electric fields (PEF) is a novel, non-thermal pasteurization method which uses short, high electric field pulses to inactivate microorganisms. The advantage of a pasteurization method like PEF compared to regular heat pasteurization is that the taste, flavour, texture and nutritional value ar

  17. Inactivation of Effector Caspases through Nondegradative Polyubiquitylation

    DEFF Research Database (Denmark)

    Ditzel, Mark; Broemer, Meike; Tenev, Tencho;

    2008-01-01

    Ubiquitin-mediated inactivation of caspases has long been postulated to contribute to the regulation of apoptosis. However, detailed mechanisms and functional consequences of caspase ubiquitylation have not been demonstrated. Here we show that the Drosophila Inhibitor of Apoptosis 1, DIAP1, block...

  18. Inactivation of prion infectivity by ionizing rays

    Science.gov (United States)

    Gominet, M.; Vadrot, C.; Austruy, G.; Darbord, J. C.

    2007-11-01

    Inactivation of prion deposits on medical devices or prion contamination in pharmaceutical raw materials is considered as impossible by using gamma irradiation. Early, the guideline WHO/CDS/CSR/APH/2000 has described irradiation as an ineffective process. But, in 2003, S. Miekka et al. noted radiation inactivation of prions in a particular application to purify human albumin, shown by the physical denaturation of the infectious protein (PrP). The aim of our study was to determine the inactivation of prions with a scrapie model (strain C506M3) by irradiating standardised preparations. Results: Gamma irradiation was partially effective, showing a 4-5 log reduction on exposure to 50 kGy. A characteristic effect-dose curve was not observed (25, 50 and 100 kGy), only an increase in the incubation period of the murine disease (229 days with 25 kGy to 290 days with 100 kGy) compared with 170 days without irradiation. Since the inactivation was not a total one, the observed effect is significant. It is proposed that further work be undertaken with the model to investigate the application of gamma radiation known levels of prion contamination.

  19. Temperature Tolerance and Inactivation of Chikungunya Virus.

    Science.gov (United States)

    Huang, Yan-Jang S; Hsu, Wei-Wen; Higgs, Stephen; Vanlandingham, Dana L

    2015-11-01

    In late 2013, chikungunya virus (CHIKV) was introduced to the New World and large outbreaks occurred in the Caribbean islands causing over a million suspected and over 20,000 laboratory-confirmed cases. Serological analysis is an essential component for the diagnosis of CHIKV infection together with virus isolation and detection of viral nucleic acid. Demonstrating virus neutralizing by serum antibodies in a plaque reduction neutralization test (PRNT) is the gold standard of all serological diagnostic assays. Prior to the testing, heat inactivation of serum at 56°C for 30 min is required for the inactivation of complement activity and adventitious viruses. The presence of adventitious contaminating viruses may interfere with the results by leading to a higher number of plaques on the monolayers and subsequent false-negative results. This procedure is widely accepted for the inactivation of flaviviruses and alphaviruses. In this study, the thermostability of CHIKV was evaluated. Heat inactivation at 56°C for 30 min was demonstrated to be insufficient for the complete removal of infectious CHIKV virions present in the samples. This thermotolerance of CHIKV could compromise the accuracy of serum tests, and therefore longer treatment for greater than 120 min is recommended.

  20. Female meiotic sex chromosome inactivation in chicken

    NARCIS (Netherlands)

    S. Schoenmakers (Sam); E. Wassenaar (Evelyne); J.W. Hoogerbrugge (Jos); J.S.E. Laven (Joop); J.A. Grootegoed (Anton); W.M. Baarends (Willy)

    2009-01-01

    textabstractDuring meiotic prophase in male mammals, the heterologous X and Y chromosomes remain largely unsynapsed, and meiotic sex chromosome inactivation (MSCI) leads to formation of the transcriptionally silenced XY body. In birds, the heterogametic sex is female, carrying Z and W chromosomes (Z

  1. Inactivation of prion infectivity by ionizing rays

    Energy Technology Data Exchange (ETDEWEB)

    Gominet, M. [Ionisos, ZI les Chatinieres, F01120 Dagneux (France); Vadrot, C.; Austruy, G. [Paris V University, Central Pharmacy of Hospitals, 4 avenue de l' Observatoire, F-75006, Paris (France); Darbord, J.C. [Paris V University, Central Pharmacy of Hospitals, 4 avenue de l' Observatoire, F-75006, Paris (France)], E-mail: darbord@pharmacie.univ-paris5.fr

    2007-11-15

    Inactivation of prion deposits on medical devices or prion contamination in pharmaceutical raw materials is considered as impossible by using gamma irradiation. Early, the guideline WHO/CDS/CSR/APH/2000 has described irradiation as an ineffective process. But, in 2003, S. Miekka et al. noted radiation inactivation of prions in a particular application to purify human albumin, shown by the physical denaturation of the infectious protein (PrP). The aim of our study was to determine the inactivation of prions with a scrapie model (strain C506M3) by irradiating standardised preparations. Results: Gamma irradiation was partially effective, showing a 4-5 log reduction on exposure to 50 kGy. A characteristic effect-dose curve was not observed (25, 50 and 100 kGy), only an increase in the incubation period of the murine disease (229 days with 25 kGy to 290 days with 100 kGy) compared with 170 days without irradiation. Since the inactivation was not a total one, the observed effect is significant. It is proposed that further work be undertaken with the model to investigate the application of gamma radiation known levels of prion contamination.

  2. Sex chromosome inactivation in the male.

    Science.gov (United States)

    Yan, Wei; McCarrey, John R

    2009-10-01

    Mammalian females have two X chromosomes, while males have only one X plus a Y chromosome. In order to balance X-linked gene dosage between the sexes, one X chromosome undergoes inactivation during development of female embryos. This process has been termed X-chromosome inactivation (XCI). Inactivation of the single X chromosome also occurs in the male, but is transient and is confined to the late stages of first meiotic prophase during spermatogenesis. This phenomenon has been termed meiotic sex chromosome inactivation (MSCI). A substantial portion ( approximately 15-25%) of X-linked mRNA-encoding genes escapes XCI in female somatic cells. While no mRNA genes are known to escape MSCI in males, approximately 80% of X-linked miRNA genes have been shown to escape this process. Recent results have led to the proposal that the RNA interference mechanism may be involved in regulating XCI in female cells. We suggest that some MSCI-escaping miRNAs may play a similar role in regulating MSCI in male germ cells.

  3. High Pressure Inactivation of HAV within Mussels

    Science.gov (United States)

    The potential of hepatitis A virus (HAV) to be inactivated within Mediterranean mussels (Mytilus galloprovincialis) and blue mussels (Mytilus edulis) by high pressure processing was evaluated. HAV was bioaccumulated within mussels to approximately 6-log10 PFU by exposure of mussels to HAV-contamina...

  4. Overexpression of Mineralocorticoid Receptors in the Mouse Forebrain Partly Alleviates the Effects of Chronic Early Life Stress on Spatial Memory, Neurogenesis and Synaptic Function in the Dentate Gyrus

    Directory of Open Access Journals (Sweden)

    Sofia Kanatsou

    2017-05-01

    Full Text Available Evidence from human studies suggests that high expression of brain mineralocorticoid receptors (MR may promote resilience against negative consequences of stress exposure, including childhood trauma. We examined, in mice, whether brain MR overexpression can alleviate the effects of chronic early life stress (ELS on contextual memory formation under low and high stress conditions, and neurogenesis and synaptic function of dentate gyrus granular cells. Male mice were exposed to ELS by housing the dam with limited nesting and bedding material from postnatal day (PND 2 to 9. We investigated the moderating role of MRs by using forebrain-specific transgenic MR overexpression (MR-tg mice. Low-stress contextual (i.e., object relocation memory formation was hampered by ELS in wildtype but not MR-tg mice. Anxiety like behavior and high-stress contextual (i.e., fear memory formation were unaffected by ELS and/or MR expression level. At the cellular level, an interaction effect was observed between ELS and MR overexpression on the number of doublecortin-positive cells, with a significant difference between the wildtype ELS and MR-tg ELS groups. No interaction was found regarding Ki-67 and BrdU staining. A significant interaction between ELS and MR expression was further observed with regard to mEPSCs and mIPSC frequency. The ratio of evoked EPSC/IPSC or NMDA/AMPA responses was unaffected. Overall, these results suggest that ELS affects contextual memory formation under low stress conditions as well as neurogenesis and synaptic transmission in dentate granule cells, an effect that can be alleviated by MR-overexpression.

  5. The role of sensory organs and the forebrain for the development of the craniofacial shape as revealed by Foxg1-cre-mediated microRNA loss.

    Science.gov (United States)

    Kersigo, Jennifer; D'Angelo, Alex; Gray, Brian D; Soukup, Garrett A; Fritzsch, Bernd

    2011-04-01

    Cranial development is critically influenced by the relative growth of distinct elements. Previous studies have shown that the transcription factor Foxg1 is essential the for development of the telencephalon, olfactory epithelium, parts of the eye and the ear. Here we investigate the effects of a Foxg1-cre-mediated conditional deletion of Dicer1 and microRNA (miRNA) depletion on mouse embryos. We report the rapid and complete loss of the telencephalon and cerebellum as well as the severe reduction in the ears and loss of the anterior half of the eyes. These losses result in unexpectedly limited malformations of anterodorsal aspects of the skull. We investigated the progressive disappearance of these initially developing structures and found a specific miRNA of nervous tissue, miR-124, to disappear before reduction in growth of the specific neurosensory areas. Correlated with the absence of miR-124, these areas showed numerous apoptotic cells that stained positive for anticleaved caspase 3 and the phosphatidylserine stain PSVue® before the near or complete loss of those brain and sensory areas (forebrain, cerebellum, anterior retina, and ear). We conclude that Foxg1-cre-mediated conditional deletion of Dicer1 leads to the absence of functional miRNA followed by complete or nearly complete loss of neurons. Embryonic neurosensory development therefore depends critically on miRNA. Our data further suggest that loss of a given neuronal compartment can be triggered using early deletion of Dicer1 and thus provides a novel means to genetically remove specific neurosensory areas to investigate loss of their function on morphology (this study) or signal processing within the brain.

  6. Radiation-induced inactivation of enzymes - Molecular mechanism based on inactivation of dehydrogenases

    Science.gov (United States)

    Rodacka, Aleksandra; Gerszon, Joanna; Puchala, Mieczyslaw; Bartosz, Grzegorz

    2016-11-01

    Proteins, which have enzymatic activities play a fundamental role in the cell due to participation in most of biological processes. Oxidative-induced damage of enzymes often have marked effects on cellular processes, which in consequence determine cell functioning and survival. In this review, we focused on the radiation-induced inactivation of enzymes with particular emphasis on the inactivation of dehydrogenases. For a better understanding of this issue, the efficiency of products of water radiolysis (•OH, O2•- and H2O2) in enzyme inactivation has been analysed. Reactions of reactive oxygen species (ROS) with amino acids present in the active site of enzymes appear to have the greatest impact on enzyme inactivation.

  7. Inactivation of the Infralimbic but Not the Prelimbic Cortex Impairs Consolidation and Retrieval of Fear Extinction

    Science.gov (United States)

    Laurent, Vincent; Westbrook, R. Frederick

    2009-01-01

    Rats were subjected to one or two cycles of context fear conditioning and extinction to study the roles of the prelimbic cortex (PL) and infralimbic cortex (IL) in learning and relearning to inhibit fear responses. Inactivation of the PL depressed fear responses across the first or second extinction but did not impair learning or relearning fear…

  8. Inactivation of brain mitochondrial Lon protease by peroxynitrite precedes electron transport chain dysfunction

    DEFF Research Database (Denmark)

    Stanyer, Lee; Jørgensen, Wenche; Hori, Osamu;

    2008-01-01

    more sensitive than basal Lon protease activity. Furthermore, supplementation of mitochondrial matrix extracts with reduced glutathione, following ONOO(-) exposure, resulted in partial restoration of basal and ATP-stimulated activity, thus suggesting possible redox regulation of this enzyme complex....... Taken together these findings suggest that Lon protease may be particularly vulnerable to inactivation in conditions associated with GSH depletion and elevated oxidative stress....

  9. Determination of thermal inactivation kinetics of Listeria monocytogenes in chicken meat by isothermal and dynamic methods

    Science.gov (United States)

    The objective of this research is to determine the thermal inactivation kinetics of Listeria monocytogenes in chicken breast meat using both isothermal and dynamic conditions. A four-strain cocktail of L. monocytogenes was inoculated to chicken breast meat. Isothermal studies were performed by sub...

  10. Highly efficient cell-type-specific gene inactivation reveals a key function for the Drosophila FUS homolog cabeza in neurons.

    Science.gov (United States)

    Frickenhaus, Marie; Wagner, Marina; Mallik, Moushami; Catinozzi, Marica; Storkebaum, Erik

    2015-03-16

    To expand the rich genetic toolkit of Drosophila melanogaster, we evaluated whether introducing FRT or LoxP sites in endogenous genes could allow for cell-type-specific gene inactivation in both dividing and postmitotic cells by GAL4-driven expression of FLP or Cre recombinase. For proof of principle, conditional alleles were generated for cabeza (caz), the Drosophila homolog of human FUS, a gene implicated in the neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Upon selective expression in neurons or muscle, both FLP and Cre mediated caz inactivation in all neurons or muscle cells, respectively. Neuron-selective caz inactivation resulted in failure of pharate adult flies to eclose from the pupal case, and adult escapers displayed motor performance defects and reduced life span. Due to Cre-toxicity, FLP/FRT is the preferred system for cell-type-specific gene inactivation, and this strategy outperforms RNAi-mediated knock-down. Furthermore, the GAL80 target system allowed for temporal control over gene inactivation, as induction of FLP expression from the adult stage onwards still inactivated caz in >99% of neurons. Remarkably, selective caz inactivation in adult neurons did not affect motor performance and life span, indicating that neuronal caz is required during development, but not for maintenance of adult neuronal function.

  11. Efficacy of common disinfectant/cleaning agents in inactivating murine norovirus and feline calicivirus as surrogate viruses for human norovirus.

    Science.gov (United States)

    Chiu, Stephanie; Skura, Brenton; Petric, Martin; McIntyre, Lorraine; Gamage, Bruce; Isaac-Renton, Judith

    2015-11-01

    The efficacies of disinfection by sodium hypochlorite, accelerated hydrogen peroxide (AHP), and quaternary ammonium compound (QUAT) commonly used in health care facilities were determined using the surrogate viruses murine norovirus (MNV-1) and feline calicivirus (FCV). A virus suspension of known concentration (with or without a soil load) was deposited onto stainless steel discs under wet or dry load conditions and exposed to defined concentrations of the disinfectant/cleaning agent for 1-, 5-, or 10-minute contact time using the quantitative carrier test (QCT-2) method. Virus inactivation was determined by plaque assay. At an exposure time of 1 minute, sodium hypochlorite at 2,700 ppm was able to inactivate MNV-1 and FCV with a >5 log10 reduction. After 10 minutes, MNV-1 was inactivated by AHP at 35,000 ppm, whereas FCV was inactivated at 3,500 ppm. MNV-1 was not inactivated by QUAT at 2,800 ppm. A QUAT-alcohol formulation containing 2,000 ppm QUAT and 70% ethanol was effective in inactivating MNV-1 after 5 minutes, but resulted in only a <3 log10 reduction of FCV after 10 minutes. AHP and QUAT products were less effective than sodium hypochlorite for the inactivation of MNV-1 and FCV. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  12. Defects in GPI biosynthesis perturb Cripto signaling during forebrain development in two new mouse models of holoprosencephaly

    Directory of Open Access Journals (Sweden)

    David M. McKean

    2012-07-01

    Holoprosencephaly is the most common forebrain defect in humans. We describe two novel mouse mutants that display a holoprosencephaly-like phenotype. Both mutations disrupt genes in the glycerophosphatidyl inositol (GPI biosynthesis pathway: gonzo disrupts Pign and beaker disrupts Pgap1. GPI anchors normally target and anchor a diverse group of proteins to lipid raft domains. Mechanistically we show that GPI anchored proteins are mislocalized in GPI biosynthesis mutants. Disruption of the GPI-anchored protein Cripto (mouse and TDGF1 (human ortholog have been shown to result in holoprosencephaly, leading to our hypothesis that Cripto is the key GPI anchored protein whose altered function results in an HPE-like phenotype. Cripto is an obligate Nodal co-factor involved in TGFβ signaling, and we show that TGFβ signaling is reduced both in vitro and in vivo. This work demonstrates the importance of the GPI anchor in normal forebrain development and suggests that GPI biosynthesis genes should be screened for association with human holoprosencephaly.

  13. Relationship between the anterior forebrain mesocircuit and the default mode network in the structural bases of disorders of consciousness

    Directory of Open Access Journals (Sweden)

    Nicholas D. Lant

    2016-01-01

    Full Text Available The specific neural bases of disorders of consciousness (DOC are still not well understood. Some studies have suggested that functional and structural impairments in the default mode network may play a role in explaining these disorders. In contrast, others have proposed that dysfunctions in the anterior forebrain mesocircuit involving striatum, globus pallidus, and thalamus may be the main underlying mechanism. Here, we provide the first report of structural integrity of fiber tracts connecting the nodes of the mesocircuit and the default mode network in 8 patients with DOC. We found evidence of significant damage to subcortico-cortical and cortico-cortical fibers, which were more severe in vegetative state patients and correlated with clinical severity as determined by Coma Recovery Scale—Revised (CRS-R scores. In contrast, fiber tracts interconnecting subcortical nodes were not significantly impaired. Lastly, we found significant damage in all fiber tracts connecting the precuneus with cortical and subcortical areas. Our results suggest a strong relationship between the default mode network – and most importantly the precuneus – and the anterior forebrain mesocircuit in the neural basis of the DOC.

  14. An Evolutionarily Conserved Network Mediates Development of the zona limitans intrathalamica, a Sonic Hedgehog-Secreting Caudal Forebrain Signaling Center

    Directory of Open Access Journals (Sweden)

    Elena Sena

    2016-10-01

    Full Text Available Recent studies revealed new insights into the development of a unique caudal forebrain-signaling center: the zona limitans intrathalamica (zli. The zli is the last brain signaling center to form and the first forebrain compartment to be established. It is the only part of the dorsal neural tube expressing the morphogen Sonic Hedgehog (Shh whose activity participates in the survival, growth and patterning of neuronal progenitor subpopulations within the thalamic complex. Here, we review the gene regulatory network of transcription factors and cis-regulatory elements that underlies formation of a shh-expressing delimitated domain in the anterior brain. We discuss evidence that this network predates the origin of chordates. We highlight the contribution of Shh, Wnt and Notch signaling to zli development and discuss implications for the fact that the morphogen Shh relies on primary cilia for signal transduction. The network that underlies zli development also contributes to thalamus induction, and to its patterning once the zli has been set up. We present an overview of the brain malformations possibly associated with developmental defects in this gene regulatory network (GRN.

  15. Characterisation Of Forebrain Neurons Derived From Late-Onset Huntington’s Disease Human Embryonic Stem Cell Lines

    Directory of Open Access Journals (Sweden)

    Jonathan Christos Niclis

    2013-04-01

    Full Text Available Huntington's Disease (HD is an incurable neurodegenerative disorder caused by a CAG repeat expansion in exon 1 of the Huntingtin gene. Recently, induced pluripotent stem cell lines carrying atypical and aggressive (CAG60+ HD variants have been generated, and perplexingly exhibit disparate molecular pathologies. Here we investigate two human embryonic stem cell (hESC lines carrying CAG37 and CAG51 repeats to assess whether typical late-onset expansions exhibit HD pathologies. HD hESC properties were assessed in comparison to wildtype control lines at undifferentiated states and throughout forebrain neuronal differentiation. Pluripotent HD lines demonstrate growth, viability, pluripotent gene expression, mitochondrial activity and forebrain specification that is indistinguishable from control lines. Expression profiles of crucial genes known to be dysregulated in HD remain unperturbed in the presence of mutant protein and throughout differentiation; however, elevated glutamate responses were observed in HD CAG51 neurons. These findings suggest typical late-onset HD mutations do not alter pluripotent parameters or differentiation mechanics but that neuronal progeny may possess the capacity to recapitulate neuropathologies seen in human patients. Such HD models will help further our understanding of the cascade of pathological events leading to disease onset and progression, while simultaneously facilitating the identification of candidate HD therapeutics.

  16. Evidence for neuroprotective effects of endogenous brain-derived neurotrophic factor after global forebrain ischemia in rats.

    Science.gov (United States)

    Larsson, E; Nanobashvili, A; Kokaia, Z; Lindvall, O

    1999-11-01

    The levels of brain-derived neurotrophic factor (BDNF) vary between different forebrain areas and show region-specific changes after cerebral ischemia. The present study explores the possibility that the levels of endogenous BDNF determine the susceptibility to ischemic neuronal death. To block BDNF activity the authors used the TrkB-Fc fusion protein, which was infused intraventricularly in rats during 1 week before and 1 week after 5 or 30 minutes of global forebrain ischemia. Ischemic damage was quantified in the striatum and hippocampal formation after 1 week of reperfusion using immunocytochemistry and stereological procedures. After the 30-minute insult, there was a significantly lower number of surviving CA4 pyramidal neurons, neuropeptide Y-immunoreactive dentate hilar neurons, and choline acetyltransferase- and TrkA-positive, cholinergic striatal interneurons in the TrkB-Fc-infused rats as compared to controls. In contrast, the TrkB-Fc treatment did not influence survival of CA1 or CA3 pyramidal neurons or striatal projection neurons. Also, after the mild ischemic insult (5 minutes), neuronal death in the CA1 region was similar in the TrkB-Fc-treated and control groups. These results indicate that endogenous BDNF can protect certain neuronal populations against ischemic damage. It is conceivable, though, that efficient neuroprotection after brain insults is dependent not only on this factor but on the concerted action of a large number of neurotrophic molecules.

  17. Simulation of Na channel inactivation by thiazine dyes

    OpenAIRE

    1982-01-01

    Some dyes of the methylene blue family serve as artificial inactivators of the sodium channels when present inside squid axons at a concentration of approximately 0.1 mM. The dyes restore a semblance of inactivation after normal inactivation has been destroyed by pronase. In fibers that inactivate normally, the dyes hasten the decay of sodium current. Many dye-blocked channels conduct transiently on exit of the dye molecule after repolarization to the holding potential. In contrast, normally ...

  18. Cortical inactivation by cooling in small animals

    Directory of Open Access Journals (Sweden)

    Ben eCoomber

    2011-06-01

    Full Text Available Reversible inactivation of the cortex by surface cooling is a powerful method for studying the function of a particular area. Implanted cooling cryoloops have been used to study the role of individual cortical areas in auditory processing of awake-behaving cats. Cryoloops have also been used in rodents for reversible inactivation of the cortex, but recently there has been a concern that the cryoloop may also cool non-cortical structures either directly or via the perfusion of blood, cooled as it passed close to the cooling loop. In this study we have confirmed that the loop can inactivate most of the auditory cortex without causing a significant reduction in temperature of the auditory thalamus or other sub-cortical structures. We placed a cryoloop on the surface of the guinea pig cortex, cooled it to 2°C and measured thermal gradients across the neocortical surface. We found that the temperature dropped to 20-24°C among cells within a radius of about 2.5mm away from the loop. This temperature drop was sufficient to reduce activity of most cortical cells and led to the inactivation of almost the entire auditory region. When the temperature of thalamus, midbrain, and middle ear were measured directly during cortical cooling, there was a small drop in temperature (about 4°C but this was not sufficient to directly reduce neural activity. In an effort to visualise the extent of neural inactivation we measured the uptake of thallium ions following an intravenous injection. This confirmed that there was a large reduction of activity across much of the ipsilateral cortex and only a small reduction in subcortical structures.

  19. Numerical evaluation of lactoperoxidase inactivation during continuous pulsed electric field processing.

    Science.gov (United States)

    Buckow, Roman; Semrau, Julius; Sui, Qian; Wan, Jason; Knoerzer, Kai

    2012-01-01

    A computational fluid dynamics (CFD) model describing the flow, electric field and temperature distribution of a laboratory-scale pulsed electric field (PEF) treatment chamber with co-field electrode configuration was developed. The predicted temperature increase was validated by means of integral temperature studies using thermocouples at the outlet of each flow cell for grape juice and salt solutions. Simulations of PEF treatments revealed intensity peaks of the electric field and laminar flow conditions in the treatment chamber causing local temperature hot spots near the chamber walls. Furthermore, thermal inactivation kinetics of lactoperoxidase (LPO) dissolved in simulated milk ultrafiltrate were determined with a glass capillary method at temperatures ranging from 65 to 80 °C. Temperature dependence of first order inactivation rate constants was accurately described by the Arrhenius equation yielding an activation energy of 597.1 kJ mol(-1). The thermal impact of different PEF processes on LPO activity was estimated by coupling the derived Arrhenius model with the CFD model and the predicted enzyme inactivation was compared to experimental measurements. Results indicated that LPO inactivation during combined PEF/thermal treatments was largely due to thermal effects, but 5-12% enzyme inactivation may be related to other electro-chemical effects occurring during PEF treatments.

  20. Inactivation of fungi caused by solar irradiation in the living environment

    Energy Technology Data Exchange (ETDEWEB)

    Inada, Chika; Yoshizumi, Kunio [Kyoritsu Women' s Univ., Tokyo (Japan); Takatori, Kosuke [National Inst. of Health Sciences, Tokyo (Japan); Hedge, A. [Cornell Univ., Ithaca, NY (United States)

    2002-10-01

    We studied the inactivation of Penicillium and Cladosporium exposed to solar irradiation with regard to actual radiation energy conditions in the living environment. UVA and UVB solar radiation energy was simultaneously measured. A UVB fluorescent lamp was also used to irradiate the fungal samples under measured levels of solar radiation energy. After the exposure to light, fungal spread plates were cultivated for one week at 25 deg C and 80%RH. Viable fungal colonies were counted. As results, the following findings were obtained: solar UVA irradiation was observed to reach the maximum level of about 50 W/m{sup 2} at noon in August. The maximum level of UVB irradiation was about 1.3 W/m{sup 2} also at noon in August. The characteristic curves were observed in a sharper form due to the effect of absorption of solar radiation in the atmosphere. Inactivation of all Penicillium spores by UVB solar radiation was observed at 1.5 kJ/m{sup 2}. On the other hand, irradiation with a UVB fluorescent lamp resulted in inactivation of all Penicillium spores at about 3 kJ/m{sup 2}. The consistency between these results was considered to be acceptable. This is a piece of evidence to show that the UVB radiation is the most effective in fungal inactivation. As for Cladosporium, similar results were found with respect to inactivation caused by light irradiation. (author)

  1. Inactivation of Smad4 leads to impaired ocular development and cataract formation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying, E-mail: yingliu@doheny.org [Department of Ophthalmology and Doheny Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 (United States); Sun Yet-sen University, Zhongshan Ophthalmic Center, State Key Ophthalmic Laboratory, Guangzhou 510060 (China); Kawai, Kirio; Khashabi, Shabnam [Department of Ophthalmology and Doheny Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 (United States); Deng, Chuxia [Laboratory of Biochemistry and Metabolism, NIDDK, National Institutes of Health, Bethesda, MD 20892 (United States); Liu, Yi-Hsin; Yiu, Samuel [Department of Ophthalmology and Doheny Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 (United States)

    2010-10-01

    Research highlights: {yields} Inactivation of Smad4 caused disruption in the development of the anterior segment. {yields} Inactivation of Smad4 failed to disrupt early lens development. {yields} Smad4 controlled lens cell cycle and cell death processes. {yields} Smad4 may regulate actin stress fiber assembly and eyelid epithelial movement. -- Abstract: Purpose: Signaling by members of the TGF{beta} superfamily of molecules is essential for embryonic development and homeostasis. Smad4, a key intracellular mediator in TGF{beta} signaling, forms transcriptional activator complexes with Activin-, BMP-, and TGF{beta}-restricted Smad proteins. However, the functional role of Smad4 in controlling different visual system compartments has not been fully investigated. Methods: Using the Pax6 promoter-driven Cre transgenic, smad4 was conditionally inactivated in the lens, cornea and ectoderm of the eyelids. Standard histological and molecular analytical approaches were employed to reveal morphological and cellular changes. Results: Inactivation of Smad4 in the lens led to microphthalmia and cataract formation in addition to the persistent adhesion of the retina to the lens and the iris to the cornea. Inactivation of Smad4 from the ectoderm of the eyelid and cornea caused disruption to eyelid fusion and proper development of the corneal epithelium and corneal stroma. Conclusions: Smad4 is required for the development and maintenance of the lens in addition to the proper development of the cornea, eyelids, and retina.

  2. Impact of cold plasma on Citrobacter freundii in apple juice: inactivation kinetics and mechanisms.

    Science.gov (United States)

    Surowsky, Björn; Fröhling, Antje; Gottschalk, Nathalie; Schlüter, Oliver; Knorr, Dietrich

    2014-03-17

    Various studies have shown that cold plasma is capable of inactivating microorganisms located on a variety of food surfaces, food packaging materials and process equipment under atmospheric pressure conditions; however, less attention has been paid to the impact of cold plasma on microorganisms in liquid foodstuffs. The present study investigates cold plasma's ability to inactivate Citrobacter freundii in apple juice. Optical emission spectroscopy (OES) and temperature measurements were performed to characterise the plasma source. The plasma-related impact on microbial loads was evaluated by traditional plate count methods, while morphological changes were determined using scanning electron microscopy (SEM). Physiological property changes were obtained through flow cytometric measurements (membrane integrity, esterase activity and membrane potential). In addition, mathematical modelling was performed in order to achieve a reliable prediction of microbial inactivation and to establish the basis for possible industrial implementation. C. freundii loads in apple juice were reduced by about 5 log cycles after a plasma exposure of 480s using argon and 0.1% oxygen plus a subsequent storage time of 24h. The results indicate that a direct contact between bacterial cells and plasma is not necessary for achieving successful inactivation. The plasma-generated compounds in the liquid, such as H2O2 and most likely hydroperoxy radicals, are particularly responsible for microbial inactivation.

  3. Inactivation of bacteria and yeast using high-frequency ultrasound treatment.

    Science.gov (United States)

    Gao, Shengpu; Hemar, Yacine; Ashokkumar, Muthupandian; Paturel, Sara; Lewis, Gillian D

    2014-09-01

    High-frequency (850 kHz) ultrasound was used to inactivate bacteria and yeast at different growth phases under controlled temperature conditions. Three species of bacteria, Enterobacter aerogenes, Bacillus subtilis and Staphylococcus epidermidis as well as a yeast, Aureobasidium pullulans were considered. The study shows that high-frequency ultrasound is highly efficient in inactivating the bacteria in both their exponential and stationary growth phases, and inactivation rates of more than 99% were achieved. TEM observation suggests that the mechanism of bacteria inactivation is mainly due to acoustic cavitation generated free radicals and H2O2. The rod-shaped bacterium B. subtilis was also found to be sensitive to the mechanical effects of acoustic cavitation. The study showed that the inactivation process continued even after ultrasonic processing cessed due to the presence of H2O2, generated during acoustic cavitation. Compared to bacteria, the yeast A. pullulans was found to be more resistant to high-frequency ultrasound treatment.

  4. Modeling the high pressure inactivation kinetics of Listeria monocytogenes on RTE cooked meat products

    DEFF Research Database (Denmark)

    Hereu, A.; Dalgaard, Paw; Garriga, M.;

    2012-01-01

    provided the best fit to the HP-inactivation kinetics. The relationships between the primary kinetic parameters (log kmax and log Nres) and pressure treatments were described by a polynomial secondary model. To estimate HP-inactivation of L. monocytogenes in log (N/N0) over time, a one-step global fitting...... procedure was applied. The secondary model was integrated into the primary model and the combined equation was fitted to the entire data-set to readjust parameter values. Validation of the developed models both under dynamic conditions and using external independent data supported their suitability...... for predictive purposes, e.g., to set the process criteria required to meet food safety objectives. Industrial relevanceQuantitative mathematical models for predicting inactivation of pathogens by HPP provide useful tools for a process optimization and real time control of a unit operation. The developed models...

  5. Inactivation of Bacillus spores inoculated in milk by Ultra High Pressure Homogenization.

    Science.gov (United States)

    Amador Espejo, Genaro Gustavo; Hernández-Herrero, M M; Juan, B; Trujillo, A J

    2014-12-01

    Ultra High-Pressure Homogenization treatments at 300 MPa with inlet temperatures (Ti) of 55, 65, 75 and 85 °C were applied to commercial Ultra High Temperature treated whole milk inoculated with Bacillus cereus, Bacillus licheniformis, Bacillus sporothermodurans, Bacillus coagulans, Geobacillus stearothermophilus and Bacillus subtilis spores in order to evaluate the inactivation level achieved. Ultra High-Pressure Homogenization conditions at 300 MPa with Ti = 75 and 85 °C were capable of a spore inactivation of ∼5 log CFU/mL. Furthermore, under these processing conditions, commercial sterility (evaluated as the complete inactivation of the inoculated spores) was obtained in milk, with the exception of G. stearothermophilus and B. subtilis treated at 300 MPa with Ti = 75 °C. The results showed that G. stearothermophilus and B. subtilis have higher resistance to the Ultra High-Pressure Homogenization treatments applied than the other microorganisms inoculated and that a treatment performed at 300 MPa with Ti = 85 °C was necessary to completely inactivate these microorganisms at the spore level inoculated (∼1 × 10(6) CFU/mL). Besides, a change in the resistance of B. licheniformis, B. sporothermodurans, G. stearothermophilus and B. subtilis spores was observed as the inactivation obtained increased remarkably in treatments performed with Ti between 65 and 75 °C. This study provides important evidence of the suitability of UHPH technology for the inactivation of spores in high numbers, leading to the possibility of obtaining commercially sterile milk.

  6. Review: Efficiency of physical and chemical treatments on the inactivation of dairy bacteriophages

    Directory of Open Access Journals (Sweden)

    Daniela Marta Guglielmotti

    2012-01-01

    Full Text Available Bacteriophages can cause great economic losses due to fermentation failure in dairy plants. Hence, physical and chemical treatments of raw material and/or equipment are mandatory to maintain phage levels as low as possible. Regarding thermal treatments used to kill pathogenic bacteria or achieve longer shelf-life of dairy products, neither low temperature long time (LTLT nor high temperature short time (HTST pasteurization were able to inactivate most lactic acid bacteria (LAB phages. Even though most phages did not survive 90ºC for 2 min, there were some that resisted 90ºC for more than 15 min (conditions suggested by the International Dairy Federation, IDF, for complete phage destruction. Among biocides tested, ethanol showed variable effectiveness in phage inactivation, since only phages infecting dairy cocci and Lactobacillus helveticus were reasonably inactivated by this alcohol, whereas isopropanol was in all cases highly ineffective. In turn, peracetic acid has consistently proved to be very fast and efficient to inactivate dairy phages, whereas efficiency of sodium hypochlorite was variable, even among different phages infecting the same LAB species. Both alkaline chloride foam and ethoxylated nonylphenol with phosphoric acid were remarkably efficient, trait probably related to their highly alkaline or acidic pH values in solution, respectively. Photocatalysis using UV light and TiO2 has been recently reported as a feasible option to industrially inactivate phages infecting diverse LAB species. Processes involving high pressure were barely used for phage inactivation, but until now most studied phages revealed high resistance to these treatments. To conclude, and given the great phage diversity found on dairies, it is always advisable to combine different anti-phage treatments (biocides, heat, high pressure, photocatalysis, rather than using them separately at extreme conditions.

  7. Effects of Bacterial Inactivation Methods on Downstream Proteomic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Andy; Merkley, Eric D.; Clowers, Brian H.; Hutchison, Janine R.; Kreuzer, Helen W.

    2015-05-01

    Inactivation of pathogenic microbial samples is often necessary for the protection of researchers and to comply with local and federal regulations. By its nature, biological inactivation causes changes to microbial samples, potentially affecting observed experimental results. While inactivation induced damage to materials such as DNA has been evaluated, the effect of various inactivation strategies on proteomic data, to our knowledge, has not been discussed. To this end, we inactivated samples of Yersinia pestis and Escherichia coli by autoclave, ethanol, or irradiation treatment to determine how inactivation changes liquid chromatography tandem mass spectrometry data quality as well as apparent protein content of cells. Proteomic datasets obtained from aliquots of samples inactivated by different methods were highly similar, with Pearson correlation coefficients ranging from 0.822 to 0.985 and 0.816 to 0.985 for E. coli and Y. pestis, respectively, suggesting that inactivation had only slight impacts on the set of proteins identified. In addition, spectral quality metrics such as distributions of various database search algorithm scores remained constant across inactivation methods, indicating that inactivation does not appreciably degrade spectral quality. Though overall changes resulting from inactivation were small, there were detectable trends. For example, one-sided Fischer exact tests determined that periplasmic proteins decrease in observed abundance after sample inactivation by autoclaving (α = 1.71x10-2 for E. coli, α = 4.97x10-4 for Y. pestis) and irradiation (α = 9.43x10-7 for E. coli, α = 1.21x10-5 for Y. pestis) when compared to controls that were not inactivated. Based on our data, if sample inactivation is necessary, we recommend inactivation with ethanol treatment with secondary preference given to irradiation.

  8. Phenytoin inhibits the persistent sodium current in neocortical neurons by modifying its inactivation properties.

    Directory of Open Access Journals (Sweden)

    Elisa Colombo

    Full Text Available The persistent Na⁺ current (I(NaP is important for neuronal functions and can play a role in several pathologies, although it is small compared to the transient Na⁺ current (I(NaT. Notably, I(NaP is not a real persistent current because it undergoes inactivation with kinetics in the order of tens of seconds, but this property has often been overlooked. Na⁺ channel blockers, drugs used for treating epilepsy and other diseases, can inhibit I(NaP, but the mechanism of this action and the conditions in which I(NaP can be actually inhibited have not been completely clarified yet. We evaluated the action of phenytoin (PHT, a prototype anti-epileptic Na⁺ channel blocker, on I(NaP inactivation in pyramidal neurons of rat sensorimotor cortical slices at different concentrations, from 5 to 100 µM. PHT did not modify I(NaP evoked with depolarizing voltage ramps of 50 or 100 mVs⁻¹, but decreased I(NaP evoked by slower voltage ramps (10 mVs⁻¹. However, at all of the tested concentrations, PHT decreased I(NaP evoked by faster ramps when they were preceded by inactivating pre-pulses. Moreover, PHT shifted towards negative potentials the voltage-dependence of I(NaP inactivation and accelerated its kinetics of development also at depolarized potentials (+40 mV, not consistently with a simple inactivated state stabilizer. Therefore, our study shows a prominent PHT effect on I(NaP inactivation rather than an open channel block, which is instead often implied. I(NaP is inhibited by PHT only in conditions that induce major I(NaP inactivation. These results highlight the importance of I(NaP inactivation not only for physiological functions but also as drug target, which could be shared by other therapeutic drugs. Through this action PHT can reduce I(NaP-induced long-lasting pathological depolarisations and intracellular sodium overload, whereas shorter I(NaP actions should not be modified. These properties set the conditions of efficacy and the limits

  9. Pulmonary decontamination for photodynamic inactivation with extracorporeal illumination

    Science.gov (United States)

    Geralde, Mariana C.; Leite, Ilaiáli S.; Inada, Natalia M.; Grecco, Clóvis; Medeiros, Alexandra I.; Kurachi, Cristina; Bagnato, Vanderlei S.

    2014-03-01

    Infectious pneumonia is a major cause of morbidity and mortality, despite advances in diagnostics and therapeutics in pulmonary infections. One of the major difficulties associated with the infection comes from the high rate of antibiotic resistant microorganisms, claiming for the use of alternative techniques with high efficiency and low cost. The photodynamic inactivation (PDI) is emerging as one of the great possibilities in this area, once its action is oxidative, not allowing microorganism develops resistance against the treatment. PDI for decontamination pulmonary has potential for treatment or creating better conditions for the action of antibiotics. In this study, we are developing a device to implement PDI for the treatment of lung diseases with extracorporeal illumination. To validate our theory, we performed measurements in liquid phantom to simulate light penetration in biological tissues at various fluency rates, the temperature was monitored in a body of hairless mice and the measurements of light transmittance in this same animal model. A diode laser emitting at 810 nm in continuous mode was used. Our results show 70% of leakage at 0.5 mm of thickness in phantom model. The mouse body temperature variation was 5.4 °C and was observed light transmittance through its chest. These results are suggesting the possible application of the extracorporeal illumination using infrared light source. Based on these findings, further studies about photodynamic inactivation will be performed in animal model using indocyanine green and bacteriochlorin as photosensitizers. The pulmonary infection will be induced with Streptococcus pneumoniae and Klebsiella pneumoniae.

  10. Virus inactivation studies using ion beams, electron and gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Smolko, Eduardo E. [Laboratorio de Polimeros, Grupo Aplicaciones Industriales, Unidad de Aplicaciones Tecnologicas y Agropecuarias, Centro Atomico Ezeiza, Comision Nacional de Energia Atomica, Pbro. Juan Gonzalez y Aragon 15, C.P. B1802AYA Ezeiza, Buenos Aires (Argentina)]. E-mail: smolko@cae.cnea.gov.ar; Lombardo, Jorge H. [Biotech S.A., C.P. 1754 Buenos Aires (Argentina)

    2005-07-01

    Known methods of virus inactivation are based on the chemical action of some substances such as acetylethylenimine, betapropiolactone, glycidalaldehyde, formaldehyde, etc. In such a process, the viral suspension should be kept at room or higher temperatures for 24-48 h. Under these conditions, physical and chemical agents act to degrade the virus antigenic proteins. On the contrary with ionizing radiations at low temperatures, the treatment does not cause such degradation allowing the study of different viral functions. In this work, particle ({alpha}, d and ss) and {gamma} irradiations were used for partial and total inactivation of Foot and Mouth Disease Virus (FMDV), Rauscher Leukemia Virus (RLV) and Herpes Simplex Virus (HSV). Obtention of the D{sub 37} dose from survival curves and the application of the target theory, permitted the determination of molecular weight of the nucleic acid genomes, EBR values and useful information for vaccine preparation. For RLV virus, a two target model of the RNA genome was deduced in accordance with biological information while from data from the literature and our own work on the structure of the scrapie prion, considering the molecular weight obtained by application of the theory, a new model for prion replication is presented, based on a trimer molecule.

  11. Virus inactivation studies using ion beams, electron and gamma irradiation

    Science.gov (United States)

    Smolko, Eduardo E.; Lombardo, Jorge H.

    2005-07-01

    Known methods of virus inactivation are based on the chemical action of some substances such as acetylethylenimine, betapropiolactone, glycidalaldehyde, formaldehyde, etc. In such a process, the viral suspension should be kept at room or higher temperatures for 24-48 h. Under these conditions, physical and chemical agents act to degrade the virus antigenic proteins. On the contrary with ionizing radiations at low temperatures, the treatment does not cause such degradation allowing the study of different viral functions. In this work, particle (α, d and ß) and γ irradiations were used for partial and total inactivation of Foot and Mouth Disease Virus (FMDV), Rauscher Leukemia Virus (RLV) and Herpes Simplex Virus (HSV). Obtention of the D37 dose from survival curves and the application of the target theory, permitted the determination of molecular weight of the nucleic acid genomes, EBR values and useful information for vaccine preparation. For RLV virus, a two target model of the RNA genome was deduced in accordance with biological information while from data from the literature and our own work on the structure of the scrapie prion, considering the molecular weight obtained by application of the theory, a new model for prion replication is presented, based on a trimer molecule.

  12. The synergistic effect of Escherichia coli inactivation by sequential disinfection with low level chlorine dioxide followed by free chlorine.

    Science.gov (United States)

    Yang, Wu; Yang, Dong; Zhu, Sui-Yi; Chen, Bo-Yan; Huo, Ming-Xin; Li, Jun-Wen

    2012-12-01

    To the best of our knowledge, there was little information available on pathogen removal using low level disinfectant followed by free chlorine in sequential disinfection (SD). This study investigated Escherichia coli inactivation by four types of disinfection: single step disinfection (SSD), SD, traditional sequential disinfection (TSD) and mixed disinfectant disinfection (MDD). Results indicated that SD had higher ability to inactivate E. coli than the others, indicating there was a positive synergistic effect on chlorine disinfection by prior dosing with a low level of chlorine dioxide (ClO(2)). The ONPG assay suggested that the permeability of cell wall rather than the viability of E. coli were changed under 0.02 mg/l ClO(2) treatment. The coexistence of residual ClO(2) and free chlorine also plays an active synergistic effect. Additionally, temperature had a positive effect on E. coli inactivation in SD, while inactivation was reduced in alkaline compared to neutral and acidic conditions.

  13. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB1 receptors and apoptotic cell death.

    Science.gov (United States)

    Tomiyama, Ken-ichi; Funada, Masahiko

    2014-01-01

    The abuse of herbal products containing synthetic cannabinoids has become an issue of public concern. The purpose of this paper was to evaluate the acute cytotoxicity of synthetic cannabinoids on mouse brain neuronal cells. Cytotoxicity induced by synthetic cannabinoid (CP-55,940, CP-47,497, CP-47,497-C8, HU-210, JWH-018, JWH-210, AM-2201, and MAM-2201) was examined using forebrain neuronal cultures. These synthetic cannabinoids induced cytotoxicity in the forebrain cultures in a concentration-dependent manner. The cytotoxicity was suppressed by preincubation with the selective CB1 receptor antagonist AM251, but not with the selective CB2 receptor antagonist AM630. Furthermore, annexin-V-positive cells were found among the treated forebrain cells. Synthetic cannabinoid treatment induced the activation of caspase-3, and preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity. These synthetic cannabinoids induced apoptosis through a caspase-3-dependent mechanism in the forebrain cultures. Our results indicate that the cytotoxicity of synthetic cannabinoids towards primary neuronal cells is mediated by the CB1 receptor, but not by the CB2 receptor, and further suggest that caspase cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. In conclusion, excessive synthetic cannabinoid abuse may present a serious acute health concern due to neuronal damage or deficits in the brain.

  14. Effects of L-NAME, a non-specific nitric oxide synthase inhibitor, on AlCl3-induced toxicity in the rat forebrain cortex.

    Science.gov (United States)

    Stevanović, Ivana D; Jovanović, Marina D; Jelenković, Ankica; Colić, Miodrag; Stojanović, Ivana; Ninković, Milica

    2009-03-01

    The present experiments were done to determine the effectiveness of a non-specific nitric oxide synthase inhibitor, N-nitro-L-arginine methyl ester (L-NAME), on oxidative stress parameters induced by aluminium chloride (AlCl(3)) intrahippocampal injections in Wistar rats. Animals were sacrificed 3 h and 30 d after treatments, heads were immediately frozen in liquid nitrogen and forebrain cortices were removed. Crude mitochondrial fraction preparations of forebrain cortices were used for the biochemical analyses: nitrite levels, superoxide production, malondialdehyde concentrations, superoxide dismutase (SOD) activities and reduced glutathione contents. AlCl(3) injection resulted in increased nitrite concentrations, superoxide anion production, malondialdehyde concentrations and reduced glutathione contents in the forebrain cortex, suggesting that AlCl(3) exposure promoted oxidative stress in this brain structure. The biochemical changes observed in neuronal tissues showed that aluminium acted as a pro-oxidant. However, the nonspecific nitric oxide synthase (NOS) inhibitor, L-NAME, exerted anti-oxidant actions in AlCl(3)-treated animals. These results revealed that NO-mediated neurotoxicity due to intrahippocampal AlCl3 injection spread temporally and spatially to the forebrain cortex, and suggested a potentially neuroprotective effect for L-NAME.

  15. Limited participation of 5-HT1A and 5-HT2A/2C receptors in the clozapine-induced Fos-protein expression in rat forebrain regions

    NARCIS (Netherlands)

    Sebens, JB; Kuipers, SD; Koch, T; Ter Horst, GJ; Korf, J

    2000-01-01

    Through the development of tolerance following long-term clozapine treatment, we investigated whether 5-HT1A and 5-HT2A/2C receptors participate in the clozapine-induced Fos-protein expression in the rat forebrain. Tolerance exists when the acutely increased Fos responses to a challenge dose of the

  16. Comparative functional analysis provides evidence for a crucial role for the homeobox gene Nkx2.1/Titf-1 in forebrain evolution.

    NARCIS (Netherlands)

    van den Akker, W.M.R.; Brox, A.; Puelles, L.; Durston, A.J.; Medina, L.

    2008-01-01

    Knockout of the Nkx2.1 (Titf-1) homeobox gene in the mouse leads to severe malformation and size reduction of the basal telencephalon/preoptic area and basal hypothalamus, indicating an important role of this gene in forebrain patterning. Here we show that abrogation of the orthologous gene in the f

  17. Comparative functional analysis provides evidence for a crucial role for the homeobox gene Nkx2.1/Titf-1 in forebrain evolution.

    NARCIS (Netherlands)

    van den Akker, W.M.R.; Brox, A.; Puelles, L.; Durston, A.J.; Medina, L.

    2008-01-01

    Knockout of the Nkx2.1 (Titf-1) homeobox gene in the mouse leads to severe malformation and size reduction of the basal telencephalon/preoptic area and basal hypothalamus, indicating an important role of this gene in forebrain patterning. Here we show that abrogation of the orthologous gene in the f

  18. The vesicular forebrain (pseudo-aprosencephaly): a missing link in the teratogenetic spectrum of the defective brain anlage and its discrimination from aprosencephaly.

    Science.gov (United States)

    Sergi, C; Schmitt, H P

    2000-03-01

    Two cases out of a sample of 41 fetuses and infants with prosencephalic malformation, observed at the Institute of Pathology and Department of Neuropathology of the University of Heidelberg, are described here in detail. These cases presented grossly with microcephaly and missing forebrain, appearing to be cases of aprosencephaly. However, in one of these cases glio-mesenchymal membranes with an ependymal outline, consistent with the microscopic appearance of the dorsal sac membrane in holoprosencephaly and obviously representing remnants of a collapsed primitive prosencephalic vesicle, could be demonstrated. In the other case only hindbrain structures, with the exception of the cerebellum, were present without any demonstrable remnants of a prosencephalon. We propose that the microscopic specification of a primitive prosencephalic vesicle in the first case and similar cases does not justify the diagnosis of atelencephaly/aprosencephaly because the prosencephalon was not really missing (pseudo-aprosencephaly). The prosencephalic anlage had been formed but remained vesicular without further differentiation of a holospheric brain mantle as in common holoprosencephaly ('vesicular forebrain'). We believe that pseudo-aprosencephaly represents the most primitive form of holoprosencephaly, in which the forebrain remains as a complete sac, linking classical holoprosencephaly with 'true' aprosencephaly, i.e., defective prosencephalic anlage due to developmental arrest. The 'vesicular forebrain' allows one to extend the classification of Probst by an additional category which might be termed complete sac category, intercalated between the dorsal sac category and 'true' atelencephaly/aprosencephaly.

  19. Inactivation of Microorganisms by Gamma Irradiation

    Science.gov (United States)

    2005-12-01

    L’inactivation cbimique (ex :formald6hyde) et thermique (ex :autoclave) peut atre utilis~e dans la pr6paration des antig~nes mais la structure d’antig~ne...change overtime. Due to 60Co having a half life of 5.24 years, the time required to achieve the initial central dose rate (kGy/hr) at 0.00 years from

  20. Female meiotic sex chromosome inactivation in chicken.

    Science.gov (United States)

    Schoenmakers, Sam; Wassenaar, Evelyne; Hoogerbrugge, Jos W; Laven, Joop S E; Grootegoed, J Anton; Baarends, Willy M

    2009-05-01

    During meiotic prophase in male mammals, the heterologous X and Y chromosomes remain largely unsynapsed, and meiotic sex chromosome inactivation (MSCI) leads to formation of the transcriptionally silenced XY body. In birds, the heterogametic sex is female, carrying Z and W chromosomes (ZW), whereas males have the homogametic ZZ constitution. During chicken oogenesis, the heterologous ZW pair reaches a state of complete heterologous synapsis, and this might enable maintenance of transcription of Z- and W chromosomal genes during meiotic prophase. Herein, we show that the ZW pair is transiently silenced, from early pachytene to early diplotene using immunocytochemistry and gene expression analyses. We propose that ZW inactivation is most likely achieved via spreading of heterochromatin from the W on the Z chromosome. Also, persistent meiotic DNA double-strand breaks (DSBs) may contribute to silencing of Z. Surprisingly, gammaH2AX, a marker of DSBs, and also the earliest histone modification that is associated with XY body formation in mammalian and marsupial spermatocytes, does not cover the ZW during the synapsed stage. However, when the ZW pair starts to desynapse, a second wave of gammaH2AX accumulates on the unsynapsed regions of Z, which also show a reappearance of the DSB repair protein RAD51. This indicates that repair of meiotic DSBs on the heterologous part of Z is postponed until late pachytene/diplotene, possibly to avoid recombination with regions on the heterologously synapsed W chromosome. Two days after entering diplotene, the Z looses gammaH2AX and shows reactivation. This is the first report of meiotic sex chromosome inactivation in a species with female heterogamety, providing evidence that this mechanism is not specific to spermatogenesis. It also indicates the presence of an evolutionary force that drives meiotic sex chromosome inactivation independent of the final achievement of synapsis.

  1. Inactivating CUX1 mutations promote tumorigenesis

    OpenAIRE

    2013-01-01

    A major challenge for cancer genetics is to determine which low frequency somatic mutations are drivers of tumorigenesis. Here we interrogate the genomes of 7,651 diverse human cancers to identify novel drivers and find inactivating mutations in the homeodomain transcription factor CUX1 (cut-like homeobox 1) in ~1-5% of tumors. Meta-analysis of CUX1 mutational status in 2,519 cases of myeloid malignancies reveals disruptive mutations associated with poor survival, highlighting the clinical si...

  2. Female meiotic sex chromosome inactivation in chicken.

    Directory of Open Access Journals (Sweden)

    Sam Schoenmakers

    2009-05-01

    Full Text Available During meiotic prophase in male mammals, the heterologous X and Y chromosomes remain largely unsynapsed, and meiotic sex chromosome inactivation (MSCI leads to formation of the transcriptionally silenced XY body. In birds, the heterogametic sex is female, carrying Z and W chromosomes (ZW, whereas males have the homogametic ZZ constitution. During chicken oogenesis, the heterologous ZW pair reaches a state of complete heterologous synapsis, and this might enable maintenance of transcription of Z- and W chromosomal genes during meiotic prophase. Herein, we show that the ZW pair is transiently silenced, from early pachytene to early diplotene using immunocytochemistry and gene expression analyses. We propose that ZW inactivation is most likely achieved via spreading of heterochromatin from the W on the Z chromosome. Also, persistent meiotic DNA double-strand breaks (DSBs may contribute to silencing of Z. Surprisingly, gammaH2AX, a marker of DSBs, and also the earliest histone modification that is associated with XY body formation in mammalian and marsupial spermatocytes, does not cover the ZW during the synapsed stage. However, when the ZW pair starts to desynapse, a second wave of gammaH2AX accumulates on the unsynapsed regions of Z, which also show a reappearance of the DSB repair protein RAD51. This indicates that repair of meiotic DSBs on the heterologous part of Z is postponed until late pachytene/diplotene, possibly to avoid recombination with regions on the heterologously synapsed W chromosome. Two days after entering diplotene, the Z looses gammaH2AX and shows reactivation. This is the first report of meiotic sex chromosome inactivation in a species with female heterogamety, providing evidence that this mechanism is not specific to spermatogenesis. It also indicates the presence of an evolutionary force that drives meiotic sex chromosome inactivation independent of the final achievement of synapsis.

  3. Developmental regulation of X-chromosome inactivation.

    Science.gov (United States)

    Payer, Bernhard

    2016-08-01

    With the emergence of sex-determination by sex chromosomes, which differ in composition and number between males and females, appeared the need to equalize X-chromosomal gene dosage between the sexes. Mammals have devised the strategy of X-chromosome inactivation (XCI), in which one of the two X-chromosomes is rendered transcriptionally silent in females. In the mouse, the best-studied model organism with respect to XCI, this inactivation process occurs in different forms, imprinted and random, interspersed by periods of X-chromosome reactivation (XCR), which is needed to switch between the different modes of XCI. In this review, I describe the recent advances with respect to the developmental control of XCI and XCR and in particular their link to differentiation and pluripotency. Furthermore, I review the mechanisms, which influence the timing and choice, with which one of the two X-chromosomes is chosen for inactivation during random XCI. This has an impact on how females are mosaics with regard to which X-chromosome is active in different cells, which has implications on the severity of diseases caused by X-linked mutations.

  4. Shh and Gli3 regulate formation of the telencephalic-diencephalic junction and suppress an isthmus-like signaling source in the forebrain.

    Science.gov (United States)

    Rash, Brian G; Grove, Elizabeth A

    2011-11-15

    In human holoprosencephaly (HPE), the forebrain does not separate fully into two hemispheres. Further, the border between the telencephalon and diencephalon, the telencephalic/diencephalic junction (TDJ), is often indistinct, and the ventricular system can be blocked at the third ventricle, creating a forebrain 'holosphere'. Mice deficient in Sonic Hedgehog (Shh) have previously been described to show HPE and associated cyclopia. Here we report that the third ventricle is blocked in Shh null mutants, similar to human HPE, and that characteristic telencephalic and diencephalic signaling centers, the cortical hem and zona limitans intrathalamica (ZLI), are merged, obliterating the TDJ. The resulting forebrain holosphere comprises Foxg1-positive telencephalic- and Foxg1-negative diencephalic territories. Loss of one functional copy of Gli3 in Shh nulls rescues ventricular collapse and substantially restores the TDJ. Characteristic regional gene expression patterns are rescued on the telencephalic side of the TDJ but not in the diencephalon. Further analysis of compound Shh;Gli3 mutants revealed an unexpected type of signaling center deregulation. In Shh;Gli3 mutants, adjacent rings of Fgf8 and Wnt3a expression are induced in the diencephalon at the ZLI, reminiscent of the Fgf8/Wnt1-expressing isthmic organizer. Neither Shh nor Gli3 single mutants show this forebrain double ring of Fgf/Wnt expression; thus both Shh and Gli3 are independently required to suppress it. Adjacent tissue is not respecified to a midbrain/hindbrain fate, but shows overgrowth, consistent with ectopic mitogen expression. Our observations indicate that the separation of the telencephalon and diencephalon depends on interactions between Shh and Gli3, and, moreover, demonstrate that both Shh and Gli3 suppress a potential Fgf/Wnt signaling source in the forebrain. That optional signaling centers are actively repressed in normal development is a striking new insight into the processes of vertebrate

  5. High hydrostatic pressure treatment for the inactivation of Staphylococcus aureus in human blood plasma.

    Science.gov (United States)

    Rivalain, Nolwennig; Roquain, Jean; Boiron, Jean-Michel; Maurel, Jean-Paul; Largeteau, Alain; Ivanovic, Zoran; Demazeau, Gérard

    2012-02-15

    For the past 30years, pressure inactivation of microorganisms has been developed in biosciences, in particular for foods and more recently for biological products, including pharmaceutical ones. In many past studies, the effect of high hydrostatic pressure (HHP) processes on pathogens focused mainly on the effect of an increase of the pressure value. To assure the safety of pharmaceutical products containing fragile therapeutic components, development of new decontamination processes at the lowest pressure value is needed to maintain their therapeutic properties. The aim of this study was therefore to evaluate the impact of the process parameters characterizing high-pressure treatments [such as the pressurization rate (PR) and the application mode (AM)] on the inactivation of pathogens, in particular to determine how these parameters values could help decrease the pressure value necessary to reach the same inactivation level. The effect of these physical parameters was evaluated on the inactivation of Staphylococcus aureus ATCC 6538 which is an opportunistic pathogen of important relevance in the medical, pharmaceutical and food domains. Human blood plasma was chosen as the suspension medium because of its physiological importance in the transfusion field. It was shown that the optimization of all the selected parameters could lead to a high inactivation level (≈5log(10) decrease of the initial bacterial load) at a pressure level as low as 200MPa, underlining some synergistic effects among these parameters. Complete inactivation of the initial bacterial population was achieved for the following conditions: PR=50MPas(-1), AM=5×2min, T≈-5°C and P=300MPa.

  6. Protection against tuberculosis in Eurasian wild boar vaccinated with heat-inactivated Mycobacterium bovis.

    Directory of Open Access Journals (Sweden)

    Joseba M Garrido

    Full Text Available Tuberculosis (TB caused by Mycobacterium bovis and closely related members of the Mycobacterium tuberculosis complex continues to affect humans and animals worldwide and its control requires vaccination of wildlife reservoir species such as Eurasian wild boar (Sus scrofa. Vaccination efforts for TB control in wildlife have been based primarily on oral live BCG formulations. However, this is the first report of the use of oral inactivated vaccines for controlling TB in wildlife. In this study, four groups of 5 wild boar each were vaccinated with inactivated M. bovis by the oral and intramuscular routes, vaccinated with oral BCG or left unvaccinated as controls. All groups were later challenged with a field strain of M. bovis. The results of the IFN-gamma response, serum antibody levels, M. bovis culture, TB lesion scores, and the expression of C3 and MUT genes were compared between these four groups. The results suggested that vaccination with heat-inactivated M. bovis or BCG protect wild boar from TB. These results also encouraged testing combinations of BCG and inactivated M. bovis to vaccinate wild boar against TB. Vaccine formulations using heat-inactivated M. bovis for TB control in wildlife would have the advantage of being environmentally safe and more stable under field conditions when compared to live BCG vaccines. The antibody response and MUT expression levels can help differentiating between vaccinated and infected wild boar and as correlates of protective response in vaccinated animals. These results suggest that vaccine studies in free-living wild boar are now possible to reveal the full potential of protecting against TB using oral M. bovis inactivated and BCG vaccines.

  7. Protection against tuberculosis in Eurasian wild boar vaccinated with heat-inactivated Mycobacterium bovis.

    Science.gov (United States)

    Garrido, Joseba M; Sevilla, Iker A; Beltrán-Beck, Beatriz; Minguijón, Esmeralda; Ballesteros, Cristina; Galindo, Ruth C; Boadella, Mariana; Lyashchenko, Konstantin P; Romero, Beatriz; Geijo, Maria Victoria; Ruiz-Fons, Francisco; Aranaz, Alicia; Juste, Ramón A; Vicente, Joaquín; de la Fuente, José; Gortázar, Christian

    2011-01-01

    Tuberculosis (TB) caused by Mycobacterium bovis and closely related members of the Mycobacterium tuberculosis complex continues to affect humans and animals worldwide and its control requires vaccination of wildlife reservoir species such as Eurasian wild boar (Sus scrofa). Vaccination efforts for TB control in wildlife have been based primarily on oral live BCG formulations. However, this is the first report of the use of oral inactivated vaccines for controlling TB in wildlife. In this study, four groups of 5 wild boar each were vaccinated with inactivated M. bovis by the oral and intramuscular routes, vaccinated with oral BCG or left unvaccinated as controls. All groups were later challenged with a field strain of M. bovis. The results of the IFN-gamma response, serum antibody levels, M. bovis culture, TB lesion scores, and the expression of C3 and MUT genes were compared between these four groups. The results suggested that vaccination with heat-inactivated M. bovis or BCG protect wild boar from TB. These results also encouraged testing combinations of BCG and inactivated M. bovis to vaccinate wild boar against TB. Vaccine formulations using heat-inactivated M. bovis for TB control in wildlife would have the advantage of being environmentally safe and more stable under field conditions when compared to live BCG vaccines. The antibody response and MUT expression levels can help differentiating between vaccinated and infected wild boar and as correlates of protective response in vaccinated animals. These results suggest that vaccine studies in free-living wild boar are now possible to reveal the full potential of protecting against TB using oral M. bovis inactivated and BCG vaccines.

  8. Preparation of Inactivated Human Skin Using High Hydrostatic Pressurization for Full-Thickness Skin Reconstruction.

    Directory of Open Access Journals (Sweden)

    Pham Hieu Liem

    Full Text Available We have reported that high-hydrostatic-pressure (HHP technology is safe and useful for producing various kinds of decellularized tissue. However, the preparation of decellularized or inactivated skin using HHP has not been reported. The objective of this study was thus to prepare inactivated skin from human skin using HHP, and to explore the appropriate conditions of pressurization to inactivate skin that can be used for skin reconstruction. Human skin samples of 8 mm in diameter were packed in bags filled with normal saline solution (NSS or distilled water (DW, and then pressurized at 0, 100, 150, 200 and 1000 MPa for 10 minutes. The viability of skin after HHP was evaluated using WST-8 assay. Outgrowth cells from pressurized skin and the viability of pressurized skin after cultivation for 14 days were also evaluated. The pressurized skin was subjected to histological evaluation using hematoxylin and eosin staining, scanning electron microscopy (SEM, immunohistochemical staining of type IV collagen for the basement membrane of epidermis and capillaries, and immunohistochemical staining of von Willebrand factor (vWF for capillaries. Then, human cultured epidermis (CE was applied on the pressurized skin and implanted into the subcutis of nude mice; specimens were subsequently obtained 14 days after implantation. Skin samples pressurized at more than 200 MPa were inactivated in both NSS and DW. The basement membrane and capillaries remained intact in all groups according to histological and immunohistological evaluations, and collagen fibers showed no apparent damage by SEM. CE took on skin pressurized at 150 and 200 MPa after implantation, whereas it did not take on skin pressurized at 1000 MPa. These results indicate that human skin could be inactivated after pressurization at more than 200 MPa, but skin pressurized at 1000 MPa had some damage to the dermis that prevented the taking of CE. Therefore, pressurization at 200 MPa is optimal for

  9. The Planar Cell Polarity Transmembrane Protein Vangl2 Promotes Dendrite, Spine and Glutamatergic Synapse Formation in the Mammalian Forebrain.

    Science.gov (United States)

    Okerlund, Nathan D; Stanley, Robert E; Cheyette, Benjamin N R

    2016-07-01

    The transmembrane protein Vangl2, a key regulator of the Wnt/planar cell polarity (PCP) pathway, is involved in dendrite arbor elaboration, dendritic spine formation and glutamatergic synapse formation in mammalian central nervous system neurons. Cultured forebrain neurons from Vangl2 knockout mice have simpler dendrite arbors, fewer total spines, less mature spines and fewer glutamatergic synapse inputs on their dendrites than control neurons. Neurons from mice heterozygous for a semidominant Vangl2 mutation have similar but not identical phenotypes, and these phenotypes are also observed in Golgi-stained brain tissue from adult mutant mice. Given increasing evidence linking psychiatric pathophysiology to these subneuronal sites and structures, our findings underscore the relevance of core PCP proteins including Vangl2 to the underlying biology of major mental illnesses and their treatment.

  10. Contribution of the cholinergic basal forebrain to proactive interference from stored odor memories during associative learning in rats.

    Science.gov (United States)

    De Rosa, E; Hasselmo, M E; Baxter, M G

    2001-04-01

    E. De Rosa and M. E. Hasselmo (2000) demonstrated that 0.25 mg/kg scopolamine (SCOP) selectively increased proactive interference (PI) from stored odor memories during learning. In the present study, rats with bilateral cholinergic lesions limited to the horizontal limb of the diagonal band of Broca, made with 192 IgG-saporin, were not impaired in acquiring the same olfactory discrimination task relative to control rats. Rats with bilateral 192 IgG-saporin lesions to all basal forebrain cholinergic nuclei (BF) also showed no impairment in acquisition of this task. However, the BF-saporin rats were hypersensitive to oxotremorine-induced hypothermia and demonstrated an increased sensitivity to PI following a low dose of SCOP (0.125 mg/kg) relative to control rats. The results suggest that weaker cholinergic modulation after cholinergic BF lesions makes the system more sensitive to PI during blockade of the remaining cholinergic elements.

  11. Responses of CA1 pyramidal neurons in rat hippocampus to transient forebrain ischemia: an in vivo intracellular recording study.

    Science.gov (United States)

    Xu, Z C; Pulsinelli, W A

    1994-04-25

    The electrophysiological responses of CA1 pyramidal neurons to 5 min forebrain ischemia were studied with intracellular recording and staining techniques in vivo. The baseline membrane potential rapidly depolarized to approximately -20 mV about 3 min after the onset of ischemia and began to repolarize 1-3 min after recirculation. The amplitude of this ischemic depolarization (ID) was related directly to the severity of ischemia and its latency of onset was inversely related to brain temperature. Spontaneous synaptic activity ceased shortly after ischemia onset while the evoke synaptic potentials lasted until shortly before the onset of ID. Inhibitory postsynaptic potentials (IPSPs) disappeared earlier than excitatory postsynaptic potentials (EPSPs) and the membrane input resistance of CA1 neurons increased after the onset of ischemia.

  12. Blockade of the AMPA receptor prevents CA1 hippocampal injury following severe but transient forebrain ischemia in adult rats.

    Science.gov (United States)

    Buchan, A M; Li, H; Cho, S; Pulsinelli, W A

    1991-11-11

    The cytoprotective effect of NBQX, a selective AMPA receptor antagonist, was tested following 10 min of severe forebrain ischemia using the 4-vessel occlusion model. Immediately, and at 15 and 30 min following reperfusion, adult Wistar rats received intraperitoneal injections of either saline (n = 5), 1 mg lithium chloride (n = 17) or 30 mg/kg of the lithium salt of NBQX (n = 18). In saline-treated animals 82 +/- 12% of CA1 hippocampal neurons were lost. Of those treated with lithium 70 +/- 23% were injured, while those given NBQX sustained only 40 +/- 34% CA1 necrosis (P less than 0.01). Twelve of 18 NBQX-treated animals had less than 30% CA1 injury as compared with 1 of 17 lithium-treated animals. The AMPA receptor may play a more important role than the NMDA receptor in selective ischemic necrosis of hippocampal neurons.

  13. Forebrain-mediated sensitization of central pain pathways: 'non-specific' pain and a new image for MT.

    Science.gov (United States)

    Zusman, M

    2002-05-01

    Manual therapy (MT-) is moving beyond its empirical origins and into an era of evidence-based practice. Mechanisms for the appearance of clinically observed symptoms and signs are beng incorporated into its clinical reasoning process. The recent, but well-documented phenomenon, central sensitization, is recognized as being one such mechanism. Anatomical, physiological, behavioural and clinical evidence demonstrate that, in addition to input from the periphery, central sensitization can be enhanced or maintained by supraspinal processes involving cognitions, attention ('focussing') and emotions. These forebrain products may, therefore, make a significant contribution to the symptoms and signs of common musculoskeletal presentations such as 'non-specific' back pain and fibromyalgia. The evidence can also be interpreted to provide MT with an acceptable role in the management of these patients.

  14. Inactivation of Pseudomonas putida by pulsed electric field treatment: a study on the correlation of treatment parameters and inactivation efficiency in the short-pulse range.

    Science.gov (United States)

    Frey, Wolfgang; Gusbeth, Christian; Schwartz, Thomas

    2013-10-01

    An important issue for an economic application of the pulsed electric field treatment for bacterial decontamination of wastewater is the specific treatment energy needed for effective reduction of bacterial populations. The present experimental study performed in a field amplitude range of 40 > E > 200 kV/cm and for a suspension conductivity of 0.01 = κ(e) > 0.2 S/m focusses on the application of short pulses, 25 ns > T > 10 μs, of rectangular, bipolar and exponential shape and was made on Pseudomonas putida, which is a typical and widespread wastewater microorganism. The comparison of inactivation results with calculations of the temporal and azimuthal membrane charging dynamics using the model of Pauly and Schwan revealed that for efficient inactivation, membrane segments at the cell equator have to be charged quickly and to a sufficiently high value, on the order of 0.5 V. After fulfilling this basic condition by an appropriate choice of pulse field strength and duration, the log rate of inactivation for a given suspension conductivity of 0.2 S/m was found to be independent of the duration of individual pulses for constant treatment energy expenditure. Moreover, experimental results suggest that even pulse shape plays a minor role in inactivation efficiency. The variation of the suspension conductivity resulted in comparable inactivation performance of identical pulse parameters if the product of pulse duration and number of pulses was the same, i.e., required treatment energy can be linearly downscaled for lower conductivities, provided that pulse amplitude and duration are selected for entire membrane surface permeabilization.

  15. Reversible Heat-Induced Inactivation of Chimeric β-Glucuronidase in Transgenic Plants1

    Science.gov (United States)

    Almoguera, Concepción; Rojas, Anabel; Jordano, Juan

    2002-01-01

    We compared the expression patterns in transgenic tobacco (Nicotiana tabacum) of two chimeric genes: a translational fusion to β-glucuronidase (GUS) and a transcriptional fusion, both with the same promoter and 5′-flanking sequences of Ha hsp17.7 G4, a small heat shock protein (sHSP) gene from sunflower (Helianthus annuus). We found that immediately after heat shock, the induced expression from the two fusions in seedlings was similar, considering chimeric mRNA or GUS protein accumulation. Surprisingly, we discovered that the chimeric GUS protein encoded by the translational fusion was mostly inactive in such conditions. We also found that this inactivation was fully reversible. Thus, after returning to control temperature, the GUS activity was fully recovered without substantial changes in GUS protein accumulation. In contrast, we did not find differences in the in vitro heat inactivation of the respective GUS proteins. Insolubilization of the chimeric GUS protein correlated with its inactivation, as indicated by immunoprecipitation analyses. The inclusion in another chimeric gene of the 21 amino-terminal amino acids from a different sHSP lead to a comparable reversible inactivation. That effect not only illustrates unexpected post-translational problems, but may also point to sequences involved in interactions specific to sHSPs and in vivo heat stress conditions. PMID:12011363

  16. Evaluation of microfluidics reactor technology on the kinetics of virus inactivation.

    Science.gov (United States)

    Bailey, Mark R; Chen, Dayue; Emery, Warren R; Lambooy, Peter K; Nolting, Juliana; Quertinmont, Michelle T; Shamlou, Parviz A

    2008-04-15

    Mammalian cell lines constitute an important part in the manufacture of therapeutic proteins. However, their susceptibility to virus contamination is a potential risk to patient safety and productivity, and has led to the development of a repertoire of virus inactivation techniques. From a process development viewpoint, the challenge is to demonstrate the required log reduction in virus content without a significant loss in product titer or quality. The balance between the two is dictated by the kinetics of virus inactivation and protein degradation, both of which are critically affected by process parameters. In this study we describe a commercially available microchannel reactor (MCR) and demonstrate how it can be used to evaluate the impact of temperature on the kinetics of virus inactivation and protein product degradation. Virus spiking experiments are reported using Xenotropic Murine Leukemia Virus and REOvirus, into buffers in the absence and presence of a therapeutic protein currently under development at Lilly. The results demonstrate that the MCR is an ideal platform for evaluation of fast reactive systems and reactions that are particularly sensitive to small changes to process conditions. These conditions include heat inactivation of a virus in a mammalian cell culture process stream used in the manufacture of therapeutic proteins and antibodies.

  17. Transient inactivation of basolateral amygdala during selective satiation disrupts reinforcer devaluation in rats.

    Science.gov (United States)

    West, Elizabeth A; Forcelli, Patrick A; Murnen, Alice T; McCue, David L; Gale, Karen; Malkova, Ludise

    2012-08-01

    Basolateral amygdala (BLA) function is critical for flexible, goal-directed behavior, including performance on reinforcer devaluation tasks. Here we tested, in rats, the hypothesis that BLA is critical for conditioned reinforcer devaluation during the period when the primary reinforcer (food) is being devalued (by feeding it to satiety), but not thereafter for guiding behavioral choices. We used a spatially independent task that used two visual cues, each predicting one of two foods. An instrumental action (lever press) was required for reinforcer delivery. After training, rats received BLA or sham lesions, or cannulae implanted in BLA. Under control conditions (sham lesions, saline infusions), devaluation of one food significantly decreased responding to the cue associated with that food, when both cues were presented simultaneously during extinction. BLA lesions impaired this devaluation effect. Transient inactivation of BLA by microinfusion of the γ-aminobutyric acid receptor type A agonist muscimol resulted in an impairment only when BLA was inactivated during satiation. When muscimol was infused after satiation and therefore, BLA was inactivated only during the choice test, rats showed no impairment. Thus, BLA is necessary for registering or updating cues to reflect updated reinforcer values, but not for guiding choices once the value has been updated. Our results are the first to describe the contribution of rat BLA to specific components of reinforcer devaluation and are the first to show impairment in reinforcer devaluation following transient inactivation in the rat.

  18. A Basal Forebrain Site Coordinates the Modulation of Endocrine and Behavioral Stress Responses via Divergent Neural Pathways

    Science.gov (United States)

    Johnson, Shane B.; Emmons, Eric B.; Anderson, Rachel M.; Glanz, Ryan M.; Romig-Martin, Sara A.; Narayanan, Nandakumar S.; LaLumiere, Ryan T.

    2016-01-01

    The bed nuclei of the stria terminalis (BST) are critically important for integrating stress-related signals between the limbic forebrain and hypothalamo-pituitary-adrenal (HPA) effector neurons in the paraventricular hypothalamus (PVH). Nevertheless, the circuitry underlying BST control over the stress axis and its role in depression-related behaviors has remained obscure. Utilizing optogenetic approaches in rats, we have identified a novel role for the anteroventral subdivision of BST in the coordinated inhibition of both HPA output and passive coping behaviors during acute inescapable (tail suspension, TS) stress. Follow-up experiments probed axonal pathways emanating from the anteroventral BST which accounted for separable endocrine and behavioral functions subserved by this cell group. The PVH and ventrolateral periaqueductal gray were recipients of GABAergic outputs from the anteroventral BST that were necessary to restrain stress-induced HPA activation and passive coping behavior, respectively, during TS and forced swim tests. In contrast to other BST subdivisions implicated in anxiety-like responses, these results direct attention to the anteroventral BST as a nodal point in a stress-modulatory network for coordinating neuroendocrine and behavioral coping responses, wherein impairment could account for core features of stress-related mood disorders. SIGNIFICANCE STATEMENT Dysregulation of the neural pathways modulating stress-adaptive behaviors is implicated in stress-related psychiatric illness. While aversive situations activate a network of limbic forebrain regions thought to mediate such changes, little is known about how this information is integrated to orchestrate complex stress responses. Here we identify novel roles for the anteroventral bed nuclei of the stria terminalis in inhibiting both stress hormone output and passive coping behavior via divergent projections to regions of the hypothalamus and midbrain. Inhibition of these projections

  19. Distribution of secretagogin-containing neurons in the basal forebrain of mice, with special reference to the cholinergic corticopetal system.

    Science.gov (United States)

    Gyengesi, Erika; Andrews, Zane B; Paxinos, George; Zaborszky, Laszlo

    2013-05-01

    Cholinergic and GABAergic corticopetal neurons in the basal forebrain play important roles in cortical activation, sensory processing, and attention. Cholinergic neurons are intermingled with peptidergic, and various calcium binding protein-containing cells, however, the functional role of these neurons is not well understood. In this study we examined the expression pattern of secretagogin (Scgn), a newly described calcium-binding protein, in neurons of the basal forebrain. We also assessed some of the corticopetal projections of Scgn neurons and their co-localization with choline acetyltransferase (ChAT), neuropeptide-Y, and other calcium-binding proteins (i.e., calbindin, calretinin, and parvalbumin). Scgn is expressed in cell bodies of the medial and lateral septum, vertical and horizontal diagonal band nuclei, and of the extension of the amygdala but it is almost absent in the ventral pallidum. Scgn is co-localized with ChAT in neurons of the bed nucleus of the stria terminalis, extension of the amygdala, and interstitial nucleus of the posterior limb of the anterior commissure. Scgn was co-localized with calretinin in the accumbens nucleus, medial division of the bed nucleus of stria terminalis, the extension of the amygdala, and interstitial nucleus of the posterior limb of the anterior commissure. We have not found co-expression of Scgn with parvalbumin, calbindin, or neuropeptide-Y. Retrograde tracing studies using Fluoro Gold in combination with Scgn-specific immunohistochemistry revealed that Scgn neurons situated in the nucleus of the horizontal limb of the diagonal band project to retrosplenial and cingulate cortical areas.

  20. Cytoskeletal regulation dominates temperature-sensitive proteomic changes of hibernation in forebrain of 13-lined ground squirrels.

    Directory of Open Access Journals (Sweden)

    Allyson G Hindle

    Full Text Available 13-lined ground squirrels, Ictidomys tridecemlineatus, are obligate hibernators that transition annually between summer homeothermy and winter heterothermy - wherein they exploit episodic torpor bouts. Despite cerebral ischemia during torpor and rapid reperfusion during arousal, hibernator brains resist damage and the animals emerge neurologically intact each spring. We hypothesized that protein changes in the brain underlie winter neuroprotection. To identify candidate proteins, we applied a sensitive 2D gel electrophoresis method to quantify protein differences among forebrain extracts prepared from ground squirrels in two summer, four winter and fall transition states. Proteins that differed among groups were identified using LC-MS/MS. Only 84 protein spots varied significantly among the defined states of hibernation. Protein changes in the forebrain proteome fell largely into two reciprocal patterns with a strong body temperature dependence. The importance of body temperature was tested in animals from the fall; these fall animals use torpor sporadically with body temperatures mirroring ambient temperatures between 4 and 21°C as they navigate the transition between summer homeothermy and winter heterothermy. Unlike cold-torpid fall ground squirrels, warm-torpid individuals strongly resembled the homeotherms, indicating that the changes observed in torpid hibernators are defined by body temperature, not torpor per se. Metabolic enzymes were largely unchanged despite varied metabolic activity across annual and torpor-arousal cycles. Instead, the majority of the observed changes were cytoskeletal proteins and their regulators. While cytoskeletal structural proteins tended to differ seasonally, i.e., between summer homeothermy and winter heterothermy, their regulatory proteins were more strongly affected by body temperature. Changes in the abundance of various isoforms of the microtubule assembly and disassembly regulatory proteins

  1. Sleep-wake sensitive mechanisms of adenosine release in the basal forebrain of rodents: an in vitro study.

    Directory of Open Access Journals (Sweden)

    Robert Edward Sims

    Full Text Available Adenosine acting in the basal forebrain is a key mediator of sleep homeostasis. Extracellular adenosine concentrations increase during wakefulness, especially during prolonged wakefulness and lead to increased sleep pressure and subsequent rebound sleep. The release of endogenous adenosine during the sleep-wake cycle has mainly been studied in vivo with microdialysis techniques. The biochemical changes that accompany sleep-wake status may be preserved in vitro. We have therefore used adenosine-sensitive biosensors in slices of the basal forebrain (BFB to study both depolarization-evoked adenosine release and the steady state adenosine tone in rats, mice and hamsters. Adenosine release was evoked by high K(+, AMPA, NMDA and mGlu receptor agonists, but not by other transmitters associated with wakefulness such as orexin, histamine or neurotensin. Evoked and basal adenosine release in the BFB in vitro exhibited three key features: the magnitude of each varied systematically with the diurnal time at which the animal was sacrificed; sleep deprivation prior to sacrifice greatly increased both evoked adenosine release and the basal tone; and the enhancement of evoked adenosine release and basal tone resulting from sleep deprivation was reversed by the inducible nitric oxide synthase (iNOS inhibitor, 1400 W. These data indicate that characteristics of adenosine release recorded in the BFB in vitro reflect those that have been linked in vivo to the homeostatic control of sleep. Our results provide methodologically independent support for a key role for induction of iNOS as a trigger for enhanced adenosine release following sleep deprivation and suggest that this induction may constitute a biochemical memory of this state.

  2. Aging-induced Seizure-related Changes to the Hippocampal Mossy Fiber Pathway in Forebrain Specific BDNF Overexpressing Mice.

    Science.gov (United States)

    Weidner, Kate L; Goodman, Jeffrey H; Chadman, Kathryn K; McCloskey, Daniel P

    2011-08-01

    Aging confers an increased risk for developing seizure activity, especially within brain regions that mediate learning and synaptic plasticity. Brain derived neurotrophic factor (BDNF) is a member of the neurotrophin family that has an important role in regulating growth and development of the nervous system. BDNF is upregulated after pharmacological seizure induction and this upregulation contributes to enhanced excitability of the hippocampal mossy fiber-CA3 pathway, which is accompanied by neuropeptide Y (NPY) upregulation. Mice overexpressing a BDNF transgene in forebrain neurons provide an avenue for understanding the role of neurotrophic support in the aged hippocampus. In this study BDNF transgenic (TG) mice were utilized to determine whether increased BDNF expression through genetic manipulation resulted in age-related changes in hippocampal excitability and NPY expression. Spontaneous behavioral seizures were observed in TG mice, but not WT mice, past 5 months of age and the severity of behavioral seizures increased with age. Electrophysiological investigation of hippocampal CA3 activity indicated that slices from aged TG mice (86%), but not age-matched WT mice, or young TG mice, showed epileptiform activity in response to either repeated paired pulse or high frequency (tetanic) stimulation. Electrophysiological results were supported by the observation of robust ectopic NPY immunoreactivity in hippocampal mossy fibers of most aged TG mice (57%), which was absent in age-matched WT mice and young TG mice. The results from this study indicate that forebrain restricted BDNF overexpression produces age-related changes in hyperexcitability and NPY immunoreactivity in mossy fiber-CA3 pathway. Together, these data suggest that the capability for BDNF to promote epileptogenesis is maintained, and may be enhanced, in the aging hippocampus.

  3. The Human Immune Response to HIV and its Impact in the Potential Development of an Inactivated HIV Vaccine.

    Science.gov (United States)

    Rios, Adan; Pottet, Ethan C; Siwak, Edward B; Anderson, Dallas W; Yao, Qizhi C

    2016-01-01

    There is evidence that the transmission and acute phase of HIV infection triggers an immune response capable of controlling HIV subverted by the process of virus integration, essential to the replicative cycle of retroviruses. We review here two aspects that deserve consideration in light of recent developments concerning HIV transmission and vaccine development: vaccines directed against transmitted/founder viruses, and a reconsideration of inactivation as a viable means to obtain a preventive HIV vaccine. Since 80% of sexually transmitted HIV infections are caused by a single transmitted/founder variant, it is appropriate to target transmitted/founder viruses for vaccine development. Transmitted/founder virus transmission is subject to strong natural selection based on conserved signatures present in all forms of transmitted/founder HIV viruses. This provides an opportunity to pursue inactivation methods of vaccine development that allow antigenic preservation of HIV transmitted/founder viruses. The presentation to the immune system of an inactivated but antigenically preserved transmitted/founder virus should allow the development of an effective immune response against transmitted/founder viruses. This could be the base for an inactivated transmitted/founder virus HIV vaccine. We have devised a method of inactivation of HIV reverse transcriptase through the use of a novel photo-labeling procedure based on the use of photo-labeled analogs of antiretroviral compounds with specific affinity for HIV reverse transcriptase. We believe this method fulfills the required conditions for an effective preventive vaccine development: inactivation and antigenic preservation.

  4. Chlorine inactivation of Tubifex tubifex in drinking water and the synergistic effect of sequential inactivation with UV irradiation and chlorine.

    Science.gov (United States)

    Nie, Xiao-Bao; Li, Zhi-Hong; Long, Yuan-Nan; He, Pan-Pan; Xu, Chao

    2017-06-01

    The inactivation of Tubifex tubifex is important to prevent contamination of drinking water. Chlorine is a widely-used disinfectant and the key factor in the inactivation of T. tubifex. This study investigated the inactivation kinetics of chlorine on T. tubifex and the synergistic effect of the sequential use of chlorine and UV irradiation. The experimental results indicated that the Ct (concentration × timereaction) concept could be used to evaluate the inactivation kinetics of T. tubifex with chlorine, thus allowing for the use of a simpler Ct approach for the assessment of T. tubifex chlorine inactivation requirements. The inactivation kinetics of T. tubifex by chlorine was found to be well-fitted to a delayed pseudo first-order Chick-Watson expression. Sequential experiments revealed that UV irradiation and chlorine worked synergistically to effectively inactivate T. tubifex as a result of the decreased activation energy, Ea, induced by primary UV irradiation. Furthermore, the inactivation effectiveness of T. tubifex by chlorine was found to be affected by several drinking water quality parameters including pH, turbidity, and chemical oxygen demand with potassium permanganate (CODMn) concentration. High pH exhibited pronounced inactivation effectiveness and the decrease in turbidity and CODMn concentrations contributed to the inactivation of T. tubifex.

  5. Virus inactivation by protein denaturants used in affinity chromatography.

    Science.gov (United States)

    Roberts, Peter L; Lloyd, David

    2007-10-01

    Virus inactivation by a number of protein denaturants commonly used in gel affinity chromatography for protein elution and gel recycling has been investigated. The enveloped viruses Sindbis, herpes simplex-1 and vaccinia, and the non-enveloped virus polio-1 were effectively inactivated by 0.5 M sodium hydroxide, 6 M guanidinium thiocyanate, 8 M urea and 70% ethanol. However, pH 2.6, 3 M sodium thiocyanate, 6 M guanidinium chloride and 20% ethanol, while effectively inactivating the enveloped viruses, did not inactivate polio-1. These studies demonstrate that protein denaturants are generally effective for virus inactivation but with the limitation that only some may inactivate non-enveloped viruses. The use of protein denaturants, together with virus reduction steps in the manufacturing process should ensure that viral cross contamination between manufacturing batches of therapeutic biological products is prevented and the safety of the product ensured.

  6. Inactivation of Salmonella on Eggshells by Chlorine Dioxide Gas.

    Science.gov (United States)

    Kim, Hyobi; Yum, Bora; Yoon, Sung-Sik; Song, Kyoung-Ju; Kim, Jong-Rak; Myeong, Donghoon; Chang, Byungjoon; Choe, Nong-Hoon

    2016-01-01

    Microbiological contamination of eggs should be prevented in the poultry industry, as poultry is one of the major reservoirs of human Salmonella. ClO2 gas has been reported to be an effective disinfectant in various industry fields, particularly the food industry. The aims of this study were to evaluate the antimicrobial effect of chlorine dioxide gas on two strains of Salmonella inoculated onto eggshells under various experimental conditions including concentrations, contact time, humidity, and percentage organic matter. As a result, it was shown that chlorine dioxide gas under wet conditions was more effective in inactivating Salmonella Enteritidis and Salmonella Gallinarum compared to that under dry conditions independently of the presence of organic matter (yeast extract). Under wet conditions, a greater than 4 log reduction in bacterial populations was achieved after 30 min of exposure to ClO2 each at 20 ppm, 40 ppm, and 80 ppm against S. Enteritidis; 40 ppm and 80 ppm against S. Gallinarum. These results suggest that chlorine dioxide gas is an effective agent for controlling Salmonella, the most prevalent contaminant in the egg industry.

  7. X Inactivation and Progenitor Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ruben Agrelo

    2011-04-01

    Full Text Available In mammals, silencing of one of the two X chromosomes is necessary to achieve dosage compensation. The 17 kb non-coding RNA called Xist triggers X inactivation. Gene silencing by Xist can only be achieved in certain contexts such as in cells of the early embryo and in certain hematopoietic progenitors where silencing factors are present. Moreover, these epigenetic contexts are maintained in cancer progenitors in which SATB1 has been identified as a factor related to Xist-mediated chromosome silencing.

  8. Inactivation and injury assessment of Escherichia coli during solar and photocatalytic disinfection in LDPE bags.

    Science.gov (United States)

    Dunlop, P S M; Ciavola, M; Rizzo, L; Byrne, J A

    2011-11-01

    Solar disinfection (SODIS) of Escherichia coli suspensions in low-density polyethylene bag reactors was investigated as a low-cost disinfection method suitable for application in developing countries. The efficiency of a range of SODIS reactor configurations was examined (single skin (SS), double skin, black-backed single skin, silver-backed single skin (SBSS) and composite-backed single skin) using E. coli suspended in model and real surface water. Titanium dioxide was added to the reactors to improve the efficiency of the SODIS process. The effect of turbidity was also assessed. In addition to viable counts, E. coli injury was characterised through spread-plate analysis using selective and non-selective media. The optimal reactor configuration was determined to be the SBSS bag (t(50)=9.0min) demonstrating the importance of UVA photons, as opposed to infrared in the SODIS disinfection mechanism. Complete inactivation (6.5-log) was achieved in the presence of turbidity (50NTU) using the SBSS bag within 180min simulated solar exposure. The addition of titanium dioxide (0.025gL(-1)) significantly enhanced E. coli inactivation in the SS reactor, with 6-log inactivation observed within 90min simulated solar exposure. During the early stages of both SODIS and photocatalytic disinfection, injured E. coli were detected; however, irreversible injury was caused and re-growth was not observed. Experiments under solar conditions were undertaken with total inactivation (6.5-log) observed in the SS reactor within 240min, incomplete inactivation (4-log) was observed in SODIS bottles exposed to the same solar conditions.

  9. Inactivation of virus in solution by cold atmospheric pressure plasma: identification of chemical inactivation pathways

    Science.gov (United States)

    Aboubakr, Hamada A.; Gangal, Urvashi; Youssef, Mohammed M.; Goyal, Sagar M.; Bruggeman, Peter J.

    2016-05-01

    Cold atmospheric pressure plasma (CAP) inactivates bacteria and virus through in situ production of reactive oxygen and nitrogen species (RONS). While the bactericidal and virucidal efficiency of plasmas is well established, there is limited knowledge about the chemistry leading to the pathogen inactivation. This article describes a chemical analysis of the CAP reactive chemistry involved in the inactivation of feline calicivirus. We used a remote radio frequency CAP produced in varying gas mixtures leading to different plasma-induced chemistries. A study of the effects of selected scavengers complemented with positive control measurements of relevant RONS reveal two distinctive pathways based on singlet oxygen and peroxynitrous acid. The first mechanism is favored in the presence of oxygen and the second in the presence of air when a significant pH reduction is induced in the solution by the plasma. Additionally, smaller effects of the H2O2, O3 and \\text{NO}2- produced were also found. Identification of singlet oxygen-mediated 2-imidazolone/2-oxo-His (His  +14 Da)—an oxidative modification of His 262 comprising the capsid protein of feline calicivirus links the plasma induced singlet oxygen chemistry to viral inactivation.

  10. Modeling the pressure inactivation dynamics of Escherichia coli

    Directory of Open Access Journals (Sweden)

    Yamamoto K.

    2005-01-01

    Full Text Available Escherichia coli, as a model microorganism, was treated in phosphate-buffered saline under high hydrostatic pressure between 100 and 300 MPa, and the inactivation dynamics was investigated from the viewpoint of predictive microbiology. Inactivation data were curve fitted by typical predictive models: logistic, Gompertz and Weibull functions. Weibull function described the inactivation curve the best. Two parameters of Weibull function were calculated for each holding pressure and their dependence on holding pressure was obtained by interpolation. With the interpolated parameters, inactivation curves were simulated and compared with the experimental data sets.

  11. Inactivation of C4orf26 in toothless placental mammals.

    Science.gov (United States)

    Springer, Mark S; Starrett, James; Morin, Phillip A; Lanzetti, Agnese; Hayashi, Cheryl; Gatesy, John

    2016-02-01

    Previous studies have reported inactivated copies of six enamel-related genes (AMBN, AMEL, AMTN, ENAM, KLK4, MMP20) and one dentin-related gene (DSPP) in one or more toothless vertebrates and/or vertebrates with enamelless teeth, thereby providing evidence that these genes are enamel or tooth-specific with respect to their critical functions that are maintained by natural selection. Here, we employ available genome sequences for edentulous and enamelless mammals to evaluate the enamel specificity of four genes (WDR72, SLC24A4, FAM83H, C4orf26) that have been implicated in amelogenesis imperfecta, a condition in which proper enamel formation is abrogated during tooth development. Coding sequences for WDR72, SCL24A4, and FAM83H are intact in four edentulous taxa (Chinese pangolin, three baleen whales) and three taxa (aardvark, nine-banded armadillo, Hoffmann's two-toed sloth) with enamelless teeth, suggesting that these genes have critical functions beyond their involvement in tooth development. By contrast, genomic data for C4orf26 reveal inactivating mutations in pangolin and bowhead whale as well as evidence for deletion of this gene in two minke whale species. Hybridization capture of exonic regions and PCR screens provide evidence for inactivation of C4orf26 in eight additional baleen whale species. However, C4orf26 is intact in all three species with enamelless teeth that were surveyed, as well as in 95 additional mammalian species with enamel-capped teeth. Estimates of selection intensity suggest that dN/dS ratios on branches leading to taxa with enamelless teeth are similar to the dN/dS ratio on branches leading to taxa with enamel-capped teeth. Based on these results, we conclude that C4orf26 is tooth-specific, but not enamel-specific, with respect to its essential functions that are maintained by natural selection. A caveat is that an alternative splice site variant, which translates exon 3 in a different reading frame, is putatively functional in

  12. THERMODYNAMICS AND KINETICS OF THERMAL INACTIVATION OF PEROXIDASE FROM MANGOSTEEN (GARCINIA MANGOSTANA L. PERICARP

    Directory of Open Access Journals (Sweden)

    MAHSA ZIABAKHSH DEYLAMI

    2014-06-01

    Full Text Available Mangosteen (Garcinia mangostana L. pericarp is an abundant source of phytochemicals. Blanching prior to further process stabilizes these valuable compounds. In this research, crude peroxidase (POD was extracted from mangosteen peel using Triton X-100. Kinetics of POD inactivation was studied over temperature range of 60- 100°C. The inactivation kinetics followed a monophasic first-order model with k values between 1.93×10-2- 8.14×10-2 min-1. The decreasing trend of k values with increasing temperature indicates a faster inactivation of peroxidase from mangosteen pericarp at higher temperatures. The activation energy (Ea of 35.06 kJ/mol was calculated from the slope of Arrhenius plot. Thermodynamic parameters (∆H, ∆G, ∆S for inactivation of peroxidase at different temperatures (60-100°C were studied in detail. The results of this research will help to design pre-processing conditions of mangosteen pericarp as a source of antioxidants.

  13. Multi-Layered TiO2 Films towards Enhancement of Escherichia coli Inactivation

    Directory of Open Access Journals (Sweden)

    Sorachon Yoriya

    2016-09-01

    Full Text Available Crystalline TiO2 has shown its great photocatalytic properties in bacterial inactivation. This work presents a design fabrication of low-cost, layered TiO2 films assembled reactors and a study of their performance for a better understanding to elucidate the photocatalytic effect on inactivation of E. coli in water. The ability to reduce the number of bacteria in water samples for the layered TiO2 composing reactors has been investigated as a function of time, while varying the parameters of light sources, initial concentration of bacteria, and ratios of TiO2 film area and volume of water. Herein, the layered TiO2 films have been fabricated on the glass plates by thermal spray coating prior to screen printing, allowing a good adhesion of the films. Surface topology and crystallographic phase of TiO2 for the screen-printed active layer have been characterized, resulting in the ratio of anatase:rutile being 80:20. Under exposure to sunlight and a given condition employed in this study, the optimized film area:water volume of 1:2.62 has shown a significant ability to reduce the E. coli cells in water samples. The ratio of surface area of photocatalytic active base to volume of water medium is believed to play a predominant role facilitating the cells inactivation. The kinetic rate of inactivation and its behavior are also described in terms of adsorption of reaction species at different contact times.

  14. Ultraviolet irradiation and the mechanisms underlying its inactivation of infectious agents.

    Science.gov (United States)

    Cutler, Timothy D; Zimmerman, Jeffrey J

    2011-06-01

    We review the principles of ultraviolet (UV) irradiation, the inactivation of infectious agents by UV, and current applications for the control of microorganisms. In particular, wavelengths between 200 and 280 nm (germicidal UV) affect the double-bond stability of adjacent carbon atoms in molecules including pyrimidines, purines and flavin. Thus, UV inactivation of microorganisms results from the formation of dimers in RNA (uracil and cytosine) and DNA (thymine and cytosine). The classic application of UV irradiation is the inactivation of microorganisms in biological safety cabinets. In the food-processing industry, germicidal UV irradiation has shown potential for the surface disinfection of fresh-cut fruit and vegetables. UV treatment of water (potable and wastewater) is increasingly common because the process is effective against a wide range of microorganisms, overdose is not possible, chemical residues or by-products are avoided, and water quality is unaffected. UV has been used to reduce the concentration of airborne microorganisms in limited studies, but the technology will require further development if it is to gain wider application. For bioaerosols, the primary technical challenge is delivery of sufficient UV irradiation to large volumes of air, but the absence of UV inactivation constants for airborne pathogens under a range of environmental conditions (temperature, relative humidity) further compounds the problem.

  15. Reactive radical-driven bacterial inactivation by hydrogen-peroxide-enhanced plasma-activated-water

    Science.gov (United States)

    Wu, Songjie; Zhang, Qian; Ma, Ruonan; Yu, Shuang; Wang, Kaile; Zhang, Jue; Fang, Jing

    2017-08-01

    The combined effects of plasma activated water (PAW) and hydrogen peroxide (H2O2), PAW/HP, in sterilization were investigated in this study. To assess the synergistic effects of PAW/HP, S. aureus was selected as the test microorganism to determine the inactivation efficacy. Also, the DNA/RNA and proteins released by the bacterial suspensions under different conditions were examined to confirm membrane integrity. Additionally, the intracellular pH (pHi) of S. aureus was measured in our study. Electron spin resonance spectroscopy (ESR) was employed to identify the presence of radicals. Finally, the oxidation reduction potential (ORP), conductivity and pH were measured. Our results revealed that the inactivation efficacy of PAW/HP is much greater than that of PAW, while increased H2O2 concentration result in higher inactivation potential. More importantly, as compared with PAW, the much stronger intensity ESR signals and higher ORP in PAW/HP suggests that the inactivation mechanism of the synergistic effects of PAW/HP: more reactive oxygen species (ROS) and reactive nitrogen species (RNS), especially OH and NO radicals, are generated in PAW combined with H2O2 resulting in more deaths of the bacteria.

  16. Comparative thermal inactivation analysis of Aspergillus oryzae and Thiellavia terrestris cutinase: Role of glycosylation.

    Science.gov (United States)

    Shirke, Abhijit N; Su, An; Jones, J Andrew; Butterfoss, Glenn L; Koffas, Mattheos A G; Kim, Jin Ryoun; Gross, Richard A

    2017-01-01

    Cutinase thermostability is important so that the enzymes can function above the glass transition of what are often rigid polymer substrates. A detailed thermal inactivation analysis was performed for two well-characterized cutinases, Aspergillus oryzae Cutinase (AoC) and Thiellavia terrestris Cutinase (TtC). Both AoC and TtC are prone to thermal aggregation upon unfolding at high temperature, which was found to be a major reason for irreversible loss of enzyme activity. Our study demonstrates that glycosylation stabilizes TtC expressed in Pichia pastoris by inhibiting its thermal aggregation. Based on the comparative thermal inactivation analyses of non-glycosylated AoC, glycosylated (TtC-G), and non-glycosylated TtC (TtC-NG), a unified model for thermal inactivation is proposed that accounts for thermal aggregation and may be applicable to other cutinase homologues. Inspired by glycosylated TtC, we successfully employed glycosylation site engineering to inhibit AoC thermal aggregation. Indeed, the inhibition of thermal aggregation by AoC glycosylation was greater than that achieved by conventional use of trehalose under a typical condition. Collectively, this study demonstrates the excellent potential of implementing glycosylation site engineering for thermal aggregation inhibition, which is one of the most common reasons for the irreversible thermal inactivation of cutinases and many proteins. Biotechnol. Bioeng. 2017;114: 63-73. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Loss of Atrx affects trophoblast development and the pattern of X-inactivation in extraembryonic tissues.

    Directory of Open Access Journals (Sweden)

    2006-04-01

    Full Text Available ATRX is an X-encoded member of the SNF2 family of ATPase/helicase proteins thought to regulate gene expression by modifying chromatin at target loci. Mutations in ATRX provided the first example of a human genetic disease associated with defects in such proteins. To better understand the role of ATRX in development and the associated abnormalities in the ATR-X (alpha thalassemia mental retardation, X-linked syndrome, we conditionally inactivated the homolog in mice, Atrx, at the 8- to 16-cell stage of development. The protein, Atrx, was ubiquitously expressed, and male embryos null for Atrx implanted and gastrulated normally but did not survive beyond 9.5 days postcoitus due to a defect in formation of the extraembryonic trophoblast, one of the first terminally differentiated lineages in the developing embryo. Carrier female mice that inherit a maternal null allele should be affected, since the paternal X chromosome is normally inactivated in extraembryonic tissues. Surprisingly, however, some carrier females established a normal placenta and appeared to escape the usual pattern of imprinted X-inactivation in these tissues. Together these findings demonstrate an unexpected, specific, and essential role for Atrx in the development of the murine trophoblast and present an example of escape from imprinted X chromosome inactivation.

  18. Protection against Japanese encephalitis by inactivated vaccines.

    Science.gov (United States)

    Hoke, C H; Nisalak, A; Sangawhipa, N; Jatanasen, S; Laorakapongse, T; Innis, B L; Kotchasenee, S; Gingrich, J B; Latendresse, J; Fukai, K

    1988-09-01

    Encephalitis caused by Japanese encephalitis virus occurs in annual epidemics throughout Asia, making it the principal cause of epidemic viral encephalitis in the world. No currently available vaccine has demonstrated efficacy in preventing this disease in a controlled trial. We performed a placebo-controlled, blinded, randomized trial in a northern Thai province, with two doses of monovalent (Nakayama strain) or bivalent (Nakayama plus Beijing strains) inactivated, purified Japanese encephalitis vaccine made from whole virus derived from mouse brain. We examined the effect of these vaccines on the incidence and severity of Japanese encephalitis and dengue hemorrhagic fever, a disease caused by a closely related flavivirus. Between November 1984 and March 1985, 65,224 children received two doses of monovalent Japanese encephalitis vaccine (n = 21,628), bivalent Japanese encephalitis vaccine (n = 22,080), or tetanus toxoid placebo (n = 21,516), with only minor side effects. The cumulative attack rate for encephalitis due to Japanese encephalitis virus was 51 per 100,000 in the placebo group and 5 per 100,000 in each vaccine group. The efficacy in both vaccine groups combined was 91 percent (95 percent confidence interval, 70 to 97 percent). Attack rates for dengue hemorrhagic fever declined, but not significantly. The severity of cases of dengue was also reduced. We conclude that two doses of inactivated Japanese encephalitis vaccine, either monovalent or bivalent, protect against encephalitis due to Japanese encephalitis virus and may have a limited beneficial effect on the severity of dengue hemorrhagic fever.

  19. Ribosome Inactivating Proteins from Plants Inhibiting Viruses

    Institute of Scientific and Technical Information of China (English)

    Inderdeep Kaur; R C Gupta; Munish Puri

    2011-01-01

    Many plants contain ribosome inactivating proteins (RIPs) with N-glycosidase activity,which depurinate large ribosomal RNA and arrest protein synthesis.RIPs so far tested inhibit replication of mRNA as well as DNA viruses and these proteins,isolated from plants,are found to be effective against a broad range of viruses such as human immunodeficiency virus (HIV),hepatitis B virus (HBV) and herpes simplex virus (HSV).Most of the research work related to RIPs has been focused on antiviral activity against HIV; however,the exact mechanism of antiviral activity is still not clear.The mechanism of antiviral activity was thought to follow inactivation of the host cell ribosome,leading to inhibition of viral protein translation and host cell death.Enzymatic activity of RIPs is not hmited to depurination of the large rRNA,in addition they can depurinate viral DNA as well as RNA.Recently,Phase Ⅰ/Ⅱ clinical trials have demonstrated the potential use of RIPs for treating patients with HIV disease.The aim of this review is to focus on various RIPs from plants associated with anti-HIV activity.

  20. Cinética de Inactivación de la Enzima Peroxidasa, Color y Textura en Papa Criolla (Solanum tuberosum Grupo phureja sometida a tres Condiciones de Escaldado Kinetics of Peroxidase Enzyme Inactivation, Color and Texture in Golden Potato (Solanum tuberosum phureja group under three Blanching Conditions

    Directory of Open Access Journals (Sweden)

    Rolando Mendoza

    2012-01-01

    Full Text Available El objetivo de este trabajo fue determinar la cinética de inactivación de la enzima peroxidasa y la cinética del color y textura en tubérculos de papa criolla (Solanum tuberosum grupo phureja sometidos a escaldado mediante agua a 80°C, 90°C y vapor saturado a 93°C. Los coeficientes de transferencia de calor para el escaldado en agua oscilaron entre 214 y 230 W °C-1 m-2 mientras que para vapor saturado fueron en promedio 84.5 W °C-1 m-2. A diferentes tiempos de precocción el tubérculo de papa criolla presentó una zona en donde ocurrió pardeamiento enzimático, hecho que fue modelado según la cinética de Michaelis-Menten y otra zona en donde el cambio de color disminuyó debido a la inactivación enzimática que correspondió a una cinética de primer orden, de manera similar al comportamiento de la textura. La inactivación de la enzima peroxidasa obedeció al mecanismo de Lumry-Eyring.The objective of this work was to determine the inactivation kinetics of peroxidase enzyme and the change in color and texture in golden potato tubers (Solanum tuberosum phureja group exposed to blanching with water at 80°C, 90°C and to saturated steam at 93°C. The heat transfer coefficients for the blanch water ranged between 214 and 230 W °C-1 m-2 while for saturated steam they showed an average of 84.5 W °C-1 m-2. At different pre-cooking times the golden potato tuber showed an area that developed enzymatic browning, which was fitted to the Michaelis-Menten kinetic model and another area where the color change decreased due to enzyme inactivation, which corresponded to first order kinetics, in a similar way as the texture behavior. The inactivation of peroxidase enzyme followed the Lumry-Eyring mechanism.

  1. The assessment of efficacy of porcine reproductive respiratory syndrome virus inactivated vaccine based on the viral quantity and inactivation methods

    National Research Council Canada - National Science Library

    Kim, Hyunil; Kim, Hye Kwon; Jung, Jung Ho; Choi, Yoo Jung; Kim, Jiho; Um, Chang Gyu; Hyun, Su Bin; Shin, Sungho; Lee, Byeongchun; Jang, Goo; Kang, Bo Kyu; Moon, Hyoung Joon; Song, Dae Sub

    2011-01-01

    ...). Although inactivated PRRSV vaccines are preferred for their safety, they are weak at inducing humoral immune responses and controlling field PRRSV infection, especially when heterologous viruses are involved...

  2. Recent Developments in Accelerated Antibacterial Inactivation on 2D Cu-Titania Surfaces under Indoor Visible Light

    Directory of Open Access Journals (Sweden)

    Sami Rtimi

    2017-02-01

    Full Text Available This review focuses on Cu/TiO2 sequentially sputtered and Cu-TiO2 co-sputtered catalytic/photocatalytic surfaces that lead to bacterial inactivation, discussing their stability, synthesis, adhesion, and antibacterial kinetics. The intervention of TiO2, Cu, and the synergic effect of Cu and TiO2 on films prepared by a colloidal sol-gel method leading to bacterial inactivation is reviewed. Processes in aerobic and anaerobic media leading to bacterial loss of viability in multidrug resistant (MDR pathogens, Gram-negative, and Gram-positive bacteria are described. Insight is provided for the interfacial charge transfer mechanism under solar irradiation occurring between TiO2 and Cu. Surface properties of 2D TiO2/Cu and TiO2-Cu films are correlated with the bacterial inactivation kinetics in dark and under light conditions. The intervention of these antibacterial sputtered surfaces in health-care facilities, leading to Methicillin-resistant Staphylococcus Aureus (MRSA-isolates inactivation, is described in dark and under actinic light conditions. The synergic intervention of the Cu and TiO2 films leading to bacterial inactivation prepared by direct current magnetron sputtering (DCMS, pulsed direct current magnetron sputtering (DCMSP, and high power impulse magnetron sputtering (HIPIMS is reported in a detailed manner.

  3. Cerebrovascular endothelin-1 hyper-reactivity is associated with transient receptor potential canonical channels 1 and 6 activation and delayed cerebral hypoperfusion after forebrain ischaemia in rats

    DEFF Research Database (Denmark)

    Johansson, S E; Andersen, X E D R; Hansen, R H;

    2015-01-01

    AIM: In this study, we aimed to investigate whether changes in cerebrovascular voltage-dependent calcium channels and non-selective cation channels contribute to the enhanced endothelin-1-mediated vasoconstriction in the delayed hypoperfusion phase after experimental transient forebrain ischaemia....... METHODS: Experimental forebrain ischaemia was induced in Wistar male rats by a two-vessel occlusion model, and the cerebral blood flow was measured by magnetic resonance imaging two days after reperfusion. In vitro vasoreactivity studies, immunofluorescence and quantitative PCR were performed on cerebral...... arteries from ischaemic or sham-operated rats to evaluate changes in vascular voltage-dependent calcium channels, transient receptor potential canonical channels as well as endothelin-1 receptor function and expression. RESULTS: The expression of transient receptor potential canonical channels 1 and 6...

  4. Survival of parvalbumin-immunoreactive neurons in the gerbil hippocampus following transient forebrain ischemia does not depend on HSP-70 protein induction.

    Science.gov (United States)

    Ferrer, I; Soriano, M A; Vidal, A; Planas, A M

    1995-09-18

    HSP-70 was induced in the gerbil following 20 min of forebrain ischemia. The induction, as revealed with immunohistochemistry, is stronger and longer-lasting in CA3 and dentate gyrus than in CA1. Most neurons in this region, except GABAergic interneurons containing the calcium-binding protein parvalbumin, eventually cease to live as a result of delayed cell death. Double-labeling of inducible HSP-70 and parvalbumin has shown that no co-localization occurs in the hippocampus and neocortex of the gerbil in this model of transient forebrain ischemia. These results show that different thresholds of sensitivity and vulnerability exist for different subpopulations of neurons in the ischemic hippocampus, and suggest that HSP-70 protein induction is probably not essential for the survival of particular neuronal subpopulations subjected to transient ischemia.

  5. BDNF up-regulates TrkB protein and prevents the death of CA1 neurons following transient forebrain ischemia.

    Science.gov (United States)

    Ferrer, I; Ballabriga, J; Martí, E; Pérez, E; Alberch, J; Arenas, E

    1998-04-01

    The neurotrophin family of growth factors, which includes Nerve Growth Factor (NGF), Brain-Derived Neurotrophic Factor (BDNF), Neurotrophin-3 (NT3) and Neurotrophin-4/5 (NT4/5) bind and activate specific tyrosine kinase (Trk) receptors to promote cell survival and growth of different cell populations. For these reasons, growing attention has been paid to the use of neurotrophins as therapeutic agents in neurodegeneration, and to the regulation of the expression of their specific receptors by the ligands. BDNF expression, as revealed by immunohistochemistry, is found in the pre-subiculum, CA1, CA3, and dentate gyrus of the hippocampus. Strong TrkB immunoreactivity is present in most CA3 neurons but only in scattered neurons of the CA1 area. Weak TrkB immunoreactivity is found in the granule cell layer of the dentate gyrus. Unilateral grafting of BDNF-transfected fibroblasts into the hippocampus resulted in a marked increase in the intensity of the immunoreaction and in the number of TrkB-immunoreactive neurons in the granule cell layer of the dentate gyrus, pre-subiculum and CA1 area in the vicinity of the graft. No similar effects were produced after the injection of control mock-transfected fibroblasts. Delayed cell death in the CA1 area was produced following 5 min of forebrain ischemia in the gerbil. The majority of living cells in the CA1 area at the fourth day were BDNF/TrkB immunoreactive. Unilateral grafting of control mock-transfected or BDNF fibroblasts two days before ischemia resulted in a moderate non-specific protection of TrkB-negative, but not TrkB-positive cells, in the CA1 area of the grafted side. This finding is in line with a vascular and glial reaction, as revealed, by immunohistochemistry using astroglial and microglial cell markers. This astroglial response was higher in the grafted side than in the contralateral side in ischemic gerbils, but no differences were seen between BDNF-producing and non-BDNF-producing grafts. However, grafting of

  6. Pax6 interactions with chromatin and identification of its novel direct target genes in lens and forebrain.

    Directory of Open Access Journals (Sweden)

    Qing Xie

    Full Text Available Pax6 encodes a specific DNA-binding transcription factor that regulates the development of multiple organs, including the eye, brain and pancreas. Previous studies have shown that Pax6 regulates the entire process of ocular lens development. In the developing forebrain, Pax6 is expressed in ventricular zone precursor cells and in specific populations of neurons; absence of Pax6 results in disrupted cell proliferation and cell fate specification in telencephalon. In the pancreas, Pax6 is essential for the differentiation of α-, β- and δ-islet cells. To elucidate molecular roles of Pax6, chromatin immunoprecipitation experiments combined with high-density oligonucleotide array hybridizations (ChIP-chip were performed using three distinct sources of chromatin (lens, forebrain and β-cells. ChIP-chip studies, performed as biological triplicates, identified a total of 5,260 promoters occupied by Pax6. 1,001 (133 of these promoter regions were shared between at least two (three distinct chromatin sources, respectively. In lens chromatin, 2,335 promoters were bound by Pax6. RNA expression profiling from Pax6⁺/⁻ lenses combined with in vivo Pax6-binding data yielded 76 putative Pax6-direct targets, including the Gaa, Isl1, Kif1b, Mtmr2, Pcsk1n, and Snca genes. RNA and ChIP data were validated for all these genes. In lens cells, reporter assays established Kib1b and Snca as Pax6 activated and repressed genes, respectively. In situ hybridization revealed reduced expression of these genes in E14 cerebral cortex. Moreover, we examined differentially expressed transcripts between E9.5 wild type and Pax6⁻/⁻ lens placodes that suggested Efnb2, Fat4, Has2, Nav1, and Trpm3 as novel Pax6-direct targets. Collectively, the present studies, through the identification of Pax6-direct target genes, provide novel insights into the molecular mechanisms of Pax6 gene control during mouse embryonic development. In addition, the present data demonstrate that Pax6

  7. The N-methyl-D-aspartate antagonist, MK-801, fails to protect against neuronal damage caused by transient, severe forebrain ischemia in adult rats.

    Science.gov (United States)

    Buchan, A; Li, H; Pulsinelli, W A

    1991-04-01

    The neuroprotective effects of dizocilipine maleate (MK-801), a noncompetitive antagonist of the N-methyl-D-aspartate (NMDA) receptor/channel, were tested in the 4-vessel occlusion rat model of forebrain ischemia. Adult Wistar rats, treated intraperitoneally with MK-801 or saline using several different treatment paradigms were subjected to 5 (n = 208) or 15 (n = 62) min of severe, transient forebrain ischemia. In saline-treated animals, 15 min of ischemia (n = 13) produced extensive and consistent loss of pyramidal neurons in the CA1 zone of hippocampus. The degree and distribution of cell loss were not reduced by single dose preischemic administration of MK-801 at 1 (n = 7), 2.5 (n = 4), or 5 mg/kg (n = 8). In other animals subjected to 15 min of forebrain ischemia, multiple doses of MK-801 (5, 2.5, and 2.5 mg/kg) given immediately and at approximately 8 and 20 hr after cerebral reperfusion (n = 5) did not alter CA1 injury compared to saline-treated controls (n = 5). Five minutes of forebrain ischemia in saline-treated animals, (n = 82) resulted in significantly fewer (p less than 0.001) dead CA1 pyramidal cells and a greater variance compared to animals subjected to 15 min of ischemia. Power analysis of the preliminary saline-treated animals subjected to 5 min of ischemia (n = 22) indicated that 60 animals per group were necessary to detect a 15% difference between MK-801 and vehicle-treated groups. Multidose treatment with MK-801 (1 mg/kg) given 1 hr prior to 5 min of ischemia (n = 60) and again at approximately 8 and 16 hr after recirculation failed to attenuate hippocampal injury.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Age-related intraneuronal elevation of αII-spectrin breakdown product SBDP120 in rodent forebrain accelerates in 3×Tg-AD mice.

    Science.gov (United States)

    Cai, Yan; Zhu, Hai-Xia; Li, Jian-Ming; Luo, Xue-Gang; Patrylo, Peter R; Rose, Gregory M; Streeter, Jackson; Hayes, Ron; Wang, Kevin K W; Yan, Xiao-Xin; Jeromin, Andreas

    2012-01-01

    Spectrins line the intracellular surface of plasmalemma and play a critical role in supporting cytoskeletal stability and flexibility. Spectrins can be proteolytically degraded by calpains and caspases, yielding breakdown products (SBDPs) of various molecular sizes, with SBDP120 being largely derived from caspase-3 cleavage. SBDPs are putative biomarkers for traumatic brain injury. The levels of SBDPs also elevate in the brain during aging and perhaps in Alzheimer's disease (AD), although the cellular basis for this change is currently unclear. Here we examined age-related SBDP120 alteration in forebrain neurons in rats and in the triple transgenic model of AD (3×Tg-AD) relative to non-transgenic controls. SBDP120 immunoreactivity (IR) was found in cortical neuronal somata in aged rats, and was prominent in the proximal dendrites of the olfactory bulb mitral cells. Western blot and densitometric analyses in wild-type mice revealed an age-related elevation of intraneuronal SBDP120 in the forebrain which was more robust in their 3×Tg-AD counterparts. The intraneuronal SBDP120 occurrence was not spatiotemporally correlated with transgenic amyloid precursor protein (APP) expression, β-amyloid plaque development, or phosphorylated tau expression over various forebrain regions or lamina. No microscopically detectable in situ activated caspase-3 was found in the nuclei of SBDP120-containing neurons. The present study demonstrates the age-dependent intraneuronal presence of an αII-spectrin cleavage fragment in mammalian forebrain which is exacerbated in a transgenic model of AD. This novel neuronal alteration indicates that impairments in membrane protein metabolism, possibly due to neuronal calcium mishandling and/or enhancement of calcium sensitive proteolysis, occur during aging and in transgenic AD mice.

  9. Representation of spatial and spectro-temporal cues in the midbrain and forebrain of North American barn owls (Tyto furcata pratincola)

    OpenAIRE

    2015-01-01

    The barn owl is a crepuscular and nocturnal bird of prey that relies mainly on its acoustic system for the identification and localization of potential prey. The barn owl is able to localize even faint sounds in a natural environment precisely. Like mammals, barn owls use the interaural time difference (ITD) for the localization of the azimuthal sound source position. In the barn owl’s auditory system, ITD is processed in two separate pathways, the midbrain and forebrain pathways, which are b...

  10. Age-related intraneuronal elevation of αII-spectrin breakdown product SBDP120 in rodent forebrain accelerates in 3×Tg-AD mice.

    Directory of Open Access Journals (Sweden)

    Yan Cai

    Full Text Available Spectrins line the intracellular surface of plasmalemma and play a critical role in supporting cytoskeletal stability and flexibility. Spectrins can be proteolytically degraded by calpains and caspases, yielding breakdown products (SBDPs of various molecular sizes, with SBDP120 being largely derived from caspase-3 cleavage. SBDPs are putative biomarkers for traumatic brain injury. The levels of SBDPs also elevate in the brain during aging and perhaps in Alzheimer's disease (AD, although the cellular basis for this change is currently unclear. Here we examined age-related SBDP120 alteration in forebrain neurons in rats and in the triple transgenic model of AD (3×Tg-AD relative to non-transgenic controls. SBDP120 immunoreactivity (IR was found in cortical neuronal somata in aged rats, and was prominent in the proximal dendrites of the olfactory bulb mitral cells. Western blot and densitometric analyses in wild-type mice revealed an age-related elevation of intraneuronal SBDP120 in the forebrain which was more robust in their 3×Tg-AD counterparts. The intraneuronal SBDP120 occurrence was not spatiotemporally correlated with transgenic amyloid precursor protein (APP expression, β-amyloid plaque development, or phosphorylated tau expression over various forebrain regions or lamina. No microscopically detectable in situ activated caspase-3 was found in the nuclei of SBDP120-containing neurons. The present study demonstrates the age-dependent intraneuronal presence of an αII-spectrin cleavage fragment in mammalian forebrain which is exacerbated in a transgenic model of AD. This novel neuronal alteration indicates that impairments in membrane protein metabolism, possibly due to neuronal calcium mishandling and/or enhancement of calcium sensitive proteolysis, occur during aging and in transgenic AD mice.

  11. Reversible, partial inactivation of plant betaine aldehyde dehydrogenase by betaine aldehyde: mechanism and possible physiological implications.

    Science.gov (United States)

    Zárate-Romero, Andrés; Murillo-Melo, Darío S; Mújica-Jiménez, Carlos; Montiel, Carmina; Muñoz-Clares, Rosario A

    2016-04-01

    In plants, the last step in the biosynthesis of the osmoprotectant glycine betaine (GB) is the NAD(+)-dependent oxidation of betaine aldehyde (BAL) catalysed by some aldehyde dehydrogenase (ALDH) 10 enzymes that exhibit betaine aldehyde dehydrogenase (BADH) activity. Given the irreversibility of the reaction, the short-term regulation of these enzymes is of great physiological relevance to avoid adverse decreases in the NAD(+):NADH ratio. In the present study, we report that the Spinacia oleracea BADH (SoBADH) is reversibly and partially inactivated by BAL in the absence of NAD(+)in a time- and concentration-dependent mode. Crystallographic evidence indicates that the non-essential Cys(450)(SoBADH numbering) forms a thiohemiacetal with BAL, totally blocking the productive binding of the aldehyde. It is of interest that, in contrast to Cys(450), the catalytic cysteine (Cys(291)) did not react with BAL in the absence of NAD(+) The trimethylammonium group of BAL binds in the same position in the inactivating or productive modes. Accordingly, BAL does not inactivate the C(450)SSoBADH mutant and the degree of inactivation of the A(441)I and A(441)C mutants corresponds to their very different abilities to bind the trimethylammonium group. Cys(450)and the neighbouring residues that participate in stabilizing the thiohemiacetal are strictly conserved in plant ALDH10 enzymes with proven or predicted BADH activity, suggesting that inactivation by BAL is their common feature. Under osmotic stress conditions, this novel partial and reversible covalent regulatory mechanism may contribute to preventing NAD(+)exhaustion, while still permitting the synthesis of high amounts of GB and avoiding the accumulation of the toxic BAL.

  12. Influence of solution chemistry on the inactivation of particle-associated viruses by UV irradiation.

    Science.gov (United States)

    Feng, Zhe; Lu, Ruiqing; Yuan, Baoling; Zhou, Zhenming; Wu, Qingqing; Nguyen, Thanh H

    2016-12-01

    MS2 inactivation by UV irradiance was investigated with the focus on how the disinfection efficacy is influenced by bacteriophage MS2 aggregation and adsorption to particles in solutions with different compositions. Kaolinite and Microcystis aeruginosa were used as model inorganic and organic particles, respectively. In the absence of model particles, MS2 aggregates formed in either 1mM NaCl at pH=3 or 50-200mM ionic strength CaCl2 solutions at pH=7 led to a decrease in the MS2 inactivation efficacy because the virions located inside the aggregate were protected from the UV irradiation. In the presence of kaolinite and Microcystis aeruginosa, MS2 adsorbed onto the particles in either 1mM NaCl at pH=3 or 50-200mM CaCl2 solutions at pH=7. In contrast to MS2 aggregates formed without the presence of particles, more MS2 virions adsorbed on these particles were exposed to UV irradiation to allow an increase in MS2 inactivation. In either 1mM NaCl at pH from 4 to 8 or 2-200mM NaCl solutions at pH=7, the absence of MS2 aggregation and adsorption onto the model particles explained why MS2 inactivation was not influenced by pH, ionic strength, and the presence of model particles in these conditions. The influence of virus adsorption and aggregation on the UV disinfection efficiency found in this research suggests the necessity of accounting for particles and cation composition in virus inactivation for drinking water. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Treatment of beta amyloid 1–42 (Aβ1–42)-induced basal forebrain cholinergic damage by a non-classical estrogen signaling activator in vivo

    Science.gov (United States)

    Kwakowsky, Andrea; Potapov, Kyoko; Kim, SooHyun; Peppercorn, Katie; Tate, Warren P.; Ábrahám, István M.

    2016-01-01

    In Alzheimer’s disease (AD), there is a loss in cholinergic innervation targets of basal forebrain which has been implicated in substantial cognitive decline. Amyloid beta peptide (Aβ1–42) accumulates in AD that is highly toxic for basal forebrain cholinergic (BFC) neurons. Although the gonadal steroid estradiol is neuroprotective, the administration is associated with risk of off-target effects. Previous findings suggested that non-classical estradiol action on intracellular signaling pathways has ameliorative potential without estrogenic side effects. After Aβ1–42 injection into mouse basal forebrain, a single dose of 4-estren-3α, 17β-diol (estren), the non-classical estradiol pathway activator, restored loss of cholinergic cortical projections and also attenuated the Aβ1–42-induced learning deficits. Estren rapidly and directly phosphorylates c-AMP-response–element-binding-protein and extracellular-signal-regulated-kinase-1/2 in BFC neurons and restores the cholinergic fibers via estrogen receptor-α. These findings indicated that selective activation of non-classical intracellular estrogen signaling has a potential to treat the damage of cholinergic neurons in AD. PMID:26879842

  14. Pallial origin of basal forebrain cholinergic neurons in the nucleus basalis of Meynert and horizontal limb of the diagonal band nucleus.

    Science.gov (United States)

    Pombero, Ana; Bueno, Carlos; Saglietti, Laura; Rodenas, Monica; Guimera, Jordi; Bulfone, Alexandro; Martinez, Salvador

    2011-10-01

    The majority of the cortical cholinergic innervation implicated in attention and memory originates in the nucleus basalis of Meynert and in the horizontal limb of the diagonal band nucleus of the basal prosencephalon. Functional alterations in this system give rise to neuropsychiatric disorders as well as to the cognitive alterations described in Parkinson and Alzheimer's diseases. Despite the functional importance of these basal forebrain cholinergic neurons very little is known about their origin and development. Previous studies suggest that they originate in the medial ganglionic eminence of the telencephalic subpallium; however, our results identified Tbr1-expressing, reelin-positive neurons migrating from the ventral pallium to the subpallium that differentiate into cholinergic neurons in the basal forebrain nuclei projecting to the cortex. Experiments with Tbr1 knockout mice, which lack ventropallial structures, confirmed the pallial origin of cholinergic neurons in Meynert and horizontal diagonal band nuclei. Also, we demonstrate that Fgf8 signaling in the telencephalic midline attracts these neurons from the pallium to follow a tangential migratory route towards the basal forebrain.

  15. Scale down of the inactivated polio vaccine production process

    NARCIS (Netherlands)

    Thomassen, Y.E.; Oever, van 't R.; Vinke, C.M.; Spiekstra, A.; Wijffels, R.H.; Pol, van der L.A.; Bakker, W.A.M.

    2013-01-01

    The anticipated increase in the demand for inactivated polio vaccines resulting from the success in the polio eradication program requires an increase in production capacity and cost price reduction of the current inactivated polio vaccine production processes. Improvement of existing production pro

  16. Mechanisms of Escherichia coli inactivation by several disinfectants.

    Science.gov (United States)

    Cho, Min; Kim, Jaeeun; Kim, Jee Yeon; Yoon, Jeyong; Kim, Jae-Hong

    2010-06-01

    The objective of this study was to elucidate dominant mechanisms of inactivation, i.e. surface attack versus intracellular attack, during application of common water disinfectants such as ozone, chlorine dioxide, free chlorine and UV irradiation. Escherichia coli was used as a representative microorganism. During cell inactivation, protein release, lipid peroxidation, cell permeability change, damage in intracellular enzyme and morphological change were comparatively examined. For the same level of cell inactivation by chemical disinfectants, cell surface damage was more pronounced with strong oxidant such as ozone while damage in inner cell components was more apparent with weaker oxidant such as free chlorine. Chlorine dioxide showed the inactivation mechanism between these two disinfectants. The results suggest that the mechanism of cell inactivation is primarily related to the reactivity of chemical disinfectant. In contrast to chemical disinfectants, cell inactivation by UV occurred without any changes measurable with the methods employed. Understanding the differences in inactivation mechanisms presented herein is critical to identify rate-limiting steps involved in the inactivation process as well as to develop more effective disinfection strategies.

  17. Scale down of the inactivated polio vaccine production process

    NARCIS (Netherlands)

    Thomassen, Y.E.; Oever, van 't R.; Vinke, C.M.; Spiekstra, A.; Wijffels, R.H.; Pol, van der L.A.; Bakker, W.A.M.

    2013-01-01

    The anticipated increase in the demand for inactivated polio vaccines resulting from the success in the polio eradication program requires an increase in production capacity and cost price reduction of the current inactivated polio vaccine production processes. Improvement of existing production pro

  18. Scale down of the inactivated polio vaccine production process

    NARCIS (Netherlands)

    Thomassen, Y.E.; Oever, van 't R.; Vinke, C.M.; Spiekstra, A.; Wijffels, R.H.; Pol, van der L.A.; Bakker, W.A.M.

    2013-01-01

    The anticipated increase in the demand for inactivated polio vaccines resulting from the success in the polio eradication program requires an increase in production capacity and cost price reduction of the current inactivated polio vaccine production processes. Improvement of existing production

  19. Inactivation of Escherichia coli, Listeria monocytogenes and Yersinia enterocolitica in fermented sausages during maturation/storage.

    Science.gov (United States)

    Lindqvist, Roland; Lindblad, Mats

    2009-01-31

    The purpose of this study was to evaluate maturation and storage conditions as a way to increase the safety of non-heat treated fermented sausages. The specific objectives were to investigate the effects of storage time and temperature on the levels of Escherichia coli, Listeria monocytogenes and Yersinia enterocolitica in fermented sausages and in broth, and to validate how well the broth experiments and some published models can predict inactivation in sausage. One strain each of E. coli, L. monocytogenes and Y. enterocolitica with induced acid tolerance was inoculated into sausage batters representing a typical Swedish recipe for cold-smoked sausages. The sausages were fermented at 27 degrees C for 39 or 48 h and then stored at different temperatures (8, 15, or 20-22 degrees C) for up to 44 days. The levels of the experimental strains, lactic acid bacteria, and pH, a(w), and lactic acid was measured during the maturation/storage period. Inactivation in BHI broths adjusted to pH 4.4 or 4.6, water activity of 0.93, and with 1, 1.3 or 2% lactic acid added was also studied. For all strains inactivation rates increased with temperature in both broths and sausages. At 8 degrees C the storage time required for a one-log reduction in sausage ranged from 21 days for E. coli, >16 days for L. monocytogenes, to 18 days for Y. enterocolitica. At temperatures of 20 degrees C or more, the storage time needed for a one log reduction was shorter: between 7 to 11 days for E. coli, 4 to 7 days for L. monocytogenes, and 1 to 4 days for Y. enterocolitica. A published model based on temperature only yielded a good prediction of E. coli inactivation in sausage. A linear model based on the rate estimated in broth yielded a fair prediction of L. monocytogenes inactivation. The performance of other inactivation models validated was unsatisfactory. Significant E. coli growth which occurred in batters without salt during initial phases of fermentation resulted in a subsequent increased

  20. Chlorophyll mediated photodynamic inactivation of blue laser on Streptococcus mutans

    Science.gov (United States)

    Astuti, Suryani Dyah; Zaidan, A.; Setiawati, Ernie Maduratna; Suhariningsih

    2016-03-01

    Photodynamic inactivation is an inactivation method in microbial pathogens that utilize light and photosensitizer. This study was conducted to investigate photodynamic inactivation effects of low intensity laser exposure with various dose energy on Streptococcus mutans bacteria. The photodynamic inactivation was achieved with the addition of chlorophyll as photosensitizers. To determine the survival percentage of Streptococcus mutans bacteria after laser exposure, the total plate count method was used. For this study, the wavelength of the laser is 405 nm and variables of energy doses are 1.44, 2.87, 4.31, 5.74, 7.18, and 8.61 in J/cm2. The results show that exposure to laser with energy dose of 7.18 J/cm2 has the best photodynamic inactivation with a decrease of 78% in Streptococcus

  1. Pathogen Inactivation of red cells: challenges and opportunities

    Institute of Scientific and Technical Information of China (English)

    Stephen J. Wagner

    2006-01-01

    @@ Introduction Virus inactivation methods for blood have been explored as a means to further reduce the risk from tested agents and to decrease the risk of emerging or variant agents for whom no deferral or effective screening methods are available. Although inactivation methods promise to reduce transfusion-related infectious disease risk, these methods are not perfect. Most techniques for pathogen reduction will not kill bacterial spores, or inactivate bacterial endotoxin, prion protein, or certain non-enveloped viruses whose tightly packed capsid proteins prevent access of the virucidal agent to its nucleic acid target. In addition,various inactivation methods have been known to decrease blood cell yield, affect blood cell recovery or survival, and may pose risk to recipients or blood center workers. My presentation today will review two methods for pathogen inactivation of red cells.

  2. Factors affecting cellulose hydrolysis based on inactivation of adsorbed enzymes.

    Science.gov (United States)

    Ye, Zhuoliang; Berson, R Eric

    2014-09-01

    The rate of enzymatic hydrolysis of cellulose reaction is known to decrease significantly as the reaction proceeds. Factors such as reaction temperature, time, and surface area of substrate that affect cellulose conversion were analyzed relative to their role in a mechanistic model based on first order inactivation of adsorbed cellulases. The activation energies for the hydrolytic step and inactivation step were very close in magnitude: 16.3 kcal mol(-1) for hydrolysis and 18.0 kcal mol(-1) for inactivation, respectively. Therefore, increasing reaction temperature would cause a significant increase in the inactivation rate in addition to the catalytic reaction rate. Vmax,app was only 20% or less of the value at 72 h compared to at 2h as a result of inactivation of adsorbed cellulases, suggesting prolonged hydrolysis is not an efficient way to improve cellulose hydrolysis. Hydrolysis rate increased with corresponding increases in available substrate surface binding area. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Inactivation of Chikungunya virus by 1,5 iodonapthyl azide

    Directory of Open Access Journals (Sweden)

    Sharma Anuj

    2012-12-01

    Full Text Available Abstract Background Chikungunya virus (CHIKV is an arthropod borne alphavirus of the family Togaviridae. CHIKV is a reemerging virus for which there is no safe prophylactic vaccine. A live attenuated strain of CHIKV, CHIK181/25, was previously demonstrated to be highly immunogenic in humans, however, it showed residual virulence causing transient arthralgia. Findings In this study, we demonstrate the complete inactivation of CHIKV181/25 by 1,5 iodonapthyl azide (INA. No cytopathic effect and virus replication was observed in cells infected with the INA-inactivated CHIKV. However, a reduction in the INA-inactivated CHIK virus-antibody binding capacity was observed by western blot analysis. Conclusion INA completely inactivated CHIKV and can further be explored for developing an inactivated-CHIKV vaccine.

  4. Strong purifying selection at genes escaping X chromosome inactivation.

    Science.gov (United States)

    Park, Chungoo; Carrel, Laura; Makova, Kateryna D

    2010-11-01

    To achieve dosage balance of X-linked genes between mammalian males and females, one female X chromosome becomes inactivated. However, approximately 15% of genes on this inactivated chromosome escape X chromosome inactivation (XCI). Here, using a chromosome-wide analysis of primate X-linked orthologs, we test a hypothesis that such genes evolve under a unique selective pressure. We find that escape genes are subject to stronger purifying selection than inactivated genes and that positive selection does not significantly affect the evolution of these genes. The strength of selection does not differ between escape genes with similar versus different expression levels in males versus females. Intriguingly, escape genes possessing Y homologs evolve under the strongest purifying selection. We also found evidence of stronger conservation in gene expression levels in escape than inactivated genes. We hypothesize that divergence in function and expression between X and Y gametologs is driving such strong purifying selection for escape genes.

  5. Role of dopant concentration, crystal phase and particle size on microbial inactivation of Cu-doped TiO2 nanoparticles.

    Science.gov (United States)

    Sahu, Manoranjan; Wu, Bing; Zhu, Liying; Jacobson, Craig; Wang, Wei-Ning; Jones, Kristen; Goyal, Yogesh; Tang, Yinjie J; Biswas, Pratim

    2011-10-14

    The properties of Cu-doped TiO(2) nanoparticles (NPs) were independently controlled in a flame aerosol reactor by varying the molar feed ratios of the precursors, and by optimizing temperature and time history in the flame. The effect of the physico-chemical properties (dopant concentration, crystal phase and particle size) of Cu-doped TiO(2) nanoparticles on inactivation of Mycobacterium smegmatis (a model pathogenic bacterium) was investigated under three light conditions (complete dark, fluorescent light and UV light). The survival rate of M. smegmatis (in a minimal salt medium for 2 h) exposed to the NPs varied depending on the light irradiation conditions as well as the dopant concentrations. In dark conditions, pristine TiO(2) showed insignificant microbial inactivation, but inactivation increased with increasing dopant concentration. Under fluorescent light illumination, no significant effect was observed for TiO(2). However, when TiO(2) was doped with copper, inactivation increased with dopant concentration, reaching more than 90% (>3 wt% dopant). Enhanced microbial inactivation by TiO(2) NPs was observed only under UV light. When TiO(2) NPs were doped with copper, their inactivation potential was promoted and the UV-resistant cells were reduced by over 99%. In addition, the microbial inactivation potential of NPs was also crystal-phase-and size-dependent under all three light conditions. A lower ratio of anatase phase and smaller sizes of Cu-doped TiO(2) NPs resulted in decreased bacterial survival. The increased inactivation potential of doped TiO(2) NPs is possibly due to both enhanced photocatalytic reactions and leached copper ions.

  6. UV inactivation of pathogenic and indicator microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J.C.; Ossoff, S.F.; Lobe, D.C.; Dorfman, M.H.; Dumais, C.M.; Qualls, R.G.; Johnson, J.D.

    1985-06-01

    Survival was measured as a function of the dose of germicidal UV light for the bacteria Escherichia coli, Salmonella typhi, Shigella sonnei, Streptococcus faecalis, Staphylococcus aureus, and Bacillus subtilis spores, the enteric viruses poliovirus type 1 and simian rotavirus SA11, the cysts of the protozoan Acanthamoeba castellanii, as well as for total coliforms and standard plate count microorganisms from secondary effluent. The doses of UV light necessary for a 99.9% inactivation of the cultured vegetative bacteria, total coliforms, and standard plate count microorganisms were comparable. However, the viruses, the bacterial spores, and the amoebic cysts required about 3 to 4 times, 9 times, and 15 times, respectively, the dose required for E. coli. These ratios covered a narrower relative dose range than that previously reported for chlorine disinfection of E. coli, viruses, spores, and cysts.

  7. Inactivation of microbes using ultrasound: a review.

    Science.gov (United States)

    Piyasena, P; Mohareb, E; McKellar, R C

    2003-11-01

    Alternative methods for pasteurization and sterilization are gaining importance, due to increased consumer demand for new methods of food processing that have a reduced impact on nutritional content and overall food quality. Ultrasound processing or sonication is one of the alternative technologies that has shown promise in the food industry. Sonication alone is not very effective in killing bacteria in food; however, the use of ultrasound coupled with pressure and/or heat is promising. Thermosonic (heat plus sonication), manosonic (pressure plus sonication), and manothermosonic (heat and pressure plus sonication) treatments are likely the best methods to inactivate microbes, as they are more energy-efficient and effective in killing microorganisms. Ultrasonic processing is still in its infancy and requires a great deal of future research in order to develop the technology on an industrial scale, and to more fully elucidate the effect of ultrasound on the properties of foods.

  8. Ion channels to inactivate neurons in Drosophila

    Directory of Open Access Journals (Sweden)

    James J L Hodge

    2009-08-01

    Full Text Available Ion channels are the determinants of excitability; therefore, manipulation of their levels and properties provides an opportunity for the investigator to modulate neuronal and circuit function. There are a number of ways to suppress electrical activity in Drosophila neurons, for instance, over-expression of potassium channels (i.e. Shaker Kv1, Shaw Kv3, Kir2.1 and DORK that are open at resting membrane potential. This will result in increased potassium efflux and membrane hyperpolarisation setting resting membrane potential below the threshold required to fire action potentials. Alternatively over-expression of other channels, pumps or co-transporters that result in a hyperpolarised membrane potential will also prevent firing. Lastly, neurons can be inactivated by, disrupting or reducing the level of functional voltage-gated sodium (Nav1 paralytic or calcium (Cav2 cacophony channels that mediate the depolarisation phase of action potentials. Similarly, strategies involving the opposite channel manipulation should allow net depolarisation and hyperexcitation in a given neuron. These changes in ion channel expression can be brought about by the versatile transgenic (i.e. Gal4/UAS based systems available in Drosophila allowing fine temporal and spatial control of (channel transgene expression. These systems are making it possible to electrically inactivate (or hyperexcite any neuron or neural circuit in the fly brain, and much like an exquisite lesion experiment, potentially elucidate whatever interesting behaviour or phenotype each network mediates. These techniques are now being used in Drosophila to reprogram electrical activity of well-defined circuits and bring about robust and easily quantifiable changes in behaviour, allowing different models and hypotheses to be rapidly tested.

  9. Human male meiotic sex chromosome inactivation.

    Science.gov (United States)

    de Vries, Marieke; Vosters, Sanne; Merkx, Gerard; D'Hauwers, Kathleen; Wansink, Derick G; Ramos, Liliana; de Boer, Peter

    2012-01-01

    In mammalian male gametogenesis the sex chromosomes are distinctive in both gene activity and epigenetic strategy. At first meiotic prophase the heteromorphic X and Y chromosomes are placed in a separate chromatin domain called the XY body. In this process, X,Y chromatin becomes highly phosphorylated at S139 of H2AX leading to the repression of gonosomal genes, a process known as meiotic sex chromosome inactivation (MSCI), which has been studied best in mice. Post-meiotically this repression is largely maintained. Disturbance of MSCI in mice leads to harmful X,Y gene expression, eventuating in spermatocyte death and sperm heterogeneity. Sperm heterogeneity is a characteristic of the human male. For this reason we were interested in the efficiency of MSCI in human primary spermatocytes. We investigated MSCI in pachytene spermatocytes of seven probands: four infertile men and three fertile controls, using direct and indirect in situ methods. A considerable degree of variation in the degree of MSCI was detected, both between and within probands. Moreover, in post-meiotic stages this variation was observed as well, indicating survival of spermatocytes with incompletely inactivated sex chromosomes. Furthermore, we investigated the presence of H3K9me3 posttranslational modifications on the X and Y chromatin. Contrary to constitutive centromeric heterochromatin, this heterochromatin marker did not specifically accumulate on the XY body, with the exception of the heterochromatic part of the Y chromosome. This may reflect the lower degree of MSCI in man compared to mouse. These results point at relaxation of MSCI, which can be explained by genetic changes in sex chromosome composition during evolution and candidates as a mechanism behind human sperm heterogeneity.

  10. Human male meiotic sex chromosome inactivation.

    Directory of Open Access Journals (Sweden)

    Marieke de Vries

    Full Text Available In mammalian male gametogenesis the sex chromosomes are distinctive in both gene activity and epigenetic strategy. At first meiotic prophase the heteromorphic X and Y chromosomes are placed in a separate chromatin domain called the XY body. In this process, X,Y chromatin becomes highly phosphorylated at S139 of H2AX leading to the repression of gonosomal genes, a process known as meiotic sex chromosome inactivation (MSCI, which has been studied best in mice. Post-meiotically this repression is largely maintained. Disturbance of MSCI in mice leads to harmful X,Y gene expression, eventuating in spermatocyte death and sperm heterogeneity. Sperm heterogeneity is a characteristic of the human male. For this reason we were interested in the efficiency of MSCI in human primary spermatocytes. We investigated MSCI in pachytene spermatocytes of seven probands: four infertile men and three fertile controls, using direct and indirect in situ methods. A considerable degree of variation in the degree of MSCI was detected, both between and within probands. Moreover, in post-meiotic stages this variation was observed as well, indicating survival of spermatocytes with incompletely inactivated sex chromosomes. Furthermore, we investigated the presence of H3K9me3 posttranslational modifications on the X and Y chromatin. Contrary to constitutive centromeric heterochromatin, this heterochromatin marker did not specifically accumulate on the XY body, with the exception of the heterochromatic part of the Y chromosome. This may reflect the lower degree of MSCI in man compared to mouse. These results point at relaxation of MSCI, which can be explained by genetic changes in sex chromosome composition during evolution and candidates as a mechanism behind human sperm heterogeneity.

  11. Haloperidol impairs auditory filial imprinting and modulates monoaminergic neurotransmission in an imprinting-relevant forebrain area of the domestic chick.

    Science.gov (United States)

    Gruss, M; Bock, J; Braun, K

    2003-11-01

    In vivo microdialysis and behavioural studies in the domestic chick have shown that glutamatergic as well as monoaminergic neurotransmission in the medio-rostral neostriatum/hyperstriatum ventrale (MNH) is altered after auditory filial imprinting. In the present study, using pharmaco-behavioural and in vivo microdialysis approaches, the role of dopaminergic neurotransmission in this juvenile learning event was further evaluated. The results revealed that: (i) the systemic application of the potent dopamine receptor antagonist haloperidol (7.5 mg/kg) strongly impairs auditory filial imprinting; (ii) systemic haloperidol induces a tetrodotoxin-sensitive increase of extracellular levels of the dopamine metabolite, homovanillic acid, in the MNH, whereas the levels of glutamate, taurine and the serotonin metabolite, 5-hydroxyindole-3-acetic acid, remain unchanged; (iii) haloperidol (0.01, 0.1, 1 mm) infused locally into the MNH increases glutamate, taurine and 5- hydroxyindole-3-acetic acid levels in a dose-dependent manner, whereas homovanillic acid levels remain unchanged; (iv) systemic haloperidol infusion reinforces the N-methyl-d-aspartate receptor-mediated inhibitory modulation of the dopaminergic neurotransmission within the MNH. These results indicate that the modulation of dopaminergic function and its interaction with other neurotransmitter systems in a higher associative forebrain region of the juvenile avian brain displays similar neurochemical characteristics as the adult mammalian prefrontal cortex. Furthermore, we were able to show that the pharmacological manipulation of monoaminergic regulatory mechanisms interferes with learning and memory formation, events which in a similar fashion might occur in young or adult mammals.

  12. Cloning and characterization of GRIPE, a novel interacting partner of the transcription factor E12 in developing mouse forebrain.

    Science.gov (United States)

    Heng, Julian Ik Tsen; Tan, Seong-Seng

    2002-11-08

    The helix-loop-helix (HLH) family of transcription factors are key contributors to a wide array of developmental processes, including neurogenesis and hematopoiesis. These factors are thought to exert their regulatory influences by binding to cognate promoter-DNA sequences as dimers. Although studies in mice have convincingly demonstrated that neurogenic HLH proteins such as NeuroD are intimately involved in neuronal fate determination, the role of the ubiquitously expressed HLH protein, E12, in mammalian neurogenesis remains ambiguous. To address this, a yeast two-hybrid interaction screen was employed to identify dimerization partners to E12. Screening of an embryonic day 11.5 forebrain library resulted in the cloning of GRIPE, a novel GAP-related interacting protein to E12. GRIPE binds to the HLH region of E12 and may require E12 for nuclear import. Furthermore, GRIPE may negatively regulate E12-dependent target gene transcription. High levels of GRIPE and E12 mRNA were coincidentally detected during embryogenesis, but only GRIPE mRNA levels remained high in adult brain, particularly in neurons of the cortex and hippocampus. These observations were recapitulated through an in vitro model of neurogenesis. Taken together, these results indicate that GRIPE is a novel protein dimerization of which with E12 has important consequences for cells undergoing neuronal differentiation.

  13. Forebrain NR2B overexpression facilitating the prefrontal cortex long-term potentiation and enhancing working memory function in mice.

    Science.gov (United States)

    Cui, Yihui; Jin, Jing; Zhang, Xuliang; Xu, Hao; Yang, Liguo; Du, Dan; Zeng, Qingwen; Tsien, Joe Z; Yu, Huiting; Cao, Xiaohua

    2011-01-01

    Prefrontal cortex plays an important role in working memory, attention regulation and behavioral inhibition. Its functions are associated with NMDA receptors. However, there is little information regarding the roles of NMDA receptor NR2B subunit in prefrontal cortical synaptic plasticity and prefrontal cortex-related working memory. Whether the up-regulation of NR2B subunit influences prefrontal cortical synaptic plasticity and working memory is not yet clear. In the present study, we measured prefrontal cortical synaptic plasticity and working memory function in NR2B overexpressing transgenic mice. In vitro electrophysiological data showed that overexpression of NR2B specifically in the forebrain region resulted in enhancement of prefrontal cortical long-term potentiation (LTP) but did not alter long-term depression (LTD). The enhanced LTP was completely abolished by a NR2B subunit selective antagonist, Ro25-6981, indicating that overexpression of NR2B subunit is responsible for enhanced LTP. In addition, NR2B transgenic mice exhibited better performance in a set of working memory paradigms including delay no-match-to-place T-maze, working memory version of water maze and odor span task. Our study provides evidence that NR2B subunit of NMDA receptor in prefrontal cortex is critical for prefrontal cortex LTP and prefrontal cortex-related working memory.

  14. Divergent projections of catecholaminergic neurons in the nucleus of the solitary tract to limbic forebrain and medullary autonomic brain regions.

    Science.gov (United States)

    Reyes, Beverly A S; Van Bockstaele, Elisabeth J

    2006-10-30

    The nucleus of the solitary tract (NTS) is a critical structure involved in coordinating autonomic and visceral activities. Previous independent studies have demonstrated efferent projections from the NTS to the nucleus paragigantocellularis (PGi) and the central nucleus of the amygdala (CNA) in rat brain. To further characterize the neural circuitry originating from the NTS with postsynaptic targets in the amygdala and medullary autonomic targets, distinct green or red fluorescent latex microspheres were injected into the PGi and the CNA, respectively, of the same rat. Thirty-micron thick tissue sections through the lower brainstem and forebrain were collected. Every fourth section through the NTS region was processed for immunocytochemical detection of tyrosine hydroxylase (TH), a marker of catecholaminergic neurons. Retrogradely labeled neurons from the PGi or CNA were distributed throughout the rostro-caudal segments of the NTS. However, the majority of neurons containing both retrograde tracers were distributed within the caudal third of the NTS. Cell counts revealed that approximately 27% of neurons projecting to the CNA in the NTS sent collateralized projections to the PGi while approximately 16% of neurons projecting to the PGi sent collateralized projections to the CNA. Interestingly, more than half of the PGi and CNA-projecting neurons in the NTS expressed TH immunoreactivity. These data indicate that catecholaminergic neurons in the NTS are poised to simultaneously coordinate activities in limbic and medullary autonomic brain regions.

  15. Changes in forebrain function from waking to REM sleep in depression: preliminary analyses of [18F]FDG PET studies.

    Science.gov (United States)

    Nofzinger, E A; Nichols, T E; Meltzer, C C; Price, J; Steppe, D A; Miewald, J M; Kupfer, D J; Moore, R Y

    1999-08-31

    Based on recent functional brain imaging studies of healthy human REM sleep, we hypothesized that alterations in REM sleep in mood disorder patients reflect a functional dysregulation within limbic and paralimbic forebrain structures during that sleep state. Six unipolar depressed subjects and eight healthy subjects underwent separate [18F]2-fluoro-2-deoxy-D-glucose ([18F]FDG) PET scans during waking and during their first REM period of sleep. Statistical parametric mapping contrasts were performed to detect changes in relative regional cerebral glucose metabolism (rCMRglu) from waking to REM sleep in each group as well as interactions in patterns of change between groups. Clinical and EEG sleep comparisons from an undisturbed night of sleep were also performed. In contrast to healthy control subjects, depressed patients did not show increases in rCMRglu in anterior paralimbic structures in REM sleep compared to waking. Depressed subjects showed greater increases from waking to REM sleep in rCMRglu in the tectal area and a series of left hemispheric areas including sensorimotor cortex, inferior temporal cortex, uncal gyrus-amygdala, and subicular complex than did the control subjects. These observations indicate that changes in limbic and paralimbic function from waking to REM sleep differ significantly from normal in depressed patients.

  16. Aberrant Lipid Metabolism in the Forebrain Niche Suppresses Adult Neural Stem Cell Proliferation in an Animal Model of Alzheimer's Disease.

    Science.gov (United States)

    Hamilton, Laura K; Dufresne, Martin; Joppé, Sandra E; Petryszyn, Sarah; Aumont, Anne; Calon, Frédéric; Barnabé-Heider, Fanie; Furtos, Alexandra; Parent, Martin; Chaurand, Pierre; Fernandes, Karl J L

    2015-10-01

    Lipid metabolism is fundamental for brain development and function, but its roles in normal and pathological neural stem cell (NSC) regulation remain largely unexplored. Here, we uncover a fatty acid-mediated mechanism suppressing endogenous NSC activity in Alzheimer's disease (AD). We found that postmortem AD brains and triple-transgenic Alzheimer's disease (3xTg-AD) mice accumulate neutral lipids within ependymal cells, the main support cell of the forebrain NSC niche. Mass spectrometry and microarray analyses identified these lipids as oleic acid-enriched triglycerides that originate from niche-derived rather than peripheral lipid metabolism defects. In wild-type mice, locally increasing oleic acid was sufficient to recapitulate the AD-associated ependymal triglyceride phenotype and inhibit NSC proliferation. Moreover, inhibiting the rate-limiting enzyme of oleic acid synthesis rescued proliferative defects in both adult neurogenic niches of 3xTg-AD mice. These studies support a pathogenic mechanism whereby AD-induced perturbation of niche fatty acid metabolism suppresses the homeostatic and regenerative functions of NSCs. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Stem cell derived basal forebrain cholinergic neurons from Alzheimer's disease patients are more susceptible to cell death.

    Science.gov (United States)

    Duan, Lishu; Bhattacharyya, Bula J; Belmadani, Abdelhak; Pan, Liuliu; Miller, Richard J; Kessler, John A

    2014-01-08

    An early substantial loss of basal forebrain cholinergic neurons (BFCNs) is a constant feature of Alzheimer's disease (AD) and is associated with deficits in spatial learning and memory. Induced pluripotent stem cells (iPSCs) derived from patients with AD as well as from normal controls could be efficiently differentiated into neurons with characteristics of BFCNs. We used BFCNs derived from iPSCs to model sporadic AD with a focus on patients with ApoE3/E4 genotypes (AD-E3/E4). BFCNs derived from AD-E3/E4 patients showed typical AD biochemical features evidenced by increased Aβ42/Aβ40 ratios. AD-E3/E4 neurons also exhibited altered responses to treatment with γ-secretase inhibitors compared to control BFCNs or neurons derived from patients with familial AD. BFCNs from patients with AD-E3/E4 also exhibited increased vulnerability to glutamate-mediated cell death which correlated with increased intracellular free calcium upon glutamate exposure. The ability to generate BFCNs with an AD phenotype is a significant step both for understanding disease mechanisms and for facilitating screening for agents that promote synaptic integrity and neuronal survival.

  18. The primary brain vesicles revisited: are the three primary vesicles (forebrain/midbrain/hindbrain) universal in vertebrates?

    Science.gov (United States)

    Ishikawa, Yuji; Yamamoto, Naoyuki; Yoshimoto, Masami; Ito, Hironobu

    2012-01-01

    It is widely held that three primary brain vesicles (forebrain, midbrain, and hindbrain vesicles) develop into five secondary brain vesicles in all vertebrates (von Baer's scheme). We reviewed previous studies in various vertebrates to see if this currently accepted scheme of brain morphogenesis is a rule applicable to vertebrates in general. Classical morphological studies on lamprey, shark, zebrafish, frog, chick, Chinese hamster, and human embryos provide only partial evidence to support the existence of von Baer's primary vesicles at early stages. Rather, they suggest that early brain morphogenesis is diverse among vertebrates. Gene expression and fate map studies on medaka, chick, and mouse embryos show that the fates of initial brain vesicles do not accord with von Baer's scheme, at least in medaka and chick brains. The currently accepted von Baer's scheme of brain morphogenesis, therefore, is not a universal rule throughout vertebrates. We propose here a developmental hourglass model as an alternative general rule: Brain morphogenesis is highly conserved at the five-brain vesicle stage but diverges more extensively at earlier and later stages. This hypothesis does not preclude the existence of deep similarities in molecular prepatterns at early stages.

  19. Singing-Related Activity in Anterior Forebrain of Male Zebra Finches Reflects Courtship Motivation for Target Females

    Science.gov (United States)

    Iwasaki, Mai; Poulsen, Thomas M.; Oka, Kotaro; Hessler, Neal A.

    2013-01-01

    A critical function of singing by male songbirds is to attract a female mate. Previous studies have suggested that the anterior forebrain system is involved in this courtship behavior. Neural activity in this system, including the striatal Area X, is strikingly dependent on the function of male singing. When males sing to attract a female bird rather than while alone, less variable neural activity results in less variable song spectral features, which may be attractive to the female. These characteristics of neural activity and singing thus may reflect a male's motivation for courtship. Here, we compared the variability of neural activity and song features between courtship singing directed to a female with whom a male had previously formed a pair-bond or to other females. Surprisingly, across all units, there was no clear tendency for a difference in variability of neural activity or song features between courtship of paired females, nonpaired females, or dummy females. However, across the population of recordings, there was a significant relationship between the relative variability of syllable frequency and neural activity: when syllable frequency was less variable to paired than nonpaired females, neural activity was also less variable (and vice-versa). These results show that the lower variability of neural activity and syllable frequency during directed singing is not a binary distinction from undirected singing, but can vary in intensity, possibly related to the relative preference of a male for his singing target. PMID:24312344

  20. Forebrain NR2B overexpression facilitating the prefrontal cortex long-term potentiation and enhancing working memory function in mice.

    Directory of Open Access Journals (Sweden)

    Yihui Cui

    Full Text Available Prefrontal cortex plays an important role in working memory, attention regulation and behavioral inhibition. Its functions are associated with NMDA receptors. However, there is little information regarding the roles of NMDA receptor NR2B subunit in prefrontal cortical synaptic plasticity and prefrontal cortex-related working memory. Whether the up-regulation of NR2B subunit influences prefrontal cortical synaptic plasticity and working memory is not yet clear. In the present study, we measured prefrontal cortical synaptic plasticity and working memory function in NR2B overexpressing transgenic mice. In vitro electrophysiological data showed that overexpression of NR2B specifically in the forebrain region resulted in enhancement of prefrontal cortical long-term potentiation (LTP but did not alter long-term depression (LTD. The enhanced LTP was completely abolished by a NR2B subunit selective antagonist, Ro25-6981, indicating that overexpression of NR2B subunit is responsible for enhanced LTP. In addition, NR2B transgenic mice exhibited better performance in a set of working memory paradigms including delay no-match-to-place T-maze, working memory version of water maze and odor span task. Our study provides evidence that NR2B subunit of NMDA receptor in prefrontal cortex is critical for prefrontal cortex LTP and prefrontal cortex-related working memory.

  1. Kinetic modelling of enzyme inactivation Kinetics of heat inactivation of the extracellular proteinase from Pseudomonas fluorescens 22F.

    NARCIS (Netherlands)

    Schokker, E.P.

    1997-01-01

    The kinetics of heat inactivation of the extracellular proteinase from Pseudomonas fluorescens 22F was studied. It was established, by making use of kinetic modelling, that heat inactivation in the temperature range 35 - 70 °C was most likely caused by intermolecular autoproteolysis, where unfolded

  2. Sunlight inactivation of viruses in open-water unit process treatment wetlands: modeling endogenous and exogenous inactivation rates.

    Science.gov (United States)

    Silverman, Andrea I; Nguyen, Mi T; Schilling, Iris E; Wenk, Jannis; Nelson, Kara L

    2015-03-03

    Sunlight inactivation is an important mode of disinfection for viruses in surface waters. In constructed wetlands, for example, open-water cells can be used to promote sunlight disinfection and remove pathogenic viruses from wastewater. To aid in the design of these systems, we developed predictive models of virus attenuation that account for endogenous and exogenous sunlight-mediated inactivation mechanisms. Inactivation rate models were developed for two viruses, MS2 and poliovirus type 3; laboratory- and field-scale experiments were conducted to evaluate the models' ability to estimate inactivation rates in a pilot-scale, open-water, unit-process wetland cell. Endogenous inactivation rates were modeled using either photoaction spectra or total, incident UVB irradiance. Exogenous inactivation rates were modeled on the basis of virus susceptibilities to singlet oxygen. Results from both laboratory- and field-scale experiments showed good agreement between measured and modeled inactivation rates. The modeling approach presented here can be applied to any sunlit surface water and utilizes easily measured inputs such as depth, solar irradiance, water matrix absorbance, singlet oxygen concentration, and the virus-specific apparent second-order rate constant with singlet oxygen (k2). Interestingly, the MS2 k2 in the open-water wetland was found to be significantly larger than k2 observed in other waters in previous studies. Examples of how the model can be used to design and optimize natural treatment systems for virus inactivation are provided.

  3. Whole-cell inactivated leptospirosis vaccine: future prospects.

    Science.gov (United States)

    Verma, Ramesh; Khanna, Pardeep; Chawla, Suraj

    2013-04-01

    Leptospirosis is an infectious disease of worldwide distribution that is caused by pathogenic spirochete bacteria of the genus Leptospira. It is transmitted by the urine of an infected animal and contagious in a moist environment. Epidemiological studies indicate that infection is commonly associated with certain occupational workers such as farmers, sewage workers, veterinarians, and animal handlers. The annual incidence is estimated at 0.1-1 per 100,000 in temperate climates to 10-100 per 100,000 in the humid tropics. A disease incidence of more than 100 per 100,000 is encountered during outbreaks and in high-exposure risk groups. The 11 countries in South-East Asia (SEA) together have a population of more than 1.7 billion and a work force of about 770 million with more than 450 million people engaged in agriculture. Because of the large number of serovars and infection sources and the wide differences in conditions of transmission, the control of leptospirosis is complicated and will depend on local conditions. The available leptospirosis vaccines are mono- or polyvalent cellular suspensions. These cells are inactivated by chemical agents like formaldehyde and phenol, or by physical agents like heat. The vaccine confers protection for not longer than about one year, while there are cases that need revaccination six months later during epidemic periods.

  4. Inactivation of a bovine enterovirus and a bovine parvovirus in cattle manure by anaerobic digestion, heat treatment, gamma irradiation, ensilage and composting

    Energy Technology Data Exchange (ETDEWEB)

    Monteith, H.D.; Shannon, E.E.; Derbyshire, J.B.

    1986-08-01

    A bovine enterovirus and a bovine parvovirus seeded into liquid cattle manure were rapidly inactivated by anaerobic digestion under thermophilic conditions (55/sup 0/C), but the same viruses survived for up to 13 and 8 days respectively under mesophilic conditions (35/sup 0/C). The enterovirus was inactivated in digested liquid manure heated to 70/sup 0/C for 30 min, but the parvovirus was not inactivated by this treatment. The enterovirus, seeded into single cell protein (the solids recovered by centrifugation of digested liquid manure), was inactivated by a gamma irradiation dose of 1.0 Mrad, but the parvovirus survived this dose. When single cell protein seeded with bovine enterovirus or bovine parvovirus was ensiled with cracked corn, the enterovirus was inactivated after a period of 30 days, while the parvovirus survived for 30 days in one of two experiments. Neither the enterovirus nor the parvovirus survived composting for 28 days in a thermophilic aerobic environment when seeded into the solid fraction of cattle manure. It was concluded that, of the procedures tested, only anaerobic digestion under thermophilic conditions appeared to be reliable method of viral inactivation to ensure the safety of single cell protein for refeeding to livestock. Composting appeared to be a suitable method for the disinfection of manure for use as a soil conditioner.

  5. The inactivation of a bovine enterovirus and a bovine parvovirus in cattle manure by anaerobic digestion, heat treatment, gamma irradiation, ensilage and composting.

    Science.gov (United States)

    Monteith, H D; Shannon, E E; Derbyshire, J B

    1986-08-01

    A bovine enterovirus and a bovine parvovirus seeded into liquid cattle manure were rapidly inactivated by anaerobic digestion under thermophilic conditions (55 degrees C), but the same viruses survived for up to 13 and 8 days respectively under mesophilic conditions (35 degrees C). The enterovirus was inactivated in digested liquid manure heated to 70 degrees C for 30 min, but the parvovirus was not inactivated by this treatment. The enterovirus, seeded into single cell protein (the solids recovered by centrifugation of digested liquid manure), was inactivated by a gamma irradiation dose of 1.0 Mrad, but the parvovirus survived this dose. When single cell protein seeded with bovine enterovirus or bovine parvovirus was ensiled with cracked corn, the enterovirus was inactivated after a period of 30 days, while the parvovirus survived for 30 days in one of two experiments. Neither the enterovirus nor the parvovirus survived composting for 28 days in a thermophilic aerobic environment when seeded into the solid fraction of cattle manure. It was concluded that, of the procedures tested, only anaerobic digestion under thermophilic conditions appeared to be reliable method of viral inactivation to ensure the safety of single cell protein for refeeding to livestock. Composting appeared to be a suitable method for the disinfection of manure for use as a soil conditioner.

  6. Evaluation of the Factors that Control the Time-Dependent Inactivation Rate Coefficients of Bacteriophage MS2 and PRD1

    Science.gov (United States)

    Anders, R.; Chrysikopoulos, C. V.

    2004-12-01

    Batch experiments were conducted under both static and dynamic conditions to study the effects of temperature and the presence of sand on the inactivation process of viruses. The male--specific RNA coliphage, MS2, and the Salmonella typhimurium phage, PRD1, were used as model viruses for this study. Over 100 oven--baked borosilicate glass bottles with or without Monterey sand were filled with a low--ionic--strength phosphate buffered saline solution containing both bacteriophage and incubated at temperatures of 4o, 15o, or 25oC. The results of the batch experiments indicate that the inactivation process can be represented by a pseudo first-order expression with time--dependent rate coefficients. A combination of high temperature and the presence of sand appears to produce the greatest disruption to the surrounding protein coat of MS2. However, for PRD1, the lower activation energies derived from Arrhenius plots indicate a weaker dependence of the inactivation rate on temperature. Furthermore, the presence of an air--liquid--solid interface in the dynamic batch experiment containing sand produces the greatest damage to specific viral components of PRD1 that are required for infection. These results indicate the use of thermodynamic parameters based on the pseudo first--order inactivation expression allows better prediction of the inactivation of viruses in the environment.

  7. Comparative study on the mechanisms of rotavirus inactivation by sodium dodecyl sulfate and ethylenediaminetetraacetate

    Energy Technology Data Exchange (ETDEWEB)

    Ward, R.L. (Sandia Labs., Albuquerque, NM); Ashley, C.S.

    1980-06-01

    This report describes a comparative study on the effects of the anionic detergent sodium dodecyl sulfate and the chelating agent ethylenediaminetetraacetate on purified rotavirus SA-11 particles. Both chemicals readily inactivated rotavirus at quite low concentrations and under very mild conditions. In addition, both agents modified the viral capsid and prevented the adsorption of inactivated virions to cells. Capsid damage by ethylenediaminetetraacetate caused a shift in the densities of rotavirions from about l.35 to about 1.37 g/ml and a reduction in their sedimentation coefficients. Sodium dodcyl sulfate, on the other hand, did not detectably alter either of these physical properties of rotavirions. Both agents caused some alteration of the isoelectric points of the virions. Finally, analysis of rotavirus proteins showed that ethylenediaminetetraacetate caused the loss of two protein peaks from the electrophoretic pattern of virions but sodium dodecyl sulfate caused the loss of only one of these same protein peaks.

  8. Inactivation of microalgae in ballast water with pulse intense light treatment.

    Science.gov (United States)

    Feng, Daolun; Shi, Jidong; Sun, Dan

    2015-01-15

    The exotic emission of ballast water has threatened the coastal ecological environment and people's health in many countries. This paper firstly introduces pulse intense light to treat ballast water. 99.9 ± 0.09% inactivation of Heterosigma akashiwo and 99.9 ± 0.16% inactivation of Pyramimonas sp. are observed under treatment conditions of 350 V pulse peak voltage, 15 Hz pulse frequency, 5 ms pulse width and 1.78 L/min flow rate. The energy consumption of the self-designed pulse intense light treatment system is about 2.90-5.14 times higher than that of the typical commercial UV ballast water treatment system. The results indicate that pulse intense light is an effective technique for ballast water treatment, while it is only a competitive one when drastic decreasing in energy consumption is accomplished. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Inactivation of bacteria via photosensitization of vitamin K3 by UV-A light.

    Science.gov (United States)

    Xu, Fei; Vostal, Jaroslav G

    2014-09-01

    This study investigated inactivation of bacteria with ultraviolet light A irradiation in combination with vitamin K3 as a photosensitizer. Six bacteria including Bacillus cereus, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella pneumoniae, and Escherichia coli suspended in vitamin K3 aqueous solution were exposed to ultraviolet light A. Five of six bacteria, with the exception of Pseudomonas aeruginosa, were reduced by eight logs with 1600 μM of vitamin K3 and 5.8 J cm(-2) UV-A irradiation. Pseudomonas aeruginosa was reduced by four logs under these conditions. Reactive oxygen species including singlet oxygen, hydroxyl radical and superoxide anion radical were generated in vitamin K3 aqueous solution under UV-A irradiation. These results suggest that vitamin K3 and UV-A irradiation may be effective for bacterial inactivation in environmental and medical applications. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  10. Inactivation of brain Na+,K(+)-ATPase catalytic subunit isoforms by sodium dodecyl sulfate.

    Science.gov (United States)

    Kaplya, A; Kravtsova, V V; Kravtsov, A V

    1997-01-01

    Persistence of the brain and kidney Na+,K(+)-ATPase isozymes to SDS inactivation under different time and temperature conditions of microsome extraction with the detergent was compared. In contrast to enzyme preparations from medulla oblongata the higher sensitivity of the Na+,K(+)-ATPase alpha-isoform (in comparison to alpha +) to SDS inactivation accompanied by its, at least, partial removal from the membrane was found in the preparations from cerebral cortex. This difference in the sensitivity to SDS was eliminated after extraction of microsomes with the detergent at 37 degrees C. The interpretation of the results is based on the assumed differences in the structural organization of the boundary lipids of the neuronal Na+,K(+)-ATPase catalytic subunit isoforms.

  11. Lactococcus lactis Thioredoxin Reductase Is Sensitive to Light Inactivation

    DEFF Research Database (Denmark)

    Björnberg, Olof; Viennet, Thibault; Skjoldager, Nicklas;

    2015-01-01

    R. The rate of light inactivation under standardized conditions (λmax = 460 nm and 4 °C) was reduced at lowered oxygen concentrations and in the presence of iodide. Inactivation was accompanied by a distinct spectral shift of the flavin adenine dinucleotide (FAD) that remained firmly bound. High......-resolution mass spectrometric analysis of heat-extracted FAD from light-damaged TrxR revealed a mass increment of 13.979 Da, relative to that of unmodified FAD, corresponding to the addition of one oxygen atom and the loss of two hydrogen atoms. Tandem mass spectrometry confined the increase in mass...... of the isoalloxazine ring, and the extracted modified cofactor reacted with dinitrophenyl hydrazine, indicating the presence of an aldehyde. We hypothesize that a methyl group of FAD is oxidized to a formyl group. The significance of this not previously reported oxidation and the exceptionally high rate of oxygen...

  12. Virus-specific thermostability and heat inactivation profiles of alphaviruses.

    Science.gov (United States)

    Park, So Lee; Huang, Yan-Jang S; Hsu, Wei-Wen; Hettenbach, Susan M; Higgs, Stephen; Vanlandingham, Dana L

    2016-08-01

    Serological diagnosis is a critical component for disease surveillance and is important to address the increase in incidence and disease burden of alphaviruses, such as the chikungunya (CHIKV) and Ross River (RRV) viruses. The gold standard for serological diagnosis is the plaque reduction neutralization test (PRNT), which demonstrates the neutralizing capacity of serum samples after the removal of complement activity and adventitious viruses. This procedure is normally performed following inactivation of the virus at 56°C for 30min. Although this protocol has been widely accepted for the inactivation of envelope RNA viruses, recent studies have demonstrated that prolonged heat inactivation is required to completely inactivate two alphaviruses, Western equine encephalitis virus and CHIKV. Incomplete inactivation of viruses poses a laboratory biosafety risk and can also lead to spurious test results. Despite its importance in ensuring the safety of laboratory personnel as well as test integrity, systematic investigation on the thermostability of alphaviruses has not been performed. In this study, the temperature tolerance and heat inactivation profiles of RRV, Barmah Forest, and o'nyong-nyong viruses were determined. Variations in thermostability were observed within the Semliki forest serocomplex. Therefore, evidence-based heat inactivation procedures for alphaviruses are recommended.

  13. X chromosome inactivation and X-linked mental retardation

    Energy Technology Data Exchange (ETDEWEB)

    Willard, H.F. [Case Western Reserve Univ. School of Medicine, Cleveland, OH (United States)]|[Univ. Hospitals of Cleveland, OH (United States)

    1996-07-12

    The expression of X-linked genes in females heterozygous for X-linked defects can be modulated by epigenetic control mechanisms that constitute the X chromosome inactivation pathway. At least four different effects have been found to influence, in females, the phenotypic expression of genes responsible for X-linked mental retardation (XLMR). First, non-random X inactivation, due either to stochastic or genetic factors, can result in tissues in which one cell type (for example, that in which the X chromosome carrying a mutant XLMR gene is active) dominates, instead of the normal mosaic cell population expected as a result of random X inactivation. Second, skewed inactivation of the normal X in individuals carrying a deletion of part of the X chromosome has been documented in a number of mentally retarded females. Third, functional disomy of X-linked genes that are expressed inappropriately due to the absence of X inactivation has been found in mentally retarded females with structurally abnormal X chromosomes that do not contain the X inactivation center. And fourth, dose-dependent overexpression of X-linked genes that normally {open_quotes}escape{close_quotes} X inactivation may account for the mental and developmental delay associated with increasing numbers of otherwise inactive X chromosomes in individuals with X chromosome aneuploidy. 53 refs., 1 fig.

  14. Brief inactivation of c-Myc is not sufficient for sustained regression of c-Myc-induced tumours of pancreatic islets and skin epidermis

    Directory of Open Access Journals (Sweden)

    Zervou Sevasti

    2004-12-01

    Full Text Available Abstract Background Tumour regression observed in many conditional mouse models following oncogene inactivation provides the impetus to develop, and a platform to preclinically evaluate, novel therapeutics to inactivate specific oncogenes. Inactivating single oncogenes, such as c-Myc, can reverse even advanced tumours. Intriguingly, transient c-Myc inactivation proved sufficient for sustained osteosarcoma regression; the resulting osteocyte differentiation potentially explaining loss of c-Myc's oncogenic properties. But would this apply to other tumours? Results We show that brief inactivation of c-Myc does not sustain tumour regression in two distinct tissue types; tumour cells in pancreatic islets and skin epidermis continue to avoid apoptosis after c-Myc reactivation, by virtue of Bcl-xL over-expression or a favourable microenvironment, respectively. Moreover, tumours progress despite reacquiring a differentiated phenotype and partial loss of vasculature during c-Myc inactivation. Interestingly, reactivating c-Myc in β-cell tumours appears to result not only in further growth of the tumour, but also re-expansion of the accompanying angiogenesis and more pronounced β-cell invasion (adenocarcinoma. Conclusions Given that transient c-Myc inactivation could under some circumstances produce sustained tumour regression, the possible application of this potentially less toxic strategy in treating other tumours has been suggested. We show that brief inactivation of c-Myc fails to sustain tumour regression in two distinct models of tumourigenesis: pancreatic islets and skin epidermis. These findings challenge the potential for cancer therapies aimed at transient oncogene inactivation, at least under those circumstances where tumour cell differentiation and alteration of epigenetic context fail to reinstate apoptosis. Together, these results suggest that treatment schedules will need to be informed by knowledge of the molecular basis and

  15. Optimizing supercritical carbon dioxide in the inactivation of bacteria in clinical solid waste by using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Md. Sohrab [Department of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia); Nik Ab Rahman, Nik Norulaini [School of Distance Education, Universiti Sains Malaysia, 11800 Penang (Malaysia); Balakrishnan, Venugopal [Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang (Malaysia); Alkarkhi, Abbas F.M. [Department of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia); Ahmad Rajion, Zainul [School of Dental Science, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia); Ab Kadir, Mohd Omar, E-mail: akmomar@usm.my [Department of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2015-04-15

    Highlights: • Supercritical carbon dioxide sterilization of clinical solid waste. • Inactivation of bacteria in clinical solid waste using supercritical carbon dioxide. • Reduction of the hazardous exposure of clinical solid waste. • Optimization of the supercritical carbon dioxide experimental conditions. - Abstract: Clinical solid waste (CSW) poses a challenge to health care facilities because of the presence of pathogenic microorganisms, leading to concerns in the effective sterilization of the CSW for safe handling and elimination of infectious disease transmission. In the present study, supercritical carbon dioxide (SC-CO{sub 2}) was applied to inactivate gram-positive Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, and gram-negative Escherichia coli in CSW. The effects of SC-CO{sub 2} sterilization parameters such as pressure, temperature, and time were investigated and optimized by response surface methodology (RSM). Results showed that the data were adequately fitted into the second-order polynomial model. The linear quadratic terms and interaction between pressure and temperature had significant effects on the inactivation of S. aureus, E. coli, E. faecalis, and B. subtilis in CSW. Optimum conditions for the complete inactivation of bacteria within the experimental range of the studied variables were 20 MPa, 60 °C, and 60 min. The SC-CO{sub 2}-treated bacterial cells, observed under a scanning electron microscope, showed morphological changes, including cell breakage and dislodged cell walls, which could have caused the inactivation. This espouses the inference that SC-CO{sub 2} exerts strong inactivating effects on the bacteria present in CSW, and has the potential to be used in CSW management for the safe handling and recycling-reuse of CSW materials.

  16. Effective heat inactivation of Mycobacterium avium subsp. paratuberculosis in raw milk contaminated with naturally infected feces.

    Science.gov (United States)

    Rademaker, Jan L W; Vissers, Marc M M; Te Giffel, Meike C

    2007-07-01

    The effectiveness of high-temperature, short holding time (HTST) pasteurization and homogenization with respect to inactivation of Mycobacterium avium subsp. paratuberculosis was evaluated quantitatively. This allowed a detailed determination of inactivation kinetics. High concentrations of feces from cows with clinical symptoms of Johne's disease were used to contaminate raw milk in order to realistically mimic possible incidents most closely. Final M. avium subsp. paratuberculosis concentrations varying from 10(2) to 3.5 x 10(5) cells per ml raw milk were used. Heat treatments including industrial HTST were simulated on a pilot scale with 22 different time-temperature combinations, including 60 to 90 degrees C at holding (mean residence) times of 6 to 15 s. Following 72 degrees C and a holding time of 6 s, 70 degrees C for 10 and 15 s, or under more stringent conditions, no viable M. avium subsp. paratuberculosis cells were recovered, resulting in >4.2- to >7.1-fold reductions, depending on the original inoculum concentrations. Inactivation kinetic modeling of 69 quantitative data points yielded an E(a) of 305,635 J/mol and an lnk(0) of 107.2, corresponding to a D value of 1.2 s at 72 degrees C and a Z value of 7.7 degrees C. Homogenization did not significantly affect the inactivation. The conclusion can be drawn that HTST pasteurization conditions equal to 15 s at > or =72 degrees C result in a more-than-sevenfold reduction of M. avium subsp. paratuberculosis.