Pemodelan Markov Switching Autoregressive
Ariyani, Fiqria Devi; Warsito, Budi; Yasin, Hasbi
2014-01-01
Transition from depreciation to appreciation of exchange rate is one of regime switching that ignored by classic time series model, such as ARIMA, ARCH, or GARCH. Therefore, economic variables are modeled by Markov Switching Autoregressive (MSAR) which consider the regime switching. MLE is not applicable to parameters estimation because regime is an unobservable variable. So that filtering and smoothing process are applied to see the regime probabilities of observation. Using this model, tran...
Directory of Open Access Journals (Sweden)
Githure John I
2009-09-01
values from the spatial configuration matrices were then used to define expectations for prior distributions using a Markov chain Monte Carlo (MCMC algorithm. A set of posterior means were defined in WinBUGS 1.4.3®. After the model had converged, samples from the conditional distributions were used to summarize the posterior distribution of the parameters. Thereafter, a spatial residual trend analyses was used to evaluate variance uncertainty propagation in the model using an autocovariance error matrix. Results By specifying coefficient estimates in a Bayesian framework, the covariate number of tillers was found to be a significant predictor, positively associated with An. arabiensis aquatic habitats. The spatial filter models accounted for approximately 19% redundant locational information in the ecological sampled An. arabiensis aquatic habitat data. In the residual error estimation model there was significant positive autocorrelation (i.e., clustering of habitats in geographic space based on log-transformed larval/pupal data and the sampled covariate depth of habitat. Conclusion An autocorrelation error covariance matrix and a spatial filter analyses can prioritize mosquito control strategies by providing a computationally attractive and feasible description of variance uncertainty estimates for correctly identifying clusters of prolific An. arabiensis aquatic habitats based on larval/pupal productivity.
Circular Conditional Autoregressive Modeling of Vector Fields.
Modlin, Danny; Fuentes, Montse; Reich, Brian
2012-02-01
As hurricanes approach landfall, there are several hazards for which coastal populations must be prepared. Damaging winds, torrential rains, and tornadoes play havoc with both the coast and inland areas; but, the biggest seaside menace to life and property is the storm surge. Wind fields are used as the primary forcing for the numerical forecasts of the coastal ocean response to hurricane force winds, such as the height of the storm surge and the degree of coastal flooding. Unfortunately, developments in deterministic modeling of these forcings have been hindered by computational expenses. In this paper, we present a multivariate spatial model for vector fields, that we apply to hurricane winds. We parameterize the wind vector at each site in polar coordinates and specify a circular conditional autoregressive (CCAR) model for the vector direction, and a spatial CAR model for speed. We apply our framework for vector fields to hurricane surface wind fields for Hurricane Floyd of 1999 and compare our CCAR model to prior methods that decompose wind speed and direction into its N-S and W-E cardinal components.
Testing the Conditional Mean Function of Autoregressive Conditional Duration Models
DEFF Research Database (Denmark)
Hautsch, Nikolaus
be subject to censoring structures. In an empirical study based on financial transaction data we present an application of the model to estimate conditional asset price change probabilities. Evaluating the forecasting properties of the model, it is shown that the proposed approach is a promising competitor......This paper proposes a dynamic proportional hazard (PH) model with non-specified baseline hazard for the modelling of autoregressive duration processes. A categorization of the durations allows us to reformulate the PH model as an ordered response model based on extreme value distributed errors...
Dang, Shilpa; Chaudhury, Santanu; Lall, Brejesh; Roy, Prasun Kumar
2017-02-15
Effective connectivity (EC) analysis of neuronal groups using fMRI delivers insights about functional-integration. However, fMRI signal has low-temporal resolution due to down-sampling and indirectly measures underlying neuronal activity. The aim is to address above issues for more reliable EC estimates. This paper proposes use of autoregressive hidden Markov model with missing data (AR-HMM-md) in dynamically multi-linked (DML) framework for learning EC using multiple fMRI time series. In our recent work (Dang et al., 2016), we have shown how AR-HMM-md for modelling single fMRI time series outperforms the existing methods. AR-HMM-md models unobserved neuronal activity and lost data over time as variables and estimates their values by joint optimization given fMRI observation sequence. The effectiveness in learning EC is shown using simulated experiments. Also the effects of sampling and noise are studied on EC. Moreover, classification-experiments are performed for Attention-Deficit/Hyperactivity Disorder subjects and age-matched controls for performance evaluation of real data. Using Bayesian model selection, we see that the proposed model converged to higher log-likelihood and demonstrated that group-classification can be performed with higher cross-validation accuracy of above 94% using distinctive network EC which characterizes patients vs. The full data EC obtained from DML-AR-HMM-md is more consistent with previous literature than the classical multivariate Granger causality method. The proposed architecture leads to reliable estimates of EC than the existing latent models. This framework overcomes the disadvantage of low-temporal resolution and improves cross-validation accuracy significantly due to presence of missing data variables and autoregressive process. Copyright © 2016 Elsevier B.V. All rights reserved.
Testing and modelling autoregressive conditional heteroskedasticity of streamflow processes
Directory of Open Access Journals (Sweden)
W. Wang
2005-01-01
Full Text Available Conventional streamflow models operate under the assumption of constant variance or season-dependent variances (e.g. ARMA (AutoRegressive Moving Average models for deseasonalized streamflow series and PARMA (Periodic AutoRegressive Moving Average models for seasonal streamflow series. However, with McLeod-Li test and Engle's Lagrange Multiplier test, clear evidences are found for the existence of autoregressive conditional heteroskedasticity (i.e. the ARCH (AutoRegressive Conditional Heteroskedasticity effect, a nonlinear phenomenon of the variance behaviour, in the residual series from linear models fitted to daily and monthly streamflow processes of the upper Yellow River, China. It is shown that the major cause of the ARCH effect is the seasonal variation in variance of the residual series. However, while the seasonal variation in variance can fully explain the ARCH effect for monthly streamflow, it is only a partial explanation for daily flow. It is also shown that while the periodic autoregressive moving average model is adequate in modelling monthly flows, no model is adequate in modelling daily streamflow processes because none of the conventional time series models takes the seasonal variation in variance, as well as the ARCH effect in the residuals, into account. Therefore, an ARMA-GARCH (Generalized AutoRegressive Conditional Heteroskedasticity error model is proposed to capture the ARCH effect present in daily streamflow series, as well as to preserve seasonal variation in variance in the residuals. The ARMA-GARCH error model combines an ARMA model for modelling the mean behaviour and a GARCH model for modelling the variance behaviour of the residuals from the ARMA model. Since the GARCH model is not followed widely in statistical hydrology, the work can be a useful addition in terms of statistical modelling of daily streamflow processes for the hydrological community.
A note on intrinsic conditional autoregressive models for disconnected graphs
Freni-Sterrantino, Anna; Ventrucci, Massimo; Rue, Haavard
2018-01-01
In this note we discuss (Gaussian) intrinsic conditional autoregressive (CAR) models for disconnected graphs, with the aim of providing practical guidelines for how these models should be defined, scaled and implemented. We show how these suggestions can be implemented in two examples, on disease mapping.
A note on intrinsic conditional autoregressive models for disconnected graphs
Freni-Sterrantino, Anna
2018-05-23
In this note we discuss (Gaussian) intrinsic conditional autoregressive (CAR) models for disconnected graphs, with the aim of providing practical guidelines for how these models should be defined, scaled and implemented. We show how these suggestions can be implemented in two examples, on disease mapping.
Nonlinear models for autoregressive conditional heteroskedasticity
DEFF Research Database (Denmark)
Teräsvirta, Timo
This paper contains a brief survey of nonlinear models of autore- gressive conditional heteroskedasticity. The models in question are parametric nonlinear extensions of the original model by Engle (1982). After presenting the individual models, linearity testing and parameter estimation are discu...
DEFF Research Database (Denmark)
Pinson, Pierre; Madsen, Henrik
2008-01-01
Better modelling and forecasting of very short-term power fluctuations at large offshore wind farms may significantly enhance control and management strategies of their power output. The paper introduces a new methodology for modelling and forecasting such very short-term fluctuations. The proposed...... consists in 1-step ahead forecasting exercise on time-series of wind generation with a time resolution of 10 minute. The quality of the introduced forecasting methodology and its interest for better understanding power fluctuations are finally discussed....... methodology is based on a Markov-switching autoregressive model with time-varying coefficients. An advantage of the method is that one can easily derive full predictive densities. The quality of this methodology is demonstrated from the test case of 2 large offshore wind farms in Denmark. The exercise...
Markov-switching model for nonstationary runoff conditioned on El Nino information
DEFF Research Database (Denmark)
Gelati, Emiliano; Madsen, H.; Rosbjerg, Dan
2010-01-01
We define a Markov-modulated autoregressive model with exogenous input (MARX) to generate runoff scenarios using climatic information. Runoff parameterization is assumed to be conditioned on a hidden climate state following a Markov chain, where state transition probabilities are functions...... of the climatic input. MARX allows stochastic modeling of nonstationary runoff, as runoff anomalies are described by a mixture of autoregressive models with exogenous input, each one corresponding to a climate state. We apply MARX to inflow time series of the Daule Peripa reservoir (Ecuador). El Nino Southern...... Oscillation (ENSO) information is used to condition runoff parameterization. Among the investigated ENSO indexes, the NINO 1+2 sea surface temperature anomalies and the trans-Nino index perform best as predictors. In the perspective of reservoir optimization at various time scales, MARX produces realistic...
Operational Markov Condition for Quantum Processes
Pollock, Felix A.; Rodríguez-Rosario, César; Frauenheim, Thomas; Paternostro, Mauro; Modi, Kavan
2018-01-01
We derive a necessary and sufficient condition for a quantum process to be Markovian which coincides with the classical one in the relevant limit. Our condition unifies all previously known definitions for quantum Markov processes by accounting for all potentially detectable memory effects. We then derive a family of measures of non-Markovianity with clear operational interpretations, such as the size of the memory required to simulate a process or the experimental falsifiability of a Markovian hypothesis.
DEFF Research Database (Denmark)
Pinson, Pierre; Madsen, Henrik
2012-01-01
optimized is based on penalized maximum likelihood, with exponential forgetting of past observations. MSAR models are then employed for one-step-ahead point forecasting of 10 min resolution time series of wind power at two large offshore wind farms. They are favourably compared against persistence......Wind power production data at temporal resolutions of a few minutes exhibit successive periods with fluctuations of various dynamic nature and magnitude, which cannot be explained (so far) by the evolution of some explanatory variable. Our proposal is to capture this regime-switching behaviour...... and autoregressive models. It is finally shown that the main interest of MSAR models lies in their ability to generate interval/density forecasts of significantly higher skill....
Taghvaei, Sajjad; Jahanandish, Mohammad Hasan; Kosuge, Kazuhiro
2017-01-01
Population aging of the societies requires providing the elderly with safe and dependable assistive technologies in daily life activities. Improving the fall detection algorithms can play a major role in achieving this goal. This article proposes a real-time fall prediction algorithm based on the acquired visual data of a user with walking assistive system from a depth sensor. In the lack of a coupled dynamic model of the human and the assistive walker a hybrid "system identification-machine learning" approach is used. An autoregressive-moving-average (ARMA) model is fitted on the time-series walking data to forecast the upcoming states, and a hidden Markov model (HMM) based classifier is built on the top of the ARMA model to predict falling in the upcoming time frames. The performance of the algorithm is evaluated through experiments with four subjects including an experienced physiotherapist while using a walker robot in five different falling scenarios; namely, fall forward, fall down, fall back, fall left, and fall right. The algorithm successfully predicts the fall with a rate of 84.72%.
DEFF Research Database (Denmark)
Fokianos, Konstantinos; Rahbek, Anders Christian; Tjøstheim, Dag
2009-01-01
In this article we consider geometric ergodicity and likelihood-based inference for linear and nonlinear Poisson autoregression. In the linear case, the conditional mean is linked linearly to its past values, as well as to the observed values of the Poisson process. This also applies...... to the conditional variance, making possible interpretation as an integer-valued generalized autoregressive conditional heteroscedasticity process. In a nonlinear conditional Poisson model, the conditional mean is a nonlinear function of its past values and past observations. As a particular example, we consider...... an exponential autoregressive Poisson model for time series. Under geometric ergodicity, the maximum likelihood estimators are shown to be asymptotically Gaussian in the linear model. In addition, we provide a consistent estimator of their asymptotic covariance matrix. Our approach to verifying geometric...
DEFF Research Database (Denmark)
Fokianos, Konstantinos; Rahbek, Anders Christian; Tjøstheim, Dag
This paper considers geometric ergodicity and likelihood based inference for linear and nonlinear Poisson autoregressions. In the linear case the conditional mean is linked linearly to its past values as well as the observed values of the Poisson process. This also applies to the conditional...... variance, implying an interpretation as an integer valued GARCH process. In a nonlinear conditional Poisson model, the conditional mean is a nonlinear function of its past values and a nonlinear function of past observations. As a particular example an exponential autoregressive Poisson model for time...
DEFF Research Database (Denmark)
Fokianos, Konstantinos; Rahbæk, Anders; Tjøstheim, Dag
This paper considers geometric ergodicity and likelihood based inference for linear and nonlinear Poisson autoregressions. In the linear case the conditional mean is linked linearly to its past values as well as the observed values of the Poisson process. This also applies to the conditional...... variance, making an interpretation as an integer valued GARCH process possible. In a nonlinear conditional Poisson model, the conditional mean is a nonlinear function of its past values and a nonlinear function of past observations. As a particular example an exponential autoregressive Poisson model...
Lee, Duncan; Rushworth, Alastair; Sahu, Sujit K
2014-06-01
Estimation of the long-term health effects of air pollution is a challenging task, especially when modeling spatial small-area disease incidence data in an ecological study design. The challenge comes from the unobserved underlying spatial autocorrelation structure in these data, which is accounted for using random effects modeled by a globally smooth conditional autoregressive model. These smooth random effects confound the effects of air pollution, which are also globally smooth. To avoid this collinearity a Bayesian localized conditional autoregressive model is developed for the random effects. This localized model is flexible spatially, in the sense that it is not only able to model areas of spatial smoothness, but also it is able to capture step changes in the random effects surface. This methodological development allows us to improve the estimation performance of the covariate effects, compared to using traditional conditional auto-regressive models. These results are established using a simulation study, and are then illustrated with our motivating study on air pollution and respiratory ill health in Greater Glasgow, Scotland in 2011. The model shows substantial health effects of particulate matter air pollution and nitrogen dioxide, whose effects have been consistently attenuated by the currently available globally smooth models. © 2014, The Authors Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.
Model checking conditional CSL for continuous-time Markov chains
DEFF Research Database (Denmark)
Gao, Yang; Xu, Ming; Zhan, Naijun
2013-01-01
In this paper, we consider the model-checking problem of continuous-time Markov chains (CTMCs) with respect to conditional logic. To the end, we extend Continuous Stochastic Logic introduced in Aziz et al. (2000) [1] to Conditional Continuous Stochastic Logic (CCSL) by introducing a conditional...
Adiabatic condition and the quantum hitting time of Markov chains
International Nuclear Information System (INIS)
Krovi, Hari; Ozols, Maris; Roland, Jeremie
2010-01-01
We present an adiabatic quantum algorithm for the abstract problem of searching marked vertices in a graph, or spatial search. Given a random walk (or Markov chain) P on a graph with a set of unknown marked vertices, one can define a related absorbing walk P ' where outgoing transitions from marked vertices are replaced by self-loops. We build a Hamiltonian H(s) from the interpolated Markov chain P(s)=(1-s)P+sP ' and use it in an adiabatic quantum algorithm to drive an initial superposition over all vertices to a superposition over marked vertices. The adiabatic condition implies that, for any reversible Markov chain and any set of marked vertices, the running time of the adiabatic algorithm is given by the square root of the classical hitting time. This algorithm therefore demonstrates a novel connection between the adiabatic condition and the classical notion of hitting time of a random walk. It also significantly extends the scope of previous quantum algorithms for this problem, which could only obtain a full quadratic speedup for state-transitive reversible Markov chains with a unique marked vertex.
Quantitative risk stratification in Markov chains with limiting conditional distributions.
Chan, David C; Pollett, Philip K; Weinstein, Milton C
2009-01-01
Many clinical decisions require patient risk stratification. The authors introduce the concept of limiting conditional distributions, which describe the equilibrium proportion of surviving patients occupying each disease state in a Markov chain with death. Such distributions can quantitatively describe risk stratification. The authors first establish conditions for the existence of a positive limiting conditional distribution in a general Markov chain and describe a framework for risk stratification using the limiting conditional distribution. They then apply their framework to a clinical example of a treatment indicated for high-risk patients, first to infer the risk of patients selected for treatment in clinical trials and then to predict the outcomes of expanding treatment to other populations of risk. For the general chain, a positive limiting conditional distribution exists only if patients in the earliest state have the lowest combined risk of progression or death. The authors show that in their general framework, outcomes and population risk are interchangeable. For the clinical example, they estimate that previous clinical trials have selected the upper quintile of patient risk for this treatment, but they also show that expanded treatment would weakly dominate this degree of targeted treatment, and universal treatment may be cost-effective. Limiting conditional distributions exist in most Markov models of progressive diseases and are well suited to represent risk stratification quantitatively. This framework can characterize patient risk in clinical trials and predict outcomes for other populations of risk.
Wang, Yiyi; Kockelman, Kara M
2013-11-01
This work examines the relationship between 3-year pedestrian crash counts across Census tracts in Austin, Texas, and various land use, network, and demographic attributes, such as land use balance, residents' access to commercial land uses, sidewalk density, lane-mile densities (by roadway class), and population and employment densities (by type). The model specification allows for region-specific heterogeneity, correlation across response types, and spatial autocorrelation via a Poisson-based multivariate conditional auto-regressive (CAR) framework and is estimated using Bayesian Markov chain Monte Carlo methods. Least-squares regression estimates of walk-miles traveled per zone serve as the exposure measure. Here, the Poisson-lognormal multivariate CAR model outperforms an aspatial Poisson-lognormal multivariate model and a spatial model (without cross-severity correlation), both in terms of fit and inference. Positive spatial autocorrelation emerges across neighborhoods, as expected (due to latent heterogeneity or missing variables that trend in space, resulting in spatial clustering of crash counts). In comparison, the positive aspatial, bivariate cross correlation of severe (fatal or incapacitating) and non-severe crash rates reflects latent covariates that have impacts across severity levels but are more local in nature (such as lighting conditions and local sight obstructions), along with spatially lagged cross correlation. Results also suggest greater mixing of residences and commercial land uses is associated with higher pedestrian crash risk across different severity levels, ceteris paribus, presumably since such access produces more potential conflicts between pedestrian and vehicle movements. Interestingly, network densities show variable effects, and sidewalk provision is associated with lower severe-crash rates. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sin, Kuek Jia; Cheong, Chin Wen; Hooi, Tan Siow
2017-04-01
This study aims to investigate the crude oil volatility using a two components autoregressive conditional heteroscedasticity (ARCH) model with the inclusion of abrupt jump feature. The model is able to capture abrupt jumps, news impact, clustering volatility, long persistence volatility and heavy-tailed distributed error which are commonly observed in the crude oil time series. For the empirical study, we have selected the WTI crude oil index from year 2000 to 2016. The results found that by including the multiple-abrupt jumps in ARCH model, there are significant improvements of estimation evaluations as compared with the standard ARCH models. The outcomes of this study can provide useful information for risk management and portfolio analysis in the crude oil markets.
Simulating reservoir lithologies by an actively conditioned Markov chain model
Feng, Runhai; Luthi, Stefan M.; Gisolf, Dries
2018-06-01
The coupled Markov chain model can be used to simulate reservoir lithologies between wells, by conditioning them on the observed data in the cored wells. However, with this method, only the state at the same depth as the current cell is going to be used for conditioning, which may be a problem if the geological layers are dipping. This will cause the simulated lithological layers to be broken or to become discontinuous across the reservoir. In order to address this problem, an actively conditioned process is proposed here, in which a tolerance angle is predefined. The states contained in the region constrained by the tolerance angle will be employed for conditioning in the horizontal chain first, after which a coupling concept with the vertical chain is implemented. In order to use the same horizontal transition matrix for different future states, the tolerance angle has to be small. This allows the method to work in reservoirs without complex structures caused by depositional processes or tectonic deformations. Directional artefacts in the modeling process are avoided through a careful choice of the simulation path. The tolerance angle and dipping direction of the strata can be obtained from a correlation between wells, or from seismic data, which are available in most hydrocarbon reservoirs, either by interpretation or by inversion that can also assist the construction of a horizontal probability matrix.
DEFF Research Database (Denmark)
Amado, Cristina; Teräsvirta, Timo
-run and the short-run dynamic behaviour of the volatilities. The structure of the conditional correlation matrix is assumed to be either time independent or to vary over time. We apply our model to pairs of seven daily stock returns belonging to the S&P 500 composite index and traded at the New York Stock Exchange......In this paper we investigate the effects of careful modelling the long-run dynamics of the volatilities of stock market returns on the conditional correlation structure. To this end we allow the individual unconditional variances in Conditional Correlation GARCH models to change smoothly over time...... by incorporating a nonstationary component in the variance equations. The modelling technique to determine the parametric structure of this time-varying component is based on a sequence of specification Lagrange multiplier-type tests derived in Amado and Teräsvirta (2011). The variance equations combine the long...
DEFF Research Database (Denmark)
Silvennoinen, Annastiina; Teräsvirta, Timo
In this paper we propose a multivariate GARCH model with a time-varying conditional correlation structure. The new Double Smooth Transition Conditional Correlation GARCH model extends the Smooth Transition Conditional Correlation GARCH model of Silvennoinen and Ter¨asvirta (2005) by including...... another variable according to which the correlations change smoothly between states of constant correlations. A Lagrange multiplier test is derived to test the constancy of correlations against the DSTCC-GARCH model, and another one to test for another transition in the STCC-GARCH framework. In addition......, other specification tests, with the aim of aiding the model building procedure, are considered. Analytical expressions for the test statistics and the required derivatives are provided. The model is applied to a selection of world stock indices, and it is found that time is an important factor affecting...
Directory of Open Access Journals (Sweden)
Ryan Louise
2007-11-01
Full Text Available Abstract Background The Conditional Autoregressive (CAR model is widely used in many small-area ecological studies to analyse outcomes measured at an areal level. There has been little evaluation of the influence of different neighbourhood weight matrix structures on the amount of smoothing performed by the CAR model. We examined this issue in detail. Methods We created several neighbourhood weight matrices and applied them to a large dataset of births and birth defects in New South Wales (NSW, Australia within 198 Statistical Local Areas. Between the years 1995–2003, there were 17,595 geocoded birth defects and 770,638 geocoded birth records with available data. Spatio-temporal models were developed with data from 1995–2000 and their fit evaluated within the following time period: 2001–2003. Results We were able to create four adjacency-based weight matrices, seven distance-based weight matrices and one matrix based on similarity in terms of a key covariate (i.e. maternal age. In terms of agreement between observed and predicted relative risks, categorised in epidemiologically relevant groups, generally the distance-based matrices performed better than the adjacency-based neighbourhoods. In terms of recovering the underlying risk structure, the weight-7 model (smoothing by maternal-age 'Covariate model' was able to correctly classify 35/47 high-risk areas (sensitivity 74% with a specificity of 47%, and the 'Gravity' model had sensitivity and specificity values of 74% and 39% respectively. Conclusion We found considerable differences in the smoothing properties of the CAR model, depending on the type of neighbours specified. This in turn had an effect on the models' ability to recover the observed risk in an area. Prior to risk mapping or ecological modelling, an exploratory analysis of the neighbourhood weight matrix to guide the choice of a suitable weight matrix is recommended. Alternatively, the weight matrix can be chosen a priori
Ou, Lu; Chow, Sy-Miin; Ji, Linying; Molenaar, Peter C M
2017-01-01
The autoregressive latent trajectory (ALT) model synthesizes the autoregressive model and the latent growth curve model. The ALT model is flexible enough to produce a variety of discrepant model-implied change trajectories. While some researchers consider this a virtue, others have cautioned that this may confound interpretations of the model's parameters. In this article, we show that some-but not all-of these interpretational difficulties may be clarified mathematically and tested explicitly via likelihood ratio tests (LRTs) imposed on the initial conditions of the model. We show analytically the nested relations among three variants of the ALT model and the constraints needed to establish equivalences. A Monte Carlo simulation study indicated that LRTs, particularly when used in combination with information criterion measures, can allow researchers to test targeted hypotheses about the functional forms of the change process under study. We further demonstrate when and how such tests may justifiably be used to facilitate our understanding of the underlying process of change using a subsample (N = 3,995) of longitudinal family income data from the National Longitudinal Survey of Youth.
Masuyama, Hiroyuki
2014-01-01
In this paper we study the augmented truncation of discrete-time block-monotone Markov chains under geometric drift conditions. We first present a bound for the total variation distance between the stationary distributions of an original Markov chain and its augmented truncation. We also obtain such error bounds for more general cases, where an original Markov chain itself is not necessarily block monotone but is blockwise dominated by a block-monotone Markov chain. Finally,...
Directory of Open Access Journals (Sweden)
Syarif Hidayatullah
2017-04-01
Full Text Available Penelitian ini membahas analisis risiko data runtun waktu dengan model Value at Risk- Asymmetric Power Autoregressive Conditional Heteroscedasticity (VaR-APARCHdalam pasar modal syariah. Metode yang digunakan dalam penelitian ini adalah penerapan kasus.Data yang digunakan adalah harga penutupan harian saham dalam Jakarta Islamic Index (JIIperiode 4 Maret 2013 sampai 8 April 2015.Model APARCH yang dipilih berdasarkan nilai Schwarz Criterion (SC.Langkah-langkah dalam penelitian ini adalah menguji kestasioneran data, mengidentifikasi model ARIMA,mengestimasi parameter model ARIMA, menguji diagnostik model ARIMA, mendeteksi ada tidaknya unsur ARCH atau unsur heteroskedastisitas, uji asimetris data saham, mengestimasi model APARCH, menguji diagnostik model APARCH, dan menghitung risiko dengan VaR-APARCH.Model terbaik yang dipilih adalah ARIMA ((3,0,0 dan APARCH (1,1. Model ini valid untuk menganalisis besar risiko investasi dalam jangka waktu 10 hari ke depan.
Decomposition of conditional probability for high-order symbolic Markov chains
Melnik, S. S.; Usatenko, O. V.
2017-07-01
The main goal of this paper is to develop an estimate for the conditional probability function of random stationary ergodic symbolic sequences with elements belonging to a finite alphabet. We elaborate on a decomposition procedure for the conditional probability function of sequences considered to be high-order Markov chains. We represent the conditional probability function as the sum of multilinear memory function monomials of different orders (from zero up to the chain order). This allows us to introduce a family of Markov chain models and to construct artificial sequences via a method of successive iterations, taking into account at each step increasingly high correlations among random elements. At weak correlations, the memory functions are uniquely expressed in terms of the high-order symbolic correlation functions. The proposed method fills the gap between two approaches, namely the likelihood estimation and the additive Markov chains. The obtained results may have applications for sequential approximation of artificial neural network training.
ON TESTING OF CRYPTOGRAPHYC GENERATORS OUTPUT SEQUENCES USING MARKOV CHAINS OF CONDITIONAL ORDER
Directory of Open Access Journals (Sweden)
M. V. Maltsev
2013-01-01
Full Text Available The paper deals with the Markov chain of conditional order, which is used for statisticaltesting of cryptographic generators. Statistical estimations of model parameters are given. Consistency of the order estimator is proved. Results of computer experiments are presented.
Wang, Chao; Yang, Chuan-sheng
2017-09-01
In this paper, we present a simplified parsimonious higher-order multivariate Markov chain model with new convergence condition. (TPHOMMCM-NCC). Moreover, estimation method of the parameters in TPHOMMCM-NCC is give. Numerical experiments illustrate the effectiveness of TPHOMMCM-NCC.
Kirkwood, James R
2015-01-01
Review of ProbabilityShort HistoryReview of Basic Probability DefinitionsSome Common Probability DistributionsProperties of a Probability DistributionProperties of the Expected ValueExpected Value of a Random Variable with Common DistributionsGenerating FunctionsMoment Generating FunctionsExercisesDiscrete-Time, Finite-State Markov ChainsIntroductionNotationTransition MatricesDirected Graphs: Examples of Markov ChainsRandom Walk with Reflecting BoundariesGamblerâ€™s RuinEhrenfest ModelCentral Problem of Markov ChainsCondition to Ensure a Unique Equilibrium StateFinding the Equilibrium StateTransient and Recurrent StatesIndicator FunctionsPerron-Frobenius TheoremAbsorbing Markov ChainsMean First Passage TimeMean Recurrence Time and the Equilibrium StateFundamental Matrix for Regular Markov ChainsDividing a Markov Chain into Equivalence ClassesPeriodic Markov ChainsReducible Markov ChainsSummaryExercisesDiscrete-Time, Infinite-State Markov ChainsRenewal ProcessesDelayed Renewal ProcessesEquilibrium State f...
Directory of Open Access Journals (Sweden)
Mokaedi V. Lekgari
2014-01-01
Full Text Available We investigate random-time state-dependent Foster-Lyapunov analysis on subgeometric rate ergodicity of continuous-time Markov chains (CTMCs. We are mainly concerned with making use of the available results on deterministic state-dependent drift conditions for CTMCs and on random-time state-dependent drift conditions for discrete-time Markov chains and transferring them to CTMCs.
Masuyama, Hiroyuki
2015-01-01
This paper studies the last-column-block-augmented northwest-corner truncation (LC-block-augmented truncation, for short) of discrete-time block-monotone Markov chains under subgeometric drift conditions. The main result of this paper is to present an upper bound for the total variation distance between the stationary probability vectors of a block-monotone Markov chain and its LC-block-augmented truncation. The main result is extended to Markov chains that themselves may not be block monoton...
A Hybrid Generalized Hidden Markov Model-Based Condition Monitoring Approach for Rolling Bearings.
Liu, Jie; Hu, Youmin; Wu, Bo; Wang, Yan; Xie, Fengyun
2017-05-18
The operating condition of rolling bearings affects productivity and quality in the rotating machine process. Developing an effective rolling bearing condition monitoring approach is critical to accurately identify the operating condition. In this paper, a hybrid generalized hidden Markov model-based condition monitoring approach for rolling bearings is proposed, where interval valued features are used to efficiently recognize and classify machine states in the machine process. In the proposed method, vibration signals are decomposed into multiple modes with variational mode decomposition (VMD). Parameters of the VMD, in the form of generalized intervals, provide a concise representation for aleatory and epistemic uncertainty and improve the robustness of identification. The multi-scale permutation entropy method is applied to extract state features from the decomposed signals in different operating conditions. Traditional principal component analysis is adopted to reduce feature size and computational cost. With the extracted features' information, the generalized hidden Markov model, based on generalized interval probability, is used to recognize and classify the fault types and fault severity levels. Finally, the experiment results show that the proposed method is effective at recognizing and classifying the fault types and fault severity levels of rolling bearings. This monitoring method is also efficient enough to quantify the two uncertainty components.
A Hybrid Generalized Hidden Markov Model-Based Condition Monitoring Approach for Rolling Bearings
Directory of Open Access Journals (Sweden)
Jie Liu
2017-05-01
Full Text Available The operating condition of rolling bearings affects productivity and quality in the rotating machine process. Developing an effective rolling bearing condition monitoring approach is critical to accurately identify the operating condition. In this paper, a hybrid generalized hidden Markov model-based condition monitoring approach for rolling bearings is proposed, where interval valued features are used to efficiently recognize and classify machine states in the machine process. In the proposed method, vibration signals are decomposed into multiple modes with variational mode decomposition (VMD. Parameters of the VMD, in the form of generalized intervals, provide a concise representation for aleatory and epistemic uncertainty and improve the robustness of identification. The multi-scale permutation entropy method is applied to extract state features from the decomposed signals in different operating conditions. Traditional principal component analysis is adopted to reduce feature size and computational cost. With the extracted features’ information, the generalized hidden Markov model, based on generalized interval probability, is used to recognize and classify the fault types and fault severity levels. Finally, the experiment results show that the proposed method is effective at recognizing and classifying the fault types and fault severity levels of rolling bearings. This monitoring method is also efficient enough to quantify the two uncertainty components.
International Nuclear Information System (INIS)
Miao, Qiang; Huang, Hong Zhong; Fan, Xianfeng
2007-01-01
Condition classification is an important step in machinery fault detection, which is a problem of pattern recognition. Currently, there are a lot of techniques in this area and the purpose of this paper is to investigate two popular recognition techniques, namely hidden Markov model and support vector machine. At the beginning, we briefly introduced the procedure of feature extraction and the theoretical background of this paper. The comparison experiment was conducted for gearbox fault detection and the analysis results from this work showed that support vector machine has better classification performance in this area
Directory of Open Access Journals (Sweden)
Giovanni M. Marchetti
2006-02-01
Full Text Available We describe some functions in the R package ggm to derive from a given Markov model, represented by a directed acyclic graph, different types of graphs induced after marginalizing over and conditioning on some of the variables. The package has a few basic functions that find the essential graph, the induced concentration and covariance graphs, and several types of chain graphs implied by the directed acyclic graph (DAG after grouping and reordering the variables. These functions can be useful to explore the impact of latent variables or of selection effects on a chosen data generating model.
Comparison of the kinetics of different Markov models for ligand binding under varying conditions
International Nuclear Information System (INIS)
Martini, Johannes W. R.; Habeck, Michael
2015-01-01
We recently derived a Markov model for macromolecular ligand binding dynamics from few physical assumptions and showed that its stationary distribution is the grand canonical ensemble [J. W. R. Martini, M. Habeck, and M. Schlather, J. Math. Chem. 52, 665 (2014)]. The transition probabilities of the proposed Markov process define a particular Glauber dynamics and have some similarity to the Metropolis-Hastings algorithm. Here, we illustrate that this model is the stochastic analog of (pseudo) rate equations and the corresponding system of differential equations. Moreover, it can be viewed as a limiting case of general stochastic simulations of chemical kinetics. Thus, the model links stochastic and deterministic approaches as well as kinetics and equilibrium described by the grand canonical ensemble. We demonstrate that the family of transition matrices of our model, parameterized by temperature and ligand activity, generates ligand binding kinetics that respond to changes in these parameters in a qualitatively similar way as experimentally observed kinetics. In contrast, neither the Metropolis-Hastings algorithm nor the Glauber heat bath reflects changes in the external conditions correctly. Both converge rapidly to the stationary distribution, which is advantageous when the major interest is in the equilibrium state, but fail to describe the kinetics of ligand binding realistically. To simulate cellular processes that involve the reversible stochastic binding of multiple factors, our pseudo rate equation model should therefore be preferred to the Metropolis-Hastings algorithm and the Glauber heat bath, if the stationary distribution is not of only interest
Comparison of the kinetics of different Markov models for ligand binding under varying conditions
Energy Technology Data Exchange (ETDEWEB)
Martini, Johannes W. R., E-mail: jmartin2@gwdg.de [Max Planck Institute for Developmental Biology, Tübingen (Germany); Felix Bernstein Institute for Mathematical Statistics in the Biosciences, University of Göttingen, Göttingen (Germany); Habeck, Michael, E-mail: mhabeck@gwdg.de [Felix Bernstein Institute for Mathematical Statistics in the Biosciences, University of Göttingen, Göttingen (Germany); Max Planck Institute for Biophysical Chemistry, Göttingen (Germany)
2015-03-07
We recently derived a Markov model for macromolecular ligand binding dynamics from few physical assumptions and showed that its stationary distribution is the grand canonical ensemble [J. W. R. Martini, M. Habeck, and M. Schlather, J. Math. Chem. 52, 665 (2014)]. The transition probabilities of the proposed Markov process define a particular Glauber dynamics and have some similarity to the Metropolis-Hastings algorithm. Here, we illustrate that this model is the stochastic analog of (pseudo) rate equations and the corresponding system of differential equations. Moreover, it can be viewed as a limiting case of general stochastic simulations of chemical kinetics. Thus, the model links stochastic and deterministic approaches as well as kinetics and equilibrium described by the grand canonical ensemble. We demonstrate that the family of transition matrices of our model, parameterized by temperature and ligand activity, generates ligand binding kinetics that respond to changes in these parameters in a qualitatively similar way as experimentally observed kinetics. In contrast, neither the Metropolis-Hastings algorithm nor the Glauber heat bath reflects changes in the external conditions correctly. Both converge rapidly to the stationary distribution, which is advantageous when the major interest is in the equilibrium state, but fail to describe the kinetics of ligand binding realistically. To simulate cellular processes that involve the reversible stochastic binding of multiple factors, our pseudo rate equation model should therefore be preferred to the Metropolis-Hastings algorithm and the Glauber heat bath, if the stationary distribution is not of only interest.
DEFF Research Database (Denmark)
Tataru, Paula Cristina; Hobolth, Asger
2011-01-01
past evolutionary events (exact times and types of changes) are unaccessible and the past must be inferred from DNA sequence data observed in the present. RESULTS: We describe and implement three algorithms for computing linear combinations of expected values of the sufficient statistics, conditioned......BACKGROUND: Continuous time Markov chains (CTMCs) is a widely used model for describing the evolution of DNA sequences on the nucleotide, amino acid or codon level. The sufficient statistics for CTMCs are the time spent in a state and the number of changes between any two states. In applications...... of the algorithms is available at www.birc.au.dk/~paula/. CONCLUSIONS: We use two different models to analyze the accuracy and eight experiments to investigate the speed of the three algorithms. We find that they have similar accuracy and that EXPM is the slowest method. Furthermore we find that UNI is usually...
The Use of Hidden Markov Models for Anomaly Detection in Nuclear Core Condition Monitoring
Stephen, Bruce; West, Graeme M.; Galloway, Stuart; McArthur, Stephen D. J.; McDonald, James R.; Towle, Dave
2009-04-01
Unplanned outages can be especially costly for generation companies operating nuclear facilities. Early detection of deviations from expected performance through condition monitoring can allow a more proactive and managed approach to dealing with ageing plant. This paper proposes an anomaly detection framework incorporating the use of the Hidden Markov Model (HMM) to support the analysis of nuclear reactor core condition monitoring data. Fuel Grab Load Trace (FGLT) data gathered within the UK during routine refueling operations has been seen to provide information relating to the condition of the graphite bricks that comprise the core. Although manual analysis of this data is time consuming and requires considerable expertise, this paper demonstrates how techniques such as the HMM can provide analysis support by providing a benchmark model of expected behavior against which future refueling events may be compared. The presence of anomalous behavior in candidate traces is inferred through the underlying statistical foundation of the HMM which gives an observation likelihood averaged along the length of the input sequence. Using this likelihood measure, the engineer can be alerted to anomalous behaviour, indicating data which might require further detailed examination. It is proposed that this data analysis technique is used in conjunction with other intelligent analysis techniques currently employed to analyse FGLT to provide a greater confidence measure in detecting anomalous behaviour from FGLT data.
Noncausal Bayesian Vector Autoregression
DEFF Research Database (Denmark)
Lanne, Markku; Luoto, Jani
We propose a Bayesian inferential procedure for the noncausal vector autoregressive (VAR) model that is capable of capturing nonlinearities and incorporating effects of missing variables. In particular, we devise a fast and reliable posterior simulator that yields the predictive distribution...
Learning classifier systems with memory condition to solve non-Markov problems
Zang, Zhaoxiang; Li, Dehua; Wang, Junying
2012-01-01
In the family of Learning Classifier Systems, the classifier system XCS has been successfully used for many applications. However, the standard XCS has no memory mechanism and can only learn optimal policy in Markov environments, where the optimal action is determined solely by the state of current sensory input. In practice, most environments are partially observable environments on agent's sensation, which are also known as non-Markov environments. Within these environments, XCS either fail...
Energy Technology Data Exchange (ETDEWEB)
Biyanto, Totok R. [Department of Engineering Physics, Institute Technology of Sepuluh Nopember Surabaya, Surabaya, Indonesia 60111 (Indonesia)
2016-06-03
Fouling in a heat exchanger in Crude Preheat Train (CPT) refinery is an unsolved problem that reduces the plant efficiency, increases fuel consumption and CO{sub 2} emission. The fouling resistance behavior is very complex. It is difficult to develop a model using first principle equation to predict the fouling resistance due to different operating conditions and different crude blends. In this paper, Artificial Neural Networks (ANN) MultiLayer Perceptron (MLP) with input structure using Nonlinear Auto-Regressive with eXogenous (NARX) is utilized to build the fouling resistance model in shell and tube heat exchanger (STHX). The input data of the model are flow rates and temperatures of the streams of the heat exchanger, physical properties of product and crude blend data. This model serves as a predicting tool to optimize operating conditions and preventive maintenance of STHX. The results show that the model can capture the complexity of fouling characteristics in heat exchanger due to thermodynamic conditions and variations in crude oil properties (blends). It was found that the Root Mean Square Error (RMSE) are suitable to capture the nonlinearity and complexity of the STHX fouling resistance during phases of training and validation.
Tataru, Paula; Hobolth, Asger
2011-12-05
Continuous time Markov chains (CTMCs) is a widely used model for describing the evolution of DNA sequences on the nucleotide, amino acid or codon level. The sufficient statistics for CTMCs are the time spent in a state and the number of changes between any two states. In applications past evolutionary events (exact times and types of changes) are unaccessible and the past must be inferred from DNA sequence data observed in the present. We describe and implement three algorithms for computing linear combinations of expected values of the sufficient statistics, conditioned on the end-points of the chain, and compare their performance with respect to accuracy and running time. The first algorithm is based on an eigenvalue decomposition of the rate matrix (EVD), the second on uniformization (UNI), and the third on integrals of matrix exponentials (EXPM). The implementation in R of the algorithms is available at http://www.birc.au.dk/~paula/. We use two different models to analyze the accuracy and eight experiments to investigate the speed of the three algorithms. We find that they have similar accuracy and that EXPM is the slowest method. Furthermore we find that UNI is usually faster than EVD.
Directory of Open Access Journals (Sweden)
Tataru Paula
2011-12-01
Full Text Available Abstract Background Continuous time Markov chains (CTMCs is a widely used model for describing the evolution of DNA sequences on the nucleotide, amino acid or codon level. The sufficient statistics for CTMCs are the time spent in a state and the number of changes between any two states. In applications past evolutionary events (exact times and types of changes are unaccessible and the past must be inferred from DNA sequence data observed in the present. Results We describe and implement three algorithms for computing linear combinations of expected values of the sufficient statistics, conditioned on the end-points of the chain, and compare their performance with respect to accuracy and running time. The first algorithm is based on an eigenvalue decomposition of the rate matrix (EVD, the second on uniformization (UNI, and the third on integrals of matrix exponentials (EXPM. The implementation in R of the algorithms is available at http://www.birc.au.dk/~paula/. Conclusions We use two different models to analyze the accuracy and eight experiments to investigate the speed of the three algorithms. We find that they have similar accuracy and that EXPM is the slowest method. Furthermore we find that UNI is usually faster than EVD.
Techie Quaicoe, Michael; Twenefour, Frank B K; Baah, Emmanuel M; Nortey, Ezekiel N N
2015-01-01
This research article aimed at modeling the variations in the dollar/cedi exchange rate. It examines the applicability of a range of ARCH/GARCH specifications for modeling volatility of the series. The variants considered include the ARMA, GARCH, IGARCH, EGARCH and M-GARCH specifications. The results show that the series was non stationary which resulted from the presence of a unit root in it. The ARMA (1, 1) was found to be the most suitable model for the conditional mean. From the Box-Ljung test statistics x-squared of 1476.338 with p value 0.00217 for squared returns and 16.918 with 0.0153 p values for squared residuals, the null hypothesis of no ARCH effect was rejected at 5% significance level indicating the presence of an ARCH effect in the series. ARMA (1, 1) + GARCH (1, 1) which has all parameters significant was found to be the most suitable model for the conditional mean with conditional variance, thus showing adequacy in describing the conditional mean with variance of the return series at 5% significant level. A 24 months forecast for the mean actual exchange rates and mean returns from January, 2013 to December, 2014 made also showed that the fitted model is appropriate for the data and a depreciating trend of the cedi against the dollar for forecasted period respectively.
Kadoura, Ahmad Salim; Sun, Shuyu; Salama, Amgad
2014-01-01
thermodynamically consistent technique to regenerate rapidly Monte Carlo Markov Chains (MCMCs) at different thermodynamic conditions from the existing data points that have been pre-computed with expensive classical simulation. This technique can speed up
Summary statistics for end-point conditioned continuous-time Markov chains
DEFF Research Database (Denmark)
Hobolth, Asger; Jensen, Jens Ledet
Continuous-time Markov chains are a widely used modelling tool. Applications include DNA sequence evolution, ion channel gating behavior and mathematical finance. We consider the problem of calculating properties of summary statistics (e.g. mean time spent in a state, mean number of jumps between...... two states and the distribution of the total number of jumps) for discretely observed continuous time Markov chains. Three alternative methods for calculating properties of summary statistics are described and the pros and cons of the methods are discussed. The methods are based on (i) an eigenvalue...... decomposition of the rate matrix, (ii) the uniformization method, and (iii) integrals of matrix exponentials. In particular we develop a framework that allows for analyses of rather general summary statistics using the uniformization method....
Generalizing smooth transition autoregressions
DEFF Research Database (Denmark)
Chini, Emilio Zanetti
We introduce a variant of the smooth transition autoregression - the GSTAR model - capable to parametrize the asymmetry in the tails of the transition equation by using a particular generalization of the logistic function. A General-to-Specific modelling strategy is discussed in detail, with part......We introduce a variant of the smooth transition autoregression - the GSTAR model - capable to parametrize the asymmetry in the tails of the transition equation by using a particular generalization of the logistic function. A General-to-Specific modelling strategy is discussed in detail......, with particular emphasis on two different LM-type tests for the null of symmetric adjustment towards a new regime and three diagnostic tests, whose power properties are explored via Monte Carlo experiments. Four classical real datasets illustrate the empirical properties of the GSTAR, jointly to a rolling...
Energy Technology Data Exchange (ETDEWEB)
Dufour, F., E-mail: dufour@math.u-bordeaux1.fr [Institut de Mathématiques de Bordeaux, INRIA Bordeaux Sud Ouest, Team: CQFD, and IMB (France); Prieto-Rumeau, T., E-mail: tprieto@ccia.uned.es [UNED, Department of Statistics and Operations Research (Spain)
2016-08-15
We consider a discrete-time constrained discounted Markov decision process (MDP) with Borel state and action spaces, compact action sets, and lower semi-continuous cost functions. We introduce a set of hypotheses related to a positive weight function which allow us to consider cost functions that might not be bounded below by a constant, and which imply the solvability of the linear programming formulation of the constrained MDP. In particular, we establish the existence of a constrained optimal stationary policy. Our results are illustrated with an application to a fishery management problem.
Directory of Open Access Journals (Sweden)
Nurul Huda
2015-04-01
Full Text Available Objective - Islamic banks are banks which its activities, both fund raising and funds distribution are on the basis of Islamic principles, namely buying and selling and profit sharing. Islamic banking is aimed at supporting the implementation of national development in order to improve justice, togetherness, and equitable distribution of welfare. In pursuit of supporting the implementation of national development, Islamic banking often faced stability problems of financing instruments being operated. In this case, it is measured by the gap between the actual rate of return and the expected rate of return. The individual actual RoR of this instrument will generate an expected rate of return. This raises the gap or difference between the actual rate of return and the expected rate of return of individual instruments, which in this case is called the abnormal rate of return. The stability of abnormal rate of return of individual instruments is certainly influenced by the stability of the expected rate of return. Expected rate of return has a volatility or fluctuation levels for each financing instrument. It is also a key element or material basis for the establishment of a variance of individual instruments. Variance in this case indicates the level of uncertainty of the rate of return. Individual variance is the origin of the instrument base for variance in the portfolio finance that further a portfolio analysis. So, this paper is going to analyze the level of expected RoR volatility as an initial step to see and predict the stability of the fluctuations in the rate of return of Indonesian Islamic financing instruments.Methods – Probability of Occurence, Expected Rate of Return (RoR and GARCH (Generalized Autoregressive Conditional Heteroscedasticity.Results - The expected RoR volatility of the murabaha and istishna financing instruments tend to be more volatile than expected RoR volatility of musharaka and qardh financing instruments
Directory of Open Access Journals (Sweden)
João Domingos Scalon
2010-07-01
Full Text Available The dairy yield is one of the most important activities for the Brazilian economy and the use of statistical models may improve the decision making in this productive sector. The aim of this paper was to compare the performance of both the traditional linear regression model and the spatial regression model called conditional autoregressive (CAR to explain how some covariates may contribute for the dairy yield. This work used a database on dairy yield supplied by the Brazilian Institute of Geography and Statistics (IBGE and another database on geographical information of the state of Minas Gerais provided by the Integrated Program of Technological Use of Geographical Information (GEOMINAS. The results showed the superiority of the CAR model over the traditional linear regression model to explain the dairy yield. The CAR model allowed the identification of two different spatial clusters of counties related to the dairy yield in the state of Minas Gerais. The first cluster represents the region where one observes the biggest levels of dairy yield. It is formed by the counties of the Triângulo Mineiro. The second cluster is formed by the northern counties of the state that present the lesser levels of dairy yield. A produção de leite é uma das atividades mais importantes para a economia brasileira e o uso de modelos estatísticos pode auxiliar a tomada de decisão neste setor produtivo. O objetivo deste artigo foi comparar o desempenho do modelo de regressão linear tradicional e do modelo de regressão espacial, denominado de autoregressivo condicional (CAR, para explicar como algumas variáveis preditoras contribuem para a quantidade de leite produzido. Este trabalho usou uma base de dados sobre a produção de leite fornecida pelo Instituto Brasileiro de Geografia e Estatística (IBGE e outra base de dados sobre informações geográficas do estado de Minas Gerais, fornecida pelo Programa Integrado de Uso da Tecnologia de Geoprocessamento
Markov Chains and Markov Processes
Ogunbayo, Segun
2016-01-01
Markov chain, which was named after Andrew Markov is a mathematical system that transfers a state to another state. Many real world systems contain uncertainty. This study helps us to understand the basic idea of a Markov chain and how is been useful in our daily lives. For some times there had been suspense on distinct predictions and future existences. Also in different games there had been different expectations or results involved. That is the reason why we need Markov chains to predict o...
Kumar, Girish; Jain, Vipul; Gandhi, O. P.
2018-03-01
Maintenance helps to extend equipment life by improving its condition and avoiding catastrophic failures. Appropriate model or mechanism is, thus, needed to quantify system availability vis-a-vis a given maintenance strategy, which will assist in decision-making for optimal utilization of maintenance resources. This paper deals with semi-Markov process (SMP) modeling for steady state availability analysis of mechanical systems that follow condition-based maintenance (CBM) and evaluation of optimal condition monitoring interval. The developed SMP model is solved using two-stage analytical approach for steady-state availability analysis of the system. Also, CBM interval is decided for maximizing system availability using Genetic Algorithm approach. The main contribution of the paper is in the form of a predictive tool for system availability that will help in deciding the optimum CBM policy. The proposed methodology is demonstrated for a centrifugal pump.
Directory of Open Access Journals (Sweden)
Emilija Kisić
2015-01-01
Full Text Available An innovative approach to condition-based maintenance of coal grinding subsystems at thermoelectric power plants is proposed in the paper. Coal mill grinding tables become worn over time and need to be replaced through time-based maintenance, after a certain number of service hours. At times such replacement is necessary earlier or later than prescribed, depending on the quality of the coal and of the grinding table itself. Considerable financial losses are incurred when the entire coal grinding subsystem is shut down and the grinding table found to not actually require replacement. The only way to determine whether replacement is necessary is to shut down and open the entire subsystem for visual inspection. The proposed algorithm supports condition-based maintenance and involves the application of T2 control charts to distinct acoustic signal parameters in the frequency domain and the construction of Hidden Markov Models whose observations are coded samples from the control charts. In the present research, the acoustic signals were collected by coal mill monitoring at the thermoelectric power plant “Kostolac” in Serbia. The proposed approach provides information about the current condition of the grinding table.
Transportation and concentration inequalities for bifurcating Markov chains
DEFF Research Database (Denmark)
Penda, S. Valère Bitseki; Escobar-Bach, Mikael; Guillin, Arnaud
2017-01-01
We investigate the transportation inequality for bifurcating Markov chains which are a class of processes indexed by a regular binary tree. Fitting well models like cell growth when each individual gives birth to exactly two offsprings, we use transportation inequalities to provide useful...... concentration inequalities.We also study deviation inequalities for the empirical means under relaxed assumptions on the Wasserstein contraction for the Markov kernels. Applications to bifurcating nonlinear autoregressive processes are considered for point-wise estimates of the non-linear autoregressive...
Criterion of Semi-Markov Dependent Risk Model
Institute of Scientific and Technical Information of China (English)
Xiao Yun MO; Xiang Qun YANG
2014-01-01
A rigorous definition of semi-Markov dependent risk model is given. This model is a generalization of the Markov dependent risk model. A criterion and necessary conditions of semi-Markov dependent risk model are obtained. The results clarify relations between elements among semi-Markov dependent risk model more clear and are applicable for Markov dependent risk model.
van Kasteren, T.L.M.; Noulas, A.K.; Kröse, B.J.A.; Smit, G.J.M.; Epema, D.H.J.; Lew, M.S.
2008-01-01
Conditional Random Fields are a discriminative probabilistic model which recently gained popularity in applications that require modeling nonindependent observation sequences. In this work, we present the basic advantages of this model over generative models and argue about its suitability in the
Hobolth, Asger; Stone, Eric A
2009-09-01
Analyses of serially-sampled data often begin with the assumption that the observations represent discrete samples from a latent continuous-time stochastic process. The continuous-time Markov chain (CTMC) is one such generative model whose popularity extends to a variety of disciplines ranging from computational finance to human genetics and genomics. A common theme among these diverse applications is the need to simulate sample paths of a CTMC conditional on realized data that is discretely observed. Here we present a general solution to this sampling problem when the CTMC is defined on a discrete and finite state space. Specifically, we consider the generation of sample paths, including intermediate states and times of transition, from a CTMC whose beginning and ending states are known across a time interval of length T. We first unify the literature through a discussion of the three predominant approaches: (1) modified rejection sampling, (2) direct sampling, and (3) uniformization. We then give analytical results for the complexity and efficiency of each method in terms of the instantaneous transition rate matrix Q of the CTMC, its beginning and ending states, and the length of sampling time T. In doing so, we show that no method dominates the others across all model specifications, and we give explicit proof of which method prevails for any given Q, T, and endpoints. Finally, we introduce and compare three applications of CTMCs to demonstrate the pitfalls of choosing an inefficient sampler.
A Markov switching model of the conditional volatility of crude oil futures prices
International Nuclear Information System (INIS)
Fong, Wai Mun; See, Kim Hock
2002-01-01
This paper examines the temporal behaviour of volatility of daily returns on crude oil futures using a generalised regime switching model that allows for abrupt changes in mean and variance, GARCH dynamics, basis-driven time-varying transition probabilities and conditional leptokurtosis. This flexible model enables us to capture many complex features of conditional volatility within a relatively parsimonious set-up. We show that regime shifts are clearly present in the data and dominate GARCH effects. Within the high volatility state, a negative basis is more likely to increase regime persistence than a positive basis, a finding which is consistent with previous empirical research on the theory of storage. The volatility regimes identified by our model correlate well with major events affecting supply and demand for oil. Out-of-sample tests indicate that the regime switching model performs noticeably better than non-switching models regardless of evaluation criteria. We conclude that regime switching models provide a useful framework for the financial historian interested in studying factors behind the evolution of volatility and to oil futures traders interested short-term volatility forecasts
Nonlinear Markov processes: Deterministic case
International Nuclear Information System (INIS)
Frank, T.D.
2008-01-01
Deterministic Markov processes that exhibit nonlinear transition mechanisms for probability densities are studied. In this context, the following issues are addressed: Markov property, conditional probability densities, propagation of probability densities, multistability in terms of multiple stationary distributions, stability analysis of stationary distributions, and basin of attraction of stationary distribution
El Yazid Boudaren, Mohamed; Monfrini, Emmanuel; Pieczynski, Wojciech; Aïssani, Amar
2014-11-01
Hidden Markov chains have been shown to be inadequate for data modeling under some complex conditions. In this work, we address the problem of statistical modeling of phenomena involving two heterogeneous system states. Such phenomena may arise in biology or communications, among other fields. Namely, we consider that a sequence of meaningful words is to be searched within a whole observation that also contains arbitrary one-by-one symbols. Moreover, a word may be interrupted at some site to be carried on later. Applying plain hidden Markov chains to such data, while ignoring their specificity, yields unsatisfactory results. The Phasic triplet Markov chain, proposed in this paper, overcomes this difficulty by means of an auxiliary underlying process in accordance with the triplet Markov chains theory. Related Bayesian restoration techniques and parameters estimation procedures according to the new model are then described. Finally, to assess the performance of the proposed model against the conventional hidden Markov chain model, experiments are conducted on synthetic and real data.
Chain binomial models and binomial autoregressive processes.
Weiss, Christian H; Pollett, Philip K
2012-09-01
We establish a connection between a class of chain-binomial models of use in ecology and epidemiology and binomial autoregressive (AR) processes. New results are obtained for the latter, including expressions for the lag-conditional distribution and related quantities. We focus on two types of chain-binomial model, extinction-colonization and colonization-extinction models, and present two approaches to parameter estimation. The asymptotic distributions of the resulting estimators are studied, as well as their finite-sample performance, and we give an application to real data. A connection is made with standard AR models, which also has implications for parameter estimation. © 2011, The International Biometric Society.
Composable Markov Building Blocks
Evers, S.; Fokkinga, M.M.; Apers, Peter M.G.; Prade, H.; Subrahmanian, V.S.
2007-01-01
In situations where disjunct parts of the same process are described by their own first-order Markov models and only one model applies at a time (activity in one model coincides with non-activity in the other models), these models can be joined together into one. Under certain conditions, nearly all
Partially Hidden Markov Models
DEFF Research Database (Denmark)
Forchhammer, Søren Otto; Rissanen, Jorma
1996-01-01
Partially Hidden Markov Models (PHMM) are introduced. They differ from the ordinary HMM's in that both the transition probabilities of the hidden states and the output probabilities are conditioned on past observations. As an illustration they are applied to black and white image compression where...
Energy Technology Data Exchange (ETDEWEB)
Lu, Fengbin, E-mail: fblu@amss.ac.cn [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China); Qiao, Han, E-mail: qiaohan@ucas.ac.cn [School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190 (China); Wang, Shouyang, E-mail: sywang@amss.ac.cn [School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190 (China); Lai, Kin Keung, E-mail: mskklai@cityu.edu.hk [Department of Management Sciences, City University of Hong Kong (Hong Kong); Li, Yuze, E-mail: richardyz.li@mail.utoronto.ca [Department of Industrial Engineering, University of Toronto (Canada)
2017-01-15
This paper proposes a new time-varying coefficient vector autoregressions (VAR) model, in which the coefficient is a linear function of dynamic lagged correlation. The proposed model allows for flexibility in choices of dynamic correlation models (e.g. dynamic conditional correlation generalized autoregressive conditional heteroskedasticity (GARCH) models, Markov-switching GARCH models and multivariate stochastic volatility models), which indicates that it can describe many types of time-varying causal effects. Time-varying causal relations between West Texas Intermediate (WTI) crude oil and the US Standard and Poor’s 500 (S&P 500) stock markets are examined by the proposed model. The empirical results show that their causal relations evolve with time and display complex characters. Both positive and negative causal effects of the WTI on the S&P 500 in the subperiods have been found and confirmed by the traditional VAR models. Similar results have been obtained in the causal effects of S&P 500 on WTI. In addition, the proposed model outperforms the traditional VAR model.
International Nuclear Information System (INIS)
Lu, Fengbin; Qiao, Han; Wang, Shouyang; Lai, Kin Keung; Li, Yuze
2017-01-01
This paper proposes a new time-varying coefficient vector autoregressions (VAR) model, in which the coefficient is a linear function of dynamic lagged correlation. The proposed model allows for flexibility in choices of dynamic correlation models (e.g. dynamic conditional correlation generalized autoregressive conditional heteroskedasticity (GARCH) models, Markov-switching GARCH models and multivariate stochastic volatility models), which indicates that it can describe many types of time-varying causal effects. Time-varying causal relations between West Texas Intermediate (WTI) crude oil and the US Standard and Poor’s 500 (S&P 500) stock markets are examined by the proposed model. The empirical results show that their causal relations evolve with time and display complex characters. Both positive and negative causal effects of the WTI on the S&P 500 in the subperiods have been found and confirmed by the traditional VAR models. Similar results have been obtained in the causal effects of S&P 500 on WTI. In addition, the proposed model outperforms the traditional VAR model.
Lu, Fengbin; Qiao, Han; Wang, Shouyang; Lai, Kin Keung; Li, Yuze
2017-01-01
This paper proposes a new time-varying coefficient vector autoregressions (VAR) model, in which the coefficient is a linear function of dynamic lagged correlation. The proposed model allows for flexibility in choices of dynamic correlation models (e.g. dynamic conditional correlation generalized autoregressive conditional heteroskedasticity (GARCH) models, Markov-switching GARCH models and multivariate stochastic volatility models), which indicates that it can describe many types of time-varying causal effects. Time-varying causal relations between West Texas Intermediate (WTI) crude oil and the US Standard and Poor's 500 (S&P 500) stock markets are examined by the proposed model. The empirical results show that their causal relations evolve with time and display complex characters. Both positive and negative causal effects of the WTI on the S&P 500 in the subperiods have been found and confirmed by the traditional VAR models. Similar results have been obtained in the causal effects of S&P 500 on WTI. In addition, the proposed model outperforms the traditional VAR model. Copyright Â© 2016 Elsevier Ltd. All rights reserved.
Texture classification using autoregressive filtering
Lawton, W. M.; Lee, M.
1984-01-01
A general theory of image texture models is proposed and its applicability to the problem of scene segmentation using texture classification is discussed. An algorithm, based on half-plane autoregressive filtering, which optimally utilizes second order statistics to discriminate between texture classes represented by arbitrary wide sense stationary random fields is described. Empirical results of applying this algorithm to natural and sysnthesized scenes are presented and future research is outlined.
Autoregressive Moving Average Graph Filtering
Isufi, Elvin; Loukas, Andreas; Simonetto, Andrea; Leus, Geert
2016-01-01
One of the cornerstones of the field of signal processing on graphs are graph filters, direct analogues of classical filters, but intended for signals defined on graphs. This work brings forth new insights on the distributed graph filtering problem. We design a family of autoregressive moving average (ARMA) recursions, which (i) are able to approximate any desired graph frequency response, and (ii) give exact solutions for tasks such as graph signal denoising and interpolation. The design phi...
MACROECONOMIC FORECASTING USING BAYESIAN VECTOR AUTOREGRESSIVE APPROACH
Directory of Open Access Journals (Sweden)
D. Tutberidze
2017-04-01
Full Text Available There are many arguments that can be advanced to support the forecasting activities of business entities. The underlying argument in favor of forecasting is that managerial decisions are significantly dependent on proper evaluation of future trends as market conditions are constantly changing and require a detailed analysis of future dynamics. The article discusses the importance of using reasonable macro-econometric tool by suggesting the idea of conditional forecasting through a Vector Autoregressive (VAR modeling framework. Under this framework, a macroeconomic model for Georgian economy is constructed with the few variables believed to be shaping business environment. Based on the model, forecasts of macroeconomic variables are produced, and three types of scenarios are analyzed - a baseline and two alternative ones. The results of the study provide confirmatory evidence that suggested methodology is adequately addressing the research phenomenon and can be used widely by business entities in responding their strategic and operational planning challenges. Given this set-up, it is shown empirically that Bayesian Vector Autoregressive approach provides reasonable forecasts for the variables of interest.
International Nuclear Information System (INIS)
Frank, T D; Mongkolsakulvong, S
2015-01-01
In a previous study strongly nonlinear autoregressive (SNAR) models have been introduced as a generalization of the widely-used time-discrete autoregressive models that are known to apply both to Markov and non-Markovian systems. In contrast to conventional autoregressive models, SNAR models depend on process mean values. So far, only linear dependences have been studied. We consider the case in which process mean values can have a nonlinear impact on the processes under consideration. It is shown that such models describe Markov and non-Markovian many-body systems with mean field forces that exhibit a nonlinear impact on single subsystems. We exemplify that such nonlinear dependences can describe order-disorder phase transitions of time-discrete Markovian and non-Markovian many-body systems. The relevant order parameter equations are derived and issues of stability and stationarity are studied. (paper)
Modeling corporate defaults: Poisson autoregressions with exogenous covariates (PARX)
DEFF Research Database (Denmark)
Agosto, Arianna; Cavaliere, Guiseppe; Kristensen, Dennis
We develop a class of Poisson autoregressive models with additional covariates (PARX) that can be used to model and forecast time series of counts. We establish the time series properties of the models, including conditions for stationarity and existence of moments. These results are in turn used...
Single-Index Additive Vector Autoregressive Time Series Models
LI, YEHUA; GENTON, MARC G.
2009-01-01
We study a new class of nonlinear autoregressive models for vector time series, where the current vector depends on single-indexes defined on the past lags and the effects of different lags have an additive form. A sufficient condition is provided
Reviving Markov processes and applications
International Nuclear Information System (INIS)
Cai, H.
1988-01-01
In this dissertation we study a procedure which restarts a Markov process when the process is killed by some arbitrary multiplicative functional. The regenerative nature of this revival procedure is characterized through a Markov renewal equation. An interesting duality between the revival procedure and the classical killing operation is found. Under the condition that the multiplicative functional possesses an intensity, the generators of the revival process can be written down explicitly. An intimate connection is also found between the perturbation of the sample path of a Markov process and the perturbation of a generator (in Kato's sense). The applications of the theory include the study of the processes like piecewise-deterministic Markov process, virtual waiting time process and the first entrance decomposition (taboo probability)
Behavioural Pattern of Causality Parameter of Autoregressive ...
African Journals Online (AJOL)
In this paper, a causal form of Autoregressive Moving Average process, ARMA (p, q) of various orders and behaviour of the causality parameter of ARMA model is investigated. It is deduced that the behaviour of causality parameter ψi depends on positive and negative values of autoregressive parameter φ and moving ...
Optimal transformations for categorical autoregressive time series
Buuren, S. van
1996-01-01
This paper describes a method for finding optimal transformations for analyzing time series by autoregressive models. 'Optimal' implies that the agreement between the autoregressive model and the transformed data is maximal. Such transformations help 1) to increase the model fit, and 2) to analyze
Markov processes and controlled Markov chains
Filar, Jerzy; Chen, Anyue
2002-01-01
The general theory of stochastic processes and the more specialized theory of Markov processes evolved enormously in the second half of the last century. In parallel, the theory of controlled Markov chains (or Markov decision processes) was being pioneered by control engineers and operations researchers. Researchers in Markov processes and controlled Markov chains have been, for a long time, aware of the synergies between these two subject areas. However, this may be the first volume dedicated to highlighting these synergies and, almost certainly, it is the first volume that emphasizes the contributions of the vibrant and growing Chinese school of probability. The chapters that appear in this book reflect both the maturity and the vitality of modern day Markov processes and controlled Markov chains. They also will provide an opportunity to trace the connections that have emerged between the work done by members of the Chinese school of probability and the work done by the European, US, Central and South Ameri...
Likelihood inference for a nonstationary fractional autoregressive model
DEFF Research Database (Denmark)
Johansen, Søren; Ørregård Nielsen, Morten
2010-01-01
This paper discusses model-based inference in an autoregressive model for fractional processes which allows the process to be fractional of order d or d-b. Fractional differencing involves infinitely many past values and because we are interested in nonstationary processes we model the data X1......,...,X_{T} given the initial values X_{-n}, n=0,1,..., as is usually done. The initial values are not modeled but assumed to be bounded. This represents a considerable generalization relative to all previous work where it is assumed that initial values are zero. For the statistical analysis we assume...... the conditional Gaussian likelihood and for the probability analysis we also condition on initial values but assume that the errors in the autoregressive model are i.i.d. with suitable moment conditions. We analyze the conditional likelihood and its derivatives as stochastic processes in the parameters, including...
Kumaraswamy autoregressive moving average models for double bounded environmental data
Bayer, Fábio Mariano; Bayer, Débora Missio; Pumi, Guilherme
2017-12-01
In this paper we introduce the Kumaraswamy autoregressive moving average models (KARMA), which is a dynamic class of models for time series taking values in the double bounded interval (a,b) following the Kumaraswamy distribution. The Kumaraswamy family of distribution is widely applied in many areas, especially hydrology and related fields. Classical examples are time series representing rates and proportions observed over time. In the proposed KARMA model, the median is modeled by a dynamic structure containing autoregressive and moving average terms, time-varying regressors, unknown parameters and a link function. We introduce the new class of models and discuss conditional maximum likelihood estimation, hypothesis testing inference, diagnostic analysis and forecasting. In particular, we provide closed-form expressions for the conditional score vector and conditional Fisher information matrix. An application to environmental real data is presented and discussed.
Directory of Open Access Journals (Sweden)
Weiping Liu
2017-10-01
Full Text Available It is important to determine the soil–water characteristic curve (SWCC for analyzing slope seepage and stability under the conditions of rainfall. However, SWCCs exhibit high uncertainty because of complex influencing factors, which has not been previously considered in slope seepage and stability analysis under conditions of rainfall. This study aimed to evaluate the uncertainty of the SWCC and its effects on the seepage and stability analysis of an unsaturated soil slope under conditions of rainfall. The SWCC model parameters were treated as random variables. An uncertainty evaluation of the parameters was conducted based on the Bayesian approach and the Markov chain Monte Carlo (MCMC method. Observed data from granite residual soil were used to test the uncertainty of the SWCC. Then, different confidence intervals for the model parameters of the SWCC were constructed. The slope seepage and stability analysis under conditions of rainfall with the SWCC of different confidence intervals was investigated using finite element software (SEEP/W and SLOPE/W. The results demonstrated that SWCC uncertainty had significant effects on slope seepage and stability. In general, the larger the percentile value, the greater the reduction of negative pore-water pressure in the soil layer and the lower the safety factor of the slope. Uncertainties in the model parameters of the SWCC can lead to obvious errors in predicted pore-water pressure profiles and the estimated safety factor of the slope under conditions of rainfall.
THE ALLOMETRIC-AUTOREGRESSIVE MODEL IN GENETIC ...
African Journals Online (AJOL)
The application of an allometric-autoregressive model for the quantification of growth and efficiency of feed utilization for purposes of selection for ... be of value in genetic studies. ... mass) gives a fair indication of the cumulative preweaning.
Single-Index Additive Vector Autoregressive Time Series Models
LI, YEHUA
2009-09-01
We study a new class of nonlinear autoregressive models for vector time series, where the current vector depends on single-indexes defined on the past lags and the effects of different lags have an additive form. A sufficient condition is provided for stationarity of such models. We also study estimation of the proposed model using P-splines, hypothesis testing, asymptotics, selection of the order of the autoregression and of the smoothing parameters and nonlinear forecasting. We perform simulation experiments to evaluate our model in various settings. We illustrate our methodology on a climate data set and show that our model provides more accurate yearly forecasts of the El Niño phenomenon, the unusual warming of water in the Pacific Ocean. © 2009 Board of the Foundation of the Scandinavian Journal of Statistics.
Mathematical model with autoregressive process for electrocardiogram signals
Evaristo, Ronaldo M.; Batista, Antonio M.; Viana, Ricardo L.; Iarosz, Kelly C.; Szezech, José D., Jr.; Godoy, Moacir F. de
2018-04-01
The cardiovascular system is composed of the heart, blood and blood vessels. Regarding the heart, cardiac conditions are determined by the electrocardiogram, that is a noninvasive medical procedure. In this work, we propose autoregressive process in a mathematical model based on coupled differential equations in order to obtain the tachograms and the electrocardiogram signals of young adults with normal heartbeats. Our results are compared with experimental tachogram by means of Poincaré plot and dentrended fluctuation analysis. We verify that the results from the model with autoregressive process show good agreement with experimental measures from tachogram generated by electrical activity of the heartbeat. With the tachogram we build the electrocardiogram by means of coupled differential equations.
a multi-period markov model for monthly rainfall in lagos, nigeria
African Journals Online (AJOL)
PUBLICATIONS1
A twelve-period. Markov model has been developed for the monthly rainfall data for Lagos, along the coast of .... autoregressive process to model river flow; Deo et al. (2015) utilized an ...... quences for the analysis of river basins by simulation.
Energy Technology Data Exchange (ETDEWEB)
Kadoura, Ahmad; Sun, Shuyu, E-mail: shuyu.sun@kaust.edu.sa; Salama, Amgad
2014-08-01
Accurate determination of thermodynamic properties of petroleum reservoir fluids is of great interest to many applications, especially in petroleum engineering and chemical engineering. Molecular simulation has many appealing features, especially its requirement of fewer tuned parameters but yet better predicting capability; however it is well known that molecular simulation is very CPU expensive, as compared to equation of state approaches. We have recently introduced an efficient thermodynamically consistent technique to regenerate rapidly Monte Carlo Markov Chains (MCMCs) at different thermodynamic conditions from the existing data points that have been pre-computed with expensive classical simulation. This technique can speed up the simulation more than a million times, making the regenerated molecular simulation almost as fast as equation of state approaches. In this paper, this technique is first briefly reviewed and then numerically investigated in its capability of predicting ensemble averages of primary quantities at different neighboring thermodynamic conditions to the original simulated MCMCs. Moreover, this extrapolation technique is extended to predict second derivative properties (e.g. heat capacity and fluid compressibility). The method works by reweighting and reconstructing generated MCMCs in canonical ensemble for Lennard-Jones particles. In this paper, system's potential energy, pressure, isochoric heat capacity and isothermal compressibility along isochors, isotherms and paths of changing temperature and density from the original simulated points were extrapolated. Finally, an optimized set of Lennard-Jones parameters (ε, σ) for single site models were proposed for methane, nitrogen and carbon monoxide.
Kadoura, Ahmad Salim
2014-08-01
Accurate determination of thermodynamic properties of petroleum reservoir fluids is of great interest to many applications, especially in petroleum engineering and chemical engineering. Molecular simulation has many appealing features, especially its requirement of fewer tuned parameters but yet better predicting capability; however it is well known that molecular simulation is very CPU expensive, as compared to equation of state approaches. We have recently introduced an efficient thermodynamically consistent technique to regenerate rapidly Monte Carlo Markov Chains (MCMCs) at different thermodynamic conditions from the existing data points that have been pre-computed with expensive classical simulation. This technique can speed up the simulation more than a million times, making the regenerated molecular simulation almost as fast as equation of state approaches. In this paper, this technique is first briefly reviewed and then numerically investigated in its capability of predicting ensemble averages of primary quantities at different neighboring thermodynamic conditions to the original simulated MCMCs. Moreover, this extrapolation technique is extended to predict second derivative properties (e.g. heat capacity and fluid compressibility). The method works by reweighting and reconstructing generated MCMCs in canonical ensemble for Lennard-Jones particles. In this paper, system\\'s potential energy, pressure, isochoric heat capacity and isothermal compressibility along isochors, isotherms and paths of changing temperature and density from the original simulated points were extrapolated. Finally, an optimized set of Lennard-Jones parameters (ε, σ) for single site models were proposed for methane, nitrogen and carbon monoxide. © 2014 Elsevier Inc.
Markov stochasticity coordinates
International Nuclear Information System (INIS)
Eliazar, Iddo
2017-01-01
Markov dynamics constitute one of the most fundamental models of random motion between the states of a system of interest. Markov dynamics have diverse applications in many fields of science and engineering, and are particularly applicable in the context of random motion in networks. In this paper we present a two-dimensional gauging method of the randomness of Markov dynamics. The method–termed Markov Stochasticity Coordinates–is established, discussed, and exemplified. Also, the method is tweaked to quantify the stochasticity of the first-passage-times of Markov dynamics, and the socioeconomic equality and mobility in human societies.
Abdulla, Parosh Aziz; Henda, Noomene Ben; Mayr, Richard
2007-01-01
We consider qualitative and quantitative verification problems for infinite-state Markov chains. We call a Markov chain decisive w.r.t. a given set of target states F if it almost certainly eventually reaches either F or a state from which F can no longer be reached. While all finite Markov chains are trivially decisive (for every set F), this also holds for many classes of infinite Markov chains. Infinite Markov chains which contain a finite attractor are decisive w.r.t. every set F. In part...
Markov stochasticity coordinates
Energy Technology Data Exchange (ETDEWEB)
Eliazar, Iddo, E-mail: iddo.eliazar@intel.com
2017-01-15
Markov dynamics constitute one of the most fundamental models of random motion between the states of a system of interest. Markov dynamics have diverse applications in many fields of science and engineering, and are particularly applicable in the context of random motion in networks. In this paper we present a two-dimensional gauging method of the randomness of Markov dynamics. The method–termed Markov Stochasticity Coordinates–is established, discussed, and exemplified. Also, the method is tweaked to quantify the stochasticity of the first-passage-times of Markov dynamics, and the socioeconomic equality and mobility in human societies.
Adaptive Partially Hidden Markov Models
DEFF Research Database (Denmark)
Forchhammer, Søren Otto; Rasmussen, Tage
1996-01-01
Partially Hidden Markov Models (PHMM) have recently been introduced. The transition and emission probabilities are conditioned on the past. In this report, the PHMM is extended with a multiple token version. The different versions of the PHMM are applied to bi-level image coding....
Identification of BWR feedwater control system using autoregressive integrated model
International Nuclear Information System (INIS)
Kanemoto, Shigeru; Andoh, Yasumasa; Yamamoto, Fumiaki; Idesawa, Masato; Itoh, Kazuo.
1983-01-01
With the view of contributing toward more reliable interpretation of noise behavior under normal operating conditions, which is essential for correct detection and/or diagnosis of incipient anomalies in nuclear power plants by noise analysis technique, studies has been undertaken of the noise behavior in a BWR feedwater control system, with use made of a multivariate autoregressive modeling technique. Noise propagation mechanisms as well as open- and closed-loop responses in the system are identified from noise data by a method in which an autoregressive integrated model is introduced. The closed-loop responses obtained with this method are compared with transient data from an actual test, and confirmed to be reliable in estimating semi-quantitative features. Other analyses performed with this model also yield results that appear most reasonable in their physical characteristics. These results have demonstrated the effectiveness of the noise analyses technique based on the autoregressive integrated model for evaluating and diagnosing the performance of feedwater control systems. (author)
DEFF Research Database (Denmark)
Hobolth, Asger; Stone, Eric
2009-01-01
computational finance to human genetics and genomics. A common theme among these diverse applications is the need to simulate sample paths of a CTMC conditional on realized data that is discretely observed. Here we present a general solution to this sampling problem when the CTMC is defined on a discrete....... In doing so, we show that no method dominates the others across all model specifications, and we give explicit proof of which method prevails for any given Q, T, and endpoints. Finally, we introduce and compare three applications of CTMCs to demonstrate the pitfalls of choosing an inefficient sampler....
Grabski
2014-01-01
Semi-Markov Processes: Applications in System Reliability and Maintenance is a modern view of discrete state space and continuous time semi-Markov processes and their applications in reliability and maintenance. The book explains how to construct semi-Markov models and discusses the different reliability parameters and characteristics that can be obtained from those models. The book is a useful resource for mathematicians, engineering practitioners, and PhD and MSc students who want to understand the basic concepts and results of semi-Markov process theory. Clearly defines the properties and
Mixed Causal-Noncausal Autoregressions with Strictly Exogenous Regressors
Hecq, Alain; Issler, J.V.; Telg, Sean
2017-01-01
The mixed autoregressive causal-noncausal model (MAR) has been proposed to estimate economic relationships involving explosive roots in their autoregressive part, as they have stationary forward solutions. In previous work, possible exogenous variables in economic relationships are substituted into
Optimal Hedging with the Vector Autoregressive Model
L. Gatarek (Lukasz); S.G. Johansen (Soren)
2014-01-01
markdownabstract__Abstract__ We derive the optimal hedging ratios for a portfolio of assets driven by a Cointegrated Vector Autoregressive model with general cointegration rank. Our hedge is optimal in the sense of minimum variance portfolio. We consider a model that allows for the hedges to be
Interval Forecast for Smooth Transition Autoregressive Model ...
African Journals Online (AJOL)
In this paper, we propose a simple method for constructing interval forecast for smooth transition autoregressive (STAR) model. This interval forecast is based on bootstrapping the residual error of the estimated STAR model for each forecast horizon and computing various Akaike information criterion (AIC) function. This new ...
New interval forecast for stationary autoregressive models ...
African Journals Online (AJOL)
In this paper, we proposed a new forecasting interval for stationary Autoregressive, AR(p) models using the Akaike information criterion (AIC) function. Ordinarily, the AIC function is used to determine the order of an AR(p) process. In this study however, AIC forecast interval compared favorably with the theoretical forecast ...
The Integration Order of Vector Autoregressive Processes
DEFF Research Database (Denmark)
Franchi, Massimo
We show that the order of integration of a vector autoregressive process is equal to the difference between the multiplicity of the unit root in the characteristic equation and the multiplicity of the unit root in the adjoint matrix polynomial. The equivalence with the standard I(1) and I(2...
Forecasting nuclear power supply with Bayesian autoregression
International Nuclear Information System (INIS)
Beck, R.; Solow, J.L.
1994-01-01
We explore the possibility of forecasting the quarterly US generation of electricity from nuclear power using a Bayesian autoregression model. In terms of forecasting accuracy, this approach compares favorably with both the Department of Energy's current forecasting methodology and their more recent efforts using ARIMA models, and it is extremely easy and inexpensive to implement. (author)
Oracle Inequalities for High Dimensional Vector Autoregressions
DEFF Research Database (Denmark)
Callot, Laurent; Kock, Anders Bredahl
This paper establishes non-asymptotic oracle inequalities for the prediction error and estimation accuracy of the LASSO in stationary vector autoregressive models. These inequalities are used to establish consistency of the LASSO even when the number of parameters is of a much larger order...
Forecasting with periodic autoregressive time series models
Ph.H.B.F. Franses (Philip Hans); R. Paap (Richard)
1999-01-01
textabstractThis paper is concerned with forecasting univariate seasonal time series data using periodic autoregressive models. We show how one should account for unit roots and deterministic terms when generating out-of-sample forecasts. We illustrate the models for various quarterly UK consumption
Small Sample Properties of Bayesian Multivariate Autoregressive Time Series Models
Price, Larry R.
2012-01-01
The aim of this study was to compare the small sample (N = 1, 3, 5, 10, 15) performance of a Bayesian multivariate vector autoregressive (BVAR-SEM) time series model relative to frequentist power and parameter estimation bias. A multivariate autoregressive model was developed based on correlated autoregressive time series vectors of varying…
DEFF Research Database (Denmark)
Justesen, Jørn
2005-01-01
A simple construction of two-dimensional (2-D) fields is presented. Rows and columns are outcomes of the same Markov chain. The entropy can be calculated explicitly.......A simple construction of two-dimensional (2-D) fields is presented. Rows and columns are outcomes of the same Markov chain. The entropy can be calculated explicitly....
Methodology for the AutoRegressive Planet Search (ARPS) Project
Feigelson, Eric; Caceres, Gabriel; ARPS Collaboration
2018-01-01
The detection of periodic signals of transiting exoplanets is often impeded by the presence of aperiodic photometric variations. This variability is intrinsic to the host star in space-based observations (typically arising from magnetic activity) and from observational conditions in ground-based observations. The most common statistical procedures to remove stellar variations are nonparametric, such as wavelet decomposition or Gaussian Processes regression. However, many stars display variability with autoregressive properties, wherein later flux values are correlated with previous ones. Providing the time series is evenly spaced, parametric autoregressive models can prove very effective. Here we present the methodology of the Autoregessive Planet Search (ARPS) project which uses Autoregressive Integrated Moving Average (ARIMA) models to treat a wide variety of stochastic short-memory processes, as well as nonstationarity. Additionally, we introduce a planet-search algorithm to detect periodic transits in the time-series residuals after application of ARIMA models. Our matched-filter algorithm, the Transit Comb Filter (TCF), replaces the traditional box-fitting step. We construct a periodogram based on the TCF to concentrate the signal of these periodic spikes. Various features of the original light curves, the ARIMA fits, the TCF periodograms, and folded light curves at peaks of the TCF periodogram can then be collected to provide constraints for planet detection. These features provide input into a multivariate classifier when a training set is available. The ARPS procedure has been applied NASA's Kepler mission observations of ~200,000 stars (Caceres, Dissertation Talk, this meeting) and will be applied in the future to other datasets.
Multistage Stochastic Programming via Autoregressive Sequences
Czech Academy of Sciences Publication Activity Database
Kaňková, Vlasta
2007-01-01
Roč. 15, č. 4 (2007), s. 99-110 ISSN 0572-3043 R&D Projects: GA ČR GA402/07/1113; GA ČR(CZ) GA402/06/0990; GA ČR GD402/03/H057 Institutional research plan: CEZ:AV0Z10750506 Keywords : Economic proceses * Multistage stochastic programming * autoregressive sequences * individual probability constraints Subject RIV: BB - Applied Statistics, Operational Research
janssen, Anja; Segers, Johan
2013-01-01
The extremes of a univariate Markov chain with regularly varying stationary marginal distribution and asymptotically linear behavior are known to exhibit a multiplicative random walk structure called the tail chain. In this paper we extend this fact to Markov chains with multivariate regularly varying marginal distributions in Rd. We analyze both the forward and the backward tail process and show that they mutually determine each other through a kind of adjoint relation. In ...
Stock Market Autoregressive Dynamics: A Multinational Comparative Study with Quantile Regression
Directory of Open Access Journals (Sweden)
Lili Li
2016-01-01
Full Text Available We study the nonlinear autoregressive dynamics of stock index returns in seven major advanced economies (G7 and China. The quantile autoregression model (QAR enables us to investigate the autocorrelation across the whole spectrum of return distribution, which provides more insightful conditional information on multinational stock market dynamics than conventional time series models. The relation between index return and contemporaneous trading volume is also investigated. While prior studies have mixed results on stock market autocorrelations, we find that the dynamics is usually state dependent. The results for G7 stock markets exhibit conspicuous similarities, but they are in manifest contrast to the findings on Chinese stock markets.
Derivation of Markov processes that violate detailed balance
Lee, Julian
2018-03-01
Time-reversal symmetry of the microscopic laws dictates that the equilibrium distribution of a stochastic process must obey the condition of detailed balance. However, cyclic Markov processes that do not admit equilibrium distributions with detailed balance are often used to model systems driven out of equilibrium by external agents. I show that for a Markov model without detailed balance, an extended Markov model can be constructed, which explicitly includes the degrees of freedom for the driving agent and satisfies the detailed balance condition. The original cyclic Markov model for the driven system is then recovered as an approximation at early times by summing over the degrees of freedom for the driving agent. I also show that the widely accepted expression for the entropy production in a cyclic Markov model is actually a time derivative of an entropy component in the extended model. Further, I present an analytic expression for the entropy component that is hidden in the cyclic Markov model.
Directory of Open Access Journals (Sweden)
Jean B. Lasserre
2000-01-01
Full Text Available We consider the class of Markov kernels for which the weak or strong Feller property fails to hold at some discontinuity set. We provide a simple necessary and sufficient condition for existence of an invariant probability measure as well as a Foster-Lyapunov sufficient condition. We also characterize a subclass, the quasi (weak or strong Feller kernels, for which the sequences of expected occupation measures share the same asymptotic properties as for (weak or strong Feller kernels. In particular, it is shown that the sequences of expected occupation measures of strong and quasi strong-Feller kernels with an invariant probability measure converge setwise to an invariant measure.
Multivariate Self-Exciting Threshold Autoregressive Models with eXogenous Input
Addo, Peter Martey
2014-01-01
This study defines a multivariate Self--Exciting Threshold Autoregressive with eXogenous input (MSETARX) models and present an estimation procedure for the parameters. The conditions for stationarity of the nonlinear MSETARX models is provided. In particular, the efficiency of an adaptive parameter estimation algorithm and LSE (least squares estimate) algorithm for this class of models is then provided via simulations.
The cointegrated vector autoregressive model with general deterministic terms
DEFF Research Database (Denmark)
Johansen, Søren; Nielsen, Morten Ørregaard
2017-01-01
In the cointegrated vector autoregression (CVAR) literature, deterministic terms have until now been analyzed on a case-by-case, or as-needed basis. We give a comprehensive unified treatment of deterministic terms in the additive model X(t)=Z(t) Y(t), where Z(t) belongs to a large class...... of deterministic regressors and Y(t) is a zero-mean CVAR. We suggest an extended model that can be estimated by reduced rank regression and give a condition for when the additive and extended models are asymptotically equivalent, as well as an algorithm for deriving the additive model parameters from the extended...... model parameters. We derive asymptotic properties of the maximum likelihood estimators and discuss tests for rank and tests on the deterministic terms. In particular, we give conditions under which the estimators are asymptotically (mixed) Gaussian, such that associated tests are X 2 -distributed....
The cointegrated vector autoregressive model with general deterministic terms
DEFF Research Database (Denmark)
Johansen, Søren; Nielsen, Morten Ørregaard
In the cointegrated vector autoregression (CVAR) literature, deterministic terms have until now been analyzed on a case-by-case, or as-needed basis. We give a comprehensive unified treatment of deterministic terms in the additive model X(t)= Z(t) + Y(t), where Z(t) belongs to a large class...... of deterministic regressors and Y(t) is a zero-mean CVAR. We suggest an extended model that can be estimated by reduced rank regression and give a condition for when the additive and extended models are asymptotically equivalent, as well as an algorithm for deriving the additive model parameters from the extended...... model parameters. We derive asymptotic properties of the maximum likelihood estimators and discuss tests for rank and tests on the deterministic terms. In particular, we give conditions under which the estimators are asymptotically (mixed) Gaussian, such that associated tests are khi squared distributed....
DEFF Research Database (Denmark)
Li, Chunjian; Andersen, Søren Vang
2007-01-01
We propose two blind system identification methods that exploit the underlying dynamics of non-Gaussian signals. The two signal models to be identified are: an Auto-Regressive (AR) model driven by a discrete-state Hidden Markov process, and the same model whose output is perturbed by white Gaussi...... outputs. The signal models are general and suitable to numerous important signals, such as speech signals and base-band communication signals. Applications to speech analysis and blind channel equalization are given to exemplify the efficiency of the new methods....
on the performance of Autoregressive Moving Average Polynomial
African Journals Online (AJOL)
Timothy Ademakinwa
Distributed Lag (PDL) model, Autoregressive Polynomial Distributed Lag ... Moving Average Polynomial Distributed Lag (ARMAPDL) model. ..... Global Journal of Mathematics and Statistics. Vol. 1. ... Business and Economic Research Center.
Detecting Structural Breaks using Hidden Markov Models
DEFF Research Database (Denmark)
Ntantamis, Christos
Testing for structural breaks and identifying their location is essential for econometric modeling. In this paper, a Hidden Markov Model (HMM) approach is used in order to perform these tasks. Breaks are defined as the data points where the underlying Markov Chain switches from one state to another....... The estimation of the HMM is conducted using a variant of the Iterative Conditional Expectation-Generalized Mixture (ICE-GEMI) algorithm proposed by Delignon et al. (1997), that permits analysis of the conditional distributions of economic data and allows for different functional forms across regimes...
Kepler AutoRegressive Planet Search (KARPS)
Caceres, Gabriel
2018-01-01
One of the main obstacles in detecting faint planetary transits is the intrinsic stellar variability of the host star. The Kepler AutoRegressive Planet Search (KARPS) project implements statistical methodology associated with autoregressive processes (in particular, ARIMA and ARFIMA) to model stellar lightcurves in order to improve exoplanet transit detection. We also develop a novel Transit Comb Filter (TCF) applied to the AR residuals which provides a periodogram analogous to the standard Box-fitting Least Squares (BLS) periodogram. We train a random forest classifier on known Kepler Objects of Interest (KOIs) using select features from different stages of this analysis, and then use ROC curves to define and calibrate the criteria to recover the KOI planet candidates with high fidelity. These statistical methods are detailed in a contributed poster (Feigelson et al., this meeting).These procedures are applied to the full DR25 dataset of NASA’s Kepler mission. Using the classification criteria, a vast majority of known KOIs are recovered and dozens of new KARPS Candidate Planets (KCPs) discovered, including ultra-short period exoplanets. The KCPs will be briefly presented and discussed.
DEFF Research Database (Denmark)
Pinson, Pierre; Madsen, Henrik
optimized is based on penalized maximum-likelihood, with exponential forgetting of past observations. MSAR models are then employed for 1-step-ahead point forecasting of 10-minute resolution time-series of wind power at two large offshore wind farms. They are favourably compared against persistence and Auto......Wind power production data at temporal resolutions of a few minutes exhibits successive periods with fluctuations of various dynamic nature and magnitude, which cannot be explained (so far) by the evolution of some explanatory variable. Our proposal is to capture this regime-switching behaviour......Regressive (AR) models. It is finally shown that the main interest of MSAR models lies in their ability to generate interval/density forecasts of significantly higher skill....
Coding with partially hidden Markov models
DEFF Research Database (Denmark)
Forchhammer, Søren; Rissanen, J.
1995-01-01
Partially hidden Markov models (PHMM) are introduced. They are a variation of the hidden Markov models (HMM) combining the power of explicit conditioning on past observations and the power of using hidden states. (P)HMM may be combined with arithmetic coding for lossless data compression. A general...... 2-part coding scheme for given model order but unknown parameters based on PHMM is presented. A forward-backward reestimation of parameters with a redefined backward variable is given for these models and used for estimating the unknown parameters. Proof of convergence of this reestimation is given....... The PHMM structure and the conditions of the convergence proof allows for application of the PHMM to image coding. Relations between the PHMM and hidden Markov models (HMM) are treated. Results of coding bi-level images with the PHMM coding scheme is given. The results indicate that the PHMM can adapt...
Hartfiel, Darald J
1998-01-01
In this study extending classical Markov chain theory to handle fluctuating transition matrices, the author develops a theory of Markov set-chains and provides numerous examples showing how that theory can be applied. Chapters are concluded with a discussion of related research. Readers who can benefit from this monograph are those interested in, or involved with, systems whose data is imprecise or that fluctuate with time. A background equivalent to a course in linear algebra and one in probability theory should be sufficient.
Directory of Open Access Journals (Sweden)
A. Dukhovny
1987-01-01
Full Text Available This paper isolates and studies a class of Markov chains with a special quasi-triangular form of the transition matrix [so-called ÃŽÂ”m,n(ÃŽÂ”Ã¢Â€Â²m,n-matrix]. Many discrete stochastic processes encountered in applications (queues, inventories and dams have transition matrices which are special cases of a ÃŽÂ”m,n(ÃŽÂ”Ã¢Â€Â²m,n-matrix. Necessary and sufficient conditions for the ergodicity of a Markov chain with transition ÃŽÂ”m,n(ÃŽÂ”Ã¢Â€Â²m,n-matrix are determined in the article in two equivalent versions. According to the first version, these conditions are expressed in terms of certain restrictions imposed on the generating functions Ai(x of the elements of the i-th row of the transition matrix, i=0,1,2,Ã¢Â€Â¦; in the other version they are connected with the characterization of the roots of a certain associated function in the unit circle of the complex plane. Results obtained in the article generalize, complement, and refine similar results existing in the literature.
Asymptotically stable phase synchronization revealed by autoregressive circle maps
Drepper, F. R.
2000-11-01
A specially designed of nonlinear time series analysis is introduced based on phases, which are defined as polar angles in spaces spanned by a finite number of delayed coordinates. A canonical choice of the polar axis and a related implicit estimation scheme for the potentially underlying autoregressive circle map (next phase map) guarantee the invertibility of reconstructed phase space trajectories to the original coordinates. The resulting Fourier approximated, invertibility enforcing phase space map allows us to detect conditional asymptotic stability of coupled phases. This comparatively general synchronization criterion unites two existing generalizations of the old concept and can successfully be applied, e.g., to phases obtained from electrocardiogram and airflow recordings characterizing cardiorespiratory interaction.
Confluence reduction for Markov automata
Timmer, Mark; Katoen, Joost P.; van de Pol, Jaco; Stoelinga, Mariëlle Ida Antoinette
2016-01-01
Markov automata are a novel formalism for specifying systems exhibiting nondeterminism, probabilistic choices and Markovian rates. As expected, the state space explosion threatens the analysability of these models. We therefore introduce confluence reduction for Markov automata, a powerful reduction
Kepler AutoRegressive Planet Search
Caceres, Gabriel Antonio; Feigelson, Eric
2016-01-01
The Kepler AutoRegressive Planet Search (KARPS) project uses statistical methodology associated with autoregressive (AR) processes to model Kepler lightcurves in order to improve exoplanet transit detection in systems with high stellar variability. We also introduce a planet-search algorithm to detect transits in time-series residuals after application of the AR models. One of the main obstacles in detecting faint planetary transits is the intrinsic stellar variability of the host star. The variability displayed by many stars may have autoregressive properties, wherein later flux values are correlated with previous ones in some manner. Our analysis procedure consisting of three steps: pre-processing of the data to remove discontinuities, gaps and outliers; AR-type model selection and fitting; and transit signal search of the residuals using a new Transit Comb Filter (TCF) that replaces traditional box-finding algorithms. The analysis procedures of the project are applied to a portion of the publicly available Kepler light curve data for the full 4-year mission duration. Tests of the methods have been made on a subset of Kepler Objects of Interest (KOI) systems, classified both as planetary `candidates' and `false positives' by the Kepler Team, as well as a random sample of unclassified systems. We find that the ARMA-type modeling successfully reduces the stellar variability, by a factor of 10 or more in active stars and by smaller factors in more quiescent stars. A typical quiescent Kepler star has an interquartile range (IQR) of ~10 e-/sec, which may improve slightly after modeling, while those with IQR ranging from 20 to 50 e-/sec, have improvements from 20% up to 70%. High activity stars (IQR exceeding 100) markedly improve. A periodogram based on the TCF is constructed to concentrate the signal of these periodic spikes. When a periodic transit is found, the model is displayed on a standard period-folded averaged light curve. Our findings to date on real
Incorporating measurement error in n=1 psychological autoregressive modeling
Schuurman, Noemi K.; Houtveen, Jan H.; Hamaker, Ellen L.
2015-01-01
Measurement error is omnipresent in psychological data. However, the vast majority of applications of autoregressive time series analyses in psychology do not take measurement error into account. Disregarding measurement error when it is present in the data results in a bias of the autoregressive
Turner, Sean; Galelli, Stefano; Wilcox, Karen
2015-04-01
Water reservoir systems are often affected by recurring large-scale ocean-atmospheric anomalies, known as teleconnections, that cause prolonged periods of climatological drought. Accurate forecasts of these events -- at lead times in the order of weeks and months -- may enable reservoir operators to take more effective release decisions to improve the performance of their systems. In practice this might mean a more reliable water supply system, a more profitable hydropower plant or a more sustainable environmental release policy. To this end, climate indices, which represent the oscillation of the ocean-atmospheric system, might be gainfully employed within reservoir operating models that adapt the reservoir operation as a function of the climate condition. This study develops a Stochastic Dynamic Programming (SDP) approach that can incorporate climate indices using a Hidden Markov Model. The model simulates the climatic regime as a hidden state following a Markov chain, with the state transitions driven by variation in climatic indices, such as the Southern Oscillation Index. Time series analysis of recorded streamflow data reveals the parameters of separate autoregressive models that describe the inflow to the reservoir under three representative climate states ("normal", "wet", "dry"). These models then define inflow transition probabilities for use in a classic SDP approach. The key advantage of the Hidden Markov Model is that it allows conditioning the operating policy not only on the reservoir storage and the antecedent inflow, but also on the climate condition, thus potentially allowing adaptability to a broader range of climate conditions. In practice, the reservoir operator would effect a water release tailored to a specific climate state based on available teleconnection data and forecasts. The approach is demonstrated on the operation of a realistic, stylised water reservoir with carry-over capacity in South-East Australia. Here teleconnections relating
Process Algebra and Markov Chains
Brinksma, Hendrik; Hermanns, H.; Brinksma, Hendrik; Hermanns, H.; Katoen, Joost P.
This paper surveys and relates the basic concepts of process algebra and the modelling of continuous time Markov chains. It provides basic introductions to both fields, where we also study the Markov chains from an algebraic perspective, viz. that of Markov chain algebra. We then proceed to study
Process algebra and Markov chains
Brinksma, E.; Hermanns, H.; Brinksma, E.; Hermanns, H.; Katoen, J.P.
2001-01-01
This paper surveys and relates the basic concepts of process algebra and the modelling of continuous time Markov chains. It provides basic introductions to both fields, where we also study the Markov chains from an algebraic perspective, viz. that of Markov chain algebra. We then proceed to study
Indian Academy of Sciences (India)
be obtained as a limiting value of a sample path of a suitable ... makes a mathematical model of chance and deals with the problem by .... Is the Markov chain aperiodic? It is! Here is how you can see it. Suppose that after you do the cut, you hold the top half in your right hand, and the bottom half in your left. Then there.
Composable Markov Building Blocks
Evers, S.; Fokkinga, M.M.; Apers, Peter M.G.
2007-01-01
In situations where disjunct parts of the same process are described by their own first-order Markov models, these models can be joined together under the constraint that there can only be one activity at a time, i.e. the activities of one model coincide with non-activity in the other models. Under
Solan, Eilon; Vieille, Nicolas
2015-01-01
We study irreducible time-homogenous Markov chains with finite state space in discrete time. We obtain results on the sensitivity of the stationary distribution and other statistical quantities with respect to perturbations of the transition matrix. We define a new closeness relation between transition matrices, and use graph-theoretic techniques, in contrast with the matrix analysis techniques previously used.
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 3. Markov Chain Monte Carlo - Examples. Arnab Chakraborty. General Article Volume 7 Issue 3 March 2002 pp 25-34. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/007/03/0025-0034. Keywords.
Bias-correction in vector autoregressive models
DEFF Research Database (Denmark)
Engsted, Tom; Pedersen, Thomas Quistgaard
2014-01-01
We analyze the properties of various methods for bias-correcting parameter estimates in both stationary and non-stationary vector autoregressive models. First, we show that two analytical bias formulas from the existing literature are in fact identical. Next, based on a detailed simulation study......, we show that when the model is stationary this simple bias formula compares very favorably to bootstrap bias-correction, both in terms of bias and mean squared error. In non-stationary models, the analytical bias formula performs noticeably worse than bootstrapping. Both methods yield a notable...... improvement over ordinary least squares. We pay special attention to the risk of pushing an otherwise stationary model into the non-stationary region of the parameter space when correcting for bias. Finally, we consider a recently proposed reduced-bias weighted least squares estimator, and we find...
Model reduction methods for vector autoregressive processes
Brüggemann, Ralf
2004-01-01
1. 1 Objective of the Study Vector autoregressive (VAR) models have become one of the dominant research tools in the analysis of macroeconomic time series during the last two decades. The great success of this modeling class started with Sims' (1980) critique of the traditional simultaneous equation models (SEM). Sims criticized the use of 'too many incredible restrictions' based on 'supposed a priori knowledge' in large scale macroeconometric models which were popular at that time. Therefore, he advo cated largely unrestricted reduced form multivariate time series models, unrestricted VAR models in particular. Ever since his influential paper these models have been employed extensively to characterize the underlying dynamics in systems of time series. In particular, tools to summarize the dynamic interaction between the system variables, such as impulse response analysis or forecast error variance decompo sitions, have been developed over the years. The econometrics of VAR models and related quantities i...
Markov bridges, bisection and variance reduction
DEFF Research Database (Denmark)
Asmussen, Søren; Hobolth, Asger
. In this paper we firstly consider the problem of generating sample paths from a continuous-time Markov chain conditioned on the endpoints using a new algorithm based on the idea of bisection. Secondly we study the potential of the bisection algorithm for variance reduction. In particular, examples are presented......Time-continuous Markov jump processes is a popular modelling tool in disciplines ranging from computational finance and operations research to human genetics and genomics. The data is often sampled at discrete points in time, and it can be useful to simulate sample paths between the datapoints...
Multi-dimensional quasitoeplitz Markov chains
Directory of Open Access Journals (Sweden)
Alexander N. Dudin
1999-01-01
Full Text Available This paper deals with multi-dimensional quasitoeplitz Markov chains. We establish a sufficient equilibrium condition and derive a functional matrix equation for the corresponding vector-generating function, whose solution is given algorithmically. The results are demonstrated in the form of examples and applications in queues with BMAP-input, which operate in synchronous random environment.
Markov chain of distances between parked cars
International Nuclear Information System (INIS)
Seba, Petr
2008-01-01
We describe the distribution of distances between parked cars as a solution of certain Markov processes and show that its solution is obtained with the help of a distributional fixed point equation. Under certain conditions the process is solved explicitly. The resulting probability density is compared with the actual parking data measured in the city. (fast track communication)
Time series segmentation: a new approach based on Genetic Algorithm and Hidden Markov Model
Toreti, A.; Kuglitsch, F. G.; Xoplaki, E.; Luterbacher, J.
2009-04-01
The subdivision of a time series into homogeneous segments has been performed using various methods applied to different disciplines. In climatology, for example, it is accompanied by the well-known homogenization problem and the detection of artificial change points. In this context, we present a new method (GAMM) based on Hidden Markov Model (HMM) and Genetic Algorithm (GA), applicable to series of independent observations (and easily adaptable to autoregressive processes). A left-to-right hidden Markov model, estimating the parameters and the best-state sequence, respectively, with the Baum-Welch and Viterbi algorithms, was applied. In order to avoid the well-known dependence of the Baum-Welch algorithm on the initial condition, a Genetic Algorithm was developed. This algorithm is characterized by mutation, elitism and a crossover procedure implemented with some restrictive rules. Moreover the function to be minimized was derived following the approach of Kehagias (2004), i.e. it is the so-called complete log-likelihood. The number of states was determined applying a two-fold cross-validation procedure (Celeux and Durand, 2008). Being aware that the last issue is complex, and it influences all the analysis, a Multi Response Permutation Procedure (MRPP; Mielke et al., 1981) was inserted. It tests the model with K+1 states (where K is the state number of the best model) if its likelihood is close to K-state model. Finally, an evaluation of the GAMM performances, applied as a break detection method in the field of climate time series homogenization, is shown. 1. G. Celeux and J.B. Durand, Comput Stat 2008. 2. A. Kehagias, Stoch Envir Res 2004. 3. P.W. Mielke, K.J. Berry, G.W. Brier, Monthly Wea Rev 1981.
Likelihood inference for a fractionally cointegrated vector autoregressive model
DEFF Research Database (Denmark)
Johansen, Søren; Ørregård Nielsen, Morten
2012-01-01
such that the process X_{t} is fractional of order d and cofractional of order d-b; that is, there exist vectors ß for which ß'X_{t} is fractional of order d-b, and no other fractionality order is possible. We define the statistical model by 0inference when the true values satisfy b0¿1/2 and d0-b0......We consider model based inference in a fractionally cointegrated (or cofractional) vector autoregressive model with a restricted constant term, ¿, based on the Gaussian likelihood conditional on initial values. The model nests the I(d) VAR model. We give conditions on the parameters...... process in the parameters when errors are i.i.d. with suitable moment conditions and initial values are bounded. When the limit is deterministic this implies uniform convergence in probability of the conditional likelihood function. If the true value b0>1/2, we prove that the limit distribution of (ß...
Generalized Markov branching models
Li, Junping
2005-01-01
In this thesis, we first considered a modified Markov branching process incorporating both state-independent immigration and resurrection. After establishing the criteria for regularity and uniqueness, explicit expressions for the extinction probability and mean extinction time are presented. The criteria for recurrence and ergodicity are also established. In addition, an explicit expression for the equilibrium distribution is presented.\\ud \\ud We then moved on to investigate the basic proper...
Ragain, Stephen; Ugander, Johan
2016-01-01
As datasets capturing human choices grow in richness and scale---particularly in online domains---there is an increasing need for choice models that escape traditional choice-theoretic axioms such as regularity, stochastic transitivity, and Luce's choice axiom. In this work we introduce the Pairwise Choice Markov Chain (PCMC) model of discrete choice, an inferentially tractable model that does not assume any of the above axioms while still satisfying the foundational axiom of uniform expansio...
Distinguishing Hidden Markov Chains
Kiefer, Stefan; Sistla, A. Prasad
2015-01-01
Hidden Markov Chains (HMCs) are commonly used mathematical models of probabilistic systems. They are employed in various fields such as speech recognition, signal processing, and biological sequence analysis. We consider the problem of distinguishing two given HMCs based on an observation sequence that one of the HMCs generates. More precisely, given two HMCs and an observation sequence, a distinguishing algorithm is expected to identify the HMC that generates the observation sequence. Two HM...
Fannes, Mark; Wouters, Jeroen
2012-01-01
We study a quantum process that can be considered as a quantum analogue for the classical Markov process. We specifically construct a version of these processes for free Fermions. For such free Fermionic processes we calculate the entropy density. This can be done either directly using Szeg\\"o's theorem for asymptotic densities of functions of Toeplitz matrices, or through an extension of said theorem to rates of functions, which we present in this article.
Approximate quantum Markov chains
Sutter, David
2018-01-01
This book is an introduction to quantum Markov chains and explains how this concept is connected to the question of how well a lost quantum mechanical system can be recovered from a correlated subsystem. To achieve this goal, we strengthen the data-processing inequality such that it reveals a statement about the reconstruction of lost information. The main difficulty in order to understand the behavior of quantum Markov chains arises from the fact that quantum mechanical operators do not commute in general. As a result we start by explaining two techniques of how to deal with non-commuting matrices: the spectral pinching method and complex interpolation theory. Once the reader is familiar with these techniques a novel inequality is presented that extends the celebrated Golden-Thompson inequality to arbitrarily many matrices. This inequality is the key ingredient in understanding approximate quantum Markov chains and it answers a question from matrix analysis that was open since 1973, i.e., if Lieb's triple ma...
Holan, S.H.; Davis, G.M.; Wildhaber, M.L.; DeLonay, A.J.; Papoulias, D.M.
2009-01-01
The timing of spawning in fish is tightly linked to environmental factors; however, these factors are not very well understood for many species. Specifically, little information is available to guide recruitment efforts for endangered species such as the sturgeon. Therefore, we propose a Bayesian hierarchical model for predicting the success of spawning of the shovelnose sturgeon which uses both biological and behavioural (longitudinal) data. In particular, we use data that were produced from a tracking study that was conducted in the Lower Missouri River. The data that were produced from this study consist of biological variables associated with readiness to spawn along with longitudinal behavioural data collected by using telemetry and archival data storage tags. These high frequency data are complex both biologically and in the underlying behavioural process. To accommodate such complexity we developed a hierarchical linear regression model that uses an eigenvalue predictor, derived from the transition probability matrix of a two-state Markov switching model with generalized auto-regressive conditional heteroscedastic dynamics. Finally, to minimize the computational burden that is associated with estimation of this model, a parallel computing approach is proposed. ?? Journal compilation 2009 Royal Statistical Society.
Robust filtering and prediction for systems with embedded finite-state Markov-Chain dynamics
International Nuclear Information System (INIS)
Pate, E.B.
1986-01-01
This research developed new methodologies for the design of robust near-optimal filters/predictors for a class of system models that exhibit embedded finite-state Markov-chain dynamics. These methodologies are developed through the concepts and methods of stochastic model building (including time-series analysis), game theory, decision theory, and filtering/prediction for linear dynamic systems. The methodology is based on the relationship between the robustness of a class of time-series models and quantization which is applied to the time series as part of the model identification process. This relationship is exploited by utilizing the concept of an equivalence, through invariance of spectra, between the class of Markov-chain models and the class of autoregressive moving average (ARMA) models. This spectral equivalence permits a straightforward implementation of the desirable robust properties of the Markov-chain approximation in a class of models which may be applied in linear-recursive form in a linear Kalman filter/predictor structure. The linear filter/predictor structure is shown to provide asymptotically optimal estimates of states which represent one or more integrations of the Markov-chain state. The development of a new saddle-point theorem for a game based on the Markov-chain model structure gives rise to a technique for determining a worst case Markov-chain process, upon which a robust filter/predictor design if based
A relation between non-Markov and Markov processes
International Nuclear Information System (INIS)
Hara, H.
1980-01-01
With the aid of a transformation technique, it is shown that some memory effects in the non-Markov processes can be eliminated. In other words, some non-Markov processes are rewritten in a form obtained by the random walk process; the Markov process. To this end, two model processes which have some memory or correlation in the random walk process are introduced. An explanation of the memory in the processes is given. (orig.)
International Nuclear Information System (INIS)
Hirschmann, H.
1983-06-01
The consequences of the basic assumptions of the semi-Markov process as defined from a homogeneous renewal process with a stationary Markov condition are reviewed. The notion of the semi-Markov process is generalized by its redefinition from a nonstationary Markov renewal process. For both the nongeneralized and the generalized case a representation of the first order conditional state probabilities is derived in terms of the transition probabilities of the Markov renewal process. Some useful calculation rules (regeneration rules) are derived for the conditional state probabilities of the semi-Markov process. Compared to the semi-Markov process in its usual definition the generalized process allows the analysis of a larger class of systems. For instance systems with arbitrarily distributed lifetimes of their components can be described. There is also a chance to describe systems which are modified during time by forces or manipulations from outside. (Auth.)
Penalised Complexity Priors for Stationary Autoregressive Processes
Sø rbye, Sigrunn Holbek; Rue, Haavard
2017-01-01
The autoregressive (AR) process of order p(AR(p)) is a central model in time series analysis. A Bayesian approach requires the user to define a prior distribution for the coefficients of the AR(p) model. Although it is easy to write down some prior, it is not at all obvious how to understand and interpret the prior distribution, to ensure that it behaves according to the users' prior knowledge. In this article, we approach this problem using the recently developed ideas of penalised complexity (PC) priors. These prior have important properties like robustness and invariance to reparameterisations, as well as a clear interpretation. A PC prior is computed based on specific principles, where model component complexity is penalised in terms of deviation from simple base model formulations. In the AR(1) case, we discuss two natural base model choices, corresponding to either independence in time or no change in time. The latter case is illustrated in a survival model with possible time-dependent frailty. For higher-order processes, we propose a sequential approach, where the base model for AR(p) is the corresponding AR(p-1) model expressed using the partial autocorrelations. The properties of the new prior distribution are compared with the reference prior in a simulation study.
Penalised Complexity Priors for Stationary Autoregressive Processes
Sørbye, Sigrunn Holbek
2017-05-25
The autoregressive (AR) process of order p(AR(p)) is a central model in time series analysis. A Bayesian approach requires the user to define a prior distribution for the coefficients of the AR(p) model. Although it is easy to write down some prior, it is not at all obvious how to understand and interpret the prior distribution, to ensure that it behaves according to the users\\' prior knowledge. In this article, we approach this problem using the recently developed ideas of penalised complexity (PC) priors. These prior have important properties like robustness and invariance to reparameterisations, as well as a clear interpretation. A PC prior is computed based on specific principles, where model component complexity is penalised in terms of deviation from simple base model formulations. In the AR(1) case, we discuss two natural base model choices, corresponding to either independence in time or no change in time. The latter case is illustrated in a survival model with possible time-dependent frailty. For higher-order processes, we propose a sequential approach, where the base model for AR(p) is the corresponding AR(p-1) model expressed using the partial autocorrelations. The properties of the new prior distribution are compared with the reference prior in a simulation study.
On robust forecasting of autoregressive time series under censoring
Kharin, Y.; Badziahin, I.
2009-01-01
Problems of robust statistical forecasting are considered for autoregressive time series observed under distortions generated by interval censoring. Three types of robust forecasting statistics are developed; meansquare risk is evaluated for the developed forecasting statistics. Numerical results are given.
vector bilinear autoregressive time series model and its superiority
African Journals Online (AJOL)
KEYWORDS: Linear time series, Autoregressive process, Autocorrelation function, Partial autocorrelation function,. Vector time .... important result on matrix algebra with respect to the spectral ..... application to covariance analysis of super-.
Mallak, Saed
1996-01-01
Ankara : Department of Mathematics and Institute of Engineering and Sciences of Bilkent University, 1996. Thesis (Master's) -- Bilkent University, 1996. Includes bibliographical references leaves leaf 29 In thi.s work, we studierl the Ergodicilv of Non-Stationary .Markov chains. We gave several e.xainples with different cases. We proved that given a sec[uence of Markov chains such that the limit of this sec|uence is an Ergodic Markov chain, then the limit of the combination ...
Markov Chain Monte Carlo Methods
Indian Academy of Sciences (India)
Keywords. Markov chain; state space; stationary transition probability; stationary distribution; irreducibility; aperiodicity; stationarity; M-H algorithm; proposal distribution; acceptance probability; image processing; Gibbs sampler.
The comparison study among several data transformations in autoregressive modeling
Setiyowati, Susi; Waluyo, Ramdhani Try
2015-12-01
In finance, the adjusted close of stocks are used to observe the performance of a company. The extreme prices, which may increase or decrease drastically, are often become particular concerned since it can impact to bankruptcy. As preventing action, the investors have to observe the future (forecasting) stock prices comprehensively. For that purpose, time series analysis could be one of statistical methods that can be implemented, for both stationary and non-stationary processes. Since the variability process of stocks prices tend to large and also most of time the extreme values are always exist, then it is necessary to do data transformation so that the time series models, i.e. autoregressive model, could be applied appropriately. One of popular data transformation in finance is return model, in addition to ratio of logarithm and some others Tukey ladder transformation. In this paper these transformations are applied to AR stationary models and non-stationary ARCH and GARCH models through some simulations with varying parameters. As results, this work present the suggestion table that shows transformations behavior for some condition of parameters and models. It is confirmed that the better transformation is obtained, depends on type of data distributions. In other hands, the parameter conditions term give significant influence either.
Volchenkov, Dima; Dawin, Jean René
A system for using dice to compose music randomly is known as the musical dice game. The discrete time MIDI models of 804 pieces of classical music written by 29 composers have been encoded into the transition matrices and studied by Markov chains. Contrary to human languages, entropy dominates over redundancy, in the musical dice games based on the compositions of classical music. The maximum complexity is achieved on the blocks consisting of just a few notes (8 notes, for the musical dice games generated over Bach's compositions). First passage times to notes can be used to resolve tonality and feature a composer.
DEFF Research Database (Denmark)
Kohlenbach, Ulrich Wilhelm
2002-01-01
We show that the so-called weak Markov's principle (WMP) which states that every pseudo-positive real number is positive is underivable in E-HA + AC. Since allows one to formalize (atl eastl arge parts of) Bishop's constructive mathematics, this makes it unlikely that WMP can be proved within...... the framework of Bishop-style mathematics (which has been open for about 20 years). The underivability even holds if the ine.ective schema of full comprehension (in all types) for negated formulas (in particular for -free formulas) is added, which allows one to derive the law of excluded middle...
Nonlinearly perturbed semi-Markov processes
Silvestrov, Dmitrii
2017-01-01
The book presents new methods of asymptotic analysis for nonlinearly perturbed semi-Markov processes with a finite phase space. These methods are based on special time-space screening procedures for sequential phase space reduction of semi-Markov processes combined with the systematical use of operational calculus for Laurent asymptotic expansions. Effective recurrent algorithms are composed for getting asymptotic expansions, without and with explicit upper bounds for remainders, for power moments of hitting times, stationary and conditional quasi-stationary distributions for nonlinearly perturbed semi-Markov processes. These results are illustrated by asymptotic expansions for birth-death-type semi-Markov processes, which play an important role in various applications. The book will be a useful contribution to the continuing intensive studies in the area. It is an essential reference for theoretical and applied researchers in the field of stochastic processes and their applications that will cont...
An application of the Autoregressive Conditional Poisson (ACP) model
CSIR Research Space (South Africa)
Holloway, Jennifer P
2010-11-01
Full Text Available When modelling count data that comes in the form of a time series, the static Poisson regression and standard time series models are often not appropriate. A current study therefore involves the evaluation of several observation-driven and parameter...
An algebraic method for constructing stable and consistent autoregressive filters
International Nuclear Information System (INIS)
Harlim, John; Hong, Hoon; Robbins, Jacob L.
2015-01-01
In this paper, we introduce an algebraic method to construct stable and consistent univariate autoregressive (AR) models of low order for filtering and predicting nonlinear turbulent signals with memory depth. By stable, we refer to the classical stability condition for the AR model. By consistent, we refer to the classical consistency constraints of Adams–Bashforth methods of order-two. One attractive feature of this algebraic method is that the model parameters can be obtained without directly knowing any training data set as opposed to many standard, regression-based parameterization methods. It takes only long-time average statistics as inputs. The proposed method provides a discretization time step interval which guarantees the existence of stable and consistent AR model and simultaneously produces the parameters for the AR models. In our numerical examples with two chaotic time series with different characteristics of decaying time scales, we find that the proposed AR models produce significantly more accurate short-term predictive skill and comparable filtering skill relative to the linear regression-based AR models. These encouraging results are robust across wide ranges of discretization times, observation times, and observation noise variances. Finally, we also find that the proposed model produces an improved short-time prediction relative to the linear regression-based AR-models in forecasting a data set that characterizes the variability of the Madden–Julian Oscillation, a dominant tropical atmospheric wave pattern
International Nuclear Information System (INIS)
Floriani, Elena; Lima, Ricardo; Ourrad, Ouerdia; Spinelli, Lionel
2016-01-01
Highlights: • The flux through a Markov chain of a conserved quantity (mass) is studied. • Mass is supplied by an external source and ends in the absorbing states of the chain. • Meaningful for modeling open systems whose dynamics has a Markov property. • The analytical expression of mass distribution is given for a constant source. • The expression of mass distribution is given for periodic or random sources. - Abstract: In this paper we study the flux through a finite Markov chain of a quantity, that we will call mass, which moves through the states of the chain according to the Markov transition probabilities. Mass is supplied by an external source and accumulates in the absorbing states of the chain. We believe that studying how this conserved quantity evolves through the transient (non-absorbing) states of the chain could be useful for the modelization of open systems whose dynamics has a Markov property.
Modeling Uncertainty of Directed Movement via Markov Chains
Directory of Open Access Journals (Sweden)
YIN Zhangcai
2015-10-01
Full Text Available Probabilistic time geography (PTG is suggested as an extension of (classical time geography, in order to present the uncertainty of an agent located at the accessible position by probability. This may provide a quantitative basis for most likely finding an agent at a location. In recent years, PTG based on normal distribution or Brown bridge has been proposed, its variance, however, is irrelevant with the agent's speed or divergent with the increase of the speed; so they are difficult to take into account application pertinence and stability. In this paper, a new method is proposed to model PTG based on Markov chain. Firstly, a bidirectional conditions Markov chain is modeled, the limit of which, when the moving speed is large enough, can be regarded as the Brown bridge, thus has the characteristics of digital stability. Then, the directed movement is mapped to Markov chains. The essential part is to build step length, the state space and transfer matrix of Markov chain according to the space and time position of directional movement, movement speed information, to make sure the Markov chain related to the movement speed. Finally, calculating continuously the probability distribution of the directed movement at any time by the Markov chains, it can be get the possibility of an agent located at the accessible position. Experimental results show that, the variance based on Markov chains not only is related to speed, but also is tending towards stability with increasing the agent's maximum speed.
Irreversible Local Markov Chains with Rapid Convergence towards Equilibrium
Kapfer, Sebastian C.; Krauth, Werner
2017-12-01
We study the continuous one-dimensional hard-sphere model and present irreversible local Markov chains that mix on faster time scales than the reversible heat bath or Metropolis algorithms. The mixing time scales appear to fall into two distinct universality classes, both faster than for reversible local Markov chains. The event-chain algorithm, the infinitesimal limit of one of these Markov chains, belongs to the class presenting the fastest decay. For the lattice-gas limit of the hard-sphere model, reversible local Markov chains correspond to the symmetric simple exclusion process (SEP) with periodic boundary conditions. The two universality classes for irreversible Markov chains are realized by the totally asymmetric SEP (TASEP), and by a faster variant (lifted TASEP) that we propose here. We discuss how our irreversible hard-sphere Markov chains generalize to arbitrary repulsive pair interactions and carry over to higher dimensions through the concept of lifted Markov chains and the recently introduced factorized Metropolis acceptance rule.
Second Order Optimality in Markov Decision Chains
Czech Academy of Sciences Publication Activity Database
Sladký, Karel
2017-01-01
Roč. 53, č. 6 (2017), s. 1086-1099 ISSN 0023-5954 R&D Projects: GA ČR GA15-10331S Institutional support: RVO:67985556 Keywords : Markov decision chains * second order optimality * optimalilty conditions for transient, discounted and average models * policy and value iterations Subject RIV: BB - Applied Statistics, Operational Research OBOR OECD: Statistics and probability Impact factor: 0.379, year: 2016 http://library.utia.cas.cz/separaty/2017/E/sladky-0485146.pdf
Incorporating measurement error in n = 1 psychological autoregressive modeling
Schuurman, Noémi K.; Houtveen, Jan H.; Hamaker, Ellen L.
2015-01-01
Measurement error is omnipresent in psychological data. However, the vast majority of applications of autoregressive time series analyses in psychology do not take measurement error into account. Disregarding measurement error when it is present in the data results in a bias of the autoregressive parameters. We discuss two models that take measurement error into account: An autoregressive model with a white noise term (AR+WN), and an autoregressive moving average (ARMA) model. In a simulation study we compare the parameter recovery performance of these models, and compare this performance for both a Bayesian and frequentist approach. We find that overall, the AR+WN model performs better. Furthermore, we find that for realistic (i.e., small) sample sizes, psychological research would benefit from a Bayesian approach in fitting these models. Finally, we illustrate the effect of disregarding measurement error in an AR(1) model by means of an empirical application on mood data in women. We find that, depending on the person, approximately 30–50% of the total variance was due to measurement error, and that disregarding this measurement error results in a substantial underestimation of the autoregressive parameters. PMID:26283988
A note on asymptotic expansions for Markov chains using operator theory
DEFF Research Database (Denmark)
Jensen, J.L.
1987-01-01
We consider asymptotic expansions for sums Sn on the form Sn = fhook0(X0) + fhook(X1, X0) + ... + fhook(Xn, Xn-1), where Xi is a Markov chain. Under different ergodicity conditions on the Markov chain and certain conditional moment conditions on fhook(Xi, Xi-1), a simple representation...
A complex autoregressive model and application to monthly temperature forecasts
Directory of Open Access Journals (Sweden)
X. Gu
2005-11-01
Full Text Available A complex autoregressive model was established based on the mathematic derivation of the least squares for the complex number domain which is referred to as the complex least squares. The model is different from the conventional way that the real number and the imaginary number are separately calculated. An application of this new model shows a better forecast than forecasts from other conventional statistical models, in predicting monthly temperature anomalies in July at 160 meteorological stations in mainland China. The conventional statistical models include an autoregressive model, where the real number and the imaginary number are separately disposed, an autoregressive model in the real number domain, and a persistence-forecast model.
Regeneration and general Markov chains
Directory of Open Access Journals (Sweden)
Vladimir V. Kalashnikov
1994-01-01
Full Text Available Ergodicity, continuity, finite approximations and rare visits of general Markov chains are investigated. The obtained results permit further quantitative analysis of characteristics, such as, rates of convergence, continuity (measured as a distance between perturbed and non-perturbed characteristics, deviations between Markov chains, accuracy of approximations and bounds on the distribution function of the first visit time to a chosen subset, etc. The underlying techniques use the embedding of the general Markov chain into a wide sense regenerative process with the help of splitting construction.
Markov chains theory and applications
Sericola, Bruno
2013-01-01
Markov chains are a fundamental class of stochastic processes. They are widely used to solve problems in a large number of domains such as operational research, computer science, communication networks and manufacturing systems. The success of Markov chains is mainly due to their simplicity of use, the large number of available theoretical results and the quality of algorithms developed for the numerical evaluation of many metrics of interest.The author presents the theory of both discrete-time and continuous-time homogeneous Markov chains. He carefully examines the explosion phenomenon, the
Quadratic Variation by Markov Chains
DEFF Research Database (Denmark)
Hansen, Peter Reinhard; Horel, Guillaume
We introduce a novel estimator of the quadratic variation that is based on the the- ory of Markov chains. The estimator is motivated by some general results concerning filtering contaminated semimartingales. Specifically, we show that filtering can in prin- ciple remove the effects of market...... microstructure noise in a general framework where little is assumed about the noise. For the practical implementation, we adopt the dis- crete Markov chain model that is well suited for the analysis of financial high-frequency prices. The Markov chain framework facilitates simple expressions and elegant analyti...
Modeling Autoregressive Processes with Moving-Quantiles-Implied Nonlinearity
Directory of Open Access Journals (Sweden)
Isao Ishida
2015-01-01
Full Text Available We introduce and investigate some properties of a class of nonlinear time series models based on the moving sample quantiles in the autoregressive data generating process. We derive a test fit to detect this type of nonlinearity. Using the daily realized volatility data of Standard & Poor’s 500 (S&P 500 and several other indices, we obtained good performance using these models in an out-of-sample forecasting exercise compared with the forecasts obtained based on the usual linear heterogeneous autoregressive and other models of realized volatility.
Application of autoregressive moving average model in reactor noise analysis
International Nuclear Information System (INIS)
Tran Dinh Tri
1993-01-01
The application of an autoregressive (AR) model to estimating noise measurements has achieved many successes in reactor noise analysis in the last ten years. The physical processes that take place in the nuclear reactor, however, are described by an autoregressive moving average (ARMA) model rather than by an AR model. Consequently more correct results could be obtained by applying the ARMA model instead of the AR model to reactor noise analysis. In this paper the system of the generalised Yule-Walker equations is derived from the equation of an ARMA model, then a method for its solution is given. Numerical results show the applications of the method proposed. (author)
Markov Chain Monte Carlo Methods
Indian Academy of Sciences (India)
Systat Software Asia-Pacific. Ltd., in Bangalore, where the technical work for the development of the statistical software Systat takes ... In Part 4, we discuss some applications of the Markov ... one can construct the joint probability distribution of.
Confluence reduction for Markov automata
Timmer, Mark; van de Pol, Jan Cornelis; Stoelinga, Mariëlle Ida Antoinette
Markov automata are a novel formalism for specifying systems exhibiting nondeterminism, probabilistic choices and Markovian rates. Recently, the process algebra MAPA was introduced to efficiently model such systems. As always, the state space explosion threatens the analysability of the models
Confluence Reduction for Markov Automata
Timmer, Mark; van de Pol, Jan Cornelis; Stoelinga, Mariëlle Ida Antoinette; Braberman, Victor; Fribourg, Laurent
Markov automata are a novel formalism for specifying systems exhibiting nondeterminism, probabilistic choices and Markovian rates. Recently, the process algebra MAPA was introduced to efficiently model such systems. As always, the state space explosion threatens the analysability of the models
Miftahurrohmah, Brina; Iriawan, Nur; Fithriasari, Kartika
2017-06-01
Stocks are known as the financial instruments traded in the capital market which have a high level of risk. Their risks are indicated by their uncertainty of their return which have to be accepted by investors in the future. The higher the risk to be faced, the higher the return would be gained. Therefore, the measurements need to be made against the risk. Value at Risk (VaR) as the most popular risk measurement method, is frequently ignore when the pattern of return is not uni-modal Normal. The calculation of the risks using VaR method with the Normal Mixture Autoregressive (MNAR) approach has been considered. This paper proposes VaR method couple with the Mixture Laplace Autoregressive (MLAR) that would be implemented for analysing the first three biggest capitalization Islamic stock return in JII, namely PT. Astra International Tbk (ASII), PT. Telekomunikasi Indonesia Tbk (TLMK), and PT. Unilever Indonesia Tbk (UNVR). Parameter estimation is performed by employing Bayesian Markov Chain Monte Carlo (MCMC) approaches.
Estimation bias and bias correction in reduced rank autoregressions
DEFF Research Database (Denmark)
Nielsen, Heino Bohn
2017-01-01
This paper characterizes the finite-sample bias of the maximum likelihood estimator (MLE) in a reduced rank vector autoregression and suggests two simulation-based bias corrections. One is a simple bootstrap implementation that approximates the bias at the MLE. The other is an iterative root...
Robust bayesian analysis of an autoregressive model with ...
African Journals Online (AJOL)
In this work, robust Bayesian analysis of the Bayesian estimation of an autoregressive model with exponential innovations is performed. Using a Bayesian robustness methodology, we show that, using a suitable generalized quadratic loss, we obtain optimal Bayesian estimators of the parameters corresponding to the ...
A General Representation Theorem for Integrated Vector Autoregressive Processes
DEFF Research Database (Denmark)
Franchi, Massimo
We study the algebraic structure of an I(d) vector autoregressive process, where d is restricted to be an integer. This is useful to characterize its polynomial cointegrating relations and its moving average representation, that is to prove a version of the Granger representation theorem valid...
Optimal hedging with the cointegrated vector autoregressive model
DEFF Research Database (Denmark)
Gatarek, Lukasz; Johansen, Søren
We derive the optimal hedging ratios for a portfolio of assets driven by a Coin- tegrated Vector Autoregressive model (CVAR) with general cointegration rank. Our hedge is optimal in the sense of minimum variance portfolio. We consider a model that allows for the hedges to be cointegrated with the...
An extension of cointegration to fractional autoregressive processes
DEFF Research Database (Denmark)
Johansen, Søren
This paper contains an overview of some recent results on the statistical analysis of cofractional processes, see Johansen and Nielsen (2010). We first give an brief summary of the analysis of cointegration in the vector autoregressive model and then show how this can be extended to fractional pr...
Vector bilinear autoregressive time series model and its superiority ...
African Journals Online (AJOL)
In this research, a vector bilinear autoregressive time series model was proposed and used to model three revenue series (X1, X2, X3) . The “orders” of the three series were identified on the basis of the distribution of autocorrelation and partial autocorrelation functions and were used to construct the vector bilinear models.
Estimation of pure autoregressive vector models for revenue series ...
African Journals Online (AJOL)
This paper aims at applying multivariate approach to Box and Jenkins univariate time series modeling to three vector series. General Autoregressive Vector Models with time varying coefficients are estimated. The first vector is a response vector, while others are predictor vectors. By matrix expansion each vector, whether ...
NonMarkov Ito Processes with 1- state memory
McCauley, Joseph L.
2010-08-01
A Markov process, by definition, cannot depend on any previous state other than the last observed state. An Ito process implies the Fokker-Planck and Kolmogorov backward time partial differential eqns. for transition densities, which in turn imply the Chapman-Kolmogorov eqn., but without requiring the Markov condition. We present a class of Ito process superficially resembling Markov processes, but with 1-state memory. In finance, such processes would obey the efficient market hypothesis up through the level of pair correlations. These stochastic processes have been mislabeled in recent literature as 'nonlinear Markov processes'. Inspired by Doob and Feller, who pointed out that the ChapmanKolmogorov eqn. is not restricted to Markov processes, we exhibit a Gaussian Ito transition density with 1-state memory in the drift coefficient that satisfies both of Kolmogorov's partial differential eqns. and also the Chapman-Kolmogorov eqn. In addition, we show that three of the examples from McKean's seminal 1966 paper are also nonMarkov Ito processes. Last, we show that the transition density of the generalized Black-Scholes type partial differential eqn. describes a martingale, and satisfies the ChapmanKolmogorov eqn. This leads to the shortest-known proof that the Green function of the Black-Scholes eqn. with variable diffusion coefficient provides the so-called martingale measure of option pricing.
Martingales and Markov chains solved exercises and elements of theory
Baldi, Paolo; Priouret, Pierre
2002-01-01
CONDITIONAL EXPECTATIONSIntroductionDefinition and First PropertiesConditional Expectations and Conditional LawsExercisesSolutionsSTOCHASTIC PROCESSESGeneral FactsStopping TimesExercisesSolutionsMARTINGALESFirst DefinitionsFirst PropertiesThe Stopping TheoremMaximal InequalitiesSquare Integral MartingalesConvergence TheoremsRegular MartingalesExercisesProblemsSolutionsMARKOV CHAINSTransition Matrices, Markov ChainsConstruction and ExistenceComputations on the Canonical ChainPotential OperatorsPassage ProblemsRecurrence, TransienceRecurrent Irreducible ChainsPeriodicityExercisesProblemsSolution
Stable Parameter Estimation for Autoregressive Equations with Random Coefficients
Directory of Open Access Journals (Sweden)
V. B. Goryainov
2014-01-01
Full Text Available In recent yearsthere has been a growing interest in non-linear time series models. They are more flexible than traditional linear models and allow more adequate description of real data. Among these models a autoregressive model with random coefficients plays an important role. It is widely used in various fields of science and technology, for example, in physics, biology, economics and finance. The model parameters are the mean values of autoregressive coefficients. Their evaluation is the main task of model identification. The basic method of estimation is still the least squares method, which gives good results for Gaussian time series, but it is quite sensitive to even small disturbancesin the assumption of Gaussian observations. In this paper we propose estimates, which generalize the least squares estimate in the sense that the quadratic objective function is replaced by an arbitrary convex and even function. Reasonable choice of objective function allows you to keep the benefits of the least squares estimate and eliminate its shortcomings. In particular, you can make it so that they will be almost as effective as the least squares estimate in the Gaussian case, but almost never loose in accuracy with small deviations of the probability distribution of the observations from the Gaussian distribution.The main result is the proof of consistency and asymptotic normality of the proposed estimates in the particular case of the one-parameter model describing the stationary process with finite variance. Another important result is the finding of the asymptotic relative efficiency of the proposed estimates in relation to the least squares estimate. This allows you to compare the two estimates, depending on the probability distribution of innovation process and of autoregressive coefficients. The results can be used to identify an autoregressive process, especially with nonGaussian nature, and/or of autoregressive processes observed with gross
A representation theory for a class of vector autoregressive models for fractional processes
DEFF Research Database (Denmark)
Johansen, Søren
2008-01-01
Based on an idea of Granger (1986), we analyze a new vector autoregressive model defined from the fractional lag operator 1-(1-L)^{d}. We first derive conditions in terms of the coefficients for the model to generate processes which are fractional of order zero. We then show that if there is a un...... root, the model generates a fractional process X(t) of order d, d>0, for which there are vectors ß so that ß'X(t) is fractional of order d-b, 0...
Maximizing Entropy over Markov Processes
DEFF Research Database (Denmark)
Biondi, Fabrizio; Legay, Axel; Nielsen, Bo Friis
2013-01-01
The channel capacity of a deterministic system with confidential data is an upper bound on the amount of bits of data an attacker can learn from the system. We encode all possible attacks to a system using a probabilistic specification, an Interval Markov Chain. Then the channel capacity...... as a reward function, a polynomial algorithm to verify the existence of an system maximizing entropy among those respecting a specification, a procedure for the maximization of reward functions over Interval Markov Chains and its application to synthesize an implementation maximizing entropy. We show how...... to use Interval Markov Chains to model abstractions of deterministic systems with confidential data, and use the above results to compute their channel capacity. These results are a foundation for ongoing work on computing channel capacity for abstractions of programs derived from code....
Maximizing entropy over Markov processes
DEFF Research Database (Denmark)
Biondi, Fabrizio; Legay, Axel; Nielsen, Bo Friis
2014-01-01
The channel capacity of a deterministic system with confidential data is an upper bound on the amount of bits of data an attacker can learn from the system. We encode all possible attacks to a system using a probabilistic specification, an Interval Markov Chain. Then the channel capacity...... as a reward function, a polynomial algorithm to verify the existence of a system maximizing entropy among those respecting a specification, a procedure for the maximization of reward functions over Interval Markov Chains and its application to synthesize an implementation maximizing entropy. We show how...... to use Interval Markov Chains to model abstractions of deterministic systems with confidential data, and use the above results to compute their channel capacity. These results are a foundation for ongoing work on computing channel capacity for abstractions of programs derived from code. © 2014 Elsevier...
Markov Networks in Evolutionary Computation
Shakya, Siddhartha
2012-01-01
Markov networks and other probabilistic graphical modes have recently received an upsurge in attention from Evolutionary computation community, particularly in the area of Estimation of distribution algorithms (EDAs). EDAs have arisen as one of the most successful experiences in the application of machine learning methods in optimization, mainly due to their efficiency to solve complex real-world optimization problems and their suitability for theoretical analysis. This book focuses on the different steps involved in the conception, implementation and application of EDAs that use Markov networks, and undirected models in general. It can serve as a general introduction to EDAs but covers also an important current void in the study of these algorithms by explaining the specificities and benefits of modeling optimization problems by means of undirected probabilistic models. All major developments to date in the progressive introduction of Markov networks based EDAs are reviewed in the book. Hot current researc...
Dettmer, Jan; Dosso, Stan E
2012-10-01
This paper develops a trans-dimensional approach to matched-field geoacoustic inversion, including interacting Markov chains to improve efficiency and an autoregressive model to account for correlated errors. The trans-dimensional approach and hierarchical seabed model allows inversion without assuming any particular parametrization by relaxing model specification to a range of plausible seabed models (e.g., in this case, the number of sediment layers is an unknown parameter). Data errors are addressed by sampling statistical error-distribution parameters, including correlated errors (covariance), by applying a hierarchical autoregressive error model. The well-known difficulty of low acceptance rates for trans-dimensional jumps is addressed with interacting Markov chains, resulting in a substantial increase in efficiency. The trans-dimensional seabed model and the hierarchical error model relax the degree of prior assumptions required in the inversion, resulting in substantially improved (more realistic) uncertainty estimates and a more automated algorithm. In particular, the approach gives seabed parameter uncertainty estimates that account for uncertainty due to prior model choice (layering and data error statistics). The approach is applied to data measured on a vertical array in the Mediterranean Sea.
Markov chains and mixing times
Levin, David A; Wilmer, Elizabeth L
2009-01-01
This book is an introduction to the modern approach to the theory of Markov chains. The main goal of this approach is to determine the rate of convergence of a Markov chain to the stationary distribution as a function of the size and geometry of the state space. The authors develop the key tools for estimating convergence times, including coupling, strong stationary times, and spectral methods. Whenever possible, probabilistic methods are emphasized. The book includes many examples and provides brief introductions to some central models of statistical mechanics. Also provided are accounts of r
Markov Models for Handwriting Recognition
Plotz, Thomas
2011-01-01
Since their first inception, automatic reading systems have evolved substantially, yet the recognition of handwriting remains an open research problem due to its substantial variation in appearance. With the introduction of Markovian models to the field, a promising modeling and recognition paradigm was established for automatic handwriting recognition. However, no standard procedures for building Markov model-based recognizers have yet been established. This text provides a comprehensive overview of the application of Markov models in the field of handwriting recognition, covering both hidden
The spectral method and the central limit theorem for general Markov chains
Nagaev, S. V.
2017-12-01
We consider Markov chains with an arbitrary phase space and develop a modification of the spectral method that enables us to prove the central limit theorem (CLT) for non-uniformly ergodic Markov chains. The conditions imposed on the transition function are more general than those by Athreya-Ney and Nummelin. Our proof of the CLT is purely analytical.
On the Stationarity of Multiple Autoregressive Approximants: Theory and Algorithms
1976-08-01
a I (3.4) Hannan and Terrell (1972) consider problems of a similar nature. Efficient estimates A(1),... , A(p) , and i of A(1)... ,A(p) and...34Autoregressive model fitting for control, Ann . Inst. Statist. Math., 23, 163-180. Hannan, E. J. (1970), Multiple Time Series, New York, John Wiley...Hannan, E. J. and Terrell , R. D. (1972), "Time series regression with linear constraints, " International Economic Review, 13, 189-200. Masani, P
CICAAR - Convolutive ICA with an Auto-Regressive Inverse Model
DEFF Research Database (Denmark)
Dyrholm, Mads; Hansen, Lars Kai
2004-01-01
We invoke an auto-regressive IIR inverse model for convolutive ICA and derive expressions for the likelihood and its gradient. We argue that optimization will give a stable inverse. When there are more sensors than sources the mixing model parameters are estimated in a second step by least square...... estimation. We demonstrate the method on synthetic data and finally separate speech and music in a real room recording....
Testing exact rational expectations in cointegrated vector autoregressive models
DEFF Research Database (Denmark)
Johansen, Søren; Swensen, Anders Rygh
1999-01-01
This paper considers the testing of restrictions implied by rational expectations hypotheses in a cointegrated vector autoregressive model for I(1) variables. If the rational expectations involve one-step-ahead observations only and the coefficients are known, an explicit parameterization...... of the restrictions is found, and the maximum-likelihood estimator is derived by regression and reduced rank regression. An application is given to a present value model....
Honest Importance Sampling with Multiple Markov Chains.
Tan, Aixin; Doss, Hani; Hobert, James P
2015-01-01
Importance sampling is a classical Monte Carlo technique in which a random sample from one probability density, π 1 , is used to estimate an expectation with respect to another, π . The importance sampling estimator is strongly consistent and, as long as two simple moment conditions are satisfied, it obeys a central limit theorem (CLT). Moreover, there is a simple consistent estimator for the asymptotic variance in the CLT, which makes for routine computation of standard errors. Importance sampling can also be used in the Markov chain Monte Carlo (MCMC) context. Indeed, if the random sample from π 1 is replaced by a Harris ergodic Markov chain with invariant density π 1 , then the resulting estimator remains strongly consistent. There is a price to be paid however, as the computation of standard errors becomes more complicated. First, the two simple moment conditions that guarantee a CLT in the iid case are not enough in the MCMC context. Second, even when a CLT does hold, the asymptotic variance has a complex form and is difficult to estimate consistently. In this paper, we explain how to use regenerative simulation to overcome these problems. Actually, we consider a more general set up, where we assume that Markov chain samples from several probability densities, π 1 , …, π k , are available. We construct multiple-chain importance sampling estimators for which we obtain a CLT based on regeneration. We show that if the Markov chains converge to their respective target distributions at a geometric rate, then under moment conditions similar to those required in the iid case, the MCMC-based importance sampling estimator obeys a CLT. Furthermore, because the CLT is based on a regenerative process, there is a simple consistent estimator of the asymptotic variance. We illustrate the method with two applications in Bayesian sensitivity analysis. The first concerns one-way random effects models under different priors. The second involves Bayesian variable
Kammerdiner, Alla; Xanthopoulos, Petros; Pardalos, Panos M.
2007-11-01
In this chapter a potential problem with application of the Granger-causality based on the simple vector autoregressive (VAR) modeling to EEG data is investigated. Although some initial studies tested whether the data support the stationarity assumption of VAR, the stability of the estimated model is rarely (if ever) been verified. In fact, in cases when the stability condition is violated the process may exhibit a random walk like behavior or even be explosive. The problem is illustrated by an example.
Consistency and refinement for Interval Markov Chains
DEFF Research Database (Denmark)
Delahaye, Benoit; Larsen, Kim Guldstrand; Legay, Axel
2012-01-01
Interval Markov Chains (IMC), or Markov Chains with probability intervals in the transition matrix, are the base of a classic specification theory for probabilistic systems [18]. The standard semantics of IMCs assigns to a specification the set of all Markov Chains that satisfy its interval...
Ağaç, Kübra; Koçak, Kasım; Deniz, Ali
2015-04-01
A time series approach using autoregressive model (AR), moving average model (MA) and seasonal autoregressive integrated moving average model (SARIMA) were used in this study to simulate and forecast daily PM10 concentrations in Kagithane Creek Valley, Istanbul. Hourly PM10 concentrations have been measured in Kagithane Creek Valley between 2010 and 2014 periods. Bosphorus divides the city in two parts as European and Asian parts. The historical part of the city takes place in Golden Horn. Our study area Kagithane Creek Valley is connected with this historical part. The study area is highly polluted because of its topographical structure and industrial activities. Also population density is extremely high in this site. The dispersion conditions are highly poor in this creek valley so it is necessary to calculate PM10 levels for air quality and human health. For given period there were some missing PM10 concentration values so to make an accurate calculations and to obtain exact results gap filling method was applied by Singular Spectrum Analysis (SSA). SSA is a new and efficient method for gap filling and it is an state-of-art modeling. SSA-MTM Toolkit was used for our study. SSA is considered as a noise reduction algorithm because it decomposes an original time series to trend (if exists), oscillatory and noise components by way of a singular value decomposition. The basic SSA algorithm has stages of decomposition and reconstruction. For given period daily and monthly PM10 concentrations were calculated and episodic periods are determined. Long term and short term PM10 concentrations were analyzed according to European Union (EU) standards. For simulation and forecasting of high level PM10 concentrations, meteorological data (wind speed, pressure and temperature) were used to see the relationship between daily PM10 concentrations. Fast Fourier Transformation (FFT) was also applied to the data to see the periodicity and according to these periods models were built
Katoen, Joost P.; Maneesh Khattri, M.; Zapreev, I.S.; Zapreev, I.S.
2005-01-01
This short tool paper introduces MRMC, a model checker for discrete-time and continuous-time Markov reward models. It supports reward extensions of PCTL and CSL, and allows for the automated verification of properties concerning long-run and instantaneous rewards as well as cumulative rewards. In
Markov Decision Processes in Practice
Boucherie, Richardus J.; van Dijk, N.M.
2017-01-01
It is over 30 years ago since D.J. White started his series of surveys on practical applications of Markov decision processes (MDP), over 20 years after the phenomenal book by Martin Puterman on the theory of MDP, and over 10 years since Eugene A. Feinberg and Adam Shwartz published their Handbook
Markov transitions and the propagation of chaos
International Nuclear Information System (INIS)
Gottlieb, A.
1998-01-01
The propagation of chaos is a central concept of kinetic theory that serves to relate the equations of Boltzmann and Vlasov to the dynamics of many-particle systems. Propagation of chaos means that molecular chaos, i.e., the stochastic independence of two random particles in a many-particle system, persists in time, as the number of particles tends to infinity. We establish a necessary and sufficient condition for a family of general n-particle Markov processes to propagate chaos. This condition is expressed in terms of the Markov transition functions associated to the n-particle processes, and it amounts to saying that chaos of random initial states propagates if it propagates for pure initial states. Our proof of this result relies on the weak convergence approach to the study of chaos due to Sztitman and Tanaka. We assume that the space in which the particles live is homomorphic to a complete and separable metric space so that we may invoke Prohorov's theorem in our proof. We also show that, if the particles can be in only finitely many states, then molecular chaos implies that the specific entropies in the n-particle distributions converge to the entropy of the limiting single-particle distribution
The spectral method and ergodic theorems for general Markov chains
International Nuclear Information System (INIS)
Nagaev, S V
2015-01-01
We study the ergodic properties of Markov chains with an arbitrary state space and prove a geometric ergodic theorem. The method of the proof is new: it may be described as an operator method. Our main result is an ergodic theorem for Harris-Markov chains in the case when the return time to some fixed set has finite expectation. Our conditions for the transition function are more general than those used by Athreya-Ney and Nummelin. Unlike them, we impose restrictions not on the original transition function but on the transition function of an embedded Markov chain constructed from the return times to the fixed set mentioned above. The proof uses the spectral theory of linear operators on a Banach space
International Nuclear Information System (INIS)
Jafri, Y.Z.; Kamal, L.
2009-01-01
A generalized theory of ARMA modeling, covering a wide range of researches. with model identification, order determination, estimation and diagnostic checking is presented. We evolved standardization of wind data to overcome non-stationarity. With our techniques on generating synthetic values of wind series using MTM, we modeled and simulated autocorrelated function (ACF). MTM is found relatively a better simulator as compared to ARMA. We used twenty year of wind data. MTM required fast computation and suitable algorithm for backward calculations to yield ACF values. We found ARMA (p, q) model suitableble for both large range (1-6 hours) and short range (1-2 hours). This indicates that forecast values can be considered for appropriate wind energy conversion system. (author)
The deviation matrix of a continuous-time Markov chain
Coolen-Schrijner, P.; van Doorn, E.A.
2001-01-01
The deviation matrix of an ergodic, continuous-time Markov chain with transition probability matrix $P(.)$ and ergodic matrix $\\Pi$ is the matrix $D \\equiv \\int_0^{\\infty} (P(t)-\\Pi)dt$. We give conditions for $D$ to exist and discuss properties and a representation of $D$. The deviation matrix of a
The deviation matrix of a continuous-time Markov chain
Coolen-Schrijner, Pauline; van Doorn, Erik A.
2002-01-01
he deviation matrix of an ergodic, continuous-time Markov chain with transition probability matrix $P(.)$ and ergodic matrix $\\Pi$ is the matrix $D \\equiv \\int_0^{\\infty} (P(t)-\\Pi)dt$. We give conditions for $D$ to exist and discuss properties and a representation of $D$. The deviation matrix of a
Critical Age-Dependent Branching Markov Processes and their ...
Indian Academy of Sciences (India)
This paper studies: (i) the long-time behaviour of the empirical distribution of age and normalized position of an age-dependent critical branching Markov process conditioned on non-extinction; and (ii) the super-process limit of a sequence of age-dependent critical branching Brownian motions.
A Markov deterioration model for predicting recurrent maintenance ...
African Journals Online (AJOL)
The parameters of the Markov chain model for predicting the condition of the road at a design · period for· the flexible pavement failures of wheel track rutting, cracks and pot holes were developed for the Niger State· road network . in Nigeria. Twelve sampled candidate roads were each subjected to standard inventory, traffic ...
Approximating Markov Chains: What and why
International Nuclear Information System (INIS)
Pincus, S.
1996-01-01
Much of the current study of dynamical systems is focused on geometry (e.g., chaos and bifurcations) and ergodic theory. Yet dynamical systems were originally motivated by an attempt to open-quote open-quote solve,close-quote close-quote or at least understand, a discrete-time analogue of differential equations. As such, numerical, analytical solution techniques for dynamical systems would seem desirable. We discuss an approach that provides such techniques, the approximation of dynamical systems by suitable finite state Markov Chains. Steady state distributions for these Markov Chains, a straightforward calculation, will converge to the true dynamical system steady state distribution, with appropriate limit theorems indicated. Thus (i) approximation by a computable, linear map holds the promise of vastly faster steady state solutions for nonlinear, multidimensional differential equations; (ii) the solution procedure is unaffected by the presence or absence of a probability density function for the attractor, entirely skirting singularity, fractal/multifractal, and renormalization considerations. The theoretical machinery underpinning this development also implies that under very general conditions, steady state measures are weakly continuous with control parameter evolution. This means that even though a system may change periodicity, or become chaotic in its limiting behavior, such statistical parameters as the mean, standard deviation, and tail probabilities change continuously, not abruptly with system evolution. copyright 1996 American Institute of Physics
Autoregressive Processes in Homogenization of GNSS Tropospheric Data
Klos, A.; Bogusz, J.; Teferle, F. N.; Bock, O.; Pottiaux, E.; Van Malderen, R.
2016-12-01
Offsets due to changes in hardware equipment or any other artificial event are all a subject of a task of homogenization of tropospheric data estimated within a processing of Global Navigation Satellite System (GNSS) observables. This task is aimed at identifying exact epochs of offsets and estimate their magnitudes since they may artificially under- or over-estimate trend and its uncertainty delivered from tropospheric data and used in climate studies. In this research, we analysed a common data set of differences of Integrated Water Vapour (IWV) from GPS and ERA-Interim (1995-2010) provided for a homogenization group working within ES1206 COST Action GNSS4SWEC. We analysed daily IWV records of GPS and ERA-Interim in terms of trend, seasonal terms and noise model with Maximum Likelihood Estimation in Hector software. We found that this data has a character of autoregressive process (AR). Basing on this analysis, we performed Monte Carlo simulations of 25 years long data with two different noise types: white as well as combination of white and autoregressive and also added few strictly defined offsets. This synthetic data set of exactly the same character as IWV from GPS and ERA-Interim was then subjected to a task of manual and automatic/statistical homogenization. We made blind tests and detected possible epochs of offsets manually. We found that simulated offsets were easily detected in series with white noise, no influence of seasonal signal was noticed. The autoregressive series were much more problematic when offsets had to be determined. We found few epochs, for which no offset was simulated. This was mainly due to strong autocorrelation of data, which brings an artificial trend within. Due to regime-like behaviour of AR it is difficult for statistical methods to properly detect epochs of offsets, which was previously reported by climatologists.
Markov chains and mixing times
Levin, David A
2017-01-01
Markov Chains and Mixing Times is a magical book, managing to be both friendly and deep. It gently introduces probabilistic techniques so that an outsider can follow. At the same time, it is the first book covering the geometric theory of Markov chains and has much that will be new to experts. It is certainly THE book that I will use to teach from. I recommend it to all comers, an amazing achievement. -Persi Diaconis, Mary V. Sunseri Professor of Statistics and Mathematics, Stanford University Mixing times are an active research topic within many fields from statistical physics to the theory of algorithms, as well as having intrinsic interest within mathematical probability and exploiting discrete analogs of important geometry concepts. The first edition became an instant classic, being accessible to advanced undergraduates and yet bringing readers close to current research frontiers. This second edition adds chapters on monotone chains, the exclusion process and hitting time parameters. Having both exercises...
Temporal aggregation in first order cointegrated vector autoregressive models
DEFF Research Database (Denmark)
La Cour, Lisbeth Funding; Milhøj, Anders
We study aggregation - or sample frequencies - of time series, e.g. aggregation from weekly to monthly or quarterly time series. Aggregation usually gives shorter time series but spurious phenomena, in e.g. daily observations, can on the other hand be avoided. An important issue is the effect of ...... of aggregation on the adjustment coefficient in cointegrated systems. We study only first order vector autoregressive processes for n dimensional time series Xt, and we illustrate the theory by a two dimensional and a four dimensional model for prices of various grades of gasoline...
Temporal aggregation in first order cointegrated vector autoregressive
DEFF Research Database (Denmark)
la Cour, Lisbeth Funding; Milhøj, Anders
2006-01-01
We study aggregation - or sample frequencies - of time series, e.g. aggregation from weekly to monthly or quarterly time series. Aggregation usually gives shorter time series but spurious phenomena, in e.g. daily observations, can on the other hand be avoided. An important issue is the effect of ...... of aggregation on the adjustment coefficient in cointegrated systems. We study only first order vector autoregressive processes for n dimensional time series Xt, and we illustrate the theory by a two dimensional and a four dimensional model for prices of various grades of gasoline....
Bias-corrected estimation in potentially mildly explosive autoregressive models
DEFF Research Database (Denmark)
Haufmann, Hendrik; Kruse, Robinson
This paper provides a comprehensive Monte Carlo comparison of different finite-sample bias-correction methods for autoregressive processes. We consider classic situations where the process is either stationary or exhibits a unit root. Importantly, the case of mildly explosive behaviour is studied...... that the indirect inference approach oers a valuable alternative to other existing techniques. Its performance (measured by its bias and root mean squared error) is balanced and highly competitive across many different settings. A clear advantage is its applicability for mildly explosive processes. In an empirical...
Analysis of nonlinear systems using ARMA [autoregressive moving average] models
International Nuclear Information System (INIS)
Hunter, N.F. Jr.
1990-01-01
While many vibration systems exhibit primarily linear behavior, a significant percentage of the systems encountered in vibration and model testing are mildly to severely nonlinear. Analysis methods for such nonlinear systems are not yet well developed and the response of such systems is not accurately predicted by linear models. Nonlinear ARMA (autoregressive moving average) models are one method for the analysis and response prediction of nonlinear vibratory systems. In this paper we review the background of linear and nonlinear ARMA models, and illustrate the application of these models to nonlinear vibration systems. We conclude by summarizing the advantages and disadvantages of ARMA models and emphasizing prospects for future development. 14 refs., 11 figs
Markov Chain Ontology Analysis (MCOA).
Frost, H Robert; McCray, Alexa T
2012-02-03
Biomedical ontologies have become an increasingly critical lens through which researchers analyze the genomic, clinical and bibliographic data that fuels scientific research. Of particular relevance are methods, such as enrichment analysis, that quantify the importance of ontology classes relative to a collection of domain data. Current analytical techniques, however, remain limited in their ability to handle many important types of structural complexity encountered in real biological systems including class overlaps, continuously valued data, inter-instance relationships, non-hierarchical relationships between classes, semantic distance and sparse data. In this paper, we describe a methodology called Markov Chain Ontology Analysis (MCOA) and illustrate its use through a MCOA-based enrichment analysis application based on a generative model of gene activation. MCOA models the classes in an ontology, the instances from an associated dataset and all directional inter-class, class-to-instance and inter-instance relationships as a single finite ergodic Markov chain. The adjusted transition probability matrix for this Markov chain enables the calculation of eigenvector values that quantify the importance of each ontology class relative to other classes and the associated data set members. On both controlled Gene Ontology (GO) data sets created with Escherichia coli, Drosophila melanogaster and Homo sapiens annotations and real gene expression data extracted from the Gene Expression Omnibus (GEO), the MCOA enrichment analysis approach provides the best performance of comparable state-of-the-art methods. A methodology based on Markov chain models and network analytic metrics can help detect the relevant signal within large, highly interdependent and noisy data sets and, for applications such as enrichment analysis, has been shown to generate superior performance on both real and simulated data relative to existing state-of-the-art approaches.
Markov processes characterization and convergence
Ethier, Stewart N
2009-01-01
The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists."[A]nyone who works with Markov processes whose state space is uncountably infinite will need this most impressive book as a guide and reference."-American Scientist"There is no question but that space should immediately be reserved for [this] book on the library shelf. Those who aspire to mastery of the contents should also reserve a large number of long winter evenings."-Zentralblatt f?r Mathematik und ihre Grenzgebiete/Mathematics Abstracts"Ethier and Kurtz have produced an excellent treatment of the modern theory of Markov processes that [is] useful both as a reference work and as a graduate textbook."-Journal of Statistical PhysicsMarkov Proce...
The Effects of Oil Price Shocks on Turkish Business Cycle: A Markov Switching Approach
Directory of Open Access Journals (Sweden)
Vasif Abiyev
2015-10-01
Full Text Available Purpose - The purpose of this study is to investigate the relationship between oil price changes and the output growth in Turkey. Design/methodology/approach - The data were taken from International Financial Statistics databases, consisting of monthly data for the period 1986:01-2014:09. Different univariate Markov - switching regime autoregressive models are specified and estimated. Among them we selected univariate MSIH(3 - AR(2 model for output and extended it to verify if the inclusion of various asymmetric oil price shocks as an exogenous variable improves the ability of the Markov switching model. Four different oil price shocks are considered. Findings - We find that among various oil price shocks, only net oil price increases have negative effects on output growth and mitigate the magnitude of some recessionary periods in Turkey. However, it doesn’t strongly explain the behavior of business cycle in Turkey. Research limitations/implications - Our results suggest that the inclusion of other fundamental financial factors in the bivariate Markov switching model of aggregate economic activity and oil price changes becomes important to explicitly detect the negative impact of oil price shocks on output in Turkey. Originality/value - Our results support the existence of a negative relationship between oil price increases and output growth mentioned in the literature and empirical studies on Turkey.
Entanglement revival can occur only when the system-environment state is not a Markov state
Sargolzahi, Iman
2018-06-01
Markov states have been defined for tripartite quantum systems. In this paper, we generalize the definition of the Markov states to arbitrary multipartite case and find the general structure of an important subset of them, which we will call strong Markov states. In addition, we focus on an important property of the Markov states: If the initial state of the whole system-environment is a Markov state, then each localized dynamics of the whole system-environment reduces to a localized subdynamics of the system. This provides us a necessary condition for entanglement revival in an open quantum system: Entanglement revival can occur only when the system-environment state is not a Markov state. To illustrate (a part of) our results, we consider the case that the environment is modeled as classical. In this case, though the correlation between the system and the environment remains classical during the evolution, the change of the state of the system-environment, from its initial Markov state to a state which is not a Markov one, leads to the entanglement revival in the system. This shows that the non-Markovianity of a state is not equivalent to the existence of non-classical correlation in it, in general.
Harmonic spectral components in time sequences of Markov correlated events
Mazzetti, Piero; Carbone, Anna
2017-07-01
The paper concerns the analysis of the conditions allowing time sequences of Markov correlated events give rise to a line power spectrum having a relevant physical interest. It is found that by specializing the Markov matrix in order to represent closed loop sequences of events with arbitrary distribution, generated in a steady physical condition, a large set of line spectra, covering all possible frequency values, is obtained. The amplitude of the spectral lines is given by a matrix equation based on a generalized Markov matrix involving the Fourier transform of the distribution functions representing the time intervals between successive events of the sequence. The paper is a complement of a previous work where a general expression for the continuous power spectrum was given. In that case the Markov matrix was left in a more general form, thus preventing the possibility of finding line spectra of physical interest. The present extension is also suggested by the interest of explaining the emergence of a broad set of waves found in the electro and magneto-encephalograms, whose frequency ranges from 0.5 to about 40Hz, in terms of the effects produced by chains of firing neurons within the complex neural network of the brain. An original model based on synchronized closed loop sequences of firing neurons is proposed, and a few numerical simulations are reported as an application of the above cited equation.
Monthly streamflow forecasting with auto-regressive integrated moving average
Nasir, Najah; Samsudin, Ruhaidah; Shabri, Ani
2017-09-01
Forecasting of streamflow is one of the many ways that can contribute to better decision making for water resource management. The auto-regressive integrated moving average (ARIMA) model was selected in this research for monthly streamflow forecasting with enhancement made by pre-processing the data using singular spectrum analysis (SSA). This study also proposed an extension of the SSA technique to include a step where clustering was performed on the eigenvector pairs before reconstruction of the time series. The monthly streamflow data of Sungai Muda at Jeniang, Sungai Muda at Jambatan Syed Omar and Sungai Ketil at Kuala Pegang was gathered from the Department of Irrigation and Drainage Malaysia. A ratio of 9:1 was used to divide the data into training and testing sets. The ARIMA, SSA-ARIMA and Clustered SSA-ARIMA models were all developed in R software. Results from the proposed model are then compared to a conventional auto-regressive integrated moving average model using the root-mean-square error and mean absolute error values. It was found that the proposed model can outperform the conventional model.
Quantum Markov processes and applications in many-body systems
International Nuclear Information System (INIS)
Temme, P. K.
2010-01-01
This thesis is concerned with the investigation of quantum as well as classical Markov processes and their application in the field of strongly correlated many-body systems. A Markov process is a special kind of stochastic process, which is determined by an evolution that is independent of its history and only depends on the current state of the system. The application of Markov processes has a long history in the field of statistical mechanics and classical many-body theory. Not only are Markov processes used to describe the dynamics of stochastic systems, but they predominantly also serve as a practical method that allows for the computation of fundamental properties of complex many-body systems by means of probabilistic algorithms. The aim of this thesis is to investigate the properties of quantum Markov processes, i.e. Markov processes taking place in a quantum mechanical state space, and to gain a better insight into complex many-body systems by means thereof. Moreover, we formulate a novel quantum algorithm which allows for the computation of the thermal and ground states of quantum many-body systems. After a brief introduction to quantum Markov processes we turn to an investigation of their convergence properties. We find bounds on the convergence rate of the quantum process by generalizing geometric bounds found for classical processes. We generalize a distance measure that serves as the basis for our investigations, the chi-square divergence, to non-commuting probability spaces. This divergence allows for a convenient generalization of the detailed balance condition to quantum processes. We then devise the quantum algorithm that can be seen as the natural generalization of the ubiquitous Metropolis algorithm to simulate quantum many-body Hamiltonians. By this we intend to provide further evidence, that a quantum computer can serve as a fully-fledged quantum simulator, which is not only capable of describing the dynamical evolution of quantum systems, but
Pemodelan Markov Switching Dengan Time-varying Transition Probability
Savitri, Anggita Puri; Warsito, Budi; Rahmawati, Rita
2016-01-01
Exchange rate or currency is an economic variable which reflects country's state of economy. It fluctuates over time because of its ability to switch the condition or regime caused by economic and political factors. The changes in the exchange rate are depreciation and appreciation. Therefore, it could be modeled using Markov Switching with Time-Varying Transition Probability which observe the conditional changes and use information variable. From this model, time-varying transition probabili...
Verification of Open Interactive Markov Chains
Brazdil, Tomas; Hermanns, Holger; Krcal, Jan; Kretinsky, Jan; Rehak, Vojtech
2012-01-01
Interactive Markov chains (IMC) are compositional behavioral models extending both labeled transition systems and continuous-time Markov chains. IMC pair modeling convenience - owed to compositionality properties - with effective verification algorithms and tools - owed to Markov properties. Thus far however, IMC verification did not consider compositionality properties, but considered closed systems. This paper discusses the evaluation of IMC in an open and thus compositional interpretation....
Spectral methods for quantum Markov chains
Energy Technology Data Exchange (ETDEWEB)
Szehr, Oleg
2014-05-08
The aim of this project is to contribute to our understanding of quantum time evolutions, whereby we focus on quantum Markov chains. The latter constitute a natural generalization of the ubiquitous concept of a classical Markov chain to describe evolutions of quantum mechanical systems. We contribute to the theory of such processes by introducing novel methods that allow us to relate the eigenvalue spectrum of the transition map to convergence as well as stability properties of the Markov chain.
Spectral methods for quantum Markov chains
International Nuclear Information System (INIS)
Szehr, Oleg
2014-01-01
The aim of this project is to contribute to our understanding of quantum time evolutions, whereby we focus on quantum Markov chains. The latter constitute a natural generalization of the ubiquitous concept of a classical Markov chain to describe evolutions of quantum mechanical systems. We contribute to the theory of such processes by introducing novel methods that allow us to relate the eigenvalue spectrum of the transition map to convergence as well as stability properties of the Markov chain.
A scaling analysis of a cat and mouse Markov chain
Litvak, Nelli; Robert, Philippe
2012-01-01
If ($C_n$) a Markov chain on a discrete state space $S$, a Markov chain ($C_n, M_n$) on the product space $S \\times S$, the cat and mouse Markov chain, is constructed. The first coordinate of this Markov chain behaves like the original Markov chain and the second component changes only when both
Recombination Processes and Nonlinear Markov Chains.
Pirogov, Sergey; Rybko, Alexander; Kalinina, Anastasia; Gelfand, Mikhail
2016-09-01
Bacteria are known to exchange genetic information by horizontal gene transfer. Since the frequency of homologous recombination depends on the similarity between the recombining segments, several studies examined whether this could lead to the emergence of subspecies. Most of them simulated fixed-size Wright-Fisher populations, in which the genetic drift should be taken into account. Here, we use nonlinear Markov processes to describe a bacterial population evolving under mutation and recombination. We consider a population structure as a probability measure on the space of genomes. This approach implies the infinite population size limit, and thus, the genetic drift is not assumed. We prove that under these conditions, the emergence of subspecies is impossible.
Markov Decision Process Measurement Model.
LaMar, Michelle M
2018-03-01
Within-task actions can provide additional information on student competencies but are challenging to model. This paper explores the potential of using a cognitive model for decision making, the Markov decision process, to provide a mapping between within-task actions and latent traits of interest. Psychometric properties of the model are explored, and simulation studies report on parameter recovery within the context of a simple strategy game. The model is then applied to empirical data from an educational game. Estimates from the model are found to correlate more strongly with posttest results than a partial-credit IRT model based on outcome data alone.
Markov process of muscle motors
International Nuclear Information System (INIS)
Kondratiev, Yu; Pechersky, E; Pirogov, S
2008-01-01
We study a Markov random process describing muscle molecular motor behaviour. Every motor is either bound up with a thin filament or unbound. In the bound state the motor creates a force proportional to its displacement from the neutral position. In both states the motor spends an exponential time depending on the state. The thin filament moves at a velocity proportional to the average of all displacements of all motors. We assume that the time which a motor stays in the bound state does not depend on its displacement. Then one can find an exact solution of a nonlinear equation appearing in the limit of an infinite number of motors
Exact goodness-of-fit tests for Markov chains.
Besag, J; Mondal, D
2013-06-01
Goodness-of-fit tests are useful in assessing whether a statistical model is consistent with available data. However, the usual χ² asymptotics often fail, either because of the paucity of the data or because a nonstandard test statistic is of interest. In this article, we describe exact goodness-of-fit tests for first- and higher order Markov chains, with particular attention given to time-reversible ones. The tests are obtained by conditioning on the sufficient statistics for the transition probabilities and are implemented by simple Monte Carlo sampling or by Markov chain Monte Carlo. They apply both to single and to multiple sequences and allow a free choice of test statistic. Three examples are given. The first concerns multiple sequences of dry and wet January days for the years 1948-1983 at Snoqualmie Falls, Washington State, and suggests that standard analysis may be misleading. The second one is for a four-state DNA sequence and lends support to the original conclusion that a second-order Markov chain provides an adequate fit to the data. The last one is six-state atomistic data arising in molecular conformational dynamics simulation of solvated alanine dipeptide and points to strong evidence against a first-order reversible Markov chain at 6 picosecond time steps. © 2013, The International Biometric Society.
Barbu, Vlad
2008-01-01
Semi-Markov processes are much more general and better adapted to applications than the Markov ones because sojourn times in any state can be arbitrarily distributed, as opposed to the geometrically distributed sojourn time in the Markov case. This book concerns with the estimation of discrete-time semi-Markov and hidden semi-Markov processes
Implementing Modifed Burg Algorithms in Multivariate Subset Autoregressive Modeling
Directory of Open Access Journals (Sweden)
A. Alexandre Trindade
2003-02-01
Full Text Available The large number of parameters in subset vector autoregressive models often leads one to procure fast, simple, and efficient alternatives or precursors to maximum likelihood estimation. We present the solution of the multivariate subset Yule-Walker equations as one such alternative. In recent work, Brockwell, Dahlhaus, and Trindade (2002, show that the Yule-Walker estimators can actually be obtained as a special case of a general recursive Burg-type algorithm. We illustrate the structure of this Algorithm, and discuss its implementation in a high-level programming language. Applications of the Algorithm in univariate and bivariate modeling are showcased in examples. Univariate and bivariate versions of the Algorithm written in Fortran 90 are included in the appendix, and their use illustrated.
Bias-correction in vector autoregressive models: A simulation study
DEFF Research Database (Denmark)
Engsted, Tom; Pedersen, Thomas Quistgaard
We analyze and compare the properties of various methods for bias-correcting parameter estimates in vector autoregressions. First, we show that two analytical bias formulas from the existing literature are in fact identical. Next, based on a detailed simulation study, we show that this simple...... and easy-to-use analytical bias formula compares very favorably to the more standard but also more computer intensive bootstrap bias-correction method, both in terms of bias and mean squared error. Both methods yield a notable improvement over both OLS and a recently proposed WLS estimator. We also...... of pushing an otherwise stationary model into the non-stationary region of the parameter space during the process of correcting for bias....
Least squares estimation in a simple random coefficient autoregressive model
DEFF Research Database (Denmark)
Johansen, S; Lange, T
2013-01-01
The question we discuss is whether a simple random coefficient autoregressive model with infinite variance can create the long swings, or persistence, which are observed in many macroeconomic variables. The model is defined by yt=stρyt−1+εt,t=1,…,n, where st is an i.i.d. binary variable with p...... we prove the curious result that View the MathML source. The proof applies the notion of a tail index of sums of positive random variables with infinite variance to find the order of magnitude of View the MathML source and View the MathML source and hence the limit of View the MathML source...
4K Video Traffic Prediction using Seasonal Autoregressive Modeling
Directory of Open Access Journals (Sweden)
D. R. Marković
2017-06-01
Full Text Available From the perspective of average viewer, high definition video streams such as HD (High Definition and UHD (Ultra HD are increasing their internet presence year over year. This is not surprising, having in mind expansion of HD streaming services, such as YouTube, Netflix etc. Therefore, high definition video streams are starting to challenge network resource allocation with their bandwidth requirements and statistical characteristics. Need for analysis and modeling of this demanding video traffic has essential importance for better quality of service and experience support. In this paper we use an easy-to-apply statistical model for prediction of 4K video traffic. Namely, seasonal autoregressive modeling is applied in prediction of 4K video traffic, encoded with HEVC (High Efficiency Video Coding. Analysis and modeling were performed within R programming environment using over 17.000 high definition video frames. It is shown that the proposed methodology provides good accuracy in high definition video traffic modeling.
Bias-Correction in Vector Autoregressive Models: A Simulation Study
Directory of Open Access Journals (Sweden)
Tom Engsted
2014-03-01
Full Text Available We analyze the properties of various methods for bias-correcting parameter estimates in both stationary and non-stationary vector autoregressive models. First, we show that two analytical bias formulas from the existing literature are in fact identical. Next, based on a detailed simulation study, we show that when the model is stationary this simple bias formula compares very favorably to bootstrap bias-correction, both in terms of bias and mean squared error. In non-stationary models, the analytical bias formula performs noticeably worse than bootstrapping. Both methods yield a notable improvement over ordinary least squares. We pay special attention to the risk of pushing an otherwise stationary model into the non-stationary region of the parameter space when correcting for bias. Finally, we consider a recently proposed reduced-bias weighted least squares estimator, and we find that it compares very favorably in non-stationary models.
REGIONAL FIRST ORDER PERIODIC AUTOREGRESSIVE MODELS FOR MONTHLY FLOWS
Directory of Open Access Journals (Sweden)
Ceyhun ÖZÇELİK
2008-01-01
Full Text Available First order periodic autoregressive models is of mostly used models in modeling of time dependency of hydrological flow processes. In these models, periodicity of the correlogram is preserved as well as time dependency of processes. However, the parameters of these models, namely, inter-monthly lag-1 autocorrelation coefficients may be often estimated erroneously from short samples, since they are statistics of high order moments. Therefore, to constitute a regional model may be a solution that can produce more reliable and decisive estimates, and derive models and model parameters in any required point of the basin considered. In this study, definitions of homogeneous region for lag-1 autocorrelation coefficients are made; five parametric and non parametric models are proposed to set regional models of lag-1 autocorrelation coefficients. Regional models are applied on 30 stream flow gauging stations in Seyhan and Ceyhan basins, and tested by criteria of relative absolute bias, simple and relative root of mean square errors.
Drought Patterns Forecasting using an Auto-Regressive Logistic Model
del Jesus, M.; Sheffield, J.; Méndez Incera, F. J.; Losada, I. J.; Espejo, A.
2014-12-01
Drought is characterized by a water deficit that may manifest across a large range of spatial and temporal scales. Drought may create important socio-economic consequences, many times of catastrophic dimensions. A quantifiable definition of drought is elusive because depending on its impacts, consequences and generation mechanism, different water deficit periods may be identified as a drought by virtue of some definitions but not by others. Droughts are linked to the water cycle and, although a climate change signal may not have emerged yet, they are also intimately linked to climate.In this work we develop an auto-regressive logistic model for drought prediction at different temporal scales that makes use of a spatially explicit framework. Our model allows to include covariates, continuous or categorical, to improve the performance of the auto-regressive component.Our approach makes use of dimensionality reduction (principal component analysis) and classification techniques (K-Means and maximum dissimilarity) to simplify the representation of complex climatic patterns, such as sea surface temperature (SST) and sea level pressure (SLP), while including information on their spatial structure, i.e. considering their spatial patterns. This procedure allows us to include in the analysis multivariate representation of complex climatic phenomena, as the El Niño-Southern Oscillation. We also explore the impact of other climate-related variables such as sun spots. The model allows to quantify the uncertainty of the forecasts and can be easily adapted to make predictions under future climatic scenarios. The framework herein presented may be extended to other applications such as flash flood analysis, or risk assessment of natural hazards.
Timed Comparisons of Semi-Markov Processes
DEFF Research Database (Denmark)
Pedersen, Mathias Ruggaard; Larsen, Kim Guldstrand; Bacci, Giorgio
2018-01-01
-Markov processes, and investigate the question of how to compare two semi-Markov processes with respect to their time-dependent behaviour. To this end, we introduce the relation of being “faster than” between processes and study its algorithmic complexity. Through a connection to probabilistic automata we obtain...
Probabilistic Reachability for Parametric Markov Models
DEFF Research Database (Denmark)
Hahn, Ernst Moritz; Hermanns, Holger; Zhang, Lijun
2011-01-01
Given a parametric Markov model, we consider the problem of computing the rational function expressing the probability of reaching a given set of states. To attack this principal problem, Daws has suggested to first convert the Markov chain into a finite automaton, from which a regular expression...
Inhomogeneous Markov point processes by transformation
DEFF Research Database (Denmark)
Jensen, Eva B. Vedel; Nielsen, Linda Stougaard
2000-01-01
We construct parametrized models for point processes, allowing for both inhomogeneity and interaction. The inhomogeneity is obtained by applying parametrized transformations to homogeneous Markov point processes. An interesting model class, which can be constructed by this transformation approach......, is that of exponential inhomogeneous Markov point processes. Statistical inference For such processes is discussed in some detail....
Markov-modulated and feedback fluid queues
Scheinhardt, Willem R.W.
1998-01-01
In the last twenty years the field of Markov-modulated fluid queues has received considerable attention. In these models a fluid reservoir receives and/or releases fluid at rates which depend on the actual state of a background Markov chain. In the first chapter of this thesis we give a short
Directory of Open Access Journals (Sweden)
Huilin Huang
2014-01-01
Full Text Available We study strong limit theorems for hidden Markov chains fields indexed by an infinite tree with uniformly bounded degrees. We mainly establish the strong law of large numbers for hidden Markov chains fields indexed by an infinite tree with uniformly bounded degrees and give the strong limit law of the conditional sample entropy rate.
Classification Using Markov Blanket for Feature Selection
DEFF Research Database (Denmark)
Zeng, Yifeng; Luo, Jian
2009-01-01
Selecting relevant features is in demand when a large data set is of interest in a classification task. It produces a tractable number of features that are sufficient and possibly improve the classification performance. This paper studies a statistical method of Markov blanket induction algorithm...... for filtering features and then applies a classifier using the Markov blanket predictors. The Markov blanket contains a minimal subset of relevant features that yields optimal classification performance. We experimentally demonstrate the improved performance of several classifiers using a Markov blanket...... induction as a feature selection method. In addition, we point out an important assumption behind the Markov blanket induction algorithm and show its effect on the classification performance....
Quantum Markov Chain Mixing and Dissipative Engineering
DEFF Research Database (Denmark)
Kastoryano, Michael James
2012-01-01
This thesis is the fruit of investigations on the extension of ideas of Markov chain mixing to the quantum setting, and its application to problems of dissipative engineering. A Markov chain describes a statistical process where the probability of future events depends only on the state...... of the system at the present point in time, but not on the history of events. Very many important processes in nature are of this type, therefore a good understanding of their behaviour has turned out to be very fruitful for science. Markov chains always have a non-empty set of limiting distributions...... (stationary states). The aim of Markov chain mixing is to obtain (upper and/or lower) bounds on the number of steps it takes for the Markov chain to reach a stationary state. The natural quantum extensions of these notions are density matrices and quantum channels. We set out to develop a general mathematical...
The Bacterial Sequential Markov Coalescent.
De Maio, Nicola; Wilson, Daniel J
2017-05-01
Bacteria can exchange and acquire new genetic material from other organisms directly and via the environment. This process, known as bacterial recombination, has a strong impact on the evolution of bacteria, for example, leading to the spread of antibiotic resistance across clades and species, and to the avoidance of clonal interference. Recombination hinders phylogenetic and transmission inference because it creates patterns of substitutions (homoplasies) inconsistent with the hypothesis of a single evolutionary tree. Bacterial recombination is typically modeled as statistically akin to gene conversion in eukaryotes, i.e. , using the coalescent with gene conversion (CGC). However, this model can be very computationally demanding as it needs to account for the correlations of evolutionary histories of even distant loci. So, with the increasing popularity of whole genome sequencing, the need has emerged for a faster approach to model and simulate bacterial genome evolution. We present a new model that approximates the coalescent with gene conversion: the bacterial sequential Markov coalescent (BSMC). Our approach is based on a similar idea to the sequential Markov coalescent (SMC)-an approximation of the coalescent with crossover recombination. However, bacterial recombination poses hurdles to a sequential Markov approximation, as it leads to strong correlations and linkage disequilibrium across very distant sites in the genome. Our BSMC overcomes these difficulties, and shows a considerable reduction in computational demand compared to the exact CGC, and very similar patterns in simulated data. We implemented our BSMC model within new simulation software FastSimBac. In addition to the decreased computational demand compared to previous bacterial genome evolution simulators, FastSimBac provides more general options for evolutionary scenarios, allowing population structure with migration, speciation, population size changes, and recombination hotspots. FastSimBac is
Schmidt games and Markov partitions
International Nuclear Information System (INIS)
Tseng, Jimmy
2009-01-01
Let T be a C 2 -expanding self-map of a compact, connected, C ∞ , Riemannian manifold M. We correct a minor gap in the proof of a theorem from the literature: the set of points whose forward orbits are nondense has full Hausdorff dimension. Our correction allows us to strengthen the theorem. Combining the correction with Schmidt games, we generalize the theorem in dimension one: given a point x 0 in M, the set of points whose forward orbit closures miss x 0 is a winning set. Finally, our key lemma, the no matching lemma, may be of independent interest in the theory of symbolic dynamics or the theory of Markov partitions
Characteristics of the transmission of autoregressive sub-patterns in financial time series
Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong
2014-09-01
There are many types of autoregressive patterns in financial time series, and they form a transmission process. Here, we define autoregressive patterns quantitatively through an econometrical regression model. We present a computational algorithm that sets the autoregressive patterns as nodes and transmissions between patterns as edges, and then converts the transmission process of autoregressive patterns in a time series into a network. We utilised daily Shanghai (securities) composite index time series to study the transmission characteristics of autoregressive patterns. We found statistically significant evidence that the financial market is not random and that there are similar characteristics between parts and whole time series. A few types of autoregressive sub-patterns and transmission patterns drive the oscillations of the financial market. A clustering effect on fluctuations appears in the transmission process, and certain non-major autoregressive sub-patterns have high media capabilities in the financial time series. Different stock indexes exhibit similar characteristics in the transmission of fluctuation information. This work not only proposes a distinctive perspective for analysing financial time series but also provides important information for investors.
Directory of Open Access Journals (Sweden)
Carlos Quispe
2013-04-01
Full Text Available El Niño connects globally climate, ecosystems and socio-economic activities. Since 1980 this event has been tried to be predicted, but until now the statistical and dynamical models are insuffi cient. Thus, the objective of the present work was to explore using an autoregressive moving average model the effect of El Niño over the sea surface temperature (TSM off the Peruvian coast. The work involved 5 stages: identifi cation, estimation, diagnostic checking, forecasting and validation. Simple and partial autocorrelation functions (FAC and FACP were used to identify and reformulate the orders of the model parameters, as well as Akaike information criterium (AIC and Schwarz criterium (SC for the selection of the best models during the diagnostic checking. Among the main results the models ARIMA(12,0,11 were proposed, which simulated monthly conditions in agreement with the observed conditions off the Peruvian coast: cold conditions at the end of 2004, and neutral conditions at the beginning of 2005.
Finite Markov processes and their applications
Iosifescu, Marius
2007-01-01
A self-contained treatment of finite Markov chains and processes, this text covers both theory and applications. Author Marius Iosifescu, vice president of the Romanian Academy and director of its Center for Mathematical Statistics, begins with a review of relevant aspects of probability theory and linear algebra. Experienced readers may start with the second chapter, a treatment of fundamental concepts of homogeneous finite Markov chain theory that offers examples of applicable models.The text advances to studies of two basic types of homogeneous finite Markov chains: absorbing and ergodic ch
Markov chains models, algorithms and applications
Ching, Wai-Ki; Ng, Michael K; Siu, Tak-Kuen
2013-01-01
This new edition of Markov Chains: Models, Algorithms and Applications has been completely reformatted as a text, complete with end-of-chapter exercises, a new focus on management science, new applications of the models, and new examples with applications in financial risk management and modeling of financial data.This book consists of eight chapters. Chapter 1 gives a brief introduction to the classical theory on both discrete and continuous time Markov chains. The relationship between Markov chains of finite states and matrix theory will also be highlighted. Some classical iterative methods
Markov chains analytic and Monte Carlo computations
Graham, Carl
2014-01-01
Markov Chains: Analytic and Monte Carlo Computations introduces the main notions related to Markov chains and provides explanations on how to characterize, simulate, and recognize them. Starting with basic notions, this book leads progressively to advanced and recent topics in the field, allowing the reader to master the main aspects of the classical theory. This book also features: Numerous exercises with solutions as well as extended case studies.A detailed and rigorous presentation of Markov chains with discrete time and state space.An appendix presenting probabilistic notions that are nec
Recursive utility in a Markov environment with stochastic growth.
Hansen, Lars Peter; Scheinkman, José A
2012-07-24
Recursive utility models that feature investor concerns about the intertemporal composition of risk are used extensively in applied research in macroeconomics and asset pricing. These models represent preferences as the solution to a nonlinear forward-looking difference equation with a terminal condition. In this paper we study infinite-horizon specifications of this difference equation in the context of a Markov environment. We establish a connection between the solution to this equation and to an arguably simpler Perron-Frobenius eigenvalue equation of the type that occurs in the study of large deviations for Markov processes. By exploiting this connection, we establish existence and uniqueness results. Moreover, we explore a substantive link between large deviation bounds for tail events for stochastic consumption growth and preferences induced by recursive utility.
Dealing with Multiple Solutions in Structural Vector Autoregressive Models.
Beltz, Adriene M; Molenaar, Peter C M
2016-01-01
Structural vector autoregressive models (VARs) hold great potential for psychological science, particularly for time series data analysis. They capture the magnitude, direction of influence, and temporal (lagged and contemporaneous) nature of relations among variables. Unified structural equation modeling (uSEM) is an optimal structural VAR instantiation, according to large-scale simulation studies, and it is implemented within an SEM framework. However, little is known about the uniqueness of uSEM results. Thus, the goal of this study was to investigate whether multiple solutions result from uSEM analysis and, if so, to demonstrate ways to select an optimal solution. This was accomplished with two simulated data sets, an empirical data set concerning children's dyadic play, and modifications to the group iterative multiple model estimation (GIMME) program, which implements uSEMs with group- and individual-level relations in a data-driven manner. Results revealed multiple solutions when there were large contemporaneous relations among variables. Results also verified several ways to select the correct solution when the complete solution set was generated, such as the use of cross-validation, maximum standardized residuals, and information criteria. This work has immediate and direct implications for the analysis of time series data and for the inferences drawn from those data concerning human behavior.
Prediction of municipal solid waste generation using nonlinear autoregressive network.
Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; Maulud, K N A
2015-12-01
Most of the developing countries have solid waste management problems. Solid waste strategic planning requires accurate prediction of the quality and quantity of the generated waste. In developing countries, such as Malaysia, the solid waste generation rate is increasing rapidly, due to population growth and new consumption trends that characterize society. This paper proposes an artificial neural network (ANN) approach using feedforward nonlinear autoregressive network with exogenous inputs (NARX) to predict annual solid waste generation in relation to demographic and economic variables like population number, gross domestic product, electricity demand per capita and employment and unemployment numbers. In addition, variable selection procedures are also developed to select a significant explanatory variable. The model evaluation was performed using coefficient of determination (R(2)) and mean square error (MSE). The optimum model that produced the lowest testing MSE (2.46) and the highest R(2) (0.97) had three inputs (gross domestic product, population and employment), eight neurons and one lag in the hidden layer, and used Fletcher-Powell's conjugate gradient as the training algorithm.
On the maximum-entropy/autoregressive modeling of time series
Chao, B. F.
1984-01-01
The autoregressive (AR) model of a random process is interpreted in the light of the Prony's relation which relates a complex conjugate pair of poles of the AR process in the z-plane (or the z domain) on the one hand, to the complex frequency of one complex harmonic function in the time domain on the other. Thus the AR model of a time series is one that models the time series as a linear combination of complex harmonic functions, which include pure sinusoids and real exponentials as special cases. An AR model is completely determined by its z-domain pole configuration. The maximum-entropy/autogressive (ME/AR) spectrum, defined on the unit circle of the z-plane (or the frequency domain), is nothing but a convenient, but ambiguous visual representation. It is asserted that the position and shape of a spectral peak is determined by the corresponding complex frequency, and the height of the spectral peak contains little information about the complex amplitude of the complex harmonic functions.
Sparse representation based image interpolation with nonlocal autoregressive modeling.
Dong, Weisheng; Zhang, Lei; Lukac, Rastislav; Shi, Guangming
2013-04-01
Sparse representation is proven to be a promising approach to image super-resolution, where the low-resolution (LR) image is usually modeled as the down-sampled version of its high-resolution (HR) counterpart after blurring. When the blurring kernel is the Dirac delta function, i.e., the LR image is directly down-sampled from its HR counterpart without blurring, the super-resolution problem becomes an image interpolation problem. In such cases, however, the conventional sparse representation models (SRM) become less effective, because the data fidelity term fails to constrain the image local structures. In natural images, fortunately, many nonlocal similar patches to a given patch could provide nonlocal constraint to the local structure. In this paper, we incorporate the image nonlocal self-similarity into SRM for image interpolation. More specifically, a nonlocal autoregressive model (NARM) is proposed and taken as the data fidelity term in SRM. We show that the NARM-induced sampling matrix is less coherent with the representation dictionary, and consequently makes SRM more effective for image interpolation. Our extensive experimental results demonstrate that the proposed NARM-based image interpolation method can effectively reconstruct the edge structures and suppress the jaggy/ringing artifacts, achieving the best image interpolation results so far in terms of PSNR as well as perceptual quality metrics such as SSIM and FSIM.
Adaptive Autoregressive Model for Reduction of Noise in SPECT
Directory of Open Access Journals (Sweden)
Reijo Takalo
2015-01-01
Full Text Available This paper presents improved autoregressive modelling (AR to reduce noise in SPECT images. An AR filter was applied to prefilter projection images and postfilter ordered subset expectation maximisation (OSEM reconstruction images (AR-OSEM-AR method. The performance of this method was compared with filtered back projection (FBP preceded by Butterworth filtering (BW-FBP method and the OSEM reconstruction method followed by Butterworth filtering (OSEM-BW method. A mathematical cylinder phantom was used for the study. It consisted of hot and cold objects. The tests were performed using three simulated SPECT datasets. Image quality was assessed by means of the percentage contrast resolution (CR% and the full width at half maximum (FWHM of the line spread functions of the cylinders. The BW-FBP method showed the highest CR% values and the AR-OSEM-AR method gave the lowest CR% values for cold stacks. In the analysis of hot stacks, the BW-FBP method had higher CR% values than the OSEM-BW method. The BW-FBP method exhibited the lowest FWHM values for cold stacks and the AR-OSEM-AR method for hot stacks. In conclusion, the AR-OSEM-AR method is a feasible way to remove noise from SPECT images. It has good spatial resolution for hot objects.
Biometeorological and autoregressive indices for predicting olive pollen intensity.
Oteros, J; García-Mozo, H; Hervás, C; Galán, C
2013-03-01
This paper reports on modelling to predict airborne olive pollen season severity, expressed as a pollen index (PI), in Córdoba province (southern Spain) several weeks prior to the pollen season start. Using a 29-year database (1982-2010), a multivariate regression model based on five indices-the index-based model-was built to enhance the efficacy of prediction models. Four of the indices used were biometeorological indices: thermal index, pre-flowering hydric index, dormancy hydric index and summer index; the fifth was an autoregressive cyclicity index based on pollen data from previous years. The extreme weather events characteristic of the Mediterranean climate were also taken into account by applying different adjustment criteria. The results obtained with this model were compared with those yielded by a traditional meteorological-based model built using multivariate regression analysis of simple meteorological-related variables. The performance of the models (confidence intervals, significance levels and standard errors) was compared, and they were also validated using the bootstrap method. The index-based model built on biometeorological and cyclicity indices was found to perform better for olive pollen forecasting purposes than the traditional meteorological-based model.
A scaling analysis of a cat and mouse Markov chain
Litvak, Nelli; Robert, Philippe
Motivated by an original on-line page-ranking algorithm, starting from an arbitrary Markov chain $(C_n)$ on a discrete state space ${\\cal S}$, a Markov chain $(C_n,M_n)$ on the product space ${\\cal S}^2$, the cat and mouse Markov chain, is constructed. The first coordinate of this Markov chain
DEFF Research Database (Denmark)
Kock, Anders Bredahl
2016-01-01
We show that the adaptive Lasso is oracle efficient in stationary and nonstationary autoregressions. This means that it estimates parameters consistently, selects the correct sparsity pattern, and estimates the coefficients belonging to the relevant variables at the same asymptotic efficiency...
Observation uncertainty in reversible Markov chains.
Metzner, Philipp; Weber, Marcus; Schütte, Christof
2010-09-01
In many applications one is interested in finding a simplified model which captures the essential dynamical behavior of a real life process. If the essential dynamics can be assumed to be (approximately) memoryless then a reasonable choice for a model is a Markov model whose parameters are estimated by means of Bayesian inference from an observed time series. We propose an efficient Monte Carlo Markov chain framework to assess the uncertainty of the Markov model and related observables. The derived Gibbs sampler allows for sampling distributions of transition matrices subject to reversibility and/or sparsity constraints. The performance of the suggested sampling scheme is demonstrated and discussed for a variety of model examples. The uncertainty analysis of functions of the Markov model under investigation is discussed in application to the identification of conformations of the trialanine molecule via Robust Perron Cluster Analysis (PCCA+) .
Generated dynamics of Markov and quantum processes
Janßen, Martin
2016-01-01
This book presents Markov and quantum processes as two sides of a coin called generated stochastic processes. It deals with quantum processes as reversible stochastic processes generated by one-step unitary operators, while Markov processes are irreversible stochastic processes generated by one-step stochastic operators. The characteristic feature of quantum processes are oscillations, interference, lots of stationary states in bounded systems and possible asymptotic stationary scattering states in open systems, while the characteristic feature of Markov processes are relaxations to a single stationary state. Quantum processes apply to systems where all variables, that control reversibility, are taken as relevant variables, while Markov processes emerge when some of those variables cannot be followed and are thus irrelevant for the dynamic description. Their absence renders the dynamic irreversible. A further aim is to demonstrate that almost any subdiscipline of theoretical physics can conceptually be put in...
Confluence reduction for Markov automata (extended version)
Timmer, Mark; van de Pol, Jan Cornelis; Stoelinga, Mariëlle Ida Antoinette
Markov automata are a novel formalism for specifying systems exhibiting nondeterminism, probabilistic choices and Markovian rates. Recently, the process algebra MAPA was introduced to efficiently model such systems. As always, the state space explosion threatens the analysability of the models
Semi-Markov Arnason-Schwarz models.
King, Ruth; Langrock, Roland
2016-06-01
We consider multi-state capture-recapture-recovery data where observed individuals are recorded in a set of possible discrete states. Traditionally, the Arnason-Schwarz model has been fitted to such data where the state process is modeled as a first-order Markov chain, though second-order models have also been proposed and fitted to data. However, low-order Markov models may not accurately represent the underlying biology. For example, specifying a (time-independent) first-order Markov process involves the assumption that the dwell time in each state (i.e., the duration of a stay in a given state) has a geometric distribution, and hence that the modal dwell time is one. Specifying time-dependent or higher-order processes provides additional flexibility, but at the expense of a potentially significant number of additional model parameters. We extend the Arnason-Schwarz model by specifying a semi-Markov model for the state process, where the dwell-time distribution is specified more generally, using, for example, a shifted Poisson or negative binomial distribution. A state expansion technique is applied in order to represent the resulting semi-Markov Arnason-Schwarz model in terms of a simpler and computationally tractable hidden Markov model. Semi-Markov Arnason-Schwarz models come with only a very modest increase in the number of parameters, yet permit a significantly more flexible state process. Model selection can be performed using standard procedures, and in particular via the use of information criteria. The semi-Markov approach allows for important biological inference to be drawn on the underlying state process, for example, on the times spent in the different states. The feasibility of the approach is demonstrated in a simulation study, before being applied to real data corresponding to house finches where the states correspond to the presence or absence of conjunctivitis. © 2015, The International Biometric Society.
A Bayesian model for binary Markov chains
Directory of Open Access Journals (Sweden)
Belkheir Essebbar
2004-02-01
Full Text Available This note is concerned with Bayesian estimation of the transition probabilities of a binary Markov chain observed from heterogeneous individuals. The model is founded on the Jeffreys' prior which allows for transition probabilities to be correlated. The Bayesian estimator is approximated by means of Monte Carlo Markov chain (MCMC techniques. The performance of the Bayesian estimates is illustrated by analyzing a small simulated data set.
Bayesian analysis of Markov point processes
DEFF Research Database (Denmark)
Berthelsen, Kasper Klitgaard; Møller, Jesper
2006-01-01
Recently Møller, Pettitt, Berthelsen and Reeves introduced a new MCMC methodology for drawing samples from a posterior distribution when the likelihood function is only specified up to a normalising constant. We illustrate the method in the setting of Bayesian inference for Markov point processes...... a partially ordered Markov point process as the auxiliary variable. As the method requires simulation from the "unknown" likelihood, perfect simulation algorithms for spatial point processes become useful....
Subharmonic projections for a quantum Markov semigroup
International Nuclear Information System (INIS)
Fagnola, Franco; Rebolledo, Rolando
2002-01-01
This article introduces a concept of subharmonic projections for a quantum Markov semigroup, in view of characterizing the support projection of a stationary state in terms of the semigroup generator. These results, together with those of our previous article [J. Math. Phys. 42, 1296 (2001)], lead to a method for proving the existence of faithful stationary states. This is often crucial in the analysis of ergodic properties of quantum Markov semigroups. The method is illustrated by applications to physical models
Transition Effect Matrices and Quantum Markov Chains
Gudder, Stan
2009-06-01
A transition effect matrix (TEM) is a quantum generalization of a classical stochastic matrix. By employing a TEM we obtain a quantum generalization of a classical Markov chain. We first discuss state and operator dynamics for a quantum Markov chain. We then consider various types of TEMs and vector states. In particular, we study invariant, equilibrium and singular vector states and investigate projective, bistochastic, invertible and unitary TEMs.
Energy Technology Data Exchange (ETDEWEB)
Frank, T D [Center for the Ecological Study of Perception and Action, Department of Psychology, University of Connecticut, 406 Babbidge Road, Storrs, CT 06269 (United States)
2008-07-18
We discuss nonlinear Markov processes defined on discrete time points and discrete state spaces using Markov chains. In this context, special attention is paid to the distinction between linear and nonlinear Markov processes. We illustrate that the Chapman-Kolmogorov equation holds for nonlinear Markov processes by a winner-takes-all model for social conformity. (fast track communication)
International Nuclear Information System (INIS)
Frank, T D
2008-01-01
We discuss nonlinear Markov processes defined on discrete time points and discrete state spaces using Markov chains. In this context, special attention is paid to the distinction between linear and nonlinear Markov processes. We illustrate that the Chapman-Kolmogorov equation holds for nonlinear Markov processes by a winner-takes-all model for social conformity. (fast track communication)
Markov Processes in Image Processing
Petrov, E. P.; Kharina, N. L.
2018-05-01
Digital images are used as an information carrier in different sciences and technologies. The aspiration to increase the number of bits in the image pixels for the purpose of obtaining more information is observed. In the paper, some methods of compression and contour detection on the basis of two-dimensional Markov chain are offered. Increasing the number of bits on the image pixels will allow one to allocate fine object details more precisely, but it significantly complicates image processing. The methods of image processing do not concede by the efficiency to well-known analogues, but surpass them in processing speed. An image is separated into binary images, and processing is carried out in parallel with each without an increase in speed, when increasing the number of bits on the image pixels. One more advantage of methods is the low consumption of energy resources. Only logical procedures are used and there are no computing operations. The methods can be useful in processing images of any class and assignment in processing systems with a limited time and energy resources.
Adaptive Markov Chain Monte Carlo
Jadoon, Khan
2016-08-08
A substantial interpretation of electromagnetic induction (EMI) measurements requires quantifying optimal model parameters and uncertainty of a nonlinear inverse problem. For this purpose, an adaptive Bayesian Markov chain Monte Carlo (MCMC) algorithm is used to assess multi-orientation and multi-offset EMI measurements in an agriculture field with non-saline and saline soil. In the MCMC simulations, posterior distribution was computed using Bayes rule. The electromagnetic forward model based on the full solution of Maxwell\\'s equations was used to simulate the apparent electrical conductivity measured with the configurations of EMI instrument, the CMD mini-Explorer. The model parameters and uncertainty for the three-layered earth model are investigated by using synthetic data. Our results show that in the scenario of non-saline soil, the parameters of layer thickness are not well estimated as compared to layers electrical conductivity because layer thicknesses in the model exhibits a low sensitivity to the EMI measurements, and is hence difficult to resolve. Application of the proposed MCMC based inversion to the field measurements in a drip irrigation system demonstrate that the parameters of the model can be well estimated for the saline soil as compared to the non-saline soil, and provide useful insight about parameter uncertainty for the assessment of the model outputs.
Fitting Hidden Markov Models to Psychological Data
Directory of Open Access Journals (Sweden)
Ingmar Visser
2002-01-01
Full Text Available Markov models have been used extensively in psychology of learning. Applications of hidden Markov models are rare however. This is partially due to the fact that comprehensive statistics for model selection and model assessment are lacking in the psychological literature. We present model selection and model assessment statistics that are particularly useful in applying hidden Markov models in psychology. These statistics are presented and evaluated by simulation studies for a toy example. We compare AIC, BIC and related criteria and introduce a prediction error measure for assessing goodness-of-fit. In a simulation study, two methods of fitting equality constraints are compared. In two illustrative examples with experimental data we apply selection criteria, fit models with constraints and assess goodness-of-fit. First, data from a concept identification task is analyzed. Hidden Markov models provide a flexible approach to analyzing such data when compared to other modeling methods. Second, a novel application of hidden Markov models in implicit learning is presented. Hidden Markov models are used in this context to quantify knowledge that subjects express in an implicit learning task. This method of analyzing implicit learning data provides a comprehensive approach for addressing important theoretical issues in the field.
Noise source analysis of nuclear ship Mutsu plant using multivariate autoregressive model
International Nuclear Information System (INIS)
Hayashi, K.; Shimazaki, J.; Shinohara, Y.
1996-01-01
The present study is concerned with the noise sources in N.S. Mutsu reactor plant. The noise experiments on the Mutsu plant were performed in order to investigate the plant dynamics and the effect of sea condition and and ship motion on the plant. The reactor noise signals as well as the ship motion signals were analyzed by a multivariable autoregressive (MAR) modeling method to clarify the noise sources in the reactor plant. It was confirmed from the analysis results that most of the plant variables were affected mainly by a horizontal component of the ship motion, that is the sway, through vibrations of the plant structures. Furthermore, the effect of ship motion on the reactor power was evaluated through the analysis of wave components extracted by a geometrical transform method. It was concluded that the amplitude of the reactor power oscillation was about 0.15% in normal sea condition, which was small enough for safe operation of the reactor plant. (authors)
Sensor network based solar forecasting using a local vector autoregressive ridge framework
Energy Technology Data Exchange (ETDEWEB)
Xu, J. [Stony Brook Univ., NY (United States); Yoo, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Heiser, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kalb, P. [Brookhaven National Lab. (BNL), Upton, NY (United States)
2016-04-04
The significant improvements and falling costs of photovoltaic (PV) technology make solar energy a promising resource, yet the cloud induced variability of surface solar irradiance inhibits its effective use in grid-tied PV generation. Short-term irradiance forecasting, especially on the minute scale, is critically important for grid system stability and auxiliary power source management. Compared to the trending sky imaging devices, irradiance sensors are inexpensive and easy to deploy but related forecasting methods have not been well researched. The prominent challenge of applying classic time series models on a network of irradiance sensors is to address their varying spatio-temporal correlations due to local changes in cloud conditions. We propose a local vector autoregressive framework with ridge regularization to forecast irradiance without explicitly determining the wind field or cloud movement. By using local training data, our learned forecast model is adaptive to local cloud conditions and by using regularization, we overcome the risk of overfitting from the limited training data. Our systematic experimental results showed an average of 19.7% RMSE and 20.2% MAE improvement over the benchmark Persistent Model for 1-5 minute forecasts on a comprehensive 25-day dataset.
Finding metastabilities in reversible Markov chains based on incomplete sampling
Directory of Open Access Journals (Sweden)
Fackeldey Konstantin
2017-01-01
Full Text Available In order to fully characterize the state-transition behaviour of finite Markov chains one needs to provide the corresponding transition matrix P. In many applications such as molecular simulation and drug design, the entries of the transition matrix P are estimated by generating realizations of the Markov chain and determining the one-step conditional probability Pij for a transition from one state i to state j. This sampling can be computational very demanding. Therefore, it is a good idea to reduce the sampling effort. The main purpose of this paper is to design a sampling strategy, which provides a partial sampling of only a subset of the rows of such a matrix P. Our proposed approach fits very well to stochastic processes stemming from simulation of molecular systems or random walks on graphs and it is different from the matrix completion approaches which try to approximate the transition matrix by using a low-rank-assumption. It will be shown how Markov chains can be analyzed on the basis of a partial sampling. More precisely. First, we will estimate the stationary distribution from a partially given matrix P. Second, we will estimate the infinitesimal generator Q of P on the basis of this stationary distribution. Third, from the generator we will compute the leading invariant subspace, which should be identical to the leading invariant subspace of P. Forth, we will apply Robust Perron Cluster Analysis (PCCA+ in order to identify metastabilities using this subspace.
On Construction of Quantum Markov Chains on Cayley trees
International Nuclear Information System (INIS)
Accardi, Luigi; Mukhamedov, Farrukh; Souissi, Abdessatar
2016-01-01
The main aim of the present paper is to provide a new construction of quantum Markov chain (QMC) on arbitrary order Cayley tree. In that construction, a QMC is defined as a weak limit of finite volume states with boundary conditions, i.e. QMC depends on the boundary conditions. Note that this construction reminds statistical mechanics models with competing interactions on trees. If one considers one dimensional tree, then the provided construction reduces to well-known one, which was studied by the first author. Our construction will allow to investigate phase transition problem in a quantum setting. (paper)
Hidden Markov Model Application to Transfer The Trader Online Forex Brokers
Directory of Open Access Journals (Sweden)
Farida Suharleni
2012-05-01
Full Text Available Hidden Markov Model is elaboration of Markov chain, which is applicable to cases that can’t directly observe. In this research, Hidden Markov Model is used to know trader’s transition to broker forex online. In Hidden Markov Model, observed state is observable part and hidden state is hidden part. Hidden Markov Model allows modeling system that contains interrelated observed state and hidden state. As observed state in trader’s transition to broker forex online is category 1, category 2, category 3, category 4, category 5 by condition of every broker forex online, whereas as hidden state is broker forex online Marketiva, Masterforex, Instaforex, FBS and Others. First step on application of Hidden Markov Model in this research is making construction model by making a probability of transition matrix (A from every broker forex online. Next step is making a probability of observation matrix (B by making conditional probability of five categories, that is category 1, category 2, category 3, category 4, category 5 by condition of every broker forex online and also need to determine an initial state probability (π from every broker forex online. The last step is using Viterbi algorithm to find hidden state sequences that is broker forex online sequences which is the most possible based on model and observed state that is the five categories. Application of Hidden Markov Model is done by making program with Viterbi algorithm using Delphi 7.0 software with observed state based on simulation data. Example: By the number of observation T = 5 and observed state sequences O = (2,4,3,5,1 is found hidden state sequences which the most possible with observed state O as following : where X1 = FBS, X2 = Masterforex, X3 = Marketiva, X4 = Others, and X5 = Instaforex.
Energy Technology Data Exchange (ETDEWEB)
Ciftcioglu, O.; Hoogenboom, J.E.; Dam, H. van
1988-01-01
Studies on the multivariate autoregressive (MAR) analysis are carried out for the choice of the parameters for modelling the data obtained from various sensors optimally. Accordingly, the roles of the parameters on the analysis results are identified and the related ambiguities are reduced. Experimental investigations are carried out by means of synthesized reactor noise-like data obtained from a digital simulator providing simulated stochastic signals of an operating nuclear reactor so that the simulator constitutes a favourable tool for the present studies aimed. As the system is well defined with its known structure, precise comparison of the MAR analysis results with the true values is performed. With the help of the information gained through the studies carried out, conditions to be taken care of for optimal signal processing in MAR modelling are determined. Although the parameters involved are related among themselves and they have to be given different values suitable for the particular application in hand, some criteria, namely memory-time and sample length-time play an essential role in AR modelling and they are found to be applicable to each individual case commonly, for the establishment of the optimality.
International Nuclear Information System (INIS)
Ciftcioglu, O.
1988-01-01
Studies on the multivariate autoregressive (MAR) analysis are carried out for the choice of the parameters for modelling the data obtained from various sensors optimally. Accordingly, the roles of the parameters on the analysis results are identified and the related ambiguities are reduced. Experimental investigations are carried out by means of synthesized reactor noise-like data obtained from a digital simulator providing simulated stochastic signals of an operating nuclear reactor so that the simulator constitutes a favourable tool for the present studies aimed. As the system is well defined with its known structure, precise comparison of the MAR analysis results with the true values is performed. With the help of the information gained through the studies carried out, conditions to be taken care of for optimal signal processing in MAR modelling are determined. Although the parameters involved are related among themselves and they have to be given different values suitable for the particular application in hand, some criteria, namely memory-time and sample length-time play an essential role in AR modelling and they are found to be applicable to each individual case commonly, for the establishment of the optimality. (author)
A time series model: First-order integer-valued autoregressive (INAR(1))
Simarmata, D. M.; Novkaniza, F.; Widyaningsih, Y.
2017-07-01
Nonnegative integer-valued time series arises in many applications. A time series model: first-order Integer-valued AutoRegressive (INAR(1)) is constructed by binomial thinning operator to model nonnegative integer-valued time series. INAR (1) depends on one period from the process before. The parameter of the model can be estimated by Conditional Least Squares (CLS). Specification of INAR(1) is following the specification of (AR(1)). Forecasting in INAR(1) uses median or Bayesian forecasting methodology. Median forecasting methodology obtains integer s, which is cumulative density function (CDF) until s, is more than or equal to 0.5. Bayesian forecasting methodology forecasts h-step-ahead of generating the parameter of the model and parameter of innovation term using Adaptive Rejection Metropolis Sampling within Gibbs sampling (ARMS), then finding the least integer s, where CDF until s is more than or equal to u . u is a value taken from the Uniform(0,1) distribution. INAR(1) is applied on pneumonia case in Penjaringan, Jakarta Utara, January 2008 until April 2016 monthly.
Stability of the Markov operator and synchronization of Markovian random products
Díaz, Lorenzo J.; Matias, Edgar
2018-05-01
We study Markovian random products on a large class of ‘m-dimensional’ connected compact metric spaces (including products of closed intervals and trees). We introduce a splitting condition, generalizing the classical one by Dubins and Freedman, and prove that this condition implies the asymptotic stability of the corresponding Markov operator and (exponentially fast) synchronization.
Quasi-stationary distributions for reducible absorbing Markov chains in discrete time
van Doorn, Erik A.; Pollett, P.K.
2009-01-01
We consider discrete-time Markov chains with one coffin state and a finite set $S$ of transient states, and are interested in the limiting behaviour of such a chain as time $n \\to \\infty,$ conditional on survival up to $n$. It is known that, when $S$ is irreducible, the limiting conditional
Zipf exponent of trajectory distribution in the hidden Markov model
Bochkarev, V. V.; Lerner, E. Yu
2014-03-01
This paper is the first step of generalization of the previously obtained full classification of the asymptotic behavior of the probability for Markov chain trajectories for the case of hidden Markov models. The main goal is to study the power (Zipf) and nonpower asymptotics of the frequency list of trajectories of hidden Markov frequencys and to obtain explicit formulae for the exponent of the power asymptotics. We consider several simple classes of hidden Markov models. We prove that the asymptotics for a hidden Markov model and for the corresponding Markov chain can be essentially different.
Zipf exponent of trajectory distribution in the hidden Markov model
International Nuclear Information System (INIS)
Bochkarev, V V; Lerner, E Yu
2014-01-01
This paper is the first step of generalization of the previously obtained full classification of the asymptotic behavior of the probability for Markov chain trajectories for the case of hidden Markov models. The main goal is to study the power (Zipf) and nonpower asymptotics of the frequency list of trajectories of hidden Markov frequencys and to obtain explicit formulae for the exponent of the power asymptotics. We consider several simple classes of hidden Markov models. We prove that the asymptotics for a hidden Markov model and for the corresponding Markov chain can be essentially different
Performance Modeling of Communication Networks with Markov Chains
Mo, Jeonghoon
2010-01-01
This book is an introduction to Markov chain modeling with applications to communication networks. It begins with a general introduction to performance modeling in Chapter 1 where we introduce different performance models. We then introduce basic ideas of Markov chain modeling: Markov property, discrete time Markov chain (DTMe and continuous time Markov chain (CTMe. We also discuss how to find the steady state distributions from these Markov chains and how they can be used to compute the system performance metric. The solution methodologies include a balance equation technique, limiting probab
Dissipativity-Based Reliable Control for Fuzzy Markov Jump Systems With Actuator Faults.
Tao, Jie; Lu, Renquan; Shi, Peng; Su, Hongye; Wu, Zheng-Guang
2017-09-01
This paper is concerned with the problem of reliable dissipative control for Takagi-Sugeno fuzzy systems with Markov jumping parameters. Considering the influence of actuator faults, a sufficient condition is developed to ensure that the resultant closed-loop system is stochastically stable and strictly ( Q, S,R )-dissipative based on a relaxed approach in which mode-dependent and fuzzy-basis-dependent Lyapunov functions are employed. Then a reliable dissipative control for fuzzy Markov jump systems is designed, with sufficient condition proposed for the existence of guaranteed stability and dissipativity controller. The effectiveness and potential of the obtained design method is verified by two simulation examples.
To center or not to center? Investigating inertia with a multilevel autoregressive model
Directory of Open Access Journals (Sweden)
Ellen L. Hamaker
2015-01-01
Full Text Available Whether level 1 predictors should be centered per cluster has received considerable attention in the multilevel literature. While most agree that there is no one preferred approach, it has also been argued that cluster mean centering is desirable when the within-cluster slope and the between-cluster slope are expected to deviate, and the main interest is in the within-cluster slope. However, we show in a series of simulations that if one has a multilevel autoregressive model in which the level 1 predictor is the lagged outcome variable (i.e., the outcome variable at the previous occasion, cluster mean centering will in general lead to a downward bias in the parameter estimate of the within-cluster slope (i.e., the autoregressive relationship. This is particularly relevant if the main question is whether there is on average an autoregressive effect. Nonetheless, we show that if the main interest is in estimating the effect of a level 2 predictor on the autoregressive parameter (i.e., a cross-level interaction, cluster mean centering should be preferred over other forms of centering. Hence, researchers should be clear on what is considered the main goal of their study, and base their choice of centering method on this when using a multilevel autoregressive model.
Markov and mixed models with applications
DEFF Research Database (Denmark)
Mortensen, Stig Bousgaard
This thesis deals with mathematical and statistical models with focus on applications in pharmacokinetic and pharmacodynamic (PK/PD) modelling. These models are today an important aspect of the drug development in the pharmaceutical industry and continued research in statistical methodology within...... or uncontrollable factors in an individual. Modelling using SDEs also provides new tools for estimation of unknown inputs to a system and is illustrated with an application to estimation of insulin secretion rates in diabetic patients. Models for the eect of a drug is a broader area since drugs may affect...... for non-parametric estimation of Markov processes are proposed to give a detailed description of the sleep process during the night. Statistically the Markov models considered for sleep states are closely related to the PK models based on SDEs as both models share the Markov property. When the models...
Consistent Estimation of Partition Markov Models
Directory of Open Access Journals (Sweden)
Jesús E. García
2017-04-01
Full Text Available The Partition Markov Model characterizes the process by a partition L of the state space, where the elements in each part of L share the same transition probability to an arbitrary element in the alphabet. This model aims to answer the following questions: what is the minimal number of parameters needed to specify a Markov chain and how to estimate these parameters. In order to answer these questions, we build a consistent strategy for model selection which consist of: giving a size n realization of the process, finding a model within the Partition Markov class, with a minimal number of parts to represent the process law. From the strategy, we derive a measure that establishes a metric in the state space. In addition, we show that if the law of the process is Markovian, then, eventually, when n goes to infinity, L will be retrieved. We show an application to model internet navigation patterns.
Directory of Open Access Journals (Sweden)
Li Qiu
2013-01-01
unified Markov jump model. The random time delays and packet dropouts existed in feedback communication link are modeled by two independent Markov chains; the resulting closed-loop system is described by a new Markovian jump linear system (MJLS with Markov delays. Sufficient conditions of the stochastic stability for NCSs is obtained by constructing a novel Lyapunov functional, and the mode-dependent output feedback controller design method is presented based on linear matrix inequality (LMI technique. A numerical example is given to illustrate the effectiveness of the proposed method.
Use of Markov chains for forecasting labor requirements in black coal mines
Energy Technology Data Exchange (ETDEWEB)
Penar, L.; Przybyla, H.
1987-01-01
Increasing mining depth, deterioration of mining conditions and technology development are causes of changes in labor requirements. In mines with stable coal output these changes in most cases are of a qualitative character, in mines with an increasing or decreasing coal output they are of a quantitative character. Methods for forecasting personnel needs, in particular professional requirements, are discussed. Quantitative and qualitative changes are accurately described by heterogenous Markov chains. A structure consisting of interdependent variables is the subject of a forecast. Changes that occur within the structure of time units is the subject of investigations. For a homogenous Markov chain probabilities of a transition from the i-state to the j-state are determined (the probabilities being time independent). For a heterogenous Markov chain probabilities of a transition from the i-state to the j-state are non-conditioned. The method was developed for the ODRA 1325 computers. 8 refs.
Markov decision processes in artificial intelligence
Sigaud, Olivier
2013-01-01
Markov Decision Processes (MDPs) are a mathematical framework for modeling sequential decision problems under uncertainty as well as Reinforcement Learning problems. Written by experts in the field, this book provides a global view of current research using MDPs in Artificial Intelligence. It starts with an introductory presentation of the fundamental aspects of MDPs (planning in MDPs, Reinforcement Learning, Partially Observable MDPs, Markov games and the use of non-classical criteria). Then it presents more advanced research trends in the domain and gives some concrete examples using illustr
Inhomogeneous Markov Models for Describing Driving Patterns
DEFF Research Database (Denmark)
Iversen, Emil Banning; Møller, Jan K.; Morales, Juan Miguel
2017-01-01
. Specifically, an inhomogeneous Markov model that captures the diurnal variation in the use of a vehicle is presented. The model is defined by the time-varying probabilities of starting and ending a trip, and is justified due to the uncertainty associated with the use of the vehicle. The model is fitted to data...... collected from the actual utilization of a vehicle. Inhomogeneous Markov models imply a large number of parameters. The number of parameters in the proposed model is reduced using B-splines....
Inhomogeneous Markov Models for Describing Driving Patterns
DEFF Research Database (Denmark)
Iversen, Jan Emil Banning; Møller, Jan Kloppenborg; Morales González, Juan Miguel
. Specically, an inhomogeneous Markov model that captures the diurnal variation in the use of a vehicle is presented. The model is dened by the time-varying probabilities of starting and ending a trip and is justied due to the uncertainty associated with the use of the vehicle. The model is tted to data...... collected from the actual utilization of a vehicle. Inhomogeneous Markov models imply a large number of parameters. The number of parameters in the proposed model is reduced using B-splines....
Predicting Protein Secondary Structure with Markov Models
DEFF Research Database (Denmark)
Fischer, Paul; Larsen, Simon; Thomsen, Claus
2004-01-01
we are considering here, is to predict the secondary structure from the primary one. To this end we train a Markov model on training data and then use it to classify parts of unknown protein sequences as sheets, helices or coils. We show how to exploit the directional information contained...... in the Markov model for this task. Classifications that are purely based on statistical models might not always be biologically meaningful. We present combinatorial methods to incorporate biological background knowledge to enhance the prediction performance....
Markov processes an introduction for physical scientists
Gillespie, Daniel T
1991-01-01
Markov process theory is basically an extension of ordinary calculus to accommodate functions whos time evolutions are not entirely deterministic. It is a subject that is becoming increasingly important for many fields of science. This book develops the single-variable theory of both continuous and jump Markov processes in a way that should appeal especially to physicists and chemists at the senior and graduate level.Key Features* A self-contained, prgamatic exposition of the needed elements of random variable theory* Logically integrated derviations of the Chapman-Kolmogorov e
Prediction of Annual Rainfall Pattern Using Hidden Markov Model ...
African Journals Online (AJOL)
ADOWIE PERE
Hidden Markov model is very influential in stochastic world because of its ... the earth from the clouds. The usual ... Rainfall modelling and ... Markov Models have become popular tools ... environment sciences, University of Jos, plateau state,.
Extending Markov Automata with State and Action Rewards
Guck, Dennis; Timmer, Mark; Blom, Stefan; Bertrand, N.; Bortolussi, L.
This presentation introduces the Markov Reward Automaton (MRA), an extension of the Markov automaton that allows the modelling of systems incorporating rewards in addition to nondeterminism, discrete probabilistic choice and continuous stochastic timing. Our models support both rewards that are
Directory of Open Access Journals (Sweden)
Mohammad Ghahremanzadeh
2014-06-01
Full Text Available Agriculture as one of the major economic sectors of Iran, has an important role in Gross Domestic Production by providing about 14% of GDP. This study attempts to forecast the value of the agriculture GDP using Periodic Autoregressive model (PAR, as the new seasonal time series techniques. To address this aim, the quarterly data were collected from March 1988 to July 1989. The collected data was firstly analyzed using periodic unit root test Franses & Paap (2004. The analysis found non-periodic unit root in the seasonal data. Second, periodic seasonal behavior (Boswijk & Franses, 1996 was examined. The results showed that periodic autoregressive model fits agriculture GDP well. This makes an accurate forecast of agriculture GDP possible. Using the estimated model, the future value of quarter agricultural GDP from March 2011 to July 2012was forecasted. With consideration to the fair fit of this model with agricultural GDP, It is recommended to use periodic autoregressive model for the future studies.
Directory of Open Access Journals (Sweden)
Usman M. Umer
2018-06-01
Full Text Available Travel and leisure recorded a consecutive robust growth and become among the fastest economic sectors in the world. Various forecasting models are proposed by researchers that serve as an early recommendation for investors and policy makers. Numerous studies proposed distinct forecasting models to predict the dynamics of this sector and provide early recommendation for investors and policy makers. In this paper, we compare the performance of smooth transition autoregressive (STAR and linear autoregressive (AR models using monthly returns of Turkey and FTSE travel and leisure index from April 1997 to August 2016. MSCI world index used as a proxy of the overall market. The result shows that nonlinear LSTAR model cannot improve the out-of-sample forecast of linear AR model. This finding demonstrates little to be gained from using LSTAR model in the prediction of travel and leisure stock index. Keywords: Nonlinear time-series, Out-of-sample forecasting, Smooth transition autoregressive, Travel and leisure
Large deviations for Markov chains in the positive quadrant
Energy Technology Data Exchange (ETDEWEB)
Borovkov, A A; Mogul' skii, A A [S.L. Sobolev Institute for Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)
2001-10-31
The paper deals with so-called N-partially space-homogeneous time-homogeneous Markov chains X(y,n), n=0,1,2,..., X(y,0)=y, in the positive quadrant. These Markov chains are characterized by the following property of the transition probabilities P(y,A)=P(X(y,1) element of A): for some N{>=}0 the measure P(y,dx) depends only on x{sub 2}, y{sub 2}, and x{sub 1}-y{sub 1} in the domain x{sub 1}>N, y{sub 1}>N, and only on x{sub 1}, y{sub 1}, and x{sub 2}-y{sub 2} in the domain x{sub 2}>N, y{sub 2}>N. For such chains the asymptotic behaviour is found for a fixed set B as s{yields}{infinity}, |x|{yields}{infinity}, and n{yields}{infinity}. Some other conditions on the growth of parameters are also considered, for example, |x-y|{yields}{infinity}, |y|{yields}{infinity}. A study is made of the structure of the most probable trajectories, which give the main contribution to this asymptotics, and a number of other results pertaining to the topic are established. Similar results are obtained for the narrower class of 0-partially homogeneous ergodic chains under less restrictive moment conditions on the transition probabilities P(y,dx). Moreover, exact asymptotic expressions for the probabilities P(X(0,n) element of x+B) are found for 0-partially homogeneous ergodic chains under some additional conditions. The interest in partially homogeneous Markov chains in positive octants is due to the mathematical aspects (new and interesting problems arise in the framework of general large deviation theory) as well as applied issues, for such chains prove to be quite accurate mathematical models for numerous basic types of queueing and communication networks such as the widely known Jackson networks, polling systems, or communication networks associated with the ALOHA algorithm. There is a vast literature dealing with the analysis of these objects. The present paper is an attempt to find the extent to which an asymptotic analysis is possible for Markov chains of this type in their general
Directory of Open Access Journals (Sweden)
Fei Jin
2013-05-01
Full Text Available This paper studies the generalized spatial two stage least squares (GS2SLS estimation of spatial autoregressive models with autoregressive disturbances when there are endogenous regressors with many valid instruments. Using many instruments may improve the efficiency of estimators asymptotically, but the bias might be large in finite samples, making the inference inaccurate. We consider the case that the number of instruments K increases with, but at a rate slower than, the sample size, and derive the approximate mean square errors (MSE that account for the trade-offs between the bias and variance, for both the GS2SLS estimator and a bias-corrected GS2SLS estimator. A criterion function for the optimal K selection can be based on the approximate MSEs. Monte Carlo experiments are provided to show the performance of our procedure of choosing K.
Directory of Open Access Journals (Sweden)
Zina Boussaada
2018-03-01
Full Text Available The solar photovoltaic (PV energy has an important place among the renewable energy sources. Therefore, several researchers have been interested by its modelling and its prediction, in order to improve the management of the electrical systems which include PV arrays. Among the existing techniques, artificial neural networks have proved their performance in the prediction of the solar radiation. However, the existing neural network models don’t satisfy the requirements of certain specific situations such as the one analyzed in this paper. The aim of this research work is to supply, with electricity, a race sailboat using exclusively renewable sources. The developed solution predicts the direct solar radiation on a horizontal surface. For that, a Nonlinear Autoregressive Exogenous (NARX neural network is used. All the specific conditions of the sailboat operation are taken into account. The results show that the best prediction performance is obtained when the training phase of the neural network is performed periodically.
International Nuclear Information System (INIS)
Marseguerra, M.; Minoggio, S.; Rossi, A.; Zio, E.
1992-01-01
The correlated noise affecting many industrial plants under stationary or cyclo-stationary conditions - nuclear reactors included -has been successfully modeled by autoregressive moving average (ARMA) due to the versatility of this technique. The relatively recent neural network methods have similar features and much effort is being devoted to exploring their usefulness in forecasting and control. Identifying a signal by means of an ARMA model gives rise to the problem of selecting its correct order. Similar difficulties must be faced when applying neural network methods and, specifically, particular care must be given to the setting up of the appropriate network topology, the data normalization procedure and the learning code. In the present paper the capability of some neural networks of learning ARMA and seasonal ARMA processes is investigated. The results of the tested cases look promising since they indicate that the neural networks learn the underlying process with relative ease so that their forecasting capability may represent a convenient fault diagnosis tool. (Author)
Porto, Markus; Roman, H Eduardo
2002-04-01
We consider autoregressive conditional heteroskedasticity (ARCH) processes in which the variance sigma(2)(y) depends linearly on the absolute value of the random variable y as sigma(2)(y) = a+b absolute value of y. While for the standard model, where sigma(2)(y) = a + b y(2), the corresponding probability distribution function (PDF) P(y) decays as a power law for absolute value of y-->infinity, in the linear case it decays exponentially as P(y) approximately exp(-alpha absolute value of y), with alpha = 2/b. We extend these results to the more general case sigma(2)(y) = a+b absolute value of y(q), with 0 history of the ARCH process is taken into account, the resulting PDF becomes a stretched exponential even for q = 1, with a stretched exponent beta = 2/3, in a much better agreement with the empirical data.
Perturbation theory for Markov chains via Wasserstein distance
Rudolf, Daniel; Schweizer, Nikolaus
2017-01-01
Perturbation theory for Markov chains addresses the question of how small differences in the transition probabilities of Markov chains are reflected in differences between their distributions. We prove powerful and flexible bounds on the distance of the nth step distributions of two Markov chains
Quantum Enhanced Inference in Markov Logic Networks.
Wittek, Peter; Gogolin, Christian
2017-04-19
Markov logic networks (MLNs) reconcile two opposing schools in machine learning and artificial intelligence: causal networks, which account for uncertainty extremely well, and first-order logic, which allows for formal deduction. An MLN is essentially a first-order logic template to generate Markov networks. Inference in MLNs is probabilistic and it is often performed by approximate methods such as Markov chain Monte Carlo (MCMC) Gibbs sampling. An MLN has many regular, symmetric structures that can be exploited at both first-order level and in the generated Markov network. We analyze the graph structures that are produced by various lifting methods and investigate the extent to which quantum protocols can be used to speed up Gibbs sampling with state preparation and measurement schemes. We review different such approaches, discuss their advantages, theoretical limitations, and their appeal to implementations. We find that a straightforward application of a recent result yields exponential speedup compared to classical heuristics in approximate probabilistic inference, thereby demonstrating another example where advanced quantum resources can potentially prove useful in machine learning.
Markov Random Fields on Triangle Meshes
DEFF Research Database (Denmark)
Andersen, Vedrana; Aanæs, Henrik; Bærentzen, Jakob Andreas
2010-01-01
In this paper we propose a novel anisotropic smoothing scheme based on Markov Random Fields (MRF). Our scheme is formulated as two coupled processes. A vertex process is used to smooth the mesh by displacing the vertices according to a MRF smoothness prior, while an independent edge process label...
A Martingale Decomposition of Discrete Markov Chains
DEFF Research Database (Denmark)
Hansen, Peter Reinhard
We consider a multivariate time series whose increments are given from a homogeneous Markov chain. We show that the martingale component of this process can be extracted by a filtering method and establish the corresponding martingale decomposition in closed-form. This representation is useful fo...
Renewal characterization of Markov modulated Poisson processes
Directory of Open Access Journals (Sweden)
Marcel F. Neuts
1989-01-01
Full Text Available A Markov Modulated Poisson Process (MMPP M(t defined on a Markov chain J(t is a pure jump process where jumps of M(t occur according to a Poisson process with intensity λi whenever the Markov chain J(t is in state i. M(t is called strongly renewal (SR if M(t is a renewal process for an arbitrary initial probability vector of J(t with full support on P={i:λi>0}. M(t is called weakly renewal (WR if there exists an initial probability vector of J(t such that the resulting MMPP is a renewal process. The purpose of this paper is to develop general characterization theorems for the class SR and some sufficiency theorems for the class WR in terms of the first passage times of the bivariate Markov chain [J(t,M(t]. Relevance to the lumpability of J(t is also studied.
Evaluation of Usability Utilizing Markov Models
Penedo, Janaina Rodrigues; Diniz, Morganna; Ferreira, Simone Bacellar Leal; Silveira, Denis S.; Capra, Eliane
2012-01-01
Purpose: The purpose of this paper is to analyze the usability of a remote learning system in its initial development phase, using a quantitative usability evaluation method through Markov models. Design/methodology/approach: The paper opted for an exploratory study. The data of interest of the research correspond to the possible accesses of users…
Bayesian analysis for reversible Markov chains
Diaconis, P.; Rolles, S.W.W.
2006-01-01
We introduce a natural conjugate prior for the transition matrix of a reversible Markov chain. This allows estimation and testing. The prior arises from random walk with reinforcement in the same way the Dirichlet prior arises from Pólya’s urn. We give closed form normalizing constants, a simple
Bisimulation and Simulation Relations for Markov Chains
Baier, Christel; Hermanns, H.; Katoen, Joost P.; Wolf, Verena; Aceto, L.; Gordon, A.
2006-01-01
Formal notions of bisimulation and simulation relation play a central role for any kind of process algebra. This short paper sketches the main concepts for bisimulation and simulation relations for probabilistic systems, modelled by discrete- or continuous-time Markov chains.
Discounted Markov games : generalized policy iteration method
Wal, van der J.
1978-01-01
In this paper, we consider two-person zero-sum discounted Markov games with finite state and action spaces. We show that the Newton-Raphson or policy iteration method as presented by Pollats-chek and Avi-Itzhak does not necessarily converge, contradicting a proof of Rao, Chandrasekaran, and Nair.
Hidden Markov Models for Human Genes
DEFF Research Database (Denmark)
Baldi, Pierre; Brunak, Søren; Chauvin, Yves
1997-01-01
We analyse the sequential structure of human genomic DNA by hidden Markov models. We apply models of widely different design: conventional left-right constructs and models with a built-in periodic architecture. The models are trained on segments of DNA sequences extracted such that they cover com...
Markov Trends in Macroeconomic Time Series
R. Paap (Richard)
1997-01-01
textabstractMany macroeconomic time series are characterised by long periods of positive growth, expansion periods, and short periods of negative growth, recessions. A popular model to describe this phenomenon is the Markov trend, which is a stochastic segmented trend where the slope depends on the
Optimal dividend distribution under Markov regime switching
Jiang, Z.; Pistorius, M.
2012-01-01
We investigate the problem of optimal dividend distribution for a company in the presence of regime shifts. We consider a company whose cumulative net revenues evolve as a Brownian motion with positive drift that is modulated by a finite state Markov chain, and model the discount rate as a
Revisiting Weak Simulation for Substochastic Markov Chains
DEFF Research Database (Denmark)
Jansen, David N.; Song, Lei; Zhang, Lijun
2013-01-01
of the logic PCTL\\x, and its completeness was conjectured. We revisit this result and show that soundness does not hold in general, but only for Markov chains without divergence. It is refuted for some systems with substochastic distributions. Moreover, we provide a counterexample to completeness...
Fracture Mechanical Markov Chain Crack Growth Model
DEFF Research Database (Denmark)
Gansted, L.; Brincker, Rune; Hansen, Lars Pilegaard
1991-01-01
propagation process can be described by a discrete space Markov theory. The model is applicable to deterministic as well as to random loading. Once the model parameters for a given material have been determined, the results can be used for any structure as soon as the geometrical function is known....
Markov chains with quasitoeplitz transition matrix
Directory of Open Access Journals (Sweden)
Alexander M. Dukhovny
1989-01-01
Full Text Available This paper investigates a class of Markov chains which are frequently encountered in various applications (e.g. queueing systems, dams and inventories with feedback. Generating functions of transient and steady state probabilities are found by solving a special Riemann boundary value problem on the unit circle. A criterion of ergodicity is established.
Markov Chain Estimation of Avian Seasonal Fecundity
To explore the consequences of modeling decisions on inference about avian seasonal fecundity we generalize previous Markov chain (MC) models of avian nest success to formulate two different MC models of avian seasonal fecundity that represent two different ways to model renestin...
Noise can speed convergence in Markov chains.
Franzke, Brandon; Kosko, Bart
2011-10-01
A new theorem shows that noise can speed convergence to equilibrium in discrete finite-state Markov chains. The noise applies to the state density and helps the Markov chain explore improbable regions of the state space. The theorem ensures that a stochastic-resonance noise benefit exists for states that obey a vector-norm inequality. Such noise leads to faster convergence because the noise reduces the norm components. A corollary shows that a noise benefit still occurs if the system states obey an alternate norm inequality. This leads to a noise-benefit algorithm that requires knowledge of the steady state. An alternative blind algorithm uses only past state information to achieve a weaker noise benefit. Simulations illustrate the predicted noise benefits in three well-known Markov models. The first model is a two-parameter Ehrenfest diffusion model that shows how noise benefits can occur in the class of birth-death processes. The second model is a Wright-Fisher model of genotype drift in population genetics. The third model is a chemical reaction network of zeolite crystallization. A fourth simulation shows a convergence rate increase of 64% for states that satisfy the theorem and an increase of 53% for states that satisfy the corollary. A final simulation shows that even suboptimal noise can speed convergence if the noise applies over successive time cycles. Noise benefits tend to be sharpest in Markov models that do not converge quickly and that do not have strong absorbing states.
Model Checking Infinite-State Markov Chains
Remke, Anne Katharina Ingrid; Haverkort, Boudewijn R.H.M.; Cloth, L.
2004-01-01
In this paper algorithms for model checking CSL (continuous stochastic logic) against infinite-state continuous-time Markov chains of so-called quasi birth-death type are developed. In doing so we extend the applicability of CSL model checking beyond the recently proposed case for finite-state
Model Checking Markov Chains: Techniques and Tools
Zapreev, I.S.
2008-01-01
This dissertation deals with four important aspects of model checking Markov chains: the development of efficient model-checking tools, the improvement of model-checking algorithms, the efficiency of the state-space reduction techniques, and the development of simulation-based model-checking
Quantum Enhanced Inference in Markov Logic Networks
Wittek, Peter; Gogolin, Christian
2017-04-01
Markov logic networks (MLNs) reconcile two opposing schools in machine learning and artificial intelligence: causal networks, which account for uncertainty extremely well, and first-order logic, which allows for formal deduction. An MLN is essentially a first-order logic template to generate Markov networks. Inference in MLNs is probabilistic and it is often performed by approximate methods such as Markov chain Monte Carlo (MCMC) Gibbs sampling. An MLN has many regular, symmetric structures that can be exploited at both first-order level and in the generated Markov network. We analyze the graph structures that are produced by various lifting methods and investigate the extent to which quantum protocols can be used to speed up Gibbs sampling with state preparation and measurement schemes. We review different such approaches, discuss their advantages, theoretical limitations, and their appeal to implementations. We find that a straightforward application of a recent result yields exponential speedup compared to classical heuristics in approximate probabilistic inference, thereby demonstrating another example where advanced quantum resources can potentially prove useful in machine learning.
Continuity Properties of Distances for Markov Processes
DEFF Research Database (Denmark)
Jaeger, Manfred; Mao, Hua; Larsen, Kim Guldstrand
2014-01-01
In this paper we investigate distance functions on finite state Markov processes that measure the behavioural similarity of non-bisimilar processes. We consider both probabilistic bisimilarity metrics, and trace-based distances derived from standard Lp and Kullback-Leibler distances. Two desirable...
Model Checking Structured Infinite Markov Chains
Remke, Anne Katharina Ingrid
2008-01-01
In the past probabilistic model checking hast mostly been restricted to finite state models. This thesis explores the possibilities of model checking with continuous stochastic logic (CSL) on infinite-state Markov chains. We present an in-depth treatment of model checking algorithms for two special
Hidden Markov models for labeled sequences
DEFF Research Database (Denmark)
Krogh, Anders Stærmose
1994-01-01
A hidden Markov model for labeled observations, called a class HMM, is introduced and a maximum likelihood method is developed for estimating the parameters of the model. Instead of training it to model the statistics of the training sequences it is trained to optimize recognition. It resembles MMI...
Efficient Modelling and Generation of Markov Automata
Koutny, M.; Timmer, Mark; Ulidowski, I.; Katoen, Joost P.; van de Pol, Jan Cornelis; Stoelinga, Mariëlle Ida Antoinette
This paper introduces a framework for the efficient modelling and generation of Markov automata. It consists of (1) the data-rich process-algebraic language MAPA, allowing concise modelling of systems with nondeterminism, probability and Markovian timing; (2) a restricted form of the language, the
A Metrized Duality Theorem for Markov Processes
DEFF Research Database (Denmark)
Kozen, Dexter; Mardare, Radu Iulian; Panangaden, Prakash
2014-01-01
We extend our previous duality theorem for Markov processes by equipping the processes with a pseudometric and the algebras with a notion of metric diameter. We are able to show that the isomorphisms of our previous duality theorem become isometries in this quantitative setting. This opens the wa...
Directory of Open Access Journals (Sweden)
Nikola Trčka
2009-12-01
Full Text Available We first study labeled transition systems with explicit successful termination. We establish the notions of strong, weak, and branching bisimulation in terms of boolean matrix theory, introducing thus a novel and powerful algebraic apparatus. Next we consider Markov reward chains which are standardly presented in real matrix theory. By interpreting the obtained matrix conditions for bisimulations in this setting, we automatically obtain the definitions of strong, weak, and branching bisimulation for Markov reward chains. The obtained strong and weak bisimulations are shown to coincide with some existing notions, while the obtained branching bisimulation is new, but its usefulness is questionable.
2nd International Workshop on the Numerical Solution of Markov Chains
1995-01-01
Computations with Markov Chains presents the edited and reviewed proceedings of the Second International Workshop on the Numerical Solution of Markov Chains, held January 16--18, 1995, in Raleigh, North Carolina. New developments of particular interest include recent work on stability and conditioning, Krylov subspace-based methods for transient solutions, quadratic convergent procedures for matrix geometric problems, further analysis of the GTH algorithm, the arrival of stochastic automata networks at the forefront of modelling stratagems, and more. An authoritative overview of the field for applied probabilists, numerical analysts and systems modelers, including computer scientists and engineers.
Generating intrinsically disordered protein conformational ensembles from a Markov chain
Cukier, Robert I.
2018-03-01
Intrinsically disordered proteins (IDPs) sample a diverse conformational space. They are important to signaling and regulatory pathways in cells. An entropy penalty must be payed when an IDP becomes ordered upon interaction with another protein or a ligand. Thus, the degree of conformational disorder of an IDP is of interest. We create a dichotomic Markov model that can explore entropic features of an IDP. The Markov condition introduces local (neighbor residues in a protein sequence) rotamer dependences that arise from van der Waals and other chemical constraints. A protein sequence of length N is characterized by its (information) entropy and mutual information, MIMC, the latter providing a measure of the dependence among the random variables describing the rotamer probabilities of the residues that comprise the sequence. For a Markov chain, the MIMC is proportional to the pair mutual information MI which depends on the singlet and pair probabilities of neighbor residue rotamer sampling. All 2N sequence states are generated, along with their probabilities, and contrasted with the probabilities under the assumption of independent residues. An efficient method to generate realizations of the chain is also provided. The chain entropy, MIMC, and state probabilities provide the ingredients to distinguish different scenarios using the terminologies: MoRF (molecular recognition feature), not-MoRF, and not-IDP. A MoRF corresponds to large entropy and large MIMC (strong dependence among the residues' rotamer sampling), a not-MoRF corresponds to large entropy but small MIMC, and not-IDP corresponds to low entropy irrespective of the MIMC. We show that MorFs are most appropriate as descriptors of IDPs. They provide a reasonable number of high-population states that reflect the dependences between neighbor residues, thus classifying them as IDPs, yet without very large entropy that might lead to a too high entropy penalty.
On dynamic selection of households for direct marketing based on Markov chain models with memory
Otter, Pieter W.
A simple, dynamic selection procedure is proposed, based on conditional, expected profits using Markov chain models with memory. The method is easy to apply, only frequencies and mean values have to be calculated or estimated. The method is empirically illustrated using a data set from a charitable
Activity recognition using semi-Markov models on real world smart home datasets
van Kasteren, T.L.M.; Englebienne, G.; Kröse, B.J.A.
2010-01-01
Accurately recognizing human activities from sensor data recorded in a smart home setting is a challenging task. Typically, probabilistic models such as the hidden Markov model (HMM) or conditional random fields (CRF) are used to map the observed sensor data onto the hidden activity states. A
Estimation and Forecasting in Vector Autoregressive Moving Average Models for Rich Datasets
DEFF Research Database (Denmark)
Dias, Gustavo Fruet; Kapetanios, George
We address the issue of modelling and forecasting macroeconomic variables using rich datasets, by adopting the class of Vector Autoregressive Moving Average (VARMA) models. We overcome the estimation issue that arises with this class of models by implementing an iterative ordinary least squares (...
de Vries, S O; Fidler, Vaclav; Kuipers, Wietze D; Hunink, Maria G M
1998-01-01
The purpose of this study was to develop a model that predicts the outcome of supervised exercise for intermittent claudication. The authors present an example of the use of autoregressive logistic regression for modeling observed longitudinal data. Data were collected from 329 participants in a
Testing for Co-integration in Vector Autoregressions with Non-Stationary Volatility
DEFF Research Database (Denmark)
Cavaliere, Guiseppe; Rahbæk, Anders; Taylor, A.M. Robert
Many key macro-economic and financial variables are characterised by permanent changes in unconditional volatility. In this paper we analyse vector autoregressions with non-stationary (unconditional) volatility of a very general form, which includes single and multiple volatility breaks as special...
Testing for Co-integration in Vector Autoregressions with Non-Stationary Volatility
DEFF Research Database (Denmark)
Cavaliere, Giuseppe; Rahbek, Anders Christian; Taylor, A. M. Robert
Many key macro-economic and …nancial variables are characterised by permanent changes in unconditional volatility. In this paper we analyse vector autoregressions with non-stationary (unconditional) volatility of a very general form, which includes single and multiple volatility breaks as special...
Adaptive interpolation of discrete-time signals that can be modeled as autoregressive processes
Janssen, A.J.E.M.; Veldhuis, R.N.J.; Vries, L.B.
1986-01-01
The authors present an adaptive algorithm for the restoration of lost sample values in discrete-time signals that can locally be described by means of autoregressive processes. The only restrictions are that the positions of the unknown samples should be known and that they should be embedded in a
Adaptive interpolation of discrete-time signals that can be modeled as autoregressive processes
Janssen, A.J.E.M.; Veldhuis, Raymond N.J.; Vries, Lodewijk B.
1986-01-01
This paper presents an adaptive algorithm for the restoration of lost sample values in discrete-time signals that can locally be described by means of autoregressive processes. The only restrictions are that the positions of the unknown samples should be known and that they should be embedded in a
A Vector AutoRegressive (VAR) Approach to the Credit Channel for ...
African Journals Online (AJOL)
This paper is an attempt to determine the presence and empirical significance of monetary policy and the bank lending view of the credit channel for Mauritius, which is particularly relevant at these times. A vector autoregressive (VAR) model of order three is used to examine the monetary transmission mechanism using ...
On the Oracle Property of the Adaptive LASSO in Stationary and Nonstationary Autoregressions
DEFF Research Database (Denmark)
Kock, Anders Bredahl
We show that the Adaptive LASSO is oracle efficient in stationary and non-stationary autoregressions. This means that it estimates parameters consistently, selects the correct sparsity pattern, and estimates the coefficients belonging to the relevant variables at the same asymptotic efficiency...
Unit root vector autoregression with volatility induced stationarity
DEFF Research Database (Denmark)
Rahbek, Anders; Nielsen, Heino Bohn
We propose a discrete-time multivariate model where lagged levels of the process enter both the conditional mean and the conditional variance. This way we allow for the empirically observed persistence in time series such as interest rates, often implying unit-roots, while at the same time maintain...... and geometrically ergodic. Interestingly, these conditions include the case of unit roots and a reduced rank structure in the conditional mean, known from linear co-integration to imply non-stationarity. Asymptotic theory of the maximum likelihood estimators for a particular structured case (so-called self...
Unit Root Vector Autoregression with volatility Induced Stationarity
DEFF Research Database (Denmark)
Rahbek, Anders; Nielsen, Heino Bohn
We propose a discrete-time multivariate model where lagged levels of the process enter both the conditional mean and the conditional variance. This way we allow for the empirically observed persistence in time series such as interest rates, often implying unit-roots, while at the same time maintain...... and geometrically ergodic. Interestingly, these conditions include the case of unit roots and a reduced rank structure in the conditional mean, known from linear co-integration to imply non-stationarity. Asymptotic theory of the maximum likelihood estimators for a particular structured case (so-called self...
Linear and non-linear autoregressive models for short-term wind speed forecasting
International Nuclear Information System (INIS)
Lydia, M.; Suresh Kumar, S.; Immanuel Selvakumar, A.; Edwin Prem Kumar, G.
2016-01-01
Highlights: • Models for wind speed prediction at 10-min intervals up to 1 h built on time-series wind speed data. • Four different multivariate models for wind speed built based on exogenous variables. • Non-linear models built using three data mining algorithms outperform the linear models. • Autoregressive models based on wind direction perform better than other models. - Abstract: Wind speed forecasting aids in estimating the energy produced from wind farms. The soaring energy demands of the world and minimal availability of conventional energy sources have significantly increased the role of non-conventional sources of energy like solar, wind, etc. Development of models for wind speed forecasting with higher reliability and greater accuracy is the need of the hour. In this paper, models for predicting wind speed at 10-min intervals up to 1 h have been built based on linear and non-linear autoregressive moving average models with and without external variables. The autoregressive moving average models based on wind direction and annual trends have been built using data obtained from Sotavento Galicia Plc. and autoregressive moving average models based on wind direction, wind shear and temperature have been built on data obtained from Centre for Wind Energy Technology, Chennai, India. While the parameters of the linear models are obtained using the Gauss–Newton algorithm, the non-linear autoregressive models are developed using three different data mining algorithms. The accuracy of the models has been measured using three performance metrics namely, the Mean Absolute Error, Root Mean Squared Error and Mean Absolute Percentage Error.
Using hidden Markov models to align multiple sequences.
Mount, David W
2009-07-01
A hidden Markov model (HMM) is a probabilistic model of a multiple sequence alignment (msa) of proteins. In the model, each column of symbols in the alignment is represented by a frequency distribution of the symbols (called a "state"), and insertions and deletions are represented by other states. One moves through the model along a particular path from state to state in a Markov chain (i.e., random choice of next move), trying to match a given sequence. The next matching symbol is chosen from each state, recording its probability (frequency) and also the probability of going to that state from a previous one (the transition probability). State and transition probabilities are multiplied to obtain a probability of the given sequence. The hidden nature of the HMM is due to the lack of information about the value of a specific state, which is instead represented by a probability distribution over all possible values. This article discusses the advantages and disadvantages of HMMs in msa and presents algorithms for calculating an HMM and the conditions for producing the best HMM.
Hidden Markov latent variable models with multivariate longitudinal data.
Song, Xinyuan; Xia, Yemao; Zhu, Hongtu
2017-03-01
Cocaine addiction is chronic and persistent, and has become a major social and health problem in many countries. Existing studies have shown that cocaine addicts often undergo episodic periods of addiction to, moderate dependence on, or swearing off cocaine. Given its reversible feature, cocaine use can be formulated as a stochastic process that transits from one state to another, while the impacts of various factors, such as treatment received and individuals' psychological problems on cocaine use, may vary across states. This article develops a hidden Markov latent variable model to study multivariate longitudinal data concerning cocaine use from a California Civil Addict Program. The proposed model generalizes conventional latent variable models to allow bidirectional transition between cocaine-addiction states and conventional hidden Markov models to allow latent variables and their dynamic interrelationship. We develop a maximum-likelihood approach, along with a Monte Carlo expectation conditional maximization (MCECM) algorithm, to conduct parameter estimation. The asymptotic properties of the parameter estimates and statistics for testing the heterogeneity of model parameters are investigated. The finite sample performance of the proposed methodology is demonstrated by simulation studies. The application to cocaine use study provides insights into the prevention of cocaine use. © 2016, The International Biometric Society.
Simulation of daily rainfall through markov chain modeling
International Nuclear Information System (INIS)
Sadiq, N.
2015-01-01
Being an agricultural country, the inhabitants of dry land in cultivated areas mainly rely on the daily rainfall for watering their fields. A stochastic model based on first order Markov Chain was developed to simulate daily rainfall data for Multan, D. I. Khan, Nawabshah, Chilas and Barkhan for the period 1981-2010. Transitional probability matrices of first order Markov Chain was utilized to generate the daily rainfall occurrence while gamma distribution was used to generate the daily rainfall amount. In order to achieve the parametric values of mentioned cities, method of moments is used to estimate the shape and scale parameters which lead to synthetic sequence generation as per gamma distribution. In this study, unconditional and conditional probabilities of wet and dry days in sum with means and standard deviations are considered as the essential parameters for the simulated stochastic generation of daily rainfalls. It has been found that the computerized synthetic rainfall series concurred pretty well with the actual observed rainfall series. (author)
Markov chain aggregation and its applications to combinatorial reaction networks.
Ganguly, Arnab; Petrov, Tatjana; Koeppl, Heinz
2014-09-01
We consider a continuous-time Markov chain (CTMC) whose state space is partitioned into aggregates, and each aggregate is assigned a probability measure. A sufficient condition for defining a CTMC over the aggregates is presented as a variant of weak lumpability, which also characterizes that the measure over the original process can be recovered from that of the aggregated one. We show how the applicability of de-aggregation depends on the initial distribution. The application section is devoted to illustrate how the developed theory aids in reducing CTMC models of biochemical systems particularly in connection to protein-protein interactions. We assume that the model is written by a biologist in form of site-graph-rewrite rules. Site-graph-rewrite rules compactly express that, often, only a local context of a protein (instead of a full molecular species) needs to be in a certain configuration in order to trigger a reaction event. This observation leads to suitable aggregate Markov chains with smaller state spaces, thereby providing sufficient reduction in computational complexity. This is further exemplified in two case studies: simple unbounded polymerization and early EGFR/insulin crosstalk.
Nuclear security assessment with Markov model approach
International Nuclear Information System (INIS)
Suzuki, Mitsutoshi; Terao, Norichika
2013-01-01
Nuclear security risk assessment with the Markov model based on random event is performed to explore evaluation methodology for physical protection in nuclear facilities. Because the security incidences are initiated by malicious and intentional acts, expert judgment and Bayes updating are used to estimate scenario and initiation likelihood, and it is assumed that the Markov model derived from stochastic process can be applied to incidence sequence. Both an unauthorized intrusion as Design Based Threat (DBT) and a stand-off attack as beyond-DBT are assumed to hypothetical facilities, and performance of physical protection and mitigation and minimization of consequence are investigated to develop the assessment methodology in a semi-quantitative manner. It is shown that cooperation between facility operator and security authority is important to respond to the beyond-DBT incidence. (author)
MARKOV CHAIN PORTFOLIO LIQUIDITY OPTIMIZATION MODEL
Directory of Open Access Journals (Sweden)
Eder Oliveira Abensur
2014-05-01
Full Text Available The international financial crisis of September 2008 and May 2010 showed the importance of liquidity as an attribute to be considered in portfolio decisions. This study proposes an optimization model based on available public data, using Markov chain and Genetic Algorithms concepts as it considers the classic duality of risk versus return and incorporating liquidity costs. The work intends to propose a multi-criterion non-linear optimization model using liquidity based on a Markov chain. The non-linear model was tested using Genetic Algorithms with twenty five Brazilian stocks from 2007 to 2009. The results suggest that this is an innovative development methodology and useful for developing an efficient and realistic financial portfolio, as it considers many attributes such as risk, return and liquidity.
An interlacing theorem for reversible Markov chains
International Nuclear Information System (INIS)
Grone, Robert; Salamon, Peter; Hoffmann, Karl Heinz
2008-01-01
Reversible Markov chains are an indispensable tool in the modeling of a vast class of physical, chemical, biological and statistical problems. Examples include the master equation descriptions of relaxing physical systems, stochastic optimization algorithms such as simulated annealing, chemical dynamics of protein folding and Markov chain Monte Carlo statistical estimation. Very often the large size of the state spaces requires the coarse graining or lumping of microstates into fewer mesoscopic states, and a question of utmost importance for the validity of the physical model is how the eigenvalues of the corresponding stochastic matrix change under this operation. In this paper we prove an interlacing theorem which gives explicit bounds on the eigenvalues of the lumped stochastic matrix. (fast track communication)
An interlacing theorem for reversible Markov chains
Energy Technology Data Exchange (ETDEWEB)
Grone, Robert; Salamon, Peter [Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182-7720 (United States); Hoffmann, Karl Heinz [Institut fuer Physik, Technische Universitaet Chemnitz, D-09107 Chemnitz (Germany)
2008-05-30
Reversible Markov chains are an indispensable tool in the modeling of a vast class of physical, chemical, biological and statistical problems. Examples include the master equation descriptions of relaxing physical systems, stochastic optimization algorithms such as simulated annealing, chemical dynamics of protein folding and Markov chain Monte Carlo statistical estimation. Very often the large size of the state spaces requires the coarse graining or lumping of microstates into fewer mesoscopic states, and a question of utmost importance for the validity of the physical model is how the eigenvalues of the corresponding stochastic matrix change under this operation. In this paper we prove an interlacing theorem which gives explicit bounds on the eigenvalues of the lumped stochastic matrix. (fast track communication)
Stochastic Dynamics through Hierarchically Embedded Markov Chains.
Vasconcelos, Vítor V; Santos, Fernando P; Santos, Francisco C; Pacheco, Jorge M
2017-02-03
Studying dynamical phenomena in finite populations often involves Markov processes of significant mathematical and/or computational complexity, which rapidly becomes prohibitive with increasing population size or an increasing number of individual configuration states. Here, we develop a framework that allows us to define a hierarchy of approximations to the stationary distribution of general systems that can be described as discrete Markov processes with time invariant transition probabilities and (possibly) a large number of states. This results in an efficient method for studying social and biological communities in the presence of stochastic effects-such as mutations in evolutionary dynamics and a random exploration of choices in social systems-including situations where the dynamics encompasses the existence of stable polymorphic configurations, thus overcoming the limitations of existing methods. The present formalism is shown to be general in scope, widely applicable, and of relevance to a variety of interdisciplinary problems.
Exact solution of the hidden Markov processes
Saakian, David B.
2017-11-01
We write a master equation for the distributions related to hidden Markov processes (HMPs) and solve it using a functional equation. Thus the solution of HMPs is mapped exactly to the solution of the functional equation. For a general case the latter can be solved only numerically. We derive an exact expression for the entropy of HMPs. Our expression for the entropy is an alternative to the ones given before by the solution of integral equations. The exact solution is possible because actually the model can be considered as a generalized random walk on a one-dimensional strip. While we give the solution for the two second-order matrices, our solution can be easily generalized for the L values of the Markov process and M values of observables: We should be able to solve a system of L functional equations in the space of dimension M -1 .
Handbook of Markov chain Monte Carlo
Brooks, Steve
2011-01-01
""Handbook of Markov Chain Monte Carlo"" brings together the major advances that have occurred in recent years while incorporating enough introductory material for new users of MCMC. Along with thorough coverage of the theoretical foundations and algorithmic and computational methodology, this comprehensive handbook includes substantial realistic case studies from a variety of disciplines. These case studies demonstrate the application of MCMC methods and serve as a series of templates for the construction, implementation, and choice of MCMC methodology.
Dynamical fluctuations for semi-Markov processes
Czech Academy of Sciences Publication Activity Database
Maes, C.; Netočný, Karel; Wynants, B.
2009-01-01
Roč. 42, č. 36 (2009), 365002/1-365002/21 ISSN 1751-8113 R&D Projects: GA ČR GC202/07/J051 Institutional research plan: CEZ:AV0Z10100520 Keywords : nonequilibrium fluctuations * semi-Markov processes Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.577, year: 2009 http://www.iop.org/EJ/abstract/1751-8121/42/36/365002
Analysis of a quantum Markov chain
International Nuclear Information System (INIS)
Marbeau, J.; Gudder, S.
1990-01-01
A quantum chain is analogous to a classical stationary Markov chain except that the probability measure is replaced by a complex amplitude measure and the transition probability matrix is replaced by a transition amplitude matrix. After considering the general situation, we study a particular example of a quantum chain whose transition amplitude matrix has the form of a Dirichlet matrix. Such matrices generate a discrete analog of the usual continuum Feynman amplitude. We then compute the probability distribution for these quantum chains
Modelling of cyclical stratigraphy using Markov chains
Energy Technology Data Exchange (ETDEWEB)
Kulatilake, P.H.S.W.
1987-07-01
State-of-the-art on modelling of cyclical stratigraphy using first-order Markov chains is reviewed. Shortcomings of the presently available procedures are identified. A procedure which eliminates all the identified shortcomings is presented. Required statistical tests to perform this modelling are given in detail. An example (the Oficina formation in eastern Venezuela) is given to illustrate the presented procedure. 12 refs., 3 tabs. 1 fig.
Markov Chains For Testing Redundant Software
White, Allan L.; Sjogren, Jon A.
1990-01-01
Preliminary design developed for validation experiment that addresses problems unique to assuring extremely high quality of multiple-version programs in process-control software. Approach takes into account inertia of controlled system in sense it takes more than one failure of control program to cause controlled system to fail. Verification procedure consists of two steps: experimentation (numerical simulation) and computation, with Markov model for each step.
Markov and semi-Markov switching linear mixed models used to identify forest tree growth components.
Chaubert-Pereira, Florence; Guédon, Yann; Lavergne, Christian; Trottier, Catherine
2010-09-01
Tree growth is assumed to be mainly the result of three components: (i) an endogenous component assumed to be structured as a succession of roughly stationary phases separated by marked change points that are asynchronous among individuals, (ii) a time-varying environmental component assumed to take the form of synchronous fluctuations among individuals, and (iii) an individual component corresponding mainly to the local environment of each tree. To identify and characterize these three components, we propose to use semi-Markov switching linear mixed models, i.e., models that combine linear mixed models in a semi-Markovian manner. The underlying semi-Markov chain represents the succession of growth phases and their lengths (endogenous component) whereas the linear mixed models attached to each state of the underlying semi-Markov chain represent-in the corresponding growth phase-both the influence of time-varying climatic covariates (environmental component) as fixed effects, and interindividual heterogeneity (individual component) as random effects. In this article, we address the estimation of Markov and semi-Markov switching linear mixed models in a general framework. We propose a Monte Carlo expectation-maximization like algorithm whose iterations decompose into three steps: (i) sampling of state sequences given random effects, (ii) prediction of random effects given state sequences, and (iii) maximization. The proposed statistical modeling approach is illustrated by the analysis of successive annual shoots along Corsican pine trunks influenced by climatic covariates. © 2009, The International Biometric Society.
Modeling nonhomogeneous Markov processes via time transformation.
Hubbard, R A; Inoue, L Y T; Fann, J R
2008-09-01
Longitudinal studies are a powerful tool for characterizing the course of chronic disease. These studies are usually carried out with subjects observed at periodic visits giving rise to panel data. Under this observation scheme the exact times of disease state transitions and sequence of disease states visited are unknown and Markov process models are often used to describe disease progression. Most applications of Markov process models rely on the assumption of time homogeneity, that is, that the transition rates are constant over time. This assumption is not satisfied when transition rates depend on time from the process origin. However, limited statistical tools are available for dealing with nonhomogeneity. We propose models in which the time scale of a nonhomogeneous Markov process is transformed to an operational time scale on which the process is homogeneous. We develop a method for jointly estimating the time transformation and the transition intensity matrix for the time transformed homogeneous process. We assess maximum likelihood estimation using the Fisher scoring algorithm via simulation studies and compare performance of our method to homogeneous and piecewise homogeneous models. We apply our methodology to a study of delirium progression in a cohort of stem cell transplantation recipients and show that our method identifies temporal trends in delirium incidence and recovery.
Temperature scaling method for Markov chains.
Crosby, Lonnie D; Windus, Theresa L
2009-01-22
The use of ab initio potentials in Monte Carlo simulations aimed at investigating the nucleation kinetics of water clusters is complicated by the computational expense of the potential energy determinations. Furthermore, the common desire to investigate the temperature dependence of kinetic properties leads to an urgent need to reduce the expense of performing simulations at many different temperatures. A method is detailed that allows a Markov chain (obtained via Monte Carlo) at one temperature to be scaled to other temperatures of interest without the need to perform additional large simulations. This Markov chain temperature-scaling (TeS) can be generally applied to simulations geared for numerous applications. This paper shows the quality of results which can be obtained by TeS and the possible quantities which may be extracted from scaled Markov chains. Results are obtained for a 1-D analytical potential for which the exact solutions are known. Also, this method is applied to water clusters consisting of between 2 and 5 monomers, using Dynamical Nucleation Theory to determine the evaporation rate constant for monomer loss. Although ab initio potentials are not utilized in this paper, the benefit of this method is made apparent by using the Dang-Chang polarizable classical potential for water to obtain statistical properties at various temperatures.
Gil, Enrique A; Aubert, Xavier L; Møst, Els I S; Beersma, Domien G M
Phase estimation of the human circadian rhythm is a topic that has been explored using various modeling approaches. The current models range from physiological to mathematical, all attempting to estimate the circadian phase from different physiological or behavioral signals. Here, we have focused on
Torres-Matallana, J.A.; Leopold, U.; Heuvelink, G.B.M.
2017-01-01
Precipitation is the most active flux and major input of hydrological systems. Precipitation controls hydrological states (soil moisture and groundwater level), and fluxes (runoff, evapotranspiration and groundwater recharge).
Hence, precipitation plays a paramount role in urban water systems.
Stencil method: a Markov model for transport in porous media
Delgoshaie, A. H.; Tchelepi, H.; Jenny, P.
2016-12-01
In porous media the transport of fluid is dominated by flow-field heterogeneity resulting from the underlying transmissibility field. Since the transmissibility is highly uncertain, many realizations of a geological model are used to describe the statistics of the transport phenomena in a Monte Carlo framework. One possible way to avoid the high computational cost of physics-based Monte Carlo simulations is to model the velocity field as a Markov process and use Markov Chain Monte Carlo. In previous works multiple Markov models for discrete velocity processes have been proposed. These models can be divided into two general classes of Markov models in time and Markov models in space. Both of these choices have been shown to be effective to some extent. However some studies have suggested that the Markov property cannot be confirmed for a temporal Markov process; Therefore there is not a consensus about the validity and value of Markov models in time. Moreover, previous spacial Markov models have only been used for modeling transport on structured networks and can not be readily applied to model transport in unstructured networks. In this work we propose a novel approach for constructing a Markov model in time (stencil method) for a discrete velocity process. The results form the stencil method are compared to previously proposed spacial Markov models for structured networks. The stencil method is also applied to unstructured networks and can successfully describe the dispersion of particles in this setting. Our conclusion is that both temporal Markov models and spacial Markov models for discrete velocity processes can be valid for a range of model parameters. Moreover, we show that the stencil model can be more efficient in many practical settings and is suited to model dispersion both on structured and unstructured networks.
Constructing Dynamic Event Trees from Markov Models
International Nuclear Information System (INIS)
Paolo Bucci; Jason Kirschenbaum; Tunc Aldemir; Curtis Smith; Ted Wood
2006-01-01
In the probabilistic risk assessment (PRA) of process plants, Markov models can be used to model accurately the complex dynamic interactions between plant physical process variables (e.g., temperature, pressure, etc.) and the instrumentation and control system that monitors and manages the process. One limitation of this approach that has prevented its use in nuclear power plant PRAs is the difficulty of integrating the results of a Markov analysis into an existing PRA. In this paper, we explore a new approach to the generation of failure scenarios and their compilation into dynamic event trees from a Markov model of the system. These event trees can be integrated into an existing PRA using software tools such as SAPHIRE. To implement our approach, we first construct a discrete-time Markov chain modeling the system of interest by: (a) partitioning the process variable state space into magnitude intervals (cells), (b) using analytical equations or a system simulator to determine the transition probabilities between the cells through the cell-to-cell mapping technique, and, (c) using given failure/repair data for all the components of interest. The Markov transition matrix thus generated can be thought of as a process model describing the stochastic dynamic behavior of the finite-state system. We can therefore search the state space starting from a set of initial states to explore all possible paths to failure (scenarios) with associated probabilities. We can also construct event trees of arbitrary depth by tracing paths from a chosen initiating event and recording the following events while keeping track of the probabilities associated with each branch in the tree. As an example of our approach, we use the simple level control system often used as benchmark in the literature with one process variable (liquid level in a tank), and three control units: a drain unit and two supply units. Each unit includes a separate level sensor to observe the liquid level in the tank
Markov chains and semi-Markov models in time-to-event analysis.
Abner, Erin L; Charnigo, Richard J; Kryscio, Richard J
2013-10-25
A variety of statistical methods are available to investigators for analysis of time-to-event data, often referred to as survival analysis. Kaplan-Meier estimation and Cox proportional hazards regression are commonly employed tools but are not appropriate for all studies, particularly in the presence of competing risks and when multiple or recurrent outcomes are of interest. Markov chain models can accommodate censored data, competing risks (informative censoring), multiple outcomes, recurrent outcomes, frailty, and non-constant survival probabilities. Markov chain models, though often overlooked by investigators in time-to-event analysis, have long been used in clinical studies and have widespread application in other fields.
English, Thomas
2005-01-01
A standard tool of reliability analysis used at NASA-JSC is the event tree. An event tree is simply a probability tree, with the probabilities determining the next step through the tree specified at each node. The nodal probabilities are determined by a reliability study of the physical system at work for a particular node. The reliability study performed at a node is typically referred to as a fault tree analysis, with the potential of a fault tree existing.for each node on the event tree. When examining an event tree it is obvious why the event tree/fault tree approach has been adopted. Typical event trees are quite complex in nature, and the event tree/fault tree approach provides a systematic and organized approach to reliability analysis. The purpose of this study was two fold. Firstly, we wanted to explore the possibility that a semi-Markov process can create dependencies between sojourn times (the times it takes to transition from one state to the next) that can decrease the uncertainty when estimating time to failures. Using a generalized semi-Markov model, we studied a four element reliability model and were able to demonstrate such sojourn time dependencies. Secondly, we wanted to study the use of semi-Markov processes to introduce a time variable into the event tree diagrams that are commonly developed in PRA (Probabilistic Risk Assessment) analyses. Event tree end states which change with time are more representative of failure scenarios than are the usual static probability-derived end states.
PELACAKAN DAN PENGENALAN WAJAH MENGGUNAKAN METODE EMBEDDED HIDDEN MARKOV MODELS
Directory of Open Access Journals (Sweden)
Arie Wirawan Margono
2004-01-01
Full Text Available Tracking and recognizing human face becomes one of the important research subjects nowadays, where it is applicable in security system like room access, surveillance, as well as searching for person identity in police database. Because of applying in security case, it is necessary to have robust system for certain conditions such as: background influence, non-frontal face pose of male or female in different age and race. The aim of this research is to develop software which combines human face tracking using CamShift algorithm and face recognition system using Embedded Hidden Markov Models. The software uses video camera (webcam for real-time input, video AVI for dynamic input, and image file for static input. The software uses Object Oriented Programming (OOP coding style with C++ programming language, Microsoft Visual C++ 6.0® compiler, and assisted by some libraries of Intel Image Processing Library (IPL and Intel Open Source Computer Vision (OpenCV. System testing shows that object tracking based on skin complexion using CamShift algorithm comes out well, for tracking of single or even two face objects at once. Human face recognition system using Embedded Hidden Markov Models method has reach accuracy percentage of 82.76%, using 341 human faces in database that consists of 31 individuals with 11 poses and 29 human face testers. Abstract in Bahasa Indonesia : Pelacakan dan pengenalan wajah manusia merupakan salah satu bidang yang cukup berkembang dewasa ini, dimana aplikasi dapat diterapkan dalam bidang keamanan (security system seperti ijin akses masuk ruangan, pengawasan lokasi (surveillance, maupun pencarian identitas individu pada database kepolisian. Karena diterapkan dalam kasus keamanan, dibutuhkan sistem yang handal terhadap beberapa kondisi, seperti: pengaruh latar belakang, pose wajah non-frontal terhadap pria maupun wanita dalam perbedaan usia dan ras. Tujuan penelitiam ini adalah untuk membuat perangkat lunak yang menggabungkan
On conditional independence and log-convexity
Czech Academy of Sciences Publication Activity Database
Matúš, František
2012-01-01
Roč. 48, č. 4 (2012), s. 1137-1147 ISSN 0246-0203 R&D Projects: GA AV ČR IAA100750603; GA ČR GA201/08/0539 Institutional support: RVO:67985556 Keywords : Conditional independence * Markov properties * factorizable distributions * graphical Markov models * log-convexity * Gibbs- Markov equivalence * Markov fields * Gaussian distributions * positive definite matrices * covariance selection model Subject RIV: BA - General Mathematics Impact factor: 0.933, year: 2012 http://library.utia.cas.cz/separaty/2013/MTR/matus-0386229.pdf
A Markov Process Inspired Cellular Automata Model of Road Traffic
Wang, Fa; Li, Li; Hu, Jianming; Ji, Yan; Yao, Danya; Zhang, Yi; Jin, Xuexiang; Su, Yuelong; Wei, Zheng
2008-01-01
To provide a more accurate description of the driving behaviors in vehicle queues, a namely Markov-Gap cellular automata model is proposed in this paper. It views the variation of the gap between two consequent vehicles as a Markov process whose stationary distribution corresponds to the observed distribution of practical gaps. The multiformity of this Markov process provides the model enough flexibility to describe various driving behaviors. Two examples are given to show how to specialize i...
A New GMRES(m Method for Markov Chains
Directory of Open Access Journals (Sweden)
Bing-Yuan Pu
2013-01-01
Full Text Available This paper presents a class of new accelerated restarted GMRES method for calculating the stationary probability vector of an irreducible Markov chain. We focus on the mechanism of this new hybrid method by showing how to periodically combine the GMRES and vector extrapolation method into a much efficient one for improving the convergence rate in Markov chain problems. Numerical experiments are carried out to demonstrate the efficiency of our new algorithm on several typical Markov chain problems.
Directory of Open Access Journals (Sweden)
Luis Gonzaga Baca Ruiz
2016-08-01
Full Text Available This paper addresses the problem of energy consumption prediction using neural networks over a set of public buildings. Since energy consumption in the public sector comprises a substantial share of overall consumption, the prediction of such consumption represents a decisive issue in the achievement of energy savings. In our experiments, we use the data provided by an energy consumption monitoring system in a compound of faculties and research centers at the University of Granada, and provide a methodology to predict future energy consumption using nonlinear autoregressive (NAR and the nonlinear autoregressive neural network with exogenous inputs (NARX, respectively. Results reveal that NAR and NARX neural networks are both suitable for performing energy consumption prediction, but also that exogenous data may help to improve the accuracy of predictions.
International Nuclear Information System (INIS)
Yao, Ruigen; Pakzad, Shamim N
2014-01-01
In the past few decades many types of structural damage indices based on structural health monitoring signals have been proposed, requiring performance evaluation and comparison studies on these indices in a quantitative manner. One tool to help accomplish this objective is analytical sensitivity analysis, which has been successfully used to evaluate the influences of system operational parameters on observable characteristics in many fields of study. In this paper, the sensitivity expressions of two damage features, namely the Mahalanobis distance of autoregressive coefficients and the Cosh distance of autoregressive spectra, will be derived with respect to both structural damage and measurement noise level. The effectiveness of the proposed methods is illustrated in a numerical case study on a 10-DOF system, where their results are compared with those from direct simulation and theoretical calculation. (paper)
Medium- and Long-term Prediction of LOD Change by the Leap-step Autoregressive Model
Wang, Qijie
2015-08-01
The accuracy of medium- and long-term prediction of length of day (LOD) change base on combined least-square and autoregressive (LS+AR) deteriorates gradually. Leap-step autoregressive (LSAR) model can significantly reduce the edge effect of the observation sequence. Especially, LSAR model greatly improves the resolution of signals’ low-frequency components. Therefore, it can improve the efficiency of prediction. In this work, LSAR is used to forecast the LOD change. The LOD series from EOP 08 C04 provided by IERS is modeled by both the LSAR and AR models. The results of the two models are analyzed and compared. When the prediction length is between 10-30 days, the accuracy improvement is less than 10%. When the prediction length amounts to above 30 day, the accuracy improved obviously, with the maximum being around 19%. The results show that the LSAR model has higher prediction accuracy and stability in medium- and long-term prediction.
Medium- and Long-term Prediction of LOD Change with the Leap-step Autoregressive Model
Liu, Q. B.; Wang, Q. J.; Lei, M. F.
2015-09-01
It is known that the accuracies of medium- and long-term prediction of changes of length of day (LOD) based on the combined least-square and autoregressive (LS+AR) decrease gradually. The leap-step autoregressive (LSAR) model is more accurate and stable in medium- and long-term prediction, therefore it is used to forecast the LOD changes in this work. Then the LOD series from EOP 08 C04 provided by IERS (International Earth Rotation and Reference Systems Service) is used to compare the effectiveness of the LSAR and traditional AR methods. The predicted series resulted from the two models show that the prediction accuracy with the LSAR model is better than that from AR model in medium- and long-term prediction.
NONPARAMETRIC IDENTIFICATION FOR NONLINEAR AUTOREGRESSIVE TIMESERIES MODELS： CONVERGENCE RATES
Institute of Scientific and Technical Information of China (English)
LUZUDI; CHENGPING
1999-01-01
In this paper the optimal convergence rates of estimators ba~ed on kernel approach fornonlinear AR model are investigated in the sense of Stone[17'1a]. By combining the mixingproperty of the stationary solution with the characteristics of the model itself, the restrictiveconditions in the literature which are not easy to be satisfied by the nonlinear AR model axeremoved, and the mild conditions are obtained to guarantee the optimal ratea of the estimatorof autoregTession function. In addition: the strongly coasistent estimator of the ~riance ofwhite noise is also constructed.
The exit-time problem for a Markov jump process
Burch, N.; D'Elia, M.; Lehoucq, R. B.
2014-12-01
The purpose of this paper is to consider the exit-time problem for a finite-range Markov jump process, i.e, the distance the particle can jump is bounded independent of its location. Such jump diffusions are expedient models for anomalous transport exhibiting super-diffusion or nonstandard normal diffusion. We refer to the associated deterministic equation as a volume-constrained nonlocal diffusion equation. The volume constraint is the nonlocal analogue of a boundary condition necessary to demonstrate that the nonlocal diffusion equation is well-posed and is consistent with the jump process. A critical aspect of the analysis is a variational formulation and a recently developed nonlocal vector calculus. This calculus allows us to pose nonlocal backward and forward Kolmogorov equations, the former equation granting the various moments of the exit-time distribution.
Markov Chain Monte Carlo Bayesian Learning for Neural Networks
Goodrich, Michael S.
2011-01-01
Conventional training methods for neural networks involve starting al a random location in the solution space of the network weights, navigating an error hyper surface to reach a minimum, and sometime stochastic based techniques (e.g., genetic algorithms) to avoid entrapment in a local minimum. It is further typically necessary to preprocess the data (e.g., normalization) to keep the training algorithm on course. Conversely, Bayesian based learning is an epistemological approach concerned with formally updating the plausibility of competing candidate hypotheses thereby obtaining a posterior distribution for the network weights conditioned on the available data and a prior distribution. In this paper, we developed a powerful methodology for estimating the full residual uncertainty in network weights and therefore network predictions by using a modified Jeffery's prior combined with a Metropolis Markov Chain Monte Carlo method.
Nonequilibrium thermodynamic potentials for continuous-time Markov chains.
Verley, Gatien
2016-01-01
We connect the rare fluctuations of an equilibrium (EQ) process and the typical fluctuations of a nonequilibrium (NE) stationary process. In the framework of large deviation theory, this observation allows us to introduce NE thermodynamic potentials. For continuous-time Markov chains, we identify the relevant pairs of conjugated variables and propose two NE ensembles: one with fixed dynamics and fluctuating time-averaged variables, and another with fixed time-averaged variables, but a fluctuating dynamics. Accordingly, we show that NE processes are equivalent to conditioned EQ processes ensuring that NE potentials are Legendre dual. We find a variational principle satisfied by the NE potentials that reach their maximum in the NE stationary state and whose first derivatives produce the NE equations of state and second derivatives produce the NE Maxwell relations generalizing the Onsager reciprocity relations.
A Markov random field approach for microstructure synthesis
International Nuclear Information System (INIS)
Kumar, A; Nguyen, L; DeGraef, M; Sundararaghavan, V
2016-01-01
We test the notion that many microstructures have an underlying stationary probability distribution. The stationary probability distribution is ubiquitous: we know that different windows taken from a polycrystalline microstructure are generally ‘statistically similar’. To enable computation of such a probability distribution, microstructures are represented in the form of undirected probabilistic graphs called Markov Random Fields (MRFs). In the model, pixels take up integer or vector states and interact with multiple neighbors over a window. Using this lattice structure, algorithms are developed to sample the conditional probability density for the state of each pixel given the known states of its neighboring pixels. The sampling is performed using reference experimental images. 2D microstructures are artificially synthesized using the sampled probabilities. Statistical features such as grain size distribution and autocorrelation functions closely match with those of the experimental images. The mechanical properties of the synthesized microstructures were computed using the finite element method and were also found to match the experimental values. (paper)
A hidden Markov model approach to neuron firing patterns.
Camproux, A C; Saunier, F; Chouvet, G; Thalabard, J C; Thomas, G
1996-11-01
Analysis and characterization of neuronal discharge patterns are of interest to neurophysiologists and neuropharmacologists. In this paper we present a hidden Markov model approach to modeling single neuron electrical activity. Basically the model assumes that each interspike interval corresponds to one of several possible states of the neuron. Fitting the model to experimental series of interspike intervals by maximum likelihood allows estimation of the number of possible underlying neuron states, the probability density functions of interspike intervals corresponding to each state, and the transition probabilities between states. We present an application to the analysis of recordings of a locus coeruleus neuron under three pharmacological conditions. The model distinguishes two states during halothane anesthesia and during recovery from halothane anesthesia, and four states after administration of clonidine. The transition probabilities yield additional insights into the mechanisms of neuron firing.
Context Tree Estimation in Variable Length Hidden Markov Models
Dumont, Thierry
2011-01-01
We address the issue of context tree estimation in variable length hidden Markov models. We propose an estimator of the context tree of the hidden Markov process which needs no prior upper bound on the depth of the context tree. We prove that the estimator is strongly consistent. This uses information-theoretic mixture inequalities in the spirit of Finesso and Lorenzo(Consistent estimation of the order for Markov and hidden Markov chains(1990)) and E.Gassiat and S.Boucheron (Optimal error exp...
Deteksi Fraud Menggunakan Metode Model Markov Tersembunyi Pada Proses Bisnis
Directory of Open Access Journals (Sweden)
Andrean Hutama Koosasi
2017-03-01
Full Text Available Model Markov Tersembunyi merupakan sebuah metode statistik berdasarkan Model Markov sederhana yang memodelkan sistem serta membaginya dalam 2 (dua state, state tersembunyi dan state observasi. Dalam pengerjaan tugas akhir ini, penulis mengusulkan penggunaan metode Model Markov Tersembunyi untuk menemukan fraud didalam sebuah pelaksanaan proses bisnis. Dengan penggunaan metode Model Markov Tersembunyi ini, maka pengamatan terhadap elemen penyusun sebuah kasus/kejadian, yakni beberapa aktivitas, akan diperoleh sebuah nilai peluang, yang sekaligus memberikan prediksi terhadap kasus/kejadian tersebut, sebuah fraud atau tidak. Hasil ekpserimen ini menunjukkan bahwa metode yang diusulkan mampu memberikan prediksi akhir dengan evaluasi TPR sebesar 87,5% dan TNR sebesar 99,4%.
Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation
Huang, Mengyun; Li, Wei; Liu, Zhangyun; Cheng, Linghao; Guan, Bai-Ou
2018-06-01
Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.
Bušs, Ginters
2009-01-01
Bayesian inference requires an analyst to set priors. Setting the right prior is crucial for precise forecasts. This paper analyzes how optimal prior changes when an economy is hit by a recession. For this task, an autoregressive distributed lag (ADL) model is chosen. The results show that a sharp economic slowdown changes the optimal prior in two directions. First, it changes the structure of the optimal weight prior, setting smaller weight on the lagged dependent variable compared to varia...
Use of (Time-Domain) Vector Autoregressions to Test Uncovered Interest Parity
Takatoshi Ito
1984-01-01
In this paper, a vector autoregression model (VAR) is proposed in order to test uncovered interest parity (UIP) in the foreign exchange market. Consider a VAR system of the spot exchange rate (yen/dollar), the domestic (US) interest rate and the foreign (Japanese) interest rate, describing the interdependence of the domestic and international financia lmarkets. Uncovered interest parity is stated as a null hypothesis that the current difference between the two interest rates is equal to the d...
Directory of Open Access Journals (Sweden)
Sun Zhangzhen
2012-08-01
Full Text Available In this paper, an improved weighted least squares (WLS, together with autoregressive (AR model, is proposed to improve prediction accuracy of earth rotation parameters(ERP. Four weighting schemes are developed and the optimal power e for determination of the weight elements is studied. The results show that the improved WLS-AR model can improve the ERP prediction accuracy effectively, and for different prediction intervals of ERP, different weight scheme should be chosen.
A Dynamic Model of U.S. Sugar-Related Markets: A Cointegrated Vector Autoregression Approach
Babula, Ronald A.; Newman, Douglas; Rogowsky, Robert A.
2006-01-01
The methods of the cointegrated vector autoregression (VAR) model are applied to monthly U.S. markets for sugar and for sugar-using markets for confectionary, soft drink, and bakery products. Primarily a methods paper, we apply Johansen and Juselius' advanced procedures to these markets for perhaps the first time, with focus on achievement of a statistically adequate model through analysis of a battery of advanced statistical diagnostic tests and on exploitation of the system's cointegration ...
Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation
Huang, Mengyun; Li, Wei; Liu, Zhangyun; Cheng, Linghao; Guan, Bai-Ou
2018-03-01
Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.
Exchange rate pass-through in Switzerland: Evidence from vector autoregressions
Jonas Stulz
2007-01-01
This study investigates the pass-through of exchange rate and import price shocks to different aggregated prices in Switzerland. The baseline analysis is carried out with recursively identified vector autoregressive (VAR) models. The data set comprises monthly observations, and pass-through effects are quantified by means of impulse response functions. Evidence shows that the exchange rate pass-through to import prices is substantial (although incomplete), but only moderate to total consumer ...
Estimation of the order of an autoregressive time series: a Bayesian approach
International Nuclear Information System (INIS)
Robb, L.J.
1980-01-01
Finite-order autoregressive models for time series are often used for prediction and other inferences. Given the order of the model, the parameters of the models can be estimated by least-squares, maximum-likelihood, or Yule-Walker method. The basic problem is estimating the order of the model. The problem of autoregressive order estimation is placed in a Bayesian framework. This approach illustrates how the Bayesian method brings the numerous aspects of the problem together into a coherent structure. A joint prior probability density is proposed for the order, the partial autocorrelation coefficients, and the variance; and the marginal posterior probability distribution for the order, given the data, is obtained. It is noted that the value with maximum posterior probability is the Bayes estimate of the order with respect to a particular loss function. The asymptotic posterior distribution of the order is also given. In conclusion, Wolfer's sunspot data as well as simulated data corresponding to several autoregressive models are analyzed according to Akaike's method and the Bayesian method. Both methods are observed to perform quite well, although the Bayesian method was clearly superior, in most cases
International Nuclear Information System (INIS)
Aruquipa Coloma, Wilmer
2017-01-01
Nuclear reactors are susceptible to instability, causing oscillations in reactor power in specific working regions characterized by determined values of power and coolant mass flow. During reactor startup, there is a greater probability that these regions of instability will be present; another reason may be due to transient processes in some reactor parameters. The analysis of the temporal evolution of the power reveals a stable or unstable process after the disturbance in a light water reactor of type BWR (Boiling Water Reactor). In this work, the instability problem was approached in two ways. The first form is based on the ARMA (Autoregressive Moving Average models) model. This model was used to calculate the Decay Ratio (DR) and natural frequency (NF) of the oscillations, parameters that indicate if the one power signal is stable or not. In this sense, the DRARMA code was developed. In the second form, the problems of instability were analyzed using the classical concepts of non-linear systems, such as Lyapunov exponents, phase space and attractors. The Lyapunov exponents quantify the exponential divergence of the trajectories initially close to the phase space and estimate the amount of chaos in a system; the phase space and the attractors describe the dynamic behavior of the system. The main aim of the instability phenomena studies in nuclear reactors is to try to identify points or regions of operation that can lead to power oscillations conditions. The two approaches were applied to two sets of signals. The first set comes from signals of instability events of the commercial Forsmark reactors 1 and 2 and were used to validate the DRARMA code. The second set was obtained from the simulation of transient events of the Peach Bottom reactor; for the simulation, the PARCS and RELAP5 codes were used for the neutronic/thermal hydraulic coupling calculation. For all analyzes made in this work, the Matlab software was used due to its ease of programming and
Markov Chain Analysis of Musical Dice Games
Volchenkov, D.; Dawin, J. R.
2012-07-01
A system for using dice to compose music randomly is known as the musical dice game. The discrete time MIDI models of 804 pieces of classical music written by 29 composers have been encoded into the transition matrices and studied by Markov chains. Contrary to human languages, entropy dominates over redundancy, in the musical dice games based on the compositions of classical music. The maximum complexity is achieved on the blocks consisting of just a few notes (8 notes, for the musical dice games generated over Bach's compositions). First passage times to notes can be used to resolve tonality and feature a composer.
Pruning Boltzmann networks and hidden Markov models
DEFF Research Database (Denmark)
Pedersen, Morten With; Stork, D.
1996-01-01
We present sensitivity-based pruning algorithms for general Boltzmann networks. Central to our methods is the efficient calculation of a second-order approximation to the true weight saliencies in a cross-entropy error. Building upon previous work which shows a formal correspondence between linear...... Boltzmann chains and hidden Markov models (HMMs), we argue that our method can be applied to HMMs as well. We illustrate pruning on Boltzmann zippers, which are equivalent to two HMMs with cross-connection links. We verify that our second-order approximation preserves the rank ordering of weight saliencies...
Decoding LDPC Convolutional Codes on Markov Channels
Directory of Open Access Journals (Sweden)
Kashyap Manohar
2008-01-01
Full Text Available Abstract This paper describes a pipelined iterative technique for joint decoding and channel state estimation of LDPC convolutional codes over Markov channels. Example designs are presented for the Gilbert-Elliott discrete channel model. We also compare the performance and complexity of our algorithm against joint decoding and state estimation of conventional LDPC block codes. Complexity analysis reveals that our pipelined algorithm reduces the number of operations per time step compared to LDPC block codes, at the expense of increased memory and latency. This tradeoff is favorable for low-power applications.
Decoding LDPC Convolutional Codes on Markov Channels
Directory of Open Access Journals (Sweden)
Chris Winstead
2008-04-01
Full Text Available This paper describes a pipelined iterative technique for joint decoding and channel state estimation of LDPC convolutional codes over Markov channels. Example designs are presented for the Gilbert-Elliott discrete channel model. We also compare the performance and complexity of our algorithm against joint decoding and state estimation of conventional LDPC block codes. Complexity analysis reveals that our pipelined algorithm reduces the number of operations per time step compared to LDPC block codes, at the expense of increased memory and latency. This tradeoff is favorable for low-power applications.
Evolving the structure of hidden Markov Models
DEFF Research Database (Denmark)
won, K. J.; Prugel-Bennett, A.; Krogh, A.
2006-01-01
A genetic algorithm (GA) is proposed for finding the structure of hidden Markov Models (HMMs) used for biological sequence analysis. The GA is designed to preserve biologically meaningful building blocks. The search through the space of HMM structures is combined with optimization of the emission...... and transition probabilities using the classic Baum-Welch algorithm. The system is tested on the problem of finding the promoter and coding region of C. jejuni. The resulting HMM has a superior discrimination ability to a handcrafted model that has been published in the literature....
ANALYSING ACCEPTANCE SAMPLING PLANS BY MARKOV CHAINS
Directory of Open Access Journals (Sweden)
Mohammad Mirabi
2012-01-01
Full Text Available
ENGLISH ABSTRACT: In this research, a Markov analysis of acceptance sampling plans in a single stage and in two stages is proposed, based on the quality of the items inspected. In a stage of this policy, if the number of defective items in a sample of inspected items is more than the upper threshold, the batch is rejected. However, the batch is accepted if the number of defective items is less than the lower threshold. Nonetheless, when the number of defective items falls between the upper and lower thresholds, the decision-making process continues to inspect the items and collect further samples. The primary objective is to determine the optimal values of the upper and lower thresholds using a Markov process to minimise the total cost associated with a batch acceptance policy. A solution method is presented, along with a numerical demonstration of the application of the proposed methodology.
AFRIKAANSE OPSOMMING: In hierdie navorsing word ’n Markov-ontleding gedoen van aannamemonsternemingsplanne wat plaasvind in ’n enkele stap of in twee stappe na gelang van die kwaliteit van die items wat geïnspekteer word. Indien die eerste monster toon dat die aantal defektiewe items ’n boonste grens oorskry, word die lot afgekeur. Indien die eerste monster toon dat die aantal defektiewe items minder is as ’n onderste grens, word die lot aanvaar. Indien die eerste monster toon dat die aantal defektiewe items in die gebied tussen die boonste en onderste grense lê, word die besluitnemingsproses voortgesit en verdere monsters word geneem. Die primêre doel is om die optimale waardes van die booonste en onderste grense te bepaal deur gebruik te maak van ’n Markov-proses sodat die totale koste verbonde aan die proses geminimiseer kan word. ’n Oplossing word daarna voorgehou tesame met ’n numeriese voorbeeld van die toepassing van die voorgestelde oplossing.
Vulnerability of networks of interacting Markov chains.
Kocarev, L; Zlatanov, N; Trajanov, D
2010-05-13
The concept of vulnerability is introduced for a model of random, dynamical interactions on networks. In this model, known as the influence model, the nodes are arranged in an arbitrary network, while the evolution of the status at a node is according to an internal Markov chain, but with transition probabilities that depend not only on the current status of that node but also on the statuses of the neighbouring nodes. Vulnerability is treated analytically and numerically for several networks with different topological structures, as well as for two real networks--the network of infrastructures and the EU power grid--identifying the most vulnerable nodes of these networks.
Genetic Algorithms Principles Towards Hidden Markov Model
Directory of Open Access Journals (Sweden)
Nabil M. Hewahi
2011-10-01
Full Text Available In this paper we propose a general approach based on Genetic Algorithms (GAs to evolve Hidden Markov Models (HMM. The problem appears when experts assign probability values for HMM, they use only some limited inputs. The assigned probability values might not be accurate to serve in other cases related to the same domain. We introduce an approach based on GAs to find
out the suitable probability values for the HMM to be mostly correct in more cases than what have been used to assign the probability values.
Finding exact constants in a Markov model of Zipfs law generation
Bochkarev, V. V.; Lerner, E. Yu.; Nikiforov, A. A.; Pismenskiy, A. A.
2017-12-01
According to the classical Zipfs law, the word frequency is a power function of the word rank with an exponent -1. The objective of this work is to find multiplicative constant in a Markov model of word generation. Previously, the case of independent letters was mathematically strictly investigated in [Bochkarev V V and Lerner E Yu 2017 International Journal of Mathematics and Mathematical Sciences Article ID 914374]. Unfortunately, the methods used in this paper cannot be generalized in case of Markov chains. The search of the correct formulation of the Markov generalization of this results was performed using experiments with different ergodic matrices of transition probability P. Combinatory technique allowed taking into account all the words with probability of more than e -300 in case of 2 by 2 matrices. It was experimentally proved that the required constant in the limit is equal to the value reciprocal to conditional entropy of matrix row P with weights presenting the elements of the vector π of the stationary distribution of the Markov chain.
Properties of autoregressive model in reactor noise analysis, 1
International Nuclear Information System (INIS)
Yamada, Sumasu; Kishida, Kuniharu; Bekki, Keisuke.
1987-01-01
Under appropriate conditions, stochastic processes are described by the ARMA model, however, the AR model is popularly used in reactor noise analysis. Hence, the properties of AR model as an approximate representation of the ARMA model should be made clear. Here, convergence of AR-parameters and PSD of AR model were studied through numerical analysis on specific examples such as the neutron noise in subcritical reactors, and it was found that : (1) The convergence of AR-parameters and AR model PSD is governed by the ''zero nearest to the unit circle in the complex plane'' (μ -1 ,|μ| M . (3) The AR model of the neutron noise of subcritical reactors needs a large model order because of an ARMA-zero very close to unity corresponding to the decay constant of the 6-th group of delayed neutron precursors. (4) In applying AR model for system identification, much attention has to be paid to a priori unknown error as an approximate representation of the ARMA model in addition to the statistical errors. (author)
Epitope discovery with phylogenetic hidden Markov models.
LENUS (Irish Health Repository)
Lacerda, Miguel
2010-05-01
Existing methods for the prediction of immunologically active T-cell epitopes are based on the amino acid sequence or structure of pathogen proteins. Additional information regarding the locations of epitopes may be acquired by considering the evolution of viruses in hosts with different immune backgrounds. In particular, immune-dependent evolutionary patterns at sites within or near T-cell epitopes can be used to enhance epitope identification. We have developed a mutation-selection model of T-cell epitope evolution that allows the human leukocyte antigen (HLA) genotype of the host to influence the evolutionary process. This is one of the first examples of the incorporation of environmental parameters into a phylogenetic model and has many other potential applications where the selection pressures exerted on an organism can be related directly to environmental factors. We combine this novel evolutionary model with a hidden Markov model to identify contiguous amino acid positions that appear to evolve under immune pressure in the presence of specific host immune alleles and that therefore represent potential epitopes. This phylogenetic hidden Markov model provides a rigorous probabilistic framework that can be combined with sequence or structural information to improve epitope prediction. As a demonstration, we apply the model to a data set of HIV-1 protein-coding sequences and host HLA genotypes.
Neyman, Markov processes and survival analysis.
Yang, Grace
2013-07-01
J. Neyman used stochastic processes extensively in his applied work. One example is the Fix and Neyman (F-N) competing risks model (1951) that uses finite homogeneous Markov processes to analyse clinical trials with breast cancer patients. We revisit the F-N model, and compare it with the Kaplan-Meier (K-M) formulation for right censored data. The comparison offers a way to generalize the K-M formulation to include risks of recovery and relapses in the calculation of a patient's survival probability. The generalization is to extend the F-N model to a nonhomogeneous Markov process. Closed-form solutions of the survival probability are available in special cases of the nonhomogeneous processes, like the popular multiple decrement model (including the K-M model) and Chiang's staging model, but these models do not consider recovery and relapses while the F-N model does. An analysis of sero-epidemiology current status data with recurrent events is illustrated. Fix and Neyman used Neyman's RBAN (regular best asymptotic normal) estimates for the risks, and provided a numerical example showing the importance of considering both the survival probability and the length of time of a patient living a normal life in the evaluation of clinical trials. The said extension would result in a complicated model and it is unlikely to find analytical closed-form solutions for survival analysis. With ever increasing computing power, numerical methods offer a viable way of investigating the problem.
Unmixing hyperspectral images using Markov random fields
International Nuclear Information System (INIS)
Eches, Olivier; Dobigeon, Nicolas; Tourneret, Jean-Yves
2011-01-01
This paper proposes a new spectral unmixing strategy based on the normal compositional model that exploits the spatial correlations between the image pixels. The pure materials (referred to as endmembers) contained in the image are assumed to be available (they can be obtained by using an appropriate endmember extraction algorithm), while the corresponding fractions (referred to as abundances) are estimated by the proposed algorithm. Due to physical constraints, the abundances have to satisfy positivity and sum-to-one constraints. The image is divided into homogeneous distinct regions having the same statistical properties for the abundance coefficients. The spatial dependencies within each class are modeled thanks to Potts-Markov random fields. Within a Bayesian framework, prior distributions for the abundances and the associated hyperparameters are introduced. A reparametrization of the abundance coefficients is proposed to handle the physical constraints (positivity and sum-to-one) inherent to hyperspectral imagery. The parameters (abundances), hyperparameters (abundance mean and variance for each class) and the classification map indicating the classes of all pixels in the image are inferred from the resulting joint posterior distribution. To overcome the complexity of the joint posterior distribution, Markov chain Monte Carlo methods are used to generate samples asymptotically distributed according to the joint posterior of interest. Simulations conducted on synthetic and real data are presented to illustrate the performance of the proposed algorithm.
Asymptotic evolution of quantum Markov chains
Energy Technology Data Exchange (ETDEWEB)
Novotny, Jaroslav [FNSPE, CTU in Prague, 115 19 Praha 1 - Stare Mesto (Czech Republic); Alber, Gernot [Institut fuer Angewandte Physik, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany)
2012-07-01
The iterated quantum operations, so called quantum Markov chains, play an important role in various branches of physics. They constitute basis for many discrete models capable to explore fundamental physical problems, such as the approach to thermal equilibrium, or the asymptotic dynamics of macroscopic physical systems far from thermal equilibrium. On the other hand, in the more applied area of quantum technology they also describe general characteristic properties of quantum networks or they can describe different quantum protocols in the presence of decoherence. A particularly, an interesting aspect of these quantum Markov chains is their asymptotic dynamics and its characteristic features. We demonstrate there is always a vector subspace (typically low-dimensional) of so-called attractors on which the resulting superoperator governing the iterative time evolution of quantum states can be diagonalized and in which the asymptotic quantum dynamics takes place. As the main result interesting algebraic relations are presented for this set of attractors which allow to specify their dual basis and to determine them in a convenient way. Based on this general theory we show some generalizations concerning the theory of fixed points or asymptotic evolution of random quantum operations.
Monotone measures of ergodicity for Markov chains
Directory of Open Access Journals (Sweden)
J. Keilson
1998-01-01
Full Text Available The following paper, first written in 1974, was never published other than as part of an internal research series. Its lack of publication is unrelated to the merits of the paper and the paper is of current importance by virtue of its relation to the relaxation time. A systematic discussion is provided of the approach of a finite Markov chain to ergodicity by proving the monotonicity of an important set of norms, each measures of egodicity, whether or not time reversibility is present. The paper is of particular interest because the discussion of the relaxation time of a finite Markov chain [2] has only been clean for time reversible chains, a small subset of the chains of interest. This restriction is not present here. Indeed, a new relaxation time quoted quantifies the relaxation time for all finite ergodic chains (cf. the discussion of Q1(t below Equation (1.7]. This relaxation time was developed by Keilson with A. Roy in his thesis [6], yet to be published.
de Uña-Álvarez, Jacobo; Meira-Machado, Luís
2015-06-01
Multi-state models are often used for modeling complex event history data. In these models the estimation of the transition probabilities is of particular interest, since they allow for long-term predictions of the process. These quantities have been traditionally estimated by the Aalen-Johansen estimator, which is consistent if the process is Markov. Several non-Markov estimators have been proposed in the recent literature, and their superiority with respect to the Aalen-Johansen estimator has been proved in situations in which the Markov condition is strongly violated. However, the existing estimators have the drawback of requiring that the support of the censoring distribution contains the support of the lifetime distribution, which is not often the case. In this article, we propose two new methods for estimating the transition probabilities in the progressive illness-death model. Some asymptotic results are derived. The proposed estimators are consistent regardless the Markov condition and the referred assumption about the censoring support. We explore the finite sample behavior of the estimators through simulations. The main conclusion of this piece of research is that the proposed estimators are much more efficient than the existing non-Markov estimators in most cases. An application to a clinical trial on colon cancer is included. Extensions to progressive processes beyond the three-state illness-death model are discussed. © 2015, The International Biometric Society.
Pathwise duals of monotone and additive Markov processes
Czech Academy of Sciences Publication Activity Database
Sturm, A.; Swart, Jan M.
-, - (2018) ISSN 0894-9840 R&D Projects: GA ČR GAP201/12/2613 Institutional support: RVO:67985556 Keywords : pathwise duality * monotone Markov process * additive Markov process * interacting particle system Subject RIV: BA - General Mathematics Impact factor: 0.854, year: 2016 http://library.utia.cas.cz/separaty/2016/SI/swart-0465436.pdf
An introduction to hidden Markov models for biological sequences
DEFF Research Database (Denmark)
Krogh, Anders Stærmose
1998-01-01
A non-matematical tutorial on hidden Markov models (HMMs) plus a description of one of the applications of HMMs: gene finding.......A non-matematical tutorial on hidden Markov models (HMMs) plus a description of one of the applications of HMMs: gene finding....
Asymptotics for Estimating Equations in Hidden Markov Models
DEFF Research Database (Denmark)
Hansen, Jørgen Vinsløv; Jensen, Jens Ledet
Results on asymptotic normality for the maximum likelihood estimate in hidden Markov models are extended in two directions. The stationarity assumption is relaxed, which allows for a covariate process influencing the hidden Markov process. Furthermore a class of estimating equations is considered...
Efficient Incorporation of Markov Random Fields in Change Detection
DEFF Research Database (Denmark)
Aanæs, Henrik; Nielsen, Allan Aasbjerg; Carstensen, Jens Michael
2009-01-01
of noise, implying that the pixel-wise classifier is also noisy. There is thus a need for incorporating local homogeneity constraints into such a change detection framework. For this modelling task Markov Random Fields are suitable. Markov Random Fields have, however, previously been plagued by lack...
Markov trace on the Yokonuma-Hecke algebra
International Nuclear Information System (INIS)
Juyumaya, J.
2002-11-01
The objective of this note is to prove that there exists a Markov trace on the Yokonuma-Hecke algebra. A motivation to define a Markov trace is to get polynomial invariants for knots in the sense of Jones construction. (author)
Compositionality for Markov reward chains with fast and silent transitions
Markovski, J.; Sokolova, A.; Trcka, N.; Vink, de E.P.
2009-01-01
A parallel composition is defined for Markov reward chains with stochastic discontinuity, and with fast and silent transitions. In this setting, compositionality with respect to the relevant aggregation preorders is established. For Markov reward chains with fast transitions the preorders are
Model Checking Markov Reward Models with Impulse Rewards
Cloth, Lucia; Katoen, Joost-Pieter; Khattri, Maneesh; Pulungan, Reza; Bondavalli, Andrea; Haverkort, Boudewijn; Tang, Dong
This paper considers model checking of Markov reward models (MRMs), continuous-time Markov chains with state rewards as well as impulse rewards. The reward extension of the logic CSL (Continuous Stochastic Logic) is interpreted over such MRMs, and two numerical algorithms are provided to check the
Recursive smoothers for hidden discrete-time Markov chains
Directory of Open Access Journals (Sweden)
Lakhdar Aggoun
2005-01-01
Full Text Available We consider a discrete-time Markov chain observed through another Markov chain. The proposed model extends models discussed by Elliott et al. (1995. We propose improved recursive formulae to update smoothed estimates of processes related to the model. These recursive estimates are used to update the parameter of the model via the expectation maximization (EM algorithm.
First hitting probabilities for semi markov chains and estimation
DEFF Research Database (Denmark)
Georgiadis, Stylianos
2017-01-01
We first consider a stochastic system described by an absorbing semi-Markov chain with finite state space and we introduce the absorption probability to a class of recurrent states. Afterwards, we study the first hitting probability to a subset of states for an irreducible semi-Markov chain...
ANALYTIC WORD RECOGNITION WITHOUT SEGMENTATION BASED ON MARKOV RANDOM FIELDS
Coisy, C.; Belaid, A.
2004-01-01
In this paper, a method for analytic handwritten word recognition based on causal Markov random fields is described. The words models are HMMs where each state corresponds to a letter; each letter is modelled by a NSHPHMM (Markov field). Global models are build dynamically, and used for recognition
A Markov decision model for optimising economic production lot size ...
African Journals Online (AJOL)
Adopting such a Markov decision process approach, the states of a Markov chain represent possible states of demand. The decision of whether or not to produce additional inventory units is made using dynamic programming. This approach demonstrates the existence of an optimal state-dependent EPL size, and produces ...
Portfolio allocation under the vendor managed inventory: A Markov ...
African Journals Online (AJOL)
Portfolio allocation under the vendor managed inventory: A Markov decision process. ... Journal of Applied Sciences and Environmental Management ... This study provides a review of Markov decision processes and investigates its suitability for solutions to portfolio allocation problems under vendor managed inventory in ...
Logics and Models for Stochastic Analysis Beyond Markov Chains
DEFF Research Database (Denmark)
Zeng, Kebin
, because of the generality of ME distributions, we have to leave the world of Markov chains. To support ME distributions with multiple exits, we introduce a multi-exits ME distribution together with a process algebra MEME to express the systems having the semantics as Markov renewal processes with ME...
Bayesian inference for Markov jump processes with informative observations.
Golightly, Andrew; Wilkinson, Darren J
2015-04-01
In this paper we consider the problem of parameter inference for Markov jump process (MJP) representations of stochastic kinetic models. Since transition probabilities are intractable for most processes of interest yet forward simulation is straightforward, Bayesian inference typically proceeds through computationally intensive methods such as (particle) MCMC. Such methods ostensibly require the ability to simulate trajectories from the conditioned jump process. When observations are highly informative, use of the forward simulator is likely to be inefficient and may even preclude an exact (simulation based) analysis. We therefore propose three methods for improving the efficiency of simulating conditioned jump processes. A conditioned hazard is derived based on an approximation to the jump process, and used to generate end-point conditioned trajectories for use inside an importance sampling algorithm. We also adapt a recently proposed sequential Monte Carlo scheme to our problem. Essentially, trajectories are reweighted at a set of intermediate time points, with more weight assigned to trajectories that are consistent with the next observation. We consider two implementations of this approach, based on two continuous approximations of the MJP. We compare these constructs for a simple tractable jump process before using them to perform inference for a Lotka-Volterra system. The best performing construct is used to infer the parameters governing a simple model of motility regulation in Bacillus subtilis.
Directory of Open Access Journals (Sweden)
Hualin Xie
2013-12-01
Full Text Available Ecological land is one of the key resources and conditions for the survival of humans because it can provide ecosystem services and is particularly important to public health and safety. It is extremely valuable for effective ecological management to explore the evolution mechanisms of ecological land. Based on spatial statistical analyses, we explored the spatial disparities and primary potential drivers of ecological land change in the Poyang Lake Eco-economic Zone of China. The results demonstrated that the global Moran’s I value is 0.1646 during the 1990 to 2005 time period and indicated signiﬁcant positive spatial correlation (p < 0.05. The results also imply that the clustering trend of ecological land changes weakened in the study area. Some potential driving forces were identified by applying the spatial autoregressive model in this study. The results demonstrated that the higher economic development level and industrialization rate were the main drivers for the faster change of ecological land in the study area. This study also tested the superiority of the spatial autoregressive model to study the mechanisms of ecological land change by comparing it with the traditional linear regressive model.
Xie, Hualin; Liu, Zhifei; Wang, Peng; Liu, Guiying; Lu, Fucai
2013-01-01
Ecological land is one of the key resources and conditions for the survival of humans because it can provide ecosystem services and is particularly important to public health and safety. It is extremely valuable for effective ecological management to explore the evolution mechanisms of ecological land. Based on spatial statistical analyses, we explored the spatial disparities and primary potential drivers of ecological land change in the Poyang Lake Eco-economic Zone of China. The results demonstrated that the global Moran’s I value is 0.1646 during the 1990 to 2005 time period and indicated significant positive spatial correlation (p ecological land changes weakened in the study area. Some potential driving forces were identified by applying the spatial autoregressive model in this study. The results demonstrated that the higher economic development level and industrialization rate were the main drivers for the faster change of ecological land in the study area. This study also tested the superiority of the spatial autoregressive model to study the mechanisms of ecological land change by comparing it with the traditional linear regressive model. PMID:24384778
Xie, Hualin; Liu, Zhifei; Wang, Peng; Liu, Guiying; Lu, Fucai
2013-12-31
Ecological land is one of the key resources and conditions for the survival of humans because it can provide ecosystem services and is particularly important to public health and safety. It is extremely valuable for effective ecological management to explore the evolution mechanisms of ecological land. Based on spatial statistical analyses, we explored the spatial disparities and primary potential drivers of ecological land change in the Poyang Lake Eco-economic Zone of China. The results demonstrated that the global Moran's I value is 0.1646 during the 1990 to 2005 time period and indicated signiﬁcant positive spatial correlation (p ecological land changes weakened in the study area. Some potential driving forces were identified by applying the spatial autoregressive model in this study. The results demonstrated that the higher economic development level and industrialization rate were the main drivers for the faster change of ecological land in the study area. This study also tested the superiority of the spatial autoregressive model to study the mechanisms of ecological land change by comparing it with the traditional linear regressive model.
Introduction to the numerical solutions of Markov chains
Stewart, Williams J
1994-01-01
A cornerstone of applied probability, Markov chains can be used to help model how plants grow, chemicals react, and atoms diffuse - and applications are increasingly being found in such areas as engineering, computer science, economics, and education. To apply the techniques to real problems, however, it is necessary to understand how Markov chains can be solved numerically. In this book, the first to offer a systematic and detailed treatment of the numerical solution of Markov chains, William Stewart provides scientists on many levels with the power to put this theory to use in the actual world, where it has applications in areas as diverse as engineering, economics, and education. His efforts make for essential reading in a rapidly growing field. Here, Stewart explores all aspects of numerically computing solutions of Markov chains, especially when the state is huge. He provides extensive background to both discrete-time and continuous-time Markov chains and examines many different numerical computing metho...
Yamada, Yuhei; Yamazaki, Yoshihiro
2018-04-01
This study considered a stochastic model for cluster growth in a Markov process with a cluster size dependent additive noise. According to this model, the probability distribution of the cluster size transiently becomes an exponential or a log-normal distribution depending on the initial condition of the growth. In this letter, a master equation is obtained for this model, and derivation of the distributions is discussed.
The Green-Kubo formula for general Markov processes with a continuous time parameter
International Nuclear Information System (INIS)
Yang Fengxia; Liu Yong; Chen Yong
2010-01-01
For general Markov processes, the Green-Kubo formula is shown to be valid under a mild condition. A class of stochastic evolution equations on a separable Hilbert space and three typical infinite systems of locally interacting diffusions on Z d (irreversible in most cases) are shown to satisfy the Green-Kubo formula, and the Einstein relations for these stochastic evolution equations are shown explicitly as a corollary.
African Journals Online (AJOL)
2017-09-10
Sep 10, 2017 ... The NAR identification process is done in two steps namely model structure selection and parameter .... with MATLAB 2014a as the development platform. ..... on Modeling, Simulation and Applied Optimization, 2011, pp. 1-5.
Characterization of the rat exploratory behavior in the elevated plus-maze with Markov chains.
Tejada, Julián; Bosco, Geraldine G; Morato, Silvio; Roque, Antonio C
2010-11-30
The elevated plus-maze is an animal model of anxiety used to study the effect of different drugs on the behavior of the animal. It consists of a plus-shaped maze with two open and two closed arms elevated 50cm from the floor. The standard measures used to characterize exploratory behavior in the elevated plus-maze are the time spent and the number of entries in the open arms. In this work, we use Markov chains to characterize the exploratory behavior of the rat in the elevated plus-maze under three different conditions: normal and under the effects of anxiogenic and anxiolytic drugs. The spatial structure of the elevated plus-maze is divided into squares, which are associated with states of a Markov chain. By counting the frequencies of transitions between states during 5-min sessions in the elevated plus-maze, we constructed stochastic matrices for the three conditions studied. The stochastic matrices show specific patterns, which correspond to the observed behaviors of the rat under the three different conditions. For the control group, the stochastic matrix shows a clear preference for places in the closed arms. This preference is enhanced for the anxiogenic group. For the anxiolytic group, the stochastic matrix shows a pattern similar to a random walk. Our results suggest that Markov chains can be used together with the standard measures to characterize the rat behavior in the elevated plus-maze. Copyright © 2010 Elsevier B.V. All rights reserved.
The Markov moment problem and extremal problems
Kreĭn, M G; Louvish, D
1977-01-01
In this book, an extensive circle of questions originating in the classical work of P. L. Chebyshev and A. A. Markov is considered from the more modern point of view. It is shown how results and methods of the generalized moment problem are interlaced with various questions of the geometry of convex bodies, algebra, and function theory. From this standpoint, the structure of convex and conical hulls of curves is studied in detail and isoperimetric inequalities for convex hulls are established; a theory of orthogonal and quasiorthogonal polynomials is constructed; problems on limiting values of integrals and on least deviating functions (in various metrics) are generalized and solved; problems in approximation theory and interpolation and extrapolation in various function classes (analytic, absolutely monotone, almost periodic, etc.) are solved, as well as certain problems in optimal control of linear objects.
Learning Markov Decision Processes for Model Checking
DEFF Research Database (Denmark)
Mao, Hua; Chen, Yingke; Jaeger, Manfred
2012-01-01
. The proposed learning algorithm is adapted from algorithms for learning deterministic probabilistic finite automata, and extended to include both probabilistic and nondeterministic transitions. The algorithm is empirically analyzed and evaluated by learning system models of slot machines. The evaluation......Constructing an accurate system model for formal model verification can be both resource demanding and time-consuming. To alleviate this shortcoming, algorithms have been proposed for automatically learning system models based on observed system behaviors. In this paper we extend the algorithm...... on learning probabilistic automata to reactive systems, where the observed system behavior is in the form of alternating sequences of inputs and outputs. We propose an algorithm for automatically learning a deterministic labeled Markov decision process model from the observed behavior of a reactive system...
Learning Markov models for stationary system behaviors
DEFF Research Database (Denmark)
Chen, Yingke; Mao, Hua; Jaeger, Manfred
2012-01-01
to a single long observation sequence, and in these situations existing automatic learning methods cannot be applied. In this paper, we adapt algorithms for learning variable order Markov chains from a single observation sequence of a target system, so that stationary system properties can be verified using......Establishing an accurate model for formal verification of an existing hardware or software system is often a manual process that is both time consuming and resource demanding. In order to ease the model construction phase, methods have recently been proposed for automatically learning accurate...... the learned model. Experiments demonstrate that system properties (formulated as stationary probabilities of LTL formulas) can be reliably identified using the learned model....
Neuroevolution Mechanism for Hidden Markov Model
Directory of Open Access Journals (Sweden)
Nabil M. Hewahi
2011-12-01
Full Text Available Hidden Markov Model (HMM is a statistical model based on probabilities. HMM is becoming one of the major models involved in many applications such as natural language
processing, handwritten recognition, image processing, prediction systems and many more. In this research we are concerned with finding out the best HMM for a certain application domain. We propose a neuroevolution process that is based first on converting the HMM to a neural network, then generating many neural networks at random where each represents a HMM. We proceed by
applying genetic operators to obtain new set of neural networks where each represents HMMs, and updating the population. Finally select the best neural network based on a fitness function.
Improved hidden Markov model for nosocomial infections.
Khader, Karim; Leecaster, Molly; Greene, Tom; Samore, Matthew; Thomas, Alun
2014-12-01
We propose a novel hidden Markov model (HMM) for parameter estimation in hospital transmission models, and show that commonly made simplifying assumptions can lead to severe model misspecification and poor parameter estimates. A standard HMM that embodies two commonly made simplifying assumptions, namely a fixed patient count and binomially distributed detections is compared with a new alternative HMM that does not require these simplifying assumptions. Using simulated data, we demonstrate how each of the simplifying assumptions used by the standard model leads to model misspecification, whereas the alternative model results in accurate parameter estimates. © The Authors 2013. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
Estimation and uncertainty of reversible Markov models.
Trendelkamp-Schroer, Benjamin; Wu, Hao; Paul, Fabian; Noé, Frank
2015-11-07
Reversibility is a key concept in Markov models and master-equation models of molecular kinetics. The analysis and interpretation of the transition matrix encoding the kinetic properties of the model rely heavily on the reversibility property. The estimation of a reversible transition matrix from simulation data is, therefore, crucial to the successful application of the previously developed theory. In this work, we discuss methods for the maximum likelihood estimation of transition matrices from finite simulation data and present a new algorithm for the estimation if reversibility with respect to a given stationary vector is desired. We also develop new methods for the Bayesian posterior inference of reversible transition matrices with and without given stationary vector taking into account the need for a suitable prior distribution preserving the meta-stable features of the observed process during posterior inference. All algorithms here are implemented in the PyEMMA software--http://pyemma.org--as of version 2.0.
Monte Carlo simulation of Markov unreliability models
International Nuclear Information System (INIS)
Lewis, E.E.; Boehm, F.
1984-01-01
A Monte Carlo method is formulated for the evaluation of the unrealibility of complex systems with known component failure and repair rates. The formulation is in terms of a Markov process allowing dependences between components to be modeled and computational efficiencies to be achieved in the Monte Carlo simulation. Two variance reduction techniques, forced transition and failure biasing, are employed to increase computational efficiency of the random walk procedure. For an example problem these result in improved computational efficiency by more than three orders of magnitudes over analog Monte Carlo. The method is generalized to treat problems with distributed failure and repair rate data, and a batching technique is introduced and shown to result in substantial increases in computational efficiency for an example problem. A method for separating the variance due to the data uncertainty from that due to the finite number of random walks is presented. (orig.)
SHARP ENTRYWISE PERTURBATION BOUNDS FOR MARKOV CHAINS.
Thiede, Erik; VAN Koten, Brian; Weare, Jonathan
For many Markov chains of practical interest, the invariant distribution is extremely sensitive to perturbations of some entries of the transition matrix, but insensitive to others; we give an example of such a chain, motivated by a problem in computational statistical physics. We have derived perturbation bounds on the relative error of the invariant distribution that reveal these variations in sensitivity. Our bounds are sharp, we do not impose any structural assumptions on the transition matrix or on the perturbation, and computing the bounds has the same complexity as computing the invariant distribution or computing other bounds in the literature. Moreover, our bounds have a simple interpretation in terms of hitting times, which can be used to draw intuitive but rigorous conclusions about the sensitivity of a chain to various types of perturbations.
A Markov Chain Model for Contagion
Directory of Open Access Journals (Sweden)
Angelos Dassios
2014-11-01
Full Text Available We introduce a bivariate Markov chain counting process with contagion for modelling the clustering arrival of loss claims with delayed settlement for an insurance company. It is a general continuous-time model framework that also has the potential to be applicable to modelling the clustering arrival of events, such as jumps, bankruptcies, crises and catastrophes in finance, insurance and economics with both internal contagion risk and external common risk. Key distributional properties, such as the moments and probability generating functions, for this process are derived. Some special cases with explicit results and numerical examples and the motivation for further actuarial applications are also discussed. The model can be considered a generalisation of the dynamic contagion process introduced by Dassios and Zhao (2011.
Markov state models of protein misfolding
Sirur, Anshul; De Sancho, David; Best, Robert B.
2016-02-01
Markov state models (MSMs) are an extremely useful tool for understanding the conformational dynamics of macromolecules and for analyzing MD simulations in a quantitative fashion. They have been extensively used for peptide and protein folding, for small molecule binding, and for the study of native ensemble dynamics. Here, we adapt the MSM methodology to gain insight into the dynamics of misfolded states. To overcome possible flaws in root-mean-square deviation (RMSD)-based metrics, we introduce a novel discretization approach, based on coarse-grained contact maps. In addition, we extend the MSM methodology to include "sink" states in order to account for the irreversibility (on simulation time scales) of processes like protein misfolding. We apply this method to analyze the mechanism of misfolding of tandem repeats of titin domains, and how it is influenced by confinement in a chaperonin-like cavity.
Multivariate Markov chain modeling for stock markets
Maskawa, Jun-ichi
2003-06-01
We study a multivariate Markov chain model as a stochastic model of the price changes of portfolios in the framework of the mean field approximation. The time series of price changes are coded into the sequences of up and down spins according to their signs. We start with the discussion for small portfolios consisting of two stock issues. The generalization of our model to arbitrary size of portfolio is constructed by a recurrence relation. The resultant form of the joint probability of the stationary state coincides with Gibbs measure assigned to each configuration of spin glass model. Through the analysis of actual portfolios, it has been shown that the synchronization of the direction of the price changes is well described by the model.
Anatomy Ontology Matching Using Markov Logic Networks
Directory of Open Access Journals (Sweden)
Chunhua Li
2016-01-01
Full Text Available The anatomy of model species is described in ontologies, which are used to standardize the annotations of experimental data, such as gene expression patterns. To compare such data between species, we need to establish relationships between ontologies describing different species. Ontology matching is a kind of solutions to find semantic correspondences between entities of different ontologies. Markov logic networks which unify probabilistic graphical model and first-order logic provide an excellent framework for ontology matching. We combine several different matching strategies through first-order logic formulas according to the structure of anatomy ontologies. Experiments on the adult mouse anatomy and the human anatomy have demonstrated the effectiveness of proposed approach in terms of the quality of result alignment.
Crossing over...Markov meets Mendel.
Mneimneh, Saad
2012-01-01
Chromosomal crossover is a biological mechanism to combine parental traits. It is perhaps the first mechanism ever taught in any introductory biology class. The formulation of crossover, and resulting recombination, came about 100 years after Mendel's famous experiments. To a great extent, this formulation is consistent with the basic genetic findings of Mendel. More importantly, it provides a mathematical insight for his two laws (and corrects them). From a mathematical perspective, and while it retains similarities, genetic recombination guarantees diversity so that we do not rapidly converge to the same being. It is this diversity that made the study of biology possible. In particular, the problem of genetic mapping and linkage-one of the first efforts towards a computational approach to biology-relies heavily on the mathematical foundation of crossover and recombination. Nevertheless, as students we often overlook the mathematics of these phenomena. Emphasizing the mathematical aspect of Mendel's laws through crossover and recombination will prepare the students to make an early realization that biology, in addition to being experimental, IS a computational science. This can serve as a first step towards a broader curricular transformation in teaching biological sciences. I will show that a simple and modern treatment of Mendel's laws using a Markov chain will make this step possible, and it will only require basic college-level probability and calculus. My personal teaching experience confirms that students WANT to know Markov chains because they hear about them from bioinformaticists all the time. This entire exposition is based on three homework problems that I designed for a course in computational biology. A typical reader is, therefore, an instructional staff member or a student in a computational field (e.g., computer science, mathematics, statistics, computational biology, bioinformatics). However, other students may easily follow by omitting the
Crossing over...Markov meets Mendel.
Directory of Open Access Journals (Sweden)
Saad Mneimneh
Full Text Available Chromosomal crossover is a biological mechanism to combine parental traits. It is perhaps the first mechanism ever taught in any introductory biology class. The formulation of crossover, and resulting recombination, came about 100 years after Mendel's famous experiments. To a great extent, this formulation is consistent with the basic genetic findings of Mendel. More importantly, it provides a mathematical insight for his two laws (and corrects them. From a mathematical perspective, and while it retains similarities, genetic recombination guarantees diversity so that we do not rapidly converge to the same being. It is this diversity that made the study of biology possible. In particular, the problem of genetic mapping and linkage-one of the first efforts towards a computational approach to biology-relies heavily on the mathematical foundation of crossover and recombination. Nevertheless, as students we often overlook the mathematics of these phenomena. Emphasizing the mathematical aspect of Mendel's laws through crossover and recombination will prepare the students to make an early realization that biology, in addition to being experimental, IS a computational science. This can serve as a first step towards a broader curricular transformation in teaching biological sciences. I will show that a simple and modern treatment of Mendel's laws using a Markov chain will make this step possible, and it will only require basic college-level probability and calculus. My personal teaching experience confirms that students WANT to know Markov chains because they hear about them from bioinformaticists all the time. This entire exposition is based on three homework problems that I designed for a course in computational biology. A typical reader is, therefore, an instructional staff member or a student in a computational field (e.g., computer science, mathematics, statistics, computational biology, bioinformatics. However, other students may easily follow by
Bayesian tomography by interacting Markov chains
Romary, T.
2017-12-01
In seismic tomography, we seek to determine the velocity of the undergound from noisy first arrival travel time observations. In most situations, this is an ill posed inverse problem that admits several unperfect solutions. Given an a priori distribution over the parameters of the velocity model, the Bayesian formulation allows to state this problem as a probabilistic one, with a solution under the form of a posterior distribution. The posterior distribution is generally high dimensional and may exhibit multimodality. Moreover, as it is known only up to a constant, the only sensible way to addressthis problem is to try to generate simulations from the posterior. The natural tools to perform these simulations are Monte Carlo Markov chains (MCMC). Classical implementations of MCMC algorithms generally suffer from slow mixing: the generated states are slow to enter the stationary regime, that is to fit the observations, and when one mode of the posterior is eventually identified, it may become difficult to visit others. Using a varying temperature parameter relaxing the constraint on the data may help to enter the stationary regime. Besides, the sequential nature of MCMC makes them ill fitted toparallel implementation. Running a large number of chains in parallel may be suboptimal as the information gathered by each chain is not mutualized. Parallel tempering (PT) can be seen as a first attempt to make parallel chains at different temperatures communicate but only exchange information between current states. In this talk, I will show that PT actually belongs to a general class of interacting Markov chains algorithm. I will also show that this class enables to design interacting schemes that can take advantage of the whole history of the chain, by authorizing exchanges toward already visited states. The algorithms will be illustrated with toy examples and an application to first arrival traveltime tomography.
A Two-Factor Autoregressive Moving Average Model Based on Fuzzy Fluctuation Logical Relationships
Directory of Open Access Journals (Sweden)
Shuang Guan
2017-10-01
Full Text Available Many of the existing autoregressive moving average (ARMA forecast models are based on one main factor. In this paper, we proposed a new two-factor first-order ARMA forecast model based on fuzzy fluctuation logical relationships of both a main factor and a secondary factor of a historical training time series. Firstly, we generated a fluctuation time series (FTS for two factors by calculating the difference of each data point with its previous day, then finding the absolute means of the two FTSs. We then constructed a fuzzy fluctuation time series (FFTS according to the defined linguistic sets. The next step was establishing fuzzy fluctuation logical relation groups (FFLRGs for a two-factor first-order autoregressive (AR(1 model and forecasting the training data with the AR(1 model. Then we built FFLRGs for a two-factor first-order autoregressive moving average (ARMA(1,m model. Lastly, we forecasted test data with the ARMA(1,m model. To illustrate the performance of our model, we used real Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX and Dow Jones datasets as a secondary factor to forecast TAIEX. The experiment results indicate that the proposed two-factor fluctuation ARMA method outperformed the one-factor method based on real historic data. The secondary factor may have some effects on the main factor and thereby impact the forecasting results. Using fuzzified fluctuations rather than fuzzified real data could avoid the influence of extreme values in historic data, which performs negatively while forecasting. To verify the accuracy and effectiveness of the model, we also employed our method to forecast the Shanghai Stock Exchange Composite Index (SHSECI from 2001 to 2015 and the international gold price from 2000 to 2010.
Recognition of NEMP and LEMP signals based on auto-regression model and artificial neutral network
International Nuclear Information System (INIS)
Li Peng; Song Lijun; Han Chao; Zheng Yi; Cao Baofeng; Li Xiaoqiang; Zhang Xueqin; Liang Rui
2010-01-01
Auto-regression (AR) model, one power spectrum estimation method of stationary random signals, and artificial neutral network were adopted to recognize nuclear and lightning electromagnetic pulses. Self-correlation function and Burg algorithms were used to acquire the AR model coefficients as eigenvalues, and BP artificial neural network was introduced as the classifier with different numbers of hidden layers and hidden layer nodes. The results show that AR model is effective in those signals, feature extraction, and the Burg algorithm is more effective than the self-correlation function algorithm. (authors)
Insurance-growth nexus in Ghana: An autoregressive distributed lag bounds cointegration approach
Directory of Open Access Journals (Sweden)
Abdul Latif Alhassan
2014-12-01
Full Text Available This paper examines the long-run causal relationship between insurance penetration and economic growth in Ghana from 1990 to 2010. Using the autoregressive distributed lag (ARDL bounds approach to cointegration by Pesaran et al. (1996, 2001, the study finds a long-run positive relationship between insurance penetration and economic growth which implies that funds mobilized from insurance business have a long run impact on economic growth. A unidirectional causality was found to run from aggregate insurance penetration, life and non-life insurance penetration to economic growth to support the ‘supply-leading’ hypothesis. The findings have implications for insurance market development in Ghana.
Non-Gaussian Autoregressive Processes with Tukey g-and-h Transformations
Yan, Yuan
2017-11-20
When performing a time series analysis of continuous data, for example from climate or environmental problems, the assumption that the process is Gaussian is often violated. Therefore, we introduce two non-Gaussian autoregressive time series models that are able to fit skewed and heavy-tailed time series data. Our two models are based on the Tukey g-and-h transformation. We discuss parameter estimation, order selection, and forecasting procedures for our models and examine their performances in a simulation study. We demonstrate the usefulness of our models by applying them to two sets of wind speed data.
I PUTU YUDI PRABHADIKA; NI KETUT TARI TASTRAWATI; LUH PUTU IDA HARINI
2018-01-01
Infusion supplies are an important thing that must be considered by the hospital in meeting the needs of patients. This study aims to predict the need for infusion of 0.9% 500 ml of NaCl and 5% 500 ml glucose infusion at Sanglah General Hospital (RSUP) Sanglah so that the hospital can estimate the many infusions needed for the next six months. The forecasting method used in this research is the autoregressive integrated moving average (ARIMA) time series method. The results of this study indi...
Autoregressive Model with Partial Forgetting within Rao-Blackwellized Particle Filter
Czech Academy of Sciences Publication Activity Database
Dedecius, Kamil; Hofman, Radek
2012-01-01
Roč. 41, č. 5 (2012), s. 582-589 ISSN 0361-0918 R&D Projects: GA MV VG20102013018; GA ČR GA102/08/0567 Grant - others:ČVUT(CZ) SGS 10/099/OHK3/1T/16 Institutional research plan: CEZ:AV0Z10750506 Keywords : Bayesian methods * Particle filters * Recursive estimation Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.295, year: 2012 http://library.utia.cas.cz/separaty/2012/AS/dedecius-autoregressive model with partial forgetting within rao-blackwellized particle filter.pdf
Autcha Araveeporn
2013-01-01
This paper compares a Least-Squared Random Coefficient Autoregressive (RCA) model with a Least-Squared RCA model based on Autocorrelated Errors (RCA-AR). We looked at only the first order models, denoted RCA(1) and RCA(1)-AR(1). The efficiency of the Least-Squared method was checked by applying the models to Brownian motion and Wiener process, and the efficiency followed closely the asymptotic properties of a normal distribution. In a simulation study, we compared the performance of RCA(1) an...
1987-02-04
U5tr,)! P(U 5-t Since U - F with F RS, we get (3.1). Case b: 0 S 5 k -a Now P([U~t]riM) = P(UZk-a) and P([ Ugt ]rM) = P(US-k-a) S P(US-(k-a)) which again...robustness for autoregressive processes." The Annals of Statistics, 12, 843-863. Mallows, C.L. (1980). "Some theory of nonlinear smoothen." The Annals of
Robust estimation of autoregressive processes using a mixture-based filter-bank
Czech Academy of Sciences Publication Activity Database
Šmídl, V.; Anthony, Q.; Kárný, Miroslav; Guy, Tatiana Valentine
2005-01-01
Roč. 54, č. 4 (2005), s. 315-323 ISSN 0167-6911 R&D Projects: GA AV ČR IBS1075351; GA ČR GA102/03/0049; GA ČR GP102/03/P010; GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : Bayesian estimation * probabilistic mixtures * recursive estimation Subject RIV: BC - Control Systems Theory Impact factor: 1.239, year: 2005 http://library.utia.cas.cz/separaty/historie/karny-robust estimation of autoregressive processes using a mixture-based filter- bank .pdf
Business cycles and fertility dynamics in the United States: a vector autoregressive model.
Mocan, N H
1990-01-01
"Using vector-autoregressions...this paper shows that fertility moves countercyclically over the business cycle....[It] shows that the United States fertility is not governed by a deterministic trend as was assumed by previous studies. Rather, fertility evolves around a stochastic trend. It is shown that a bivariate analysis between fertility and unemployment yields a procyclical picture of fertility. However, when one considers the effects on fertility of early marriages and the divorce behavior as well as economic activity, fertility moves countercyclically." excerpt
A Mixture Innovation Heterogeneous Autoregressive Model for Structural Breaks and Long Memory
DEFF Research Database (Denmark)
Nonejad, Nima
We propose a flexible model to describe nonlinearities and long-range dependence in time series dynamics. Our model is an extension of the heterogeneous autoregressive model. Structural breaks occur through mixture distributions in state innovations of linear Gaussian state space models. Monte...... Carlo simulations evaluate the properties of the estimation procedures. Results show that the proposed model is viable and flexible for purposes of forecasting volatility. Model uncertainty is accounted for by employing Bayesian model averaging. Bayesian model averaging provides very competitive...... forecasts compared to any single model specification. It provides further improvements when we average over nonlinear specifications....
Non-Gaussian Autoregressive Processes with Tukey g-and-h Transformations
Yan, Yuan; Genton, Marc G.
2017-01-01
When performing a time series analysis of continuous data, for example from climate or environmental problems, the assumption that the process is Gaussian is often violated. Therefore, we introduce two non-Gaussian autoregressive time series models that are able to fit skewed and heavy-tailed time series data. Our two models are based on the Tukey g-and-h transformation. We discuss parameter estimation, order selection, and forecasting procedures for our models and examine their performances in a simulation study. We demonstrate the usefulness of our models by applying them to two sets of wind speed data.
DEFF Research Database (Denmark)
Chon, K H; Cohen, R J; Holstein-Rathlou, N H
1997-01-01
A linear and nonlinear autoregressive moving average (ARMA) identification algorithm is developed for modeling time series data. The algorithm uses Laguerre expansion of kernals (LEK) to estimate Volterra-Wiener kernals. However, instead of estimating linear and nonlinear system dynamics via moving...... average models, as is the case for the Volterra-Wiener analysis, we propose an ARMA model-based approach. The proposed algorithm is essentially the same as LEK, but this algorithm is extended to include past values of the output as well. Thus, all of the advantages associated with using the Laguerre...
Li, Yue; Jha, Devesh K; Ray, Asok; Wettergren, Thomas A; Yue Li; Jha, Devesh K; Ray, Asok; Wettergren, Thomas A; Wettergren, Thomas A; Li, Yue; Ray, Asok; Jha, Devesh K
2018-06-01
This paper presents information-theoretic performance analysis of passive sensor networks for detection of moving targets. The proposed method falls largely under the category of data-level information fusion in sensor networks. To this end, a measure of information contribution for sensors is formulated in a symbolic dynamics framework. The network information state is approximately represented as the largest principal component of the time series collected across the network. To quantify each sensor's contribution for generation of the information content, Markov machine models as well as x-Markov (pronounced as cross-Markov) machine models, conditioned on the network information state, are constructed; the difference between the conditional entropies of these machines is then treated as an approximate measure of information contribution by the respective sensors. The x-Markov models represent the conditional temporal statistics given the network information state. The proposed method has been validated on experimental data collected from a local area network of passive sensors for target detection, where the statistical characteristics of environmental disturbances are similar to those of the target signal in the sense of time scale and texture. A distinctive feature of the proposed algorithm is that the network decisions are independent of the behavior and identity of the individual sensors, which is desirable from computational perspectives. Results are presented to demonstrate the proposed method's efficacy to correctly identify the presence of a target with very low false-alarm rates. The performance of the underlying algorithm is compared with that of a recent data-driven, feature-level information fusion algorithm. It is shown that the proposed algorithm outperforms the other algorithm.
Markov processes from K. Ito's perspective (AM-155)
Stroock, Daniel W
2003-01-01
Kiyosi Itô''s greatest contribution to probability theory may be his introduction of stochastic differential equations to explain the Kolmogorov-Feller theory of Markov processes. Starting with the geometric ideas that guided him, this book gives an account of Itô''s program. The modern theory of Markov processes was initiated by A. N. Kolmogorov. However, Kolmogorov''s approach was too analytic to reveal the probabilistic foundations on which it rests. In particular, it hides the central role played by the simplest Markov processes: those with independent, identically distributed incremen
Sampling rare fluctuations of discrete-time Markov chains
Whitelam, Stephen
2018-03-01
We describe a simple method that can be used to sample the rare fluctuations of discrete-time Markov chains. We focus on the case of Markov chains with well-defined steady-state measures, and derive expressions for the large-deviation rate functions (and upper bounds on such functions) for dynamical quantities extensive in the length of the Markov chain. We illustrate the method using a series of simple examples, and use it to study the fluctuations of a lattice-based model of active matter that can undergo motility-induced phase separation.
Markov's theorem and algorithmically non-recognizable combinatorial manifolds
International Nuclear Information System (INIS)
Shtan'ko, M A
2004-01-01
We prove the theorem of Markov on the existence of an algorithmically non-recognizable combinatorial n-dimensional manifold for every n≥4. We construct for the first time a concrete manifold which is algorithmically non-recognizable. A strengthened form of Markov's theorem is proved using the combinatorial methods of regular neighbourhoods and handle theory. The proofs coincide for all n≥4. We use Borisov's group with insoluble word problem. It has two generators and twelve relations. The use of this group forms the base for proving the strengthened form of Markov's theorem
A fast exact simulation method for a class of Markov jump processes.
Li, Yao; Hu, Lili
2015-11-14
A new method of the stochastic simulation algorithm (SSA), named the Hashing-Leaping method (HLM), for exact simulations of a class of Markov jump processes, is presented in this paper. The HLM has a conditional constant computational cost per event, which is independent of the number of exponential clocks in the Markov process. The main idea of the HLM is to repeatedly implement a hash-table-like bucket sort algorithm for all times of occurrence covered by a time step with length τ. This paper serves as an introduction to this new SSA method. We introduce the method, demonstrate its implementation, analyze its properties, and compare its performance with three other commonly used SSA methods in four examples. Our performance tests and CPU operation statistics show certain advantages of the HLM for large scale problems.
Hidden Markov models for zero-inflated Poisson counts with an application to substance use.
DeSantis, Stacia M; Bandyopadhyay, Dipankar
2011-06-30
Paradigms for substance abuse cue-reactivity research involve pharmacological or stressful stimulation designed to elicit stress and craving responses in cocaine-dependent subjects. It is unclear as to whether stress induced from participation in such studies increases drug-seeking behavior. We propose a 2-state Hidden Markov model to model the number of cocaine abuses per week before and after participation in a stress-and cue-reactivity study. The hypothesized latent state corresponds to 'high' or 'low' use. To account for a preponderance of zeros, we assume a zero-inflated Poisson model for the count data. Transition probabilities depend on the prior week's state, fixed demographic variables, and time-varying covariates. We adopt a Bayesian approach to model fitting, and use the conditional predictive ordinate statistic to demonstrate that the zero-inflated Poisson hidden Markov model outperforms other models for longitudinal count data. Copyright © 2011 John Wiley & Sons, Ltd.
Recursive recovery of Markov transition probabilities from boundary value data
Energy Technology Data Exchange (ETDEWEB)
Patch, Sarah Kathyrn [Univ. of California, Berkeley, CA (United States)
1994-04-01
In an effort to mathematically describe the anisotropic diffusion of infrared radiation in biological tissue Gruenbaum posed an anisotropic diffusion boundary value problem in 1989. In order to accommodate anisotropy, he discretized the temporal as well as the spatial domain. The probabilistic interpretation of the diffusion equation is retained; radiation is assumed to travel according to a random walk (of sorts). In this random walk the probabilities with which photons change direction depend upon their previous as well as present location. The forward problem gives boundary value data as a function of the Markov transition probabilities. The inverse problem requires finding the transition probabilities from boundary value data. Problems in the plane are studied carefully in this thesis. Consistency conditions amongst the data are derived. These conditions have two effects: they prohibit inversion of the forward map but permit smoothing of noisy data. Next, a recursive algorithm which yields a family of solutions to the inverse problem is detailed. This algorithm takes advantage of all independent data and generates a system of highly nonlinear algebraic equations. Pluecker-Grassmann relations are instrumental in simplifying the equations. The algorithm is used to solve the 4 x 4 problem. Finally, the smallest nontrivial problem in three dimensions, the 2 x 2 x 2 problem, is solved.
Recursive wind speed forecasting based on Hammerstein Auto-Regressive model
International Nuclear Information System (INIS)
Ait Maatallah, Othman; Achuthan, Ajit; Janoyan, Kerop; Marzocca, Pier
2015-01-01
Highlights: • Developed a new recursive WSF model for 1–24 h horizon based on Hammerstein model. • Nonlinear HAR model successfully captured chaotic dynamics of wind speed time series. • Recursive WSF intrinsic error accumulation corrected by applying rotation. • Model verified for real wind speed data from two sites with different characteristics. • HAR model outperformed both ARIMA and ANN models in terms of accuracy of prediction. - Abstract: A new Wind Speed Forecasting (WSF) model, suitable for a short term 1–24 h forecast horizon, is developed by adapting Hammerstein model to an Autoregressive approach. The model is applied to real data collected for a period of three years (2004–2006) from two different sites. The performance of HAR model is evaluated by comparing its prediction with the classical Autoregressive Integrated Moving Average (ARIMA) model and a multi-layer perceptron Artificial Neural Network (ANN). Results show that the HAR model outperforms both the ARIMA model and ANN model in terms of root mean square error (RMSE), mean absolute error (MAE), and Mean Absolute Percentage Error (MAPE). When compared to the conventional models, the new HAR model can better capture various wind speed characteristics, including asymmetric (non-gaussian) wind speed distribution, non-stationary time series profile, and the chaotic dynamics. The new model is beneficial for various applications in the renewable energy area, particularly for power scheduling
Lohani, A. K.; Kumar, Rakesh; Singh, R. D.
2012-06-01
SummaryTime series modeling is necessary for the planning and management of reservoirs. More recently, the soft computing techniques have been used in hydrological modeling and forecasting. In this study, the potential of artificial neural networks and neuro-fuzzy system in monthly reservoir inflow forecasting are examined by developing and comparing monthly reservoir inflow prediction models, based on autoregressive (AR), artificial neural networks (ANNs) and adaptive neural-based fuzzy inference system (ANFIS). To take care the effect of monthly periodicity in the flow data, cyclic terms are also included in the ANN and ANFIS models. Working with time series flow data of the Sutlej River at Bhakra Dam, India, several ANN and adaptive neuro-fuzzy models are trained with different input vectors. To evaluate the performance of the selected ANN and adaptive neural fuzzy inference system (ANFIS) models, comparison is made with the autoregressive (AR) models. The ANFIS model trained with the input data vector including previous inflows and cyclic terms of monthly periodicity has shown a significant improvement in the forecast accuracy in comparison with the ANFIS models trained with the input vectors considering only previous inflows. In all cases ANFIS gives more accurate forecast than the AR and ANN models. The proposed ANFIS model coupled with the cyclic terms is shown to provide better representation of the monthly inflow forecasting for planning and operation of reservoir.
Galka, Andreas; Siniatchkin, Michael; Stephani, Ulrich; Groening, Kristina; Wolff, Stephan; Bosch-Bayard, Jorge; Ozaki, Tohru
2010-12-01
The analysis of time series obtained by functional magnetic resonance imaging (fMRI) may be approached by fitting predictive parametric models, such as nearest-neighbor autoregressive models with exogeneous input (NNARX). As a part of the modeling procedure, it is possible to apply instantaneous linear transformations to the data. Spatial smoothing, a common preprocessing step, may be interpreted as such a transformation. The autoregressive parameters may be constrained, such that they provide a response behavior that corresponds to the canonical haemodynamic response function (HRF). We present an algorithm for estimating the parameters of the linear transformations and of the HRF within a rigorous maximum-likelihood framework. Using this approach, an optimal amount of both the spatial smoothing and the HRF can be estimated simultaneously for a given fMRI data set. An example from a motor-task experiment is discussed. It is found that, for this data set, weak, but non-zero, spatial smoothing is optimal. Furthermore, it is demonstrated that activated regions can be estimated within the maximum-likelihood framework.
Directory of Open Access Journals (Sweden)
Rahul Tripathi
2014-01-01
Full Text Available Forecasting of rice area, production, and productivity of Odisha was made from the historical data of 1950-51 to 2008-09 by using univariate autoregressive integrated moving average (ARIMA models and was compared with the forecasted all Indian data. The autoregressive (p and moving average (q parameters were identified based on the significant spikes in the plots of partial autocorrelation function (PACF and autocorrelation function (ACF of the different time series. ARIMA (2, 1, 0 model was found suitable for all Indian rice productivity and production, whereas ARIMA (1, 1, 1 was best fitted for forecasting of rice productivity and production in Odisha. Prediction was made for the immediate next three years, that is, 2007-08, 2008-09, and 2009-10, using the best fitted ARIMA models based on minimum value of the selection criterion, that is, Akaike information criteria (AIC and Schwarz-Bayesian information criteria (SBC. The performances of models were validated by comparing with percentage deviation from the actual values and mean absolute percent error (MAPE, which was found to be 0.61 and 2.99% for the area under rice in Odisha and India, respectively. Similarly for prediction of rice production and productivity in Odisha and India, the MAPE was found to be less than 6%.
Density Control of Multi-Agent Systems with Safety Constraints: A Markov Chain Approach
Demirer, Nazli
systems with a single agent and systems with large number of agents due to the probabilistic nature, where the probability distribution of each agent's state evolves according to a finite-state and discrete-time Markov chain (MC). Hence, designing proper decision control policies requires numerically tractable solution methods for the synthesis of Markov chains. The synthesis problem has the form of a Linear Matrix Inequality Problem (LMI), with LMI formulation of the constraints. To this end, we propose convex necessary and sufficient conditions for safety constraints in Markov chains, which is a novel result in the Markov chain literature. In addition to LMI-based, offline, Markov matrix synthesis method, we also propose a QP-based, online, method to compute a time-varying Markov matrix based on the real-time density feedback. Both problems are convex optimization problems that can be solved in a reliable and tractable way, utilizing existing tools in the literature. A Low Earth Orbit (LEO) swarm simulations are presented to validate the effectiveness of the proposed algorithms. Another problem tackled as a part of this research is the generalization of the density control problem to autonomous mobile agents with two control modes: ON and OFF. Here, each mode consists of a (possibly overlapping) finite set of actions, that is, there exist a set of actions for the ON mode and another set for the OFF mode. We give formulation for a new Markov chain synthesis problem, with additional measurements for the state transitions, where a policy is designed to ensure desired safety and convergence properties for the underlying Markov chain.
Markov chain Monte Carlo with the Integrated Nested Laplace Approximation
Gómez-Rubio, Virgilio
2017-10-06
The Integrated Nested Laplace Approximation (INLA) has established itself as a widely used method for approximate inference on Bayesian hierarchical models which can be represented as a latent Gaussian model (LGM). INLA is based on producing an accurate approximation to the posterior marginal distributions of the parameters in the model and some other quantities of interest by using repeated approximations to intermediate distributions and integrals that appear in the computation of the posterior marginals. INLA focuses on models whose latent effects are a Gaussian Markov random field. For this reason, we have explored alternative ways of expanding the number of possible models that can be fitted using the INLA methodology. In this paper, we present a novel approach that combines INLA and Markov chain Monte Carlo (MCMC). The aim is to consider a wider range of models that can be fitted with INLA only when some of the parameters of the model have been fixed. We show how new values of these parameters can be drawn from their posterior by using conditional models fitted with INLA and standard MCMC algorithms, such as Metropolis–Hastings. Hence, this will extend the use of INLA to fit models that can be expressed as a conditional LGM. Also, this new approach can be used to build simpler MCMC samplers for complex models as it allows sampling only on a limited number of parameters in the model. We will demonstrate how our approach can extend the class of models that could benefit from INLA, and how the R-INLA package will ease its implementation. We will go through simple examples of this new approach before we discuss more advanced applications with datasets taken from the relevant literature. In particular, INLA within MCMC will be used to fit models with Laplace priors in a Bayesian Lasso model, imputation of missing covariates in linear models, fitting spatial econometrics models with complex nonlinear terms in the linear predictor and classification of data with
Markov chain Monte Carlo with the Integrated Nested Laplace Approximation
Gó mez-Rubio, Virgilio; Rue, Haavard
2017-01-01
The Integrated Nested Laplace Approximation (INLA) has established itself as a widely used method for approximate inference on Bayesian hierarchical models which can be represented as a latent Gaussian model (LGM). INLA is based on producing an accurate approximation to the posterior marginal distributions of the parameters in the model and some other quantities of interest by using repeated approximations to intermediate distributions and integrals that appear in the computation of the posterior marginals. INLA focuses on models whose latent effects are a Gaussian Markov random field. For this reason, we have explored alternative ways of expanding the number of possible models that can be fitted using the INLA methodology. In this paper, we present a novel approach that combines INLA and Markov chain Monte Carlo (MCMC). The aim is to consider a wider range of models that can be fitted with INLA only when some of the parameters of the model have been fixed. We show how new values of these parameters can be drawn from their posterior by using conditional models fitted with INLA and standard MCMC algorithms, such as Metropolis–Hastings. Hence, this will extend the use of INLA to fit models that can be expressed as a conditional LGM. Also, this new approach can be used to build simpler MCMC samplers for complex models as it allows sampling only on a limited number of parameters in the model. We will demonstrate how our approach can extend the class of models that could benefit from INLA, and how the R-INLA package will ease its implementation. We will go through simple examples of this new approach before we discuss more advanced applications with datasets taken from the relevant literature. In particular, INLA within MCMC will be used to fit models with Laplace priors in a Bayesian Lasso model, imputation of missing covariates in linear models, fitting spatial econometrics models with complex nonlinear terms in the linear predictor and classification of data with
Filtering of a Markov Jump Process with Counting Observations
International Nuclear Information System (INIS)
Ceci, C.; Gerardi, A.
2000-01-01
This paper concerns the filtering of an R d -valued Markov pure jump process when only the total number of jumps are observed. Strong and weak uniqueness for the solutions of the filtering equations are discussed
The Independence of Markov's Principle in Type Theory
DEFF Research Database (Denmark)
Coquand, Thierry; Mannaa, Bassel
2017-01-01
for the generic point of this model. Instead we design an extension of type theory, which intuitively extends type theory by the addition of a generic point of Cantor space. We then show the consistency of this extension by a normalization argument. Markov's principle does not hold in this extension......In this paper, we show that Markov's principle is not derivable in dependent type theory with natural numbers and one universe. One way to prove this would be to remark that Markov's principle does not hold in a sheaf model of type theory over Cantor space, since Markov's principle does not hold......, and it follows that it cannot be proved in type theory....
Classification of customer lifetime value models using Markov chain
Permana, Dony; Pasaribu, Udjianna S.; Indratno, Sapto W.; Suprayogi
2017-10-01
A firm’s potential reward in future time from a customer can be determined by customer lifetime value (CLV). There are some mathematic methods to calculate it. One method is using Markov chain stochastic model. Here, a customer is assumed through some states. Transition inter the states follow Markovian properties. If we are given some states for a customer and the relationships inter states, then we can make some Markov models to describe the properties of the customer. As Markov models, CLV is defined as a vector contains CLV for a customer in the first state. In this paper we make a classification of Markov Models to calculate CLV. Start from two states of customer model, we make develop in many states models. The development a model is based on weaknesses in previous model. Some last models can be expected to describe how real characters of customers in a firm.
Markov Chain: A Predictive Model for Manpower Planning ...
African Journals Online (AJOL)
ADOWIE PERE
Keywords: Markov Chain, Transition Probability Matrix, Manpower Planning, Recruitment, Promotion, .... movement of the workforce in Jordan productivity .... Planning periods, with T being the horizon, the value of t represents a session.
Continuous-time Markov decision processes theory and applications
Guo, Xianping
2009-01-01
This volume provides the first book entirely devoted to recent developments on the theory and applications of continuous-time Markov decision processes (MDPs). The MDPs presented here include most of the cases that arise in applications.
A simplified parsimonious higher order multivariate Markov chain model
Wang, Chao; Yang, Chuan-sheng
2017-09-01
In this paper, a simplified parsimonious higher-order multivariate Markov chain model (SPHOMMCM) is presented. Moreover, parameter estimation method of TPHOMMCM is give. Numerical experiments shows the effectiveness of TPHOMMCM.
A tridiagonal parsimonious higher order multivariate Markov chain model
Wang, Chao; Yang, Chuan-sheng
2017-09-01
In this paper, we present a tridiagonal parsimonious higher-order multivariate Markov chain model (TPHOMMCM). Moreover, estimation method of the parameters in TPHOMMCM is give. Numerical experiments illustrate the effectiveness of TPHOMMCM.
Optimisation of Hidden Markov Model using Baum–Welch algorithm ...
Indian Academy of Sciences (India)
The present work is a part of development of Hidden Markov Model. (HMM) based ... the Himalaya. In this work, HMMs have been developed for forecasting of maximum and minimum ..... data collection teams of Snow and Avalanche Study.
Markov chain: a predictive model for manpower planning | Ezugwu ...
African Journals Online (AJOL)
In respect of organizational management, numerous previous studies have ... and to forecast the academic staff structure of the university in the next five years. ... Keywords: Markov Chain, Transition Probability Matrix, Manpower Planning, ...
A Novel Method for Decoding Any High-Order Hidden Markov Model
Directory of Open Access Journals (Sweden)
Fei Ye
2014-01-01
Full Text Available This paper proposes a novel method for decoding any high-order hidden Markov model. First, the high-order hidden Markov model is transformed into an equivalent first-order hidden Markov model by Hadar’s transformation. Next, the optimal state sequence of the equivalent first-order hidden Markov model is recognized by the existing Viterbi algorithm of the first-order hidden Markov model. Finally, the optimal state sequence of the high-order hidden Markov model is inferred from the optimal state sequence of the equivalent first-order hidden Markov model. This method provides a unified algorithm framework for decoding hidden Markov models including the first-order hidden Markov model and any high-order hidden Markov model.
Markov Chain Models for the Stochastic Modeling of Pitting Corrosion
Valor, A.; Caleyo, F.; Alfonso, L.; Velázquez, J. C.; Hallen, J. M.
2013-01-01
The stochastic nature of pitting corrosion of metallic structures has been widely recognized. It is assumed that this kind of deterioration retains no memory of the past, so only the current state of the damage influences its future development. This characteristic allows pitting corrosion to be categorized as a Markov process. In this paper, two different models of pitting corrosion, developed using Markov chains, are presented. Firstly, a continuous-time, nonhomogeneous linear growth (pure ...
On almost-periodic points of a topological Markov chain
International Nuclear Information System (INIS)
Bogatyi, Semeon A; Redkozubov, Vadim V
2012-01-01
We prove that a transitive topological Markov chain has almost-periodic points of all D-periods. Moreover, every D-period is realized by continuously many distinct minimal sets. We give a simple constructive proof of the result which asserts that any transitive topological Markov chain has periodic points of almost all periods, and study the structure of the finite set of positive integers that are not periods.
On mean reward variance in semi-Markov processes
Czech Academy of Sciences Publication Activity Database
Sladký, Karel
2005-01-01
Roč. 62, č. 3 (2005), s. 387-397 ISSN 1432-2994 R&D Projects: GA ČR(CZ) GA402/05/0115; GA ČR(CZ) GA402/04/1294 Institutional research plan: CEZ:AV0Z10750506 Keywords : Markov and semi-Markov processes with rewards * variance of cumulative reward * asymptotic behaviour Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.259, year: 2005
Reliability estimation of semi-Markov systems: a case study
International Nuclear Information System (INIS)
Ouhbi, Brahim; Limnios, Nikolaos
1997-01-01
In this article, we are concerned with the estimation of the reliability and the availability of a turbo-generator rotor using a set of data observed in a real engineering situation provided by Electricite De France (EDF). The rotor is modeled by a semi-Markov process, which is used to estimate the rotor's reliability and availability. To do this, we present a method for estimating the semi-Markov kernel from a censored data
Quantum tomography, phase-space observables and generalized Markov kernels
International Nuclear Information System (INIS)
Pellonpaeae, Juha-Pekka
2009-01-01
We construct a generalized Markov kernel which transforms the observable associated with the homodyne tomography into a covariant phase-space observable with a regular kernel state. Illustrative examples are given in the cases of a 'Schroedinger cat' kernel state and the Cahill-Glauber s-parametrized distributions. Also we consider an example of a kernel state when the generalized Markov kernel cannot be constructed.
Hidden Markov models in automatic speech recognition
Wrzoskowicz, Adam
1993-11-01
This article describes a method for constructing an automatic speech recognition system based on hidden Markov models (HMMs). The author discusses the basic concepts of HMM theory and the application of these models to the analysis and recognition of speech signals. The author provides algorithms which make it possible to train the ASR system and recognize signals on the basis of distinct stochastic models of selected speech sound classes. The author describes the specific components of the system and the procedures used to model and recognize speech. The author discusses problems associated with the choice of optimal signal detection and parameterization characteristics and their effect on the performance of the system. The author presents different options for the choice of speech signal segments and their consequences for the ASR process. The author gives special attention to the use of lexical, syntactic, and semantic information for the purpose of improving the quality and efficiency of the system. The author also describes an ASR system developed by the Speech Acoustics Laboratory of the IBPT PAS. The author discusses the results of experiments on the effect of noise on the performance of the ASR system and describes methods of constructing HMM's designed to operate in a noisy environment. The author also describes a language for human-robot communications which was defined as a complex multilevel network from an HMM model of speech sounds geared towards Polish inflections. The author also added mandatory lexical and syntactic rules to the system for its communications vocabulary.