WorldWideScience

Sample records for condition monitoring technology

  1. Decision Support System for Condition Monitoring Technologies

    NARCIS (Netherlands)

    Mouatamir, Abderrahim

    2018-01-01

    The technological feasibility of a condition-based maintenance (CBM) policy is intrinsically related to the suitable selection of condition monitoring (CM) technologies such as vibration- and oil analysis or other non-destructive testing (NDT) techniques such as radiographic- and magnetic particle

  2. Technology review: prototyping platforms for monitoring ambient conditions.

    Science.gov (United States)

    Afolaranmi, Samuel Olaiya; Ramis Ferrer, Borja; Martinez Lastra, Jose Luis

    2018-05-08

    The monitoring of ambient conditions in indoor spaces is very essential owing to the amount of time spent indoors. Specifically, the monitoring of air quality is significant because contaminated air affects the health, comfort and productivity of occupants. This research work presents a technology review of prototyping platforms for monitoring ambient conditions in indoor spaces. It involves the research on sensors (for CO 2 , air quality and ambient conditions), IoT platforms, and novel and commercial prototyping platforms. The ultimate objective of this review is to enable the easy identification, selection and utilisation of the technologies best suited for monitoring ambient conditions in indoor spaces. Following the review, it is recommended to use metal oxide sensors, optical sensors and electrochemical sensors for IAQ monitoring (including NDIR sensors for CO 2 monitoring), Raspberry Pi for data processing, ZigBee and Wi-Fi for data communication, and ThingSpeak IoT platform for data storage, analysis and visualisation.

  3. Condition Monitoring Through Advanced Sensor and Computational Technology

    International Nuclear Information System (INIS)

    Kim, Jung Taek; Park, Won Man; Kim, Jung Soo; Seong, Soeng Hwan; Hur, Sub; Cho, Jae Hwan; Jung, Hyung Gue

    2005-05-01

    The overall goal of this joint research project was to develop and demonstrate advanced sensors and computational technology for continuous monitoring of the condition of components, structures, and systems in advanced and next-generation nuclear power plants (NPPs). This project included investigating and adapting several advanced sensor technologies from Korean and US national laboratory research communities, some of which were developed and applied in non-nuclear industries. The project team investigated and developed sophisticated signal processing, noise reduction, and pattern recognition techniques and algorithms. The researchers installed sensors and conducted condition monitoring tests on two test loops, a check valve (an active component) and a piping elbow (a passive component), to demonstrate the feasibility of using advanced sensors and computational technology to achieve the project goal. Acoustic emission (AE) devices, optical fiber sensors, accelerometers, and ultrasonic transducers (UTs) were used to detect mechanical vibratory response of check valve and piping elbow in normal and degraded configurations. Chemical sensors were also installed to monitor the water chemistry in the piping elbow test loop. Analysis results of processed sensor data indicate that it is feasible to differentiate between the normal and degraded (with selected degradation mechanisms) configurations of these two components from the acquired sensor signals, but it is questionable that these methods can reliably identify the level and type of degradation. Additional research and development efforts are needed to refine the differentiation techniques and to reduce the level of uncertainties

  4. Research on Land Ecological Condition Investigation and Monitoring Technology

    Science.gov (United States)

    Lv, Chunyan; Guo, Xudong; Chen, Yuqi

    2017-04-01

    The ecological status of land reflects the relationship between land use and environmental factors. At present, land ecological situation in China is worrying. According to the second national land survey data, there are about 149 million acres of arable land located in forests and grasslands area in Northeast and Northwest of China, Within the limits of the highest flood level, at steep slope above 25 degrees; about 50 million acres of arable land has been in heavy pollution; grassland degradation is still serious. Protected natural forests accounted for only 6% of the land area, and forest quality is low. Overall, the ecological problem has been eased, but the local ecological destruction intensified, natural ecosystem in degradation. It is urgent to find out the situation of land ecology in the whole country and key regions as soon as possible. The government attaches great importance to ecological environment investigation and monitoring. Various industries and departments from different angles carry out related work, most of it about a single ecological problem, the lack of a comprehensive surveying and assessment of land ecological status of the region. This paper established the monitoring index system of land ecological condition, including Land use type area and distribution, quality of cultivated land, vegetation status and ecological service, arable land potential and risk, a total of 21 indicators. Based on the second national land use survey data, annual land use change data and high resolution remote sensing data, using the methods of sample monitoring, field investigation and statistical analysis to obtain the information of each index, this paper established the land ecological condition investigation and monitoring technology and method system. It has been improved, through the application to Beijing-Tianjin-Hebei Urban Agglomeration, the northern agro-pastoral ecological fragile zone, and 6 counties (cities).

  5. Condition monitoring through advanced sensor and computational technology

    International Nuclear Information System (INIS)

    Kim, Jung Taek; Hur, S.; Seong, S. H.; Hwang, Il Soon; Lee, Joon Hyun; You, Jun; Lee, Sang Jung

    2004-01-01

    In order to successfully implement the extended-life operation plan of the nuclear power plant (NPP), predictive maintenance based on on-line monitoring of deteriorated components becomes highly important. In this work, we present progresses in the development of an advanced monitoring system to detect the health condition on check valve failures and pipe wall-thinning phenomena. The failures of check valves have resulted in significant maintenance efforts, on occasion, have resulted in water hammer, over-pressurization of low-pressure systems, and damage to flow system components. Pipe wall-thinning is usually caused by Flow-Accelerated Corrosion (FAC) under the undesirable combination of water chemistry, flow velocity and material composition. A piping elbow in the moisture separator/reheater drain line on the secondary waterside of a PWR is chosen as a monitoring target

  6. Mechanical Seal Opening Condition Monitoring Based on Acoustic Emission Technology

    Directory of Open Access Journals (Sweden)

    Erqing Zhang

    2014-06-01

    Full Text Available Since the measurement of mechanical sealing film thickness and just-lift-off time is very difficult, the sealing film condition monitoring method based on acoustic emission signal is proposed. The mechanical seal acoustic emission signal present obvious characteristics of time-varying nonlinear and pulsating. In this paper, the acoustic emission signal is used to monitor the seal end faces just-lift-off time and friction condition. The acoustic emission signal is decomposed by empirical mode decomposition into a series of intrinsic mode function with independent characteristics of different time scales and different frequency band. The acoustic emission signal only generated by end faces friction is obtained by eliminating the false intrinsic mode function components. The correlation coefficient of acoustic emission signal and Multi-scale Laplace Wavelet is calculated. It is proved that the maximum frequency (8000 Hz of the correlation coefficient is appeared at the spindle speed of 300 rpm. And at this time (300 rpm the end faces have just lifted off. By a set of mechanical oil seal running test, it is demonstrated that this method could accurately identify mechanical seal end faces just-lift-off time and friction condition.

  7. Optimization of Remediation Conditions using Vadose Zone Monitoring Technology

    Science.gov (United States)

    Dahan, O.; Mandelbaum, R.; Ronen, Z.

    2010-12-01

    Success of in-situ bio-remediation of the vadose zone depends mainly on the ability to change and control hydrological, physical and chemical conditions of subsurface. These manipulations enables the development of specific, indigenous, pollutants degrading bacteria or set the environmental conditions for seeded bacteria. As such, the remediation efficiency is dependent on the ability to implement optimal hydraulic and chemical conditions in deep sections of the vadose zone. Enhanced bioremediation of the vadose zone is achieved under field conditions through infiltration of water enriched with chemical additives. Yet, water percolation and solute transport in unsaturated conditions is a complex process and application of water with specific chemical conditions near land surface dose not necessarily result in promoting of desired chemical and hydraulic conditions in deeper sections of the vadose zone. A newly developed vadose-zone monitoring system (VMS) allows continuous monitoring of the hydrological and chemical properties of the percolating water along deep sections of the vadose zone. Implementation of the VMS at sites that undergoes active remediation provides real time information on the chemical and hydrological conditions in the vadose zone as the remediation process progresses. Manipulating subsurface conditions for optimal biodegradation of hydrocarbons is demonstrated through enhanced bio-remediation of the vadose zone at a site that has been contaminated with gasoline products in Tel Aviv. The vadose zone at the site is composed of 6 m clay layer overlying a sandy formation extending to the water table at depth of 20 m bls. The upper 5 m of contaminated soil were removed for ex-situ treatment, and the remaining 15 m vadose zone is treated in-situ through enhanced bioremedaition. Underground drip irrigation system was installed below the surface on the bottom of the excavation. Oxygen and nutrients releasing powder (EHCO, Adventus) was spread below the

  8. Recommendations for strengthening the infrared technology component of any condition monitoring program

    Science.gov (United States)

    Nicholas, Jack R., Jr.; Young, R. K.

    1999-03-01

    This presentation provides insights of a long term 'champion' of many condition monitoring technologies and a Level III infra red thermographer. The co-authors present recommendations based on their observations of infra red and other components of predictive, condition monitoring programs in manufacturing, utility and government defense and energy activities. As predictive maintenance service providers, trainers, informal observers and formal auditors of such programs, the co-authors provide a unique perspective that can be useful to practitioners, managers and customers of advanced programs. Each has over 30 years experience in the field of machinery operation, maintenance, and support the origins of which can be traced to and through the demanding requirements of the U.S. Navy nuclear submarine forces. They have over 10 years each of experience with programs in many different countries on 3 continents. Recommendations are provided on the following: (1) Leadership and Management Support (For survival); (2) Life Cycle View (For establishment of a firm and stable foundation for a program); (3) Training and Orientation (For thermographers as well as operators, managers and others); (4) Analyst Flexibility (To innovate, explore and develop their understanding of machinery condition); (5) Reports and Program Justification (For program visibility and continued expansion); (6) Commitment to Continuous Improvement of Capability and Productivity (Through application of updated hardware and software); (7) Mutual Support by Analysts (By those inside and outside of the immediate organization); (8) Use of Multiple Technologies and System Experts to Help Define Problems (Through the use of correlation analysis of data from up to 15 technologies. An example correlation analysis table for AC and DC motors is provided.); (9) Root Cause Analysis (Allows a shift from reactive to proactive stance for a program); (10) Master Equipment Identification and Technology Application (To

  9. Exploitation of condition monitoring technology for equipment by infrared thermography use

    International Nuclear Information System (INIS)

    Shimada, H.

    2005-01-01

    Recently exploitation of condition monitoring technology for equipment by infrared thermography use has been established in US nuclear power plants (NPPs) because of its effectiveness for accidents prevention. Meanwhile, this technology has never been used in Japanese NPPs. In order to make use of it with ease at NPPs, measuring manuals were provided including the table of emissivity dependent on equipment painting specification and measuring positions kept out of background heat sources at measurement. At in-site application tests, temperature increase points at power cable connection parts were discovered, which showed its effectiveness. (T. Tanaka)

  10. Condition monitoring through advanced sensor and computational technology : final report (January 2002 to May 2005).

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung-Taek (Korea Atomic Energy Research Institute, Daejon, Korea); Luk, Vincent K.

    2005-05-01

    The overall goal of this joint research project was to develop and demonstrate advanced sensors and computational technology for continuous monitoring of the condition of components, structures, and systems in advanced and next-generation nuclear power plants (NPPs). This project included investigating and adapting several advanced sensor technologies from Korean and US national laboratory research communities, some of which were developed and applied in non-nuclear industries. The project team investigated and developed sophisticated signal processing, noise reduction, and pattern recognition techniques and algorithms. The researchers installed sensors and conducted condition monitoring tests on two test loops, a check valve (an active component) and a piping elbow (a passive component), to demonstrate the feasibility of using advanced sensors and computational technology to achieve the project goal. Acoustic emission (AE) devices, optical fiber sensors, accelerometers, and ultrasonic transducers (UTs) were used to detect mechanical vibratory response of check valve and piping elbow in normal and degraded configurations. Chemical sensors were also installed to monitor the water chemistry in the piping elbow test loop. Analysis results of processed sensor data indicate that it is feasible to differentiate between the normal and degraded (with selected degradation mechanisms) configurations of these two components from the acquired sensor signals, but it is questionable that these methods can reliably identify the level and type of degradation. Additional research and development efforts are needed to refine the differentiation techniques and to reduce the level of uncertainties.

  11. Results of Recent DOE Research on Development of Cable Condition Monitoring and Aging Management Technologies

    International Nuclear Information System (INIS)

    Campbell, C.J.; McConkey, J.B.; Hashemian, H.M.; Sexton, C.D.; Cummins, D.S.

    2012-01-01

    Analysis and Measurement Services (AMS) Corporation has been conducting two research projects focused on understanding cable aging and developing cable condition monitoring technologies for nuclear power plants. The goal of the first project is to correlate cable faults with testing techniques that can identify and locate the faults whether they are in the cable, conductor, or the insulation. This project involves laboratory experiments using low and medium voltage cable types typically installed in nuclear power plants. The second project is focused on development of an integrated cable condition monitoring system for nuclear facilities. This system integrates a number of cable testing and cable condition monitoring techniques, such as the time domain reflectometry (TDR), frequency domain reflectometry (FDR), inductance, capacitance, resistance (LCR), reverse TDR (RTDR), current-to-voltage (IV) for testing of nuclear instrumentation sensors, insulation resistance (IR) and other techniques. The purpose of the project is to combine all proven technologies into one system to detect and pinpoint problems in cable circuits as well as cable insulation, shield, or jacket material. (author)

  12. The CMS Fast Beams Condition Monitor Backend Electronics based on MicroTCA technology

    CERN Document Server

    Zagozdzinska, Agnieszka Anna

    2016-01-01

    The Fast Beams Condition Monitor (BCM1F), upgraded for LHC Run II, is one sub-system of the Beam Radiation Instrumentation and Luminosity Project of the CMS experiment. It is based on 24 single crystal CVD diamond sensors. Each sensor is metallised with two pads, being read out by a dedicated fast frontend chip produced in 130 nm CMOS technology. Signals for real time monitoring are processed by custom-made back-end electronics to measure separately rates corresponding to LHC collision products, machine induced background and residual activation exploiting different arrival times. The system is built in MicroTCA technology and uses high speed analog-to-digital converters. The data processing module designed for the FPGA allows a distinguishing of collision and machine induced background, both synchronous to the LHC clock, from the residual activation products. In operational modes of high rates, consecutive events, spaced in time by less than 12.5 ns, may partially overlap. Hence, novel signal processing tec...

  13. Verification of the machinery condition monitoring technology by fault simulation tests

    International Nuclear Information System (INIS)

    Maehara, Takafumi; Watanabe, Yukio; Osaki, Kenji; Higuma, Koji; Nakano, Tomohito

    2009-01-01

    This paper shows the test items and equipments introduced by Japan Nuclear Energy Safety Organization to establish the monitoring technique for machinery conditions. From the result of vertical pump simulation tests, it was confirmed that fault analysis was impossible by measuring the accelerations on both motor and pump column pipes, however, was possible by measuring of pump shaft vibrations. Because hydraulic whirls by bearing wear had significant influences over bearing misalignments and flow rates, the monitoring trends must be done under the same condition (on bearing alignments and flow rates). We have confirmed that malfunctions of vertical pumps can be diagnosed using measured shaft vibration by ultrasonic sensors from outer surface of pump casing on the floor. (author)

  14. Technology monitoring; Technologie-Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Eicher, H.; Rigassi, R. [Eicher und Pauli AG, Liestal (Switzerland); Ott, W. [Econcept AG, Zuerich (Switzerland)

    2003-07-01

    This study made for the Swiss Federal Office of Energy (SFOE) examines ways of systematically monitoring energy technology development and the cost of such technologies in order to pave the way to a basis for judging the economic development of new energy technologies. Initial results of a survey of the past development of these technologies are presented and estimates are made of future developments in the areas of motor-based combined heat and power systems, fuel-cell heating units for single-family homes and apartment buildings, air/water heat pumps for new housing projects and high-performance thermal insulation. The methodology used for the monitoring and analysis of the various technologies is described. Tables and diagrams illustrate the present situation and development potential of various fields of technology.

  15. Acoustic multivariate condition monitoring - AMCM

    Energy Technology Data Exchange (ETDEWEB)

    Rosenhave, P E [Vestfold College, Maritime Dept., Toensberg (Norway)

    1998-12-31

    In Norway, Vestfold College, Maritime Department presents new opportunities for non-invasive, on- or off-line acoustic monitoring of rotating machinery such as off-shore pumps and diesel engines. New developments within acoustic sensor technology coupled with chemometric data analysis of complex signals now allow condition monitoring of hitherto unavailable flexibility and diagnostic specificity. Chemometrics paired with existing knowledge yields a new and powerful tool for condition monitoring. By the use of multivariate techniques and acoustics it is possible to quantify wear and tear as well as predict the performance of working components in complex machinery. This presentation describes the AMCM method and one result of a feasibility study conducted onboard the LPG/C `Norgas Mariner` owned by Norwegian Gas Carriers as (NGC), Oslo. (orig.) 6 refs.

  16. Acoustic multivariate condition monitoring - AMCM

    Energy Technology Data Exchange (ETDEWEB)

    Rosenhave, P.E. [Vestfold College, Maritime Dept., Toensberg (Norway)

    1997-12-31

    In Norway, Vestfold College, Maritime Department presents new opportunities for non-invasive, on- or off-line acoustic monitoring of rotating machinery such as off-shore pumps and diesel engines. New developments within acoustic sensor technology coupled with chemometric data analysis of complex signals now allow condition monitoring of hitherto unavailable flexibility and diagnostic specificity. Chemometrics paired with existing knowledge yields a new and powerful tool for condition monitoring. By the use of multivariate techniques and acoustics it is possible to quantify wear and tear as well as predict the performance of working components in complex machinery. This presentation describes the AMCM method and one result of a feasibility study conducted onboard the LPG/C `Norgas Mariner` owned by Norwegian Gas Carriers as (NGC), Oslo. (orig.) 6 refs.

  17. Advanced Environmental Monitoring Technologies

    Science.gov (United States)

    Jan, Darrell

    2004-01-01

    Viewgraphs on Advanced Environmental Monitoring Technologies are presented. The topics include: 1) Monitoring & Controlling the Environment; 2) Illustrative Example: Canary 3) Ground-based Commercial Technology; 4) High Capability & Low Mass/Power + Autonomy = Key to Future SpaceFlight; 5) Current Practice: in Flight; 6) Current Practice: Post Flight; 7) Miniature Mass Spectrometer for Planetary Exploration and Long Duration Human Flight; 8) Hardware and Data Acquisition System; 9) 16S rDNA Phylogenetic Tree; and 10) Preview of Porter.

  18. Condition Indicators for Gearbox Condition Monitoring Systems

    Directory of Open Access Journals (Sweden)

    P. Večeř

    2005-01-01

    Full Text Available Condition monitoring systems for manual transmissions based on vibration diagnostics are widely applied in industry. The systems deal with various condition indicators, most of which are focused on a specific type of gearbox fault. Frequently used condition indicators (CIs are described in this paper. The ability of a selected condition indicator to describe the degree of gearing wear was tested using vibration signals acquired during durability testing of manual transmission with helical gears. 

  19. Informing the Design of "Lifestyle Monitoring" Technology for the Detection of Health Deterioration in Long-Term Conditions: A Qualitative Study of People Living With Heart Failure.

    Science.gov (United States)

    Hargreaves, Sarah; Hawley, Mark S; Haywood, Annette; Enderby, Pamela M

    2017-06-28

    Health technologies are being developed to help people living at home manage long-term conditions. One such technology is "lifestyle monitoring" (LM), a telecare technology based on the idea that home activities may be monitored unobtrusively via sensors to give an indication of changes in health-state. However, questions remain about LM technology: how home activities change when participants experience differing health-states; and how sensors might capture clinically important changes to inform timely interventions. The objective of this paper was to report the findings of a study aimed at identifying changes in activity indicative of important changes in health in people with long-term conditions, particularly changes indicative of exacerbation, by exploring the relationship between home activities and health among people with heart failure (HF). We aimed to add to the knowledge base informing the development of home monitoring technologies designed to detect health deterioration in order to facilitate early intervention and avoid hospital admissions. This qualitative study utilized semistructured interviews to explore everyday activities undertaken during the three health-states of HF: normal days, bad days, and exacerbations. Potential recruits were identified by specialist nurses and attendees at an HF support group. The sample was purposively selected to include a range of experience of living with HF. The sample comprised a total of 20 people with HF aged 50 years and above, and 11 spouses or partners of the individuals with HF. All resided in Northern England. Participant accounts revealed that home activities are in part shaped by the degree of intrusion from HF symptoms. During an exacerbation, participants undertook activities specifically to ease symptoms, and detailed activity changes were identified. Everyday activity was also influenced by a range of factors other than health. The study highlights the importance of careful development of LM

  20. Monitoring Technology Meets Care Work

    DEFF Research Database (Denmark)

    Kanstrup, Anne Marie; Bygholm, Ann

    2015-01-01

    's ability to meet the complexity of care work. Understanding intersectional challenges between these care technologies and care work is fundamental to improve design and use of health informatics. In this paper we present an analysis of interaction challenges between a wet-sensor at the task of monitoring......Monitoring technology, especially sensor-based technology, is increasingly taken into use in care work. Despite the simplicity of these technologies – aimed to automate what appear as mundane monitoring tasks – recent research has identified major challenges primarily related to the technology...... wet beds at a nursing home. The analysis identifies the multifaceted nature of monitoring work and the intricacy of integrating sensor technology into the complex knowledge system of monitoring work....

  1. @selfhealthtech: Using self-administered health monitoring technologies to support the self-management of long-term conditions: what about behaviour change?

    Directory of Open Access Journals (Sweden)

    Heather May Morgan

    2015-10-01

    Conclusions This evidence synthesis adds to emerging research concerning digital technologies, contributing to the literature where there is a knowledge gap around SSM and self-administered health monitoring technologies. It highlights a need to better understand the delivery and quality of care when technologies are used for SSM. It would be beneficial to re-characterise or reconceptualise these technologies and their implementation. More rigorous description of interventions, e.g. using the TIDIER template for intervention description and replication checklist10, or linking systems with BCT taxonomy v.19 through the smartphone app11, as well as a requirement to attend to behaviour change theory and techniques in the design, use and description is also required. Future research should address these concerns to inform developments in SSM for chronic conditions involving technologies, as well as in policy and practices more generally where digital technologies are implicated. In addition, the results of this review suggest that detailed primary research should be undertaken to explore the personal, social and ethical considerations of users in everyday life.

  2. Bedload-surrogate monitoring technologies

    Science.gov (United States)

    Gray, John R.; Laronne, Jonathan B.; Marr, Jeffrey D.G.

    2010-01-01

    Advances in technologies for quantifying bedload fluxes and in some cases bedload size distributions in rivers show promise toward supplanting traditional physical samplers and sampling methods predicated on the collection and analysis of physical bedload samples. Four workshops held from 2002 to 2007 directly or peripherally addressed bedload-surrogate technologies, and results from these workshops have been compiled to evaluate the state-of-the-art in bedload monitoring. Papers from the 2007 workshop are published for the first time with this report. Selected research and publications since the 2007 workshop also are presented. Traditional samplers used for some or all of the last eight decades include box or basket samplers, pan or tray samplers, pressure-difference samplers, and trough or pit samplers. Although still useful, the future niche of these devices may be as a means for calibrating bedload-surrogate technologies operating with active- and passive-type sensors, in many cases continuously and automatically at a river site. Active sensors include acoustic Doppler current profilers (ADCPs), sonar, radar, and smart sensors. Passive sensors include geophones (pipes or plates) in direct contact with the streambed, hydrophones deployed in the water column, impact columns, and magnetic detection. The ADCP for sand and geophones for gravel are currently the most developed techniques, several of which have been calibrated under both laboratory and field conditions. Although none of the bedload-surrogate technologies described herein are broadly accepted for use in large-scale monitoring programs, several are under evaluation. The benefits of verifying and operationally deploying selected bedload-surrogate monitoring technologies could be considerable, providing for more frequent and consistent, less expensive, and arguably more accurate bedload data obtained with reduced personal risk for use in managing the world's sedimentary resources. Twenty-six papers are

  3. Monitoring Thermal Conditions in Footwear

    Science.gov (United States)

    Silva-Moreno, Alejandra. A.; Lopez Vela, Martín; Alcalá Ochoa, Noe

    2006-09-01

    Thermal conditions inside the foot were evaluated on a volunteer subject. We have designed and constructed an electronic system which can monitors temperature and humidity of the foot inside the shoe. The data is stored in a battery-powered device for later uploading to a host computer for data analysis. The apparatus potentially can be used to provide feedback to patients who are prone to having skin breakdowns.

  4. Technology monitoring in the CIEMAT

    International Nuclear Information System (INIS)

    Perez-Martinez, M.; Cuesta, M. J.; Crespi, S. N.; Cabrera, J. A.

    2008-01-01

    The CIEMAT Foresight and Technology Monitoring Unit focuses its activities on obtaining strategic information on future developments in the area of energy and environment that can be used for decision making by the centers management. In addition, it provides services to CIEMAT researchers and other external customers. In May 2007, the Asociacion Espanola de Normalizacion y Certificacion AENOR delivered to the CIEMAT the first Technology Monitoring System certificate granted in Spain as per standard UNE 166006:2006. This article describes the Units experience in the implementation process of the Technology Monitoring System and provides several examples of the way in which the Unit graphically represents the information analyzed in its Technology Monitoring Reports. (Author)

  5. Evaluative conditioning of food technologies

    DEFF Research Database (Denmark)

    Loebnitz, Natascha; Grunert, Klaus G

    2015-01-01

    Consumer attitudes play an important role in the acceptance of new technologies. The success of food innovations depends on understanding how consumers form and change attitudes toward food technologies. Earlier post hoc explanations suggest that evaluative conditioning can change consumer...... attitudes toward food technologies. The present study tests how evaluative conditioning can affect consumer acceptance of new food technologies. Furthermore, authors investigate whether evaluative conditioning is resistant to extinction after a two-month period and whether the evaluative conditioning effect...... prevails in a product-related context. Within an evaluative conditioning paradigm including between-subjects control groups in addition to standard within-subjects control conditions, participants were presented with three food technologies (conventional, enzyme, and genetic technology) paired...

  6. ATLAS diamond Beam Condition Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Gorisek, A. [CERN (Switzerland)]. E-mail: andrej.gorisek@cern.ch; Cindro, V. [J. Stefan Institute (Slovenia); Dolenc, I. [J. Stefan Institute (Slovenia); Frais-Koelbl, H. [Fotec (Austria); Griesmayer, E. [Fotec (Austria); Kagan, H. [Ohio State University, OH (United States); Korpar, S. [J. Stefan Institute (Slovenia); Kramberger, G. [J. Stefan Institute (Slovenia); Mandic, I. [J. Stefan Institute (Slovenia); Meyer, M. [CERN (Switzerland); Mikuz, M. [J. Stefan Institute (Slovenia); Pernegger, H. [CERN (Switzerland); Smith, S. [Ohio State University, OH (United States); Trischuk, W. [University of Toronto (Canada); Weilhammer, P. [CERN (Switzerland); Zavrtanik, M. [J. Stefan Institute (Slovenia)

    2007-03-01

    The ATLAS experiment has chosen to use diamond for its Beam Condition Monitor (BCM) given its radiation hardness, low capacitance and short charge collection time. In addition, due to low leakage current diamonds do not require cooling. The ATLAS Beam Condition Monitoring system is based on single beam bunch crossing measurements rather than integrating the accumulated particle flux. Its fast electronics will allow separation of LHC collisions from background events such as beam gas interactions or beam accidents. There will be two stations placed symmetrically about the interaction point along the beam axis at z=+/-183.8cm. Timing of signals from the two stations will provide almost ideal separation of beam-beam interactions and background events. The ATLAS BCM module consists of diamond pad detectors of 1cm{sup 2} area and 500{mu}m thickness coupled to a two-stage RF current amplifier. The production of the final detector modules is almost done. A S/N ratio of 10:1 has been achieved with minimum ionizing particles (MIPs) in the test beam setup at KEK. Results from the test beams and bench measurements are presented.

  7. ATLAS diamond Beam Condition Monitor

    International Nuclear Information System (INIS)

    Gorisek, A.; Cindro, V.; Dolenc, I.; Frais-Koelbl, H.; Griesmayer, E.; Kagan, H.; Korpar, S.; Kramberger, G.; Mandic, I.; Meyer, M.; Mikuz, M.; Pernegger, H.; Smith, S.; Trischuk, W.; Weilhammer, P.; Zavrtanik, M.

    2007-01-01

    The ATLAS experiment has chosen to use diamond for its Beam Condition Monitor (BCM) given its radiation hardness, low capacitance and short charge collection time. In addition, due to low leakage current diamonds do not require cooling. The ATLAS Beam Condition Monitoring system is based on single beam bunch crossing measurements rather than integrating the accumulated particle flux. Its fast electronics will allow separation of LHC collisions from background events such as beam gas interactions or beam accidents. There will be two stations placed symmetrically about the interaction point along the beam axis at z=+/-183.8cm. Timing of signals from the two stations will provide almost ideal separation of beam-beam interactions and background events. The ATLAS BCM module consists of diamond pad detectors of 1cm 2 area and 500μm thickness coupled to a two-stage RF current amplifier. The production of the final detector modules is almost done. A S/N ratio of 10:1 has been achieved with minimum ionizing particles (MIPs) in the test beam setup at KEK. Results from the test beams and bench measurements are presented

  8. ATLAS diamond Beam Condition Monitor

    CERN Document Server

    Gorišek, A; Dolenc, I; Frais-Kölbl, H; Griesmayer, E; Kagan, H; Korpar, S; Kramberger, G; Mandic, I; Meyer, M; Mikuz, M; Pernegger, H; Smith, S; Trischuk, W; Weilhammer, P; Zavrtanik, M

    2007-01-01

    The ATLAS experiment has chosen to use diamond for its Beam Condition Monitor (BCM) given its radiation hardness, low capacitance and short charge collection time. In addition, due to low leakage current diamonds do not require cooling. The ATLAS Beam Condition Monitoring system is based on single beam bunch crossing measurements rather than integrating the accumulated particle flux. Its fast electronics will allow separation of LHC collisions from background events such as beam gas interactions or beam accidents. There will be two stations placed symmetrically about the interaction point along the beam axis at . Timing of signals from the two stations will provide almost ideal separation of beam–beam interactions and background events. The ATLAS BCM module consists of diamond pad detectors of area and thickness coupled to a two-stage RF current amplifier. The production of the final detector modules is almost done. A S/N ratio of 10:1 has been achieved with minimum ionizing particles (MIPs) in the test bea...

  9. Portal monitoring technology control process

    International Nuclear Information System (INIS)

    York, R.L.

    1998-01-01

    Portal monitors are an important part of the material protection, control, and accounting (MPC and A) programs in Russia and the US. Although portal monitors are only a part of an integrated MPC and A system, they are an effective means of controlling the unauthorized movement of special nuclear material (SNM). Russian technical experts have gained experience in the use of SNM portal monitors from US experts ad this has allowed them to use the monitors more effectively. Several Russian institutes and companies are designing and manufacturing SNM portal monitors in Russia. Interactions between Russian and US experts have resulted in improvements to the instruments. SNM portal monitor technology has been effectively transferred from the US to Russia and should be a permanent part of the Russian MPC and A Program. Progress in the implementation of the monitors and improvements to how they are used are discussed

  10. New technologies for item monitoring

    International Nuclear Information System (INIS)

    Abbott, J.A.; Waddoups, I.G.

    1993-12-01

    This report responds to the Department of Energy's request that Sandia National Laboratories compare existing technologies against several advanced technologies as they apply to DOE needs to monitor the movement of material, weapons, or personnel for safety and security programs. The authors describe several material control systems, discuss their technologies, suggest possible applications, discuss assets and limitations, and project costs for each system. The following systems are described: WATCH system (Wireless Alarm Transmission of Container Handling); Tag system (an electrostatic proximity sensor); PANTRAK system (Personnel And Material Tracking); VRIS (Vault Remote Inventory System); VSIS (Vault Safety and Inventory System); AIMS (Authenticated Item Monitoring System); EIVS (Experimental Inventory Verification System); Metrox system (canister monitoring system); TCATS (Target Cueing And Tracking System); LGVSS (Light Grid Vault Surveillance System); CSS (Container Safeguards System); SAMMS (Security Alarm and Material Monitoring System); FOIDS (Fiber Optic Intelligence ampersand Detection System); GRADS (Graded Radiation Detection System); and PINPAL (Physical Inventory Pallet)

  11. New technologies for item monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, J.A. [EG & G Energy Measurements, Albuquerque, NM (United States); Waddoups, I.G. [Sandia National Labs., Albuquerque, NM (United States)

    1993-12-01

    This report responds to the Department of Energy`s request that Sandia National Laboratories compare existing technologies against several advanced technologies as they apply to DOE needs to monitor the movement of material, weapons, or personnel for safety and security programs. The authors describe several material control systems, discuss their technologies, suggest possible applications, discuss assets and limitations, and project costs for each system. The following systems are described: WATCH system (Wireless Alarm Transmission of Container Handling); Tag system (an electrostatic proximity sensor); PANTRAK system (Personnel And Material Tracking); VRIS (Vault Remote Inventory System); VSIS (Vault Safety and Inventory System); AIMS (Authenticated Item Monitoring System); EIVS (Experimental Inventory Verification System); Metrox system (canister monitoring system); TCATS (Target Cueing And Tracking System); LGVSS (Light Grid Vault Surveillance System); CSS (Container Safeguards System); SAMMS (Security Alarm and Material Monitoring System); FOIDS (Fiber Optic Intelligence & Detection System); GRADS (Graded Radiation Detection System); and PINPAL (Physical Inventory Pallet).

  12. The ATLAS Beam Conditions Monitor

    International Nuclear Information System (INIS)

    Cindro, V; Dolenc, I; Kramberger, G; Macek, B; Mandic, I; Mikuz', M; Zavrtanik, M; Dobos, D; Gorisek, A; Pernegger, H; Weilhammer, P; Frais-Koelbl, H; Griesmayer, E; Niegl, M; Kagan, H; Tardif, D; Trischuk, W

    2008-01-01

    Beam conditions and the potential detector damage resulting from their anomalies have pushed the LHC experiments to build their own beam monitoring devices. The ATLAS Beam Conditions Monitor (BCM) consists of two stations (forward and backward) of detectors each with four modules. The sensors are required to tolerate doses up to 500 kGy and in excess of 10 15 charged particles per cm 2 over the lifetime of the experiment. Each module includes two diamond sensors read out in parallel. The stations are located symmetrically around the interaction point, positioning the diamond sensors at z = ±184 cm and r = 55 mm (a pseudo- rapidity of about 4.2). Equipped with fast electronics (2 ns rise time) these stations measure time-of-flight and pulse height to distinguish events resulting from lost beam particles from those normally occurring in proton-proton interactions. The BCM also provides a measurement of bunch-by-bunch luminosities in ATLAS by counting in-time and out-of-time collisions. Eleven detector modules have been fully assembled and tested. Tests performed range from characterisation of diamond sensors to full module tests with electron sources and in proton testbeams. Testbeam results from the CERN SPS show a module median-signal to noise of 11:1 for minimum ionising particles incident at a 45-degree angle. The best eight modules were installed on the ATLAS pixel support frame that was inserted into ATLAS in the summer of 2007. This paper describes the full BCM detector system along with simulation studies being used to develop the logic in the back-end FPGA coincidence hardware

  13. The ATLAS Beam Conditions Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Cindro, V; Dolenc, I; Kramberger, G; Macek, B; Mandic, I; Mikuz' , M; Zavrtanik, M [Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana (Slovenia); Dobos, D; Gorisek, A; Pernegger, H; Weilhammer, P [CERN, Geneva (Switzerland); Frais-Koelbl, H; Griesmayer, E; Niegl, M [University of Applied Sciences Wiener Neustadt and Fotec, Wiener Neustadt (Austria); Kagan, H [Ohio State University, Columbus (United States); Tardif, D; Trischuk, W [University of Toronto, Toronto (Canada)], E-mail: william@physics.utoronto.ca

    2008-02-15

    Beam conditions and the potential detector damage resulting from their anomalies have pushed the LHC experiments to build their own beam monitoring devices. The ATLAS Beam Conditions Monitor (BCM) consists of two stations (forward and backward) of detectors each with four modules. The sensors are required to tolerate doses up to 500 kGy and in excess of 10{sup 15} charged particles per cm{sup 2} over the lifetime of the experiment. Each module includes two diamond sensors read out in parallel. The stations are located symmetrically around the interaction point, positioning the diamond sensors at z = {+-}184 cm and r = 55 mm (a pseudo- rapidity of about 4.2). Equipped with fast electronics (2 ns rise time) these stations measure time-of-flight and pulse height to distinguish events resulting from lost beam particles from those normally occurring in proton-proton interactions. The BCM also provides a measurement of bunch-by-bunch luminosities in ATLAS by counting in-time and out-of-time collisions. Eleven detector modules have been fully assembled and tested. Tests performed range from characterisation of diamond sensors to full module tests with electron sources and in proton testbeams. Testbeam results from the CERN SPS show a module median-signal to noise of 11:1 for minimum ionising particles incident at a 45-degree angle. The best eight modules were installed on the ATLAS pixel support frame that was inserted into ATLAS in the summer of 2007. This paper describes the full BCM detector system along with simulation studies being used to develop the logic in the back-end FPGA coincidence hardware.

  14. Environmental and process monitoring technologies

    International Nuclear Information System (INIS)

    Vo-Dinh, Tuan

    1993-01-01

    The objective of this conference was to provide a multidisciplinary forum dealing with state-of-the-art methods and instrumentation for environmental and process monitoring. In the last few years, important advances have been made in improving existing analytical methods and developing new techniques for trace detection of chemicals. These monitoring technologies are a topic of great interest for environmental and industrial control in a wide spectrum of areas. Sensitive detection, selective characterization, and cost-effective analysis are among the most important challenges facing monitoring technologies. This conference integrating interdisciplinary research and development was aimed to present the most recent advances and applications in the important areas of environmental and process monitoring. Separate abstracts have been prepared for 34 papers for inclusion in the appropriate data bases

  15. Maintenance cost avoidance through comprehensive condition monitoring

    International Nuclear Information System (INIS)

    Miller, G.P.; McClymonds, S.L.

    1990-01-01

    Condition monitoring, the measurement and trending of a critical parameter for predictive maintenance, has reached new levels of acceptance and application within the utility and manufacturing industry. Commercially available systems extend well beyond traditional vibration-monitoring systems to include such areas as online wear, crack and leak detection, and stress monitoring. The challenge facing industry is to integrate the information generated from condition monitoring. Current studies indicate that the effectiveness of predictive maintenance depends much more on the program that is established to apply the monitoring techniques than on the monitoring equipment itself. This paper presents a five-phase approach to developing a condition monitoring program

  16. The ATLAS beam conditions monitor

    CERN Document Server

    Mikuz, M; Dolenc, I; Kagan, H; Kramberger, G; Frais-Kölbl, H; Gorisek, A; Griesmayer, E; Mandic, I; Pernegger, H; Trischuk, W; Weilhammer, P; Zavrtanik, M

    2006-01-01

    The ATLAS beam conditions monitor is being developed as a stand-alone device allowing to separate LHC collisions from background events induced either on beam gas or by beam accidents, for example scraping at the collimators upstream the spectrometer. This separation can be achieved by timing coincidences between two stations placed symmetric around the interaction point. The 25 ns repetition of collisions poses very stringent requirements on the timing resolution. The optimum separation between collision and background events is just 12.5 ns implying a distance of 3.8 m between the two stations. 3 ns wide pulses are required with 1 ns rise time and baseline restoration in 10 ns. Combined with the radiation field of 10/sup 15/ cm/sup -2/ in 10 years of LHC operation only diamond detectors are considered suitable for this task. pCVD diamond pad detectors of 1 cm/sup 2/ and around 500 mum thickness were assembled with a two-stage RF current amplifier and tested in proton beam at MGH, Boston and SPS pion beam at...

  17. Migration monitoring with automated technology

    Science.gov (United States)

    Rhonda L. Millikin

    2005-01-01

    Automated technology can supplement ground-based methods of migration monitoring by providing: (1) unbiased and automated sampling; (2) independent validation of current methods; (3) a larger sample area for landscape-level analysis of habitat selection for stopover, and (4) an opportunity to study flight behavior. In particular, radar-acoustic sensor fusion can...

  18. Corrosion monitoring using FSM technology

    International Nuclear Information System (INIS)

    Strommen, R.; Horn, H.; Gartland, P.O.; Wold, K.; Haroun, M.

    1995-01-01

    FSM is a non-intrusive monitoring technique based on a patented principle, developed for the purpose of detection and monitoring of both general and localized corrosion, erosion, and cracking in steel and metal structures, piping systems, and vessels. Since 1991, FSM has been used for a wide range of applications, including for buried and open pipelines, process piping offshore, subsea pipelines and flowlines, applications in the nuclear power industry, and in materials, research in general. This paper describes typical applications of the FSM technology, and presents operational experience from some of the land-based and subsea installations. The paper also describes recent enhancements in the FSM technology and in the analysis of FSM readings, allowing for monitoring and detailed quantification of pitting and mesa corrosion, and of corrosion in welds

  19. A simple condition monitoring model for a direct monitoring process

    NARCIS (Netherlands)

    Christer, A.H.; Wang, Wenbin

    1995-01-01

    This paper addresses the problem of condition monitoring of a component which has available a measure of condition called wear. Wear accumulates over time and monitoring inspections are performed at chosen times to monitor and measure the cumulative wear. If past measurements of wear are available

  20. System for monitoring microclimate conditions in greenhouse

    Directory of Open Access Journals (Sweden)

    Marković Dušan B.

    2014-01-01

    Full Text Available Monitoring microclimate parameters in different kind of environments has significant contribution to many areas of human activity and production processes. One of them is vegetable production in greenhouses where measurement of its microclimate parameters may influence the decision on taking appropriate action and protect crops. It is also important to preserve optimal condition in greenhouses to facilitate the process of transpiration, plant mineral nutrition and prevent of a variety physiological damage caused by a deficit of some specific nutrients. Systems for monitoring have wide application in the last years thanks to development of modern computer technology. In this paper model of the monitoring system based on smart transducer concept was introduced. Within the system components are based on MSP430 ultra low power micro controllers. They are using wireless communication to exchange data within the system that was structured according to smart transducer concept. User applications from the network could access to system interface using HTTP protocol where web server could be running on the computer or it could be an embedded web server running on micro controller based device.

  1. Vibration-based condition monitoring industrial, aerospace and automotive applications

    CERN Document Server

    Randall, Robert Bond

    2010-01-01

    ""Without doubt the best modern and up-to-date text on the topic, wirtten by one of the world leading experts in the field. Should be on the desk of any practitioner or researcher involved in the field of Machine Condition Monitoring"" Simon Braun, Israel Institute of Technology Explaining complex ideas in an easy to understand way, Vibration-based Condition Monitoring provides a comprehensive survey of the application of vibration analysis to the condition monitoring of machines. Reflecting the natural progression of these systems by presenting the fundamental material

  2. Condition monitoring a key component in the preventive maintenance

    International Nuclear Information System (INIS)

    Isar, C.

    2006-01-01

    The preventive maintenance programs are necessary to ensure that nuclear safety significant equipment will function when it is supposed to. Diesel generator, pumps, motor operated valves and air operated control valves are typically operated every three months. When you drive a car, you depend on lot of sounds, the feel of the steering wheel and gauges to determine if the car is running correctly. Similarly with operating equipment for a power plant - sounds or vibration of the equipment or the gauges and test equipment indicate a problem or degradation, actions are taken to correct the deficiency. Due to safety and economical reason diagnostic and monitoring systems are of growing interest in all complex industrial production. Diagnostic systems are requested to detect, diagnose and localize faulty operating conditions at an early stage in order to prevent severe failures and to enable predictive and condition oriented maintenance. In this context it is a need for using various on-line and off-line condition monitoring and diagnostics, non-destructive inspection techniques and surveillance. The condition monitoring technique used in nuclear power plant Cernavoda are presented in this paper. The selection of components and parameters to be monitored, monitoring and diagnostics techniques used are incorporated into a preventive maintenance program. Modern measurement technique in combination with advanced computerized data processing and acquisition show new ways in the field of machine surveillance. The diagnostic capabilities of predictive maintenance technologies have increased recently year with advances made in sensor technologies. The paper will focus on the following condition monitoring technique: - oil analysis - acoustic leakage monitoring - thermography - valve diagnostics: motor operated valve, air operated valve and check valve - motor current signature - vibration monitoring and rotating machine monitoring and diagnostics For each condition monitoring

  3. An integrated system for pipeline condition monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Strong, Andrew P.; Lees, Gareth; Hartog, Arthur; Twohig, Richard; Kader, Kamal; Hilton, Graeme; Mullens, Stephen; Khlybov, Artem [Schlumberger, Southampton (United Kingdom); Sanderson, Norman [BP Exploration, Sunbury (United Kingdom)

    2009-07-01

    In this paper we present the unique and innovative 'Integriti' pipeline and flow line integrity monitoring system developed by Schlumberger in collaboration with BP. The system uses optical fiber distributed sensors to provide simultaneous distributed measurements of temperature, strain and vibration for the detection, monitoring, and location of events including: Third Party Interference (TPI), including multiple simultaneous disturbances; geo-hazards and landslides; gas and oil leaks; permafrost protection. The Integriti technology also provides a unique means for tracking the progress of cleaning and instrumented pigs using existing optical telecom and data communications cables buried close to pipelines. The Integriti solution provides a unique and proactive approach to pipeline integrity management. It performs analysis of a combination of measurands to provide the pipeline operator with an event recognition and location capability, in effect providing a hazard warning system, and offering the operator the potential to take early action to prevent loss. Through the use of remote, optically powered amplification, an unprecedented detection range of 100 km is possible without the need for any electronics and therefore remote power in the field. A system can thus monitor 200 km of pipeline when configured to monitor 100 km upstream and downstream from a single location. As well as detecting conditions and events leading to leaks, this fully integrated system provides a means of detecting and locating small leaks in gas pipelines below the threshold of present online leak detection systems based on monitoring flow parameters. Other significant benefits include: potential reductions in construction costs; enhancement of the operator's existing integrity management program; potential reductions in surveillance costs and HSE risks. In addition to onshore pipeline systems this combination of functionality and range is available for practicable

  4. Machinery condition monitoring principles and practices

    CERN Document Server

    Mohanty, Amiya Ranjan

    2015-01-01

    Find the Fault in the MachinesDrawing on the author's more than two decades of experience with machinery condition monitoring and consulting for industries in India and abroad, Machinery Condition Monitoring: Principles and Practices introduces the practicing engineer to the techniques used to effectively detect and diagnose faults in machines. Providing the working principle behind the instruments, the important elements of machines as well as the technique to understand their conditions, this text presents every available method of machine fault detection occurring in machines in general, an

  5. Condition Monitoring Of Operating Pipelines With Operational Modal Analysis Application

    OpenAIRE

    Mironov Aleksey; Doronkin Pavel; Priklonsky Aleksander; Kabashkin Igor

    2015-01-01

    In the petroleum, natural gas and petrochemical industries, great attention is being paid to safety, reliability and maintainability of equipment. There are a number of technologies to monitor, control, and maintain gas, oil, water, and sewer pipelines. The paper focuses on operational modal analysis (OMA) application for condition monitoring of operating pipelines. Special focus is on the topicality of OMA for definition of the dynamic features of the pipeline (frequencies and mode shapes) i...

  6. Condition Monitoring Of Operating Pipelines With Operational Modal Analysis Application

    Directory of Open Access Journals (Sweden)

    Mironov Aleksey

    2015-12-01

    Full Text Available In the petroleum, natural gas and petrochemical industries, great attention is being paid to safety, reliability and maintainability of equipment. There are a number of technologies to monitor, control, and maintain gas, oil, water, and sewer pipelines. The paper focuses on operational modal analysis (OMA application for condition monitoring of operating pipelines. Special focus is on the topicality of OMA for definition of the dynamic features of the pipeline (frequencies and mode shapes in operation. The research was conducted using two operating laboratory models imitated a part of the operating pipeline. The results of finite-element modeling, identification of pipe natural modes and its modification under the influence of virtual failure are discussed. The work considers the results of experimental research of dynamic behavior of the operating pipe models using one of OMA techniques and comparing dynamic properties with the modeled data. The study results demonstrate sensitivity of modal shape parameters to modification of operating pipeline technical state. Two strategies of pipeline repair – with continuously condition-based monitoring with proposed technology and without such monitoring, was discussed. Markov chain reliability models for each strategy were analyzed and reliability improvement factor for proposed technology of monitoring in compare with traditional one was evaluated. It is resumed about ability of operating pipeline condition monitoring by measuring dynamic deformations of the operating pipe and OMA techniques application for dynamic properties extraction.

  7. Offsite emergency radiological monitoring system and technology

    International Nuclear Information System (INIS)

    Mao Yongze

    1994-01-01

    The study and advance of the offsite radiological monitoring system and technology which is an important branch in the field of nuclear monitoring technology are described. The author suggests that the predicting and measuring system should be involved in the monitoring system. The measuring system can further be divided into four sub-systems, namely plume exposure pathway, emergency worker, ingestion exposure pathway and post accident recovery measuring sub-systems. The main facilities for the monitoring system are concluded as one station, one helicopter, one laboratory and two vehicles. The instrumentation for complement of the facilities and their good performance characteristics, up-to-date technology are also introduced in brief. The offsite emergency radiation monitoring system and technology are compared in detail with those recommended by FEMA U.S.A.. Finally the paper discusses some trends in development of emergency radiation monitoring system and technology in the developed countries

  8. Characterization monitoring & sensor technology crosscutting program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the OFfice of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60).

  9. Electric machines modeling, condition monitoring, and fault diagnosis

    CERN Document Server

    Toliyat, Hamid A; Choi, Seungdeog; Meshgin-Kelk, Homayoun

    2012-01-01

    With countless electric motors being used in daily life, in everything from transportation and medical treatment to military operation and communication, unexpected failures can lead to the loss of valuable human life or a costly standstill in industry. To prevent this, it is important to precisely detect or continuously monitor the working condition of a motor. Electric Machines: Modeling, Condition Monitoring, and Fault Diagnosis reviews diagnosis technologies and provides an application guide for readers who want to research, develop, and implement a more effective fault diagnosis and condi

  10. Integrated reliability condition monitoring and maintenance of equipment

    CERN Document Server

    Osarenren, John

    2015-01-01

    Consider a Viable and Cost-Effective Platform for the Industries of the Future (IOF) Benefit from improved safety, performance, and product deliveries to your customers. Achieve a higher rate of equipment availability, performance, product quality, and reliability. Integrated Reliability: Condition Monitoring and Maintenance of Equipment incorporates reliable engineering and mathematical modeling to help you move toward sustainable development in reliability condition monitoring and maintenance. This text introduces a cost-effective integrated reliability growth monitor, integrated reliability degradation monitor, technological inheritance coefficient sensors, and a maintenance tool that supplies real-time information for predicting and preventing potential failures of manufacturing processes and equipment. The author highlights five key elements that are essential to any improvement program: improving overall equipment and part effectiveness, quality, and reliability; improving process performance with maint...

  11. Operational performance of generator condition monitors

    International Nuclear Information System (INIS)

    Braun, J.M.; Brown, G.

    1990-01-01

    This paper reports on the generator condition monitor (GCM) developed in an attempt to detect overheating inside large turbine generators. As part of a broader study on rotating machinery diagnostics, generator condition monitors were evaluated under field conditions in a 550 MW turbogenerator. Small 100 W resistors coated with insulating paints and varnishes were mounted inside the generator to simulate insulation overheating. The GCM responded very rapidly to an overheating event, typically within two minutes, even for hot spots as small s 10 cm 2 . Similarly the aerosols produced on overheating were found extremely short lived, decaying within two to three minutes after overheating was discontinued. Use of heated ion chambers was found to desensitize the GCM regardless of the nature of the overheated insulation and in some cases would altogether prevent the GCM from reaching the 50% pre-set alarm level commonly used on GCMs

  12. MONITORING OF HEAPS USING VARIOUS TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Helena Straková

    2015-07-01

    Full Text Available Coal heaps are frequently self-burning by definite environmental conditions, therefore thermal activity monitoring of these localities is important. For this purpose, data from terrestrial measurement or thermal infrared images are used. Subsurface coal fires monitored by terrestrial measurement by contact thermometers are time-consuming and dangerous because of landslides. That is a reason why coal fires are mostly monitored by thermal infrared images through remote sensing, i.e. satellite-borne or airborne data, which is much more suitable for thermal activity monitoring. The satellite data do not have sufficient geometric resolution (60 - 120m per pixel, aerial thermal data are accurate, but expensive. Unmanned aerial vehicles (UAV or better RPAS - remotely piloted aircraft systems can be solution – thermal images obtained by RPAS have good geometric resolution and can be used for small areas only and our case project areas are not so big. From economic point of view, low cost technology is preferred. The article describes opportunities of low-cost thermal infrared data, the use of RPAS (mapping by Microkopter system in thermal monitoring and photogrammetric tasks (coal heaps such as low cost aerial thermal mapping. The problems of planning and data acquisition are illustrated by creating an orthophoto. Theoretical preparation of data acquisition deals with RPAS Microkopter mission planning and operation. The obtained data are processed by several sets of software specially developed for close range aerial photogrammetry. The outputs are orthophoto images, digital elevation models and thermal map. As a bonus, low-cost aerial methods with small thermal camera are shown.

  13. Integrating structural health and condition monitoring

    DEFF Research Database (Denmark)

    May, Allan; Thöns, Sebastian; McMillan, David

    2015-01-01

    window’ allowing for the possible detection of faults up to 6 months in advance. The SHM system model uses a reduction in the probability of failure factor to account for lower modelling uncertainties. A case study is produced that shows a reduction in operating costs and also a reduction in risk......There is a large financial incentive to minimise operations and maintenance (O&M) costs for offshore wind power by optimising the maintenance plan. The integration of condition monitoring (CM) and structural health monitoring (SHM) may help realise this. There is limited work on the integration...

  14. Electrical condition monitoring method for polymers

    Science.gov (United States)

    Watkins, Jr. Kenneth S.; Morris, Shelby J.; Masakowski, Daniel D.; Wong, Ching Ping; Luo, Shijian

    2010-02-16

    An electrical condition monitoring method utilizes measurement of electrical resistivity of a conductive composite degradation sensor to monitor environmentally induced degradation of a polymeric product such as insulated wire and cable. The degradation sensor comprises a polymeric matrix and conductive filler. The polymeric matrix may be a polymer used in the product, or it may be a polymer with degradation properties similar to that of a polymer used in the product. The method comprises a means for communicating the resistivity to a measuring instrument and a means to correlate resistivity of the degradation sensor with environmentally induced degradation of the product.

  15. Workshop on power plant cable condition monitoring: Proceedings

    International Nuclear Information System (INIS)

    Del Valle, L.

    1988-07-01

    A three-day workshop on cable condition monitoring was held in San Francisco on Fegruary 16--18, 1988. The workshop was cosponsored by the Nuclear Power, Electrical Systems, and Coal Combustion Systems Divisions of the Electric Power Research Institute. The primary objective of the workshop was to identify the state-of-the-art for cable condition monitoring. Twenty-five technical papers as well as EPRI research programs were presented at the technical sessions. Four working group sessions and one general session were held on each of two days. Each group session provided a forum for participants to exchange ideas and to discuss in more depth research for cable condition monitoring, existing and innovative testing technology, and utility and NRC needs for testing. Recommendations from the working groups were summarized and presented at the end of the workshop

  16. Advanced condition monitoring program for turbine system

    International Nuclear Information System (INIS)

    Ono, Shigetoshi

    2015-01-01

    It is important for utilities to achieve a stable operation in nuclear power plants. To achieve it, plant anomalies that affect a stable operation must be found out and eliminated. Therefore, the advanced condition monitoring program was developed. In this program, a sophisticated heat balance model based on the actual plant data is adopted to identify plant anomalies at an incipient stage and the symptoms of plant anomalies are found by heat balance changes from the model calculation. The model calculation results have shown precise prediction for actual plant parameters. Moreover, this program has the diagnostic engine that helps operators derive the cause of plant anomalies. By using this monitoring program, the component reliability in the turbine system can be periodically monitored and assessed, and as a result the stable operation of nuclear power plants can be achieved. (author)

  17. Condition Monitoring of the SSE Generation Fleet

    Science.gov (United States)

    Twiddle, J.; Muthuraman, S.; Connolly, N.

    2012-05-01

    SSE (previously known as Scottish and Southern Energy) operates a diverse portfolio of generation plant, including coal, gas and renewable plant with a total generation capacity of 11,375MW (Sept 2011). In recent years a group of specialists dedicated to providing condition monitoring services has been established at the Equipment Performance Centre (EPC) based at Knottingley, West Yorkshire. We aim to illustrate the role of the EPC and the methods used for monitoring the generation fleet with the objective of maintaining asset integrity, reducing risk of plant failure and unplanned outages and describe the challenges which have been overcome in establishing the EPC. This paper describes methods including vibration and process data analysis, model-based techniques and on-site testing used for monitoring of generation plant, including gas turbines, steam turbines, generators and steam raising plant. These condition monitoring processes utilise available data, adding value to the business, by bringing services in-house and capturing knowledge of plant operation for the benefit of the whole fleet.

  18. Monitoring of structures: review of technologies

    International Nuclear Information System (INIS)

    2013-01-01

    Structural Health Monitoring (SHM) aims at monitoring the integrity of structures either in a continuous way or periodically. SHM is used for the monitoring of big civil works like bridges, dams, railways or critical structures like nuclear power plants or chemical plants. The sensors fixed on the structure allow an in-service monitoring. SHM gathers various technologies like ultrasound, acoustic emission, vibrations, Foucault currents...A technology based on guided ultrasonic waves (Lamb waves) appears promising for monitoring large structures made of composite materials. Another technology based on optical fibers can be used in very harsh environment and the optic fiber does not require any more sensors, the optical fiber itself being the sensor. The optical fiber is generally integrated to the structure during the construction phase. (A.C.)

  19. Quaternion Based Thermal Condition Monitoring System

    Science.gov (United States)

    Wong, Wai Kit; Loo, Chu Kiong; Lim, Way Soong; Tan, Poi Ngee

    In this paper, we will propose a new and effective machine condition monitoring system using log-polar mapper, quaternion based thermal image correlator and max-product fuzzy neural network classifier. Two classification characteristics namely: peak to sidelobe ratio (PSR) and real to complex ratio of the discrete quaternion correlation output (p-value) are applied in the proposed machine condition monitoring system. Large PSR and p-value observe in a good match among correlation of the input thermal image with a particular reference image, while small PSR and p-value observe in a bad/not match among correlation of the input thermal image with a particular reference image. In simulation, we also discover that log-polar mapping actually help solving rotation and scaling invariant problems in quaternion based thermal image correlation. Beside that, log-polar mapping can have a two fold of data compression capability. Log-polar mapping can help smoother up the output correlation plane too, hence makes a better measurement way for PSR and p-values. Simulation results also show that the proposed system is an efficient machine condition monitoring system with accuracy more than 98%.

  20. Characterization, Monitoring and Sensor Technology Integrated Program

    International Nuclear Information System (INIS)

    1993-01-01

    This booklet contains summary sheets that describe FY 1993 characterization, monitoring, and sensor technology (CMST) development projects. Currently, 32 projects are funded, 22 through the OTD Characterization, Monitoring, and Sensor Technology Integrated Program (CMST-IP), 8 through the OTD Program Research and Development Announcement (PRDA) activity managed by the Morgantown Energy Technology Center (METC), and 2 through Interagency Agreements (IAGs). This booklet is not inclusive of those CMST projects which are funded through Integrated Demonstrations (IDs) and other Integrated Programs (IPs). The projects are in six areas: Expedited Site Characterization; Contaminants in Soils and Groundwater; Geophysical and Hydrogeological Measurements; Mixed Wastes in Drums, Burial Grounds, and USTs; Remediation, D ampersand D, and Waste Process Monitoring; and Performance Specifications and Program Support. A task description, technology needs, accomplishments and technology transfer information is given for each project

  1. Condition Monitoring and Management from Acoustic Emissions

    DEFF Research Database (Denmark)

    Pontoppidan, Niels Henrik Bohl

    2005-01-01

    In the following, I will use technical terms without explanation as it gives the freedom to describe the project in a shorter form for those who already know. The thesis is about condition monitoring of large diesel engines from acoustic emission signals. The experiments have been focused...... is the analysis of the angular position changes of the engine related events such as fuel injection and valve openings, caused by operational load changes. With inspiration from speech recognition and voice effects the angular timing changes have been inverted with the event alignment framework. With the event...

  2. Condition Monitoring of Cables Task 3 Report: Condition Monitoring Techniques for Electric Cables

    Energy Technology Data Exchange (ETDEWEB)

    Villaran, M.; Lofaro, R.; na

    2009-11-30

    For more than 20 years the NRC has sponsored research studying electric cable aging degradation, condition monitoring, and environmental qualification testing practices for electric cables used in nuclear power plants. This report summarizes several of the most effective and commonly used condition monitoring techniques available to detect damage and measure the extent of degradation in electric cable insulation. The technical basis for each technique is summarized, along with its application, trendability of test data, ease of performing the technique, advantages and limitations, and the usefulness of the test results to characterize and assess the condition of electric cables.

  3. Uranium mill tailings conditioning technology

    International Nuclear Information System (INIS)

    Dreesen, D.R.; Cokal, E.J.; Wangen, L.E.; Williams, J.M.; O'Brien, P.D.; Thode, E.F.

    1982-01-01

    Conditioning of uranium mill tailings involves the physicochemical alteration of tailings to remove or immobilize mobile radionuclides and toxic trace elements before disposal in a repository. The principal immobilization approach under investigation is sintering tailings at high temperatures (1100-1200 deg. C) to radically alter the structure of tailings. This thermal stabilization at 1200 deg. C reduced radon emanation power for tailings sands by factors of 20 to 200 and for tailings fines by factors of 300 to 1100. Substantial reductions in the leachability of most contaminants have been found for thermally conditioned tailings. Obvious mineral transformations occur, including an increase in amorphous material, the conversion of gypsum to anhydrite and its subsequent decomposition, the disappearance of clay minerals, and some decrease in quartz content. A conceptual thermal stabilization process has been developed wherein obsolete coal-fired rotary cement kilns perform the sintering. An economic analysis of this conceptual process has shown that thermal stabilization can be competitive at certain tailings sites with other remedial actions requiring the excavation, transportation, and burial of tailings in a repository. An analysis of the long-term radiological hazard posed by untreated tailings and by tailings conditioned by radionuclide removal has illustrated the necessity of extracting both 226 Ra and 230 Th to achieve long-term hazard reductions. Sulphuric acid extraction of residual mineral values and important radionuclides from tailings has been investigated. Concentrated H 2 SO 4 can extract up to 80% of the 226 Ra, 70% of the Ba, and 90% of the 230 Th from tailings in a single stage extraction. An economic analysis of a sulphuric acid leach process was made to determine whether the value of minerals recovered from tailings would offset the leaching cost. For one relatively mineral-rich tailings pile, the U and V values would more than pay for the

  4. Rotor blade online monitoring and fault diagnosis technology research

    DEFF Research Database (Denmark)

    Tesauro, Angelo; Pavese, Christian; Branner, Kim

    Rotor blade online monitoring and fault diagnosis technology is an important way to find blade failure mechanisms and thereby improve the blade design. Condition monitoring of rotor blades is necessary in order to ensure the safe operation of the wind turbine, make the maintenance more economical...... of the rotor, icing and lightning. Research is done throughout the world in order to develop and improve such measurement systems. Commercial hardware and software available for the described purpose is presented in the report....

  5. Characterization, monitoring, and sensor technology crosscutting program: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The technology development must also be cost effective and appropriate to EM-30/40/60 needs. Furthermore, the required technologies must be delivered and implemented when needed. Accordingly, and to ensure that available DOE and other national resources are focused an the most pressing needs, management of the technology development is concentrated on the following Focus Areas: Contaminant Plume Containment and Remediation (PFA); Landfill Stabilization (LSFA); High-Level Waste Tank Remediation (TFA); Mixed Waste Characterization, Treatment, and Disposal (MWFA); and Facility Deactivation, Decommissioning, and Material Disposition (FDDMDFA). Brief descriptions of CMST-CP projects funded in FY95 are presented.

  6. Characterization, monitoring, and sensor technology crosscutting program: Technology summary

    International Nuclear Information System (INIS)

    1995-06-01

    The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The technology development must also be cost effective and appropriate to EM-30/40/60 needs. Furthermore, the required technologies must be delivered and implemented when needed. Accordingly, and to ensure that available DOE and other national resources are focused an the most pressing needs, management of the technology development is concentrated on the following Focus Areas: Contaminant Plume Containment and Remediation (PFA); Landfill Stabilization (LSFA); High-Level Waste Tank Remediation (TFA); Mixed Waste Characterization, Treatment, and Disposal (MWFA); and Facility Deactivation, Decommissioning, and Material Disposition (FDDMDFA). Brief descriptions of CMST-CP projects funded in FY95 are presented

  7. Exporting automatic vehicle SNM monitoring technology

    International Nuclear Information System (INIS)

    York, R.L.; Fehlau, P.E.; Close, D.A.

    1995-01-01

    Controlling the transportation of nuclear materials is still one of the most effective nuclear proliferation barriers. The recent increase of global nuclear material proliferation has expanded the application of vehicle monitor technology to prevent the diversion of special nuclear material across international borders. To satisfy this new application, a high-sensitivity vehicle monitor, which is easy to install and capable of operating in high-traffic areas, is required. A study of a new detector configuration for a drive-through vehicle monitor is discussed in this paper

  8. Structure health monitoring system using internet and database technologies

    International Nuclear Information System (INIS)

    Kwon, Il Bum; Kim, Chi Yeop; Choi, Man Yong; Lee, Seung Seok

    2003-01-01

    Structural health monitoring system should developed to be based on internet and database technology in order to manage efficiently large structures. This system is operated by internet connected with the side of structures. The monitoring system has some functions: self monitoring, self diagnosis, and self control etc. Self monitoring is the function of sensor fault detection. If some sensors are not normally worked, then this system can detect the fault sensors. Also Self diagnosis function repair the abnormal condition of sensors. And self control is the repair function of the monitoring system. Especially, the monitoring system can identify the replacement of sensors. For further study, the real application test will be performed to check some unconvince.

  9. Structural health monitoring system using internet and database technologies

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chi Yeop; Choi, Man Yong; Kwon, Il Bum; Lee, Seung Seok [Nonstructive Measurment Lab., KRISS, Daejeon (Korea, Republic of)

    2003-07-01

    Structure health monitoring system should develope to be based on internet and database technology in order to manage efficiency large structures. This system is operated by internet connected with the side of structures. The monitoring system has some functions: self monitoring, self diagnosis, and self control etc. Self monitoring is the function of sensor fault detection. If some sensors are not normally worked, then this system can detect the fault sensors. Also Self diagnosis function repair the abnormal condition of sensors. And self control is the repair function of the monitoring system. Especially, the monitoring system can identify the replacement of sensors. For further study, the real application test will be performed to check some unconviniences.

  10. Structure health monitoring system using internet and database technologies

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Il Bum; Kim, Chi Yeop; Choi, Man Yong; Lee, Seung Seok [Smart Measurment Group. Korea Resarch Institute of Standards and Science, Saejeon (Korea, Republic of)

    2003-05-15

    Structural health monitoring system should developed to be based on internet and database technology in order to manage efficiently large structures. This system is operated by internet connected with the side of structures. The monitoring system has some functions: self monitoring, self diagnosis, and self control etc. Self monitoring is the function of sensor fault detection. If some sensors are not normally worked, then this system can detect the fault sensors. Also Self diagnosis function repair the abnormal condition of sensors. And self control is the repair function of the monitoring system. Especially, the monitoring system can identify the replacement of sensors. For further study, the real application test will be performed to check some unconvince.

  11. Structural health monitoring system using internet and database technologies

    International Nuclear Information System (INIS)

    Kim, Chi Yeop; Choi, Man Yong; Kwon, Il Bum; Lee, Seung Seok

    2003-01-01

    Structure health monitoring system should develope to be based on internet and database technology in order to manage efficiency large structures. This system is operated by internet connected with the side of structures. The monitoring system has some functions: self monitoring, self diagnosis, and self control etc. Self monitoring is the function of sensor fault detection. If some sensors are not normally worked, then this system can detect the fault sensors. Also Self diagnosis function repair the abnormal condition of sensors. And self control is the repair function of the monitoring system. Especially, the monitoring system can identify the replacement of sensors. For further study, the real application test will be performed to check some unconviniences.

  12. Condition monitoring of main coolant pumps, Dhruva

    International Nuclear Information System (INIS)

    Prasad, V.; Satheesh, C.; Acharya, V.N.; Tikku, A.C.; Mishra, S.K.

    2002-01-01

    Full text: Dhruva is a 100 MW research reactor with natural uranium fuel, heavy water as moderator and primary coolant. Three Centrifugal pumps circulate the primary coolant across the core and the heat exchangers. Each pump is coupled to a flywheel (FW) assembly in order to meet operational safety requirements. All the 3 main coolant pump (MCP) sets are required to operate during operation of the reactor. The pump-sets are in operation since the year 1984 and have logged more than 1,00,000 hrs. Frequent breakdowns of its FW bearings were experienced during initial years of operation. Condition monitoring of these pumps, largely on vibration based parameters, was initiated on regular basis. Break-downs of main coolant pumps reduced considerably due to the fair accurate predictions of incipient break-downs and timely maintenance efforts. An effort is made in this paper to share the experience

  13. New technologies for monitoring nuclear materials

    International Nuclear Information System (INIS)

    Moran, B.W.

    1993-01-01

    This paper describes new technologies for monitoring the continued presence of nuclear materials that are being evaluated in Oak Ridge, Tennessee, to reduce the effort, cost, and employee exposures associated with conducting nuclear material inventories. These technologies also show promise for the international safeguarding of process systems and nuclear materials in storage, including spent fuels. The identified systems are based on innovative technologies that were not developed for safeguards applications. These advanced technologies include passive and active sensor systems based on optical materials, inexpensive solid-state radiation detectors, dimensional surface characterization, and digital color imagery. The passive sensor systems use specialized scintillator materials coupled to optical-fiber technologies that not only are capable of measuring radioactive emissions but also are capable of measuring or monitoring pressure, weight, temperature, and source location. Small, durable solid-state gamma-ray detection devices, whose components are estimated to cost less than $25 per unit, can be implemented in a variety of configurations and can be adapted to enhance existing monitoring systems. Variations in detector design have produced significantly different system capabilities. Dimensional surface characterization and digital color imaging are applications of developed technologies that are capable of motion detection, item surveillance, and unique identification of items

  14. Evaluative conditioning of food technologies in China

    DEFF Research Database (Denmark)

    Loebnitz, Natascha; Grunert, Klaus G

    2014-01-01

    This study provides an initial examination of the evaluative conditioning (EC) of consumers’ attitudes toward food technologies in China, including how EC can affect consumer acceptance of new technology when participants possess different levels of social trust. In a study using the EC paradigm...... and a combination of between-subjects control groups and within-subjects control conditions, participants considered three food technologies (conventional, enzyme, and genetic), paired with affectively positive, neutral, and negative images. Subsequent evaluative measurements revealed that EC can explain attitude...... formation toward food technologies in China when consumers see affective images, but the strength of the effects varies at different levels of social trust. Participants with a high level of trust in the institutions that promote and regulate the technologies can be conditioned both positively...

  15. Remote condition-based monitoring of turbines

    International Nuclear Information System (INIS)

    2005-01-01

    specific point in time; Timewave: Amount of motion and symmetry of wave shape (i.e., a truncated wave can be an indication of a rub); Orbits: A cross-sectional view of shaft movement; DC Gap Voltage: A measurement of the distance (e.g., gap) between the shaft and the proximity probes. This value is useful in determining bearing wear of shaft centerline location. Daily monitoring of these metrics will not only warn of impending failure, but provide valuable information regarding the possible cause of the impending failure and an approximate indication of time to failure. In the event of a sudden problem and subsequent trip of a turbine, this data helps determine the root cause of the failure. This results in faster problem resolution and a quicker restart of the turbine. Additionally, daily monitoring of these metrics allows companies to watch a problematic turbine's health until the next scheduled outage. Azima's remote, condition-based monitoring system and diagnostics service is an effective way to collect and trend these metrics on a daily basis, as well as supply expert advice in the event of any anomalies. The Azima system aggregates the analog data from the proximity probes mounted on the turbine at a sensor hub. The sensor hub digitizes the analog data and then, either wirelessly or through a wired Ethernet connection, sends the data via the Internet to a hosted server. The hosted server maintains the software that trends the data (e.g., vibration, spectrum, timewave, DC gap voltage, and orbits) and provides automatic alerting. The data can be accessed anywhere, anytime through a standard Web browser. The advantages of daily, remote, condition-based monitoring include: Daily monitoring of vital turbine health metrics to detect impending problems before they become critical; Automatic alerting when a change in condition is detected; Anywhere, anytime access via a standard Web browser. This allows multiple groups at different locations to simultaneously review and

  16. Heat stress monitoring system. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-11-01

    The US Department of Energy's (DOE) nuclear facility decontamination and decommissioning (D and D) program involves the need to decontaminate and decommission buildings expeditiously and cost-effectively. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. Often, D and D workers must perform duties in inclement weather, and because they also frequently work in contaminated areas, they must wear personal protective clothing and/or respirators. Monitoring the health status of workers under these conditions is an important component of ensuring their safety. The MiniMitter VitalSense Telemetry System's heat stress monitoring system (HSMS) is designed to monitor the vital signs of individual workers as they perform work in conditions that might be conducive to heat exhaustion or heat stress. The HSMS provides real-time data on the physiological condition of workers which can be monitored to prevent heat stress or other adverse health situations. This system is particularly useful when workers are wearing personal protective clothing or respirators that make visual observation of their condition more difficult. The MiniMitter VitalSense Telemetry System can monitor up to four channels (e.g., heart rate, body activity, ear canal, and skin temperature) and ten workers from a single supervisory station. The monitors are interfaced with a portable computer that updates and records information on individual workers. This innovative technology, even though it costs more, is an attractive alternative to the traditional (baseline) technology, which measures environmental statistics and predicts the average worker's reaction to those environmental conditions without taking the physical condition of the individual worker into consideration. Although use of the improved technology might be justified purely on the basis of improved safety, it has the potential to pay for itself by reducing worker time lost caused by heat

  17. Development of condition monitoring and diagnosis system for standby diesel generator

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kwang Hee; Park, Jong Hyuck; Park, Jong Eun [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    The emergency diesel generator (EDG) of the nuclear power plant is designed to supply the power to the nuclear on Station Black Out (SBO) condition. The operation reliability of onsite emergency diesel generator should be ensured by a condition monitoring system designed to monitor and analysis the condition of diesel generator. For this purpose, we have developed the online condition monitoring and diagnosis system for the wolsong unit 3 and 4 standby diesel generator including diesel engine performance. In this paper, technologies of condition monitoring and diagnosis system (SDG MDS) for the wolsong standby diesel generator are described. By using the condition monitoring module of the SDG MDS, performance monitoring function for major operating parameters of EDG reliability program required by Reg. guide 1.155 can be operated as on line monitoring system.

  18. Development of condition monitoring and diagnosis system for standby diesel generator

    International Nuclear Information System (INIS)

    Choi, Kwang Hee; Park, Jong Hyuck; Park, Jong Eun

    2009-01-01

    The emergency diesel generator (EDG) of the nuclear power plant is designed to supply the power to the nuclear on Station Black Out (SBO) condition. The operation reliability of onsite emergency diesel generator should be ensured by a condition monitoring system designed to monitor and analysis the condition of diesel generator. For this purpose, we have developed the online condition monitoring and diagnosis system for the wolsong unit 3 and 4 standby diesel generator including diesel engine performance. In this paper, technologies of condition monitoring and diagnosis system (SDG MDS) for the wolsong standby diesel generator are described. By using the condition monitoring module of the SDG MDS, performance monitoring function for major operating parameters of EDG reliability program required by Reg. guide 1.155 can be operated as on line monitoring system

  19. PROBLEMS OF CREATION THE MONITORING SYSTEM CONCERNING THE CONDITION OF INFORMATIZATION OF THE GENERAL EDUCATION INSTITUTIONS

    Directory of Open Access Journals (Sweden)

    Valeriy Yu. Bykov

    2010-08-01

    Full Text Available In the article the problems, which appear under the creation of monitoring systems concerning the condition of informatization of general educational institutions, such as definition of monitoring object and list of parameters that will be traced during the monitoring, technologies of obtaining and actualization of data parameters, that are to be monitored, formats of data submission and ways of its processing, monitoring time period etc. are considered. In the article some decision of these problems are offered. Here is also mentioned the data of some characteristics and possibilities of the creation of monitoring systems concerning the condition of informatization of general educational institutions in Ukraine.

  20. Work organisation, technology and working conditions

    OpenAIRE

    Dhondt, S.; Kraan, K.; Sloten, G. van

    2002-01-01

    The personal computer, computer networks and the Internet have brought the Union into the Information Age. These technological changes have inevitably led to changes in the work environment and the quality of working conditions. For the third time, the European Foundation for the Improvement of Living and Working Conditions has carried out a questionnaire-based survey on working conditions throughout the European Union, covering all Member States. Previous surveys were carried out in 1991 and...

  1. Environmental radiation monitoring technology: Capabilities and needs

    International Nuclear Information System (INIS)

    Hofstetter, K.J.

    1994-01-01

    Radiation monitoring in the Savannah River Site (SRS) environment is conducted by a combination of automated, remote sampling and/or analysis systems, and manual sampling operations. This program provides early detection of radionuclide releases, minimizes the consequences, and assesses the impact on the public. Instrumentation installed at the release points monitor the atmospheric and aqueous releases from SRS operations. Ground water and air monitoring stations are strategically located throughout the site for radionuclide migration studies. The environmental radiological monitoring program at SRS includes: fixed monitoring stations for atmospheric radionuclide concentrations, aqueous monitors for surface water measurements, mobile laboratory operations for real-time, in-field measurements, aerial scanning for wide area contamination surveillance, and hand-held instruments for radionuclide-specific measurements. Rigorous environmentnal sampling surveillance coupled with laboratory analyses provide confirmatory results for all in-field measurements. Gaps in the technologies and development projects at SRS to fill these deficiencies are discussed in the context of customer needs and regulatory requirements

  2. Characterization, monitoring, and sensor technology catalogue

    International Nuclear Information System (INIS)

    Matalucci, R.V.; Esparza-Baca, C.; Jimenez, R.D.

    1995-12-01

    This document represents a summary of 58 technologies that are being developed by the Department of Energy's (DOE's) Office of Science and Technology (OST) to provide site, waste, and process characterization and monitoring solutions to the DOE weapons complex. The information was compiled to provide performance data on OST-developed technologies to scientists and engineers responsible for preparing Remedial Investigation/Feasibility Studies (RI/FSs) and preparing plans and compliance documents for DOE cleanup and waste management programs. The information may also be used to identify opportunities for partnering and commercialization with industry, DOE laboratories, other federal and state agencies, and the academic community. Each technology is featured in a format that provides: (1) a description, (2) technical performance data, (3) applicability, (4) development status, (5) regulatory considerations, (6) potential commercial applications, (7) intellectual property, and (8) points-of-contact. Technologies are categorized into the following areas: (1) Bioremediation Monitoring, (2) Decontamination and Decommissioning, (3) Field Analytical Laboratories, (4) Geophysical and Hydrologic Characterization, (5) Hazardous Inorganic Contaminant Analysis, (6) Hazardous Organic Contaminant Analysis, (7) Mixed Waste, (8) Radioactive Contaminant Analysis, (9) Remote Sensing,(10)Sampling and Drilling, (11) Statistically Guided Sampling, and (12) Tank Waste

  3. Characterization, monitoring, and sensor technology catalogue

    Energy Technology Data Exchange (ETDEWEB)

    Matalucci, R.V. [ed.] [Sandia National Labs., Albuquerque, NM (United States); Esparza-Baca, C.; Jimenez, R.D. [Applied Sciences Laboratory, Inc., Albuquerque, NM (United States)

    1995-12-01

    This document represents a summary of 58 technologies that are being developed by the Department of Energy`s (DOE`s) Office of Science and Technology (OST) to provide site, waste, and process characterization and monitoring solutions to the DOE weapons complex. The information was compiled to provide performance data on OST-developed technologies to scientists and engineers responsible for preparing Remedial Investigation/Feasibility Studies (RI/FSs) and preparing plans and compliance documents for DOE cleanup and waste management programs. The information may also be used to identify opportunities for partnering and commercialization with industry, DOE laboratories, other federal and state agencies, and the academic community. Each technology is featured in a format that provides: (1) a description, (2) technical performance data, (3) applicability, (4) development status, (5) regulatory considerations, (6) potential commercial applications, (7) intellectual property, and (8) points-of-contact. Technologies are categorized into the following areas: (1) Bioremediation Monitoring, (2) Decontamination and Decommissioning, (3) Field Analytical Laboratories, (4) Geophysical and Hydrologic Characterization, (5) Hazardous Inorganic Contaminant Analysis, (6) Hazardous Organic Contaminant Analysis, (7) Mixed Waste, (8) Radioactive Contaminant Analysis, (9) Remote Sensing,(10)Sampling and Drilling, (11) Statistically Guided Sampling, and (12) Tank Waste.

  4. Guaranteeing robustness of structural condition monitoring to environmental variability

    Science.gov (United States)

    Van Buren, Kendra; Reilly, Jack; Neal, Kyle; Edwards, Harry; Hemez, François

    2017-01-01

    Advances in sensor deployment and computational modeling have allowed significant strides to be recently made in the field of Structural Health Monitoring (SHM). One widely used SHM strategy is to perform a vibration analysis where a model of the structure's pristine (undamaged) condition is compared with vibration response data collected from the physical structure. Discrepancies between model predictions and monitoring data can be interpreted as structural damage. Unfortunately, multiple sources of uncertainty must also be considered in the analysis, including environmental variability, unknown model functional forms, and unknown values of model parameters. Not accounting for these sources of uncertainty can lead to false-positives or false-negatives in the structural condition assessment. To manage the uncertainty, we propose a robust SHM methodology that combines three technologies. A time series algorithm is trained using "baseline" data to predict the vibration response, compare predictions to actual measurements collected on a potentially damaged structure, and calculate a user-defined damage indicator. The second technology handles the uncertainty present in the problem. An analysis of robustness is performed to propagate this uncertainty through the time series algorithm and obtain the corresponding bounds of variation of the damage indicator. The uncertainty description and robustness analysis are both inspired by the theory of info-gap decision-making. Lastly, an appropriate "size" of the uncertainty space is determined through physical experiments performed in laboratory conditions. Our hypothesis is that examining how the uncertainty space changes throughout time might lead to superior diagnostics of structural damage as compared to only monitoring the damage indicator. This methodology is applied to a portal frame structure to assess if the strategy holds promise for robust SHM. (Publication approved for unlimited, public release on October-28

  5. Technology of remote monitoring for nuclear activity monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kwack, Ehn Ho; Kim, Jong Soo; Yoon, Wan Ki; Park, Sung Sik; Na, Won Woo; An, Jin Soo; Cha, Hong Ryul; Kim, Jung Soo

    2000-05-01

    In a view of safeguards monitoring at nuclear facilities, the monitoring is changing to remote method so that this report is described to remote monitoring(RM) applying on commercial NPP in Korea. To enhance IAEA safeguards efficiency and effectiveness, IAEA is taking into account of remote monitoring system(RMS) and testing as a field trial. IRMP(International Remote Monitoring Project) in participating many nations for development of RMS is proceeding their project such as technical exchange and research etc. In case of our country are carrying out the research relevant RM since acceptance RMS at 7th ROK-IAEA safeguards implementation review meeting. With a view to enhancement the RMS, installation location and element technology of the RM equipment are evaluated in a view of safeguards in Korea LWRs, and proposed a procedure for national inspection application through remote data evaluation from Younggwang-3 NPP. These results are large valuable to use of national inspection at time point extending installation to all Korea PWR NPP. In case of CANDU, neutron, gamma measurement and basic concept of network using optical fiber scintillating detector as remote verification method for dry storage canister are described. Also RM basic design of spent fuel transfer campaign is described that unattended RM without inspector instead of performing in participating together with IAEA and national inspector. The transfer campaign means the spent fuel storage pond to dry storage canister for about two months every year. Therefore, positively participation of IAEA strength safeguards project will be increased transparency for our nuclear activity as well as contributed to national relevant industry.

  6. Technology of remote monitoring for nuclear activity monitoring

    International Nuclear Information System (INIS)

    Kwack, Ehn Ho; Kim, Jong Soo; Yoon, Wan Ki; Park, Sung Sik; Na, Won Woo; An, Jin Soo; Cha, Hong Ryul; Kim, Jung Soo

    2000-05-01

    In a view of safeguards monitoring at nuclear facilities, the monitoring is changing to remote method so that this report is described to remote monitoring(RM) applying on commercial NPP in Korea. To enhance IAEA safeguards efficiency and effectiveness, IAEA is taking into account of remote monitoring system(RMS) and testing as a field trial. IRMP(International Remote Monitoring Project) in participating many nations for development of RMS is proceeding their project such as technical exchange and research etc. In case of our country are carrying out the research relevant RM since acceptance RMS at 7th ROK-IAEA safeguards implementation review meeting. With a view to enhancement the RMS, installation location and element technology of the RM equipment are evaluated in a view of safeguards in Korea LWRs, and proposed a procedure for national inspection application through remote data evaluation from Younggwang-3 NPP. These results are large valuable to use of national inspection at time point extending installation to all Korea PWR NPP. In case of CANDU, neutron, gamma measurement and basic concept of network using optical fiber scintillating detector as remote verification method for dry storage canister are described. Also RM basic design of spent fuel transfer campaign is described that unattended RM without inspector instead of performing in participating together with IAEA and national inspector. The transfer campaign means the spent fuel storage pond to dry storage canister for about two months every year. Therefore, positively participation of IAEA strength safeguards project will be increased transparency for our nuclear activity as well as contributed to national relevant industry

  7. Development of conformal respirator monitoring technology

    International Nuclear Information System (INIS)

    Shonka, J.J.; Weismann, J.J.; Logan, R.J.

    1997-04-01

    This report summarizes the results of a Small Business Innovative Research Phase II project to develop a modular, surface conforming respirator monitor to improve upon the manual survey techniques presently used by the nuclear industry. Research was performed with plastic scintillator and gas proportional modules in an effort to find the most conducive geometry for a surface conformal, position sensitive monitor. The respirator monitor prototype developed is a computer controlled, position-sensitive detection system employing 56 modular proportional counters mounted in molds conforming to the inner and outer surfaces of a commonly used respirator (Scott Model 801450-40). The molds are housed in separate enclosures and hinged to create a open-quotes waffle-ironclose quotes effect so that the closed monitor will simultaneously survey both surfaces of the respirator. The proportional counter prototype was also designed to incorporate Shonka Research Associates previously developed charge-division electronics. This research provided valuable experience into pixellated position sensitive detection systems. The technology developed can be adapted to other monitoring applications where there is a need for deployment of many traditional radiation detectors

  8. Work organisation, technology and working conditions

    NARCIS (Netherlands)

    Dhondt, S.; Kraan, K.; Sloten, G. van

    2002-01-01

    The personal computer, computer networks and the Internet have brought the Union into the Information Age. These technological changes have inevitably led to changes in the work environment and the quality of working conditions. For the third time, the European Foundation for the Improvement of

  9. Signature Optical Cues: Emerging Technologies for Monitoring Plant Health

    Directory of Open Access Journals (Sweden)

    Anand K. Asundi

    2008-05-01

    Full Text Available Optical technologies can be developed as practical tools for monitoring plant health by providing unique spectral signatures that can be related to specific plant stresses. Signatures from thermal and fluorescence imaging have been used successfully to track pathogen invasion before visual symptoms are observed. Another approach for noninvasive plant health monitoring involves elucidating the manner with which light interacts with the plant leaf and being able to identify changes in spectral characteristics in response to specific stresses. To achieve this, an important step is to understand the biochemical and anatomical features governing leaf reflectance, transmission and absorption. Many studies have opened up possibilities that subtle changes in leaf reflectance spectra can be analyzed in a plethora of ways for discriminating nutrient and water stress, but with limited success. There has also been interest in developing transgenic phytosensors to elucidate plant status in relation to environmental conditions. This approach involves unambiguous signal creation whereby genetic modification to generate reporter plants has resulted in distinct optical signals emitted in response to specific stressors. Most of these studies are limited to laboratory or controlled greenhouse environments at leaf level. The practical translation of spectral cues for application under field conditions at canopy and regional levels by remote aerial sensing remains a challenge. The movement towards technology development is well exemplified by the Controlled Ecological Life Support System under development by NASA which brings together technologies for monitoring plant status concomitantly with instrumentation for environmental monitoring and feedback control.

  10. Wind Turbine Gearbox Condition Monitoring Round Robin Study - Vibration Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, S.

    2012-07-01

    The Gearbox Reliability Collaborative (GRC) at the National Wind Technology Center (NWTC) tested two identical gearboxes. One was tested on the NWTCs 2.5 MW dynamometer and the other was field tested in a turbine in a nearby wind plant. In the field, the test gearbox experienced two oil loss events that resulted in damage to its internal bearings and gears. Since the damage was not severe, the test gearbox was removed from the field and retested in the NWTCs dynamometer before it was disassembled. During the dynamometer retest, some vibration data along with testing condition information were collected. These data enabled NREL to launch a Wind Turbine Gearbox Condition Monitoring Round Robin project, as described in this report. The main objective of this project was to evaluate different vibration analysis algorithms used in wind turbine condition monitoring (CM) and find out whether the typical practices are effective. With involvement of both academic researchers and industrial partners, the project sets an example on providing cutting edge research results back to industry.

  11. Tiger: knowledge based gas turbine condition monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Trave-Massuyes, L. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Quevedo, J. [University of Catalonia, (Spain); Milne, R.; Nicol, Ch.

    1995-12-31

    Exxon petrochemical plant in Scotland requires continuous ethylene supply from offshore site in North Sea. The supply is achieved thanks to compressors driven by a 28 MW gas turbine, whose monitoring is of major importance. The TIGER fault diagnostic system is a knowledge base system containing a prediction model. (D.L.) 11 refs.

  12. Tiger: knowledge based gas turbine condition monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Trave-Massuyes, L [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Quevedo, J [University of Catalonia, (Spain); Milne, R; Nicol, Ch

    1996-12-31

    Exxon petrochemical plant in Scotland requires continuous ethylene supply from offshore site in North Sea. The supply is achieved thanks to compressors driven by a 28 MW gas turbine, whose monitoring is of major importance. The TIGER fault diagnostic system is a knowledge base system containing a prediction model. (D.L.) 11 refs.

  13. FY-2010 Process Monitoring Technology Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Orton, Christopher R.; Bryan, Samuel A.; Casella, Amanda J.; Hines, Wes; Levitskaia, Tatiana G.; henkell, J.; Schwantes, Jon M.; Jordan, Elizabeth A.; Lines, Amanda M.; Fraga, Carlos G.; Peterson, James M.; Verdugo, Dawn E.; Christensen, Ronald N.; Peper, Shane M.

    2011-01-01

    During FY 2010, work under the Spectroscopy-Based Process Monitoring task included ordering and receiving four fluid flow meters and four flow visible-near infrared spectrometer cells to be instrumented within the centrifugal contactor system at Pacific Northwest National Laboratory (PNNL). Initial demonstrations of real-time spectroscopic measurements on cold-stream simulants were conducted using plutonium (Pu)/uranium (U) (PUREX) solvent extraction process conditions. The specific test case examined the extraction of neodymium nitrate (Nd(NO3)3) from an aqueous nitric acid (HNO3) feed into a tri-n-butyl phosphate (TBP)/ n-dodecane solvent. Demonstration testing of this system included diverting a sample from the aqueous feed meanwhile monitoring the process in every phase using the on-line spectroscopic process monitoring system. The purpose of this demonstration was to test whether spectroscopic monitoring is capable of determining the mass balance of metal nitrate species involved in a cross-current solvent extraction scheme while also diverting a sample from the system. The diversion scenario involved diverting a portion of the feed from a counter-current extraction system while a continuous extraction experiment was underway. A successful test would demonstrate the ability of the process monitoring system to detect and quantify the diversion of material from the system during a real-time continuous solvent extraction experiment. The system was designed to mimic a PUREX-type extraction process with a bank of four centrifugal contactors. The aqueous feed contained Nd(NO3)3 in HNO3, and the organic phase was composed of TBP/n-dodecane. The amount of sample observed to be diverted by on-line spectroscopic process monitoring was measured to be 3 mmol (3 x 10-3 mol) Nd3+. This value was in excellent agreement with the 2.9 mmol Nd3+ value based on the known mass of sample taken (i.e., diverted) directly from the system feed solution.

  14. Monitoring of deposits in pipelines using pressure pulse technology

    Energy Technology Data Exchange (ETDEWEB)

    Gudmundsson, Jon S.; Celius, Harald K.

    2005-07-01

    The basis of pressure pulse technology is presented in terms of the water hammer equation, the pipeline pressure drop equation and the equation for speed of sound in multiphase mixtures. The technology can be used for a range of applications, from on-line monitoring of flowing conditions to on-demand measurements and analysis to locate and quantify deposits in wells and pipelines. While pressure pulse measurements are low-cost and easy to implement, the commercial use of pressure pulse technology has resulted from extensive field experience and substantial in-house software development. Simulation tools were used to illustrate the effect of a 2 mm thick deposit, 500 m long and located 375 m from a quick-acting valve. The simulation conditions used are typical for multiphase gas-oil flow along a horizontal 2 km long pipeline from wellhead to manifold. (Author)

  15. Waste conditioning technology of radiocontaminated soil

    International Nuclear Information System (INIS)

    Chen Dahua; Wang Xiaoli; Chen Xin

    2012-01-01

    A special conditioning way for low level soil contaminated by 241 Am was discussed. Firstly, the contaminated soil was condensed in package container (200 L drum) by 20 t pressing machine. The contaminated soil was pressed from loose state to compaction state, and the volume reduction rate was from 1.1 to 1.4. Secondly, cement with thickness of 10 cm to 15 cm was poured on the package container for sealing. Thus, a cement sealing member was made up by contaminated soil and it could be described as normal solid waste. Finally, taking the cement sealing member as conditioning object, using Ⅶ steel trunk as package container and cement conditioning, Ⅶ steel trunk package was got. Through radiation monitoring, the Ⅶ steel trunk package can satisfy the transport requirement of radiation waste. Also, it can satisfy the accept and disposal requirements of national repository. (authors)

  16. Application of online chemistry monitoring programs and technology

    International Nuclear Information System (INIS)

    Perkins, D.; Choi, S.; Haas, C.

    2010-01-01

    To fully understand the impact of chemistry changes, several plant parameters must be considered and reviewed with actual chemistry analyses and compared to plant operating parameters. In some cases, this requires the ability to rapidly correlate plant operational data with laboratory and chemistry data. An effective online monitoring system should be able to: Integrate and extract online data from the plant laboratory and operating information from various plant data sources continuously; Interrogate and extract laboratory data from manually entered data on predefined frequencies; Interact with multiple laboratories in multiple locations; Evaluate data against plant limits (calculated or static) and provide personnel with action level or notification of plant exceeding limits; and, Provide the ability to evaluate against a standard and site specific set of calculations. The nuclear power industry continues to refine and apply new technologies in an effort to notify operators of changes in chemical conditions, calculate complex high temperature results, and monitor system performance. EPRI developed software specifically focused on plant chemistry program optimization using power operation and shutdown data applied with plant equipment. This software evolved into the family of software referred to as EPRI ChemWorks™ applications. As technology changed and improved, the application of online monitoring was essential for plant personnel working offsite. These changes in technology prompted EPRI to the development of SMART ChemWorks™ using the EPRI ChemWorks™ plant chemistry simulator and MULTEQ applications as the backbone for these simulations and calculations. SMART ChemWorks™ is an online monitoring system that queries plant databases and continuously monitors plant and chemistry parameters. The system uses a real-time intelligence engine to perform virtual sensing, identify normal and off-normal conditions and compare in-line instrument output to grab

  17. Refrigeration and air-conditioning technology workshop

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, P. J.; Counce, D. M. [eds.

    1993-01-01

    The Alternative Fluorocarbon Environmental Acceptability Study (AFEAS), a consortium of fluorocarbon manufacturers, and the US Department of Energy (DOE) are collaborating on a project to evaluate the energy use and global warming impacts of CFC alternatives. The goal of this project is to identify technologies that could replace the use of CFCs in refrigeration, heating, and air-conditioning equipment; to evaluate the direct impacts of chemical emissions on global warming; and to compile accurate estimates of energy use and, indirect CO{sub 2} emissions of substitute technologies. The first phase of this work focused on alternatives that could be commercialized before the year 2000. The second phase of the project is examining not-in-kind and next-generation technologies that could be developed to replace CFCs, HCFCs, and HFCs over a longer period. As part of this effort, Oak Ridge National Laboratory held a workshop on June 23--25, 1993. The preliminary agenda covered a broad range of alternative technologies and at least one speaker was invited to make a brief presentation at the workshop on each technology. Some of the invited speakers were unable to participate, and in a few cases other experts could not be identified. As a result, those technologies were not represented at the workshop. Each speaker was asked to prepare a five to seven page paper addressing six key issues concerning the technology he/she is developing. These points are listed in the sidebar. Each expert also spoke for 20 to 25 minutes at the workshop and answered questions from the other participants concerning the presentation and area of expertise. The primary goal of the presentations and discussions was to identify the developmental state of the technology and to obtain comparable data on system efficiencies. Individual papers are indexed separately.

  18. Condition monitoring of machinery using motor current signature analysis

    International Nuclear Information System (INIS)

    Kryter, R.C.; Haynes, H.D.

    1989-01-01

    Motor current signature analysis (MCSA) is a powerful monitoring tool for motor-driven equipment that provides a nonintrusive means for detecting the presence of mechanical and electrical abnormalities in the motor and the driven equipment, including altered conditions in the process ''downstream'' of the motor-driven equipment. It was developed at the Oak Ridge National Laboratory as a means for determining the effects of aging and service wear systems, but it is applicable to a broad range of machinery. MCSA is based on the recognition that an electric motor (ac or dc) driving a mechanical load acts as an efficient and permanently available transducer by sensing mechanical load variations, large and small, long-term and rapid, and converting them into variations in the induced current generated in the motor windings. These motor current variations are carried by the electrical cables processes as desired. Motor current signatures, obtained in both time and over time to provide early indication of degradation. Successful applications of MCSA technology (patent applied for) include not only motor-operated valves but also pumps of various designs, blowers, and air conditioning systems. Examples are presented briefly, and speculation regarding the applicability of MCSA to a broader range of equipment monitoring and production line testing is also given. 1 ref., 13 figs

  19. Gearbox Condition Monitoring Using Advanced Classifiers

    Directory of Open Access Journals (Sweden)

    P. Večeř

    2010-01-01

    Full Text Available New efficient and reliable methods for gearbox diagnostics are needed in automotive industry because of growing demand for production quality. This paper presents the application of two different classifiers for gearbox diagnostics – Kohonen Neural Networks and the Adaptive-Network-based Fuzzy Interface System (ANFIS. Two different practical applications are presented. In the first application, the tested gearboxes are separated into two classes according to their condition indicators. In the second example, ANFIS is applied to label the tested gearboxes with a Quality Index according to the condition indicators. In both applications, the condition indicators were computed from the vibration of the gearbox housing. 

  20. Design and realization of high voltage disconnector condition monitoring system

    Science.gov (United States)

    Shi, Jinrui; Xu, Tianyang; Yang, Shuixian; Li, Buoyang

    2017-08-01

    The operation status of the high voltage disconnector directly affects the safe and stable operation of the power system. This article uses the wireless frequency hopping communication technology of the communication module to achieve the temperature acquisition of the switch contacts and high voltage bus, to introduce the current value of the loop in ECS, and judge the operation status of the disconnector by considering the ambient temperature, calculating the temperature rise; And through the acquisition of the current of drive motor in the process of switch closing and opening, and fault diagnosis of the disconnector by analyzing the change rule of the drive motor current, the condition monitoring of the high voltage disconnector is realized.

  1. Application of Equipment Monitoring Technology in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kang, H. T.; Lee, J. K.; Lee, K. D.; Jo, S. H.

    2012-01-01

    The major goal of nuclear power industries during the past 10 years is to increase reliability and utility capacity factor. As the capacitor factor, however, crept upward. it became harder to attain next percentage of improvement. Therefore other innovative technologies are required. By the technologies applied to the fossil power plants, equipment health monitoring was performed on equipment to maintain it in operable condition and contributed on improving their reliability a lot. But the equipment monitoring may be limited to the observation of current system states in nuclear power plant. Monitoring of current system states is being augmented with prediction of future operating states and predictive diagnosis of future failure states. Such predictive diagnosis is motivated by the need for nuclear power plants to optimize equipment performance and reduce costs and unscheduled downtime. This paper reviews the application of techniques that focus on improving reliability in nuclear power plant by monitoring and predicting equipment health and suggests how possible to support on-line monitoring

  2. Condition Monitoring for DC-link Capacitors Based on Artificial Neural Network Algorithm

    DEFF Research Database (Denmark)

    Soliman, Hammam Abdelaal Hammam; Wang, Huai; Gadalla, Brwene Salah Abdelkarim

    2015-01-01

    hardware will reduce the cost, and therefore could be more promising for industry applications. A condition monitoring method based on Artificial Neural Network (ANN) algorithm is therefore proposed in this paper. The implementation of the ANN to the DC-link capacitor condition monitoring in a back......In power electronic systems, capacitor is one of the reliability critical components . Recently, the condition monitoring of capacitors to estimate their health status have been attracted by the academic research. Industry applications require more reliable power electronics products...... with preventive maintenance. However, the existing capacitor condition monitoring methods suffer from either increased hardware cost or low estimation accuracy, being the challenges to be adopted in industry applications. New development in condition monitoring technology with software solutions without extra...

  3. Conditioning technology of spent radium sources

    International Nuclear Information System (INIS)

    Kang, Il Sik; Kim, K. J.; Jang, K. D.

    2001-03-01

    In order to avoid accidents that could be resulted from improper storage of spent radium sources, it is necessary to condition and store them safely. The program for safe conditioning of spent radium sources by IAEA has been established to assist the developing countries. The main object of this report is to understand well and apply the technology that was applied in conditioning the national inventory of Ra-226 sources in Myanmar, as a part of IAEA's project by the Korean expert team. The report is the result that the Korean expert team carried out in Myanmar under the project title 'Radium Conditioning Service in Myanmar(INT4131-06646C)'. As a result of the mission, a whole inventory, 1,429.5 mCi of spent radium sources was safely conditioned by the Korean expert team according to the manual under the supervision of IAEA's technical officer, Mr. Al-Mughrabi, and under the control of DAE authority. These sources were encapsuled in 27 small capsules and 3 large capsules, and conditioned in 3 lead shields, producing 3 packages. The inventories were distributed into 3 shielding devices, holding 500, 459.5, and 470 mCi

  4. Modern techniques for condition monitoring of railway vehicle dynamics

    International Nuclear Information System (INIS)

    Ngigi, R W; Pislaru, C; Ball, A; Gu, F

    2012-01-01

    A modern railway system relies on sophisticated monitoring systems for maintenance and renewal activities. Some of the existing conditions monitoring techniques perform fault detection using advanced filtering, system identification and signal analysis methods. These theoretical approaches do not require complex mathematical models of the system and can overcome potential difficulties associated with nonlinearities and parameter variations in the system. Practical applications of condition monitoring tools use sensors which are mounted either on the track or rolling stock. For instance, monitoring wheelset dynamics could be done through the use of track-mounted sensors, while vehicle-based sensors are preferred for monitoring the train infrastructure. This paper attempts to collate and critically appraise the modern techniques used for condition monitoring of railway vehicle dynamics by analysing the advantages and shortcomings of these methods.

  5. Support vector machine in machine condition monitoring and fault diagnosis

    Science.gov (United States)

    Widodo, Achmad; Yang, Bo-Suk

    2007-08-01

    Recently, the issue of machine condition monitoring and fault diagnosis as a part of maintenance system became global due to the potential advantages to be gained from reduced maintenance costs, improved productivity and increased machine availability. This paper presents a survey of machine condition monitoring and fault diagnosis using support vector machine (SVM). It attempts to summarize and review the recent research and developments of SVM in machine condition monitoring and diagnosis. Numerous methods have been developed based on intelligent systems such as artificial neural network, fuzzy expert system, condition-based reasoning, random forest, etc. However, the use of SVM for machine condition monitoring and fault diagnosis is still rare. SVM has excellent performance in generalization so it can produce high accuracy in classification for machine condition monitoring and diagnosis. Until 2006, the use of SVM in machine condition monitoring and fault diagnosis is tending to develop towards expertise orientation and problem-oriented domain. Finally, the ability to continually change and obtain a novel idea for machine condition monitoring and fault diagnosis using SVM will be future works.

  6. Instantaneous angular speed monitoring of gearboxes under non-cyclic stationary load conditions

    Science.gov (United States)

    Stander, C. J.; Heyns, P. S.

    2005-07-01

    Recent developments in the condition monitoring and asset management market have led to the commercialisation of online vibration-monitoring systems. These systems are primarily utilised to monitor large mineral mining equipment such as draglines, continuous miners and hydraulic shovels. Online monitoring systems make diagnostic information continuously available for asset management, production outsourcing and maintenance alliances with equipment manufacturers. However, most online vibration-monitoring systems are based on conventional vibration-monitoring technologies, which are prone to giving false equipment deterioration warnings on gears that operate under fluctuating load conditions. A simplified mathematical model of a gear system was developed to illustrate the feasibility of monitoring the instantaneous angular speed (IAS) as a means of monitoring the condition of gears that are subjected to fluctuating load conditions. A distinction is made between cyclic stationary load modulation and non-cyclic stationary load modulation. It is shown that rotation domain averaging will suppress the modulation caused by non-cyclic stationary load conditions but will not suppress the modulation caused by cyclic stationary load conditions. An experimental investigation on a test rig indicated that the IAS of a gear shaft could be monitored with a conventional shaft encoder to indicate a deteriorating gear fault condition.

  7. Condition based monitoring, diagnosis and maintenance on operating equipments of a hydraulic generator unit

    International Nuclear Information System (INIS)

    Liu, X T; Feng, F Z; Si, A W

    2012-01-01

    According to performance characteristics of operating equipments in a hydraulic generator unit (HGU), the relative techniques on condition monitoring and fault diagnosis (CMFD) are introduced in this paper, especially the key technologies are emphasized, such as equipment monitoring, expert system (ES), intelligent diagnosis and condition based maintenance (CBM). Meanwhile, according to the instructor on CBM proposed by State electric power corporation, based on integrated mode, the main steps on implementation of CBM are discussed in this paper.

  8. Proactive condition monitoring of low-speed machines

    CERN Document Server

    Stamboliska, Zhaklina; Moczko, Przemyslaw

    2015-01-01

    This book broadens readers’ understanding of proactive condition monitoring of low-speed machines in heavy industries. It focuses on why low-speed machines are different than others and how maintenance of these machines should be implemented with particular attention. The authors explain the best available monitoring techniques for various equipment and the principle of how to get proactive information from each technique. They further put forward possible strategies for application of FEM for detection of faults and technical assessment of machinery. Implementation phases are described and industrial case-studies of proactive condition monitoring are included. Proactive Condition Monitoring of Low-Speed Machines is an essential resource for engineers and technical managers across a range of industries as well as design engineers working in industrial product development. This book also: ·         Explains the practice of proactive condition monitoring and illustrates implementation phases ·   ...

  9. Radiation Monitoring System in Advanced Spent Fuel Conditioning Process Facility

    Energy Technology Data Exchange (ETDEWEB)

    You, Gil Sung; Kook, D. H.; Choung, W. M.; Ku, J. H.; Cho, I. J.; You, G. S.; Kwon, K. C.; Lee, W. K.; Lee, E. P

    2006-09-15

    The Advanced spent fuel Conditioning Process is under development for effective management of spent fuel by converting UO{sub 2} into U-metal. For demonstration of this process, {alpha}-{gamma} type new hot cell was built in the IMEF basement . To secure against radiation hazard, this facility needs radiation monitoring system which will observe the entire operating area before the hot cell and service area at back of it. This system consists of 7 parts; Area Monitor for {gamma}-ray, Room Air Monitor for particulate and iodine in both area, Hot cell Monitor for hot cell inside high radiation and rear door interlock, Duct Monitor for particulate of outlet ventilation, Iodine Monitor for iodine of outlet duct, CCTV for watching workers and material movement, Server for management of whole monitoring system. After installation and test of this, radiation monitoring system will be expected to assist the successful ACP demonstration.

  10. Radiation Monitoring System in Advanced Spent Fuel Conditioning Process Facility

    International Nuclear Information System (INIS)

    You, Gil Sung; Kook, D. H.; Choung, W. M.; Ku, J. H.; Cho, I. J.; You, G. S.; Kwon, K. C.; Lee, W. K.; Lee, E. P.

    2006-09-01

    The Advanced spent fuel Conditioning Process is under development for effective management of spent fuel by converting UO 2 into U-metal. For demonstration of this process, α-γ type new hot cell was built in the IMEF basement . To secure against radiation hazard, this facility needs radiation monitoring system which will observe the entire operating area before the hot cell and service area at back of it. This system consists of 7 parts; Area Monitor for γ-ray, Room Air Monitor for particulate and iodine in both area, Hot cell Monitor for hot cell inside high radiation and rear door interlock, Duct Monitor for particulate of outlet ventilation, Iodine Monitor for iodine of outlet duct, CCTV for watching workers and material movement, Server for management of whole monitoring system. After installation and test of this, radiation monitoring system will be expected to assist the successful ACP demonstration

  11. Monitoring machining conditions by infrared images

    Science.gov (United States)

    Borelli, Joao E.; Gonzaga Trabasso, Luis; Gonzaga, Adilson; Coelho, Reginaldo T.

    2001-03-01

    During machining process the knowledge of the temperature is the most important factor in tool analysis. It allows to control main factors that influence tool use, life time and waste. The temperature in the contact area between the piece and the tool is resulting from the material removal in cutting operation and it is too difficult to be obtained because the tool and the work piece are in motion. One way to measure the temperature in this situation is detecting the infrared radiation. This work presents a new methodology for diagnosis and monitoring of machining processes with the use of infrared images. The infrared image provides a map in gray tones of the elements in the process: tool, work piece and chips. Each gray tone in the image corresponds to a certain temperature for each one of those materials and the relationship between the gray tones and the temperature is gotten by the previous of infrared camera calibration. The system developed in this work uses an infrared camera, a frame grabber board and a software composed of three modules. The first module makes the image acquisition and processing. The second module makes the feature image extraction and performs the feature vector. Finally, the third module uses fuzzy logic to evaluate the feature vector and supplies the tool state diagnostic as output.

  12. Using the motor to monitor pump conditions

    Energy Technology Data Exchange (ETDEWEB)

    Casada, D. [Oak Ridge National Lab., TN (United States)

    1996-12-01

    When the load of a mechanical device being driven by a motor changes, whether in response to changes in the overall process or changes in the performance of the driven device, the motor inherently responds. For induction motors, the current amplitude and phase angle change as the shaft load changes. By examining the details of these changes in amplitude and phase, load fluctuations of the driven device can be observed. The usefulness of the motor as a transducer to improve the understanding of devices with high torque fluctuations, such as positive displacement compressors and motor-operated valves, has been recognized and demonstrated for a number of years. On such devices as these, the spectrum of the motor current amplitude, phase, or power normally has certain characteristic peaks associated with various load components, such as the piston stroke or gear tooth meshing frequencies. Comparison and trending of the amplitudes of these peaks has been shown to provide some indication of their mechanical condition. For most centrifugal pumps, the load fluctuations are normally low in torque amplitude, and as a result, the motor experiences a correspondingly lower level of load fluctuation. However, both laboratory and field test data have demonstrated that the motor does provide insight into some important pump performance conditions, such as hydraulic stability and pump-to-motor alignment. Comparisons of other dynamic signals, such as vibration and pressure pulsation, to motor data for centrifugal pumps are provided. The effects of inadequate suction head, misalignment, mechanical and hydraulic unbalance on these signals are presented.

  13. Using the motor to monitor pump conditions

    International Nuclear Information System (INIS)

    Casada, D.

    1996-01-01

    When the load of a mechanical device being driven by a motor changes, whether in response to changes in the overall process or changes in the performance of the driven device, the motor inherently responds. For induction motors, the current amplitude and phase angle change as the shaft load changes. By examining the details of these changes in amplitude and phase, load fluctuations of the driven device can be observed. The usefulness of the motor as a transducer to improve the understanding of devices with high torque fluctuations, such as positive displacement compressors and motor-operated valves, has been recognized and demonstrated for a number of years. On such devices as these, the spectrum of the motor current amplitude, phase, or power normally has certain characteristic peaks associated with various load components, such as the piston stroke or gear tooth meshing frequencies. Comparison and trending of the amplitudes of these peaks has been shown to provide some indication of their mechanical condition. For most centrifugal pumps, the load fluctuations are normally low in torque amplitude, and as a result, the motor experiences a correspondingly lower level of load fluctuation. However, both laboratory and field test data have demonstrated that the motor does provide insight into some important pump performance conditions, such as hydraulic stability and pump-to-motor alignment. Comparisons of other dynamic signals, such as vibration and pressure pulsation, to motor data for centrifugal pumps are provided. The effects of inadequate suction head, misalignment, mechanical and hydraulic unbalance on these signals are presented

  14. Remote support services using condition monitoring and online sensor data for offshore oilfield

    OpenAIRE

    Du, Baoli

    2013-01-01

    Master's thesis in Offshore technology Based on advanced technology in condition monitoring and online sensor data, a new style of operation and maintenance management called remote operation and maintenance support services has been created to improve oil and gas E&P performance. This master thesis will look into how the remote support service is conducted including the concept, design, technology and management philosophies; the current implementation of remote support services in China,...

  15. Technical guide for monitoring selected conditions related to wilderness character

    Science.gov (United States)

    Peter Landres; Steve Boutcher; Liese Dean; Troy Hall; Tamara Blett; Terry Carlson; Ann Mebane; Carol Hardy; Susan Rinehart; Linda Merigliano; David N. Cole; Andy Leach; Pam Wright; Deb Bumpus

    2009-01-01

    The purpose of monitoring wilderness character is to improve wilderness stewardship by providing managers a tool to assess how selected actions and conditions related to wilderness character are changing over time. Wilderness character monitoring provides information to help answer two key questions about wilderness character and wilderness stewardship: 1. How is...

  16. Non-stationary condition monitoring through event alignment

    DEFF Research Database (Denmark)

    Pontoppidan, Niels Henrik; Larsen, Jan

    2004-01-01

    We present an event alignment framework which enables change detection in non-stationary signals. change detection. Classical condition monitoring frameworks have been restrained to laboratory settings with stationary operating conditions, which are not resembling real world operation....... In this paper we apply the technique for non-stationary condition monitoring of large diesel engines based on acoustical emission sensor signals. The performance of the event alignment is analyzed in an unsupervised probabilistic detection framework based on outlier detection with either Principal Component...... Analysis or Gaussian Processes modeling. We are especially interested in the true performance of the condition monitoring performance with mixed aligned and unaligned data, e.g. detection of fault condition of unaligned examples versus false alarms of aligned normal condition data. Further, we expect...

  17. Acoustic monitoring of rotating machine by advanced signal processing technology

    International Nuclear Information System (INIS)

    Kanemoto, Shigeru

    2010-01-01

    The acoustic data remotely measured by hand held type microphones are investigated for monitoring and diagnosing the rotational machine integrity in nuclear power plants. The plant operator's patrol monitoring is one of the important activities for condition monitoring. However, remotely measured sound has some difficulties to be considered for precise diagnosis or quantitative judgment of rotating machine anomaly, since the measurement sensitivity is different in each measurement, and also, the sensitivity deteriorates in comparison with an attached type sensor. Hence, in the present study, several advanced signal processing methods are examined and compared in order to find optimum anomaly monitoring technology from the viewpoints of both sensitivity and robustness of performance. The dimension of pre-processed signal feature patterns are reduced into two-dimensional space for the visualization by using the standard principal component analysis (PCA) or the kernel based PCA. Then, the normal state is classified by using probabilistic neural network (PNN) or support vector data description (SVDD). By using the mockup test facility of rotating machine, it is shown that the appropriate combination of the above algorithms gives sensitive and robust anomaly monitoring performance. (author)

  18. Transformer ageing modern condition monitoring techniques and their interpretations

    CERN Document Server

    Purkait, Prithwiraj

    2017-01-01

    This book is a one-stop guide to state-of-the-art research in transformer ageing, condition monitoring and diagnosis. It is backed by rigorous research projects supported by the Australian Research Council in collaboration with several transmission and distribution companies. Many of the diagnostic techniques and tools developed in these projects have been applied by electricity utilities and would appeal to both researchers and practicing engineers. Important topics covered in this book include transformer insulation materials and their ageing behaviour, transformer condition monitoring techniques and detailed diagnostic techniques and their interpretation schemes. It also features a monitoring framework for smart transformers as well as a chapter on biodegradable oil.

  19. GEOGLAM Crop Monitor Assessment Tool: Developing Monthly Crop Condition Assessments

    Science.gov (United States)

    McGaughey, K.; Becker Reshef, I.; Barker, B.; Humber, M. L.; Nordling, J.; Justice, C. O.; Deshayes, M.

    2014-12-01

    The Group on Earth Observations (GEO) developed the Global Agricultural Monitoring initiative (GEOGLAM) to improve existing agricultural information through a network of international partnerships, data sharing, and operational research. This presentation will discuss the Crop Monitor component of GEOGLAM, which provides the Agricultural Market Information System (AMIS) with an international, multi-source, and transparent consensus assessment of crop growing conditions, status, and agro-climatic conditions likely to impact global production. This activity covers the four primary crop types (wheat, maize, rice, and soybean) within the main agricultural producing regions of the AMIS countries. These assessments have been produced operationally since September 2013 and are published in the AMIS Market Monitor Bulletin. The Crop Monitor reports provide cartographic and textual summaries of crop conditions as of the 28th of each month, according to crop type. This presentation will focus on the building of international networks, data collection, and data dissemination.

  20. Beam conditions monitors at CMS and LHC using diamond sensors

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Maria; Lohmann, Wolfgang [Desy-Zeuthen, Platanenallee 6, 15738 Zeuthen (Germany); Brandenburgische Technische Universitaet Cottbus, Konrad-Wachsmann-Allee 1, 03046 Cottbus (Germany); Castro-Carballo, Maria-Elena; Lange, Wolfgang; Novgorodova, Olga [Desy-Zeuthen, Platanenallee 6, 15738 Zeuthen (Germany); Walsh, Roberval [Desy-Hamburg, Notkestrasse 85, 22607 Hamburg (Germany)

    2012-07-01

    The Fast Beam Conditions Monitor (BCM1F) is a particle detector based on diamonds. Eight modules comprising a single crystal diamond, front-end electronics and an optical link are installed on both sides of the interaction point inside the tracker of the CMS detector. The back-end uses ADCs, TDCs and scalers to measure the amplitudes, arrival time and rates of beam-halo particles and collision products. These data are used to protect the inner tracker from adverse beam conditions, perform a fast monitoring of the luminosity and e.g. beam-gas interactions. Recently two additional BCM1F modules have been installed at other positions of the LHC to supplement the beam-loss monitors by a flux measurement with nanosecond time resolution. In the talk essential parameters of the system are presented and examples of beam conditions monitoring are reported.

  1. Accuracy of flash glucose monitoring and continuous glucose monitoring technologies: Implications for clinical practice.

    Science.gov (United States)

    Ajjan, Ramzi A; Cummings, Michael H; Jennings, Peter; Leelarathna, Lalantha; Rayman, Gerry; Wilmot, Emma G

    2018-02-01

    Continuous glucose monitoring and flash glucose monitoring technologies measure glucose in the interstitial fluid and are increasingly used in diabetes care. Their accuracy, key to effective glycaemic management, is usually measured using the mean absolute relative difference of the interstitial fluid sensor compared to reference blood glucose readings. However, mean absolute relative difference is not standardised and has limitations. This review aims to provide a consensus opinion on assessing accuracy of interstitial fluid glucose sensing technologies. Mean absolute relative difference is influenced by glucose distribution and rate of change; hence, we express caution on the reliability of comparing mean absolute relative difference data from different study systems and conditions. We also review the pitfalls associated with mean absolute relative difference at different glucose levels and explore additional ways of assessing accuracy of interstitial fluid devices. Importantly, much data indicate that current practice of assessing accuracy of different systems based on individualised mean absolute relative difference results has limitations, which have potential clinical implications. Healthcare professionals must understand the factors that influence mean absolute relative difference as a metric for accuracy and look at additional assessments, such as consensus error grid analysis, when evaluating continuous glucose monitoring and flash glucose monitoring systems in diabetes care. This in turn will ensure that management decisions based on interstitial fluid sensor data are both effective and safe.

  2. 4th International Conference on Condition Monitoring of Machinery in Non-Stationary Operations

    CERN Document Server

    Zimroz, Radoslaw; Bartelmus, Walter; Haddar, Mohamed

    2016-01-01

    The book provides readers with a snapshot of recent research and technological trends in the field of condition monitoring of machinery working under a broad range of operating conditions. Each chapter, accepted after a rigorous peer-review process, reports on an original piece of work presented and discussed at the 4th International Conference on Condition Monitoring of Machinery in Non-stationary Operations, CMMNO 2014, held on December 15-16, 2014, in Lyon, France. The contributions have been grouped into three different sections according to the main subfield (signal processing, data mining, or condition monitoring techniques) they are related to. The book includes both theoretical developments as well as a number of industrial case studies, in different areas including, but not limited to: noise and vibration; vibro-acoustic diagnosis; signal processing techniques; diagnostic data analysis; instantaneous speed identification; monitoring and diagnostic systems; and dynamic and fault modeling. This book no...

  3. Advancing Sensor Technology to Monitor Wildfires

    Science.gov (United States)

    EPA and partners are looking at ways to use miniature sensors to monitor air quality near wildfires. Data from these small sensors can complement measurements obtained from more complex regulatory-grade monitors that are stationary.

  4. U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA) ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PROGRAM: ARSENIC MONITORING TECHNOLOGIES

    Science.gov (United States)

    The U.S. Environmental Protection Agency Environmental Technology Verification (ETV) program evaluates the performance of innovative air, water, pollution prevention and monitoring technologies that have the potential to improve human health and the environment. This technology ...

  5. Pump failure leads to alternative vertical pump condition monitoring technique

    International Nuclear Information System (INIS)

    DeVilliers, Adriaan; Glandon, Kevin

    2011-01-01

    Condition monitoring and detecting early signs of potential failure mechanisms present particular problems in vertical pumps. Most often, the majority of the pump assembly is not readily accessible for visual or audible inspection or conventional vibration monitoring techniques using accelerometers and/or proximity sensors. The root cause failure analysis of a 2-stage vertical centrifugal service-water pump at a nuclear power generating facility in the USA is presented, highlighting this long standing challenge in condition monitoring of vertical pumps. This paper will summarize the major findings of the root cause analysis (RCA), highlight the limitations of traditional monitoring techniques, and present an expanded application of motor current monitoring as a means to gain insight into the mechanical performance and condition of a pump. The 'real-world' example of failure, monitoring and correlation of the monitoring technique to a detailed pump disassembly inspection is also presented. This paper will explain some of the reasons behind well known design principles requiring natural frequency separation from known forcing frequencies, as well as explore an unexpected submerged brittle fracture failure mechanism, and how such issues may be avoided. (author)

  6. Structural health monitoring methodology for aircraft condition-based maintenance

    Science.gov (United States)

    Saniger, Jordi; Reithler, Livier; Guedra-Degeorges, Didier; Takeda, Nobuo; Dupuis, Jean Pierre

    2001-06-01

    Reducing maintenance costs while keeping a constant level of safety is a major issue for Air Forces and airlines. The long term perspective is to implement condition based maintenance to guarantee a constant safety level while decreasing maintenance costs. On this purpose, the development of a generalized Structural Health Monitoring System (SHMS) is needed. The objective of such a system is to localize the damages and to assess their severity, with enough accuracy to allow low cost corrective actions. The present paper describes a SHMS based on acoustic emission technology. This choice was driven by its reliability and wide use in the aerospace industry. The described SHMS uses a new learning methodology which relies on the generation of artificial acoustic emission events on the structure and an acoustic emission sensor network. The calibrated acoustic emission events picked up by the sensors constitute the knowledge set that the system relies on. With this methodology, the anisotropy of composite structures is taken into account, thus avoiding the major cause of errors of classical localization methods. Moreover, it is adaptive to different structures as it does not rely on any particular model but on measured data. The acquired data is processed and the event's location and corrected amplitude are computed. The methodology has been demonstrated and experimental tests on elementary samples presented a degree of accuracy of 1cm.

  7. A Review of the Condition Monitoring of Capacitors in Power Electronic Converters

    DEFF Research Database (Denmark)

    Soliman, Hammam Abdelaal Hammam; Wang, Huai; Blaabjerg, Frede

    2015-01-01

    Capacitor is one of the reliability critical components in power electronic systems. In the last two decades, many efforts in the academic research have been devoted to the condition monitoring of capacitors to estimate their health status. Industry applications demand more reliable power...... electronics products with preventive maintenance. Nevertheless, most of the developed capacitor condition monitoring technologies are rarely adopted by industry due to the complexity, increased cost and other relevant issues. An overview of the prior-art research in this area is therefore needed to justify....... Therefore, this paper firstly classifies the capacitor condition monitoring methods into three categories, then the respective technology evolution from 1993 to 2015 is summarized. Remarks on the state-of-the-art research and the future opportunities targeting for practical industry applications are given....

  8. A Review of the Condition Monitoring of Capacitors in Power Electronic Converters

    DEFF Research Database (Denmark)

    Soliman, Hammam Abdelaal Hammam; Wang, Huai; Blaabjerg, Frede

    2016-01-01

    Capacitors are one type of reliability-critical components in power electronic systems. In the last two decades, many efforts in academic research have been devoted to the condition monitoring of capacitors to estimate their health status. Industry applications are demanding more reliable power...... electronics products with preventive maintenance. Nevertheless, most of the developed capacitor condition monitoring technologies are rarely adopted by industry due to the complexity, increased cost, and other relevant issues. An overview of the prior-art research in this area is therefore needed to justify......, this paper first classifies the capacitor condition monitoring methods into three categories, then the respective technology evolution in the last two decades is summarized. Finally, the state-of-the-art research and the future opportunities targeting for industry applications are given....

  9. Muscular condition monitoring system using fiber bragg grating sensors

    International Nuclear Information System (INIS)

    Kim, Heon Young; Lee, Jin Hyuk; Kim, Dae Hyun

    2014-01-01

    Fiber optic sensors (FOS) have advantages such as electromagnetic interference (EMI) immunity, corrosion resistance and multiplexing capability. For these reasons, they are widely used in various condition monitoring systems (CMS). This study investigated a muscular condition monitoring system using fiber optic sensors (FOS). Generally, sensors for monitoring the condition of the human body are based on electro-magnetic devices. However, such an electrical system has several weaknesses, including the potential for electro-magnetic interference and distortion. Fiber Bragg grating (FBG) sensors overcome these weaknesses, along with simplifying the devices and increasing user convenience. To measure the level of muscle contraction and relaxation, which indicates the muscle condition, a belt-shaped FBG sensor module that makes it possible to monitor the movement of muscles in the radial and circumferential directions was fabricated in this study. In addition, a uniaxial tensile test was carried out in order to evaluate the applicability of this FBG sensor module. Based on the experimental results, a relationship was observed between the tensile stress and Bragg wavelength of the FBG sensors, which revealed the possibility of fabricating a muscular condition monitoring system based on FBG sensors.

  10. Muscular condition monitoring system using fiber bragg grating sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heon Young; Lee, Jin Hyuk; Kim, Dae Hyun [Seoul National University of Technology, Seoul (Korea, Republic of)

    2014-10-15

    Fiber optic sensors (FOS) have advantages such as electromagnetic interference (EMI) immunity, corrosion resistance and multiplexing capability. For these reasons, they are widely used in various condition monitoring systems (CMS). This study investigated a muscular condition monitoring system using fiber optic sensors (FOS). Generally, sensors for monitoring the condition of the human body are based on electro-magnetic devices. However, such an electrical system has several weaknesses, including the potential for electro-magnetic interference and distortion. Fiber Bragg grating (FBG) sensors overcome these weaknesses, along with simplifying the devices and increasing user convenience. To measure the level of muscle contraction and relaxation, which indicates the muscle condition, a belt-shaped FBG sensor module that makes it possible to monitor the movement of muscles in the radial and circumferential directions was fabricated in this study. In addition, a uniaxial tensile test was carried out in order to evaluate the applicability of this FBG sensor module. Based on the experimental results, a relationship was observed between the tensile stress and Bragg wavelength of the FBG sensors, which revealed the possibility of fabricating a muscular condition monitoring system based on FBG sensors.

  11. Health Monitoring System Technology Assessments: Cost Benefits Analysis

    Science.gov (United States)

    Kent, Renee M.; Murphy, Dennis A.

    2000-01-01

    The subject of sensor-based structural health monitoring is very diverse and encompasses a wide range of activities including initiatives and innovations involving the development of advanced sensor, signal processing, data analysis, and actuation and control technologies. In addition, it embraces the consideration of the availability of low-cost, high-quality contributing technologies, computational utilities, and hardware and software resources that enable the operational realization of robust health monitoring technologies. This report presents a detailed analysis of the cost benefit and other logistics and operational considerations associated with the implementation and utilization of sensor-based technologies for use in aerospace structure health monitoring. The scope of this volume is to assess the economic impact, from an end-user perspective, implementation health monitoring technologies on three structures. It specifically focuses on evaluating the impact on maintaining and supporting these structures with and without health monitoring capability.

  12. Current status of technology development on remote monitoring system

    International Nuclear Information System (INIS)

    Yoon, Wan Ki; Lee, Y. K.; Lee, Y. D.; Na, W. W.

    1997-03-01

    IAEA is planning to perform the remote monitoring system in nuclear facility in order to reinforce the economical and efficient inspection. National lab. in U.S. is developing the corresponding core technology and field trial will be done to test the remote monitoring system by considering the case that it replace the current safeguards system. U.S. setup the International Remote Monitoring Project to develop the technology. IAEA makes up remote monitoring team and setup the detail facility to apply remote monitoring system. Therefore, early participation in remote monitoring technology development will make contribution in international remote monitoring system and increase the transparency and confidence in domestic nuclear activities. (author). 12 refs., 20 figs

  13. The Russian experience of monitoring technologies

    International Nuclear Information System (INIS)

    Kolesnikov, A.L.

    1999-01-01

    The implementation of nuclear test monitoring, the observance of international nuclear weapon limitation and test ban agreements is assigned to the Special Monitoring Service at the Ministry of defence in Russian Federation. The system of collecting, processing, analysis and generalization of the data on nuclear tests has been created and is functioning in the Special Monitoring Service. This system is based on the application of the facilities of the seismic, infra sound, radionuclide and other monitoring methods. The Service has all the necessary scientific and technical basis, the perfect mechanism for solving the monitoring problems. Its activities cover data collecting and processing centres as well as special monitoring laboratory equipment, integrated in the unified computer aide system. Besides the experiences of the Russian Service, the possible ways of cooperation with CTBTO are described

  14. New technologies in nuclear power plant monitoring and diagnosis

    International Nuclear Information System (INIS)

    Turkcan, E.; Verhoef, J.P.; Ciftcioglu, O.

    1996-01-01

    Several representative new technologies being introduce for monitoring and diagnosis in nuclear power plants (NPP) are presented in this paper. In Sec. 2, the Kalman filtering is briefly described and it relevance to conventional time series analysis methods are emphasized. In this respect, its NPP monitoring and fault diagnosis implementations are given and the important features are pointed out. In Sec. 3, the NN technology is briefly described and the scope is focused on the NPP monitoring and fault diagnosis implementations. In Sec. 4, the wavelet technology is briefly described and the utilization of this technology in Nuclear Technology is exemplified. In this respect, also the prospective role of this technology for real-time monitoring and fault diagnosis is revealed. (author). 33 refs, 6 figs

  15. New technologies in nuclear power plant monitoring and diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Turkcan, E; Verhoef, J P [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Ciftcioglu, O [Istanbul Technical Univ., Istanbul (Turkey). Nuclear Power Dept.

    1997-12-31

    Several representative new technologies being introduce for monitoring and diagnosis in nuclear power plants (NPP) are presented in this paper. In Sec. 2, the Kalman filtering is briefly described and it relevance to conventional time series analysis methods are emphasized. In this respect, its NPP monitoring and fault diagnosis implementations are given and the important features are pointed out. In Sec. 3, the NN technology is briefly described and the scope is focused on the NPP monitoring and fault diagnosis implementations. In Sec. 4, the wavelet technology is briefly described and the utilization of this technology in Nuclear Technology is exemplified. In this respect, also the prospective role of this technology for real-time monitoring and fault diagnosis is revealed. (author). 33 refs, 6 figs.

  16. Advanced core monitoring technology for WWER reactors

    International Nuclear Information System (INIS)

    Nguyen, T.Q.; Casadei, A.L.; Doshi, P.K.

    1993-01-01

    The Westinghouse BEACON online monitoring system has been developed to provide continuous core monitoring and operational support for pressurized water reactor using movable detectors (fission chamber) and core thermocouples. The basic BEACON core monitoring methodology is described. Traditional WWER reactors use rhodium fixed in-core detectors as the means to provide detailed core power distribution for surveillance purposes. An adapted version of the BEACON advanced core monitoring and support system is described which seems to be, due to the different demand/response requirements, the optimal solution (for routine surveillance and anomaly detection) for WWER reactors with existing fixed in-core detectors. (Z.S.) 4 refs

  17. Wireless pilot monitoring system for extreme race conditions.

    Science.gov (United States)

    Pino, Esteban J; Arias, Diego E; Aqueveque, Pablo; Melin, Pedro; Curtis, Dorothy W

    2012-01-01

    This paper presents the design and implementation of an assistive device to monitor car drivers under extreme conditions. In particular, this system is designed in preparation for the 2012 Atacama Solar Challenge to be held in the Chilean desert. Actual preliminary results show the feasibility of such a project including physiological and ambient sensors, real-time processing algorithms, wireless data transmission and a remote monitoring station. Implementation details and field results are shown along with a discussion of the main problems found in real-life telemetry monitoring.

  18. A new oil debris sensor for online condition monitoring of wind turbine gearboxes

    DEFF Research Database (Denmark)

    Wang, Chao; Liu, Hui; Liu, Xiao

    2015-01-01

    Online Condition Monitoring (CM) is a key technology for the Operation and Maintenance (O&M) of wind turbines. Lubricating oil is the blood of the wind turbine gearbox. Metal debris in lubricating oil contains abundant information regarding the ageing and wear/damage of mechanical transmission sy...

  19. Tolkku - a toolbox for decision support from condition monitoring data

    International Nuclear Information System (INIS)

    Saarela, Olli; Lehtonen, Mikko; Halme, Jari; Aikala, Antti; Raivio, Kimmo

    2012-01-01

    This paper describes a software toolbox (a software library) designed for condition monitoring and diagnosis of machines. This toolbox implements both new methods and prior art and is aimed for practical down-to-earth data analysis work. The target is to improve knowledge of the operation and behaviour of machines and processes throughout their entire life-cycles. The toolbox supports different phases of condition based maintenance with tools that extract essential information and automate data processing. The paper discusses principles that have guided toolbox design and the implemented toolbox structure. Case examples are used to illustrate how condition monitoring applications can be built using the toolbox. In the first case study the toolbox is applied to fault detection of industrial centrifuges based on measured electrical current. The second case study outlines an application for centralized monitoring of a fleet of machines that supports organizational learning.

  20. Wind Turbine Gearbox Oil Filtration and Condition Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Shuangwen

    2015-10-25

    This is an invited presentation for a pre-conference workshop, titled advances and opportunities in lubrication: wind turbine, at the 2015 Society of Tribologists and Lubrication Engineers (STLE) Tribology Frontiers Conference held in Denver, CO. It gives a brief overview of wind turbine gearbox oil filtration and condition monitoring by highlighting typical industry practices and challenges. The presentation starts with an introduction by covering recent growth of global wind industry, reliability challenges, benefits of oil filtration and condition monitoring, and financial incentives to conduct wind operation and maintenance research, which includes gearbox oil filtration and condition monitoring work presented herein. Then, the presentation moves on to oil filtration by stressing the benefits of filtration, discussing typical main- and offline-loop practices, highlighting important factors considered when specifying a filtration system, and illustrating real-world application challenges through a cold-start example. In the next section on oil condition monitoring, a discussion on oil sample analysis, oil debris monitoring, oil cleanliness measurements and filter analysis is given based on testing results mostly obtained by and at NREL, and by pointing out a few challenges with oil sample analysis. The presentation concludes with a brief touch on future research and development (R and D) opportunities. It is hoping that the information presented can inform the STLE community to start or redirect their R and D work to help the wind industry advance.

  1. New technologies in nuclear power plant monitoring and diagnosis

    International Nuclear Information System (INIS)

    Tuerkcan, E.; Ciftcioglu, Oe.

    1996-05-01

    The content of the present paper is as follows. In Sec. 2, the Kalman filtering is briefly described and its relevance to conventional time series analysis methods has been emphasized. In this respect, its NPP monitoring and fault diagnosis implementations are given and the important features are pointed out. In Sec. 3, the NN technology is briefly described and the scope is focused on the NPP monitoring and fault diagnosis implementations. The potentialities of this technology are pointed out. In Sec. 4, the wavelet technology is briefly described and the utilization of this technology in Nuclear Technology is demonstrated. In this respect, also the prospective role of this technology for real-time monitoring and fault diagnosis is revealed. Finally, the influence of the new technologies in reliable and cost effective plant operation viewpoint is discussed. (orig./WL)

  2. New concepts and technologies in home care and ambulatory monitoring.

    Science.gov (United States)

    Dittmar, A; Axisa, F; Delhomme, G; Gehin, C

    2004-01-01

    The world is becoming more and more health conscious. Society, health policy and patients' needs are all changing dramatically. The challenges society is currently facing are related to the increase in the aging population, changes in lifestyle, the need for healthcare cost containment and the need for improvement and monitoring of healthcare quality. The emphasis is put on prevention rather than on treatment. In addition, patients and health consumers are waiting for non-invasive or minimally-invasive diagnosis and treatment methods, for home care, short stays in hospital, enhancement of rehabilitation, information and involvement in their own treatment. Progress in science and technology offers, today, miniaturization, speed, intelligence, sophistication and new materials at lower cost. In this new landscape, microtechnologies, information technologies and telecommunications are key factors. Telemedicine has also evolved. Used initially to exchange patients' files, radiographic data and other information between health providers, today telemedicine contributes to new trends in "hospital extension" through all-day monitoring of vital signs, professional activities, entertainment and home-based activities. The new possibilities for home care and ambulatory monitoring are provided at 4 levels: a) Microsensors. Microtechnologies offer the possibility of small size, but also of intelligent, active devices, working with low energy, wireless and non-invasive or minimally-invasive; b) Wrist devices are particularly user friendly and combine sensors, circuits, supply, display and wireless transmission in a single box, very convenient for common physical activities; c) Health smart clothes make contact with 90 % of the skin and offer many possibilities for the location of sensors. These sensors have to be thin, flexible and compatible with textiles, or made using textile technologies, such as new fibers with specific (mechanical, electrical and optical) properties; d

  3. Application of network technology to Remote Monitoring System

    International Nuclear Information System (INIS)

    Johnson, C.S.; Sorokowski, D.L.; Veevers, K.

    1994-01-01

    The Australian Safeguards Office (ASO) and the US Department of Energy (DOE) have sponsored work under a bilateral agreement to implement a Remote Monitoring System (RMS) at an Australian nuclear site operated by the Australian Nuclear Science and Technology Organization (ANSTO). The RMS, designed by Sandia National Laboratories (SNL), was installed in February 1994 at the Dry Spent Fuel Storage Facility (DSFSF) located at Lucas Heights, Australia. The RMS was designed to test a number of different concepts that would be useful for unattended remote monitoring activities. The DSFSF located in Building 27 is a very suitable test site for a RMS. The RMS uses a network of low cost nodes to collect data from a number of different sensors and security devices. Different sensors and detection devices have been installed to study how they can be used to complement each other for C/S applications. The data collected from the network will allow a comparison of how the various types of sensors perform under the same set of conditions. A video system using digital compression collects digital images and stores them on a hard drive and a digital optical disk. Data and images from the storage area are remotely monitored via telephone from Canberra, Australia and Albuquerque, NM, USA. These remote monitoring stations operated by ASO and SNL respectively, can retrieve data and images from the RMS computer at the DSFSF. The data and images are encrypted before transmission. The Remote Monitoring System field tests have been operational for six months with good test results. Sensors have performed well and the digital images have excellent resolution. The hardware and software have performed reliably without any major difficulties. This paper summarizes the highlights of the prototype system and the ongoing field tests

  4. Characterization, Monitoring, and Sensor Technology Integrated Program (CMST-IP)

    International Nuclear Information System (INIS)

    1994-04-01

    The Characterization, Monitoring, and Sensor Technology Integrated Program seeks to deliver needed technologies, timely and cost-effectively, to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The scope of characterizations monitoring, and sensor technology needs that are required by those organizations encompass: (1) initial location and characterization of wastes and waste environments - prior to treatment; (2) monitoring of waste retrieval, remediation and treatment processes; (3) characterization of the co-position of final waste treatment forms to evaluate the performance of waste treatments processes; and (4) site closure and compliance monitoring. Wherever possible, the CMST-IP fosters technology transfer and commercialization of technologies that it sponsors

  5. Monitoring and analysis of an absorption air-conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Perez de Vinaspre, M.; Bourouis, M.; Coronas, A. [Centro de Innovacion Tecnologica en Revalorizacion Energetica y Refrigeracion, Tarragona (Spain); Garcia, A.; Soto, V.; Pinazo, J.M. [E.T.S. Ingenieros Industriales, Valencia (Spain)

    2004-09-01

    In the last few years, high-energy consumption due to air-conditioning has led to a growing interest in the efficient use of energy in buildings. Although simulation programs have always been the main tools for analyzing energy in buildings, the reliability of their results is often compromised by a lack of certainty to reflect real conditions. The aim of this work is to monitorize and analyze the thermal behavior of an absorption-based air-conditioning installation of a university building in Tarragona, Spain. The existing monitoring system of the installation has been improved by implementing additional sensors and flow meters. The data has been stored during summer 2002 and used to assess the energy balance of the air-conditioning installation and the operational regime of the absorption chiller. [Author].

  6. Smart homes and home health monitoring technologies for older adults: A systematic review.

    Science.gov (United States)

    Liu, Lili; Stroulia, Eleni; Nikolaidis, Ioanis; Miguel-Cruz, Antonio; Rios Rincon, Adriana

    2016-07-01

    Around the world, populations are aging and there is a growing concern about ways that older adults can maintain their health and well-being while living in their homes. The aim of this paper was to conduct a systematic literature review to determine: (1) the levels of technology readiness among older adults and, (2) evidence for smart homes and home-based health-monitoring technologies that support aging in place for older adults who have complex needs. We identified and analyzed 48 of 1863 relevant papers. Our analyses found that: (1) technology-readiness level for smart homes and home health monitoring technologies is low; (2) the highest level of evidence is 1b (i.e., one randomized controlled trial with a PEDro score ≥6); smart homes and home health monitoring technologies are used to monitor activities of daily living, cognitive decline and mental health, and heart conditions in older adults with complex needs; (3) there is no evidence that smart homes and home health monitoring technologies help address disability prediction and health-related quality of life, or fall prevention; and (4) there is conflicting evidence that smart homes and home health monitoring technologies help address chronic obstructive pulmonary disease. The level of technology readiness for smart homes and home health monitoring technologies is still low. The highest level of evidence found was in a study that supported home health technologies for use in monitoring activities of daily living, cognitive decline, mental health, and heart conditions in older adults with complex needs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Technological advances in perioperative monitoring: Current concepts and clinical perspectives.

    Science.gov (United States)

    Chilkoti, Geetanjali; Wadhwa, Rachna; Saxena, Ashok Kumar

    2015-01-01

    Minimal mandatory monitoring in the perioperative period recommended by Association of Anesthetists of Great Britain and Ireland and American Society of Anesthesiologists are universally acknowledged and has become an integral part of the anesthesia practice. The technologies in perioperative monitoring have advanced, and the availability and clinical applications have multiplied exponentially. Newer monitoring techniques include depth of anesthesia monitoring, goal-directed fluid therapy, transesophageal echocardiography, advanced neurological monitoring, improved alarm system and technological advancement in objective pain assessment. Various factors that need to be considered with the use of improved monitoring techniques are their validation data, patient outcome, safety profile, cost-effectiveness, awareness of the possible adverse events, knowledge of technical principle and ability of the convenient routine handling. In this review, we will discuss the new monitoring techniques in anesthesia, their advantages, deficiencies, limitations, their comparison to the conventional methods and their effect on patient outcome, if any.

  8. Nonlinear Cointegration Approach for Condition Monitoring of Wind Turbines

    Directory of Open Access Journals (Sweden)

    Konrad Zolna

    2015-01-01

    Full Text Available Monitoring of trends and removal of undesired trends from operational/process parameters in wind turbines is important for their condition monitoring. This paper presents the homoscedastic nonlinear cointegration for the solution to this problem. The cointegration approach used leads to stable variances in cointegration residuals. The adapted Breusch-Pagan test procedure is developed to test for the presence of heteroscedasticity in cointegration residuals obtained from the nonlinear cointegration analysis. Examples using three different time series data sets—that is, one with a nonlinear quadratic deterministic trend, another with a nonlinear exponential deterministic trend, and experimental data from a wind turbine drivetrain—are used to illustrate the method and demonstrate possible practical applications. The results show that the proposed approach can be used for effective removal of nonlinear trends form various types of data, allowing for possible condition monitoring applications.

  9. Three State-of-the-Art Methods for Condition Monitoring

    NARCIS (Netherlands)

    Grimmelius, H.T.; Meiler, P.P.; Maas, H.L.M.M.; Bonnier, B.; Grevink, J.S.; Kuilenburg, R.F. van

    1999-01-01

    This paper describes and compares three different state-of-the-art condition monitoring techniques: first principles, feature extraction, and neural networks. The focus of the paper is on the application of the techniques, not on the underlying theory. Each technique is described briefly and is

  10. Groundwater detection monitoring system design under conditions of uncertainty

    NARCIS (Netherlands)

    Yenigül, N.B.

    2006-01-01

    Landfills represent a wide-spread and significant threat to groundwater quality. In this thesis a methodology was developed for the design of optimal groundwater moni-toring system design at landfill sites under conditions of uncertainty. First a decision analysis approach was presented for optimal

  11. Improvements in valve reliability due to implementation of effective condition monitoring programs

    International Nuclear Information System (INIS)

    Hale, Stan

    2003-01-01

    Modern diagnostic systems for motor-operated valves, pneumatic control valves and checkvalves have facilitated a shift in the maintenance philosophy for valves and actuators in nuclear power plants from schedule based to condition-based maintenance (CBM). This shift enables plant management to focus resources and schedule priority on the plant equipment that warrants attention thereby not wasting resources or increasing the human factors risk on equipment that has not degraded. The most recent initiatives combine condition monitoring with risk/safety insights to focus attention and resonances on the right equipment at the right time consistent with each component's safety-significance. The activities of the ASME working groups responsible for nuclear O and M codes have kept pace with the technology and process improvements necessary to maximize the technical and economic benefits of condition based and risk informed maintenance. This paper discusses adoption of valve condition monitoring in the nuclear power industry, changes to ASME codes and standards during the 90's to facilitate adoption of condition monitoring technology for in-service testing and recent efforts to combine risk insights with condition monitoring strategies to achieve the highest level of valve reliability and nuclear safety without over inflating maintenance cost. (author)

  12. Long-term monitoring of sea ice conditions in the Kerch Strait by remote sensing data

    Science.gov (United States)

    Lavrova, Olga Yu.; Mityagina, Marina I.; Bocharova, Tatiana Yu.; Kostianoy, Andrey G.

    2017-10-01

    The results of multi-year satellite monitoring of ice conditions in the Kerch Strait connecting the Black and Azov Seas are discussed. The issue gained importance in view of the ongoing construction of the Crimean Bridge across the strait. Our monitoring has been based on the whole variety of available satellite data including visible and radar data over the past 17 years. Every year the Azov Sea becomes fully or partially covered by ice during the cold season. In severe winters, ice often is carried to the Kerch Strait and even the Black Sea. An analysis of ice drift hydrometeorological conditions is presented. The ice conditions of 2017 are under special consideration. Everyday satellite monitoring of the Kerch Strait, including the construction area of the Crimean Bridge, revealed ice formation and drift features on the way from the Azov Sea through the Kerch Strait as well as ice interaction with the piers of the main and technological bridges under construction. It was found that, even under strong northeast winds, ice can pass neither through the piers, nor via the widest shipway. At present, it is hard to discern the impacts of the two bridges on floating ice, nevertheless when the construction is over and the technological bridge is gone, by all appearances the main bridge will strongly affect ice conditions in the Kerch Strait. This perspective calls for continuous satellite monitoring of the area that is enabled by cutting-edge systems and technologies.

  13. Students attendance monitoring using near field communication technology

    OpenAIRE

    Stakėnas, Tautvydas

    2017-01-01

    Today, near field communication technology (NFC) is one of the most popular automatic identification technologies. There is a lot of research and development in this area trying to make as much use of this technology as possible, and in coming years many new applications and research areas will continue to appear. In this paper the author examines NFC technology application for student’s attendance monitoring. In the first part of the thesis NFC uses, application methods and security levels a...

  14. Condition monitoring and maintenance of nuclear power plant concrete structures

    International Nuclear Information System (INIS)

    Orr, R.; Prasad, N.

    1988-01-01

    Nuclear power plant concrete structures are potentially subject to deterioration due to several environmental conditions, including weather exposure, ground water exposure, and sustained high temperature and radiation levels. The nuclear power plant are generally licensed for a term of 40 years. In order to maximize the return from the existing plants, feasibility studies are in progress for continued operation of many of these plants beyond the original licensed life span. This paper describes a study that was performed with an objective to define appropriate condition monitoring and maintenance procedures. A timely implementation of a condition monitoring and maintenance program would provide a valuable database and would provide justification for extension of the plant's design life. The study included concrete structures such as the containment buildings, interior structures, basemats, intake structures and cooling towers. Age-related deterioration at several operating power plants was surveyed and the potential degradation mechanisms have been identified

  15. Measurement and monitoring technologies are important SITE program component

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    An ongoing component of the Superfund Innovative Technologies Evaluation (SITE) Program, managed by the US EPA at its Hazardous Waste Engineering Research Laboratory in Cincinnati, is the development and demonstration of new and innovative measurement and monitoring technologies that will be applicable to Superfund site characterization. There are four important roles for monitoring and measurement technologies at Superfund sites: (1) to assess the extent of contamination at a site, (2) to supply data and information to determine impacts to human health and the environment, (3) to supply data to select the appropriate remedial action, and (4) to monitor the success or effectiveness of the selected remedy. The Environmental Monitoring Systems Laboratory in Las Vegas, Nevada (EMSL-LV) has been supporting the development of improved measurement and monitoring techniques in conjunction with the SITE Program with a focus on two areas: Immunoassay for toxic substances and fiber optic sensing for in-situ analysis at Superfund sites

  16. Human monitoring, smart health and assisted living techniques and technologies

    CERN Document Server

    Longhi, Sauro; Freddi, Alessandro

    2017-01-01

    This book covers the three main scientific and technological areas critical for improving people's quality of life - namely human monitoring, smart health and assisted living - from both the research and development points of view.

  17. Integrated online condition monitoring system for nuclear power plants

    International Nuclear Information System (INIS)

    Hashemian, Hashem M.

    2010-01-01

    Online condition monitoring or online monitoring (OLM) uses data acquired while a nuclear power is operating to continuously assess the health of the plant's sensors, processes, and equipment; to measure the dynamic performance of the plant's process instrumentation; to verify in-situ the calibration of the process instrumentation; to detect blockages, voids, and leaks in the pressure sensing lines; to identify core flow anomalies; to extend the life of neutron detectors and other sensors; and to measure the vibration of reactor internals. Both the steady-state or DC output of plant sensors and their AC signal or noise output can be used to assess sensor health, depending on whether the application is monitoring a rapidly changing (e.g., core barrel motion) or a slowly changing (e.g., sensor calibration) process. The author has designed, developed, installed, and tested OLM systems (comprised of software/hardware-based data acquisition and data processing modules) that integrate low-frequency (1 mHz to 1 Hz) techniques such as RTD cross-calibration, pressure transmitter calibration monitoring, and equipment condition monitoring and high-frequency (1 Hz to 1 kHz) techniques such as the noise analysis technique. The author has demonstrated the noise analysis technique's effectiveness for measuring the dynamic response-time of pressure transmitters and their sensing lines; for performing predictive maintenance on reactor internals; for detecting core flow anomalies; and for extending neutron detector life. Integrated online condition monitoring systems can combine AC and DC data acquisition and signal processing techniques, can use data from existing process sensors during all modes of plant operation, including startup, normal operation, and shutdown; can be retrofitted into existing PWRs, BWRs, and other reactor types and will be integrated into next-generation plants. (orig.)

  18. Integrated online condition monitoring system for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, Hashem M. [Analysis and Measurement Services Corporation, Knoxville, TN (United States). AMS Technology Center

    2010-09-15

    Online condition monitoring or online monitoring (OLM) uses data acquired while a nuclear power is operating to continuously assess the health of the plant's sensors, processes, and equipment; to measure the dynamic performance of the plant's process instrumentation; to verify in-situ the calibration of the process instrumentation; to detect blockages, voids, and leaks in the pressure sensing lines; to identify core flow anomalies; to extend the life of neutron detectors and other sensors; and to measure the vibration of reactor internals. Both the steady-state or DC output of plant sensors and their AC signal or noise output can be used to assess sensor health, depending on whether the application is monitoring a rapidly changing (e.g., core barrel motion) or a slowly changing (e.g., sensor calibration) process. The author has designed, developed, installed, and tested OLM systems (comprised of software/hardware-based data acquisition and data processing modules) that integrate low-frequency (1 mHz to 1 Hz) techniques such as RTD cross-calibration, pressure transmitter calibration monitoring, and equipment condition monitoring and high-frequency (1 Hz to 1 kHz) techniques such as the noise analysis technique. The author has demonstrated the noise analysis technique's effectiveness for measuring the dynamic response-time of pressure transmitters and their sensing lines; for performing predictive maintenance on reactor internals; for detecting core flow anomalies; and for extending neutron detector life. Integrated online condition monitoring systems can combine AC and DC data acquisition and signal processing techniques, can use data from existing process sensors during all modes of plant operation, including startup, normal operation, and shutdown; can be retrofitted into existing PWRs, BWRs, and other reactor types and will be integrated into next-generation plants. (orig.)

  19. USING CONDITION MONITORING TO PREDICT REMAINING LIFE OF ELECTRIC CABLES

    International Nuclear Information System (INIS)

    LOFARO, R.; SOO, P.; VILLARAN, M.; GROVE, E.

    2001-01-01

    Electric cables are passive components used extensively throughout nuclear power stations to perform numerous safety and non-safety functions. It is known that the polymers commonly used to insulate the conductors on these cables can degrade with time; the rate of degradation being dependent on the severity of the conditions in which the cables operate. Cables do not receive routine maintenance and, since it can be very costly, they are not replaced on a regular basis. Therefore, to ensure their continued functional performance, it would be beneficial if condition monitoring techniques could be used to estimate the remaining useful life of these components. A great deal of research has been performed on various condition monitoring techniques for use on electric cables. In a research program sponsored by the U.S. Nuclear Regulatory Commission, several promising techniques were evaluated and found to provide trendable information on the condition of low-voltage electric cables. These techniques may be useful for predicting remaining life if well defined limiting values for the aging properties being measured can be determined. However, each technique has advantages and limitations that must be addressed in order to use it effectively, and the necessary limiting values are not always easy to obtain. This paper discusses how condition monitoring measurements can be used to predict the remaining useful life of electric cables. The attributes of an appropriate condition monitoring technique are presented, and the process to be used in estimating the remaining useful life of a cable is discussed along with the difficulties that must be addressed

  20. A design condition for incorporating human judgement into monitoring systems

    International Nuclear Information System (INIS)

    Tanaka, K.; Klir, G.J.

    1999-01-01

    In safety monitoring, there exists an uncertainty situation in which the sensor cannot detect whether or not the monitored object is in danger. For the uncertainty zone identified by a non-homogeneous safety monitoring system that utilizes two types of sensors with different thresholds, operators or experts are expected to judge whether the real state is safe or dangerous on the basis of additional information from a detailed inspection or other related sensors output. However, the activities for inspection performed by relevant humans may require additional cost and introduce inspection errors. The present article proposes two types of an automatic monitoring system not involving any human inspection or a human-machine (H-M) cooperative monitoring system with inspection. In order to compare the systems, an approach based on the Dempster-Shafer theory is proposed as uncertainty analysis by this theory (it is simpler than by the traditional Bayesian approach). By comparing their expected losses as a result of failed dangerous failures or failed safe failures as well as the inspection errors, the condition is determined under which H-M cooperative systems incorporating human judgements are more effective than automatic monitoring systems

  1. Fast beam condition monitor for CMS. Performance and upgrade

    International Nuclear Information System (INIS)

    Leonard, Jessica L.; Bell, Alan; Burtowy, Piotr

    2014-05-01

    The CMS beam and radiation monitoring subsystem BCM1F (Fast Beam Condition Monitor) consists of 8 individual diamond sensors situated around the beam pipe within the pixel detector volume, for the purpose of fast bunch-by-bunch monitoring of beam background and collision products. In addition, effort is ongoing to use BCM1F as an online luminosity monitor. BCM1F will be running whenever there is beam in LHC, and its data acquisition is independent from the data acquisition of the CMS detector, hence it delivers luminosity even when CMS is not taking data. A report is given on the performance of BCM1F during LHC run I, including results of the van der Meer scan and on-line luminosity monitoring done in 2012. In order to match the requirements due to higher luminosity and 25 ns bunch spacing, several changes to the system must be implemented during the upcoming shutdown, including upgraded electronics and precise gain monitoring. First results from Run II preparation are shown.

  2. Fast Beam Condition Monitor for CMS: performance and upgrade

    CERN Document Server

    INSPIRE-00009152; Bell, Alan; Burtowy, Piotr; Dabrowski, Anne; Hempel, Maria; Henschel, Hans; Lange, Wolfgang; Lohmann, Wolfgang; Odell, Nathaniel; Penno, Marek; Pollack, Brian; Przyborowski, Dominik; Ryjov, Vladimir; Stickland, David; Walsh, Roberval; Warzycha, Weronika; Zagozdzinska, Agnieszka

    2014-11-21

    The CMS beam and radiation monitoring subsystem BCM1F (Fast Beam Condition Monitor) consists of 8 individual diamond sensors situated around the beam pipe within the pixel detector volume, for the purpose of fast bunch-by-bunch monitoring of beam background and collision products. In addition, effort is ongoing to use BCM1F as an online luminosity monitor. BCM1F will be running whenever there is beam in LHC, and its data acquisition is independent from the data acquisition of the CMS detector, hence it delivers luminosity even when CMS is not taking data. A report is given on the performance of BCM1F during LHC run I, including results of the van der Meer scan and on-line luminosity monitoring done in 2012. In order to match the requirements due to higher luminosity and 25 ns bunch spacing, several changes to the system must be implemented during the upcoming shutdown, including upgraded electronics and precise gain monitoring. First results from Run II preparation are shown.

  3. Implementation strategies and tools for condition based monitoring at nuclear power plants

    International Nuclear Information System (INIS)

    2007-05-01

    There is now an acute need to optimize maintenance to improve both reliability and competitiveness of nuclear power plant operation. There is an increasing tendency to move from the preventive (time based) maintenance concept to one dependent on plant and component conditions. In this context, various on-line and off-line condition monitoring and diagnostics, nondestructive inspection techniques and surveillance are used. Component selection for condition based maintenance, parameter selection for monitoring condition, evaluation of condition monitoring results are issues influencing the effectiveness of condition based maintenance. All these selections of components and parameters to be monitored, monitoring and diagnostics techniques to be used, acceptance criteria and trending for condition evaluation, and the economic aspect of predictive maintenance and condition monitoring should be incorporated into an integrated, effective condition based maintenance programme, which is part of the plant's overall maintenance optimization programme. This publication collects and analyses proven condition based maintenance strategies and techniques (engineering and organizational) in Member States. It includes selected papers on maintenance optimization presented during its preparation. This report was prepared under IAEA project on integrated NPP life cycle management including decommissioning. The main objective of an integrated life cycle management programme is to enable NPP's to compete, without compromising safety, successfully in the changing energy markets throughout their service life and to facilitate life extension and eventual decommissioning through improved engineering, technological, economic and managerial actions. The technical working group on NPP life management and other advisory groups nominated by the Member States provide recommendations on high priority needs of Member States in this area

  4. Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale facility implementation -- monitoring technology

    International Nuclear Information System (INIS)

    Johnson, H.R.; Overbey, W.K. Jr.; Molnar, D.L.

    1994-02-01

    The objective of this study was to investigate and evaluate existing proven technologies for the monitoring of hazardous waste sites during remediation activities and to protect the health and safety of all related entities while complying with government regulations. The study began with a literature search to determine manufacturers and related instrumentation which would be applicable to the most complex (in terms of toxicity and mediums affected) sites. Criteria for monitoring and analyses were established and a functional analysis was performed to select the most appropriate instrumentation available. Gas Chromatography/Mass Spectrometry is the most widely accepted method for generating quantitative data given the characterization of the Winfield site. Fourier Transform Infrared Spectroscopy, while not a new technology, has the distinct advantage of measuring simultaneously hundreds of gaseous pollutants which can also be sparged from water and this technology received the highest score as per the functional analysis. To protect workers and the public surrounding remediation sites which are known to contain VOCs, on site monitoring prior to, and during the excavation operations, is recommended until enough data are obtained to assess the health risks to workers. The conclusion of this study is to recommend evaluation of both the mobile GC/MS and FTIR systems simultaneously in identical operating conditions

  5. [A wireless mobile monitoring system based on bluetooth technology].

    Science.gov (United States)

    Sun, Shou-jun; Wu, Kai; Wu, Xiao-Ming

    2006-09-01

    This paper presents a wireless mobile monitoring system based on Bluetooth technology. This system realizes the remote mobile monitoring of multiple physiological parameters, and has the characters of easy use, low cost, good reliability and strong capability of anti-jamming.

  6. Abnormal Condition Monitoring of Workpieces Based on RFID for Wisdom Manufacturing Workshops

    Directory of Open Access Journals (Sweden)

    Cunji Zhang

    2015-12-01

    Full Text Available Radio Frequency Identification (RFID technology has been widely used in many fields. However, previous studies have mainly focused on product life cycle tracking, and there are few studies on real-time status monitoring of workpieces in manufacturing workshops. In this paper, a wisdom manufacturing model is introduced, a sensing-aware environment for a wisdom manufacturing workshop is constructed, and RFID event models are defined. A synthetic data cleaning method is applied to clean the raw RFID data. The Complex Event Processing (CEP technology is adopted to monitor abnormal conditions of workpieces in real time. The RFID data cleaning method and data mining technology are examined by simulation and physical experiments. The results show that the synthetic data cleaning method preprocesses data well. The CEP based on the Rifidi® Edge Server technology completed abnormal condition monitoring of workpieces in real time. This paper reveals the importance of RFID spatial and temporal data analysis in real-time status monitoring of workpieces in wisdom manufacturing workshops.

  7. Abnormal Condition Monitoring of Workpieces Based on RFID for Wisdom Manufacturing Workshops

    Science.gov (United States)

    Zhang, Cunji; Yao, Xifan; Zhang, Jianming

    2015-01-01

    Radio Frequency Identification (RFID) technology has been widely used in many fields. However, previous studies have mainly focused on product life cycle tracking, and there are few studies on real-time status monitoring of workpieces in manufacturing workshops. In this paper, a wisdom manufacturing model is introduced, a sensing-aware environment for a wisdom manufacturing workshop is constructed, and RFID event models are defined. A synthetic data cleaning method is applied to clean the raw RFID data. The Complex Event Processing (CEP) technology is adopted to monitor abnormal conditions of workpieces in real time. The RFID data cleaning method and data mining technology are examined by simulation and physical experiments. The results show that the synthetic data cleaning method preprocesses data well. The CEP based on the Rifidi® Edge Server technology completed abnormal condition monitoring of workpieces in real time. This paper reveals the importance of RFID spatial and temporal data analysis in real-time status monitoring of workpieces in wisdom manufacturing workshops. PMID:26633418

  8. A new site characterization and monitoring technology

    International Nuclear Information System (INIS)

    Nielsen, B.J.; Bohne, D.A.; Lindstrom, D.R.

    1995-01-01

    New sensor technologies are being developed to meet the nation's environmental remediation and compliance programs. In 1993, the US Air Force Armstrong Laboratory and Loral Defense System, Eagan (formerly a division of Unisys Corporation) signed a Cooperative Research and Development Agreement (CRDA) to commercialize fiber optic laser-induced fluorescence technology that had been developed with US Air Force funding at North Dakota State University (NDSU). A consortium consisting of the CRDA partners (USAF and Loral), Dakota Technologies, Inc., and NDSU submitted a proposal to the Advanced Research Projects Agency, Technology Reinvestment Project and won an award to fund the commercialization. The result, the Rapid Optical Screening Tool or ROST is a state-of-the-art laser spectroscopy system for analysis of aromatic hydrocarbon-contaminated soil and groundwater. With ROST, environmental investigators are able to find, classify, and map the distribution of many hazardous chemicals in the field instead of waiting for reports to come back from analytical laboratory. The research and development program leading to prototype laser spectrometers is summarized along with results from laboratory and field demonstrations illustrating system performance and benefits for site characterization. The technology has recently been demonstrated in Europe in Germany, the Netherlands, France and several sites in the United Kingdom having light, medium, and heavy aromatic hydrocarbon contamination from fuel spills and refinery or chemical plant operations

  9. Bridge condition assessment based on long-term strain monitoring

    Science.gov (United States)

    Sun, LiMin; Sun, Shouwang

    2011-04-01

    In consideration of the important role that bridges play as transportation infrastructures, their safety, durability and serviceability have always been deeply concerned. Structural Health Monitoring Systems (SHMS) have been installed to many long-span bridges to provide bridge engineers with the information needed in making rational decisions for maintenance. However, SHMS also confronted bridge engineers with the challenge of efficient use of monitoring data. Thus, methodologies which are robust to random disturbance and sensitive to damage become a subject on which many researches in structural condition assessment concentrate. In this study, an innovative probabilistic approach for condition assessment of bridge structures was proposed on the basis of long-term strain monitoring on steel girder of a cable-stayed bridge. First, the methodology of damage detection in the vicinity of monitoring point using strain-based indices was investigated. Then, the composition of strain response of bridge under operational loads was analyzed. Thirdly, the influence of temperature and wind on strains was eliminated and thus strain fluctuation under vehicle loads is obtained. Finally, damage evolution assessment was carried out based on the statistical characteristics of rain-flow cycles derived from the strain fluctuation under vehicle loads. The research conducted indicates that the methodology proposed is qualified for structural condition assessment so far as the following respects are concerned: (a) capability of revealing structural deterioration; (b) immunity to the influence of environmental variation; (c) adaptability to the random characteristic exhibited by long-term monitoring data. Further examination of the applicability of the proposed methodology in aging bridge may provide a more convincing validation.

  10. Wire system aging assessment and condition monitoring (WASCO)

    International Nuclear Information System (INIS)

    Fantoni, P.F.

    2007-04-01

    Nuclear facilities rely on electrical wire systems to perform a variety of functions for successful operation. Many of these functions directly support the safe operation of the facility; therefore, the continued reliability of wire systems, even as they age, is critical. Condition Monitoring (CM) of installed wire systems is an important part of any aging program, both during the first 40 years of the qualified life and even more in anticipation of the license renewal for a nuclear power plant. This report contains some test results of a method for wire system condition monitoring, developed at the Halden Reactor Project, called LIRA (LIne Resonance Analysis), which can be used on-line to detect any local or global changes in the cable electrical parameters as a consequence of insulation faults or degradation. (au)

  11. Monitoring of Double Stud Wall Moisture Conditions in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Westford, MA (United States)

    2015-03-01

    Double-stud walls insulated with cellulose or low-density spray foam can have R-values of 40 or higher. However, double stud walls have a higher risk of interior-sourced condensation moisture damage, when compared with high-R approaches using exterior insulating sheathing.; Moisture conditions in double stud walls were monitored in Zone 5A (Massachusetts); three double stud assemblies were compared.

  12. Why is it important to monitor social conditions in wilderness?

    Science.gov (United States)

    Alan E. Watson

    1990-01-01

    “Social conditions in wilderness” refers to all aspects of human use of the wilderness that pose the possibility of impact to the resource and visitor experiences. The reasons for monitoring (1) use levels and use trends (including characteristics of use and users) and (2) the quality of the recreation experiences provided (ability to provide naturalness, privacy, and...

  13. Artificial intelligence-based condition monitoring for practical electrical drives

    OpenAIRE

    Ashari, Djoni; Pislaru, Crinela; Ball, Andrew; Gu, Fengshou

    2012-01-01

    The main types of existing Condition Monitoring methods (MCSA, GA, IAS) for electrical drives are\\ud described. Then the steps for the design of expert systems are presented: problem identification and analysis, system specification, development tool selection, knowledge based, prototyping and testing. The employment of SOMA (Self-Organizing Migrating Algorithm) used for the optimization of ambient\\ud vibration energy harvesting is analyzed. The power electronics devices are becoming smaller ...

  14. Monitoring the Microcirculation in Critical Conditions: Possibilities and Limitations

    Directory of Open Access Journals (Sweden)

    T. O. Tokmakova

    2012-01-01

    Full Text Available The paper provides an analytical review of the references on the role of microcirculatory disorders in the development of critical conditions, the significance of circulatory monitoring, specifically, to make a presumptive prognosis of multiple organ dysfunction. It defines main directions in the diagnosis and correction of microcirculatory disorders as direct (infusion therapy and indirect (influence on the components of a systemic inflammatory response, by extending to microcirculatory correction microcirculatory exposures. Key words: critical conditions, multiple organ dysfunction, procedures to evaluate and correct microcirculation.

  15. ONLINE TECHNOLOGICAL MONITORING OF INSULATION DEFECTS IN ENAMELED WIRES

    Directory of Open Access Journals (Sweden)

    V. M. Zolotaryov

    2017-08-01

    Full Text Available In this paper the authors used non-destructive technological monitoring of defects insulation enameled wire with poliimid polymer. The paper is devoted to the statistical method for processing, comparison and analysis of results of measurements of parameters of insulation of enameled wire because of mathematical model of trend for application in active technological monitoring is developed; the recommendations for parameters of such monitoring are used. It is theoretically justified and the possibility of determination of dependence of the error on the velocity of movement of a wire for want of quantifying of defects in enameled insulation by non-destructive tests by high voltage. The dependence of average value of amount of defects for enameled wire with two-sheeted poliimid insulation in a range of nominal diameter 0.56 mm is experimentally determined. The technological monitoring purpose is to reduce the quantifying defects of enameled insulation.

  16. Luminosity measurement and beam condition monitoring at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Jessica Lynn [DESY, Zeuthen (Germany)

    2015-07-01

    The BRIL system of CMS consists of instrumentation to measure the luminosity online and offline, and to monitor the LHC beam conditions inside CMS. An accurate luminosity measurement is essential to the CMS physics program, and measurement of the beam background is necessary to ensure safe operation of CMS. In expectation of higher luminosity and denser proton bunch spacing during LHC Run II, many of the BRIL subsystems are being upgraded and others are being added to complement the existing measurements. The beam condition monitor (BCM) consists of several sets of diamond sensors used to measure online luminosity and beam background with a single-bunch-crossing resolution. The BCM also detects when beam conditions become unfavorable for CMS running and may trigger a beam abort to protect the detector. The beam halo monitor (BHM) uses quartz bars to measure the background of the incoming beams at larger radii. The pixel luminosity telescope (PLT) consists of telescopes of silicon sensors designed to provide a CMS online and offline luminosity measurement. In addition, the forward hadronic calorimeter (HF) will deliver an independent luminosity measurement, making the whole system robust and allowing for cross-checks of the systematics. Data from each of the subsystems will be collected and combined in the BRIL DAQ framework, which will publish it to CMS and LHC. The current status of installation and commissioning results for the BRIL subsystems are given.

  17. Surface Acoustic Wave (SAW Resonators for Monitoring Conditioning Film Formation

    Directory of Open Access Journals (Sweden)

    Siegfried Hohmann

    2015-05-01

    Full Text Available We propose surface acoustic wave (SAW resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM sensor measurements, which confirmed the suitability of the SAW resonators for this application.

  18. Applications of aerospace technology in biomedicine. A technology transfer profile: Patient monitoring

    Science.gov (United States)

    Murray, D. M.

    1971-01-01

    NASA contributions to cardiovascular monitoring are described along with innovations in intracardiac blood pressure monitoring. A brief overview of the process of NASA technology transfer in patient monitoring is presented and a list of bioinstrumentation tech briefs and the number of requests for technical support is included.

  19. Vibration condition monitoring of planetary gearbox under varying external load

    Energy Technology Data Exchange (ETDEWEB)

    Bartelmus, W.; Zimroz, R. [Wroclaw University of Technology, Wroclaw (Poland)

    2009-01-15

    The paper shows that for condition monitoring of planetary gearboxes it is important to identify the external varying load condition. In the paper, systematic consideration has been taken of the influence of many factors on the vibration signals generated by a system in which a planetary gearbox is included. These considerations give the basis for vibration signal interpretation, development of the means of condition monitoring, and for the scenario of the degradation of the planetary gearbox. Real measured vibration signals obtained in the industrial environment are processed. The signals are recorded during normal operation of the diagnosed objects, namely planetary gearboxes, which are a part of the driving system used in a bucket wheel excavator, used in lignite mines. It has been found that the most important factor of the proper planetary gearbox condition is connected with perturbation of arm rotation, where an arm rotation gives rise to a specific vibration signal whose properties are depicted by a short-time Fourier transform (STFT) and Wigner-Ville distribution presented as a time-frequency map. The paper gives evidence that there are two dominant low-frequency causes that influence vibration signal modulation, i.e. the varying load, which comes from the nature of the bucket wheel digging process, and the arm/carrier rotation. These two causes determine the condition of the planetary gearboxes considered.

  20. Monitoring machining conditions by analyzing cutting force vibration

    Energy Technology Data Exchange (ETDEWEB)

    Piao, Chun Guang; Kim, Ju Wan; Kim, Jin Oh; Shin, Yoan [Soongsl University, Seoul (Korea, Republic of)

    2015-09-15

    This paper deals with an experimental technique for monitoring machining conditions by analyzing cutting-force vibration measured at a milling machine. This technique is based on the relationship of the cutting-force vibrations with the feed rate and cutting depth as reported earlier. The measurement system consists of dynamic force transducers and a signal amplifier. The analysis system includes an oscilloscope and a computer with a LabVIEW program. Experiments were carried out at various feed rates and cutting depths, while the rotating speed was kept constant. The magnitude of the cutting force vibration component corresponding to the number of cutting edges multiplied by the frequency of rotation was linearly correlated with the machining conditions. When one condition of machining is known, another condition can be identified by analyzing the cutting-force vibration.

  1. Monitoring machining conditions by analyzing cutting force vibration

    International Nuclear Information System (INIS)

    Piao, Chun Guang; Kim, Ju Wan; Kim, Jin Oh; Shin, Yoan

    2015-01-01

    This paper deals with an experimental technique for monitoring machining conditions by analyzing cutting-force vibration measured at a milling machine. This technique is based on the relationship of the cutting-force vibrations with the feed rate and cutting depth as reported earlier. The measurement system consists of dynamic force transducers and a signal amplifier. The analysis system includes an oscilloscope and a computer with a LabVIEW program. Experiments were carried out at various feed rates and cutting depths, while the rotating speed was kept constant. The magnitude of the cutting force vibration component corresponding to the number of cutting edges multiplied by the frequency of rotation was linearly correlated with the machining conditions. When one condition of machining is known, another condition can be identified by analyzing the cutting-force vibration

  2. Study on city underground NBC monitoring technology

    International Nuclear Information System (INIS)

    Hu Jiewei; Fang Zongliang; Wen Qilin; Cao Jianfeng; Peng Jing; Xu Feiyan

    2012-01-01

    Recent years, the NBC terrorism threat has become the major terrorist form which affects the national security and the public lives and properties. As the great power of politics and economy, and the main power of anti-terrorism around the world, China also faces the critical challenge of guarding against the NBC terrorist attack. The subway has become the main transportation due to its inexpensiveness and convenience, which also makes subway the target of terrorism attack. The paper discusses how to set up an NBC integrated monitoring technique suitable for city subways, and proposes a relative solution. (authors)

  3. Development of alpha radioactivity monitor using ionized air transport technology

    International Nuclear Information System (INIS)

    Maekawa, Tatsuyuki

    2008-01-01

    A novel alpha radioactivity monitor using ionized air transport technology has been developed for future constitution of 'Clearance Level' for uranium and TRU radioactive waste. We carried out optimum design and realized two kinds of practical alpha activity monitor, combining with radiation detector technology, ionized air physics and computational fluid dynamics. The results will bring paradigm shift on the alpha-ray measurement such as converting 'closely contacting and scanning measurement' to 'remotely measurement in the block', and drastically improve the efficiency of measurement operation. We hope that this technology will be widely endorsed as the practical method for the alpha clearance measurement in future. (author)

  4. Leak detection, monitoring, and mitigation technology trade study update

    International Nuclear Information System (INIS)

    HERTZEL, J.S.

    1998-01-01

    This document is a revision and update to the initial report that describes various leak detection, monitoring, and mitigation (LDMM) technologies that can be used to support the retrieval of waste from the single-shell tanks (SST) at the Hanford Site. This revision focuses on the improvements in the technical performance of previously identified and useful technologies, and it introduces new technologies that might prove to be useful

  5. Leak detection, monitoring, and mitigation technology trade study update

    Energy Technology Data Exchange (ETDEWEB)

    HERTZEL, J.S.

    1998-11-10

    This document is a revision and update to the initial report that describes various leak detection, monitoring, and mitigation (LDMM) technologies that can be used to support the retrieval of waste from the single-shell tanks (SST) at the Hanford Site. This revision focuses on the improvements in the technical performance of previously identified and useful technologies, and it introduces new technologies that might prove to be useful.

  6. Operant Conditioning and Learning: Examples, Sources, Technology.

    Science.gov (United States)

    Pedrini, Bonnie C.; Pedrini, D. T.

    The purpose of this paper is to relate psychology to teaching generally, and to relate behavior shaping to curriculum, specifically. Focusing on operant conditioning and learning, many studies are cited which illustrate some of the work being done toward effectively shaping or modifying student behavior whether in terms of subject matter or…

  7. Condition monitoring of a check valve for nuclear power plants by means of acoustic emission technique

    International Nuclear Information System (INIS)

    Lee, M. R.; Lee, J. H.; Kim, J. T.; Kim, J. S.; Luk, V. K.

    2003-01-01

    This work performed in support of the International Nuclear Energy Research Institute (INERI) program, which was to develop and demonstrate advanced sensor and computational technology for on-line monitoring of the condition of components, structures, and systems in advanced and next-generation nuclear power plants (NPPs). This primary object of this work is to investigate advanced condition monitoring systems based on acoustic emission detection that can provide timely detection of check valve degeneration and service aging so that maintenance/replacement could be preformed prior to loss safety function. The research is focused on the capability of AE technique to provide diagnostic information useful in determining check valve aging and degradation check valve failure and undesirable operating modes. This work also includes the investigation and adaptation of several advanced sensor technologies such as accelerometer and advanced ultrasonic technique. In addition, this work will develop advanced sophisticated signal processing, noise reduction, and pattern recognition techniques and algorithms from check valve degradation.

  8. Condition monitoring of rotormachinery in nuclear power plants

    International Nuclear Information System (INIS)

    Suedmersen, U.; Runkel, J.; Vortriede, A.; Reimche, W.; Stegemann, D.

    1996-01-01

    Due to safety and economical reasons diagnostic and monitoring systems are of growing interest in nuclear power plants and other complex industrial productions. Key components of NPP's are rotating machineries of the primary and secondary loops like PWR main coolant pumps, BWR recirculation pumps, turbines, fresh water pumps and feed water pumps. Diagnostic systems are requested which detect, diagnose and localize faulty operation conditions at an early stage in order to prevent severe failures and to enable predictive and condition oriented maintenance. The knowledge of characteristical machine signatures and their time dependent behaviour are the basis of efficient condition monitoring of rotating machines. The performance of reference measurements are of importance for fault detection during operation by trend settings. The comparison with thresholds given by norms and standards is only a small section of available possibilities. Therefore, for each machinery own thresholds should be determined using statistical time values, spectra comparison, cepstrum analysis and correlation analysis for source localization corresponding to certain machine operation conditions. (author). 14 refs, 15 figs

  9. ASSESSMENT OF CABLE AGING USING CONDITION MONITORING TECHNIQUES

    International Nuclear Information System (INIS)

    GROVE, E.; LOFARO, R.; SOO, P.; VILLARAN, M.; HSU, F.

    2000-01-01

    Electric cables in nuclear power plants suffer degradation during service as a result of the thermal and radiation environments in which they are installed. Instrumentation and control cables are one type of cable that provide an important role in reactor safety. Should the polymeric cable insulation material become embrittled and cracked during service, or during a loss-of-coolant-accident (LOCA) and when steam and high radiation conditions are anticipated, failure could occur and prevent the cables from fulfilling their intended safety function(s). A research program is being conducted at Brookhaven National Laboratory to evaluate condition monitoring (CM) techniques for estimating the amount of cable degradation experienced during in-plant service. The objectives of this program are to assess the ability of the cables to perform under a simulated LOCA without losing their ability to function effectively, and to identify CM techniques which may be used to determine the effective lifetime of cables. The cable insulation materials tested include ethylene propylene rubber (EPR) and cross-linked polyethylene (XLPE). Accelerated aging (thermal and radiation) to the equivalent of 40 years of service was performed, followed by exposure to simulated LOCA conditions. The effectiveness of chemical, electrical, and mechanical condition monitoring techniques are being evaluated. Results indicate that several of these methods can detect changes in material parameters with increasing age. However, each has its limitations, and a combination of methods may provide an effective means for trending cable degradation in order to assess the remaining life of cables

  10. Condition monitoring of rotormachinery in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Suedmersen, U; Runkel, J; Vortriede, A; Reimche, W; Stegemann, D [University of Hannover, Hannover (Germany). Inst. of Nuclear Engineering and Nondestructive Testing

    1997-12-31

    Due to safety and economical reasons diagnostic and monitoring systems are of growing interest in nuclear power plants and other complex industrial productions. Key components of NPP`s are rotating machineries of the primary and secondary loops like PWR main coolant pumps, BWR recirculation pumps, turbines, fresh water pumps and feed water pumps. Diagnostic systems are requested which detect, diagnose and localize faulty operation conditions at an early stage in order to prevent severe failures and to enable predictive and condition oriented maintenance. The knowledge of characteristical machine signatures and their time dependent behaviour are the basis of efficient condition monitoring of rotating machines. The performance of reference measurements are of importance for fault detection during operation by trend settings. The comparison with thresholds given by norms and standards is only a small section of available possibilities. Therefore, for each machinery own thresholds should be determined using statistical time values, spectra comparison, cepstrum analysis and correlation analysis for source localization corresponding to certain machine operation conditions. (author). 14 refs, 15 figs.

  11. A real time study on condition monitoring of distribution transformer using thermal imager

    Science.gov (United States)

    Mariprasath, T.; Kirubakaran, V.

    2018-05-01

    The transformer is one of the critical apparatus in the power system. At any cost, a few minutes of outages harshly influence the power system. Hence, prevention-based maintenance technique is very essential. The continuous conditioning and monitoring technology significantly increases the life span of the transformer, as well as reduces the maintenance cost. Hence, conditioning and monitoring of transformer's temperature are very essential. In this paper, a critical review has been made on various conditioning and monitoring techniques. Furthermore, a new method, hot spot indication technique, is discussed. Also, transformer's operating condition is monitored by using thermal imager. From the thermal analysis, it is inferred that major hotspot locations are appearing at connection lead out; also, the bushing of the transformer is the very hottest spot in transformer, so monitoring the level of oil is essential. Alongside, real time power quality analysis has been carried out using the power analyzer. It shows that industrial drives are injecting current harmonics to the distribution network, which causes the power quality problem on the grid. Moreover, the current harmonic limit has exceeded the IEEE standard limit. Hence, the adequate harmonics suppression technique is need an hour.

  12. Beyond Self-Monitoring: Understanding Non-functional Aspects of Home-based Healthcare Technology

    DEFF Research Database (Denmark)

    Grönvall, Erik; Verdezoto, Nervo

    2013-01-01

    the appropriation of healthcare technologies and people with comorbidity may have diverse but co-existing monitoring needs. In this paper, we seek to understand home-based health monitoring practices to better design and integrate them into people’s everyday life. We perform an analysis of socio......-technical complexities in home-based healthcare technologies through three case studies of self-monitoring: 1) pre-eclampsia (i.e. pregnancy poisoning), 2) heart conditions, and 3) preventive care. Through the analysis seven themes emerged (people, resources, places, routines, knowledge, control and motivation) that can...... facilitate the understanding of home-based healthcare activities. We present three modes of self-monitoring use and provide a set of design recommendations for future Ubicomp designs of home-based healthcare technology....

  13. Application of Video Recognition Technology in Landslide Monitoring System

    Directory of Open Access Journals (Sweden)

    Qingjia Meng

    2018-01-01

    Full Text Available The video recognition technology is applied to the landslide emergency remote monitoring system. The trajectories of the landslide are identified by this system in this paper. The system of geological disaster monitoring is applied synthetically to realize the analysis of landslide monitoring data and the combination of video recognition technology. Landslide video monitoring system will video image information, time point, network signal strength, power supply through the 4G network transmission to the server. The data is comprehensively analysed though the remote man-machine interface to conduct to achieve the threshold or manual control to determine the front-end video surveillance system. The system is used to identify the target landslide video for intelligent identification. The algorithm is embedded in the intelligent analysis module, and the video frame is identified, detected, analysed, filtered, and morphological treatment. The algorithm based on artificial intelligence and pattern recognition is used to mark the target landslide in the video screen and confirm whether the landslide is normal. The landslide video monitoring system realizes the remote monitoring and control of the mobile side, and provides a quick and easy monitoring technology.

  14. Wireless condition monitoring for the RA-6 research reactor

    International Nuclear Information System (INIS)

    Garcia Peyrano, O.; Calzeta, O.; Rico, N.; Damiani, H.; Coutsiers, E.

    1999-01-01

    The vibration laboratory at C.A.B. has a great experience with the analysis and diagnostic of symptoms of failures in the rotating equipment of the R-6 research reactor and in our longest NPP (CANDU 600 Mw), located in Embalse town, Cordoba City, Argentina. Objective: The standard condition monitoring instrumentation system were designed for large equipment operating under different environmental conditions and sensitivities. The signal processing is not flexible and the diagnostic is an expensive method for the small poll type research reactors. This papers describes the research and development which are related whit the new concept, cheaper and flexible condition monitoring instrumentation system. Implementing a vibration analysis measurements technique with a sensor inside (in the pool) of the nuclear reactor RA-6, and mainly based on fft signal processing, an extensive program for vibration source identification was done. Different nuclear power conditions were monitored as full power and in zero power, also. This zero power shows the best acoustical environmental, because the cooling pumps are stop, and the core is cooling by natural convection. Two sensors were mainly used as the detector's subsystem. One of these detectors was an accelerometer attached to the top of the fine control rod and the other one was a water resistant omnidirectional microphone which was located underwater at different distances from the nuclear core. All the signal measurement by this two sensors were recorded and then was processed. Both signal was acquired at the same time for correlation analysis purposes. The analysis was composed by a 'Spectral Dynamics SD380' connected to a P.C. with dedicated post processing software. On the other hand, some calibration and sensitivity comparison was done using an SKFCM40, dual channel data collector and analyzer. (author)

  15. Ionization beam profile monitor for operation under hard environmental conditions

    International Nuclear Information System (INIS)

    Teterev, Yu.G.; Kaminski, G.; Phi Thanh Huong; Kaminski, G.; Kozik, E.

    2010-01-01

    The design and the performance of the Ionization Beam Profile Monitor (IBPM) operating on the residual gas ionization principle are described. The main advantage of the constructed device is the non-contact measuring method. Operating under hard environmental conditions it delivers the information about the primary beam position, profile and intensity in 'on-line' regime. It was found out that the device is capable to operate in vacuum in the range of 10 -6 /10 -3 mbar without the loss of the resolution power at the beam current as low as a few nA. The IBPM is prospective for beam profile monitoring due to long time. Emergency situations do not lead to decrease of its operability.

  16. Cable condition monitoring in a pressurized water reactor environment

    International Nuclear Information System (INIS)

    Al-Hussaini, T.J.

    1988-01-01

    Oconee Nuclear Station is the first nuclear plant designed, engineered and constructed by Duke Power Company. Even though the accelerated aging method was available to determine the life expectancy of the cable used in the reactor building, no natural aging data was available at that time. In order to be able to verify the condition of the reactor building cable over the life of the plant, an on-going cable monitoring plan was instituted. Various types of cable were selected to be monitored, and they were installed in cable life evaluation circuits in the reactor building. At five year intervals over the life of the plant, cable samples would be removed from these cable life evaluation circuits and tested to determine the effects of the reactor building environment on the integrity of the cable. A review of the cable life evaluation circuits and the results of the evaluation program to date is presented

  17. Condition monitoring of pumps with co-relating field observations

    International Nuclear Information System (INIS)

    Mishra, S.K.; Prasad, V.; Sharma, R.B.

    1994-01-01

    The maintenance of 40 MWth research reactor, Cirus has been carried out for over 30 years following the time based maintenance schedule. With the commissioning of indigenously built 100 MWth nuclear research reactor Dhruva in the year 1985, a systematic work on condition monitoring has been commissioned. Apart from process parameters, which are recorded on hourly basis, vibration, noise, temperature, kurtosis etc. are measured for assessment of condition of pumps. The bearings of flywheel assembly of main pumps, Dhruva broke down almost abruptly during the initial years after first commissioning. The regular measurements of vibration level and kurtosis have greatly helped in avoiding breakdown. In a recent case one newly procured herringbone gear box (300 hp, 1475/1760 rpm) for the primary coolant pump was showing high vibration. In further checking using Fast Fourier Transform (FFT) analyser in a time domain plot the gear teeth damage was indicated. The pump was shut down for inspection and when the gear box was dismantled teeth were found broken. An attempt has been made in this paper to discuss a few interesting field experiences with condition monitoring and correlating field observations on pumps. (author). 3 figs

  18. Monitoring technologies for ocean disposal of radioactive waste

    Science.gov (United States)

    Triplett, M. B.; Solomon, K. A.; Bishop, C. B.; Tyce, R. C.

    1982-01-01

    The feasibility of using carefully selected subseabed locations to permanently isolate high level radioactive wastes at ocean depths greater than 4000 meters is discussed. Disposal at several candidate subseabed areas is being studied because of the long term geologic stability of the sediments, remoteness from human activity, and lack of useful natural resources. While the deep sea environment is remote, it also poses some significant challenges for the technology required to survey and monitor these sites, to identify and pinpoint container leakage should it occur, and to provide the environmental information and data base essential to determining the probable impacts of any such occurrence. Objectives and technical approaches to aid in the selective development of advanced technologies for the future monitoring of nuclear low level and high level waste disposal in the deep seabed are presented. Detailed recommendations for measurement and sampling technology development needed for deep seabed nuclear waste monitoring are also presented.

  19. Monitoring based maintenance utilizing actual stress sensory technology

    Science.gov (United States)

    Sumitro, Sunaryo; Kurokawa, Shoji; Shimano, Keiji; Wang, Ming L.

    2005-06-01

    In recent years, many infrastructures have been deteriorating. In order to maintain sustainability of those infrastructures which have significant influence on social lifelines, economical and rational maintenance management should be carried out to evaluate the life cycle cost (LCC). The development of structural health monitoring systems, such as deriving evaluation techniques for the field structural condition of existing structures and identification techniques for the significant engineering properties of new structures, can be considered as the first step in resolving the above problem. New innovative evaluation methods need to be devised to identify the deterioration of infrastructures, e.g. steel tendons, cables in cable-stayed bridges and strands embedded in pre- or post-tensioned concrete structures. One of the possible solutions that show 'AtoE' characteristics, i.e., (a)ccuracy, (b)enefit, (c)ompendiousness, (d)urability and (e)ase of operation, elasto-magnetic (EM) actual stress sensory technology utilizing the sensitivity of incremental magnetic permeability to stress change, has been developed. Numerous verification tests on various steel materials have been conducted. By comparing with load cell, strain gage and other sensory technology measurement results, the actual stresses of steel tendons in a pre-stressed concrete structure at the following stages have been thoroughly investigated: (i) pre-stress change due to set-loss (anchorage slippage) at the tendon fixation stage; (ii) pre-stress change due to the tendon relaxation stage; (iii) concrete creep and shrinkage at the long term pre-stressing stage; (iv) pre-stress change in the cyclic fatigue loading stage; and (v) pre-stress change due to the re-pre-stress setting stage. As the result of this testing, it is confirmed that EM sensory technology enables one to measure actual stress in steel wire, strands and steel bars precisely without destroying the polyethylene covering sheath and enables

  20. Labview Based ECG Patient Monitoring System for Cardiovascular Patient Using SMTP Technology.

    Science.gov (United States)

    Singh, Om Prakash; Mekonnen, Dawit; Malarvili, M B

    2015-01-01

    This paper leads to developing a Labview based ECG patient monitoring system for cardiovascular patient using Simple Mail Transfer Protocol technology. The designed device has been divided into three parts. First part is ECG amplifier circuit, built using instrumentation amplifier (AD620) followed by signal conditioning circuit with the operation amplifier (lm741). Secondly, the DAQ card is used to convert the analog signal into digital form for the further process. Furthermore, the data has been processed in Labview where the digital filter techniques have been implemented to remove the noise from the acquired signal. After processing, the algorithm was developed to calculate the heart rate and to analyze the arrhythmia condition. Finally, SMTP technology has been added in our work to make device more communicative and much more cost-effective solution in telemedicine technology which has been key-problem to realize the telediagnosis and monitoring of ECG signals. The technology also can be easily implemented over already existing Internet.

  1. New oil condition monitoring system, Wearsens® enables continuous, online detection of critical operating conditions and wear damage

    Directory of Open Access Journals (Sweden)

    Manfred Mauntz

    2015-12-01

    Full Text Available A new oil sensor system is presented for the continuous, online measurement of the wear in turbines, industrial gears, generators, hydraulic systems and transformers. Detection of change is much earlier than existing technologies such as particle counting, vibration measurement or recording temperature. Thus targeted, corrective procedures and/or maintenance can be carried out before actual damage occurs. Efficient machine utilization, accurately timed preventive maintenance, increased service life and a reduction of downtime can all be achieved. The presented sensor system effectively controls the proper operation conditions of bearings and cogwheels in gears. The online diagnostics system measures components of the specific complex impedance of oils. For instance, metal abrasion due to wear debris, broken oil molecules, forming acids or oil soaps, result in an increase of the electrical conductivity, which directly correlates with the degree of contamination of the oil. For additivated lubricants, the stage of degradation of the additives can also be derived from changes in the dielectric constant. The determination of impurities or reduction in the quality of the oil and the quasi continuous evaluation of wear and chemical aging follow the holistic approach of a real-time monitoring of an alteration in the condition of the oil-machine system. Once the oil condition monitoring sensors are installed on the wind turbine, industrial gearbox and test stands, the measuring data can be displayed and evaluated elsewhere. The signals are transmitted to a web-based condition monitoring system via LAN, WLAN or serial interfaces of the sensor unit. Monitoring of the damage mechanisms during proper operation below the tolerance limits of the components enables specific preventive maintenance independent of rigid inspection intervals.

  2. Upgraded Fast Beam Conditions Monitor for CMS online luminosity measurement

    CERN Document Server

    Leonard, Jessica Lynn; Hempel, Maria; Henschel, Hans; Karacheban, Olena; Lange, Wolfgang; Lohmann, Wolfgang; Novgorodova, Olga; Penno, Marek; Walsh, Roberval; Dabrowski, Anne; Guthoff, Moritz; Loos, R; Ryjov, Vladimir; Burtowy, Piotr; Lokhovitskiy, Arkady; Odell, Nathaniel; Przyborowski, Dominik; Stickland, David P; Zagozdzinska, Agnieszka

    2014-01-01

    The CMS beam condition monitoring subsystem BCM1F during LHC Run I consisted of 8 individual diamond sensors situated around the beam pipe within the tracker detector volume, for the purpose of fast monitoring of beam background and collision products. Effort is ongoing to develop the use of BCM1F as an online bunch-by-bunch luminosity monitor. BCM1F will be running whenever there is beam in LHC, and its data acquisition is independent from the data acquisition of the CMS detector, hence it delivers luminosity even when CMS is not taking data. To prepare for the expected increase in the LHC luminosity and the change from 50 ns to 25 ns bunch separation, several changes to the system are required, including a higher number of sensors and upgraded electronics. In particular, a new real-time digitizer with large memory was developed and is being integrated into a multi-subsystem framework for luminosity measurement. Current results from Run II preparation will be discussed, including results from the January 201...

  3. Monitoring of lubrication conditions in journal bearing by acoustic emission

    International Nuclear Information System (INIS)

    Yoon, Dong Jin; Kwon, Oh Yang; Jung, Min Hwa

    1993-01-01

    Systems with journal bearings generally operate in large scale and under severe loading conditions such as steam generator turbines and internal combustion engines, in contrast to the machinery using rolling element bearings. Failure of the bearings in these machinery can result in the system breakdown. To avoid the time consuming repair and considerable economic loss, the detection of incipient failure in journal bearings becomes very important. In this experimental approach, acoustic emission monitoring is employed to the detection of incipient failure caused by intervention of foreign particles most probable in the journal bearing systems. It has been known that the intervention of foreign materials, insufficient lubrication and misassembly etc. are principal factors to cause bearing failure and distress. The experiment was conducted under such designed conditions as inserting alumina particles to the lubrication layer in the simulated journal bearing system. The results showed that acoustic emission could be an effective tool to detect the incipient failure in journal bearings.

  4. Technology and Power. A Foucauldian Analysis of Electronic Monitoring Discourses

    OpenAIRE

    Anna Vitores; Miquel Domènech

    2007-01-01

    The article aims to show the importance of FOUCAULT within social studies of science and technology. It also illustrates how a Foucauldian analysis can be useful for studies of science, technology and society focused on power effects. To accomplish these objectives we analyze the emergence of a specific techno-scientific innovation: the electronic monitoring of offenders. We map the discontinuities and discourse dispersions linked to those practices that constitute different materializations ...

  5. VegScape: U.S. Crop Condition Monitoring Service

    Science.gov (United States)

    mueller, R.; Yang, Z.; Di, L.

    2013-12-01

    Since 1995, the US Department of Agriculture (USDA)/National Agricultural Statistics Service (NASS) has provided qualitative biweekly vegetation condition indices to USDA policymakers and the public on a weekly basis during the growing season. Vegetation indices have proven useful for assessing crop condition and identifying the areal extent of floods, drought, major weather anomalies, and vulnerabilities of early/late season crops. With growing emphasis on more extreme weather events and food security issues rising to the forefront of national interest, a new vegetation condition monitoring system was developed. The new vegetation condition portal named VegScape was initiated at the start of the 2013 growing season. VegScape delivers web mapping service based interactive vegetation indices. Users can use an interactive map to explore, query and disseminate current crop conditions. Vegetation indices like Normal Difference Vegetation Index (NDVI), Vegetation Condition Index (VCI), and mean, median, and ratio comparisons to prior years can be constructed for analytical purposes and on-demand crop statistics. The NASA MODIS satellite with 250 meter (15 acres) resolution and thirteen years of data history provides improved spatial and temporal resolutions and delivers improved detailed timely (i.e., daily) crop specific condition and dynamics. VegScape thus provides supplemental information to support NASS' weekly crop reports. VegScape delivers an agricultural cultivated crop mask and the most recent Cropland Data Layer (CDL) product to exploit the agricultural domain and visualize prior years' planted crops. Additionally, the data can be directly exported to Google Earth for web mashups or delivered via web mapping services for uses in other applications. VegScape supports the ethos of data democracy by providing free and open access to digital geospatial data layers using open geospatial standards, thereby supporting transparent and collaborative government

  6. Online condition monitoring to enable extended operation of nuclear power plants

    International Nuclear Information System (INIS)

    Meyer, Ryan Michael; Bond, Leonard John; Ramuhalli, Pradeep

    2012-01-01

    Safe, secure, and economic operation of nuclear power plants will remain of strategic significance. New and improved monitoring will likely have increased significance in the post-Fukushima world. Prior to Fukushima, many activities were already underway globally to facilitate operation of nuclear power plants beyond their initial licensing periods. Decisions to shut down a nuclear power plant are mostly driven by economic considerations. Online condition monitoring is a means to improve both the safety and economics of extending the operating lifetimes of nuclear power plants, enabling adoption of proactive aging management. With regard to active components (e.g., pumps, valves, motors, etc.), significant experience in other industries has been leveraged to build the science base to support adoption of online condition-based maintenance and proactive aging management in the nuclear industry. Many of the research needs are associated with enabling proactive management of aging in passive components (e.g., pipes, vessels, cables, containment structures, etc.). This paper provides an overview of online condition monitoring for the nuclear power industry with an emphasis on passive components. Following the overview, several technology/knowledge gaps are identified, which require addressing to facilitate widespread online condition monitoring of passive components. (author)

  7. Wire system aging assessment and condition monitoring (WASCO)

    Energy Technology Data Exchange (ETDEWEB)

    Fantoni, P.F. [Institutt for energiteknikk (Norway); Nordlund, A. [Chalmers Univ. of Technology (Sweden)

    2006-04-15

    Nuclear facilities rely on electrical wire systems to perform a variety of functions for successful operation. Many of these functions directly support the safe operation of the facility; therefore, the continued reliability of wire systems, even as they age, is critical. Condition Monitoring (CM) of installed wire systems is an important part of any aging program, both during the first 40 years of the qualified life and even more in anticipation of the license renewal for a nuclear power plant. This report describes a method for wire system condition monitoring, developed at the Halden Reactor Project, which is based on Frequency Domain Reflectometry. This method resulted in the development of a system called LIRA (LIne Resonance Analysis), which can be used on-line to detect any local or global changes in the cable electrical parameters as a consequence of insulation faults or degradation. LIRA is composed of a signal generator, a signal analyser and a simulator that can be used to simulate several failure/degradation scenarios and assess the accuracy and sensitivity of the LIRA system. Chapter 5 of this report describes an complementary approach based on positron measurement techniques, used widely in defect physics due to the high sensitivity to micro defects, in particular open volume defects. This report describes in details these methodologies, the results of field experiments and the proposed future work. (au)

  8. Wire system aging assessment and condition monitoring (WASCO)

    International Nuclear Information System (INIS)

    Fantoni, P.F.; Nordlund, A.

    2006-04-01

    Nuclear facilities rely on electrical wire systems to perform a variety of functions for successful operation. Many of these functions directly support the safe operation of the facility; therefore, the continued reliability of wire systems, even as they age, is critical. Condition Monitoring (CM) of installed wire systems is an important part of any aging program, both during the first 40 years of the qualified life and even more in anticipation of the license renewal for a nuclear power plant. This report describes a method for wire system condition monitoring, developed at the Halden Reactor Project, which is based on Frequency Domain Reflectometry. This method resulted in the development of a system called LIRA (LIne Resonance Analysis), which can be used on-line to detect any local or global changes in the cable electrical parameters as a consequence of insulation faults or degradation. LIRA is composed of a signal generator, a signal analyser and a simulator that can be used to simulate several failure/degradation scenarios and assess the accuracy and sensitivity of the LIRA system. Chapter 5 of this report describes an complementary approach based on positron measurement techniques, used widely in defect physics due to the high sensitivity to micro defects, in particular open volume defects. This report describes in details these methodologies, the results of field experiments and the proposed future work. (au)

  9. Thermal Analysis for Condition Monitoring of Machine Tool Spindles

    International Nuclear Information System (INIS)

    Clough, D; Fletcher, S; Longstaff, A P; Willoughby, P

    2012-01-01

    Decreasing tolerances on parts manufactured, or inspected, on machine tools increases the requirement to have a greater understanding of machine tool capabilities, error sources and factors affecting asset availability. Continuous usage of a machine tool during production processes causes heat generation typically at the moving elements, resulting in distortion of the machine structure. These effects, known as thermal errors, can contribute a significant percentage of the total error in a machine tool. There are a number of design solutions available to the machine tool builder to reduce thermal error including, liquid cooling systems, low thermal expansion materials and symmetric machine tool structures. However, these can only reduce the error not eliminate it altogether. It is therefore advisable, particularly in the production of high value parts, for manufacturers to obtain a thermal profile of their machine, to ensure it is capable of producing in tolerance parts. This paper considers factors affecting practical implementation of condition monitoring of the thermal errors. In particular is the requirement to find links between temperature, which is easily measureable during production and the errors which are not. To this end, various methods of testing including the advantages of thermal images are shown. Results are presented from machines in typical manufacturing environments, which also highlight the value of condition monitoring using thermal analysis.

  10. Advanced Detection Technology of Trace-level Borate for SG Leakage Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seban; Kang, Dukwon; Kim, Seungil; Kim, Hyunki; Heo, Jun; Sung, Jinhyun [Radiation Eng. Center, Shihung (Korea, Republic of); Lee, Dongbum [Academic Support Dept., Seoul (Korea, Republic of)

    2013-05-15

    Many studies have been reported for monitoring technology of steam generator, however, all of these methods have their own limitations. The leakage monitoring technology of steam generator of PWR has also got a limit due to the adoption of specific radionuclides (N-16, Ar-41, H-3, Xe, etc.) generated by nuclear fission, which are available only when reactor output is 20% or more. Most of domestic NPPs apply the N-16 technique for monitoring tube leakage but it has some problem that it is difficult to calculate the leakage rate because neutron flux are not completely formed during low power operation. For example, tube leakage of steam generator occurred in the Uljin nuclear power plant in 2002 during coast down operation for periodic plant maintenance. This plant could not prevent a rupture accident in advance because N-16 method is not possible the leak monitoring less than 20% reactor power. The development of excellent alternative monitoring technology that can monitor the real-time leakage is required under a variety of operating conditions like start-up and abnormal conditions of NPPs. This study was performed to lay a foundation in monitoring the leakage of steam generator coping with the lower output and low power operational condition using trace level of boron which is non-radioactive nuclide to inject control neutron injection. In this study, non-radioactive nuclide boron ion, which existed in the secondary system water, as leakage monitoring indicator was investigated for the separation of complex cation and anion phase. Borate was detected by using borate concentrator column coupled with the ion-exclusion column analytical column, revealing the problem of overlapped peak between fluoride and boron ions. Meanwhile, ion-exchange column could confirm the possibility as a leakage monitoring indicator of steam generator, despite the peak of glycolic acid salts was slightly overlapped. It will be needed for further research regarding the selectivity of the

  11. Advanced Detection Technology of Trace-level Borate for SG Leakage Monitoring

    International Nuclear Information System (INIS)

    Lee, Seban; Kang, Dukwon; Kim, Seungil; Kim, Hyunki; Heo, Jun; Sung, Jinhyun; Lee, Dongbum

    2013-01-01

    Many studies have been reported for monitoring technology of steam generator, however, all of these methods have their own limitations. The leakage monitoring technology of steam generator of PWR has also got a limit due to the adoption of specific radionuclides (N-16, Ar-41, H-3, Xe, etc.) generated by nuclear fission, which are available only when reactor output is 20% or more. Most of domestic NPPs apply the N-16 technique for monitoring tube leakage but it has some problem that it is difficult to calculate the leakage rate because neutron flux are not completely formed during low power operation. For example, tube leakage of steam generator occurred in the Uljin nuclear power plant in 2002 during coast down operation for periodic plant maintenance. This plant could not prevent a rupture accident in advance because N-16 method is not possible the leak monitoring less than 20% reactor power. The development of excellent alternative monitoring technology that can monitor the real-time leakage is required under a variety of operating conditions like start-up and abnormal conditions of NPPs. This study was performed to lay a foundation in monitoring the leakage of steam generator coping with the lower output and low power operational condition using trace level of boron which is non-radioactive nuclide to inject control neutron injection. In this study, non-radioactive nuclide boron ion, which existed in the secondary system water, as leakage monitoring indicator was investigated for the separation of complex cation and anion phase. Borate was detected by using borate concentrator column coupled with the ion-exclusion column analytical column, revealing the problem of overlapped peak between fluoride and boron ions. Meanwhile, ion-exchange column could confirm the possibility as a leakage monitoring indicator of steam generator, despite the peak of glycolic acid salts was slightly overlapped. It will be needed for further research regarding the selectivity of the

  12. Status of radiation detector and neutron monitor technology

    CERN Document Server

    Kim, Y K; Ha, J H; Han, S H; Hong, S B; Hwang, I K; Lee, W G; Moon, B S; Park, S H; Song, M H

    2002-01-01

    In this report, we describe the current states of the radiation detection technology, detectors for industrial application, and neutron monitors. We also survey the new technologies being applied to this field. The method to detect radiation is the measurement of the observable secondary effect from the interaction between incident radiation and detector material, such as ionization, excitation, fluorescence, and chemical reaction. The radiation detectors can be categorized into gas detectors, scintillation detectors, and semiconductor detectors according to major effects and main applications. This report contains the current status and operational principles of these detectors. The application fields of radiation detectors are industrial measurement system, in-core neutron monitor, medical radiation diagnostic device, nondestructive inspection device, environmental radiation monitoring, cosmic-ray measurement, security system, fundamental science experiment, and radiation measurement standardization. The st...

  13. Mimic sensor to monitor condition of human health; Mimic sensor wo riyoshita taicho monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Y. [Mechanical Engineering Lab., Tokyo (Japan)

    2000-04-01

    In the aging society where the birth rate decreases and the number of nuclear families increases, it is very important to inquire after the aged or physically handicapped people, to monitor their physical conditions, and to take steps to keep them healthy. As for the in-home physical measurement for the aged or physically handicapped people and the work of health management for them based on such measurement, it is feared that under the present conditions the invalid themselves or their family members or nurses will inevitably have to bear the burden and that nobody can deny the difficulty of continuing such nursing care. If daily physical condition measurement and related data collection are automatically carried out, however, interested people' burden will lessen and in-home heath management will become actually feasible. In this paper, a mimic sensor for realizing such a situation is described, which will measure physical conditions without interfering with the daily life of interested people. Serving as the mimic sensor is a blood flow sensor embedded in a telephone receiver, and changes in the blood flow during telephone conversation and changes in the gaps between peeks will be monitored. The feasibility is shown of continual collection of information necessary for the measurement of physical conditions of the aged or physically handicapped persons. (NEDO)

  14. Equipment monitoring and diagnosis of their mechanical condition

    International Nuclear Information System (INIS)

    Morel, J.; Monnier, B.

    1994-01-01

    The main objectives of reactor monitoring are reviewed and the three monitoring types are described: reception controls and alarms, periodical controls, and specific monitoring. The monitoring process is then presented: information acquisition, dysfunction detection and diagnosis, risk analysis and maintenance action determination. Diagnosis assistance is now automated with expert systems such as DIVA (shaft vibration diagnosis) and DIAPO (primary pump diagnosis). Several application examples at EDF are described: SEXTEN reactor containment tightness monitoring, large and small-size turbo-machine monitoring, reactor inner structure monitoring, loose part detection in the primary circuit. All these informations will be centralized in a general monitoring and diagnosis assistance station. 3 fig

  15. Wireless remote radiation monitoring system (WRRMS). Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-12-01

    The Science Application International Corporation (SAIC) RadStar trademark wireless remote radiation monitoring system (WRRMS) is designed to provide real-time monitoring of the radiation dose to workers as they perform work in radiologically contaminated areas. WRRMS can also monitor dose rates in a room or area. The system uses radio-frequency communications to transmit dose readings from the wireless dosimeters worn by workers to a remote monitoring station that can be located out of the contaminated area. Each base station can monitor up to 16 workers simultaneously. The WRRMS can be preset to trigger both audible and visual alarms at certain dose rates. The alarms are provided to the worker as well as the base station operator. This system is particularly useful when workers are wearing personal protective clothing or respirators that make visual observation of their self-reading dosimeters (SRDs), which are typically used to monitor workers, more difficult. The base station is an IBM-compatible personal computer that updates and records information on individual workers every ten seconds. Although the equipment costs for this improved technology are higher than the SRDs (amortized at $2.54/hr versus $1.02/hr), total operational costs are actually less ($639/day versus $851/day). This is because the WRRMS requires fewer workers to be in the contaminated zone than the traditional (baseline) technology. There are also intangible benefits associated with improved worker safety and as low as reasonably achievable (ALARA) principles, making the WRRMS an attractive alternative to the baseline technology. The baseline technology measures only integrated dose and requires workers to check their own dosimeters manually during the task

  16. Wireless remote radiation monitoring system (WRRMS). Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    1998-12-01

    The Science Application International Corporation (SAIC) RadStar{trademark} wireless remote radiation monitoring system (WRRMS) is designed to provide real-time monitoring of the radiation dose to workers as they perform work in radiologically contaminated areas. WRRMS can also monitor dose rates in a room or area. The system uses radio-frequency communications to transmit dose readings from the wireless dosimeters worn by workers to a remote monitoring station that can be located out of the contaminated area. Each base station can monitor up to 16 workers simultaneously. The WRRMS can be preset to trigger both audible and visual alarms at certain dose rates. The alarms are provided to the worker as well as the base station operator. This system is particularly useful when workers are wearing personal protective clothing or respirators that make visual observation of their self-reading dosimeters (SRDs), which are typically used to monitor workers, more difficult. The base station is an IBM-compatible personal computer that updates and records information on individual workers every ten seconds. Although the equipment costs for this improved technology are higher than the SRDs (amortized at $2.54/hr versus $1.02/hr), total operational costs are actually less ($639/day versus $851/day). This is because the WRRMS requires fewer workers to be in the contaminated zone than the traditional (baseline) technology. There are also intangible benefits associated with improved worker safety and as low as reasonably achievable (ALARA) principles, making the WRRMS an attractive alternative to the baseline technology. The baseline technology measures only integrated dose and requires workers to check their own dosimeters manually during the task.

  17. An Updated Methodology for Enhancing Risk Monitors with Integrated Equipment Condition Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hirt, Evelyn H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Coles, Garill A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bonebrake, Christopher A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ivans, William J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wootan, David W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mitchell, Mark R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-07-18

    Small modular reactors (SMRs) generally include reactors with electric output of ~350 MWe or less (this cutoff varies somewhat but is substantially less than full-size plant output of 700 MWe or more). Advanced SMRs (AdvSMRs) refer to a specific class of SMRs and are based on modularization of advanced reactor concepts. Enhancing affordability of AdvSMRs will be critical to ensuring wider deployment, as AdvSMRs suffer from loss of economies of scale inherent in small reactors when compared to large (~greater than 600 MWe output) reactors and the controllable day-to-day costs of AdvSMRs will be dominated by operation and maintenance (O&M) costs. Technologies that help characterize real-time risk are important for controlling O&M costs. Risk monitors are used in current nuclear power plants to provide a point-in-time estimate of the system risk given the current plant configuration (e.g., equipment availability, operational regime, and environmental conditions). However, current risk monitors are unable to support the capability requirements listed above as they do not take into account plant-specific normal, abnormal, and deteriorating states of active components and systems. This report documents technology developments towards enhancing risk monitors that, if integrated with supervisory plant control systems, can provide the capability requirements listed and meet the goals of controlling O&M costs. The report describes research results on augmenting an initial methodology for enhanced risk monitors that integrate real-time information about equipment condition and POF into risk monitors. Methods to propagate uncertainty through the enhanced risk monitor are evaluated. Available data to quantify the level of uncertainty and the POF of key components are examined for their relevance, and a status update of this data evaluation is described. Finally, we describe potential targets for developing new risk metrics that may be useful for studying trade-offs for economic

  18. Energy technology monitoring - New areas and in-depth investigations

    International Nuclear Information System (INIS)

    Rigassi, R.; Eicher, H.; Steiner, P.; Ott, W.

    2005-01-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) presents the results of a project that examined long-term trends in the energy technology area in order to provide information that is to form the basis for political action and the distribution of energy research funding in Switzerland. Energy-technology areas examined include variable-speed electrical drives, ventilation systems for low-energy-consumption buildings, membrane technology and the use of plastics in lightweight automobiles. Examples are quoted and the current state of the appropriate technologies and market aspects are examined. Also, the potential and future developments in the areas listed are looked at. The consequences for energy policy and future developments in the technology-monitoring area are considered

  19. Condition monitoring of electrical equipment in nuclear power plants

    International Nuclear Information System (INIS)

    Sugarman, A.

    1986-01-01

    Condition monitoring (CM) is a subset of maintenance testing. It is a quantitative, predictive technique for assessing the effects of all types of aging (environmental, cyclic, operational, etc) on the ''health'' of the equipment. A difference between CM and maintenance testing is that the latter is neither quantitative (i.e., measures the relative condition of the component or material as opposed to merely verifying that its condition is acceptable) nor predictive (i.e., makes judgments, on the ability of the component to perform at a future time). A common example of the principle of CM can be illustrated with the automobile which has a lifetime that is small enough to observe all the periods (break in, random failure, wear out) that occur throughout aging. There are several weak link components in the car (e.g., water hoses, contacts in the distributor, generator, spark plug cables, solenoid, etc) which if they fail will cause failure of the automobile to either start or run. From the day the car is put on the road and is subjected to heat and vibration, significant aging of these components occurs. Degradation in the water hoses, for example is manifested by the elastomeric casing becoming brittle and cracking

  20. ANN Based Tool Condition Monitoring System for CNC Milling Machines

    Directory of Open Access Journals (Sweden)

    Mota-Valtierra G.C.

    2011-10-01

    Full Text Available Most of the companies have as objective to manufacture high-quality products, then by optimizing costs, reducing and controlling the variations in its production processes it is possible. Within manufacturing industries a very important issue is the tool condition monitoring, since the tool state will determine the quality of products. Besides, a good monitoring system will protect the machinery from severe damages. For determining the state of the cutting tools in a milling machine, there is a great variety of models in the industrial market, however these systems are not available to all companies because of their high costs and the requirements of modifying the machining tool in order to attach the system sensors. This paper presents an intelligent classification system which determines the status of cutt ers in a Computer Numerical Control (CNC milling machine. This tool state is mainly detected through the analysis of the cutting forces drawn from the spindle motors currents. This monitoring system does not need sensors so it is no necessary to modify the machine. The correct classification is made by advanced digital signal processing techniques. Just after acquiring a signal, a FIR digital filter is applied to the data to eliminate the undesired noisy components and to extract the embedded force components. A Wavelet Transformation is applied to the filtered signal in order to compress the data amount and to optimize the classifier structure. Then a multilayer perceptron- type neural network is responsible for carrying out the classification of the signal. Achieving a reliability of 95%, the system is capable of detecting breakage and a worn cutter.

  1. A Two-Stage Diagnosis Framework for Wind Turbine Gearbox Condition Monitoring

    Directory of Open Access Journals (Sweden)

    Janet M. Twomey

    2013-01-01

    Full Text Available Advances in high performance sensing technologies enable the development of wind turbine condition monitoring system to diagnose and predict the system-wide effects of failure events. This paper presents a vibration-based two stage fault detection framework for failure diagnosis of rotating components in wind turbines. The proposed framework integrates an analytical defect detection method and a graphical verification method together to ensure the diagnosis efficiency and accuracy. The efficacy of the proposed methodology is demonstrated with a case study with the gearbox condition monitoring Round Robin study dataset provided by the National Renewable Energy Laboratory (NREL. The developed methodology successfully picked five faults out of seven in total with accurate severity levels without producing any false alarm in the blind analysis. The case study results indicated that the developed fault detection framework is effective for analyzing gear and bearing faults in wind turbine drive train system based upon system vibration characteristics.

  2. Distributed acoustic fibre optic sensors for condition monitoring of pipelines

    Science.gov (United States)

    Hussels, Maria-Teresa; Chruscicki, Sebastian; Habib, Abdelkarim; Krebber, Katerina

    2016-05-01

    Industrial piping systems are particularly relevant to public safety and the continuous availability of infrastructure. However, condition monitoring systems based on many discrete sensors are generally not well-suited for widespread piping systems due to considerable installation effort, while use of distributed fibre-optic sensors would reduce this effort to a minimum. Specifically distributed acoustic sensing (DAS) is employed for detection of third-party threats and leaks in oil and gas pipelines in recent years and can in principle also be applied to industrial plants. Further possible detection routes amenable by DAS that could identify damage prior to emission of medium are subject of a current project at BAM, which aims at qualifying distributed fibre optic methods such as DAS as a means for spatially continuous monitoring of industrial piping systems. Here, first tests on a short pipe are presented, where optical fibres were applied directly to the surface. An artificial signal was used to define suitable parameters of the measurement system and compare different ways of applying the sensor.

  3. Gearbox Fatigue Load Estimation for Condition Monitoring of Wind Turbines

    DEFF Research Database (Denmark)

    Perisic, Nevena; Pedersen, Bo Juul; Kirkegaard, Poul Henning

    2012-01-01

    control and data acquisition (SCADA) system. Estimated loads can be further used for prediction of remaining operating lifetime of turbine components, detection of high stress level or fault detection. An augmented Kalman filter is chosen as the fatigue load estimator because its characteristics well suit......The focus of the paper is on a design of a fatigue load estimator for predictive condition monitoring systems (CMS) of wind turbines. In order to avoid high-price measurement equipment required for direct load measuring, an indirect approach is suggested using only measurements from supervisory...... for the real time application. This paper presents results of the estimation of the gearbox fatigue load, often called shaft torque, using simulated data of wind turbine. Noise sensitivity of the algorithm is investigated by assuming different levels of measurement noise. Shaft torque estimations are compared...

  4. Maintenance Planning of Offshore Wind Turbine using Condition Monitoring Information

    DEFF Research Database (Denmark)

    Ramírez, José G. Rangel; Sørensen, John Dalsgaard

    2009-01-01

    Deterioration processes such as fatigue and corrosion are typically affecting offshore structures. To "control" this deterioration, inspection and maintenance activities are developed. Probabilistic methodologies represent an important tool to identify the suitable strategy to inspect and control...... the deterioration in structures such as offshore wind turbines (OWT). Besides these methods, the integration of condition monitoring information (CMI) can optimize the mitigation activities as an updating tool. In this paper, a framework for risk-based inspection and maintenance planning (RBI) is applied for OWT....... With the integration of CMI by means Bayesian inference, a slightly change of first inspection times are coming up, influenced by the reduction of the uncertainty and harsher or milder external agents....

  5. Condition monitoring with Mean field independent components analysis

    DEFF Research Database (Denmark)

    Pontoppidan, Niels Henrik; Sigurdsson, Sigurdur; Larsen, Jan

    2005-01-01

    We discuss condition monitoring based on mean field independent components analysis of acoustic emission energy signals. Within this framework it is possible to formulate a generative model that explains the sources, their mixing and also the noise statistics of the observed signals. By using...... a novelty approach we may detect unseen faulty signals as indeed faulty with high precision, even though the model learns only from normal signals. This is done by evaluating the likelihood that the model generated the signals and adapting a simple threshold for decision. Acoustic emission energy signals...... from a large diesel engine is used to demonstrate this approach. The results show that mean field independent components analysis gives a better detection of fault compared to principal components analysis, while at the same time selecting a more compact model...

  6. Development of a Remote Monitoring System Using Meteor Burst Technology

    International Nuclear Information System (INIS)

    Ewanic, M.A.; Dunstan, M.T.; Reichhardt, D.K.

    2006-01-01

    Monitoring the cleanup and closure of contaminated sites requires extensive data acquisition, processing, and storage. At remote sites, the task of monitoring often becomes problematical due to the lack of site infrastructure (i.e., electrical power lines, telephone lines, etc.). MSE Technology Applications, Inc. (MSE) has designed an economical and efficient remote monitoring system that will handle large amounts of data; process the data, if necessary; and transmit this data over long distances. Design criteria MSE considered during the development of the remote monitoring system included: the ability to handle multiple, remote sampling points with independent sampling frequencies; robust (i.e., less susceptible to moisture, heat, and cold extremes); independent of infrastructure; user friendly; economical; and easy to expand system capabilities. MSE installed and tested a prototype system at the Mike Mansfield Advanced Technology Center (MMATC), Butte, Montana, in June 2005. The system MSE designed and installed consisted of a 'master' control station and two remote 'slave' stations. Data acquired at the two slave stations were transmitted to the master control station, which then transmits a complete data package to a ground station using meteor burst technology. The meteor burst technology has no need for hardwired land-lines or man-made satellites. Instead, it uses ionized particles in the Earth's atmosphere to propagate a radio signal. One major advantage of the system is that it can be configured to accept data from virtually any type of device, so long as the signal from the device can be read and recorded by a standard data-logger. In fact, MSE has designed and built an electrical resistivity monitoring system that will be powered and controlled by the meteor burst system components. As sites move through the process of remediation and eventual closure, monitoring provides data vital to the successful long term management of the site. The remote

  7. Development of electromagnetic induction diagnostics technology for condition based maintenance

    International Nuclear Information System (INIS)

    Mawatari, Shingo; Oeda, Kaoru; Yatogi, Hideo; Fukuchi, Taira; Ueno, Tadashi

    2008-01-01

    In ROKKASHO Reprocessing Plant (below, called 'RRP'), we have applied Condition Based Maintenance to rotating equipment with vibration diagnostics technology. However, a few rotating equipment are difficult to diagnose definitely, because have structural problems which exercise vibrational noise to peripheral and be impossible to install vibratory sensor. Electromagnetic induction diagnostics technology which measure magnetic fields to eddy current which is induced to rotary through static magnetic field, diagnose deterioration behavior such as abrasion and crack. As a result, it has possibilities to clear above problems. Therefore, we started our basic researches with this technology for Condition Based Maintenance. In this paper, it introduces basic data about 'Non-seal pump' that have installed in RRP. As a result, this technology is a possibility that be able to detect Condition Based Maintenance. (author)

  8. The investigation of nano-monitoring technology and the probability analysis of application of nuclear technology

    International Nuclear Information System (INIS)

    Kang Kejun; Wang Xuewu; Gao Wenhuan

    1999-01-01

    After several-decade of development, nano science/nano technology has become a scientific and technical frontier that with major trends foreseen in several disciplines. By connecting with the development of nano science/nano technology and considering the human body environment that the nano system is applicable in, the author analyzes the probability of the present nuclear detection technologies integrating and application with the monitoring of nano system, and draws an analysis of optimality choice

  9. Monitoring Technology for Vehicle Loading Status Based on the Analysis of Suspension Vibration Characters

    Directory of Open Access Journals (Sweden)

    Shiwu Li

    2014-01-01

    Full Text Available Monitoring and early warning of vehicle risk status was one of the key technologies of transportation security, and real-time monitoring load status could reduce the transportation accidents effectively. In order to obtain vehicle load status information, vehicle characters of suspension were analyzed and simulated under different working conditions. On the basis of this, the device that can detect suspension load with overload protection structure was designed and a method of monitored vehicle load status was proposed. The monitoring platform of vehicle load status was constructed and developed for a FAW truck and system was tested on level-A road and body twist lane. The results show that the measurement error is less than 5% and horizontal centre-of-mass of vehicle was positioned accurately. The platform enables providing technical support for the real-time monitoring and warning of vehicles risk status in transit.

  10. Healthcare personnel perceptions of hand hygiene monitoring technology.

    Science.gov (United States)

    Ellingson, Katherine; Polgreen, Philip M; Schneider, Amy; Shinkunas, Laura; Kaldjian, Lauris C; Wright, Donald; Thomas, Geb W; Segre, Alberto M; Herman, Ted; McDonald, L Clifford; Sinkowitz-Cochran, Ronda

    2011-11-01

    To assess healthcare personnel (HCP) perceptions regarding implementation of sensor-based electronic systems for automated hand hygiene adherence monitoring. Using a mixed-methods approach, structured focus groups were designed to elicit quantitative and qualitative responses on familiarity, comfort level, and perceived impact of sensor-based hand hygiene adherence monitoring. A university hospital, a Veterans Affairs hospital, and a community hospital in the Midwest. Focus groups were homogenous by HCP type, with separate groups held for leadership, midlevel management, and frontline personnel at each hospital. Overall, 89 HCP participated in 10 focus groups. Levels of familiarity and comfort with electronic oversight technology varied by HCP type; when compared with frontline HCP, those in leadership positions were significantly more familiar with ([Formula: see text]) and more comfortable with ([Formula: see text]) the technology. The most common concerns cited by participants across groups included lack of accuracy in the data produced, such as the inability of the technology to assess the situational context of hand hygiene opportunities, and the potential punitive use of data produced. Across groups, HCP had decreased tolerance for electronic collection of spatial-temporal data, describing such oversight as Big Brother. While substantial concerns were expressed by all types of HCP, participants' recommendations for effective implementation of electronic oversight technologies for hand hygiene monitoring included addressing accuracy issues before implementation and transparent communication with frontline HCP about the intended use of the data.

  11. Remote monitoring as a tool in condition assessment of a highway bridge

    Science.gov (United States)

    Tantele, Elia A.; Votsis, Renos A.; Onoufriou, Toula; Milis, Marios; Kareklas, George

    2016-08-01

    The deterioration of civil infrastructure and their subsequent maintenance is a significant problem for the responsible managing authorities. The ideal scenario is to detect deterioration and/or structural problems at early stages so that the maintenance cost is kept low and the safety of the infrastructure remains undisputed. The current inspection regimes implemented mostly via visual inspection are planned at specific intervals but are not always executed on time due to shortcomings in expert personnel and finance. However the introduction of technological advances in the assessment of infrastructures provides the tools to alleviate this problem. This study describes the assessment of a highway RC bridge's structural condition using remote structural health monitoring. A monitoring plan is implemented focusing on strain measurements; as strain is a parameter influenced by the environmental conditions supplementary data are provided from temperature and wind sensors. The data are acquired using wired sensors (deployed at specific locations) which are connected to a wireless sensor unit installed at the bridge. This WSN application enables the transmission of the raw data from the field to the office for processing and evaluation. The processed data are then used to assess the condition of the bridge. This case study, which is part of an undergoing RPF research project, illustrates that remote monitoring can alleviate the problem of missing structural inspections. Additionally, shows its potential to be the main part of a fully automated smart procedure of obtaining structural data, processed them and trigger an alarm when certain undesirable conditions are met.

  12. Smart Sensing Technology for Agriculture and Environmental Monitoring

    CERN Document Server

    2012-01-01

    The book focuses on the different aspects of sensing technology, i.e. high reliability, adaptability, recalibration, information processing, data fusion, validation and integration of novel and high performance sensors specifically aims to monitor agricultural and environmental parameters.   This book is dedicated to Sensing systems for Agricultural and Environmental Monitoring  offers to variety of users, namely, Master and PhD degree students, researchers, practitioners, especially Agriculture and Environmental engineers. The book will provide an opportunity of a dedicated and a deep approach in order to improve their knowledge in this specific field.

  13. Proportional monitoring of the acoustic emission in crypto-conditions

    Directory of Open Access Journals (Sweden)

    Petr Dostál

    2011-01-01

    Full Text Available The work is aimed at studying corrosion and fatigue properties of aluminum alloys by means of acoustic emission (AE. During material degradation are acoustic events scanned and evaluated. The main objective of the article is a description of behavior of aluminum alloys degraded in specific conditions and critical degradation stages determination. The first part of the article describes controlled degradation of the material in the crypto–conditions. The acoustic emission method is used for process analyzing. This part contains the AE signals assessment and comparing aluminium alloy to steel. Then the specimens are loaded on high-cyclic loading apparatus for fatigue life monitoring. Also, the synergy of fatigue and corrosion processes is taken into account.The aim is the description of fatigue properties for aluminum alloys that have already been corrosion-degraded. Attention is also focused on the structure of fatigue cracks. The main part of the article is aimed at corrosion degradation of aluminium alloys researched in real time by means of AE. The most important benefit of AE detection/recording is that it provides information about the process in real time. Using this measurement system is possible to observe the current status of the machines/devices and to prevent serious accidents.

  14. Abnormal condition detector for a local power range monitor

    International Nuclear Information System (INIS)

    Akiyama, Takao.

    1976-01-01

    Object: to permit determination of abnormal condition by a number of local power range monitors (LPRM) to be quickly made through precise estimation of the ratio between the true rate of change in neutron flux and true change in the neutron flux by making use of the fact that the status of the neutron distribution does not widely change with a change in the core flow rate for a short period of time. Structure: While carrying out power control according to the core flow rate, detection values from LPRM which are disposed in a three-dimensional fashion within the reactor core are indicated on an indicator. The average value of rates of change in the indicated values for a group of LPRM under substantially the same fluid dynamic condition as that for each LPRM is determined while measuring time-wise change rate in the indicated value of each of the LPRM. The average value is successively divided by the rate of change in the indicated value for each LPRM and the amplifier gain thereof to obtain the reference value. When the difference between the average value and reference value obtained in this way exceeds a prescribed value, the corresponding LPRM is determined to be defective. (Moriyama, K.)

  15. A modern diagnostic approach for automobile systems condition monitoring

    Science.gov (United States)

    Selig, M.; Shi, Z.; Ball, A.; Schmidt, K.

    2012-05-01

    An important topic in automotive research and development is the area of active and passive safety systems. In general, it is grouped in active safety systems to prevent accidents and passive systems to reduce the impact of a crash. An example for an active system is ABS while a seat belt tensioner represents the group of passive systems. Current developments in the automotive industry try to link active with passive system components to enable a complete event sequence, beginning with the warning of the driver about a critical situation till the automatic emergency call after an accident. The cross-linking has an impact on the current diagnostic approach, which is described in this paper. Therefore, this contribution introduces a new diagnostic approach for automotive mechatronic systems. The concept is based on monitoring the messages which are exchanged via the automotive communication systems, e.g. the CAN bus. According to the authors' assumption, the messages on the bus are changing between faultless and faulty vehicle condition. The transmitted messages of the sensors and control units are different depending on the condition of the car. First experiments are carried and in addition, the hardware design of a suitable diagnostic interface is presented. Finally, first results will be presented and discussed.

  16. A modern diagnostic approach for automobile systems condition monitoring

    International Nuclear Information System (INIS)

    Selig, M; Ball, A; Shi, Z; Schmidt, K

    2012-01-01

    An important topic in automotive research and development is the area of active and passive safety systems. In general, it is grouped in active safety systems to prevent accidents and passive systems to reduce the impact of a crash. An example for an active system is ABS while a seat belt tensioner represents the group of passive systems. Current developments in the automotive industry try to link active with passive system components to enable a complete event sequence, beginning with the warning of the driver about a critical situation till the automatic emergency call after an accident. The cross-linking has an impact on the current diagnostic approach, which is described in this paper. Therefore, this contribution introduces a new diagnostic approach for automotive mechatronic systems. The concept is based on monitoring the messages which are exchanged via the automotive communication systems, e.g. the CAN bus. According to the authors' assumption, the messages on the bus are changing between faultless and faulty vehicle condition. The transmitted messages of the sensors and control units are different depending on the condition of the car. First experiments are carried and in addition, the hardware design of a suitable diagnostic interface is presented. Finally, first results will be presented and discussed.

  17. The environment, international standards, asset health management and condition monitoring: An integrated strategy

    Energy Technology Data Exchange (ETDEWEB)

    Roe, S. [CSD, British Institute of Non-Destructive Testing (BINDT) (United Kingdom); Mba, D. [School of Engineering, Cranfield University, MK43 0AL, Bedfordshire (United Kingdom)], E-mail: d.mba@cranfield.ac.uk

    2009-02-15

    Asset Health Management (AHM), supported by condition monitoring (CM) and performance measuring technologies, together with trending, modelling and diagnostic frameworks, is not only critical to the reliability of high-value machines, but also to a companies Overall Equipment Efficiency (OEE), system safety and profitability. In addition these protocols are also critical to the global concern of the environment. Industries involved with monitoring key performances indicators (KPI) to improve OEE would benefit from a standardised qualification and certification scheme for their personnel, particularly if it is based on internationally accepted procedures for the various CM technologies that also share the same objectives as AH and CM. Furthermore, the development of 'models' for implementation of a Carbon tax is intrinsically dependent on the integrity and accuracy of measurements contributing to these indicators. This paper reviews the global picture of condition monitoring, the environment and related international standards and then considers their relationship and equivalent global objectives. In addition, it presents the methods behind the development of such standards for certification of competence in personnel involved with data collection, modelling and measurements of KPIs. Two case studies are presented that highlight the integrated strategy in practise.

  18. The environment, international standards, asset health management and condition monitoring: An integrated strategy

    International Nuclear Information System (INIS)

    Roe, S.; Mba, D.

    2009-01-01

    Asset Health Management (AHM), supported by condition monitoring (CM) and performance measuring technologies, together with trending, modelling and diagnostic frameworks, is not only critical to the reliability of high-value machines, but also to a companies Overall Equipment Efficiency (OEE), system safety and profitability. In addition these protocols are also critical to the global concern of the environment. Industries involved with monitoring key performances indicators (KPI) to improve OEE would benefit from a standardised qualification and certification scheme for their personnel, particularly if it is based on internationally accepted procedures for the various CM technologies that also share the same objectives as AH and CM. Furthermore, the development of 'models' for implementation of a Carbon tax is intrinsically dependent on the integrity and accuracy of measurements contributing to these indicators. This paper reviews the global picture of condition monitoring, the environment and related international standards and then considers their relationship and equivalent global objectives. In addition, it presents the methods behind the development of such standards for certification of competence in personnel involved with data collection, modelling and measurements of KPIs. Two case studies are presented that highlight the integrated strategy in practise

  19. Innovative waste treatment and conditioning technologies at nuclear power plants

    International Nuclear Information System (INIS)

    2006-05-01

    The objective of this publication is to provide Member States with information on the most innovative technologies and strategies used in waste treatment and conditioning. At present, some of those technologies and strategies might not be widely implemented at nuclear power plants (NPP), but they have an important potential for their use as part of the long range NPP, utility, or national strategy. Thus, the target audience is those decision makers at the national and organizational level responsible for selecting waste processing technologies and strategies over a period of three to ten years. Countries and individual nuclear plants have limited financial resources which can be applied toward radioactive waste processing (treatment and conditioning). They are challenged to determine which of the many available technologies and strategies are best suited to meet national or local needs. This publication reduces the selection of processes for wastes generated by nuclear power plants to those technologies and strategies which are considered innovative. The report further identifies the key benefits which may derive from the adoption of those technologies, the different waste streams to which each technology is relevant, and the limitations of the technologies. The technologies and strategies identified have been evaluated to differentiate between (1) predominant technologies (those that are widely practiced in multiple countries or a large number of nuclear plants), and (2) innovative technologies (those which are not so widely used but are considered to offer benefits which make them suitable for broader application across the industry). Those which fall into the second category are the primary focus of this report. Many IAEA publications address the technical aspects of treatment and conditioning for radioactive wastes, covering research, technological advances, and safety issues. These studies and reports primarily target the research and technical staff of a

  20. Understanding Monitoring Technologies for Adults With Pain: Systematic Literature Review.

    Science.gov (United States)

    Rodríguez, Iyubanit; Herskovic, Valeria; Gerea, Carmen; Fuentes, Carolina; Rossel, Pedro O; Marques, Maíra; Campos, Mauricio

    2017-10-27

    Monitoring of patients may decrease treatment costs and improve quality of care. Pain is the most common health problem that people seek help for in hospitals. Therefore, monitoring patients with pain may have significant impact in improving treatment. Several studies have studied factors affecting pain; however, no previous study has reviewed the contextual information that a monitoring system may capture to characterize a patient's situation. The objective of this study was to conduct a systematic review to (1) determine what types of technologies have been used to monitor adults with pain, and (2) construct a model of the context information that may be used to implement apps and devices aimed at monitoring adults with pain. A literature search (2005-2015) was conducted in electronic databases pertaining to medical and computer science literature (PubMed, Science Direct, ACM Digital Library, and IEEE Xplore) using a defined search string. Article selection was done through a process of removing duplicates, analyzing title and abstract, and then reviewing the full text of the article. In the final analysis, 87 articles were included and 53 of them (61%) used technologies to collect contextual information. A total of 49 types of context information were found and a five-dimension (activity, identity, wellness, environment, physiological) model of context information to monitor adults with pain was proposed, expanding on a previous model. Most technological interfaces for pain monitoring were wearable, possibly because they can be used in more realistic contexts. Few studies focused on older adults, creating a relevant avenue of research on how to create devices for users that may have impaired cognitive skills or low digital literacy. The design of monitoring devices and interfaces for adults with pain must deal with the challenge of selecting relevant contextual information to understand the user's situation, and not overburdening or inconveniencing users with

  1. Condition monitoring of rotor blades of modern wind power systems; Ueberwachung mit Hertz. Condition Monitoring von Rotorblaettern moderner Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Fecht, Nikolaus

    2010-06-15

    With seven wind turbines, the Austrian wind farm ''Sternwald'' is the biggest wind farm in Upper Austria. It is the only wind farm in a forest, and all turbines are therefore equipped with automatic fire fighting equipment. The mountain range on which the wind farm is located is about 1000 m high, with strong wind and much ice and snow in the winter season. For this reason, the owner decided to instal a condition monitoring system with ice detectors. The piezoelectric sensors are mounted directly on the rotor blades as measurements on the nacelle will always be incorrect. Installation on the rotor blades, on the other hand, makes high demands on the fastenings and sensors as the velocity of the blade tips may be up to 250 km per hour. (orig.)

  2. Technical Report on Preliminary Methodology for Enhancing Risk Monitors with Integrated Equipment Condition Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, Pradeep; Coles, Garill A.; Coble, Jamie B.; Hirt, Evelyn H.

    2013-09-17

    Small modular reactors (SMRs) generally include reactors with electric output of ~350 MWe or less (this cutoff varies somewhat but is substantially less than full-size plant output of 700 MWe or more). Advanced SMRs (AdvSMRs) refer to a specific class of SMRs and are based on modularization of advanced reactor concepts. AdvSMRs may provide a longer-term alternative to traditional light-water reactors (LWRs) and SMRs based on integral pressurized water reactor concepts currently being considered. Enhancing affordability of AdvSMRs will be critical to ensuring wider deployment. AdvSMRs suffer from loss of economies of scale inherent in small reactors when compared to large (~greater than 600 MWe output) reactors. Some of this loss can be recovered through reduced capital costs through smaller size, fewer components, modular fabrication processes, and the opportunity for modular construction. However, the controllable day-to-day costs of AdvSMRs will be dominated by operation and maintenance (O&M) costs. Technologies that help characterize real-time risk are important for controlling O&M costs. Risk monitors are used in current nuclear power plants to provide a point-in-time estimate of the system risk given the current plant configuration (e.g., equipment availability, operational regime, and environmental conditions). However, current risk monitors are unable to support the capability requirements listed above as they do not take into account plant-specific normal, abnormal, and deteriorating states of active components and systems. This report documents technology developments that are a step towards enhancing risk monitors that, if integrated with supervisory plant control systems, can provide the capability requirements listed and meet the goals of controlling O&M costs. The report describes research results from an initial methodology for enhanced risk monitors by integrating real-time information about equipment condition and POF into risk monitors.

  3. The Application of Foundation Pit Monitoring Technology to the Excavation

    Directory of Open Access Journals (Sweden)

    Qiu Jin

    2015-01-01

    Full Text Available The foundation pit monitoring plays an important role in the foundation pit supporting projects especially in those deep foundation pit projects. Through the whole monitoring of the foundation pit construction from the excavation to the backfill, we can learn about the forcing and deforming process of the foundation pit supporting system, and grasp the impact of external condition changes on the foundation pit. This paper takes a project in Jinan as an example to establish a specific monitoring program, and then conducts the analysis and evaluation of the monitoring data; the real-time grasp of the foundation pit deformation and internal force changes can help to further ensure the security status of the foundation pit, thus better guiding the construction.

  4. Wearable physiological systems and technologies for metabolic monitoring.

    Science.gov (United States)

    Gao, Wei; Brooks, George A; Klonoff, David C

    2018-03-01

    Wearable sensors allow continuous monitoring of metabolites for diabetes, sports medicine, exercise science, and physiology research. These sensors can continuously detect target analytes in skin interstitial fluid (ISF), tears, saliva, and sweat. In this review, we will summarize developments on wearable devices and their potential applications in research, clinical practice, and recreational and sporting activities. Sampling skin ISF can require insertion of a needle into the skin, whereas sweat, tears, and saliva can be sampled by devices worn outside the body. The most widely sampled metabolite from a wearable device is glucose in skin ISF for monitoring diabetes patients. Continuous ISF glucose monitoring allows estimation of the glucose concentration in blood without the pain, inconvenience, and blood waste of fingerstick capillary blood glucose testing. This tool is currently used by diabetes patients to provide information for dosing insulin and determining a diet and exercise plan. Similar technologies for measuring concentrations of other analytes in skin ISF could be used to monitor athletes, emergency responders, warfighters, and others in states of extreme physiological stress. Sweat is a potentially useful substrate for sampling analytes for metabolic monitoring during exercise. Lactate, sodium, potassium, and hydrogen ions can be measured in sweat. Tools for converting the concentrations of these analytes sampled from sweat, tears, and saliva into blood concentrations are being developed. As an understanding of the relationships between the concentrations of analytes in blood and easily sampled body fluid increases, then the benefits of new wearable devices for metabolic monitoring will also increase.

  5. Recent Developments on Wireless Sensor Networks Technology for Bridge Health Monitoring

    Directory of Open Access Journals (Sweden)

    Guang-Dong Zhou

    2013-01-01

    Full Text Available Structural health monitoring (SHM systems have shown great potential to sense the responses of a bridge system, diagnose the current structural conditions, predict the expected future performance, provide information for maintenance, and validate design hypotheses. Wireless sensor networks (WSNs that have the benefits of reducing implementation costs of SHM systems as well as improving data processing efficiency become an attractive alternative to traditional tethered sensor systems. This paper introduces recent technology developments in the field of bridge health monitoring using WSNs. As a special application of WSNs, the requirements and characteristics of WSNs when used for bridge health monitoring are firstly briefly discussed. Then, the state of the art in WSNs-based bridge health monitoring systems is reviewed including wireless sensor, network topology, data processing technology, power management, and time synchronization. Following that, the performance validations and applications of WSNs in bridge health monitoring through scale models and field deployment are presented. Finally, some existing problems and promising research efforts for promoting applications of WSNs technology in bridge health monitoring throughout the world are explored.

  6. Testing telehealth using technology-enhanced nurse monitoring.

    Science.gov (United States)

    Grant, Leslie A; Rockwood, Todd; Stennes, Leif

    2014-10-01

    Technology-enhanced nurse monitoring is a telehealth solution that helps nurses with assessment, diagnosis, and triage of older adults living in community-based settings. This technology links biometric and nonbiometric sensors to a data management system that is monitored remotely by RNs and unlicensed support staff. Nurses faced a number of challenges related to data interpretation, including making clinical inferences from nonbiometric data, integrating data generated by three different telehealth applications into a clinically meaningful cognitive framework, and figuring out how best to use nursing judgment to make valid inferences from online reporting systems. Nurses developed expertise over the course of the current study. The sponsoring organization achieved a high degree of organizational knowledge about how to use these systems more effectively. Nurses saw tremendous value in the telehealth applications. The challenges, learning curve, and organizational improvements are described. Copyright 2014, SLACK Incorporated.

  7. Technology and application of 3D tunnel information monitoring

    Science.gov (United States)

    Li, Changqing; Deng, Hongliang; Chen, Ge; Wang, Simiao; Guo, Yang; Wu, Shenglin

    2015-12-01

    It is very necessary that Implement information monitoring and dynamic construction because of Complex geological environment and lack of basic information in the process of tunnel construction. The monitoring results show that 3 d laser scanning technology and information management system has important theoretical significance and application value to ensure the safety of tunnel construction, rich construction theory and technology. It can be known in real time the deformation information and the construction information in near tunnel workplace and the whole tunnel section in real time. In the meantime, it can be known the deformation regularity in the tunnel excavation process and the early warning and forecasting in the form of graphic and data. In order to determine the reasonable time and provide basis for supporting parameters and lining.

  8. Advanced technology heavy water monitors offering reduced implementation costs

    International Nuclear Information System (INIS)

    Kalechstein, W.; Hippola, K.B.

    1984-10-01

    The development of second generation heavy water monitors for use at CANDU power stations and heavy water plants has been completed and the instruments brought to the stage of commercial availability. Applications of advanced technology and reduced utilization of custom manufactured components have together resulted in instruments that are less expensive to produce than the original monitors and do not require costly station services. The design has been tested on two prototypes and fully documented, including the inspection and test procedures required for manufacture to the CSA Z299.3 quality verfication program standard. Production of the new monitors by a commercial vendor (Barringer Research Ltd.) has begun and the first instrument is scheduled for delivery to CRNL's NRU reactor in late 1984

  9. Physical working conditions as covered in European monitoring questionnaires

    Directory of Open Access Journals (Sweden)

    Tore Tynes

    2017-06-01

    Full Text Available Abstract Background The prevalence of workers with demanding physical working conditions in the European work force remains high, and occupational physical exposures are considered important risk factors for musculoskeletal disorders (MSD, a major burden for both workers and society. Exposures to physical workloads are therefore part of the European nationwide surveys to monitor working conditions and health. An interesting question is to what extent the same domains, dimensions and items referring to the physical workloads are covered in the surveys. The purpose of this paper is to determine 1 which domains and dimensions of the physical workloads are monitored in surveys at the national level and the EU level and 2 the degree of European consensus among these surveys regarding coverage of individual domains and dimensions. Method Items on physical workloads used in one European wide/Spanish and five other European nationwide work environment surveys were classified into the domains and dimensions they cover, using a taxonomy agreed upon among all participating partners. Results The taxonomy reveals that there is a modest overlap between the domains covered in the surveys, but when considering dimensions, the results indicate a lower agreement. The phrasing of items and answering categories differs between the surveys. Among the domains, the three domains covered by all surveys are “lifting, holding & carrying of loads/pushing & pulling of loads”, “awkward body postures” and “vibrations”. The three domains covered less well, that is only by three surveys or less, are “physical work effort”, “working sitting”, and “mixed exposure”. Conclusions This is the fırst thorough overview to evaluate the coverage of domains and dimensions of self-reported physical workloads in a selection of European nationwide surveys. We hope the overview will provide input to the revisions and updates of the individual countries’ surveys in

  10. Development Of A Sensor Network Test Bed For ISD Materials And Structural Condition Monitoring

    International Nuclear Information System (INIS)

    Zeigler, K.; Ferguson, B.; Karapatakis, D.; Herbst, C.; Stripling, C.

    2011-01-01

    The P Reactor at the Savannah River Site is one of the first reactor facilities in the US DOE complex that has been placed in its end state through in situ decommissioning (ISD). The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. To evaluate the feasibility and utility of remote sensors to provide verification of ISD system conditions and performance characteristics, an ISD Sensor Network Test Bed has been designed and deployed at the Savannah River National Laboratory. The test bed addresses the DOE-EM Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of: (1) Groutable thermistors for temperature and moisture monitoring; (2) Strain gauges for crack growth monitoring; (3) Tiltmeters for settlement monitoring; and (4) A communication system for data collection. Preliminary baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment.

  11. DEVELOPMENT OF A SENSOR NETWORK TEST BED FOR ISD MATERIALS AND STRUCUTRAL CONDITION MONITORING

    Energy Technology Data Exchange (ETDEWEB)

    Zeigler, K.; Ferguson, B.; Karapatakis, D.; Herbst, C.; Stripling, C.

    2011-07-06

    The P Reactor at the Savannah River Site is one of the first reactor facilities in the US DOE complex that has been placed in its end state through in situ decommissioning (ISD). The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. To evaluate the feasibility and utility of remote sensors to provide verification of ISD system conditions and performance characteristics, an ISD Sensor Network Test Bed has been designed and deployed at the Savannah River National Laboratory. The test bed addresses the DOE-EM Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of: (1) Groutable thermistors for temperature and moisture monitoring; (2) Strain gauges for crack growth monitoring; (3) Tiltmeters for settlement monitoring; and (4) A communication system for data collection. Preliminary baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment.

  12. Energy technology monitoring - New areas and in-depth investigations; Technologie-Monitoring - Weitere Bereiche - Vertiefungen

    Energy Technology Data Exchange (ETDEWEB)

    Rigassi, R; Eicher, H [Dr. Eicher und Pauli AG, Liestal (Switzerland); Steiner, P; Ott, W [Econcept AG, Zuerich (Switzerland)

    2005-07-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) presents the results of a project that examined long-term trends in the energy technology area in order to provide information that is to form the basis for political action and the distribution of energy research funding in Switzerland. Energy-technology areas examined include variable-speed electrical drives, ventilation systems for low-energy-consumption buildings, membrane technology and the use of plastics in lightweight automobiles. Examples are quoted and the current state of the appropriate technologies and market aspects are examined. Also, the potential and future developments in the areas listed are looked at. The consequences for energy policy and future developments in the technology-monitoring area are considered.

  13. Health technology assessment to optimize health technology utilization: using implementation initiatives and monitoring processes.

    Science.gov (United States)

    Frønsdal, Katrine B; Facey, Karen; Klemp, Marianne; Norderhaug, Inger Natvig; Mørland, Berit; Røttingen, John-Arne

    2010-07-01

    The way in which a health technology is used in any particular health system depends on the decisions and actions of a variety of stakeholders, the local culture, and context. In 2009, the HTAi Policy Forum considered how health technology assessment (HTA) could be improved to optimize the use of technologies (in terms of uptake, change in use, or disinvestment) in such complex systems. In scoping, it was agreed to focus on initiatives to implement evidence-based guidance and monitoring activities. A review identified systematic reviews of implementation initiatives and monitoring activities. A two-day deliberative workshop was held to discuss key papers, members' experiences, and collectively address key questions. This consensus paper was developed by email and finalized at a postworkshop meeting. Evidence suggests that the impact and use of HTA could be increased by ensuring timely delivery of relevant reports to clearly determined policy receptor (decision-making) points. To achieve this, the breadth of assessment, implementation initiatives such as incentives and targeted, intelligent dissemination of HTA result, needs to be considered. HTA stakeholders undertake a variety of monitoring activities, which could inform optimal use of a technology. However, the quality of these data varies and is often not submitted to an HTA. Monitoring data should be sufficiently robust so that they can be used in HTA to inform optimal use of technology. Evidence-based implementation initiatives should be developed for HTA, to better inform decision makers at all levels in a health system about the optimal use of technology.

  14. CONDITIONS AND ORGANIZATION OF THE TRANSITION TO BASIC TECHNOLOGIES OF A NEW TECHNOLOGICAL STRUCTURE

    Directory of Open Access Journals (Sweden)

    B. L. Bourov

    2011-01-01

    Full Text Available With due account for the coming new (VI-th world technological structure, future creation of new types of industrial production is both possible and necessary. Economic environment conditions favorable for such development are designated. In reference to Russian technological environment particulars, self-developing economic-technological microenvironment of a new quality level should be created in zones where controlled «technological chains» function. Possibilities of creation of the VI-th technological structure level basic technologies are shown for industrial and household waste processing techniques as an example.

  15. Workshop on power conditioning for alternative energy technologies. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D. R.

    1979-01-01

    As various alternative energy technologies such as photovoltaics, wind, fuel cells, and batteries are emerging as potential sources of energy for the future, the need arises for development of suitable power-conditioning systems to interface these sources to their respective loads. Since most of these sources produce dc electricity and most electrical loads require ac, an important component of the required power-conditioning units is a dc-to-ac inverter. The discussions deal with the development of power conditioners for each alternative energy technology. Discussion topics include assessments of current technology, identification of operational requirements with a comparison of requirements for each source technology, the identification of future technology trends, the determination of mass production and marketing requirements, and recommendations for program direction. Specifically, one working group dealt with source technology: photovoltaics, fuel cells and batteries, and wind followed by sessions discussing system size and application: large grid-connected systems, small grid-connected systems, and stand alone and dc applications. A combined group session provided an opportunity to discuss problems common to power conditioning development.

  16. Developing RCM Strategy for Hydrogen Fuel Cells Utilizing On Line E-Condition Monitoring

    International Nuclear Information System (INIS)

    Baglee, D; Knowles, M J

    2012-01-01

    Fuel cell vehicles are considered to be a viable solution to problems such as carbon emissions and fuel shortages for road transport. Proton Exchange Membrane (PEM) Fuel Cells are mainly used in this purpose because they can run at low temperatures and have a simple structure. Yet high maintenance costs and the inherent dangers of maintaining equipment using hydrogen are two main issues which need to be addressed. The development of appropriate and efficient strategies is currently lacking with regard to fuel cell maintenance. A Reliability Centered Maintenance (RCM) approach offers considerable benefit to the management of fuel cell maintenance since it includes an identification and consideration of the impact of critical components. Technological developments in e-maintenance systems, radio-frequency identification (RFID) and personal digital assistants (PDAs) have proven to satisfy the increasing demand for improved reliability, efficiency and safety. RFID technology is used to store and remotely retrieve electronic maintenance data in order to provide instant access to up-to-date, accurate and detailed information. The aim is to support fuel cell maintenance decisions by developing and applying a blend of leading-edge communications and sensor technology including RFID. The purpose of this paper is to review and present the state of the art in fuel cell condition monitoring and maintenance utilizing RCM and RFID technologies. Using an RCM analysis critical components and fault modes are identified. RFID tags are used to store the critical information, possible faults and their cause and effect. The relationship between causes, faults, symptoms and long term implications of fault conditions are summarized. Finally conclusions are drawn regarding suggested maintenance strategies and the optimal structure for an integrated, cost effective condition monitoring and maintenance management system.

  17. Developing RCM Strategy for Hydrogen Fuel Cells Utilizing On Line E-Condition Monitoring

    Science.gov (United States)

    Baglee, D.; Knowles, M. J.

    2012-05-01

    Fuel cell vehicles are considered to be a viable solution to problems such as carbon emissions and fuel shortages for road transport. Proton Exchange Membrane (PEM) Fuel Cells are mainly used in this purpose because they can run at low temperatures and have a simple structure. Yet high maintenance costs and the inherent dangers of maintaining equipment using hydrogen are two main issues which need to be addressed. The development of appropriate and efficient strategies is currently lacking with regard to fuel cell maintenance. A Reliability Centered Maintenance (RCM) approach offers considerable benefit to the management of fuel cell maintenance since it includes an identification and consideration of the impact of critical components. Technological developments in e-maintenance systems, radio-frequency identification (RFID) and personal digital assistants (PDAs) have proven to satisfy the increasing demand for improved reliability, efficiency and safety. RFID technology is used to store and remotely retrieve electronic maintenance data in order to provide instant access to up-to-date, accurate and detailed information. The aim is to support fuel cell maintenance decisions by developing and applying a blend of leading-edge communications and sensor technology including RFID. The purpose of this paper is to review and present the state of the art in fuel cell condition monitoring and maintenance utilizing RCM and RFID technologies. Using an RCM analysis critical components and fault modes are identified. RFID tags are used to store the critical information, possible faults and their cause and effect. The relationship between causes, faults, symptoms and long term implications of fault conditions are summarized. Finally conclusions are drawn regarding suggested maintenance strategies and the optimal structure for an integrated, cost effective condition monitoring and maintenance management system.

  18. Development of Beam Conditions Monitor for the ATLAS experiment

    CERN Document Server

    Dolenc Kittelmann, Irena; Mikuž, M

    2008-01-01

    If there is a failure in an element of the accelerator the resulting beam losses could cause damage to the inner tracking devices of the experiments. This thesis presents the work performed during the development phase of a protection system for the ATLAS experiment at the LHC. The Beam Conditions Monitor (BCM) system is a stand-alone system designed to detect early signs of beam instabilities and trigger a beam abort in case of beam failures. It consists of two detector stations positioned at z=±1.84m from the interaction point. Each station comprises four BCM detector modules installed symmetrically around the beam pipe with sensors located at r=55 mm. This structure will allow distinguishing between anomalous events (beam gas and beam halo interactions, beam instabilities) and normal events due to proton-proton interaction by measuring the time-of-flight as well as the signal pulse amplitude from detector modules on the timescale of nanoseconds. Additionally, the BCM system aims to provide a coarse instan...

  19. Condition Monitoring of Sensors in a NPP Using Optimized PCA

    Directory of Open Access Journals (Sweden)

    Wei Li

    2018-01-01

    Full Text Available An optimized principal component analysis (PCA framework is proposed to implement condition monitoring for sensors in a nuclear power plant (NPP in this paper. Compared with the common PCA method in previous research, the PCA method in this paper is optimized at different modeling procedures, including data preprocessing stage, modeling parameter selection stage, and fault detection and isolation stage. Then, the model’s performance is greatly improved through these optimizations. Finally, sensor measurements from a real NPP are used to train the optimized PCA model in order to guarantee the credibility and reliability of the simulation results. Meanwhile, artificial faults are sequentially imposed to sensor measurements to estimate the fault detection and isolation ability of the proposed PCA model. Simulation results show that the optimized PCA model is capable of detecting and isolating the sensors regardless of whether they exhibit major or small failures. Meanwhile, the quantitative evaluation results also indicate that better performance can be obtained in the optimized PCA method compared with the common PCA method.

  20. Enhancing the performance of mine communication, warning and condition monitoring systems

    Energy Technology Data Exchange (ETDEWEB)

    Myszkowski, M.; Rellecke, R.; Widera, K. (and others) [DMT GmbH, Essen (Germany)

    2008-07-01

    This project investigated improvements in power line communications (PLC), condition monitoring techniques and diagnostic aids, together with improving audible communication systems underground. The work on PLC investigated narrow-band, low data rate technologies and high data bandwidth broadband PLC technologies. It is concluded that broadband PLC technologies cannot currently meet the requirements of providing backbone communications in mining and that fibre-optic methods offer better performance. However, short range broadband applications are feasible and an innovative voice and data transmission system, including remote control features, has been developed for coalface communications, using radiofrequency and digital voice technologies not previously used for this application. This system accommodates all the new digital interfaces: Bluetooth, PLC, twisted pair cables, etc. The condition monitoring research has led to a suite of new specialised ATEX-certified sensors together with the development of new vibration signature tracking and classification devices and methods, which provide an early indication of incipient failure. Particular value of these methods is anticipated with coalface equipment. A further component of the work examined the practicability of implementing noise reduction techniques in mining communications systems and noisy workplaces by means of active noise cancellation (ANC). Whilst ANC-based techniques would not be currently cost-effective, several other practical communication improvements are worth considering further. These include new hearing protector technologies and a simple but effective 'waveshape compressor' to improve speech dynamic range in communication systems. A final component of the project examined the issue of mining alerts and alarms, where significant advances in signal design tools have been made. 60 refs., 138 figs., 8 tabs., 1 app.

  1. Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth A. Yackly

    2005-12-01

    turbine combustion systems. This task was refocused to address pre-mixed combustion phenomenon for IGCC applications. The work effort on this task was shifted to another joint GE Energy/DOE-NETL program investigation, High Hydrogen Pre-mixer Designs, as of April 1, 2004. Task 4--Information Technology (IT) Integration: The fourth task was originally to demonstrate Information Technology (IT) tools for advanced technology coal/IGCC powerplant condition assessment and condition based maintenance. The task focused on development of GateCycle. software to model complete-plant IGCC systems, and the Universal On-Site Monitor (UOSM) to collect and integrate data from multiple condition monitoring applications at a power plant. The work on this task was stopped as of April 1, 2004.

  2. Technology and Power. A Foucauldian Analysis of Electronic Monitoring Discourses

    Directory of Open Access Journals (Sweden)

    Anna Vitores

    2007-05-01

    Full Text Available The article aims to show the importance of FOUCAULT within social studies of science and technology. It also illustrates how a Foucauldian analysis can be useful for studies of science, technology and society focused on power effects. To accomplish these objectives we analyze the emergence of a specific techno-scientific innovation: the electronic monitoring of offenders. We map the discontinuities and discourse dispersions linked to those practices that constitute different materializations of this electronic device. Because we start from questions concerning power technologies, rather than simply analyzing the ideologies and knowledges that legitimate electronic monitoring and its technical reliability, we attend to the assemblage of discourses, rhetorics, vocabularies, techniques and procedures by which knowledge is intertwined and joins with the exercise of power. In this way, we show how one of FOUCAULT's technologies of power—disciplinary technology—is articulated, nourished and contradicted by other emergent logics drawing on new forms of regulation and social control. URN: urn:nbn:de:0114-fqs070225

  3. The Savannah River Technology Center environmental monitoring field test platform

    International Nuclear Information System (INIS)

    Rossabi, J.

    1993-01-01

    Nearly all industrial facilities have been responsible for introducing synthetic chemicals into the environment. The Savannah River Site is no exception. Several areas at the site have been contaminated by chlorinated volatile organic chemicals. Because of the persistence and refractory nature of these contaminants, a complete clean up of the site will take many years. A major focus of the mission of the Environmental Sciences Section of the Savannah River Technology Center is to develop better, faster, and less expensive methods for characterizing, monitoring, and remediating the subsurface. These new methods can then be applied directly at the Savannah River Site and at other contaminated areas in the United States and throughout the world. The Environmental Sciences Section has hosted field testing of many different monitoring technologies over the past two years primarily as a result of the Integrated Demonstration Program sponsored by the Department of Energy's Office of Technology Development. This paper provides an overview of some of the technologies that have been demonstrated at the site and briefly discusses the applicability of these techniques

  4. APPLICATIONS OF CURRENT TECHNOLOGY FOR CONTINUOUS MONITORING OF SPENT FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Drayer, R.

    2013-06-09

    Advancements in technology have opened many opportunities to improve upon the current infrastructure surrounding the nuclear fuel cycle. Embedded devices, very small sensors, and wireless technology can be applied to Security, Safety, and Nonproliferation of Spent Nuclear Fuel. Security, separate of current video monitoring systems, can be improved by integrating current wireless technology with a variety of sensors including motion detection, altimeter, accelerometer, and a tagging system. By continually monitoring these sensors, thresholds can be set to sense deviations from nominal values. Then alarms or notifications can be activated as needed. Safety can be improved in several ways. First, human exposure to ionizing radiation can be reduced by using a wireless sensor package on each spent fuel cask to monitor radiation, temperature, humidity, etc. Since the sensor data is monitored remotely operator stay-time is decreased and distance from the spent fuel increased, so the overall radiation exposure is reduced as compared to visual inspections. The second improvement is the ability to monitor continuously rather than periodically. If changes occur to the material, alarm thresholds could be set and notifications made to provide advanced notice of negative data trends. These sensor packages could also record data to be used for scientific evaluation and studies to improve transportation and storage safety. Nonproliferation can be improved for spent fuel transportation and storage by designing an integrated tag that uses current infrastructure for reporting and in an event; tracking can be accomplished using the Iridium satellite system. This technology is similar to GPS but with higher signal strength and penetration power, but lower accuracy. A sensor package can integrate all or some of the above depending on the transportation and storage requirements and regulations. A sensor package can be developed using off the shelf technology and applying it to each

  5. Applications of current technology for continuous monitoring of spent fuel

    International Nuclear Information System (INIS)

    Drayer, R.

    2013-01-01

    Advancements in technology have opened many opportunities to improve upon the current infrastructure surrounding the nuclear fuel cycle. Embedded devices, very small sensors, and wireless technology can be applied to Security, Safety, and Nonproliferation of Spent Nuclear Fuel. Security, separate of current video monitoring systems, can be improved by integrating current wireless technology with a variety of sensors including motion detection, altimeter, accelerometer, and a tagging system. By continually monitoring these sensors, thresholds can be set to sense deviations from nominal values. Then alarms or notifications can be activated as needed. Safety can be improved in several ways. First, human exposure to ionizing radiation can be reduced by using a wireless sensor package on each spent fuel cask to monitor radiation, temperature, humidity, etc. Since the sensor data is monitored remotely operator stay-time is decreased and distance from the spent fuel increased, so the overall radiation exposure is reduced as compared to visual inspections. The second improvement is the ability to monitor continuously rather than periodically. If changes occur to the material, alarm thresholds could be set and notifications made to provide advanced notice of negative data trends. These sensor packages could also record data to be used for scientific evaluation and studies to improve transportation and storage safety. Nonproliferation can be improved for spent fuel transportation and storage by designing an integrated tag that uses current infrastructure for reporting and in an event; tracking can be accomplished using the Iridium satellite system. This technology is similar to GPS but with higher signal strength and penetration power, but lower accuracy. A sensor package can integrate all or some of the above depending on the transportation and storage requirements and regulations. A sensor package can be developed using off the shelf technology and applying it to each

  6. Transparencies used in describing the CTBT verification regime and its four monitoring technologies

    International Nuclear Information System (INIS)

    Basham, P.

    1999-01-01

    This presentation includes description of the CTBT verification regime and its four monitoring technologies, (namely, seismic monitoring, hydro acoustic monitoring, infrasound monitoring and radionuclides monitoring) CTBT global verification system, sequence of steps needed for installing an international monitoring system station which includes: site survey, site preparation and construction, equipment procurement and installation, final tests and certification

  7. Distributed automatic control of technological processes in conditions of weightlessness

    Science.gov (United States)

    Kukhtenko, A. I.; Merkulov, V. I.; Samoylenko, Y. I.; Ladikov-Royev, Y. P.

    1986-01-01

    Some problems associated with the automatic control of liquid metal and plasma systems under conditions of weightlessness are examined, with particular reference to the problem of stability of liquid equilibrium configurations. The theoretical fundamentals of automatic control of processes in electrically conducting continuous media are outlined, and means of using electromagnetic fields for simulating technological processes in a space environment are discussed.

  8. Technology Change And Working Conditions – A Cultural Perspective

    DEFF Research Database (Denmark)

    Sørensen, Ole Henning

    2004-01-01

    When technology change improves working conditions, the success is often attributed to skilful change agents. When it is not, the blame is on “resistance to change” and “resilient cultures”. How can these failures be understood differently? A cultural perspective on technology change might be a way...... to facilitate technology change processes that lead to improved working conditions. The research based project described here has developed a special homepage that explains how this might be achieved. The homepage is targeted at working life professionals. The homepage presents theoretical explanations...... of the concept of organizational culture, a model for analysis and several practical case stories. This paper explains how the project tries to reach a broad spectrum of professionals in order to facilitate their use of a cultural perspective. It also discusses the ethical consequences of the cultural...

  9. Labview Based ECG Patient Monitoring System for Cardiovascular Patient Using SMTP Technology

    OpenAIRE

    Singh, Om Prakash; Mekonnen, Dawit; Malarvili, M. B.

    2015-01-01

    This paper leads to developing a Labview based ECG patient monitoring system for cardiovascular patient using Simple Mail Transfer Protocol technology. The designed device has been divided into three parts. First part is ECG amplifier circuit, built using instrumentation amplifier (AD620) followed by signal conditioning circuit with the operation amplifier (lm741). Secondly, the DAQ card is used to convert the analog signal into digital form for the further process. Furthermore, the data has ...

  10. APPLICATION OF INFORMATION TECHNOLOGY FOR MONITORING OF BRIDGES CONSTRUCTIONS

    Directory of Open Access Journals (Sweden)

    L. V. Hulytska

    2010-04-01

    Full Text Available The article is dealt with а variant of usage of database technologies in the transport communication sphere, particularly for introduction of integrated methodology of evaluation of technical-and-operational condition of bridge structures on highways of general use.

  11. Condition monitoring of a check valve for nuclear power plants by means of acoustic emission technique

    International Nuclear Information System (INIS)

    Lee, Min Rae; Leee, Jun Hyun; Kim, Jung Tack; Kim, Jung Soo; Luk, V. K.

    2003-01-01

    This work performed in support of the International Nuclear Energy Research Initiative(INERI) program, which was to develop and demonstrate advanced sensor and computational technology for on-line monitoring of the condition of components, structures, and systems in advanced and next-generation nuclear power plants (NPPs). The primary object of this work is to investigate advanced condition monitoring systems based on acoustic emission detection that can provide timely detection of check valve degradation and service aging so that maintenance/replacement could be preformed prior to loss of safety function. The research is focused on the capability of AE technique to provide diagnostic information useful in determining check valve aging and degradation, check valve failures and undesirable operating modes. This work also includes the investigation and adaptation of several advanced sensor technologies such as accelerometer and advanced ultrasonic technique. In addition, this work will develop advanced sophisticated signal processing, noise reduction, and pattern recognition techniques and algorithms from check valve degradation.

  12. Development of thermal conditioning technology for alpha-contaminated wastes

    International Nuclear Information System (INIS)

    Kim, Joon Hyung; Kim, H. Y.; Kim, J. G.

    2001-04-01

    To develop a thermal conditioning technology for alpha-contaminated wastes, which are presumed to generate from pyrochemical processing of spent fuel, research on the three different fields have been performed; incineration, off-gas treatment, and vitrification/cementation technology. Through the assessment on the amount of alpha-contaminated waste and incineration characterises, an oxygen-enriched incineration process, which can greatly reduce the off-gas volume, was developed by our own technology. Trial burn test with paper waste resulted in a reduction of off-gas volume by 3.5. A study on the behavior and adsorption of nuclides/heavy metals at high-temperature was performed to develop an efficient removal technology. Off-gas treatment technologies for radioiodine at high-temperature and 14 CO 2 , acidic gases, and radioactive gaseous wastes such as Xe/Kr at room temperature were established. As a part of development of high-level waste solidification technology, manufacture of high-frequency induction melter, fabrication and characterization of base-glass media fabricated with spent HEPA filter medium, and development of titanate ceramic material as a precursor of SYNROC by a self-combustion method were performed. To develop alpha-contaminated waste solidification technology, a process to convert periodontal in the cement matrix to calcite with SuperCritical Carbon Dioxide (SCCD) was manufactured. The SCCD treatment enhanced the physicochemical properties of cement matrices, which increase the long-term integrity of cement waste forms during transportation and storage

  13. The use of modern technologies in carbon dioxide monitoring

    Science.gov (United States)

    Komínek, Petr; Weyr, Jan; Hirš, Jiří

    2017-12-01

    Indoor environment has huge influence on person's health and overall comfort. It is of great importance that we realize how essential indoor air quality is, considering we spend on average as much as 90% of our time indoors. There are many factors that affect indoor air quality: specifically, inside air temperature, relative humidity, and odors to name the most important factors. One of the key factors indicating indoor air quality is carbon dioxide (CO2) level. The CO2 levels, measured in prefab apartment buildings, indicates substantial indoor air quality issues. Therefore, a proper education of the occupants is of utmost importance. Also, great care should be directed towards technical and technological solutions that would ensure meeting the normative indoor environment criteria, especially indoor air CO2 levels. Thanks to the implementation of new emerging autonomous technologies, such as Internet of Things (IoT), monitoring in real-time is enhanced. An area where IoT plays a major role is in the monitoring of indoor environment. IoT technology (e.g. smart meters and sensors) provide awareness of information about the quality of indoor environment. There is a huge potential for influencing behaviour of the users. Through the web application, it is possible to educate people and ensure fresh air supply.

  14. Radiation safety assessment and development of environmental radiation monitoring technology

    CERN Document Server

    Choi, B H; Kim, S G

    2002-01-01

    The Periodic Safety Review(PSR) of the existing nuclear power plants is required every ten years according to the recently revised atomic energy acts. The PSR of Kori unit 1 and Wolsong unit 1 that have been operating more than ten years is ongoing to comply the regulations. This research project started to develop the techniques necessary for the PSR. The project developed the following four techniques at the first stage for the environmental assessment of the existing plants. 1) Establishment of the assessment technology for contamination and accumulation trends of radionuclides, 2) alarm point setting of environmental radiation monitoring system, 3) Development of Radiation Safety Evaluation Factor for Korean NPP, and 4) the evaluation of radiation monitoring system performance and set-up of alarm/warn set point. A dynamic compartment model to derive a relationship between the release rates of gas phase radionuclides and the concentrations in the environmental samples. The model was validated by comparing ...

  15. Technological advances in suspended‐sediment surrogate monitoring

    Science.gov (United States)

    Gray, John R.; Gartner, Jeffrey W.

    2009-01-01

    Surrogate technologies to continuously monitor suspended sediment show promise toward supplanting traditional data collection methods requiring routine collection and analysis of water samples. Commercially available instruments operating on bulk optic (turbidity), laser optic, pressure difference, and acoustic backscatter principles are evaluated based on cost, reliability, robustness, accuracy, sample volume, susceptibility to biological fouling, and suitable range of mass concentration and particle size distribution. In situ turbidimeters are widely used. They provide reliable data where the point measurements can be reliably correlated to the river's mean cross section concentration value, effects of biological fouling can be minimized, and concentrations remain below the sensor's upper measurement limit. In situ laser diffraction instruments have similar limitations and can cost 6 times the approximate $5000 purchase price of a turbidimeter. However, laser diffraction instruments provide volumetric‐concentration data in 32 size classes. Pressure differential instruments measure mass density in a water column, thus integrating substantially more streamflow than a point measurement. They are designed for monitoring medium‐to‐large concentrations, are generally unaffected by biological fouling, and cost about the same as a turbidimeter. However, their performance has been marginal in field applications. Acoustic Doppler profilers use acoustic backscatter to measure suspended sediment concentrations in orders of magnitude more streamflow than do instruments that rely on point measurements. The technology is relatively robust and generally immune to effects of biological fouling. Cost of a single‐frequency device is about double that of a turbidimeter. Multifrequency arrays also provide the potential to resolve concentrations by clay silt versus sand size fractions. Multifrequency hydroacoustics shows the most promise for revolutionizing collection of

  16. Experimental FSO network availability estimation using interactive fog condition monitoring

    Science.gov (United States)

    Turán, Ján.; Ovseník, Łuboš

    2016-12-01

    Free Space Optics (FSO) is a license free Line of Sight (LOS) telecommunication technology which offers full duplex connectivity. FSO uses infrared beams of light to provide optical broadband connection and it can be installed literally in a few hours. Data rates go through from several hundreds of Mb/s to several Gb/s and range is from several 100 m up to several km. FSO link advantages: Easy connection establishment, License free communication, No excavation are needed, Highly secure and safe, Allows through window connectivity and single customer service and Compliments fiber by accelerating the first and last mile. FSO link disadvantages: Transmission media is air, Weather and climate dependence, Attenuation due to rain, snow and fog, Scattering of laser beam, Absorption of laser beam, Building motion and Air pollution. In this paper FSO availability evaluation is based on long term measured data from Fog sensor developed and installed at TUKE experimental FSO network in TUKE campus, Košice, Slovakia. Our FSO experimental network has three links with different physical distances between each FSO heads. Weather conditions have a tremendous impact on FSO operation in terms of FSO availability. FSO link availability is the percentage of time over a year that the FSO link will be operational. It is necessary to evaluate the climate and weather at the actual geographical location where FSO link is going to be mounted. It is important to determine the impact of a light scattering, absorption, turbulence and receiving optical power at the particular FSO link. Visibility has one of the most critical influences on the quality of an FSO optical transmission channel. FSO link availability is usually estimated using visibility information collected from nearby airport weather stations. Raw data from fog sensor (Fog Density, Relative Humidity, Temperature measured at each ms) are collected and processed by FSO Simulator software package developed at our Department. Based

  17. Systems and method for lagrangian monitoring of flooding conditions

    KAUST Repository

    Claudel, Christian G.; Shamim, Atif; Farooqui, Muhammad Fahad

    2015-01-01

    A traffic monitoring system and method for mapping traffic speed and density while preserving privacy. The system can include fixed stations that make up a network and mobile probes that are associated with vehicles. The system and method do

  18. Structural damage monitoring of harbor caissons with interlocking condition

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, Thanh Canh; Lee, So Young; Nauyen, Khac Duy; Kim, Jeong Tae [Pukyong National Univ., Busan (Korea, Republic of)

    2012-12-15

    The objective of this study is to monitor the health status of harbor caissons which have potential foundation damage. To obtain the objective, the following approaches are performed. Firstly, a structural damage monitoring(SDM) method is designed for interlocked multiple caisson structures. The SDM method utilizes the change in modal strain energy to monitor the foundation damage in a target caisson unit. Secondly, a finite element model of a caisson system which consists of three caisson units is established to verify the feasibility of the proposed method. In the finite element simulation, the caisson units are constrained each other by shear key connections. The health status of the caisson system against various levels of foundation damage is monitored by measuring relative modal displacements between the adjacent caissons.

  19. Structural damage monitoring of harbor caissons with interlocking condition

    International Nuclear Information System (INIS)

    Huynh, Thanh Canh; Lee, So Young; Nauyen, Khac Duy; Kim, Jeong Tae

    2012-01-01

    The objective of this study is to monitor the health status of harbor caissons which have potential foundation damage. To obtain the objective, the following approaches are performed. Firstly, a structural damage monitoring(SDM) method is designed for interlocked multiple caisson structures. The SDM method utilizes the change in modal strain energy to monitor the foundation damage in a target caisson unit. Secondly, a finite element model of a caisson system which consists of three caisson units is established to verify the feasibility of the proposed method. In the finite element simulation, the caisson units are constrained each other by shear key connections. The health status of the caisson system against various levels of foundation damage is monitored by measuring relative modal displacements between the adjacent caissons

  20. Tsunamis detection, monitoring, and early-warning technologies

    CERN Document Server

    Joseph, Antony

    2011-01-01

    The devastating impacts of tsunamis have received increased focus since the Indian Ocean tsunami of 2004, the most devastating tsunami in over 400 years of recorded history. This professional reference is the first of its kind: it provides a globally inclusive review of the current state of tsunami detection technology and will be a much-needed resource for oceanographers and marine engineers working to upgrade and integrate their tsunami warning systems. It focuses on the two main tsunami warning systems (TWS): International and Regional. Featured are comparative assessments of detection, monitoring, and real-time reporting technologies. The challenges of detection through remote measuring stations are also addressed, as well as the historical and scientific aspects of tsunamis.

  1. Engineering Runtime Requirements-Monitoring Systems Using MDA Technologies

    Science.gov (United States)

    Skene, James; Emmerich, Wolfgang

    The Model-Driven Architecture (MDA) technology toolset includes a language for describing the structure of meta-data, the MOF, and a language for describing consistency properties that data must exhibit, the OCL. Off-the-shelf tools can generate meta-data repositories and perform consistency checking over the data they contain. In this paper we describe how these tools can be used to implement runtime requirements monitoring of systems by modelling the required behaviour of the system, implementing a meta-data repository to collect system data, and consistency checking the repository to discover violations. We evaluate the approach by implementing a contract checker for the SLAng service-level agreement language, a language defined using a MOF meta-model, and integrating the checker into an Enterprise JavaBeans application. We discuss scalability issues resulting from immaturities in the applied technologies, leading to recommendations for their future development.

  2. Monitoring grasshopper and locust habitats in Sahelian Africa using GIS and remote sensing technology

    Science.gov (United States)

    Tappan, G. Gray; Moore, Donald G.; Knauseberger, Walter I.

    1991-01-01

    Development programmes in Sahelian Africa are beginning to use geographic information system (GIS) technology. One of the GIS and remote sensing programmes introduced to the region in the late 1980s was the use of seasonal vegetation maps made from satellite data to support grasshopper and locust control. Following serious outbreaks of these pests in 1987, the programme addressed a critical need, by national and international crop protection organizations, to monitor site-specific dynamic vegetation conditions associated with grasshopper and locust breeding. The primary products used in assessing vegetation conditions were vegetation index (greenness) image maps derived from National Oceanic and Atmospheric Administration satellite imagery. Vegetation index data were integrated in a GIS with digital cartographic data of individual Sahelian countries. These near-real-time image maps were used regularly in 10 countries for locating potential grasshopper and locust habitats. The programme to monitor vegetation conditions is currently being institutionalized in the Sahel.

  3. MONITORING OF THE FINANCIAL CONDITION OF THE COMPANY

    Directory of Open Access Journals (Sweden)

    V. E. Gladkova

    2015-01-01

    Full Text Available Topic: nowadays, many companies are on the market of high competition and are in need of new methods of needs assessment in the market in their products. In this study the methodology of calculation of the breakeven point and its projection of the dynamics of changes in the time lag will allow new businesses to forecast and take into account seasonal fl uctuations in demand for their products.Goals/objectives: the Authors of this publication have set ourselves three main goals: to improve the classical method of determining the breakeven point; to identify the dynamics and patterns of basic mathematical relations that determine the interdependence between the volume of sales (income and total costs; the possibility of applying this methodology economists in production to implement predict the future costs of production.Methodology: the Authors used the conventional scientifi c approaches and methods to analyse and identify mathematical relationships that take into account the specifi c economic and industry conditions and can be further used as template functions to predict the break-even point at a certain time lag.Results: the study authors derived a mathematical relation of volume of sales and total costs, which allows the maximization of the profi ts of Russian companies [1, 2].Discussion/application (if any: explores options graphs break-even point. Revealed that some products have a life cycle with two break-even point (at the fi rst point shows the future profi tability of the enterprise, and in the second point shows the beginning of a losing period and the need to remove product from production.Conclusions/signifi cance: Further research allowed for the monitoring of break-even point in time for which the article demonstrates the possibility of charting the break-even point in three-dimensional space that allows you to track the profi tability of the enterprise and to avoid a possible bankruptcy at a certain time lag.

  4. Development of an In-Situ Decommissioning Sensor Network Test Bed for Structural Condition Monitoring - 12156

    Energy Technology Data Exchange (ETDEWEB)

    Zeigler, Kristine E.; Ferguson, Blythe A. [Savannah River National Laboratory, Aiken, South Carolina 29808 (United States)

    2012-07-01

    The Savannah River National Laboratory (SRNL) has established an In Situ Decommissioning (ISD) Sensor Network Test Bed, a unique, small scale, configurable environment, for the assessment of prospective sensors on actual ISD system material, at minimal cost. The Department of Energy (DOE) is presently implementing permanent entombment of contaminated, large nuclear structures via ISD. The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. Validation of ISD system performance models and verification of actual system conditions can be achieved through the development a system of sensors to monitor the materials and condition of the structure. The ISD Sensor Network Test Bed has been designed and deployed to addresses the DOE-Environmental Management Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building at the Savannah River Site. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of groutable thermistors for temperature and moisture monitoring, strain gauges for crack growth monitoring, tilt-meters for settlement monitoring, and a communication system for data collection. Baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment. The Sensor Network Test Bed at SRNL uses COTS sensors on concrete blocks from the outer wall of the P Reactor Building to measure conditions expected to occur in ISD structures. Knowledge and lessons learned gained from installation, testing, and monitoring of the equipment will be applied to sensor installation in a meso-scale test bed at FIU and in future ISD structures. The initial data collected from the sensors

  5. Breathing Room in Monitored Space: The Impact of Passive Monitoring Technology on Privacy in Independent Living.

    Science.gov (United States)

    Berridge, Clara

    2016-10-01

    This study examines articulations of the relationship between privacy and passive monitoring by users and former users of a sensor-based remote monitoring system. A new conceptualization of privacy provides a framework for a constructive analysis of the study's findings with practical implications. Forty-nine in-depth semistructured interviews were conducted with elder residents, family members, and staff of 6 low-income independent living residence apartment buildings where the passive monitoring system had been offered for 6 years. Transcribed interviews were coded into the Dedoose software service and were analyzed using methods of grounded theory. Five diverse articulations of the relationship between privacy and passive monitoring emerged. The system produced new knowledge about residents and enabled staff to decide how much of that knowledge to disclose to residents. They chose not to disclose to residents their reason for following up on system-generated alerts for 2 reasons: concern that feelings of privacy invasion may arise and cause dissatisfaction with the technology, and the knowledge that many resident users did not comprehend the extent of its features and would be alarmed. This research reveals the importance and challenges of obtaining informed consent. It identifies where boundary intrusion can occur in the use of passive monitoring as well as how changes to technology design and practice could create opportunities for residents to manage their own boundaries according to their privacy needs. The diversity of approaches to privacy supports the need for "opportunity for boundary management" to be employed as both a design and practice principle. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Complex data management for landslide monitoring in emergency conditions

    Science.gov (United States)

    Intrieri, Emanuele; Bardi, Federica; Fanti, Riccardo; Gigli, Giovanni; Fidolini, Francesco; Casagli, Nicola; Costanzo, Sandra; Raffo, Antonio; Di Massa, Giuseppe; Versace, Pasquale

    2017-04-01

    Urbanization, especially in mountain areas, can be considered a major cause for high landslide risk because of the increased exposure of elements at risk. Among the elements at risk, important communication routes such as highways, can be classified as critical infrastructures, since their rupture can cause deaths and chain effects with catastrophic damages on society. The resiliency policy involves prevention activities but also, and more importantly, those activities needed to maintain functionality after disruption and promptly alert incoming catastrophes. To tackle these issues, early warning systems are increasingly employed. However, a gap exists between the ever more technologically advanced instruments and the actual capability of exploiting their full potential. This is due to several factors such as the limited internet connectivity with respect to big data transfers, or the impossibility for operators to check a continuous flow of real time information. A ground-based interferometric synthetic aperture radar was installed along the A16 highway (Campania Region, Southern Italy) to monitor an unstable slope threatening this infrastructure. The installation was in an area where the only internet connection available was 3G, with a limit of 2 gigabyte data transfer per month. On the other hand interferometric data are complex numbers organized in a matrix where each pixel contains both phase and amplitude information of the backscattered signal. The radar employed produced a 1001x1001 complex matrix (corresponding to 7 megabytes) every 5 minutes. Therefore there was the need to reduce the massive data flow produced by the radar. For this reason data were locally and automatically elaborated in order to produce, from a complex matrix, a simple ASCII grid containing only the pixel by pixel displacement value, which is derived from the phase information. Then, since interferometry only measures the displacement component projected along the radar line of sight

  7. Conditioning of uranium-containing technological radioactive waste

    International Nuclear Information System (INIS)

    Smodis, B.; Tavcar, G.; Stepisnik, M.; Pucelj, B.

    2006-01-01

    Conditioning of mostly liquid uranium containing technological radioactive waste emerging from the past research activities at the Jozef Stefan Institute is described. The waste was first thoroughly characterised, then the radionuclides present solidified by appropriate chemical treatment, and the final product separated and prepared for storage in compliance with the legislation. The activities were carried out within the recently renewed Hot Cells Facility of the Jozef Stefan Institute and the overall process resulted in substantial volume reduction of the waste initially present. (author)

  8. Monitoring mangrove forests: Are we taking full advantage of technology?

    Science.gov (United States)

    Younes Cárdenas, Nicolás; Joyce, Karen E.; Maier, Stefan W.

    2017-12-01

    Mangrove forests grow in the estuaries of 124 tropical countries around the world. Because in-situ monitoring of mangroves is difficult and time-consuming, remote sensing technologies are commonly used to monitor these ecosystems. Landsat satellites have provided regular and systematic images of mangrove ecosystems for over 30 years, yet researchers often cite budget and infrastructure constraints to justify the underuse this resource. Since 2001, over 50 studies have used Landsat or ASTER imagery for mangrove monitoring, and most focus on the spatial extent of mangroves, rarely using more than five images. Even after the Landsat archive was made free for public use, few studies used more than five images, despite the clear advantages of using more images (e.g. lower signal-to-noise ratios). The main argument of this paper is that, with freely available imagery and high performance computing facilities around the world, it is up to researchers to acquire the necessary programming skills to use these resources. Programming skills allow researchers to automate repetitive and time-consuming tasks, such as image acquisition and processing, consequently reducing up to 60% of the time dedicated to these activities. These skills also help scientists to review and re-use algorithms, hence making mangrove research more agile. This paper contributes to the debate on why scientists need to learn to program, not only to challenge prevailing approaches to mangrove research, but also to expand the temporal and spatial extents that are commonly used for mangrove research.

  9. Real-time personal exposure and health condition monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Saitou, Isamu; Kanda, Hiroaki; Asai, Akio; Takeishi, Naoki; Ota, Yoshito [Hitachi Aloka Medical, Ltd., Measuring Systems Engineering Dept., Tokyo (Japan); Hanawa, Nobuhiro; Ueda, Hisao; Kusunoki, Tsuyoshi; Ishitsuka, Etsuo; Kawamura, Hiroshi [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan)

    2012-03-15

    JAEA (Japan Atomic Energy Agency) and HAM (Hitachi Aloka Medical, Ltd) have proposed novel monitoring system for workers of nuclear facility. In these facilities, exposure management for workers is mainly used access control and personal exposure recordings. This system is currently only for reports management but is not confirmative for surveillance when work in progress. Therefore, JAEA and HAM integrate access control and personal exposure recordings and two real-time monitoring systems which are position sensing and vital sign monitor. Furthermore change personal exposure management to real-time management, this system integration prevents workers from risk of accidents, and makes possible take appropriate action quickly. This novel system is going to start for tentative operation, using position sensing and real-time personal dosimeter with database in Apr. 2012. (author)

  10. A study on the condition monitoring for safety-related electric cables

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chul Hwan; Ahn, S. P.; Yeo, S. M.; Kang, Y. S.; Ahn, S. M.; Kim, I. S.; Kim, D. S.; Kang, J. S. [Sungkyunkwan Univ., Suwon (Korea, Republic of)

    2002-03-15

    In this report, we have studied compositions and characteristics of various types of insulation material for cables in Nuclear Power Plant. We arrange relationship with condition monitoring methods. Also, we propose new condition monitoring method using third harmonic frequency. We test the proposed method with CV cables. We also describe about feature of condition monitoring such as application, theory, characteristic, thereby other engineer can confirm to advantage and disadvantage for each method, and possibly choice adequate condition monitoring method for various types of cables.

  11. Systems and method for lagrangian monitoring of flooding conditions

    KAUST Repository

    Claudel, Christian G.

    2015-12-17

    A traffic monitoring system and method for mapping traffic speed and density while preserving privacy. The system can include fixed stations that make up a network and mobile probes that are associated with vehicles. The system and method do not gather, store, or transmit any unique or identifying information, and thereby preserves the privacy of members of traffic. The system and method provide real-time traffic density and speed mapping. The system and method can further be integrated with a complementary flood monitoring system and method.

  12. Position-sensitive radiation monitoring (surface contamination monitor). Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-06-01

    The Shonka Research Associates, Inc. Position-Sensitive Radiation Monitor both detects surface radiation and prepares electronic survey map/survey report of surveyed area automatically. The electronically recorded map can be downloaded to a personal computer for review and a map/report can be generated for inclusion in work packages. Switching from beta-gamma detection to alpha detection is relatively simple and entails moving a switch position to alpha and adjusting the voltage level to an alpha detection level. No field calibration is required when switching from beta-gamma to alpha detection. The system can be used for free-release surveys because it meets the federal detection level sensitivity limits requires for surface survey instrumentation. This technology is superior to traditionally-used floor contamination monitor (FCM) and hand-held survey instrumentation because it can precisely register locations of radioactivity and accurately correlate contamination levels to specific locations. Additionally, it can collect and store continuous radiological data in database format, which can be used to produce real-time imagery as well as automated graphics of survey data. Its flexible design can accommodate a variety of detectors. The cost of the innovative technology is 13% to 57% lower than traditional methods. This technology is suited for radiological surveys of flat surfaces at US Department of Energy (DOE) nuclear facility decontamination and decommissioning (D and D) sites or similar public or commercial sites

  13. Position-sensitive radiation monitoring (surface contamination monitor). Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    1999-06-01

    The Shonka Research Associates, Inc. Position-Sensitive Radiation Monitor both detects surface radiation and prepares electronic survey map/survey report of surveyed area automatically. The electronically recorded map can be downloaded to a personal computer for review and a map/report can be generated for inclusion in work packages. Switching from beta-gamma detection to alpha detection is relatively simple and entails moving a switch position to alpha and adjusting the voltage level to an alpha detection level. No field calibration is required when switching from beta-gamma to alpha detection. The system can be used for free-release surveys because it meets the federal detection level sensitivity limits requires for surface survey instrumentation. This technology is superior to traditionally-used floor contamination monitor (FCM) and hand-held survey instrumentation because it can precisely register locations of radioactivity and accurately correlate contamination levels to specific locations. Additionally, it can collect and store continuous radiological data in database format, which can be used to produce real-time imagery as well as automated graphics of survey data. Its flexible design can accommodate a variety of detectors. The cost of the innovative technology is 13% to 57% lower than traditional methods. This technology is suited for radiological surveys of flat surfaces at US Department of Energy (DOE) nuclear facility decontamination and decommissioning (D and D) sites or similar public or commercial sites.

  14. Wireless sensor network for monitoring soil moisture and weather conditions

    Science.gov (United States)

    A wireless sensor network (WSN) was developed and deployed in three fields to monitor soil water status and collect weather data for irrigation scheduling. The WSN consists of soil-water sensors, weather sensors, wireless data loggers, and a wireless modem. Soil-water sensors were installed at three...

  15. Robot dispatching Scenario for Accident Condition Monitoring of NPP

    International Nuclear Information System (INIS)

    Kim, Jongseog

    2013-01-01

    In March of 2011, unanticipated big size of tsunami attacks Fukushima NPP, this accident results in explosion of containment building. Tokyo electric power of Japan couldn't dispatch a robot for monitoring of containment inside. USA Packbot robot used for desert war in Iraq was supplied to Fukushima NPP for monitoring of high radiation area. Packbot also couldn't reach deep inside of Fukushima NPP due to short length of power cable. Japanese robot 'Queens' also failed to complete a mission due to communication problem between robot and operator. I think major reason of these robot failures is absence of robot dispatching scenario. If there was a scenario and a rehearsal for monitoring during or after accident, these unanticipated obstacles could be overcome. Robot dispatching scenario studied for accident of nuclear power plant was described herein. Study on scenario of robot dispatching is performed. Flying robot is regarded as good choice for accident monitoring. Walking robot with arm equipped is good for emergency valve close. Short time work and shift work by several robots can be a solution for high radiation area. Thin and soft cable with rolling reel can be a good solution for long time work and good communication

  16. Monitoring operational conditions of vehicle tyre pressure levels and ...

    African Journals Online (AJOL)

    Compliance with vehicle tyre inflation pressure and tread depth standard specifications and legal requirements were monitored by survey study in Kumasi Metropolis, Ghana. The survey covered 400 vehicles, comprising cars (28 %), medium buses (25 %), large capacity buses (15 %) and trucks (32 %). There were wide ...

  17. Control of Greenhouse Environmental Conditions with IOT Based Monitoring and Analysis System

    Directory of Open Access Journals (Sweden)

    Ali Çaylı

    2017-10-01

    Full Text Available Wireless sensor networks applications and inter-machine communication (M2M, called the Internet of Things, help decision-makers to control complex systems thanks to the low data-rate and cost-effective data collection and analysis. These technologies offer new possibilities to monitor environmental management and agricultural policies, and to improve agricultural production, especially in low-income rural areas. In this study, IoT is proposed with a low cost, flexible and scalable data collection and analysis system. For this purpose, open source hardware microprocessor cards and sensors are stored in the greenhouse computer database using the IEEE 802.15.4 Zigbee wireless communication protocol. The data can be analyzed by greenhouse computer analysis software, which is developed with the PHP programming language. It is possible to monitor the real time data from the greenhouse computer. Also alert rules definitions can be made and the system was tested in greenhouse conditions. It has been observed that it performs operations steadily such as data transfer, sensor measurements and data processing. The proposed system may be useful for monitoring indoor climate and controlling ventilation, irrigation and heating systems, especially for small enterprises due to the modular structure.

  18. Review of potential subsurface permeable barrier emplacement and monitoring technologies

    International Nuclear Information System (INIS)

    Riggsbee, W.H.; Treat, R.L.; Stansfield, H.J.; Schwarz, R.M.; Cantrell, K.J.; Phillips, S.J.

    1994-02-01

    This report focuses on subsurface permeable barrier technologies potentially applicable to existing waste disposal sites. This report describes candidate subsurface permeable barriers, methods for emplacing these barriers, and methods used to monitor the barrier performance. Two types of subsurface barrier systems are described: those that apply to contamination.in the unsaturated zone, and those that apply to groundwater and to mobile contamination near the groundwater table. These barriers may be emplaced either horizontally or vertically depending on waste and site characteristics. Materials for creating permeable subsurface barriers are emplaced using one of three basic methods: injection, in situ mechanical mixing, or excavation-insertion. Injection is the emplacement of dissolved reagents or colloidal suspensions into the soil at elevated pressures. In situ mechanical mixing is the physical blending of the soil and the barrier material underground. Excavation-insertion is the removal of a soil volume and adding barrier materials to the space created. Major vertical barrier emplacement technologies include trenching-backfilling; slurry trenching; and vertical drilling and injection, including boring (earth augering), cable tool drilling, rotary drilling, sonic drilling, jetting methods, injection-mixing in drilled holes, and deep soil mixing. Major horizontal barrier emplacement technologies include horizontal drilling, microtunneling, compaction boring, horizontal emplacement, longwall mining, hydraulic fracturing, and jetting methods

  19. Glucose monitoring technologies - complementary or competitive? Role of continuous glucose monitoring versus flash glucose monitoring versus self-monitoring of blood glucose

    Directory of Open Access Journals (Sweden)

    Jothydev Kesavadev

    2017-01-01

    Full Text Available We have numerous technologies that can help keep a close watch on an individual's glycaemic status and thereby assist in developing successful diabetes management strategies. For more than five decades, self-monitoring of blood glucose (SMBG has remained as the gold standard tool to manage glycaemic status and has gained huge acceptance. Rigorous research further led to the development of more and more advanced technologies such as continuous glucose monitoring and flash glucose monitoring. These novel technologies are more promising in terms of revealing the complete glycaemic picture and even more user-friendly than the already established blood glucosemetres. However, they are yet to achieve remarkable accuracy and performance. There will also be a subgroup of patients who will be using these technologies only occasionally and thus will definitely require SMBG at other times. Again, with regard to the retrospective ones, glucose data can be obtained only once they are downloaded to the system and hence, real-time values will still have to be procured with the help of an SMBG. In future when the accuracy and performance of these newer technologies become equal to that of glucometres, the glucometres might vanish. Until then, all these technologies will definitely go hand-in-hand and supplement each other than competing each other. All the related literature were retrieved from various databases including 'PubMed' and 'Cochrane Database of Systematic Reviews' using specific search terms that were relevant to the topics discussed this manuscript.

  20. Intelligent condition monitoring of railway catenary systems : A Bayesian Network approach

    NARCIS (Netherlands)

    Wang, H.; Nunez Vicencio, Alfredo; Dollevoet, R.P.B.J.; Liu, Zhigang; Chen, Junwen; Spiryagin, Maksym; Gordon, Timothy; Cole, Colin; McSweeney, Tim

    2017-01-01

    This study proposes a Bayesian network (BN) dedicated for the intelligent condition monitoring of railway catenary systems. It combines five types of measurements related to catenary condition, namely the contact wire stagger, contact wire height, pantograph head displacement, pantograph head

  1. Monitoring parameters of technical condition and safety of aircraft using control charts

    Directory of Open Access Journals (Sweden)

    В.І. Чепіженко

    2007-03-01

    Full Text Available  The opportunity of control cards use for monitoring of a technical condition parameters and reliability of aviation techniques is considered at its operation on a technical condition.

  2. Study on sampling conditions for the monitoring of waste air

    International Nuclear Information System (INIS)

    Moeller, T.J.; Buetefisch, K.A.

    1998-01-01

    The technical codes for radiological monitoring of the waste air released from a radwaste repository demand that sampling for determination of aerosol-borne radioactivity is to be made with a screener equipped with a suitable number of measuring probes extending over the entire cross-sectional surface of the vent. Another requirement is to ensure that the waste air stream passing through the measuring channel is representative, containing the typical, operation-induced distribution of aerosols across the surface to be scanned. The study reported was intended to determine in a scaled-down model (1:10) of a repository ventilating duct the typical spatial distribution of aerosols (3D particulate density) in order to establish information on the type of typical distributions of aerosols, to be used for optimisation of the measuring site and monitoring instruments. (orig./CB) [de

  3. Condition Monitoring of a Process Filter Applying Wireless Vibration Analysis

    Directory of Open Access Journals (Sweden)

    Pekka KOSKELA

    2011-05-01

    Full Text Available This paper presents a novel wireless vibration-based method for monitoring the degree of feed filter clogging. In process industry, these filters are applied to prevent impurities entering the process. During operation, the filters gradually become clogged, decreasing the feed flow and, in the worst case, preventing it. The cleaning of the filter should therefore be carried out predictively in order to avoid equipment damage and unnecessary process downtime. The degree of clogging is estimated by first calculating the time domain indices from low frequency accelerometer samples and then taking the median of the processed values. Nine different statistical quantities are compared based on the estimation accuracy and criteria for operating in resource-constrained environments with particular focus on energy efficiency. The initial results show that the method is able to detect the degree of clogging, and the approach may be applicable to filter clogging monitoring.

  4. A Comprehensive Study on Technologies of Tyre Monitoring Systems and Possible Energy Solutions

    Directory of Open Access Journals (Sweden)

    Ali E. Kubba

    2014-06-01

    Full Text Available This article presents an overview on the state of the art of Tyre Pressure Monitoring System related technologies. This includes examining the latest pressure sensing methods and comparing different types of pressure transducers, particularly their power consumption and measuring range. Having the aim of this research to investigate possible means to obtain a tyre condition monitoring system (TCMS powered by energy harvesting, various approaches of energy harvesting techniques were evaluated to determine which approach is the most applicable for generating energy within the pneumatic tyre domain and under rolling tyre dynamic conditions. This article starts with an historical review of pneumatic tyre development and demonstrates the reasons and explains the need for using a tyre condition monitoring system. Following this, different tyre pressure measurement approaches are compared in order to determine what type of pressure sensor is best to consider in the research proposal plan. Then possible energy harvesting means inside land vehicle pneumatic tyres are reviewed. Following this, state of the art battery-less tyre pressure monitoring systems developed by individual researchers or by world leading tyre manufacturers are presented. Finally conclusions are drawn based on the reviewed documents cited in this article and a research proposal plan is presented.

  5. Design and Realization of Rotating Machinery Conditions Monitoring System Based on Labview

    Science.gov (United States)

    Fan, Qiyuan

    Nonlinear dynamic analysis of rotating machinery system has always been the hot spot of the rotational dynamics research. This article sets up a rotating machinery condition monitoring system to realize the measurement of system dynamic characteristic parameters based on NI(National Instruments) virtual instruments technology. The measurement of vibration signal of rotating machinery system is achieved by using NI company general data acquisition module of NI company. Meanwhile, by analyzing and processing the acquired data using Labview 2012, the dynamic characteristics, such as .the speed of the rotating machinery system, the axis trajectory, spectrum parameters, are attained. The measurement results show that the rotating machinery condition monitoring system based on Labview is easy to operate, easy to realize the function extension and maintenance, and that it can be used in the industrial engineering projects with rotation characteristics. Labview as the development tools used by virtual instrument function, is very powerful data acquisition software products support is one of the features of it, so using Labview programming and data acquisition is simple and convenient [1].

  6. Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges

    Directory of Open Access Journals (Sweden)

    Pierre Tchakoua

    2014-04-01

    Full Text Available As the demand for wind energy continues to grow at exponential rates, reducing operation and maintenance (OM costs and improving reliability have become top priorities in wind turbine (WT maintenance strategies. In addition to the development of more highly evolved WT designs intended to improve availability, the application of reliable and cost-effective condition-monitoring (CM techniques offers an efficient approach to achieve this goal. This paper provides a general review and classification of wind turbine condition monitoring (WTCM methods and techniques with a focus on trends and future challenges. After highlighting the relevant CM, diagnosis, and maintenance analysis, this work outlines the relationship between these concepts and related theories, and examines new trends and future challenges in the WTCM industry. Interesting insights from this research are used to point out strengths and weaknesses in today’s WTCM industry and define research priorities needed for the industry to meet the challenges in wind industry technological evolution and market growth.

  7. Upgraded Fast Beam Conditions Monitor for CMS online luminosity measurement

    CERN Document Server

    Leonard, Jessica Lynn

    2014-01-01

    The CMS beam and radiation monitoring subsystem BCM1F during LHC Run I consisted of 8 individual diamond sensors situated around the beam pipe within the tracker detector volume, for the purpose of fast monitoring of beam background and collision products. Effort is ongoing to develop the use of BCM1F as an online bunch-by-bunch luminosity monitor. BCM1F will be running whenever there is beam in LHC, and its data acquisition is independent from the data acquisition of the CMS detector, hence it delivers luminosity even when CMS is not taking data. To prepare for the expected increase in the LHC luminosity and the change from 50 ns to 25 ns bunch separation, several changes to the system are required, including a higher number of sensors and upgraded electronics. In particular, a new real-time digitizer with large memory was developed and is being integrated into a multi-subsystem framework for luminosity measurement. Current results from Run II preparation will be shown, including results from the January 201...

  8. On-line monitoring system of PV array based on internet of things technology

    Science.gov (United States)

    Li, Y. F.; Lin, P. J.; Zhou, H. F.; Chen, Z. C.; Wu, L. J.; Cheng, S. Y.; Su, F. P.

    2017-11-01

    The Internet of Things (IoT) Technology is used to inspect photovoltaic (PV) array which can greatly improve the monitoring, performance and maintenance of the PV array. In order to efficiently realize the remote monitoring of PV operating environment, an on-line monitoring system of PV array based on IoT is designed in this paper. The system includes data acquisition, data gateway and PV monitoring centre (PVMC) website. Firstly, the DSP-TMS320F28335 is applied to collect indicators of PV array using sensors, then the data are transmitted to data gateway through ZigBee network. Secondly, the data gateway receives the data from data acquisition part, obtains geographic information via GPS module, and captures the scenes around PV array via USB camera, then uploads them to PVMC website. Finally, the PVMC website based on Laravel framework receives all data from data gateway and displays them with abundant charts. Moreover, a fault diagnosis approach for PV array based on Extreme Learning Machine (ELM) is applied in PVMC. Once fault occurs, a user alert can be sent via E-mail. The designed system enables users to browse the operating conditions of PV array on PVMC website, including electrical, environmental parameters and video. Experimental results show that the presented monitoring system can efficiently real-time monitor the PV array, and the fault diagnosis approach reaches a high accuracy of 97.5%.

  9. Recent trends in the condition monitoring of transformers theory, implementation and analysis

    CERN Document Server

    Chakravorti, Sivaji; Chatterjee, Biswendu

    2013-01-01

    Recent Trends in the Condition Monitoring of Transformers reflects the current interest in replacing traditional techniques used in power transformer condition monitoring with non-invasive measures such as polarization/depolarization current measurement, recovery voltage measurement, frequency domain spectroscopy and frequency response analysis. The book stresses the importance of scrutinizing the condition of transformer insulation which may fail under present day conditions of intensive use with the resulting degradation of dielectric properties causing functional failure of the transformer.

  10. Tracking air and water: Technology drives oil patch environmental monitoring

    International Nuclear Information System (INIS)

    Budd, G.

    2003-01-01

    Instrumentation used in monitoring air and water quality in the oilpatch is discussed. One of these instruments is the oscillating micro-balance, a tool that enables continuous real-time measurement of potentially harmful particulates from gas plants. Similarly, testing for hydrogen sulfides is also done electronically: gas passes by an ultra violet light chamber which uses a calibrated filter to measure wavelengths of light that are specific to hydrogen sulfide. Fourier Transfer Infrared Spectroscopy (FTIR), one of the recent technologies to hit the market, enables the identification of a range of gases with one instrument. It also permits measurement from a distance. Still other instruments involve sensors that are fitted with chemical chambers whose contents react with hydrogen sulfide to produce a micro-volt of electricity. Data from this is digitized, and a reading of hydrogen sulfide, measured in parts per million, is obtained from a laptop computer

  11. Monitoring and remediation technologies of organochlorine pesticides in drainage water

    Directory of Open Access Journals (Sweden)

    Ismail Ahmed

    2015-03-01

    Full Text Available This study was carried out to monitor the presence of organochlorine in drainage water in Kafr-El-Sheikh Governorate, Egypt. Furthermore, to evaluate the efficiencies of different remediation techniques (advanced oxidation processes [AOPs] and bioremediation for removing the most frequently detected compound (lindane in drainage water. The results showed the presence of several organochlorine pesticides in all sampling sites. Lindane was detected with high frequency relative to other detected organochlorine in drainage water. Nano photo-Fenton like reagent was the most effective treatment for lindane removal in drainage water. Bioremediation of lindane by effective microorganisms (EMs removed 100% of the lindane initial concentration. There is no remaining toxicity in lindane contaminated-water after remediation on treated rats relative to control with respect to histopathological changes in liver and kidney. Advanced oxidation processes especially with nanomaterials and bioremediation using effective microorganisms can be regarded as safe and effective remediation technologies of lindane in water.

  12. Reliability data update using condition monitoring and prognostics in probabilistic safety assessment

    Directory of Open Access Journals (Sweden)

    Hyeonmin Kim

    2015-03-01

    Full Text Available Probabilistic safety assessment (PSA has had a significant role in quantitative decision-making by finding design and operational vulnerabilities and evaluating cost-benefit in improving such weak points. In particular, it has been widely used as the core methodology for risk-informed applications (RIAs. Even though the nature of PSA seeks realistic results, there are still “conservative” aspects. One of the sources for the conservatism is the assumptions of safety analysis and the estimation of failure frequency. Surveillance, diagnosis, and prognosis (SDP, utilizing massive databases and information technology, is worth highlighting in terms of its capability for alleviating the conservatism in conventional PSA. This article provides enabling techniques to solidify a method to provide time- and condition-dependent risks by integrating a conventional PSA model with condition monitoring and prognostics techniques. We will discuss how to integrate the results with frequency of initiating events (IEs and probability of basic events (BEs. Two illustrative examples will be introduced: (1 how the failure probability of a passive system can be evaluated under different plant conditions and (2 how the IE frequency for a steam generator tube rupture (SGTR can be updated in terms of operating time. We expect that the proposed model can take a role of annunciator to show the variation of core damage frequency (CDF depending on operational conditions.

  13. Reliability data update using condition monitoring and prognostics in probabilistic safety assessment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeon Min; Lee, Sang Hwan; Park, Jun Seok; Kim, Hyung Dae; Chang, Yoon Suk; Heo, Gyun Young [Dept. of Nuclear Engineering, Kyung Hee University, Yongin (Korea, Republic of)

    2015-03-15

    Probabilistic safety assessment (PSA) has had a significant role in quantitative decision making by finding design and operational vulnerabilities and evaluating cost-benefit in improving such weak points. In particular, it has been widely used as the core methodology for risk-informed applications (RIAs). Even though the nature of PSA seeks realistic results, there are still 'conservative' aspects. One of the sources for the conservatism is the assumptions of safety analysis and the estimation of failure frequency. Surveillance, diagnosis, and prognosis (SDP), utilizing massive databases and information technology, is worth highlighting in terms of its capability for alleviating the conservatism in conventional PSA. This article provides enabling techniques to solidify a method to provide time and condition-dependent risks by integrating a conventional PSA model with condition monitoring and prognostics techniques. We will discuss how to integrate the results with frequency of initiating events (IEs) and probability of basic events (BEs). Two illustrative examples will be introduced: (1) how the failure probability of a passive system can be evaluated under different plant conditions and (2) how the IE frequency for a steam generator tube rupture (SGTR) can be updated in terms of operating time. We expect that the proposed model can take a role of annunciator to show the variation of core damage frequency (CDF) depending on operational conditions.

  14. Condition monitoring of a wind turbine doubly-fed induction generator through current signature analysis

    Science.gov (United States)

    Artigao, Estefania; Honrubia-Escribano, Andres; Gomez-Lazaro, Emilio

    2017-11-01

    Operation and maintenance (O&M) of wind turbines is recently becoming the spotlight in the wind energy sector. While wind turbine power capacities continue to increase and new offshore developments are being installed, O&M costs keep raising. With the objective of reducing such costs, the new trends are moving from corrective and preventive maintenance toward predictive actions. In this scenario, condition monitoring (CM) has been identified as the key to achieve this goal. The induction generator of a wind turbine is a major contributor to failure rates and downtime where doubly-fed induction generators (DFIG) are the dominant technology employed in variable speed wind turbines. The current work presents the analysis of an in-service DFIG. A one-year measurement campaign has been used to perform the study. Several signal processing techniques have been applied and the optimal method for CM has been identified. A diagnosis has been reached, the DFIG under study shows potential gearbox damage.

  15. A new luminometer and beam conditions monitor for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Karacheban, Olena; Hempel, Maria [Brandenburg University of Technology, Cottbus (Germany); DESY, Zeuthen (Germany); Dabrowski, Anne; Ryjov, Vladimir; Stickland, David; Zagozdzinska, Agnieszka [CERN, Geneva (Switzerland); Henschel, Hans; Lange, Wolfgang [DESY, Zeuthen (Germany); Leonard, Jessica; Walsh, Roberval [DESY, Hamburg (Germany); Levy, Itamar [Tel Aviv University, Tel Aviv (Israel); Lohmann, Wolfgang [Brandenburg University of Technology, Cottbus (Germany); RWTH Aachen University, Aachen (Germany); Przyborowski, Dominik [AGH-UST University, Cracow (Poland); Schuwalow, Sergej [DESY, Zeuthen (Germany); DESY, Hamburg (Germany)

    2016-07-01

    The luminosity is a key quantity of any collider, which allows for the determination of the absolute cross sections from the observed rate in a detector. The Fast Beam Conditions Monitor (BCM1F) was upgraded in the last LHC long technical stop (LS1) to 24 diamond sensors read out by a dedicated fast ASIC in 130 nm CMOS technology. The backend comprises a deadtime-less histogramming unit, with a 6.25 ns bin width, in VME standard. A microTCA system with better time resolution is in development. BCM1F is used for luminosity and machine induced background measurements at the CMS experiment. The performance of the detector in the first running period, as well as results on the calibration (Van-der-Meer scan) and the measurements of the luminosity are presented.

  16. Technical Needs for Enhancing Risk Monitors with Equipment Condition Assessment for Advanced Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Coble, Jamie B.; Coles, Garill A.; Ramuhalli, Pradeep; Meyer, Ryan M.; Berglin, Eric J.; Wootan, David W.; Mitchell, Mark R.

    2013-04-04

    Advanced small modular reactors (aSMRs) can provide the United States with a safe, sustainable, and carbon-neutral energy source. The controllable day-to-day costs of aSMRs are expected to be dominated by operation and maintenance costs. Health and condition assessment coupled with online risk monitors can potentially enhance affordability of aSMRs through optimized operational planning and maintenance scheduling. Currently deployed risk monitors are an extension of probabilistic risk assessment (PRA). For complex engineered systems like nuclear power plants, PRA systematically combines event likelihoods and the probability of failure (POF) of key components, so that when combined with the magnitude of possible adverse consequences to determine risk. Traditional PRA uses population-based POF information to estimate the average plant risk over time. Currently, most nuclear power plants have a PRA that reflects the as-operated, as-modified plant; this model is updated periodically, typically once a year. Risk monitors expand on living PRA by incorporating changes in the day-by-day plant operation and configuration (e.g., changes in equipment availability, operating regime, environmental conditions). However, population-based POF (or population- and time-based POF) is still used to populate fault trees. Health monitoring techniques can be used to establish condition indicators and monitoring capabilities that indicate the component-specific POF at a desired point in time (or over a desired period), which can then be incorporated in the risk monitor to provide a more accurate estimate of the plant risk in different configurations. This is particularly important for active systems, structures, and components (SSCs) proposed for use in aSMR designs. These SSCs may differ significantly from those used in the operating fleet of light-water reactors (or even in LWR-based SMR designs). Additionally, the operating characteristics of aSMRs can present significantly different

  17. Monitoring fate and behaviour of Nanoceria under relevant environmental conditions

    CSIR Research Space (South Africa)

    Tancu, Y

    2014-11-01

    Full Text Available ). The results revealed significant tendency of nCeO¬2 to undergo aggregation, agglomeration and certain degree of deagglomeration processes under different environmental conditions. Moreover, the findings suggested that both electrostatic and steric interactions...

  18. An intelligent condition monitoring system for on-line classification of machine tool wear

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Fu; Hope, A D; Javed, M [Systems Engineering Faculty, Southampton Institute (United Kingdom)

    1998-12-31

    The development of intelligent tool condition monitoring systems is a necessary requirement for successful automation of manufacturing processes. This presentation introduces a tool wear monitoring system for milling operations. The system utilizes power, force, acoustic emission and vibration sensors to monitor tool condition comprehensively. Features relevant to tool wear are drawn from time and frequency domain signals and a fuzzy pattern recognition technique is applied to combine the multisensor information and provide reliable classification results of tool wear states. (orig.) 10 refs.

  19. An intelligent condition monitoring system for on-line classification of machine tool wear

    Energy Technology Data Exchange (ETDEWEB)

    Fu Pan; Hope, A.D.; Javed, M. [Systems Engineering Faculty, Southampton Institute (United Kingdom)

    1997-12-31

    The development of intelligent tool condition monitoring systems is a necessary requirement for successful automation of manufacturing processes. This presentation introduces a tool wear monitoring system for milling operations. The system utilizes power, force, acoustic emission and vibration sensors to monitor tool condition comprehensively. Features relevant to tool wear are drawn from time and frequency domain signals and a fuzzy pattern recognition technique is applied to combine the multisensor information and provide reliable classification results of tool wear states. (orig.) 10 refs.

  20. New generation enrichment monitoring technology for gas centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Ianakiev, Kiril D.; Alexandrov, Boian S.; Boyer, Brian D.; Hill, Thomas R.; Macarthur, Duncan W.; Marks, Thomas; Moss, Calvin E.; Sheppard, Gregory A.; Swinhoe, Martyn T.

    2008-01-01

    The continuous enrichment monitor, developed and fielded in the 1990s by the International Atomic Energy Agency, provided a go-no-go capability to distinguish between UF 6 containing low enriched (approximately 4% 235 U) and highly enriched (above 20% 235 U) uranium. This instrument used the 22-keV line from a 109 Cd source as a transmission source to achieve a high sensitivity to the UF 6 gas absorption. The 1.27-yr half-life required that the source be periodically replaced and the instrument recalibrated. The instrument's functionality and accuracy were limited by the fact that measured gas density and gas pressure were treated as confidential facility information. The modern safeguarding of a gas centrifuge enrichment plant producing low-enriched UF 6 product aims toward a more quantitative flow and enrichment monitoring concept that sets new standards for accuracy stability, and confidence. An instrument must be accurate enough to detect the diversion of a significant quantity of material, have virtually zero false alarms, and protect the operator's proprietary process information. We discuss a new concept for advanced gas enrichment assay measurement technology. This design concept eliminates the need for the periodic replacement of a radioactive source as well as the need for maintenance by experts. Some initial experimental results will be presented.

  1. Integrated technologies for solid waste bin monitoring system.

    Science.gov (United States)

    Arebey, Maher; Hannan, M A; Basri, Hassan; Begum, R A; Abdullah, Huda

    2011-06-01

    The integration of communication technologies such as radio frequency identification (RFID), global positioning system (GPS), general packet radio system (GPRS), and geographic information system (GIS) with a camera are constructed for solid waste monitoring system. The aim is to improve the way of responding to customer's inquiry and emergency cases and estimate the solid waste amount without any involvement of the truck driver. The proposed system consists of RFID tag mounted on the bin, RFID reader as in truck, GPRS/GSM as web server, and GIS as map server, database server, and control server. The tracking devices mounted in the trucks collect location information in real time via the GPS. This information is transferred continuously through GPRS to a central database. The users are able to view the current location of each truck in the collection stage via a web-based application and thereby manage the fleet. The trucks positions and trash bin information are displayed on a digital map, which is made available by a map server. Thus, the solid waste of the bin and the truck are being monitored using the developed system.

  2. Passive and Active Sensing Technologies for Structural Health Monitoring

    Science.gov (United States)

    Do, Richard

    A combination of passive and active sensing technologies is proposed as a structural health monitoring solution for several applications. Passive sensing is differentiated from active sensing in that with the former, no energy is intentionally imparted into the structure under test; sensors are deployed in a pure detection mode for collecting data mined for structural health monitoring purposes. In this thesis, passive sensing using embedded fiber Bragg grating optical strain gages was used to detect varying degrees of impact damage using two different classes of features drawn from traditional spectral analysis and auto-regressive time series modeling. The two feature classes were compared in detail through receiver operating curve performance analysis. The passive detection problem was then augmented with an active sensing system using ultrasonic guided waves (UGWs). This thesis considered two main challenges associated with UGW SHM including in-situ wave propagation property determination and thermal corruption of data. Regarding determination of wave propagation properties, of which dispersion characteristics are the most important, a new dispersion curve extraction method called sparse wavenumber analysis (SWA) was experimentally validated. Also, because UGWs are extremely sensitive to ambient temperature changes on the structure, it significantly affects the wave propagation properties by causing large errors in the residual error in the processing of the UGWs from an array. This thesis presented a novel method that compensates for uniform temperature change by considering the magnitude and phase of the signal separately and applying a scalable transformation.

  3. Analysis of acoustic data from the PFR SGU condition monitor

    International Nuclear Information System (INIS)

    Rowley, R.; Airey, J.

    1990-01-01

    This paper gives an outline description of an acoustic monitoring system which has been installed on the SGU of the Prototype Fast Reactor (PFR) at Dounreay with the objective of giving early warning of any change in noise output which could be related to potentially damaging vibrations within the units. Data obtained from this PFR monitoring system is playing an important part in the development of acoustic instrumentation for leak detection although this had not been the primary objective of this particular installation. The PFR has three secondary circuits each containing an evaporator, a superheater and a reheater giving a total of nine SGUs. Although the design of the units is different from that intended for EFR, the measurements provide a valuable source of information on the character and amplitude of acoustic background noise in operational steam generator units. The vibration monitoring system uses the waveguides originally installed during reactor commissioning for leak detection studies. Twelve acoustic waveguides are fitted to the shell of each of the units. The superheaters and reheaters have three waveguides at each of four axial levels, while the evaporators have four waveguides at each of three axial levels. In addition the evaporators have a small number of waveguides attached to the top flange of the unit. Each waveguide is fitted with an accelerometer to record the acoustic signal from the SGU. Tape recordings of the acoustic noise from each unit are made on a regular basis and the tapes analysed on an automated analysis system which has been developed to extract and store in a database about 20 characteristic features from the data. The paper gives examples of the background noise from the SGU. The data demonstrates the use of location techniques to identify prominent acoustic source. 8 figs

  4. Fundamentals for remote condition monitoring of offshore wind turbines

    DEFF Research Database (Denmark)

    McGugan, Malcolm; Larsen, Gunner Chr.; Sørensen, Bent F.

    In the future, large wind turbines will be placed offshore in considerable numbers. Since access will be difficult and costly, it is preferable to use monitoring systems to reduce the reliance on manual inspection. The motivation for the effort reported here is to create the fundamental basis...... of the wind turbine blades that can integrate with existing SCADA tools to improve management of large offshore wind farms, and optimise the manual inspection/maintenance effort. Various sensor types, which have previously been identified as technically (and economically) capable of detecting the early...

  5. On the use of temperature for online condition monitoring of geared systems - A review

    Science.gov (United States)

    Touret, T.; Changenet, C.; Ville, F.; Lalmi, M.; Becquerelle, S.

    2018-02-01

    Gear unit condition monitoring is a key factor for mechanical system reliability management. When they are subjected to failure, gears and bearings may generate excessive vibration, debris and heat. Vibratory, acoustic or debris analyses are proven approaches to perform condition monitoring. An alternative to those methods is to use temperature as a condition indicator to detect gearbox failure. The review focuses on condition monitoring studies which use this thermal approach. According to the failure type and the measurement method, it exists a distinction whether it is contact (e.g. thermocouple) or non-contact temperature sensor (e.g. thermography). Capabilities and limitations of this approach are discussed. It is shown that the use of temperature for condition monitoring has a clear potential as an alternative to vibratory or acoustic health monitoring.

  6. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2007-09-25

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  7. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Patterson, Eileen F. [Editor; Sandoval, Marisa N. [Editor

    2011-09-13

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  8. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Patterson, Eileen F.; Sandoval, Marisa N.

    2011-01-01

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  9. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A [Editor; Patterson, Eileen F [Editor

    2010-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  10. Proceedings of the 2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar - Chang, Julio [Los Alamos National Laboratory; Anderson, Dale [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning ( David ) [Los Alamos National Laboratory

    2009-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2009: Ground -Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2009 in Tucson, Arizona,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Test Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  11. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Patterson, Eileen F.

    2010-01-01

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  12. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2007-01-01

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  13. Monitoring stanja kroz testove analize ulja / Condition monitoring through oil analysis tests

    Directory of Open Access Journals (Sweden)

    Sreten R. Perić

    2010-10-01

    : neutralization number (TAN-total acid number, total base number (TBN, oxidation stabillity, chemical and thermal stabillity, corrodibillity, ash content and carbon residue, water content, compatibility, toxicity, etc. Diagnostics of the tribomechanical system of an internal combustion engine The diagnostics is based on the prediction (recognition of damage and/or failure through characteristic diagnostic parameters. This allows prevention of delays and increases reliability, cost-effectiveness, and usage life. The diagnostics of the tribomechanical system can provide verification of the system condition, working capacity and functionality, and can point out the place, form and cause of a failure. The diagnostics is carried out through the detection of symptoms, determining the value of the characteristic parameters and their comparison with the limit values. If the engine assemblies are considered from the aspect of tribomechanical systems (e. g. piston-piston ring-cylinder, cam-valve lifter, bearing journal bearing defined by tribological processes, it can be shown that the determination of the content of wear products, content of contaminants, state of lubricants and lubrication conditions have a significant influence on the implementation of maintenance of these systems. We should emphasize the importance of monitoring oil for lubrication of tribomechanical engine assemblies, which provides identification of potential causes and phenomena leading to damage and failure in the early stages of the functioning of the system. Prediction, i.e. detection of potential and/or current damage and failures in the system, checking the functionality of oil and determination of usage life are the main factors of the implementation of oil monitoring. Since mobile components of tribomechanical system engines are necessarily exposed to wear and contaminants and wear products deposit in the lubrication oil, it is necessary to monitor changes in fluid properties during exploitation, because the

  14. Wireless microwave acoustic sensor system for condition monitoring in power plant environments

    Energy Technology Data Exchange (ETDEWEB)

    Pereira da Cunha, Mauricio [Univ. of Maine, Orno, ME (United States)

    2017-03-30

    This project successfully demonstrated novel wireless microwave acoustic temperature and pressure sensors that can be embedded into equipment and structures located in fossil fuel power plant environments to monitor the condition of components such as steam headers, re-heat lines, water walls, burner tubes, and power turbines. The wireless microwave acoustic sensor technology researched and developed through a collaborative partnership between the University of Maine and Environetix Technologies Corporation can provide a revolutionary impact in the power industry since it is anticipated that the wireless sensors will deliver reliable real-time sensing information in harsh power plant conditions that involve temperatures up to 1100oC and pressures up to 750 psi. The work involved the research and development of novel high temperature harsh environment thin film electrodes, piezoelectric smart microwave acoustic sensing elements, sensor encapsulation materials that were engineered to function over long times up to 1100oC, and a radio-frequency (RF) wireless interrogation electronics unit that are located both inside and outside the high temperature harsh environment. The UMaine / Environetix team have interacted with diverse power plant facilities, and identified as a testbed a local power generation facility, which burns municipal solid waste (MSW), the Penobscot Energy Recovery Company (PERC), Orrington, Maine. In this facility Environetix / UMaine successfully implemented and tested multiple wireless temperature sensor systems within the harsh-environment of the economizer chamber and at the boiler tubes, transferring the developed technology to the power plant environment to perform real-time sensor monitoring experiments under typical operating conditions, as initially targeted in the project. The wireless microwave acoustic sensor technology developed under this project for power plant applications offers several significant advantages including wireless

  15. Monitoring fetal heart rate during pregnancy: contributions from advanced signal processing and wearable technology.

    Science.gov (United States)

    Signorini, Maria G; Fanelli, Andrea; Magenes, Giovanni

    2014-01-01

    Monitoring procedures are the basis to evaluate the clinical state of patients and to assess changes in their conditions, thus providing necessary interventions in time. Both these two objectives can be achieved by integrating technological development with methodological tools, thus allowing accurate classification and extraction of useful diagnostic information. The paper is focused on monitoring procedures applied to fetal heart rate variability (FHRV) signals, collected during pregnancy, in order to assess fetal well-being. The use of linear time and frequency techniques as well as the computation of non linear indices can contribute to enhancing the diagnostic power and reliability of fetal monitoring. The paper shows how advanced signal processing approaches can contribute to developing new diagnostic and classification indices. Their usefulness is evaluated by comparing two selected populations: normal fetuses and intra uterine growth restricted (IUGR) fetuses. Results show that the computation of different indices on FHRV signals, either linear and nonlinear, gives helpful indications to describe pathophysiological mechanisms involved in the cardiovascular and neural system controlling the fetal heart. As a further contribution, the paper briefly describes how the introduction of wearable systems for fetal ECG recording could provide new technological solutions improving the quality and usability of prenatal monitoring.

  16. Novel Smart Glove Technology as a Biomechanical Monitoring Tool

    Directory of Open Access Journals (Sweden)

    Brendan O’FLYNN

    2015-10-01

    Full Text Available Developments in Virtual Reality (VR technology and its overall market have been occurring since the 1960s when Ivan Sutherland created the world’s first tracked head-mounted display (HMD – a goggle type head gear. In society today, consumers are expecting a more immersive experience and associated tools to bridge the cyber-physical divide. This paper presents the development of a next generation smart glove microsystem to facilitate Human Computer Interaction through the integration of sensors, processors and wireless technology. The objective of the glove is to measure the range of hand joint movements, in real time and empirically in a quantitative manner. This includes accurate measurement of flexion, extension, adduction and abduction of the metacarpophalangeal (MCP, Proximal interphalangeal (PIP and Distal interphalangeal (DIP joints of the fingers and thumb in degrees, together with thumb-index web space movement. This system enables full real-time monitoring of complex hand movements. Commercially available gloves are not fitted with sufficient sensors for full data capture, and require calibration for each glove wearer. Unlike these current state-of-the-art data gloves, the UU / Tyndall Inertial Measurement Unit (IMU glove uses a combination of novel stretchable substrate material and 9 degree of freedom (DOF inertial sensors in conjunction with complex data analytics to detect joint movement. Our novel IMU data glove requires minimal calibration and is therefore particularly suited to multiple application domains such as Human Computer interfacing, Virtual reality, the healthcare environment..

  17. Interim monitoring of cost dynamics for publicly supported energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Nemet, Gregory F. [La Follette School of Public Affairs, University of Wisconsin, 1225 Observatory Drive, Madison, WI 53706 (United States)]|[Nelson Institute for Environmental Studies, University of Wisconsin, Madison, WI 53726 (United States)

    2009-03-15

    The combination of substantial public funding of nascent energy technologies and recent increases in the costs of those that have been most heavily supported has raised questions about whether policy makers should sustain, alter, enhance, or terminate such programs. This paper uses experience curves for photovoltaics (PV) and wind to (1) estimate ranges of costs for these public programs and (2) introduce new ways of evaluating recent cost dynamics. For both technology cases, the estimated costs of the subsidies required to reach targets are sensitive to the choice of time period on which cost projections are based. The variation in the discounted social cost of subsidies exceeds an order of magnitude. Vigilance is required to avoid the very expensive outcomes contained within these distributions of social costs. Two measures of the significance of recent deviations are introduced. Both indicate that wind costs are within the expected range of prior forecasts but that PV costs are not. The magnitude of the public funds involved in these programs heightens the need for better analytical tools with which to monitor and evaluate cost dynamics. (author)

  18. Continuous Monitoring of Glucose for Type 1 Diabetes: A Health Technology Assessment

    Science.gov (United States)

    Vandersluis, Stacey; Kabali, Conrad; Djalalov, Sandjar; Gajic-Veljanoski, Olga; Wells, David; Holubowich, Corinne

    2018-01-01

    Background Type 1 diabetes is a condition in which the pancreas produces little or no insulin. People with type 1 diabetes must manage their blood glucose levels by monitoring the amount of glucose in their blood and administering appropriate amounts of insulin via injection or an insulin pump. Continuous glucose monitoring may be beneficial compared to self-monitoring of blood glucose using a blood glucose meter. It provides insight into a person's blood glucose levels on a continuous basis, and can identify whether blood glucose levels are trending up or down. Methods We conducted a health technology assessment, which included an evaluation of clinical benefit, value for money, and patient preferences related to continuous glucose monitoring. We compared continuous glucose monitoring with self-monitoring of blood glucose using a finger-prick and a blood glucose meter. We performed a systematic literature search for studies published since January 1, 2010. We created a Markov model projecting the lifetime horizon of adults with type 1 diabetes, and performed a budget impact analysis from the perspective of the health care payer. We also conducted interviews and focus group discussions with people who self-manage their type 1 diabetes or support the management of a child with type 1 diabetes. Results Twenty studies were included in the clinical evidence review. Compared with self-monitoring of blood glucose, continuous glucose monitoring improved the percentage of time patients spent in the target glycemic range by 9.6% (95% confidence interval 8.0–11.2) to 10.0% (95% confidence interval 6.75–13.25) and decreased the number of severe hypoglycemic events. Continuous glucose monitoring was associated with higher costs and small increases in health benefits (quality-adjusted life-years). Incremental cost-effectiveness ratios (ICERs) ranged from $592,206 to $1,108,812 per quality-adjusted life-year gained in analyses comparing four continuous glucose monitoring

  19. Continuous Monitoring of Glucose for Type 1 Diabetes: A Health Technology Assessment.

    Science.gov (United States)

    2018-01-01

    Type 1 diabetes is a condition in which the pancreas produces little or no insulin. People with type 1 diabetes must manage their blood glucose levels by monitoring the amount of glucose in their blood and administering appropriate amounts of insulin via injection or an insulin pump. Continuous glucose monitoring may be beneficial compared to self-monitoring of blood glucose using a blood glucose meter. It provides insight into a person's blood glucose levels on a continuous basis, and can identify whether blood glucose levels are trending up or down. We conducted a health technology assessment, which included an evaluation of clinical benefit, value for money, and patient preferences related to continuous glucose monitoring. We compared continuous glucose monitoring with self-monitoring of blood glucose using a finger-prick and a blood glucose meter. We performed a systematic literature search for studies published since January 1, 2010. We created a Markov model projecting the lifetime horizon of adults with type 1 diabetes, and performed a budget impact analysis from the perspective of the health care payer. We also conducted interviews and focus group discussions with people who self-manage their type 1 diabetes or support the management of a child with type 1 diabetes. Twenty studies were included in the clinical evidence review. Compared with self-monitoring of blood glucose, continuous glucose monitoring improved the percentage of time patients spent in the target glycemic range by 9.6% (95% confidence interval 8.0-11.2) to 10.0% (95% confidence interval 6.75-13.25) and decreased the number of severe hypoglycemic events.Continuous glucose monitoring was associated with higher costs and small increases in health benefits (quality-adjusted life-years). Incremental cost-effectiveness ratios (ICERs) ranged from $592,206 to $1,108,812 per quality-adjusted life-year gained in analyses comparing four continuous glucose monitoring interventions to usual care

  20. Significance of Operating Environment in Condition Monitoring of Large Civil Structures

    Directory of Open Access Journals (Sweden)

    Sreenivas Alampalli

    1999-01-01

    Full Text Available Success of remote long-term condition monitoring of large civil structures and developing calibrated analytical models for damage detection, depend significantly on establishing accurate baseline signatures and their sensitivity. Most studies reported in the literature concentrated on the effect of structural damage on modal parameters without emphasis on reliability of modal parameters. Thus, a field bridge structure was studied for the significance of operating conditions in relation to baseline signatures. Results indicate that in practice, civil structures should be monitored for at least one full cycle of in-service environmental changes before establishing baselines for condition monitoring or calibrating finite-element models. Boundary conditions deserve special attention.

  1. Utilizing information technologies for lifelong monitoring in diabetes patients.

    Science.gov (United States)

    Capozzi, Davide; Lanzola, Giordano

    2011-01-01

    Information and communication technologies have long been acknowledged to support information sharing along the whole chain of care, from the clinic to the homes of patients and their relatives. Thus they are increasingly being considered for improving the delivery of health care services also in light of clinical and technological achievements that propose new treatments requiring a tighter interaction among patients and physicians. The multiagent paradigm has been utilized within an architecture for delivering telemedicine services to chronic outpatients at their domiciles and enforcing cooperation among patients, caregivers, and different members of the health care staff. The architecture sees each communication device such as a palmtop, smart phone, or personal digital assistant as a separate agent upon which different services are deployed, including telemetry, reminders, notifications, and alarms. Decoupling services from agents account for a highly configurable environment applicable to almost any context that can be customized as needed. The architecture has been used for designing and implementing a prototypical software infrastructure, called LifePhone, that runs on several communication devices. A basic set of services has been devised with which we were able to configure two different applications that address long-term and short-term monitoring scenarios for diabetes patients. The long-term scenario encompasses telemetry and reminder services for patients undergoing peritoneal dialysis, which is a treatment for chronic renal failure, a diabetes complication. The short-term scenario incorporates telemetry and remote alarms and is applicable for training patients to use an artificial pancreas. Our experiments proved that an infrastructure such as LifePhone can be used successfully for bridging the interaction gap that exists among all the components of a health care delivery process, improving the quality of service and possibly reducing the overall

  2. Condition Monitoring and Fault Diagnosis for an Antifalling Safety Device

    Directory of Open Access Journals (Sweden)

    Guangxiang Yang

    2015-01-01

    Full Text Available There is a constant need for the safe operation and reliability of antifalling safety device (AFSD of an elevator. This paper reports an experimental study on rotation speed and catching torque monitoring and fault diagnosis of an antifalling safety device in a construction elevator. Denoising the signal using wavelet transform is presented in this paper. Based on the denoising effects for several types of wavelets, the sym8 wavelet basis, which introduces the high order approximation and an adaptive threshold, is employed for denoising the signal. The experimental result shows a maximum data error reduction of 7.5% is obtained and SNRs (signal-to-noise ratio of rotation speed and catching torque are improved for 3.9% and 6.4%, respectively.

  3. A global condition monitoring system for wind turbines

    DEFF Research Database (Denmark)

    Schlechtingen, Meik

    the output signal is entirely reconstructed by using other correlated signals. Benefits in fault visibility and lead-time to failure estimatesare observed. A very important signal to monitor contained in the SCADA data is the wind turbine power output. The power output has a direct influence on the revenue...... proposed method to separate discrete (e.g. originating from gears) from random (e.g. originating from bearings) signal components is applied and validated in this research. This state of the art method named“signal pre-whitening” enhances the fault pattern visibility in the envelope spectra in a very...... developed leading to fully automated fault diagnosis. For this purpose a frequency content identifier is developed extracting the frequency content from the envelope spectrum building the basis for automated diagnosis. A modified parameter, namely the Kurtosis of the Amplitude Envelope Spectrum (KEAS...

  4. Time domain spectroscopy to monitor the condition of cable insulation

    International Nuclear Information System (INIS)

    Mopsik, F.I.; Martzloff, F.D.

    1989-01-01

    The use of Time Domain Spectroscopy, the measurement of dielectric constant and loss using time-domain response, the monitoring the aging of reactor cable insulation is examined. The method is presented, showing its sensitivity, accuracy and wide frequency range. The method's ability to acquire a great deal of information in a short time and its superiority to conventional single frequency data is shown. Different cable samples are examined before and after exposure to radiation and changes with exposure are clearly seen to occur. Also it is shown that a wide range of behavior can be found in different insulation systems. The requirements for performing valid measurements is presented. The need for controlled samples and correlation with other criteria for aging is discussed. 14 refs., 9 figs

  5. Physical working conditions as covered in European monitoring questionnaires

    NARCIS (Netherlands)

    Tynes, T.; Aagestad, C.; Vester Thorsen, S.; Andersen, L.L.; Perkio-Makela, M.; García, F.J.P.; Blanco, L..; Vermeylen, G.; Parent-Thirion, A.; Hooftman, W.; Houtman, I.L.D.; Liebers, F.; Burr, H.; Formazin, M.

    2017-01-01

    Background. The prevalence of workers with demanding physical working conditions in the European work force remains high, and occupational physical exposures are considered important risk factors for musculoskeletal disorders (MSD), a major burden for both workers and society. Exposures to physical

  6. Fundamentals for remote condition monitoring of offshore wind turbine blades

    DEFF Research Database (Denmark)

    McGugan, Malcolm; Sørensen, Bent F.

    2007-01-01

    inspection, repair or replacement. The paper explores the requirements for the level of remote data Output that will allow an initial improvement in the overall management of offshore wind farms., and ultimately accurate estimates of remaining life for individual blades. The practical and theoretical...... knowledge synergy required to introduce a working system is also considered. Although the initial objectives of the present Study were simply to establish the fundamentals for such technology, with industrial collaboration to follow, it quickly became clear that the development of specific prototype...

  7. An AES Study of the Room Temperature Surface Conditioning of Technological Metal Surfaces by Electron Irradiation

    OpenAIRE

    Scheuerlein, C; Hilleret, Noël; Taborelli, M; Brown, A; Baker, M A

    2002-01-01

    The modifications to technological copper and niobium surfaces induced by 2.5 keV electron irradiation have been investigated in the context of the conditioning process occurring in particle accelerator ultra high vacuum systems. Changes in the elemental surface composition have been found using Scanning Auger Microscopy (SAM) by monitoring the carbon, oxygen and metal Auger peak intensities as a function of electron irradiation in the dose range 10-6 to 10-2 C mm-2. The surface analysis resu...

  8. Health monitoring technology for alumina-fiber-reinforced plastic

    International Nuclear Information System (INIS)

    Aoyama, Hiroshi; Watanabe, Hiroyuki; Terai, Motoaki

    1998-01-01

    Formally, we developed new load-support systems that consists of a biconical, alumina-fiber-reinforced plastic (ERP) structure for the superconducting magnet. Safe operation of the superconducting magnet will be jeopardized if the mechanical condition of the load-support system begins to degrade. One of the factors that evaluate the soundness of the superconducting magnet is the stiffness of the load-support system. Here, it is important to know the relation between the degradation of the stiffness and the growth of defects. For this purpose, firstly, a fatigue test of the load-support system was carried out, and the various defects (matrix cracking and delamination of FRP laminates) were observed during this fatigue testing. Finally, we proposed the application of two non-destructive-evaluation (NDE) methods for the health monitoring of alumina/epoxy load-support systems. (author)

  9. Non-stationary Condition Monitoring of large diesel engines with the AEWATT toolbox

    DEFF Research Database (Denmark)

    Pontoppidan, Niels Henrik; Larsen, Jan; Sigurdsson, Sigurdur

    2005-01-01

    We are developing a specialized toolbox for non-stationary condition monitoring of large 2-stroke diesel engines based on acoustic emission measurements. The main contribution of this toolbox has so far been the utilization of adaptive linear models such as Principal and Independent Component Ana......, the inversion of those angular timing changes called “event alignment”, has allowed for condition monitoring across operation load settings, successfully enabling a single model to be used with realistic data under varying operational conditions-...

  10. Condition monitoring approach for permanent magnet synchronous motor drives based on the INFORM method

    OpenAIRE

    Arellano-Padilla, J.; Sumner, M.; Gerada, C.

    2016-01-01

    This paper proposes a monitoring scheme based on saliency tracking to assess the health condition of PMSM drives operating under non stationary conditions. The evaluated scheme is based on the INFORM methodology, which is associated to the accurate sensorless control of PM drives without zero speed limitation. The result is a monitoring scheme that is able to detect faults that would be very difficult to evaluate under nonstationary conditions. A relevant aspect of the proposed scheme is that...

  11. Condition Based Maintenance of Space Exploration Vehicles Using Structural Health Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Acellent Technologies proposes to develop an autonomous and automated diagnostic system for condition based maintenance (CBM) of safety critical structures for space...

  12. Compact polarimetric synthetic aperture radar for monitoring soil moisture condition

    Science.gov (United States)

    Merzouki, A.; McNairn, H.; Powers, J.; Friesen, M.

    2017-12-01

    Coarse resolution soil moisture maps are currently operationally delivered by ESA's SMOS and NASA's SMAP passive microwaves sensors. Despite this evolution, operational soil moisture monitoring at the field scale remains challenging. A number of factors contribute to this challenge including the complexity of the retrieval that requires advanced SAR systems with enhanced temporal revisit capabilities. Since the launch of RADARSAT-2 in 2007, Agriculture and Agri-Food Canada (AAFC) has been evaluating the accuracy of these data for estimating surface soil moisture. Thus, a hybrid (multi-angle/multi-polarization) retrieval approach was found well suited for the planned RADARSAT Constellation Mission (RCM) considering the more frequent relook expected with the three satellite configuration. The purpose of this study is to evaluate the capability of C-band CP data to estimate soil moisture over agricultural fields, in anticipation of the launch of RCM. In this research we introduce a new CP approach based on the IEM and simulated RCM CP mode intensities from RADARSAT-2 images acquired at different dates. The accuracy of soil moisture retrieval from the proposed multi-polarization and hybrid methods will be contrasted with that from a more conventional quad-pol approach, and validated against in situ measurements by pooling data collected over AAFC test sites in Ontario, Manitoba and Saskatchewan, Canada.

  13. Real-time well condition monitoring in extended reach wells

    Energy Technology Data Exchange (ETDEWEB)

    Kucs, R.; Spoerker, H.F. [OMV Austria Exploration and Production GmbH, Gaenserndorf (Austria); Thonhauser, G. [Montanuniversitaet Leoben (Austria)

    2008-10-23

    Ever rising daily operating cost for offshore operations make the risk of running into drilling problems due to torque and drag developments in extended reach applications a growing concern. One option to reduce cost related to torque and drag problems can be to monitor torque and drag trends in real time without additional workload on the platform drilling team. To evaluate observed torque or drag trends it is necessary to automatically recognize operations and to have a 'standard value' to compare the measurements to. The presented systematic approach features both options - fully automated operations recognition and real time analysis. Trends can be discussed between rig- and shore-based teams, and decisions can be based on up to date information. Since the system is focused on visualization of real-time torque and drag trends, instead of highly complex and repeated simulations, calculation time is reduced by comparing the real-time rig data against predictions imported from a commercial drilling engineering application. The system allows reacting to emerging stuck pipe situations or developing cuttings beds long before the situations become severe enough to result in substantial lost time. The ability to compare real-time data with historical data from the same or other wells makes the system a valuable tool in supporting a learning organization. The system has been developed in a joint research initiative for field application on the development of an offshore heavy oil field in New Zealand. (orig.)

  14. Condition monitoring and fault diagnosis of motor bearings using undersampled vibration signals from a wireless sensor network

    Science.gov (United States)

    Lu, Siliang; Zhou, Peng; Wang, Xiaoxian; Liu, Yongbin; Liu, Fang; Zhao, Jiwen

    2018-02-01

    Wireless sensor networks (WSNs) which consist of miscellaneous sensors are used frequently in monitoring vital equipment. Benefiting from the development of data mining technologies, the massive data generated by sensors facilitate condition monitoring and fault diagnosis. However, too much data increase storage space, energy consumption, and computing resource, which can be considered fatal weaknesses for a WSN with limited resources. This study investigates a new method for motor bearings condition monitoring and fault diagnosis using the undersampled vibration signals acquired from a WSN. The proposed method, which is a fusion of the kurtogram, analog domain bandpass filtering, bandpass sampling, and demodulated resonance technique, can reduce the sampled data length while retaining the monitoring and diagnosis performance. A WSN prototype was designed, and simulations and experiments were conducted to evaluate the effectiveness and efficiency of the proposed method. Experimental results indicated that the sampled data length and transmission time of the proposed method result in a decrease of over 80% in comparison with that of the traditional method. Therefore, the proposed method indicates potential applications on condition monitoring and fault diagnosis of motor bearings installed in remote areas, such as wind farms and offshore platforms.

  15. Crown condition assessment at the CONECOFOR Permanent Monitoring Plots

    Directory of Open Access Journals (Sweden)

    Renzo NIBBI

    2002-09-01

    Full Text Available A detailed crown condition assessment is currently being carried out at the CONECOFOR (CONtrollo ECOsistemi FORestali, Control of Forest Ecosystems plots. The assessment began in 1996, and during the first two years (1996 and 1997 an assessment form based on previous regional experience was used; in 1998 the new official EU form was adopted. The resulting loss of comparability means that only a few indices can be used in the temporal series 1996-1999. Much effort was devoted to Quality Assurance (QA procedures. The QA program is structured as follows: (i specific field manuals have been adopted and are continuously updated; (ii a national training and intercalibration course (NT&IC is undertaken yearly before beginning the assessment campaign;( iii field checks are carried out yearly on a large number of plots. The results of the QA program have shown that for several indices the quality objectives were not reached, but the quality of the data is improving with time. To express the change in crown conditions in each area, a complex index (CCI = Crown Condition Index was adopted. This index is the result of the sum of the relativized values of all the common indices used during the four years. The following parameters were used: transparency, ramification type, leaf colour alteration extension, leaf damage extension, alteration of leaf distension extension. The range within which the CCI fluctuates was evaluated taking into account all the observations carried out at a given plot throughout the years. The number of cases over a given threshold (outliers was calculated for each year. The threshold for outliers was calculated as the median value plus 2 times the range of the interquartile value. All individual cases exceeding this value are considered outliers. The results are presented for all the areas in which the data set is complete for the four years. The yearly fluctuations are discussed and related to possible causes.

  16. Molecular Probes: An Innovative Technology for Monitoring Membrane Processes

    Science.gov (United States)

    Santoro, Sergio

    The ultimate objective of this study is to use molecular probes as an innovative and alternative technology contributing to the advance of membrane science by monitoring membrane processes in-situ, on-line and at sub-micron scale. An optical sensor for oxygen sensing was developed by the immobilization of tris (1,10-phenanthroline) ruthenium (II) (Ru(phen)3) in a dense polymeric membrane made of polystyrene (PS) or Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The emission of the probe was quenched by both the temperature and by the oxygen. Moreover, the oxygen sensitivity was affected by the oxygen permeability of the membrane. The evaluation of the oxygen concentration is prone to errors since the emission of a single probe depends on several parameters (i.e. optical path, source intensity). The correction of these artefacts was obtained by the immobilization of a second luminescent molecule non-sensitive to the oxygen, Coumarin. The potential of the luminescent ratiometric sensor for the non-invasive monitoring of oxygen in food packaging using polymeric films with different oxygen permeability was evaluated. Emphasis was given to the efficiency of the optical sensor for the on-line, in-situ and non invasive monitoring of the oxygen by comparing the experimental data with a model which takes into account the oxygen permeability of the packaging materials evaluated independently. A nano-thermometer based on silica nano-particles doped with Ru(phen)3 was developed. A systematic study shows how it is possible to control the properties of the nano-particles as well as their temperature sensitivity. The nano-thermometer was immobilized on a membrane surface by dip-coating providing information about the temperature on the membrane surface. Hydrophobic porous membrane made of Poly(vinylidene fluoride) was prepared via electrospinning and employed in a direct contact membrane distillation process. Using a designed membrane module and a membrane doped with Ru

  17. The "Haptic Finger"- a new device for monitoring skin condition.

    Science.gov (United States)

    Tanaka, Mami; Lévêque, Jean Luc; Tagami, Hachiro; Kikuchi, Katsuko; Chonan, Seifi

    2003-05-01

    Touching the skin is of great importance for the Clinician for assessing roughness, softness, firmness, etc. This type of clinical assessment is very subjective and therefore non-reproducible from one Clinician to another one or even from time to time for the same Clinician. In order to objectively monitor skin texture, we developed a new sensor, placed directly on the Clinician's finger, which generate some electric signal when slid over the skin surface. The base of this Haptic Finger sensor is a thin stainless steel plate on which sponge rubber, PVDF foil, acetate film and gauze are layered. The signal generated by the sensor was filtered and digitally stored before processing. In a first in vitro experiment, the sensor was moved over different skin models (sponge rubber covered by silicon rubber) of varying hardness and roughness. These experiments allowed the definition of two parameters characterizing textures. The first parameter is variance of the signal processed using wavelet analysis, representing an index of roughness. The second parameter is dispersion of the power spectrum density in the frequency domain, corresponding to hardness. To validate these parameters, the Haptic Finger was used to scan skin surfaces of 30 people, 14 of whom displayed a skin disorder: xerosis (n = 5), atopic dermatitis (n = 7), and psoriasis (n = 2). The results obtained by means of the sensor were compared with subjective, clinical evaluations by a Clinician who scored both roughness and hardness of the skin. Good agreement was observed between clinical assessment of the skin and the two parameters generated using the Haptic Finger. Use of this sensor could prove extremely valuable in cosmetic research where skin surface texture (in terms of tactile properties) is difficult to measure.

  18. Space Qualified Non-Destructive Evaluation and Structural Health Monitoring Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NextGen Aeronautics is proposing an innovative space qualified non-destructive evaluation and health monitoring technology. The technology is built on concepts...

  19. Remote monitoring technologies for the prevention of metabolic syndrome: the Diabetes and Technology for Increased Activity (DaTA) study.

    Science.gov (United States)

    Stuckey, Melanie; Fulkerson, Robyn; Read, Emily; Russell-Minda, Elizabeth; Munoz, Claudio; Kleinstiver, Peter; Petrella, Robert

    2011-07-01

    Remote monitoring technologies are ideally suited for rural communities with limited access to health care. In an 8-week pilot study, we examined the feasibility of implementing and conducting a technology-intensive intervention in an underserviced rural setting. Our goal was to test the utility of self-monitoring technologies, physical activity, and education as tools to manage health indicators for the development of the cardiovascular complications (CVCs) of type 2 diabetes. The Diabetes and Technology for Increased Activity study was an open single-center study conducted in a community-based research setting. All 24 participants were provided with a Blackberry™ Smartphone, blood pressure monitor, glucometer, and pedometer. Smartphones transmitted measurements and survey results to the database, interfaced participants with the clinical team, and allowed for self-monitoring. Outcomes were improved body composition, improved markers of CVC risk factors, increased daily exercise, and interest in or awareness of lifestyle changes that impact health outcomes. Participants had excellent compliance for measurements, as self-monitoring provided a sense of security that improved from week 4 to week 8. Our team gained substantial insight into the operational requirements of technology-facilitated health care, including redefined hours of service; data reporting, management, and access protocols; and the utility of real-time clinical measures by remote monitoring. We developed an understanding of knowledge translation strategies as well as successful motivational and educational tools. Importantly, remote monitoring technology was found to be feasible and accepted in a rural setting. © 2011 Diabetes Technology Society.

  20. Immunologic applications of conditional gene modification technology in the mouse.

    Science.gov (United States)

    Sharma, Suveena; Zhu, Jinfang

    2014-04-02

    Since the success of homologous recombination in altering mouse genome and the discovery of Cre-loxP system, the combination of these two breakthroughs has created important applications for studying the immune system in the mouse. Here, we briefly summarize the general principles of this technology and its applications in studying immune cell development and responses; such implications include conditional gene knockout and inducible and/or tissue-specific gene over-expression, as well as lineage fate mapping. We then discuss the pros and cons of a few commonly used Cre-expressing mouse lines for studying lymphocyte development and functions. We also raise several general issues, such as efficiency of gene deletion, leaky activity of Cre, and Cre toxicity, all of which may have profound impacts on data interpretation. Finally, we selectively list some useful links to the Web sites as valuable mouse resources. Copyright © 2014 John Wiley & Sons, Inc.

  1. New Web Technologies for the LHCb Online Monitoring Displays

    CERN Document Server

    Lagou, Charalampia

    2017-01-01

    The LHCb Online Monitoring Displays is a web application, that gives access to real-time measurements and status information about the LHCb detector and its components, without the need to login. It is hosted at CERN on the computer lbcomet.cern.ch. The system is architecturally complex, based on the Comet technology for the data-transfer and the STOMP protocol for the communication between the clients and the message broker. The application is functional, however concerns are expressed over the future maintenance of the system’s architecture as is. The cause of these concerns are firstly the fact that the STOMP JavaScript client package is outdated and flagged by the original author flagged as non-maintained and secondly that todays modern browsers support real-time bi-directional communication which, at the time of development was not compatible even with some of the major browsers. Therefore, the objective of this project is to investigate modern data-push mechanisms, which could complement or replace...

  2. Benefits of Mobile Phone Technology for Personal Environmental Monitoring.

    Science.gov (United States)

    Donaire-Gonzalez, David; Valentín, Antònia; de Nazelle, Audrey; Ambros, Albert; Carrasco-Turigas, Glòria; Seto, Edmund; Jerrett, Michael; Nieuwenhuijsen, Mark J

    2016-11-10

    Tracking individuals in environmental epidemiological studies using novel mobile phone technologies can provide valuable information on geolocation and physical activity, which will improve our understanding of environmental exposures. The objective of this study was to assess the performance of one of the least expensive mobile phones on the market to track people's travel-activity pattern. Adults living and working in Barcelona (72/162 bicycle commuters) carried simultaneously a mobile phone and a Global Positioning System (GPS) tracker and filled in a travel-activity diary (TAD) for 1 week (N=162). The CalFit app for mobile phones was used to log participants' geographical location and physical activity. The geographical location data were assigned to different microenvironments (home, work or school, in transit, others) with a newly developed spatiotemporal map-matching algorithm. The tracking performance of the mobile phones was compared with that of the GPS trackers using chi-square test and Kruskal-Wallis rank sum test. The minute agreement across all microenvironments between the TAD and the algorithm was compared using the Gwet agreement coefficient (AC1). The mobile phone acquired locations for 905 (29.2%) more trips reported in travel diaries than the GPS tracker (Pmobile phones running the CalFit app provides better information on which microenvironments people spend their time in than previous approaches based only on GPS trackers. The improvements of mobile phone technology in microenvironment determination are because the mobile phones are faster at identifying first locations and capable of getting location in challenging environments thanks to the combination of assisted-GPS technology and network positioning systems. Moreover, collecting location information from mobile phones, which are already carried by individuals, allows monitoring more people with a cheaper and less burdensome method than deploying GPS trackers. ©David Donaire-Gonzalez, Ant

  3. AN EVALUATION OF CONDITION MONITORING TECHNIQUES FOR LOW-VOLTAGE ELECTRIC CABLES

    International Nuclear Information System (INIS)

    LOFARO, R.J.; GROVE, E.; SOO, P.

    2000-01-01

    Aging of systems and components in nuclear power plants is a well known occurrence that must be managed to ensure the continued safe operation of these plants. Much of the degradation due to aging is controlled through periodic maintenance and/or component replacement. However, there are components that do not receive periodic maintenance or monitoring once they are installed; electric cables are such a component. To provide a means of monitoring the condition of electric cables, research is ongoing to evaluate promising condition monitoring (CM) techniques that can be used in situ to monitor cable condition and predict remaining life. While several techniques are promising, each has limitations that must be considered in its application. This paper discusses the theory behind several of the promising cable CM techniques being studied, along with their effectiveness for monitoring aging degradation in typical cable insulation materials, such as cross-linked polyethylene and ethylene propylene rubber. Successes and limitations of each technique are also presented

  4. Literature review on monitoring technologies and their outcomes in independently living elderly people.

    Science.gov (United States)

    Peetoom, Kirsten K B; Lexis, Monique A S; Joore, Manuela; Dirksen, Carmen D; De Witte, Luc P

    2015-07-01

    To obtain insight into what kind of monitoring technologies exist to monitor activity in-home, what the characteristics and aims of applying these technologies are, what kind of research has been conducted on their effects and what kind of outcomes are reported. A systematic document search was conducted within the scientific databases Pubmed, Embase, Cochrane, PsycINFO and Cinahl, complemented by Google Scholar. Documents were included in this review if they reported on monitoring technologies that detect activities of daily living (ADL) or significant events, e.g. falls, of elderly people in-home, with the aim of prolonging independent living. Five main types of monitoring technologies were identified: PIR motion sensors, body-worn sensors, pressure sensors, video monitoring and sound recognition. In addition, multicomponent technologies and smart home technologies were identified. Research into the use of monitoring technologies is widespread, but in its infancy, consisting mainly of small-scale studies and including few longitudinal studies. Monitoring technology is a promising field, with applications to the long-term care of elderly persons. However, monitoring technologies have to be brought to the next level, with longitudinal studies that evaluate their (cost-) effectiveness to demonstrate the potential to prolong independent living of elderly persons. [Box: see text].

  5. Condition monitoring: a study on ageing in Inconel 718

    International Nuclear Information System (INIS)

    Acharya, Vidhi; Murthy, G.V.S.

    2015-01-01

    The development of contemporary high temperature materials is needed to enable the successful introduction of cleaner and more efficient next generation power plants. Due to inherent limitations in steels, new high temperature materials must be selected for a change in operating parameters. Inconel-718 is currently considered to be one of the leading materials for use in high temperature applications. Due to its excellent high-temperature mechanical properties, Inconel-718 is believed to be a contender for forged components of Advanced Ultra-Supercritical (A-USC) power plants. The A-USC power plant with steam conditions of 700°C/35 MPa, is expected to have greater efficiency. Thus the microstructural stability and its impact on the mechanical properties of this alloy at elevated temperatures will certainly be a crucial factor that influences the reliability of the power plants. Therefore it is of imminent importance to study the microstructural evolution of components made out of Inconel-718 preferably by Non-destructive methods

  6. Electronic Monitoring Systems to Assess Urinary Incontinence: A Health Technology Assessment.

    Science.gov (United States)

    2018-01-01

    Urinary incontinence is involuntary leakage of urine and can affect people of all ages. Incidence rises as people age, often because of reduced mobility or conditions affecting the nervous system, such as dementia and stroke. Urinary incontinence can be a distressing condition and can harm a person's physical, financial, social, and emotional well-being. People with urinary incontinence are susceptible to skin irritation, pressure sores, and urinary tract infections. Urinary incontinence is also associated with an increased risk of falls in older adults.This health technology assessment examined the effectiveness of, budget impact of, and patient values and preferences about electronic monitoring systems to assess urinary incontinence for residents of long-term care homes or geriatric hospital inpatients with complex conditions. A clinical evidence review of the published clinical literature was conducted to June 9, 2017. Critical appraisal of the clinical evidence included assessment of risk of bias and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group criteria to reflect the certainty of the evidence.We calculated the funding required for an electronic urinary incontinence monitoring system in the first year of implementation (when facilities would buy the systems) and in subsequent years.We interviewed six people with urinary incontinence and two caregivers, who described ways urinary incontinence affected daily life. We included one observational study in the clinical review. Most of the 31 participants in the observational study were female (78%) and required high levels of care, primarily because of cognitive impairment. The quality of evidence for all outcomes was very low owing to potential risk of bias and indirectness. We are consequently uncertain about how electronic monitoring systems affect management of urinary incontinence.For patients living in long-term care homes who are eligible for the technology, we

  7. An Improved Gaussian Mixture Model for Damage Propagation Monitoring of an Aircraft Wing Spar under Changing Structural Boundary Conditions

    Science.gov (United States)

    Qiu, Lei; Yuan, Shenfang; Mei, Hanfei; Fang, Fang

    2016-01-01

    Structural Health Monitoring (SHM) technology is considered to be a key technology to reduce the maintenance cost and meanwhile ensure the operational safety of aircraft structures. It has gradually developed from theoretic and fundamental research to real-world engineering applications in recent decades. The problem of reliable damage monitoring under time-varying conditions is a main issue for the aerospace engineering applications of SHM technology. Among the existing SHM methods, Guided Wave (GW) and piezoelectric sensor-based SHM technique is a promising method due to its high damage sensitivity and long monitoring range. Nevertheless the reliability problem should be addressed. Several methods including environmental parameter compensation, baseline signal dependency reduction and data normalization, have been well studied but limitations remain. This paper proposes a damage propagation monitoring method based on an improved Gaussian Mixture Model (GMM). It can be used on-line without any structural mechanical model and a priori knowledge of damage and time-varying conditions. With this method, a baseline GMM is constructed first based on the GW features obtained under time-varying conditions when the structure under monitoring is in the healthy state. When a new GW feature is obtained during the on-line damage monitoring process, the GMM can be updated by an adaptive migration mechanism including dynamic learning and Gaussian components split-merge. The mixture probability distribution structure of the GMM and the number of Gaussian components can be optimized adaptively. Then an on-line GMM can be obtained. Finally, a best match based Kullback-Leibler (KL) divergence is studied to measure the migration degree between the baseline GMM and the on-line GMM to reveal the weak cumulative changes of the damage propagation mixed in the time-varying influence. A wing spar of an aircraft is used to validate the proposed method. The results indicate that the crack

  8. 10 CFR 20.1502 - Conditions requiring individual monitoring of external and internal occupational dose.

    Science.gov (United States)

    2010-01-01

    ... external and internal occupational dose. Each licensee shall monitor exposures to radiation and radioactive... 10 Energy 1 2010-01-01 2010-01-01 false Conditions requiring individual monitoring of external and internal occupational dose. 20.1502 Section 20.1502 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR...

  9. Use of Remote Technology in the Surface Water Environmental Monitoring Program at SRS Reducing Measurements in the Field - 13336

    International Nuclear Information System (INIS)

    Eddy, T.; Terry, B.; Meyer, A.; Hall, J.; Allen, P.; Hughey, D.; Hartley, T.

    2013-01-01

    There are a wide range of sensor and remote technology applications available for use in environmental monitoring programs. Each application has its own set of limitations and can be challenging when attempting to utilize it under diverse environmental field conditions. The Savannah River Site Environmental Monitoring Program has implemented several remote sensing and surface water flow technologies that have increased the quality of the data while reducing the number of field measurements. Implementation of this technology reduced the field time for personnel that commute across the Savannah River Site (SRS) over a span of 310 square miles. The wireless surface water flow technology allows for immediate notification of changing field conditions or equipment failure thus reducing data-loss or erroneous field data and improving data-quality. This wireless flow technology uses the stage-to-flow methodology coupled with implementation of a robust highly accurate Acoustic Doppler Profiler system for measuring discharge under various field conditions. Savings for implementation of the wireless flow application and Flowlink R technology equates to approximately 1175 hours annually for the radiological liquid effluent and surveillance programs. The SonTek River Suveyor and Flowtracker technologies are utilized for calibration of the wireless flow monitoring devices in the site streams and validation of effluent flows at the SRS. Implementation of similar wireless devices is also planned in the National Pollutant Discharge Elimination System (NPDES) Storm-water Monitoring Program. SRS personnel have been developing a unique flow actuator device. This device activates an ISCO TM automated sampler under flowing conditions at storm-water outfall locations across the site. This technology is unique in that it was designed to be used under field conditions with rapid changes in flow and sedimentation where traditional actuators have been unsuccessful in tripping the automated

  10. Performance and perspectives of the diamond based Beam Condition Monitor for beam loss monitoring at CMS

    CERN Document Server

    AUTHOR|(CDS)2080862

    2015-01-01

    At CMS, a beam loss monitoring system is operated to protect the silicon detectors from high particle rates, arising from intense beam loss events. As detectors, poly-crystalline CVD diamond sensors are placed around the beam pipe at several locations inside CMS. In case of extremely high detector currents, the LHC beams are automatically extracted from the LHC rings.Diamond is the detector material of choice due to its radiation hardness. Predictions of the detector lifetime were made based on FLUKA monte-carlo simulations and irradiation test results from the RD42 collaboration, which attested no significant radiation damage over several years.During the LHC operational Run1 (2010 â?? 2013), the detector efficiencies were monitored. A signal decrease of about 50 times stronger than expectations was observed in the in-situ radiation environment. Electric field deformations due to charge carriers, trapped in radiation induced lattice defects, are responsible for this signal decrease. This so-called polarizat...

  11. Improving the monitoring of quantitative conditions of peacetime fuel stocks at pumping stations

    Directory of Open Access Journals (Sweden)

    Slaviša M. Ilić

    2011-04-01

    human resources. Optimization of quantitative monitoring of peacetime supplies of fuel at gas stations should aim at reducing the impact of the human factor, introducing automated quantitative monitoring of fuel condition with modern equipment for handling as well as applying technology for fast reading and dissemination of information and reports. Civilian pumping stations have been modernized gradually with new digital pump machines, systems for automated production and automated systems for measuring the fuel level in buried tanks. The objectives and criteria of the optimization of model monitoring In order to solve the problem of multi-criteria nature, the methods of operational research have been applied and the formalization of problem solving has been carried out. Models have been identified, criteria and subcriteria have been defined as well as respective criteria values, sub-criteria and weight coefficients for chosen variants in order to rank the alternatives - models. On the basis of the defined objectives and optimization approaches, the task of optimization to be solved is to choose one optimal model of monitoring the quantitative condition of peacetime stocks of fuels at gas stations, out of three variations or alternative models. Application of expert assessment and methods of analytical hierarchy process The problem was solved first 'manually', by using MS Excell, and after that by using the Expert Choice software package. The Expert Choice software package is based on the application of the method of analytical hierarchy process and combines the benefits that this method offers with the speed and visibility of computerized calculations and their result display. The purpose of the AHP method is to rank alternative decisions by their importance and to select the most acceptable alternative on the basis of a defined set of criteria and alternatives. The problem of determining the weight of criteria has been determined by applying the method of expert

  12. On-line condition monitoring of nuclear systems via symbolic time series analysis

    International Nuclear Information System (INIS)

    Rajagopalan, V.; Ray, A.; Garcia, H. E.

    2006-01-01

    This paper provides a symbolic time series analysis approach to fault diagnostics and condition monitoring. The proposed technique is built upon concepts from wavelet theory, symbolic dynamics and pattern recognition. Various aspects of the methodology such as wavelet selection, choice of alphabet and determination of depth of D-Markov Machine are explained in the paper. The technique is validated with experiments performed in a Machine Condition Monitoring (MCM) test bed at the Idaho National Laboratory. (authors)

  13. Wind Turbine Gearbox Condition Monitoring with AAKR and Moving Window Statistic Methods

    OpenAIRE

    Peng Guo; Nan Bai

    2011-01-01

    Condition Monitoring (CM) of wind turbines can greatly reduce the maintenance costs for wind farms, especially for offshore wind farms. A new condition monitoring method for a wind turbine gearbox using temperature trend analysis is proposed. Autoassociative Kernel Regression (AAKR) is used to construct the normal behavior model of the gearbox temperature. With a proper construction of the memory matrix, the AAKR model can cover the normal working space for the gearbox. When the gearbox has a...

  14. On-line Cutting Tool Condition Monitoring in Machining Processes Using Artificial Intelligence

    OpenAIRE

    Vallejo, Antonio J.; Morales-Menéndez, Rub&#;n; Alique, J.R.

    2008-01-01

    This chapter presented new ideas for monitoring and diagnosis of the cutting tool condition with two different algorithms for pattern recognition: HMM, and ANN. The monitoring and diagnosis system was implemented for peripheral milling process in HSM, where several Aluminium alloys and cutting tools were used. The flank wear (VB) was selected as the criterion to evaluate the tool's life and four cutting tool conditions were defined to be recognized: New, half new, half worn, and worn conditio...

  15. Environment monitoring and residents health condition monitoring of nuclear power plant Bohunice region

    International Nuclear Information System (INIS)

    Letkovicova, M.; Rehak, R.; Stehlikova, B.; Celko, M.; Hraska, S.; Klocok, L.; Kostial, J.; Prikazsky, V.; Vidovic, J.; Zirko, M.; Beno, T.; Mitosinka, J.

    1998-01-01

    The report contents final environment evaluation and selected characteristic of residents health physics of nuclear power plant Bohunice region. Evaluated data were elaborated during analytical period 1993-1997.Task solving which results are documented in this final report was going on between 1996- 1998. The report deals in individual stages with the following: Information obtaining and completing which characterize demographic situation of the area for the 1993-1997 period; Datum obtaining and completing which contain selected health physics characteristics of the area residents; Database structures for individual data archiving from monitoring and collection; Brief description of geographic information system for graphic presentation of evaluation results based on topographic base; Digital mapping structure description; Results and evaluation of radionuclide monitoring in environment performed by Environmental radiation measurements laboratory by the nuclear power plant Bohunice for the 1993-1997 period. Demographic situation evaluation and selected health physics characteristics of the area of nuclear power plant residents for the 1993-1997 period are summarized in the final part of the document. Monitoring results and their evaluation is processed in graph, table, text description and map output forms. Map outputs are processed in the geographic information system Arc View GIS 3.0a environment

  16. DEVICE FOR CONTINUOUS MONITORING OF AVIATION FUEL PURITY IN THE TECHNOLOGICAL SCHEME OF AIRCRAFT FUEL SUPPLY

    Directory of Open Access Journals (Sweden)

    A. A. Brailko

    2017-01-01

    Full Text Available Currently, special attention is paid to the aircraft fuel quality as a component of safety to ensure trouble-free operation of the fuel system. The existing system of quality control involves periodic sampling of the fuel in the container and their subsequent control by the normalized quality indicators that do not identify possible reasons for the deterioration of these indicators to remove them for trouble-free operation and do not identify the factors of pollution sources. The monitoring system generally ensures the implementation of measures to preserve the quality of aviation fuel and flight safety of serviced civil aviation airlines at current level according to regulatory requirements. The article describes the mathematical model for calculation parameters of indicator filtering partitions based on cascade filtration theoretical studies of mechanical impurities. Pores of indicator filtering partitions calculated by means of mathematical model have been experimentally tested on simulator stand and showed a good convergence of calculated and experimental results. The use of cascade filtration of fuel with different indicator partitions parameters made it possible to develop a device for fuel purity monitoring, allowing continuous (inline monitoring the level of liquid flow contamination at various points of technological equipment (for example, after the pump, at the inlet and outlet of tanks and units, the output of the filter, etc. and to carry out functional diagnostics of units condition process equipment by monitoring changes of particle parameters and the wear occurrence.

  17. Technology of Measuring equipment for Air Pollution. Development of Mobile Air Pollution monitoring system (LIDAR)

    International Nuclear Information System (INIS)

    Cha, Hyung Ki; Song, Ky Seok; Rhee, Young Joo; Kim, Duck Hyun; Yang, Ki Ho; Lee, Jong Min; Cha, Byung Heon; Lee, Kang Soo

    1999-01-01

    Most air pollution monitoring technologies accompany a time-consuming sample treatment process and provides pollution information only for a local area. Thus, they have a critical restriction in monitoring time-dependent pollution variation effectively over the wide range of area both in height and in width. LIDAR (Light detection and ranging) is a new technology to overcome such drawbacks of the existing pollution monitoring technologies and has long been investigated in the advanced countries. The goal of this project is to develop the mobile air pollution monitoring system and to apply the system to the detection of various pollutants, such as ozone, nitrogen dioxide, sulfur dioxide and aerosols

  18. Technology of Measuring equipment for Air Pollution. Development of Mobile Air Pollution monitoring system (LIDAR)

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Hyung Ki; Song, Ky Seok; Rhee, Young Joo; Kim, Duck Hyun; Yang, Ki Ho; Lee, Jong Min; Cha, Byung Heon; Lee, Kang Soo

    1999-01-01

    Most air pollution monitoring technologies accompany a time-consuming sample treatment process and provides pollution information only for a local area. Thus, they have a critical restriction in monitoring time-dependent pollution variation effectively over the wide range of area both in height and in width. LIDAR (Light detection and ranging) is a new technology to overcome such drawbacks of the existing pollution monitoring technologies and has long been investigated in the advanced countries. The goal of this project is to develop the mobile air pollution monitoring system and to apply the system to the detection of various pollutants, such as ozone, nitrogen dioxide, sulfur dioxide and aerosols.

  19. A Single-Subject Study of a Technology-Based Self-Monitoring Intervention

    Science.gov (United States)

    Vogelgesang, Kari L.; Bruhn, Allison L.; Coghill-Behrends, William L.; Kern, Amanda M.; Troughton, Leonard C. W.

    2016-01-01

    Students with ADHD often struggle with self-regulation skills. One strategy demonstrating considerable success in helping these students regulate their behavior is self-monitoring. Although there is an abundance of research on self-monitoring, research on the use of technology for self-monitoring is only beginning to emerge. The primary goal of…

  20. DOE/LLNL verification symposium on technologies for monitoring nuclear tests related to weapons proliferation

    International Nuclear Information System (INIS)

    Nakanishi, K.K.

    1993-01-01

    The rapidly changing world situation has raised concerns regarding the proliferation of nuclear weapons and the ability to monitor a possible clandestine nuclear testing program. To address these issues, Lawrence Livermore National Laboratory's (LLNL) Treaty Verification Program sponsored a symposium funded by the US Department of Energy's (DOE) Office of Arms Control, Division of Systems and Technology. The DOE/LLNL Symposium on Technologies for Monitoring Nuclear Tests Related to Weapons Proliferation was held at the DOE's Nevada Operations Office in Las Vegas, May 6--7,1992. This volume is a collection of several papers presented at the symposium. Several experts in monitoring technology presented invited talks assessing the status of monitoring technology with emphasis on the deficient areas requiring more attention in the future. In addition, several speakers discussed proliferation monitoring technologies being developed by the DOE's weapons laboratories

  1. A radioactive waste transportation package monitoring system for normal transport and accident emergency response conditions

    International Nuclear Information System (INIS)

    Brown, G.S.; Cashwell, J.W.; Apple, M.L.

    1993-01-01

    This paper addresses spent fuel and high level waste transportation history and prospects, discusses accident histories of radioactive material transport, discusses emergency responder needs and provides a general description of the Transportation Intelligent Monitoring System (TRANSIMS) design. The key objectives of the monitoring system are twofold: (1) to facilitate effective emergency response to accidents involving a radioactive waste transportation package, while minimizing risk to the public and emergency first-response personnel, and (2) to allow remote monitoring of transportation vehicle and payload conditions to enable research into radioactive material transportation for normal and accident conditions. (J.P.N.)

  2. Influence factor analysis of atmospheric electric field monitoring near ground under different weather conditions

    International Nuclear Information System (INIS)

    Wan, Haojiang; Wei, Guanghui; Cui, Yaozhong; Chen, Yazhou

    2013-01-01

    Monitoring of atmospheric electric field near ground plays a critical role in atmospheric environment detecting and lightning warning. Different environmental conditions (e.g. buildings, plants, weather, etc.) have different influences on the data's coherence in an atmospheric electric field detection network. In order to study the main influence factors of atmospheric electric field monitoring under different weather conditions, with the combination of theoretical analysis and experiments, the electric field monitoring data on the ground and on the top of a building are compared in fair weather and thunderstorm weather respectively in this paper. The results show that: In fair weather, the field distortion due to the buildings is the main influence factor on the electric field monitoring. In thunderstorm weather, the corona ions produced from the ground, besides the field distortion due to the buildings, can also influence the electric field monitoring results.

  3. Update on Monitoring Technologies for International Safeguards and Fissile Material Verification

    International Nuclear Information System (INIS)

    Croessmann, C. Dennis; Glidewell, Don D.; Mangan, Dennis L.; Smathers, Douglas C.

    1999-01-01

    Monitoring technologies are playing an increasingly important part in international safeguards and fissile material verification. The developments reduce the time an inspector must spend at a site while assuring continuity of knowledge. Monitoring technologies' continued development has produced new seal systems and integrated video surveillance advances under consideration for Trilateral Initiative use. This paper will present recent developments for monitoring systems at Embalse, Argentina, VNHEF, Sarov, Russian, and Savannah River Site, Aiken, South Carolina

  4. Investigation of Transmission Warming Technologies at Various Ambient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jehlik, Forrest; Iliev, Simeon; Wood, Eric; Gonder, Jeff

    2017-03-28

    This work details two approaches for evaluating transmission warming technology: experimental dynamometer testing and development of a simplified transmission efficiency model to quantify effects under varied real world ambient and driving conditions. Two vehicles were used for this investigation: a 2013 Ford Taurus and a 2011 Ford Fusion. The Taurus included a production transmission warming system and was tested over hot and cold ambient temperatures with the transmission warming system enabled and disabled. A robot driver was used to minimize driver variability and increase repeatability. Additionally the Fusion was tested cold and with the transmission pre-heated prior to completing the test cycles. These data were used to develop a simplified thermally responsive transmission model to estimate effects of transmission warming in real world conditions. For the Taurus, the fuel consumption variability within one standard deviation was shown to be under 0.5% for eight repeat Urban Dynamometer Driving Cycles (UDDS). These results were valid with the transmission warming system active or passive. Using the transmission warming system under 22 degrees C ambient temperature, fuel consumption reduction was shown to be 1.4%. For the Fusion, pre-warming the transmission reduced fuel consumption 2.5% for an urban drive cycle at -7 degrees C ambient temperature, with 1.5% of the 2.5% gain associated with the transmission, while consumption for the US06 test was shown to be reduced by 7% with 5.5% of the 7% gain associated with the transmission. It was found that engine warming due to conduction between the pre-heated transmission and the engine resulted in the remainder of the benefit. For +22 degrees C ambient tests, the pre-heated transmission was shown to reduce fuel consumption approximately 1% on an urban cycle, while no benefit was seen for the US06 cycle. The simplified modeling results showed gains in efficiency ranging from 0-1.5% depending on the ambient

  5. Technology Transfer Opportunities: Automated Ground-Water Monitoring

    Science.gov (United States)

    Smith, Kirk P.; Granato, Gregory E.

    1997-01-01

    Introduction A new automated ground-water monitoring system developed by the U.S. Geological Survey (USGS) measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automation of water-quality monitoring systems in the field, in laboratories, and in industry have increased data density and utility while reducing operating costs. Uses for an automated ground-water monitoring system include, (but are not limited to) monitoring ground-water quality for research, monitoring known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, and as an early warning system monitoring groundwater quality near public water-supply wells.

  6. Life cycle management. Condition monitoring of wind power plants; Life-cycle-management. Zustandsueberwachung von Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, R. [cmc GmbH, Kiel (Germany)

    2013-06-01

    The author of the contribution under consideration reports on maintenance strategies and condition monitoring in the field of wind energy. Beside the components in the drive train of wind turbines under consideration, the condition monitoring of the hardware systems and their software is explained. A brief overview of the field of machinery diagnosis and an explanation of the transmission of the measured data follow. Additional sensors such as sensors for the rotor blade monitoring, oil particles counter or oil quality sensors are described. In the field of diagnostic certainty, special follow-up studies such as video endoscopy, analysis of oil or grease, filter testing and material testing are discussed. The information from these thematic fields is used in the life-cycle management database for operationally relevant evaluations and considerations of economy of condition monitoring systems.

  7. Economic analysis of condition monitoring systems for offshore wind turbine sub-systems

    DEFF Research Database (Denmark)

    May, Allan; MacMillan, David; Thöns, Sebastian

    2015-01-01

    The use of condition monitoring systems on offshore wind turbines has increased dramatically in recent times. However, their use is mostly restricted to vibration based monitoring systems for the gearbox, generator and drive train. A survey of commercially available condition monitoring systems...... year life cycle. The model uses Hidden Markov Models to represent both the actual system state and the observed condition monitoring state. The CM systems are modelled to include reduced failure types, false alarms, detection rates and 6 month failure warnings. The costs for system failures are derived...... and their associated costs has been completed for the blades, drive train, tower and foundation. This paper considers what value can be obtained from integrating these additional systems into the maintenance plan. This is achieved by running simulations on an operations and maintenance model for a wind farm over a 20...

  8. Condition Monitoring Using Computational Intelligence Methods Applications in Mechanical and Electrical Systems

    CERN Document Server

    Marwala, Tshilidzi

    2012-01-01

    Condition monitoring uses the observed operating characteristics of a machine or structure to diagnose trends in the signal being monitored and to predict the need for maintenance before a breakdown occurs. This reduces the risk, inherent in a fixed maintenance schedule, of performing maintenance needlessly early or of having a machine fail before maintenance is due either of which can be expensive with the latter also posing a risk of serious accident especially in systems like aeroengines in which a catastrophic failure would put lives at risk. The technique also measures responses from the whole of the system under observation so it can detect the effects of faults which might be hidden deep within a system, hidden from traditional methods of inspection. Condition Monitoring Using Computational Intelligence Methods promotes the various approaches gathered under the umbrella of computational intelligence to show how condition monitoring can be used to avoid equipment failures and lengthen its useful life, m...

  9. Technological Competitiveness of Ukraine under Conditions of a New Industrial Revolution and Development of Convergent Technologies

    Directory of Open Access Journals (Sweden)

    Matyushenko Igor Yu.

    2016-02-01

    Full Text Available The article considers the problem of increasing the technological competitiveness of Ukrainian enterprises under conditions of a new industrial revolution through the development and introduction of advanced converged technologies. The classification of industrial revolutions, namely, industrial, technological, information and Industry 4.0, is presented, and it has been determined that the key factor of the latter is cyber physical systems for introduction of the client-oriented “Internet of Things”. It has been justified that the formation of Industry 4.0 in developed countries will occur through advanced production technologies (APT, which main characteristics are technological substitution, automation, customization, localization and economic efficiency. It has been found that in 2020 the main priority APT will be: systems of production process control; multidimensional modeling of complex products; intelligent production systems and robotics; systems of creation and transformation (growing of material objects and 3D-printing; materials effective in creating perspective actuating devices (compositional and those that exhibit their properties in small-size structures. It has been proved that the recovery of Ukraine’s industry is not possible on the old industrial base, and the creation of a new industry based on APT of Industry 4.0 is possible in the following areas: ICT (primarily in the field of software development; new composite materials with specified properties; industrial nanobiotechnologies (biomedicine and pharmacy, new agricultural technologies; mathematical modeling for creation of intelligent production systems; space research and development (in particular, development of the first stages of heavy missiles. The necessity of elaborating state programs of competitiveness development on the basis of APT, foresight research oftechnology priorities, promoting high-tech exports in Ukraine has been substantiated.

  10. Condition Monitoring

    DEFF Research Database (Denmark)

    Avenas, Yvan; Dupont, Laurent; Baker, Nick

    2015-01-01

    Power conversion systems are dependent on the performance and reliability of static converters. However, they are subject to frequent functional and environmental strains, which can induce failures. The anticipation of these failures is difficult but important so the operation of a system can be ...

  11. The Implementation Internet of Things(IoT) Technology in Real Time Monitoring of Electrical Quantities

    Science.gov (United States)

    Despa, D.; Nama, G. F.; Muhammad, M. A.; Anwar, K.

    2018-04-01

    Electrical quantities such as Voltage, Current, Power, Power Factor, Energy, and Frequency in electrical power system tends to fluctuate, as a result of load changes, disturbances, or other abnormal states. The change-state in electrical quantities should be identify immediately, otherwise it can lead to serious problem for whole system. Therefore a necessity is required to determine the condition of electricity change-state quickly and appropriately in order to make effective decisions. Online monitoring of power distribution system based on Internet of Things (IoT) technology was deploy and implemented on Department of Mechanical Engineering University of Lampung (Unila), especially at three-phase main distribution panel H-building. The measurement system involve multiple sensors such current sensors and voltage sensors, while data processing conducted by Arduino, the measurement data stored in to the database server and shown in a real-time through a web-based application. This measurement system has several important features especially for realtime monitoring, robust data acquisition and logging, system reporting, so it will produce an important information that can be used for various purposes of future power analysis such estimation and planning. The result of this research shown that the condition of electrical power system at H-building performed unbalanced load, which often leads to drop-voltage condition

  12. [Meta-analyses on measurement precision of non-invasive hemodynamic monitoring technologies in adults].

    Science.gov (United States)

    Pestel, G; Fukui, K; Higashi, M; Schmidtmann, I; Werner, C

    2018-06-01

    An ideal non-invasive monitoring system should provide accurate and reproducible measurements of clinically relevant variables that enables clinicians to guide therapy accordingly. The monitor should be rapid, easy to use, readily available at the bedside, operator-independent, cost-effective and should have a minimal risk and side effect profile for patients. An example is the introduction of pulse oximetry, which has become established for non-invasive monitoring of oxygenation worldwide. A corresponding non-invasive monitoring of hemodynamics and perfusion could optimize the anesthesiological treatment to the needs in individual cases. In recent years several non-invasive technologies to monitor hemodynamics in the perioperative setting have been introduced: suprasternal Doppler ultrasound, modified windkessel function, pulse wave transit time, radial artery tonometry, thoracic bioimpedance, endotracheal bioimpedance, bioreactance, and partial CO 2 rebreathing have been tested for monitoring cardiac output or stroke volume. The photoelectric finger blood volume clamp technique and respiratory variation of the plethysmography curve have been assessed for monitoring fluid responsiveness. In this manuscript meta-analyses of non-invasive monitoring technologies were performed when non-invasive monitoring technology and reference technology were comparable. The primary evaluation criterion for all studies screened was a Bland-Altman analysis. Experimental and pediatric studies were excluded, as were all studies without a non-invasive monitoring technique or studies without evaluation of cardiac output/stroke volume or fluid responsiveness. Most studies found an acceptable bias with wide limits of agreement. Thus, most non-invasive hemodynamic monitoring technologies cannot be considered to be equivalent to the respective reference method. Studies testing the impact of non-invasive hemodynamic monitoring technologies as a trend evaluation on outcome, as well as

  13. The use of condition monitoring information for maintenance planning and decision-making

    Energy Technology Data Exchange (ETDEWEB)

    Laakso, K.; Rosqvist, T. [VTT Industrial Systems (Finland); Paulsen, J.L. [Risoe National Lab., Roskilde (Denmark)

    2002-12-01

    A survey is presented outlining the use of condition monitoring information in three Nordic nuclear power plants. The questions of the survey relate to the role of condition monitoring in strategic, as well as operative, maintenance planning and decision-making. The survey indicates that condition monitoring is increasingly implemented at nuclear power plants, but very selectively and in a rather slow pace for predictive maintenance. A combined strategy of condition based maintenance and predetermined preventive maintenance is applied for important equipment such as main circulation pumps and steam turbines. A realistic aim is to reduce the number of costly or error prone maintenance and disassembling inspection activities by condition monitoring given that the approach enables a good diagnosis and prediction. Systematic follow-up and analysis of such condition monitoring information followed by a case-specific planning and decision making of timely and rightly directed maintenance actions can justify an extension of the intervals of a number of predetermined inspection, maintenance or periodic testing tasks. (au)

  14. Catalogue of systems for the monitoring of working conditions relating to health and safety

    NARCIS (Netherlands)

    Prins, R.; Verboon, F.

    1991-01-01

    In this Catalogue a number of systems or instruments for Monitoring Working Conditions and workers Health and Safety have been described. The general aim of the project was three-fold: - to obtain an overall assessment of the existing instruments for identifying risk factors and working conditions

  15. Emerging technologies to measure neighborhood conditions in public health: implications for interventions and next steps.

    Science.gov (United States)

    Schootman, M; Nelson, E J; Werner, K; Shacham, E; Elliott, M; Ratnapradipa, K; Lian, M; McVay, A

    2016-06-23

    Adverse neighborhood conditions play an important role beyond individual characteristics. There is increasing interest in identifying specific characteristics of the social and built environments adversely affecting health outcomes. Most research has assessed aspects of such exposures via self-reported instruments or census data. Potential threats in the local environment may be subject to short-term changes that can only be measured with more nimble technology. The advent of new technologies may offer new opportunities to obtain geospatial data about neighborhoods that may circumvent the limitations of traditional data sources. This overview describes the utility, validity and reliability of selected emerging technologies to measure neighborhood conditions for public health applications. It also describes next steps for future research and opportunities for interventions. The paper presents an overview of the literature on measurement of the built and social environment in public health (Google Street View, webcams, crowdsourcing, remote sensing, social media, unmanned aerial vehicles, and lifespace) and location-based interventions. Emerging technologies such as Google Street View, social media, drones, webcams, and crowdsourcing may serve as effective and inexpensive tools to measure the ever-changing environment. Georeferenced social media responses may help identify where to target intervention activities, but also to passively evaluate their effectiveness. Future studies should measure exposure across key time points during the life-course as part of the exposome paradigm and integrate various types of data sources to measure environmental contexts. By harnessing these technologies, public health research can not only monitor populations and the environment, but intervene using novel strategies to improve the public health.

  16. The research and application of green computer room environmental monitoring system based on internet of things technology

    Science.gov (United States)

    Wei, Wang; Chongchao, Pan; Yikai, Liang; Gang, Li

    2017-11-01

    With the rapid development of information technology, the scale of data center increases quickly, and the energy consumption of computer room also increases rapidly, among which, energy consumption of air conditioning cooling makes up a large proportion. How to apply new technology to reduce the energy consumption of the computer room becomes an important topic of energy saving in the current research. This paper study internet of things technology, and design a kind of green computer room environmental monitoring system. In the system, we can get the real-time environment data from the application of wireless sensor network technology, which will be showed in a creative way of three-dimensional effect. In the environment monitor, we can get the computer room assets view, temperature cloud view, humidity cloud view, microenvironment view and so on. Thus according to the condition of the microenvironment, we can adjust the air volume, temperature and humidity parameters of the air conditioning for the individual equipment cabinet to realize the precise air conditioning refrigeration. And this can reduce the energy consumption of air conditioning, as a result, the overall energy consumption of the green computer room will reduce greatly. At the same time, we apply this project in the computer center of Weihai, and after a year of test and running, we find that it took a good energy saving effect, which fully verified the effectiveness of this project on the energy conservation of the computer room.

  17. Condition Monitoring of Machinery in Non-Stationary Operations : Proceedings of the Second International Conference "Condition Monitoring of Machinery in Non-Stationnary Operations"

    CERN Document Server

    Bartelmus, Walter; Chaari, Fakher; Zimroz, Radoslaw; Haddar, Mohamed

    2012-01-01

    Condition monitoring of machines in non-stationary operations (CMMNO) can be seen as the major challenge for research in the field of machinery diagnostics. Condition monitoring of machines in non-stationary operations is the title of the presented book and the title of the Conference held in Hammamet - Tunisia March 26 – 28, 2012. It is the second conference under this title, first took place in Wroclaw - Poland , March 2011. The subject CMMNO comes directly from industry needs and observation of real objects. Most monitored and diagnosed objects used in industry works in non-stationary operations condition. The non-stationary operations come from fulfillment of machinery tasks, for which they are designed for. All machinery used in different kind of mines, transport systems, vehicles like: cars, buses etc, helicopters, ships and battleships and so on work in non-stationary operations. The papers included in the book are shaped by the organizing board of the conference and authors of the papers. The papers...

  18. Education technology with continuous real time monitoring of the current functional and emotional students' states

    Science.gov (United States)

    Alyushin, M. V.; Kolobashkina, L. V.

    2017-01-01

    The education technology with continuous monitoring of the current functional and emotional students' states is suggested. The application of this technology allows one to increase the effectiveness of practice through informed planning of the training load. For monitoring the current functional and emotional students' states non-contact remote technologies of person bioparameters registration are encouraged to use. These technologies are based on recording and processing in real time the main person bioparameters in a purely passive mode. Experimental testing of this technology has confirmed its effectiveness.

  19. Machine and lubricant condition monitoring for extended equipment lifetimes and predictive maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Lukas, M; Anderson, D P [Spectro Incorporated, Littleton, Massachusetts (United States)

    1998-12-31

    Predictive maintenance has gained wide acceptance as a cost cutting strategy in modern industry. Condition monitoring by lubricant analysis is one of the basic tools of a predictive maintenance program along with vibration monitoring, performance monitoring and thermography. In today`s modern power generation, manufacturing, refinery, transportation, mining, and military operations, the cost of equipment maintenance, service, and lubricants are ever increasing. Parts, labor, equipment downtime and lubricant prices and disposal costs are a primary concern in a well run maintenance management program. Machine condition monitoring based on oil analysis has become a prerequisite in most maintenance programs. Few operations can afford not to implement a program if they wish to remain competitive, and in some cases, profitable. This presentation describes a comprehensive Machine Condition Monitoring Program based on oil analysis. Actual operational condition monitoring programs will be used to review basic components and analytical requirements. Case histories will be cited as examples of cost savings, reduced equipment downtime and increased efficiencies of maintenance programs through a well managed oil analysis program. (orig.)

  20. Machine and lubricant condition monitoring for extended equipment lifetimes and predictive maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Lukas, M.; Anderson, D.P. [Spectro Incorporated, Littleton, Massachusetts (United States)

    1997-12-31

    Predictive maintenance has gained wide acceptance as a cost cutting strategy in modern industry. Condition monitoring by lubricant analysis is one of the basic tools of a predictive maintenance program along with vibration monitoring, performance monitoring and thermography. In today`s modern power generation, manufacturing, refinery, transportation, mining, and military operations, the cost of equipment maintenance, service, and lubricants are ever increasing. Parts, labor, equipment downtime and lubricant prices and disposal costs are a primary concern in a well run maintenance management program. Machine condition monitoring based on oil analysis has become a prerequisite in most maintenance programs. Few operations can afford not to implement a program if they wish to remain competitive, and in some cases, profitable. This presentation describes a comprehensive Machine Condition Monitoring Program based on oil analysis. Actual operational condition monitoring programs will be used to review basic components and analytical requirements. Case histories will be cited as examples of cost savings, reduced equipment downtime and increased efficiencies of maintenance programs through a well managed oil analysis program. (orig.)

  1. 77 FR 41930 - Bleed Air Cleaning and Monitoring Equipment and Technology

    Science.gov (United States)

    2012-07-17

    .... Bill 658, requires the FAA to identify bleed air purification technology. Specifically, the FAA seeks... Administration 14 CFR Part 25 [Docket No. FAA-2012-0714] Bleed Air Cleaning and Monitoring Equipment and... developers, manufacturers, and the public related to effective air cleaning technology and sensor technology...

  2. A Big Spatial Data Processing Framework Applying to National Geographic Conditions Monitoring

    Directory of Open Access Journals (Sweden)

    F. Xiao

    2018-04-01

    Full Text Available In this paper, a novel framework for spatial data processing is proposed, which apply to National Geographic Conditions Monitoring project of China. It includes 4 layers: spatial data storage, spatial RDDs, spatial operations, and spatial query language. The spatial data storage layer uses HDFS to store large size of spatial vector/raster data in the distributed cluster. The spatial RDDs are the abstract logical dataset of spatial data types, and can be transferred to the spark cluster to conduct spark transformations and actions. The spatial operations layer is a series of processing on spatial RDDs, such as range query, k nearest neighbor and spatial join. The spatial query language is a user-friendly interface which provide people not familiar with Spark with a comfortable way to operation the spatial operation. Compared with other spatial frameworks, it is highlighted that comprehensive technologies are referred for big spatial data processing. Extensive experiments on real datasets show that the framework achieves better performance than traditional process methods.

  3. A Big Spatial Data Processing Framework Applying to National Geographic Conditions Monitoring

    Science.gov (United States)

    Xiao, F.

    2018-04-01

    In this paper, a novel framework for spatial data processing is proposed, which apply to National Geographic Conditions Monitoring project of China. It includes 4 layers: spatial data storage, spatial RDDs, spatial operations, and spatial query language. The spatial data storage layer uses HDFS to store large size of spatial vector/raster data in the distributed cluster. The spatial RDDs are the abstract logical dataset of spatial data types, and can be transferred to the spark cluster to conduct spark transformations and actions. The spatial operations layer is a series of processing on spatial RDDs, such as range query, k nearest neighbor and spatial join. The spatial query language is a user-friendly interface which provide people not familiar with Spark with a comfortable way to operation the spatial operation. Compared with other spatial frameworks, it is highlighted that comprehensive technologies are referred for big spatial data processing. Extensive experiments on real datasets show that the framework achieves better performance than traditional process methods.

  4. The research and development of an air pollutant monitoring system based on DOAS technology

    Science.gov (United States)

    Li, Hua; Liu, Han-peng; Zheng, Ming; Meng, Xiao-feng

    2009-07-01

    This article illuminates a kind of sensor used in measuring the concentrations of the main pollutants in flue gas streams (Dust, SO2 and NOx) based on the UV-DOAS technology in air pollutant monitoring. Using the high-level embedded microprocessors and complex programmable logic device, the sensor completes system measurement, management and signal communication, and spectrum inversion and data saving are processed by PC at the same time. Differential optical absorption spectroscopy (DOAS) technology is used in the flue gas pollutant factor analysis through the sensor construction. The absorption spectra of SO2, NOx and smoke dust are inverted to reduce the interference of other factors in flue gas streams. At the same time, the effect of light source fluctuation and optical transmission ratio is considered and removed in the measurement system. The result shows that the monitoring accuracy of concentration of sulfur dioxide and smoke dust achieves +/-2%, the concentration of nitrogen oxides accuracy achieves +/-3%, which meets the requirements of the national standard. The sensor can be directly installed in a flue. As a result, process of measuring is simplified and measurement accuracy is improved. Further more, this method increases the stability of the system and reduces the maintenance costs. Measurement data is transferred through data bus between the sensor and upper PC to realize remote control and real-time measurement. Considering the severe conditions in measuring the main pollutants in flue gas streams, applications of anti-interference and anti-corrosion etc. are taken in the system design.

  5. Technological monitoring radar: a weak signals interpretation tool for the identification of strategic surprises

    Directory of Open Access Journals (Sweden)

    Adalton Ozaki

    2011-07-01

    Full Text Available In the current competitive scenario, marked by rapid and constant changes, it is vital that companies actively monitor the business environment, in search of signs which might anticipate changes. This study poses to propose and discuss a tool called Technological Monitoring Radar, which endeavours to address the following query: “How can a company systematically monitor the environment and capture signs that anticipate opportunities and threats concerning a particular technology?”. The literature review covers Competitive Intelligence, Technological Intelligence, Environmental Analysis and Anticipative Monitoring. Based on the critical analysis of the literature, a tool called Technological Monitoring Radar is proposed comprising five environments to be monitored (political, economical, technological, social and competition each of which with key topics for analysis. To exemplify the use of the tool, it is applied to the smartphone segment in an exclusively reflexive manner, and without the participation of a specific company. One of the suggestions for future research is precisely the application of the proposed methodology in an actual company. Despite the limitation of this being a theoretical study, the example demonstrated the tool´s applicability. The radar prove to be very useful for a company that needs to monitor the environment in search of signs of change. This study´s main contribution is to relate different fields of study (technological intelligence, environmental analysis and anticipative monitoring and different approaches to provide a practical tool that allows a manager to identify and better visualize opportunities and threats, thus avoiding strategic surprises in the technological arena.Key words: Technological monitoring. Technological intelligence. Competitive intelligence. Weak signals.

  6. [Application of electronic fence technology based on GIS in Oncomelania hupensis snail monitoring].

    Science.gov (United States)

    Zhi-Hua, Chen; Yi-Sheng, Zhu; Zhi-Qiang, Xue; Xue-Bing, Li; Yi-Min, Ding; Li-Jun, Bi; Kai-Min, Gao; You, Zhang

    2017-07-27

    To study the application of Geographic Information System (GIS) electronic fence technique in Oncomelania hupensis snail monitoring. The electronic fence was set around the history and existing snail environments in the electronic map, the information about snail monitoring and controlling was linked to the electronic fence, and the snail monitoring information system was established on these bases. The monitoring information was input through the computer and smart phone. The electronic fence around the history and existing snail environments was set in the electronic map (Baidu map), and the snail monitoring information system and smart phone APP were established. The monitoring information was input and upload real-time, and the snail monitoring information was demonstrated in real time on Baidu map. By using the electronic fence technology based on GIS, the unique "environment electronic archives" for each snail monitoring environment can be established in the electronic map, and real-time, dynamic monitoring and visual management can be realized.

  7. Short-term and long-term Vadose zone monitoring: Current technologies, development, and applications

    International Nuclear Information System (INIS)

    Faybishenko, Boris

    1999-01-01

    At Hanford, Savannah River, Oak Ridge, Idaho National Engineering and Environmental Laboratory (INEEL), and other DOE sites, field vadose zone observations have shown complex water seepage and mass transport behavior in a highly heterogeneous, thick vadose zone on a variety of scales. Recent investigation showed that severe contamination of soils and groundwater by organic contaminant and nuclear waste occurred because of water seepage and contaminant transport along localized, preferential, fast flow within the heterogeneous vadose zone. However, most of the existing characterization and monitoring methods are not able to locate these localized and persistent preferential pathways associated with specific heterogeneous geologic features, such as clastic dikes, caliche layers, or fractures. In addition, changes in the chemical composition of moving and indigenous solutes, particularly sodium concentration, redox conditions, biological transformation of organic materials, and high temperature, may significantly alter water, chemicals, and bio-transformation exchange between the zones of fast flow and the rest of the media. In this paper, using the data from Hanford and INEEL sites, we will (1) present evidence that central problems of the vadose zone investigations are associated with preferential, fast flow phenomena and accelerated migration of organic and radioactive elements, (2) identify gaps in current characterization and monitoring technologies, and (3) recommend actions for the development of advanced vadose zone characterization and monitoring methods using a combination of hydrologic, geochemical, and geophysical techniques

  8. Hyperion technology enables unified meteorological and radiological monitoring

    International Nuclear Information System (INIS)

    Zigic, A.; Saponjic, D.; Arandjelovic, V.; Zunic, Z. . E-mail address of corresponding author: alex@vin.bg.ac.yu; Zigic, A.)

    2005-01-01

    The present state of meteorological and radiological measurement and monitoring are quite localized to smaller areas which implies the difficulties in knowing the measurement results in the wider region instantly. The need for establishing a distributed, flexible, modular and centralized measurement system for both meteorological and radiological parameters of environment is arising. The measurement and monitoring of radiological parameters of environment are not sufficient since there is a strong correlation between radiological and meteorological parameters which implies a unified distributed automatic monitoring system. The unified monitoring system makes it possible to transfer, process and store measured data in local and central databases. Central database gives a possibility of easy access to all measured data for authorized personnel and institutions. Stored measured data in central database gives a new opportunity to create a base for meteorological and radiological modelling and studies. (author)

  9. Technology of remote nuclear activity monitoring for national safeguards

    International Nuclear Information System (INIS)

    Kwack, Eun Ho; Kim, B. K.; Kim, J. S.; Yoon, W. K.; Kim, J. S.; Kim, J. S.; Cha, H. R.; Na, W. W.; Choi, Y. M.

    2001-07-01

    This project mainly focused on technical development on remote monitoring. It covers optical fiber scintillator to be used as NDA sensor to targets to be applied. Optical fiber scintillator was tested at the high radioactive environment. It is the first try in its kind for spent fuel measurement. It is confirmed that optical fiber sensor can be used for safeguards verification. Its feasibility for spent fuel storage silo at Wolsong reactor was studied. And to optimize remote transmission cost which can be regarded as a major barrier, virtual private network was studied for possible application for safeguards purpose. It can drastically reduce transmission cost and upgrade information surety. As target for remote monitoring, light water reactor and heavy water reactor were feasibly studied. Especially heavy water reactor has much potential for reduction of inspection efforts if remote monitoring is introduced. In overall remote monitoring can play a pivotal role to streamline safeguards inspection

  10. Technology for Improving Medication Monitoring in Nursing Homes

    National Research Council Canada - National Science Library

    Lapane, Kate L; Cameron, Kathleen; Feinberg, Janice

    2005-01-01

    .... While clinical informatics systems have focused on the reduction of medication errors at the point of prescribing, dispensing, or administration, few have proposed the use of information technology...

  11. The potential of biosensor technology in clinical monitoring and experimental research

    NARCIS (Netherlands)

    Leegsma-Vogt, G; Rhemrev-Boom, MM; Tiessen, RG; Venema, K; Korf, J

    2004-01-01

    Glucose or lactate biosensors are very useful for monitoring metabolism. Continuous monitoring of glucose is for example very important in diabetic patients. The measurement of lactate, a marker for oxygen deficiency, is used in the intensive care unit to monitor the patients' condition. In our

  12. Priority target conditions for algorithms for monitoring children's growth: Interdisciplinary consensus.

    Directory of Open Access Journals (Sweden)

    Pauline Scherdel

    Full Text Available Growth monitoring of apparently healthy children aims at early detection of serious conditions through the use of both clinical expertise and algorithms that define abnormal growth. Optimization of growth monitoring requires standardization of the definition of abnormal growth, and the selection of the priority target conditions is a prerequisite of such standardization.To obtain a consensus about the priority target conditions for algorithms monitoring children's growth.We applied a formal consensus method with a modified version of the RAND/UCLA method, based on three phases (preparatory, literature review, and rating, with the participation of expert advisory groups from the relevant professional medical societies (ranging from primary care providers to hospital subspecialists as well as parent associations. We asked experts in the pilot (n = 11, reading (n = 8 and rating (n = 60 groups to complete the list of diagnostic classification of the European Society for Paediatric Endocrinology and then to select the conditions meeting the four predefined criteria of an ideal type of priority target condition.Strong agreement was obtained for the 8 conditions selected by the experts among the 133 possible: celiac disease, Crohn disease, craniopharyngioma, juvenile nephronophthisis, Turner syndrome, growth hormone deficiency with pituitary stalk interruption syndrome, infantile cystinosis, and hypothalamic-optochiasmatic astrocytoma (in decreasing order of agreement.This national consensus can be used to evaluate the algorithms currently suggested for growth monitoring. The method used for this national consensus could be re-used to obtain an international consensus.

  13. Fast beam conditions monitor BCM1F for the CMS experiment

    International Nuclear Information System (INIS)

    Bell, A.; Castro, E.; Hall-Wilton, R.

    2009-10-01

    The CMS Beam Conditions and Radiation Monitoring System, BRM, will support beam tuning, protect the CMS detector from adverse beam conditions, and measure the accumulated dose close to or inside all sub-detectors. It is composed of different sub-systems measuring either the particle flux near the beam pipe with time resolution between nano- and microseconds or the integrated dose over longer time intervals. This paper presents the Fast Beam Conditions Monitor, BCM1F, which is designed for fast flux monitoring measuring both beam halo and collision products. BCM1F is located inside the CMS pixel detector volume close to the beam-pipe. It uses sCVD diamond sensors and radiation hard front-end electronics, along with an analog optical readout of the signals. The commissioning of the system and its successful operation during the first beams of the LHC are described. (orig.)

  14. Image edge detection based tool condition monitoring with morphological component analysis.

    Science.gov (United States)

    Yu, Xiaolong; Lin, Xin; Dai, Yiquan; Zhu, Kunpeng

    2017-07-01

    The measurement and monitoring of tool condition are keys to the product precision in the automated manufacturing. To meet the need, this study proposes a novel tool wear monitoring approach based on the monitored image edge detection. Image edge detection has been a fundamental tool to obtain features of images. This approach extracts the tool edge with morphological component analysis. Through the decomposition of original tool wear image, the approach reduces the influence of texture and noise for edge measurement. Based on the target image sparse representation and edge detection, the approach could accurately extract the tool wear edge with continuous and complete contour, and is convenient in charactering tool conditions. Compared to the celebrated algorithms developed in the literature, this approach improves the integrity and connectivity of edges, and the results have shown that it achieves better geometry accuracy and lower error rate in the estimation of tool conditions. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Fast beam conditions monitor BCM1F for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bell, A. [CERN, Geneva (Switzerland); Geneva Univ. (Switzerland); Castro, E. [DESY Zeuthen (Germany); Hall-Wilton, R. [CERN, Geneva (Switzerland); Wisconsin Univ., Madison, WI (US)] (and others)

    2009-10-15

    The CMS Beam Conditions and Radiation Monitoring System, BRM, will support beam tuning, protect the CMS detector from adverse beam conditions, and measure the accumulated dose close to or inside all sub-detectors. It is composed of different sub-systems measuring either the particle flux near the beam pipe with time resolution between nano- and microseconds or the integrated dose over longer time intervals. This paper presents the Fast Beam Conditions Monitor, BCM1F, which is designed for fast flux monitoring measuring both beam halo and collision products. BCM1F is located inside the CMS pixel detector volume close to the beam-pipe. It uses sCVD diamond sensors and radiation hard front-end electronics, along with an analog optical readout of the signals. The commissioning of the system and its successful operation during the first beams of the LHC are described. (orig.)

  16. Artificial intelligence tools decision support systems in condition monitoring and diagnosis

    CERN Document Server

    Galar Pascual, Diego

    2015-01-01

    Artificial Intelligence Tools: Decision Support Systems in Condition Monitoring and Diagnosis discusses various white- and black-box approaches to fault diagnosis in condition monitoring (CM). This indispensable resource: Addresses nearest-neighbor-based, clustering-based, statistical, and information theory-based techniques Considers the merits of each technique as well as the issues associated with real-life application Covers classification methods, from neural networks to Bayesian and support vector machines Proposes fuzzy logic to explain the uncertainties associated with diagnostic processes Provides data sets, sample signals, and MATLAB® code for algorithm testing Artificial Intelligence Tools: Decision Support Systems in Condition Monitoring and Diagnosis delivers a thorough evaluation of the latest AI tools for CM, describing the most common fault diagnosis techniques used and the data acquired when these techniques are applied.

  17. Data support system for controlling decentralised nuclear power industry facilities through uninterruptible condition monitoring

    Directory of Open Access Journals (Sweden)

    Povarov Vladimir

    2018-01-01

    Full Text Available The article describes the automated uninterruptible multi-parameter system for monitoring operational vulnerability of critical NPP components, which differs from existing ones by being universally applicable for analysing mechanical damage of nuclear power unit components. The system allows for performing routine assessment of metal structures. The assessment of strained condition of a deteriorating component is based on three-dimensional finite element simulation with calculations adjusted with reference to in-situ measurements. A program for calculation and experimental analysis of maximum load and durability of critical area forms the core of uninterruptible monitoring system. The knowledge base on performance of the monitored components in different operating conditions and the corresponding comprehensive analysis of strained condition and deterioration rates compose the basis of control system data support, both for operating nuclear power units and robotic maintenance and repair systems.

  18. An integrated condition-monitoring method for a milling process using reduced decomposition features

    International Nuclear Information System (INIS)

    Liu, Jie; Wu, Bo; Hu, Youmin; Wang, Yan

    2017-01-01

    Complex and non-stationary cutting chatter affects productivity and quality in the milling process. Developing an effective condition-monitoring approach is critical to accurately identify cutting chatter. In this paper, an integrated condition-monitoring method is proposed, where reduced features are used to efficiently recognize and classify machine states in the milling process. In the proposed method, vibration signals are decomposed into multiple modes with variational mode decomposition, and Shannon power spectral entropy is calculated to extract features from the decomposed signals. Principal component analysis is adopted to reduce feature size and computational cost. With the extracted feature information, the probabilistic neural network model is used to recognize and classify the machine states, including stable, transition, and chatter states. Experimental studies are conducted, and results show that the proposed method can effectively detect cutting chatter during different milling operation conditions. This monitoring method is also efficient enough to satisfy fast machine state recognition and classification. (paper)

  19. Expert System for Diagnostics and Status Monitoring of NPP Water Chemistry Condition

    International Nuclear Information System (INIS)

    Shvedova, M.N.; Kritski, V.G.; Zakharova, S.V.; Nikolaev, F.V.; Benediktov, V.B.

    2002-01-01

    Water chemistry condition (WCC) has been the subject of constant study and improvement up to the present day. It is connected with the presence of a direct relationship between the violation of water chemistry regulation on the one hand and components reliability of the circuit's equipment and cost-effectiveness of their operation on the other. It dictates the necessity to apply different optimization methods in the field of monitoring and use of information - analytical and diagnostic systems to assess WCC quality, control and support. By now NPP experts have broad experience in revealing and removing the causes of WCC disturbances. However this knowledge is often of an intuitive, non-classified nature, scattered among various working documents, which makes their transfer difficult. Based on what has been mentioned above, special attention is currently being paid to the problem of creating expert diagnostic systems for supporting the optimum WCC. The existing developments in this field (DIWA, Smart chem Works, the water quality control system at the Onagava NPP etc. [1,3,4,5] are based on wide use of experts' knowledge. Such expert diagnostic systems for supporting WCC refer to the new generation of intellectual control methods, which allow the incorporation of the latest achievements both in the field of water chemistry simulation and in the field of artificial intelligence and computer technologies. LI 'VNIPIET' employees have, for several years, been developing an expert diagnostic system for supporting WCC and status monitoring of RBMK - reactor NPPs [2]. This system has not only conveniently organized the traditional functions of information acquisition and storage, a complete presentation of information in the form of tables, graphs of a dynamical changes of parameters and formation regular reports, diagnostic functions and issuing recommendations on WCC correction, but it also allows the assessment of confidence in the diagnosis made, relying on a wide

  20. Monitoring invasive plants using hand-held GIS technology

    Science.gov (United States)

    Theresa M. Mau-Crimmins; Barron J. Orr

    2005-01-01

    Successful control of invasive species requires a clear picture of the spatial extent of infestations. The latest mapping technology involves coupling global position systems and handheld computers running geographic information systems software in the field. A series of workshops applying this technology to mapping weeds was developed and presented to Weed Management...

  1. Development of camera technology for monitoring nests. Chapter 15

    Science.gov (United States)

    W. Andrew Cox; M. Shane Pruett; Thomas J. Benson; Scott J. Chiavacci; Frank R., III Thompson

    2012-01-01

    Photo and video technology has become increasingly useful in the study of avian nesting ecology. However, researchers interested in using camera systems are often faced with insufficient information on the types and relative advantages of available technologies. We reviewed the literature for studies of nests that used cameras and summarized them based on study...

  2. The review of dynamic monitoring technology for crop growth

    Science.gov (United States)

    Zhang, Hong-wei; Chen, Huai-liang; Zou, Chun-hui; Yu, Wei-dong

    2010-10-01

    In this paper, crop growth monitoring methods are described elaborately. The crop growth models, Netherlands-Wageningen model system, the United States-GOSSYM model and CERES models, Australia APSIM model and CCSODS model system in China, are introduced here more focus on the theories of mechanism, applications, etc. The methods and application of remote sensing monitoring methods, which based on leaf area index (LAI) and biomass were proposed by different scholars at home and abroad, are highly stressed in the paper. The monitoring methods of remote sensing coupling with crop growth models are talked out at large, including the method of "forced law" which using remote sensing retrieval state parameters as the crop growth model parameters input, and then to enhance the dynamic simulation accuracy of crop growth model and the method of "assimilation of Law" which by reducing the gap difference between the value of remote sensing retrieval and the simulated values of crop growth model and thus to estimate the initial value or parameter values to increasing the simulation accuracy. At last, the developing trend of monitoring methods are proposed based on the advantages and shortcomings in previous studies, it is assured that the combination of remote sensing with moderate resolution data of FY-3A, MODIS, etc., crop growth model, "3S" system and observation in situ are the main methods in refinement of dynamic monitoring and quantitative assessment techniques for crop growth in future.

  3. An AES Study of the Room Temperature Surface Conditioning of Technological Metal Surfaces by Electron Irradiation

    CERN Document Server

    Scheuerlein, C; Taborelli, M; Brown, A; Baker, M A

    2002-01-01

    The modifications to technological copper and niobium surfaces induced by 2.5 keV electron irradiation have been investigated in the context of the conditioning process occurring in particle accelerator ultra high vacuum systems. Changes in the elemental surface composition have been found using Scanning Auger Microscopy (SAM) by monitoring the carbon, oxygen and metal Auger peak intensities as a function of electron irradiation in the dose range 10-6 to 10-2 C mm-2. The surface analysis results are compared with electron dose dependent secondary electron and electron stimulated desorption yield measurements. Initially the electron irradiation causes a surface cleaning through electron stimulated desorption, in particular of hydrogen. During this period both the electron stimulated desorption and secondary electron yield decrease as a function of electron dose. When the electron dose exceeds 10-4 C mm-2 electron stimulated desorption yields are reduced by several orders of magnitude and the electron beam indu...

  4. Program and abstracts of the offshore oil and gas environmental effects monitoring workshop : approaches and technologies

    International Nuclear Information System (INIS)

    2003-01-01

    The offshore petroleum industry in eastern Canada has expanded rapidly, with exploration and production activities taking place over a wide range of oceanographic conditions. This workshop, hosted by Canada's largest marine research institute, was held to advance the understanding of environmental impacts from offshore oil and gas activity. In particular, it examined how information derived from environmental effects monitoring (EEM) programs contribute to improved drilling and production operations, mitigation measures, and the revision of regulations for waste treatment. The workshop examined if EEM programs are providing valuable information, and how they can be improved. The themes of the 3 sessions which focused on ways to carry out EEM were: (1) EEM and environmental management, (2) EEM methodologies and lessons learned, and (3) EEM methodologies and technologies. Participants form around the world identified priority research needs and coordinated collaborative research efforts. Approximately 70 papers and posters were presented at the workshop, of which 19 have been indexed separately for inclusion in this database (Author)

  5. Rocky Flats Environmental Technology Site Ecological Monitoring Program 1995 annual report

    International Nuclear Information System (INIS)

    1995-01-01

    The Ecological Monitoring Program (ECMP) was established at the Rocky Flats Environmental Technology Site (Site) in September 1992. At that time, EcMP staff developed a Program Plan that was peer-reviewed by scientists from western universities before submittal to DOE RFFO in January 1993. The intent of the program is to measure several quantitative variables at different ecological scales in order to characterize the Rocky Flats ecosystem. This information is necessary to document ecological conditions at the Site in impacted and nonimpacted areas to determine if Site practices have had ecological impacts, either positive or negative. This information can be used by managers interested in future use scenarios and CERCLA activities. Others interested in impact analysis may also find the information useful. In addition, these measurements are entered into a database which will serve as a long-term information repository that will document long-term trends and potential future changes to the Site, both natural and anthropogenic

  6. Rocky Flats Environmental Technology Site Ecological Monitoring Program 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-31

    The Ecological Monitoring Program (ECMP) was established at the Rocky Flats Environmental Technology Site (Site) in September 1992. At that time, EcMP staff developed a Program Plan that was peer-reviewed by scientists from western universities before submittal to DOE RFFO in January 1993. The intent of the program is to measure several quantitative variables at different ecological scales in order to characterize the Rocky Flats ecosystem. This information is necessary to document ecological conditions at the Site in impacted and nonimpacted areas to determine if Site practices have had ecological impacts, either positive or negative. This information can be used by managers interested in future use scenarios and CERCLA activities. Others interested in impact analysis may also find the information useful. In addition, these measurements are entered into a database which will serve as a long-term information repository that will document long-term trends and potential future changes to the Site, both natural and anthropogenic.

  7. Achieving better energy-efficient air conditioning – A review of technologies and strategies

    International Nuclear Information System (INIS)

    Chua, K.J.; Chou, S.K.; Yang, W.M.; Yan, J.

    2013-01-01

    Air conditioning is essential for maintaining thermal comfort in indoor environments, particularly for hot and humid climates. Today, air conditioning, comprising cooling and dehumidification, has become a necessity in commercial and residential buildings and industrial processes. It accounts for a major share of the energy consumption of a building or facility. In tropical climates, the energy consumed by heating, ventilation and air-conditioning (HVAC) can exceed 50% of the total energy consumption of a building. This significant figure is primarily due to the heavy duty placed on cooling technologies to remove both sensible and latent heat loads. Therefore, there is tremendous potential to improve the overall efficiency of the air-conditioning systems in buildings. Based on today’s practical technology for cooling, the major components of a chiller plant are (1) compressors, (2) cooling towers, (3) pumps (chilled and cooling water) and (4) fans in air handling units. They all consume mainly electricity to operate. When specifying the kW/R ton of a plant, there are two levels of monitoring cooling efficiency: (1) at the efficiency of the chiller machines or the compressors which consume a major amount of electricity; and (2) at the overall efficiency of cooling plants which include the cooling towers, pumps for moving coolant (chilled and cooling water) to all air-handling units. Pragmatically, a holistic approach is necessary towards achieving a low energy input per cooling achieved such as 0.6 kW/R ton cooling or lower by considering all aspects of the cooling plant. In this paper, we present a review of recent innovative cooling technology and strategies that could potentially lower the kW/R ton of cooling systems – from the existing mean of 0.9 kW/R ton towards 0.6 kW/R ton or lower. The paper, broadly divided into three key sections (see Fig. 2), begins with a review of the recent novel devices that enhances the energy efficiency of cooling systems at

  8. Analysis of Land Subsidence Monitoring in Mining Area with Time-Series Insar Technology

    Science.gov (United States)

    Sun, N.; Wang, Y. J.

    2018-04-01

    Time-series InSAR technology has become a popular land subsidence monitoring method in recent years, because of its advantages such as high accuracy, wide area, low expenditure, intensive monitoring points and free from accessibility restrictions. In this paper, we applied two kinds of satellite data, ALOS PALSAR and RADARSAT-2, to get the subsidence monitoring results of the study area in two time periods by time-series InSAR technology. By analyzing the deformation range, rate and amount, the time-series analysis of land subsidence in mining area was realized. The results show that InSAR technology could be used to monitor land subsidence in large area and meet the demand of subsidence monitoring in mining area.

  9. A Wavelet Bicoherence-Based Quadratic Nonlinearity Feature for Translational Axis Condition Monitoring

    Directory of Open Access Journals (Sweden)

    Yong Li

    2014-01-01

    Full Text Available The translational axis is one of the most important subsystems in modern machine tools, as its degradation may result in the loss of the product qualification and lower the control precision. Condition-based maintenance (CBM has been considered as one of the advanced maintenance schemes to achieve effective, reliable and cost-effective operation of machine systems, however, current vibration-based maintenance schemes cannot be employed directly in the translational axis system, due to its complex structure and the inefficiency of commonly used condition monitoring features. In this paper, a wavelet bicoherence-based quadratic nonlinearity feature is proposed for translational axis condition monitoring by using the torque signature of the drive servomotor. Firstly, the quadratic nonlinearity of the servomotor torque signature is discussed, and then, a biphase randomization wavelet bicoherence is introduced for its quadratic nonlinear detection. On this basis, a quadratic nonlinearity feature is proposed for condition monitoring of the translational axis. The properties of the proposed quadratic nonlinearity feature are investigated by simulations. Subsequently, this feature is applied to the real-world servomotor torque data collected from the X-axis on a high precision vertical machining centre. All the results show that the performance of the proposed feature is much better than that of original condition monitoring features.

  10. Information technologies in carrying out monitoring comparisons of pedagogical higher education institutions

    Directory of Open Access Journals (Sweden)

    Вадим Валерьевич Гриншкун

    2014-12-01

    Full Text Available In article various approaches to use of information technologies when carrying out monitoring researches of higher educational institutions are described. Results of researches are considered on the example of indicators of pedagogical university.

  11. 15. Internal symposium on recent progress of nondestructive inspection and monitoring technologies for nuclear power plants

    International Nuclear Information System (INIS)

    1994-01-01

    At the symposium, lectures were given on the recent development of the nondestructive inspection technology for nuclear power plants, the trend regarding the nondestructive inspection in foreign countries (Japan-Germany atomic energy seminar), the present state and subjects of the monitoring technology in BWR plants, the present state and subjects of the monitoring technology in PWR plants, and the present state and the subjects for hereafter of the defect evaluation method in the equipment of light water reactors. The data on the ultrasonic flaw detection in aluminum alloy welded joints were obtained. The German inspection technology is similar to that in Japan and other countries. The research on the plant synthetic monitoring and diagnosis system is reported. The monitoring systems for abnormal state in operation, troubles and the secular change of equipment are reported. The evaluation of the flaws in nuclear piping is reported. The summaries of the lectures are collected in this book. (K.I.)

  12. Technology monitoring in the CIEMAT; La vigilancia tecnologica en el CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Martinez, M.; Cuesta, M. J.; Crespi, S. N.; Cabrera, J. A.

    2008-07-01

    The CIEMAT Foresight and Technology Monitoring Unit focuses its activities on obtaining strategic information on future developments in the area of energy and environment that can be used for decision making by the centers management. In addition, it provides services to CIEMAT researchers and other external customers. In May 2007, the Asociacion Espanola de Normalizacion y Certificacion AENOR delivered to the CIEMAT the first Technology Monitoring System certificate granted in Spain as per standard UNE 166006:2006. This article describes the Units experience in the implementation process of the Technology Monitoring System and provides several examples of the way in which the Unit graphically represents the information analyzed in its Technology Monitoring Reports. (Author)

  13. A New Application of Support Vector Machine Method: Condition Monitoring and Analysis of Reactor Coolant Pump

    International Nuclear Information System (INIS)

    Meng Qinghu; Meng Qingfeng; Feng Wuwei

    2012-01-01

    Fukushima nuclear power plant accident caused huge losses and pollution and it showed that the reactor coolant pump is very important in a nuclear power plant. Therefore, to keep the safety and reliability, the condition of the coolant pump needs to be online condition monitored and fault analyzed. In this paper, condition monitoring and analysis based on support vector machine (SVM) is proposed. This method is just to aim at the small sample studies such as reactor coolant pump. Both experiment data and field data are analyzed. In order to eliminate the noise and useless frequency, these data are disposed through a multi-band FIR filter. After that, a fault feature selection method based on principal component analysis is proposed. The related variable quantity is changed into unrelated variable quantity, and the dimension is descended. Then the SVM method is used to separate different fault characteristics. Firstly, this method is used as a two-kind classifier to separate each two different running conditions. Then the SVM is used as a multiple classifier to separate all of the different condition types. The SVM could separate these conditions successfully. After that, software based on SVM was designed for reactor coolant pump condition analysis. This software is installed on the reactor plant control system of Qinshan nuclear power plant in China. It could monitor the online data and find the pump mechanical fault automatically.

  14. Distributed Computing and Monitoring Technologies for Older Patients

    DEFF Research Database (Denmark)

    Klonovs, Juris; Haque, Mohammad Ahsanul; Krüger, Volker

    , telemonitoring, ambient intelligence, ambient assisted living, gerontechnology, and aging-in-place technology. The book discusses relevant experimental studies, highlighting the application of sensor fusion, signal processing and machine learning techniques. Finally, the text discusses future challenges...

  15. Innovative GIS technology for forest monitoring: ForestLink

    African Journals Online (AJOL)

    The World Bank (“A Revised Forest Strategy for the World Bank Group”, ... smartphone or digital tablet connected to a satellite communication network. ..... making, Directions on Location Technology and Business Intelligence, Canada.

  16. Biomedical Monitoring by a Novel Noncontact Radio Frequency Technology

    Data.gov (United States)

    National Aeronautics and Space Administration — The area of Space Health and Medicine is one of the NASA's Space Technology Grand Challenges. Space is an extreme environment which is not conducive to human life....

  17. [THE ORGANIZATIONAL TECHNOLOGIES OF INCREASING OF EFFECTIVENESS OF DISPENSARY MONITORING OF HIV-INFECTED PERSONS].

    Science.gov (United States)

    Moskvitcheva, M G; Yu, Kitmanova L

    2015-01-01

    The organizational technologies of increasing effectiveness ofdispensarization monitoring of HIV-infected persons are to targeted to development in patients commitment to get medical care. The cohort monitoring of registered patients receiving anti-retrovirus therapy permitted to evaluate effectiveness of organizational model of multi-professional team developing commitment ofpatients to anti-retrovirus therapy in conditions of center ofprevention and struggle with AIDS and infectious diseases. The criteria ofeffectiveness offunctioning ofmulti-professional team are developed and implemented The list of criteria include percentage of patients in cohort with optimal commitment (not lower than 95% of applied dosage of anti-retrovirus pharmaceuticals at 12th, 24th, 36th, 48th and 60th month), percentage ofpatients with achieved effect of anti-retrovirus therapy, percentage of patients proceeding anti-retrovirus therapy. The multi-professional team implemented motivational techniques of behavior alteration and patient-oriented care. The main strategy of development of of commitment to anti-retrovirus therapy under HIV-infection is determined as management of resources and risks capable decreasing commitment to dispensarization monitoring. The analysis of problems permitted to structure them in risks of commitment failure: medical (13.7%), medical biological under using psychoactive substances (43.1%), psychological (27.7%), social (15.5%). This listing determined the profile of specialists of multi-professional team. The ranking of risks lead out to the first ranking place medical risks, including diagnosed tuberculosis, combination of secondary and concomitant diseases inpatient, number of intaking pills more than 7 per day. The second ranking place took medical biological risks in users of psychoactive substances. Up to 60th month the anti-retrovirus therapy was proceeded by 61.5% of users of psychoactive substances with optimal commitment in 60%. The implementation

  18. Environmental information system and odour monitoring based on citizen and technology innovative sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ledent, Philippe [SPACEBEL S.A., Angleur (Belgium); Stevenot, Bernard [APS Technology, Namur (Belgium); Delva, Julien [ODOMETRIC SA, Meix-Devant-Virton (Belgium); and others

    2013-07-01

    The challenge is the integration of citizens as ''community-based'' observation providers, giving the odour perception and discomfort and getting feed-back in real time from a learning monitoring system. The level of annoyance depends on how odours are emitted and in what intensity, their dispersion under ambient atmospheric conditions and finally on citizens' exposure and perception. The Environmental Information System and Odour Monitoring developed in the project OMNISCIENTIS funded by the EU brings together state of the art technologies and open communication capabilities in order to mitigate odour annoyance. The project allows for citizen feedback, deepens knowledge on odour measurement and management and aims to support harmonised legislation at EU level. Moreover the project results can provide savings to industries. The core is an information system allowing inhabitants to serve as human sensors, acting according to sociological patterns, which influence odour perception, discomfort and nuisance. It provides a dedicated tool to consider odour acceptability, based on a community-based opinion. Due to the subjective nature of odour perception, odour monitoring and fast modelling is used to assist and adjust the information citizens provide via Smartphone and obtained by e-nose and modelling. Innovative in-situ sensors are improved to monitor ambient odour exposures. A specific odour dispersion model system is developed to obtain interrelated spatial odour exposure levels. This fast and innovative model system helps us to evaluate the performance of measures taken at the very moment odours are emitted and with respect to the way in which these occur. The Living Lab approach ensures stakeholder involvement, citizens' participation in decision-making and supports dissemination activities. The results are conveyed to stakeholders and general public. (orig.)

  19. Environmental information system and odour monitoring based on citizen and technology innovative sensors

    International Nuclear Information System (INIS)

    Ledent, Philippe; Stevenot, Bernard; Delva, Julien

    2013-01-01

    The challenge is the integration of citizens as ''community-based'' observation providers, giving the odour perception and discomfort and getting feed-back in real time from a learning monitoring system. The level of annoyance depends on how odours are emitted and in what intensity, their dispersion under ambient atmospheric conditions and finally on citizens' exposure and perception. The Environmental Information System and Odour Monitoring developed in the project OMNISCIENTIS funded by the EU brings together state of the art technologies and open communication capabilities in order to mitigate odour annoyance. The project allows for citizen feedback, deepens knowledge on odour measurement and management and aims to support harmonised legislation at EU level. Moreover the project results can provide savings to industries. The core is an information system allowing inhabitants to serve as human sensors, acting according to sociological patterns, which influence odour perception, discomfort and nuisance. It provides a dedicated tool to consider odour acceptability, based on a community-based opinion. Due to the subjective nature of odour perception, odour monitoring and fast modelling is used to assist and adjust the information citizens provide via Smartphone and obtained by e-nose and modelling. Innovative in-situ sensors are improved to monitor ambient odour exposures. A specific odour dispersion model system is developed to obtain interrelated spatial odour exposure levels. This fast and innovative model system helps us to evaluate the performance of measures taken at the very moment odours are emitted and with respect to the way in which these occur. The Living Lab approach ensures stakeholder involvement, citizens' participation in decision-making and supports dissemination activities. The results are conveyed to stakeholders and general public. (orig.)

  20. Monitoring technology and firm boundaries: physician-hospital integration and technology utilization.

    Science.gov (United States)

    McCullough, Jeffrey S; Snir, Eli M

    2010-05-01

    We study the relationship between physician-hospital integration and its relation to monitoring IT utilization. We develop a theoretical model in which monitoring IT may complement or substitute for integration and test these relationships using a novel data source. Physician labor market heterogeneity identifies the empirical model. We find that monitoring IT utilization is increasing in integration, implying that expanded firm boundaries complement monitoring IT adoption. We argue that the relationship between monitoring IT and firm boundaries depends upon the contractibility of the monitored information.

  1. Emerging role of digital technology and remote monitoring in the care of cardiac patients.

    Science.gov (United States)

    Banchs, Javier E; Scher, David Lee

    2015-07-01

    Current available mobile health technologies make possible earlier diagnosis and long-term monitoring of patients with cardiovascular diseases. Remote monitoring of patients with implantable devices and chronic diseases has resulted in better outcomes reducing health care costs and hospital admissions. New care models, which shift point of care to the outpatient setting and the patient's home, necessitate innovations in technology. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Learning to drive: developing a workable awareness plan for monitoring new technology.

    Science.gov (United States)

    Berryman, Donna R

    2010-04-01

    Technology is constantly driving forward, and information professionals need to be informed about developments in order to work more effectively, provide new services, understand what users need and want, and to develop professionally. Learning how to monitor these developments in technology is a skill, just like learning to drive. This article provides information about developing a workable awareness plan and provides some suggested sites to monitor and tools to use.

  3. Tablet Technology to Monitor Physical Education IEP Goals and Benchmarks

    Science.gov (United States)

    Lavay, Barry; Sakai, Joyce; Ortiz, Cris; Roth, Kristi

    2015-01-01

    The Individual with Disabilities Education Act (IDEA) mandates that all children who are eligible for special education services receive an individualized education program (IEP). Adapted physical education (APE) professionals who teach physical education to children with disabilities are challenged with how to best collect and monitor student…

  4. Distributed Computing and Monitoring Technologies for Older Patients

    DEFF Research Database (Denmark)

    Klonovs, Juris; Haque, Mohammad Ahsanul; Krueger, Volker

    This book summarizes various approaches for the automatic detection of health threats to older patients at home living alone. The text begins by briefly describing those who would most benefit from healthcare supervision. The book then summarizes possible scenarios for monitoring an older patient...

  5. New Fast Beam Conditions Monitoring (BCM1F) system for CMS

    Science.gov (United States)

    Zagozdzinska, A. A.; Bell, A. J.; Dabrowski, A. E.; Hempel, M.; Henschel, H. M.; Karacheban, O.; Przyborowski, D.; Leonard, J. L.; Penno, M.; Pozniak, K. T.; Miraglia, M.; Lange, W.; Lohmann, W.; Ryjov, V.; Lokhovitskiy, A.; Stickland, D.; Walsh, R.

    2016-01-01

    The CMS Beam Radiation Instrumentation and Luminosity (BRIL) project is composed of several systems providing the experiment protection from adverse beam conditions while also measuring the online luminosity and beam background. Although the readout bandwidth of the Fast Beam Conditions Monitoring system (BCM1F—one of the faster monitoring systems of the CMS BRIL), was sufficient for the initial LHC conditions, the foreseen enhancement of the beams parameters after the LHC Long Shutdown-1 (LS1) imposed the upgrade of the system. This paper presents the new BCM1F, which is designed to provide real-time fast diagnosis of beam conditions and instantaneous luminosity with readout able to resolve the 25 ns bunch structure.

  6. Development of wall conditioning and impurity monitoring systems in Versatile Experiment Spherical Torus (VEST)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.Y., E-mail: brbbebbero@snu.ac.kr [Seoul National University, Seoul (Korea, Republic of); Yang, J.; Kim, Y.G.; Yang, S.M.; Kim, Y.S.; Lee, K.H. [Seoul National University, Seoul (Korea, Republic of); An, Y.H. [National Fusion Research Institute, Daejon (Korea, Republic of); Chung, K.J.; Na, Y.S. [Seoul National University, Seoul (Korea, Republic of); Hwang, Y.S., E-mail: yhwang@snu.ac.kr [Seoul National University, Seoul (Korea, Republic of)

    2016-11-01

    Highlights: • The baking for partial wall heating and H{sub 2}/He GDC systems are developed in VEST. • The RGA and OES systems for monitoring impurities are constructed in VEST. • The partial baking and He GDC show limited effects on plasma characteristics. • H{sub 2} GDC above 4 h enables the longer plasma current duration up to ∼15 ms. • After H{sub 2} GDC, the discharge should be conducted within 3 h from treatment. - Abstract: Wall conditioning and impurity monitoring systems are developed in Versatile Experiment Spherical Torus (VEST). As a wall conditioning system, a baking system covering the vacuum vessel wall partially and a glow discharge cleaning (GDC) system using two electrodes with dc and 50 kHz power supplies are installed. The GDC system operates with hydrogen and helium gases for both chemical and physical desorption. The impurity monitoring system with residual gas analyzer (RGA), operating at <10{sup −5} Torr with a differential pumping system, is installed along with the optical emission spectroscopy (OES) system to monitor the hydrogen and impurity radiation lines. Effects of these wall conditioning techniques are investigated with the impurity monitoring system for ohmic discharges of VEST. The partial baking and He GDC show limited effects on plasma characteristics but sufficient H{sub 2} GDC above 4 h enables the longer plasma current duration up to ∼15 ms within 3 h from the end of treatment.

  7. Development of wall conditioning and impurity monitoring systems in Versatile Experiment Spherical Torus (VEST)

    International Nuclear Information System (INIS)

    Lee, H.Y.; Yang, J.; Kim, Y.G.; Yang, S.M.; Kim, Y.S.; Lee, K.H.; An, Y.H.; Chung, K.J.; Na, Y.S.; Hwang, Y.S.

    2016-01-01

    Highlights: • The baking for partial wall heating and H_2/He GDC systems are developed in VEST. • The RGA and OES systems for monitoring impurities are constructed in VEST. • The partial baking and He GDC show limited effects on plasma characteristics. • H_2 GDC above 4 h enables the longer plasma current duration up to ∼15 ms. • After H_2 GDC, the discharge should be conducted within 3 h from treatment. - Abstract: Wall conditioning and impurity monitoring systems are developed in Versatile Experiment Spherical Torus (VEST). As a wall conditioning system, a baking system covering the vacuum vessel wall partially and a glow discharge cleaning (GDC) system using two electrodes with dc and 50 kHz power supplies are installed. The GDC system operates with hydrogen and helium gases for both chemical and physical desorption. The impurity monitoring system with residual gas analyzer (RGA), operating at <10"−"5 Torr with a differential pumping system, is installed along with the optical emission spectroscopy (OES) system to monitor the hydrogen and impurity radiation lines. Effects of these wall conditioning techniques are investigated with the impurity monitoring system for ohmic discharges of VEST. The partial baking and He GDC show limited effects on plasma characteristics but sufficient H_2 GDC above 4 h enables the longer plasma current duration up to ∼15 ms within 3 h from the end of treatment.

  8. Development of elements of the condition monitoring system of turbo generators of thermal power stations and nuclear power plants

    Science.gov (United States)

    Kumenko, A. I.; Kostyukov, V. N.; Kuz'minykh, N. Yu.; Boichenko, S. N.; Timin, A. V.

    2017-08-01

    The rationale is given for the improvement of the regulatory framework for the use of shaft sensors for the in-service condition monitoring of turbo generators and the development of control systems of shaft surfacing and misalignments of supports. A modern concept and a set of methods are proposed for the condition monitoring of the "shaft line-thrust bearing oil film-turbo generator supports" system elements based on the domestic COMPACS® technology. The system raw data are design, technology, installation, and operating parameters of the turbo generator as well as measured parameters of the absolute vibration of supports and mechanical quantities, relative displacements and relative vibration of the rotor teeth in accordance with GOST R 55263-2012. The precalculated shaft line assembly line in the cold state, the nominal parameters of rotor teeth positions on the dynamic equilibrium curve, the static and dynamic characteristics of the oil film of thrust bearings, and the shaft line stiffness matrix of unit support displacements have been introduced into the system. Using the COMPACS-T system, it is planned to measure positions and oscillations of rotor teeth, to count corresponding static and dynamic characteristics of the oil film, and the static and dynamic loads in the supports in real time. Using the obtained data, the system must determine the misalignments of supports and corrective alignments of rotors of coupling halves, voltages in rotor teeth, welds, and bolts of the coupling halves, and provide automatic conclusion if condition monitoring parameters correspond to standard values. A part of the methodological support for the proposed system is presented, including methods for determining static reactions of supports under load, the method for determining shaft line stiffness matrices, and the method for solving the inverse problem, i.e., the determination of the misalignments of the supports by measurements of rotor teeth relative positions in bearing

  9. Tweets, Texts, and Tablets:The Emergence of Technology-Based Self-Monitoring

    Science.gov (United States)

    Bruhn, Allison Leigh; Waller, LaNeisha; Hasselbring, Ted S.

    2016-01-01

    Students with behavior problems often lack the self-regulation skills necessary for success. One strategy shown to improve these skills is self-monitoring. Traditionally, self-monitoring has been done using paper and pencil, with some sort of prompt to complete the procedures. Prompts have involved teacher cues as well as technology. Current…

  10. Technology transfer potential of an automated water monitoring system. [market research

    Science.gov (United States)

    Jamieson, W. M.; Hillman, M. E. D.; Eischen, M. A.; Stilwell, J. M.

    1976-01-01

    The nature and characteristics of the potential economic need (markets) for a highly integrated water quality monitoring system were investigated. The technological, institutional and marketing factors that would influence the transfer and adoption of an automated system were studied for application to public and private water supply, public and private wastewater treatment and environmental monitoring of rivers and lakes.

  11. New Monitoring Technology to Objectively Assess Adherence to Prescribed Footwear and Assistive Devices During Ambulatory Activity

    NARCIS (Netherlands)

    Bus, Sicco A.; Waaijman, Roelof; Nollet, Frans

    2012-01-01

    Bus SA, Waaijman R, Nollet F. New monitoring technology to objectively assess adherence to prescribed footwear and assistive devices during ambulatory activity. Arch Phys Med Rehabil 2012;93:2075-9. Objective: To assess the validity and feasibility of a new temperature-based adherence monitor to

  12. Technology survey for real-time monitoring of plutonium in a vitrifier off-gas system

    International Nuclear Information System (INIS)

    Berg, J.M.; Veirs, D.K.

    1996-01-01

    We surveyed several promising measurement technologies for the real-time monitoring of plutonium in a vitrifier off-gas system. The vitrifier is being developed by Westinghouse Savannah River Corp. and will be used to demonstrate vitrification of plutonium dissolved in nitric acid for fissile material disposition. The risk of developing a criticality hazard in the off-gas processing equipment can be managed by using available measurement technologies. We identified several potential technologies and methods for detecting plutonium that are sensitive enough to detect the accumulation of a mass sufficient to form a criticality hazard. We recommend gross alpha-monitoring technologies as the most promising option for Westinghouse Savannah River Corp. to consider because that option appears to require the least additional development. We also recommend further consideration for several other technologies because they offer specific advantages and because gross alpha-monitoring could prove unsuitable when tested for this specific application

  13. Significance of Operating Environment in Condition Monitoring of Large Civil Structures

    OpenAIRE

    Alampalli, Sreenivas

    1999-01-01

    Success of remote long-term condition monitoring of large civil structures and developing calibrated analytical models for damage detection, depend significantly on establishing accurate baseline signatures and their sensitivity. Most studies reported in the literature concentrated on the effect of structural damage on modal parameters without emphasis on reliability of modal parameters. Thus, a field bridge structure was studied for the significance of operating conditions in relation to bas...

  14. Welding station condition monitoring using bluetooth enabled sensors and intelligent data management

    Energy Technology Data Exchange (ETDEWEB)

    Eyers, D R; Grosvenor, R I; Prickett, P W [Intelligent Process Monitoring and Management (IPMM) Group, Cardiff School of Engineering, Cardiff University, Wales (United Kingdom)

    2005-01-01

    This paper reports on the first phase deployment of bluetooth enabled condition monitoring systems at a large multinational engineering company. The radio networking of sensor signals is a fast developing area and the facilities afforded by the Wisnet device were used in the monitoring of a welding station. This and any of the planned further monitoring systems had to comply to a carefully managed IT information plan at the company. For the example application, the development and testing of microcontoller-based pre-processing of data is reported. This includes further development of the Petri Net approach to provide event-based monitoring as a sensible alternative to the continuous transmission of the sensory data.

  15. International Committee for Monitoring Assisted Reproductive Technologies world report: Assisted Reproductive Technology 2008, 2009 and 2010.

    Science.gov (United States)

    Dyer, S; Chambers, G M; de Mouzon, J; Nygren, K G; Zegers-Hochschild, F; Mansour, R; Ishihara, O; Banker, M; Adamson, G D

    2016-07-01

    What were utilization, outcomes and practices in assisted reproductive technology (ART) globally in 2008, 2009 and 2010? Global utilization and effectiveness remained relatively constant despite marked variations among countries, while the rate of single and frozen embryo transfers (FETs) increased with a concomitant slight reduction in multiple birth rates. ART is widely practised in all regions of the world. Monitoring utilization, an approximation of availability and access, as well as effectiveness and safety is an important component of universal access to reproductive health. This is a retrospective, cross-sectional survey on utilization, effectiveness and safety of ART procedures performed globally from 2008 to 2010. Between 58 and 61 countries submitted data from a total of nearly 2500 ART clinics each year. Aggregate country data were processed and analyzed based on forms and methods developed by the International Committee for Monitoring Assisted Reproductive Technologies (ICMART). Results are presented at country, regional and global level. For the years 2008, 2009 and 2010, >4 461 309 ART cycles were initiated, resulting in an estimated 1 144 858 babies born. The number of aspirations increased by 6.4% between 2008 and 2010, while FET cycles increased by 27.6%. Globally, ART utilization remained relatively constant at 436 cycles/million in 2008 and 474 cycles/million population in 2010, but with a wide country range of 8-4775 cycles/million population. ICSI remained constant at around 66% of non-donor aspiration cycles. The IVF/ICSI combined delivery rate (DR) per fresh aspiration was 19.8% in 2008; 19.7% in 2009 and 20.0% in 2010, with corresponding DRs for FET of 18.8, 19.7 and 20.7%. In fresh non-donor cycles, single embryo transfer increased from 25.7% in 2008 to 30.0% in 2010, while the average number of embryos transferred fell from 2.1 to 1.9, again with wide regional variation. The rates of twin deliveries following fresh non-donor transfers

  16. Tools and techniques for ageing predictions in nuclear reactors through condition monitoring

    International Nuclear Information System (INIS)

    Verma, R.M.P.

    1994-01-01

    To operate the nuclear reactors beyond their design predicted life is gaining importance because of huge replacement and decommissioning costs. But experience shows that nuclear plant safety and reliability may decline in the later years of plant life due to ageing degradation. Ageing of nuclear plant components, structures and systems, if unmitigated reduces their safety margins provided in the design and thus increases risks to public health and safety. These safety margins must be monitored throughout plant service life including any extended life. Condition monitoring of nuclear reactor components/equipment and systems can be done to study the effect of ageing, status of safety margins and effect of corrective and mitigating actions taken. The tools and techniques of condition monitoring are also important in failure trending, predictive maintenance, evaluation of scheduled maintenance, in mitigation of ageing, life extension and reliability studies. (author). 1 fig., 1 annexure

  17. A contemporary method for monitoring indoor radon and environmental conditions at a remote test site

    International Nuclear Information System (INIS)

    Renken, K.J.; Coursin, S.

    1996-01-01

    A state-of-the-art method for automatically monitoring indoor radon and environmental conditions at a remote test site is described. A Wisconsin home that exhibited elevated radon levels has been installed with automated PC-data acquisition system (PC-DAS) that includes: a laptop PC, a data acquisition cardcage, a commercial data acquisition software program plus sensors to measure radon gas concentrations, differential pressures, indoor air quality and meteorological conditions. The isolated PC-DAS is connected to a PC in a university laboratory via a modem and a communications software package. Experimental data is monitored and saved by the remote PC in real time and then automatically downloaded to the lab computer at selected intervals. An example of the formatted field results is presented and analysed. This documentation of the set-up, the off-the-shelf computer hardware and software, and the procedures should assist investigations requiring flexible remote long-term radon and environmental monitoring. (Author)

  18. Online calibration method for condition monitoring of nuclear reactor instrumentations based on electrical signature analysis

    International Nuclear Information System (INIS)

    Syaiful Bakhri

    2013-01-01

    Electrical signature analysis currently becomes an alternative in condition monitoring in nuclear power plants not only for stationary components such as sensors, measurement and instrumentation channels, and other components but also for dynamic components such as electric motors, pumps, generator or actuators. In order to guarantee the accuracy, the calibration of monitoring system is a necessary which practically is performed offline, under limited schedules and certain tight procedures. This research aims to introduce online calibration technique for electrical signature condition monitoring in order that the accuracy can be maintained continuously which in turn increases the reactor safety as a whole. The research was performed step by stepin detail from the conventional technique, online calibration using baseline information and online calibration using differential gain adjustment. Online calibration based on differential gain adjustment provides better results than other techniques even tough under extreme gain insertion as well as external disturbances such as supply voltages. (author)

  19. Condition Monitoring for Roller Bearings of Wind Turbines Based on Health Evaluation under Variable Operating States

    Directory of Open Access Journals (Sweden)

    Lei Fu

    2017-10-01

    Full Text Available Condition monitoring (CM is used to assess the health status of wind turbines (WT by detecting turbine failure and predicting maintenance needs. However, fluctuating operating conditions cause variations in monitored features, therefore increasing the difficulty of CM, for example, the frequency-domain analysis may lead to an inaccurate or even incorrect prediction when evaluating the health of the WT components. In light of this challenge, this paper proposed a method for the health evaluation of WT components based on vibration signals. The proposed approach aimed to reduce the evaluation error caused by the impact of the variable operating condition. First, the vibration signal was decomposed into a set of sub-signals using variational mode decomposition (VMD. Next, the sub-signal energy and the probability distribution were obtained and normalized. Finally, the concept of entropy was introduced to evaluate the health condition of a monitored object to provide an effective guide for maintenance. In particular, the health evaluation for CM was based on a performance review over a range of operating conditions, rather than at a certain single operating condition. Experimental investigations were performed which verified the efficiency of the evaluation method, as well as a comparison with the previous method.

  20. Arms Control and nonproliferation technologies: Technology options and associated measures for monitoring a Comprehensive Test Ban, Second quarter

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    1994-01-01

    This newsletter contains reprinted papers discussing technology options and associated measures for monitoring a Comprehensive Test Ban Treaty (CTBT). These papers were presented to the Conference on Disarmament (CD) in May and June 1994. An interagency Verification Monitoring Task Force developed the papers. The task force included participants from the Arms Control and Disarmament Agency, the Department of Defense, the Department of Energy, the Intelligence Community, the Department of Interior, and the Department of State. The purpose of this edition of Arms Control and Nonproliferation Technologies is to share these papers with the broad base of stakeholders in a CTBT and to facilitate future technology discussions. The papers in the first group discuss possible technology options for monitoring a CTBT in all environments (underground, underwater, atmosphere, and space). These technologies, along with on-site inspections, would facilitate CTBT monitoring by treaty participants. The papers in the second group present possible associated measures, e.g., information exchanges and transparency measures, that would build confidence among states participating in a CTBT.

  1. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification

    Science.gov (United States)

    Jena, D. P.; Panigrahi, S. N.

    2016-03-01

    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  2. Assessment of Augmented Electronic Fuel Controls for Modular Engine Diagnostics and Condition Monitoring

    Science.gov (United States)

    1978-12-01

    removal of the horoscope . Diagnostic Conoctor - E4 Th10 E4 23-pin connoctor on the electrical control unit Is provided for ground- checking electrical...confidenou in engine condition monitoring * 1min general. Thi9 has boon especially true in~ eases where fUse signal s have c~aused engine shutdowns. Where ECWI

  3. Wind Turbine Drivetrain Condition Monitoring During GRC Phase 1 and Phase 2 Testing

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, S.; Link, H.; LaCava, W.; van Dam, J.; McNiff, B.; Veers, P.; Keller, J.; Butterfield, S.; Oyague, F.

    2011-10-01

    This report will present the wind turbine drivetrain condition monitoring (CM) research conducted under the phase 1 and phase 2 Gearbox Reliability Collaborative (GRC) tests. The rationale and approach for this drivetrain CM research, investigated CM systems, test configuration and results, and a discussion on challenges in wind turbine drivetrain CM and future research and development areas, will be presented.

  4. Combining discrepancy analysis with sensorless signal resampling for condition monitoring of rotating machines under fluctuating operations

    CSIR Research Space (South Africa)

    Heyns, T

    2012-12-01

    Full Text Available This paper proposes a novel framework for monitoring the condition of a rotating machine (for example a gearbox or a bearing) that may be subject to load and speed fluctuations. The methodology is especially relevant in situations where no (or only...

  5. Smartphone ownership and interest in mobile applications to monitor symptoms of mental health conditions.

    Science.gov (United States)

    Torous, John; Friedman, Rohn; Keshavan, Matcheri

    2014-01-21

    Patient retrospective recollection is a mainstay of assessing symptoms in mental health and psychiatry. However, evidence suggests that these retrospective recollections may not be as accurate as data collection though the experience sampling method (ESM), which captures patient data in "real time" and "real life." However, the difficulties in practical implementation of ESM data collection have limited its impact in psychiatry and mental health. Smartphones with the capability to run mobile applications may offer a novel method of collecting ESM data that may represent a practical and feasible tool for mental health and psychiatry. This paper aims to provide data on psychiatric patients' prevalence of smartphone ownership, patterns of use, and interest in utilizing mobile applications to monitor their mental health conditions. One hundred psychiatric outpatients at a large urban teaching hospital completed a paper-and-pencil survey regarding smartphone ownership, use, and interest in utilizing mobile applications to monitor their mental health condition. Ninety-seven percent of patients reported owning a phone and 72% reported that their phone was a smartphone. Patients in all age groups indicated greater than 50% interest in using a mobile application on a daily basis to monitor their mental health condition. Smartphone and mobile applications represent a practical opportunity to explore new modalities of monitoring, treatment, and research of psychiatric and mental health conditions.

  6. Dimensional comparability of psychosocial working conditions as covered in European monitoring questionnaires

    NARCIS (Netherlands)

    Formazin, M.; Burr, H.; Aagestad, C.; Tynes, T.; Thorsen, S.V.; Perkio-Makela, M.; Díaz Aramburu, C.I.; Pinilla García, F.J.; Galiana Blanco, L.; Vermeylen, G.; Parent-Thirion, A.; Hooftman, W.; Houtman, I.L.D.

    2014-01-01

    Background.In most countries in the EU, national surveys are used to monitor working conditions and health. Since the development processes behind the various surveys are not necessarily theoretical, but certainly practical and political, the extent of similarity among the dimensions covered in

  7. Building and application of the plant condition monitoring system for nuclear power plants

    International Nuclear Information System (INIS)

    Ono, S.

    2013-01-01

    To achieve the stable operation of nuclear power plants, we developed the plant condition monitoring system based on the heat and mass balance calculation. This system has adopted the heat balance model based on the actual plant data to find the symptoms of the disorder of the equipment by heat balance changes in the turbine system. (author)

  8. Development and application of the plant condition monitoring system for nuclear power plants

    International Nuclear Information System (INIS)

    Ono, S.

    2014-01-01

    To achieve the stable operation of nuclear power plants, we developed the plant condition monitoring system based on the heat and mass balance calculation. In this system, it is a significant feature to adopt the sophisticated heat balance model based on the actual plant data to find the symptoms of anomalies in the turbine system from heat balance changes. (author)

  9. Photovoltaic Array Condition Monitoring Based on Online Regression of Performance Model

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Kerekes, Tamas

    2013-01-01

    regression modeling, from PV array production, plane-of-array irradiance, and module temperature measurements, acquired during an initial learning phase of the system. After the model has been parameterized automatically, the condition monitoring system enters the normal operation phase, where...

  10. Implementation of an Integrated, Portable Transformer Condition Monitoring Instrument in the Classroom and On-Site

    Science.gov (United States)

    Chatterjee, B.; Dey, D.; Chakravorti, S.

    2010-01-01

    The development of integrated, portable, transformer condition monitoring (TCM) equipment for classroom demonstrations as well as for student exercises conducted in the field is discussed. Demonstrations include experimentation with real-world transformers to illustrate concepts such as polarization and depolarization current through oil-paper…

  11. 77 FR 24228 - Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants

    Science.gov (United States)

    2012-04-23

    ... Used in Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance... guide, (RG) 1.218, ``Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants... of electric cables for nuclear power plants. RG 1.218 is not intended to be prescriptive, instead it...

  12. An approach to effectiveness monitoring of floodplain channel aquatic habitat: channel condition assessment.

    Science.gov (United States)

    Richard D. Woodsmith; James R. Noel; Michael L. Dilger

    2005-01-01

    The condition of aquatic habitat and the health of species dependent on that habitat are issues of significant concern to land management agencies, other organizations, and the public at large in southeastern Alaska, as well as along much of the Pacific coastal region of North America. We develop and test a set of effectiveness monitoring procedures for measuring...

  13. Monitoring Conditions Leading to SCC/Corrosion of Carbon Steel in Fuel Grade Ethanol

    Science.gov (United States)

    2011-02-11

    This is the draft final report of the project on field monitoring of conditions that lead to SCC in ethanol tanks and piping. The other two aspects of the consolidated program, ethanol batching and blending effects (WP#325) and source effects (WP#323...

  14. New and Emerging Technologies for Real-Time Air and Surface Beryllium Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, B.E. Jr.; Churnetski, E.L.; Cooke, L.E.; Reed, J.J.; Howell, M.L.; Smith, V.D.

    2001-09-01

    In this study, five emerging technologies were identified for real-time monitoring of airborne beryllium: Microwave-Induced Plasma Spectroscopy (MIPS), Aerosol Beam-Focused Laser-Induced Plasma Spectroscopy (ABFLIPS), Laser-Induced Breakdown Spectroscopy (LIBS), Surfaced-Enhanced Raman Scattering (SERS) Spectroscopy, and Micro-Calorimetric Spectroscopy (CalSpec). Desired features of real-time air beryllium monitoring instrumentation were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies as well as their unique demonstrated capability to provide real-time monitoring of similar materials. However, best available technologies were considered, regardless of their ability to comply with the desired features. None of the five technologies have the capability to measure the particle size of airborne beryllium. Although reducing the total concentration of airborne beryllium is important, current literature suggests that reducing or eliminating the concentration of respirable beryllium is critical for worker health protection. Eight emerging technologies were identified for surface monitoring of beryllium. CalSpec, MIPS, SERS, LIBS, Laser Ablation, Absorptive Stripping Voltametry (ASV), Modified Inductively Coupled Plasma (ICP) Spectroscopy, and Gamma BeAST. Desired features of real-time surface beryllium monitoring were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies. However, the best available technologies were considered regardless of their ability to comply with the desired features.

  15. Monitoring of Wind Turbine Gearbox Condition through Oil and Wear Debris Analysis: A Full-Scale Testing Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Shuangwen

    2016-10-01

    Despite the wind industry's dramatic development during the past decade, it is still challenged by premature turbine subsystem/component failures, especially for turbines rated above 1 MW. Because a crane is needed for each replacement, gearboxes have been a focal point for improvement in reliability and availability. Condition monitoring (CM) is a technique that can help improve these factors, leading to reduced turbine operation and maintenance costs and, subsequently, lower cost of energy for wind power. Although technical benefits of CM for the wind industry are normally recognized, there is a lack of published information on the advantages and limitations of each CM technique confirmed by objective data from full-scale tests. This article presents first-hand oil and wear debris analysis results obtained through tests that were based on full-scale wind turbine gearboxes rated at 750 kW. The tests were conducted at the 2.5-MW dynamometer test facility at the National Wind Technology Center at the National Renewable Energy Laboratory. The gearboxes were tested in three conditions: run-in, healthy, and damaged. The investigated CM techniques include real-time oil condition and wear debris monitoring, both inline and online sensors, and offline oil sample and wear debris analysis, both onsite and offsite laboratories. The reported results and observations help increase wind industry awareness of the benefits and limitations of oil and debris analysis technologies and highlight the challenges in these technologies and other tribological fields for the Society of Tribologists and Lubrication Engineers and other organizations to help address, leading to extended gearbox service life.

  16. Vibro-acoustic condition monitoring of Internal Combustion Engines: A critical review of existing techniques

    Science.gov (United States)

    Delvecchio, S.; Bonfiglio, P.; Pompoli, F.

    2018-01-01

    This paper deals with the state-of-the-art strategies and techniques based on vibro-acoustic signals that can monitor and diagnose malfunctions in Internal Combustion Engines (ICEs) under both test bench and vehicle operating conditions. Over recent years, several authors have summarized what is known in critical reviews mainly focused on reciprocating machines in general or on specific signal processing techniques: no attempts to deal with IC engine condition monitoring have been made. This paper first gives a brief summary of the generation of sound and vibration in ICEs in order to place further discussion on fault vibro-acoustic diagnosis in context. An overview of the monitoring and diagnostic techniques described in literature using both vibration and acoustic signals is also provided. Different faulty conditions are described which affect combustion, mechanics and the aerodynamics of ICEs. The importance of measuring acoustic signals, as opposed to vibration signals, is due since the former seem to be more suitable for implementation on on-board monitoring systems in view of their non-intrusive behaviour, capability in simultaneously capturing signatures from several mechanical components and because of the possibility of detecting faults affecting airborne transmission paths. In view of the recent needs of the industry to (-) optimize component structural durability adopting long-life cycles, (-) verify the engine final status at the end of the assembly line and (-) reduce the maintenance costs monitoring the ICE life during vehicle operations, monitoring and diagnosing system requests are continuously growing up. The present review can be considered a useful guideline for test engineers in understanding which types of fault can be diagnosed by using vibro-acoustic signals in sufficient time in both test bench and operating conditions and which transducer and signal processing technique (of which the essential background theory is here reported) could be

  17. Application of GIS Rapid Mapping Technology in Disaster Monitoring

    Science.gov (United States)

    Wang, Z.; Tu, J.; Liu, G.; Zhao, Q.

    2018-04-01

    With the rapid development of GIS and RS technology, especially in recent years, GIS technology and its software functions have been increasingly mature and enhanced. And with the rapid development of mathematical statistical tools for spatial modeling and simulation, has promoted the widespread application and popularization of quantization in the field of geology. Based on the investigation of field disaster and the construction of spatial database, this paper uses remote sensing image, DEM and GIS technology to obtain the data information of disaster vulnerability analysis, and makes use of the information model to carry out disaster risk assessment mapping.Using ArcGIS software and its spatial data modeling method, the basic data information of the disaster risk mapping process was acquired and processed, and the spatial data simulation tool was used to map the disaster rapidly.

  18. Structural health monitoring of pipelines rehabilitated with lining technology

    Science.gov (United States)

    Farhidzadeh, Alireza; Dehghan-Niri, Ehsan; Salamone, Salvatore

    2014-03-01

    Damage detection of pipeline systems is a tedious and time consuming job due to digging requirement, accessibility, interference with other facilities, and being extremely wide spread in metropolitans. Therefore, a real-time and automated monitoring system can pervasively reduce labor work, time, and expenditures. This paper presents the results of an experimental study aimed at monitoring the performance of full scale pipe lining systems, subjected to static and dynamic (seismic) loading, using Acoustic Emission (AE) technique and Guided Ultrasonic Waves (GUWs). Particularly, two damage mechanisms are investigated: 1) delamination between pipeline and liner as the early indicator of damage, and 2) onset of nonlinearity and incipient failure of the liner as critical damage state.

  19. Monitoring and remediation technologies of organochlorine pesticides in drainage water

    OpenAIRE

    Ismail Ahmed; Derbalah Aly; Shaheen Sabry

    2015-01-01

    This study was carried out to monitor the presence of organochlorine in drainage water in Kafr-El-Sheikh Governorate, Egypt. Furthermore, to evaluate the efficiencies of different remediation techniques (advanced oxidation processes [AOPs] and bioremediation) for removing the most frequently detected compound (lindane) in drainage water. The results showed the presence of several organochlorine pesticides in all sampling sites. Lindane was detected with high frequency relative to other detect...

  20. Use of technology and working conditions in the European Union

    NARCIS (Netherlands)

    Kraan, K.; Joling, C.

    2008-01-01

    Nowadays, technology plays a central role in workplaces, enabling the speedy production of goods and services and facilitating communication and innovation processes. Its use is central to the policy aim for Europe to become "the most competitive knowledge-based economy in the world" as set out in

  1. Development of ship structure health monitoring system based on IOT technology

    Science.gov (United States)

    Yang, Sujun; Shi, Lei; Chen, Demin; Dong, Yuqing; Hu, Zhenyi

    2017-06-01

    It is very important to monitor the ship structure, because ships are affected by all kinds of wind wave and current environment factor. At the same time, internet of things (IOT) technology plays more and more important role of in the development of industrial process. In the paper, real-time online monitoring of the ship can be realized by means of IOT technology. Ship stress, vibration and dynamic parameters are measured. Meanwhile, data is transmitted to remote monitoring system through intelligent data gateway. Timely remote support can be realized for dangerous stage of ship. Safe navigation of ships is guaranteed through application of the system.

  2. On-line internal corrosion monitoring and data management for remote pipelines: a technology update

    Energy Technology Data Exchange (ETDEWEB)

    Wold, Kjell; Stoen, Roar; Jenssen, Hallgeir [Roxar Flow Measurement AS, Stavanger (Norway); Carvalho, Anna Maria [Roxar do Brasil Ltda., Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Internal corrosion monitoring of remote pipelines can be costly and demanding on resources. Online and non-intrusive monitoring directly on the pipe wall can improve the quality of measurements, make installation more convenient and allow more efficient communication of data. The purpose of this paper is to describe a non-intrusive technology, and show examples on field installations of the system. Furthermore, the non-intrusive technology data can be stored, interpreted and combined with conventional (intrusive) system information, in order to get a full picture of internal corrosion profile, corrosion rate and trends regarding the pipeline being monitored. (author)

  3. PROSPECTS FOR THE DEVELOPMENT OF TECHNOLOGY AIR CONDITIONING

    Directory of Open Access Journals (Sweden)

    O. V. Chernyshova

    2008-03-01

    Full Text Available In the article the evaporation cooling and spray (aqueous and air-to-water types of the air-conditioning systems are considered, their merits and demerits are analyzed; the new scheme of a conditioner is offered.

  4. Using Data to Individualize a Multicomponent, Technology-Based Self-Monitoring Intervention

    Science.gov (United States)

    Bruhn, Allison Leigh; Vogelgesang, Kari; Fernando, Josephine; Lugo, Wilbeth

    2016-01-01

    Technology in schools is abundant as is the call for evidence-based interventions for students who need additional support to be successful. One promising use of technology is for self-monitoring interventions aimed at improving classroom behavior. In this study, two middle school students with disabilities used a multicomponent, self-monitoring…

  5. NoSQL technologies for the CMS Conditions Database

    Science.gov (United States)

    Sipos, Roland

    2015-12-01

    With the restart of the LHC in 2015, the growth of the CMS Conditions dataset will continue, therefore the need of consistent and highly available access to the Conditions makes a great cause to revisit different aspects of the current data storage solutions. We present a study of alternative data storage backends for the Conditions Databases, by evaluating some of the most popular NoSQL databases to support a key-value representation of the CMS Conditions. The definition of the database infrastructure is based on the need of storing the conditions as BLOBs. Because of this, each condition can reach the size that may require special treatment (splitting) in these NoSQL databases. As big binary objects may be problematic in several database systems, and also to give an accurate baseline, a testing framework extension was implemented to measure the characteristics of the handling of arbitrary binary data in these databases. Based on the evaluation, prototypes of a document store, using a column-oriented and plain key-value store, are deployed. An adaption layer to access the backends in the CMS Offline software was developed to provide transparent support for these NoSQL databases in the CMS context. Additional data modelling approaches and considerations in the software layer, deployment and automatization of the databases are also covered in the research. In this paper we present the results of the evaluation as well as a performance comparison of the prototypes studied.

  6. Model Based Optimal Sensor Network Design for Condition Monitoring in an IGCC Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajeeva; Kumar, Aditya; Dai, Dan; Seenumani, Gayathri; Down, John; Lopez, Rodrigo

    2012-12-31

    This report summarizes the achievements and final results of this program. The objective of this program is to develop a general model-based sensor network design methodology and tools to address key issues in the design of an optimal sensor network configuration: the type, location and number of sensors used in a network, for online condition monitoring. In particular, the focus in this work is to develop software tools for optimal sensor placement (OSP) and use these tools to design optimal sensor network configuration for online condition monitoring of gasifier refractory wear and radiant syngas cooler (RSC) fouling. The methodology developed will be applicable to sensing system design for online condition monitoring for broad range of applications. The overall approach consists of (i) defining condition monitoring requirement in terms of OSP and mapping these requirements in mathematical terms for OSP algorithm, (ii) analyzing trade-off of alternate OSP algorithms, down selecting the most relevant ones and developing them for IGCC applications (iii) enhancing the gasifier and RSC models as required by OSP algorithms, (iv) applying the developed OSP algorithm to design the optimal sensor network required for the condition monitoring of an IGCC gasifier refractory and RSC fouling. Two key requirements for OSP for condition monitoring are desired precision for the monitoring variables (e.g. refractory wear) and reliability of the proposed sensor network in the presence of expected sensor failures. The OSP problem is naturally posed within a Kalman filtering approach as an integer programming problem where the key requirements of precision and reliability are imposed as constraints. The optimization is performed over the overall network cost. Based on extensive literature survey two formulations were identified as being relevant to OSP for condition monitoring; one based on LMI formulation and the other being standard INLP formulation. Various algorithms to solve

  7. Impact Analysis of Temperature and Humidity Conditions on Electrochemical Sensor Response in Ambient Air Quality Monitoring.

    Science.gov (United States)

    Wei, Peng; Ning, Zhi; Ye, Sheng; Sun, Li; Yang, Fenhuan; Wong, Ka Chun; Westerdahl, Dane; Louie, Peter K K

    2018-01-23

    The increasing applications of low-cost air sensors promises more convenient and cost-effective systems for air monitoring in many places and under many conditions. However, the data quality from such systems has not been fully characterized and may not meet user expectations in research and regulatory uses, or for use in citizen science. In our study, electrochemical sensors (Alphasense B4 series) for carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO₂), and oxidants (O x ) were evaluated under controlled laboratory conditions to identify the influencing factors and quantify their relation with sensor outputs. Based on the laboratory tests, we developed different correction methods to compensate for the impact of ambient conditions. Further, the sensors were assembled into a monitoring system and tested in ambient conditions in Hong Kong side-by-side with regulatory reference monitors, and data from these tests were used to evaluate the performance of the models, to refine them, and validate their applicability in variable ambient conditions in the field. The more comprehensive correction models demonstrated enhanced performance when compared with uncorrected data. One over-arching observation of this study is that the low-cost sensors may promise excellent sensitivity and performance, but it is essential for users to understand and account for several key factors that may strongly affect the nature of sensor data. In this paper, we also evaluated factors of multi-month stability, temperature, and humidity, and considered the interaction of oxidant gases NO₂ and ozone on a newly introduced oxidant sensor.

  8. A Hybrid Generalized Hidden Markov Model-Based Condition Monitoring Approach for Rolling Bearings.

    Science.gov (United States)

    Liu, Jie; Hu, Youmin; Wu, Bo; Wang, Yan; Xie, Fengyun

    2017-05-18

    The operating condition of rolling bearings affects productivity and quality in the rotating machine process. Developing an effective rolling bearing condition monitoring approach is critical to accurately identify the operating condition. In this paper, a hybrid generalized hidden Markov model-based condition monitoring approach for rolling bearings is proposed, where interval valued features are used to efficiently recognize and classify machine states in the machine process. In the proposed method, vibration signals are decomposed into multiple modes with variational mode decomposition (VMD). Parameters of the VMD, in the form of generalized intervals, provide a concise representation for aleatory and epistemic uncertainty and improve the robustness of identification. The multi-scale permutation entropy method is applied to extract state features from the decomposed signals in different operating conditions. Traditional principal component analysis is adopted to reduce feature size and computational cost. With the extracted features' information, the generalized hidden Markov model, based on generalized interval probability, is used to recognize and classify the fault types and fault severity levels. Finally, the experiment results show that the proposed method is effective at recognizing and classifying the fault types and fault severity levels of rolling bearings. This monitoring method is also efficient enough to quantify the two uncertainty components.

  9. A Hybrid Generalized Hidden Markov Model-Based Condition Monitoring Approach for Rolling Bearings

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2017-05-01

    Full Text Available The operating condition of rolling bearings affects productivity and quality in the rotating machine process. Developing an effective rolling bearing condition monitoring approach is critical to accurately identify the operating condition. In this paper, a hybrid generalized hidden Markov model-based condition monitoring approach for rolling bearings is proposed, where interval valued features are used to efficiently recognize and classify machine states in the machine process. In the proposed method, vibration signals are decomposed into multiple modes with variational mode decomposition (VMD. Parameters of the VMD, in the form of generalized intervals, provide a concise representation for aleatory and epistemic uncertainty and improve the robustness of identification. The multi-scale permutation entropy method is applied to extract state features from the decomposed signals in different operating conditions. Traditional principal component analysis is adopted to reduce feature size and computational cost. With the extracted features’ information, the generalized hidden Markov model, based on generalized interval probability, is used to recognize and classify the fault types and fault severity levels. Finally, the experiment results show that the proposed method is effective at recognizing and classifying the fault types and fault severity levels of rolling bearings. This monitoring method is also efficient enough to quantify the two uncertainty components.

  10. The Piston Compressor: The Methodology of the Real-Time Condition Monitoring

    International Nuclear Information System (INIS)

    Naumenko, A P; Kostyukov, V N

    2012-01-01

    The methodology of a diagnostic signal processing, a function chart of the monitoring system are considered in the article. The methodology of monitoring and diagnosing is based on measurement of indirect processes' parameters (vibroacoustic oscillations) therefore no more than five sensors is established on the cylinder, measurement of direct structural and thermodynamic parameters is envisioned as well. The structure and principle of expert system's functioning of decision-making is given. Algorithm of automatic expert system includes the calculation diagnostic attributes values based on their normative values, formation sets of diagnostic attributes that correspond to individual classes to malfunction, formation of expert system messages. The scheme of a real-time condition monitoring system for piston compressors is considered. The system have consistently-parallel structure of information-measuring equipment, which allows to measure the vibroacoustic signal for condition monitoring of reciprocating compressors and modes of its work. Besides, the system allows to measure parameters of other physical processes, for example, system can measure and use for monitoring and statements of the diagnosis the pressure in decreasing spaces (the indicator diagram), the inlet pressure and flowing pressure of each cylinder, inlet and delivery temperature of gas, valves temperature, position of a rod, leakage through compression packing and others.

  11. Demonstration of innovative monitoring technologies at the Savannah River Integrated Demonstration Site

    Energy Technology Data Exchange (ETDEWEB)

    Rossabi, J. [Westinghouse Savannah River Co., Aiken, SC (United States); Jenkins, R.A.; Wise, M.B. [Oak Ridge National Lab., TN (United States)] [and others

    1993-12-31

    The Department of Energy`s Office of Technology Development initiated an Integrated Demonstration Program at the Savannah River Site in 1989. The objective of this program is to develop, demonstrate, and evaluate innovative technologies that can improve present-day environmental restoration methods. The Integrated Demonstration Program at SRS is entitled ``Cleanup of Organics in Soils and Groundwater at Non-Arid Sites.`` New technologies in the areas of drilling, characterization, monitoring, and remediation are being demonstrated and evaluated for their technical performance and cost effectiveness in comparison with baseline technologies. Present site characterization and monitoring methods are costly, time-consuming, overly invasive, and often imprecise. Better technologies are required to accurately describe the subsurface geophysical and geochemical features of a site and the nature and extent of contamination. More efficient, nonintrusive characterization and monitoring techniques are necessary for understanding and predicting subsurface transport. More reliable procedures are also needed for interpreting monitoring and characterization data. Site characterization and monitoring are key elements in preventing, identifying, and restoring contaminated sites. The remediation of a site cannot be determined without characterization data, and monitoring may be required for 30 years after site closure.

  12. Demonstration of innovative monitoring technologies at the Savannah River Integrated Demonstration Site

    International Nuclear Information System (INIS)

    Rossabi, J.; Jenkins, R.A.; Wise, M.B.

    1993-01-01

    The Department of Energy's Office of Technology Development initiated an Integrated Demonstration Program at the Savannah River Site in 1989. The objective of this program is to develop, demonstrate, and evaluate innovative technologies that can improve present-day environmental restoration methods. The Integrated Demonstration Program at SRS is entitled ''Cleanup of Organics in Soils and Groundwater at Non-Arid Sites.'' New technologies in the areas of drilling, characterization, monitoring, and remediation are being demonstrated and evaluated for their technical performance and cost effectiveness in comparison with baseline technologies. Present site characterization and monitoring methods are costly, time-consuming, overly invasive, and often imprecise. Better technologies are required to accurately describe the subsurface geophysical and geochemical features of a site and the nature and extent of contamination. More efficient, nonintrusive characterization and monitoring techniques are necessary for understanding and predicting subsurface transport. More reliable procedures are also needed for interpreting monitoring and characterization data. Site characterization and monitoring are key elements in preventing, identifying, and restoring contaminated sites. The remediation of a site cannot be determined without characterization data, and monitoring may be required for 30 years after site closure

  13. Cost-Effective Shaft Torque Observer for Condition Monitoring of Wind Turbines

    DEFF Research Database (Denmark)

    Perisic, Nevena; Kirkegaard, Poul Henning; Pedersen, Bo Juul

    2015-01-01

    Improvement of condition monitoring (CM) systems for wind turbines (WTs) and reduction of the cost of wind energy are possible if knowledge about the condition of different WT components is available. CM based on the WT drive train shaft torque signal can give a better understanding of the gearbox...... of the augmented Kalman filter with fading memory (AKFF) is compared with the augmented Kalman filter (AKF) using simulated data of theWT for different load conditions, measurement noise levels andWT fault scenarios. A multiple-model algorithm, based on a set of different Kalman filters, is designed for practical...

  14. 3rd International Conference on Condition Monitoring of Machinery in Non-Stationary Operations

    CERN Document Server

    Rubini, Riccardo; D'Elia, Gianluca; Cocconcelli, Marco; Chaari, Fakher; Zimroz, Radoslaw; Bartelmus, Walter; Haddar, Mohamed

    2014-01-01

    This book presents the processings of the third edition of the Condition Monitoring of Machinery in Non-Stationary Operations (CMMNO13) which was held in Ferrara, Italy. This yearly event merges an international community of researchers who met – in 2011 in Wroclaw (Poland) and in 2012 in Hammamet (Tunisia) – to discuss issues of diagnostics of rotating machines operating in complex motion and/or load conditions. The growing interest of the industrial world on the topics covered by the CMMNO13 involves the fields of packaging, automotive, agricultural, mining, processing and wind machines in addition to that of the systems for data acquisition.The participation of speakers and visitors from industry makes the event an opportunity for immediate assessment of the potential applications of advanced methodologies for the signal analysis. Signals acquired from machines often contain contributions from several different components as well as noise. Therefore, the major challenge of condition monitoring is to po...

  15. Condition monitoring of a motor-operated valve using estimated motor torque

    International Nuclear Information System (INIS)

    Chai, Jangbom; Kang, Shinchul; Park, Sungkeun; Hong, Sungyull; Lim, Chanwoo

    2004-01-01

    This paper is concerned with the development of data analysis methods to be used in on-line monitoring and diagnosis of Motor-Operated Valves (MOVs) effectively and accurately. The technique to be utilized includes the electrical measurements and signal processing to estimate electric torque of induction motors, which are attached to most of MOV systems. The estimated torque of an induction motor is compared with the directly measured torque using a torque cell in various loading conditions including the degraded voltage conditions to validate the estimating scheme. The accuracy of the estimating scheme is presented. The advantages of the estimated torque signatures are reviewed over the currently used ones such as the current signature and the power signature in several respects: accuracy, sensitivity, resolution and so on. Additionally, the estimated torque methods are suggested as a good way to monitor the conditions of MOVs with higher accuracy. (author)

  16. Innovations in Environmental Monitoring Using Mobile Phone Technology – A Review

    Directory of Open Access Journals (Sweden)

    Matt Aitkenhead

    2014-04-01

    Full Text Available In recent years, the use of mobile phones and tablets for personal communication has increased dramatically, with over 1 billion smartphones out of a total of 5 billion mobile phones worldwide. The infrastructure and technology underlying these devices has improved to a level where it is now possible to integrate sensor technology directly and use them to acquire new data. Given the available resources and the number of technical challenges that have already been overcome, it would seem a natural progression to use mobile communication technology for field-based environmental monitoring. In this work, we review existing technology for acquiring, processing and reporting on environmental data in the field. The objective is to demonstrate whether or not it is possible to use off-the-shelf technology for environmental monitoring. We show several levels at which this challenge is being approached, and discuss examples of technology that have been produced.

  17. A Wireless Physiological Signal Monitoring System with Integrated Bluetooth and WiFi Technologies.

    Science.gov (United States)

    Yu, Sung-Nien; Cheng, Jen-Chieh

    2005-01-01

    This paper proposes a wireless patient monitoring system which integrates Bluetooth and WiFi wireless technologies. A wireless portable multi-parameter device was designated to acquire physiological signals and transmit them to a local server via Bluetooth wireless technology. Four kinds of monitor units were designed to communicate via the WiFi wireless technology, including a local monitor unit, a control center, mobile devices (personal digital assistant; PDA), and a web page. The use of various monitor units is intending to meet different medical requirements for different medical personnel. This system was demonstrated to promote the mobility and flexibility for both the patients and the medical personnel, which further improves the quality of health care.

  18. NoSQL technologies for the CMS Conditions Database

    CERN Document Server

    Sipos, Roland

    2015-01-01

    With the restart of the LHC in 2015, the growth of the CMS Conditions dataset will continue, therefore the need of consistent and highly available access to the Conditions makes a great cause to revisit different aspects of the current data storage solutions.We present a study of alternative data storage backends for the Conditions Databases, by evaluating some of the most popular NoSQL databases to support a key-value representation of the CMS Conditions. An important detail about the Conditions that the payloads are stored as BLOBs, and they can reach sizes that may require special treatment (splitting) in these NoSQL databases. As big binary objects may be a bottleneck in several database systems, and also to give an accurate baseline, a testing framework extension was implemented to measure the characteristics of the handling of arbitrary binary data in these databases. Based on the evaluation, prototypes of a document store, using a column-oriented and plain key-value store, are deployed. An adaption l...

  19. Sensor technologies and non-destructive monitoring for dampness diagnosis in cultural heritage

    Science.gov (United States)

    Inmaculada Martínez Garrido, María; Gómez Heras, Miguel; Fort González, Rafael; Valles Iriso, Javier; José Varas Muriel, María

    2016-04-01

    This work presents a case study based on results of monitoring campaigns developed in San Juan Bautista church in Talamanca de Jarama (Madrid, Spain). This Church was built in the twelfth-thirteenth centuries (Romanesque style) with dolostone ashlars. It was reconstructed in the sixteenth century (Renaissance style) with rubble stone and mortar, brick and an earth fill. Different sections on walls and floors (north and south oriented) have been selected based on a preliminary study of moisture distribution on stone and masonry wall. The behavior of different materials has been studied according to the influence of indoor (microclimatic conditions) and outdoor conditions (weather conditions) and taking into account constructive facts. Several sensing technologies as dataloggers and wireless sensor networks (WSN) together to other non invasive techniques as thermal imaging, portable moisture meter, electrical resistivity tomography (ERT) and ground-penetrating radar (GPR) have been conducted. By means of this study it has been possible to establish an analysis methodology to determine the dampness origin in each case. Conclusions related to the each technique according to its effectiveness in the detection of decay problems have been established. Research funded by Geomateriales 2(S2013/MIT-2914) and Deterioration of stone materials in the interior of historic buildings as a result induced variation of its microclimate (CGL2011-27902) projects. The cooperation received from the Complutense University of Madrid's Research Group Alteración y Conservación de los Materiales Pétreos del Patrimonio (ref. 921349), the Laboratory Network in Science and Technology for Heritage Conservation (RedLabPat, CEI Moncloa) and the Diocese of Alcalá is gratefully acknowledged.

  20. An online condition monitoring system implemented an internet connectivity and FTP for low speed slew bearing

    Science.gov (United States)

    Caesarendra, W.; Kosasih, B.; Tjahjowidodo, T.; Ariyanto, M.; Daryl, LWQ; Pamungkas, D.

    2018-04-01

    Rapid and reliable information in slew bearing maintenance is not trivial issue. This paper presents the online monitoring system to assist maintenance engineer in order to monitor the bearing condition of low speed slew bearing in sheet metal company. The system is able to pass the vibration information from the place where the bearing and accelerometer sensors are attached to the data center; and from the data center it can be access by opening the online monitoring website from any place and by any person. The online monitoring system is built using some programming languages such as C language, MATLAB, PHP, HTML and CSS. Generally, the flow process is start with the automatic vibration data acquisition; then features are calculated from the acquired vibration data. These features are then sent to the data center; and form the data center, the vibration features can be seen through the online monitoring website. This online monitoring system has been successfully applied in School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong.