WorldWideScience

Sample records for condition monitoring technology

  1. Noncontacting measurement technologies for space propulsion condition monitoring

    Science.gov (United States)

    Randall, M. R.; Barkhoudarian, S.; Collins, J. J.; Schwartzbart, A.

    1987-01-01

    This paper describes four noncontacting measurement technologies that can be used in a turbopump condition monitoring system. The isotope wear analyzer, fiberoptic deflectometer, brushless torque-meter, and fiberoptic pyrometer can be used to monitor component wear, bearing degradation, instantaneous shaft torque, and turbine blade cracking, respectively. A complete turbopump condition monitoring system including these four technologies could predict remaining component life, thus reducing engine operating costs and increasing reliability.

  2. A Wireless Distributed Condition Monitoring System Based on Bluetooth Technology

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on the discussion of bluetooth and network technology, this paper proposed an entire framework of a wireless distributed monitoring system by combining the characteristics of industry application. The feasibility of putting this kind of system in practice is discussed. The wireless distributed monitoring system can enhance the performance of condition monitoring more than the traditional one used now.

  3. Distributed flexible reconfigurable condition monitoring and diagnosis technology

    Institute of Scientific and Technical Information of China (English)

    HU You-min; YANG Shu-zi; DU Run-sheng

    2006-01-01

    As manufacturing becomes increasingly decentralized,flexible and reconfigurable,more research needs to be done on monitoring and diagnosis technology that accommodate these new trends.The distributed condition monitoring and diagnosis technology based on the "flexible and reconfigurable" concept is studied here.A condition monitoring diagnosis model based on the distributed flexible and reconfigurable idea is proposed in this paper.The component makeup and functions of this model are discussed in detail.The model can fulfill in most instances the manufacturing system requirements for changing the configuration of the monitoring diagnosis system according to different manufacturing system configurations.This model also realizes the flexibility and reconfigurability of the monitoring diagnosis system in some degree.The model has already spawned a successful prototype for monitoring a chemical plant in accomplishing monitoring and control of the production process and equipment.Finally,some future research work is pointed out.

  4. Research on Land Ecological Condition Investigation and Monitoring Technology

    Science.gov (United States)

    Lv, Chunyan; Guo, Xudong; Chen, Yuqi

    2017-04-01

    The ecological status of land reflects the relationship between land use and environmental factors. At present, land ecological situation in China is worrying. According to the second national land survey data, there are about 149 million acres of arable land located in forests and grasslands area in Northeast and Northwest of China, Within the limits of the highest flood level, at steep slope above 25 degrees; about 50 million acres of arable land has been in heavy pollution; grassland degradation is still serious. Protected natural forests accounted for only 6% of the land area, and forest quality is low. Overall, the ecological problem has been eased, but the local ecological destruction intensified, natural ecosystem in degradation. It is urgent to find out the situation of land ecology in the whole country and key regions as soon as possible. The government attaches great importance to ecological environment investigation and monitoring. Various industries and departments from different angles carry out related work, most of it about a single ecological problem, the lack of a comprehensive surveying and assessment of land ecological status of the region. This paper established the monitoring index system of land ecological condition, including Land use type area and distribution, quality of cultivated land, vegetation status and ecological service, arable land potential and risk, a total of 21 indicators. Based on the second national land use survey data, annual land use change data and high resolution remote sensing data, using the methods of sample monitoring, field investigation and statistical analysis to obtain the information of each index, this paper established the land ecological condition investigation and monitoring technology and method system. It has been improved, through the application to Beijing-Tianjin-Hebei Urban Agglomeration, the northern agro-pastoral ecological fragile zone, and 6 counties (cities).

  5. Optimization of Remediation Conditions using Vadose Zone Monitoring Technology

    Science.gov (United States)

    Dahan, O.; Mandelbaum, R.; Ronen, Z.

    2010-12-01

    Success of in-situ bio-remediation of the vadose zone depends mainly on the ability to change and control hydrological, physical and chemical conditions of subsurface. These manipulations enables the development of specific, indigenous, pollutants degrading bacteria or set the environmental conditions for seeded bacteria. As such, the remediation efficiency is dependent on the ability to implement optimal hydraulic and chemical conditions in deep sections of the vadose zone. Enhanced bioremediation of the vadose zone is achieved under field conditions through infiltration of water enriched with chemical additives. Yet, water percolation and solute transport in unsaturated conditions is a complex process and application of water with specific chemical conditions near land surface dose not necessarily result in promoting of desired chemical and hydraulic conditions in deeper sections of the vadose zone. A newly developed vadose-zone monitoring system (VMS) allows continuous monitoring of the hydrological and chemical properties of the percolating water along deep sections of the vadose zone. Implementation of the VMS at sites that undergoes active remediation provides real time information on the chemical and hydrological conditions in the vadose zone as the remediation process progresses. Manipulating subsurface conditions for optimal biodegradation of hydrocarbons is demonstrated through enhanced bio-remediation of the vadose zone at a site that has been contaminated with gasoline products in Tel Aviv. The vadose zone at the site is composed of 6 m clay layer overlying a sandy formation extending to the water table at depth of 20 m bls. The upper 5 m of contaminated soil were removed for ex-situ treatment, and the remaining 15 m vadose zone is treated in-situ through enhanced bioremedaition. Underground drip irrigation system was installed below the surface on the bottom of the excavation. Oxygen and nutrients releasing powder (EHCO, Adventus) was spread below the

  6. APPLICATION OF INFORMATION TECHNOLOGIES FOR MONITORING BRIDGEWORK CONDITIONS

    Directory of Open Access Journals (Sweden)

    D. E. Gusev

    2008-01-01

    Full Text Available The paper considers а variant of database technologies’ application in transport communication sphere, particularly, for introduction of integrated methodology for evaluation of technical and operational conditions of bridgeworks on motor roads of general usage. Information technologies’ application helps to prevent emergency and pre-emergency conditions of bridgeworks and provides optimal investment allocation in the sphere of transport communication. 

  7. Recommendations for strengthening the infrared technology component of any condition monitoring program

    Science.gov (United States)

    Nicholas, Jack R., Jr.; Young, R. K.

    1999-03-01

    This presentation provides insights of a long term 'champion' of many condition monitoring technologies and a Level III infra red thermographer. The co-authors present recommendations based on their observations of infra red and other components of predictive, condition monitoring programs in manufacturing, utility and government defense and energy activities. As predictive maintenance service providers, trainers, informal observers and formal auditors of such programs, the co-authors provide a unique perspective that can be useful to practitioners, managers and customers of advanced programs. Each has over 30 years experience in the field of machinery operation, maintenance, and support the origins of which can be traced to and through the demanding requirements of the U.S. Navy nuclear submarine forces. They have over 10 years each of experience with programs in many different countries on 3 continents. Recommendations are provided on the following: (1) Leadership and Management Support (For survival); (2) Life Cycle View (For establishment of a firm and stable foundation for a program); (3) Training and Orientation (For thermographers as well as operators, managers and others); (4) Analyst Flexibility (To innovate, explore and develop their understanding of machinery condition); (5) Reports and Program Justification (For program visibility and continued expansion); (6) Commitment to Continuous Improvement of Capability and Productivity (Through application of updated hardware and software); (7) Mutual Support by Analysts (By those inside and outside of the immediate organization); (8) Use of Multiple Technologies and System Experts to Help Define Problems (Through the use of correlation analysis of data from up to 15 technologies. An example correlation analysis table for AC and DC motors is provided.); (9) Root Cause Analysis (Allows a shift from reactive to proactive stance for a program); (10) Master Equipment Identification and Technology Application (To

  8. Condition monitoring through advanced sensor and computational technology : final report (January 2002 to May 2005).

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung-Taek (Korea Atomic Energy Research Institute, Daejon, Korea); Luk, Vincent K.

    2005-05-01

    The overall goal of this joint research project was to develop and demonstrate advanced sensors and computational technology for continuous monitoring of the condition of components, structures, and systems in advanced and next-generation nuclear power plants (NPPs). This project included investigating and adapting several advanced sensor technologies from Korean and US national laboratory research communities, some of which were developed and applied in non-nuclear industries. The project team investigated and developed sophisticated signal processing, noise reduction, and pattern recognition techniques and algorithms. The researchers installed sensors and conducted condition monitoring tests on two test loops, a check valve (an active component) and a piping elbow (a passive component), to demonstrate the feasibility of using advanced sensors and computational technology to achieve the project goal. Acoustic emission (AE) devices, optical fiber sensors, accelerometers, and ultrasonic transducers (UTs) were used to detect mechanical vibratory response of check valve and piping elbow in normal and degraded configurations. Chemical sensors were also installed to monitor the water chemistry in the piping elbow test loop. Analysis results of processed sensor data indicate that it is feasible to differentiate between the normal and degraded (with selected degradation mechanisms) configurations of these two components from the acquired sensor signals, but it is questionable that these methods can reliably identify the level and type of degradation. Additional research and development efforts are needed to refine the differentiation techniques and to reduce the level of uncertainties.

  9. The CMS Fast Beams Condition Monitor Backend Electronics based on MicroTCA technology

    CERN Document Server

    Zagozdzinska, Agnieszka Anna

    2015-01-01

    The Fast Beams Condition Monitor (BCM1F), upgraded for LHC Run II, is one sub-system of the Beam Radiation Instrumentation and Luminosity Project of the CMS experiment. It is based on 24 single crystal CVD diamond sensors. Each sensor is metallised with two pads, being read out by a dedicated fast frontend chip produced in 130 nm CMOS technology. Signals for real time monitoring are processed by custom-made back-end electronics to measure separately rates corresponding to LHC collision products, machine induced background and residual activation exploiting different arrival times. The system is built in MicroTCA technology and uses high speed analog-to-digital converters. The data processing module designed for the FPGA allows a distinguishing of collision and machine induced background, both synchronous to the LHC clock, from the residual activation products. In operational modes of high rates, consecutive events, spaced in time by less than 12.5 ns, may partially overlap. Hence, novel signal processing tec...

  10. Technology monitoring; Technologie-Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Eicher, H.; Rigassi, R. [Eicher und Pauli AG, Liestal (Switzerland); Ott, W. [Econcept AG, Zuerich (Switzerland)

    2003-07-01

    This study made for the Swiss Federal Office of Energy (SFOE) examines ways of systematically monitoring energy technology development and the cost of such technologies in order to pave the way to a basis for judging the economic development of new energy technologies. Initial results of a survey of the past development of these technologies are presented and estimates are made of future developments in the areas of motor-based combined heat and power systems, fuel-cell heating units for single-family homes and apartment buildings, air/water heat pumps for new housing projects and high-performance thermal insulation. The methodology used for the monitoring and analysis of the various technologies is described. Tables and diagrams illustrate the present situation and development potential of various fields of technology.

  11. Switchgear condition monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Budyn, M. [ABB Corporate Research, Krakow (Poland); Karandikar, H.M.; Urmson, M.G. [ABB Inc., Lake Mary, FL (United States)

    2010-07-01

    Electric utilities strive to keep switchgear in proper condition over their long life. Medium voltage switchgear are one of the key components in electrical power systems used to distribute electrical power, selectively isolate electrical loads and protect loads from cascading failure. They generally include a combination of electrical elements such as disconnectors, fuses, circuit breakers and distribution bus bars arranged in a lineup of frames. Since switchgear distributes electrical current, heat buildup becomes an important characteristic to monitor. The most significant amount of heat dissipation is on distribution elements like bus bars. Unexpected temperature rise at a particular location may indicate corrosion or a defect. If left uncorrected, this defect could result in catastrophic failure resulting in deactivated loads and potentially hazardous conditions to personnel. Currently, switchgear bus temperature monitoring is done periodically by manual inspections using IR cameras or by fibre-optic systems. Both methods have limitations, such as inaccurate and infrequent readouts, high implementation cost and limited monitoring area. This paper presented a modern approach for condition monitoring based on passive, SAW-based, wireless sensors, reducing installation costs and enhancing monitoring by allowing measurements in previously unreachable locations. A practical implementation of the wireless condition monitoring system was illustrated as a part of a general, built-in, switchgear diagnostics and maintenance system. The use of miniature SAW sensors proved effective in monitoring breaker connectors and non-invasive installation inside the switchgear. 8 refs., 5 figs.

  12. Technology Solutions Case Study: Monitoring of Double Stud Wall Moisture Conditions in the Northeast, Devens, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    Double stud walls have a higher risk of interior-sourced condensation moisture damage when compared with high-R approaches using exterior insulating sheathing. In this project, Building Science Corporation monitored moisture conditions in double-stud walls from 2011 through 2014 at a new production house located in Devens, Massachusetts. The builder, Transformations, Inc., has been using double-stud walls insulated with 12 in. of open cell polyurethane spray foam (ocSPF); however, the company has been considering a change to netted and blown cellulose insulation for cost reasons. Cellulose is a common choice for double-stud walls because of its lower cost (in most markets). However, cellulose is an air-permeable insulation, unlike spray foams, which increases interior moisture risks. The team compared three double-stud assemblies: 12 in. of ocSPF, 12 in. of cellulose, and 5-½ in. of ocSPF at the exterior of a double-stud wall (to approximate conventional 2 × 6 wall construction and insulation levels, acting as a control wall). These assemblies were repeated on the north and south orientations, for a total of six assemblies.

  13. The CMS fast beams condition monitor back-end electronics based on MicroTCA technology: status and development

    Science.gov (United States)

    Zagozdzinska, Agnieszka A.; Dabrowski, Anne E.; Pozniak, Krzysztof T.

    2015-09-01

    The Fast Beams Condition Monitor (BCM1F), upgraded for LHC Run II, is used to measure the online luminosity and machine induced background for the CMS experiment. The detector consists of 24 single-crystal CVD diamond sensors that are read out with a custom fast front-end chip fabricated in 130 nm CMOS technology. Since the signals from the sensors are used for real time monitoring of the LHC conditions they are processed by dedicated back-end electronics to measure separately rates corresponding to LHC collision products, machine induced background and residual activation exploiting different arrival times. The system is built in MicroTCA technology and uses high speed analog-to-digital converters. In operational modes of high rates, consecutive events, spaced in time by less than 12.5 ns, may cause partially overlapping events. Hence, novel signal processing techniques are deployed to resolve overlapping peaks. The high accuracy qualification of the signals is crucial to determine the luminosity and the machine induced background rates for the CMS experiment and the LHC.

  14. Acoustic multivariate condition monitoring - AMCM

    Energy Technology Data Exchange (ETDEWEB)

    Rosenhave, P.E. [Vestfold College, Maritime Dept., Toensberg (Norway)

    1997-12-31

    In Norway, Vestfold College, Maritime Department presents new opportunities for non-invasive, on- or off-line acoustic monitoring of rotating machinery such as off-shore pumps and diesel engines. New developments within acoustic sensor technology coupled with chemometric data analysis of complex signals now allow condition monitoring of hitherto unavailable flexibility and diagnostic specificity. Chemometrics paired with existing knowledge yields a new and powerful tool for condition monitoring. By the use of multivariate techniques and acoustics it is possible to quantify wear and tear as well as predict the performance of working components in complex machinery. This presentation describes the AMCM method and one result of a feasibility study conducted onboard the LPG/C `Norgas Mariner` owned by Norwegian Gas Carriers as (NGC), Oslo. (orig.) 6 refs.

  15. An advanced condition monitoring system for turbopumps

    Science.gov (United States)

    Cross, George S.; Barkhoudarian, Sarkis

    1991-01-01

    Advanced condition monitoring (ACM) technologies developed for in situ turbomachinery applications are reviewed. The ACM concepts are based on direct in situ hardware monitoring and between-flight inspections, using novel real-time, automated, noncontacting, and nonintrusive sensor and associated electronic technologies.

  16. Computational Intelligence for Condition Monitoring

    OpenAIRE

    Marwala, Tshilidzi; Vilakazi, Christina Busisiwe

    2007-01-01

    Condition monitoring techniques are described in this chapter. Two aspects of condition monitoring process are considered: (1) feature extraction; and (2) condition classification. Feature extraction methods described and implemented are fractals, Kurtosis and Mel-frequency Cepstral Coefficients. Classification methods described and implemented are support vector machines (SVM), hidden Markov models (HMM), Gaussian mixture models (GMM) and extension neural networks (ENN). The effectiveness of...

  17. Computer monitors mine conditions

    Energy Technology Data Exchange (ETDEWEB)

    Brezovec, D.

    1981-08-01

    At Cape Breton Development Corp's No. 26 Colliery in Canada, a Transmitton microprocessor-based system monitors methane concentrations, air velocities and pressures, fan vibration, machine temperatures and pump pressures continuously. Longwall mining at the colliery operating under the ocean is briefly described.

  18. Condition Indicators for Gearbox Condition Monitoring Systems

    OpenAIRE

    P. Večeř; M. Kreidl; R. Šmíd

    2005-01-01

    Condition monitoring systems for manual transmissions based on vibration diagnostics are widely applied in industry. The systems deal with various condition indicators, most of which are focused on a specific type of gearbox fault. Frequently used condition indicators (CIs) are described in this paper. The ability of a selected condition indicator to describe the degree of gearing wear was tested using vibration signals acquired during durability testing of manual transmission with helical ge...

  19. Condition Indicators for Gearbox Condition Monitoring Systems

    Directory of Open Access Journals (Sweden)

    P. Večeř

    2005-01-01

    Full Text Available Condition monitoring systems for manual transmissions based on vibration diagnostics are widely applied in industry. The systems deal with various condition indicators, most of which are focused on a specific type of gearbox fault. Frequently used condition indicators (CIs are described in this paper. The ability of a selected condition indicator to describe the degree of gearing wear was tested using vibration signals acquired during durability testing of manual transmission with helical gears. 

  20. Computational Intelligence for Condition Monitoring

    CERN Document Server

    Marwala, Tshilidzi

    2007-01-01

    Condition monitoring techniques are described in this chapter. Two aspects of condition monitoring process are considered: (1) feature extraction; and (2) condition classification. Feature extraction methods described and implemented are fractals, Kurtosis and Mel-frequency Cepstral Coefficients. Classification methods described and implemented are support vector machines (SVM), hidden Markov models (HMM), Gaussian mixture models (GMM) and extension neural networks (ENN). The effectiveness of these features were tested using SVM, HMM, GMM and ENN on condition monitoring of bearings and are found to give good results.

  1. Assessment of the application of acoustic emission technology for monitoring the presence of sand under multiphase flow condition

    Energy Technology Data Exchange (ETDEWEB)

    El-Alej, M., E-mail: m.elalej@cranfield.ac.uk; Mba, D., E-mail: m.elalej@cranfield.ac.uk; Yeung, H., E-mail: m.elalej@cranfield.ac.uk [School of Engineering, Cranfield University, Cranfield, Bedfordshire, MK43 OAL (United Kingdom)

    2014-04-11

    The monitoring of multiphase flow is an established process that has spanned several decades. This paper demonstrates the use of acoustic emission (AE) technology to investigate sand transport characteristic in three-phase (air-water-sand) flow in a horizontal pipe where the superficial gas velocity (VSG) had a range of between 0.2 ms{sup −1} to 2.0 ms{sup −1} and superficial liquid velocity (VSL) had a range of between 0.2 ms{sup −1} to 1.0 ms{sup −1}. The experimental findings clearly show a correlation exists between AE energy levels, sand concentration, superficial gas velocity (VSG) and superficial liquid velocity (VSL)

  2. Monitoring Technology Meets Care Work

    DEFF Research Database (Denmark)

    Kanstrup, Anne Marie; Bygholm, Ann

    2015-01-01

    Monitoring technology, especially sensor-based technology, is increasingly taken into use in care work. Despite the simplicity of these technologies – aimed to automate what appear as mundane monitoring tasks – recent research has identified major challenges primarily related to the technology......'s ability to meet the complexity of care work. Understanding intersectional challenges between these care technologies and care work is fundamental to improve design and use of health informatics. In this paper we present an analysis of interaction challenges between a wet-sensor at the task of monitoring...

  3. 地理国情监测中3S技术的应用%Application of 3S Technology in the Monitoring of Geographical Conditions

    Institute of Scientific and Technical Information of China (English)

    明红莲

    2014-01-01

    The integration of the remote sensing, geographical information system, and global satel ite navigation system laid solid technical foundation for the monitoring and survey of ge-ographic conditions. This paper describes the basic situation of monitoring of geographical conditions, discusses in detail 3S t-echnology, and discusses the specific application of 3S techn-ology in condition monitoring of geography.%将遥感技术、地理信息系统、全球卫星导航系统有机结合运用,为地理国情的监测和普查奠定了坚实的技术基础。本文叙述了地理国情监测的基本情况,对3S技术进行了系统地介绍,并探讨了3S技术在国情地理监测中的具体应用。

  4. @selfhealthtech: Using self-administered health monitoring technologies to support the self-management of long-term conditions: what about behaviour change?

    Directory of Open Access Journals (Sweden)

    Heather May Morgan

    2015-10-01

    Conclusions This evidence synthesis adds to emerging research concerning digital technologies, contributing to the literature where there is a knowledge gap around SSM and self-administered health monitoring technologies. It highlights a need to better understand the delivery and quality of care when technologies are used for SSM. It would be beneficial to re-characterise or reconceptualise these technologies and their implementation. More rigorous description of interventions, e.g. using the TIDIER template for intervention description and replication checklist10, or linking systems with BCT taxonomy v.19 through the smartphone app11, as well as a requirement to attend to behaviour change theory and techniques in the design, use and description is also required. Future research should address these concerns to inform developments in SSM for chronic conditions involving technologies, as well as in policy and practices more generally where digital technologies are implicated. In addition, the results of this review suggest that detailed primary research should be undertaken to explore the personal, social and ethical considerations of users in everyday life.

  5. Condition Monitoring of Control Loops

    OpenAIRE

    Horch, Alexander

    2000-01-01

    The main concern of this work is the development of methodsfor automatic condition monitoring of control loops withapplication to the process industry. By condition monitoringboth detection and diagnosis of malfunctioning control loops isunderstood, using normal operating data and a minimum amount ofprocess knowledge. The use of indices for quantifying loop performance is dealtwith in the first part of the thesis. The starting point is anindex proposed by Harris (1989). This index has been mo...

  6. OTVE combustor wall condition monitoring

    Science.gov (United States)

    Szemenyei, Brian; Nelson, Robert S.; Barkhoudarian, S.

    1989-01-01

    Conventional ultrasonics, eddy current, and electromagnetic acoustic transduction (EMAT) technologies were evaluated to determine their capability of measuring wall thickness/wear of individual cooling channels in test specimens simulating conditions in the throat region of an OTVE combustion chamber liner. Quantitative results are presented for the eddy current technology, which was shown to measure up to the optimum 20-mil wall thickness with near single channel resolution. Additional results demonstrate the capability of the conventional ultrasonics and EMAT technologies to detect a thinning or cracked wall. Recommendations for additional eddy current and EMAT development tests are presented.

  7. Research on Geographical Urban Conditions Monitoring

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    by LUO A1inghai Abstract Geographical national conditions monitoring has become an important task of surveying and geographical information industry, and will make a profound influence on the development of surveying and ge- ographical information. This paper introduced the basic concept of ge- ographical national conditions monitoring, and discussed its main tasks including complete surveying, dynamic monitoring, statistical analysis and regular release, and expounded the main content of geographical urban conditions monitoring including urbanization monitoring, social- economic development monitoring, transportation foundation monitor- ing and natural ecological environment monitoring, and put forwards the framework system of geographical urban conditions monitoring. Key words surveying and mapping ,geographical national conditions, monitoring ( Page:l )

  8. Reusable rocket engine turbopump condition monitoring

    Science.gov (United States)

    Hampson, M. E.; Barkhoudarian, S.

    1985-01-01

    Significant improvements in engine readiness with attendant reductions in maintenance costs and turnaround times can be achieved with an engine condition monitoring system (CMS). The CMS provides real time health status of critical engine components, without disassembly, through component monitoring with advanced sensor technologies. Three technologies were selected to monitor the rotor bearings and turbine blades: the isotope wear detector and fiber optic deflectometer (bearings), and the fiber optic pyrometer (blades). Signal processing algorithms were evaluated and ranked for their utility in providing useful component health data to unskilled maintenance personnel. Design modifications to current configuration Space Shuttle Main Engine (SSME) high pressure turbopumps and the MK48-F turbopump were developed to incorporate the sensors.

  9. Monitoring Thermal Conditions in Footwear

    Science.gov (United States)

    Silva-Moreno, Alejandra. A.; Lopez Vela, Martín; Alcalá Ochoa, Noe

    2006-09-01

    Thermal conditions inside the foot were evaluated on a volunteer subject. We have designed and constructed an electronic system which can monitors temperature and humidity of the foot inside the shoe. The data is stored in a battery-powered device for later uploading to a host computer for data analysis. The apparatus potentially can be used to provide feedback to patients who are prone to having skin breakdowns.

  10. New technologies for item monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, J.A. [EG & G Energy Measurements, Albuquerque, NM (United States); Waddoups, I.G. [Sandia National Labs., Albuquerque, NM (United States)

    1993-12-01

    This report responds to the Department of Energy`s request that Sandia National Laboratories compare existing technologies against several advanced technologies as they apply to DOE needs to monitor the movement of material, weapons, or personnel for safety and security programs. The authors describe several material control systems, discuss their technologies, suggest possible applications, discuss assets and limitations, and project costs for each system. The following systems are described: WATCH system (Wireless Alarm Transmission of Container Handling); Tag system (an electrostatic proximity sensor); PANTRAK system (Personnel And Material Tracking); VRIS (Vault Remote Inventory System); VSIS (Vault Safety and Inventory System); AIMS (Authenticated Item Monitoring System); EIVS (Experimental Inventory Verification System); Metrox system (canister monitoring system); TCATS (Target Cueing And Tracking System); LGVSS (Light Grid Vault Surveillance System); CSS (Container Safeguards System); SAMMS (Security Alarm and Material Monitoring System); FOIDS (Fiber Optic Intelligence & Detection System); GRADS (Graded Radiation Detection System); and PINPAL (Physical Inventory Pallet).

  11. Evaluative conditioning of food technologies

    DEFF Research Database (Denmark)

    Loebnitz, Natascha; Grunert, Klaus G

    2015-01-01

    attitudes toward food technologies. The present study tests how evaluative conditioning can affect consumer acceptance of new food technologies. Furthermore, authors investigate whether evaluative conditioning is resistant to extinction after a two-month period and whether the evaluative conditioning effect......Consumer attitudes play an important role in the acceptance of new technologies. The success of food innovations depends on understanding how consumers form and change attitudes toward food technologies. Earlier post hoc explanations suggest that evaluative conditioning can change consumer...... prevails in a product-related context. Within an evaluative conditioning paradigm including between-subjects control groups in addition to standard within-subjects control conditions, participants were presented with three food technologies (conventional, enzyme, and genetic technology) paired...

  12. 物联网环境下的机械系统状态监测技术展望%Thoughts of Mechanical System Condition Monitoring Technology under IOT

    Institute of Scientific and Technical Information of China (English)

    严新平; 张月雷

    2011-01-01

    论述了物联网环境下机械系统状态监测技术的新发展,指出开展机械系统的可监测性设计是物联网环境下实施机械系统状态监测技术的基础,研发符合物联网特征的在线监测传感器及其系统是物联网环境下开展机械系统状态监测的保证,建立物联网环境下的机械系统状态监测技术标准体系是机械系统状态监测技术快速发展的支撑。%The latest progresses in mechanical system condition monitoring technology under the IOT was reviewed and presented.The montiorability-based design basic theory is fundamental to develop mechanical system condition monitoring technology under the IOT.A study of on-line monitoring sensors and their systems according with IOT features guarantees the development of mechanical system condition monitoring technology in IOT.The establishment of the standard system of mechanical system condition monitoring technology can provide the technical support to the development of mechanical system condition monitoring technology under IOT.

  13. Human health monitoring technology

    Science.gov (United States)

    Kim, Byung-Hyun; Yook, Jong-Gwan

    2017-05-01

    Monitoring vital signs from human body is very important to healthcare and medical diagnosis, because they contain valuable information about arterial occlusions, arrhythmia, atherosclerosis, autonomous nervous system pathologies, stress level, and obstructive sleep apnea. Existing methods, such as electrocardiogram (ECG) sensor and photoplethysmogram (PPG) sensor, requires direct contact to the skin and it can causes skin irritation and the inconvenience of long-term wearing. For reducing the inconvenience in the conventional sensors, microwave and millimeter-wave sensors have been proposed since 1970s using micro-Doppler effect from one's cardiopulmonary activity. The Doppler radar sensor can remotely detect the respiration and heartbeat up to few meters away from the subject, but they have a multiple subject issue and are not suitable for an ambulatory subject. As a compromise, a noncontact proximity vital sign sensor has been recently proposed and developed. The purpose of this paper is to review the noncontact proximity vital sign sensors for detection of respiration, heartbeat rate, and/or wrist pulse. This sensor basically employs near-field perturbation of radio-frequency (RF) planar resonator due to the proximity of the one's chest or radial artery at the wrist. Various sensing systems based on the SAW filter, phase-locked loop (PLL) synthesizer, reflectometer, and interferometer have been proposed. These self-sustained systems can measure the nearfield perturbation and transform it into DC voltage variation. Consequently, they can detect the respiration and heartbeat rate near the chest of subject and pulse from radial artery at the wrist.

  14. ATLAS diamond Beam Condition Monitor

    CERN Document Server

    Gorišek, A; Dolenc, I; Frais-Kölbl, H; Griesmayer, E; Kagan, H; Korpar, S; Kramberger, G; Mandic, I; Meyer, M; Mikuz, M; Pernegger, H; Smith, S; Trischuk, W; Weilhammer, P; Zavrtanik, M

    2007-01-01

    The ATLAS experiment has chosen to use diamond for its Beam Condition Monitor (BCM) given its radiation hardness, low capacitance and short charge collection time. In addition, due to low leakage current diamonds do not require cooling. The ATLAS Beam Condition Monitoring system is based on single beam bunch crossing measurements rather than integrating the accumulated particle flux. Its fast electronics will allow separation of LHC collisions from background events such as beam gas interactions or beam accidents. There will be two stations placed symmetrically about the interaction point along the beam axis at . Timing of signals from the two stations will provide almost ideal separation of beam–beam interactions and background events. The ATLAS BCM module consists of diamond pad detectors of area and thickness coupled to a two-stage RF current amplifier. The production of the final detector modules is almost done. A S/N ratio of 10:1 has been achieved with minimum ionizing particles (MIPs) in the test bea...

  15. Wind Turbine Drivetrain Condition Monitoring - An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, S; Veers, P.

    2011-10-01

    This paper provides an overview of wind turbine drivetrain condition monitoring based on presentations from a condition monitoring workshop organized by the National Renewable Energy Laboratory in 2009 and on additional references.

  16. OTVE turbopump condition monitoring, task E.5

    Science.gov (United States)

    Coleman, Paul T.; Collins, J. J.

    1989-01-01

    Recent work has been carried out on development of isotope wear analysis and optical and eddy current technologies to provide bearing wear measurements and real time monitoring of shaft speed, shaft axial displacement and shaft orbit of the Orbit Transfer Vehicle hydrostatic bearing tester. Results show shaft axial displacement can be optically measured (at the same time as shaft orbital motion and speed) to within 0.3 mils by two fiberoptic deflectometers. Evaluation of eddy current probes showed that, in addition to measuring shaft orbital motion, they can be used to measure shaft speed without having to machine grooves on the shaft surface as is the usual practice for turbomachinery. The interim results of this condition monitoring effort are presented.

  17. The ATLAS beam conditions monitor

    CERN Document Server

    Mikuz, M; Dolenc, I; Kagan, H; Kramberger, G; Frais-Kölbl, H; Gorisek, A; Griesmayer, E; Mandic, I; Pernegger, H; Trischuk, W; Weilhammer, P; Zavrtanik, M

    2006-01-01

    The ATLAS beam conditions monitor is being developed as a stand-alone device allowing to separate LHC collisions from background events induced either on beam gas or by beam accidents, for example scraping at the collimators upstream the spectrometer. This separation can be achieved by timing coincidences between two stations placed symmetric around the interaction point. The 25 ns repetition of collisions poses very stringent requirements on the timing resolution. The optimum separation between collision and background events is just 12.5 ns implying a distance of 3.8 m between the two stations. 3 ns wide pulses are required with 1 ns rise time and baseline restoration in 10 ns. Combined with the radiation field of 10/sup 15/ cm/sup -2/ in 10 years of LHC operation only diamond detectors are considered suitable for this task. pCVD diamond pad detectors of 1 cm/sup 2/ and around 500 mum thickness were assembled with a two-stage RF current amplifier and tested in proton beam at MGH, Boston and SPS pion beam at...

  18. Proceedings of Propulsion and Energetics Panel Symposium (71st) on Engine Condition Monitoring - Technology and Experience Held in Quebec City, Canada on 30 May-3 Jun 1988

    Science.gov (United States)

    1988-06-03

    PUBLICATIONS OF PEP iln THEME v PROPULSION AND ENERGETICS PANEL Reference SESSION I - MILITARY OPERATIONS OPERATIONAL REQUIREMENTS FOR ENGINE CONDITION...development of an on-board Loads and Engine Health Monitor (LEAN) for the CF5 air- craft. This system will include both EBM and structural condition...Highlights of the theme include application areas and the economic aspects of everyday airline operation. The ECM information system supports

  19. System for monitoring microclimate conditions in greenhouse

    Directory of Open Access Journals (Sweden)

    Marković Dušan B.

    2014-01-01

    Full Text Available Monitoring microclimate parameters in different kind of environments has significant contribution to many areas of human activity and production processes. One of them is vegetable production in greenhouses where measurement of its microclimate parameters may influence the decision on taking appropriate action and protect crops. It is also important to preserve optimal condition in greenhouses to facilitate the process of transpiration, plant mineral nutrition and prevent of a variety physiological damage caused by a deficit of some specific nutrients. Systems for monitoring have wide application in the last years thanks to development of modern computer technology. In this paper model of the monitoring system based on smart transducer concept was introduced. Within the system components are based on MSP430 ultra low power micro controllers. They are using wireless communication to exchange data within the system that was structured according to smart transducer concept. User applications from the network could access to system interface using HTTP protocol where web server could be running on the computer or it could be an embedded web server running on micro controller based device.

  20. Lagoon Monitoring and Condition Parameters

    OpenAIRE

    Harrison, John; Smith, Dallen

    2004-01-01

    Lagoons combine storage and tr eatment functions and thus are more sensitive to management inputs than are solid or slurry facilities. The est ablishment and maintenance of desirable microbiological populations in lagoons requires more specific procedures in the way lagoons are loaded and monitored.

  1. Condition Monitoring of Power Cables

    OpenAIRE

    Lewin, P L; L. Hao; Swaffield, D J; Swingler, S.G.

    2007-01-01

    A National Grid funded research project at Southampton has investigated possible methodologies for data acquisition, transmission and processing that will facilitate on-line continuous monitoring of partial discharges in high voltage polymeric cable systems. A method that only uses passive components at the measuring points has been developed and is outlined in this paper. More recent work, funded through the EPSRC Supergen V, UK Energy Infrastructure (AMPerES) grant in collaboration with UK ...

  2. Vibration-based condition monitoring industrial, aerospace and automotive applications

    CERN Document Server

    Randall, Robert Bond

    2010-01-01

    ""Without doubt the best modern and up-to-date text on the topic, wirtten by one of the world leading experts in the field. Should be on the desk of any practitioner or researcher involved in the field of Machine Condition Monitoring"" Simon Braun, Israel Institute of Technology Explaining complex ideas in an easy to understand way, Vibration-based Condition Monitoring provides a comprehensive survey of the application of vibration analysis to the condition monitoring of machines. Reflecting the natural progression of these systems by presenting the fundamental material

  3. Multiphysicsbased Condition Monitoring of Composite Materials

    OpenAIRE

    Xue, Hui; Sharma, Puneet; Khawaja, Hassan Abbas

    2015-01-01

    Composites are increasingly being used in products such as: automobiles, bridges, boats, drillships, offshore platforms, aircrafts and satellites. The increased usage of these composite materials and the fact that the conditions pertaining to their failure are not fully understood makes it imperative to develop condition monitoring systems for composite structures. In this work, we present a theoretical framework for the development of a condition monitoring system. For this, we plan...

  4. Application of Data Sharing Technology in GHP Air Conditioning Network Monitoring System%数据共享技术在燃气热泵空调网络监控系统中的应用

    Institute of Scientific and Technical Information of China (English)

    夏克盛; 姚世选; 仲崇权

    2014-01-01

    局域网监控的方式已在燃气热泵( GHP)空调监控系统上得到成熟应用。为了迎合网络化需求,在局域网空调监控系统的基础上,设立网络服务器,采用服务器端数据库重建和数据共享技术,实现GHP空调的网络监控系统。本研究介绍基于WEB的远程监控方式,构建MySQL数据库和Tomcat服务器,采用Java语言,实现GHP空调系统的网络监控、远程服务和智能化管理功能,不仅极大地降低开发软件和应用软件的成本,还为系统在远程诊断和远程维护技术方面奠定技术基础。%A GHP air conditioning monitoring system based on local area network monitoring has got mature application .Based on the local area network air-conditioning monitoring system and the establishment of a network server , network monitoring GHP air conditioning monitoring system is achieved by using data sharing and server-side database reconstruction technology to realize the needs of the network .This study introduces WEB RMON achieve GHP air conditioning system network monitoring , remote services and intelligent management by building Tomcat server and MySQL database and using the Java , It’ s not only greatly re-ducing the costs of development software and application software , but also lying the technical foundation for the system remote diagnostics and remote maintenance technologies .

  5. Integrating structural health and condition monitoring

    DEFF Research Database (Denmark)

    May, Allan; Thöns, Sebastian; McMillan, David

    2015-01-01

    There is a large financial incentive to minimise operations and maintenance (O&M) costs for offshore wind power by optimising the maintenance plan. The integration of condition monitoring (CM) and structural health monitoring (SHM) may help realise this. There is limited work on the integration...

  6. Characterization monitoring & sensor technology crosscutting program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the OFfice of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60).

  7. An integrated system for pipeline condition monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Strong, Andrew P.; Lees, Gareth; Hartog, Arthur; Twohig, Richard; Kader, Kamal; Hilton, Graeme; Mullens, Stephen; Khlybov, Artem [Schlumberger, Southampton (United Kingdom); Sanderson, Norman [BP Exploration, Sunbury (United Kingdom)

    2009-07-01

    In this paper we present the unique and innovative 'Integriti' pipeline and flow line integrity monitoring system developed by Schlumberger in collaboration with BP. The system uses optical fiber distributed sensors to provide simultaneous distributed measurements of temperature, strain and vibration for the detection, monitoring, and location of events including: Third Party Interference (TPI), including multiple simultaneous disturbances; geo-hazards and landslides; gas and oil leaks; permafrost protection. The Integriti technology also provides a unique means for tracking the progress of cleaning and instrumented pigs using existing optical telecom and data communications cables buried close to pipelines. The Integriti solution provides a unique and proactive approach to pipeline integrity management. It performs analysis of a combination of measurands to provide the pipeline operator with an event recognition and location capability, in effect providing a hazard warning system, and offering the operator the potential to take early action to prevent loss. Through the use of remote, optically powered amplification, an unprecedented detection range of 100 km is possible without the need for any electronics and therefore remote power in the field. A system can thus monitor 200 km of pipeline when configured to monitor 100 km upstream and downstream from a single location. As well as detecting conditions and events leading to leaks, this fully integrated system provides a means of detecting and locating small leaks in gas pipelines below the threshold of present online leak detection systems based on monitoring flow parameters. Other significant benefits include: potential reductions in construction costs; enhancement of the operator's existing integrity management program; potential reductions in surveillance costs and HSE risks. In addition to onshore pipeline systems this combination of functionality and range is available for practicable

  8. 风电机组状态监测与故障诊断相关技术研究%Research on Condition Monitoring and Fault Diagnosis Technology of Wind Turbines

    Institute of Scientific and Technical Information of China (English)

    张文秀; 武新芳

    2014-01-01

    The technologies of condition monitoring and fault diagnosis can effectively reduce the cost of operation and maintenance, as well as ensure the security and stability of wind turbine. The research of condition monitoring and fault diagnosis were overviewed, then the status of the wind tubine monitoring technology and application development conditions of monitoring system were introduced, and aiming at the main failure parts for wind turbine and the wind power system, the research status and progress of condition monitoring and fault diggnosis methods in domestic and abroad were introduced. Finally the development trend of wind power generation system status montoring and research direction in the future were discussed.%对风电机组进行状态监测和故障诊断,可有效降低机组的运行维护成本,保证机组的安全稳定运行。首先概述了状态监测与故障诊断研究的研究情况,然后介绍了风电机组的状态监测技术和状态监控系统的应用开发情况,接着针对机组中的主要故障组件及整个风电系统,介绍了国内外状态监测和故障诊断方法的研究现状与研究进展,最后探讨了风力发电系统状态监测的发展趋势以及未来的研究方向。

  9. Rotor blade online monitoring and fault diagnosis technology research

    DEFF Research Database (Denmark)

    Tesauro, Angelo; Pavese, Christian; Branner, Kim

    Rotor blade online monitoring and fault diagnosis technology is an important way to find blade failure mechanisms and thereby improve the blade design. Condition monitoring of rotor blades is necessary in order to ensure the safe operation of the wind turbine, make the maintenance more economical...

  10. Condition Monitoring Of Operating Pipelines With Operational Modal Analysis Application

    Directory of Open Access Journals (Sweden)

    Mironov Aleksey

    2015-12-01

    Full Text Available In the petroleum, natural gas and petrochemical industries, great attention is being paid to safety, reliability and maintainability of equipment. There are a number of technologies to monitor, control, and maintain gas, oil, water, and sewer pipelines. The paper focuses on operational modal analysis (OMA application for condition monitoring of operating pipelines. Special focus is on the topicality of OMA for definition of the dynamic features of the pipeline (frequencies and mode shapes in operation. The research was conducted using two operating laboratory models imitated a part of the operating pipeline. The results of finite-element modeling, identification of pipe natural modes and its modification under the influence of virtual failure are discussed. The work considers the results of experimental research of dynamic behavior of the operating pipe models using one of OMA techniques and comparing dynamic properties with the modeled data. The study results demonstrate sensitivity of modal shape parameters to modification of operating pipeline technical state. Two strategies of pipeline repair – with continuously condition-based monitoring with proposed technology and without such monitoring, was discussed. Markov chain reliability models for each strategy were analyzed and reliability improvement factor for proposed technology of monitoring in compare with traditional one was evaluated. It is resumed about ability of operating pipeline condition monitoring by measuring dynamic deformations of the operating pipe and OMA techniques application for dynamic properties extraction.

  11. Fundamentals for remote condition monitoring of offshore wind turbine blades

    DEFF Research Database (Denmark)

    McGugan, Malcolm; Sørensen, Bent F.

    2007-01-01

    It is anticipated that the large offshore wind farms planed for the near future will require a level of sensor technology sufficient to monitor their general condition from on-shore stations. The continuous monitoring of operational condition and structural responses will give a higher level...... damage or failure in the Structural materials. The vision is of future blades containing sensors that give very early indications of any damage that is classed as critical or that is developing unacceptably rapidly. This early indication allows the option of changing operating conditions, and of a timely...

  12. Machinery condition monitoring principles and practices

    CERN Document Server

    Mohanty, Amiya Ranjan

    2015-01-01

    Find the Fault in the MachinesDrawing on the author's more than two decades of experience with machinery condition monitoring and consulting for industries in India and abroad, Machinery Condition Monitoring: Principles and Practices introduces the practicing engineer to the techniques used to effectively detect and diagnose faults in machines. Providing the working principle behind the instruments, the important elements of machines as well as the technique to understand their conditions, this text presents every available method of machine fault detection occurring in machines in general, an

  13. Sequential monitoring with conditional randomization tests

    CERN Document Server

    Plamadeala, Victoria; 10.1214/11-AOS941

    2012-01-01

    Sequential monitoring in clinical trials is often employed to allow for early stopping and other interim decisions, while maintaining the type I error rate. However, sequential monitoring is typically described only in the context of a population model. We describe a computational method to implement sequential monitoring in a randomization-based context. In particular, we discuss a new technique for the computation of approximate conditional tests following restricted randomization procedures and then apply this technique to approximate the joint distribution of sequentially computed conditional randomization tests. We also describe the computation of a randomization-based analog of the information fraction. We apply these techniques to a restricted randomization procedure, Efron's [Biometrika 58 (1971) 403--417] biased coin design. These techniques require derivation of certain conditional probabilities and conditional covariances of the randomization procedure. We employ combinatoric techniques to derive t...

  14. Crosslinking and condition monitoring with wind power plants; Vernetzung und Condition Monitoring bei Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Spelter, Frank [Bachmann Electronic GmbH, Feldkirch (Austria). Unternehmenskommunikation

    2010-10-15

    Condition monitoring of wind power systems is getting increasingly important, and there are various possible approaches. The Bachmann M1 automation system allows the implementation of measuring and control processes and evaluations up to comprehensive condition monitoring. In combination with an expert system, it is possible to monitor mechanical and technical components and to detect defects before these will have negative effects on the system condition. (orig.)

  15. Integrated condition monitoring of space information network

    Science.gov (United States)

    Wang, Zhilin; Li, Xinming; Li, Yachen; Yu, Shaolin

    2015-11-01

    In order to solve the integrated condition monitoring problem in space information network, there are three works finished including analyzing the characteristics of tasks process and system health monitoring, adopting the automata modeling method, and respectively establishing the models for state inference and state determination. The state inference model is a logic automaton and is gotten by concluding engineering experiences. The state determination model is a double-layer automaton, the lower automaton is responsible for parameter judge and the upper automaton is responsible for state diagnosis. At last, the system state monitoring algorithm has been proposed, which realizes the integrated condition monitoring for task process and system health, and can avoid the false alarm.

  16. MONITORING OF HEAPS USING VARIOUS TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Helena Straková

    2015-07-01

    Full Text Available Coal heaps are frequently self-burning by definite environmental conditions, therefore thermal activity monitoring of these localities is important. For this purpose, data from terrestrial measurement or thermal infrared images are used. Subsurface coal fires monitored by terrestrial measurement by contact thermometers are time-consuming and dangerous because of landslides. That is a reason why coal fires are mostly monitored by thermal infrared images through remote sensing, i.e. satellite-borne or airborne data, which is much more suitable for thermal activity monitoring. The satellite data do not have sufficient geometric resolution (60 - 120m per pixel, aerial thermal data are accurate, but expensive. Unmanned aerial vehicles (UAV or better RPAS - remotely piloted aircraft systems can be solution – thermal images obtained by RPAS have good geometric resolution and can be used for small areas only and our case project areas are not so big. From economic point of view, low cost technology is preferred. The article describes opportunities of low-cost thermal infrared data, the use of RPAS (mapping by Microkopter system in thermal monitoring and photogrammetric tasks (coal heaps such as low cost aerial thermal mapping. The problems of planning and data acquisition are illustrated by creating an orthophoto. Theoretical preparation of data acquisition deals with RPAS Microkopter mission planning and operation. The obtained data are processed by several sets of software specially developed for close range aerial photogrammetry. The outputs are orthophoto images, digital elevation models and thermal map. As a bonus, low-cost aerial methods with small thermal camera are shown.

  17. Survey of Condition Indicators for Condition Monitoring Systems (Open Access)

    Science.gov (United States)

    2014-09-29

    Renewable Energy Laboratory (NREL) published a document named ‘Wind Turbine Gearbox Condition Monitoring Round Robin Study – Vibration Analysis’ in 2012... Mean Square (RMS) RMS describes the energy content of the signal. RMS is used to evaluate the overall condition of the components. Therefore, it...13) ̅ is the mean value of signal N is the number of data point in the dataset x Energy

  18. Electric machines modeling, condition monitoring, and fault diagnosis

    CERN Document Server

    Toliyat, Hamid A; Choi, Seungdeog; Meshgin-Kelk, Homayoun

    2012-01-01

    With countless electric motors being used in daily life, in everything from transportation and medical treatment to military operation and communication, unexpected failures can lead to the loss of valuable human life or a costly standstill in industry. To prevent this, it is important to precisely detect or continuously monitor the working condition of a motor. Electric Machines: Modeling, Condition Monitoring, and Fault Diagnosis reviews diagnosis technologies and provides an application guide for readers who want to research, develop, and implement a more effective fault diagnosis and condi

  19. STUDIES ON TOOL WEAR CONDITION MONITORING

    Directory of Open Access Journals (Sweden)

    Hüseyin Metin ERTUNÇ

    2001-01-01

    Full Text Available In this study, wear mechanisms on cutting tools, especially for the drill bits, during the cutting operation have been investigated. As the importance of full automation in industry has gained substantial importance, tool wear condition monitoring during the cutting operation has been the subject of many investigators. Tool condition monitoring is very crucial in order to change the tool before breakage. Because tool breakage can cause considerable economical damage to both the machine tool and workpiece. In this paper, the studies on the monitoring of drill bit wear in literature have been introduced; the direct/indirect techniques used and sensor fusion techniques have been summarized. The methods which were proposed to determine tool wear evolution as processing the sensor signals collected have been provided and their references have been given for detailed information.

  20. Research on on line monitoring and condition based maintenance technology of power primary equipment%电力一次设备的在线监测及其状态检修技术的研究

    Institute of Scientific and Technical Information of China (English)

    金兴武

    2016-01-01

    In this paper,the on-line monitoring and condition based maintenance technology of power primary equipment are studied,hoping that this research can promote the development of China's electric power industry to a certain extent.%本文就电力一次设备的在线监测及其状态检修技术进行了具体研究,希望这一研究能够在一定程度上推动我国电力事业的相关发展.

  1. Characterization, Monitoring and Sensor Technology Integrated Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    This booklet contains summary sheets that describe FY 1993 characterization, monitoring, and sensor technology (CMST) development projects. Currently, 32 projects are funded, 22 through the OTD Characterization, Monitoring, and Sensor Technology Integrated Program (CMST-IP), 8 through the OTD Program Research and Development Announcement (PRDA) activity managed by the Morgantown Energy Technology Center (METC), and 2 through Interagency Agreements (IAGs). This booklet is not inclusive of those CMST projects which are funded through Integrated Demonstrations (IDs) and other Integrated Programs (IPs). The projects are in six areas: Expedited Site Characterization; Contaminants in Soils and Groundwater; Geophysical and Hydrogeological Measurements; Mixed Wastes in Drums, Burial Grounds, and USTs; Remediation, D&D, and Waste Process Monitoring; and Performance Specifications and Program Support. A task description, technology needs, accomplishments and technology transfer information is given for each project.

  2. 基于GPRS无线通讯技术的输电线路全工况监测系统%Transmission Line Condition Monitoring System Based on GPRS Wireless Communication Technology

    Institute of Scientific and Technical Information of China (English)

    姚亮

    2011-01-01

    GPRS wireless communication technology is the best effective measure to solve transmission line condition real-time monitoring in power enterprises.This paper,GPRS is used in power enterprises according to the character of power enterprises transmission line condition,meanwhile a power enterprise transmission line condition real-time monitoring system is established.The project uses a camera,UAV and other data collection terminals as the effective means of transmission line monitoring visits,carrying out the four suspended wing UAV application based on independent suspension firstly in Anhui power system.%GPRS无线通讯技术(GPRS Wireless Communication Technology)是解决电力企业输电线路实时监测的有效方法,文章结合电力企业线路工况的实际特点,将GPRS无线通讯技术应用于电力企业输电线路实时监测中,建立了电力企业输电线路全工况监测系统。该项目利用了摄像头、无人机等数据采集终端作为输电线路巡视监测的有效手段,在安徽电力系统率先开展了基于自主悬停的四悬翼无人机的应用。

  3. Advanced condition monitoring at E.ON

    Energy Technology Data Exchange (ETDEWEB)

    Burridge-Oakland, Ty [E.ON, Nottingham (United Kingdom)

    2012-07-01

    Advanced Condition Monitoring (ACM) is a term for a new style of condition monitoring at E.ON. E.ON has developed a software tool known as SpheriCAL to perform ACM. SpheriCAL monitors plant health on a near real time basis via the signals stored in OSIsoft PI Servers. It produces alarms based on significant changes in condition, using the relationship between multiple plant signals of any type as a reference. Monitoring in this way can give early warning of developing problems investigating further investigation and maintenance planning. After a two year trial period, a substantial value case has been created and accepted for the use of ACM at E.ON. It has been found that the use of ACM in combination with a complimentary maintenance strategy can generate an Internal Rate of Return (IRR) of 57%. This value is based on reduction of plant trips and a reduction in unplanned unavailability by 20%, through planned instead of reactive maintenance. E.ON is currently in the process of implementing ACM at all of the Large Frame Gas Turbine sites across the European fleet of power stations. (orig.)

  4. Electrical condition monitoring method for polymers

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Jr. Kenneth S. (Dahlonega, GA); Morris, Shelby J. (Hampton, VA); Masakowski, Daniel D. (Worcester, MA); Wong, Ching Ping (Duluth, GA); Luo, Shijian (Boise, ID)

    2010-02-16

    An electrical condition monitoring method utilizes measurement of electrical resistivity of a conductive composite degradation sensor to monitor environmentally induced degradation of a polymeric product such as insulated wire and cable. The degradation sensor comprises a polymeric matrix and conductive filler. The polymeric matrix may be a polymer used in the product, or it may be a polymer with degradation properties similar to that of a polymer used in the product. The method comprises a means for communicating the resistivity to a measuring instrument and a means to correlate resistivity of the degradation sensor with environmentally induced degradation of the product.

  5. Blue sensors : technology and cooperative monitoring in UN peacekeeping.

    Energy Technology Data Exchange (ETDEWEB)

    Dorn, A. Walter Dr. (Canadian Forces College, Toronto, Ontario)

    2004-04-01

    For over a half-century, the soldiers and civilians deployed to conflict areas in UN peacekeeping operations have monitored ceasefires and peace agreements of many types with varying degrees of effectiveness. Though there has been a significant evolution of peacekeeping, especially in the 1990s, with many new monitoring functions, the UN has yet to incorporate monitoring technologies into its operations in a systematic fashion. Rather, the level of technology depends largely on the contributing nations and the individual field commanders. In most missions, sensor technology has not been used at all. So the UN has not been able to fully benefit from the sensor technology revolution that has seen effectiveness greatly amplified and costs plummet. This paper argues that monitoring technologies need not replace the human factor, which is essential for confidence building in conflict areas, but they can make peacekeepers more effective, more knowledgeable and safer. Airborne, ground and underground sensors can allow peacekeepers to do better monitoring over larger areas, in rugged terrain, at night (when most infractions occur) and in adverse weather conditions. Technology also allows new ways to share gathered information with the parties to create confidence and, hence, better pre-conditions for peace. In the future sensors should become 'tools of the trade' to help the UN keep the peace in war-torn areas.

  6. A Resilient Condition Assessment Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Humberto Garcia; Wen-Chiao Lin; Semyon M. Meerkov

    2012-08-01

    An architecture and supporting methods are presented for the implementation of a resilient condition assessment monitoring system that can adaptively accommodate both cyber and physical anomalies to a monitored system under observation. In particular, the architecture includes three layers: information, assessment, and sensor selection. The information layer estimates probability distributions of process variables based on sensor measurements and assessments of the quality of sensor data. Based on these estimates, the assessment layer then employs probabilistic reasoning methods to assess the plant health. The sensor selection layer selects sensors so that assessments of the plant condition can be made within desired time periods. Resilient features of the developed system are then illustrated by simulations of a simplified power plant model, where a large portion of the sensors are under attack.

  7. Electrical condition monitoring method for polymers

    Science.gov (United States)

    Watkins, Jr., Kenneth S.; Morris, Shelby J.; Masakowski, Daniel D.; Wong, Ching Ping; Luo, Shijian

    2008-08-19

    An electrical condition monitoring method utilizes measurement of electrical resistivity of an age sensor made of a conductive matrix or composite disposed in a polymeric structure such as an electrical cable. The conductive matrix comprises a base polymer and conductive filler. The method includes communicating the resistivity to a measuring instrument and correlating resistivity of the conductive matrix of the polymeric structure with resistivity of an accelerated-aged conductive composite.

  8. Reusable rocket engine optical condition monitoring

    Science.gov (United States)

    Wyett, L.; Maram, J.; Barkhoudarian, S.; Reinert, J.

    1987-01-01

    Plume emission spectrometry and optical leak detection are described as two new applications of optical techniques to reusable rocket engine condition monitoring. Plume spectrometry has been used with laboratory flames and reusable rocket engines to characterize both the nominal combustion spectra and anomalous spectra of contaminants burning in these plumes. Holographic interferometry has been used to identify leaks and quantify leak rates from reusable rocket engine joints and welds.

  9. Some aspects of AE application in tool condition monitoring

    Science.gov (United States)

    Jemielniak

    2000-03-01

    Acoustic emission (AE) is rather a well-known form of non-destructive testing. In the last few years the technology of the AE measurement has been expanded to cover the area of tool condition monitoring. The paper presents some experience of Warsaw University of Technology (WUT) in such applications of AE. It provides an interpretation of common AE signal distortions and possible solutions to avoid them. Furthermore, a characteristic study of several different AE and ultrasonic sensors being used in WUT is furnished. Evaluation of the applicability of some basic measures of acoustic emission for tool condition monitoring is also presented in the paper. Finally paper presents a method of the catastrophic tool failure detection in turning, which uses symptoms other than the direct magnitude AERMS signal. The method is based on the statistical analysis of the distributions of the AERMS signal.

  10. EPO N技术在智能变电站状态监测和视频监控系统中的应用%Application of EPON Technology in Smart Substation Condition Monitoring and Video Surveillance Systems

    Institute of Scientific and Technical Information of China (English)

    杨臻; 赵燕茹

    2014-01-01

    Ethernet passive optical network (EPON)is a new technology for optical fiber accessing network,which has characteristics of low cost,high bandwidth,little electromagnetic interference,strong scalability,strong compatibility and so on.The condition monitoring and video surveillance system in smart substation have a feature of large data,but low real-time requirements.The condition monitoring and video surveillance system in substation are constructed with using EPON can effectively solve the problem of exports' bandwidth allocation without using switches,and also can save the network construction investment and life-cycle maintenance costs, which is effective new network scheme for the condition monitoring and video surveillance system in smart substation.This paper analyzed the feasibility of the application of EPON technology in monitoring and video surveillance system in smart substation,and designed the construction scheme of EPON network for 220 kV smart substation,which can provide a new scheme for the data transmission in monitoring and video surveillance system in smart substation.%以太无源光网络(ethernet passive optical network,EPON)是一种新型的光纤接入网络技术,它具有低成本、高带宽、电磁干扰小、扩展性强、兼容性强等特点。在智能变电站中状态监测和视频监控系统数据量较大、实时性要求较低。采用EPON技术构建站内状态监测与视频监控系统,能够有效地解决出口带宽分配问题,且无需使用交换机,大大节省网络建设投资与全寿命周期维护成本,是智能变电站状态监测和视频监控系统有效的新型组网方案。分析了智能变电站状态监测和视频监控系统应用EPON技术的可行性,并提出220 kV智能变电站EPON网络构建方案,为智能变电站状态监测和视频监控系统的数据传输提供了一种新型方案。

  11. Characterization, monitoring, and sensor technology crosscutting program: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The technology development must also be cost effective and appropriate to EM-30/40/60 needs. Furthermore, the required technologies must be delivered and implemented when needed. Accordingly, and to ensure that available DOE and other national resources are focused an the most pressing needs, management of the technology development is concentrated on the following Focus Areas: Contaminant Plume Containment and Remediation (PFA); Landfill Stabilization (LSFA); High-Level Waste Tank Remediation (TFA); Mixed Waste Characterization, Treatment, and Disposal (MWFA); and Facility Deactivation, Decommissioning, and Material Disposition (FDDMDFA). Brief descriptions of CMST-CP projects funded in FY95 are presented.

  12. Condition monitoring of rotary blood pumps.

    Science.gov (United States)

    Jammu, V B; Malanoski, S; Walter, T; Smith, W

    1997-01-01

    Long-term, trouble-free operation of ventricular assist devices (VADs) is critical to the patient. A catastrophic failure of the VAD could cost the patient's life, thus defeating the purpose of the device. The targeted 90% 5 year reliability also implies that the average device life would exceed the 5 year limit. Time based explantation of the device after the fifth year will replace many devices with significant additional life, subject the patient to unnecessary surgical risk, and increase costs. To preclude the need for time based replacements and prevent catastrophic failures, a condition monitor is proposed in this article for early detection of faults in VADs. To develop this monitor, the effectiveness of various sensing and monitoring methods for determining the VAD condition is investigated. A Hemadyne pump was instrumented with a set of eight sensors, and a series of experiments were performed to record and analyze signals from the normal and abnormal pumps with five different faults. Statistical, spectral, envelope, and ensemble averaging analyses were performed to characterize changes in sensor signals due to faults. Experimental results indicate that statistical and frequency information from the acceleration and dynamic pressure signals can clearly detect and identify various VAD faults.

  13. Condition monitoring of multistage printing presses

    Science.gov (United States)

    Wang, W.; Golnaraghi, F.; Ismail, F.

    2004-03-01

    The main concern in printing quality in multistage presses is doubling. Doubling is caused by imperfections either within stages (units) or in links connecting different stages, mainly resulting from machine vibration, gear damage, and excessive run-out. In this paper, we propose new means for printing quality control via geared system health condition monitoring. The diagnosis is based on the signals acquired from inexpensive magnetic pickups. A new technique is developed to monitor the gear rotation synchronization among different stages in order to isolate possible sources of the doubling problem. A new approach is proposed to determine the gear run-out. Moreover, gear tooth damage detection is conducted using the beta kurtosis and the continuous wavelet transform based on the overall residual signal. The beta kurtosis of original signal average is also shown here to be useful in detecting excessive gear run-out. Test results from printing presses demonstrated the viability of the proposed methods.

  14. Condition Monitoring of Large-Scale Facilities

    Science.gov (United States)

    Hall, David L.

    1999-01-01

    This document provides a summary of the research conducted for the NASA Ames Research Center under grant NAG2-1182 (Condition-Based Monitoring of Large-Scale Facilities). The information includes copies of view graphs presented at NASA Ames in the final Workshop (held during December of 1998), as well as a copy of a technical report provided to the COTR (Dr. Anne Patterson-Hine) subsequent to the workshop. The material describes the experimental design, collection of data, and analysis results associated with monitoring the health of large-scale facilities. In addition to this material, a copy of the Pennsylvania State University Applied Research Laboratory data fusion visual programming tool kit was also provided to NASA Ames researchers.

  15. Air Conditioning and Heating Technology--II.

    Science.gov (United States)

    Gattone, Felix

    Twenty-eight chapters and numerous drawings provide information for instructors and students of air conditioning and heating technology. Chapter 1 lists the occupational opportunities in the field. Chapter 2 covers the background or development of the industry of air conditioning and heating technology. Chapter 3 includes some of the principle…

  16. Air Conditioning and Heating Technology--II.

    Science.gov (United States)

    Gattone, Felix

    Twenty-eight chapters and numerous drawings provide information for instructors and students of air conditioning and heating technology. Chapter 1 lists the occupational opportunities in the field. Chapter 2 covers the background or development of the industry of air conditioning and heating technology. Chapter 3 includes some of the principle…

  17. Condition Monitoring of Cables Task 3 Report: Condition Monitoring Techniques for Electric Cables

    Energy Technology Data Exchange (ETDEWEB)

    Villaran, M.; Lofaro, R.; na

    2009-11-30

    For more than 20 years the NRC has sponsored research studying electric cable aging degradation, condition monitoring, and environmental qualification testing practices for electric cables used in nuclear power plants. This report summarizes several of the most effective and commonly used condition monitoring techniques available to detect damage and measure the extent of degradation in electric cable insulation. The technical basis for each technique is summarized, along with its application, trendability of test data, ease of performing the technique, advantages and limitations, and the usefulness of the test results to characterize and assess the condition of electric cables.

  18. Condition Monitoring and Management from Acoustic Emissions

    DEFF Research Database (Denmark)

    Pontoppidan, Niels Henrik Bohl

    2005-01-01

    In the following, I will use technical terms without explanation as it gives the freedom to describe the project in a shorter form for those who already know. The thesis is about condition monitoring of large diesel engines from acoustic emission signals. The experiments have been focused...... is the analysis of the angular position changes of the engine related events such as fuel injection and valve openings, caused by operational load changes. With inspiration from speech recognition and voice effects the angular timing changes have been inverted with the event alignment framework. With the event...

  19. Application of EPON Technology in Transmission Line Video Monitoring

    Directory of Open Access Journals (Sweden)

    Xia Zongze

    2015-01-01

    Full Text Available The operating condition of transmission lines directly determines the efficiency of the power system. Therefore, faced with a complex operating environment, it is extremely important to protect transmission line video monitoring. At present, the technology widely used in the power distribution and network communication in domestic power industry is EPON technology. This technology has a broad application prospect on the transmission of electrical circuit video monitoring information. On this basis, this paper carries out a further research on the application of EPON technology in transmission line video monitoring. This paper firstly proposes the design principle of transmission line video monitoring, and on this basis, it carries out a comparative analysis of merits and demerits of different types of EPON networking schemes. In addition, quantification is given for the EPON networking power consumption, so as to obtain a complete EPON combining scheme which is combined with specific examples to validate, and finally realize that the EPON technology has a certain application value because it is in line with various indicators after application in transmission line video monitoring.

  20. Heat stress monitoring system. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The US Department of Energy`s (DOE) nuclear facility decontamination and decommissioning (D and D) program involves the need to decontaminate and decommission buildings expeditiously and cost-effectively. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. Often, D and D workers must perform duties in inclement weather, and because they also frequently work in contaminated areas, they must wear personal protective clothing and/or respirators. Monitoring the health status of workers under these conditions is an important component of ensuring their safety. The MiniMitter VitalSense Telemetry System`s heat stress monitoring system (HSMS) is designed to monitor the vital signs of individual workers as they perform work in conditions that might be conducive to heat exhaustion or heat stress. The HSMS provides real-time data on the physiological condition of workers which can be monitored to prevent heat stress or other adverse health situations. This system is particularly useful when workers are wearing personal protective clothing or respirators that make visual observation of their condition more difficult. The MiniMitter VitalSense Telemetry System can monitor up to four channels (e.g., heart rate, body activity, ear canal, and skin temperature) and ten workers from a single supervisory station. The monitors are interfaced with a portable computer that updates and records information on individual workers. This innovative technology, even though it costs more, is an attractive alternative to the traditional (baseline) technology, which measures environmental statistics and predicts the average worker`s reaction to those environmental conditions without taking the physical condition of the individual worker into consideration. Although use of the improved technology might be justified purely on the basis of improved safety, it has the potential to pay for itself by reducing worker time lost caused by heat

  1. Home medical monitoring network based on embedded technology

    Science.gov (United States)

    Liu, Guozhong; Deng, Wenyi; Yan, Bixi; Lv, Naiguang

    2006-11-01

    Remote medical monitoring network for long-term monitoring of physiological variables would be helpful for recovery of patients as people are monitored at more comfortable conditions. Furthermore, long-term monitoring would be beneficial to investigate slowly developing deterioration in wellness status of a subject and provide medical treatment as soon as possible. The home monitor runs on an embedded microcomputer Rabbit3000 and interfaces with different medical monitoring module through serial ports. The network based on asymmetric digital subscriber line (ADSL) or local area network (LAN) is established and a client - server model, each embedded home medical monitor is client and the monitoring center is the server, is applied to the system design. The client is able to provide its information to the server when client's request of connection to the server is permitted. The monitoring center focuses on the management of the communications, the acquisition of medical data, and the visualization and analysis of the data, etc. Diagnosing model of sleep apnea syndrome is built basing on ECG, heart rate, respiration wave, blood pressure, oxygen saturation, air temperature of mouth cavity or nasal cavity, so sleep status can be analyzed by physiological data acquired as people in sleep. Remote medical monitoring network based on embedded micro Internetworking technology have advantages of lower price, convenience and feasibility, which have been tested by the prototype.

  2. Evaluative conditioning of food technologies in China

    DEFF Research Database (Denmark)

    Loebnitz, Natascha; Grunert, Klaus G

    2014-01-01

    This study provides an initial examination of the evaluative conditioning (EC) of consumers’ attitudes toward food technologies in China, including how EC can affect consumer acceptance of new technology when participants possess different levels of social trust. In a study using the EC paradigm...... and a combination of between-subjects control groups and within-subjects control conditions, participants considered three food technologies (conventional, enzyme, and genetic), paired with affectively positive, neutral, and negative images. Subsequent evaluative measurements revealed that EC can explain attitude...... formation toward food technologies in China when consumers see affective images, but the strength of the effects varies at different levels of social trust. Participants with a high level of trust in the institutions that promote and regulate the technologies can be conditioned both positively...

  3. The ATLAS Beam Condition Monitor Commissioning

    CERN Document Server

    Gorisek, A

    2008-01-01

    The ATLAS Beam Condition Monitor (BCM) based on radiation hard pCVD diamond sensors and event-by-event measurements of environment close to interaction point (z=±184 cm, r=5.5 cm) has been installed in the Pixel detector since early 2008 and together with the Pixel detector in the ATLAS cavern since June 2008. The sensors and front end electronics were shown to withstand 50 Mrad and 1015 particles/cm2 expected in LHC lifetime. Recently the full readout chain, partly made of radiation tolerant electronics, still inside of the ATLAS spectrometer and partly in the electronics room, was completed and the system was operated in time of the first LHC single beams and is ready now for the first collisions which will follow after the LHC repair.

  4. Functioning condition monitoring of industrial equipment

    Science.gov (United States)

    Ungureanu, N. S.; Petrovan, A.; Ungureanu, M.; Alexandrescu, M.

    2017-02-01

    The paper analyses the theoretical aspects related to monitoring industrial equipment. Are treated issues that concern the choosing of industrial equipment to be monitored, the parameters to be monitored, monitoring mode (local or remote) and the mode of collection and transmission of data.

  5. 物联网技术在输变电设备状态监测中的应用%Application of the internet of things technology in power transmission equipments condition monitoring

    Institute of Scientific and Technical Information of China (English)

    曹一家; 何杰; 黄小庆; 张志丹

    2012-01-01

    Smart grid is one of the most important application fields in the internet of things (IOT). On the basis of integrated analysis of basic concept and research hotspot of IOT, the paper preliminary studies the application prospects of IOT in on-line monitoring of power transmission and distribution equipment, electric vehicle and smart home. Then, with intelligent monitoring, condition assessment and life cycle management of transmission and distribution equipment as background, architecture of the internet of power transmission and distribution equipment is proposed, including intelligent perception layer, data communication layer, information integration layer, smart application layer. Key technologies, such as integrated intelligent monitoring device, coding and labeling system, communication technology, panoramic information modeling, information processing, life cycle management, security problems and standardization, are further discussed in detail. And then research directions and existing problems of these technologies are finally given.%智能电网是物联网应用的最重要领域之一.在分析物联网概念及研究热点的基础上,初步探讨物联网在智能电网中输变电设备在线监测、电动汽车和智能家居的应用前景,以输变电设备智能监测、状态评估和全寿命周期管理为背景,提出包括智能感知层、数据通信层、信息整合层和智能应用层的输变电设备物联网体系架构,并详细探讨体系架构中所涉及到的若干关键技术,主要包括一体化智能监测装置、编码和标识体系、通信技术、全景信息建模、信息处理技术、全寿命周期管理、安全威胁与措施以及标准化,指出这些技术的研究方向和存在问题.

  6. A REVIEW ON ARTIFICIAL INTELLIGENT SYSTEM FOR BEARING CONDITION MONITORING

    Directory of Open Access Journals (Sweden)

    PIYUSH M. PATEL,

    2011-02-01

    Full Text Available Artificial Intelligence (AI is an emerging technology. Research in AI is focused on developing computational approaches to intelligent behavior. The computer programs with which AI could be associated are primarily processes associated with complexity, ambiguity, ndecisiveness, and uncertainty. This present paper surveys the development of a condition monitoring procedure for different types ofbearings, which involves an artificial intelligence method as well as reviewed in order to examine the capability of AI methods and techniques to effectively address various hard-to-solve design tasks and issues relating different types of bearing fault. Although this review cannot be collectively exhaustive, it may be considered as a valuable guide for researchers who are interested in the domain of AI and wish to explore the opportunities offered by fuzzy logic, artificial neural networks and genetic algorithms for further improvement of conditioning monitoring for different types of bearing under different operating conditioning. Recent trends in research on conditioning monitoring using AI for different bearing have also been included.

  7. Characterization, monitoring, and sensor technology catalogue

    Energy Technology Data Exchange (ETDEWEB)

    Matalucci, R.V. [ed.] [Sandia National Labs., Albuquerque, NM (United States); Esparza-Baca, C.; Jimenez, R.D. [Applied Sciences Laboratory, Inc., Albuquerque, NM (United States)

    1995-12-01

    This document represents a summary of 58 technologies that are being developed by the Department of Energy`s (DOE`s) Office of Science and Technology (OST) to provide site, waste, and process characterization and monitoring solutions to the DOE weapons complex. The information was compiled to provide performance data on OST-developed technologies to scientists and engineers responsible for preparing Remedial Investigation/Feasibility Studies (RI/FSs) and preparing plans and compliance documents for DOE cleanup and waste management programs. The information may also be used to identify opportunities for partnering and commercialization with industry, DOE laboratories, other federal and state agencies, and the academic community. Each technology is featured in a format that provides: (1) a description, (2) technical performance data, (3) applicability, (4) development status, (5) regulatory considerations, (6) potential commercial applications, (7) intellectual property, and (8) points-of-contact. Technologies are categorized into the following areas: (1) Bioremediation Monitoring, (2) Decontamination and Decommissioning, (3) Field Analytical Laboratories, (4) Geophysical and Hydrologic Characterization, (5) Hazardous Inorganic Contaminant Analysis, (6) Hazardous Organic Contaminant Analysis, (7) Mixed Waste, (8) Radioactive Contaminant Analysis, (9) Remote Sensing,(10)Sampling and Drilling, (11) Statistically Guided Sampling, and (12) Tank Waste.

  8. PROBLEMS OF CREATION THE MONITORING SYSTEM CONCERNING THE CONDITION OF INFORMATIZATION OF THE GENERAL EDUCATION INSTITUTIONS

    Directory of Open Access Journals (Sweden)

    Valeriy Yu. Bykov

    2010-08-01

    Full Text Available In the article the problems, which appear under the creation of monitoring systems concerning the condition of informatization of general educational institutions, such as definition of monitoring object and list of parameters that will be traced during the monitoring, technologies of obtaining and actualization of data parameters, that are to be monitored, formats of data submission and ways of its processing, monitoring time period etc. are considered. In the article some decision of these problems are offered. Here is also mentioned the data of some characteristics and possibilities of the creation of monitoring systems concerning the condition of informatization of general educational institutions in Ukraine.

  9. Study on Lubricating Oil Monitoring Technology

    Institute of Scientific and Technical Information of China (English)

    LIU Feng-bi

    2006-01-01

    Lubricating oil monitoring has been proven to be an effective method for detecting and diagnosing machinery failures and essential for realizing condition based maintenance. In this paper, mathematical statistics methods for determining the oil parameters featuring machinery failures and the parameters' probability distribution functions and their thresholds are put forward.

  10. Research on Network-based Integrated Condition Monitoring Unit for Rotating Machinery

    Institute of Scientific and Technical Information of China (English)

    XI Xiao-peng; ZHANG Wen-rui; XI Shuan-min; JING Min-qing; YU Lie

    2004-01-01

    In this paper, a network-based monitoring unit for condition monitoring and fault diagnosis of rotating machinery is designed and implemented. With the technology of DSP( Digital signal processing), TCP/IP, and simultaneous acquisition, a mechanism of multi-process and inter-process communication, the integrating problem of signal acquisition, the data dynamic management and network-based configuration in the embedded condition monitoring system is solved. It offers the input function of monitoring information for network-based condition monitoring and a fault diagnosis system.

  11. Monitoring Polaris and Seeing Conditions at PARI

    Science.gov (United States)

    Crawford, April

    2016-01-01

    Pisgah Astronomical Research Institute (PARI) was originally built by NASA to track and collect data from satellites. The location in the Pisgah National Forest was chosen due to the excellent ability of the surrounding mountains to block radio interference and light pollution. The PARI observatory has been monitoring Polaris for over 10 years and has amassed a large collection of images of the star and those surrounding it. While several telescopes have been used throughout the project, we are currently using a Omni XLT Series Celestron and an SBIG ST-8300M CCD camera with a 0.70 arcsecond/pixel ratio. The software is run on Windows, however, we will be making a switch to Linux and implementing a new program to control the camera. The new images, once converted to a usable format (ST10 to FITS), can be automatically fed into an in-house Java program to track the variability of the star and simultaneously determine the seeing conditions experienced on the campus. Since we have several years worth of data, the program will also be used to provide a history of variability and seeing conditions. We ultimately hope to be able to track the possible changes in variability of Polaris, as it's current location on the HR diagram is being studied. The data could also prove valuable for our on-site scientists and many visiting students to study on campus. We are also developing a relative scale for our seeing conditions, accompanied by FWHM measurements in arcseconds that will can be compared to those of surrounding observatories in mountainous areas.

  12. Technology of remote monitoring for nuclear activity monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kwack, Ehn Ho; Kim, Jong Soo; Yoon, Wan Ki; Park, Sung Sik; Na, Won Woo; An, Jin Soo; Cha, Hong Ryul; Kim, Jung Soo

    2000-05-01

    In a view of safeguards monitoring at nuclear facilities, the monitoring is changing to remote method so that this report is described to remote monitoring(RM) applying on commercial NPP in Korea. To enhance IAEA safeguards efficiency and effectiveness, IAEA is taking into account of remote monitoring system(RMS) and testing as a field trial. IRMP(International Remote Monitoring Project) in participating many nations for development of RMS is proceeding their project such as technical exchange and research etc. In case of our country are carrying out the research relevant RM since acceptance RMS at 7th ROK-IAEA safeguards implementation review meeting. With a view to enhancement the RMS, installation location and element technology of the RM equipment are evaluated in a view of safeguards in Korea LWRs, and proposed a procedure for national inspection application through remote data evaluation from Younggwang-3 NPP. These results are large valuable to use of national inspection at time point extending installation to all Korea PWR NPP. In case of CANDU, neutron, gamma measurement and basic concept of network using optical fiber scintillating detector as remote verification method for dry storage canister are described. Also RM basic design of spent fuel transfer campaign is described that unattended RM without inspector instead of performing in participating together with IAEA and national inspector. The transfer campaign means the spent fuel storage pond to dry storage canister for about two months every year. Therefore, positively participation of IAEA strength safeguards project will be increased transparency for our nuclear activity as well as contributed to national relevant industry.

  13. Bio-inspired computational techniques based on advanced condition monitoring

    Institute of Scientific and Technical Information of China (English)

    Su Liangcheng; He Shan; Li Xiaoli; Li Xinglin

    2011-01-01

    The application of bio-inspired computational techniques to the field of condition monitoring is addressed.First, the bio-inspired computational techniques are briefly addressed; the advantages and disadvantages of these computational methods are made clear. Then, the roles of condition monitoring in the predictive maintenance and failures prediction and the development trends of condition monitoring are discussed. Finally, a case study on the condition monitoring of grinding machine is described, which shows the application of bio-inspired computational technique to a practical condition monitoring system.

  14. Signature Optical Cues: Emerging Technologies for Monitoring Plant Health

    Directory of Open Access Journals (Sweden)

    Anand K. Asundi

    2008-05-01

    Full Text Available Optical technologies can be developed as practical tools for monitoring plant health by providing unique spectral signatures that can be related to specific plant stresses. Signatures from thermal and fluorescence imaging have been used successfully to track pathogen invasion before visual symptoms are observed. Another approach for noninvasive plant health monitoring involves elucidating the manner with which light interacts with the plant leaf and being able to identify changes in spectral characteristics in response to specific stresses. To achieve this, an important step is to understand the biochemical and anatomical features governing leaf reflectance, transmission and absorption. Many studies have opened up possibilities that subtle changes in leaf reflectance spectra can be analyzed in a plethora of ways for discriminating nutrient and water stress, but with limited success. There has also been interest in developing transgenic phytosensors to elucidate plant status in relation to environmental conditions. This approach involves unambiguous signal creation whereby genetic modification to generate reporter plants has resulted in distinct optical signals emitted in response to specific stressors. Most of these studies are limited to laboratory or controlled greenhouse environments at leaf level. The practical translation of spectral cues for application under field conditions at canopy and regional levels by remote aerial sensing remains a challenge. The movement towards technology development is well exemplified by the Controlled Ecological Life Support System under development by NASA which brings together technologies for monitoring plant status concomitantly with instrumentation for environmental monitoring and feedback control.

  15. FY 2009 Progress: Process Monitoring Technology Demonstration at PNNL

    Energy Technology Data Exchange (ETDEWEB)

    Arrigo, Leah M.; Christensen, Ronald N.; Fraga, Carlos G.; Liezers, Martin; Peper, Shane M.; Thomas, Elizabeth M.; Bryan, Samuel A.; Douglas, Matthew; Laspe, Amy R.; Lines, Amanda M.; Peterson, James M.; Ward, Rebecca M.; Casella, Amanda J.; Duckworth, Douglas C.; Levitskaia, Tatiana G.; Orton, Christopher R.; Schwantes, Jon M.

    2009-12-01

    Pacific Northwest National Laboratory (PNNL) is developing and demonstrating three technologies designed to assist in the monitoring of reprocessing facilities in near-real time. These technologies include 1) a multi-isotope process monitor (MIP), 2) a spectroscopy-based monitor that uses UV-Vis-NIR (ultraviolet-visible-near infrared) and Raman spectrometers, and 3) an electrochemically modulated separations approach (EMS). The MIP monitor uses gamma spectroscopy and pattern recognition software to identify off-normal conditions in process streams. The UV-Vis-NIR and Raman spectroscopic monitoring continuously measures chemical compositions of the process streams including actinide metal ions (uranium, plutonium, neptunium), selected fission products, and major cold flow sheet chemicals. The EMS approach provides an on-line means for separating and concentrating elements of interest out of complex matrices prior to detection via nondestructive assay by gamma spectroscopy or destructive analysis with mass spectrometry. A general overview of the technologies and ongoing demonstration results are described in this report.

  16. Condition Monitoring for Helicopter Data. Appendix A

    Science.gov (United States)

    Wen, Fang; Willett, Peter; Deb, Somnath

    2000-01-01

    In this paper the classical "Westland" set of empirical accelerometer helicopter data is analyzed with the aim of condition monitoring for diagnostic purposes. The goal is to determine features for failure events from these data, via a proprietary signal processing toolbox, and to weigh these according to a variety of classification algorithms. As regards signal processing, it appears that the autoregressive (AR) coefficients from a simple linear model encapsulate a great deal of information in a relatively few measurements; it has also been found that augmentation of these by harmonic and other parameters can improve classification significantly. As regards classification, several techniques have been explored, among these restricted Coulomb energy (RCE) networks, learning vector quantization (LVQ), Gaussian mixture classifiers and decision trees. A problem with these approaches, and in common with many classification paradigms, is that augmentation of the feature dimension can degrade classification ability. Thus, we also introduce the Bayesian data reduction algorithm (BDRA), which imposes a Dirichlet prior on training data and is thus able to quantify probability of error in an exact manner, such that features may be discarded or coarsened appropriately.

  17. Guaranteeing robustness of structural condition monitoring to environmental variability

    Science.gov (United States)

    Van Buren, Kendra; Reilly, Jack; Neal, Kyle; Edwards, Harry; Hemez, François

    2017-01-01

    Advances in sensor deployment and computational modeling have allowed significant strides to be recently made in the field of Structural Health Monitoring (SHM). One widely used SHM strategy is to perform a vibration analysis where a model of the structure's pristine (undamaged) condition is compared with vibration response data collected from the physical structure. Discrepancies between model predictions and monitoring data can be interpreted as structural damage. Unfortunately, multiple sources of uncertainty must also be considered in the analysis, including environmental variability, unknown model functional forms, and unknown values of model parameters. Not accounting for these sources of uncertainty can lead to false-positives or false-negatives in the structural condition assessment. To manage the uncertainty, we propose a robust SHM methodology that combines three technologies. A time series algorithm is trained using "baseline" data to predict the vibration response, compare predictions to actual measurements collected on a potentially damaged structure, and calculate a user-defined damage indicator. The second technology handles the uncertainty present in the problem. An analysis of robustness is performed to propagate this uncertainty through the time series algorithm and obtain the corresponding bounds of variation of the damage indicator. The uncertainty description and robustness analysis are both inspired by the theory of info-gap decision-making. Lastly, an appropriate "size" of the uncertainty space is determined through physical experiments performed in laboratory conditions. Our hypothesis is that examining how the uncertainty space changes throughout time might lead to superior diagnostics of structural damage as compared to only monitoring the damage indicator. This methodology is applied to a portal frame structure to assess if the strategy holds promise for robust SHM. (Publication approved for unlimited, public release on October-28

  18. FY-2010 Process Monitoring Technology Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Orton, Christopher R.; Bryan, Samuel A.; Casella, Amanda J.; Hines, Wes; Levitskaia, Tatiana G.; henkell, J.; Schwantes, Jon M.; Jordan, Elizabeth A.; Lines, Amanda M.; Fraga, Carlos G.; Peterson, James M.; Verdugo, Dawn E.; Christensen, Ronald N.; Peper, Shane M.

    2011-01-01

    During FY 2010, work under the Spectroscopy-Based Process Monitoring task included ordering and receiving four fluid flow meters and four flow visible-near infrared spectrometer cells to be instrumented within the centrifugal contactor system at Pacific Northwest National Laboratory (PNNL). Initial demonstrations of real-time spectroscopic measurements on cold-stream simulants were conducted using plutonium (Pu)/uranium (U) (PUREX) solvent extraction process conditions. The specific test case examined the extraction of neodymium nitrate (Nd(NO3)3) from an aqueous nitric acid (HNO3) feed into a tri-n-butyl phosphate (TBP)/ n-dodecane solvent. Demonstration testing of this system included diverting a sample from the aqueous feed meanwhile monitoring the process in every phase using the on-line spectroscopic process monitoring system. The purpose of this demonstration was to test whether spectroscopic monitoring is capable of determining the mass balance of metal nitrate species involved in a cross-current solvent extraction scheme while also diverting a sample from the system. The diversion scenario involved diverting a portion of the feed from a counter-current extraction system while a continuous extraction experiment was underway. A successful test would demonstrate the ability of the process monitoring system to detect and quantify the diversion of material from the system during a real-time continuous solvent extraction experiment. The system was designed to mimic a PUREX-type extraction process with a bank of four centrifugal contactors. The aqueous feed contained Nd(NO3)3 in HNO3, and the organic phase was composed of TBP/n-dodecane. The amount of sample observed to be diverted by on-line spectroscopic process monitoring was measured to be 3 mmol (3 x 10-3 mol) Nd3+. This value was in excellent agreement with the 2.9 mmol Nd3+ value based on the known mass of sample taken (i.e., diverted) directly from the system feed solution.

  19. Work organisation, technology and working conditions

    NARCIS (Netherlands)

    Dhondt, S.; Kraan, K.; Sloten, G. van

    2002-01-01

    The personal computer, computer networks and the Internet have brought the Union into the Information Age. These technological changes have inevitably led to changes in the work environment and the quality of working conditions. For the third time, the European Foundation for the Improvement of Livi

  20. Wind Turbine Gearbox Condition Monitoring Round Robin Study - Vibration Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, S.

    2012-07-01

    The Gearbox Reliability Collaborative (GRC) at the National Wind Technology Center (NWTC) tested two identical gearboxes. One was tested on the NWTCs 2.5 MW dynamometer and the other was field tested in a turbine in a nearby wind plant. In the field, the test gearbox experienced two oil loss events that resulted in damage to its internal bearings and gears. Since the damage was not severe, the test gearbox was removed from the field and retested in the NWTCs dynamometer before it was disassembled. During the dynamometer retest, some vibration data along with testing condition information were collected. These data enabled NREL to launch a Wind Turbine Gearbox Condition Monitoring Round Robin project, as described in this report. The main objective of this project was to evaluate different vibration analysis algorithms used in wind turbine condition monitoring (CM) and find out whether the typical practices are effective. With involvement of both academic researchers and industrial partners, the project sets an example on providing cutting edge research results back to industry.

  1. Operant Conditioning of Mental Retardates' Visual Monitoring.

    Science.gov (United States)

    Perryman, Roy E.; And Others

    1981-01-01

    To study improvement of visual monitoring of retardates, specialized training methods backed up by incentives were used. The extent to which these training techniques might be expected to produce results which would generalize was explored. Subjects were eight female mental retardates (ages 15-22) with IQs from 38 to 69. (Author/SJL)

  2. Application of TRIZ approach to machine vibration condition monitoring problems

    Science.gov (United States)

    Cempel, Czesław

    2013-12-01

    Up to now machine condition monitoring has not been seriously approached by TRIZ1TRIZ= Russian acronym for Inventive Problem Solving System, created by G. Altshuller ca 50 years ago. users, and the knowledge of TRIZ methodology has not been applied there intensively. However, there are some introductory papers of present author posted on Diagnostic Congress in Cracow (Cempel, in press [11]), and Diagnostyka Journal as well. But it seems to be further need to make such approach from different sides in order to see, if some new knowledge and technology will emerge. In doing this we need at first to define the ideal final result (IFR) of our innovation problem. As a next we need a set of parameters to describe the problems of system condition monitoring (CM) in terms of TRIZ language and set of inventive principles possible to apply, on the way to IFR. This means we should present the machine CM problem by means of contradiction and contradiction matrix. When specifying the problem parameters and inventive principles, one should use analogy and metaphorical thinking, which by definition is not exact but fuzzy, and leads sometimes to unexpected results and outcomes. The paper undertakes this important problem again and brings some new insight into system and machine CM problems. This may mean for example the minimal dimensionality of TRIZ engineering parameter set for the description of machine CM problems, and the set of most useful inventive principles applied to given engineering parameter and contradictions of TRIZ.

  3. Condition Monitoring for DC-link Capacitors Based on Artificial Neural Network Algorithm

    DEFF Research Database (Denmark)

    Soliman, Hammam Abdelaal Hammam; Wang, Huai; Gadalla, Brwene Salah Abdelkarim

    2015-01-01

    In power electronic systems, capacitor is one of the reliability critical components . Recently, the condition monitoring of capacitors to estimate their health status have been attracted by the academic research. Industry applications require more reliable power electronics products...... with preventive maintenance. However, the existing capacitor condition monitoring methods suffer from either increased hardware cost or low estimation accuracy, being the challenges to be adopted in industry applications. New development in condition monitoring technology with software solutions without extra...... hardware will reduce the cost, and therefore could be more promising for industry applications. A condition monitoring method based on Artificial Neural Network (ANN) algorithm is therefore proposed in this paper. The implementation of the ANN to the DC-link capacitor condition monitoring in a back...

  4. Predictive Condition Monitoring of Induction Motor Bearing Using Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Prof. Rakeshkumar A. Patel

    2012-10-01

    Full Text Available Induction motor is critical component in industrial processes and is frequently integrated in commercially available equipment. Safety, reliability, efficiency and performance are the major concerns of induction motor applications. Due to high reliability requirements and cost of breakdown, condition monitoring, diagnosis and Protection increasing importance. Protection of an induction motor (IM against possible problems, such as stator faults, rotor faults and mechanical faults, occurring in the course of its operation is very important, because it is very popular in industries. Bearing fault is well known mechanical fault of IM.41�0faults related to bearing in IM. To avoid break down of IM condition monitoring of motor bearing condition is very important during the normal operation. Various classical and AI techniques like fuzzy logic, neural network, neuro-fuzzy are used for condition monitoring and diagnosis of IM. Among the above mentioned AI techniques, Fuzzy logic is the best technique for condition monitoring and diagnosis of IM bearing condition. Therefore, the present paper focuses on fuzzy logic technique. In this paper Fuzzy logic is design for the condition monitoring and diagnosis of induction motor bearing condition using motor current and speed. After applying Fuzzy logic it has been seen that continuous monitoring of the current and speed values of the motor conditioned monitoring and diagnosis of induction motor bearing condition can be done.

  5. Biomedical Monitoring by a Novel Noncontact Radio Frequency Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This technology will be a quantum advance in cardiac monitoring and will be applicable in numerous situations such as for immediate assessment and monitoring of...

  6. Gearbox Condition Monitoring Using Advanced Classifiers

    Directory of Open Access Journals (Sweden)

    P. Večeř

    2010-01-01

    Full Text Available New efficient and reliable methods for gearbox diagnostics are needed in automotive industry because of growing demand for production quality. This paper presents the application of two different classifiers for gearbox diagnostics – Kohonen Neural Networks and the Adaptive-Network-based Fuzzy Interface System (ANFIS. Two different practical applications are presented. In the first application, the tested gearboxes are separated into two classes according to their condition indicators. In the second example, ANFIS is applied to label the tested gearboxes with a Quality Index according to the condition indicators. In both applications, the condition indicators were computed from the vibration of the gearbox housing. 

  7. Air Quality Monitoring and Sensor Technologies

    Science.gov (United States)

    EPA scientist Ron Williams presented on the features, examination, application, examples, and data quality of continuous monitoring study designs at EPA's Community Air Monitoring Training in July 2015.

  8. SSME Condition Monitoring Using Neural Networks and Plume Spectral Signatures

    Science.gov (United States)

    Hopkins, Randall; Benzing, Daniel

    1996-01-01

    For a variety of reasons, condition monitoring of the Space Shuttle Main Engine (SSME) has become an important concern for both ground tests and in-flight operation. The complexities of the SSME suggest that active, real-time condition monitoring should be performed to avoid large-scale or catastrophic failure of the engine. In 1986, the SSME became the subject of a plume emission spectroscopy project at NASA's Marshall Space Flight Center (MSFC). Since then, plume emission spectroscopy has recorded many nominal tests and the qualitative spectral features of the SSME plume are now well established. Significant discoveries made with both wide-band and narrow-band plume emission spectroscopy systems led MSFC to develop the Optical Plume Anomaly Detection (OPAD) system. The OPAD system is designed to provide condition monitoring of the SSME during ground-level testing. The operational health of the engine is achieved through the acquisition of spectrally resolved plume emissions and the subsequent identification of abnormal emission levels in the plume indicative of engine erosion or component failure. Eventually, OPAD, or a derivative of the technology, could find its way on to an actual space vehicle and provide in-flight engine condition monitoring. This technology step, however, will require miniaturized hardware capable of processing plume spectral data in real-time. An objective of OPAD condition monitoring is to determine how much of an element is present in the SSME plume. The basic premise is that by knowing the element and its concentration, this could be related back to the health of components within the engine. For example, an abnormal amount of silver in the plume might signify increased wear or deterioration of a particular bearing in the engine. Once an anomaly is identified, the engine could be shut down before catastrophic failure occurs. Currently, element concentrations in the plume are determined iteratively with the help of a non-linear computer

  9. Controlling and Monitoring of Electric Feeders Using GSM Network Technology

    Directory of Open Access Journals (Sweden)

    AHMED Afaz Uddin

    2013-10-01

    Full Text Available The application of computer interfaced controlling devices is increasingly rapidly in modern age. Analogous wired systems are substituted by computer interfaced system alternatives in growingnumber of industries. Such control systems had been developed with complex and critical high-end stuffs. In this paper, we developed an automated system that controls the switching of electric feeder power supply featuring the existing GSM technology. The target is tooperate the device according to a preset sequence of on-off mode for three feeders after a particular time interval and to monitor the running condition. The device sends short message updating the status of every action. It also warns the consumers about load shedding using GSM module via sending message. Controlling the gate pulse of a MOSFET that operates the relay, it executes on-off operation of the circuit breaker of the respective feeders. Since GSM technology is used worldwide for communication, third world countries that are still struggling to meet the power demand can use this technology to operate and monitor the condition of power distribution. To operate the GSM device, AT command of GSM location operation for SIM900 is used. This paper targets to improve the power distribution system in developing countries like India, Bangladesh, Nepal where powercrisis and load shedding is quite a common phenomenon.

  10. Instantaneous angular speed monitoring of gearboxes under non-cyclic stationary load conditions

    Science.gov (United States)

    Stander, C. J.; Heyns, P. S.

    2005-07-01

    Recent developments in the condition monitoring and asset management market have led to the commercialisation of online vibration-monitoring systems. These systems are primarily utilised to monitor large mineral mining equipment such as draglines, continuous miners and hydraulic shovels. Online monitoring systems make diagnostic information continuously available for asset management, production outsourcing and maintenance alliances with equipment manufacturers. However, most online vibration-monitoring systems are based on conventional vibration-monitoring technologies, which are prone to giving false equipment deterioration warnings on gears that operate under fluctuating load conditions. A simplified mathematical model of a gear system was developed to illustrate the feasibility of monitoring the instantaneous angular speed (IAS) as a means of monitoring the condition of gears that are subjected to fluctuating load conditions. A distinction is made between cyclic stationary load modulation and non-cyclic stationary load modulation. It is shown that rotation domain averaging will suppress the modulation caused by non-cyclic stationary load conditions but will not suppress the modulation caused by cyclic stationary load conditions. An experimental investigation on a test rig indicated that the IAS of a gear shaft could be monitored with a conventional shaft encoder to indicate a deteriorating gear fault condition.

  11. Conditioning technology of spent radium sources

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Il Sik; Kim, K. J.; Jang, K. D

    2001-03-01

    In order to avoid accidents that could be resulted from improper storage of spent radium sources, it is necessary to condition and store them safely. The program for safe conditioning of spent radium sources by IAEA has been established to assist the developing countries. The main object of this report is to understand well and apply the technology that was applied in conditioning the national inventory of Ra-226 sources in Myanmar, as a part of IAEA's project by the Korean expert team. The report is the result that the Korean expert team carried out in Myanmar under the project title 'Radium Conditioning Service in Myanmar(INT4131-06646C)'. As a result of the mission, a whole inventory, 1,429.5 mCi of spent radium sources was safely conditioned by the Korean expert team according to the manual under the supervision of IAEA's technical officer, Mr. Al-Mughrabi, and under the control of DAE authority. These sources were encapsuled in 27 small capsules and 3 large capsules, and conditioned in 3 lead shields, producing 3 packages. The inventories were distributed into 3 shielding devices, holding 500, 459.5, and 470 mCi.

  12. COMORAN. Condition monitoring for railway applications

    Energy Technology Data Exchange (ETDEWEB)

    Herden, Marc-Oliver; Friesen, Ulf [Knorr-Bremse AG, Muenchen (Germany)

    2013-03-01

    It is becoming increasingly important to make sure that railway vehicles undergo maintenance as a function of their true condition. COMORAN is a system developed by Knorr-Bremse to achieve precisely that as far as bogie components are concerned. (orig.)

  13. Proactive condition monitoring of low-speed machines

    CERN Document Server

    Stamboliska, Zhaklina; Moczko, Przemyslaw

    2015-01-01

    This book broadens readers’ understanding of proactive condition monitoring of low-speed machines in heavy industries. It focuses on why low-speed machines are different than others and how maintenance of these machines should be implemented with particular attention. The authors explain the best available monitoring techniques for various equipment and the principle of how to get proactive information from each technique. They further put forward possible strategies for application of FEM for detection of faults and technical assessment of machinery. Implementation phases are described and industrial case-studies of proactive condition monitoring are included. Proactive Condition Monitoring of Low-Speed Machines is an essential resource for engineers and technical managers across a range of industries as well as design engineers working in industrial product development. This book also: ·         Explains the practice of proactive condition monitoring and illustrates implementation phases ·   ...

  14. Condition telemonitoring and diagnosis of power plants using web technology

    Energy Technology Data Exchange (ETDEWEB)

    Kunze, U. [Siemens AG, Erlangen (Germany). Power Generation

    2003-07-01

    The monitoring and diagnostic systems currently installed in power plants generally supply information for control room displays and for on-site personnel. Telemonitoring is also frequently used. In this case, relevant diagnostic data are transmitted remotely to a special laboratory for analysis using highly specialized equipment and software. The appearance of the terms 'Monitoring' and 'Diagnosis' alongside the term 'Web Technology' in the title of this paper does not mean that remote access to diagnostic systems over the Internet is being presented here as a simple extension of the existing situation. Condition telemonitoring and diagnosis based on Web technology is a new departure in diagnostic system design philosophy. It is the technology used to integrate diagnostic systems into a customer's IT infrastructure (Intranet or Internet). Siemens has started to use Web-based condition telemonitoring and diagnosis in some power plants (nuclear and fossil-fueled) to provide a global source of specialist support.

  15. Condition monitoring of pump-turbines

    OpenAIRE

    Valero Ferrando, M.del Carmen; Egusquiza Estévez, Eduard

    2014-01-01

    At present, new renewables like wind, solar and marine energy are having a strong development. The generation of energy by renewables has the disadvantage that it depends on atmospheric conditions. It means that they can generate energy at any moment independently if this energy is required or not by the consumers. For the stability of the electrical grid, supply and demand of energy has to be matched. The surplus of energy produced when consumption is low has to be stored and del...

  16. Condition Based Monitoring of Gas Turbine Combustion Components

    Energy Technology Data Exchange (ETDEWEB)

    Ulerich, Nancy; Kidane, Getnet; Spiegelberg, Christine; Tevs, Nikolai

    2012-09-30

    The objective of this program is to develop sensors that allow condition based monitoring of critical combustion parts of gas turbines. Siemens teamed with innovative, small companies that were developing sensor concepts that could monitor wearing and cracking of hot turbine parts. A magnetic crack monitoring sensor concept developed by JENTEK Sensors, Inc. was evaluated in laboratory tests. Designs for engine application were evaluated. The inability to develop a robust lead wire to transmit the signal long distances resulted in a discontinuation of this concept. An optical wear sensor concept proposed by K Sciences GP, LLC was tested in proof-of concept testing. The sensor concept depended, however, on optical fiber tips wearing with the loaded part. The fiber tip wear resulted in too much optical input variability; the sensor could not provide adequate stability for measurement. Siemens developed an alternative optical wear sensor approach that used a commercial PHILTEC, Inc. optical gap sensor with an optical spacer to remove fibers from the wearing surface. The gap sensor measured the length of the wearing spacer to follow loaded part wear. This optical wear sensor was developed to a Technology Readiness Level (TRL) of 5. It was validated in lab tests and installed on a floating transition seal in an F-Class gas turbine. Laboratory tests indicate that the concept can measure wear on loaded parts at temperatures up to 800{degrees}C with uncertainty of < 0.3 mm. Testing in an F-Class engine installation showed that the optical spacer wore with the wearing part. The electro-optics box located outside the engine enclosure survived the engine enclosure environment. The fiber optic cable and the optical spacer, however, both degraded after about 100 operating hours, impacting the signal analysis.

  17. System Reliability Analysis of Redundant Condition Monitoring Systems

    Institute of Scientific and Technical Information of China (English)

    YI Pengxing; HU Youming; YANG Shuzi; WU Bo; CUI Feng

    2006-01-01

    The development and application of new reliability models and methods are presented to analyze the system reliability of complex condition monitoring systems. The methods include a method analyzing failure modes of a type of redundant condition monitoring systems (RCMS) by invoking failure tree model, Markov modeling techniques for analyzing system reliability of RCMS, and methods for estimating Markov model parameters. Furthermore, a computing case is investigated and many conclusions upon this case are summarized. Results show that the method proposed here is practical and valuable for designing condition monitoring systems and their maintenance.

  18. Wind Turbine Drivetrain Condition Monitoring - An Overview (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, S.; Yang, W.

    2013-07-01

    High operation and maintenance costs still hamper the development of the wind industry despite its quick growth worldwide. To reduce unscheduled downtime and avoid catastrophic failures of wind turbines and their components have been and will be crucial to further raise the competitiveness of wind power. Condition monitoring is one of the key tools for achieving such a goal. To enhance the research and development of advanced condition monitoring techniques dedicated to wind turbines, we present an overview of wind turbine condition monitoring, discuss current practices, point out existing challenges, and suggest possible solutions.

  19. Monitoring surface conditions of a Thoroughbred racetrack.

    Science.gov (United States)

    Clanton, C; Kobluk, C; Robinson, R A; Gordon, B

    1991-02-15

    During a pilot study at a Thoroughbred racetrack, information was collected to include weather conditions and track surface properties (moisture content, composition, strength, and coefficient of friction between surface and hoof). Measured weather variables did not correlate to any pattern of horse injuries of breakdowns. Surface moisture content was variable, whereas the moisture content of the compacted cushion was constant. Track surfaces around the starting chutes were more compacted than were other areas of the track. Next to the rail, track surface was softer than the surface toward the middle of the track. The coefficient of friction between a hoof and the surface was not affected by location or surface moisture content.

  20. Health Monitoring and Management for Manufacturing Workers in Adverse Working Conditions.

    Science.gov (United States)

    Xu, Xiaoya; Zhong, Miao; Wan, Jiafu; Yi, Minglun; Gao, Tiancheng

    2016-10-01

    In adverse working conditions, environmental parameters such as metallic dust, noise, and environmental temperature, directly affect the health condition of manufacturing workers. It is therefore important to implement health monitoring and management based on important physiological parameters (e.g., heart rate, blood pressure, and body temperature). In recent years, new technologies, such as body area networks, cloud computing, and smart clothing, have allowed the improvement of the quality of services. In this article, we first give five-layer architecture for health monitoring and management of manufacturing workers. Then, we analyze the system implementation process, including environmental data processing, physical condition monitoring and system services and management, and present the corresponding algorithms. Finally, we carry out an evaluation and analysis from the perspective of insurance and compensation for manufacturing workers in adverse working conditions. The proposed scheme will contribute to the improvement of workplace conditions, realize health monitoring and management, and protect the interests of manufacturing workers.

  1. Using the motor to monitor pump conditions

    Energy Technology Data Exchange (ETDEWEB)

    Casada, D. [Oak Ridge National Lab., TN (United States)

    1996-12-01

    When the load of a mechanical device being driven by a motor changes, whether in response to changes in the overall process or changes in the performance of the driven device, the motor inherently responds. For induction motors, the current amplitude and phase angle change as the shaft load changes. By examining the details of these changes in amplitude and phase, load fluctuations of the driven device can be observed. The usefulness of the motor as a transducer to improve the understanding of devices with high torque fluctuations, such as positive displacement compressors and motor-operated valves, has been recognized and demonstrated for a number of years. On such devices as these, the spectrum of the motor current amplitude, phase, or power normally has certain characteristic peaks associated with various load components, such as the piston stroke or gear tooth meshing frequencies. Comparison and trending of the amplitudes of these peaks has been shown to provide some indication of their mechanical condition. For most centrifugal pumps, the load fluctuations are normally low in torque amplitude, and as a result, the motor experiences a correspondingly lower level of load fluctuation. However, both laboratory and field test data have demonstrated that the motor does provide insight into some important pump performance conditions, such as hydraulic stability and pump-to-motor alignment. Comparisons of other dynamic signals, such as vibration and pressure pulsation, to motor data for centrifugal pumps are provided. The effects of inadequate suction head, misalignment, mechanical and hydraulic unbalance on these signals are presented.

  2. New methods for the condition monitoring of level crossings

    Science.gov (United States)

    García Márquez, Fausto Pedro; Pedregal, Diego J.; Roberts, Clive

    2015-04-01

    Level crossings represent a high risk for railway systems. This paper demonstrates the potential to improve maintenance management through the use of intelligent condition monitoring coupled with reliability centred maintenance (RCM). RCM combines advanced electronics, control, computing and communication technologies to address the multiple objectives of cost effectiveness, improved quality, reliability and services. RCM collects digital and analogue signals utilising distributed transducers connected to either point-to-point or digital bus communication links. Assets in many industries use data logging capable of providing post-failure diagnostic support, but to date little use has been made of combined qualitative and quantitative fault detection techniques. The research takes the hydraulic railway level crossing barrier (LCB) system as a case study and develops a generic strategy for failure analysis, data acquisition and incipient fault detection. For each barrier the hydraulic characteristics, the motor's current and voltage, hydraulic pressure and the barrier's position are acquired. In order to acquire the data at a central point efficiently, without errors, a distributed single-cable Fieldbus is utilised. This allows the connection of all sensors through the project's proprietary communication nodes to a high-speed bus. The system developed in this paper for the condition monitoring described above detects faults by means of comparing what can be considered a 'normal' or 'expected' shape of a signal with respect to the actual shape observed as new data become available. ARIMA (autoregressive integrated moving average) models were employed for detecting faults. The statistical tests known as Jarque-Bera and Ljung-Box have been considered for testing the model.

  3. A Web-based Condition Monitoring and Diagnostic System of Rolling Mill

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A web-based condition monitoring and fault diagnosis system (CMAFDS) for the F2 finishing mill of the 2050 Hot Strip Mill was developed at a steel works. The features of the condition monitoring and fault diagnosis system based on the Web are analyzed in this paper. This paper also describes the main frame of the hardware and the software in the system and emphatically points out the function of the database management system(DBMS) based on the Web. It is proved that the web-based CMAFDS is practical in technology and much superior to the CMAFDS based on other network technology in functions.

  4. Health Monitoring System Technology Assessments: Cost Benefits Analysis

    Science.gov (United States)

    Kent, Renee M.; Murphy, Dennis A.

    2000-01-01

    The subject of sensor-based structural health monitoring is very diverse and encompasses a wide range of activities including initiatives and innovations involving the development of advanced sensor, signal processing, data analysis, and actuation and control technologies. In addition, it embraces the consideration of the availability of low-cost, high-quality contributing technologies, computational utilities, and hardware and software resources that enable the operational realization of robust health monitoring technologies. This report presents a detailed analysis of the cost benefit and other logistics and operational considerations associated with the implementation and utilization of sensor-based technologies for use in aerospace structure health monitoring. The scope of this volume is to assess the economic impact, from an end-user perspective, implementation health monitoring technologies on three structures. It specifically focuses on evaluating the impact on maintaining and supporting these structures with and without health monitoring capability.

  5. INTELLIGENT TOOL CONDITION MONITORING IN HIGH-SPEED ...

    African Journals Online (AJOL)

    MR PRINCE

    work model has been developed for on-line condition monitoring of tool wear in high-speed ... degraded behaviours in wire electrical dis- ... mathematical models such as regression (Lin et ... an 11 kW Computer Numerical Controlled.

  6. Towards a protocol for community monitoring of caribou body condition

    OpenAIRE

    Gary Kofinas; Phil Lyver; Don Russell; Robert White; Augie Nelson; Nicholas Flanders

    2003-01-01

    Effective ecological monitoring is central to the sustainability of subsistence resources of indigenous communities. For caribou, Arctic indigenous people's most important terrestrial subsistence resource, body condition is a useful measure because it integrates many ecological factors that influence caribou productivity and is recognized by biologists and hunters as meaningful. We draw on experience working with indigenous communities to develop a body condition monitoring protocol for harve...

  7. Investigation of Various Wind Turbine Drivetrain Condition Monitoring Techniques (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, S.

    2011-08-01

    This presentation was given at the 2011 Wind Turbine Reliability Workshop sponsored by Sandia National Laboratories in Albuquerque, NM on August 2-3, 2011. It discusses work for the Gearbox Reliability Collaborative including downtime caused by turbine subsystems, annual failure frequency of turbine subsystems, cost benefits of condition monitoring (CM), the Gearbox Reliability Collaborative's condition monitoring approach and rationale, test setup, and results and observations.

  8. Holistic data analysis at the condition monitoring of wind power plants; Gesamtheitliche Datenanalyse beim Condition Monitoring von Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, Daniel; Tilch, Dietmar [Bosch Rexroth Monitoring Systems GmbH, Dresden (Germany)

    2013-06-01

    First of all, the holistic condition monitoring implies a combination of various sources of information. Currently, there are different systems of condition monitoring of single components at wind power plants. Furthermore, there are various sensors being integrated into the SCADA system. This requires a handling with different solutions as well as control rooms and thus with increased training costs, enhanced personnel costs and enhanced system costs. DMT GmbH (Essen, Federal Republic of Germany) and Bosch Rexroth Monitoring Systems GmbH (Dresden, Federal Republic of Germany) show how a solution can be created by means of a rotor blade monitoring system BLADEcontrol as well as the power train monitoring system Windsafe. This solution enables a combined analysis and is open to other monitoring systems under a unified user interface.

  9. Some studies on condition monitoring techniques for on line condition monitoring and fault diagnosis of mine winder motor.

    Directory of Open Access Journals (Sweden)

    Tarun Kumar. Chatterjee

    2012-08-01

    Full Text Available Survey of existing literature reveals that no serious attempt has been made so far to monitor the health of mine winder motors. The electrical motors are the critical equipment of the mine winders which require constant condition monitoring for planning the right time for their maintenance and thus ensure maximum machineavailability. In this research work an online condition monitoring instrumentation system has been developed based on axial flux, current and vibration monitoring technique for mine winder motor. The online condition monitoring instrumentation system is noninvasive in nature and can be connected with mine winder motors which are in operation. The developed instrumentation system would be able to diagnose the health of mine winder motor and the motor fault of incipient nature can be pinpointed by the trend analysis of the frequency spectrum of time varying signal of axial flux, motor current and vibration.

  10. Geophysical monitoring technology for CO2 sequestration

    Science.gov (United States)

    Ma, Jin-Feng; Li, Lin; Wang, Hao-Fan; Tan, Ming-You; Cui, Shi-Ling; Zhang, Yun-Yin; Qu, Zhi-Peng; Jia, Ling-Yun; Zhang, Shu-Hai

    2016-06-01

    Geophysical techniques play key roles in the measuring, monitoring, and verifying the safety of CO2 sequestration and in identifying the efficiency of CO2-enhanced oil recovery. Although geophysical monitoring techniques for CO2 sequestration have grown out of conventional oil and gas geophysical exploration techniques, it takes a long time to conduct geophysical monitoring, and there are many barriers and challenges. In this paper, with the initial objective of performing CO2 sequestration, we studied the geophysical tasks associated with evaluating geological storage sites and monitoring CO2 sequestration. Based on our review of the scope of geophysical monitoring techniques and our experience in domestic and international carbon capture and sequestration projects, we analyzed the inherent difficulties and our experiences in geophysical monitoring techniques, especially, with respect to 4D seismic acquisition, processing, and interpretation.

  11. 4th International Conference on Condition Monitoring of Machinery in Non-Stationary Operations

    CERN Document Server

    Zimroz, Radoslaw; Bartelmus, Walter; Haddar, Mohamed

    2016-01-01

    The book provides readers with a snapshot of recent research and technological trends in the field of condition monitoring of machinery working under a broad range of operating conditions. Each chapter, accepted after a rigorous peer-review process, reports on an original piece of work presented and discussed at the 4th International Conference on Condition Monitoring of Machinery in Non-stationary Operations, CMMNO 2014, held on December 15-16, 2014, in Lyon, France. The contributions have been grouped into three different sections according to the main subfield (signal processing, data mining, or condition monitoring techniques) they are related to. The book includes both theoretical developments as well as a number of industrial case studies, in different areas including, but not limited to: noise and vibration; vibro-acoustic diagnosis; signal processing techniques; diagnostic data analysis; instantaneous speed identification; monitoring and diagnostic systems; and dynamic and fault modeling. This book no...

  12. Transformer ageing modern condition monitoring techniques and their interpretations

    CERN Document Server

    Purkait, Prithwiraj

    2017-01-01

    This book is a one-stop guide to state-of-the-art research in transformer ageing, condition monitoring and diagnosis. It is backed by rigorous research projects supported by the Australian Research Council in collaboration with several transmission and distribution companies. Many of the diagnostic techniques and tools developed in these projects have been applied by electricity utilities and would appeal to both researchers and practicing engineers. Important topics covered in this book include transformer insulation materials and their ageing behaviour, transformer condition monitoring techniques and detailed diagnostic techniques and their interpretation schemes. It also features a monitoring framework for smart transformers as well as a chapter on biodegradable oil.

  13. GEOGLAM Crop Monitor Assessment Tool: Developing Monthly Crop Condition Assessments

    Science.gov (United States)

    McGaughey, K.; Becker Reshef, I.; Barker, B.; Humber, M. L.; Nordling, J.; Justice, C. O.; Deshayes, M.

    2014-12-01

    The Group on Earth Observations (GEO) developed the Global Agricultural Monitoring initiative (GEOGLAM) to improve existing agricultural information through a network of international partnerships, data sharing, and operational research. This presentation will discuss the Crop Monitor component of GEOGLAM, which provides the Agricultural Market Information System (AMIS) with an international, multi-source, and transparent consensus assessment of crop growing conditions, status, and agro-climatic conditions likely to impact global production. This activity covers the four primary crop types (wheat, maize, rice, and soybean) within the main agricultural producing regions of the AMIS countries. These assessments have been produced operationally since September 2013 and are published in the AMIS Market Monitor Bulletin. The Crop Monitor reports provide cartographic and textual summaries of crop conditions as of the 28th of each month, according to crop type. This presentation will focus on the building of international networks, data collection, and data dissemination.

  14. Fast beam conditions monitor (BCM1F) for CMS

    CERN Document Server

    Hall-Wilton, Richard; Macpherson, Alick; Ryjov, Vladimir; Stone, Robert L; 10.1109/NSSMIC.2008.4775050

    2009-01-01

    The CMS Beam Conditions and Radiation Monitoring System (BRM) [1] is composed of different subsystems that perform monitoring of, as well as providing the CMS detector protection from, adverse beam conditions inside and around the CMS experiment. This paper presents the Fast Beam Conditions Monitoring subsystem (BCM1F), which is designed for fast flux monitoring based on bunch by bunch measurements of both beam halo and collision product contributions from the LHC beam. The BCM1F is located inside the CMS pixel detector volume close to the beam-pipe and provides real-time information. The detector uses sCVD (single-crystal Chemical Vapor Deposition) diamond sensors and radiation hard front-end electronics, along with an analog optical readout of the signals.

  15. Technology Leadership Conditions among Nebraska School Principals

    Science.gov (United States)

    Curnyn, Molly A.

    2013-01-01

    As visionary leaders, school administrators are responsible for leading their schools into the 21st century by integrating technology to enhance learning and teaching. As technology leaders, principals must apply rigorous thought into the overall role that technology plays in the enhancement of student learning. Leveraging technology will assist…

  16. Microsoft Business Solutions-Axapta as a basis for automated monitoring of high technology products competitiveness

    Science.gov (United States)

    Tashchiyan, G. O.; Sushko, A. V.; Grichin, S. V.

    2015-09-01

    One of the conditions of normal performance of the Russian economy is the problem of high technology products competitiveness. Different tools of these products estimation are used nowadays, one of them is automated monitoring of the high technology products in mechanical engineering. This system is developed on the basis of “Innovator" software integrated in Microsoft Business Solutions-Axapta.

  17. A Review of the Condition Monitoring of Capacitors in Power Electronic Converters

    DEFF Research Database (Denmark)

    Soliman, Hammam Abdelaal Hammam; Wang, Huai; Blaabjerg, Frede

    2016-01-01

    Capacitors are one type of reliability-critical components in power electronic systems. In the last two decades, many efforts in academic research have been devoted to the condition monitoring of capacitors to estimate their health status. Industry applications are demanding more reliable power...... electronics products with preventive maintenance. Nevertheless, most of the developed capacitor condition monitoring technologies are rarely adopted by industry due to the complexity, increased cost, and other relevant issues. An overview of the prior-art research in this area is therefore needed to justify......, this paper first classifies the capacitor condition monitoring methods into three categories, then the respective technology evolution in the last two decades is summarized. Finally, the state-of-the-art research and the future opportunities targeting for industry applications are given....

  18. Smart homes and home health monitoring technologies for older adults: A systematic review.

    Science.gov (United States)

    Liu, Lili; Stroulia, Eleni; Nikolaidis, Ioanis; Miguel-Cruz, Antonio; Rios Rincon, Adriana

    2016-07-01

    Around the world, populations are aging and there is a growing concern about ways that older adults can maintain their health and well-being while living in their homes. The aim of this paper was to conduct a systematic literature review to determine: (1) the levels of technology readiness among older adults and, (2) evidence for smart homes and home-based health-monitoring technologies that support aging in place for older adults who have complex needs. We identified and analyzed 48 of 1863 relevant papers. Our analyses found that: (1) technology-readiness level for smart homes and home health monitoring technologies is low; (2) the highest level of evidence is 1b (i.e., one randomized controlled trial with a PEDro score ≥6); smart homes and home health monitoring technologies are used to monitor activities of daily living, cognitive decline and mental health, and heart conditions in older adults with complex needs; (3) there is no evidence that smart homes and home health monitoring technologies help address disability prediction and health-related quality of life, or fall prevention; and (4) there is conflicting evidence that smart homes and home health monitoring technologies help address chronic obstructive pulmonary disease. The level of technology readiness for smart homes and home health monitoring technologies is still low. The highest level of evidence found was in a study that supported home health technologies for use in monitoring activities of daily living, cognitive decline, mental health, and heart conditions in older adults with complex needs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Spatial and temporal information fusion for crop condition monitoring

    Science.gov (United States)

    Crop growth condition information is critical for crop management and yield estimation. In order to monitor crop conditions from space, high spatial and temporal resolution remote sensing data are required. Data fusion approach provides a way to generate such data set from multiple remote sensing da...

  20. 40 CFR 141.625 - Conditions requiring increased monitoring.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Conditions requiring increased monitoring. 141.625 Section 141.625 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Stage 2 Disinfection Byproducts Requirements § 141.625 Conditions...

  1. Diabetes Monitoring System Using Mobile Computing Technologies

    Directory of Open Access Journals (Sweden)

    Mashael Saud Bin-Sabbar

    2013-03-01

    Full Text Available Diabetes is a chronic disease that needs to regularly be monitored to keep the blood sugar levels within normal ranges. This monitoring depends on the diabetic treatment plan that is periodically reviewed by the endocrinologist. The frequent visit to the main hospital seems to be tiring and time consuming for both endocrinologist and diabetes patients. The patient may have to travel to the main city, paying a ticket and reserving a place to stay. Those expenses can be reduced by remotely monitoring the diabetes patients with the help of mobile devices. In this paper, we introduce our implementation of an integrated monitoring tool for the diabetes patients. The designed system provides a daily monitoring and monthly services. The daily monitoring includes recording the result of daily analysis and activates to be transmitted from a patient’s mobile device to a central database. The monthly services require the patient to visit a nearby care center in the patient home town to do the medical examination and checkups. The result of this visit entered into the system and then synchronized with the central database. Finally, the endocrinologist can remotely monitor the patient record and adjust the treatment plan and the insulin doses if need.

  2. Monitoring system of technological innovation potential on the market

    Directory of Open Access Journals (Sweden)

    O.P. Kosenko

    2016-12-01

    Full Text Available The aim of the article. The main purpose of the study is to develop practical tools for monitoring and evaluating commercial potential results of creative industry and identify strategic directions for their further developments. The results of the analysis. The article confirmed that timely monitoring of the enterprise intellectual potential and commercial possibilities of the individual technological developments can become the basis for points of growth identification, early detecting of negative trends, determining the optimal ratio of both traditional and new areas of the enterprise. The results of the monitoring process are also needed for managing decisions at both the enterprise and at the regional level of the country. So in this case we can consider very relevant the development of algorithms for monitoring and evaluating commercial potential of intellectual development industry. It is proved that the accuracy and objectivity of the current state of the technological innovation commercial potential depends more on the potential economic benefit that is available for developers of technological innovations in their commercialization, and consumer technology in their use. With economic effect parameters developer and consumer of technological innovation generated tangential monitoring function and economic characteristics defined set of values. It is proposed to improve the accuracy and reliability of the results to take into account quality monitoring of technological developments and commercial risk implementation. Proposed to take into account the indicators during the monitoring process Placed sponsored task performed using arctangent monitoring function that includes the integral index of a technology and successful commercialization state of the risk ,also was calculated the number of factors affecting it. It was proved that the most efficient monitoring of commercial potential (level of market attractiveness with technological

  3. 风力发电机状态监测和故障诊断技术的研究与进展%Research and Application of Condition Monitoring and Fault Diagnosis Technology in Wind Turbines

    Institute of Scientific and Technical Information of China (English)

    陈雪峰; 李继猛; 程航; 李兵; 何正嘉

    2011-01-01

    针对目前迅猛发展的风电装备缺乏有效监测诊断方法开展综述,指出其研究现状和值得研究的问题.综述风力发电机的发展现状、故障特点和诊断难点,风力发电机的装机容量和规模都在逐年扩大,目前基于振动监测的风力发电机在线诊断系统尚属空白,其运行维护费用增加以及频繁事故发生所造成的巨大损失严重影响了风电的经济效益.针对风力发电机中的主要故障部件,如齿轮箱、发电机、叶片等,介绍现有状态监测和故障诊断方法的研究现状.结合风力发电机工作在变转速、不稳定载荷等工况下的特点,指出研究重点是需要针对这一新型装备研究其故障机理和特定的诊断方法,研发适合于风力发电机特点的在线状态监测和故障诊断系统.%In view of the wind power equipment developing rapidly but lacking effective monitoring and diagnosis methods, the research status and problems worth studying are pointed out. The current situation, fault features and diagnostic difficulties of wind turbines are summarized. The installed capacity and scale of wind turbines are enlarging year by year, but currently on-line diagnosis system of wind turbine based on vibration monitoring is still a blank. The economic benefits of wind power are seriously affected by operation and maintenance costs as well as huge losses caused by frequent accidents of wind turbine. The research situation of the existing condition monitoring and fault diagnosis methods for the main failure components of wind turbines are introduced, such as gear boxes, generators and blades. According to the characteristics of wind turbines working in the condition of variable speed,unstable loads, etc., the research emphasis should be the failure mechanism, specific diagnostic methods of the new-type equipment,online condition monitoring and fault diagnosis systems suitable for the characteristics of wind turbines.

  4. Technological advances in perioperative monitoring: Current concepts and clinical perspectives.

    Science.gov (United States)

    Chilkoti, Geetanjali; Wadhwa, Rachna; Saxena, Ashok Kumar

    2015-01-01

    Minimal mandatory monitoring in the perioperative period recommended by Association of Anesthetists of Great Britain and Ireland and American Society of Anesthesiologists are universally acknowledged and has become an integral part of the anesthesia practice. The technologies in perioperative monitoring have advanced, and the availability and clinical applications have multiplied exponentially. Newer monitoring techniques include depth of anesthesia monitoring, goal-directed fluid therapy, transesophageal echocardiography, advanced neurological monitoring, improved alarm system and technological advancement in objective pain assessment. Various factors that need to be considered with the use of improved monitoring techniques are their validation data, patient outcome, safety profile, cost-effectiveness, awareness of the possible adverse events, knowledge of technical principle and ability of the convenient routine handling. In this review, we will discuss the new monitoring techniques in anesthesia, their advantages, deficiencies, limitations, their comparison to the conventional methods and their effect on patient outcome, if any.

  5. Energy autonomous sensor systems for automotive condition monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Fraeulin, Christian [A. RAYMOND GmbH und Co. KG, Weil am Rhein (Germany); Nurnus, Joachim; Punt, Wladimir [Micropelt GmbH, Freiburg (Germany)

    2011-07-01

    With the number of automotive sensors increasing, the effort for connecting all these sensors becomes more and more of an issue. A possible way to overcome these issues is to use energy-autonomous sensors that, besides the basic sensor function, include means to transmit the measurement data wirelessly as well as to generate the electrical energy they need to operate. Generating the electrical energy can be done by harvesting energy from ambient sources that are available in abundance, among others these can be heat and vibration. Although these principles are not new, so far little attempts have been made to incorporate these technologies into cost-sensitive segments like the automotive market. In this paper we present two energy-autonomous sensor demonstrators for automotive applications: a temperature sensor powered with a thermoelectric harvester, thus using a tiny amount of the physical property it wants to measure, and a pressure sensor powered by vibration energy. For both applications, managing the limited amount of available energy is one of the mayor tasks in developing this kind of systems. Therefore both systems use special means in hard- and software to cope with that task. While the automotive market is a very interesting one for energy-autonomous sensors, many other possible applications can be considered, among them the solar market and industrial condition monitoring. (orig.)

  6. 基于复杂工况下深基坑工程施工与监测技术的应用%Application of the Deep Foundation Pit Engineering Construction and Monitoring Technology in Complex Conditions

    Institute of Scientific and Technical Information of China (English)

    黄华辉

    2013-01-01

    This paper taking Fuzhou Zhongsheng building pr-oject as the carrier, through the analysis of deep foundation pit excavation and lining construction technology exposition and monitoring data, showing a deformation monitoring project in construction of foundation pit, summarizes the dialectical rela-tion of deep foundation pit, excavation, construction and moni-toring of deep foundation pit in the construction of deep found-ation pit. We must combine the three organical y, to achieve the dynamic balance between the three, adopting the informat-ion construction management, to achieve the best economic and social benefits.%  本文以福州中盛大厦工程为载体,通过对深基坑支护与开挖施工关键技术的阐述以及监测数据的分析,呈现出在基坑施工过程中各监测项目的变形规律,总结了在深基坑工程施工中,深基坑支护施工、开挖施工、与深基坑监测作业三者存在辩证的关系。必须将三者有机结合,实现三者的动态平衡,采取信息化施工管理,才能取得最佳的经济效益和社会效益。

  7. Muscular condition monitoring system using fiber bragg grating sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heon Young; Lee, Jin Hyuk; Kim, Dae Hyun [Seoul National University of Technology, Seoul (Korea, Republic of)

    2014-10-15

    Fiber optic sensors (FOS) have advantages such as electromagnetic interference (EMI) immunity, corrosion resistance and multiplexing capability. For these reasons, they are widely used in various condition monitoring systems (CMS). This study investigated a muscular condition monitoring system using fiber optic sensors (FOS). Generally, sensors for monitoring the condition of the human body are based on electro-magnetic devices. However, such an electrical system has several weaknesses, including the potential for electro-magnetic interference and distortion. Fiber Bragg grating (FBG) sensors overcome these weaknesses, along with simplifying the devices and increasing user convenience. To measure the level of muscle contraction and relaxation, which indicates the muscle condition, a belt-shaped FBG sensor module that makes it possible to monitor the movement of muscles in the radial and circumferential directions was fabricated in this study. In addition, a uniaxial tensile test was carried out in order to evaluate the applicability of this FBG sensor module. Based on the experimental results, a relationship was observed between the tensile stress and Bragg wavelength of the FBG sensors, which revealed the possibility of fabricating a muscular condition monitoring system based on FBG sensors.

  8. System and method for statistically monitoring and analyzing sensed conditions

    Science.gov (United States)

    Pebay, Philippe P.; Brandt, James M. , Gentile; Ann C. , Marzouk; Youssef M. , Hale; Darrian J. , Thompson; David C.

    2010-07-13

    A system and method of monitoring and analyzing a plurality of attributes for an alarm condition is disclosed. The attributes are processed and/or unprocessed values of sensed conditions of a collection of a statistically significant number of statistically similar components subjected to varying environmental conditions. The attribute values are used to compute the normal behaviors of some of the attributes and also used to infer parameters of a set of models. Relative probabilities of some attribute values are then computed and used along with the set of models to determine whether an alarm condition is met. The alarm conditions are used to prevent or reduce the impact of impending failure.

  9. Condition Monitoring of Helicopter Gearboxes by Embedded Sensing

    Science.gov (United States)

    Suryavanashi, Abhijit; Wang, Shengda; Gao, Robert; Danai, Kourosh; Lewicki, David G.

    2002-01-01

    Health of helicopter gearboxes is commonly assessed by monitoring the housing vibration, thus it is challenged by poor signal-to-noise ratio of the signal measured away from the source. It is hypothesized that vibration measurements from sensors placed inside the gearbox will be much clearer indicators of faults and will eliminate many of the difficulties faced by present condition monitoring systems. This paper outlines our approach to devising such a monitoring system. Several tasks have been outlined toward this objective and the strategy to address each has been described. Among the tasks are wireless sensor design, antenna design, and selection of sensor locations.

  10. Human monitoring, smart health and assisted living techniques and technologies

    CERN Document Server

    Longhi, Sauro; Freddi, Alessandro

    2017-01-01

    This book covers the three main scientific and technological areas critical for improving people's quality of life - namely human monitoring, smart health and assisted living - from both the research and development points of view.

  11. Tolkku - a toolbox for decision support from condition monitoring data

    Science.gov (United States)

    Saarela, Olli; Lehtonen, Mikko; Halme, Jari; Aikala, Antti; Raivio, Kimmo

    2012-05-01

    This paper describes a software toolbox (a software library) designed for condition monitoring and diagnosis of machines. This toolbox implements both new methods and prior art and is aimed for practical down-to-earth data analysis work. The target is to improve knowledge of the operation and behaviour of machines and processes throughout their entire life-cycles. The toolbox supports different phases of condition based maintenance with tools that extract essential information and automate data processing. The paper discusses principles that have guided toolbox design and the implemented toolbox structure. Case examples are used to illustrate how condition monitoring applications can be built using the toolbox. In the first case study the toolbox is applied to fault detection of industrial centrifuges based on measured electrical current. The second case study outlines an application for centralized monitoring of a fleet of machines that supports organizational learning.

  12. Operational-Condition-Independent Criteria Dedicated to Monitoring Wind Turbine Generators: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W.; Sheng, S.; Court, R.

    2012-08-01

    To date the existing wind turbine condition monitoring technologies and commercially available systems have not been fully accepted for improving wind turbine availability and reducing their operation and maintenance costs. One of the main reasons is that wind turbines are subject to constantly varying loads and operate at variable rotational speeds. As a consequence, the influences of turbine faults and the effects of varying load and speed are coupled together in wind turbine condition monitoring signals. So, there is an urgent need to either introduce some operational condition de-coupling procedures into the current wind turbine condition monitoring techniques or develop a new operational condition independent wind turbine condition monitoring technique to maintain high turbine availability and achieve the expected economic benefits from wind. The purpose of this paper is to develop such a technique. In the paper, three operational condition independent criteria are developed dedicated for monitoring the operation and health condition of wind turbine generators. All proposed criteria have been tested through both simulated and practical experiments. The experiments have shown that these criteria provide a solution for detecting both mechanical and electrical faults occurring in wind turbine generators.

  13. An overview of crop growing condition monitoring in China agriculture remote sensing monitoring system

    Science.gov (United States)

    Huang, Qing; Zhou, Qing-bo; Zhang, Li

    2009-07-01

    China is a large agricultural country. To understand the agricultural production condition timely and accurately is related to government decision-making, agricultural production management and the general public concern. China Agriculture Remote Sensing Monitoring System (CHARMS) can monitor crop acreage changes, crop growing condition, agriculture disaster (drought, floods, frost damage, pest etc.) and predict crop yield etc. quickly and timely. The basic principles, methods and regular operation of crop growing condition monitoring in CHARMS are introduced in detail in the paper. CHARMS can monitor crop growing condition of wheat, corn, cotton, soybean and paddy rice with MODIS data. An improved NDVI difference model was used in crop growing condition monitoring in CHARMS. Firstly, MODIS data of every day were received and processed, and the max NDVI values of every fifteen days of main crop were generated, then, in order to assessment a certain crop growing condition in certain period (every fifteen days, mostly), the system compare the remote sensing index data (NDVI) of a certain period with the data of the period in the history (last five year, mostly), the difference between NDVI can indicate the spatial difference of crop growing condition at a certain period. Moreover, Meteorological data of temperature, precipitation and sunshine etc. as well as the field investigation data of 200 network counties were used to modify the models parameters. Last, crop growing condition was assessment at four different scales of counties, provinces, main producing areas and nation and spatial distribution maps of crop growing condition were also created.

  14. Wind Turbine Gearbox Oil Filtration and Condition Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Shuangwen

    2015-10-25

    This is an invited presentation for a pre-conference workshop, titled advances and opportunities in lubrication: wind turbine, at the 2015 Society of Tribologists and Lubrication Engineers (STLE) Tribology Frontiers Conference held in Denver, CO. It gives a brief overview of wind turbine gearbox oil filtration and condition monitoring by highlighting typical industry practices and challenges. The presentation starts with an introduction by covering recent growth of global wind industry, reliability challenges, benefits of oil filtration and condition monitoring, and financial incentives to conduct wind operation and maintenance research, which includes gearbox oil filtration and condition monitoring work presented herein. Then, the presentation moves on to oil filtration by stressing the benefits of filtration, discussing typical main- and offline-loop practices, highlighting important factors considered when specifying a filtration system, and illustrating real-world application challenges through a cold-start example. In the next section on oil condition monitoring, a discussion on oil sample analysis, oil debris monitoring, oil cleanliness measurements and filter analysis is given based on testing results mostly obtained by and at NREL, and by pointing out a few challenges with oil sample analysis. The presentation concludes with a brief touch on future research and development (R and D) opportunities. It is hoping that the information presented can inform the STLE community to start or redirect their R and D work to help the wind industry advance.

  15. Application of micro-seismic monitoring technology in mining engineering

    Institute of Scientific and Technical Information of China (English)

    Sun Jian; Wang Lianguo; Hou Huaqiang

    2012-01-01

    Micro-seismic phenomena,occurring when rock masses are subjected to forces and failures,allow the determination of their unstable states and failure zones by analyzing micro-seismic signals.We first present the principles of micro-seismic monitoring and location,as well as an underground explosion-proof micro-seismic monitoring system.Given a practical engineering application,we describe the application of micro-seismic monitoring technology in determining the height of a "two-zone" overburden,i.e.,a caving zone and a fracture zone,the width of a coal-pillar section and the depth of failure of a floor.The workfaces monitored accomplished safe and highly efficient mining based on our micro-seismic monitoring results and provide direct proof of the reliability and validity of micro-seismic monitoring technology.

  16. Modeling of human movement monitoring using Bluetooth Low Energy technology.

    Science.gov (United States)

    Mokhtari, G; Zhang, Q; Karunanithi, M

    2015-01-01

    Bluetooth Low Energy (BLE) is a wireless communication technology which can be used to monitor human movements. In this monitoring system, a BLE signal scanner scans signal strength of BLE tags carried by people, to thus infer human movement patterns within its monitoring zone. However to the extent of our knowledge one main aspect of this monitoring system which has not yet been thoroughly investigated in literature is how to build a sound theoretical model, based on tunable BLE communication parameters such as scanning time interval and advertising time interval, to enable the study and design of effective and efficient movement monitoring systems. In this paper, we proposed and developed a statistical model based on Monte-Carlo simulation, which can be utilized to assess impacts of BLE technology parameters in terms of latency and efficiency, on a movement monitoring system, and can thus benefit a more efficient system design.

  17. Modern Technologies for Landslide Monitoring and Prediction

    National Research Council Canada - National Science Library

    Scaioni, Marco

    2015-01-01

    Modern Technologies for Landslide Investigation and Prediction presents eleven contributed chapters from Chinese and Italian authors, as a follow-up of a bilateral workshop held in Shanghai on September 2013...

  18. Biomedical Monitoring By A Novel Noncontact Radio Frequency Technology Project

    Science.gov (United States)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    The area of Space Health and Medicine is one of the NASA's Space Technology Grand Challenges. Space is an extreme environment which is not conducive to human life. The extraterrestrial environment can result in the deconditioning of various human physiological systems and thus require easy to use physiological monitoring technologies in order to better monitor space crews for appropriate health management and successful space missions and space operations. Furthermore, the Space Technology Roadmap's Technology Area Breakdown Structure calls for improvements in research to support human health and performance (Technology Area 06). To address these needs, this project investigated a potential noncontact and noninvasive radio frequency-based technique of monitoring central hemodynamic function in human research subjects in response to orthostatic stress.

  19. Diagnostic technology for degradation of feeder pipe and fuel channel; design of nuclear fuel channel mock-up and development of signature analysis technique for its condition monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. K. [Inha University, Incheon (Korea)

    2002-04-01

    The main purpose of this project is to design the nuclear fuel channel and to develope the signal analysis method for the nonstationary signal. The design of mock-up is necessary for the pre-test of the nuclear plant. The fault signal due to the damage of the nuclear plant is generally nonstationary. It is difficult to analysis this non-stationary signal using traditional method. Thus in this research, time-frequency analysis, and wavelet transform are studied for the analysis of nonstationary signal. Basic program for analysis of nonstationary signal embedded in the background noise is developed. Results from this research can be applied to the early detection of damage of nuclear fuel channel. However, in order to apply to the real nuclear plant, further research project should be processed through the mock-up test. Then that result can be applied to the condition monitoring of a real nuclear plant. 10 refs., 18 figs., 2 tabs. (Author)

  20. Technological monitoring of subgrade construction on high-temperature permafrost

    Institute of Scientific and Technical Information of China (English)

    Svyatoslav Ya. Lutskiy; Taisia V. Shepitko; Alexander M. Cherkasov

    2015-01-01

    Three stages of complex technological monitoring for the increase of high-temperature-permafrost soil bearing capacity are described. The feasibility of process monitoring to improve the targeted strength properties of subgrade bases on frozen soils is demonstrated. The rationale for the necessity of predictive modeling of freeze-thaw actions during the subgrade construction period is provided.

  1. [A wireless mobile monitoring system based on bluetooth technology].

    Science.gov (United States)

    Sun, Shou-jun; Wu, Kai; Wu, Xiao-Ming

    2006-09-01

    This paper presents a wireless mobile monitoring system based on Bluetooth technology. This system realizes the remote mobile monitoring of multiple physiological parameters, and has the characters of easy use, low cost, good reliability and strong capability of anti-jamming.

  2. Condition monitoring helps make the Space Shuttle Main Engine reusable

    Science.gov (United States)

    Lacroix, W. P.

    1973-01-01

    The Space Shuttle Main Engine (SSME) is a reusable, high-performance liquid-propellant rocket engine being developed for the Space Shuttle Orbiter Vehicle. The SSME has been designed for long life, rapid postflight maintenance, and a fast vehicle turnaround cycle of 160 hours. To meet the unique reusability requirements, the SSME considers maintainability and condition monitoring much as airlines do today. The condition monitoring capabilities designed into this engine are discussed with major emphasis on internal inspection and techniques which ensure the reusability of the SSME.

  3. Wire system ageing assessment and condition monitoring (WASCO)

    Energy Technology Data Exchange (ETDEWEB)

    Fantoni, P.F. (Institute for Energy Technology (IFE) (Norway))

    2009-07-15

    Nuclear facilities rely on electrical wire systems to perform a variety of functions for successful operation. Many of these functions directly support the safe operation of the facility; therefore, the continued reliability of wire systems, even as they age, is critical. Condition Monitoring (CM) of installed wire systems is an important part of any aging program, both during the first 40 years of the qualified life and even more in anticipation of the license renewal for a nuclear power plant. This report contains the results of experiments performed in collaboration with Tecnatom SA, Spain, to compare several cable condition monitoring techniques including LIRA (LIne Resonance Analysis) (au)

  4. Application of Remote Sensing Technology in Mine Environment Monitoring

    Directory of Open Access Journals (Sweden)

    Li Yue

    2015-01-01

    Full Text Available Mine environment problem caused by the exploitation of mineral resources has become a key factor which affects normal production of mine and safety of ecological environment for human settlement. For better protection and management of mine environment, this article has introduced the important role of remote sensing technology in pollution monitoring of mine environment, geological disaster monitoring and monitoring of mining activities.

  5. Decentralized and overall condition monitoring system for large-scale mobile and complex equipment

    Institute of Scientific and Technical Information of China (English)

    Cao Jianjun; Zhang Peilin; Ren Guoquan; Fu Jianping

    2007-01-01

    It is an urgent project to realize online and overall condition monitoring and timely fault diagnosis for large-scale mobile and complex equipment. Moreover, most of the existing large-scale complex equipment has quite insufficient accessibility of examination, although it still has quite a long service life. The decentralized and overall condition monitoring, as a new concept, is proposed from the point of view of the whole system. A set of complex equipment is divided into several parts in terms of concrete equipment. Every part is processed via one detecting unit, and the main detecting unit is connected with other units. The management work and communications with the remote monitoring center have been taken on by it. Consequently, the difficulty of realizing a condition monitoring system and the complexity of processing information is reduced greatly. Furthermore, excellent maintainability of the condition monitoring system is obtained because of the modularization design. Through an application example,the design and realization of the decentralized and overall condition monitoring system is introduced specifically.Some advanced technologies, such as, micro control unit (MCU), advanced RISC machines (ARM), and control area network (CAN), have been adopted in the system. The system's applicability for the existing large-scale mobile and complex equipment is tested.

  6. A study on Geographic National (Urban) Conditions Monitoring of Beijing

    OpenAIRE

    Liu, Q.

    2014-01-01

    This article investigated and surveyed the current situation of the policy of Geographic National (Urban) Conditions Monitoring in Beijing based on the experimental unit over China carried out by National Administration of Surveying, Mapping and Geoinformation. Then analysed the guarantee of the implement considering the characteristics of programming and construction, policy and regulation in Beijing. Finally presented the frame system of Geographic National (Urban) Conditions Monit...

  7. Nonlinear Cointegration Approach for Condition Monitoring of Wind Turbines

    Directory of Open Access Journals (Sweden)

    Konrad Zolna

    2015-01-01

    Full Text Available Monitoring of trends and removal of undesired trends from operational/process parameters in wind turbines is important for their condition monitoring. This paper presents the homoscedastic nonlinear cointegration for the solution to this problem. The cointegration approach used leads to stable variances in cointegration residuals. The adapted Breusch-Pagan test procedure is developed to test for the presence of heteroscedasticity in cointegration residuals obtained from the nonlinear cointegration analysis. Examples using three different time series data sets—that is, one with a nonlinear quadratic deterministic trend, another with a nonlinear exponential deterministic trend, and experimental data from a wind turbine drivetrain—are used to illustrate the method and demonstrate possible practical applications. The results show that the proposed approach can be used for effective removal of nonlinear trends form various types of data, allowing for possible condition monitoring applications.

  8. Monitoring science and technology for competitive advantage

    Energy Technology Data Exchange (ETDEWEB)

    Ashton, W.B.; Johnson, A. [Pacific Northwest Lab., Richland, WA (United States); Stacey, G. [Battelle, Geneva (Switzerland)

    1994-08-01

    In this age of rapid technological innovation, firms that do not stay abreast of the latest advancements in science and technology (S&T) stand a greater chance of missing opportunities than firms that maintain vigilance over the ever-changing technical environment. As a result, a resurgence of interest in technical intelligence for business is occurring in companies around the globe. Many firms now have formal technical intelligence programs to gather, analyze and use S&T information to watch their competitors, to track emerging trends in technological development and to anticipate significant technology-based changes in key markets. Careful management of technical information that affects a business can have a vital influence on corporate profitability and long term health. This paper describes the main features of technical intelligence operations in business, drawing on the experience of several companies that develop and use intelligence information. The steps of gathering, analyzing, evaluating and using information for business decisions are described and examples are given to illustrate how intelligence concepts are implemented in firms from several different industries. Practical issues such as understanding user needs, ethical data collection, effective analysis methods and using intelligence results are covered in the paper.

  9. Towards a protocol for community monitoring of caribou body condition

    Directory of Open Access Journals (Sweden)

    Gary Kofinas

    2003-04-01

    Full Text Available Effective ecological monitoring is central to the sustainability of subsistence resources of indigenous communities. For caribou, Arctic indigenous people's most important terrestrial subsistence resource, body condition is a useful measure because it integrates many ecological factors that influence caribou productivity and is recognized by biologists and hunters as meaningful. We draw on experience working with indigenous communities to develop a body condition monitoring protocol for harvested animals. Local indigenous knowledge provides a broad set of caribou health indicators and explanations of how environmental conditions may affect body condition. Scientific research on caribou body condition provides a basis to develop a simple dichotomous key that includes back fat, intestinal fat, kidney fat and marrow¬fat, as measures of body fat, which in autumn to early winter correlates with the likelihood of pregnancy. The dichotomous key was formulated on "expert knowledge" and validated against field estimates of body composition. We compare local indigenous knowledge indicators with hunter documented data based on the dichotomous key. The potential con¬tribution of community body condition monitoring can be realized through the continued comparative analysis of datasets. Better communication among hunters and scientists, and refinement of data collection and analysis methods are recommended. Results suggest that specific local knowledge may become generalized and integrated between regions if the dichotomous key is used as a generalized (semi-quantitative index and complemented with other science and community-based assessments.

  10. Non-stationary condition monitoring through event alignment

    DEFF Research Database (Denmark)

    Pontoppidan, Niels Henrik; Larsen, Jan

    2004-01-01

    . In this paper we apply the technique for non-stationary condition monitoring of large diesel engines based on acoustical emission sensor signals. The performance of the event alignment is analyzed in an unsupervised probabilistic detection framework based on outlier detection with either Principal Component...

  11. Condition monitoring with Mean field independent components analysis

    DEFF Research Database (Denmark)

    Pontoppidan, Niels Henrik; Sigurdsson, Sigurdur; Larsen, Jan

    2005-01-01

    We discuss condition monitoring based on mean field independent components analysis of acoustic emission energy signals. Within this framework it is possible to formulate a generative model that explains the sources, their mixing and also the noise statistics of the observed signals. By using...

  12. Three State-of-the-Art Methods for Condition Monitoring

    NARCIS (Netherlands)

    Grimmelius, H.T.; Meiler, P.P.; Maas, H.L.M.M.; Bonnier, B.; Grevink, J.S.; Kuilenburg, R.F. van

    1999-01-01

    This paper describes and compares three different state-of-the-art condition monitoring techniques: first principles, feature extraction, and neural networks. The focus of the paper is on the application of the techniques, not on the underlying theory. Each technique is described briefly and is acco

  13. Groundwater detection monitoring system design under conditions of uncertainty

    NARCIS (Netherlands)

    Yenigül, N.B.

    2006-01-01

    Landfills represent a wide-spread and significant threat to groundwater quality. In this thesis a methodology was developed for the design of optimal groundwater moni-toring system design at landfill sites under conditions of uncertainty. First a decision analysis approach was presented for optimal

  14. Reality Monitoring and Metamemory in Adults with Autism Spectrum Conditions

    Science.gov (United States)

    Cooper, Rose A.; Plaisted-Grant, Kate C.; Baron-Cohen, Simon; Simons, Jon S.

    2016-01-01

    Studies of reality monitoring (RM) often implicate medial prefrontal cortex (mPFC) in distinguishing internal and external information, a region linked to autism-related deficits in social and self-referential information processing, executive function, and memory. This study used two RM conditions (self-other; perceived-imagined) to investigate…

  15. Leak detection, monitoring, and mitigation technology trade study update

    Energy Technology Data Exchange (ETDEWEB)

    HERTZEL, J.S.

    1998-11-10

    This document is a revision and update to the initial report that describes various leak detection, monitoring, and mitigation (LDMM) technologies that can be used to support the retrieval of waste from the single-shell tanks (SST) at the Hanford Site. This revision focuses on the improvements in the technical performance of previously identified and useful technologies, and it introduces new technologies that might prove to be useful.

  16. TECHNOLOGICAL DEVELOPMENT MANAGEMENT UNDER GLOBALIZATION CONDITIONS

    Directory of Open Access Journals (Sweden)

    Vasyl H. Gerasymchuk

    2007-10-01

    Full Text Available The research reveals a studying of scientific and technical development of enterprise in the context of globalization processes. The authors placed high emphasis on the specification of peculiarities and theoretical aspects of scientific and technical development of enterprise, the studying of impact of scientific and technical factors of economic development. The R&D financing in Ukraine and the strong and weak sides of application of model of technological development at international technology transfer are analyzed in the paper.

  17. NASA Applications of Structural Health Monitoring Technology

    Science.gov (United States)

    Richards, W Lance; Madaras, Eric I.; Prosser, William H.; Studor, George

    2013-01-01

    This presentation provides examples of research and development that has recently or is currently being conducted at NASA, with a special emphasis on the application of structural health monitoring (SHM) of aerospace vehicles. SHM applications on several vehicle programs are highlighted, including Space Shuttle Orbiter, International Space Station, Uninhabited Aerial Vehicles, and Expandable Launch Vehicles. Examples of current and previous work are presented in the following categories: acoustic emission impact detection, multi-parameter fiber optic strain-based sensing, wireless sensor system development, and distributed leak detection.

  18. Abnormal Condition Monitoring of Workpieces Based on RFID for Wisdom Manufacturing Workshops

    Directory of Open Access Journals (Sweden)

    Cunji Zhang

    2015-12-01

    Full Text Available Radio Frequency Identification (RFID technology has been widely used in many fields. However, previous studies have mainly focused on product life cycle tracking, and there are few studies on real-time status monitoring of workpieces in manufacturing workshops. In this paper, a wisdom manufacturing model is introduced, a sensing-aware environment for a wisdom manufacturing workshop is constructed, and RFID event models are defined. A synthetic data cleaning method is applied to clean the raw RFID data. The Complex Event Processing (CEP technology is adopted to monitor abnormal conditions of workpieces in real time. The RFID data cleaning method and data mining technology are examined by simulation and physical experiments. The results show that the synthetic data cleaning method preprocesses data well. The CEP based on the Rifidi® Edge Server technology completed abnormal condition monitoring of workpieces in real time. This paper reveals the importance of RFID spatial and temporal data analysis in real-time status monitoring of workpieces in wisdom manufacturing workshops.

  19. Abnormal Condition Monitoring of Workpieces Based on RFID for Wisdom Manufacturing Workshops

    Science.gov (United States)

    Zhang, Cunji; Yao, Xifan; Zhang, Jianming

    2015-01-01

    Radio Frequency Identification (RFID) technology has been widely used in many fields. However, previous studies have mainly focused on product life cycle tracking, and there are few studies on real-time status monitoring of workpieces in manufacturing workshops. In this paper, a wisdom manufacturing model is introduced, a sensing-aware environment for a wisdom manufacturing workshop is constructed, and RFID event models are defined. A synthetic data cleaning method is applied to clean the raw RFID data. The Complex Event Processing (CEP) technology is adopted to monitor abnormal conditions of workpieces in real time. The RFID data cleaning method and data mining technology are examined by simulation and physical experiments. The results show that the synthetic data cleaning method preprocesses data well. The CEP based on the Rifidi® Edge Server technology completed abnormal condition monitoring of workpieces in real time. This paper reveals the importance of RFID spatial and temporal data analysis in real-time status monitoring of workpieces in wisdom manufacturing workshops. PMID:26633418

  20. Abnormal Condition Monitoring of Workpieces Based on RFID for Wisdom Manufacturing Workshops.

    Science.gov (United States)

    Zhang, Cunji; Yao, Xifan; Zhang, Jianming

    2015-12-03

    Radio Frequency Identification (RFID) technology has been widely used in many fields. However, previous studies have mainly focused on product life cycle tracking, and there are few studies on real-time status monitoring of workpieces in manufacturing workshops. In this paper, a wisdom manufacturing model is introduced, a sensing-aware environment for a wisdom manufacturing workshop is constructed, and RFID event models are defined. A synthetic data cleaning method is applied to clean the raw RFID data. The Complex Event Processing (CEP) technology is adopted to monitor abnormal conditions of workpieces in real time. The RFID data cleaning method and data mining technology are examined by simulation and physical experiments. The results show that the synthetic data cleaning method preprocesses data well. The CEP based on the Rifidi(®) Edge Server technology completed abnormal condition monitoring of workpieces in real time. This paper reveals the importance of RFID spatial and temporal data analysis in real-time status monitoring of workpieces in wisdom manufacturing workshops.

  1. Energy harvesting to power embedded condition monitoring hardware

    Science.gov (United States)

    Farinholt, Kevin; Brown, Nathan; Siegel, Jake; McQuown, Justin; Humphris, Robert

    2015-04-01

    The shift toward condition-based monitoring is a key area of research for many military, industrial, and commercial customers who want to lower the overall operating costs of capital equipment and general facilities. Assessing the health of rotating systems such as gearboxes, bearings, pumps and other actuation systems often rely on the need for continuous monitoring to capture transient signals that are evidence of events that could cause (i.e. cavitation), or be the result of (i.e. spalling), damage within a system. In some applications this can be accomplished using line powered analyzers, however for wide-spread monitoring, the use of small-scale embedded electronic systems are more desirable. In such cases the method for powering the electronics becomes a significant design factor. This work presents a multi-source energy harvesting approach meant to provide a robust power source for embedded electronics, capturing energy from vibration, thermal and light sources to operate a low-power sensor node. This paper presents the general design philosophy behind the multi-source harvesting circuit, and how it can be extended from powering electronics developed for periodic monitoring to sensing equipment capable of providing continuous condition-based monitoring.

  2. Condition Monitoring of Blade in Turbomachinery: A Review

    Directory of Open Access Journals (Sweden)

    Ahmed M. Abdelrhman

    2014-03-01

    Full Text Available Blade faults and blade failures are ranked among the most frequent causes of failures in turbomachinery. This paper provides a review on the condition monitoring techniques and the most suitable signal analysis methods to detect and diagnose the health condition of blades in turbomachinery. In this paper, blade faults are categorised into five types in accordance with their nature and characteristics, namely, blade rubbing, blade fatigue failure, blade deformations (twisting, creeping, corrosion, and erosion, blade fouling, and loose blade. Reviews on characteristics and the specific diagnostic methods to detect each type of blade faults are also presented. This paper also aims to provide a reference in selecting the most suitable approaches to monitor the health condition of blades in turbomachinery.

  3. Condition Monitoring of Turbines Using Nonlinear Mapping Method

    Institute of Scientific and Technical Information of China (English)

    Liao Guang-lan; Shi Tie-lin; Jiang Nan

    2004-01-01

    Aiming at the non-linear nature of the signals generated from turbines, curvilinear component analysis (CCA), a novel nonlinear projection method that favors local topology conservation is presented for turbines conditions monitoring. This is accomplished in two steps. Time domain features are extracted from raw vibration signals, and then they are projected into a two-dimensional output space by using CCA method and form regions indicative of specific conditions, which helps classify and identify turbine states visually. Therefore, the variation of turbine conditions can be observed clearly with the trajectory of image points for the feature data in the two-dimensional space, and the occurrence and development of failures can be monitored in time.

  4. Simulation technology for refrigeration and air conditioning appliances

    Institute of Scientific and Technical Information of China (English)

    DING Guoliang

    2006-01-01

    Simulation technology has been widely used for performance prediction and optimal design of refrigeration and air conditioning appliances. A brief history of simulation technology for refrigeration and air conditioning appliances is reviewed. The models for evaporator, condenser, compressor, capillary tube and thermal insulation layer are summarized, and a fast calculation method for thermodynamic properties of refrigerant is introduced in this paper. The model-based intelligent simulation technology and the simulation technology based on graph theory are also illustrated. Finally, an updated trend of simulation technology development for refrigeration and air conditioning appliances is discussed.

  5. Integrated online condition monitoring system for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, Hashem M. [Analysis and Measurement Services Corporation, Knoxville, TN (United States). AMS Technology Center

    2010-09-15

    Online condition monitoring or online monitoring (OLM) uses data acquired while a nuclear power is operating to continuously assess the health of the plant's sensors, processes, and equipment; to measure the dynamic performance of the plant's process instrumentation; to verify in-situ the calibration of the process instrumentation; to detect blockages, voids, and leaks in the pressure sensing lines; to identify core flow anomalies; to extend the life of neutron detectors and other sensors; and to measure the vibration of reactor internals. Both the steady-state or DC output of plant sensors and their AC signal or noise output can be used to assess sensor health, depending on whether the application is monitoring a rapidly changing (e.g., core barrel motion) or a slowly changing (e.g., sensor calibration) process. The author has designed, developed, installed, and tested OLM systems (comprised of software/hardware-based data acquisition and data processing modules) that integrate low-frequency (1 mHz to 1 Hz) techniques such as RTD cross-calibration, pressure transmitter calibration monitoring, and equipment condition monitoring and high-frequency (1 Hz to 1 kHz) techniques such as the noise analysis technique. The author has demonstrated the noise analysis technique's effectiveness for measuring the dynamic response-time of pressure transmitters and their sensing lines; for performing predictive maintenance on reactor internals; for detecting core flow anomalies; and for extending neutron detector life. Integrated online condition monitoring systems can combine AC and DC data acquisition and signal processing techniques, can use data from existing process sensors during all modes of plant operation, including startup, normal operation, and shutdown; can be retrofitted into existing PWRs, BWRs, and other reactor types and will be integrated into next-generation plants. (orig.)

  6. Fast Beam Condition Monitor for CMS: performance and upgrade

    CERN Document Server

    Leonard, Jessica Lynn; Burtowy, Piotr; Dabrowski, Anne; Hempel, Maria; Henschel, Hans; Lange, Wolfgang; Lohmann, Wolfgang; Odell, Nathaniel; Penno, Marek; Pollack, Brian; Przyborowski, Dominik; Ryjov, Vladimir; Stickland, David; Walsh, Roberval; Warzycha, Weronika; Zagozdzinska, Agnieszka

    2014-01-01

    The CMS beam and radiation monitoring subsystem BCM1F (Fast Beam Condition Monitor) consists of 8 individual diamond sensors situated around the beam pipe within the pixel detector volume, for the purpose of fast bunch-by-bunch monitoring of beam background and collision products. In addition, effort is ongoing to use BCM1F as an online luminosity monitor. BCM1F will be running whenever there is beam in LHC, and its data acquisition is independent from the data acquisition of the CMS detector, hence it delivers luminosity even when CMS is not taking data. A report is given on the performance of BCM1F during LHC run I, including results of the van der Meer scan and on-line luminosity monitoring done in 2012. In order to match the requirements due to higher luminosity and 25 ns bunch spacing, several changes to the system must be implemented during the upcoming shutdown, including upgraded electronics and precise gain monitoring. First results from Run II preparation are shown.

  7. Network Based Real Time Condition Monitoring of Rotating Machinery

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This paper presents the development of a network based real time condition monitoring system of rotating machinery. The system is built up in a double net structure consisting of local net (including client and server) and intranet. The client serves as a field data collector and processor that samples the vibration signals and process parameters of a machine monitored in the net and processes the sampled data. The data collected by the client are transmitted to the server that processes the data further and provides the results of the diagnosis of each machine to any distant terminals through intranet or internet. Such a structure of the monitoring system is advantageous in safety, reliability and reasonably shares the existing net resources. In order to ensure real time transmission of the data, two procedures of data transmission, virtual channel and data pool, are developed and applied in the monitoring system. The experimental results show that the monitoring system works well and is suitable to monitor a large group of rotating machines.

  8. Condition monitoring, diagnostic and controlling tool for boiler feed pump

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Sohail [Siemens AG, Muelheim (Germany). Energy Sector; Leithner, Reinhard; Kosyna, Guenter [TU Braunschweig (Germany)

    2010-07-01

    The boiler feed pump is an important component of a thermal power generation cycle and demands high safety and unquestionable availability for flexible power plant operation. In this research paper, the methodology of a general purpose condition monitoring, diagnostic and controlling tool is presented, which can address the challenges of operational safety and availability as well as optimal operation of a boiler feed pump. This tool not only effectively records the life time consumption of both casings and rotors and monitors the small gaps between casings and rotors but also suggests appropriate actions in order to ensure that the pump operates within the allowable design limits. (orig.)

  9. Application of structural health monitoring technologies to bio-systems: current status and path forward

    Science.gov (United States)

    Bhalla, Suresh; Srivastava, Shashank; Suresh, Rupali; Moharana, Sumedha; Kaur, Naveet; Gupta, Ashok

    2015-03-01

    This paper presents a case for extension of structural health monitoring (SHM) technologies to offer solutions for biomedical problems. SHM research has made remarkable progress during the last two/ three decades. These technologies are now being extended for possible applications in the bio-medical field. Especially, smart materials, such as piezoelectric ceramic (PZT) patches and fibre-Bragg grating (FBG) sensors, offer a new set of possibilities to the bio-medical community to augment their conventional set of sensors, tools and equipment. The paper presents some of the recent extensions of SHM, such as condition monitoring of bones, monitoring of dental implant post surgery and foot pressure measurement. Latest developments, such as non-bonded configuration of PZT patches for monitoring bones and possible applications in osteoporosis detection, are also discussed. In essence, there is a whole new gamut of new possibilities for SHM technologies making their foray into the bi-medical sector.

  10. A Framework for Intelligent Condition-based Maintenance of Rotating Equipment using Mechanical Condition Monitoring

    Directory of Open Access Journals (Sweden)

    Tahan B. Mohammadreza

    2014-07-01

    Full Text Available The ideal end result of maintenance strategy is to increase profitability, improve product quality and ensure safety conditions. In condition-based maintenance (CBM, asset health is monitored regularly to maximize reliability and availability by determining necessary maintenance at the right time. Review of recent studies shows most of developed approaches propose a standalone system for each stage of maintenance system. In order to standardize a generic architecture for machinery CBM, this paper attempts to introduce an intelligent framework consisting of several functional modules, starting from data acquisition and ending to advisory generation, with the emphasis on approaches of condition monitoring and maintenance decision-making.

  11. Challenges and trends in glucose monitoring technologies

    Science.gov (United States)

    Batra, Padma; Tomar, Reena; Kapoor, Rajiv

    2016-03-01

    It is known that diabetes is a very serious disease as it may lead to heart attack, kidney failure and neuro diseases. The present study was aimed to review and compare various techniques useful for detecting diabetes or hypoglycemia in human body. In this paper we discuss the invasive and non-invasive techniques which are used for early detection of hypoglycemia or hyperglycemia and highlight their advantages as well as limitations. The use of bio impedance measurement technology has been described as it is an emerging non-invasive technique useful for the same purpose.

  12. Determining Commuting Behaviour from Monitoring Technologies

    Directory of Open Access Journals (Sweden)

    Yuting You

    2015-01-01

    Full Text Available The study of commuting behaviour has always been one significant focus of people to reach comprehensive knowledge of transport-related scenarios. Similarly, commuting behaviour, as one of the four major physical activities people engaged in during daily life, gained much attention in aspect of health fields. This paper, with the sample data collected by The Australian Diabetes, Obesity and Lifestyle (AusDiab study, discusses the process of how to utilize data obtained from GPS and inclinometer device, along with basic information about participants to conduct travel survey, and reconstructing participant's commuting behaviour. In the analyses of the sample, the procedure of datasets integration through DELPHI programming and protocols established to determine corresponding commuting behaviour are discussed. The details of commuting behaviour illustrated in this study included travel mode, travel duration, allocation of trip stages, and corresponding level of physical activities. This paper discusses a promise for applying advanced technologies in travel survey instead of traditional ones in terms of accuracy and reliability; it discusses the feasibility to discover the coherent relationship between health outcome and commuting behaviour from travel-tracking technologies.

  13. Advanced sensor-computer technology for urban runoff monitoring

    Science.gov (United States)

    Yu, Byunggu; Behera, Pradeep K.; Ramirez Rochac, Juan F.

    2011-04-01

    The paper presents the project team's advanced sensor-computer sphere technology for real-time and continuous monitoring of wastewater runoff at the sewer discharge outfalls along the receiving water. This research significantly enhances and extends the previously proposed novel sensor-computer technology. This advanced technology offers new computation models for an innovative use of the sensor-computer sphere comprising accelerometer, programmable in-situ computer, solar power, and wireless communication for real-time and online monitoring of runoff quantity. This innovation can enable more effective planning and decision-making in civil infrastructure, natural environment protection, and water pollution related emergencies. The paper presents the following: (i) the sensor-computer sphere technology; (ii) a significant enhancement to the previously proposed discrete runoff quantity model of this technology; (iii) a new continuous runoff quantity model. Our comparative study on the two distinct models is presented. Based on this study, the paper further investigates the following: (1) energy-, memory-, and communication-efficient use of the technology for runoff monitoring; (2) possible sensor extensions for runoff quality monitoring.

  14. Characterization, Monitoring, and Sensor Technology Integrated Program (CMST-IP). Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The Characterization, Monitoring, and Sensor Technology Integrated Program seeks to deliver needed technologies, timely and cost-effectively, to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The scope of characterizations monitoring, and sensor technology needs that are required by those organizations encompass: (1) initial location and characterization of wastes and waste environments - prior to treatment; (2) monitoring of waste retrieval, remediation and treatment processes; (3) characterization of the co-position of final waste treatment forms to evaluate the performance of waste treatments processes; and (4) site closure and compliance monitoring. Wherever possible, the CMST-IP fosters technology transfer and commercialization of technologies that it sponsors.

  15. Thoughts on Geographical Conditions Monitoring%地理国情普查的思考

    Institute of Scientific and Technical Information of China (English)

    刘娇; 程晓勇; 葛超

    2015-01-01

    地理国情普查是当下我国重要的测绘地理信息工程和社会服务之一,它的重要性和紧迫性来源于社会的发展和测绘地理信息技术在当今社会大背景下的滋长与提高。本文从地理国情普查的概念入手,由浅向深探索,思考了地理国情普查的背景、意义和获取及处理数据等技术手段,表达了在地理国情普查工作之中的诸多认识和理解。%Geographical Conditions monitoring is one of the most important Mapping & Geographic Information and social service in our country;its importance and urgency origin from the development of Chinese society and the improvement of the technology under the nowadays society background.This article from the concept perspective of Geographical National Conditions monitoring , thought a-bout the background and significant of Geographical National Conditions monitoring, the technological means of acquire and manage the information.Besides, this article expresses the cognition and understanding of the Geographical National Conditions monitoring during the practical work.

  16. Technology of structure damage monitoring based on multi-agent

    Institute of Scientific and Technical Information of China (English)

    Hongbing Sun; Shenfang Yuan; Xia Zhao; Hengbao Zhou; Dong Liang

    2010-01-01

    The health monitoring for large-scale structures need to resolve a large number of difficulties,such as the data transmission and distributing information handling.To solve these problems,the technology of multi-agent is a good candidate to be used in the field of structural health monitoring.A structural health monitoring system architecture based on multi-agent technology is proposed.The measurement system for aircraft airfoil is designed with FBG,strain gage,and corresponding signal processing circuit.The experiment to determine the location of the concentrate loading on the structure is carried on with the system combined with technologies of pattern recognition and multi-agent.The results show that the system can locate the concentrate loading of the aircraft airfoil at the accuracy of 91.2%.

  17. Bridge condition assessment based on long-term strain monitoring

    Science.gov (United States)

    Sun, LiMin; Sun, Shouwang

    2011-04-01

    In consideration of the important role that bridges play as transportation infrastructures, their safety, durability and serviceability have always been deeply concerned. Structural Health Monitoring Systems (SHMS) have been installed to many long-span bridges to provide bridge engineers with the information needed in making rational decisions for maintenance. However, SHMS also confronted bridge engineers with the challenge of efficient use of monitoring data. Thus, methodologies which are robust to random disturbance and sensitive to damage become a subject on which many researches in structural condition assessment concentrate. In this study, an innovative probabilistic approach for condition assessment of bridge structures was proposed on the basis of long-term strain monitoring on steel girder of a cable-stayed bridge. First, the methodology of damage detection in the vicinity of monitoring point using strain-based indices was investigated. Then, the composition of strain response of bridge under operational loads was analyzed. Thirdly, the influence of temperature and wind on strains was eliminated and thus strain fluctuation under vehicle loads is obtained. Finally, damage evolution assessment was carried out based on the statistical characteristics of rain-flow cycles derived from the strain fluctuation under vehicle loads. The research conducted indicates that the methodology proposed is qualified for structural condition assessment so far as the following respects are concerned: (a) capability of revealing structural deterioration; (b) immunity to the influence of environmental variation; (c) adaptability to the random characteristic exhibited by long-term monitoring data. Further examination of the applicability of the proposed methodology in aging bridge may provide a more convincing validation.

  18. An assessment of acid rock drainage continuous monitoring technology

    Science.gov (United States)

    Fytas, K.; Hadjigeorgiou, J.

    1995-02-01

    In order to assess the magnitude and impact at affected mine sites of acid rock drainage (ARD), fixed-frequency sampling is often employed. This often involves manual sampling, at regular time intervals, of water and solids. It is felt that such sampling does not adequately describe the system evolution. Continuous monitoring offers a viable alternative in that it can better follow the seasonal fluctuations and high-frequency variations that characterize ARD. This paper evaluates existing continuous monitoring technology.

  19. Model-based condition monitoring for lithium-ion batteries

    Science.gov (United States)

    Kim, Taesic; Wang, Yebin; Fang, Huazhen; Sahinoglu, Zafer; Wada, Toshihiro; Hara, Satoshi; Qiao, Wei

    2015-11-01

    Condition monitoring for batteries involves tracking changes in physical parameters and operational states such as state of health (SOH) and state of charge (SOC), and is fundamentally important for building high-performance and safety-critical battery systems. A model-based condition monitoring strategy is developed in this paper for Lithium-ion batteries on the basis of an electrical circuit model incorporating hysteresis effect. It systematically integrates 1) a fast upper-triangular and diagonal recursive least squares algorithm for parameter identification of the battery model, 2) a smooth variable structure filter for the SOC estimation, and 3) a recursive total least squares algorithm for estimating the maximum capacity, which indicates the SOH. The proposed solution enjoys advantages including high accuracy, low computational cost, and simple implementation, and therefore is suitable for deployment and use in real-time embedded battery management systems (BMSs). Simulations and experiments validate effectiveness of the proposed strategy.

  20. Labview Based ECG Patient Monitoring System for Cardiovascular Patient Using SMTP Technology.

    Science.gov (United States)

    Singh, Om Prakash; Mekonnen, Dawit; Malarvili, M B

    2015-01-01

    This paper leads to developing a Labview based ECG patient monitoring system for cardiovascular patient using Simple Mail Transfer Protocol technology. The designed device has been divided into three parts. First part is ECG amplifier circuit, built using instrumentation amplifier (AD620) followed by signal conditioning circuit with the operation amplifier (lm741). Secondly, the DAQ card is used to convert the analog signal into digital form for the further process. Furthermore, the data has been processed in Labview where the digital filter techniques have been implemented to remove the noise from the acquired signal. After processing, the algorithm was developed to calculate the heart rate and to analyze the arrhythmia condition. Finally, SMTP technology has been added in our work to make device more communicative and much more cost-effective solution in telemedicine technology which has been key-problem to realize the telediagnosis and monitoring of ECG signals. The technology also can be easily implemented over already existing Internet.

  1. Monitoring of Double Stud Wall Moisture Conditions in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Westford, MA (United States)

    2015-03-01

    Double-stud walls insulated with cellulose or low-density spray foam can have R-values of 40 or higher. However, double stud walls have a higher risk of interior-sourced condensation moisture damage, when compared with high-R approaches using exterior insulating sheathing.; Moisture conditions in double stud walls were monitored in Zone 5A (Massachusetts); three double stud assemblies were compared.

  2. Predictive Condition Monitoring of Induction Motor Bearing Using Fuzzy Logic

    OpenAIRE

    2012-01-01

    Induction motor is critical component in industrial processes and is frequently integrated in commercially available equipment. Safety, reliability, efficiency and performance are the major concerns of induction motor applications. Due to high reliability requirements and cost of breakdown, condition monitoring, diagnosis and Protection increasing importance. Protection of an induction motor (IM) against possible problems, such as stator faults, rotor faults and mechanical faults, occurring i...

  3. Why is it important to monitor social conditions in wilderness?

    Science.gov (United States)

    Alan E. Watson

    1990-01-01

    “Social conditions in wilderness” refers to all aspects of human use of the wilderness that pose the possibility of impact to the resource and visitor experiences. The reasons for monitoring (1) use levels and use trends (including characteristics of use and users) and (2) the quality of the recreation experiences provided (ability to provide naturalness, privacy, and...

  4. The Beam Conditions Monitor of the LHCb Experiment

    CERN Document Server

    Ilgner, Ch; Lieng, M; Nedos, M; Sauerbrey, J; Schleich, S; Spaan, B; Warda, K; Wishahi, J

    2010-01-01

    The LHCb experiment at the European Organization for Nuclear Research (CERN) is dedicated to precision measurements of CP violation and rare decays of B hadrons. Its most sensitive components are protected by means of a Beam Conditions Monitor (BCM), based on polycrystalline CVD diamond sensors. Its configuration, operation and decision logics to issue or remove the beam permit signal for the Large Hadron Collider (LHC) are described in this paper.

  5. Automated System Of Monitoring Of The Physical Condition Of The Staff Of The Enterprise

    Science.gov (United States)

    Pilipenko, A.

    2017-01-01

    In the work the author solves an important applied problem of increasing of safety of engineering procedures and production using technologies of monitoring of a condition of employees. The author offers a work algorithm, structural and basic electric schemes of system of collection of data of employee’s condition of the enterprise and some parameters of the surrounding environment. In the article the author offers an approach to increasing of efficiency of acceptance of management decisions at the enterprise at the expense of the prompt analysis of information about employee’s condition and productivity of his work and also about various parameters influencing these factors.

  6. Surface Acoustic Wave (SAW Resonators for Monitoring Conditioning Film Formation

    Directory of Open Access Journals (Sweden)

    Siegfried Hohmann

    2015-05-01

    Full Text Available We propose surface acoustic wave (SAW resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM sensor measurements, which confirmed the suitability of the SAW resonators for this application.

  7. Luminosity measurement and beam condition monitoring at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Jessica Lynn [DESY, Zeuthen (Germany)

    2015-07-01

    The BRIL system of CMS consists of instrumentation to measure the luminosity online and offline, and to monitor the LHC beam conditions inside CMS. An accurate luminosity measurement is essential to the CMS physics program, and measurement of the beam background is necessary to ensure safe operation of CMS. In expectation of higher luminosity and denser proton bunch spacing during LHC Run II, many of the BRIL subsystems are being upgraded and others are being added to complement the existing measurements. The beam condition monitor (BCM) consists of several sets of diamond sensors used to measure online luminosity and beam background with a single-bunch-crossing resolution. The BCM also detects when beam conditions become unfavorable for CMS running and may trigger a beam abort to protect the detector. The beam halo monitor (BHM) uses quartz bars to measure the background of the incoming beams at larger radii. The pixel luminosity telescope (PLT) consists of telescopes of silicon sensors designed to provide a CMS online and offline luminosity measurement. In addition, the forward hadronic calorimeter (HF) will deliver an independent luminosity measurement, making the whole system robust and allowing for cross-checks of the systematics. Data from each of the subsystems will be collected and combined in the BRIL DAQ framework, which will publish it to CMS and LHC. The current status of installation and commissioning results for the BRIL subsystems are given.

  8. Condition monitoring for a neutral beam injector cryopumping system

    Energy Technology Data Exchange (ETDEWEB)

    Wright, N., E-mail: n.wright@lboro.ac.uk [School of Electronic and Electrical Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom); Dixon, R., E-mail: r.dixon@lboro.ac.uk [School of Electronic and Electrical Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom); Verhoeven, R., E-mail: roel.verhoeven@ccfe.ac.uk [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2013-10-15

    Highlights: ► The development of a cryopumping condition monitoring scheme is presented. ► A residual generation scheme is used to detect two faults. ► Kalman filtering is used to generate the residuals. ► A filtering and voting arrangement is used to evaluate the residuals. ► A non-linear simulation model is used to verify the scheme. -- Abstract: For neutral beam injection systems, the maintenance of a vacuum inside the injector box is essential for normal operation. Cryogenic pumping systems are often used to create and maintain this vacuum. Cryogenic pumping systems have been deployed on the neutral beam heating systems supporting the Joint European Torus. With these as a target application, the development of a condition monitoring scheme is presented. The scheme uses a residual generation approach. A bank of Kalman filters is used to estimate measured process variables. A residual evaluator is used to map residual signals onto a set of faults. Two example faults are simulated to demonstrate the response of the scheme. This paper contributes to the wider fusion development programme by demonstrating how a contemporary condition monitoring technique can be applied to a fusion support system, in order to improve its availability.

  9. Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation.

    Science.gov (United States)

    Hohmann, Siegfried; Kögel, Svea; Brunner, Yvonne; Schmieg, Barbara; Ewald, Christina; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Länge, Kerstin

    2015-05-21

    We propose surface acoustic wave (SAW) resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM) sensor measurements, which confirmed the suitability of the SAW resonators for this application.

  10. An Embedded Condition Monitoring and Fault Diagnosis System for Rotary Machines

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An intelligent machine is the earnest aspiration of people. From the point of view to construct an intelligent machine with self-monitoring and self-diagnosis abilities, the technology for realizing an internet oriented embedded intelligent condition monitoring and fault diagnosis system for the rotating machine with remote monitoring, diagnosis, maintenance and upgrading functions is introduced systematically. Based on the DSP ( Digital Signal Processor) and embedded microcomputer, the system can measure and store the machine work status in real time, such as the rotating speed and vibration,etc. In the system, the DSP chip is used to do the fault signal processing and feature extraction, and the embedded microcomputer with a customized Linux operation system is used to realize the internet oriented remote software upgrading and system maintenance. Embedded fault diagnosis software based on mobile agent technology is also designed in the system, which can interconnect with the remote fault diagnosis center to realize the collaborative diagnosis. The embedded condition monitoring and fault diagnosis technology proposed in this paper will effectively improve the intelligence degree of the fault diagnosis system.

  11. A large-area strain sensing technology for monitoring fatigue cracks in steel bridges

    Science.gov (United States)

    Kong, Xiangxiong; Li, Jian; Collins, William; Bennett, Caroline; Laflamme, Simon; Jo, Hongki

    2017-08-01

    This paper presents a novel large-area strain sensing technology for monitoring fatigue cracks in steel bridges. The technology is based on a soft elastomeric capacitor (SEC), which serves as a flexible and large-area strain gauge. Previous experiments have verified the SEC’s capability to monitor low-cycle fatigue cracks experiencing large plastic deformation and large crack opening. Here an investigation into further extending the SEC’s capability for long-term monitoring of fatigue cracks in steel bridges subject to traffic loading, which experience smaller crack openings. It is proposed that the peak-to-peak amplitude (pk-pk amplitude) of the sensor’s capacitance measurement as the indicator of crack growth to achieve robustness against capacitance drift during long-term monitoring. Then a robust crack monitoring algorithm is developed to reliably identify the level of pk-pk amplitudes through frequency analysis, from which a crack growth index (CGI) is obtained for monitoring fatigue crack growth under various loading conditions. To generate representative fatigue cracks in a laboratory, loading protocols were designed based on constant ranges of stress intensity to limit plastic deformations at the crack tip. A series of small-scale fatigue tests were performed under the designed loading protocols with various stress intensity ratios. Test results under the realistic fatigue crack conditions demonstrated the proposed crack monitoring algorithm can generate robust CGIs which are positively correlated with crack lengths and independent from loading conditions.

  12. Monitoring protocol for field testing. Monitoring of heating techniques under practical conditions; Monitoringsprotocol voor veldtesten. Monitoring van warmtetechnieken onder praktijkomstandigheden

    Energy Technology Data Exchange (ETDEWEB)

    Fennema, E.; Jansen, C.

    2009-12-15

    Incentivisation of renewable energy requires large-scale implementation of technologies such as heat-cold storage, heat pumps, cogeneration, solar boilers and waste heat utilization. In practice, the performances of such systems often turn out to deviate from the manufacturer's specifications. Therefore it is important to obtain objective data from practice to gain insight in the differences between theoretical and practical performances and items for improvement of various technologies. The aim of monitoring practice is formulated as: 'gaining insight in the energetic performances of heating techniques under practical circumstances by means of monitoring'. Large-scale measuring in a uniform manner requires a monitoring protocol. Such a protocol safeguards the quality, objectivity, uniformity and hence the reliability of the measuring data. [Dutch] Stimulering van duurzame energie vraagt om grootschalige toepassingen van technologieen zoals warmte-koude opslag, warmtepompen, warmtekracht, zonneboilers en restwarmtebenutting. Het blijkt dat de prestaties van dergelijke systemen in de praktijk vaak afwijken van de fabrikantspecificaties. Daarom is het van belang om objectieve praktijkgegevens te verkrijgen waarmee inzicht wordt verkregen in het verschil tussen theoretische en praktische prestaties, en de verbeterpunten van verschillende technologieen. Het doel van praktijkmonitoring is als volgt geformuleerd: via monitoring het inzicht te verkrijgen in de energetische prestaties van warmtetechnieken onder praktijkomstandigheden. Het uitvoeren van grootschalige metingen op een uniforme wijze vereist een monitoring protocol. Zo'n protocol waarborgt de kwaliteit, objectiviteit, uniformiteit en daarmee de betrouwbaarheid van de meetdata.

  13. Advanced Detection Technology of Trace-level Borate for SG Leakage Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seban; Kang, Dukwon; Kim, Seungil; Kim, Hyunki; Heo, Jun; Sung, Jinhyun [Radiation Eng. Center, Shihung (Korea, Republic of); Lee, Dongbum [Academic Support Dept., Seoul (Korea, Republic of)

    2013-05-15

    Many studies have been reported for monitoring technology of steam generator, however, all of these methods have their own limitations. The leakage monitoring technology of steam generator of PWR has also got a limit due to the adoption of specific radionuclides (N-16, Ar-41, H-3, Xe, etc.) generated by nuclear fission, which are available only when reactor output is 20% or more. Most of domestic NPPs apply the N-16 technique for monitoring tube leakage but it has some problem that it is difficult to calculate the leakage rate because neutron flux are not completely formed during low power operation. For example, tube leakage of steam generator occurred in the Uljin nuclear power plant in 2002 during coast down operation for periodic plant maintenance. This plant could not prevent a rupture accident in advance because N-16 method is not possible the leak monitoring less than 20% reactor power. The development of excellent alternative monitoring technology that can monitor the real-time leakage is required under a variety of operating conditions like start-up and abnormal conditions of NPPs. This study was performed to lay a foundation in monitoring the leakage of steam generator coping with the lower output and low power operational condition using trace level of boron which is non-radioactive nuclide to inject control neutron injection. In this study, non-radioactive nuclide boron ion, which existed in the secondary system water, as leakage monitoring indicator was investigated for the separation of complex cation and anion phase. Borate was detected by using borate concentrator column coupled with the ion-exclusion column analytical column, revealing the problem of overlapped peak between fluoride and boron ions. Meanwhile, ion-exchange column could confirm the possibility as a leakage monitoring indicator of steam generator, despite the peak of glycolic acid salts was slightly overlapped. It will be needed for further research regarding the selectivity of the

  14. High temperature integrated ultrasonic transducers for engine condition monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, M.; Jen, C.K. [National Research Council of Canada, Boucherville, PQ (Canada). Industrial Materials Inst.; Wu, K.T. [McGill Univ., Montreal, PQ (Canada). Dept. of Electrical and Computer Engineering; Bird, J.; Galeote, B. [National Research Council of Canada, Ottawa, ON (Canada). Inst. for Aerospace Research; Mrad, N. [Department of National Defence, Ottawa, ON (Canada). Air Vehicles Research Station

    2009-07-01

    Piezoelectric ultrasonic transducers (UTs) are used for real-time, in-situ or off-line nondestructive evaluation (NDE) of large metallic structures such as airplanes, automobiles, ships, pressure vessels and pipelines because of their subsurface inspection capability, fast inspection speed, simplicity and cost-effectiveness. The objective of this study was to develop and evaluate effective integrated ultrasonic transducers (IUT) technology to perform non-intrusive engine NDE and structural health monitoring (SHM). High temperature IUTs made of bismuth titanate piezoelectric film greater than 50 {mu}m in thickness were coated directly onto a modified CF700 turbojet engine outer casing, oil sump and supply lines and gaskets using sol-gel spray technology. The assessment was limited to temperatures up to 500 degrees C. The center frequencies of the IUTs were approximately 10 to 17 MHz. Ultrasonic signals obtained in pulse/echo measurements were excellent. High temperature ultrasonic performance will likely be obtained in the transmission mode as well. The potential applications of the developed IUTs include non-intrusive real-time temperature, lubricant oil quality and metal debris monitoring within a turbojet engine environment. 9 refs., 13 figs.

  15. Factorial switching linear dynamical systems applied to physiological condition monitoring.

    Science.gov (United States)

    Quinn, John A; Williams, Christopher K I; McIntosh, Neil

    2009-09-01

    Condition monitoring often involves the analysis of systems with hidden factors that switch between different modes of operation in some way. Given a sequence of observations, the task is to infer the filtering distribution of the switch setting at each time step. In this paper, we present factorial switching linear dynamical systems as a general framework for handling such problems. We show how domain knowledge and learning can be successfully combined in this framework, and introduce a new factor (the "X-factor") for dealing with unmodeled variation. We demonstrate the flexibility of this type of model by applying it to the problem of monitoring the condition of a premature baby receiving intensive care. The state of health of a baby cannot be observed directly, but different underlying factors are associated with particular patterns of physiological measurements and artifacts. We have explicit knowledge of common factors and use the X-factor to model novel patterns which are clinically significant but have unknown cause. Experimental results are given which show the developed methods to be effective on typical intensive care unit monitoring data.

  16. Innovative GIS technology for forest monitoring: ForestLink

    African Journals Online (AJOL)

    Innovative GIS technology for forest monitoring: ForestLink ... activities. To support them in doing so, British NGO The Rainforest Foundation UK and the ... smartphone or digital tablet connected to a satellite communication network. ... an isolated or a regular occurrence, its author, possible causes and observed impacts, etc.

  17. Client-Server Connection Status Monitoring Using Ajax Push Technology

    Science.gov (United States)

    Lamongie, Julien R.

    2008-01-01

    This paper describes how simple client-server connection status monitoring can be implemented using Ajax (Asynchronous JavaScript and XML), JSF (Java Server Faces) and ICEfaces technologies. This functionality is required for NASA LCS (Launch Control System) displays used in the firing room for the Constellation project. Two separate implementations based on two distinct approaches are detailed and analyzed.

  18. A Survey of Current Rotorcraft Propulsion Health Monitoring Technologies

    Science.gov (United States)

    Delgado, Irebert R.; Dempsey, Paula J.; Simon, Donald L.

    2012-01-01

    A brief review is presented on the state-of-the-art in rotorcraft engine health monitoring technologies including summaries on current practices in the area of sensors, data acquisition, monitoring and analysis. Also, presented are guidelines for verification and validation of Health Usage Monitoring System (HUMS) and specifically for maintenance credits to extend part life. Finally, a number of new efforts in HUMS are summarized as well as lessons learned and future challenges. In particular, gaps are identified to supporting maintenance credits to extend rotorcraft engine part life. A number of data sources were consulted and include results from a survey from the HUMS community, Society of Automotive Engineers (SAE) documents, American Helicopter Society (AHS) papers, as well as references from Defence Science & Technology Organization (DSTO), Civil Aviation Authority (CAA), and Federal Aviation Administration (FAA).

  19. Status of radiation detector and neutron monitor technology

    CERN Document Server

    Kim, Y K; Ha, J H; Han, S H; Hong, S B; Hwang, I K; Lee, W G; Moon, B S; Park, S H; Song, M H

    2002-01-01

    In this report, we describe the current states of the radiation detection technology, detectors for industrial application, and neutron monitors. We also survey the new technologies being applied to this field. The method to detect radiation is the measurement of the observable secondary effect from the interaction between incident radiation and detector material, such as ionization, excitation, fluorescence, and chemical reaction. The radiation detectors can be categorized into gas detectors, scintillation detectors, and semiconductor detectors according to major effects and main applications. This report contains the current status and operational principles of these detectors. The application fields of radiation detectors are industrial measurement system, in-core neutron monitor, medical radiation diagnostic device, nondestructive inspection device, environmental radiation monitoring, cosmic-ray measurement, security system, fundamental science experiment, and radiation measurement standardization. The st...

  20. A global condition monitoring system for wind turbines

    DEFF Research Database (Denmark)

    Schlechtingen, Meik

    , which bear the potential to support plant owners reducing turbine downtime and lowering costs. In this research a global condition monitoring system is proposed, which provides a platform to take advantage of the different information sources available to operators. One of the most common sources...... the output signal is entirely reconstructed by using other correlated signals. Benefits in fault visibility and lead-time to failure estimatesare observed. A very important signal to monitor contained in the SCADA data is the wind turbine power output. The power output has a direct influence on the revenue...... with false brinelling. Finally, a global fuzzy expert system is developed giving the possibility of linking all available information in terms of fuzzy logic rules. It is important to highlight that this research is based on real measured data coming from two wind power plants with turbines of a different...

  1. Fault diagnosis and condition monitoring of wind turbines

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad; Mirzaei, Mahmood

    2017-01-01

    standard sensors on modern wind turbines, including moment sensors and rotor angle sensors. This approach will allow the method to be applied to existing wind turbines without any modifications. The method is based on the detection of asymmetries in the rotor system caused by changes or faults in the rotor......This paper describes a model-free method for the fault diagnosis and condition monitoring of rotor systems in wind turbines. Both fault diagnosis and monitoring can be achieved without using a model for the wind turbine, applied controller, or wind profiles. The method is based on measurements from...... and phase information of the modulation signals. It is possible to detect and isolate which blade is faulty or has been changed based on these signatures. Furthermore, the faulty component can be isolated, ie, the actuator, sensor or blade, and the type of fault can be determined. The method can be used...

  2. A new oil debris sensor for online condition monitoring of wind turbine gearboxes

    DEFF Research Database (Denmark)

    Wang, Chao; Liu, Hui; Liu, Xiao

    2015-01-01

    systems. The health condition of the wind turbine gearboxes can be indicated by the quantity and size of the metal abrasive particles, which may provide very early warnings of faults/failures and benefit the condition based maintenance of the system. An improved inductive sensor probe is proposed......Online Condition Monitoring (CM) is a key technology for the Operation and Maintenance (O&M) of wind turbines. Lubricating oil is the blood of the wind turbine gearbox. Metal debris in lubricating oil contains abundant information regarding the ageing and wear/damage of mechanical transmission...... in this paper for the online health monitoring of wind turbine gearbox. The magnetic field homogeneity as well as the performance of the proposed Helmholtz-coil probe are analyzed and verified by finite element analysis....

  3. Condition Monitoring under In-situ Lubrication Status of Bearing Using Infrared Thermography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Yeon; Hong, Dong Pyo; Yu, Chung Hwan [Chonbuk National University, Jeonju (Korea, Republic of); Kim, Won Tae [Kongju National University, Kongju (Korea, Republic of)

    2010-04-15

    The infrared thermography technology rather than traditional nondestructive methods has benefits with non-contact and non-destructive testings in measuring for the fault diagnosis of the rotating machine. In this work, condition monitoring measurements using this advantage of thermography were proposed. From this study, the novel approach for the damage detection of a rotating machine was conducted based on the spectrum analysis. As results, by adopting the ball bearing used in the rotating machine applied extensively, an spectrum analysis with thermal imaging experiment was performed. Also, as analysing the temperature characteristics obtained from the infrared thermography for in-situ rotating ball bearing under the lubrication condition, it was concluded that infrared thermography for condition monitoring in the rotating machine at real time could be utilized in many industrial fields

  4. On-Line Condition Monitoring using Computational Intelligence

    CERN Document Server

    Vilakazi, C B; Mautla, P; Moloto, E

    2007-01-01

    This paper presents bushing condition monitoring frameworks that use multi-layer perceptrons (MLP), radial basis functions (RBF) and support vector machines (SVM) classifiers. The first level of the framework determines if the bushing is faulty or not while the second level determines the type of fault. The diagnostic gases in the bushings are analyzed using the dissolve gas analysis. MLP gives superior performance in terms of accuracy and training time than SVM and RBF. In addition, an on-line bushing condition monitoring approach, which is able to adapt to newly acquired data are introduced. This approach is able to accommodate new classes that are introduced by incoming data and is implemented using an incremental learning algorithm that uses MLP. The testing results improved from 67.5% to 95.8% as new data were introduced and the testing results improved from 60% to 95.3% as new conditions were introduced. On average the confidence value of the framework on its decision was 0.92.

  5. The Application of Foundation Pit Monitoring Technology to the Excavation

    OpenAIRE

    Qiu Jin; Li Fei

    2015-01-01

    The foundation pit monitoring plays an important role in the foundation pit supporting projects especially in those deep foundation pit projects. Through the whole monitoring of the foundation pit construction from the excavation to the backfill, we can learn about the forcing and deforming process of the foundation pit supporting system, and grasp the impact of external condition changes on the foundation pit. This paper takes a project in Jinan as an example to establish a specific monitori...

  6. New oil condition monitoring system, Wearsens® enables continuous, online detection of critical operating conditions and wear damage

    Directory of Open Access Journals (Sweden)

    Manfred Mauntz

    2015-12-01

    Full Text Available A new oil sensor system is presented for the continuous, online measurement of the wear in turbines, industrial gears, generators, hydraulic systems and transformers. Detection of change is much earlier than existing technologies such as particle counting, vibration measurement or recording temperature. Thus targeted, corrective procedures and/or maintenance can be carried out before actual damage occurs. Efficient machine utilization, accurately timed preventive maintenance, increased service life and a reduction of downtime can all be achieved. The presented sensor system effectively controls the proper operation conditions of bearings and cogwheels in gears. The online diagnostics system measures components of the specific complex impedance of oils. For instance, metal abrasion due to wear debris, broken oil molecules, forming acids or oil soaps, result in an increase of the electrical conductivity, which directly correlates with the degree of contamination of the oil. For additivated lubricants, the stage of degradation of the additives can also be derived from changes in the dielectric constant. The determination of impurities or reduction in the quality of the oil and the quasi continuous evaluation of wear and chemical aging follow the holistic approach of a real-time monitoring of an alteration in the condition of the oil-machine system. Once the oil condition monitoring sensors are installed on the wind turbine, industrial gearbox and test stands, the measuring data can be displayed and evaluated elsewhere. The signals are transmitted to a web-based condition monitoring system via LAN, WLAN or serial interfaces of the sensor unit. Monitoring of the damage mechanisms during proper operation below the tolerance limits of the components enables specific preventive maintenance independent of rigid inspection intervals.

  7. Suitability of MEMS Accelerometers for Condition Monitoring: An experimental study.

    Science.gov (United States)

    Albarbar, Alhussein; Mekid, Samir; Starr, Andrew; Pietruszkiewicz, Robert

    2008-02-06

    With increasing demands for wireless sensing nodes for assets control and condition monitoring; needs for alternatives to expensive conventional accelerometers in vibration measurements have been arisen. Micro-Electro Mechanical Systems (MEMS) accelerometer is one of the available options. The performances of three of the MEMS accelerometers from different manufacturers are investigated in this paper and compared to a well calibrated commercial accelerometer used as a reference for MEMS sensors performance evaluation. Tests were performed on a real CNC machine in a typical industrial environmental workshop and the achieved results are presented.

  8. Online Condition Monitoring to Enable Extended Operation of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Ryan M.; Bond, Leonard J.; Ramuhalli, Pradeep

    2012-03-31

    Safe, secure, and economic operation of nuclear power plants will remain of strategic significance. New and improved monitoring will likely have increased significance in the post-Fukushima world. Prior to Fukushima, many activities were already underway globally to facilitate operation of nuclear power plants beyond their initial licensing periods. Decisions to shut down a nuclear power plant are mostly driven by economic considerations. Online condition monitoring is a means to improve both the safety and economics of extending the operating lifetimes of nuclear power plants, enabling adoption of proactive aging management. With regard to active components (e.g., pumps, valves, motors, etc.), significant experience in other industries has been leveraged to build the science base to support adoption for online condition-based maintenance and proactive aging management in the nuclear industry. Many of the research needs are associated with enabling proactive management of aging in passive components (e.g., pipes, vessels, cables, containment structures, etc.). This paper provides an overview of online condition monitoring for the nuclear power industry with an emphasis on passive components. Following the overview, several technology/knowledge gaps are identified, which require addressing to facilitate widespread online condition monitoring of passive components.

  9. Evaluating, selecting and relevance software tools in technology monitoring

    Directory of Open Access Journals (Sweden)

    Óscar Fernando Castellanos Domínguez

    2010-07-01

    Full Text Available The current setting for industrial and entrepreneurial development has posed the need for incorporating differentiating elements into the production apparatus leading to anticipating technological change. Technology monitoring (TM emerges as a methodology focused on analysing these changes for identifying challenges and opportunities (being mainly supported by information technology (IT through the search for, capture and analysis of data and information. This article proposes criteria for choosing and efficiently using software tools having different characteristics, requirements, capacity and cost which could be used in monitoring. An approach is made to different TM models, emphasising the identification and analysis of different information sources for coving and supporting information and access monitoring. Some evaluation, selection and analysis criteria are given for using these types of tools according to each production system’s individual profile and needs. Some of the existing software packages are described which are available on the market for carrying out monitoring prolects, relating them to their complexity, process characteristics and cost.

  10. Cost efficient SAGD heave monitoring: new generation radar technology

    Energy Technology Data Exchange (ETDEWEB)

    Granda, Johanna; Arnaud, Alain; Payas, Blanca; Katsuris, Dimitra; Cooksley, Geraint [Altamira Information (Canada)

    2011-07-01

    Oil sands operations are subject to various regulations, one of them being the obligation to monitor heave monuments or other surfaces. Besides meeting the Energy Resources Conservation Board (ERCB) requirements, heave monitoring is efficient in steam chamber monitoring and guaranteeing the safety of SAGD operations. Several techniques exist for heave monitoring, such as GPS-measurement and Interferometry for synthetic aperture readar (InSAR). This paper aimed at presenting the InSAR technology and the advances made with the new generation X-band satellite technology. Two studies were conducted: one in an SAGD steam injection area in Alberta, Canada, and the other in a CO2 storage site in In Salah, Algeria. The new generation X-band radar satellites showed some advantages over traditional techniques, with: redundancy of satellites, frequency of images, measurement precision, a higher resolution and a smaller size of corner reflectors. The InSAR technology presented herein is a cost efficient technique allowing heavy oil operators to comply with ERCB requirements.

  11. Upgraded Fast Beam Conditions Monitor for CMS online luminosity measurement

    CERN Document Server

    Leonard, Jessica Lynn; Hempel, Maria; Henschel, Hans; Karacheban, Olena; Lange, Wolfgang; Lohmann, Wolfgang; Novgorodova, Olga; Penno, Marek; Walsh, Roberval; Dabrowski, Anne; Guthoff, Moritz; Loos, R; Ryjov, Vladimir; Burtowy, Piotr; Lokhovitskiy, Arkady; Odell, Nathaniel; Przyborowski, Dominik; Stickland, David P; Zagozdzinska, Agnieszka

    2014-01-01

    The CMS beam condition monitoring subsystem BCM1F during LHC Run I consisted of 8 individual diamond sensors situated around the beam pipe within the tracker detector volume, for the purpose of fast monitoring of beam background and collision products. Effort is ongoing to develop the use of BCM1F as an online bunch-by-bunch luminosity monitor. BCM1F will be running whenever there is beam in LHC, and its data acquisition is independent from the data acquisition of the CMS detector, hence it delivers luminosity even when CMS is not taking data. To prepare for the expected increase in the LHC luminosity and the change from 50 ns to 25 ns bunch separation, several changes to the system are required, including a higher number of sensors and upgraded electronics. In particular, a new real-time digitizer with large memory was developed and is being integrated into a multi-subsystem framework for luminosity measurement. Current results from Run II preparation will be discussed, including results from the January 201...

  12. Condition monitoring of reciprocating seal based on FBG sensors

    Science.gov (United States)

    Zhao, Xiuxu; Zhang, Shuanshuan; Wen, Pengfei; Zhen, Wenhan; Ke, Wei

    2016-07-01

    The failure of hydraulic reciprocating seals will seriously affect the normal operation of hydraulic reciprocating machinery, so the potential fault condition monitoring of reciprocating seals is very important. However, it is extremely difficult because of the limitation of reciprocating motion and the structure constraints of seal groove. In this study, an approach using fiber Bragg grating (FBG) sensors is presented. Experimental results show that the contact strain changes of a reciprocating seal can be detected by FBG sensors in the operation process of the hydraulic cylinders. The failure condition of the reciprocating seal can be identified by wavelet packet energy entropy, and the center frequency of power spectrum analysis. It can provide an effective solution for the fault prevention and health management of reciprocating hydraulic rod seals.

  13. Application of the Wireless Digital Transmission Technology in Remote ECG Monitoring System

    Institute of Scientific and Technical Information of China (English)

    Xu,Lixin; Li,Qingliang; Chen,Zhen; Qi,Xinbo; Zhang,Xincheng

    2005-01-01

    Heart disease is one of the main diseases menace human' s health. The limited monitoring ability and limited serving ability are shortcomings of the existing remote ECG (electrocardiograph) monitoring system. It is practical to bring ECG monitoring from hospital to home. A new method is introduced that the application of wireless digital transmission technology in remote ECG monitoring system. In the system, the portable ECG monitoring device to collect and transmit patient""s electrocardiogram signals and the device to transmit and receive ECG signals are designed by using the PTR2000. The method solves the remote collection and transmission of patient's electrocardiogram signals, and creates the condition of the transmitting of patient"" s electrocardiogram signals through the Broadband network.

  14. Application of the Wireless Digital Transmission Technology in Remote ECG Monitoring System

    Institute of Scientific and Technical Information of China (English)

    Xu,Lixin; Li,Qingliang; Chen,Zhen; Qi,Xinbo; Zhang,Xincheng

    2005-01-01

    Heart disease is one of the main diseases menace human's health. The limited monitoring ability and limited serving ability are shortcomings of the existing remote ECG (electrocardiograph) monitoring system. It is practical to bring ECG monitoring from hospital to home. A new method is introduced that the application of wireless digital transmission technology in remote ECG monitoring system. In the system, the portable ECG monitoring device to collect and transmit patient's electrocardiogram signals and the device to transmit and receive ECG signals are designed by using the PTR2000. The method solves the remote collection and transmission of patient s electrocardiogram signals, and creates the condition of the transmitting of patient's electrocardiogram signals through the Broadband network.

  15. Smart Sensing Technology for Agriculture and Environmental Monitoring

    CERN Document Server

    2012-01-01

    The book focuses on the different aspects of sensing technology, i.e. high reliability, adaptability, recalibration, information processing, data fusion, validation and integration of novel and high performance sensors specifically aims to monitor agricultural and environmental parameters.   This book is dedicated to Sensing systems for Agricultural and Environmental Monitoring  offers to variety of users, namely, Master and PhD degree students, researchers, practitioners, especially Agriculture and Environmental engineers. The book will provide an opportunity of a dedicated and a deep approach in order to improve their knowledge in this specific field.

  16. Wire system aging assessment and condition monitoring (WASCO)

    Energy Technology Data Exchange (ETDEWEB)

    Fantoni, P.F. [Institutt for energiteknikk (Norway); Nordlund, A. [Chalmers Univ. of Technology (Sweden)

    2006-04-15

    Nuclear facilities rely on electrical wire systems to perform a variety of functions for successful operation. Many of these functions directly support the safe operation of the facility; therefore, the continued reliability of wire systems, even as they age, is critical. Condition Monitoring (CM) of installed wire systems is an important part of any aging program, both during the first 40 years of the qualified life and even more in anticipation of the license renewal for a nuclear power plant. This report describes a method for wire system condition monitoring, developed at the Halden Reactor Project, which is based on Frequency Domain Reflectometry. This method resulted in the development of a system called LIRA (LIne Resonance Analysis), which can be used on-line to detect any local or global changes in the cable electrical parameters as a consequence of insulation faults or degradation. LIRA is composed of a signal generator, a signal analyser and a simulator that can be used to simulate several failure/degradation scenarios and assess the accuracy and sensitivity of the LIRA system. Chapter 5 of this report describes an complementary approach based on positron measurement techniques, used widely in defect physics due to the high sensitivity to micro defects, in particular open volume defects. This report describes in details these methodologies, the results of field experiments and the proposed future work. (au)

  17. Thermal Analysis for Condition Monitoring of Machine Tool Spindles

    Science.gov (United States)

    Clough, D.; Fletcher, S.; Longstaff, A. P.; Willoughby, P.

    2012-05-01

    Decreasing tolerances on parts manufactured, or inspected, on machine tools increases the requirement to have a greater understanding of machine tool capabilities, error sources and factors affecting asset availability. Continuous usage of a machine tool during production processes causes heat generation typically at the moving elements, resulting in distortion of the machine structure. These effects, known as thermal errors, can contribute a significant percentage of the total error in a machine tool. There are a number of design solutions available to the machine tool builder to reduce thermal error including, liquid cooling systems, low thermal expansion materials and symmetric machine tool structures. However, these can only reduce the error not eliminate it altogether. It is therefore advisable, particularly in the production of high value parts, for manufacturers to obtain a thermal profile of their machine, to ensure it is capable of producing in tolerance parts. This paper considers factors affecting practical implementation of condition monitoring of the thermal errors. In particular is the requirement to find links between temperature, which is easily measureable during production and the errors which are not. To this end, various methods of testing including the advantages of thermal images are shown. Results are presented from machines in typical manufacturing environments, which also highlight the value of condition monitoring using thermal analysis.

  18. Real time video analysis to monitor neonatal medical condition

    Science.gov (United States)

    Shirvaikar, Mukul; Paydarfar, David; Indic, Premananda

    2017-05-01

    One in eight live births in the United States is premature and these infants have complications leading to life threatening events such as apnea (pauses in breathing), bradycardia (slowness of heart) and hypoxia (oxygen desaturation). Infant movement pattern has been hypothesized as an important predictive marker for these life threatening events. Thus estimation of movement along with behavioral states, as a precursor of life threatening events, can be useful for risk stratification of infants as well as for effective management of disease state. However, more important and challenging is the determination of the behavioral state of the infant. This information includes important cues such as sleep position and the status of the eyes, which are important markers for neonatal neurodevelopment state. This paper explores the feasibility of using real time video analysis to monitor the condition of premature infants. The image of the infant can be segmented into regions to localize and focus on specific areas of interest. Analysis of the segmented regions can be performed to identify different parts of the body including the face, arms, legs and torso. This is necessary due to real-time processing speed considerations. Such a monitoring system would be of great benefit as an aide to medical staff in neonatal hospital settings requiring constant surveillance. Any such system would have to satisfy extremely stringent reliability and accuracy requirements, before it can be deployed in a hospital care unit, due to obvious reasons. The effect of lighting conditions and interference will have to be mitigated to achieve such performance.

  19. Structural health condition monitoring of rails using acoustic emission techniques

    Science.gov (United States)

    Yilmazer, Pinar

    In-service rails can develop several types of structural defects due to fatigue and wear caused by rolling stock passing over them. Most rail defects will develop gradually over time thus permitting inspection engineers to detect them in time before final failure occurs. In the UK, certain types of severe rail defects such as tache ovales, require the fitting of emergency clamps and the imposing of an Emergency Speed Restriction (ESR) until the defects are removed. Acoustic emission (AE) techniques can be applied for the detection and continuous monitoring of defect growth therefore removing the need of imposing strict ESRs. The work reported herewith aims to develop a sound methodology for the application of AE in order to detect and subsequently monitor damage evolution in rails. To validate the potential of the AE technique, tests have been carried out under laboratory conditions on three and four-point bending samples manufactured from 260 grade rail steel. Further tests, simulating the background noise conditions caused by passing rolling stock have been carried out using special experimental setups. The crack growth events have been simulated using a pencil tip break..

  20. Technology Change And Working Conditions – A Cultural Perspective

    DEFF Research Database (Denmark)

    Sørensen, Ole Henning

    2004-01-01

    When technology change improves working conditions, the success is often attributed to skilful change agents. When it is not, the blame is on “resistance to change” and “resilient cultures”. How can these failures be understood differently? A cultural perspective on technology change might be a way...

  1. Engine Oil Condition Monitoring Using High Temperature Integrated Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Jeff Bird

    2011-01-01

    Full Text Available The present work contains two parts. In the first part, high temperature integrated ultrasonic transducers (IUTs made of thick piezoelectric composite films, were coated directly onto lubricant oil supply and sump lines of a modified CF700 turbojet engine. These piezoelectric films were fabricated using a sol-gel spray technology. By operating these IUTs in transmission mode, the amplitude and velocity of transmitted ultrasonic waves across the flow channel of the lubricant oil in supply and sump lines were measured during engine operation. Results have shown that the amplitude of the ultrasonic waves is sensitive to the presence of air bubbles in the oil and that the ultrasound velocity is linearly dependent on oil temperature. In the second part of the work, the sensitivity of ultrasound to engine lubricant oil degradation was investigated by using an ultrasonically equipped and thermally-controlled laboratory testing cell and lubricant oils of different grades. The results have shown that at a given temperature, ultrasound velocity decreases with a decrease in oil viscosity. Based on the results obtained in both parts of the study, ultrasound velocity measurement is proposed for monitoring oil degradation and transient oil temperature variation, whereas ultrasound amplitude measurement is proposed for monitoring air bubble content.

  2. An Updated Methodology for Enhancing Risk Monitors with Integrated Equipment Condition Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hirt, Evelyn H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Coles, Garill A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bonebrake, Christopher A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ivans, William J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wootan, David W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mitchell, Mark R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-07-18

    Small modular reactors (SMRs) generally include reactors with electric output of ~350 MWe or less (this cutoff varies somewhat but is substantially less than full-size plant output of 700 MWe or more). Advanced SMRs (AdvSMRs) refer to a specific class of SMRs and are based on modularization of advanced reactor concepts. Enhancing affordability of AdvSMRs will be critical to ensuring wider deployment, as AdvSMRs suffer from loss of economies of scale inherent in small reactors when compared to large (~greater than 600 MWe output) reactors and the controllable day-to-day costs of AdvSMRs will be dominated by operation and maintenance (O&M) costs. Technologies that help characterize real-time risk are important for controlling O&M costs. Risk monitors are used in current nuclear power plants to provide a point-in-time estimate of the system risk given the current plant configuration (e.g., equipment availability, operational regime, and environmental conditions). However, current risk monitors are unable to support the capability requirements listed above as they do not take into account plant-specific normal, abnormal, and deteriorating states of active components and systems. This report documents technology developments towards enhancing risk monitors that, if integrated with supervisory plant control systems, can provide the capability requirements listed and meet the goals of controlling O&M costs. The report describes research results on augmenting an initial methodology for enhanced risk monitors that integrate real-time information about equipment condition and POF into risk monitors. Methods to propagate uncertainty through the enhanced risk monitor are evaluated. Available data to quantify the level of uncertainty and the POF of key components are examined for their relevance, and a status update of this data evaluation is described. Finally, we describe potential targets for developing new risk metrics that may be useful for studying trade-offs for economic

  3. The Application of Foundation Pit Monitoring Technology to the Excavation

    Directory of Open Access Journals (Sweden)

    Qiu Jin

    2015-01-01

    Full Text Available The foundation pit monitoring plays an important role in the foundation pit supporting projects especially in those deep foundation pit projects. Through the whole monitoring of the foundation pit construction from the excavation to the backfill, we can learn about the forcing and deforming process of the foundation pit supporting system, and grasp the impact of external condition changes on the foundation pit. This paper takes a project in Jinan as an example to establish a specific monitoring program, and then conducts the analysis and evaluation of the monitoring data; the real-time grasp of the foundation pit deformation and internal force changes can help to further ensure the security status of the foundation pit, thus better guiding the construction.

  4. A Two-Stage Diagnosis Framework for Wind Turbine Gearbox Condition Monitoring

    Directory of Open Access Journals (Sweden)

    Janet M. Twomey

    2013-01-01

    Full Text Available Advances in high performance sensing technologies enable the development of wind turbine condition monitoring system to diagnose and predict the system-wide effects of failure events. This paper presents a vibration-based two stage fault detection framework for failure diagnosis of rotating components in wind turbines. The proposed framework integrates an analytical defect detection method and a graphical verification method together to ensure the diagnosis efficiency and accuracy. The efficacy of the proposed methodology is demonstrated with a case study with the gearbox condition monitoring Round Robin study dataset provided by the National Renewable Energy Laboratory (NREL. The developed methodology successfully picked five faults out of seven in total with accurate severity levels without producing any false alarm in the blind analysis. The case study results indicated that the developed fault detection framework is effective for analyzing gear and bearing faults in wind turbine drive train system based upon system vibration characteristics.

  5. Energy technology monitoring - New areas and in-depth investigations; Technologie-Monitoring - Weitere Bereiche - Vertiefungen

    Energy Technology Data Exchange (ETDEWEB)

    Rigassi, R.; Eicher, H. [Dr. Eicher und Pauli AG, Liestal (Switzerland); Steiner, P.; Ott, W. [Econcept AG, Zuerich (Switzerland)

    2005-07-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) presents the results of a project that examined long-term trends in the energy technology area in order to provide information that is to form the basis for political action and the distribution of energy research funding in Switzerland. Energy-technology areas examined include variable-speed electrical drives, ventilation systems for low-energy-consumption buildings, membrane technology and the use of plastics in lightweight automobiles. Examples are quoted and the current state of the appropriate technologies and market aspects are examined. Also, the potential and future developments in the areas listed are looked at. The consequences for energy policy and future developments in the technology-monitoring area are considered.

  6. GPS technology to monitoring auto transport in Latvia

    Directory of Open Access Journals (Sweden)

    Victor Boicov

    2014-01-01

    Full Text Available This paper is the result of authors’ activities in the field of research and implementation of global positioning system (GPS technologies in the Latvian car industry. The subject of study is the characteristics of Latvian auto transport management. Topicality and importance of this issue are related with new GPS applications to auto transport monitoring. Principal practical application of this paper is reflected in the methodology developed by the authors in order to design, elaborate and introduce GPS systems.

  7. Development of a wireless bridge monitoring system for condition assessment using hybrid techniques

    Science.gov (United States)

    Whelan, Matthew J.; Fuchs, Michael P.; Gangone, Michael V.; Janoyan, Kerop D.

    2007-04-01

    The introduction and development of wireless sensor network technology has resulted in rapid growth within the field of structural health monitoring (SHM), as the dramatic cable costs associated with instrumentation of large civil structures is potentially alleviated. Traditionally, condition assessment of bridge structures is accomplished through the use of either vibration measurements or strain sensing. One approach is through quantifying dynamic characteristics and mode shapes developed through the use of relatively dense arrays of accelerometers. Another widely utilized method of condition assessment is bridge load rating, which is enabled through the use of strain sensors. The Wireless Sensor Solution (WSS) developed specifically for diagnostic bridge monitoring provides a hybrid system that interfaces with both accelerometers and strain sensors to facilitate vibration-based bridge evaluation as well as load rating and static analysis on a universal platform. This paper presents the development and testing of a wireless bridge monitoring system designed within the Laboratory for Intelligent Infrastructure and Transportation Technologies (LIITT) at Clarkson University. The system interfaces with low-cost MEMS accelerometers using custom signal conditioning for amplification and filtering tailored to the spectrum of typical bridge vibrations, specifically from ambient excitation. Additionally, a signal conditioning and high resolution ADC interface is provided for strain gauge sensors. To permit compensation for the influence of temperature, thermistor-based temperature sensing is also enabled. In addition to the hardware description, this paper presents features of the software applications and host interface developed for flexible, user-friendly in-network control of and acquisition from the sensor nodes. The architecture of the software radio protocol is also discussed along with results of field deployments including relatively large-scale networks and

  8. ANN Based Tool Condition Monitoring System for CNC Milling Machines

    Directory of Open Access Journals (Sweden)

    Mota-Valtierra G.C.

    2011-10-01

    Full Text Available Most of the companies have as objective to manufacture high-quality products, then by optimizing costs, reducing and controlling the variations in its production processes it is possible. Within manufacturing industries a very important issue is the tool condition monitoring, since the tool state will determine the quality of products. Besides, a good monitoring system will protect the machinery from severe damages. For determining the state of the cutting tools in a milling machine, there is a great variety of models in the industrial market, however these systems are not available to all companies because of their high costs and the requirements of modifying the machining tool in order to attach the system sensors. This paper presents an intelligent classification system which determines the status of cutt ers in a Computer Numerical Control (CNC milling machine. This tool state is mainly detected through the analysis of the cutting forces drawn from the spindle motors currents. This monitoring system does not need sensors so it is no necessary to modify the machine. The correct classification is made by advanced digital signal processing techniques. Just after acquiring a signal, a FIR digital filter is applied to the data to eliminate the undesired noisy components and to extract the embedded force components. A Wavelet Transformation is applied to the filtered signal in order to compress the data amount and to optimize the classifier structure. Then a multilayer perceptron- type neural network is responsible for carrying out the classification of the signal. Achieving a reliability of 95%, the system is capable of detecting breakage and a worn cutter.

  9. Embedded strain gauges for condition monitoring of silicone gaskets.

    Science.gov (United States)

    Schotzko, Timo; Lang, Walter

    2014-07-10

    A miniaturized strain gauge with a thickness of 5 µm is molded into a silicone O-ring. This is a first step toward embedding sensors in gaskets for structural health monitoring. The signal of the integrated sensor exhibits a linear correlation with the contact pressure of the O-ring. This affords the opportunity to monitor the gasket condition during installation. Thus, damages caused by faulty assembly can be detected instantly, and early failures, with their associated consequences, can be prevented. Through the embedded strain gauge, the contact pressure applied to the gasket can be directly measured. Excessive pressure and incorrect positioning of the gasket can cause structural damage to the material of the gasket, which can lead to an early outage. A platinum strain gauge is fabricated on a thin polyimide layer and is contacted through gold connections. The measured resistance pressure response exhibits hysteresis for the first few strain cycles, followed by a linear behavior. The short-term impact of the embedded sensor on the stability of the gasket is investigated. Pull-tests with O-rings and test specimens have indicated that the integration of the miniaturized sensors has no negative impact on the stability in the short term.

  10. Embedded Strain Gauges for Condition Monitoring of Silicone Gaskets

    Directory of Open Access Journals (Sweden)

    Timo Schotzko

    2014-07-01

    Full Text Available A miniaturized strain gauge with a thickness of 5 µm is molded into a silicone O-ring. This is a first step toward embedding sensors in gaskets for structural health monitoring. The signal of the integrated sensor exhibits a linear correlation with the contact pressure of the O-ring. This affords the opportunity to monitor the gasket condition during installation. Thus, damages caused by faulty assembly can be detected instantly, and early failures, with their associated consequences, can be prevented. Through the embedded strain gauge, the contact pressure applied to the gasket can be directly measured. Excessive pressure and incorrect positioning of the gasket can cause structural damage to the material of the gasket, which can lead to an early outage. A platinum strain gauge is fabricated on a thin polyimide layer and is contacted through gold connections. The measured resistance pressure response exhibits hysteresis for the first few strain cycles, followed by a linear behavior. The short-term impact of the embedded sensor on the stability of the gasket is investigated. Pull-tests with O-rings and test specimens have indicated that the integration of the miniaturized sensors has no negative impact on the stability in the short term.

  11. Distributed acoustic fibre optic sensors for condition monitoring of pipelines

    Science.gov (United States)

    Hussels, Maria-Teresa; Chruscicki, Sebastian; Habib, Abdelkarim; Krebber, Katerina

    2016-05-01

    Industrial piping systems are particularly relevant to public safety and the continuous availability of infrastructure. However, condition monitoring systems based on many discrete sensors are generally not well-suited for widespread piping systems due to considerable installation effort, while use of distributed fibre-optic sensors would reduce this effort to a minimum. Specifically distributed acoustic sensing (DAS) is employed for detection of third-party threats and leaks in oil and gas pipelines in recent years and can in principle also be applied to industrial plants. Further possible detection routes amenable by DAS that could identify damage prior to emission of medium are subject of a current project at BAM, which aims at qualifying distributed fibre optic methods such as DAS as a means for spatially continuous monitoring of industrial piping systems. Here, first tests on a short pipe are presented, where optical fibres were applied directly to the surface. An artificial signal was used to define suitable parameters of the measurement system and compare different ways of applying the sensor.

  12. Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth A. Yackly

    2005-12-01

    turbine combustion systems. This task was refocused to address pre-mixed combustion phenomenon for IGCC applications. The work effort on this task was shifted to another joint GE Energy/DOE-NETL program investigation, High Hydrogen Pre-mixer Designs, as of April 1, 2004. Task 4--Information Technology (IT) Integration: The fourth task was originally to demonstrate Information Technology (IT) tools for advanced technology coal/IGCC powerplant condition assessment and condition based maintenance. The task focused on development of GateCycle. software to model complete-plant IGCC systems, and the Universal On-Site Monitor (UOSM) to collect and integrate data from multiple condition monitoring applications at a power plant. The work on this task was stopped as of April 1, 2004.

  13. Gearbox Fatigue Load Estimation for Condition Monitoring of Wind Turbines

    DEFF Research Database (Denmark)

    Perisic, Nevena; Pedersen, Bo Juul; Kirkegaard, Poul Henning

    2012-01-01

    The focus of the paper is on a design of a fatigue load estimator for predictive condition monitoring systems (CMS) of wind turbines. In order to avoid high-price measurement equipment required for direct load measuring, an indirect approach is suggested using only measurements from supervisory...... for the real time application. This paper presents results of the estimation of the gearbox fatigue load, often called shaft torque, using simulated data of wind turbine. Noise sensitivity of the algorithm is investigated by assuming different levels of measurement noise. Shaft torque estimations are compared...... with simulated data and as the obtained results are promising, further work will be on a validation of the method using real wind turbine data....

  14. Gearbox Fatigue Load Estimation for Condition Monitoring of Wind Turbines

    DEFF Research Database (Denmark)

    Perisic, Nevena; Pedersen, Bo Juul; Kirkegaard, Poul Henning

    2012-01-01

    for the real time application. This paper presents results of the estimation of the gearbox fatigue load, often called shaft torque, using simulated data of wind turbine. Noise sensitivity of the algorithm is investigated by assuming different levels of measurement noise. Shaft torque estimations are compared......The focus of the paper is on a design of a fatigue load estimator for predictive condition monitoring systems (CMS) of wind turbines. In order to avoid high-price measurement equipment required for direct load measuring, an indirect approach is suggested using only measurements from supervisory...... with simulated data and as the obtained results are promising, further work will be on a validation of the method using real wind turbine data....

  15. The Savannah River Technology Center environmental monitoring field test platform

    Energy Technology Data Exchange (ETDEWEB)

    Rossabi, J.

    1993-03-05

    Nearly all industrial facilities have been responsible for introducing synthetic chemicals into the environment. The Savannah River Site is no exception. Several areas at the site have been contaminated by chlorinated volatile organic chemicals. Because of the persistence and refractory nature of these contaminants, a complete clean up of the site will take many years. A major focus of the mission of the Environmental Sciences Section of the Savannah River Technology Center is to develop better, faster, and less expensive methods for characterizing, monitoring, and remediating the subsurface. These new methods can then be applied directly at the Savannah River Site and at other contaminated areas in the United States and throughout the world. The Environmental Sciences Section has hosted field testing of many different monitoring technologies over the past two years primarily as a result of the Integrated Demonstration Program sponsored by the Department of Energy`s Office of Technology Development. This paper provides an overview of some of the technologies that have been demonstrated at the site and briefly discusses the applicability of these techniques.

  16. Condition monitoring of gearboxes using synchronously averaged electric motor signals

    Science.gov (United States)

    Ottewill, J. R.; Orkisz, M.

    2013-07-01

    Due to their prevalence in rotating machinery, the condition monitoring of gearboxes is extremely important in the minimization of potentially dangerous and expensive failures. Traditionally, gearbox condition monitoring has been conducted using measurements obtained from casing-mounted vibration transducers such as accelerometers. A well-established technique for analyzing such signals is the synchronous signal average, where vibration signals are synchronized to a measured angular position and then averaged from rotation to rotation. Driven, in part, by improvements in control methodologies based upon methods of estimating rotor speed and torque, induction machines are used increasingly in industry to drive rotating machinery. As a result, attempts have been made to diagnose defects using measured terminal currents and voltages. In this paper, the application of the synchronous signal averaging methodology to electric drive signals, by synchronizing stator current signals with a shaft position estimated from current and voltage measurements is proposed. Initially, a test-rig is introduced based on an induction motor driving a two-stage reduction gearbox which is loaded by a DC motor. It is shown that a defect seeded into the gearbox may be located using signals acquired from casing-mounted accelerometers and shaft mounted encoders. Using simple models of an induction motor and a gearbox, it is shown that it should be possible to observe gearbox defects in the measured stator current signal. A robust method of extracting the average speed of a machine from the current frequency spectrum, based on the location of sidebands of the power supply frequency due to rotor eccentricity, is presented. The synchronous signal averaging method is applied to the resulting estimations of rotor position and torsional vibration. Experimental results show that the method is extremely adept at locating gear tooth defects. Further results, considering different loads and different

  17. APPLICATIONS OF CURRENT TECHNOLOGY FOR CONTINUOUS MONITORING OF SPENT FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Drayer, R.

    2013-06-09

    Advancements in technology have opened many opportunities to improve upon the current infrastructure surrounding the nuclear fuel cycle. Embedded devices, very small sensors, and wireless technology can be applied to Security, Safety, and Nonproliferation of Spent Nuclear Fuel. Security, separate of current video monitoring systems, can be improved by integrating current wireless technology with a variety of sensors including motion detection, altimeter, accelerometer, and a tagging system. By continually monitoring these sensors, thresholds can be set to sense deviations from nominal values. Then alarms or notifications can be activated as needed. Safety can be improved in several ways. First, human exposure to ionizing radiation can be reduced by using a wireless sensor package on each spent fuel cask to monitor radiation, temperature, humidity, etc. Since the sensor data is monitored remotely operator stay-time is decreased and distance from the spent fuel increased, so the overall radiation exposure is reduced as compared to visual inspections. The second improvement is the ability to monitor continuously rather than periodically. If changes occur to the material, alarm thresholds could be set and notifications made to provide advanced notice of negative data trends. These sensor packages could also record data to be used for scientific evaluation and studies to improve transportation and storage safety. Nonproliferation can be improved for spent fuel transportation and storage by designing an integrated tag that uses current infrastructure for reporting and in an event; tracking can be accomplished using the Iridium satellite system. This technology is similar to GPS but with higher signal strength and penetration power, but lower accuracy. A sensor package can integrate all or some of the above depending on the transportation and storage requirements and regulations. A sensor package can be developed using off the shelf technology and applying it to each

  18. Reduction of Doppler effect for the needs of wayside condition monitoring system of railway vehicles

    Science.gov (United States)

    Dybała, Jacek; Radkowski, Stanisław

    2013-07-01

    Technology of acoustic condition monitoring of vehicles in motion is based on the assumption that diagnostically relevant information is stored in the acoustic signal generated by a passing vehicle. Analyzing the possibilities of increasing the effectiveness of condition monitoring of a passing vehicle with stationary microphones, it should be noted that the acoustic signal recorded in these conditions is disturbed with the disturbance resulting from the Doppler effect. Reduction of signal's frequential structure disturbance resulting from the Doppler effect allows efficient analysis of changes in frequential structure of recorded signals and as a result extraction of relevant diagnostic information related with technical condition of running gear of vehicle. This article presents a method for removal of signal's frequential structure disturbances related with relative move of vehicles and stationary monitoring station. For elimination of the frequential non-stationary of signals disturbance-oriented dynamic signal resampling method was used. The paper provides a test of two methods for defining the time course of local disturbance of signal's frequential structure: the method based on the Hilbert transform and the method of analytical description of signal's disturbance based on the knowledge of a phenomenon that causes frequential non-stationarity of signals. As an example, the results of the processing and analysis of acoustic signals recorded by wayside measuring station, during the passage of WM-15A railway vehicle on an experimental track of Polish Railway Institute, are presented.

  19. Remote monitoring as a tool in condition assessment of a highway bridge

    Science.gov (United States)

    Tantele, Elia A.; Votsis, Renos A.; Onoufriou, Toula; Milis, Marios; Kareklas, George

    2016-08-01

    The deterioration of civil infrastructure and their subsequent maintenance is a significant problem for the responsible managing authorities. The ideal scenario is to detect deterioration and/or structural problems at early stages so that the maintenance cost is kept low and the safety of the infrastructure remains undisputed. The current inspection regimes implemented mostly via visual inspection are planned at specific intervals but are not always executed on time due to shortcomings in expert personnel and finance. However the introduction of technological advances in the assessment of infrastructures provides the tools to alleviate this problem. This study describes the assessment of a highway RC bridge's structural condition using remote structural health monitoring. A monitoring plan is implemented focusing on strain measurements; as strain is a parameter influenced by the environmental conditions supplementary data are provided from temperature and wind sensors. The data are acquired using wired sensors (deployed at specific locations) which are connected to a wireless sensor unit installed at the bridge. This WSN application enables the transmission of the raw data from the field to the office for processing and evaluation. The processed data are then used to assess the condition of the bridge. This case study, which is part of an undergoing RPF research project, illustrates that remote monitoring can alleviate the problem of missing structural inspections. Additionally, shows its potential to be the main part of a fully automated smart procedure of obtaining structural data, processed them and trigger an alarm when certain undesirable conditions are met.

  20. The environment, international standards, asset health management and condition monitoring: An integrated strategy

    Energy Technology Data Exchange (ETDEWEB)

    Roe, S. [CSD, British Institute of Non-Destructive Testing (BINDT) (United Kingdom); Mba, D. [School of Engineering, Cranfield University, MK43 0AL, Bedfordshire (United Kingdom)], E-mail: d.mba@cranfield.ac.uk

    2009-02-15

    Asset Health Management (AHM), supported by condition monitoring (CM) and performance measuring technologies, together with trending, modelling and diagnostic frameworks, is not only critical to the reliability of high-value machines, but also to a companies Overall Equipment Efficiency (OEE), system safety and profitability. In addition these protocols are also critical to the global concern of the environment. Industries involved with monitoring key performances indicators (KPI) to improve OEE would benefit from a standardised qualification and certification scheme for their personnel, particularly if it is based on internationally accepted procedures for the various CM technologies that also share the same objectives as AH and CM. Furthermore, the development of 'models' for implementation of a Carbon tax is intrinsically dependent on the integrity and accuracy of measurements contributing to these indicators. This paper reviews the global picture of condition monitoring, the environment and related international standards and then considers their relationship and equivalent global objectives. In addition, it presents the methods behind the development of such standards for certification of competence in personnel involved with data collection, modelling and measurements of KPIs. Two case studies are presented that highlight the integrated strategy in practise.

  1. Technical Report on Preliminary Methodology for Enhancing Risk Monitors with Integrated Equipment Condition Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, Pradeep; Coles, Garill A.; Coble, Jamie B.; Hirt, Evelyn H.

    2013-09-17

    Small modular reactors (SMRs) generally include reactors with electric output of ~350 MWe or less (this cutoff varies somewhat but is substantially less than full-size plant output of 700 MWe or more). Advanced SMRs (AdvSMRs) refer to a specific class of SMRs and are based on modularization of advanced reactor concepts. AdvSMRs may provide a longer-term alternative to traditional light-water reactors (LWRs) and SMRs based on integral pressurized water reactor concepts currently being considered. Enhancing affordability of AdvSMRs will be critical to ensuring wider deployment. AdvSMRs suffer from loss of economies of scale inherent in small reactors when compared to large (~greater than 600 MWe output) reactors. Some of this loss can be recovered through reduced capital costs through smaller size, fewer components, modular fabrication processes, and the opportunity for modular construction. However, the controllable day-to-day costs of AdvSMRs will be dominated by operation and maintenance (O&M) costs. Technologies that help characterize real-time risk are important for controlling O&M costs. Risk monitors are used in current nuclear power plants to provide a point-in-time estimate of the system risk given the current plant configuration (e.g., equipment availability, operational regime, and environmental conditions). However, current risk monitors are unable to support the capability requirements listed above as they do not take into account plant-specific normal, abnormal, and deteriorating states of active components and systems. This report documents technology developments that are a step towards enhancing risk monitors that, if integrated with supervisory plant control systems, can provide the capability requirements listed and meet the goals of controlling O&M costs. The report describes research results from an initial methodology for enhanced risk monitors by integrating real-time information about equipment condition and POF into risk monitors.

  2. CONDITIONS AND ORGANIZATION OF THE TRANSITION TO BASIC TECHNOLOGIES OF A NEW TECHNOLOGICAL STRUCTURE

    Directory of Open Access Journals (Sweden)

    B. L. Bourov

    2011-01-01

    Full Text Available With due account for the coming new (VI-th world technological structure, future creation of new types of industrial production is both possible and necessary. Economic environment conditions favorable for such development are designated. In reference to Russian technological environment particulars, self-developing economic-technological microenvironment of a new quality level should be created in zones where controlled «technological chains» function. Possibilities of creation of the VI-th technological structure level basic technologies are shown for industrial and household waste processing techniques as an example.

  3. Condition Monitoring for wind power plants. Structure monitoring and lifetime monitoring of wind power plants (SCMS and LCMS); Condition Monitoring fuer Windenergieanlagen. Strukturmonitoring and Lebensdauerueberwachung von Windenergieanlagen (SCMS and LCMS)

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Holger [P.E. Concepts GmbH, Essen (Germany)

    2010-07-01

    Knowledge about the condition and the remaining lifetime of the structural components of WEPs provides considerable advantages for the manufacturers, owners and insurers. To gain this knowledge, two monitoring systems have been developed, one for the structural condition monitoring and one for the lifetime condition monitoring. Both systems need only little additional measuring expense or none at all, the main part is in the software evaluating the measurement results and parts of the wind and control data. The results of the verification at multi-megawatt wind turbines show that the systems work satisfactorily and that even a sensor-free lifetime monitoring is possible. (orig.)

  4. Technology for CO{sub 2} emission monitoring and control

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, E.L. Jr.; Unkefer, P.J.; Pendergrass, J.H.; Parkinson, W.J.; Loose, V.W.; Brainard, J.R.

    1998-12-31

    The authors examined three specific areas relative to CO{sub 2} emissions and controls: (1) the effect of deregulation of the utility industry on emissions, (2) the role of advanced power systems in reducing emissions, and (3) developing CO{sub 2} mitigation technologies. In this work the Energy Technologies program office at Los Alamos attempted to initiate an integrated approach that includes a range of tasks involving both point and distributed CO{sub 2} control. The authors have examined evolving mitigation (separation and sequestration) technologies for CO{sub 2} disposal. The separation of hydrogen gas from high-temperature CO{sub 2}-containing streams is a critical component of carbon dioxide mitigation technology, and cost-effective point sequestration will require separation of CO{sub 2} from H{sub 2}. They investigated four types of separation techniques: two high-temperature membrane technologies, an intermediate-temperature membrane technology, and a separation technology based on the formation of CO{sub 2} hydrate compounds through reaction of CO{sub 2} with water at near freezing conditions. At Los Alamos, sequestration technologies are being developed along three principal areas: mineral sequestration of CO{sub 2}, the enhancement of natural sinks using biotechnology methods, and the conversion of CO{sub 2} to methanol using high-temperature photolysis.

  5. Remote monitoring of lower-limb prosthetic socket fit using wireless technologies.

    Science.gov (United States)

    Sahandi, R; Sewell, P; Noroozi, S; Hewitt, M

    2012-01-01

    Accurate fitting of a lower-limb prosthetic socket is the most important factor affecting amputee satisfaction and rehabilitation. The technology is now available to allow real-time monitoring of in-service pressure distribution of prosthetic limbs. This paper proposes a remote interfacial pressure monitoring system necessary for the assessment of fit. The suitability of a wireless ZigBee network due to its relevant technical specification is investigated. The system enables remote monitoring of a prosthetic socket and its fit under different operating conditions thereby improving design, efficiency and effectiveness. The data can be used by prosthetists and may also be recorded for future training or for patient progress monitoring. This can minimize the number of iterations by getting it right first time, thereby minimizing the number of replacement prostheses.

  6. Noninvasive health condition monitoring device for workers at high altitudes conditions.

    Science.gov (United States)

    Aqueveque, Pablo; Gutierrez, Cristopher; Saavedra, Francisco; Pino, Esteban J

    2016-08-01

    This work presents the design and implementation of a continuous monitoring device to control the health state of workers, for instance miners, at high altitudes. The extreme ambient conditions are harmful for peoples' health; therefore a continuous control of the workers' vital signs is necessary. The developed system includes physiological variables: electrocardiogram (ECG), respiratory activity and body temperature (BT), and ambient variables: ambient temperature (AT) and relative humidity (RH). The noninvasive sensors are incorporated in a t-shirt to deliver a functional device, and maximum comfort to the users. The device is able to continuously calculate heart rate (HR) and respiration rate (RR), and establish a wireless data transmission to a central monitoring station.

  7. Monitoring and Protection of Oil and Gas Condition in Industrial Using Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Y. Chalapathi Rao

    2012-09-01

    Full Text Available Wireless Sensor Networks (WSNs are one of the fastest growing and emerging technologies in the field of Wireless networking today. WSNs have a vast amount of applications including environmental monitoring, military, ecology, agriculture, inventory control, robotics and health care. This paper focuses on monitoring and protection of oil and gas operations using WSNs that are optimized to decrease installation, and maintenance cost, energy requirements, increase reliability and improve communication efficiency. In addition, simulation experiments using the proposed model are presented. Such models could provide new tools for research in predictive maintenance and condition-based monitoring of factory machinery in general and for open architecture machining systems in particular. Wireless sensing no longer needs to be relegated to locations where access is difficult or where cabling is not practical. Wireless condition monitoring systems can be cost effectively implemented in extensive applications that were historically handled by running routes with data collectors. The result would be a lower cost program with more frequent data collection, increased safety, and lower spare parts inventories. Facilities would be able to run leaner because they will have more confidence in their ability to avoid downtime

  8. Condition monitoring of rotor blades of modern wind power systems; Ueberwachung mit Hertz. Condition Monitoring von Rotorblaettern moderner Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Fecht, Nikolaus

    2010-06-15

    With seven wind turbines, the Austrian wind farm ''Sternwald'' is the biggest wind farm in Upper Austria. It is the only wind farm in a forest, and all turbines are therefore equipped with automatic fire fighting equipment. The mountain range on which the wind farm is located is about 1000 m high, with strong wind and much ice and snow in the winter season. For this reason, the owner decided to instal a condition monitoring system with ice detectors. The piezoelectric sensors are mounted directly on the rotor blades as measurements on the nacelle will always be incorrect. Installation on the rotor blades, on the other hand, makes high demands on the fastenings and sensors as the velocity of the blade tips may be up to 250 km per hour. (orig.)

  9. DEVELOPMENT OF A SENSOR NETWORK TEST BED FOR ISD MATERIALS AND STRUCUTRAL CONDITION MONITORING

    Energy Technology Data Exchange (ETDEWEB)

    Zeigler, K.; Ferguson, B.; Karapatakis, D.; Herbst, C.; Stripling, C.

    2011-07-06

    The P Reactor at the Savannah River Site is one of the first reactor facilities in the US DOE complex that has been placed in its end state through in situ decommissioning (ISD). The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. To evaluate the feasibility and utility of remote sensors to provide verification of ISD system conditions and performance characteristics, an ISD Sensor Network Test Bed has been designed and deployed at the Savannah River National Laboratory. The test bed addresses the DOE-EM Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of: (1) Groutable thermistors for temperature and moisture monitoring; (2) Strain gauges for crack growth monitoring; (3) Tiltmeters for settlement monitoring; and (4) A communication system for data collection. Preliminary baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment.

  10. A Review of Sensor System and Application in Milling Process for Tool Condition Monitoring

    Directory of Open Access Journals (Sweden)

    Muhammad Rizal

    2014-02-01

    Full Text Available This study presents a review of the state-of-the-art in sensor technologies and its application in milling process to measure machining signal for Tool Condition Monitoring (TCM systems. Machining signals such as cutting force, torque, vibration, acoustic emission, current/power, sound and temperature from milling operation are briefly reviewed with the goal of indentifying the parameters for TCM. Sensors reviewed include both commercial and research devices that can measure machining signals. In this study describes trends in the sensor systems used and its potential for future research.

  11. Workshop on power conditioning for alternative energy technologies. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D. R.

    1979-01-01

    As various alternative energy technologies such as photovoltaics, wind, fuel cells, and batteries are emerging as potential sources of energy for the future, the need arises for development of suitable power-conditioning systems to interface these sources to their respective loads. Since most of these sources produce dc electricity and most electrical loads require ac, an important component of the required power-conditioning units is a dc-to-ac inverter. The discussions deal with the development of power conditioners for each alternative energy technology. Discussion topics include assessments of current technology, identification of operational requirements with a comparison of requirements for each source technology, the identification of future technology trends, the determination of mass production and marketing requirements, and recommendations for program direction. Specifically, one working group dealt with source technology: photovoltaics, fuel cells and batteries, and wind followed by sessions discussing system size and application: large grid-connected systems, small grid-connected systems, and stand alone and dc applications. A combined group session provided an opportunity to discuss problems common to power conditioning development.

  12. Radiation safety assessment and development of environmental radiation monitoring technology

    CERN Document Server

    Choi, B H; Kim, S G

    2002-01-01

    The Periodic Safety Review(PSR) of the existing nuclear power plants is required every ten years according to the recently revised atomic energy acts. The PSR of Kori unit 1 and Wolsong unit 1 that have been operating more than ten years is ongoing to comply the regulations. This research project started to develop the techniques necessary for the PSR. The project developed the following four techniques at the first stage for the environmental assessment of the existing plants. 1) Establishment of the assessment technology for contamination and accumulation trends of radionuclides, 2) alarm point setting of environmental radiation monitoring system, 3) Development of Radiation Safety Evaluation Factor for Korean NPP, and 4) the evaluation of radiation monitoring system performance and set-up of alarm/warn set point. A dynamic compartment model to derive a relationship between the release rates of gas phase radionuclides and the concentrations in the environmental samples. The model was validated by comparing ...

  13. Current and Emerging Technology for Continuous Glucose Monitoring

    Directory of Open Access Journals (Sweden)

    Cheng Chen

    2017-01-01

    Full Text Available Diabetes has become a leading cause of death worldwide. Although there is no cure for diabetes, blood glucose monitoring combined with appropriate medication can enhance treatment efficiency, alleviate the symptoms, as well as diminish the complications. For point-of-care purposes, continuous glucose monitoring (CGM devices are considered to be the best candidates for diabetes therapy. This review focuses on current growth areas of CGM technologies, specifically focusing on subcutaneous implantable electrochemical glucose sensors. The superiority of CGM systems is introduced firstly, and then the strategies for fabrication of minimally-invasive and non-invasive CGM biosensors are discussed, respectively. Finally, we briefly outline the current status and future perspective for CGM systems.

  14. Perspectives on railway track geometry condition monitoring from in-service railway vehicles

    Science.gov (United States)

    Weston, P.; Roberts, C.; Yeo, G.; Stewart, E.

    2015-07-01

    This paper presents a view of the current state of monitoring track geometry condition from in-service vehicles. It considers technology used to provide condition monitoring; some issues of processing and the determination of location; how things have evolved over the past decade; and what is being, or could/should be done in future research. Monitoring railway track geometry from an in-service vehicle is an attractive proposition that has become a reality in the past decade. However, this is only the beginning. Seeing the same track over and over again provides an opportunity for observing track geometry degradation that can potentially be used to inform maintenance decisions. Furthermore, it is possible to extend the use of track condition information to identify if maintenance is effective, and to monitor the degradation of individual faults such as dipped joints. There are full unattended track geometry measurement systems running on in-service vehicles in the UK and elsewhere around the world, feeding their geometry measurements into large databases. These data can be retrieved, but little is currently done with the data other than the generation of reports of track geometry that exceeds predefined thresholds. There are examples of simpler systems that measure some track geometry parameters more or less directly and accurately, but forego parameters such as gauge. Additionally, there are experimental systems that use mathematics and models to infer track geometry using data from sensors placed on an in-service vehicle. Finally, there are systems that do not claim to measure track geometry, but monitor some other quantity such as ride quality or bogie acceleration to infer poor track geometry without explicitly measuring it.

  15. Technological advances in suspended-sediment surrogate monitoring

    Science.gov (United States)

    Gray, John R.; Gartner, Jeffrey W.

    2009-01-01

    Surrogate technologies to continuously monitor suspended sediment show promise toward supplanting traditional data collection methods requiring routine collection and analysis of water samples. Commercially available instruments operating on bulk optic (turbidity), laser optic, pressure difference, and acoustic backscatter principles are evaluated based on cost, reliability, robustness, accuracy, sample volume, susceptibility to biological fouling, and suitable range of mass concentration and particle size distribution. In situ turbidimeters are widely used. They provide reliable data where the point measurements can be reliably correlated to the river's mean cross section concentration value, effects of biological fouling can be minimized, and concentrations remain below the sensor's upper measurement limit. In situ laser diffraction instruments have similar limitations and can cost 6 times the approximate $5000 purchase price of a turbidimeter. However, laser diffraction instruments provide volumetric-concentration data in 32 size classes. Pressure differential instruments measure mass density in a water column, thus integrating substantially more streamflow than a point measurement. They are designed for monitoring medium-to-large concentrations, are generally unaffected by biological fouling, and cost about the same as a turbidimeter. However, their performance has been marginal in field applications. Acoustic Doppler profilers use acoustic backscatter to measure suspended sediment concentrations in orders of magnitude more streamflow than do instruments that rely on point measurements. The technology is relatively robust and generally immune to effects of biological fouling. Cost of a single-frequency device is about double that of a turbidimeter. Multifrequency arrays also provide the potential to resolve concentrations by clay silt versus sand size fractions. Multifrequency hydroacoustics shows the most promise for revolutionizing collection of continuous

  16. [Bioimpedance means of skin condition monitoring during therapeutic and cosmetic procedures].

    Science.gov (United States)

    Alekseenko, V A; Kus'min, A A; Filist, S A

    2008-01-01

    Engineering and technological problems of bioimpedance skin surface mapping are considered. A typical design of a device based on a PIC 16F microcontroller is suggested. It includes a keyboard, LCD indicator, probing current generator with programmed frequency tuning, and units for probing current monitoring and bioimpedance measurement. The electrode matrix of the device is constructed using nanotechnology. A microcontroller-controlled multiplexor provides scanning of interelectrode impedance, which makes it possible to obtain the impedance image of the skin surface under the electrode matrix. The microcontroller controls the probing signal generator frequency and allows layer-by-layer images of skin under the electrode matrix to be obtained. This makes it possible to use reconstruction tomography methods for analysis and monitoring of the skin condition during therapeutic and cosmetic procedures.

  17. Tsunamis detection, monitoring, and early-warning technologies

    CERN Document Server

    Joseph, Antony

    2011-01-01

    The devastating impacts of tsunamis have received increased focus since the Indian Ocean tsunami of 2004, the most devastating tsunami in over 400 years of recorded history. This professional reference is the first of its kind: it provides a globally inclusive review of the current state of tsunami detection technology and will be a much-needed resource for oceanographers and marine engineers working to upgrade and integrate their tsunami warning systems. It focuses on the two main tsunami warning systems (TWS): International and Regional. Featured are comparative assessments of detection, monitoring, and real-time reporting technologies. The challenges of detection through remote measuring stations are also addressed, as well as the historical and scientific aspects of tsunamis.

  18. Lab-on-a-chip technology for continuous glucose monitoring.

    Science.gov (United States)

    Gravesen, Peter; Raaby Poulsen, Kristian; Dirac, Holger

    2007-05-01

    The demand for continuous glucose monitoring systems is greater than ever. The microelectromechanical systems (MEMS) approach has the advantage of being relatively easy to upscale to a commercial level; the preferred MEMS technique would be to run several detectors at once and, through the improved statistics, get a both more accurate and more reliable device than is currently available. Lab-on-a-chip technology may be seen as a further development of MEMS technology for analytical sensors. Lab-on-a-chip systems may be used to obtain improvements on several important characteristics of a sensor system: remove or decrease cross-sensitivity, improve sensor stability, improve accuracy, and/or improve response time compared to similar laboratory-equipment methods.

  19. Engineering Runtime Requirements-Monitoring Systems Using MDA Technologies

    Science.gov (United States)

    Skene, James; Emmerich, Wolfgang

    The Model-Driven Architecture (MDA) technology toolset includes a language for describing the structure of meta-data, the MOF, and a language for describing consistency properties that data must exhibit, the OCL. Off-the-shelf tools can generate meta-data repositories and perform consistency checking over the data they contain. In this paper we describe how these tools can be used to implement runtime requirements monitoring of systems by modelling the required behaviour of the system, implementing a meta-data repository to collect system data, and consistency checking the repository to discover violations. We evaluate the approach by implementing a contract checker for the SLAng service-level agreement language, a language defined using a MOF meta-model, and integrating the checker into an Enterprise JavaBeans application. We discuss scalability issues resulting from immaturities in the applied technologies, leading to recommendations for their future development.

  20. Development of Beam Conditions Monitor for the ATLAS experiment

    CERN Document Server

    Dolenc Kittelmann, Irena; Mikuž, M

    2008-01-01

    If there is a failure in an element of the accelerator the resulting beam losses could cause damage to the inner tracking devices of the experiments. This thesis presents the work performed during the development phase of a protection system for the ATLAS experiment at the LHC. The Beam Conditions Monitor (BCM) system is a stand-alone system designed to detect early signs of beam instabilities and trigger a beam abort in case of beam failures. It consists of two detector stations positioned at z=±1.84m from the interaction point. Each station comprises four BCM detector modules installed symmetrically around the beam pipe with sensors located at r=55 mm. This structure will allow distinguishing between anomalous events (beam gas and beam halo interactions, beam instabilities) and normal events due to proton-proton interaction by measuring the time-of-flight as well as the signal pulse amplitude from detector modules on the timescale of nanoseconds. Additionally, the BCM system aims to provide a coarse instan...

  1. Wearable Training-Monitoring Technology: Applications, Challenges, and Opportunities.

    Science.gov (United States)

    Cardinale, Marco; Varley, Matthew C

    2017-04-01

    The need to quantify aspects of training to improve training prescription has been the holy grail of sport scientists and coaches for many years. Recently, there has been an increase in scientific interest, possibly due to technological advancements and better equipment to quantify training activities. Over the last few years there has been an increase in the number of studies assessing training load in various athletic cohorts with a bias toward subjective reports and/or quantifications of external load. There is an evident lack of extensive longitudinal studies employing objective internal-load measurements, possibly due to the cost-effectiveness and invasiveness of measures necessary to quantify objective internal loads. Advances in technology might help in developing better wearable tools able to ease the difficulties and costs associated with conducting longitudinal observational studies in athletic cohorts and possibly provide better information on the biological implications of specific external-load patterns. Considering the recent technological developments for monitoring training load and the extensive use of various tools for research and applied work, the aim of this work was to review applications, challenges, and opportunities of various wearable technologies.

  2. Laser Spectroscopy Based Multi-Gas Monitor Technology Demonstration

    Science.gov (United States)

    Mudgett, Paul D.; Pilgrim, Jeffrey S.

    2016-01-01

    The timing was right in the “evolution” of low power tunable diode laser spectroscopy (TDLS) to design a spacecraft cabin air monitor around technology being developed at a small company funded by SBIR grants. NASA Centers had been monitoring their progress hoping that certain key gaps in the long term gas monitoring development roadmap could be filled by TDLS. The first iteration of a monitor for multiple gases called the Multi-Gas Monitor (MGM) which measures oxygen, carbon dioxide, ammonia and water vapor, as well as temperature and pressure. In January 2013, the ISS Program being particularly interested in ammonia funded a technology demonstration of MGM. The project was a joint effort between Vista Photonics for the sensor, NASA-JSC for project management and laboratory calibration, and Nanoracks for the enclosure and payload certification/integration. Nanoracks was selected in order to use their new experimental infrastructure located in an EXPRESS rack in the JEM. The MGM enclosure has multiple power supply options including 5VDC USB interface to the Nanoracks Frame, 28VDC Express Rack power and internal rechargeable batteries. MGM was calibrated at NASA-JSC in July 2013, delivered to ISS on 37 Soyuz in November 2013 and was installed and activated in February 2014. MGM resided in the Nanoracks Frame making continuous measurements the majority of the time, but also spent a day in Node 3 on battery power, and a month in the US Lab Module on 28VDC power, as part of the demonstration. Data was downloaded via Nanoracks on roughly a weekly basis. Comparisons were made with data from the Major Constituents Analyzer (MCA) which draws and analyzes air from JEM and other modules several times per hour. A crewmember challenged the carbon dioxide channel by breathing into the intake upon startup, and challenged the ammonia channel later using a commercial ammonia inhalant. Many interesting phenomena in the cabin atmosphere were detected during the tech demo

  3. Condition Assessment Technologies for Water Transmission and Distribution Systems

    Science.gov (United States)

    As part of the U.S. Environmental Protection Agency’s (EPA’s) Aging Water Infrastructure Research Program, this research was conducted to identify and characterize the state of the technology for structural condition assessment of drinking water transmission and distribution syst...

  4. Technology Change And Working Conditions – A Cultural Perspective

    DEFF Research Database (Denmark)

    Sørensen, Ole Henning

    2004-01-01

    When technology change improves working conditions, the success is often attributed to skilful change agents. When it is not, the blame is on “resistance to change” and “resilient cultures”. How can these failures be understood differently? A cultural perspective on technology change might be a way...... to facilitate technology change processes that lead to improved working conditions. The research based project described here has developed a special homepage that explains how this might be achieved. The homepage is targeted at working life professionals. The homepage presents theoretical explanations...... of the concept of organizational culture, a model for analysis and several practical case stories. This paper explains how the project tries to reach a broad spectrum of professionals in order to facilitate their use of a cultural perspective. It also discusses the ethical consequences of the cultural...

  5. Final Technical Report Recovery Act: Online Nonintrusive Condition Monitoring and Fault Detection for Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Wei Qiao

    2012-05-29

    The penetration of wind power has increased greatly over the last decade in the United States and across the world. The U.S. wind power industry installed 1,118 MW of new capacity in the first quarter of 2011 alone and entered the second quarter with another 5,600 MW under construction. By 2030, wind energy is expected to provide 20% of the U.S. electricity needs. As the number of wind turbines continues to grow, the need for effective condition monitoring and fault detection (CMFD) systems becomes increasingly important [3]. Online CMFD is an effective means of not only improving the reliability, capacity factor, and lifetime, but it also reduces the downtime, energy loss, and operation and maintenance (O&M) of wind turbines. The goal of this project is to develop novel online nonintrusive CMFD technologies for wind turbines. The proposed technologies use only the current measurements that have been used by the control and protection system of a wind turbine generator (WTG); no additional sensors or data acquisition devices are needed. Current signals are reliable and easily accessible from the ground without intruding on the wind turbine generators (WTGs) that are situated on high towers and installed in remote areas. Therefore, current-based CMFD techniques have great economic benefits and the potential to be adopted by the wind energy industry. Specifically, the following objectives and results have been achieved in this project: (1) Analyzed the effects of faults in a WTG on the generator currents of the WTG operating at variable rotating speed conditions from the perspective of amplitude and frequency modulations of the current measurements; (2) Developed effective amplitude and frequency demodulation methods for appropriate signal conditioning of the current measurements to improve the accuracy and reliability of wind turbine CMFD; (3) Developed a 1P-invariant power spectrum density (PSD) method for effective signature extraction of wind turbine faults with

  6. On-line condition monitoring systems for high voltage circuit breakers : a collaborative research project 1997-2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    A three year field project was initiated to review and evaluate the state of the art in on-line conditioning monitoring technology for a high voltage (240 kV SF6) circuit breaker located at Dorsey Converter Station. The ELF breaker is a three independent pole design which allows for three separate monitoring systems. This project involved the installation of a different type of monitoring system on each phase and incorporated many types of transducers. Each monitoring system measured the same basic parameters including contact travel, 'a' and 'b' auxiliary contacts, phase currents, coil currents, heater and pump current, plus SF6/CF4 pressure and temperature. Over the entire monitoring period the breaker was operated over 700 times at rated voltage and an additional 300 times during maintenance. Temperature conditions ranged from -35 to +30 degrees C. The use of on-line monitoring provided many valuable results and enhanced the knowledge base for the apparatus under the test. It was determined that on-line monitoring of HV circuit breakers has potential, but installation has to be considered carefully. Monitoring systems can offer improvement in the understanding of how circuit breakers work and provide input into RCM programs. However, monitoring systems themselves are subject to failure and require maintenance and attention. 2 refs., 2 tabs., 7 figs.

  7. Network Distributed Monitoring System Based on Robot Technology Middleware

    Directory of Open Access Journals (Sweden)

    Kunikatsu Takase

    2008-11-01

    Full Text Available In this paper, a network distributed monitoring system for human assistance robot system was developed to improve the interaction among the users and local service robotic system and enable a remote user to get a better understanding of what is going on in the local environment. Home integration robot system and network monitoring system using QuickCam Orbit cameras were developed and demonstrated from June 9 to June 19 at the 2005 World Exposition, Aichi, Japan. Improvements of network distributed monitoring system using IEEE1394 cameras with high performance and high resolution have been done in order to extend the application of system. Robot Technology Middleware (RTM was used in the developed system. By using RTM, we can develop cameras functional elements as RT software components that can be implemented by different programming languages, run in different operating system, or connected in different networks to interoperate.It is also easy to create comprehensive robot system application by reusing existing modules thus facilitating networkdistributed software sharing and improving the cost of writing and maintaining software.

  8. 10 CFR 20.1502 - Conditions requiring individual monitoring of external and internal occupational dose.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Conditions requiring individual monitoring of external and internal occupational dose. 20.1502 Section 20.1502 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Surveys and Monitoring § 20.1502 Conditions requiring individual monitoring of external and internal...

  9. Investigation of Various Condition Monitoring Techniques Based on a Damaged Wind Turbine Gearbox

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, S.

    2011-10-01

    This paper is a continuation of a 2009 paper presented at the 7th International Workshop on Structural Health Monitoring that described various wind turbine condition-monitoring techniques. This paper presents the results obtained by various condition- monitoring techniques from a damaged Gearbox Reliability Collaborative test gearbox.

  10. Rapid Determination of Optimal Conditions in a Continuous Flow Reactor Using Process Analytical Technology

    Directory of Open Access Journals (Sweden)

    Michael F. Roberto

    2013-12-01

    Full Text Available Continuous flow reactors (CFRs are an emerging technology that offer several advantages over traditional batch synthesis methods, including more efficient mixing schemes, rapid heat transfer, and increased user safety. Of particular interest to the specialty chemical and pharmaceutical manufacturing industries is the significantly improved reliability and product reproducibility over time. CFR reproducibility can be attributed to the reactors achieving and maintaining a steady state once all physical and chemical conditions have stabilized. This work describes the implementation of a smart CFR with univariate physical and multivariate chemical monitoring that allows for rapid determination of steady state, requiring less than one minute. Additionally, the use of process analytical technology further enabled a significant reduction in the time and cost associated with offline validation methods. The technology implemented for this study is chemistry and hardware agnostic, making this approach a viable means of optimizing the conditions of any CFR.

  11. Monitoring the Monitors: EU Enlargement Conditionality and Minority Protection in the CEECs

    Directory of Open Access Journals (Sweden)

    Gwendolyn Sasse

    2003-04-01

    Full Text Available The issue of minority protection is an extreme case for analyzing the problem of linkage between EU membership conditionality and compliance by candidate countries. while EU law is virtually non-existent, EU practice is divergent, and international standards are ambiguous, the issue has been given high rhetorical prominence by the EU during enlargement. The analysis in this article follows a tracking approach to study the relationship of EU conditionality to changes in minority rights protection in the CEECs. The authors examine how the EU's monitoring process has operated, what its benchmarks have been, how the EU process has interacted with those of other international organizations, such as the Council of Europe and OSCE, and evaluate what its impact has been on the candidate countries. In conclusion, the authors find that EU conditionality is not closely temporally correlated with the emergence of new strategies and laws on minority protection in the CEECs. Instead, the EU's main instrument for accession and convergence, the Regular Reports, have been characterized by ad hocism, inconsistency, and a stress on formal measures rather than substantive evaluation of implementation.

  12. The use of acoustic emission for bearing condition monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lees, A W; Quiney, Z [Swansea University, Singleton Park, Swansea, SA2 8PP (United Kingdom); Ganji, A; Murray, B, E-mail: a.w.lees@swansea.ac.uk, E-mail: z.quiney.294103@swansea.ac.uk, E-mail: ali.ganji@skf.com [SKF Engineering and Research Centre, Kelvinbaan 16, 3439 MT Nieuwegein (Netherlands)

    2011-07-19

    This paper reports research currently in progress at Swansea University in collaboration with SKF Engineering and Research Centre as part of a continuing investigation into high frequency Acoustic Emission. The primary concerns are experimentally producing subsurface cracks, the type of which would occur in a service failure of a ball bearing, within a steel ball and to closely monitor the properties of this AE from crack initiation to the formation of a ball on the ball surface. It is worth noting that there is evidence that the frequency content of the AE changes during this period, although this has yet to be proved consistent or even fully explained. Conclusive evidence could lead to a system which detects such cracks in a bearing operating in real life conditions, advantageous for many reasons including safety, downtime and maintenance and associated costs. The results from two experimental procedures are presented, one of which loads a single ball held stationary in a test rig to induce subsurface cracks, which are in turn detected by a pair of broadband AE sensors and recorded via a Labview based software system. This approach not only allows detailed analysis of the AE waveforms but also approximate AE source location from the time difference between two sensors. The second experimental procedure details an adaptation of a four-ball lubricant tester in an attempt to produce naturally occurring subsurface cracks from rolling contact whilst minimising the AE arising from surface wear. This thought behind this experiment is reinforced with 3D computational modelling of the rotating system.

  13. Position-sensitive radiation monitoring (surface contamination monitor). Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    1999-06-01

    The Shonka Research Associates, Inc. Position-Sensitive Radiation Monitor both detects surface radiation and prepares electronic survey map/survey report of surveyed area automatically. The electronically recorded map can be downloaded to a personal computer for review and a map/report can be generated for inclusion in work packages. Switching from beta-gamma detection to alpha detection is relatively simple and entails moving a switch position to alpha and adjusting the voltage level to an alpha detection level. No field calibration is required when switching from beta-gamma to alpha detection. The system can be used for free-release surveys because it meets the federal detection level sensitivity limits requires for surface survey instrumentation. This technology is superior to traditionally-used floor contamination monitor (FCM) and hand-held survey instrumentation because it can precisely register locations of radioactivity and accurately correlate contamination levels to specific locations. Additionally, it can collect and store continuous radiological data in database format, which can be used to produce real-time imagery as well as automated graphics of survey data. Its flexible design can accommodate a variety of detectors. The cost of the innovative technology is 13% to 57% lower than traditional methods. This technology is suited for radiological surveys of flat surfaces at US Department of Energy (DOE) nuclear facility decontamination and decommissioning (D and D) sites or similar public or commercial sites.

  14. Research on Technology Early-Warning System Based on Dynamic Information Monitoring

    Institute of Scientific and Technical Information of China (English)

    WANG Xue-feng; ZHU Dong-hua; LIU Song; LIU Jia

    2009-01-01

    Relying on the advanced information technologies,such as information monitoring,data mining,natural language processing etc.,the dynamic technology early-warning system is constructed.The system consists of technology information automatic retrieval,technology information monitoring,technology threat evaluation,and crisis response and management subsystem,which implements uninterrupted dynamic monitoring,trace and crisis early-warning to the specific technology.Empirical study testifies that the system improves the accuracy,timeliness and reliability of technology early-warning.

  15. On Assessing the Robustness of Structural Health Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Stull, Christopher J. [Los Alamos National Laboratory; Hemez, Francois M. [Los Alamos National Laboratory; Farrar, Charles R. [Los Alamos National Laboratory

    2012-08-24

    As Structural Health Monitoring (SHM) continues to gain popularity, both as an area of research and as a tool for use in industrial applications, the number of technologies associated with SHM will also continue to grow. As a result, the engineer tasked with developing a SHM system is faced with myriad hardware and software technologies from which to choose, often adopting an ad hoc qualitative approach based on physical intuition or past experience to making such decisions. This paper offers a framework that aims to provide the engineer with a quantitative approach for choosing from among a suite of candidate SHM technologies. The framework is outlined for the general case, where a supervised learning approach to SHM is adopted, and the presentation will focus on applying the framework to two commonly encountered problems: (1) selection of damage-sensitive features and (2) selection of a damage classifier. The data employed for these problems will be drawn from a study that examined the feasibility of applying SHM to the RAPid Telescopes for Optical Response observatory network.

  16. BIRD COMMUNITIES AND HABITAT AS ECOLOGICAL INDICATORS OF FOREST CONDITION IN REGIONAL MONITORING

    Science.gov (United States)

    Ecological indicators for long-term monitoring programs are needed to detect and assess changing environmental conditions, We developed and tested community-level environmental indicators for monitoring forest bird populations and associated habitat. We surveyed 197 sampling plo...

  17. Different Condition Monitoring Approaches for Main Shafts of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Ambühl, Simon; Sørensen, John Dalsgaard

    the applicability of different condition monitoring techniques like performance monitoring, strain gauge results and vibration analysis for crack detection on the low speed shaft. Different signal processing methods like descriptive statistics, Fourier Transforms, Wavelet transforms, Modal Assurance Criteria...

  18. Labview Based ECG Patient Monitoring System for Cardiovascular Patient Using SMTP Technology

    Directory of Open Access Journals (Sweden)

    Om Prakash Singh

    2015-01-01

    Full Text Available This paper leads to developing a Labview based ECG patient monitoring system for cardiovascular patient using Simple Mail Transfer Protocol technology. The designed device has been divided into three parts. First part is ECG amplifier circuit, built using instrumentation amplifier (AD620 followed by signal conditioning circuit with the operation amplifier (lm741. Secondly, the DAQ card is used to convert the analog signal into digital form for the further process. Furthermore, the data has been processed in Labview where the digital filter techniques have been implemented to remove the noise from the acquired signal. After processing, the algorithm was developed to calculate the heart rate and to analyze the arrhythmia condition. Finally, SMTP technology has been added in our work to make device more communicative and much more cost-effective solution in telemedicine technology which has been key-problem to realize the telediagnosis and monitoring of ECG signals. The technology also can be easily implemented over already existing Internet.

  19. Labview Based ECG Patient Monitoring System for Cardiovascular Patient Using SMTP Technology

    Science.gov (United States)

    Singh, Om Prakash; Mekonnen, Dawit; Malarvili, M. B.

    2015-01-01

    This paper leads to developing a Labview based ECG patient monitoring system for cardiovascular patient using Simple Mail Transfer Protocol technology. The designed device has been divided into three parts. First part is ECG amplifier circuit, built using instrumentation amplifier (AD620) followed by signal conditioning circuit with the operation amplifier (lm741). Secondly, the DAQ card is used to convert the analog signal into digital form for the further process. Furthermore, the data has been processed in Labview where the digital filter techniques have been implemented to remove the noise from the acquired signal. After processing, the algorithm was developed to calculate the heart rate and to analyze the arrhythmia condition. Finally, SMTP technology has been added in our work to make device more communicative and much more cost-effective solution in telemedicine technology which has been key-problem to realize the telediagnosis and monitoring of ECG signals. The technology also can be easily implemented over already existing Internet. PMID:27006940

  20. Development of an In-Situ Decommissioning Sensor Network Test Bed for Structural Condition Monitoring - 12156

    Energy Technology Data Exchange (ETDEWEB)

    Zeigler, Kristine E.; Ferguson, Blythe A. [Savannah River National Laboratory, Aiken, South Carolina 29808 (United States)

    2012-07-01

    The Savannah River National Laboratory (SRNL) has established an In Situ Decommissioning (ISD) Sensor Network Test Bed, a unique, small scale, configurable environment, for the assessment of prospective sensors on actual ISD system material, at minimal cost. The Department of Energy (DOE) is presently implementing permanent entombment of contaminated, large nuclear structures via ISD. The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. Validation of ISD system performance models and verification of actual system conditions can be achieved through the development a system of sensors to monitor the materials and condition of the structure. The ISD Sensor Network Test Bed has been designed and deployed to addresses the DOE-Environmental Management Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building at the Savannah River Site. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of groutable thermistors for temperature and moisture monitoring, strain gauges for crack growth monitoring, tilt-meters for settlement monitoring, and a communication system for data collection. Baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment. The Sensor Network Test Bed at SRNL uses COTS sensors on concrete blocks from the outer wall of the P Reactor Building to measure conditions expected to occur in ISD structures. Knowledge and lessons learned gained from installation, testing, and monitoring of the equipment will be applied to sensor installation in a meso-scale test bed at FIU and in future ISD structures. The initial data collected from the sensors

  1. Experimental FSO network availability estimation using interactive fog condition monitoring

    Science.gov (United States)

    Turán, Ján.; Ovseník, Łuboš

    2016-12-01

    Free Space Optics (FSO) is a license free Line of Sight (LOS) telecommunication technology which offers full duplex connectivity. FSO uses infrared beams of light to provide optical broadband connection and it can be installed literally in a few hours. Data rates go through from several hundreds of Mb/s to several Gb/s and range is from several 100 m up to several km. FSO link advantages: Easy connection establishment, License free communication, No excavation are needed, Highly secure and safe, Allows through window connectivity and single customer service and Compliments fiber by accelerating the first and last mile. FSO link disadvantages: Transmission media is air, Weather and climate dependence, Attenuation due to rain, snow and fog, Scattering of laser beam, Absorption of laser beam, Building motion and Air pollution. In this paper FSO availability evaluation is based on long term measured data from Fog sensor developed and installed at TUKE experimental FSO network in TUKE campus, Košice, Slovakia. Our FSO experimental network has three links with different physical distances between each FSO heads. Weather conditions have a tremendous impact on FSO operation in terms of FSO availability. FSO link availability is the percentage of time over a year that the FSO link will be operational. It is necessary to evaluate the climate and weather at the actual geographical location where FSO link is going to be mounted. It is important to determine the impact of a light scattering, absorption, turbulence and receiving optical power at the particular FSO link. Visibility has one of the most critical influences on the quality of an FSO optical transmission channel. FSO link availability is usually estimated using visibility information collected from nearby airport weather stations. Raw data from fog sensor (Fog Density, Relative Humidity, Temperature measured at each ms) are collected and processed by FSO Simulator software package developed at our Department. Based

  2. Structural damage monitoring of harbor caissons with interlocking condition

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, Thanh Canh; Lee, So Young; Nauyen, Khac Duy; Kim, Jeong Tae [Pukyong National Univ., Busan (Korea, Republic of)

    2012-12-15

    The objective of this study is to monitor the health status of harbor caissons which have potential foundation damage. To obtain the objective, the following approaches are performed. Firstly, a structural damage monitoring(SDM) method is designed for interlocked multiple caisson structures. The SDM method utilizes the change in modal strain energy to monitor the foundation damage in a target caisson unit. Secondly, a finite element model of a caisson system which consists of three caisson units is established to verify the feasibility of the proposed method. In the finite element simulation, the caisson units are constrained each other by shear key connections. The health status of the caisson system against various levels of foundation damage is monitored by measuring relative modal displacements between the adjacent caissons.

  3. A Comprehensive Study on Technologies of Tyre Monitoring Systems and Possible Energy Solutions

    Directory of Open Access Journals (Sweden)

    Ali E. Kubba

    2014-06-01

    Full Text Available This article presents an overview on the state of the art of Tyre Pressure Monitoring System related technologies. This includes examining the latest pressure sensing methods and comparing different types of pressure transducers, particularly their power consumption and measuring range. Having the aim of this research to investigate possible means to obtain a tyre condition monitoring system (TCMS powered by energy harvesting, various approaches of energy harvesting techniques were evaluated to determine which approach is the most applicable for generating energy within the pneumatic tyre domain and under rolling tyre dynamic conditions. This article starts with an historical review of pneumatic tyre development and demonstrates the reasons and explains the need for using a tyre condition monitoring system. Following this, different tyre pressure measurement approaches are compared in order to determine what type of pressure sensor is best to consider in the research proposal plan. Then possible energy harvesting means inside land vehicle pneumatic tyres are reviewed. Following this, state of the art battery-less tyre pressure monitoring systems developed by individual researchers or by world leading tyre manufacturers are presented. Finally conclusions are drawn based on the reviewed documents cited in this article and a research proposal plan is presented.

  4. A comprehensive study on technologies of tyre monitoring systems and possible energy solutions.

    Science.gov (United States)

    Kubba, Ali E; Jiang, Kyle

    2014-06-11

    This article presents an overview on the state of the art of Tyre Pressure Monitoring System related technologies. This includes examining the latest pressure sensing methods and comparing different types of pressure transducers, particularly their power consumption and measuring range. Having the aim of this research to investigate possible means to obtain a tyre condition monitoring system (TCMS) powered by energy harvesting, various approaches of energy harvesting techniques were evaluated to determine which approach is the most applicable for generating energy within the pneumatic tyre domain and under rolling tyre dynamic conditions. This article starts with an historical review of pneumatic tyre development and demonstrates the reasons and explains the need for using a tyre condition monitoring system. Following this, different tyre pressure measurement approaches are compared in order to determine what type of pressure sensor is best to consider in the research proposal plan. Then possible energy harvesting means inside land vehicle pneumatic tyres are reviewed. Following this, state of the art battery-less tyre pressure monitoring systems developed by individual researchers or by world leading tyre manufacturers are presented. Finally conclusions are drawn based on the reviewed documents cited in this article and a research proposal plan is presented.

  5. Real-time nutrient monitoring in rivers: adaptive sampling strategies, technological challenges and future directions

    Science.gov (United States)

    Blaen, Phillip; Khamis, Kieran; Lloyd, Charlotte; Bradley, Chris

    2016-04-01

    Excessive nutrient concentrations in river waters threaten aquatic ecosystem functioning and can pose substantial risks to human health. Robust monitoring strategies are therefore required to generate reliable estimates of river nutrient loads and to improve understanding of the catchment processes that drive spatiotemporal patterns in nutrient fluxes. Furthermore, these data are vital for prediction of future trends under changing environmental conditions and thus the development of appropriate mitigation measures. In recent years, technological developments have led to an increase in the use of continuous in-situ nutrient analysers, which enable measurements at far higher temporal resolutions than can be achieved with discrete sampling and subsequent laboratory analysis. However, such instruments can be costly to run and difficult to maintain (e.g. due to high power consumption and memory requirements), leading to trade-offs between temporal and spatial monitoring resolutions. Here, we highlight how adaptive monitoring strategies, comprising a mixture of temporal sample frequencies controlled by one or more 'trigger variables' (e.g. river stage, turbidity, or nutrient concentration), can advance our understanding of catchment nutrient dynamics while simultaneously overcoming many of the practical and economic challenges encountered in typical in-situ river nutrient monitoring applications. We present examples of short-term variability in river nutrient dynamics, driven by complex catchment behaviour, which support our case for the development of monitoring systems that can adapt in real-time to rapid environmental changes. In addition, we discuss the advantages and disadvantages of current nutrient monitoring techniques, and suggest new research directions based on emerging technologies and highlight how these might improve: 1) monitoring strategies, and 2) understanding of linkages between catchment processes and river nutrient fluxes.

  6. Monitoring the condition of natural resources in US national parks.

    Science.gov (United States)

    Fancy, S G; Gross, J E; Carter, S L

    2009-04-01

    The National Park Service has developed a long-term ecological monitoring program for 32 ecoregional networks containing more than 270 parks with significant natural resources. The monitoring program assists park managers in developing a broad-based understanding of the status and trends of park resources as a basis for making decisions and working with other agencies and the public for the long-term protection of park ecosystems. We found that the basic steps involved in planning and designing a long-term ecological monitoring program were the same for a range of ecological systems including coral reefs, deserts, arctic tundra, prairie grasslands, caves, and tropical rainforests. These steps involve (1) clearly defining goals and objectives, (2) compiling and summarizing existing information, (3) developing conceptual models, (4) prioritizing and selecting indicators, (5) developing an overall sampling design, (6) developing monitoring protocols, and (7) establishing data management, analysis, and reporting procedures. The broad-based, scientifically sound information obtained through this systems-based monitoring program will have multiple applications for management decision-making, research, education, and promoting public understanding of park resources. When combined with an effective education program, monitoring results can contribute not only to park issues, but also to larger quality-of-life issues that affect surrounding communities and can contribute significantly to the environmental health of the nation.

  7. MONITORING OF THE FINANCIAL CONDITION OF THE COMPANY

    Directory of Open Access Journals (Sweden)

    V. E. Gladkova

    2015-01-01

    Full Text Available Topic: nowadays, many companies are on the market of high competition and are in need of new methods of needs assessment in the market in their products. In this study the methodology of calculation of the breakeven point and its projection of the dynamics of changes in the time lag will allow new businesses to forecast and take into account seasonal fl uctuations in demand for their products.Goals/objectives: the Authors of this publication have set ourselves three main goals: to improve the classical method of determining the breakeven point; to identify the dynamics and patterns of basic mathematical relations that determine the interdependence between the volume of sales (income and total costs; the possibility of applying this methodology economists in production to implement predict the future costs of production.Methodology: the Authors used the conventional scientifi c approaches and methods to analyse and identify mathematical relationships that take into account the specifi c economic and industry conditions and can be further used as template functions to predict the break-even point at a certain time lag.Results: the study authors derived a mathematical relation of volume of sales and total costs, which allows the maximization of the profi ts of Russian companies [1, 2].Discussion/application (if any: explores options graphs break-even point. Revealed that some products have a life cycle with two break-even point (at the fi rst point shows the future profi tability of the enterprise, and in the second point shows the beginning of a losing period and the need to remove product from production.Conclusions/signifi cance: Further research allowed for the monitoring of break-even point in time for which the article demonstrates the possibility of charting the break-even point in three-dimensional space that allows you to track the profi tability of the enterprise and to avoid a possible bankruptcy at a certain time lag.

  8. Monitoring and remediation technologies of organochlorine pesticides in drainage water

    Directory of Open Access Journals (Sweden)

    Ismail Ahmed

    2015-03-01

    Full Text Available This study was carried out to monitor the presence of organochlorine in drainage water in Kafr-El-Sheikh Governorate, Egypt. Furthermore, to evaluate the efficiencies of different remediation techniques (advanced oxidation processes [AOPs] and bioremediation for removing the most frequently detected compound (lindane in drainage water. The results showed the presence of several organochlorine pesticides in all sampling sites. Lindane was detected with high frequency relative to other detected organochlorine in drainage water. Nano photo-Fenton like reagent was the most effective treatment for lindane removal in drainage water. Bioremediation of lindane by effective microorganisms (EMs removed 100% of the lindane initial concentration. There is no remaining toxicity in lindane contaminated-water after remediation on treated rats relative to control with respect to histopathological changes in liver and kidney. Advanced oxidation processes especially with nanomaterials and bioremediation using effective microorganisms can be regarded as safe and effective remediation technologies of lindane in water.

  9. Complex data management for landslide monitoring in emergency conditions

    Science.gov (United States)

    Intrieri, Emanuele; Bardi, Federica; Fanti, Riccardo; Gigli, Giovanni; Fidolini, Francesco; Casagli, Nicola; Costanzo, Sandra; Raffo, Antonio; Di Massa, Giuseppe; Versace, Pasquale

    2017-04-01

    Urbanization, especially in mountain areas, can be considered a major cause for high landslide risk because of the increased exposure of elements at risk. Among the elements at risk, important communication routes such as highways, can be classified as critical infrastructures, since their rupture can cause deaths and chain effects with catastrophic damages on society. The resiliency policy involves prevention activities but also, and more importantly, those activities needed to maintain functionality after disruption and promptly alert incoming catastrophes. To tackle these issues, early warning systems are increasingly employed. However, a gap exists between the ever more technologically advanced instruments and the actual capability of exploiting their full potential. This is due to several factors such as the limited internet connectivity with respect to big data transfers, or the impossibility for operators to check a continuous flow of real time information. A ground-based interferometric synthetic aperture radar was installed along the A16 highway (Campania Region, Southern Italy) to monitor an unstable slope threatening this infrastructure. The installation was in an area where the only internet connection available was 3G, with a limit of 2 gigabyte data transfer per month. On the other hand interferometric data are complex numbers organized in a matrix where each pixel contains both phase and amplitude information of the backscattered signal. The radar employed produced a 1001x1001 complex matrix (corresponding to 7 megabytes) every 5 minutes. Therefore there was the need to reduce the massive data flow produced by the radar. For this reason data were locally and automatically elaborated in order to produce, from a complex matrix, a simple ASCII grid containing only the pixel by pixel displacement value, which is derived from the phase information. Then, since interferometry only measures the displacement component projected along the radar line of sight

  10. Passive and Active Sensing Technologies for Structural Health Monitoring

    Science.gov (United States)

    Do, Richard

    A combination of passive and active sensing technologies is proposed as a structural health monitoring solution for several applications. Passive sensing is differentiated from active sensing in that with the former, no energy is intentionally imparted into the structure under test; sensors are deployed in a pure detection mode for collecting data mined for structural health monitoring purposes. In this thesis, passive sensing using embedded fiber Bragg grating optical strain gages was used to detect varying degrees of impact damage using two different classes of features drawn from traditional spectral analysis and auto-regressive time series modeling. The two feature classes were compared in detail through receiver operating curve performance analysis. The passive detection problem was then augmented with an active sensing system using ultrasonic guided waves (UGWs). This thesis considered two main challenges associated with UGW SHM including in-situ wave propagation property determination and thermal corruption of data. Regarding determination of wave propagation properties, of which dispersion characteristics are the most important, a new dispersion curve extraction method called sparse wavenumber analysis (SWA) was experimentally validated. Also, because UGWs are extremely sensitive to ambient temperature changes on the structure, it significantly affects the wave propagation properties by causing large errors in the residual error in the processing of the UGWs from an array. This thesis presented a novel method that compensates for uniform temperature change by considering the magnitude and phase of the signal separately and applying a scalable transformation.

  11. A study on the condition monitoring for safety-related electric cables

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chul Hwan; Ahn, S. P.; Yeo, S. M.; Kang, Y. S.; Ahn, S. M.; Kim, I. S.; Kim, D. S.; Kang, J. S. [Sungkyunkwan Univ., Suwon (Korea, Republic of)

    2002-03-15

    In this report, we have studied compositions and characteristics of various types of insulation material for cables in Nuclear Power Plant. We arrange relationship with condition monitoring methods. Also, we propose new condition monitoring method using third harmonic frequency. We test the proposed method with CV cables. We also describe about feature of condition monitoring such as application, theory, characteristic, thereby other engineer can confirm to advantage and disadvantage for each method, and possibly choice adequate condition monitoring method for various types of cables.

  12. Monitoring Fetal Heart Rate during Pregnancy: Contributions from Advanced Signal Processing and Wearable Technology

    Science.gov (United States)

    Signorini, Maria G.

    2014-01-01

    Monitoring procedures are the basis to evaluate the clinical state of patients and to assess changes in their conditions, thus providing necessary interventions in time. Both these two objectives can be achieved by integrating technological development with methodological tools, thus allowing accurate classification and extraction of useful diagnostic information. The paper is focused on monitoring procedures applied to fetal heart rate variability (FHRV) signals, collected during pregnancy, in order to assess fetal well-being. The use of linear time and frequency techniques as well as the computation of non linear indices can contribute to enhancing the diagnostic power and reliability of fetal monitoring. The paper shows how advanced signal processing approaches can contribute to developing new diagnostic and classification indices. Their usefulness is evaluated by comparing two selected populations: normal fetuses and intra uterine growth restricted (IUGR) fetuses. Results show that the computation of different indices on FHRV signals, either linear and nonlinear, gives helpful indications to describe pathophysiological mechanisms involved in the cardiovascular and neural system controlling the fetal heart. As a further contribution, the paper briefly describes how the introduction of wearable systems for fetal ECG recording could provide new technological solutions improving the quality and usability of prenatal monitoring. PMID:24639886

  13. Monitoring fetal heart rate during pregnancy: contributions from advanced signal processing and wearable technology.

    Science.gov (United States)

    Signorini, Maria G; Fanelli, Andrea; Magenes, Giovanni

    2014-01-01

    Monitoring procedures are the basis to evaluate the clinical state of patients and to assess changes in their conditions, thus providing necessary interventions in time. Both these two objectives can be achieved by integrating technological development with methodological tools, thus allowing accurate classification and extraction of useful diagnostic information. The paper is focused on monitoring procedures applied to fetal heart rate variability (FHRV) signals, collected during pregnancy, in order to assess fetal well-being. The use of linear time and frequency techniques as well as the computation of non linear indices can contribute to enhancing the diagnostic power and reliability of fetal monitoring. The paper shows how advanced signal processing approaches can contribute to developing new diagnostic and classification indices. Their usefulness is evaluated by comparing two selected populations: normal fetuses and intra uterine growth restricted (IUGR) fetuses. Results show that the computation of different indices on FHRV signals, either linear and nonlinear, gives helpful indications to describe pathophysiological mechanisms involved in the cardiovascular and neural system controlling the fetal heart. As a further contribution, the paper briefly describes how the introduction of wearable systems for fetal ECG recording could provide new technological solutions improving the quality and usability of prenatal monitoring.

  14. Monitoring Fetal Heart Rate during Pregnancy: Contributions from Advanced Signal Processing and Wearable Technology

    Directory of Open Access Journals (Sweden)

    Maria G. Signorini

    2014-01-01

    Full Text Available Monitoring procedures are the basis to evaluate the clinical state of patients and to assess changes in their conditions, thus providing necessary interventions in time. Both these two objectives can be achieved by integrating technological development with methodological tools, thus allowing accurate classification and extraction of useful diagnostic information. The paper is focused on monitoring procedures applied to fetal heart rate variability (FHRV signals, collected during pregnancy, in order to assess fetal well-being. The use of linear time and frequency techniques as well as the computation of non linear indices can contribute to enhancing the diagnostic power and reliability of fetal monitoring. The paper shows how advanced signal processing approaches can contribute to developing new diagnostic and classification indices. Their usefulness is evaluated by comparing two selected populations: normal fetuses and intra uterine growth restricted (IUGR fetuses. Results show that the computation of different indices on FHRV signals, either linear and nonlinear, gives helpful indications to describe pathophysiological mechanisms involved in the cardiovascular and neural system controlling the fetal heart. As a further contribution, the paper briefly describes how the introduction of wearable systems for fetal ECG recording could provide new technological solutions improving the quality and usability of prenatal monitoring.

  15. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Patterson, Eileen F. [Editor; Sandoval, Marisa N. [Editor

    2011-09-13

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  16. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2007-09-25

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  17. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A [Editor; Patterson, Eileen F [Editor

    2010-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  18. Proceedings of the 2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar - Chang, Julio [Los Alamos National Laboratory; Anderson, Dale [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning ( David ) [Los Alamos National Laboratory

    2009-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2009: Ground -Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2009 in Tucson, Arizona,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Test Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  19. [Monitoring and conditioning in plastic and reconstructive ENT-surgery].

    Science.gov (United States)

    Dacho, A; Dietz, A

    2006-11-01

    Plastic and reconstructive ENT surgery serves for reconstruction of form and function. Frequent indications in ENT surgery are the covering of large tissue defects after tumor operations, firing and/or explosion injuries, accidents, burns or massive infections. A high revision rate of up to 20 % in selective patient groups show that more knowledge of both monitoring and ischemia-/reperfusion mechanisms is necessary. Besides improved monitor proceedings biochemical cell procedures in pedicled and free flaps are getting more focused. In the last years certain physical and medical factors appear, which have influence on the long-term surviving of a pedicled or free flap, e. g. pre- and/or postconditioning. The increasing knowledge of changes in perfusion and oxygenation, which prevail in the flap, as well as different options of physical and pharmacological therapies permit a promising view into the future, in order to achieve an improved surviving of a pedicled or free flap in combination with improved monitor proceedings.

  20. Systems and method for lagrangian monitoring of flooding conditions

    KAUST Repository

    Claudel, Christian G.

    2015-12-17

    A traffic monitoring system and method for mapping traffic speed and density while preserving privacy. The system can include fixed stations that make up a network and mobile probes that are associated with vehicles. The system and method do not gather, store, or transmit any unique or identifying information, and thereby preserves the privacy of members of traffic. The system and method provide real-time traffic density and speed mapping. The system and method can further be integrated with a complementary flood monitoring system and method.

  1. 'MDI Wind' machine diagnostic interface. The online condition monitoring system that's not just for wind turbines; Machine Diagnostic Interface 'MDI-Wind'. Online Condition Monitoring System nicht nur fuer Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Eicke, Andreas [ThyssenKrupp System Engineering GmbH, Langenhagen (Germany). Messtechnik

    2012-07-01

    It is becoming increasingly important to be able to implement condition monitoring to protect high-grade investments such as wind turbines and other major industrial plant and installations. ThyssenKrupp System Engineering has developed a Machine Diagnostic Interface (MDI) for this purpose that is based on proven and reliable standard components in terms of the hardware used. As regards the software, the measuring and automation system used is based on mature technology, was developed in-house and has proved its worth over many years on testing and assembly lines in the automotive and supply industry. The basic concept of the Condition Monitoring System (CMS) and the essential technical elements of the MDI are introduced here. The development was funded by the German Federal Ministry of Economics and Technology (BMWi). (orig.)

  2. MONITORING CONDITION OF ECONOMIC SECURITY OF REPUBLIC MOLDOVA

    Directory of Open Access Journals (Sweden)

    E.V. Bicova

    2009-12-01

    Full Text Available The system of indicators of the economic security is described at research of questions of energy security of Republic Moldova in the article. Results of monitoring of indicators and also a final estimation of the level of economic security (preliminary are resulted.

  3. Robot dispatching Scenario for Accident Condition Monitoring of NPP

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongseog [Central Research Institute of Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2013-05-15

    In March of 2011, unanticipated big size of tsunami attacks Fukushima NPP, this accident results in explosion of containment building. Tokyo electric power of Japan couldn't dispatch a robot for monitoring of containment inside. USA Packbot robot used for desert war in Iraq was supplied to Fukushima NPP for monitoring of high radiation area. Packbot also couldn't reach deep inside of Fukushima NPP due to short length of power cable. Japanese robot 'Queens' also failed to complete a mission due to communication problem between robot and operator. I think major reason of these robot failures is absence of robot dispatching scenario. If there was a scenario and a rehearsal for monitoring during or after accident, these unanticipated obstacles could be overcome. Robot dispatching scenario studied for accident of nuclear power plant was described herein. Study on scenario of robot dispatching is performed. Flying robot is regarded as good choice for accident monitoring. Walking robot with arm equipped is good for emergency valve close. Short time work and shift work by several robots can be a solution for high radiation area. Thin and soft cable with rolling reel can be a good solution for long time work and good communication.

  4. Condition monitoring requirements for the development of a space nuclear propulsion module

    Science.gov (United States)

    Wagner, Robert C.

    1993-01-01

    To facilitate the development of a space nuclear propulsion module for manned flights to Mars, requirements must be established early in the technology cycle. The long lead times for the acquisition of the engine system and nuclear test facilities demands that the engine system, size, performance, safety goals and condition monitoring philosophy be defined at the earliest possible time. These systems are highly complex and require a large multi-disciplinary systems engineering team to develop and track the requirements and to ensure that the as-built system reflects the intent of the mission. An effective methodology has been devised coupled with sophisticated computer tools to effectivly develop and interpret the functional requirements. These requirements can then be decomposed down to the specification level for implementation. This paper discusses the application of the methodology and the analyses to develop condition monitoring requirements under a contract with the National Aeronautics and Space Administration (NASA) Lewis Research Center (LeRC) Nuclear Propulsion Office (NPO).

  5. Design and Realization of Rotating Machinery Conditions Monitoring System Based on Labview

    Science.gov (United States)

    Fan, Qiyuan

    Nonlinear dynamic analysis of rotating machinery system has always been the hot spot of the rotational dynamics research. This article sets up a rotating machinery condition monitoring system to realize the measurement of system dynamic characteristic parameters based on NI(National Instruments) virtual instruments technology. The measurement of vibration signal of rotating machinery system is achieved by using NI company general data acquisition module of NI company. Meanwhile, by analyzing and processing the acquired data using Labview 2012, the dynamic characteristics, such as .the speed of the rotating machinery system, the axis trajectory, spectrum parameters, are attained. The measurement results show that the rotating machinery condition monitoring system based on Labview is easy to operate, easy to realize the function extension and maintenance, and that it can be used in the industrial engineering projects with rotation characteristics. Labview as the development tools used by virtual instrument function, is very powerful data acquisition software products support is one of the features of it, so using Labview programming and data acquisition is simple and convenient [1].

  6. Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges

    Directory of Open Access Journals (Sweden)

    Pierre Tchakoua

    2014-04-01

    Full Text Available As the demand for wind energy continues to grow at exponential rates, reducing operation and maintenance (OM costs and improving reliability have become top priorities in wind turbine (WT maintenance strategies. In addition to the development of more highly evolved WT designs intended to improve availability, the application of reliable and cost-effective condition-monitoring (CM techniques offers an efficient approach to achieve this goal. This paper provides a general review and classification of wind turbine condition monitoring (WTCM methods and techniques with a focus on trends and future challenges. After highlighting the relevant CM, diagnosis, and maintenance analysis, this work outlines the relationship between these concepts and related theories, and examines new trends and future challenges in the WTCM industry. Interesting insights from this research are used to point out strengths and weaknesses in today’s WTCM industry and define research priorities needed for the industry to meet the challenges in wind industry technological evolution and market growth.

  7. Design of Low Cost Greenhouse Monitoring using ZigBee Technology

    Directory of Open Access Journals (Sweden)

    A. Salleh

    2013-09-01

    Full Text Available —Greenhouses are often used for growing flowers, vegetables, fruits, and tobacco plants. Most greenhouse systems still use the manual system in monitoring the temperature and humidity in the greenhouse, a lot of problems can occur not for worker but also affected production rate because the temperature and humidity of the greenhouse must be constantly monitored to ensure optimal conditions. The Wireless Sensor Network (WSNcan be used to gather the data from point to point to trace down the local climate parameters in different parts of the big greenhouse to make the greenhouse automation system work properly. This paper presents the design of low costgreenhouse monitoring system to monitor a greenhouse temperature and humidity parameters by applying the ZigBee technology as the WSN system. During the design process, Peripheral Interface Controller (PIC, LCD Display and Zigbee as the main hardware components is used as hardware components while C compiler and MP Lab IDE were used for software elements. The data from the greenhouse was measured by the sensor then the data will be displayed on the LCD screen on the receiver which support up to 100 m range. By using this system, the process of monitoring is easier and it also cheaper for installation and maintenance. The feasibility of the developed node was tested by deploying a simple sensor network into the Agriculture Department of Melaka Tengah greenhouse in Malaysia.

  8. Noncontact laser sensing technology for structural health monitoring and nondestructive testing (presentation video)

    Science.gov (United States)

    Sohn, Hoon

    2014-03-01

    Noncontact sensing techniques is gaining prominence for structural health monitoring (SHM) and nondestructive testing (NDT) due to (1) their noncontact and nonintrusive natures, (2) their spatial resolution much higher than conventional discrete sensors can achieve, (3) their less dependency on baseline data obtained from the pristine condition of a target structure (reference-free diagnosis), (4) cost and labor reduction in sensor installation and maintenance. In this talk, a suite of noncontact sensing techniques particularly based on laser technology will be presented for SHM and NDT of aircraft, wind turbine blades, high-speed trains, nuclear power plants, bridges, automobile manufacturing facilities and semiconductors.

  9. Monitoring automotive oil degradation: analytical tools and onboard sensing technologies.

    Science.gov (United States)

    Mujahid, Adnan; Dickert, Franz L

    2012-09-01

    Engine oil experiences a number of thermal and oxidative phases that yield acidic products in the matrix consequently leading to degradation of the base oil. Generally, oil oxidation is a complex process and difficult to elucidate; however, the degradation pathways can be defined for almost every type of oil because they mainly depend on the mechanical status and operating conditions. The exact time of oil change is nonetheless difficult to predict, but it is of great interest from an economic and ecological point of view. In order to make a quick and accurate decision about oil changes, onboard assessment of oil quality is highly desirable. For this purpose, a variety of physical and chemical sensors have been proposed along with spectroscopic strategies. We present a critical review of all these approaches and of recent developments to analyze the exact lifetime of automotive engine oil. Apart from their potential for degradation monitoring, their limitations and future perspectives have also been investigated.

  10. Condition Monitoring of a Process Filter Applying Wireless Vibration Analysis

    Directory of Open Access Journals (Sweden)

    Pekka KOSKELA

    2011-05-01

    Full Text Available This paper presents a novel wireless vibration-based method for monitoring the degree of feed filter clogging. In process industry, these filters are applied to prevent impurities entering the process. During operation, the filters gradually become clogged, decreasing the feed flow and, in the worst case, preventing it. The cleaning of the filter should therefore be carried out predictively in order to avoid equipment damage and unnecessary process downtime. The degree of clogging is estimated by first calculating the time domain indices from low frequency accelerometer samples and then taking the median of the processed values. Nine different statistical quantities are compared based on the estimation accuracy and criteria for operating in resource-constrained environments with particular focus on energy efficiency. The initial results show that the method is able to detect the degree of clogging, and the approach may be applicable to filter clogging monitoring.

  11. Space Qualified Non-Destructive Evaluation and Structural Health Monitoring Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NextGen Aeronautics is proposing an innovative space qualified non-destructive evaluation and health monitoring technology. The technology is built on concepts...

  12. TECHNOLOGY EVALUATION REPORT CEREX ENVIRONMENTAL SERVICES UV HOUND POINT SAMPLE AIR MONITOR

    Science.gov (United States)

    The USEPA's National Homeland Security Research Center (NHSRC) Technology Testing and Evaluation Program (TTEP) is carrying out performance tests on homeland security technologies. Under TTEP, Battelle evaluated the performance of the Cerex UV Hound point sample air monitor in de...

  13. A new luminometer and beam conditions monitor for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Karacheban, Olena; Hempel, Maria [Brandenburg University of Technology, Cottbus (Germany); DESY, Zeuthen (Germany); Dabrowski, Anne; Ryjov, Vladimir; Stickland, David; Zagozdzinska, Agnieszka [CERN, Geneva (Switzerland); Henschel, Hans; Lange, Wolfgang [DESY, Zeuthen (Germany); Leonard, Jessica; Walsh, Roberval [DESY, Hamburg (Germany); Levy, Itamar [Tel Aviv University, Tel Aviv (Israel); Lohmann, Wolfgang [Brandenburg University of Technology, Cottbus (Germany); RWTH Aachen University, Aachen (Germany); Przyborowski, Dominik [AGH-UST University, Cracow (Poland); Schuwalow, Sergej [DESY, Zeuthen (Germany); DESY, Hamburg (Germany)

    2016-07-01

    The luminosity is a key quantity of any collider, which allows for the determination of the absolute cross sections from the observed rate in a detector. The Fast Beam Conditions Monitor (BCM1F) was upgraded in the last LHC long technical stop (LS1) to 24 diamond sensors read out by a dedicated fast ASIC in 130 nm CMOS technology. The backend comprises a deadtime-less histogramming unit, with a 6.25 ns bin width, in VME standard. A microTCA system with better time resolution is in development. BCM1F is used for luminosity and machine induced background measurements at the CMS experiment. The performance of the detector in the first running period, as well as results on the calibration (Van-der-Meer scan) and the measurements of the luminosity are presented.

  14. Recent trends in the condition monitoring of transformers theory, implementation and analysis

    CERN Document Server

    Chakravorti, Sivaji; Chatterjee, Biswendu

    2013-01-01

    Recent Trends in the Condition Monitoring of Transformers reflects the current interest in replacing traditional techniques used in power transformer condition monitoring with non-invasive measures such as polarization/depolarization current measurement, recovery voltage measurement, frequency domain spectroscopy and frequency response analysis. The book stresses the importance of scrutinizing the condition of transformer insulation which may fail under present day conditions of intensive use with the resulting degradation of dielectric properties causing functional failure of the transformer.

  15. Technical Needs for Enhancing Risk Monitors with Equipment Condition Assessment for Advanced Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Coble, Jamie B.; Coles, Garill A.; Ramuhalli, Pradeep; Meyer, Ryan M.; Berglin, Eric J.; Wootan, David W.; Mitchell, Mark R.

    2013-04-04

    Advanced small modular reactors (aSMRs) can provide the United States with a safe, sustainable, and carbon-neutral energy source. The controllable day-to-day costs of aSMRs are expected to be dominated by operation and maintenance costs. Health and condition assessment coupled with online risk monitors can potentially enhance affordability of aSMRs through optimized operational planning and maintenance scheduling. Currently deployed risk monitors are an extension of probabilistic risk assessment (PRA). For complex engineered systems like nuclear power plants, PRA systematically combines event likelihoods and the probability of failure (POF) of key components, so that when combined with the magnitude of possible adverse consequences to determine risk. Traditional PRA uses population-based POF information to estimate the average plant risk over time. Currently, most nuclear power plants have a PRA that reflects the as-operated, as-modified plant; this model is updated periodically, typically once a year. Risk monitors expand on living PRA by incorporating changes in the day-by-day plant operation and configuration (e.g., changes in equipment availability, operating regime, environmental conditions). However, population-based POF (or population- and time-based POF) is still used to populate fault trees. Health monitoring techniques can be used to establish condition indicators and monitoring capabilities that indicate the component-specific POF at a desired point in time (or over a desired period), which can then be incorporated in the risk monitor to provide a more accurate estimate of the plant risk in different configurations. This is particularly important for active systems, structures, and components (SSCs) proposed for use in aSMR designs. These SSCs may differ significantly from those used in the operating fleet of light-water reactors (or even in LWR-based SMR designs). Additionally, the operating characteristics of aSMRs can present significantly different

  16. Upgraded Fast Beam Conditions Monitor for CMS online luminosity measurement

    CERN Document Server

    Leonard, Jessica Lynn

    2014-01-01

    The CMS beam and radiation monitoring subsystem BCM1F during LHC Run I consisted of 8 individual diamond sensors situated around the beam pipe within the tracker detector volume, for the purpose of fast monitoring of beam background and collision products. Effort is ongoing to develop the use of BCM1F as an online bunch-by-bunch luminosity monitor. BCM1F will be running whenever there is beam in LHC, and its data acquisition is independent from the data acquisition of the CMS detector, hence it delivers luminosity even when CMS is not taking data. To prepare for the expected increase in the LHC luminosity and the change from 50 ns to 25 ns bunch separation, several changes to the system are required, including a higher number of sensors and upgraded electronics. In particular, a new real-time digitizer with large memory was developed and is being integrated into a multi-subsystem framework for luminosity measurement. Current results from Run II preparation will be shown, including results from the January 201...

  17. INFORMATION SYSTEMS AND PROCESSES OF MONITORING POWER TRANSFORMERS CONDITION

    Directory of Open Access Journals (Sweden)

    Litvinov V. N.

    2016-02-01

    Full Text Available To solve the problem of reducing the power supply system’s reliability a prompt full-scale diagnostics based on modern methods can help. Inculcation of information systems for the operational diagnostics implementation allows providing the operating personnel with information that enables to predict possible infringements in power transformers work and to prepare in advance an action plan to address them. The paper presents fragments of the developed monitoring system of power transformer using programmable logic controllers. Within the work of the system there were marked such groups of controlled parameters as information about temperature and the cooling system work; magnitude of windings voltage per phase; the windings current values per phase; information about being transmitted and transmitted power; information about the insulation state. There is designed a functional scheme of the system for monitoring the state of the power transformer. There is described a general algorithm of system functioning. There is developed graphical operator interface that allows to monitor the object state and to manage the system state. Using XML markup language there was designed format of data packets. Designed hardware and software package can be used in the educational process, as it allows to improve the quality of students training, to bring them closer to the realities of modern professional activities; in operational activities as complying with the approved domestic calculating methods replacement of foreign software; in science in solving problems of analysis and optimization of operating parameters of power transformers

  18. Reliability data update using condition monitoring and prognostics in probabilistic safety assessment

    Directory of Open Access Journals (Sweden)

    Hyeonmin Kim

    2015-03-01

    Full Text Available Probabilistic safety assessment (PSA has had a significant role in quantitative decision-making by finding design and operational vulnerabilities and evaluating cost-benefit in improving such weak points. In particular, it has been widely used as the core methodology for risk-informed applications (RIAs. Even though the nature of PSA seeks realistic results, there are still “conservative” aspects. One of the sources for the conservatism is the assumptions of safety analysis and the estimation of failure frequency. Surveillance, diagnosis, and prognosis (SDP, utilizing massive databases and information technology, is worth highlighting in terms of its capability for alleviating the conservatism in conventional PSA. This article provides enabling techniques to solidify a method to provide time- and condition-dependent risks by integrating a conventional PSA model with condition monitoring and prognostics techniques. We will discuss how to integrate the results with frequency of initiating events (IEs and probability of basic events (BEs. Two illustrative examples will be introduced: (1 how the failure probability of a passive system can be evaluated under different plant conditions and (2 how the IE frequency for a steam generator tube rupture (SGTR can be updated in terms of operating time. We expect that the proposed model can take a role of annunciator to show the variation of core damage frequency (CDF depending on operational conditions.

  19. Reliability data update using condition monitoring and prognostics in probabilistic safety assessment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeon Min; Lee, Sang Hwan; Park, Jun Seok; Kim, Hyung Dae; Chang, Yoon Suk; Heo, Gyun Young [Dept. of Nuclear Engineering, Kyung Hee University, Yongin (Korea, Republic of)

    2015-03-15

    Probabilistic safety assessment (PSA) has had a significant role in quantitative decision making by finding design and operational vulnerabilities and evaluating cost-benefit in improving such weak points. In particular, it has been widely used as the core methodology for risk-informed applications (RIAs). Even though the nature of PSA seeks realistic results, there are still 'conservative' aspects. One of the sources for the conservatism is the assumptions of safety analysis and the estimation of failure frequency. Surveillance, diagnosis, and prognosis (SDP), utilizing massive databases and information technology, is worth highlighting in terms of its capability for alleviating the conservatism in conventional PSA. This article provides enabling techniques to solidify a method to provide time and condition-dependent risks by integrating a conventional PSA model with condition monitoring and prognostics techniques. We will discuss how to integrate the results with frequency of initiating events (IEs) and probability of basic events (BEs). Two illustrative examples will be introduced: (1) how the failure probability of a passive system can be evaluated under different plant conditions and (2) how the IE frequency for a steam generator tube rupture (SGTR) can be updated in terms of operating time. We expect that the proposed model can take a role of annunciator to show the variation of core damage frequency (CDF) depending on operational conditions.

  20. An online technique for condition monitoring the induction generators used in wind and marine turbines

    Science.gov (United States)

    Yang, Wenxian; Tavner, P. J.; Court, R.

    2013-07-01

    Induction generators have been successfully applied to a variety of industries. However, their operation and maintenance in renewable wind and marine energy industries still face challenges due to harsh environments, limited access to site and relevant reliability issues. Hence, further enhancing their condition monitoring is regarded as one of the essential measures for improving their availability. To date, much effort has been made to monitor induction motors, which can be equally applied to monitoring induction generators. However, the achieved techniques still have constrains in particular when dealing with the condition monitoring problems in wind and marine turbine generators. For example, physical measurements of partial discharge, noise and temperature have been widely applied to monitoring induction machinery. They are simple and cost-effective, but unable to be used for fault diagnosis. The spectral analysis of vibration and stator current signals is also a mature technique popularly used in motor/generator condition monitoring practice. However, it often requires sufficient expertise for data interpretation, and significant pre-knowledge about the machines and their components. In particular in renewable wind and marine industries, the condition monitoring results are usually coupled with load variations, which further increases the difficulty of obtaining a reliable condition monitoring result. In view of these issues, a new condition monitoring technique is developed in this paper dedicated for wind and marine turbine generators. It is simple, informative and less load-dependent thus more reliable to deal with the online motor/generator condition monitoring problems under varying loading conditions. The technique has been verified through both simulated and practical experiments. It has been shown that with the aid of the proposed technique, not only the electrical faults but also the shaft unbalance occurring in the generator become detectable

  1. Monitoring Re-execution Condition of Continuous Action Step in Computerized Procedure System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yun Goo; Lee, Sung Jin [KHNP Co., Daejeon (Korea, Republic of)

    2010-05-15

    The APR1400 digital main control room (MCR) has many advanced features of computerized control room. One of the most important improvements is the Computerized Procedure System (CPS). Emergency operating procedure (EOP) in the Nuclear Power Plant (NPP) provides a series of instructions to MCR operators to cope with design base events. Computerized EOP supports the operator in terms of plant monitoring, decision making, and control access. Continuous Action Step (CAS) in EOP should be monitored through the entire procedure execution when plant processes are disturbed under emergency conditions. CPS can monitor CAS re-execution condition during EOP execution. CPS has functions to monitor CAS re-execution condition

  2. Different Condition Monitoring Approaches for Main Shafts of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Ambühl, Simon; Sørensen, John Dalsgaard

    Condition monitoring can be used to detect faults and failures at an early stage. Thus it decreases the overall maintenance expenses. This report gives an example of condition monitoring with focus on early crack detection in the main shaft of an offshore wind turbine. This article discusses...... the applicability of different condition monitoring techniques like performance monitoring, strain gauge results and vibration analysis for crack detection on the low speed shaft. Different signal processing methods like descriptive statistics, Fourier Transforms, Wavelet transforms, Modal Assurance Criteria...

  3. Economic analysis of condition monitoring systems for offshore wind turbine sub-systems

    DEFF Research Database (Denmark)

    May, Allan; MacMillan, David; Thöns, Sebastian

    2015-01-01

    The use of condition monitoring systems on offshore wind turbines has increased dramatically in recent times. However, their use is mostly restricted to vibration based monitoring systems for the gearbox, generator and drive train. A survey of commercially available condition monitoring systems...... year life cycle. The model uses Hidden Markov Models to represent both the actual system state and the observed condition monitoring state. The CM systems are modelled to include reduced failure types, false alarms, detection rates and 6 month failure warnings. The costs for system failures are derived...

  4. High Technology Centrifugal Compressor for Commercial Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ruckes, John

    2006-04-15

    R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration The technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to temperature

  5. Reliability Improvement of Power Converters by Means of Condition Monitoring of IGBT Modules

    DEFF Research Database (Denmark)

    Choi, Ui Min; Blaabjerg, Frede; Jørgensen, Søren

    2017-01-01

    proposes a condition monitoring method of insulated-gate bipolar transistor (IGBT) modules. In the first section of this paper, a structure of a conventional IGBT module and a related parameter for the condition monitoring are explained. Then, a proposed real-time on-state collector-emitter voltage...

  6. A Comparison of Advanced Techniques for Monitoring the Condition of Machinery

    NARCIS (Netherlands)

    Maas, H.L.M.M.; Meiler, P.P.; Grimmelius, H.T.

    1998-01-01

    Within the project described in this paper, the objective of condition monitoring is to detect (upcoming) failures as early as possible, to minimise damage to the machinery. The involvement of humans within the condition monitoring process is being reduced by incorporation of advanced and intelligen

  7. Using Cloud Technology to Support Monitoring During High Profile Events

    Science.gov (United States)

    Patel, Megan; Adighibe, Enyinnaya; Lombardo, Joseph; Loschen, Wayne; Stewart, Miles; Vernon, Michael O.

    2013-01-01

    Objective In May 2012, thousands of protesters, descended on Chicago during the NATO Summit to voice their concern about social and economic inequality. Given the increased numbers of international and domestic visitors to the Windy City and the tension surrounding protesting during the summit, increased monitoring for health events within the city and Chicago metropolitan region was advised. This project represents the first use of cloud technology to support monitoring for a high profile event. Introduction Hospital emergency departments in Cook and surrounding counties currently send data to the Cook County Department of Public Health (CCDPH) instance of ESSENCE on CCDPH servers. The cloud instance of ESSENCE has been enhanced to receive and export all meaningful use data elements in the meaningful use format. The NATO summit provided the opportunity for a demonstration project to assess the ability of an Amazon GovCloud instance of ESSENCE to ingest and process meaningful use data, and to export meaningful use surveillance data to the Cook County Locker in BioSense 2.0. Methods In the three weeks leading up to the NATO Summit, HL7 data extracts were sent to BioSense 2.0 and a data feed was established to the Amazon GovCloud instance of ESSENCE. Queries specific to anticipated health events associated with the summit such as injuries, tear gas exposure, and general exposure, were developed. Several features of the cloud instance of ESSENCE enhanced the ability of CCDPH staff epidemiologists to conduct analyses, including the sharing capabilities of queries and the myESSENCE dashboard feature. The sharing capabilities within the cloud instance of ESSENCE allowed queries to be easily shared with multiple staff epidemiologists and across health jurisdictions. The myESSENCE dashboard feature was used to create dashboards of surveillance results, including time series graphs, maps, and records of interest for relevant queries, that were shared with public health

  8. Did Nongovernmental Monitoring improve Working Conditions in the case of Nike and the Footwear Industry?

    OpenAIRE

    FERDOUS AHAMED, Ph.D

    2013-01-01

    This article examines working conditions in the RMG sector of Bangladesh could improve through effective monitoring system. In a significant case Nike suggested that working conditions and labour rights can be improved through a systematic approach and a comprehensive and transparent monitoring system. External pressure from NGOs and other advocacy groups motivated Nike to introduce a Code of Conduct and a monitoring system. The process is discussed in this section. Conclusion: In conclusion,...

  9. An intelligent condition monitoring system for on-line classification of machine tool wear

    Energy Technology Data Exchange (ETDEWEB)

    Fu Pan; Hope, A.D.; Javed, M. [Systems Engineering Faculty, Southampton Institute (United Kingdom)

    1997-12-31

    The development of intelligent tool condition monitoring systems is a necessary requirement for successful automation of manufacturing processes. This presentation introduces a tool wear monitoring system for milling operations. The system utilizes power, force, acoustic emission and vibration sensors to monitor tool condition comprehensively. Features relevant to tool wear are drawn from time and frequency domain signals and a fuzzy pattern recognition technique is applied to combine the multisensor information and provide reliable classification results of tool wear states. (orig.) 10 refs.

  10. Continuous monitoring of water flow and solute transport using vadose zone monitoring technology

    Science.gov (United States)

    Dahan, O.

    2009-04-01

    contaminant transport in various hydrological and geological setups. These include floodwater infiltration in arid environments, land use impact on groundwater quality, and control of remediation process in a contaminated vadose zone. The data which is collected by the VMS allows direct measurements of flow velocities and fluxes in the vadose zone while continuously monitoring the chemical evolution of the percolating water. While real time information on the hydrological and chemical properties of the percolating water in the vadose is essential to prevent groundwater contamination it is also vital for any remediation actions. Remediation of polluted soils and aquifers essentially involves manipulation of surface and subsurface hydrological, physical and biochemical conditions to improve pollutant attenuation. Controlling the biochemical conditions to enhance biodegradation often includes introducing degrading microorganisms, applying electron donors or acceptors, or adding nutrients that can promote growth of the desired degrading organisms. Accordingly real time data on the hydrological and chemical properties of the vadose zone may be used to select remediation strategies and determine its efficiency on the basis of real time information.

  11. Wireless Remote Weather Monitoring System Based on MEMS Technologies

    Directory of Open Access Journals (Sweden)

    Rong-Hua Ma

    2011-03-01

    Full Text Available This study proposes a wireless remote weather monitoring system based on Micro-Electro-Mechanical Systems (MEMS and wireless sensor network (WSN technologies comprising sensors for the measurement of temperature, humidity, pressure, wind speed and direction, integrated on a single chip. The sensing signals are transmitted between the Octopus II-A sensor nodes using WSN technology, following amplification and analog/digital conversion (ADC. Experimental results show that the resistance of the micro temperature sensor increases linearly with input temperature, with an average TCR (temperature coefficient of resistance value of 8.2 × 10−4 (°C−1. The resistance of the pressure sensor also increases linearly with air pressure, with an average sensitivity value of 3.5 × 10−2 (Ω/kPa. The sensitivity to humidity increases with ambient temperature due to the effect of temperature on the dielectric constant, which was determined to be 16.9, 21.4, 27.0, and 38.2 (pF/%RH at 27 °C, 30 °C, 40 °C, and 50 °C, respectively. The velocity of airflow is obtained by summing the variations in resistor response as airflow passed over the sensors providing sensitivity of 4.2 × 10−2, 9.2 × 10−2, 9.7 × 10−2 (Ω/ms−1 with power consumption by the heating resistor of 0.2, 0.3, and 0.5 W, respectively. The passage of air across the surface of the flow sensors prompts variations in temperature among each of the sensing resistors. Evaluating these variations in resistance caused by the temperature change enables the measurement of wind direction.

  12. Monitoring stanja kroz testove analize ulja / Condition monitoring through oil analysis tests

    Directory of Open Access Journals (Sweden)

    Sreten R. Perić

    2010-10-01

    : neutralization number (TAN-total acid number, total base number (TBN, oxidation stabillity, chemical and thermal stabillity, corrodibillity, ash content and carbon residue, water content, compatibility, toxicity, etc. Diagnostics of the tribomechanical system of an internal combustion engine The diagnostics is based on the prediction (recognition of damage and/or failure through characteristic diagnostic parameters. This allows prevention of delays and increases reliability, cost-effectiveness, and usage life. The diagnostics of the tribomechanical system can provide verification of the system condition, working capacity and functionality, and can point out the place, form and cause of a failure. The diagnostics is carried out through the detection of symptoms, determining the value of the characteristic parameters and their comparison with the limit values. If the engine assemblies are considered from the aspect of tribomechanical systems (e. g. piston-piston ring-cylinder, cam-valve lifter, bearing journal bearing defined by tribological processes, it can be shown that the determination of the content of wear products, content of contaminants, state of lubricants and lubrication conditions have a significant influence on the implementation of maintenance of these systems. We should emphasize the importance of monitoring oil for lubrication of tribomechanical engine assemblies, which provides identification of potential causes and phenomena leading to damage and failure in the early stages of the functioning of the system. Prediction, i.e. detection of potential and/or current damage and failures in the system, checking the functionality of oil and determination of usage life are the main factors of the implementation of oil monitoring. Since mobile components of tribomechanical system engines are necessarily exposed to wear and contaminants and wear products deposit in the lubrication oil, it is necessary to monitor changes in fluid properties during exploitation, because the

  13. Engine Oil Condition Monitoring Using High Temperature Integrated Ultrasonic Transducers

    OpenAIRE

    Jeff Bird; Cheng-Kuei Jen; Zhigang Sun; Pierre Sammut; Brian Galeote; Makiko Kobayashi; Kuo-Ting Wu; Nezih Mrad

    2011-01-01

    The present work contains two parts. In the first part, high temperature integrated ultrasonic transducers (IUTs) made of thick piezoelectric composite films, were coated directly onto lubricant oil supply and sump lines of a modified CF700 turbojet engine. These piezoelectric films were fabricated using a sol-gel spray technology. By operating these IUTs in transmission mode, the amplitude and velocity of transmitted ultrasonic waves across the flow channel of the lubricant oil in supply and...

  14. Research on Monitoring Area Division of Quality Grade Changes in County Cultivated Land and Technology of Deploying Monitoring Point

    Institute of Scientific and Technical Information of China (English)

    Wei; WEI; Lijun; LIAO; Jianxin; YU

    2013-01-01

    It is an important means in management of improving both the quality and quantity of cultivated land to monitor grade changes in cultivated land quality. How to deploy monitoring network system and its point reasonably and roundly are the key to the technology of monitoring grade changes in cultivated land quality by monitoring grade changes in cultivated land quality dynamically in order to obtain the information to the index of cultivated land quality and its changes based on the existing achievements of farmland classification and grading. Spatial analysis method is used to demarcate monitoring area and deploy monitoring point according to ARCGIS,of which the result can meet the demand for monitoring grade changes in cultivated land.

  15. New Web Technologies for the LHCb Online Monitoring Displays

    CERN Document Server

    Lagou, Charalampia

    2017-01-01

    The LHCb Online Monitoring Displays is a web application, that gives access to real-time measurements and status information about the LHCb detector and its components, without the need to login. It is hosted at CERN on the computer lbcomet.cern.ch. The system is architecturally complex, based on the Comet technology for the data-transfer and the STOMP protocol for the communication between the clients and the message broker. The application is functional, however concerns are expressed over the future maintenance of the system’s architecture as is. The cause of these concerns are firstly the fact that the STOMP JavaScript client package is outdated and flagged by the original author flagged as non-maintained and secondly that todays modern browsers support real-time bi-directional communication which, at the time of development was not compatible even with some of the major browsers. Therefore, the objective of this project is to investigate modern data-push mechanisms, which could complement or replace...

  16. Optoelectronic methods in potential application in monitoring of environmental conditions

    Science.gov (United States)

    Mularczyk-Oliwa, Monika; Bombalska, Aneta; Kwaśny, Mirosław; Kopczyński, Krzysztof; Włodarski, Maksymilian; Kaliszewski, Miron; Kostecki, Jerzy

    2016-12-01

    Allergic rhinitis, also known as hay fever is a type of inflammation which occurs when the immune system overreacts to allergens in the air. It became the most common disease among people. It became important to monitor air content for the presence of a particular type of allergen. For the purposes of environmental monitoring there is a need to widen the group of traditional methods of identification of pollen for faster and more accurate research systems. The aim of the work was the characterization and classification of certain types of plant pollens by using laser optical methods, which were supported by the chemmometrics. Several species of pollen were examined, for which a database of spectral characteristics was created, using LIF, Raman scattering and FTIR methods. Spectral database contains characteristics of both common allergens and pollen of minor importance. Based on registered spectra, statistical analysis was made, which allows the classification of the tested pollen species. For the study of the emission spectra Nd:YAG laser was used with the fourth harmonic generation (266 nm) and GaN diode laser (375 nm). For Raman scattering spectra spectrometer Nicolet IS-50 with a excitation wavelength of 1064 nm was used. The FTIR spectra, recorded in the mid infrared1 range (4000-650 cm-1) were collected with use of transmission mode (KBr pellet), ATR and DRIFT.

  17. A Development of Empirical Models for Equipment Condition Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Song Kyu; Baik, Se Jin [KEPCO Engineering and Construction Company, Daejeon (Korea, Republic of); An, Sang Ha [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2010-10-15

    A great deal of effort is recently put into on-line monitoring (OLM), specially using empirical model to detect earlier the fault of components or the calibration reduction/extension of instrument. The empirical model is constructed with historical data obtained during operation and it mainly relies on regression techniques. Various models are used in OLM and the role of models is to describe the relation among signals that have been collected. Ultimate goal of empirical models is to best estimate parameter as soon as possible close to actual value. Typically some of the historical data are used for model training, and some data are used for verification and assessment of model performance. Several different models for OLM of nuclear power systems are currently being used. Examples include the ANL Multivariate State Estimation Techniques (MSET) used in EPI center of SmartSignal, the expert state estimation engine (ESEE) used in SureSense software of Expert Microsystems, Process Evaluation and Analysis by Neural Operators (PEANO) OECD of Halden Reactor Project and linear regression model used in RCP seal integrity monitoring system (SIMON) of KEPCO E and C

  18. Significance of Operating Environment in Condition Monitoring of Large Civil Structures

    Directory of Open Access Journals (Sweden)

    Sreenivas Alampalli

    1999-01-01

    Full Text Available Success of remote long-term condition monitoring of large civil structures and developing calibrated analytical models for damage detection, depend significantly on establishing accurate baseline signatures and their sensitivity. Most studies reported in the literature concentrated on the effect of structural damage on modal parameters without emphasis on reliability of modal parameters. Thus, a field bridge structure was studied for the significance of operating conditions in relation to baseline signatures. Results indicate that in practice, civil structures should be monitored for at least one full cycle of in-service environmental changes before establishing baselines for condition monitoring or calibrating finite-element models. Boundary conditions deserve special attention.

  19. Final Technical Report Recovery Act: Online Nonintrusive Condition Monitoring and Fault Detection for Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Wei Qiao

    2012-05-29

    The penetration of wind power has increased greatly over the last decade in the United States and across the world. The U.S. wind power industry installed 1,118 MW of new capacity in the first quarter of 2011 alone and entered the second quarter with another 5,600 MW under construction. By 2030, wind energy is expected to provide 20% of the U.S. electricity needs. As the number of wind turbines continues to grow, the need for effective condition monitoring and fault detection (CMFD) systems becomes increasingly important [3]. Online CMFD is an effective means of not only improving the reliability, capacity factor, and lifetime, but it also reduces the downtime, energy loss, and operation and maintenance (O&M) of wind turbines. The goal of this project is to develop novel online nonintrusive CMFD technologies for wind turbines. The proposed technologies use only the current measurements that have been used by the control and protection system of a wind turbine generator (WTG); no additional sensors or data acquisition devices are needed. Current signals are reliable and easily accessible from the ground without intruding on the wind turbine generators (WTGs) that are situated on high towers and installed in remote areas. Therefore, current-based CMFD techniques have great economic benefits and the potential to be adopted by the wind energy industry. Specifically, the following objectives and results have been achieved in this project: (1) Analyzed the effects of faults in a WTG on the generator currents of the WTG operating at variable rotating speed conditions from the perspective of amplitude and frequency modulations of the current measurements; (2) Developed effective amplitude and frequency demodulation methods for appropriate signal conditioning of the current measurements to improve the accuracy and reliability of wind turbine CMFD; (3) Developed a 1P-invariant power spectrum density (PSD) method for effective signature extraction of wind turbine faults with

  20. Structural Health Monitoring in Changing Operational Conditions Using Tranmissibility Measurements

    Directory of Open Access Journals (Sweden)

    Christof Devriendt

    2010-01-01

    Full Text Available This article uses frequency domain transmissibility functions for detecting and locating damage in operational conditions. In recent articles numerical and experimental examples were presented and the possibility to use the transmissibility concept for damage detection seemed quite promising. In the work discussed so far, it was assumed that the operational conditions were constant, the structure was excited by a single input in a fixed location. Transmissibility functions, defined as a simple ratio between two measured responses, do depend on the amplitudes or locations of the operational forces. The current techniques fail in the case of changing operational conditions. A suitable operational damage detection method should however be able to detect damage in a very early stage even in the case of changing operational conditions. It will be demonstrated in this paper that, by using only a small frequency band around the resonance frequencies of the structure, the existing methods can still be used in a more robust way. The idea is based on the specific property that the transmissibility functions become independent of the loading condition in the system poles. A numerical and experimental validation will be given.

  1. The Application of MMS Image Monitoning Technology in the Field of Remote Mnmanned Monitoring Ice-water Condition of River%彩信图像监测技术在河道冰-水情远程无人监测中的应用

    Institute of Scientific and Technical Information of China (English)

    张航; 黄晓辉; 秦建敏; 张瑞锋; 任杰林

    2013-01-01

    针对黄河中上游冰凌灾害预报系统的建设,设计研制了黄河河道冰、水情图像远程无人自动监测系统.该系统基于GPRS移动通信中彩信图像数据传输技术,利用单片机控制摄像探头采集和压缩黄河河道现场冰情图像信息,通过GPRS网络以彩信格式发送到用户手机,实现了对黄河河道冰情图像的无线远程实时监测.该系统可以使冰情检测人员在移动过程中随时获取河道实时冰情图像信息,更加适合野外环境下冰凌灾害预防的监测与预报,具有较大的工程应用价值.%Based on the new research results.in the detection of ice-water obtained by the Institute of Measurement and Control Technology in Taiyuan University of Technology,remote automatic monitoring system for the ice-water of the Yellow river was developed according to the field test according to the the construction of the ice disaster prediction system for the upper reaches in the Yellow River.For the limitations of the the special environment of the channel,the mobile communication technology GPRS was used in research of the system to get the remote real-time image of the ice in the Yellow River ice flood season.By using the single chip computer technology,the GPRS wireless communication module with MMS agreement and the image acquisition and image compression function modules,the single-chip computer can control the serial camera to achieve the image processing and image compression and then the collecting image will be sented to the mobile phone user through the MMS forma,in order to realize the wireless remote monitoring of the ice thickness and ice image.Selecting.the appropriate monitoring points is to achieve the remote monitoring to get the information of river regime,which can achieve the automatic monitoring and and emergency monitoring of the forming process of the Yellow River ice.The system has the advantages of regular monitoring,stable performance and low power

  2. Condition Based Maintenance of Space Exploration Vehicles Using Structural Health Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Acellent Technologies proposes to develop an autonomous and automated diagnostic system for condition based maintenance (CBM) of safety critical structures for space...

  3. Supervised and unsupervised condition monitoring of non-stationary acoustic emission signals

    DEFF Research Database (Denmark)

    Sigurdsson, Sigurdur; Pontoppidan, Niels Henrik; Larsen, Jan

    2005-01-01

    We are pursuing a system that monitors the engine condition under multiple load settings, i.e. under non-stationary operating conditions. The running speed when data acquired under simulated marine conditions (different load settings on the propeller curve) was in the range from approximately 70...... approaches perform well, which indicates that unsupervised models, modelled without faulty data, may be used for accurate condition monitoring....... condition changes across load changes. In this paper we approach this load interpolation problem with supervised and unsupervised learning, i.e. model with normal and fault examples and normal examples only, respectively. We apply non-linear methods for the learning of engine condition changes. Both...

  4. Fundamentals for remote condition monitoring of offshore wind turbines

    DEFF Research Database (Denmark)

    McGugan, Malcolm; Larsen, Gunner Chr.; Sørensen, Bent F.

    mobile sensors), fibre optics (including a new microbend transducer design and various Bragg-grating based applications), wireless approaches involving both battery and energy harvesting options, and inertia sensor based system identification approaches able to deal with linear periodic systems......In the future, large wind turbines will be placed offshore in considerable numbers. Since access will be difficult and costly, it is preferable to use monitoring systems to reduce the reliance on manual inspection. The motivation for the effort reported here is to create the fundamental basis...... of the wind turbine blades that can integrate with existing SCADA tools to improve management of large offshore wind farms, and optimise the manual inspection/maintenance effort. Various sensor types, which have previously been identified as technically (and economically) capable of detecting the early...

  5. GROUNDWATER MONITORING: Statistical Methods for Testing Special Background Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Charissa J.

    2004-04-28

    This chapter illustrates application of a powerful intra-well testing method referred as the combined Shewhart-CUSUM control chart approach, which can detect abrupt and gradual changes in groundwater parameter concentrations. This method is broadly applicable to groundwater monitoring situations where there is no clearly defined upgradient well or wells, where spatial variability exists in parameter concentrations, or when groundwater flow rate is extremely slow. Procedures for determining the minimum time needed to acquire independent groundwater samples and useful transformations for obtaining normally distributed data are also provided. The control chart method will be insensitive to detect real changes if a preexisting trend is observed in the background data set. A method and a case study describing how a trend observed in a background data set can be removed using a transformation suggested by Gibbons (1994) are presented to illustrate treatment of a preexisting trend.

  6. Condition Monitoring and Fault Diagnosis for an Antifalling Safety Device

    Directory of Open Access Journals (Sweden)

    Guangxiang Yang

    2015-01-01

    Full Text Available There is a constant need for the safe operation and reliability of antifalling safety device (AFSD of an elevator. This paper reports an experimental study on rotation speed and catching torque monitoring and fault diagnosis of an antifalling safety device in a construction elevator. Denoising the signal using wavelet transform is presented in this paper. Based on the denoising effects for several types of wavelets, the sym8 wavelet basis, which introduces the high order approximation and an adaptive threshold, is employed for denoising the signal. The experimental result shows a maximum data error reduction of 7.5% is obtained and SNRs (signal-to-noise ratio of rotation speed and catching torque are improved for 3.9% and 6.4%, respectively.

  7. Compressed air energy storage monitoring to support refrigerated mined rock cavern technology.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Moo Yul; Bauer, Stephen J.

    2004-06-01

    This document is the final report for the Compressed Air Energy Storage Monitoring to Support Refrigerated-Mined Rock Cavern Technology (CAES Monitoring to Support RMRCT) (DE-FC26-01NT40868) project to have been conducted by CAES Development Co., along with Sandia National Laboratories. This document provides a final report covering tasks 1.0 and subtasks 2.1, 2.2, and 2.5 of task 2.0 of the Statement of Project Objectives and constitutes the final project deliverable. The proposed work was to have provided physical measurements and analyses of large-scale rock mass response to pressure cycling. The goal was to develop proof-of-concept data for a previously developed and DOE sponsored technology (RMRCT or Refrigerated-Mined Rock Cavern Technology). In the RMRCT concept, a room and pillar mine developed in rock serves as a pressure vessel. That vessel will need to contain pressure of about 1370 psi (and cycle down to 300 psi). The measurements gathered in this study would have provided a means to determine directly rock mass response during cyclic loading on the same scale, under similar pressure conditions. The CAES project has been delayed due to national economic unrest in the energy sector.

  8. Technology of Measuring equipment for Air Pollution. Development of Mobile Air Pollution monitoring system (LIDAR)

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Hyung Ki; Song, Ky Seok; Rhee, Young Joo; Kim, Duck Hyun; Yang, Ki Ho; Lee, Jong Min; Cha, Byung Heon; Lee, Kang Soo

    1999-01-01

    Most air pollution monitoring technologies accompany a time-consuming sample treatment process and provides pollution information only for a local area. Thus, they have a critical restriction in monitoring time-dependent pollution variation effectively over the wide range of area both in height and in width. LIDAR (Light detection and ranging) is a new technology to overcome such drawbacks of the existing pollution monitoring technologies and has long been investigated in the advanced countries. The goal of this project is to develop the mobile air pollution monitoring system and to apply the system to the detection of various pollutants, such as ozone, nitrogen dioxide, sulfur dioxide and aerosols.

  9. Development of a CVD diamond Beam Condition Monitor for CMS at the Large Hadron Collider

    CERN Document Server

    Fernández-Hernando, L; Gray, R; Ilgner, C; MacPherson, A; Oh, A; Pritchard, T; Stone, R; Worm, S

    2005-01-01

    The CERN Large Hadron Collider (LHC) will store 2808 bunches per colliding beam, with each bunch consisting of 1011 protons at an energy of 7 TeV. If there is a failure in an element of the accelerator, the resulting beam losses could cause damage not only to the machine but also to the experiments. A Beam Condition Monitor (BCM) is foreseen to monitor fast increments of particle fluxes near the interaction point and, if necessary, to generate an abort signal to the LHC accelerator control to dump the beams. The system is being developed initially for the CMS experiment but it is sufficiently general to find potential applications elsewhere. Due to its high radiation hardness, CVD diamond was chosen for investigation as the BCM sensor. Various samples of CVD diamond have been characterized extensively with both a 90Sr source and in high-intensity test beams in order to assess the capabilities of such sensors and to study whether this detector technology is suitable for a BCM system. A selection of results fro...

  10. The potential implementation of radio-frequency identification technology for personal health examination and monitoring.

    Science.gov (United States)

    Nguyen, Andrew

    2009-11-16

    This paper presents several possible applications of the radio-frequency identification (RFID) technology for personal health examination and monitoring. One application involves using RFID sensors external to the human body, while another one uses both internal and external RFID sensors. Another application involves simultaneous assessment and monitoring of many patients in a hospital setting using networks of RFID sensors. All the assessment and monitoring are done wirelessly, either continuously or periodically in any interval, in which the sensors collect information on human parts such as the lungs or heart and transmit this information to a router, PC or PDA device connected to the internet, from which patient's condition can be diagnosed and viewed by authorized medical professionals in remote locations. Instantaneous information allows medical professionals to intervene properly and in a timely fashion to prevent possible catastrophic effects to patients. The continuously assessed and monitored information provides medical professionals with more complete and long-term studies of patients. The proposed ideas promise to result in not only enhancement of the health treatment quality but also in significant reduction of medical expenditure.

  11. Intelligent pump drives. Simulation, condition monitoring, fault diagnosis and energy efficiency; Intelligente Pumpenantriebe. Simulation, Condition Monitoring, Fehlerdiagnose und Energieeffizienz

    Energy Technology Data Exchange (ETDEWEB)

    Kleinmann, Stefan [Allweiler AG, Radolfzell (Germany); Leonardo, Domenico; Koller-Hodac, Agathe [Hochschule fuer Technik Rapperswil (Switzerland)

    2011-07-01

    The authors of the contribution under consideration report on an implementation of a simulation environment and a fault diagnostic system for an oil burner application. Using a modification of the application hardware, an additional increase in efficiency in an advanced control of pump drives is achieved. The properties of the combustion process are not affected adversely. All changes to the system can be investigated in simulations for feasibility and impact. Using the simulation model, a diagnostic system is brought up enabling a remote monitoring for example.

  12. Using mobile health technology to deliver decision support for self-monitoring after lung transplantation.

    Science.gov (United States)

    Jiang, Yun; Sereika, Susan M; DeVito Dabbs, Annette; Handler, Steven M; Schlenk, Elizabeth A

    2016-10-01

    Lung transplant recipients (LTR) experience problems recognizing and reporting critical condition changes during their daily health self-monitoring. Pocket PATH(®), a mobile health application, was designed to provide automatic feedback messages to LTR to guide decisions for detecting and reporting critical values of health indicators. To examine the degree to which LTR followed decision support messages to report recorded critical values, and to explore predictors of appropriately following technology decision support by reporting critical values during the first year after transplantation. A cross-sectional correlational study was conducted to analyze existing data from 96 LTR who used the Pocket PATH for daily health self-monitoring. When a critical value is entered, the device automatically generated a feedback message to guide LTR about when and what to report to their transplant coordinators. Their socio-demographics and clinical characteristics were obtained before discharge. Their use of Pocket PATH for health self-monitoring during 12 months was categorized as low (≤25% of days), moderate (>25% to ≤75% of days), and high (>75% of days) use. Following technology decision support was defined by the total number of critical feedback messages appropriately handled divided by the total number of critical feedback messages generated. This variable was dichotomized by whether or not all (100%) feedback messages were appropriately followed. Binary logistic regression was used to explore predictors of appropriately following decision support. Of the 96 participants, 53 had at least 1 critical feedback message generated during 12 months. Of these 53 participants, the average message response rate was 90% and 33 (62%) followed 100% decision support. LTR who moderately used Pocket PATH (n=23) were less likely to follow technology decision support than the high (odds ratio [OR]=0.11, p=0.02) and low (OR=0.04, p=0.02) use groups. The odds of following decision

  13. A remote condition monitoring system for wind-turbine based DG systems

    Science.gov (United States)

    Ma, X.; Wang, G.; Cross, P.; Zhang, X.

    2012-05-01

    In this paper, a remote condition monitoring system is proposed, which fundamentally consists of real-time monitoring modules on the plant side, a remote support centre and the communications between them. The paper addresses some of the key issues related on the monitoring system, including i) the implementation and configuration of a VPN connection, ii) an effective database system to be able to handle huge amount of monitoring data, and iii) efficient data mining techniques to convert raw data into useful information for plant assessment. The preliminary results have demonstrated that the proposed system is practically feasible and can be deployed to monitor the emerging new energy generation systems.

  14. Planetary gearbox condition monitoring of ship-based satellite communication antennas using ensemble multiwavelet analysis method

    Science.gov (United States)

    Chen, Jinglong; Zhang, Chunlin; Zhang, Xiaoyan; Zi, Yanyang; He, Shuilong; Yang, Zhe

    2015-03-01

    Satellite communication antennas are key devices of a measurement ship to support voice, data, fax and video integration services. Condition monitoring of mechanical equipment from the vibration measurement data is significant for guaranteeing safe operation and avoiding the unscheduled breakdown. So, condition monitoring system for ship-based satellite communication antennas is designed and developed. Planetary gearboxes play an important role in the transmission train of satellite communication antenna. However, condition monitoring of planetary gearbox still faces challenges due to complexity and weak condition feature. This paper provides a possibility for planetary gearbox condition monitoring by proposing ensemble a multiwavelet analysis method. Benefit from the property on multi-resolution analysis and the multiple wavelet basis functions, multiwavelet has the advantage over characterizing the non-stationary signal. In order to realize the accurate detection of the condition feature and multi-resolution analysis in the whole frequency band, adaptive multiwavelet basis function is constructed via increasing multiplicity and then vibration signal is processed by the ensemble multiwavelet transform. Finally, normalized ensemble multiwavelet transform information entropy is computed to describe the condition of planetary gearbox. The effectiveness of proposed method is first validated through condition monitoring of experimental planetary gearbox. Then this method is used for planetary gearbox condition monitoring of ship-based satellite communication antennas and the results support its feasibility.

  15. Recent Advances in Energy Harvesting Technologies for Structural Health Monitoring Applications

    OpenAIRE

    Joseph Davidson; Changki Mo

    2014-01-01

    This paper reviews recent developments in energy harvesting technologies for structural health monitoring applications. Many industries have a great deal of interest in obtaining technology that can be used to monitor the health of machinery and structures. In particular, the need for autonomous monitoring of structures has been ever-increasing in recent years. Autonomous SHM systems typically include embedded sensors, data acquisition, wireless communication, and energy harvesting systems. A...

  16. Disposable indicators for monitoring lighting conditions in museums.

    Science.gov (United States)

    Bacci, Mauro; Cucci, Costanza; Dupont, Anne-Laurence; Lavédrine, Bertrand; Picollo, Marcello; Porcinai, Simone

    2003-12-15

    Photoinduced alterations of light-sensitive artifacts represent one of the main problems that conservators and curators have to face for environmental control in museums and galleries. Therefore, increasing attention has been recently devoted to developing strategies of indoor light monitoring, especially aimed at minimizing the cumulated light exposure for the objects on exhibit. In this work a prototype of a light dosimeter, constituted by a photosensitive dyes/polymer mixture applied on a paper substrate, is presented. This indicator, specially designed for a preventive assessment of the risk of damage for highly light-sensitive objects, undergoes a progressive color variation as its exposure to the light increases. Different, easily distinguishable color steps are exhibited depending on the light dose received, so that the dosimeter can be used straightforwardly to have a first, instrumentation-free estimation of the total light exposure. A reflectance spectroscopy study in the 350-860 nm range was carried out on prototype dosimeters exposed to light emitted from a tungsten-halogen lamp to investigate the response of the dosimeter to the light and to study the fading mechanism. Two different approaches were evaluated for the calibration of the prototype: colorimetry and principal component analysis of the reflectance spectra. The usefulness of the two methods in providing a quantitative indication of the light dose received was evaluated.

  17. Review of Physical Based Monitoring Techniques for Condition Assessment of Corrosion in Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Ying Lei

    2013-01-01

    Full Text Available Monitoring the condition of steel corrosion in reinforced concrete (RC is imperative for structural durability. In the past decades, many electrochemistry based techniques have been developed for monitoring steel corrosion. However, these electrochemistry techniques can only assess steel corrosion through monitoring the surrounding concrete medium. As alternative tools, some physical based techniques have been proposed for accurate condition assessment of steel corrosion through direct measurements on embedded steels. In this paper, some physical based monitoring techniques developed in the last decade for condition assessment of steel corrosion in RC are reviewed. In particular, techniques based on ultrasonic guided wave (UGW and Fiber Bragg grating (FBG are emphasized. UGW based technique is first reviewed, including important characters of UGW, corrosion monitoring mechanism and feature extraction, monitoring corrosion induced deboning, pitting, interface roughness, and influence factors. Subsequently, FBG for monitoring corrosion in RC is reviewed. The studies and application of the FBG based corrosion sensor developed by the authors are presented. Other physical techniques for monitoring corrosion in RC are also introduced. Finally, the challenges and future trends in the development of physical based monitoring techniques for condition assessment of steel corrosion in RC are put forward.

  18. Immunologic applications of conditional gene modification technology in the mouse.

    Science.gov (United States)

    Sharma, Suveena; Zhu, Jinfang

    2014-04-02

    Since the success of homologous recombination in altering mouse genome and the discovery of Cre-loxP system, the combination of these two breakthroughs has created important applications for studying the immune system in the mouse. Here, we briefly summarize the general principles of this technology and its applications in studying immune cell development and responses; such implications include conditional gene knockout and inducible and/or tissue-specific gene over-expression, as well as lineage fate mapping. We then discuss the pros and cons of a few commonly used Cre-expressing mouse lines for studying lymphocyte development and functions. We also raise several general issues, such as efficiency of gene deletion, leaky activity of Cre, and Cre toxicity, all of which may have profound impacts on data interpretation. Finally, we selectively list some useful links to the Web sites as valuable mouse resources.

  19. Crown condition assessment at the CONECOFOR Permanent Monitoring Plots

    Directory of Open Access Journals (Sweden)

    Renzo NIBBI

    2002-09-01

    Full Text Available A detailed crown condition assessment is currently being carried out at the CONECOFOR (CONtrollo ECOsistemi FORestali, Control of Forest Ecosystems plots. The assessment began in 1996, and during the first two years (1996 and 1997 an assessment form based on previous regional experience was used; in 1998 the new official EU form was adopted. The resulting loss of comparability means that only a few indices can be used in the temporal series 1996-1999. Much effort was devoted to Quality Assurance (QA procedures. The QA program is structured as follows: (i specific field manuals have been adopted and are continuously updated; (ii a national training and intercalibration course (NT&IC is undertaken yearly before beginning the assessment campaign;( iii field checks are carried out yearly on a large number of plots. The results of the QA program have shown that for several indices the quality objectives were not reached, but the quality of the data is improving with time. To express the change in crown conditions in each area, a complex index (CCI = Crown Condition Index was adopted. This index is the result of the sum of the relativized values of all the common indices used during the four years. The following parameters were used: transparency, ramification type, leaf colour alteration extension, leaf damage extension, alteration of leaf distension extension. The range within which the CCI fluctuates was evaluated taking into account all the observations carried out at a given plot throughout the years. The number of cases over a given threshold (outliers was calculated for each year. The threshold for outliers was calculated as the median value plus 2 times the range of the interquartile value. All individual cases exceeding this value are considered outliers. The results are presented for all the areas in which the data set is complete for the four years. The yearly fluctuations are discussed and related to possible causes.

  20. Optical fiber chemical sensors with sol-gel derived nanomaterials for monitoring high temperature/high pressure reactions in clean energy technologies

    Science.gov (United States)

    Tao, Shiquan

    2010-04-01

    The development of sensor technologies for in situ, real time monitoring the high temperature/high pressure (HTP) chemical processes used in clean energy technologies is a tough challenge, due to the HTP, high dust and corrosive chemical environment of the reaction systems. A silica optical fiber is corrosive resistance, and can work in HTP conditions. This paper presents our effort in developing fiber optic sensors for in situ, real time monitoring the concentration of trace ammonia and hydrogen in high temperature gas samples. Preliminary test results illustrate the feasibility of using fiber optic sensor technologies for monitoring HTP processes for next generation energy industry.

  1. Condition monitoring of industrial infrastructures using distributed fibre optic acoustic sensors

    Science.gov (United States)

    Hicke, Konstantin; Hussels, Maria-Teresa; Eisermann, René; Chruscicki, Sebastian; Krebber, Katerina

    2017-04-01

    Distributed fibre optic acoustic sensing (DAS) can serve as an excellent tool for real-time condition monitoring of a variety of industrial and civil infrastructures. In this paper, we portray a subset of our current research activities investigating the usability of DAS based on coherent optical time-domain reflectometry (C-OTDR) for innovative and demanding condition monitoring applications. Specifically, our application-oriented research presented here aims at acoustic and vibrational condition monitoring of pipelines and piping systems, of rollers in industrial heavy-duty conveyor belt systems and of extensive submarine power cable installations, respectively.

  2. Diamond Pixel Modules and the ATLAS Beam Conditions Monitor

    CERN Document Server

    Dobos, D

    2011-01-01

    The ATLAS Beam Conditions Monitor’s (BCM) main purpose is to protect the experiments silicon tracker from beam incidents. In total 16 1x1 cm^2 500 um thick diamond pCVD sensors are used in eight positions around the LHC interaction point. They perform time difference measurements with sub nanosecond resolution to distinguish between particles from a collision and spray particles from a beam incident; an abundance of the latter can lead the BCM to provoke an abort of LHC beam. The BCM diamond detector modules, their readout system and the algorithms used to detect beam incidents are described. Results of the BCM operation with circulating LHC beams and it’s commissioning with first LHC collisions are reported.

  3. Comparison of spectroscopy technologies for improved monitoring of cell culture processes in miniature bioreactors.

    Science.gov (United States)

    Rowland-Jones, Ruth C; van den Berg, Frans; Racher, Andrew J; Martin, Elaine B; Jaques, Colin

    2017-03-01

    Cell culture process development requires the screening of large numbers of cell lines and process conditions. The development of miniature bioreactor systems has increased the throughput of such studies; however, there are limitations with their use. One important constraint is the limited number of offline samples that can be taken compared to those taken for monitoring cultures in large-scale bioreactors. The small volume of miniature bioreactor cultures (15 mL) is incompatible with the large sample volume (600 µL) required for bioanalysers routinely used. Spectroscopy technologies may be used to resolve this limitation. The purpose of this study was to compare the use of NIR, Raman, and 2D-fluorescence to measure multiple analytes simultaneously in volumes suitable for daily monitoring of a miniature bioreactor system. A novel design-of-experiment approach is described that utilizes previously analyzed cell culture supernatant to assess metabolite concentrations under various conditions while providing optimal coverage of the desired design space. Multivariate data analysis techniques were used to develop predictive models. Model performance was compared to determine which technology is more suitable for this application. 2D-fluorescence could more accurately measure ammonium concentration (RMSECV 0.031 g L(-1) ) than Raman and NIR. Raman spectroscopy, however, was more robust at measuring lactate and glucose concentrations (RMSECV 1.11 and 0.92 g L(-1) , respectively) than the other two techniques. The findings suggest that Raman spectroscopy is more suited for this application than NIR and 2D-fluorescence. The implementation of Raman spectroscopy increases at-line measuring capabilities, enabling daily monitoring of key cell culture components within miniature bioreactor cultures. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:337-346, 2017. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on

  4. Condition Monitoring with WinTControl {sup trademark} in variable-speed wind power systems; Condition Monitoring mit WinTControl {sup trademark} an drehzahlveraenderlichen Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Becker; Dahlhaus, N. [Flender Service GmbH, Herne (Germany). Abt. Condition Monitoring

    2003-07-01

    In 2002, German insurance company had to pay the all-time high of about 40 million Euro for damage in wind power systems. In consequence, a servicing and maintenance clause is now included in the insurance contracts, and requirements on condition monitoring for wind power systems were defined. Condition monitoring is based on an analysis of vibrations of components that are subject to wear, i.e. gears, generators, toothing, roller bearings, rotors, and electric components. All of these have typical and significant vibration patterns which can be measured and compared in order to assess the status of a plant by high-sensitivity spectral analyses. The contribution presents the examples of reversible, constant-speed asynchronous generators with gears and of double-fed, variable-speed asynchronous generators with gears. (orig.) [German] Im Jahre 2002 haben die deutschen Versicherer fuer Schaeden an Windenergieanlagen (WEA) den Spitzenwert von rund 40 Mio. Euro bezahlt, was unter anderem dazu fuehrte, dass eine Wartungs- und Instandhaltungsklausel in die Vertraege aufgenommen und Anforderungen an ein geeignetes Condition Monitoring fuer Windenergieanlagen definiert wurden. Basis des Condition Monitoring sind 'Soll/Ist-Vergleiche' des Schwingungsverhaltens verschleissbehafteter Komponenten. Getriebe, Generatoren, Verzahnungen, Waelzlager, Rotoren und E-Technikkomponenten haben typische und signifikante Schwingungsbilder, welche bei Messung unter vergleichbaren Betriebsbedingungen eine einfache Beurteilung der Zustandveraenderung erlauben. Zustandsveraenderungen dieser Komponenten lassen sich ueber Spektralanalysen hochempfindlich verfolgen. Wie sich das Condition Monitoring an WEA dennoch realisieren laesst, wird nachfolgend an Triebstraengen mit polumschaltbaren, drehzahlstarren Asynchrongeneratoren mit Getrieben und an doppeltgespeisten, drehzahlveraenderlichen Asynchrongeneratoren mit Getrieben beschrieben. (orig.)

  5. 7 CFR 623.16 - Monitoring and enforcement of easement terms and conditions.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Monitoring and enforcement of easement terms and conditions. 623.16 Section 623.16 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE WATER RESOURCES EMERGENCY WETLANDS RESERVE PROGRAM § 623.16 Monitoring and...

  6. Application of the quantitative oil monitoring to analysing the operating condition of marine machinery

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the data of Fourier transform infra-red (FTIR) spectroscopy, spectrometric oilanalysis (SOA) and other routine methods, the experiment of oil monitoring for steering propellersis discussed. The experiment demonstrates the FTIR spectroscopy can rapidly and easily obtainthe results in laboratory analysis, and combine with spectrometer oil analysis, complementary in-formation is most effective to condition monitoring of marine machinery.

  7. Improving the monitoring of quantitative conditions of peacetime fuel stocks at pumping stations

    Directory of Open Access Journals (Sweden)

    Slaviša M. Ilić

    2011-04-01

    human resources. Optimization of quantitative monitoring of peacetime supplies of fuel at gas stations should aim at reducing the impact of the human factor, introducing automated quantitative monitoring of fuel condition with modern equipment for handling as well as applying technology for fast reading and dissemination of information and reports. Civilian pumping stations have been modernized gradually with new digital pump machines, systems for automated production and automated systems for measuring the fuel level in buried tanks. The objectives and criteria of the optimization of model monitoring In order to solve the problem of multi-criteria nature, the methods of operational research have been applied and the formalization of problem solving has been carried out. Models have been identified, criteria and subcriteria have been defined as well as respective criteria values, sub-criteria and weight coefficients for chosen variants in order to rank the alternatives - models. On the basis of the defined objectives and optimization approaches, the task of optimization to be solved is to choose one optimal model of monitoring the quantitative condition of peacetime stocks of fuels at gas stations, out of three variations or alternative models. Application of expert assessment and methods of analytical hierarchy process The problem was solved first 'manually', by using MS Excell, and after that by using the Expert Choice software package. The Expert Choice software package is based on the application of the method of analytical hierarchy process and combines the benefits that this method offers with the speed and visibility of computerized calculations and their result display. The purpose of the AHP method is to rank alternative decisions by their importance and to select the most acceptable alternative on the basis of a defined set of criteria and alternatives. The problem of determining the weight of criteria has been determined by applying the method of expert

  8. Operational-Condition-Independent Criteria Dedicated to Monitoring Wind Turbine Generators

    Directory of Open Access Journals (Sweden)

    Richard Court

    2013-01-01

    Full Text Available Condition monitoring is beneficial to the wind industry for both onshore and offshore plants. However, due to the variations in operational conditions, its potential has not been fully explored. There is a need to develop an operational-condition-independent condition monitoring technique, which has motivated the research presented here. In this paper, three operational-condition-independent criteria are developed. The criteria accomplish the condition monitoring by analyzing the wind turbine electrical signals in the time domain. Therefore, they are simple to calculate and ideal for online use. All proposed criteria were tested through both simulated and practical experiments. The experiments have shown that these criteria not only provide a solution for detecting both mechanical and electrical faults that occur in wind turbine generators, but provide a potential tool for diagnosing generator winding faults.

  9. Monitoring pasture damage in subarid conditions in south of Spain.

    Science.gov (United States)

    Díaz, Felix; Saa-Requejo, Antonio; Martín-Sotoca, Juan J.; Dalezios, Nicolas; Tarquis, Ana M.

    2016-04-01

    This work analyzes four areas in Murcia region (Spain) to study the application of the indexed pastures insurances in arid and subarid conditions. For this purpose four zones of 2,5 km have been selected, all of them close to meteorological stations, with records covering the period since 2001 to 2012 and with compound MODIS images of 500 m x 500 m from eight days intervals on that period. In addition to obtain historical series of the Normalized Difference Vegetation Index (NDVI), other indices (NDWI, NDDI and NDWU) have been computed. The results of this study show that NDWU provides additional information to that in the NDVI. In fact, according to our results, NDDI does not provide accurate information for the regions analyzed in this particular case study. In an attempt to relate precipitancy indices and drought situations in the four areas selected, we have showed that Standardized Precipitation Index (SPI) cannot be used accurately for drought intensity assessment. Then new indices have been formulated based on Markov chains: PI5mm and PI10mm.These indices can assess on isolated droughts which are missed by using indexed insurances. Nonetheless, it has also been observed that abnormal droppings in the NDWI index often coincide with drought lapses well established by indexed insurances. Acknowledgements First author acknowledges the Research Grant obtained from CEIGRAM in 2015

  10. Monitoring network-design influence on assessment of ecological condition in wadeable streams

    Science.gov (United States)

    We investigated outcomes of three monitoring networks for assessing ecological character and condition of wadeable streams in the Waikato region, New Zealand. Sites were selected 1) based on a professional judgment network, 2) within categories of stream and watershed characteris...

  11. Photovoltaic Array Condition Monitoring Based on Online Regression of Performance Model

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Kerekes, Tamas

    2013-01-01

    automatic supervision and condition monitoring of the PV system components, especially for small PV installations, where no specialized personnel is present at the site. This work proposes a PV array condition monitoring system based on a PV array performance model. The system is parameterized online, using...... regression modeling, from PV array production, plane-of-array irradiance, and module temperature measurements, acquired during an initial learning phase of the system. After the model has been parameterized automatically, the condition monitoring system enters the normal operation phase, where...... the performance model is used to predict the power output of the PV array. Utilizing the predicted and measured PV array output power values, the condition monitoring system is able to detect power losses above 5%, occurring in the PV array....

  12. Performance and perspectives of the diamond based Beam Condition Monitor for beam loss monitoring at CMS

    CERN Document Server

    AUTHOR|(CDS)2080862

    2015-01-01

    At CMS, a beam loss monitoring system is operated to protect the silicon detectors from high particle rates, arising from intense beam loss events. As detectors, poly-crystalline CVD diamond sensors are placed around the beam pipe at several locations inside CMS. In case of extremely high detector currents, the LHC beams are automatically extracted from the LHC rings.Diamond is the detector material of choice due to its radiation hardness. Predictions of the detector lifetime were made based on FLUKA monte-carlo simulations and irradiation test results from the RD42 collaboration, which attested no significant radiation damage over several years.During the LHC operational Run1 (2010 â?? 2013), the detector efficiencies were monitored. A signal decrease of about 50 times stronger than expectations was observed in the in-situ radiation environment. Electric field deformations due to charge carriers, trapped in radiation induced lattice defects, are responsible for this signal decrease. This so-called polarizat...

  13. Real-Time Beam Loss Monitor Display Using FPGA Technology

    CERN Document Server

    North, Matt R W

    2005-01-01

    This paper outlines the design of a Real-time Beam Loss Monitor Display for the ISIS Synchrotron based at Rutherford Appleton Laboratory (Oxon, UK). Beam loss is monitored using 39 argon filled ionisation chambers positioned around the synchrotron, the levels of which are sampled four times in each cycle. The new BLM display acquires the signals and displays four histograms, each relating to an individual sample period; the data acquisition and signal processing required to build the display fields are completed within each machine cycle (50 Hz). Attributes of the new system include setting limits for individual monitors; displaying over-limit detection, and freezing the display field when a beam trip has occurred. The design is based around a reconfigurable Field Programmable Gate Array, interfacing to a desktop monitor via the VGA standard. Results gained using simulated monitor signals have proven the system.

  14. Remote Patient Monitoring via Non-Invasive Digital Technologies: A Systematic Review

    Science.gov (United States)

    Tran, Melody; Angelaccio, Michele; Arcona, Steve

    2017-01-01

    Abstract Background: We conducted a systematic literature review to identify key trends associated with remote patient monitoring (RPM) via noninvasive digital technologies over the last decade. Materials and Methods: A search was conducted in EMBASE and Ovid MEDLINE. Citations were screened for relevance against predefined selection criteria based on the PICOTS (Population, Intervention, Comparator, Outcomes, Timeframe, and Study Design) format. We included studies published between January 1, 2005 and September 15, 2015 that used RPM via noninvasive digital technology (smartphones/personal digital assistants [PDAs], wearables, biosensors, computerized systems, or multiple components of the formerly mentioned) in evaluating health outcomes compared to standard of care or another technology. Studies were quality appraised according to Critical Appraisal Skills Programme. Results: Of 347 articles identified, 62 met the selection criteria. Most studies were randomized control trials with older adult populations, small sample sizes, and limited follow-up. There was a trend toward multicomponent interventions (n = 26), followed by smartphones/PDAs (n = 12), wearables (n = 11), biosensor devices (n = 7), and computerized systems (n = 6). Another key trend was the monitoring of chronic conditions, including respiratory (23%), weight management (17%), metabolic (18%), and cardiovascular diseases (16%). Although substantial diversity in health-related outcomes was noted, studies predominantly reported positive findings. Conclusions: This review will help decision makers develop a better understanding of the current landscape of peer-reviewed literature, demonstrating the utility of noninvasive RPM in various patient populations. Future research is needed to determine the effectiveness of RPM via noninvasive digital technologies in delivering patient healthcare benefits and the feasibility of large-scale implementation. PMID:27116181

  15. 77 FR 24228 - Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants

    Science.gov (United States)

    2012-04-23

    ...The U.S. Nuclear Regulatory Commission (NRC or the Commission) is issuing a new guide regulatory guide, (RG) 1.218, ``Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants.'' This guide describes techniques that the staff of the NRC considers acceptable for condition monitoring of electric cables for nuclear power plants. RG 1.218 is not intended to be prescriptive,......

  16. Technological Competitiveness of Ukraine under Conditions of a New Industrial Revolution and Development of Convergent Technologies

    Directory of Open Access Journals (Sweden)

    Matyushenko Igor Yu.

    2016-02-01

    Full Text Available The article considers the problem of increasing the technological competitiveness of Ukrainian enterprises under conditions of a new industrial revolution through the development and introduction of advanced converged technologies. The classification of industrial revolutions, namely, industrial, technological, information and Industry 4.0, is presented, and it has been determined that the key factor of the latter is cyber physical systems for introduction of the client-oriented “Internet of Things”. It has been justified that the formation of Industry 4.0 in developed countries will occur through advanced production technologies (APT, which main characteristics are technological substitution, automation, customization, localization and economic efficiency. It has been found that in 2020 the main priority APT will be: systems of production process control; multidimensional modeling of complex products; intelligent production systems and robotics; systems of creation and transformation (growing of material objects and 3D-printing; materials effective in creating perspective actuating devices (compositional and those that exhibit their properties in small-size structures. It has been proved that the recovery of Ukraine’s industry is not possible on the old industrial base, and the creation of a new industry based on APT of Industry 4.0 is possible in the following areas: ICT (primarily in the field of software development; new composite materials with specified properties; industrial nanobiotechnologies (biomedicine and pharmacy, new agricultural technologies; mathematical modeling for creation of intelligent production systems; space research and development (in particular, development of the first stages of heavy missiles. The necessity of elaborating state programs of competitiveness development on the basis of APT, foresight research oftechnology priorities, promoting high-tech exports in Ukraine has been substantiated.

  17. Condition monitoring of planetary gearbox by hardware implementation of artificial neural networks

    DEFF Research Database (Denmark)

    Dabrowski, Dariusz

    2016-01-01

    -stationary conditions and are exposed to extreme events. Also bucket-wheel excavators are equipped with high-power gearboxes that are exposed to shocks. Continuous monitoring of their condition is crucial in view of early failures, and to ensure safety of exploitation. Artificial neural networks allow for a quick...... environmental conditions. In this paper, a hardware implementation of an artificial neural network designed for condition monitoring of a planetary gearbox is presented. The implementation was done on a Field Programmable Gate Array (FPGA). It is characterized by much higher efficiency and stability than...

  18. The application of structural health monitoring system technology using FBG to the No. 2 Wuhan bridge over the Yangtze river

    Science.gov (United States)

    Liu, Shengchun; Jiang, Desheng

    2008-12-01

    Bridge engineering offer many unique opportunities for the use of advanced optical fiber sensing technology. In this paper, the state-of-the-art of bridge structural health monitoring system(SHMS) based on optical fiber sensing technology are reviewed and some disadvantages in present SHMS based on optical fiber sensing technology for existing long-span bridge are indicated. In order to overcome those disadvantages, some fiber Bragg grating (FBG) products developed by authors and corresponding industrialization enterprise are introduced. Focusing on an existing long-span cable-stayed bridge-Wuhan Yangtze No.2 Bridge, the operational condition of the multi-parameter bridge SHMS mainly based on FBG sensors is presented. Some initial monitoring results show that the whole performance of the SHMS FBGbased is reliable and measuring data are reasonable.

  19. Research on Key Techniques of Condition Monitoring and Fault Diagnosing Systems of Machine Groups

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-kai; LIAO Ming-fu; WANG Si-ji

    2005-01-01

    This paper describes the development of the condition monitoring and fault diagnosing system of a group of rotating machinery. The data management is performed by means of double redundant data bases stored simultaneously in both the analyzing server and monitoring client. In this way, high reliability of the storage of data is guaranteed. Condensation of trend data releases much space resource of the hard disk. Diagnosing strategies orientated to different typical faults of rotating machinery are developed and incorporated into the system. Experimental verification shows that the system is suitable and effective for condition monitoring and fault diagnosing for a rotating machine group.

  20. Short-term and long-term Vadose zone monitoring: Current technologies, development, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, Boris

    1999-05-01

    At Hanford, Savannah River, Oak Ridge, Idaho National Engineering and Environmental Laboratory (INEEL), and other DOE sites, field vadose zone observations have shown complex water seepage and mass transport behavior in a highly heterogeneous, thick vadose zone on a variety of scales. Recent investigation showed that severe contamination of soils and groundwater by organic contaminant and nuclear waste occurred because of water seepage and contaminant transport along localized, preferential, fast flow within the heterogeneous vadose zone. However, most of the existing characterization and monitoring methods are not able to locate these localized and persistent preferential pathways associated with specific heterogeneous geologic features, such as clastic dikes, caliche layers, or fractures. In addition, changes in the chemical composition of moving and indigenous solutes, particularly sodium concentration, redox conditions, biological transformation of organic materials, and high temperature, may significantly alter water, chemicals, and bio-transformation exchange between the zones of fast flow and the rest of the media. In this paper, using the data from Hanford and INEEL sites, we will (1) present evidence that central problems of the vadose zone investigations are associated with preferential, fast flow phenomena and accelerated migration of organic and radioactive elements, (2) identify gaps in current characterization and monitoring technologies, and (3) recommend actions for the development of advanced vadose zone characterization and monitoring methods using a combination of hydrologic, geochemical, and geophysical techniques.

  1. Application of Condition-Based Monitoring Techniques for Remote Monitoring of a Simulated Gas Centrifuge Enrichment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, David A [ORNL; Henkel, James J [ORNL; Whitaker, Michael [ORNL

    2012-01-01

    This paper presents research into the adaptation of monitoring techniques from maintainability and reliability (M&R) engineering for remote unattended monitoring of gas centrifuge enrichment plants (GCEPs) for international safeguards. Two categories of techniques are discussed: the sequential probability ratio test (SPRT) for diagnostic monitoring, and sequential Monte Carlo (SMC or, more commonly, particle filtering ) for prognostic monitoring. Development and testing of the application of condition-based monitoring (CBM) techniques was performed on the Oak Ridge Mock Feed and Withdrawal (F&W) facility as a proof of principle. CBM techniques have been extensively developed for M&R assessment of physical processes, such as manufacturing and power plants. These techniques are normally used to locate and diagnose the effects of mechanical degradation of equipment to aid in planning of maintenance and repair cycles. In a safeguards environment, however, the goal is not to identify mechanical deterioration, but to detect and diagnose (and potentially predict) attempts to circumvent normal, declared facility operations, such as through protracted diversion of enriched material. The CBM techniques are first explained from the traditional perspective of maintenance and reliability engineering. The adaptation of CBM techniques to inspector monitoring is then discussed, focusing on the unique challenges of decision-based effects rather than equipment degradation effects. These techniques are then applied to the Oak Ridge Mock F&W facility a water-based physical simulation of a material feed and withdrawal process used at enrichment plants that is used to develop and test online monitoring techniques for fully information-driven safeguards of GCEPs. Advantages and limitations of the CBM approach to online monitoring are discussed, as well as the potential challenges of adapting CBM concepts to safeguards applications.

  2. Investigation of Transmission Warming Technologies at Various Ambient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jehlik, Forrest; Iliev, Simeon; Wood, Eric; Gonder, Jeff

    2017-03-28

    This work details two approaches for evaluating transmission warming technology: experimental dynamometer testing and development of a simplified transmission efficiency model to quantify effects under varied real world ambient and driving conditions. Two vehicles were used for this investigation: a 2013 Ford Taurus and a 2011 Ford Fusion. The Taurus included a production transmission warming system and was tested over hot and cold ambient temperatures with the transmission warming system enabled and disabled. A robot driver was used to minimize driver variability and increase repeatability. Additionally the Fusion was tested cold and with the transmission pre-heated prior to completing the test cycles. These data were used to develop a simplified thermally responsive transmission model to estimate effects of transmission warming in real world conditions. For the Taurus, the fuel consumption variability within one standard deviation was shown to be under 0.5% for eight repeat Urban Dynamometer Driving Cycles (UDDS). These results were valid with the transmission warming system active or passive. Using the transmission warming system under 22 degrees C ambient temperature, fuel consumption reduction was shown to be 1.4%. For the Fusion, pre-warming the transmission reduced fuel consumption 2.5% for an urban drive cycle at -7 degrees C ambient temperature, with 1.5% of the 2.5% gain associated with the transmission, while consumption for the US06 test was shown to be reduced by 7% with 5.5% of the 7% gain associated with the transmission. It was found that engine warming due to conduction between the pre-heated transmission and the engine resulted in the remainder of the benefit. For +22 degrees C ambient tests, the pre-heated transmission was shown to reduce fuel consumption approximately 1% on an urban cycle, while no benefit was seen for the US06 cycle. The simplified modeling results showed gains in efficiency ranging from 0-1.5% depending on the ambient

  3. Aircraft Control Augmentation and Health Monitoring Using FADS Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I research proposal is aimed at demonstrating the feasibility of an innovative architecture comprising control augmentation and on-line health monitoring...

  4. Modern Techniques and Technologies Applied to Training and Performance Monitoring.

    Science.gov (United States)

    Sands, William A; Kavanaugh, Ashley A; Murray, Steven R; McNeal, Jeni R; Jemni, Monèm

    2016-12-05

    Athlete preparation and performance continues to increase in complexity and costs. Modern coaches are shifting from reliance on personal memory, experience, and opinion to evidence from collected training load data. Training load monitoring may hold vital information for developing systems of monitoring that follow the training process with such precision that both performance prediction and day-to-day management of training become an adjunct to preparation and performance. Time series data collection and analyses in sport are still in their infancy with considerable efforts being applied in "big-data" analytics and models of the appropriate variables to monitor and methods for doing so. Training monitoring has already garnered important applications, but lacks a theoretical framework from which to develop further. As such, we propose a framework involving the following: analyses of individuals, trend analyses, rules-based analysis, and statistical process control.

  5. Advanced Technologies for Acoustic Monitoring of Bird Populations

    Science.gov (United States)

    2009-04-01

    Grasshopper Sparrow Henslow’s Sparrow Detection and classification software for songs/calls of target species The Bioacoustics Research Program has...instruments and signal detection and classification software has the potential to lead to improved monitoring of bird populations on DoD lands and elsewhere...the area surveyed. These hardware and software tools can also enable passive acoustic monitoring of nocturnally migrating birds across large

  6. Monitoring for neuroprotection. New technologies for the new millennium

    Science.gov (United States)

    Andrews, R. J.

    2001-01-01

    Monitoring for neuroprotection, like surgery, has placed on emphasis on minimal or non-invasiveness. Monitoring of parameters that truly reflect the degree of injury to the nervous system is another goal. Thus, two themes for the coming decade in neuromonitoring will be: (1) less-invasive monitoring; and (2) parameters that more closely reflect the etiological factors in ischemic or other neuroinjury. In this paper, we review neuromonitoring techniques and devices that can be used readily in the operating room or intensive care unit setting. Those that require transport of the patient to a special facility (e.g., for computed tomography or magnetic resonance imaging/spectroscopy) and those that have been in standard practice for neuromonitoring (e.g., electrophysiological monitoring--EEG, evoked potentials) are not considered. The two techniques considered in detail are (1) continuous multiparameter local brain tissue monitoring with microprobes, and (2) non-invasive continuous local brain tissue oxygenation monitoring by near infrared spectroscopy. Both techniques have been cleared by the Food and Drug Administration (FDA) for clinical use. The rationale for their use, the nature of the devices, and clinical results to date are reviewed. It is expected that both techniques will gain wide acceptance during the coming decade; further advances in neuromonitoring that can be expected further into the twenty-first century are also discussed.

  7. Condition monitoring of distributed systems using two-stage Bayesian inference data fusion

    Science.gov (United States)

    Jaramillo, Víctor H.; Ottewill, James R.; Dudek, Rafał; Lepiarczyk, Dariusz; Pawlik, Paweł

    2017-03-01

    In industrial practice, condition monitoring is typically applied to critical machinery. A particular piece of machinery may have its own condition monitoring system that allows the health condition of said piece of equipment to be assessed independently of any connected assets. However, industrial machines are typically complex sets of components that continuously interact with one another. In some cases, dynamics resulting from the inception and development of a fault can propagate between individual components. For example, a fault in one component may lead to an increased vibration level in both the faulty component, as well as in connected healthy components. In such cases, a condition monitoring system focusing on a specific element in a connected set of components may either incorrectly indicate a fault, or conversely, a fault might be missed or masked due to the interaction of a piece of equipment with neighboring machines. In such cases, a more holistic condition monitoring approach that can not only account for such interactions, but utilize them to provide a more complete and definitive diagnostic picture of the health of the machinery is highly desirable. In this paper, a Two-Stage Bayesian Inference approach allowing data from separate condition monitoring systems to be combined is presented. Data from distributed condition monitoring systems are combined in two stages, the first data fusion occurring at a local, or component, level, and the second fusion combining data at a global level. Data obtained from an experimental rig consisting of an electric motor, two gearboxes, and a load, operating under a range of different fault conditions is used to illustrate the efficacy of the method at pinpointing the root cause of a problem. The obtained results suggest that the approach is adept at refining the diagnostic information obtained from each of the different machine components monitored, therefore improving the reliability of the health assessment of

  8. Condition Monitoring Using Computational Intelligence Methods Applications in Mechanical and Electrical Systems

    CERN Document Server

    Marwala, Tshilidzi

    2012-01-01

    Condition monitoring uses the observed operating characteristics of a machine or structure to diagnose trends in the signal being monitored and to predict the need for maintenance before a breakdown occurs. This reduces the risk, inherent in a fixed maintenance schedule, of performing maintenance needlessly early or of having a machine fail before maintenance is due either of which can be expensive with the latter also posing a risk of serious accident especially in systems like aeroengines in which a catastrophic failure would put lives at risk. The technique also measures responses from the whole of the system under observation so it can detect the effects of faults which might be hidden deep within a system, hidden from traditional methods of inspection. Condition Monitoring Using Computational Intelligence Methods promotes the various approaches gathered under the umbrella of computational intelligence to show how condition monitoring can be used to avoid equipment failures and lengthen its useful life, m...

  9. Wind turbine condition monitoring based on SCADA data using normal behavior models

    DEFF Research Database (Denmark)

    Schlechtingen, Meik; Santos, Ilmar; Achiche, Sofiane

    2013-01-01

    This paper proposes a system for wind turbine condition monitoring using Adaptive Neuro-Fuzzy Interference Systems (ANFIS). For this purpose: (1) ANFIS normal behavior models for common Supervisory Control And Data Acquisition (SCADA) data are developed in order to detect abnormal behavior....... The applicability of the set up ANFIS models for anomaly detection is proved by the achieved performance of the models. In combination with the FIS the prediction errors can provide information about the condition of the monitored components. In this paper the condition monitoring system is described. Part two...... the applicability of ANFIS models for monitoring wind turbine SCADA signals. The computational time needed for model training is compared to Neural Network (NN) models showing the strength of ANFIS in training speed. (2) For automation of fault diagnosis Fuzzy Interference Systems (FIS) are used to analyze...

  10. Life cycle management. Condition monitoring of wind power plants; Life-cycle-management. Zustandsueberwachung von Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, R. [cmc GmbH, Kiel (Germany)

    2013-06-01

    The author of the contribution under consideration reports on maintenance strategies and condition monitoring in the field of wind energy. Beside the components in the drive train of wind turbines under consideration, the condition monitoring of the hardware systems and their software is explained. A brief overview of the field of machinery diagnosis and an explanation of the transmission of the measured data follow. Additional sensors such as sensors for the rotor blade monitoring, oil particles counter or oil quality sensors are described. In the field of diagnostic certainty, special follow-up studies such as video endoscopy, analysis of oil or grease, filter testing and material testing are discussed. The information from these thematic fields is used in the life-cycle management database for operationally relevant evaluations and considerations of economy of condition monitoring systems.

  11. Experimental study on supporting technology of gob-side entry with different roof conditions

    Institute of Scientific and Technical Information of China (English)

    LUO Yong

    2012-01-01

    Aiming to effectively solve the problem of deep mining with safety and high efficiency,according to geological conditions,production and stress analysis in roadway surrounding rock,experimental studies on roadway supporting of workface 103 under three types of roof conditions with different supporting technologies and parameters were carried out based on the theory of supporting technology of gob-side entry.The results show the supporting of gob-side entry retaining is successful,and the deep surrounding rock is effectively controlled by field monitoring and drilling-hole photos.After stress in surrounding rock of roadways restores stable,the final roadway deformation of surrounding rock of haulage roadway and air-roadway are both about 300 mm; width of gob-side entry is 3.8-4.0 m and average height is 2.0-2.2 m; roadway section is above 8.0 m2,which solves the problems of gob-side entry retaining support strength and safe mining; necessary conditions of mining safety in workface 103 are met.

  12. A new thermographic NDT for condition monitoring of electrical components using ANN with confidence level analysis.

    Science.gov (United States)

    Huda, A S N; Taib, S; Ghazali, K H; Jadin, M S

    2014-05-01

    Infrared thermography technology is one of the most effective non-destructive testing techniques for predictive faults diagnosis of electrical components. Faults in electrical system show overheating of components which is a common indicator of poor connection, overloading, load imbalance or any defect. Thermographic inspection is employed for finding such heat related problems before eventual failure of the system. However, an automatic diagnostic system based on artificial neural network reduces operating time, human efforts and also increases the reliability of system. In the present study, statistical features and artificial neural network (ANN) with confidence level analysis are utilized for inspection of electrical components and their thermal conditions are classified into two classes namely normal and overheated. All the features extracted from images do not produce good performance. Features having low performance reduce the diagnostic performance. The study reveals the performance of each feature individually for selecting the suitable feature set. In order to find the individual feature performance, each feature of thermal image was used as input for neural network and the classification of condition types were used as output target. The multilayered perceptron network using Levenberg-Marquardt training algorithm was used as classifier. The performances were determined in terms of percentage of accuracy, specificity, sensitivity, false positive and false negative. After selecting the suitable features, the study introduces the intelligent diagnosis system using suitable features as inputs of neural network. Finally, confidence percentage and confidence level were used to find out the strength of the network outputs for condition monitoring. The experimental result shows that multilayered perceptron network produced 79.4% of testing accuracy with 43.60%, 12.60%, 21.40, 9.20% and 13.40% highest, high, moderate, low and lowest confidence level respectively.

  13. MONITORING TECHNOLOGY FOR EARLY DETECTION OF INTERNAL CORROSION FOR PIPELINE INTEGRITY

    Energy Technology Data Exchange (ETDEWEB)

    Glenn M. Light; Sang Y. Kim; Robert L. Spinks; Hegeon Kwun; Patrick C. Porter

    2003-09-01

    Transmission gas pipelines are an important part of energy-transportation infrastructure vital to the national economy. The prevention of failures and continued safe operation of these pipelines are therefore of national interest. These lines, mostly buried, are protected and maintained by protective coating and cathodic protection systems, supplemented by periodic inspection equipped with sensors for inspection. The primary method for inspection is ''smart pigging'' with an internal inspection device that traverses the pipeline. However, some transmission lines are however not suitable for ''pigging'' operation. Because inspection of these ''unpiggable'' lines requires excavation, it is cost-prohibitive, and the development of a methodology for cost-effectively assessing the structural integrity of ''unpiggable'' lines is needed. This report describes the laboratory and field evaluation of a technology called ''magnetostrictive sensor (MsS)'' for monitoring and early detection of internal corrosion in known susceptible sections of transmission pipelines. With the MsS technology, developed by Southwest Research Institute{reg_sign} (SwRI{reg_sign}), a pulse of a relatively low frequency (typically under 100-kHz) mechanical wave (called guided wave) is launched along the pipeline and signals reflected from defects or welds are detected at the launch location in the pulse-echo mode. This technology can quickly examine a long length of piping for defects, such as corrosion wastage and cracking in circumferential direction, from a single test location, and has been in commercial use for inspection of above-ground piping in refineries and chemical plants. The MsS technology is operated primarily in torsional guided waves using a probe consisting of a thin ferromagnetic strip (typically nickel) bonded to a pipe and a number of coil-turns (typically twenty or so turns) wound

  14. MONITORING TECHNOLOGY FOR EARLY DETECTION OF INTERNAL CORROSION FOR PIPELINE INTEGRITY

    Energy Technology Data Exchange (ETDEWEB)

    Glenn M. Light; Sang Y. Kim; Robert L. Spinks; Hegeon Kwun; Patrick C. Porter

    2003-09-01

    Transmission gas pipelines are an important part of energy-transportation infrastructure vital to the national economy. The prevention of failures and continued safe operation of these pipelines are therefore of national interest. These lines, mostly buried, are protected and maintained by protective coating and cathodic protection systems, supplemented by periodic inspection equipped with sensors for inspection. The primary method for inspection is ''smart pigging'' with an internal inspection device that traverses the pipeline. However, some transmission lines are however not suitable for ''pigging'' operation. Because inspection of these ''unpiggable'' lines requires excavation, it is cost-prohibitive, and the development of a methodology for cost-effectively assessing the structural integrity of ''unpiggable'' lines is needed. This report describes the laboratory and field evaluation of a technology called ''magnetostrictive sensor (MsS)'' for monitoring and early detection of internal corrosion in known susceptible sections of transmission pipelines. With the MsS technology, developed by Southwest Research Institute{reg_sign} (SwRI{reg_sign}), a pulse of a relatively low frequency (typically under 100-kHz) mechanical wave (called guided wave) is launched along the pipeline and signals reflected from defects or welds are detected at the launch location in the pulse-echo mode. This technology can quickly examine a long length of piping for defects, such as corrosion wastage and cracking in circumferential direction, from a single test location, and has been in commercial use for inspection of above-ground piping in refineries and chemical plants. The MsS technology is operated primarily in torsional guided waves using a probe consisting of a thin ferromagnetic strip (typically nickel) bonded to a pipe and a number of coil-turns (typically twenty or so turns) wound

  15. Actualities and Development of Heavy-Duty CNC Machine Tool Thermal Error Monitoring Technology

    Science.gov (United States)

    Zhou, Zu-De; Gui, Lin; Tan, Yue-Gang; Liu, Ming-Yao; Liu, Yi; Li, Rui-Ya

    2017-09-01

    Thermal error monitoring technology is the key technological support to solve the thermal error problem of heavy-duty CNC (computer numerical control) machine tools. Currently, there are many review literatures introducing the thermal error research of CNC machine tools, but those mainly focus on the thermal issues in small and medium-sized CNC machine tools and seldom introduce thermal error monitoring technologies. This paper gives an overview of the research on the thermal error of CNC machine tools and emphasizes the study of thermal error of the heavy-duty CNC machine tool in three areas. These areas are the causes of thermal error of heavy-duty CNC machine tool and the issues with the temperature monitoring technology and thermal deformation monitoring technology. A new optical measurement technology called the "fiber Bragg grating (FBG) distributed sensing technology" for heavy-duty CNC machine tools is introduced in detail. This technology forms an intelligent sensing and monitoring system for heavy-duty CNC machine tools. This paper fills in the blank of this kind of review articles to guide the development of this industry field and opens up new areas of research on the heavy-duty CNC machine tool thermal error.

  16. Application research on hydraulic coke cutting monitoring system based on optical fiber sensing technology

    Science.gov (United States)

    Zhong, Dong; Tong, Xinglin

    2014-06-01

    With the development of the optical fiber sensing technology, the acoustic emission sensor has become one of the focal research topics. On the basis of studying the traditional hydraulic coke cutting monitoring system, the optical fiber acoustic emission sensor has been applied in the hydraulic coke cutting monitoring system for the first time, researching the monitoring signal of the optical fiber acoustic emission sensor in the system. The actual test results show that using the acoustic emission sensor in the hydraulic coke cutting monitoring system can get the real-time and accurate hydraulic coke cutting state and the effective realization of hydraulic coke cutting automatic monitoring in the Wuhan Branch of Sinopec.

  17. Technology monitoring in the CIEMAT; La vigilancia tecnologica en el CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Martinez, M.; Cuesta, M. J.; Crespi, S. N.; Cabrera, J. A.

    2008-07-01

    The CIEMAT Foresight and Technology Monitoring Unit focuses its activities on obtaining strategic information on future developments in the area of energy and environment that can be used for decision making by the centers management. In addition, it provides services to CIEMAT researchers and other external customers. In May 2007, the Asociacion Espanola de Normalizacion y Certificacion AENOR delivered to the CIEMAT the first Technology Monitoring System certificate granted in Spain as per standard UNE 166006:2006. This article describes the Units experience in the implementation process of the Technology Monitoring System and provides several examples of the way in which the Unit graphically represents the information analyzed in its Technology Monitoring Reports. (Author)

  18. The use of condition monitoring information for maintenance planning and decision-making

    Energy Technology Data Exchange (ETDEWEB)

    Laakso, K.; Rosqvist, T. [VTT Industrial Systems (Finland); Paulsen, J.L. [Risoe National Lab., Roskilde (Denmark)

    2002-12-01

    A survey is presented outlining the use of condition monitoring information in three Nordic nuclear power plants. The questions of the survey relate to the role of condition monitoring in strategic, as well as operative, maintenance planning and decision-making. The survey indicates that condition monitoring is increasingly implemented at nuclear power plants, but very selectively and in a rather slow pace for predictive maintenance. A combined strategy of condition based maintenance and predetermined preventive maintenance is applied for important equipment such as main circulation pumps and steam turbines. A realistic aim is to reduce the number of costly or error prone maintenance and disassembling inspection activities by condition monitoring given that the approach enables a good diagnosis and prediction. Systematic follow-up and analysis of such condition monitoring information followed by a case-specific planning and decision making of timely and rightly directed maintenance actions can justify an extension of the intervals of a number of predetermined inspection, maintenance or periodic testing tasks. (au)

  19. The review of dynamic monitoring technology for crop growth

    Science.gov (United States)

    Zhang, Hong-wei; Chen, Huai-liang; Zou, Chun-hui; Yu, Wei-dong

    2010-10-01

    In this paper, crop growth monitoring methods are described elaborately. The crop growth models, Netherlands-Wageningen model system, the United States-GOSSYM model and CERES models, Australia APSIM model and CCSODS model system in China, are introduced here more focus on the theories of mechanism, applications, etc. The methods and application of remote sensing monitoring methods, which based on leaf area index (LAI) and biomass were proposed by different scholars at home and abroad, are highly stressed in the paper. The monitoring methods of remote sensing coupling with crop growth models are talked out at large, including the method of "forced law" which using remote sensing retrieval state parameters as the crop growth model parameters input, and then to enhance the dynamic simulation accuracy of crop growth model and the method of "assimilation of Law" which by reducing the gap difference between the value of remote sensing retrieval and the simulated values of crop growth model and thus to estimate the initial value or parameter values to increasing the simulation accuracy. At last, the developing trend of monitoring methods are proposed based on the advantages and shortcomings in previous studies, it is assured that the combination of remote sensing with moderate resolution data of FY-3A, MODIS, etc., crop growth model, "3S" system and observation in situ are the main methods in refinement of dynamic monitoring and quantitative assessment techniques for crop growth in future.

  20. Condition Monitoring

    DEFF Research Database (Denmark)

    Avenas, Yvan; Dupont, Laurent; Baker, Nick

    2015-01-01

    Power conversion systems are dependent on the performance and reliability of static converters. However, they are subject to frequent functional and environmental strains, which can induce failures. The anticipation of these failures is difficult but important so the operation of a system can...... be halted before a breakdown occurs. In the case of photovoltaic (PV) power plants, the system can be simplified into two distinct blocks: the solar panels/modules and the power inverter. A breakdown in either of these blocks can cause significant downtime in the system. Nevertheless, multiple solar module...

  1. [A portable impedance meter for monitoring liquid compartments of human body under space flight conditions].

    Science.gov (United States)

    Noskov, V B; Nikolaev, D V; Tuĭkin, S A; Kozharinov, V I; Grachev, V A

    2007-01-01

    A portable two-frequency tetrapolar impedance meter was developed to study the state of liquid compartments of human body under zero-gravity conditions. The portable impedance meter makes it possible to monitor the hydration state of human body under conditions of long-term space flight on board international space station.

  2. Research progress and prospects on machinery monitoring under varying working condition

    Institute of Scientific and Technical Information of China (English)

    Lin Jing; Zhao Ming

    2013-01-01

    A general review is given about the research progress of the rotating machinery condition monitoring under varying working condition.The major typical methods for analyzing are reviewed,including their progress,deficiencies and capabilities.Some prospects are given finally.

  3. Rocky Flats Environmental Technology Site Ecological Monitoring Program 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-31

    The Ecological Monitoring Program (ECMP) was established at the Rocky Flats Environmental Technology Site (Site) in September 1992. At that time, EcMP staff developed a Program Plan that was peer-reviewed by scientists from western universities before submittal to DOE RFFO in January 1993. The intent of the program is to measure several quantitative variables at different ecological scales in order to characterize the Rocky Flats ecosystem. This information is necessary to document ecological conditions at the Site in impacted and nonimpacted areas to determine if Site practices have had ecological impacts, either positive or negative. This information can be used by managers interested in future use scenarios and CERCLA activities. Others interested in impact analysis may also find the information useful. In addition, these measurements are entered into a database which will serve as a long-term information repository that will document long-term trends and potential future changes to the Site, both natural and anthropogenic.

  4. Stress Monitoring for Anchor Rods System in Subway Tunnel Using FBG Technology

    Directory of Open Access Journals (Sweden)

    Xiaolin Weng

    2015-01-01

    Full Text Available This paper presents a model test, used on the tunnels on Xi’an Metro Line 2, as the prototype for evaluating the reinforcing effect of the anchor rod in tunnel construction in loess areas. An independently designed fiber Bragg grating (FBG sensor was used to monitor the seven strain conditions of the rock bolts during the construction. The result shows that the axial stress of the rock bolt changes after the excavation and increases steadily with the growing pressure in the wall rock. Results additionally show that the anchor rods at the tunnel vault are subjected to a compressive stress that remains relatively constant after the primary and the secondary lining, while those at the spandrel and the corner of the tunnel are subjected to increased tensile stress. This paper demonstrates the feasibility and the superiority of FBG technology for tunnel model tests.

  5. Turbine rotor disk health monitoring assessment based on sensor technology and spin tests data.

    Science.gov (United States)

    Abdul-Aziz, Ali; Woike, Mark

    2013-01-01

    The paper focuses on presenting data obtained from spin test experiments of a turbine engine like rotor disk and assessing their correlation to the development of a structural health monitoring and fault detection system. The data were obtained under various operating conditions such as the rotor disk being artificially induced with and without a notch and rotated at a rotational speed of up to 10,000 rpm under balanced and imbalanced state. The data collected included blade tip clearance, blade tip timing measurements, and shaft displacements. Two different sensor technologies were employed in the testing: microwave and capacitive sensors, respectively. The experimental tests were conducted at the NASA Glenn Research Center's Rotordynamics Laboratory using a high precision spin system. Disk flaw observations and related assessments from the collected data for both sensors are reported and discussed.

  6. Upcoming Role of Condition Monitoring in Risk-Based Asset Management for the Power Sector

    NARCIS (Netherlands)

    Mehairjan, R.P.Y.; Zhuang, Q.; Djairam, D.; Smit, J.J.

    2014-01-01

    The electrical power sector is stimulated to evolve under the pressures of the energy transition, the deregulation of electricity markets and the introduction of intelligent grids. In general, engineers believe that technologies such as monitoring, control and diagnostic devices, can realize this ev

  7. Upcoming Role of Condition Monitoring in Risk-Based Asset Management for the Power Sector

    NARCIS (Netherlands)

    Mehairjan, R.P.Y.; Zhuang, Q.; Djairam, D.; Smit, J.J.

    2014-01-01

    The electrical power sector is stimulated to evolve under the pressures of the energy transition, the deregulation of electricity markets and the introduction of intelligent grids. In general, engineers believe that technologies such as monitoring, control and diagnostic devices, can realize this ev

  8. Unraveling fabrication and calibration of wearable gas monitor for use under free-living conditions.

    Science.gov (United States)

    Yue Deng; Cheng Chen; Tsow, Francis; Xiaojun Xian; Forzani, Erica

    2016-08-01

    Volatile organic compounds (VOC) are organic chemicals that have high vapor pressure at regular conditions. Some VOC could be dangerous to human health, therefore it is important to determine real-time indoor and outdoor personal exposures to VOC. To achieve this goal, our group has developed a wearable gas monitor with a complete sensor fabrication and calibration protocol for free-living conditions. Correction factors for calibrating the sensors, including sensitivity, aging effect, and temperature effect are implemented into a Quick Response Code (QR code), so that the pre-calibrated quartz tuning fork (QTF) sensor can be used with the wearable monitor under free-living conditions.

  9. Condition Monitoring of Machinery in Non-Stationary Operations : Proceedings of the Second International Conference "Condition Monitoring of Machinery in Non-Stationnary Operations"

    CERN Document Server

    Bartelmus, Walter; Chaari, Fakher; Zimroz, Radoslaw; Haddar, Mohamed

    2012-01-01

    Condition monitoring of machines in non-stationary operations (CMMNO) can be seen as the major challenge for research in the field of machinery diagnostics. Condition monitoring of machines in non-stationary operations is the title of the presented book and the title of the Conference held in Hammamet - Tunisia March 26 – 28, 2012. It is the second conference under this title, first took place in Wroclaw - Poland , March 2011. The subject CMMNO comes directly from industry needs and observation of real objects. Most monitored and diagnosed objects used in industry works in non-stationary operations condition. The non-stationary operations come from fulfillment of machinery tasks, for which they are designed for. All machinery used in different kind of mines, transport systems, vehicles like: cars, buses etc, helicopters, ships and battleships and so on work in non-stationary operations. The papers included in the book are shaped by the organizing board of the conference and authors of the papers. The papers...

  10. Coal mining GPS subsidence monitoring technology and its application

    Institute of Scientific and Technical Information of China (English)

    Wang Jian; Peng Xiangguo; Xu Chang hui

    2011-01-01

    We proved theoretically that geodetic height,measured with Global Positioning System (GPS),can be applied directly to monitor coal mine subsidence.Based on a Support Vector Machine (SVM) model,we built a regional geoid model with a Gaussian Radial Basis Function (RBF) and the technical scheme for GPS coal mine subsidence monitoring is presented to provide subsidence information for updating the regional Digital Elevation Model (DEM).The theory proposed was applied to monitor mining subsidence in an Inner Mongolia coal mine in China.The scheme established an accurate GPS reference network and a comprehensive leveling conjunction provided the normal height of all GPS control points.According to the case study,the SVM model to establish geoid-model is better than a polynomial fit or a Genetic Algorithm based Back Propagation (GA-BP) neural network.GPS-RTK measurements of coal mine subsidence information can be quickly acquired for updating the DEM.

  11. A Rough Set-Based Effective State Identification Method of Multisensor Tool Condition Monitoring System

    Directory of Open Access Journals (Sweden)

    Nan Xie

    2014-06-01

    Full Text Available Multisensor improves the accuracy of machine tool condition monitoring system, which provides the critical feedback information to the manufacture process controller. Multisensor monitoring system needs to collect abundant data to employ attribute extraction, election, reduction, and classification to form the decision knowledge. A machine tool condition monitoring system has been built and the method of tool condition decision knowledge discovery is also presented. Multiple sensors include vibration, force, acoustic emission, and main spindle current. The novel approach engages rough theory as a knowledge extraction tool to work on the data that are obtained from both multisensor and machining parameters and then extracts a set of minimal state identification rules encoding the preference pattern of decision making by domain experts. By means of the knowledge acquired, the tool conditions are identified. A case study is presented to illustrate that the approach produces effective and minimal rules and provides satisfactory accuracy.

  12. Non-stationary Condition Monitoring of large diesel engines with the AEWATT toolbox

    DEFF Research Database (Denmark)

    Pontoppidan, Niels Henrik; Larsen, Jan; Sigurdsson, Sigurdur

    2005-01-01

    We are developing a specialized toolbox for non-stationary condition monitoring of large 2-stroke diesel engines based on acoustic emission measurements. The main contribution of this toolbox has so far been the utilization of adaptive linear models such as Principal and Independent Component...... on the angular location of residual energy. Also, the framework can be extended, for instance by post modeling of repeated faults. Furthermore, we have investigated the problem of non-stationary condition monitoring when operational changes induce angular timing changes in the observed signals. Our contribution......, the inversion of those angular timing changes called “event alignment”, has allowed for condition monitoring across operation load settings, successfully enabling a single model to be used with realistic data under varying operational conditions-...

  13. Use of fuzzy logic for condition monitoring of motor driven machineries

    Science.gov (United States)

    Janier, Josefina Barnachea; Zaim Zaharia, M. Fazrin

    2012-06-01

    An intelligent system called Fuzzy Logic is one of the current technologies that allow a description of the desired system behavior using common language. It generalizes the yes-no Boolean logic into numerical value of 1 and 0 but also permits the in between values. This paper presents the use of Fuzzy Logic to determine the unusual increase of vibrations of an induction motor called vibration analysis. Sudden increase of vibrations could be a good indicator of faulty condition of the motor. Based on the vibration characteristics of the motor, a Fuzzy Inference System (FIS) was created. The system classified the motor of the gas distribution pump as `acceptable' of the vibration ranges from 1.8mm/s to 4.5mm/s or `monitor closely' of the vibration ranges from 4.5mm/s to 7.1mm/s respectively. The system enabled an early detection of faults which is very important in maintenance management.

  14. Machine and lubricant condition monitoring for extended equipment lifetimes and predictive maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Lukas, M.; Anderson, D.P. [Spectro Incorporated, Littleton, Massachusetts (United States)

    1997-12-31

    Predictive maintenance has gained wide acceptance as a cost cutting strategy in modern industry. Condition monitoring by lubricant analysis is one of the basic tools of a predictive maintenance program along with vibration monitoring, performance monitoring and thermography. In today`s modern power generation, manufacturing, refinery, transportation, mining, and military operations, the cost of equipment maintenance, service, and lubricants are ever increasing. Parts, labor, equipment downtime and lubricant prices and disposal costs are a primary concern in a well run maintenance management program. Machine condition monitoring based on oil analysis has become a prerequisite in most maintenance programs. Few operations can afford not to implement a program if they wish to remain competitive, and in some cases, profitable. This presentation describes a comprehensive Machine Condition Monitoring Program based on oil analysis. Actual operational condition monitoring programs will be used to review basic components and analytical requirements. Case histories will be cited as examples of cost savings, reduced equipment downtime and increased efficiencies of maintenance programs through a well managed oil analysis program. (orig.)

  15. Monitoring Key Parameters in Bioprocesses Using Near-Infrared Technology

    Directory of Open Access Journals (Sweden)

    Elena Tamburini

    2014-10-01

    Full Text Available Near-infrared spectroscopy (NIRS is known to be a rapid and non-destructive technique for process monitoring. Bioprocesses are usually complex, from both the chemical (ill-defined medium composition and physical (multiphase matrix aspects, which poses an additional challenge to the development of robust calibrations. We investigated the use of NIRS for on-line and in-line monitoring of cell, substrate and product concentrations, during aerobic and anaerobic bacterial fermentations, in different fermentation strategies. Calibration models were built up, then validated and used for the automated control of fermentation processes. The capability of NIR in-line to discriminate among differently shaped bacteria was tested.

  16. Distributed Computing and Monitoring Technologies for Older Patients

    DEFF Research Database (Denmark)

    Klonovs, Juris; Haque, Mohammad Ahsanul; Krüger, Volker

    , telemonitoring, ambient intelligence, ambient assisted living, gerontechnology, and aging-in-place technology. The book discusses relevant experimental studies, highlighting the application of sensor fusion, signal processing and machine learning techniques. Finally, the text discusses future challenges...

  17. Technology transfer potential of an automated water monitoring system. [market research

    Science.gov (United States)

    Jamieson, W. M.; Hillman, M. E. D.; Eischen, M. A.; Stilwell, J. M.

    1976-01-01

    The nature and characteristics of the potential economic need (markets) for a highly integrated water quality monitoring system were investigated. The technological, institutional and marketing factors that would influence the transfer and adoption of an automated system were studied for application to public and private water supply, public and private wastewater treatment and environmental monitoring of rivers and lakes.

  18. Research on the surface subsidence monitoring technology based on fiber Bragg grating sensing

    Science.gov (United States)

    Wang, Jinyu; Jiang, Long; Sun, Zengrong; Hu, Binxin; Zhang, Faxiang; Song, Guangdong; Liu, Tongyu; Qi, Junfeng; Zhang, Longping

    2017-03-01

    In order to monitor the process of surface subsidence caused by mining in real time, we reported two types of fiber Bragg grating (FBG) based sensors. The principles of the FBG-based displacement sensor and the FBG-based micro-seismic sensor were described. The surface subsidence monitoring system based on the FBG sensing technology was designed. Some factual application of using these FBG-based sensors for subsidence monitoring in iron mines was presented.

  19. A controlled experiment for water front monitoring using GPR technology

    NARCIS (Netherlands)

    Miorali, M.; Slob, E.C.; Arts, R.J.

    2010-01-01

    We use a stepped frequency continuous wave (SFCW) radar and an impulse radar to monitor a water flood experiment in a sand box. The SFCW system operates in the bandwidth from 800 MHz to 2.8 GHz. The impulse radar system is bi-static and works with a central frequency of 1 GHz. The sand box is a mete

  20. Tablet Technology to Monitor Physical Education IEP Goals and Benchmarks

    Science.gov (United States)

    Lavay, Barry; Sakai, Joyce; Ortiz, Cris; Roth, Kristi

    2015-01-01

    The Individual with Disabilities Education Act (IDEA) mandates that all children who are eligible for special education services receive an individualized education program (IEP). Adapted physical education (APE) professionals who teach physical education to children with disabilities are challenged with how to best collect and monitor student…

  1. A controlled experiment for water front monitoring using GPR technology

    NARCIS (Netherlands)

    Miorali, M.; Slob, E.C.; Arts, R.J.

    2010-01-01

    We use a stepped frequency continuous wave (SFCW) radar and an impulse radar to monitor a water flood experiment in a sand box. The SFCW system operates in the bandwidth from 800 MHz to 2.8 GHz. The impulse radar system is bi-static and works with a central frequency of 1 GHz. The sand box is a

  2. Arms Control and nonproliferation technologies: Technology options and associated measures for monitoring a Comprehensive Test Ban, Second quarter

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    1994-01-01

    This newsletter contains reprinted papers discussing technology options and associated measures for monitoring a Comprehensive Test Ban Treaty (CTBT). These papers were presented to the Conference on Disarmament (CD) in May and June 1994. An interagency Verification Monitoring Task Force developed the papers. The task force included participants from the Arms Control and Disarmament Agency, the Department of Defense, the Department of Energy, the Intelligence Community, the Department of Interior, and the Department of State. The purpose of this edition of Arms Control and Nonproliferation Technologies is to share these papers with the broad base of stakeholders in a CTBT and to facilitate future technology discussions. The papers in the first group discuss possible technology options for monitoring a CTBT in all environments (underground, underwater, atmosphere, and space). These technologies, along with on-site inspections, would facilitate CTBT monitoring by treaty participants. The papers in the second group present possible associated measures, e.g., information exchanges and transparency measures, that would build confidence among states participating in a CTBT.

  3. Lubrication Oil Condition Monitoring and Remaining Useful Life Prediction With Particle Filtering

    Directory of Open Access Journals (Sweden)

    Yongzhi Qu

    2013-01-01

    Full Text Available In order to reduce the costs of wind energy, it is necessary to improve the wind turbine availability and reduce the operational and maintenance costs. The reliability and availability of a functioning wind turbine depend largely on the protective properties of the lubrication oil for its drive train subassemblies such as gearbox and means for lubrication oil condition monitoring and degradation detection. The wind industry currently uses lubrication oil analysis for detecting gearbox and bearing wear but cannot detect the functional failures of the lubrication oils. The main purpose of lubrication oil condition monitoring and degradation detection is to determine whether the oils have deteriorated to such a degree that they no longer fulfill their functions. This paper describes a research on developing online lubrication oil health condition monitoring and remaining useful life prediction with particle filtering technique using commercially available online sensors. The paper first presents a survey on current state-of-the-art online lubrication oil condition monitoring solutions and their characteristics along with the classification and evaluation of each technique. It is then followed by an investigation on wind turbine gearbox lubrication oil health condition monitoring and degradation detection using online viscosity and dielectric constant sensors. In particular, the lubricant performance evaluation and remaining useful life prediction of degraded lubrication oil with viscosity and dielectric constant data using particle filtering are presented. A simulation case study is provided to demonstrate the effectiveness of the developed technique.

  4. New and Emerging Technologies for Real-Time Air and Surface Beryllium Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, B.E. Jr.; Churnetski, E.L.; Cooke, L.E.; Reed, J.J.; Howell, M.L.; Smith, V.D.

    2001-09-01

    In this study, five emerging technologies were identified for real-time monitoring of airborne beryllium: Microwave-Induced Plasma Spectroscopy (MIPS), Aerosol Beam-Focused Laser-Induced Plasma Spectroscopy (ABFLIPS), Laser-Induced Breakdown Spectroscopy (LIBS), Surfaced-Enhanced Raman Scattering (SERS) Spectroscopy, and Micro-Calorimetric Spectroscopy (CalSpec). Desired features of real-time air beryllium monitoring instrumentation were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies as well as their unique demonstrated capability to provide real-time monitoring of similar materials. However, best available technologies were considered, regardless of their ability to comply with the desired features. None of the five technologies have the capability to measure the particle size of airborne beryllium. Although reducing the total concentration of airborne beryllium is important, current literature suggests that reducing or eliminating the concentration of respirable beryllium is critical for worker health protection. Eight emerging technologies were identified for surface monitoring of beryllium. CalSpec, MIPS, SERS, LIBS, Laser Ablation, Absorptive Stripping Voltametry (ASV), Modified Inductively Coupled Plasma (ICP) Spectroscopy, and Gamma BeAST. Desired features of real-time surface beryllium monitoring were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies. However, the best available technologies were considered regardless of their ability to comply with the desired features.

  5. International Committee for Monitoring Assisted Reproductive Technologies world report: Assisted Reproductive Technology 2008, 2009 and 2010.

    Science.gov (United States)

    Dyer, S; Chambers, G M; de Mouzon, J; Nygren, K G; Zegers-Hochschild, F; Mansour, R; Ishihara, O; Banker, M; Adamson, G D

    2016-07-01

    What were utilization, outcomes and practices in assisted reproductive technology (ART) globally in 2008, 2009 and 2010? Global utilization and effectiveness remained relatively constant despite marked variations among countries, while the rate of single and frozen embryo transfers (FETs) increased with a concomitant slight reduction in multiple birth rates. ART is widely practised in all regions of the world. Monitoring utilization, an approximation of availability and access, as well as effectiveness and safety is an important component of universal access to reproductive health. This is a retrospective, cross-sectional survey on utilization, effectiveness and safety of ART procedures performed globally from 2008 to 2010. Between 58 and 61 countries submitted data from a total of nearly 2500 ART clinics each year. Aggregate country data were processed and analyzed based on forms and methods developed by the International Committee for Monitoring Assisted Reproductive Technologies (ICMART). Results are presented at country, regional and global level. For the years 2008, 2009 and 2010, >4 461 309 ART cycles were initiated, resulting in an estimated 1 144 858 babies born. The number of aspirations increased by 6.4% between 2008 and 2010, while FET cycles increased by 27.6%. Globally, ART utilization remained relatively constant at 436 cycles/million in 2008 and 474 cycles/million population in 2010, but with a wide country range of 8-4775 cycles/million population. ICSI remained constant at around 66% of non-donor aspiration cycles. The IVF/ICSI combined delivery rate (DR) per fresh aspiration was 19.8% in 2008; 19.7% in 2009 and 20.0% in 2010, with corresponding DRs for FET of 18.8, 19.7 and 20.7%. In fresh non-donor cycles, single embryo transfer increased from 25.7% in 2008 to 30.0% in 2010, while the average number of embryos transferred fell from 2.1 to 1.9, again with wide regional variation. The rates of twin deliveries following fresh non-donor transfers

  6. [Conditions for introduction and financing of new technologies].

    Science.gov (United States)

    Rutten, F F; Grijseels, E W

    1999-11-06

    Introduction and application of new technologies in the Dutch health care system will be less straightforward in the future than they were in the past. The pressure to contain health care expenditure has increased, also because of European agreements about adequate financing of collective spending. This will make initiators and producers of new technologies more critical towards technologies currently in development and urge them to specifically introduce technologies with a relatively favourable cost effectiveness profile. Whether new technologies will be used to a large extent will increasingly depend on the parties in health care at the regional and practice levels, who will assume a more important role in resource allocation in health care. On the other hand, they will be made more accountable for their decisions and will have to demonstrate their contribution to efficiency in health care.

  7. The Method and Key Technology of Dynamic RS-GIS Environment Monitoring

    Science.gov (United States)

    Chen, Jianping; Xiang, Jie; Tarolli, Paolo; Lai, Zili

    2016-04-01

    Demographic growth, socio-economic development and urbanization have resulted in excessive exploitation and exerted increasing pressure on limited resources and the fragile ecological environment in China. There is an urgent need for theory and technology to achieve the comprehensive evaluation of environment. Remote sensing is one of the most important technology to monitor and evaluate environment. This study summed up dynamic RS (Remote Sensing)-GIS (Geographic Information System) environment monitoring theory, and established a dynamic monitoring system, adopting comprehensive methods of multi-source, multi-scale and multi-temporal remote sensing data acquisition. A software system is developed based on RS-GIS analysis method to support the whole dynamic monitoring and evaluation theory. The main work and results obtained are as follows: 1)Summarized the evaluation theory of dynamic RS-GIS environment monitoring, using remote sensing technology as the main method to monitor environment; 2) established an advanced space-air-ground digital terrain data acquisition and processing technology (advanced satellite constellations, airborne and terrestrial laser scanner, low-cost Structure from Motion (SfM), photogrammetry, Unmanned Aerial Vehicle (UAV) and ground camera surveys); 3) Deeply study the application of quantitative digital terrain analysis in the assessment of environment, which successfully position geological disaster information and automatically extracted information; 4) Developed the RESEE software to support the whole dynamic monitoring and evaluation theory based on 4D-GIS; 5) A demonstration study of the dynamic monitoring environment is carried out in Beijing Miyun Iron Mine. Results show that the space-air-ground integrated and dynamic RS-GIS environment monitoring method and key technology can realize the positioning and quantitative monitoring the environment problem, and realize the risk assessment of the geological hazard.

  8. An AES Study of the Room Temperature Surface Conditioning of Technological Metal Surfaces by Electron Irradiation

    CERN Document Server

    Scheuerlein, C; Taborelli, M; Brown, A; Baker, M A

    2002-01-01

    The modifications to technological copper and niobium surfaces induced by 2.5 keV electron irradiation have been investigated in the context of the conditioning process occurring in particle accelerator ultra high vacuum systems. Changes in the elemental surface composition have been found using Scanning Auger Microscopy (SAM) by monitoring the carbon, oxygen and metal Auger peak intensities as a function of electron irradiation in the dose range 10-6 to 10-2 C mm-2. The surface analysis results are compared with electron dose dependent secondary electron and electron stimulated desorption yield measurements. Initially the electron irradiation causes a surface cleaning through electron stimulated desorption, in particular of hydrogen. During this period both the electron stimulated desorption and secondary electron yield decrease as a function of electron dose. When the electron dose exceeds 10-4 C mm-2 electron stimulated desorption yields are reduced by several orders of magnitude and the electron beam indu...

  9. An investigation of the orthogonal outputs from an on-rotor MEMS accelerometer for reciprocating compressor condition monitoring

    Science.gov (United States)

    Feng, G.; Hu, N.; Mones, Z.; Gu, F.; Ball, A. D.

    2016-08-01

    With rapid development in electronics and microelectromechanical systems (MEMS) technology, it becomes possible and attractive to monitor rotor dynamics by directly installing MEMS accelerometers on rotors. This paper studies the mathematical modelling of the orthogonal outputs from an on-rotor MEMS accelerometer and proposes a method to eliminate the gravitational acceleration projected on the measurement axes. This is achieved by shifting the output in the normal direction by π / 2 using a Hilbert transform and then combining it with the output of the tangential direction. With further compensation of the combined signal in the frequency domain, the tangential acceleration of the rotor is reconstructed to a high degree of accuracy. Experimental results show that the crankshaft tangential acceleration of a reciprocating compressor, obtained by the proposed method, can discriminate clearly between different discharge pressures and hence can allow common leakage faults to be detected, located and diagnosed for online condition monitoring purposes.

  10. Geo-Spatial Technologies for Carbon Sequestration Monitoring and Management

    Directory of Open Access Journals (Sweden)

    V. Jeyanny

    2011-01-01

    Full Text Available Problem statement: Globally, the quantification of Carbon Sequestration (CS potential of various ecosystems is a challenge. There is an urgent need for technologies that can quantify CS potential cost-efficiently in a repeated and organized manner. Approach: Remote Sensing (RS and Geographic Information System (GIS have great potential in current estimation, future prediction and management of carbon sequestration potential in terrestrial ecosystems. This review discusses the current utilization of RS and GIS technologies in CS management in various sectors. Results: Deployment of RS and GIS for CS sequestration improves accuracy, reduces costs, increases productivity, and provides current observations from a regional scale. Conclusion: This review demonstrates the synergistic role of RS and GIS technologies in improving CS management.

  11. On-line internal corrosion monitoring and data management for remote pipelines: a technology update

    Energy Technology Data Exchange (ETDEWEB)

    Wold, Kjell; Stoen, Roar; Jenssen, Hallgeir [Roxar Flow Measurement AS, Stavanger (Norway); Carvalho, Anna Maria [Roxar do Brasil Ltda., Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Internal corrosion monitoring of remote pipelines can be costly and demanding on resources. Online and non-intrusive monitoring directly on the pipe wall can improve the quality of measurements, make installation more convenient and allow more efficient communication of data. The purpose of this paper is to describe a non-intrusive technology, and show examples on field installations of the system. Furthermore, the non-intrusive technology data can be stored, interpreted and combined with conventional (intrusive) system information, in order to get a full picture of internal corrosion profile, corrosion rate and trends regarding the pipeline being monitored. (author)

  12. Development of ship structure health monitoring system based on IOT technology

    Science.gov (United States)

    Yang, Sujun; Shi, Lei; Chen, Demin; Dong, Yuqing; Hu, Zhenyi

    2017-06-01

    It is very important to monitor the ship structure, because ships are affected by all kinds of wind wave and current environment factor. At the same time, internet of things (IOT) technology plays more and more important role of in the development of industrial process. In the paper, real-time online monitoring of the ship can be realized by means of IOT technology. Ship stress, vibration and dynamic parameters are measured. Meanwhile, data is transmitted to remote monitoring system through intelligent data gateway. Timely remote support can be realized for dangerous stage of ship. Safe navigation of ships is guaranteed through application of the system.

  13. Application of 3S Technology in Dynamic Monitoring of Capital Farmland

    Institute of Scientific and Technical Information of China (English)

    Xiaoyan; WANG; Guoye; REN

    2013-01-01

    Firstly,this paper introduces current situations of protection of capital farmland. According to current situations,it analyzes significance in protecting capital farmland and significance and functions of application of 3S technology in dynamic monitoring of capital farmland. With the aid of examples,it discusses functions of remote sensing and GIS in dynamic monitoring of capital farmland. It is believed that 3S technology not only can provide accurate parcel data of capital farmland changes for reviewing land change survey,but also can provide data for monitoring development situations of capital farmland,as well as provide basic current information for decision-making department.

  14. Health of students in modern environmental conditions and innovative technologies.

    Directory of Open Access Journals (Sweden)

    Losik T. N.

    2011-08-01

    Full Text Available It is shown the row of the phenomena which negatively influence not only on a health man but also on his professional capacity: detraining of an organism through the lack of motive activity, tense emotional state of man in the process of his everyday work, negative influencing of environment and innovative technologies. The analysis of publications which examine influence of environment and innovative technologies on the state of health of man is presented. The system of organism is certain, feel like negative influence of environment and innovative technologies. It is set that an environment is indissolubly related to the man, which is the active object of nature.

  15. Fast Beam Conditions Monitor BCM1F for the CMS Experiment

    CERN Document Server

    Bell, A; Hall-Wilton, R; Lange, W; Lohmann, W; Macpherson, A; Ohlerich, M; Rodriguez, N; Ryjov, V; Schmidt, R S; Stone, R L

    2010-01-01

    The CMS Beam Conditions and Radiation Monitoring System, BRM, will support beam tuning, protect the CMS detector from adverse beam conditions, and measure the accumulated dose close to or inside all sub-detectors. It is composed of different sub-systems measuring either the particle flux near the beam pipe with time resolution between nano- and microseconds or the integrated dose over longer time intervals. This paper presents the Fast Beam Conditions Monitor, BCM1F, which is designed for fast flux monitoring measuring both beam halo and collision products. BCM1F is located inside the CMS pixel detector volume close to the beam-pipe. It uses sCVD diamond sensors and radiation hard front-end electronics, along with an analog optical readout of the signals. The commissioning of the system and its successful operation during the first be ams of the LHC are described.

  16. Wind turbine condition monitoring based on SCADA data using normal behavior models

    DEFF Research Database (Denmark)

    Schlechtingen, Meik; Santos, Ilmar

    2014-01-01

    This paper is part two of a two part series. The originality of part one was the proposal of a novelty approach for wind turbine supervisory control and data acquisition (SCADA) data mining for condition monitoring purposes. The novelty concerned the usage of adaptive neuro-fuzzy interference......) proposed the prediction errors provide information about the condition of the monitored components.Part two presents application examples illustrating the efficiency of the proposed method. The work is based on continuously measured wind turbine SCADA data from 18 modern type pitch regulated wind turbines...... of the 2 MW class covering a period of 35 months. Several real life faults and issues in this data are analyzed and evaluated by the condition monitoring system (CMS) and the results presented. It is shown that SCADA data contain crucial information for wind turbine operators worth extracting. Using full...

  17. Fast beam conditions monitor BCM1F for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bell, A. [CERN, Geneva (Switzerland); Geneva Univ. (Switzerland); Castro, E. [DESY Zeuthen (Germany); Hall-Wilton, R. [CERN, Geneva (Switzerland); Wisconsin Univ., Madison, WI (US)] (and others)

    2009-10-15

    The CMS Beam Conditions and Radiation Monitoring System, BRM, will support beam tuning, protect the CMS detector from adverse beam conditions, and measure the accumulated dose close to or inside all sub-detectors. It is composed of different sub-systems measuring either the particle flux near the beam pipe with time resolution between nano- and microseconds or the integrated dose over longer time intervals. This paper presents the Fast Beam Conditions Monitor, BCM1F, which is designed for fast flux monitoring measuring both beam halo and collision products. BCM1F is located inside the CMS pixel detector volume close to the beam-pipe. It uses sCVD diamond sensors and radiation hard front-end electronics, along with an analog optical readout of the signals. The commissioning of the system and its successful operation during the first beams of the LHC are described. (orig.)

  18. Innovations in Environmental Monitoring Using Mobile Phone Technology – A Review

    Directory of Open Access Journals (Sweden)

    Matt Aitkenhead

    2014-04-01

    Full Text Available In recent years, the use of mobile phones and tablets for personal communication has increased dramatically, with over 1 billion smartphones out of a total of 5 billion mobile phones worldwide. The infrastructure and technology underlying these devices has improved to a level where it is now possible to integrate sensor technology directly and use them to acquire new data. Given the available resources and the number of technical challenges that have already been overcome, it would seem a natural progression to use mobile communication technology for field-based environmental monitoring. In this work, we review existing technology for acquiring, processing and reporting on environmental data in the field. The objective is to demonstrate whether or not it is possible to use off-the-shelf technology for environmental monitoring. We show several levels at which this challenge is being approached, and discuss examples of technology that have been produced.

  19. Monitoring Artificial Pancreas Trials Through Agent-based Technologies

    Science.gov (United States)

    Scarpellini, Stefania; Di Palma, Federico; Toffanin, Chiara; Del Favero, Simone; Magni, Lalo; Bellazzi, Riccardo

    2014-01-01

    The increase in the availability and reliability of network connections lets envision systems supporting a continuous remote monitoring of clinical parameters useful either for overseeing chronic diseases or for following clinical trials involving outpatients. We report here the results achieved by a telemedicine infrastructure that has been linked to an artificial pancreas platform and used during a trial of the AP@home project, funded by the European Union. The telemedicine infrastructure is based on a multiagent paradigm and is able to deliver to the clinic any information concerning the patient status and the operation of the artificial pancreas. A web application has also been developed, so that the clinic staff and the researchers involved in the design of the blood glucose control algorithms are able to follow the ongoing experiments. Albeit the duration of the experiments in the trial discussed in the article was limited to only 2 days, the system proved to be successful for monitoring patients, in particular overnight when the patients are sleeping. Based on that outcome we can conclude that the infrastructure is suitable for the purpose of accomplishing an intelligent monitoring of an artificial pancreas either during longer trials or whenever that system will be used as a routine treatment. PMID:24876570

  20. Conditional cooperation and costly monitoring explain success in forest commons management.

    Science.gov (United States)

    Rustagi, Devesh; Engel, Stefanie; Kosfeld, Michael

    2010-11-12

    Recent evidence suggests that prosocial behaviors like conditional cooperation and costly norm enforcement can stabilize large-scale cooperation for commons management. However, field evidence on the extent to which variation in these behaviors among actual commons users accounts for natural commons outcomes is altogether missing. Here, we combine experimental measures of conditional cooperation and survey measures on costly monitoring among 49 forest user groups in Ethiopia with measures of natural forest commons outcomes to show that (i) groups vary in conditional cooperator share, (ii) groups with larger conditional cooperator share are more successful in forest commons management, and (iii) costly monitoring is a key instrument with which conditional cooperators enforce cooperation. Our findings are consistent with models of gene-culture coevolution on human cooperation and provide external validity to laboratory experiments on social dilemmas.

  1. Demonstration of innovative monitoring technologies at the Savannah River Integrated Demonstration Site

    Energy Technology Data Exchange (ETDEWEB)

    Rossabi, J. [Westinghouse Savannah River Co., Aiken, SC (United States); Jenkins, R.A.; Wise, M.B. [Oak Ridge National Lab., TN (United States)] [and others

    1993-12-31

    The Department of Energy`s Office of Technology Development initiated an Integrated Demonstration Program at the Savannah River Site in 1989. The objective of this program is to develop, demonstrate, and evaluate innovative technologies that can improve present-day environmental restoration methods. The Integrated Demonstration Program at SRS is entitled ``Cleanup of Organics in Soils and Groundwater at Non-Arid Sites.`` New technologies in the areas of drilling, characterization, monitoring, and remediation are being demonstrated and evaluated for their technical performance and cost effectiveness in comparison with baseline technologies. Present site characterization and monitoring methods are costly, time-consuming, overly invasive, and often imprecise. Better technologies are required to accurately describe the subsurface geophysical and geochemical features of a site and the nature and extent of contamination. More efficient, nonintrusive characterization and monitoring techniques are necessary for understanding and predicting subsurface transport. More reliable procedures are also needed for interpreting monitoring and characterization data. Site characterization and monitoring are key elements in preventing, identifying, and restoring contaminated sites. The remediation of a site cannot be determined without characterization data, and monitoring may be required for 30 years after site closure.

  2. Technology Mediated Information Sharing (Monitor Sharing) in Primary Care Encounters

    Science.gov (United States)

    Asan, Onur

    2013-01-01

    The aim of this dissertation study was to identify and describe the use of electronic health records (EHRs) for information sharing between patients and clinicians in primary-care encounters and to understand work system factors influencing information sharing. Ultimately, this will promote better design of EHR technologies and effective training…

  3. A Wireless Physiological Signal Monitoring System with Integrated Bluetooth and WiFi Technologies.

    Science.gov (United States)

    Yu, Sung-Nien; Cheng, Jen-Chieh

    2005-01-01

    This paper proposes a wireless patient monitoring system which integrates Bluetooth and WiFi wireless technologies. A wireless portable multi-parameter device was designated to acquire physiological signals and transmit them to a local server via Bluetooth wireless technology. Four kinds of monitor units were designed to communicate via the WiFi wireless technology, including a local monitor unit, a control center, mobile devices (personal digital assistant; PDA), and a web page. The use of various monitor units is intending to meet different medical requirements for different medical personnel. This system was demonstrated to promote the mobility and flexibility for both the patients and the medical personnel, which further improves the quality of health care.

  4. The Ministry of Industry and Information Technology published “Access Condition for Magnesium Industry”

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>On March 14, the Ministry of Industry and Information Technology formally published "Access Condition for Magnesium Industry", which put forward access restriction in aspects of scale layout, technological equipment, product quality, resource and energy consumption,

  5. A time-frequency analysis approach for condition monitoring of a wind turbine gearbox under varying load conditions

    Science.gov (United States)

    Antoniadou, I.; Manson, G.; Staszewski, W. J.; Barszcz, T.; Worden, K.

    2015-12-01

    This paper deals with the condition monitoring of wind turbine gearboxes under varying operating conditions. Generally, gearbox systems include nonlinearities so a simplified nonlinear gear model is developed, on which the time-frequency analysis method proposed is first applied for the easiest understanding of the challenges faced. The effect of varying loads is examined in the simulations and later on in real wind turbine gearbox experimental data. The Empirical Mode Decomposition (EMD) method is used to decompose the vibration signals into meaningful signal components associated with specific frequency bands of the signal. The mode mixing problem of the EMD is examined in the simulation part and the results in that part of the paper suggest that further research might be of interest in condition monitoring terms. For the amplitude-frequency demodulation of the signal components produced, the Hilbert Transform (HT) is used as a standard method. In addition, the Teager-Kaiser energy operator (TKEO), combined with an energy separation algorithm, is a recent alternative method, the performance of which is tested in the paper too. The results show that the TKEO approach is a promising alternative to the HT, since it can improve the estimation of the instantaneous spectral characteristics of the vibration data under certain conditions.

  6. A hybrid fiber-optic sensor system for condition monitoring of large scale wind turbine blades

    Science.gov (United States)

    Kim, Dae-gil; Kim, Hyunjin; Sampath, Umesh; Song, Minho

    2015-07-01

    A hybrid fiber-optic sensor system which combines fiber Bragg grating (FBG) sensors and a Michelson interferometer is suggested for condition monitoring uses of large scale wind turbine blades. The system uses single broadband light source to address both sensors, which simplifies the optical setup and enhances the cost-effectiveness of condition monitoring system. An athermal-packaged FBG is used to supply quasi-coherent light for the Michelson interferometer demodulation. For the feasibility test, different profiles of test strain, temperature and vibration have been applied to test structures, and successfully reconstructed with the proposed sensor system.

  7. Artificial Neural Network and Rough Set for HV Bushings Condition Monitoring

    CERN Document Server

    Mpanza, LJ

    2011-01-01

    Most transformer failures are attributed to bushings failures. Hence it is necessary to monitor the condition of bushings. In this paper three methods are developed to monitor the condition of oil filled bushing. Multi-layer perceptron (MLP), Radial basis function (RBF) and Rough Set (RS) models are developed and combined through majority voting to form a committee. The MLP performs better that the RBF and the RS is terms of classification accuracy. The RBF is the fasted to train. The committee performs better than the individual models. The diversity of models is measured to evaluate their similarity when used in the committee.

  8. Performance Reliability Prediction of Complex System Based on the Condition Monitoring Information

    Directory of Open Access Journals (Sweden)

    Hongxing Wang

    2013-01-01

    Full Text Available Complex system performance reliability prediction is one of the means to understand complex systems reliability level, make maintenance decision, and guarantee the safety of operation. By the use of complex system condition monitoring information and condition monitoring information based on support vector machine, the paper aims to provide an evaluation of the degradation of complex system performance. With degradation assessment results as input variables, the prediction model of reliability is established in Winer random process. Taking the aircraft engine as an example, the effectiveness of the proposed method is verified in the paper.

  9. Artificial Neural Network Algorithm for Condition Monitoring of DC-link Capacitors Based on Capacitance Estimation

    DEFF Research Database (Denmark)

    Soliman, Hammam Abdelaal Hammam; Wang, Huai; Gadalla, Brwene Salah Abdelkarim

    2015-01-01

    In power electronic converters, reliability of DC-link capacitors is one of the critical issues. The estimation of their health status as an application of condition monitoring have been an attractive subject for industrial field and hence for the academic research filed as well. More reliable...... solutions are required to be adopted by the industry applications in which usage of extra hardware, increased cost, and low estimation accuracy are the main challenges. Therefore, development of new condition monitoring methods based on software solutions could be the new era that covers the aforementioned...

  10. Privacy versus autonomy: a tradeoff model for smart home monitoring technologies.

    Science.gov (United States)

    Townsend, Daphne; Knoefel, Frank; Goubran, Rafik

    2011-01-01

    Smart homes are proposed as a new location for the delivery of healthcare services. They provide healthcare monitoring and communication services, by using integrated sensor network technologies. We validate a hypothesis regarding older adults' adoption of home monitoring technologies by conducting a literature review of articles studying older adults' attitudes and perceptions of sensor technologies. Using current literature to support the hypothesis, this paper applies the tradeoff model to decisions about sensor acceptance. Older adults are willing to trade privacy (by accepting a monitoring technology), for autonomy. As the information captured by the sensor becomes more intrusive and the infringement on privacy increases, sensors are accepted if the loss in privacy is traded for autonomy. Even video cameras, the most intrusive sensor type were accepted in exchange for the height of autonomy which is to remain in the home.

  11. Sensor technologies and non-destructive monitoring for dampness diagnosis in cultural heritage

    Science.gov (United States)

    Inmaculada Martínez Garrido, María; Gómez Heras, Miguel; Fort González, Rafael; Valles Iriso, Javier; José Varas Muriel, María

    2016-04-01

    This work presents a case study based on results of monitoring campaigns developed in San Juan Bautista church in Talamanca de Jarama (Madrid, Spain). This Church was built in the twelfth-thirteenth centuries (Romanesque style) with dolostone ashlars. It was reconstructed in the sixteenth century (Renaissance style) with rubble stone and mortar, brick and an earth fill. Different sections on walls and floors (north and south oriented) have been selected based on a preliminary study of moisture distribution on stone and masonry wall. The behavior of different materials has been studied according to the influence of indoor (microclimatic conditions) and outdoor conditions (weather conditions) and taking into account constructive facts. Several sensing technologies as dataloggers and wireless sensor networks (WSN) together to other non invasive techniques as thermal imaging, portable moisture meter, electrical resistivity tomography (ERT) and ground-penetrating radar (GPR) have been conducted. By means of this study it has been possible to establish an analysis methodology to determine the dampness origin in each case. Conclusions related to the each technique according to its effectiveness in the detection of decay problems have been established. Research funded by Geomateriales 2(S2013/MIT-2914) and Deterioration of stone materials in the interior of historic buildings as a result induced variation of its microclimate (CGL2011-27902) projects. The cooperation received from the Complutense University of Madrid's Research Group Alteración y Conservación de los Materiales Pétreos del Patrimonio (ref. 921349), the Laboratory Network in Science and Technology for Heritage Conservation (RedLabPat, CEI Moncloa) and the Diocese of Alcalá is gratefully acknowledged.

  12. Development of elements of the condition monitoring system of turbo generators of thermal power stations and nuclear power plants

    Science.gov (United States)

    Kumenko, A. I.; Kostyukov, V. N.; Kuz'minykh, N. Yu.; Boichenko, S. N.; Timin, A. V.

    2017-08-01

    The rationale is given for the improvement of the regulatory framework for the use of shaft sensors for the in-service condition monitoring of turbo generators and the development of control systems of shaft surfacing and misalignments of supports. A modern concept and a set of methods are proposed for the condition monitoring of the "shaft line-thrust bearing oil film-turbo generator supports" system elements based on the domestic COMPACS® technology. The system raw data are design, technology, installation, and operating parameters of the turbo generator as well as measured parameters of the absolute vibration of supports and mechanical quantities, relative displacements and relative vibration of the rotor teeth in accordance with GOST R 55263-2012. The precalculated shaft line assembly line in the cold state, the nominal parameters of rotor teeth positions on the dynamic equilibrium curve, the static and dynamic characteristics of the oil film of thrust bearings, and the shaft line stiffness matrix of unit support displacements have been introduced into the system. Using the COMPACS-T system, it is planned to measure positions and oscillations of rotor teeth, to count corresponding static and dynamic characteristics of the oil film, and the static and dynamic loads in the supports in real time. Using the obtained data, the system must determine the misalignments of supports and corrective alignments of rotors of coupling halves, voltages in rotor teeth, welds, and bolts of the coupling halves, and provide automatic conclusion if condition monitoring parameters correspond to standard values. A part of the methodological support for the proposed system is presented, including methods for determining static reactions of supports under load, the method for determining shaft line stiffness matrices, and the method for solving the inverse problem, i.e., the determination of the misalignments of the supports by measurements of rotor teeth relative positions in bearing

  13. In-situ stress measurements and stress change monitoring to monitor overburden caving behaviour and hydraulic fracture pre-conditioning

    Institute of Scientific and Technical Information of China (English)

    Puller Jesse W.; Mills Ken W.; Jeffrey Rob G.; Walker Rick J.

    2016-01-01

    A coal mine in New South Wales is longwall mining 300 m wide panels at a depth of 160–180 m directly below a 16–20 m thick conglomerate strata. As part of a strategy to use hydraulic fracturing to manage potential windblast and periodic caving hazards associated with these conglomerate strata, the in-situ stresses in the conglomerate were measured using ANZI strain cells and the overcoring method of stress relief. Changes in stress associated with abutment loading and placement of hydraulic fractures were also measured using ANZI strain cells installed from the surface and from underground. Overcore stress mea-surements have indicated that the vertical stress is the lowest principal stress so that hydraulic fractures placed ahead of mining form horizontally and so provide effective pre-conditioning to promote caving of the conglomerate strata. Monitoring of stress changes in the overburden strata during longwall retreat was undertaken at two different locations at the mine. The monitoring indicated stress changes were evi-dent 150 m ahead of the longwall face and abutment loading reached a maximum increase of about 7.5 MPa. The stresses ahead of mining change gradually with distance to the approaching longwall and in a direction consistent with the horizontal in-situ stresses. There was no evidence in the stress change monitoring results to indicate significant cyclical forward abutment loading ahead of the face. The for-ward abutment load determined from the stress change monitoring is consistent with the weight of over-burden strata overhanging the goaf indicated by subsidence monitoring.

  14. [Research on the inner wall condition monitoring method of ring forgings based on infrared spectra].

    Science.gov (United States)

    Fu, Xian-bin; Liu, Bin; Wei, Bin; Zhang, Yu-cun; Liu, Zhao-lun

    2015-01-01

    In order to grasp the inner wall condition of ring forgings, an inner wall condition monitoring method based on infrared spectra for ring forgings is proposed in the present paper. Firstly, using infrared spectroscopy the forgings temperature measurement system was built based on the three-level FP-cavity LCTF. The two single radiation spectra from the forgings' surface were got using the three-level FP-cavity LCTF. And the temperature measuring of the surface forgings was achieved according to the infrared double-color temperature measuring principle. The measuring accuracy can be greatly improved by this temperature measurement method. Secondly, on the basis of the Laplace heat conduction differential equation the inner wall condition monitoring model was established by the method of separating variables. The inner wall condition monitoring of ring forgings was realized via combining the temperature data and the forgings own parameter information. Finally, this method is feasible according to the simulation experiment. The inner wall condition monitoring method can provide the theoretical basis for the normal operating of the ring forgings.

  15. A Wavelet Bicoherence-Based Quadratic Nonlinearity Feature for Translational Axis Condition Monitoring

    Directory of Open Access Journals (Sweden)

    Yong Li

    2014-01-01

    Full Text Available The translational axis is one of the most important subsystems in modern machine tools, as its degradation may result in the loss of the product qualification and lower the control precision. Condition-based maintenance (CBM has been considered as one of the advanced maintenance schemes to achieve effective, reliable and cost-effective operation of machine systems, however, current vibration-based maintenance schemes cannot be employed directly in the translational axis system, due to its complex structure and the inefficiency of commonly used condition monitoring features. In this paper, a wavelet bicoherence-based quadratic nonlinearity feature is proposed for translational axis condition monitoring by using the torque signature of the drive servomotor. Firstly, the quadratic nonlinearity of the servomotor torque signature is discussed, and then, a biphase randomization wavelet bicoherence is introduced for its quadratic nonlinear detection. On this basis, a quadratic nonlinearity feature is proposed for condition monitoring of the translational axis. The properties of the proposed quadratic nonlinearity feature are investigated by simulations. Subsequently, this feature is applied to the real-world servomotor torque data collected from the X-axis on a high precision vertical machining centre. All the results show that the performance of the proposed feature is much better than that of original condition monitoring features.

  16. A wavelet bicoherence-based quadratic nonlinearity feature for translational axis condition monitoring.

    Science.gov (United States)

    Li, Yong; Wang, Xiufeng; Lin, Jing; Shi, Shengyu

    2014-01-27

    The translational axis is one of the most important subsystems in modern machine tools, as its degradation may result in the loss of the product qualification and lower the control precision. Condition-based maintenance (CBM) has been considered as one of the advanced maintenance schemes to achieve effective, reliable and cost-effective operation of machine systems, however, current vibration-based maintenance schemes cannot be employed directly in the translational axis system, due to its complex structure and the inefficiency of commonly used condition monitoring features. In this paper, a wavelet bicoherence-based quadratic nonlinearity feature is proposed for translational axis condition monitoring by using the torque signature of the drive servomotor. Firstly, the quadratic nonlinearity of the servomotor torque signature is discussed, and then, a biphase randomization wavelet bicoherence is introduced for its quadratic nonlinear detection. On this basis, a quadratic nonlinearity feature is proposed for condition monitoring of the translational axis. The properties of the proposed quadratic nonlinearity feature are investigated by simulations. Subsequently, this feature is applied to the real-world servomotor torque data collected from the X-axis on a high precision vertical machining centre. All the results show that the performance of the proposed feature is much better than that of original condition monitoring features.

  17. An assessment of nondestructive testing technologies for chemical weapons monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, T.T.

    1993-05-01

    The US Department of Energy (DOE), with the US Army Chemical Research, Development and Engineering Center (CRDEC) under the sponsorship of the Defense Nuclear Agency (DNA), completed testing of Nondestructive Evaluation (NDE) technology on live agent systems. The tests were conducted at Tooele Army Depot during August 1992. The Nondestructive Evaluation systems were tested for potential use in verifying chemical treaty requirements. Five technologies, two neutron and three acoustic, were developed at DOE laboratories. Two systems from the United Kingdom (one neutron and one acoustic) were also included in the field trials. All systems tested showed the ability to distinguish among the VX, GB, and Mustard. Three of the systems (two acoustic and one neutron) were used by On-Site Inspection Agency (OSIA) personnel.

  18. Tsunamis: Detection, monitoring, and early-warning technologies

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.

    detection from Open Ocean regions, islands, and coastal waters, and the significant progress made in this area over the years have been addressed. Additionally, a brief description of some theoretically sound physical principles, which have been confirmed... through observations, has been provided because of their potential to be possibly implemented in future for remote detection of tsunamis in the open ocean. The technological advancement made over the years in the field of sea-level measurements which...

  19. Controller integrated condition monitoring systems (CMS) for wind energy converters in on- and offshore environment; Steuerungsintegrierte Condition Monitoring Systeme (CMS) fuer Windenergieanlagen im On- und Offshoreumfeld

    Energy Technology Data Exchange (ETDEWEB)

    Hoering, Bernd [8.2 Monitoring GmbH, Hamburg (Germany)

    2013-11-01

    Twelve years of application experience with vibration-based Condition Monitoring System (CMS) on wind energy show success. However, CMS is not considered a core competence. Currently the market of CMS suppliers is radically changing. In future, operators with different CMS in use or wind turbine manufacturers, who use different control systems with integrated CMS, can serve their different CMS hardware with a uniform software. The software was specially designed for the Chinese market and is already in operation in the on- and offshore environment. (orig.)

  20. Impedance based sensor technology to monitor stiffness of biological structures

    Science.gov (United States)

    Annamdas, Venu Gopal Madhav; Annamdas, Kiran Kishore Kumar

    2010-04-01

    In countries like USA or Japan it is not so uncommon to have wooden structures in their homes. However, metals and its alloys are the most widely used engineering materials in construction of any military or civil structure. Revisiting natural disasters like the recent Haiti earthquake (12 Jan 2010) or Katrina (cyclones) reminds the necessity to have better housing infrastructure with robust monitoring systems. Traditionally wood is accepted as excellent rehabilitation material, after any disaster. The recycling materials extracted from in-organic, biodegradable wastes, also can be used for rehabilitation. The key issue which dampens the life of these rehabilitated structure including green materials (like wood) is unnecessary deposits (nails, screws, bolts etc)/damages due to insect attack. Thus, a few health monitoring techniques have emerged in the recent past. Electromechanical Impedance technique is one such technique, which is simple but robust to detect variations in the integrity of structures. In this paper, impedance based piezoceramic sensor was bonded on wooden sample, which was used to study changes due to metallic (steel nails) deposits at various locations. A study of weight deposits on aluminum plate was used for comparisons.

  1. Monitoring of Wind Turbine Gearbox Condition through Oil and Wear Debris Analysis: A Full-Scale Testing Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Shuangwen

    2016-10-01

    Despite the wind industry's dramatic development during the past decade, it is still challenged by premature turbine subsystem/component failures, especially for turbines rated above 1 MW. Because a crane is needed for each replacement, gearboxes have been a focal point for improvement in reliability and availability. Condition monitoring (CM) is a technique that can help improve these factors, leading to reduced turbine operation and maintenance costs and, subsequently, lower cost of energy for wind power. Although technical benefits of CM for the wind industry are normally recognized, there is a lack of published information on the advantages and limitations of each CM technique confirmed by objective data from full-scale tests. This article presents first-hand oil and wear debris analysis results obtained through tests that were based on full-scale wind turbine gearboxes rated at 750 kW. The tests were conducted at the 2.5-MW dynamometer test facility at the National Wind Technology Center at the National Renewable Energy Laboratory. The gearboxes were tested in three conditions: run-in, healthy, and damaged. The investigated CM techniques include real-time oil condition and wear debris monitoring, both inline and online sensors, and offline oil sample and wear debris analysis, both onsite and offsite laboratories. The reported results and observations help increase wind industry awareness of the benefits and limitations of oil and debris analysis technologies and highlight the challenges in these technologies and other tribological fields for the Society of Tribologists and Lubrication Engineers and other organizations to help address, leading to extended gearbox service life.

  2. Development of wall conditioning and impurity monitoring systems in Versatile Experiment Spherical Torus (VEST)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.Y., E-mail: brbbebbero@snu.ac.kr [Seoul National University, Seoul (Korea, Republic of); Yang, J.; Kim, Y.G.; Yang, S.M.; Kim, Y.S.; Lee, K.H. [Seoul National University, Seoul (Korea, Republic of); An, Y.H. [National Fusion Research Institute, Daejon (Korea, Republic of); Chung, K.J.; Na, Y.S. [Seoul National University, Seoul (Korea, Republic of); Hwang, Y.S., E-mail: yhwang@snu.ac.kr [Seoul National University, Seoul (Korea, Republic of)

    2016-11-01

    Highlights: • The baking for partial wall heating and H{sub 2}/He GDC systems are developed in VEST. • The RGA and OES systems for monitoring impurities are constructed in VEST. • The partial baking and He GDC show limited effects on plasma characteristics. • H{sub 2} GDC above 4 h enables the longer plasma current duration up to ∼15 ms. • After H{sub 2} GDC, the discharge should be conducted within 3 h from treatment. - Abstract: Wall conditioning and impurity monitoring systems are developed in Versatile Experiment Spherical Torus (VEST). As a wall conditioning system, a baking system covering the vacuum vessel wall partially and a glow discharge cleaning (GDC) system using two electrodes with dc and 50 kHz power supplies are installed. The GDC system operates with hydrogen and helium gases for both chemical and physical desorption. The impurity monitoring system with residual gas analyzer (RGA), operating at <10{sup −5} Torr with a differential pumping system, is installed along with the optical emission spectroscopy (OES) system to monitor the hydrogen and impurity radiation lines. Effects of these wall conditioning techniques are investigated with the impurity monitoring system for ohmic discharges of VEST. The partial baking and He GDC show limited effects on plasma characteristics but sufficient H{sub 2} GDC above 4 h enables the longer plasma current duration up to ∼15 ms within 3 h from the end of treatment.

  3. The development of advanced instrumentation and control technology -The development of digital monitoring technique-

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Jong Sun; Lee, Byung Sun; Han, Sang Joon; Shin, Yong Chul; Kim, Yung Baek; Kim, Dong Hoon; Oh, Yang Kyoon; Suh, Yung; Choi, Chan Duk; Kang, Byung Hun; Hong, Hyung Pyo; Shin, Jee Tae; Moon, Kwon Kee; Lee, Soon Sung; Kim, Sung Hoh; Koo, In Soo; Kim, Dong Wan; Huh, Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    A study has been performed for the advanced DSP technology for digital nuclear I and C systems and its prototype, and for the monitoring and diagnosing techniques for the highly-pressurized components in NSSS. In the DSP part, the DSP requirements for NPPs have been induced for the performance of the DSP systems and the functional analysis for Reactor Coolant System (RCS) has been performed as the embodied target system. Total quantities of the I and C signals, signal types, and signal functions were also investigated in Ulchin NPP units 3 and 4. From these basis, the prototype facility was configured for performance validation and algorithm implementation. In order to develop the methods of DSP techniques and algorithms, the current signal validation methods have been studied and analyzed. In the analysis for the communication networks in NPP, the basic technique for the configuration of communication networks and the important considerations for applying to NPPs have been reviewed. Test and experimental facilities have been set up in order to carry out the required tests during research activities on the monitoring techniques for abnormal conditions. Studies were concentrated on methods how to acquire vibration signals from the mechanical structures and equipment including rotating machinery and reactor, and analyses for the characteristics of the signals. Fuzzy logic was evaluated as a good technique to improve the reliability of the monitoring and diagnosing algorithm through the application of the theory such as the automatic pattern recognition algorithm of the vibration spectrum, the alarm detection and diagnosis for collisions of loose parts. 71 figs, 32 tabs, 64 refs. (Author).

  4. Study of Fuzzy Neural Networks Model for System Condition Monitoring of AUV

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-jia; ZHANG Ming-jun

    2002-01-01

    A structure equivalent model of fuzzy-neural networks for system condition monitoring is proposed, whose outputs are the condition or the degree of fault occurring in some parts of the system. This network is composed of six layers of neurons,which represent the membership functions, fuzzy rules and outputs respectively. The structure parameters and weights are obtained by processing off-line learning, and the fuzzy rules are derived from the experience. The results of the computer simulation for the autonomous underwater vehicle condition monitoring based on this fuzzy-neural networks show that the network is efficient and feasible in gaining the condition information or the degree of fault of the two main propellers.

  5. New Fast Beam Conditions Monitoring (BCM1F) system for CMS

    CERN Document Server

    AUTHOR|(CDS)2083575; Dabrowski, A.E.; Hempel, M.; Henschel, H.M.; Karacheban, O.; Przyborowski, D.; Leonard, J.L.; Penno, M.; Pozniak, K.T.; Miraglia, M.; Lange, W.; Lohmann, W.; Ryjov, V.; Lokhovitskiy, A.; Stickland, D.; Walsh, R.

    2016-01-01

    The CMS Beam Radiation Instrumentation and Luminosity (BRIL) project is composed of several systems providing the experiment protection from adverse beam conditions while also measuring the online luminosity and beam background. Although the readout bandwidth of the Fast Beam Conditions Monitoring system (BCM1F - one of the faster monitoring systems of the CMS BRIL), was sufficient for the initial LHC conditions, the foreseen enhancement of the beams parameters after the LHC Long Shutdown-1 (LS1) imposed the upgrade of the system. This paper presents the new BCM1F, which is designed to provide real-time fast diagnosis of beam conditions and instantaneous luminosity with readout able to resolve the 25 ns sub-bunch structure.

  6. New Fast Beam Conditions Monitoring (BCM1F) system for CMS

    Science.gov (United States)

    Zagozdzinska, A. A.; Bell, A. J.; Dabrowski, A. E.; Hempel, M.; Henschel, H. M.; Karacheban, O.; Przyborowski, D.; Leonard, J. L.; Penno, M.; Pozniak, K. T.; Miraglia, M.; Lange, W.; Lohmann, W.; Ryjov, V.; Lokhovitskiy, A.; Stickland, D.; Walsh, R.

    2016-01-01

    The CMS Beam Radiation Instrumentation and Luminosity (BRIL) project is composed of several systems providing the experiment protection from adverse beam conditions while also measuring the online luminosity and beam background. Although the readout bandwidth of the Fast Beam Conditions Monitoring system (BCM1F—one of the faster monitoring systems of the CMS BRIL), was sufficient for the initial LHC conditions, the foreseen enhancement of the beams parameters after the LHC Long Shutdown-1 (LS1) imposed the upgrade of the system. This paper presents the new BCM1F, which is designed to provide real-time fast diagnosis of beam conditions and instantaneous luminosity with readout able to resolve the 25 ns bunch structure.

  7. Railway track component condition monitoring using optical fibre Bragg grating sensors

    Science.gov (United States)

    Buggy, S. J.; James, S. W.; Staines, S.; Carroll, R.; Kitson, P.; Farrington, D.; Drewett, L.; Jaiswal, J.; Tatam, R. P.

    2016-05-01

    The use of optical fibre Bragg grating (FBG) strain sensors to monitor the condition of safety critical rail components is investigated. Fishplates, switchblades and stretcher bars on the Stagecoach Supertram tramway in Sheffield in the UK have been instrumented with arrays of FBG sensors. The dynamic strain signatures induced by the passage of a tram over the instrumented components have been analysed to identify features indicative of changes in the condition of the components.

  8. Principles for the monitoring and evaluation of wetland extent, condition and function in Australia.

    Science.gov (United States)

    Saintilan, Neil; Imgraben, Sarah

    2012-01-01

    The monitoring of resource condition is receiving renewed attention across several levels of government in Australia. This interest is linked to substantial investment in environmental remediation and aquatic ecosystem restoration in particular. In this context, it is timely to consider principles which ought to guide the development and implementation of monitoring programmes for wetland ecosystems. A framework is established which places monitoring in the context of the strategic adaptive management of wetlands. This framework requires there has to be clear goals for the extent and condition of the resource, with these goals being defined within thresholds of acceptable variability. Qualitative and, where possible, quantitative conceptual models linking management interventions to management goals should be the basis of indicator selection and assessment. The intensity of sampling ought to be informed by pilot surveys of statistical power in relation to the thresholds of acceptable variability identified within the management plan.

  9. A Recursive Multiscale Correlation-Averaging Algorithm for an Automated Distributed Road Condition Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Ndoye, Mandoye [Lawrence Livermore National Laboratory (LLNL); Barker, Alan M [ORNL; Krogmeier, James [Purdue University; Bullock, Darcy [Purdue University

    2011-01-01

    A signal processing approach is proposed to jointly filter and fuse spatially indexed measurements captured from many vehicles. It is assumed that these measurements are influenced by both sensor noise and measurement indexing uncertainties. Measurements from low-cost vehicle-mounted sensors (e.g., accelerometers and Global Positioning System (GPS) receivers) are properly combined to produce higher quality road roughness data for cost-effective road surface condition monitoring. The proposed algorithms are recursively implemented and thus require only moderate computational power and memory space. These algorithms are important for future road management systems, which will use on-road vehicles as a distributed network of sensing probes gathering spatially indexed measurements for condition monitoring, in addition to other applications, such as environmental sensing and/or traffic monitoring. Our method and the related signal processing algorithms have been successfully tested using field data.

  10. A brief status on condition monitoring and fault diagnosis in wind energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Amirat, Y. [University of Brest, EA 4325 LBMS, 29238 Brest (France); University of Annaba, Electrical Engineering Department, 23000 Annaba (Algeria); Benbouzid, M.E.H.; Turri, S. [University of Brest, EA 4325 LBMS, 29238 Brest (France); Al-Ahmar, E. [University of Brest, EA 4325 LBMS, 29238 Brest (France); Holy Spirit University of Kaslik, Faculty of Sciences and Computer Engineering, BP 446 Jounieh (Lebanon); Bensaker, B. [University of Annaba, Electrical Engineering Department, 23000 Annaba (Algeria)

    2009-12-15

    There is a constant need for the reduction of operational and maintenance costs of Wind Energy Conversion Systems (WECSs). The most efficient way of reducing these costs would be to continuously monitor the condition of these systems. This allows for early detection of the degeneration of the generator health, facilitating a proactive response, minimizing downtime, and maximizing productivity. Wind generators are also inaccessible since they are situated on extremely high towers, which are normally 20 m or more in height. There are also plans to increase the number of offshore sites increasing the need for a remote means of WECS monitoring that eliminates some of the difficulties faced due to accessibility problems. Therefore and due to the importance of condition monitoring and fault diagnosis in WECS (blades, drive trains, and generators), and keeping in mind the need for future research, this paper is intended as a brief status describing different types of faults, their generated signatures, and their diagnostic schemes. (author)

  11. Structural condition assessment of long-span suspension bridges using long-term monitoring data

    Science.gov (United States)

    Yang, Deng; Youliang, Ding; Aiqun, Li

    2010-03-01

    This paper focuses on developing an online structural condition assessment technique using long-term monitoring data measured by a structural health monitoring system. The seasonal correlations of frequency-temperature and beam-end displacement-temperature for the Runyang Suspension Bridge are performed, first. Then, a statistical modeling technique using a six-order polynomial is further applied to formulate the correlations of frequency-temperature and displacement-temperature, from which abnormal changes of measured frequencies and displacements are detected using the mean value control chart. Analysis results show that modal frequencies of higher vibration modes and displacements have remarkable seasonal correlations with the environmental temperature and the proposed method exhibits a good capability for detecting the micro damage-induced changes of modal frequencies and displacements. The results demonstrate that the proposed method can effectively eliminate temperature complications from frequency and displacement time series and is well suited for online condition monitoring of long-span suspension bridges.

  12. Gene targeting in embryonic stem cells, II: conditional technologies

    Science.gov (United States)

    Genome modification via transgenesis has allowed researchers to link genotype and phenotype as an alternative approach to the characterization of random mutations through evolution. The synergy of technologies from the fields of embryonic stem (ES) cells, gene knockouts, and protein-mediated recombi...

  13. Monitoring Employee Behavior Through the Use of Technology and Issues of Employee Privacy in America

    Directory of Open Access Journals (Sweden)

    Mahmoud Moussa

    2015-04-01

    Full Text Available Despite the historic American love for privacy that has enhanced innovation and creativity throughout the country, encroachments on privacy restrain individual freedom. Noticeable, advances in technology have offered decision makers remarkable monitoring aptitudes that can be used in numerous tasks for multiple reasons. This has led scholars and practitioners to pose a significant number of questions about what is legitimate and illegitimate in the day-to-day affairs of a business. This article is composed of (a research about electronic monitoring and privacy concerns; (b definitions of, critiques of, and alternatives to electronic performance monitoring (EPM; (c motives behind employee monitoring and leadership behaviors; (d advice that makes monitoring less distressful; (e employee monitoring policies; (f reviewing policies and procedures; (g the role of human resource development (HRD in employee assessment and development; and (h conclusion and recommendations for further studies.

  14. Groundwater Monitoring Plan for the Reactor Technology Complex Operable Unit 2-13

    Energy Technology Data Exchange (ETDEWEB)

    Richard P. Wells

    2007-03-23

    This Groundwater Monitoring Plan describes the objectives, activities, and assessments that will be performed to support the on-going groundwater monitoring requirements at the Reactor Technology Complex, formerly the Test Reactor Area (TRA). The requirements for groundwater monitoring were stipulated in the Final Record of Decision for Test Reactor Area, Operable Unit 2-13, signed in December 1997. The monitoring requirements were modified by the First Five-Year Review Report for the Test Reactor Area, Operable Unit 2-13, at the Idaho National Engineering and Environmental Laboratory to focus on those contaminants of concern that warrant continued surveillance, including chromium, tritium, strontium-90, and cobalt-60. Based upon recommendations provided in the Annual Groundwater Monitoring Status Report for 2006, the groundwater monitoring frequency was reduced to annually from twice a year.

  15. Monitoring and detecting atrial fibrillation using wearable technology.

    Science.gov (United States)

    Nemati, Shamim; Ghassemi, Mohammad M; Ambai, Vaidehi; Isakadze, Nino; Levantsevych, Oleksiy; Shah, Amit; Clifford, Gari D

    2016-08-01

    Atrial fibrillation (AFib) is diagnosed by analysis of the morphological and rhythmic properties of the electrocardiogram. It was recently shown that accurate detection of AFib is possible using beat-to-beat interval variations. This raises the question of whether AFib detection can be performed using a pulsatile waveform such as the Photoplethysmogram (PPG). The recent explosion in use of recreational and professional ambulatory wrist-based pulse monitoring devices means that an accurate pulse-based AFib screening algorithm would enable large scale screening for silent or undiagnosed AFib, a significant risk factor for multiple diseases. We propose a noise-resistant machine learning approach to detecting AFib from noisy ambulatory PPG recorded from the wrist using a modern research watch-based wearable device (the Samsung Simband). Ambulatory pulsatile and movement data were recorded from 46 subjects, 15 with AFib and 31 non symptomatic. Single channel electrocardiogram (ECG), multi-wavelength PPG and tri-axial accelerometry were recorded simultaneously at 128 Hz from the non-dominant wrist using the Simband. Recording lengths varied from 3.5 to 8.5 minutes. Pulse (beat) detection was performed on the PPG waveforms, and eleven features were extracted based on beat-to-beat variability and waveform signal quality. Using 10-fold cross validation, an accuracy of 95 % on out-of-sample data was achieved, with a sensitivity of 97%, specificity of 94%, and an area under the receiver operating curve (AUROC) of 0.99. The described approach provides a noise-resistant, accurate screening tool for AFib from PPG sensors located in an ambulatory wrist watch. To our knowledge this is the first study to demonstrate an algorithm with a high enough accuracy to be used in general population studies that does not require an ambulatory Holter electrocardiographic monitor.

  16. Long-Term Monitoring of Utility-Scale Solar Energy Development and Application of Remote Sensing Technologies: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuki [Argonne National Lab. (ANL), Argonne, IL (United States). Environmental Science Division; Grippo, Mark A. [Argonne National Lab. (ANL), Argonne, IL (United States). Environmental Science Division; Smith, Karen P. [Argonne National Lab. (ANL), Argonne, IL (United States). Environmental Science Division

    2014-09-30

    In anticipation of increased utility-scale solar energy development over the next 20 to 50 years, federal agencies and other organizations have identified a need to develop comprehensive long-term monitoring programs specific to solar energy development. Increasingly, stakeholders are requesting that federal agencies, such as the U.S. Department of the Interior Bureau of Land Management (BLM), develop rigorous and comprehensive long-term monitoring programs. Argonne National Laboratory (Argonne) is assisting the BLM in developing an effective long-term monitoring plan as required by the BLM Solar Energy Program to study the environmental effects of solar energy development. The monitoring data can be used to protect land resources from harmful development practices while at the same time reducing restrictions on utility-scale solar energy development that are determined to be unnecessary. The development of a long-term monitoring plan that incorporates regional datasets, prioritizes requirements in the context of landscape-scale conditions and trends, and integrates cost-effective data collection methods (such as remote sensing technologies) will translate into lower monitoring costs and increased certainty for solar developers regarding requirements for developing projects on public lands. This outcome will support U.S. Department of Energy (DOE) Sunshot Program goals. For this reason, the DOE provided funding for the work presented in this report.

  17. Wind Turbine Drivetrain Condition Monitoring During GRC Phase 1 and Phase 2 Testing

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, S.; Link, H.; LaCava, W.; van Dam, J.; McNiff, B.; Veers, P.; Keller, J.; Butterfield, S.; Oyague, F.

    2011-10-01

    This report will present the wind turbine drivetrain condition monitoring (CM) research conducted under the phase 1 and phase 2 Gearbox Reliability Collaborative (GRC) tests. The rationale and approach for this drivetrain CM research, investigated CM systems, test configuration and results, and a discussion on challenges in wind turbine drivetrain CM and future research and development areas, will be presented.

  18. Dimensional comparability of psychosocial working conditions as covered in European monitoring questionnaires

    NARCIS (Netherlands)

    Formazin, M.; Burr, H.; Aagestad, C.; Tynes, T.; Thorsen, S.V.; Perkio-Makela, M.; Díaz Aramburu, C.I.; Pinilla García, F.J.; Galiana Blanco, L.; Vermeylen, G.; Parent-Thirion, A.; Hooftman, W.; Houtman, I.L.D.

    2014-01-01

    Background.In most countries in the EU, national surveys are used to monitor working conditions and health. Since the development processes behind the various surveys are not necessarily theoretical, but certainly practical and political, the extent of similarity among the dimensions covered in

  19. Summer student report - Upgrade work for the Fast Beam Condition Monitor at CMS

    CERN Document Server

    Tsrunchev, Peter

    2016-01-01

    Report on summer student internship at CERN. Describes work done towards the replacement of the Fast Beam Conditions Monitor (BCM1F) - activities related to the test beam conducted by the BRIL (Background Radiation Instrumentation and Luminosity) experiment in July 2016, analog opto-hybrids testing and XDAQ development for the uTCA readout system currently under development.

  20. Monitoring plant condition and phenology using infrared sensitive consumer grade digital cameras

    NARCIS (Netherlands)

    Nijland, W.; de Jong, R.; de Jong, S.M.; Wulder, M.A.; Bater, C.W.; Coops, N.C.

    2014-01-01

    Consumer-grade digital cameras are recognized as a cost-effective method of monitoring plant health and phenology. The capacity to use these cameras to produce time series information contributes to a better understanding of relationships between environmental conditions, vegetation health, and prod