WorldWideScience

Sample records for condenser cooling systems

  1. Preoperational test report, recirculation condenser cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Recirculation Condenser Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The four system provide condenser cooling water for vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102. Each system consists of a valved piping loop, a pair of redundant recirculation pumps, a closed-loop evaporative cooling tower, and supporting instrumentation; equipment is located outside the farm on concrete slabs. Piping is routed to the each ventilation condenser inside the farm via below-grade concrete trenches. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  2. Preoperational test report, recirculation condenser cooling systems

    International Nuclear Information System (INIS)

    Clifton, F.T.

    1997-01-01

    This represents a preoperational test report for Recirculation Condenser Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The four system provide condenser cooling water for vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102. Each system consists of a valved piping loop, a pair of redundant recirculation pumps, a closed-loop evaporative cooling tower, and supporting instrumentation; equipment is located outside the farm on concrete slabs. Piping is routed to the each ventilation condenser inside the farm via below-grade concrete trenches. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  3. Preoperational test report, primary ventilation condenser cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-10-29

    This represents the preoperational test report for the Primary Ventilation Condenser Cooling System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system uses a closed chilled water piping loop to provide offgas effluent cooling for tanks AY101, AY102, AZ1O1, AZ102; the offgas is cooled from a nominal 100 F to 40 F. Resulting condensation removes tritiated vapor from the exhaust stack stream. The piping system includes a package outdoor air-cooled water chiller with parallel redundant circulating pumps; the condenser coil is located inside a shielded ventilation equipment cell. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  4. Preoperational test report, primary ventilation condenser cooling system

    International Nuclear Information System (INIS)

    Clifton, F.T.

    1997-01-01

    This represents the preoperational test report for the Primary Ventilation Condenser Cooling System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system uses a closed chilled water piping loop to provide offgas effluent cooling for tanks AY101, AY102, AZ1O1, AZ102; the offgas is cooled from a nominal 100 F to 40 F. Resulting condensation removes tritiated vapor from the exhaust stack stream. The piping system includes a package outdoor air-cooled water chiller with parallel redundant circulating pumps; the condenser coil is located inside a shielded ventilation equipment cell. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  5. The development of air cooled condensation systems

    International Nuclear Information System (INIS)

    Bodas, J.

    1990-01-01

    EGI - Contracting/Engineering has had experience with the development of air cooled condensing systems since the 1950's. There are two accepted types of dry cooling systems,the direct and the indirect ones. Due to the fact that the indirect system has several advantages over the direct one, EGI's purpose was to develop an economic, reliable and efficient type of indirect cooling system, both for industrial and power station applications. Apart from system development, the main components of dry cooling plant have been developed as well. These are: the water-to-air heat exchangers; the direct contact (DC, or jet) condenser; the cooling water circulating pumps and recovery turbines; and the peak cooling/preheating units. As a result of this broad development work which was connected with intensive market activity, EGI has supplied about 50% of the dry cooling plants employed for large power stations all over the world. This means that today the cumulated capacity of power units using Heller type dry cooling systems supplied and contracted by EGI is over 6000 MW

  6. Preventing freezing of condensate inside tubes of air cooled condenser

    International Nuclear Information System (INIS)

    Joo, Jeong A; Hwang, In Hwan; Lee, Dong Hwan; Cho, Young Il

    2012-01-01

    An air cooled condenser is a device that is used for converting steam into condensate by using ambient air. The air cooled condenser is prone to suffer from a serious explosion when the condensate inside the tubes of a heat exchanger is frozen; in particular, tubes can break during winter. This is primarily due to the structural problem of the tube outlet of an existing conventional air cooled condenser system, which causes the backflow of residual steam and noncondensable gases. To solve the backflow problem in such condensers, such a system was simulated and a new system was designed and evaluated in this study. The experimental results using the simulated condenser showed the occurrence of freezing because of the backflow inside the tube. On the other hand, no backflow and freezing occurred in the advanced new condenser, and efficient heat exchange occurred

  7. Performance improvement of air-cooled refrigeration system by using evaporatively cooled air condenser

    Energy Technology Data Exchange (ETDEWEB)

    Hajidavalloo, E.; Eghtedari, H. [Mechanical Engineering Department, Shahid Chamran University, Golestan St., Ahvaz (Iran)

    2010-08-15

    Increasing the coefficient of performance of air conditioner with air-cooled condenser is a challenging problem especially in area with very hot weather conditions. Application of evaporatively cooled air condenser instead of air-cooled condenser is proposed in this paper as an efficient way to solve the problem. An evaporative cooler was built and coupled to the existing air-cooled condenser of a split-air-conditioner in order to measure its effect on the cycle performance under various ambient air temperatures up to 49 C. Experimental results show that application of evaporatively cooled air condenser has significant effect on the performance improvement of the cycle and the rate of improvement is increased as ambient air temperature increases. It is also found that by using evaporatively cooled air condenser in hot weather conditions, the power consumption can be reduced up to 20% and the coefficient of performance can be improved around 50%. More improvements can be expected if a more efficient evaporative cooler is used. (author)

  8. Transient Performance of Air-cooled Condensing Heat Exchanger in Long-term Passive Cooling System during Decay Heat Load

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myoung Jun; Lee, Hee Joon [Kookmin University, Seoul (Korea, Republic of); Moon, Joo Hyung; Bae, Youngmin; Kim, Young-In [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    In the event of a 'loss of coolant accident'(LOCA) and a non-LOCA, the secondary passive cooling system would be activated to cool the steam in a condensing heat exchanger that is immersed in an emergency cooldown tank (ECT). Currently, the capacities of these ECTs are designed to be sufficient to remove the sensible and residual heat from the reactor coolant system for 72 hours after the occurrence of an accident. After the operation of a conventional passive cooling system for an extended period, however, the water level falls as a result of the evaporation from the ECT, as steam is emitted from the open top of the tank. Therefore, the tank should be refilled regularly from an auxiliary water supply system when the system is used for more than 72 hours. Otherwise, the system would fail to dissipate heat from the condensing heat exchanger due to the loss of the cooling water. Ultimately, the functionality of the passive cooling system would be seriously compromised. As a passive means of overcoming the water depletion in the tank, Kim et al. applied for a Korean patent covering the concept of a long-term passive cooling system for an ECT even after 72 hours. This study presents transient performance of ECT with installing air-cooled condensing heat exchanger under decay heat load. The cooling capacity of an air-cooled condensing heat exchanger was evaluated to determine its practicality.

  9. Numerical model of sprayed air cooled condenser coupled to refrigerating system

    International Nuclear Information System (INIS)

    Youbi-Idrissi, M.; Macchi-Tejeda, H.; Fournaison, L.; Guilpart, J.

    2007-01-01

    Because of technological, economic and environmental constraints, many refrigeration and air conditioning units are equipped with a simple air cooled condenser. Spraying the condenser seems to be an original solution to improve the energetic performances of such systems. To characterise this energetic benefit, a semi-local mathematical model was developed and applied to a refrigerating machine with and without spraying its air cooled condenser. It is found that, compared to a dry air cooled condenser, both the calorific capacity and machine COP increase by 13% and 55%, respectively. Furthermore, the model shows that a spray flow rate threshold occurs. It should not be exceeded to assure an effective and rational spray use

  10. Thermodynamic analysis of cooling systems for nuclear power stations condenser

    International Nuclear Information System (INIS)

    Beck, A.

    1985-06-01

    This work is an attempt to concentrate on the thermodynamic theory, the engineering solution and the quantities of water needed for the operation of a wet as well as a wet/dry cooling towers coupled to a nuclear turbine condenser,. About two hundred variables are needed for the design of a condenser - cooling tower system. In order to make the solution fast and handy, a computer model was developed. The amount of water evaporation from cooling towers is a function of the climate conditions prevailing around the site. To achieve an authentic analysis, the meteorological data of the northern Negev was used. The total amount of water necessary to add to the system in a year time of operation is large and is a function of both the blow-down rate and the evaporation. First estimations show that the use of a combined system, wet/dry cooling tower, is beneficial in the northern Negev area. Such a system can reduce significantly the amount of wasted fresh water. Lack of international experience is the major problem in the acceptability of wet/dry cooling towers. The technology of a wet cooling tower using sea water is also discussed where no technical or engineering limitations were found. This work is an attempt to give some handy tools for making the choice of cooling systems for nuclear power plants easier

  11. Investigation of Condensation Heat Transfer Correlation of Heat Exchanger Design in Secondary Passive Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yun Jae; Lee, Hee Joon [Kookmin Univ., Seoul (Korea, Republic of); Kang, Hanok; Lee, Taeho; Park, Cheontae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-12-15

    Recently, condensation heat exchangers have been studied for applications to the passive cooling systems of nuclear plants. To design vertical-type condensation heat exchangers in secondary passive cooling systems, TSCON (Thermal Sizing of CONdenser), a thermal sizing program for a condensation heat exchanger, was developed at KAERI (Korea Atomic Energy Research Institute). In this study, the existing condensation heat transfer correlation of TSCON was evaluated using 1,157 collected experimental data points from the heat exchanger of a secondary passive cooling system for the case of pure steam condensation. The investigation showed that the Shah correlation, published in 2009, provided the most satisfactory results for the heat transfer coefficient with a mean absolute error of 34.8%. It is suggested that the Shah correlation is appropriate for designing a condensation heat exchanger in TSCON.

  12. Condensation heat transfer coefficient of air-cooled condensing heat exchanger of emergency cooldown tank in long-term passive cooling system

    International Nuclear Information System (INIS)

    Huh, Seon Jeong; Lee, Hee Joon; Moon, Joo Hyung; Bae, Youngmin; Kim, Young In

    2017-01-01

    For the design purpose of air-cooled condensing heat exchanger of emergency cooldown tank, average condensation heat transfer coefficient inside a circular tube was reduced by a thermal sizing program using the experimental data of Kim et al. It was compared to the existing condensation heat transfer correlations. Moreover, a sensitivity analysis of both inside condensation and outside air natural convection correlations was performed. Although condensation heat transfer did not play a great role to design over 10 3 W/m 2 /K, the improved Shah's correlation gives the best prediction for the design. Consequently, air natural convection coefficient significantly affects the design of air-cooled condensing heat exchanger. (author)

  13. Experimental and numerical study of an evaporatively-cooled condenser of air-conditioning systems

    International Nuclear Information System (INIS)

    Islam, M.R.; Jahangeer, K.A.; Chua, K.J.

    2015-01-01

    The performance of an air-conditioning unit with evaporately-cooled condenser coil is studied experimentally and numerically. An experimental setup is fabricated by retrofitting a commercially available air-conditioning unit and installing comprehensive measuring sensors and controllers. Experimental result shows that the COP (Coefficient of Performance) of the evaporately-cooled air-conditioning unit increases by about 28% compared to the conventional air cooled air-conditioning unit. To analyze the heat and mass transfer processes involved in the evaporately-cooled condenser, a detailed theoretical model has been developed based on the fluid flow characteristics of the falling film and the thermodynamic aspect of the evaporation process. Simulated results agree well with experimental data. The numerical model provides new insights into the intrinsic links between operating variables and heat transfer characteristics of water film in evaluating the performance of evaporatively-cooled condenser system. Two heat transfer coefficients, namely, wall to bulk and bulk to interface are introduced and computed from the simulation results under different operating conditions. Finally, the overall heat transfer coefficient for the water film is computed and presented as a function of dimensionless variables which can conveniently be employed by engineers to design and analyze high performance evaporatively-cooled heat exchangers. - Highlights: • Performance of evaporatively-cooled condenser is investigated. • Local convective heat transfer coefficients of water film are determined. • Thermal resistance of water film is negligible. • Heat transfer with evaporated vapor plays significant role on performance. • Better condenser performance translates to an improvement in COP

  14. The application of condensate water as an additional cooling media intermittently in condenser of a split air conditioning

    Science.gov (United States)

    Ardita, I. N.; Subagia, I. W. A.

    2018-01-01

    The condensate water produced by indoor a split air conditioning is usually not utilized and thrown away into the environment. The result of measurement shows that the temperature of condensate water produced by split air conditioning is quite low, that is 19-22 °C at the rate of 16-20 mL / min and it has PH balance. Under such conditions, Air Condensate produced by split air conditioning should still be recovered as an additional cooling medium on the condenser. This research will re-investigate the use of condensate water as an intermittent additional cooling of the condenser to increase the cooling capacity and performance of the air conditioning system. This research is done by experimental method whose implementation includes; designing and manufacturing of experimental equipment, mounting measuring tools, experimental data retrieval, data processing and yield analysis. The experimental results show that the use of condensate water as an intermittent additional cooling medium on split air conditioning condenser can increase the refrigeration effect about 2%, cooling capacity about 4% and 7% of COP system. Experimental results also show a decrease in power consumption in the system compressor about 3%

  15. Environmental sustainability by adoption of alternate cooling media for condenser cooling

    International Nuclear Information System (INIS)

    Gandhi, Jaymin; Patel, Nilesh

    2015-01-01

    Water having ability to dissolve most substances and to support biological life, every cooling water system in power plant is subjected to potential operational problems which are mainly corrosion, scaling and biological fouling. Control of cooling water chemistry is very critical in preventing above said problems. In view of scarcity of water and looking into the future trends in the environment protection, water media can be replaced with air. Having such concept in thermal and combined cycle power plants, use of Air-cooled condenser (ACC) for Nuclear power plant may be explored. During last decade number of installations with ACC also increased, largely in response to the growing attention being paid to environmental concerns as well of water scarcity. The rising importance of 'Save Water and Environment', calls for a broader understanding of the design and application principles involved for ACC. This paper identifies the basic configurations of air cooled condensers used in the power industry together with their merits and demerits when compared to those exhibited by traditional steam surface condensers including environmental and corrosion issues. Several factors that affect the performance of air-cooled condensers are described in detail, especially the consequences that result from the fouling of the finned-tubes. To rectify the degradations in performance that result from external tube fouling, a number of cleaning procedures are described. Due to relatively high cost of sweet water and large requirement of sea water, Air cooled condenser may become viable option in future. (author)

  16. Numerical Study on the Design Concept of an Air-Cooled Condensation Heat Exchanger in a Long-term Passive Cooling System

    International Nuclear Information System (INIS)

    Kim, Myoung Jun; Moon, Joo Hyung; Bae, Youngmin; Kim, Young In; Park, Hyun Sik; Lee, Hee Joon

    2016-01-01

    SMART is the only licensed SMR in the world since the Nuclear Safety and Security Commission (NSSC) issued officially the Standard Design Approval (SDA) on 4 July 2012. Recently, the pre-project engineering (PPE) was officially launched for the construction of SMART and developing human resources capability. Both KAERI and King Abdullah City for Atomic and Renewable Energy (K.A. CARE) will conduct a three-year preliminary study to review the feasibility of building SMART and to prepare for its commercialization. SMART is equipped with passive cooling systems in order to enhance the safety of the reactor. The PRHRS (Passive Residual Heat Removal System) is the major passive safety system, which is actuated after an accident to remove the residual heat and the sensible heat from the RCS (Reactor Coolant System) through the steam generators (SGs) until the safe shutdown condition is reached. In this study, condensing heat transfer correlations in TSCON were validated using experimental data. It was shown that most of the condensation correlation gave satisfactory predictions of the cooling capacity of an-air cooled condensation heat exchanger

  17. Numerical Study on the Design Concept of an Air-Cooled Condensation Heat Exchanger in a Long-term Passive Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myoung Jun; Moon, Joo Hyung; Bae, Youngmin; Kim, Young In; Park, Hyun Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Hee Joon [Kookmin University, Seoul (Korea, Republic of)

    2016-10-15

    SMART is the only licensed SMR in the world since the Nuclear Safety and Security Commission (NSSC) issued officially the Standard Design Approval (SDA) on 4 July 2012. Recently, the pre-project engineering (PPE) was officially launched for the construction of SMART and developing human resources capability. Both KAERI and King Abdullah City for Atomic and Renewable Energy (K.A. CARE) will conduct a three-year preliminary study to review the feasibility of building SMART and to prepare for its commercialization. SMART is equipped with passive cooling systems in order to enhance the safety of the reactor. The PRHRS (Passive Residual Heat Removal System) is the major passive safety system, which is actuated after an accident to remove the residual heat and the sensible heat from the RCS (Reactor Coolant System) through the steam generators (SGs) until the safe shutdown condition is reached. In this study, condensing heat transfer correlations in TSCON were validated using experimental data. It was shown that most of the condensation correlation gave satisfactory predictions of the cooling capacity of an-air cooled condensation heat exchanger.

  18. BWR Passive Containment Cooling System by condensation-driven natural circulation

    International Nuclear Information System (INIS)

    Vierow, K.M.; Townsend, H.E.; Fitch, J.R.; Andersen, J.G.M.; Alamgir, M.; Schrock, V.E.

    1991-01-01

    A method of long-term decay heat removal which is safe, reliable, and passive has been incorporated into the design of the Simplified Boiling Water Reactor (SBWR). The primary functions of the Passive Containment Cooling System (PCCS) are to remove heat and maintain the containment pressure below allowable levels following a LOCA. A key component of the PCCS is the PCC condenser unit (PCC). By natural circulation, a steam-nitrogen mixture flows into the PCC heat exchanger, condensate drains to the reactor pressure vessel (RPV), and noncondensables are vented to the suppression chamber (S/C). This analysis focuses on three significant thermal-hydraulic phenomena which occur in the system. Specifically, steam condensation in the presence of a noncondensable, the PCC noncondensable venting and the natural circulation are discussed. Results of TRACG simulations are presented which show that the PCCS performs its intended functions. (author)

  19. The performance of a mobile air conditioning system with a water cooled condenser

    International Nuclear Information System (INIS)

    Di Battista, Davide; Cipollone, Roberto

    2015-01-01

    Vehicle technological evolution lived, in recent years, a strong acceleration due to the increased awareness of environmental issues related to pollutants and climate altering emissions. This resulted in a series of international regulations on automotive sector which put technical challenges that must consider the engine and the vehicle as a global system, in order to improve the overall efficiency of the system. The air conditioning system of the cabin, for instance, is the one of the most important auxiliaries in a vehicle and requires significant powers. Its performances can be significantly improved if it is integrated within the engine cooling circuit, eventually modified with more temperature levels.In this paper, the Authors present a mathematical model of the A/C system, starting from its single components: compressors, condenser, flush valve and evaporator and a comparison between different refrigerant fluid. In particular, it is introduced the opportunity to have an A/C condenser cooled by a water circuit instead of the external air linked to the vehicle speed, as in the actual traditional configuration. The A/C condenser, in fact, could be housed on a low temperature water circuit, reducing the condensing temperature of the refrigeration cycle with a considerable efficiency increase. (paper)

  20. The performance of a mobile air conditioning system with a water cooled condenser

    Science.gov (United States)

    Di Battista, Davide; Cipollone, Roberto

    2015-11-01

    Vehicle technological evolution lived, in recent years, a strong acceleration due to the increased awareness of environmental issues related to pollutants and climate altering emissions. This resulted in a series of international regulations on automotive sector which put technical challenges that must consider the engine and the vehicle as a global system, in order to improve the overall efficiency of the system. The air conditioning system of the cabin, for instance, is the one of the most important auxiliaries in a vehicle and requires significant powers. Its performances can be significantly improved if it is integrated within the engine cooling circuit, eventually modified with more temperature levels. In this paper, the Authors present a mathematical model of the A/C system, starting from its single components: compressors, condenser, flush valve and evaporator and a comparison between different refrigerant fluid. In particular, it is introduced the opportunity to have an A/C condenser cooled by a water circuit instead of the external air linked to the vehicle speed, as in the actual traditional configuration. The A/C condenser, in fact, could be housed on a low temperature water circuit, reducing the condensing temperature of the refrigeration cycle with a considerable efficiency increase.

  1. Status of the full scale component testing of the KERENA TM emergency condenser and Containment Cooling Condenser

    International Nuclear Information System (INIS)

    Leyer, S.; Maisberger, F.; Herbst, V.; Doll, M.; Wich, M.; Wagner, T.

    2010-01-01

    KERENA TM (SWR1000) is an innovative boiling water reactor concept with passive safety systems. In order to verify the functionality of the passive components required for the transient and accident management, the test facility INKA (Integral-Versuchstand Karlstein) is build in Karlstein (Germany). The key elements of the KERENA TM passive safety concept -the Emergency Condenser, the Containment Cooling Condenser, the Passive Core Flooding System and the Passive Pressure Pulse Transmitter - will be tested at INKA. The Emergency Condenser system transfers heat from the reactor pressure vessel to the core flooding pools of the containment. The heat introduced into the containment during accidents will be transferred to the main heat sink for passive accident management (Shielding/Storage Pool) via the Containment Cooling Condensers. Therefore both systems are part of the passive cooling chain connecting the heat source RPV (Reactor Pressure Vessel) with the heat sink. At the INKA test facility both condensers are tested in full scale setup, in order to determine the heat transfer capacity as function of the main input parameters. For the EC these are the RPV pressure, the RPV water level, the containment pressure and the water temperature of the flooding pools. For the Containment Cooling Condenser the heat transfer capacity is a function of the containment pressure, the water temperature of the Shielding/Storage Pool and the fraction of non -condensable gases in the containment. The status of the test program and the available test data will be presented. An outlook of the future test of the passive core flooding system and the integral system test including also the passive pressure pulse transmitter will be given. (authors)

  2. Improved condenser design and condenser-fan operation for air-cooled chillers

    International Nuclear Information System (INIS)

    Yu, F.W.; Chan, K.T.

    2006-01-01

    Air-cooled chillers traditionally operate under head pressure control via staging constant-speed condenser fans. This causes a significant drop in their coefficient of performance (COP) at part load or low outdoor temperatures. This paper describes how the COP of these chillers can be improved by a new condenser design, using evaporative pre-coolers and variable-speed fans. A thermodynamic model for an air-cooled screw-chiller was developed, within which the condenser component considers empirical equations showing the effectiveness of an evaporative pre-cooler in lowering the outdoor temperature in the heat-rejection process. The condenser component also contains an algorithm to determine the number and speed of the condenser fans staged at any given set point of condensing temperature. It is found that the chiller's COP can be maximized by adjusting the set point based on any given chiller load and wet-bulb temperature of the outdoor air. A 5.6-113.4% increase in chiller COP can be achieved from the new condenser design and condenser fan operation. This provides important insights into how to develop more energy-efficient air-cooled chillers

  3. Fundamental research on the cooling characteristic of PCCS with dropwise condensation

    International Nuclear Information System (INIS)

    Masahiro Kawakubo; Mitsuo Matsuzaki; Hiroshige Kikura; Masanori Aritomi; Toshihiro Komeno

    2005-01-01

    Safety system consists of many active systems in recent years. However, there are always probabilities of failures of these active safety systems' due to faulty operation by human-error overlaps causing a severe accident as happened in Chernobyl and Three Mile Island cases. Passive Containment Cooling System (PCCS) is one of the cooling safety systems, which prevents nuclear reactor containment from over-pressurizing and breaking in case of the loss of coolant accident. A conventional PCCS is installed in the upper part of nuclear reactor containment, and the containment pressure decreases by the steam condensation. However, for a country with frequent earthquakes, it is not suitable for installing PCCS because the system requires earthquake-proof design and the water capacity in the tank is restricted. The concept of PCCS with vertical heat transfer pipe considering above challenges, which equipped vertical long heat transfer pipe inside, has been proposed by Aritomi et al. The objective of this study is to clarify the heat transfer characteristics of PCCS with vertical pipe to experimentally investigate the influence of non-condensable gas on condensation. Furthermore, a digital video camera is used to measure the behavior of condensation drops. The experimental apparatus consists of a tank, a cooling water supply system and a heat exchanger. The tank is made of a stainless steel and simulated the nuclear reactor containment during an accident. The cooling pipe installed in the tank is made of stainless steel tube. Cooling water at a constant temperature is poured in the test part of heat transfer pipe perpendicularly installed in the tank by forced circulation, and then condensation is induced at the heat transfer surface. At that time, the temperature of the cooling water between inlet and outlet of the pipe has been measured to calculation the over-all heat transfer coefficient between the cooling water and atmosphere in the tank. Thus, the heat transfer

  4. Experimental study of condensate subcooling with the use of a model of an air-cooled condenser

    Science.gov (United States)

    Sukhanov, V. A.; Bezukhov, A. P.; Bogov, I. A.; Dontsov, N. Y.; Volkovitsky, I. D.; Tolmachev, V. V.

    2016-01-01

    Water-supply deficit is now felt in many regions of the world. This hampers the construction of new steam-turbine and combined steam-and-gas thermal power plants. The use of dry cooling systems and, specifically, steam-turbine air-cooled condensers (ACCs) expands the choice of sites for the construction of such power plants. The significance of condensate subcooling Δ t as a parameter that negatively affects the engineering and economic performance of steam-turbine plants is thereby increased. The operation and design factors that influence the condensate subcooling in ACCs are revealed, and the research objective is, thus, formulated properly. The indicated research was conducted through physical modeling with the use of the Steam-Turbine Air-Cooled Condenser Unit specialized, multipurpose, laboratory bench. The design and the combined schematic and measurement diagram of this test bench are discussed. The experimental results are presented in the form of graphic dependences of the condensate subcooling value on cooling ratio m and relative weight content ɛ' of air in steam at the ACC inlet at different temperatures of cooling air t ca ' . The typical ranges of condensate subcooling variation (4 ≤ Δ t ≤ 6°C, 2 ≤ Δ t ≤ 4°C, and 0 ≤ Δ t ≤ 2°C) are identified based on the results of analysis of the attained Δ t levels in the ACC and numerous Δ t reduction estimates. The corresponding ranges of cooling ratio variation at different temperatures of cooling air at the ACC inlet are specified. The guidelines for choosing the adjusted ranges of cooling ratio variation with account of the results of experimental studies of the dependences of the absolute pressure of the steam-air mixture in the top header of the ACC and the heat flux density on the cooling ratio at different temperatures of cooling air at the ACC inlet are given.

  5. Condensation heat transfer with noncondensable gas for passive containment cooling of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Leonardi, Tauna [Schlumberger, 14910 Airline Rd., Rosharon, TX 77583 (United States)]. E-mail: Tleonardi@slb.com; Ishii, Mamoru [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States)]. E-mail: Ishii@ecn.purdue.edu

    2006-09-15

    Noncondensable gases that come from the containment and the interaction of cladding and steam during a severe accident deteriorate a passive containment cooling system's performance by degrading the heat transfer capabilities of the condensers in passive containment cooling systems. This work contributes to the area of modeling condensation heat transfer with noncondensable gases in integral facilities. Previously existing correlations and models are for the through-flow of the mixture of steam and the noncondensable gases and this may not be applicable to passive containment cooling systems where there is no clear passage for the steam to escape. This work presents a condensation heat transfer model for the downward cocurrent flow of a steam/air mixture through a condenser tube, taking into account the atypical characteristics of the passive containment cooling system. An empirical model is developed that depends on the inlet conditions, including the mixture Reynolds number and noncondensable gas concentration.

  6. Assessment of Condenser Design in the Cooling System of PWR

    International Nuclear Information System (INIS)

    Sukmanto Dibyo

    2008-01-01

    This paper explains various cases related to the problem of condenser design principle. Condenser equipment is circuit component of cooling that is very important. Steam that goes down from the turbine, flowing to the condenser and the steam is condensate to be water. Step of design is beginning from identification of problem until mechanic design. Usually, the condenser is designed by conservative certain levels, as well as thermal aspect or mechanic. Beside that, the design analysis is also anticipated to the existing of degradation due to aging therefore safety aspect and requirement are accepted. The assessment that related to the condenser design has been discussed. Most important aspect is obtaining of performances. Beside that, the discussion is also described about design method and that complication should consider aspect of thermal design, physics, economic, aspect of corrosion and others factors. (author)

  7. Numerical Study of Condensation Heat Exchanger Design in a Cooling jacket: Correlation Investigation

    International Nuclear Information System (INIS)

    Kim, Myoung Jun; Lee, Hee Joon; Kang, Han Ok; Lee, Tae Ho; Park, Cheon Tae

    2013-01-01

    In this study, condensing heat transfer correlation of TSCON is evaluated with the existing experimental data set to design condensation heat exchanger without noncondensable gas effect (pure steam condensation) in a cooling jacket. From the investigation of the existing condensation heat transfer correlation to the existing experimental data, the improved Shah's correlation showed most satisfactory result for the condensation heat transfer coefficient with experimental data of Khun in a cooling jacket, whereas the Shah's correlation with experimental data of Lee. Lee et al. reported the improved Shah correlation gave us the best predictor for the condensation heat transfer data of Kim and Henderson in a subcooled and saturated water pool. They suggested the improved Shah correlation should be adopted as condensation heat transfer module in TSCON(Thermal Sizing of CONdenser) to design condensation heat exchanger in secondary passive cooling system of nuclear plant

  8. Numerical Study of Condensation Heat Exchanger Design in a Cooling jacket: Correlation Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myoung Jun; Lee, Hee Joon [Kookmin Univ., Seoul (Korea, Republic of); Kang, Han Ok; Lee, Tae Ho; Park, Cheon Tae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In this study, condensing heat transfer correlation of TSCON is evaluated with the existing experimental data set to design condensation heat exchanger without noncondensable gas effect (pure steam condensation) in a cooling jacket. From the investigation of the existing condensation heat transfer correlation to the existing experimental data, the improved Shah's correlation showed most satisfactory result for the condensation heat transfer coefficient with experimental data of Khun in a cooling jacket, whereas the Shah's correlation with experimental data of Lee. Lee et al. reported the improved Shah correlation gave us the best predictor for the condensation heat transfer data of Kim and Henderson in a subcooled and saturated water pool. They suggested the improved Shah correlation should be adopted as condensation heat transfer module in TSCON(Thermal Sizing of CONdenser) to design condensation heat exchanger in secondary passive cooling system of nuclear plant.

  9. Passive cooling of condensate chambers as retrofitting measure in boiling water reactors; Passive Kuehlung der Kondensationskammern in Siedewasserreaktoren als Nachruestmassnahme

    Energy Technology Data Exchange (ETDEWEB)

    Freis, Daniel; Nachtrodt, Frederik; Sporn, Michael; Tietsch, Wolfgang; Sassen, Felix [Westinghouse Electric Germany GmbH, Mannheim (Germany)

    2012-11-01

    Westinghouse Electric Germany GmbH has developed a concept for passive cooling of condensate chambers of BWR-type reactors. Due to its compactness the system is feasible as retrofitting measure. The passive condensate chamber cooling system is based on a cooling module with ascending and down pipe that are connected with the evaporation condenser to form a cooling circuit. Based on the consequent use of high-effective heat transport mechanisms, as boiling, condensation without non-condensable gases and mass transport a high cooling performance and compact construction is possible. The system is completely passive and completely diverse to existing active cooling systems. In the frame of a true-scale experiment the significant cooling performance was demonstrated. RELAP5 calculations confirmed the functionality of the cooling module.

  10. Application of evaporative cooling on the condenser of window-air-conditioner

    International Nuclear Information System (INIS)

    Hajidavalloo, Ebrahim

    2007-01-01

    Reduction of energy consumption is a major concern in the vapor compression refrigeration cycle especially in the area with very hot weather conditions (about 50 deg. C), where window-air-conditioners are usually used to cool homes. In this weather condition performance of air condenser window-air-conditioners decrease sharply and electrical power consumption increase considerably. These problems have activated the research programs in order to improve the performance of window-air-conditioners by enhancing heat transfer rate in the condenser. In this article, a new design with high commercialization potential for incorporating of evaporative cooling in the condenser of window-air-conditioner is introduced and experimentally investigated. A real air conditioner is used to test the innovation by putting two cooling pads in both sides of the air conditioner and injecting water on them in order to cool down the air before it passing over the condenser. The experimental results show that thermodynamic characteristics of new system are considerably improved and power consumption decreases by about 16% and the coefficient of performance increases by about 55%

  11. Application of evaporative cooling on the condenser of window-air-conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Hajidavalloo, Ebrahim [Shahid Chamran University, Department of Mechanical Engineering, Golestan St., Ahwaz, Khoozestan 61355 (Iran, Islamic Republic of)]. E-mail: hajidae_1999@yahoo.com

    2007-08-15

    Reduction of energy consumption is a major concern in the vapor compression refrigeration cycle especially in the area with very hot weather conditions (about 50 deg. C), where window-air-conditioners are usually used to cool homes. In this weather condition performance of air condenser window-air-conditioners decrease sharply and electrical power consumption increase considerably. These problems have activated the research programs in order to improve the performance of window-air-conditioners by enhancing heat transfer rate in the condenser. In this article, a new design with high commercialization potential for incorporating of evaporative cooling in the condenser of window-air-conditioner is introduced and experimentally investigated. A real air conditioner is used to test the innovation by putting two cooling pads in both sides of the air conditioner and injecting water on them in order to cool down the air before it passing over the condenser. The experimental results show that thermodynamic characteristics of new system are considerably improved and power consumption decreases by about 16% and the coefficient of performance increases by about 55%.

  12. Optimizing condenser fan control for air-cooled centrifugal chillers

    Energy Technology Data Exchange (ETDEWEB)

    Yu, F.W.; Chan, K.T. [Dept. of Building Services Engineering, The Hong Kong Polytechnic Univ., Hung Hom, Hong Kong (China)

    2008-07-15

    The current design and operation of air-cooled condensers can cause a significant decrease in chiller performance under part load conditions. This paper demonstrates optimal condenser fan control to improve the coefficient of performance (COP) of air-cooled chillers. This control involves identifying the optimum set point of condensing temperature with the optimized power relationships of the compressors and condenser fans and enhancing the airflow and heat transfer area of the condensers. An example application of this control for an air-cooled centrifugal chiller indicated that the COP could increase by 11.4-237.2%, depending on the operating conditions. Such the increase of the COP results in a reduction of up to 14.1 kWh/m{sup 2}, or 27.3% in the annual electricity consumption per unit A/C floor area of chillers, given that the chillers serve an office building requiring an annual cooling energy per unit A/C floor area of 173.3 kWh/m{sup 2}. The simulation results of this study will give HVAC engineers a better understanding of how to optimize the design and operation of air-cooled chillers. (author)

  13. A simple air-cooled reflux condenser for laboratory use

    International Nuclear Information System (INIS)

    Boult, K.A.

    1979-10-01

    This Memorandum describes the design of a simple compact air-cooled reflux condenser suitable for gloveboxes, cells or other locations where the provision of cooling water presents a problem. In a typical application the condenser functioned satisfactorily when used to condense water from a flask heated by a 100 watt mantle. There was no measurable loss of water from the boiling flask in 100 hours. (author)

  14. Fundamental research on the cooling characteristic of passive containment cooling system

    International Nuclear Information System (INIS)

    Kawakubo, M.; Kikura, H.; Aritomi, M.; Inaba, N.; Yamauchi, T.

    2004-01-01

    The objective of this experimental study is to clarify the heat transfer characteristics of the Passive Containment Cooling System (PCCS) with vertical heat transfer tubes for investigating the influence of non-condensable gas on condensation. Furthermore, hence we obtained new experimental correlation formula to calculate the transients in system temperature and pressure using the simulation program of the PCCS. The research was carried out using a forced circulation experimental loop, which simulates atmosphere inside PCCS with vertical heat transfer tubes if a loss of coolant accident (LOCA) occurs. The experimental facility consists of cooling water supply systems, an orifice flowmeter, and a tank equipped with the heat transfer pipe inside. Cooling water at a constant temperature is injected to the test part of heat transfer pipe vertically installed in the tank by forced circulation. At that time, the temperature of the cooling water between inlet and outlet of the pipe was measured to calculate the overall heat transfer coefficient between the cooling water and atmosphere in the tank. Thus, the heat transfer coefficient between heat transfer surface and the atmosphere in the tank considering the influence of the non-condensable gas was clarified. An important finding of this study is that the amount of condensation in the steamy atmosphere including non-condensable gas depends on the cooling water Reynolds number, especially the concentration of non-condensable gas that has great influence on the amount of condensation. (authors)

  15. ANALISIS PENGGUNAAN WATER COOLED CONDENSER PADA MESIN PENGKONDISIAN UDARA PAKET (AC WINDOW

    Directory of Open Access Journals (Sweden)

    IKG Wirawan

    2012-11-01

    Full Text Available One of the important aspects in thermal design is refrigeration and air conditioning. Working principle of air conditioning is absorption and thermal dissipation process. Condenser is main component to release the heat from refrigerant to the cooling medium. In the present research, water cooled condenser was used to replace the commonly air condenser. Pressure and temperature at some section of the components were observed in order to examine the performance of the air conditioning system. The results showed that the COP varied from 9.66 to 12.4; refrigerationg effect varied from 1.31 kW to 1.86 kW; cooling capacity varied from 0.38 TR to 0.53 TR; and heat transfer varied from 2.2 kW to 2.98 kW.

  16. On the possibility of a ''dry'' cooling tower application for the APS condensators with a dissociating coolant

    International Nuclear Information System (INIS)

    Mikhalevich, A.A.; Nesterenko, V.B.; Peslyak, V.I.

    1975-01-01

    Calculations have been carried out for a Geller cooling tower of a 1000 MW nuclear power plant aimed at investigating the possibility of using ''dry'' cooling towers to cool condensers of nuclear power plants with N 2 O 4 as coolant, and at estimating specific charges on the process water supply system. Taking into consideration commercialy produced equipment, air condenser plants are assumed to operate with an ordinary surface condenser. The main dimensional and cost parameters of a ''dry'' cooling tower for a thermal cycle version with the maximum temperature of 450 deg C are calculated using the Transelectro (Hungary) nomograms for average annual air temperature. The calculation results show the Geller cooling towers for 1000 MW nuclear power plants to be economically competitive with evaporating cooling towers; and more; besides, is this case atmosphere pollution is avoided and water flow rate for making-up the water supply system is reduced

  17. Comparative performance analysis of ice plant test rig with TiO2-R-134a nano refrigerant and evaporative cooled condenser

    Directory of Open Access Journals (Sweden)

    Amrat Kumar Dhamneya

    2018-03-01

    Full Text Available The nanoparticle is used in chillers for increasing system performance. The increasing concentration of nanoparticles (TiO2 in refrigerant increases the performances of the system due decreasing compressor work done and enhance heat transfer rate. For hot and dry climate condition, performances of air-cooled condenser minimize, and C. O. P. decreases extensively in chillers due to heat transfer rate decreases in the condenser. In the condenser, nano-refrigerants are not cool at the desired level, and the system was faulty. These drawbacks of the nano-particles mixed refrigerator have promoted the research and improving heat rejection rate in the condenser. In this article, vapour compression refrigeration system coupled with evaporative cooling pad, and nano-refrigerant, for improving the performance of the system in hot & dry weather is proposed and compared experimentally. Combined evaporative cooling system and ice plant test rig have been proposed for the appropriate heat rejection offered in the condenser due to a faulty system run at high pressure. The experimental investigations revealed that the performance characteristics of the evaporatively-cooled condenser are significantly enhanced. Maximum C.O.P. increases by about 51% in the hot and dry climate condition than the normal system.

  18. Kaon condensates, nuclear symmetry energy and cooling of neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, S. E-mail: kubis@alf.ifj.edu.pl; Kutschera, M

    2003-06-02

    The cooling of neutron stars by URCA processes in the kaon-condensed neutron star matter for various forms of nuclear symmetry energy is investigated. The kaon-nucleon interactions are described by a chiral Lagrangian. Nuclear matter energy is parametrized in terms of the isoscalar contribution and the nuclear symmetry energy in the isovector sector. High density behaviour of nuclear symmetry energy plays an essential role in determining the composition of the kaon-condensed neutron star matter which in turn affects the cooling properties. We find that the symmetry energy which decreases at higher densities makes the kaon-condensed neutron star matter fully protonized. This effect inhibits strongly direct URCA processes resulting in slower cooling of neutron stars as only kaon-induced URCA cycles are present. In contrast, for increasing symmetry energy direct URCA processes are allowed in the almost whole density range where the kaon condensation exists.

  19. Kaon condensates, nuclear symmetry energy and cooling of neutron stars

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.

    2003-01-01

    The cooling of neutron stars by URCA processes in the kaon-condensed neutron star matter for various forms of nuclear symmetry energy is investigated. The kaon-nucleon interactions are described by a chiral Lagrangian. Nuclear matter energy is parametrized in terms of the isoscalar contribution and the nuclear symmetry energy in the isovector sector. High density behaviour of nuclear symmetry energy plays an essential role in determining the composition of the kaon-condensed neutron star matter which in turn affects the cooling properties. We find that the symmetry energy which decreases at higher densities makes the kaon-condensed neutron star matter fully protonized. This effect inhibits strongly direct URCA processes resulting in slower cooling of neutron stars as only kaon-induced URCA cycles are present. In contrast, for increasing symmetry energy direct URCA processes are allowed in the almost whole density range where the kaon condensation exists

  20. Measures against the adverse impact of natural wind on air-cooled condensers in power plant

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The natural wind plays disadvantageous roles in the operation of air-cooled steam condensers in power plant.It is of use to take various measures against the adverse effect of wind for the performance improvement of air-cooled condensers.Based on representative 2×600 MW direct air-cooled power plant,three ways that can arrange and optimize the flow field of cooling air thus enhance the heat transfer of air-cooled condensers were proposed.The physical and mathematical models of air-cooled condensers with various flow leading measures were presented and the flow and temperature fields of cooling air were obtained by CFD simulation.The back pressures of turbine were calculated for different measures on the basis of the heat transfer model of air-cooled condensers.The results show that the performance of air-cooled condensers is improved thus the back pressure of turbine is lowered to some extent by taking measures against the adverse impact of natural wind.

  1. Developments in power plant cooling systems

    International Nuclear Information System (INIS)

    Agarwal, N.K.

    1993-01-01

    A number of cooling systems are used in the power plants. The condenser cooling water system is one of the most important cooling systems in the plant. The system comprises a number of equipment. Plants using sea water for cooling are designed for the very high corrosion effects due to sea water. Developments are taking place in the design, materials of construction as well as protection philosophies for the various equipment. Power optimisation of the cycle needs to be done in order to design an economical system. Environmental (Protection) Act places certain limitations on the effluents from the plant. An attempt has been made in this paper to outline the developing trends in the various equipment in the condenser cooling water systems used at the inland as well as coastal locations. (author). 5 refs., 6 refs

  2. A study on passive containment cooling condensers in SBWR

    International Nuclear Information System (INIS)

    Kuran, S.; Soekmen; C. N.

    2001-01-01

    The passive containment cooling condensers (PCCC) are the crucial part of several new reactor designs, like European Simplified Boiling Water Reactor (ESBWR) and the SBWR. In a hypothetical accident, the pressurised steam non-condensable mixture from drywell is condensed in PCCCs, and condensate is returned to reactor vessel while non-condensable is vented through wet well. In this study, in order to examine the performance of PCCCs, condensation with presence of noncondensable is investigated. Condensation with different noncondensable types and conditions is studied on a PCCC model, which is developed by using RELAP5 Mod3.2 computer code

  3. State waste discharge permit application for cooling water and condensate discharges

    Energy Technology Data Exchange (ETDEWEB)

    Haggard, R.D.

    1996-08-12

    The following presents the Categorical State Waste Discharge Permit (SWDP) Application for the Cooling Water and Condensate Discharges on the Hanford Site. This application is intended to cover existing cooling water and condensate discharges as well as similar future discharges meeting the criteria set forth in this document.

  4. Emergency core cooling system

    International Nuclear Information System (INIS)

    Abe, Nobuaki.

    1993-01-01

    A reactor comprises a static emergency reactor core cooling system having an automatic depressurization system and a gravitationally dropping type water injection system and a container cooling system by an isolation condenser. A depressurization pipeline of the automatic depressurization system connected to a reactor pressure vessel branches in the midway. The branched depressurizing pipelines are extended into an upper dry well and a lower dry well, in which depressurization valves are disposed at the top end portions of the pipelines respectively. If loss-of-coolant accidents should occur, the depressurization valve of the automatic depressurization system is actuated by lowering of water level in the pressure vessel. This causes nitrogen gases in the upper and the lower dry wells to transfer together with discharged steams effectively to a suppression pool passing through a bent tube. Accordingly, the gravitationally dropping type water injection system can be actuated faster. Further, subsequent cooling for the reactor vessel can be ensured sufficiently by the isolation condenser. (I.N.)

  5. Experimental study on energy performance of a split air-conditioner by using variable thickness evaporative cooling pads coupled to the condenser

    International Nuclear Information System (INIS)

    Martínez, P.; Ruiz, J.; Cutillas, C.G.; Martínez, P.J.; Kaiser, A.S.; Lucas, M.

    2016-01-01

    A well known strategy for improving the performance of air conditioning systems when using air-condensed units is to decrease the ambient inlet airflow temperature by means of an evaporative cooling pad. In this work experiments are conducted in a split air-conditioning system where the condensing unit is modified by coupling different evaporative cooling pads with variable thickness. The impact of the different cooling pads on the overall performance of the air-conditioning system is experimentally determined by measuring the airflow conditions and the energy consumption of the overall air conditioning system, including both the condenser fan and the feedwater recirculation pump of the cooling pads. The aim is to determine the energy efficiency improvement achieved by pre-cooling the ambient airflow compared to a common air-condensed unit and to calculate the optimal pad thickness that maximize the overall COP of the system. Experimental results indicate that the best overall COP is obtained by adding a cooling pad thickness of about 100 mm. At that point the compressor power consumption is reduced by 11.4%, the cooling capacity is increased by 1.8% and finally the overall COP is increased by 10.6%.

  6. Modelization of cooling system components

    Energy Technology Data Exchange (ETDEWEB)

    Copete, Monica; Ortega, Silvia; Vaquero, Jose Carlos; Cervantes, Eva [Westinghouse Electric (Spain)

    2010-07-01

    In the site evaluation study for licensing a new nuclear power facility, the criteria involved could be grouped in health and safety, environment, socio-economics, engineering and cost-related. These encompass different aspects such as geology, seismology, cooling system requirements, weather conditions, flooding, population, and so on. The selection of the cooling system is function of different parameters as the gross electrical output, energy consumption, available area for cooling system components, environmental conditions, water consumption, and others. Moreover, in recent years, extreme environmental conditions have been experienced and stringent water availability limits have affected water use permits. Therefore, modifications or alternatives of current cooling system designs and operation are required as well as analyses of the different possibilities of cooling systems to optimize energy production taking into account water consumption among other important variables. There are two basic cooling system configurations: - Once-through or Open-cycle; - Recirculating or Closed-cycle. In a once-through cooling system (or open-cycle), water from an external water sources passes through the steam cycle condenser and is then returned to the source at a higher temperature with some level of contaminants. To minimize the thermal impact to the water source, a cooling tower may be added in a once-through system to allow air cooling of the water (with associated losses on site due to evaporation) prior to returning the water to its source. This system has a high thermal efficiency, and its operating and capital costs are very low. So, from an economical point of view, the open-cycle is preferred to closed-cycle system, especially if there are no water limitations or environmental restrictions. In a recirculating system (or closed-cycle), cooling water exits the condenser, goes through a fixed heat sink, and is then returned to the condenser. This configuration

  7. Optimized evaporative cooling for sodium Bose-Einstein condensation against three-body loss

    International Nuclear Information System (INIS)

    Shobu, Takahiko; Yamaoka, Hironobu; Imai, Hiromitsu; Morinaga, Atsuo; Yamashita, Makoto

    2011-01-01

    We report on a highly efficient evaporative cooling optimized experimentally. We successfully created sodium Bose-Einstein condensates with 6.4x10 7 atoms starting from 6.6x10 9 thermal atoms trapped in a magnetic trap by employing a fast linear sweep of radio frequency at the final stage of evaporative cooling so as to overcome the serious three-body losses. The experimental results such as the cooling trajectory and the condensate growth quantitatively agree with the numerical simulations of evaporative cooling on the basis of the kinetic theory of a Bose gas carefully taking into account our specific experimental conditions. We further discuss theoretically a possibility of producing large condensates, more than 10 8 sodium atoms, by simply increasing the number of initial thermal trapped atoms and the corresponding optimization of evaporative cooling.

  8. The optimal operation of cooling tower systems with variable-frequency control

    Science.gov (United States)

    Cao, Yong; Huang, Liqing; Cui, Zhiguo; Liu, Jing

    2018-02-01

    This study investigates the energy performance of chiller and cooling tower systems integrated with variable-frequency control for cooling tower fans and condenser water pumps. With regard to an example chiller system serving an office building, Chiller and cooling towers models were developed to assess how different variable-frequency control methods of cooling towers fans and condenser water pumps influence the trade-off between the chiller power, pump power and fan power under various operating conditions. The matching relationship between the cooling tower fans frequency and condenser water pumps frequency at optimal energy consumption of the system is introduced to achieve optimum system performance.

  9. Preoperational test report, primary ventilation condensate system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-01-29

    Preoperational test report for Primary Ventilation Condensate System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides a collection point for condensate generated by the W-030 primary vent offgas cooling system serving tanks AYIOI, AY102, AZIOI, AZI02. The system is located inside a shielded ventilation equipment cell and consists of a condensate seal pot, sampling features, a drain line to existing Catch Tank 241-AZ-151, and a cell sump jet pump. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  10. Cold Vacuum Drying facility condensate collection system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) condensate collection system (CCS). The function of the CCS is to collect cooling coil condensate from air-handling units in the CVDF and to isolate the condensate in collection tanks until the condensate is determined to be acceptable to drain to the effluent drain collection basin

  11. Three-dimensional studies of mixing and stratification in containments cooled by internal condensers

    Energy Technology Data Exchange (ETDEWEB)

    Putz, F.; Dury, T. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    2001-07-01

    Within the scope of the fourth EU Framework Programme IPSS project, two passive containment cooling systems, the so-called Building Condenser (BC, under an additional bilateral contract between PSI and Siemens) and Plate Condenser (PC), have been studied at the PSI PANDA facility. From the two tests series, tests BC4 and PC1 have been selected for analysis with the code GOTHIC 6.0. Particular phenomena which are of importance with regard to the condensers operating conditions (mixing/stratification of non-condensable gases, such as air and helium) have been analysed. The GOTHIC simulations have been complemented by CFD calculations with CFX-4. (author)

  12. Three-dimensional studies of mixing and stratification in containments cooled by internal condensers

    International Nuclear Information System (INIS)

    Putz, F.; Dury, T.

    2001-01-01

    Within the scope of the fourth EU Framework Programme IPSS project, two passive containment cooling systems, the so-called Building Condenser (BC, under an additional bilateral contract between PSI and Siemens) and Plate Condenser (PC), have been studied at the PSI PANDA facility. From the two tests series, tests BC4 and PC1 have been selected for analysis with the code GOTHIC 6.0. Particular phenomena which are of importance with regard to the condensers operating conditions (mixing/stratification of non-condensable gases, such as air and helium) have been analysed. The GOTHIC simulations have been complemented by CFD calculations with CFX-4. (author)

  13. Condensation on a cooled plane upright wall

    International Nuclear Information System (INIS)

    Fortier, Andre.

    1975-01-01

    The vapor condensation along a cooled upright plane wall was studied. The theoretical and experimental results obtained in the simple case, give the essential characteristics of the phenomenon of condensation along a cold wall that keeps the vapor apart from the coolant inside a surface condenser. The phenomenon presents two different appearances according as the wall is wetted or not by the liquid. In the first case a continuous liquid film runs down the wall and a conventional Nusselt calculation gives the film thickness and the heat exchange coefficient between a pure saturated vapor and the cold wall. The calculation is developed in detail and the effect of a vapor flow along the film is discussed as well as that of the presence of a noncondensable gas inside the vapor. In the second case, separated liquid drops are formed on the wall, the phenomenon is called ''dropwise condensation'' and the heat exchange coefficients obtained are much higher than with film condensation. The theoretical aspects of the problem are discussed with some experimental results [fr

  14. Comparative performance analysis of ice plant test rig with TiO2-R-134a nano refrigerant and evaporative cooled condenser

    OpenAIRE

    Amrat Kumar Dhamneya; S.P.S. Rajput; Alok Singh

    2018-01-01

    The nanoparticle is used in chillers for increasing system performance. The increasing concentration of nanoparticles (TiO2) in refrigerant increases the performances of the system due decreasing compressor work done and enhance heat transfer rate. For hot and dry climate condition, performances of air-cooled condenser minimize, and C. O. P. decreases extensively in chillers due to heat transfer rate decreases in the condenser. In the condenser, nano-refrigerants are not cool at the desired l...

  15. Development of hybrid solar-assisted cooling/heating system

    KAUST Repository

    Huang, B.J.; Wu, J.H.; Hsu, H.Y.; Wang, J.H.

    2010-01-01

    A solar-assisted ejector cooling/heating system (SACH) was developed in this study. The SACH combines a pump-less ejector cooling system (ECS) with an inverter-type heat pump (R22) and is able to provide a stable capacity for space cooling. The ECS is driven by solar heat and is used to cool the condenser of the R22 heat pump to increase its COP and reduce the energy consumption of the compressor by regulating the rotational speed of the compressor through a control system. In a complete SACH system test run at outdoor temperature 35 °C, indoor temperature 25 °C and compressor speed 20-80 Hz, and the ECS operating at generator temperature 90 °C and condensing temperature 37 °C, the corresponding condensing temperature of the heat pump in the SACH is 24.5-42 °C, cooling capacity 1.02-2.44 kW, input power 0.20-0.98 kW, and cooling COPc 5.11-2.50. This indicates that the use of ECS in SACH can effectively reduce the condensing temperature of the heat pump by 12.6-7.3 °C and reduce the power consumption by 81.2-34.5%. The SACH can also supply heat from the heat pump. At ambient temperature from 5 °C to 35 °C, the heating COPh is in the range 2.0-3.3. © 2010 Elsevier Ltd. All rights reserved.

  16. Development of hybrid solar-assisted cooling/heating system

    KAUST Repository

    Huang, B.J.

    2010-08-01

    A solar-assisted ejector cooling/heating system (SACH) was developed in this study. The SACH combines a pump-less ejector cooling system (ECS) with an inverter-type heat pump (R22) and is able to provide a stable capacity for space cooling. The ECS is driven by solar heat and is used to cool the condenser of the R22 heat pump to increase its COP and reduce the energy consumption of the compressor by regulating the rotational speed of the compressor through a control system. In a complete SACH system test run at outdoor temperature 35 °C, indoor temperature 25 °C and compressor speed 20-80 Hz, and the ECS operating at generator temperature 90 °C and condensing temperature 37 °C, the corresponding condensing temperature of the heat pump in the SACH is 24.5-42 °C, cooling capacity 1.02-2.44 kW, input power 0.20-0.98 kW, and cooling COPc 5.11-2.50. This indicates that the use of ECS in SACH can effectively reduce the condensing temperature of the heat pump by 12.6-7.3 °C and reduce the power consumption by 81.2-34.5%. The SACH can also supply heat from the heat pump. At ambient temperature from 5 °C to 35 °C, the heating COPh is in the range 2.0-3.3. © 2010 Elsevier Ltd. All rights reserved.

  17. Energy and Exergy Analysis for Improving the Energy Performance of Air-Cooled Liquid Chillers by Different Condensing-Coil Configurations

    Directory of Open Access Journals (Sweden)

    Tzong-Shing Lee

    2012-03-01

    Full Text Available This study constructed a parameter analysis for improving the energy performance of air-cooled water chillers by altering the angle configuration of the condenser coils. The mathematical models for energy and exergy analyses of the individual components and overall system of air-cooled water chillers are presented. This study investigated the potential enhancement of performance efficiency in air-cooled chillers and the energy conversion efficiency of each component, in order to determine how the angle configuration of condenser coils influences chiller performance. This study found that the overall performance of an air-cooled chiller could be improved by approximately 3.4%, and the total irreversibility could be reduced by approximately 2.7%. With each 1% increase in average wind speed over the condenser coils, the overall performance of an air‑cooled chiller was found to be enhanced by approximately 0.43%, and its total irreversibility was reduced by approximately 0.35%. The results of this study can be effectively applied to air-cooled condenser units, and can provide an important basis of reference for developing and enhancing the energy efficiency of air-cooled chillers.

  18. Optimization of a condensed-neon cooling system for a HTS synchronous motor with Gd-bulk HTS field-pole magnets

    Energy Technology Data Exchange (ETDEWEB)

    Felder, B; Miki, M; Tsuzuki, K; Izumi, M [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchujima, Koto-ku, Tokyo 135-8533 (Japan); Hayakawa, H, E-mail: d082028@kaiyodai.ac.j [Kitano Seiki Co. Ltd., 7-17-3, Chuo, Ota-ku, Tokyo 143-0024 (Japan)

    2010-06-01

    The axial-gap synchronous machine developed in our laboratory is based on Gd-bulk HTS field-pole magnets, able to trap a part of the magnetic flux they are submitted to when cooled down below T{sub c}. At the liquid nitrogen temperature, by the Pulsed-Field Magnetization (PFM), 1.04 T was trapped in 60 mm-diameter and 20 mm-thickness magnets, leading to an output power of the motor of 10 kW at 720 rpm. To enhance this performance, we have to increase the total amount of trapped flux in the bulk, the shortest way being to decrease the temperature of the bulk HTS. Thus, we focused on the improvement of the condensed-neon cooling system, a closed-cycle thermosyphon, so that it provided enough cooling power to lead the rotor plate enclosing the magnets to a low temperature. The present study implied coming out with a new fin-oriented design of the condensation chamber; hence, the numeric calculations and FEM software (ANSYS) heat transfer simulations were conducted for various shapes and positions of the fins. The trapezoidal design offering the best efficiency was then manufactured for testing in a heat-load test configuration, leading to cooling times divided by three and a maximum heat load endured of 55 W.

  19. Optimization of a condensed-neon cooling system for a HTS synchronous motor with Gd-bulk HTS field-pole magnets

    Science.gov (United States)

    Felder, B.; Miki, M.; Tsuzuki, K.; Izumi, M.; Hayakawa, H.

    2010-06-01

    The axial-gap synchronous machine developed in our laboratory is based on Gd-bulk HTS field-pole magnets, able to trap a part of the magnetic flux they are submitted to when cooled down below Tc. At the liquid nitrogen temperature, by the Pulsed-Field Magnetization (PFM), 1.04 T was trapped in 60 mm-diameter and 20 mm-thickness magnets, leading to an output power of the motor of 10 kW at 720 rpm. To enhance this performance, we have to increase the total amount of trapped flux in the bulk, the shortest way being to decrease the temperature of the bulk HTS. Thus, we focused on the improvement of the condensed-neon cooling system, a closed-cycle thermosyphon, so that it provided enough cooling power to lead the rotor plate enclosing the magnets to a low temperature. The present study implied coming out with a new fin-oriented design of the condensation chamber; hence, the numeric calculations and FEM software (ANSYS) heat transfer simulations were conducted for various shapes and positions of the fins. The trapezoidal design offering the best efficiency was then manufactured for testing in a heat-load test configuration, leading to cooling times divided by three and a maximum heat load endured of 55 W.

  20. Modelling of a condenser-fan control for an air-cooled centrifugal chiller

    International Nuclear Information System (INIS)

    Yu, F.W.; Chan, K.T.

    2007-01-01

    There is a lack of detailed experimental and simulation studies on air-cooled centrifugal chillers. This paper investigates how to optimize the control of condenser fans within the chillers to maximize their coefficients of performance (COPs). A thermodynamic model for the chillers was developed and used to analyse the steady-state COP under various load and ambient conditions. An algorithm is introduced to compute the number of staged condenser fans based on settings of the condensing pressure and outdoor temperature. The model was validated using the experimental data and performance data of an existing chiller running under various operating conditions. It is found that the best strategy for switching condenser fans is to vary their rotating speed by the use of a set point of the condensing temperature, which is adjusted in response to the chiller load and condenser air-inlet temperature. The results of this paper provide an important insight into how to increase the COPs of air-cooled chillers

  1. Modelling of a condenser-fan control for an air-cooled centrifugal chiller

    Energy Technology Data Exchange (ETDEWEB)

    Yu, F.W.; Chan, K.T. [Department of Building Services Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)

    2007-11-15

    There is a lack of detailed experimental and simulation studies on air-cooled centrifugal chillers. This paper investigates how to optimize the control of condenser fans within the chillers to maximize their coefficients of performance (COPs). A thermodynamic model for the chillers was developed and used to analyse the steady-state COP under various load and ambient conditions. An algorithm is introduced to compute the number of staged condenser fans based on settings of the condensing pressure and outdoor temperature. The model was validated using the experimental data and performance data of an existing chiller running under various operating conditions. It is found that the best strategy for switching condenser fans is to vary their rotating speed by the use of a set point of the condensing temperature, which is adjusted in response to the chiller load and condenser air-inlet temperature. The results of this paper provide an important insight into how to increase the COPs of air-cooled chillers. (author)

  2. Integrated systems for power plant cooling and wastewater management

    International Nuclear Information System (INIS)

    Haith, D.A.

    1975-01-01

    The concept of integrated management of energy and water resources, demonstrated in hydropower development, may be applicable to steam-generated power, also. For steam plants water is a means of disposing of a waste product, which is unutilized energy in the form of heat. One framework for the evolution of integrated systems is the consideration of possible technical linkages between power plant cooling and municipal wastewater management. Such linkages include the use of waste heat as a mechanism for enhancing wastewater treatment, the use of treated wastewater as make-up for evaporative cooling structures, and the use of a pond or reservoir for both cooling and waste stabilization. This chapter reports the results of a systematic evaluation of possible integrated systems for power plant cooling and waste water management. Alternatives were analyzed for each of three components of the system--power plant cooling (condenser heat rejection), thermally enhanced waste water treatment, and waste water disposal. Four cooling options considered were evaporative tower, open cycle, spray pond, and cooling pond. Three treatment alternatives considered were barometric condenser-activated sludge, sectionalized condenser-activated sludge, and cooling/stabilization pond. Three disposal alternatives considered were ocean discharge, land application (spray irrigation), and make-up (for evaporative cooling). To facilitate system comparisons, an 1100-MW nuclear power plant was selected. 31 references

  3. A preliminary study on HTGR with air-cooled condenser at Riyadh, Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jonghwa; Lee, Wonjae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    N GNP reactor plant adopted a Rank in steam cycle for early deployment and for reducing R and D risk and cost. Original plant design is based on a wet cooling tower with wet bulb temperature of 34 .deg. C. This cooling environment may be sufficient for most area in North America. However, we should consider air temperature of 45 .deg. C and no available cooling water for any site near Riyadh, Saudi Arabia. A plausible option in such arid area is using an air-cooled condenser(ACC) which is widely used in a combined cycle plant in arid region. ACC is also suitable for freezing area such as northern territory or high elevation remote area. We have studied impact of the cooling method on the power generation efficiency and the annual average power production referencing N GNP steam turbine. Even though condenser split is assumed to be the same between ACC and wet cooling tower, large difference in air temperature and wet bulb temperature makes large efficiency loss in the ACC. The ACC efficiency is lower than that of the wet cooling tower by 1.12%. To make up this loss, we proposed the variable steam extraction rates operation. An air cooled condenser is a practical.

  4. The research activities on in-tube condensation in the presence of noncondensables for passive cooling applications

    Energy Technology Data Exchange (ETDEWEB)

    Tanrikut, A [Turkish Atomic Energy Authority, Ankara (Turkey)

    1996-12-01

    The introduction of nuclear power becomes an attractive solution to the problem of increasing demand for electricity power capacity in Turkey. Thus, Turkey is willing to follow the technological development trends in advanced reactor systems and to participate in joint research studies. The primary objectives of the passive design features are to simplify the design, which assures the minimized demand on operator, and to improve plant safety. To accomplish these features the operating principles of passive safety systems should be well understood by an experimental validation program. Such a validation program is also important for the assessment of advanced computer codes which are currently used for design and licensing procedures. The condensation mode of heat transfer plays an important role for the passive heat removal applications in the current nuclear power plants (e.g. decay heat removal via steam generators in case of loss of heat removal system) and advanced water-cooled reactor systems. But is well established that the presence of noncondensable gases can greatly inhibit the condensation process due to the build-up of noncondensable gas concentration at the liquid/gas interface. The isolation condenser of passive containment cooling system of the simplified boiling water reactors is a typical application area of in-tube condensation in the presence of noncondensable. This paper describes the research activities at the Turkish Atomic Energy Authority concerning condensation in the presence of air, as a noncondensable gas. (author). 9 refs, 6 figs.

  5. The research activities on in-tube condensation in the presence of noncondensables for passive cooling applications

    International Nuclear Information System (INIS)

    Tanrikut, A.

    1996-01-01

    The introduction of nuclear power becomes an attractive solution to the problem of increasing demand for electricity power capacity in Turkey. Thus, Turkey is willing to follow the technological development trends in advanced reactor systems and to participate in joint research studies. The primary objectives of the passive design features are to simplify the design, which assures the minimized demand on operator, and to improve plant safety. To accomplish these features the operating principles of passive safety systems should be well understood by an experimental validation program. Such a validation program is also important for the assessment of advanced computer codes which are currently used for design and licensing procedures. The condensation mode of heat transfer plays an important role for the passive heat removal applications in the current nuclear power plants (e.g. decay heat removal via steam generators in case of loss of heat removal system) and advanced water-cooled reactor systems. But is well established that the presence of noncondensable gases can greatly inhibit the condensation process due to the build-up of noncondensable gas concentration at the liquid/gas interface. The isolation condenser of passive containment cooling system of the simplified boiling water reactors is a typical application area of in-tube condensation in the presence of noncondensable. This paper describes the research activities at the Turkish Atomic Energy Authority concerning condensation in the presence of air, as a noncondensable gas. (author). 9 refs, 6 figs

  6. Homostructured ZnO-based metal-oxide-semiconductor field-effect transistors deposited at low temperature by vapor cooling condensation system

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tzu-Shun [Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, 701 Tainan, Taiwan, ROC (China); Lee, Ching-Ting, E-mail: ctlee@ee.ncku.edu.tw [Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, 701 Tainan, Taiwan, ROC (China); Institute of Microelectronics, Department of Electrical Engineering, Advanced Optoelectronic Technology Center, National Cheng Kung University, 701 Tainan, Taiwan, ROC (China)

    2015-11-01

    Highlights: • The vapor cooling condensation system was designed and used to deposit homostructured ZnO-based metal-oxide-semiconductor field-effect transistors. • The resulting homostructured ZnO-based MOSFETs operated at a reverse voltage of −6 V had a very low gate leakage current of 24 nA. • The associated I{sub DSS} and the g{sub m(max)} were 5.64 mA/mm and 1.31 mS/mm, respectively. - Abstract: The vapor cooling condensation system was designed and used to deposit homostructured ZnO-based metal-oxide-semiconductor field-effect transistors (MOSFETs) on sapphire substrates. Owing to the high quality of the deposited, various ZnO films and interfaces, the resulting MOSFETs manifested attractive characteristics, such as the low gate leakage current of 24 nA, the low average interface state density of 2.92 × 10{sup 11} cm{sup −2} eV{sup −1}, and the complete pinch-off performance. The saturation drain–source current, the maximum transconductance, and the gate voltage swing of the resulting homostructured ZnO-based MOSFETs were 5.64 mA/mm, 1.31 mS/mm, and 3.2 V, respectively.

  7. Evaporation and condensation heat transfer in a suppression chamber of the water wall type passive containment cooling system

    International Nuclear Information System (INIS)

    Fujii, Tadashi; Kataoka, Yoshiyuki; Murase, Michio

    1996-01-01

    To evaluate the system pressure response of a water wall type containment cooling system, which is one of the passive safety systems, the evaporation and condensation behaviors in a suppression chamber have been experimentally examined. In the system, the suppression pool water evaporates from the pool surface, passing into the wetwell due to pool temperature rise, while steam in the wetwell condenses on the steel containment vessel wall due to the heat release through the wall. The wetwell is a gas phase region in the suppression chamber and its pressure, which is expressed as the sum of the noncondensable gas pressure and saturated steam pressure, is strongly affected by the evaporation heat transfer from the suppression pool surface and condensation heat transfer on the containment vessel wall. Based on the measured temperature profiles near the heat transfer surface and the wetwell pressure using two apparatuses, evaporation and condensation heat transfer coefficients were evaluated. The following results were obtained. (1) Both heat transfer coefficients increased as the ratio of the steam partial pressure to the total pressure increased. (2) Comparison of the results from two types of test apparatuses confirmed that the size of the heat transfer surface did not affect the heat transfer characteristics within these tests. (3) The heat transfer coefficients were expressed by the ratio of the steam to noncondensable gas logarithmic mean concentration, which considered the steam and gas concentration gradient from the heat transfer surface to the wetwell bulk. (author)

  8. Full scaled tests of the KERENA trademark containment cooling condenser at the INKA test facility

    International Nuclear Information System (INIS)

    Leyer, Stephan; Maisberger, Fabian; Lineva, Natalia; Wagner, Thomas; Doll, Mathias; Herbst, Vasilli; Wich, Michael

    2010-01-01

    KERENA trademark is a medium-capacity boiling water reactor. It combines passive safety systems with active safety equipment of service-proven design. The passive systems utilize basic laws of physics, such as gravity and natural convection, enabling them to function without any power supply or actuation by instrumentation and control (I and C) equipment. They are designed to bring the plant to a safe and stable condition without the aid of active systems. Furthermore, the passive safety features partially replace the active systems, which reduces costs significantly and provides a safe, reliable and economically competitive plant design. At the new test facility at Karlstein called INKA (Integral Test Stand Karlstein), the key components of the KERENA trademark passive safety concept - the Emergency Condenser (EC), the Containment Cooling Condenser (CCC) and the passive core flooding system (PCFS) - are presently under full-scale testing,. Integral system tests will also be performed to show how the passive safety systems interact under various anticipated accident conditions and to demonstrate the ability of the passive systems to bring the plant to a safe and stable condition without the aid of active systems or actuation by I and C signals. The passive pressure pulse transmitter (PPPT) will be included in these integral tests. In this report the experimental setup and the first test results with the full scaled Containment Cooling Condenser will be described. (orig.)

  9. System for cooling the containment vessel of a nuclear reactor

    International Nuclear Information System (INIS)

    Costes, Didier.

    1982-01-01

    The invention concerns a post-accidental cooling system for a nuclear reactor containment vessel. This system includes in series a turbine fed by the moist air contained in the vessel, a condenser in which the air is dried and cooled, a compressor actuated by the turbine and a cooling exchanger. The cold water flowing through the condenser and in the exchanger is taken from a tank outside the vessel and injected by a pump actuated by the turbine. The application is for nuclear reactors under pressure [fr

  10. Automation of the electromagnetic filter applied for condensation water treatment in the secondary cooling system of the Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Szilagyi, Gyoergy

    1989-01-01

    A full-flow condensation water purification system is applied in the secondary cooling circuit of the Paks NPP. The electromagnetic filter of the filtering system eliminates ferromagnetic impurities. The filter consists of a high current coil and an automatic control unit. During the improvement of this unit, a FESTO FPC-404 type controller based on an extended capability PLC was installed. (R.P.) 5 figs

  11. Cold Vacuum Drying facility condensate collection system design description (SYS 19); FINAL

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) condensate collection system (CCS). The function of the CCS is to collect cooling coil condensate from air-handling units in the CVDF and to isolate the condensate in collection tanks until the condensate is determined to be acceptable to drain to the effluent drain collection basin

  12. Numerical study of the thermo-flow performances of novel finned tubes for air-cooled condensers in power plant

    Science.gov (United States)

    Guo, Yonghong; Du, Xiaoze; Yang, Lijun

    2018-02-01

    Air-cooled condenser is the main equipment of the direct dry cooling system in a power plant, which rejects heat of the exhaust steam with the finned tube bundles. Therefore, the thermo-flow performances of the finned tubes have an important effect on the optimal operation of the direct dry cooling system. In this paper, the flow and heat transfer characteristics of the single row finned tubes with the conventional flat fins and novel jagged fins are investigated by numerical method. The flow and temperature fields of cooling air for the finned tubes are obtained. Moreover, the variations of the flow resistance and average convection heat transfer coefficient under different frontal velocity of air and jag number are presented. Finally, the correlating equations of the friction factor and Nusselt number versus the Reynolds number are fitted. The results show that with increasing the frontal velocity of air, the heat transfer performances of the finned tubes are enhanced but the pressure drop will increase accordingly, resulting in the average convection heat transfer coefficient and friction factor increasing. Meanwhile, with increasing the number of fin jag, the heat transfer performance is intensified. The present studies provide a reference in optimal designing for the air-cooled condenser of direct air cooling system.

  13. Evaporative cooling enhanced cold storage system

    Science.gov (United States)

    Carr, P.

    1991-10-15

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  14. Thermodynamic-behaviour model for air-cooled screw chillers with a variable set-point condensing temperature

    International Nuclear Information System (INIS)

    Chan, K.T.; Yu, F.W.

    2006-01-01

    This paper presents a thermodynamic model to evaluate the coefficient of performance (COP) of an air-cooled screw chiller under various operating conditions. The model accounts for the real process phenomena, including the capacity control of screw compressors and variations in the heat-transfer coefficients of an evaporator and a condenser at part load. It also contains an algorithm to determine how the condenser fans are staged in response to a set-point condensing temperature. The model parameters are identified, based on the performance data of chiller specifications. The chiller model is validated using a wide range of operating data of an air-cooled screw chiller. The difference between the measured and modelled COPs is within ±10% for 86% of the data points. The chiller's COP can increase by up to 115% when the set-point condensing temperature is adjusted, based on any given outdoor temperature. Having identified the variation in the chiller's COP, a suitable strategy is proposed for air-cooled screw chillers to operate at maximum efficiency as much as possible when they have to satisfy a building's cooling-load

  15. Investigation of lactose crystallization process during condensed milk cooling using native vacuum-crystallizer

    Directory of Open Access Journals (Sweden)

    E. I. Dobriyan

    2016-01-01

    Full Text Available One of the most general defects of condensed milk with sugar is its consistency heterogeneity – “candying”. The mentioned defect is conditioned by the presence of lactose big crystals in the product. Lactose crystals size up to 10 µm is not organoleptically felt. The bigger crystals impart heterogeneity to the consistency which can be evaluated as “floury”, “sandy”, “crunch on tooth”. Big crystals form crystalline deposit on the can or industrial package bottom in the form of thick layer. Industrial processing of the product with the defective process of crystallization results in the expensive equipment damage of the equipment at the confectionary plant accompanied with heavy losses. One of the factors influencing significantly lactose crystallization is the product cooling rate. Vacuum cooling is the necessary condition for provision of the product consistency homogeneity. For this purpose the vacuum crystallizers of “Vigand” company, Germany, are used. But their production in the last years has been stopped. All-Russian dairy research institute has developed “The references for development of the native vacuum crystallizer” according to which the industrial model has been manufactured. The produced vacuum – crystallizer test on the line for condensed milk with sugar production showed that the product cooling on the native vacuum-crystallizer guarantees production of the finished product with microstructure meeting the requirements of State standard 53436–2009 “Canned Milk. Milk and condensed cream with sugar”. The carried out investigations evidences that the average lactose crystals size in the condensed milk with sugar cooled at the native crystallizer makes up 6,78 µm. The granulometric composition of the product crystalline phase cooled at the newly developed vacuum-crystallizer is completely identical to granulometric composition of the product cooled at “Vigand” vacuum-crystallizer.

  16. Constraints of using thermostatic expansion valves to operate air-cooled chillers at lower condensing temperatures

    International Nuclear Information System (INIS)

    Yu, F.W.; Chan, K.T.; Chu, H.Y.

    2006-01-01

    Thermostatic expansion valves (TXVs) have long been used in air-cooled chillers to implement head pressure control under which the condensing temperature is kept high at around 50 o C by staging condenser fans as few as possible. This paper considers how TXVs prevent the chillers from operating with an increased COP at lower condensing temperatures when the chiller load or outdoor temperature drops. An analysis on an existing air-cooled reciprocating chiller showed that the range of differential pressures across TXVs restricts the maximum heat rejection airflow required to increase the chiller COP, though the set point of condensing temperature is reduced to 22 o C from a high level of 45 o C. It is possible to use electronic expansion valves to meet the differential pressure requirements for maximum chiller COP. There is a maximum of 28.7% increase in the chiller COP when the heat rejection airflow is able to be maximized in various operating conditions. The results of this paper emphasize criteria for lowering the condensing temperature to enhance the performance of air-cooled chillers

  17. Numerical modelling of series-parallel cooling systems in power plant

    Directory of Open Access Journals (Sweden)

    Regucki Paweł

    2017-01-01

    Full Text Available The paper presents a mathematical model allowing one to study series-parallel hydraulic systems like, e.g., the cooling system of a power boiler's auxiliary devices or a closed cooling system including condensers and cooling towers. The analytical approach is based on a set of non-linear algebraic equations solved using numerical techniques. As a result of the iterative process, a set of volumetric flow rates of water through all the branches of the investigated hydraulic system is obtained. The calculations indicate the influence of changes in the pipeline's geometrical parameters on the total cooling water flow rate in the analysed installation. Such an approach makes it possible to analyse different variants of the modernization of the studied systems, as well as allowing for the indication of its critical elements. Basing on these results, an investor can choose the optimal variant of the reconstruction of the installation from the economic point of view. As examples of such a calculation, two hydraulic installations are described. One is a boiler auxiliary cooling installation including two screw ash coolers. The other is a closed cooling system consisting of cooling towers and condensers.

  18. Characteristics of Vacuum Freeze Drying with Utilization of Internal Cooling and Condenser Waste Heat for Sublimation

    Directory of Open Access Journals (Sweden)

    Muhammad Alhamid

    2013-09-01

    Full Text Available Vacuum freeze drying is an excellent drying method, but it is very energy-intensive because a relatively long drying time is required. This research investigates the utilization of condenser waste heat for sublimation as a way of accelerating the drying rate. In addition, it also investigates the effect of internal cooling combined with vacuum cooling in the pressure reduction process. Jelly fish tentacles were used as the specimen, with different configurations for condenser heat waste and internal cooling valve opening. The results show that heating with condenser heat waste can accelerate the drying rate up to 0.0035 kg/m2.s. In addition, pre-freezing by internal cooling prevents evaporation until the mass of the specimen is 0.47 g and promotes transition of the specimen into the solid phase.

  19. Performance of evaporative condensers

    Energy Technology Data Exchange (ETDEWEB)

    Ettouney, Hisham M.; El-Dessouky, Hisham T.; Bouhamra, Walid; Al-Azmi, Bader

    2001-07-01

    Experimental investigation is conducted to study the performance of evaporative condensers/coolers. The analysis includes development of correlations for the external heat transfer coefficient and the system efficiency. The evaporative condenser includes two finned-tube heat exchangers. The system is designed to allow for operation of a single condenser, two condensers in parallel, and two condensers in series. The analysis is performed as a function of the water-to-air mass flow rate ratio (L/G) and the steam temperature. Also, comparison is made between the performance of the evaporative condenser and same device as an air-cooled condenser. Analysis of the collected data shows that the system efficiency increases at lower L/G ratios and higher steam temperatures. The system efficiency for various configurations for the evaporative condenser varies between 97% and 99%. Lower efficiencies are obtained for the air-cooled condenser, with values between 88% and 92%. The highest efficiency is found for the two condensers in series, followed by two condensers in parallel and then the single condenser. The parallel condenser configuration can handle a larger amount of inlet steam and can provide the required system efficiency and degree of subcooling. The correlation for the system efficiency gives a simple tool for preliminary system design. The correlation developed for the external heat transfer coefficient is found to be consistent with the available literature data. (Author)

  20. Experimental facility with two-phase flow and with high concentration of non-condensable gases for research and development of emergency cooling system of advanced nuclear reactors

    International Nuclear Information System (INIS)

    Macedo, Luiz Alberto; Baptista Filho, Benedito Dias

    2006-01-01

    The development of emergency cooling passive systems of advanced nuclear reactors requires the research of some relative processes to natural circulation, in two-phase flow conditions involving condensation processes in the presence of non-condensable gases. This work describes the main characteristics of the experimental facility called Bancada de Circulacao Natural (BCN), designed for natural circulation experiments in a system with a hot source, electric heater, a cold source, heat exchanger, operating with two-phase flow and with high concentration of noncondensable gas, air. The operational tests, the data acquisition system and the first experimental results in natural circulation are presented. The experiments are transitory in natural circulation considering power steps. The distribution of temperatures and the behavior of the flow and of the pressure are analyzed. The experimental facility, the instrumentation and the data acquisition system demonstrated to be adapted for the purposes of research of emergency cooling passive systems, operating with two-phase flow and with high concentration of noncondensable gases. (author)

  1. Towards a Better Control of Chemicals Dosing in Condenser Open-Recirculating Cooling Systems Through the Use of Modelling

    International Nuclear Information System (INIS)

    Lambert, Philippa; Lepine, Gaelle; Rapenne, Sophie; Demay, Eric; Jardin, Audrey; Shakourzadeh, Khalil; Alos-Ramos, Olga

    2012-09-01

    The main issue of condenser open recirculating cooling systems remains scaling. This can have high economic consequences due to a loss of thermal exchange, an increase of maintenance costs and potentially plant shutdown. To tackle this problem, EDF is currently designing new chemicals' dosing equipment for anti-scalants or acid. To optimise treatment cost and limit the chemicals' environmental impact, dosing and control systems should be efficient enough to add only the required quantity to prevent scaling without overdosing. CooliSS C , a model developed for simulating the water chemistry of open recirculating cooling systems, can be used to adjust acid dosage and to pre-evaluate selected acid control systems. In circuits with no current treatment, where the scaling situation is being monitored, CooliSS C is a useful tool in predicting scaling potential and could even be used to predict the expected quantity of deposits. In the first case study, CooliSS ST, the static version of the model, was used to evaluate the sulfuric acid injection needs for Golfech nuclear power plant following a modification to the condenser cooling water circuit operating conditions. The results obtained via simulation were compared with manual calculations in order to demonstrate the accuracy of the software. In the second case study, CooliSS DX, the dynamic version of the CooliSS C model, was used to evaluate new acid control systems planned for Cruas nuclear power plant before the systems' commissioning. CooliSS DX predicts the scaling rate in the different parts of the cooling water system as a function of time. In fact, this version is able to calculate the variations of chemical composition along the circuit when operating conditions change (make-up quality, flow rates, evaporation rate, temperature...). A module was combined to CooliSS DX to evaluate acid control equipment. This module allows the initial calculation of the acid flow rate as a function of operating

  2. The physico-chemical problems involved in condenser cooling, circuit sealing and stain

    International Nuclear Information System (INIS)

    Ropars, Jean.

    1975-01-01

    Today thermal production of electric energy requiers the use of steam turbines and then needs cold sources (condensers), the latter being obtained by means of a water circulation. Considerable amounts of water are involved. For instance, as for a 900MW power plant of the PWR type, a 12 deg C heating needs 40m 3 /s of cooling water. The needs in water introduce a limitation in the possible site selection for power plant settling (seaside or river with an important steady flow). The important amounts of heat involved create environmental problems. Means for limiting the heat amount released consist in using atmospheric cooling systems. A further constraint relating to scaling is added to the usual corrosion and stain problems when operating the devices. Changes in the carbon dioxide equilibrium and concentration due to the passage through the air cooling systems causes such scaling formation. The evolution of the physico-chemical parameters of the cooling water is described with the risks resulting for the circuits. Means to be developed for preventing scaling, stain and corrosion are presented. The solutions kept by E.D.F. for the exploitation of cooling circuits are indicated. The procedure developed must avoid any chemical pollution of water wastes [fr

  3. Thermalization and cooling of plasmon-exciton polaritons : towards quantum condensation

    NARCIS (Netherlands)

    Rodriguez, S.R.K.; Feist, J.; Verschuuren, M.A.; Garcia Vidal, F.J.; Gomez Rivas, J.

    2013-01-01

    We present indications of thermalization and cooling of quasiparticles, a precursor for quantum condensation, in a plasmonic nanoparticle array. We investigate a periodic array of metallic nanorods covered by a polymer layer doped with an organic dye at room temperature. Surface lattice resonances

  4. Heat conduction boundary layers of condensed clumps in cooling flows

    International Nuclear Information System (INIS)

    Boehringer, H.; Fabian, A.C.

    1989-01-01

    The structure of heat conduction boundary layers of gaseous condensations embedded in the hot intergalactic gas in clusters of galaxies is investigated by means of steady, one-dimensional, hydrodynamic models. It is assumed that heat conduction is effective only on scales much smaller than the total region of the cooling flow. Models are calculated for an arbitrary scaling factor, accounting for the reduction in heat conduction efficiency compared to the classical Spitzer case. The results imply a lower limit to the size spectrum of the condensations. The enhancement of cooling in the ambient medium due to heat conduction losses is calculated for a range of clump parameters. The luminosity of several observable emission lines, the extreme ultraviolet (EUV) and soft X-ray emission spectrum, and the column density of some important ions are determined for the model boundary layers and compared with observations. (author)

  5. System for Cooling of Electronic Components

    Science.gov (United States)

    Vasil'ev, L. L.; Grakovich, L. P.; Dragun, L. A.; Zhuravlev, A. S.; Olekhnovich, V. A.; Rabetskii, M. I.

    2017-01-01

    Results of computational and experimental investigations of heat pipes having a predetermined thermal resistance and a system based on these pipes for air cooling of electronic components and diode assemblies of lasers are presented. An efficient compact cooling system comprising heat pipes with an evaporator having a capillary coating of a caked copper powder and a condenser having a developed outer finning, has been deviced. This system makes it possible to remove, to the ambient air, a heat flow of power more than 300 W at a temperature of 40-50°C.

  6. Part load performance of air-cooled centrifugal chillers with variable speed condenser fan control

    Energy Technology Data Exchange (ETDEWEB)

    Yu, F.W.; Chan, K.T. [Department of Building Services Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)

    2007-11-15

    Air-cooled centrifugal chillers are commonly used in commercial buildings but their performance analysis is lacking. This paper investigates the part load performance of the chillers via a thermodynamic model. The model was validated using a wide range of operating data from an existing chiller with specific settings of outdoor temperature and condensing pressure in controlling the condensing temperature. The validated model was developed specifically to ascertain the maximum coefficient of performance of chiller (COP) together with the strategy for optimizing the condensing temperature under various operating conditions. It is found that the highest COP occurs at a part load ratio (PLR) of 0.71-0.84, depending on the outdoor temperature and the control of condensing temperature, rather than at full load. Yet the chillers operating at such part load conditions will cause extra energy used for the early staging of chilled water pumps. To minimize the overall chiller plant energy consumption, it is still preferable to implement chiller sequencing based on the full load condition than on the aforementioned PLRs. The results of this paper present criteria for implementing low-energy strategies for operating air-cooled chillers satisfying a given building cooling load profile. (author)

  7. STRATEGY WATER-BASED CONDENSER : An Experimental Scale Model for Hybrid Passive Cooling Systems to Improve Indoor Temperature and Hot Water Utilities in Surabaya-Indonesia

    Directory of Open Access Journals (Sweden)

    Danny Santoso Mintorogo

    2003-01-01

    Full Text Available This paper makes a case of energy saving research, to system water-based condenser for the use of energy efficient with involvement of forced fluid hybrid passive cooling and water heating in building systems. Our argument is based on the fact that series of water copper pipes are to be cooled enough by nocturnal radiant cooling of the night cool air to lower the indoor air temperature at the daytime. We describe the model of working to which we use and to which we believe that series of cool water copper pipes as evaporator allows effectively reducing the energy used for indoor cooling and for water heating utilization. We then measure the model indoor temperature, and water temperature inside the series of copper pipes. Kinds of water coolant used for cooling are an essential factor. Finally, we will discuss some of the achieving of the effective cooled water, setting up the pipes water-based condenser hybrid system on the top of the outside roof as well as setting up the evaporator coils at ceiling. Abstract in Bahasa Indonesia : Penulisan ini merupakan suatu penelitian pada golongan sistem penghematan energi yang berupakan kondensor dengan bahan media air dengan bantuan tenaga gerak pompa atau tanpa tenaga pompa air. Pipa-pipa yang berisi air yang diletakkan diatas atap terbuka untuk mendapatkan air yang dingin melalui proses konduksi, konveksi, dan radiasi dari udara alami sepanjang malam, dimana media air yang telah dingin tersebut untuk dimanfaatkan sebagai media pendingin ruangan dengan melalukan ke pipa-pipa dalam ruangan--diatas plafon, sebagai evapurator. Selain media air akan diteliti air pendingin radiator (water coolent apakah akan mendapatkan efek pendinginan yang melebihi media air. Juga akan diteliti cara proses mendapatkan media air dingin, yaitu proses dengan air tenang (still water dan air bergerak (forced fluid, sistim mana yang lebih efektif dalam mendapatkan media air dingin dan percepatan mendapatkan air dingin. Kata

  8. Description and cost analysis of a deluge dry/wet cooling system.

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, L.E.; Bamberger, J.A.; Braun, D.J.; Braun, D.J.; Faletti, D.W.; Willingham, C.E.

    1978-06-01

    The use of combined dry/wet cooling systems for large base-load power plants offers the potential for significant water savings as compared to evaporatively cooled power plants and significant cost savings in comparison to dry cooled power plants. The results of a detailed engineering and cost study of one type of dry/wet cooling system are described. In the ''deluge'' dry/wet cooling method, a finned-tube heat exchanger is designed to operate in the dry mode up to a given ambient temperature. To avoid the degradation of performance for higher ambient temperatures, water (the delugeate) is distributed over a portion of the heat exchanger surface to enhance the cooling process by evaporation. The deluge system used in this study is termed the HOETERV system. The HOETERV deluge system uses a horizontal-tube, vertical-plate-finned heat exchanger. The delugeate is distributed at the top of the heat exchanger and is allowed to fall by gravity in a thin film on the face of the plate fin. Ammonia is used as the indirect heat transfer medium between the turbine exhaust steam and the ambient air. Steam is condensed by boiling ammonia in a condenser/reboiler. The ammonia is condensed in the heat exchanger by inducing airflow over the plate fins. Various design parameters of the cooling system have been studied to evaluate their impact on the optimum cooling system design and the power-plant/utility-system interface. Annual water availability was the most significant design parameter. Others included site meteorology, heat exchanger configuration and air flow, number and size of towers, fan system design, and turbine operation. It was concluded from this study that the HOETERV deluge system of dry/wet cooling, using ammonia as an intermediate heat transfer medium, offers the potential for significant cost savings compared with all-dry cooling, while achieving substantially reduced water consumption as compared to an evaporatively cooled power plant. (LCL)

  9. Experimental verification of a condenser with liquid–vapor separation in an air conditioning system

    International Nuclear Information System (INIS)

    Chen, Xueqing; Chen, Ying; Deng, Lisheng; Mo, Songping; Zhang, Haiyan

    2013-01-01

    Three liquid–vapor separation condensers (LSC) were tested to evaluate their ability to automatically separate the liquid and vapor during condensation. Each was used in a split-type air conditioner to investigate the performance. The performance of the LSC system having the greatest cooling capacity and energy efficiency ratio (EER) was then compared with that of the system having a baseline fin-and-tube condenser for various ambient temperatures from 29 °C to 43 °C. The results showed that both the cooling capacity and EER of the two systems were almost the same at the three standard conditions in the Chinese standard GB/T 7725-2004, with the LSC having just 67% of the heat transfer area of the baseline condenser. In addition, the LSC system was charged with only 80% of the refrigerant in the baseline system. -- Highlights: ► We tested three liquid–vapor separation condensers in an air conditioning system. ► The best system had the most uniform wall temperature and the smallest pressure drop. ► The LSC system performance with only 67% condenser area was as good as the baseline system. ► LSC system operations are compared for various outdoor temperatures

  10. Dry coolers and air-condensing units (Review)

    Science.gov (United States)

    Milman, O. O.; Anan'ev, P. A.

    2016-03-01

    The analysis of factors affecting the growth of shortage of freshwater is performed. The state and dynamics of the global market of dry coolers used at electric power plants are investigated. Substantial increase in number and maximum capacity of air-cooled condensers, which have been put into operation in the world in recent years, are noted. The key reasons facilitating the choice of developers of the dry coolers, in particular the independence of the location of thermal power plant from water sources, are enumerated. The main steam turbine heat removal schemes using air cooling are considered, their comparison of thermal efficiency is assessed, and the change of three important parameters, such as surface area of heat transfer, condensate pump flow, and pressure losses in the steam exhaust system, are estimated. It is shown that the most effective is the scheme of direct steam condensation in the heat-exchange tubes, but other schemes also have certain advantages. The air-cooling efficiency may be enhanced much more by using an air-cooling hybrid system: a combination of dry and wet cooling. The basic applied constructive solutions are shown: the arrangement of heat-exchange modules and the types of fans. The optimal mounting design of a fully shopassembled cooling system for heat-exchange modules is represented. Different types of heat-exchange tubes ribbing that take into account the operational features of cooling systems are shown. Heat transfer coefficients of the plants from different manufacturers are compared, and the main reasons for its decline are named. When using evaporative air cooling, it is possible to improve the efficiency of air-cooling units. The factors affecting the faultless performance of dry coolers (DC) and air-condensing units (ACU) and the ways of their elimination are described. A high velocity wind forcing reduces the efficiency of cooling systems and creates preconditions for the development of wind-driven devices. It is noted that

  11. Capillary Condensation of Liquid 4He in Aerogel on Cooling Through λ Point

    International Nuclear Information System (INIS)

    Miyashita, W.; Yoneyama, K.; Kato, H.; Nomura, R.; Okuda, Y.

    2006-01-01

    Capillary condensation of liquid 4He in silica aerogel with a 90% porosity was investigated visually. The initial condition of the experiment was such that liquid 4He was present in the sample cell but not in the aerogel. This situation was realized by introducing the liquid into the cell at a fast rate to avoid liquefaction in the aerogel. The free surface of the liquid rose up in the cell with filling and eventually reached the bottom of the aerogel. Then, the aerogel absorbed the liquid by capillary condensation. The height of the liquid in the aerogel rose with time t roughly as t1/2 in the normal fluid phase. This behavior was consistent with the Washburn model. When the system was cooled through the λ point during the condensation, the liquid height started to rise faster in the superfluid phase with a constant velocity of about 0.3 mm/sec. The dynamics of capillary condensation was strongly dependent on whether the liquid 4He was in the normal or the superfluid phase

  12. Feasibility test of the concept of long-term passive cooling system of emergency cooldown tank

    International Nuclear Information System (INIS)

    Kim, Myoung Jun; Moon, Joo Hyung; Bae, Youngmin; Kim, Young In; Lee, Hee Joon

    2015-01-01

    Highlights: • The concept of long-term passive cooling system of emergency cooldown tank (ECT). • Existing natural circulation of steam from ECT and measurement of its condensing flow. • Evaluation of cooling capacity and heat transfer of air-cooled condensing heat exchanger. - Abstract: When a passive cooling system is activated in the accident of a nuclear reactor, the water in the emergency cooldown tank of that system will eventually be fully depleted by evaporation. If, however, the evaporating water could be returned to the tank through an air-cooled condensing heat exchanger mounted on top of the tank, the passive cooling system could provide cooling for an extended period. This feasibility of new concept of long-term passive cooling with an emergency cooldown tank was tested by performing an energy balance test with a scaled-down experimental setup. As a result, it was determined that a naturally circulating steam flow can be used to refill the tank. For an air-cooled heat exchanger, the cooling capacity and air-side natural convective heat transfer coefficient were obtained to be 37% of the heat load and between 9 and 10.2 W/m 2 /K depending on the heat load, respectively. Moreover, it was clearly verified that the water level in the emergency cooldown tank could be maintained over the long-term operation of the passive cooling system

  13. Condensation irrigation a system for desalination and irrigation

    International Nuclear Information System (INIS)

    Lindblom, J.; Nordell, B

    2006-01-01

    condensation irrigation is a system for both desalination and irrigation. The principles is that humidified air is let into an underground horizontal pipe system, where the air is cooled by the ground and humidity falls out as fresh water. The humidification could e.g. be achieved by evaporation of seawater in solar stills or any other heat source. By using drainage pipes for underground air transportation the water percolates into the soil, thereby irrigating the land. This study focuses on drinking water production, which means that humid air is led into plan pipes where the condensed water is collected at the pipe endings. Numerical simulations gave a study-state diurnal mean water production of 1.8 kg per meter of pipe over a 50 m pipe. Shorter pipes result in a greater mean production rate. Since the heat transfer of drainage pipes would be greater, current study indicates that condensation irrigation is a promising method for desalination and irrigation. Performed studies in condensation irrigation started at LTU in 2003. Current paper reports the initial theoretical work on the system.(Author)

  14. Analysis of the evaporative towers cooling system of a coal-fired power plant

    Directory of Open Access Journals (Sweden)

    Laković Mirjana S.

    2012-01-01

    Full Text Available The paper presents a theoretical analysis of the cooling system of a 110 MW coal-fired power plant located in central Serbia, where eight evaporative towers cool down the plant. An updated research on the evaporative tower cooling system has been carried out to show the theoretical analysis of the tower heat and mass balance, taking into account the sensible and latent heat exchanged during the processes which occur inside these towers. Power plants which are using wet cooling towers for cooling condenser cooling water have higher design temperature of cooling water, thus the designed condensing pressure is higher compared to plants with a once-through cooling system. Daily and seasonal changes further deteriorate energy efficiency of these plants, so it can be concluded that these plants have up to 5% less efficiency compared to systems with once-through cooling. The whole analysis permitted to evaluate the optimal conditions, as far as the operation of the towers is concerned, and to suggest an improvement of the plant. Since plant energy efficiency improvement has become a quite common issue today, the evaluation of the cooling system operation was conducted under the hypothesis of an increase in the plant overall energy efficiency due to low cost improvement in cooling tower system.

  15. Nucleation and capture of condensible airborne contaminants in an aqueous scrubbing system

    International Nuclear Information System (INIS)

    Postma, A.K.; Hilliard, R.K.

    1978-09-01

    The fate of condensible contaminants in an aqueous scrubbing system was evaluated. Knowledge of the behavior of volatile fission product compounds is important in evaluating the effectiveness of emergency air cleaning systems proposed for use in containment systems of breeder reactor plants. When a high temperature air stream passes through a spray quench chamber, very large cooling rates occur in the drop boundary layers. These large cooling rates cause large supersaturations in airborne concentrations of condensible contaminants, and one predicts that most condensation would take place through homogeneous nucleation. The very small particles formed would agglomerate, and attach to sodium aerosol particles which would be present. In the study the overall removal efficiency of volatile fission product species (typified by NaI, SeO 2 , and Sb 2 O 3 ) in an air cleaning train (quench chamber, venturi scrubber, and fibrous bed) was theoretically evaluated. The overall removal efficiency of condensible materials was found to be lower than that for sodium compound aerosols because the freshly condensed particles would be smaller in size. For a base case, a removal efficiency of 99.97 percent was predicted for condensible materials. The fibrous bed scrubber exhibited superior particle removal characteristics for small particles compared to the quench chamber and venturi scrubber. Its removal efficiency exceeded 97 percent for even the most penetrating particle size (about 0.4 micron aerodynamic diameter). Therefore, all condensible fission products would be removed with efficiencies exceeding 97 percent

  16. Condensers

    International Nuclear Information System (INIS)

    Andrieux, M.B.

    1984-01-01

    Characteristics of the condenser cooling waters of various French 900 MW nuclear power plants. Design and description of various types of condensers: condensers feeded directly with river water, condensers feeded by cooling towers, condensers feeded with sea water of brackish water. Presentation of the main problems encountered with the brass bundles (ammoniacal corrosion, erosion of the peripheral tubes, vibrations of the tubes), with the titanium bundles, with the tubular plates, the tubes-tubular plates assemblies, the coatings of the condenser water chamber (sea water), the vapor by-pass and with the air inlet. Analysis of the in service performances such as condensation pressure, oxygen content and availability [fr

  17. Biofouling in the condenser cooling conduits of Madras Atomic Power Station

    International Nuclear Information System (INIS)

    Thiyagarajan, V.; Subramoniam, T.; Venugopalan, V.P.; Nair, K.V.K.

    1995-01-01

    The present paper deals with various aspects fouling organisms collected from the condenser cooling water circuit of Madras Atomic Power Station (MAPS II) their biomass, thickness, composition and length frequency distribution of one of the major species namely, B. reticulatus. (author). 8 refs., 1 tab., 2 figs

  18. Single-tube condensation experiment in Passive Auxiliary Feedwater System of APR1400+

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chang Wook; No, Hee Cheon; Yun, Bong Yo; Jeon, Byong Guk [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2012-05-15

    Conventional Korean nuclear power plants, Advanced Power Reactors (APR), are characterized by an active cooling system. However, Active cooling system may not prevent significant damage without any AC power source available for its operation as vividly illustrated through the recent Fukushima incident. In the APR1400+ to be designed, an independent passive cooling system was added in order to overcome the aforementioned shortcomings. In the Passive Auxiliary Feedwater System (PAFS), gravity force and density difference between steam and water are used. The system comprises of 240 condensation tubes to efficiently remove decay heat. Before applying the PAFS to APR1400+, the system's safety and heat removal performance must be verified. The present study experimentally evaluates the heat removal performance of a single tube in the PAFS. The objectives of SCOP (Single-tube Condensation experiment facility of PAFS) are the evaluation of the heat removal performance in the tube of the PAFS and database construction under various tube designs and test conditions. Reaching these objectives, we developed advanced measurement techniques for the amount of moisture, heat flux, and water film thickness.

  19. Vapor Compression and Thermoelectric Heat Pump Heat Exchangers for a Condensate Distillation System: Design and Experiment

    Science.gov (United States)

    Erickson, Lisa R.; Ungar, Eugene K.

    2013-01-01

    Maximizing the reuse of wastewater while minimizing the use of consumables is critical in long duration space exploration. One of the more promising methods of reclaiming urine is the distillation/condensation process used in the cascade distillation system (CDS). This system accepts a mixture of urine and toxic stabilizing agents, heats it to vaporize the water and condenses and cools the resulting water vapor. The CDS wastewater flow requires heating and its condensate flow requires cooling. Performing the heating and cooling processes separately requires two separate units, each of which would require large amounts of electrical power. By heating the wastewater and cooling the condensate in a single heat pump unit, mass, volume, and power efficiencies can be obtained. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump performance tests are provided. A summary is provided of the heat pump mass, volume and power trades and a selection recommendation is made.

  20. Performance Analysis of an Updraft Tower System for Dry Cooling in Large-Scale Power Plants

    Directory of Open Access Journals (Sweden)

    Haotian Liu

    2017-11-01

    Full Text Available An updraft tower cooling system is assessed for elimination of water use associated with power plant heat rejection. Heat rejected from the power plant condenser is used to warm the air at the base of an updraft tower; buoyancy-driven air flows through a recuperative turbine inside the tower. The secondary loop, which couples the power plant condenser to a heat exchanger at the tower base, can be configured either as a constant-pressure pump cycle or a vapor compression cycle. The novel use of a compressor can elevate the air temperature in the tower base to increases the turbine power recovery and decrease the power plant condensing temperature. The system feasibility is evaluated by comparing the net power needed to operate the system versus alternative dry cooling schemes. A thermodynamic model coupling all system components is developed for parametric studies and system performance evaluation. The model predicts that constant-pressure pump cycle consumes less power than using a compressor; the extra compression power required for temperature lift is much larger than the gain in turbine power output. The updraft tower system with a pumped secondary loop can allow dry cooling with less power plant efficiency penalty compared to air-cooled condensers.

  1. Acceleration of Cooling of Ice Giants by Condensation in Early Atmospheres

    International Nuclear Information System (INIS)

    Kurosaki, Kenji; Ikoma, Masahiro

    2017-01-01

    The present infrared brightness of a planet originates partly from the accretion energy that the planet gained during its formation and hence provides important constraints to the planet formation process. A planet cools down from a hot initial state to the present state by losing energy through radiative emission from its atmosphere. Thus, the atmospheric properties affect the planetary cooling rate. Previous theories of giant planet cooling assume that the atmospheric composition is unchanged throughout the evolution. Planet formation theories, however, suggest that the atmospheres especially of ice giants are rich in heavy elements in the early stages. These heavy elements include condensable species such as H 2 O, NH 3 , and CH 4 , which are expected to have a great impact on atmospheric temperature and thus on radiative emission through latent heat release. In this study we investigate the effect of such condensation on the planetary emission flux and quantify the impact on the cooling timescale. We then demonstrate that the latent heat of these species keeps the atmosphere hot and thus the emission flux high for billions of years, resulting in an acceleration of the cooling of ice giants. This sheds light on the long-standing problem that Uranus is much less bright than theoretically predicted and is different in brightness from Neptune in spite of the similarity in mass and radius. We also find that young ice giants with highly enriched atmospheres are much brighter in the mid-infrared than ice giants with non-enriched atmospheres. This provides important implications for future direct imaging of extrasolar ice giants.

  2. Acceleration of Cooling of Ice Giants by Condensation in Early Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Kurosaki, Kenji; Ikoma, Masahiro, E-mail: kurosaki.k@nagoya-u.jp, E-mail: ikoma@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2017-06-01

    The present infrared brightness of a planet originates partly from the accretion energy that the planet gained during its formation and hence provides important constraints to the planet formation process. A planet cools down from a hot initial state to the present state by losing energy through radiative emission from its atmosphere. Thus, the atmospheric properties affect the planetary cooling rate. Previous theories of giant planet cooling assume that the atmospheric composition is unchanged throughout the evolution. Planet formation theories, however, suggest that the atmospheres especially of ice giants are rich in heavy elements in the early stages. These heavy elements include condensable species such as H{sub 2}O, NH{sub 3}, and CH{sub 4}, which are expected to have a great impact on atmospheric temperature and thus on radiative emission through latent heat release. In this study we investigate the effect of such condensation on the planetary emission flux and quantify the impact on the cooling timescale. We then demonstrate that the latent heat of these species keeps the atmosphere hot and thus the emission flux high for billions of years, resulting in an acceleration of the cooling of ice giants. This sheds light on the long-standing problem that Uranus is much less bright than theoretically predicted and is different in brightness from Neptune in spite of the similarity in mass and radius. We also find that young ice giants with highly enriched atmospheres are much brighter in the mid-infrared than ice giants with non-enriched atmospheres. This provides important implications for future direct imaging of extrasolar ice giants.

  3. Emergency core cooling system

    International Nuclear Information System (INIS)

    Arai, Kenji; Oikawa, Hirohide.

    1990-01-01

    The device according to this invention can ensure cooling water required for emerency core cooling upon emergence such as abnormally, for example, loss of coolant accident, without using dynamic equipments such as a centrifugal pump or large-scaled tank. The device comprises a pressure accumulation tank containing a high pressure nitrogen gas and cooling water inside, a condensate storage tank, a pressure suppression pool and a jet stream pump. In this device there are disposed a pipeline for guiding cooling water in the pressure accumulation tank as a jetting water to a jetting stream pump, a pipeline for guiding cooling water stored in the condensate storage tank and the pressure suppression pool as pumped water to the jetting pump and, further, a pipeline for guiding the discharged water from the jet stream pump which is a mixed stream of pumped water and jetting water into the reactor pressure vessel. In this constitution, a sufficient amount of water ranging from relatively high pressure to low pressure can be supplied into the reactor pressure vessel, without increasing the size of the pressure accumulation tank. (I.S.)

  4. Conceptual Design of a Condensing Heat Exchanger for Space Systems Using Porous Media

    Science.gov (United States)

    Hasan, Mohammad M.; Khan, Lutful I.; Nayagam, Vedha; Balasubramaniam, Ramaswamy

    2006-01-01

    Condensing heat exchangers are used in many space applications in the thermal and humidity control systems. In the International Space Station (ISS), humidity control is achieved by using a water cooled fin surface over which the moist air condenses, followed by "slurper bars" that take in both the condensate and air into a rotary separator and separates the water from air. The use of a cooled porous substrate as the condensing surface provides and attractive alternative that combines both heat removal as well as liquid/gas separation into a single unit. By selecting the pore sizes of the porous substrate a gravity independent operation may also be possible with this concept. Condensation of vapor into and on the porous surface from the flowing air and the removal of condensate from the porous substrate are the critical processes involved in the proposed concept. This paper describes some preliminary results of the proposed condensate withdrawal process and discusses the on-going design and development work of a porous media based condensing heat exchanger at the NASA Glenn Research Center in collaboration with NASA Johnson Space Center.

  5. Effects of mesh size in a flat evaporator and condenser cooling capacity on the thermal performance of a capillary pumped loop

    International Nuclear Information System (INIS)

    Boo, Joon Hong

    2000-01-01

    The thermal performance of a flat evaporator for Capillary Pumped Loop (CPL) applications was investigated. Two to four layers of coarse wire screen wicks were placed onto the heated surface to provide irregular passages for vapor flow. The evaporator and condenser were separated by a distance of 1.2 m and connected by individual liquid and vapor lines. The wall material was copper and the working fluid was ethanol. The experimental facility utilized a combination of capillary and gravitational forces for liquid return, and distribution over the evaporator surface. The tubing used for vapor and liquid lines was 9.35 mm or less in diameter and heat was removed from the condenser by convection of air. A heat flux of up to 4.9x10 4 W/m 2 was applied to a flat evaporator having dimensions of 100 mm by 200 mm, 20 mm thick. The thermal resistance of the system as well as the temperature characteristics of the system was investigated as the evaporator heat flux and the condenser cooling capacity varied. The performance of the evaporator and effect of condenser cooling capacity were analyzed and discussed

  6. Solar-powered cooling system

    Science.gov (United States)

    Farmer, Joseph C.

    2015-07-28

    A solar-powered adsorption-desorption refrigeration and air conditioning system that uses nanostructural materials such as aerogels, zeolites, and sol gels as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material while the material is at a relatively low temperature, perhaps at night. During daylight hours, when the nanostructural materials is heated by the sun, the refrigerant are thermally desorbed from the surface of the aerogel, thereby creating a pressurized gas phase in the vessel that contains the aerogel. This solar-driven pressurization forces the heated gaseous refrigerant through a condenser, followed by an expansion valve. In the condenser, heat is removed from the refrigerant, first by circulating air or water. Eventually, the cooled gaseous refrigerant expands isenthalpically through a throttle valve into an evaporator, in a fashion similar to that in more conventional vapor recompression systems.

  7. Optimum dry-cooling sub-systems for a solar air conditioner

    Science.gov (United States)

    Chen, J. L. S.; Namkoong, D.

    1978-01-01

    Dry-cooling sub-systems for residential solar powered Rankine compression air conditioners were economically optimized and compared with the cost of a wet cooling tower. Results in terms of yearly incremental busbar cost due to the use of dry-cooling were presented for Philadelphia and Miami. With input data corresponding to local weather, energy rate and capital costs, condenser surface designs and performance, the computerized optimization program yields design specifications of the sub-system which has the lowest annual incremental cost.

  8. Protected air-cooled condenser for the Clinch River Breeder Reactor Plant

    International Nuclear Information System (INIS)

    Louison, R.; Boardman, C.E.

    1981-01-01

    The long term residual heat removal for the Clinch River Breeder Reactor Plant (CRBRP) is accomplished through the use of three protected air-cooled condensers (PACC's) each rated at 15M/sub t/ following a normal or emergency shutdown of the reactor. Steam is condensed by forcing air over the finned and coiled condenser tubes located above the steam drums. The steam flow is by natural convection. It is drawn to the PACC tube bundle for the steam drum by the lower pressure region in the tube bundle created from the condensing action. The concept of the tube bundle employs a unique patented configuration which has been commercially available through CONSECO Inc. of Medfore, Wisconsin. The concept provides semi-parallel flow that minimizes subcooling and reduces steam/condensate flow instabilities that have been observed on other similar heat transfer equipment such as moisture separator reheaters (MSRS). The improved flow stability will reduce temperature cycling and associated mechanical fatigue. The PACC is being designed to operate during and following the design basis earthquake, depressurization from the design basis tornado and is housed in protective building enclosure which is also designed to withstand the above mentioned events

  9. Experimental investigation of non-condensable gases effect on operation of VVER steam generator in condensation mode

    International Nuclear Information System (INIS)

    Efanov, A. D.; Kalyakin, S. G.; Morozov, A. V.; Remizov, O. V.; Tsyganok, A. A.; Generalov, V. N.; Berkovich, V. M.; Taranov, G. S.

    2008-01-01

    To provide the safety in new Russian NPP designs, protection passive systems which don't depend upon human errors are widely used. In terms of safety, the design of NPP of new generation (NPP-2006) falls into the class of advanced NPPs. In the event of an beyond design basis accident with the rupture of the reactor primary circuit and accompanied by the loss of ac sources, the use of passive safety systems are provided for necessary core cooling. Among these is passive heat removal system (PHRS). In the case of leakage in the primary circuit this system ensures the transition of steam generators (SG) to operation in the mode of condensation of the primary circuit steam coming to SG piping from the reactor. As a result, the condensate from steam generators arrives at the core providing its additional cooling. The SG condensation capacity can be adversely affected by the presence of non-condensable gases in the primary circuit of the reactor. Their main sources are nitrogen arriving at the circuit, as hydro accumulators actuate, products of radiolysis of water and air drawn in from the containment through the pipeline rupture. The accumulation of non-condensable gases in SG piping can result in degradation of its condensation capacity to the extent that condensation completely terminates. In this case, the core cooling conditions may be impaired. To experimental investigation of the condensation mode of operation of WER steam generator, a large scale HA2M-SG test rig was constructed at the SSC RF IPPE. The test rig incorporates: buffer tank, equipped by steam supply system; SG model with volumetric-power scale is 1:46; PHRS heat exchanger imitator, cooling by process water. The rig main equipment connected by pipelines and equipped by valves. The elevations of the main equipment correspond to those of reactor project. The rig maximum operating parameters: steam pressure - 1.6 MPa, temperature - 200 Celsius degrees. Experiments at the HA2M-SG test rig have been

  10. Application of fuzzy control in cooling systems save energy design

    Energy Technology Data Exchange (ETDEWEB)

    Chen, M.L.; Liang, H.Y. [Chienkuo Technology Univ., Changhua, Taiwan (China). Dept. of Electrical Engineering

    2005-07-01

    A fuzzy logic programmable logic controller (PLC) was used to control the cooling systems of frigorific equipment. Frigorific equipment is used to move unwanted heat outside of building in order to control indoor temperatures. The aim of the fuzzy logic PLC was to improve the energy efficiency of the cooling system. Control of the cooling pump and cooling tower in the system was based on the water temperature of the condenser during frigorific system operation. A human computer design for the cooling system control was used to set speeds and to automate and adjust the motor according to the fuzzy logic controller. It was concluded that if fuzzy logic controllers are used with all components of frigorific equipment, energy efficiency will be significantly increased. 5 refs., 3 tabs., 9 figs.

  11. Average Natural Convective Heat Transfer of Air-cooled Condensing Heat Exchanger of Emergency Cooldown Tank - Effect of Tube Banks

    International Nuclear Information System (INIS)

    Huh, Seon Jeong; Lee, Hee Joon; Kim, Myoung Jun; Moon, Joo Hyung; Bae, Youngmin; Kim, Young-In

    2016-01-01

    Recently emergency cooldown tank(ECT) is a great concern of passive cooling system for the safety of nuclear reactor. After the operation of a conventional passive cooling system for an extended period, however, the water level falls as a result of the evaporation from the ECT, as steam is emitted from the open top of the tank. In this study, the effect of heat transfer area at the air cooled condensing heat exchanger was investigated by changing 5×5 tube banks into 4×4 and 3×3. Moreover, each of air-side natural convective heat transfer coefficient of tube banks was compared to existing correlations. This study presents the effect of heat transfer area at air-cooled condensing heat exchanger. As heat transfer area decreased, the temperature of outlet increased. In other words, the cooling performance got lower with the decrease of heat transfer area. In addition, the average natural convective heat transfer coefficient was 15.3 W/m"2/K from the 4×4 tube banks, and 4.92 W/m"2/K from the 3×3 tube banks, which had quite a large error more than 46% especially with the value of 4×4 tube banks compared to the value from correlation equation. Therefore, according to this result, it is needed to measure the local heat transfer coefficient of vertical cylinder more elaborately in further study

  12. Average Natural Convective Heat Transfer of Air-cooled Condensing Heat Exchanger of Emergency Cooldown Tank - Effect of Tube Banks

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Seon Jeong; Lee, Hee Joon [Kookmin University, Seoul (Korea, Republic of); Kim, Myoung Jun; Moon, Joo Hyung; Bae, Youngmin; Kim, Young-In [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Recently emergency cooldown tank(ECT) is a great concern of passive cooling system for the safety of nuclear reactor. After the operation of a conventional passive cooling system for an extended period, however, the water level falls as a result of the evaporation from the ECT, as steam is emitted from the open top of the tank. In this study, the effect of heat transfer area at the air cooled condensing heat exchanger was investigated by changing 5×5 tube banks into 4×4 and 3×3. Moreover, each of air-side natural convective heat transfer coefficient of tube banks was compared to existing correlations. This study presents the effect of heat transfer area at air-cooled condensing heat exchanger. As heat transfer area decreased, the temperature of outlet increased. In other words, the cooling performance got lower with the decrease of heat transfer area. In addition, the average natural convective heat transfer coefficient was 15.3 W/m{sup 2}/K from the 4×4 tube banks, and 4.92 W/m{sup 2}/K from the 3×3 tube banks, which had quite a large error more than 46% especially with the value of 4×4 tube banks compared to the value from correlation equation. Therefore, according to this result, it is needed to measure the local heat transfer coefficient of vertical cylinder more elaborately in further study.

  13. Condensation model for the ESBWR passive condensers

    International Nuclear Information System (INIS)

    Revankar, S. T.; Zhou, W.; Wolf, B.; Oh, S.

    2012-01-01

    In the General Electric's Economic simplified boiling water reactor (GE-ESBWR) the passive containment cooling system (PCCS) plays a major role in containment pressure control in case of an loss of coolant accident. The PCCS condenser must be able to remove sufficient energy from the reactor containment to prevent containment from exceeding its design pressure following a design basis accident. There are three PCCS condensation modes depending on the containment pressurization due to coolant discharge; complete condensation, cyclic venting and flow through mode. The present work reviews the models and presents model predictive capability along with comparison with existing data from separate effects test. The condensation models in thermal hydraulics code RELAP5 are also assessed to examine its application to various flow modes of condensation. The default model in the code predicts complete condensation well, and basically is Nusselt solution. The UCB model predicts through flow well. None of condensation model in RELAP5 predict complete condensation, cyclic venting, and through flow condensation consistently. New condensation correlations are given that accurately predict all three modes of PCCS condensation. (authors)

  14. Steam condensation heat transfer in the presence of noncondensables in a vertical tube of passive containment cooling system

    International Nuclear Information System (INIS)

    Park, Hyun Sik

    1999-02-01

    A database for laminar condensation heat transfer is constructed from the previous experimental data at various condensation conditions. Based on the database, the condensation models in the standard RELAP5/MOD3.2 code are assessed and improved. Two wall film condensation models, the default and the alternative, are used in RELAP5/MOD3.2. The default model of the laminar film condensation in RELAP5/MOD3.2 does not give any reliable predictions, and its alternative model always predicts higher values than the experimental data. Therefore, it is needed to develop a new correlation based on the experimental data of various operating ranges. A set of condensation experiments in the presence of noncondensable gas in a vertical tube of the passive containment cooling system of the CP-1300 are performed. The experimental results show that the heat transfer coefficients (HTCs) increase as the inlet air mass fraction decreases and the inlet saturated steam temperature decreases. However, the dependence of the inlet mixture Reynolds number on the HTC is small for the operating range. An empirical correlation is developed, and its predictions are compared with experimental data to show good agreement with the standard deviation of 22.3%. The experimental HTCs are also compared with the predictions from the default and the alternative models used in RELAP5/MOD3.2. The experimental apparatus is modeled with two wall-film condensation models in RELAP5/MOD3.2 and the empirical correlation, and simulations are performed for several subtests to be compared with the experimental results. Overall, the simulation results show that the default model of RELAP5/MOD3.2 underpredicts the HTCs, and the alternative model overpredicts them, while the empirical correlation predicts them well throughout the condensing tube. Both the nodalization study and the sensitivity study are also performed. The nodalization study shows that the variation of the node number does not change both modeling

  15. Redundant Sb condensation on GaSb epilayers grown by molecular beam epitaxy during cooling procedure

    International Nuclear Information System (INIS)

    Arpapay, B.; Şahin, S.; Arıkan, B.; Serincan, U.

    2014-01-01

    The effect of four different cooling receipts on the surface morphologies of unintentionally-doped GaSb epilayers on GaSb (100) substrates grown by molecular beam epitaxy is reported. Those receipts include three different Sb beam equivalent pressure (BEP) levels and two different termination temperatures. Surface morphologies of epilayers were examined by wet etching, surface profiler, atomic force microscopy, scanning electron microscopy and Raman spectroscopy. The results demonstrate that during the cooling period, a Sb BEP of 4.00 × 10 −4 Pa at a termination temperature of 400 °C induces a smooth surface without Sb condensation whereas same Sb BEP at a termination temperature of 350 °C forms a 300 nm thick Sb layer on the surface. In addition, it is revealed that by applying a wet etching procedure and using a surface profiler it is possible to identify this condensed layer from the two-sloped feature of mesa profile. - Highlights: • Sb beam flux termination temperature is crucial for redundant Sb condensation. • Sb beam flux level has a role on the thickness of redundant condensed Sb layer. • Redundant Sb layer thickness can be measured by two-sloped mesa structure

  16. Radiant floor cooling coupled with dehumidification systems in residential buildings: A simulation-based analysis

    International Nuclear Information System (INIS)

    Zarrella, Angelo; De Carli, Michele; Peretti, Clara

    2014-01-01

    Highlights: • The floor radiant cooling in a typical apartment is analyzed. • Dehumidification devices, fan-coil and mechanical ventilation are compared. • The results are analyzed in terms of both thermal comfort and energy consumption. • The energy consumption of the dehumidifiers is higher than that of other systems. • The mechanical ventilation decreases the moisture level better than other systems. - Abstract: The development of radiant cooling has stimulated an interest in new systems based on coupling ventilation with radiant cooling. However, radiant cooling systems may cause condensation to form on an active surface under warm and humid conditions during the cooling season. This phenomenon occurs when surface temperature falls below dew point. To prevent condensation, air humidity needs to be reduced with a dehumidification device or a mechanical ventilation system. There are two main options to achieve this. The first is to use dehumidification devices that reduce humidity, but are not coupled with ventilation, i.e. devices that handle room air and leave air change to infiltrations. The second is to combine a mechanical ventilation system with dehumidifying finned coils. This study analyzes the floor radiant cooling of a typical residential apartment within a multi-storey building in three Italian climate zones by means of a detailed simulation tool. Five systems were compared in terms of both indoor thermal comfort and energy consumption: radiant cooling without dehumidification; radiant cooling with a soft dehumidification device; radiant cooling with a dehumidification device which also supplies sensible cooling; radiant cooling coupled with fan coils; and radiant cooling with a mechanical ventilation system which dehumidifies and cools

  17. Adsorption Cooling System Using Metal-Impregnated Zeolite-4A

    Directory of Open Access Journals (Sweden)

    Somsuk Trisupakitti

    2016-01-01

    Full Text Available The adsorption cooling systems have been developed to replace vapor compression due to their benefits of being environmentally friendly and energy saving. We prepared zeolite-4A and experimental cooling performance test of zeolite-water adsorption system. The adsorption cooling test-rig includes adsorber, evaporator, and condenser which perform in vacuum atmosphere. The maximum and minimum water adsorption capacity of different zeolites and COP were used to assess the performance of the adsorption cooling system. We found that loading zeolite-4A with higher levels of silver and copper increased COP. The Cu6%/zeolite-4A had the highest COP at 0.56 while COP of zeolite-4A alone was 0.38. Calculating the acceleration rate of zeolite-4A when adding 6% of copper would accelerate the COP at 46%.

  18. Growth of condensed particles at fast cooling-down of moist air in a laval nozzle

    International Nuclear Information System (INIS)

    Krause, B.

    1980-01-01

    The aim of the investigations was to clarify the uncertainty factors contained in the condensation theories as well as to examine different existing growth laws. The measuring method chosen for the study of the progress of condensation was the measurement of the static pressure along the nozzle axis. The investigation of the condensation products with respect to size and number was performed by means of intensity measurements of scattered laser light. The two parameters initial moisture and cooling speed substantially influencing condensation were varied over a wide range. As the scattering behavior of the ice particles formed as condensation products could be described by the Rayleigh-Debye theory, determination of size and number of the condensing particles at every position of the nozzle axis became possible. For the first time particle growth in the nozzle was studied in detail. The results were compared with a number of growth laws. (orig.) [de

  19. Spray cooling

    International Nuclear Information System (INIS)

    Rollin, Philippe.

    1975-01-01

    Spray cooling - using water spraying in air - is surveyed as a possible system for make-up (peak clipping in open circuit) or major cooling (in closed circuit) of the cooling water of the condensers in thermal power plants. Indications are given on the experiments made in France and the systems recently developed in USA, questions relating to performance, cost and environmental effects of spray devices are then dealt with [fr

  20. Modelling the thermodynamic performance of a concentrated solar power plant with a novel modular air-cooled condenser

    International Nuclear Information System (INIS)

    Moore, J.; Grimes, R.; Walsh, E.; O'Donovan, A.

    2014-01-01

    This paper aims at developing a novel air-cooled condenser for concentrated solar power plants. The condenser offers two significant advantages over the existing state-of-the-art. Firstly, it can be installed in a modular format where pre-assembled condenser modules reduce installation costs. Secondly, instead of using large fixed speed fans, smaller speed controlled fans are incorporated into the individual modules. This facility allows the operating point of the condenser to change and continuously maximise plant efficiency. A thorough experimental analysis was performed on a number of prototype condenser designs. This analysis investigated the validly and accuracy of correlations from literature in predicting the thermal and aerodynamic characteristics of different designs. These measurements were used to develop a thermodynamic model to predict the performance of a 50 MW CSP (Concentrated Solar Power) plant with various condenser designs installed. In order to compare different designs with respect to the specific plant capital cost, a techno-economic analysis was performed which identified the optimum size of each condenser. The results show that a single row plate finned tube design, a four row, and a two row circular finned tube design are all similar in terms of their techno-economic performance and offer significant savings over other designs. - Highlights: • A novel air cooled condenser for CSP (Concentrated Solar Power) applications is proposed. • A thorough experimental analysis of various condenser designs was performed. • Heat transfer and flow friction correlations validated for fan generated air flow. • A thermodynamic model to calculate CSP plant output is presented. • Results show the proposed condenser design can continually optimise plant output

  1. Biofouling problems in freshwater cooling systems

    International Nuclear Information System (INIS)

    Rao, T.S.

    2007-01-01

    In aqueous environments, microorganisms (bacteria, algae, fungi etc.,) are attracted towards surfaces, which they readily colonise resulting in the formation of biofilms. The implications of biofouling are energy losses due to increased fluid frictional resistance and increased heat transfer resistance. The temperatures prevalent inside the condenser system provide a favorable environment for the rapid growth of microorganisms. This results in thick slime deposit, which is responsible for heat transfer losses, thereby enhancing aggregation of deposits on the material surface and induces localised corrosion. There have been instances of increased capital costs due to premature replacement of equipment caused by severe under deposit corrosion due to biofouling. Moreover, fouling of service water systems of nuclear power plants is of concern, because it reduces the heat transfer capacity during an emergency or an accident. The growth of microbial films (slimes) a few tens of microns thick, in a condenser tube is sufficient to induce microbiologically influenced corrosion and cause irreparable damage to the condenser tubes and other structural materials. The down time costs to power plant due to condenser fouling and corrosion are quite large. This paper presents the author's experience in biofouling and corrosion problems in various power plants cooled by freshwater. (author)

  2. Evaluation of sea water chlorine demand in condenser cooling water at TAPS 1 and 2

    International Nuclear Information System (INIS)

    Papachan, Deepa; Gupta, P.K.; Patil, D.P.; Save, C.B.; Anilkumar, K.R.

    2008-01-01

    To prevent microbiological growth in the condenser tubes, condenser cooling water chlorination is very important. For effective chlorination, chlorine dose rate and frequency of dosing has to be determined on the basis of sea water chlorine demand. TAPS 1 and 2 is located near Arabian sea and draws water from this sea for its condenser cooling. The present practice of chlorine dosing at TAPS 1 and 2, based on the analysis carried out by GE in 1969, is 2500 kg/day/CWpump and 90 kg/day/SSWpump for a contact period of 25 minutes. Normal frequency of dosing is once per 8 hour and booster dose is once in a week at the same rate for 1 hour. The criteria of effective chlorination is to get residual chlorine of 2-3 ppm at the condenser water box outlet during chlorination at water box inlet/CW pump suction header in the recommended dose rate. The other option of chlorination was continuous dosing to get 0.5 ppm residual chlorine. This option has its own limitations as it is more expensive and also that micro organisms get immune to chlorine eventually due to continuous dosing. Nevertheless higher chlorine dosing is detrimental to AI-brass condenser tubes. Therefore the second option was not adopted at TAPS 1 and 2. Tarapur Atomic Power Station-1 is in the process of replacement of condenser tubes due to frequent condenser tube failures in the recent years. It was essential to analyse the present sea water chlorine demand and re-determine the chlorine dose rate because of development of industries under Maharashtra Industrial Development Corporation (MIDC) and simultaneous population growth around this area over a period of three decades. This paper discusses the experimental observations regarding significant change in sea water chlorine demand over this period and the effect of seasonal changes on sea water chlorine demand. (author)

  3. Comparison of Heat Transfer Coefficients of Silver Coated and Chromium Coated Copper Tubes of Condenser in Dropwise Condensation

    OpenAIRE

    Er. Shivesh Kumar; Dr. Amit Kumar

    2016-01-01

    Since centuries steam is being used in power generating system. The steam leaving the power unit is reconverted into water in a condenser designed to transfer heat from the steam to the cooling water as rapidly and as efficiently as possible. The efficiency of condenser depends on rate of condensation and mode of condensation of steam in the condenser. The increase in efficiency of the condenser enhances the heat transfer co-efficient which in turn results in economic design of condenser and ...

  4. Influence of the distribution of non-condensables on passive containment condenser performance in PANDA

    International Nuclear Information System (INIS)

    Bandurski, Th.; Huggenberger, M.; Dreier, J.; Aubert, C.; Putz, F.; Gamble, R.E.; Yadigaroglu, G.

    2001-01-01

    Recently passive cooling systems have been designed for the long-term decay heat removal from the containment of Advanced Light Water Reactors. In particular, the long-term LOCA response of the Passive Containment Cooling System (PCCS) for the General Electric European Simplified Boiling Water Reactor (ESBWR) has been tested in the large-scale PANDA facility. The PANDA tests achieved the dual objectives of improving confidence in the performance of the passive heat removal mechanisms underlying the design of the system, and extending the database available for containment analysis code qualification. The tests conducted subject the PCCS to a variety of conditions representing design-basis and beyond-design-basis accident conditions. These include operation in the presence of both heavier and lighter than steam non-condensable gases, as well as a variety of asymmetric and challenging start-up conditions. The present paper addresses the transient distribution of non-condensables in PANDA, and their effect on (passive) condenser performance. (author)

  5. Influence of the distribution of non-condensables on passive containment condenser performance in PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Bandurski, Th.; Huggenberger, M.; Dreier, J.; Aubert, C.; Putz, F.; Gamble, R.E.; Yadigaroglu, G

    2001-03-01

    Recently passive cooling systems have been designed for the long-term decay heat removal from the containment of Advanced Light Water Reactors. In particular, the long-term LOCA response of the Passive Containment Cooling System (PCCS) for the General Electric European Simplified Boiling Water Reactor (ESBWR) has been tested in the large-scale PANDA facility. The PANDA tests achieved the dual objectives of improving confidence in the performance of the passive heat removal mechanisms underlying the design of the system, and extending the database available for containment analysis code qualification. The tests conducted subject the PCCS to a variety of conditions representing design-basis and beyond-design-basis accident conditions. These include operation in the presence of both heavier and lighter than steam non-condensable gases, as well as a variety of asymmetric and challenging start-up conditions. The present paper addresses the transient distribution of non-condensables in PANDA, and their effect on (passive) condenser performance. (author)

  6. Modelling of condensation phenomena

    International Nuclear Information System (INIS)

    Jeong, Jae Jun; Chang, Won Pyo

    1996-07-01

    Condensation occurs when vapor is cooled sufficiently below the saturation temperature to induce the nucleation of droplets. Such nucleation may occur homogeneously within the vapor or heterogeneously on entrained particular matter. Heterogeneous nucleation may occur on the walls of the system, where the temperature is below the saturation temperature. There are two forms of heterogeneous condensation, drop-wise and film-wise. Another form of condensation occurs when vapor directly contacts to subcooled liquid. In nuclear power plant systems, all forms of condensation may occur during normal operation or accident conditions. In this work the modelling of condensation is surveyed, including the Nusselts' laminar film condensation theory in 1916, Rohsenow's turbulent film condensation model in 1950s, and Chen's models in 1987. Major attention is paid on the film condensation models among various research results because of its importance in engineering applications. It is found that theory, experiment, and empirical correlations for film condensation are well established, but research for drop-wise and direct-contact condensation are not sufficient yet. Condensation models in the best-estimate system codes such as RELAP5/MOD3 and CATHARE2 are also investigated. 3 tabs., 11 figs., 36 refs. (Author)

  7. Modeling and Optimization of a CoolingTower-Assisted Heat Pump System

    Directory of Open Access Journals (Sweden)

    Xiaoqing Wei

    2017-05-01

    Full Text Available To minimize the total energy consumption of a cooling tower-assisted heat pump (CTAHP system in cooling mode, a model-based control strategy with hybrid optimization algorithm for the system is presented in this paper. An existing experimental device, which mainly contains a closed wet cooling tower with counter flow construction, a condenser water loop and a water-to-water heat pump unit, is selected as the study object. Theoretical and empirical models of the related components and their interactions are developed. The four variables, viz. desired cooling load, ambient wet-bulb temperature, temperature and flow rate of chilled water at the inlet of evaporator, are set to independent variables. The system power consumption can be minimized by optimizing input powers of cooling tower fan, spray water pump, condenser water pump and compressor. The optimal input power of spray water pump is determined experimentally. Implemented on MATLAB, a hybrid optimization algorithm, which combines the Limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS algorithm with the greedy diffusion search (GDS algorithm, is incorporated to solve the minimization problem of energy consumption and predict the system’s optimal set-points under quasi-steady-state conditions. The integrated simulation tool is validated against experimental data. The results obtained demonstrate the proposed operation strategy is reliable, and can save energy by 20.8% as compared to an uncontrolled system under certain testing conditions.

  8. Device for the condensation of pressurized steam and its application to the cooling of a nuclear reactor after an incident

    International Nuclear Information System (INIS)

    Dagard, P.; Couturier, M.

    1989-01-01

    This document describes an invention which relates to a device for condensation of pressurized water which is at a pressure considerably above atmospheric pressure, such as the steam produced by the steam generator of a pressurized-water nuclear reactor during the cooling of the reactor after an incident. The purpose of the invention is therefore to propose a device for the condensation of steam which is under a pressure which is considerably higher than atmospheric pressure by cooling this circulating steam as a result of contact with a heat-exchange wall which is cooled by water; such a device should be easy to install in a nuclear power plant to ensure passive cooling of the reactor, it should have a very good efficiency because of efficient heat exchangers, and it should require only a limited amount of cooling water in the equipment itself

  9. Slurry Ice as a Cooling System on 30 GT Fishing Vessel

    Directory of Open Access Journals (Sweden)

    Alam Baheramsyah

    2017-06-01

    Full Text Available Indonesia is the largest archipelago country in the world that has a sea area that is very spacious. Indonesian sea area is 5.8 million square kilometers and a coastline of 95 181 km has huge potential in the fisheries sector. In line with the need to further improve on the quality of the fish catch. One way to preserve fish is to use a slurry of ice. Slurry ice proved more effective preserving fishery products instead of using ice cubes. Ice slurry cooling system was designed and applied to the fishing vessel 30 GT. The cooling system uses a simple vapor compression system consists of five major components consisting of evaporator, condenser, compressor, and two pumps.In designing this system determined the type of refrigerant used in advance which type of refrigerant R-507a. Then do the design or selection of its main components. The design is only done on the evaporator. As for the other major components such as condensers, compressors, and pumps election in accordance with the specification of the power needed. After that dialakukan depiction of each system component. Then subsequently designing the laying of ice slurry cooling system components on a fishing vessel 30 GT.            Through calculations using simple thermodynamic equations obtained cooling load on this system amounted to 32.06 kW. Condenser with a power of 40 kW. Compressor with power 12 kW. Pump with capacity 10 m3 / h. With memepertimbangkan space left on the ship in the ice slurry system design on the main deck of the ship to the efficient use of space on board. The power requirements of the generator vessel increases due to the addition of ice slurry system components therefore do replacement generator into the generator with a power of 100 kW and penambahn fuel tank to 6,000 L.

  10. Water cooling system for sintering furnaces of nuclear fuel pellets

    International Nuclear Information System (INIS)

    1996-01-01

    This work has as a main objective to develop a continuous cooling water system, which is necessary for the cooling of the sintering furnaces. This system is used to protect them as well as for reducing the water consumption, ejecting the heat generated into this furnaces and scattering it into the atmosphere in a fast and continuous way. The problem was defined and the reference parameters established, making the adequate research. The materials were selected as well as the length of the pipeline which will carry the secondary refrigerant fluid (water). Three possible solutions were tried,and evaluated, and from these, the thermal and economically most efficient option was selected. The layout of the solution was established and the theoretical construction of a cooling system for liquids using dichlorofluoromethane (R-22), as a refrigerant and a air cooled condenser, was accomplished. (Author)

  11. Condenser inleakage monitoring system development. Final report

    International Nuclear Information System (INIS)

    Kassen, W.R.; Putkey, T.A.; Sawochka, S.G.; Pearl, W.L.; Clouse, M.E.

    1982-09-01

    An instrument/hardware package for air and condenser cooling water inleakage location employing the helium and freon techniques was designed and fabricated. The package consists of design details for tracer gas distribution hardware, injection plenums, and a sample preconditioner and instrument module. Design of the package was based on an evaluation of helium and freon leak detectors and a survey of utility user's experience with the helium and freon techniques. The applicability of the instrument/hardware package to air and cooling water inleakage location was demonstrated at Pacific Gas and Electric Company's Moss Landing Station. The use of calibrated leaks indicated that cooling water leaks down to 1.5 x 10 -4 gpm (0.56 ml/min) and air leaks down to 0.05 cfm were readily detectable with the helium technique, whereas a 4 x 10 -4 gpm (1.5 ml/min) liquid leak was the readily detectable minimum via the freon technique. The field demonstration and in-house detector testing showed the helium technique to be preferable to the freon technique for inleakage location at PWRs, BWRs, and fossil-fueled systems

  12. Passive containment cooling system performance in the simplified boiling water reactor

    International Nuclear Information System (INIS)

    Shiralkar, B.S.; Gamble, R.E.; Yadigaroglu, G.

    1997-01-01

    The Simplified Boiling Water Reactor (SBWR) incorporates a passive system for decay heat removal from the containment in the event of a postulated Loss-of-Coolant Accident (LOCA). Decay heat is removed by condensation of the steam discharged from the reactor pressure vessel (RPV) in three condensers which comprise the Passive Containment Cooling System (PCCS). These condensers are designed to carry the heat load while transporting a mixture of steam and noncondensible gas (primarily nitrogen) from the drywell to the suppression chamber. This paper describes the expected LOCA response of the SBWR with respect to the PCCS performance, based on analysis and test results. The results confirm that the PCCS has excess capacity for decay heat removal and that overall system performance is very robust. 12 refs., 8 figs

  13. Passive-solar directional-radiating cooling system

    Science.gov (United States)

    Hull, J.R.; Schertz, W.W.

    1985-06-27

    A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

  14. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids

    Science.gov (United States)

    Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew

    2017-10-25

    A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be used to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.

  15. Design change of tower cooling water system for proton accelerator research center

    International Nuclear Information System (INIS)

    Jeon, G. P.; Kim, J. Y.; Song, I. T.; Min, Y. S.; Mun, K. J.; Cho, J. S.; Nam, J. M.; Park, S. S.; Han, Y. G.

    2012-01-01

    The Tower Cooling Water System (TC) is designed to reject the heat load generated by operating the accelerators and the utility facilities through the component cooling water (CCW) heat exchangers. The circulating water discharged from the circulating water pumps passes through the CCW heat exchangers, the Chiller condenser and the air compressor, and the heated circulating water is return to the cooling tower for the heat removal. In this study, The design of Tower Cooling Water System is changed as follows : At First, The quantity of cells is changed into six in order to operate the cooling tower accurately correspond with condition of each equipment of head loads. The fans of cooling tower are controlled by the signal of TEW installed in the latter parts of it. The type of circulation water pump is modified to centrifugal pump and debris filter system is deleted

  16. Design change of tower cooling water system for proton accelerator research center

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, G. P.; Kim, J. Y.; Song, I. T.; Min, Y. S.; Mun, K. J.; Cho, J. S.; Nam, J. M.; Park, S. S.; Han, Y. G. [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    The Tower Cooling Water System (TC) is designed to reject the heat load generated by operating the accelerators and the utility facilities through the component cooling water (CCW) heat exchangers. The circulating water discharged from the circulating water pumps passes through the CCW heat exchangers, the Chiller condenser and the air compressor, and the heated circulating water is return to the cooling tower for the heat removal. In this study, The design of Tower Cooling Water System is changed as follows : At First, The quantity of cells is changed into six in order to operate the cooling tower accurately correspond with condition of each equipment of head loads. The fans of cooling tower are controlled by the signal of TEW installed in the latter parts of it. The type of circulation water pump is modified to centrifugal pump and debris filter system is deleted.

  17. Experimental study of air-cooled water condensation in slightly inclined circular tube using infrared temperature measurement technique

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyungdae [Nuclear Engineering Department, Kyung Hee University, Yongin (Korea, Republic of); Kwon, Tae-Soon [Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Dong Eok, E-mail: dekim@knu.ac.kr [Department of Precision Mechanical Engineering, Kyungpook National University, Sangju (Korea, Republic of)

    2016-11-15

    Highlights: • Air-cooled condensation experiments in an inclined Pyrex glass tube were performed. • High-resolution wall temperature data and flow regime formations could be obtained. • The local heat flux was strongly dependent on the air-side heat transfer. • A CFD analysis was conducted for calculating the local heat flux distribution. - Abstract: This study presents the results of an investigation of the air-cooled water condensation heat transfer characteristics inside a slightly inclined circular tube made of transparent Pyrex glass. The high-resolution wall temperature data and stratified film formations could be obtained with the assistance of an infrared (IR) thermometry technique and side-view visualization using a CCD camera. In all experimental cases, the condensation flow patterns were in the fully-stratified flow region. In addition, the experimentally measured void fraction corresponded well with the logarithmic mean void fraction model. The local temperature differences in the cooling air flow across the condenser tube and high-resolution temperature profiles on the tube’s outer wall were obtained in the experimental measurements. Under the experimental conditions of this study, the local heat flux distributions in the longitudinal direction of the test tube were strongly dependent on the cooling air velocity. And, with the help of IR thermometry, the tube outer wall temperature data at 45 local points could be measured. From the data, the asymmetry distribution of the local wall temperatures and the accurate location of the transition from two-phase mixture to single phase liquid inside the tube could be obtained. Also, the analysis of the thermal resistances by condensation, wall conduction and air convection showed that the air convective heat transfer behavior can play a dominant role to the local heat transfer characteristics. Finally, in order to obtain the local heat flux distribution along the tube’s outer wall, a two

  18. Thermodynamic and economic studies of two new high efficient power-cooling cogeneration systems based on Kalina and absorption refrigeration cycles

    International Nuclear Information System (INIS)

    Rashidi, Jouan; Ifaei, Pouya; Esfahani, Iman Janghorban; Ataei, Abtin; Yoo, Chang Kyoo

    2016-01-01

    Highlights: • Proposing two new power and cooling cogeneration systems based on absorption chillers and Kalina cycles. • Model-based comparison through thermodynamic and economic standpoints. • Investigating sensitivity of system performance and costs to the key parameters. • Reducing total annual costs of the base system up to 8% by cogeneration. • Increasing thermal efficiency up to 4.9% despite of cooling generation. - Abstract: Two new power and cooling cogeneration systems based on Kalina cycle (KC) and absorption refrigeration cycle (AC) are proposed and studied from thermodynamic and economic viewpoints. The first proposed system, Kalina power-cooling cycle (KPCC), combines the refrigerant loop of the water-ammonia absorption chiller, consisting of an evaporator and two throttling valves with the KC. A portion of the KC mass flow enters the evaporator to generate cooling after being condensed in the KPCC system. KPCC is a flexible system adapting power and cooling cogeneration to the demand. The second proposed system, Kalina lithium bromide absorption chiller cycle (KLACC), consists of the KC and a single effect lithium bromide-water absorption chiller (AC_L_i_B_r_-_w_a_t_e_r). The KC subsystem discharges heat to the AC_L_i_B_r_-_w_a_t_e_r desorber before condensing in the condenser. The performance and economic aspects of both proposed systems are analyzed and compared with the stand alone KC. A parametric analysis is conducted to evaluate the sensitivity of efficiencies and the generated power and cooling quantities to the key operating variables. The results showed that, thermal efficiency and total annual costs decreased by 5.6% and 8% for KPCC system but increased 4.9% and 58% for KLACC system, respectively. Since the power-cooling efficiency of KLACC is 42% higher than KPCC it can be applied where the aim is cooling generation without considering economic aspects.

  19. Thermal Sizing of Heat Exchanger Tubes for Air Natural Convective Cooling System of Emergency Cooling Tank

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myoung Jun; Lee, Hee Joon [Kookmin Univ., Seoul (Korea, Republic of); Moon, Joo Hyung; Bae, Youngmin; Kim, Youngin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    For the long operation of secondary passive cooling system, however, water level goes down by evaporation in succession at emergency cooling tank. At the end there would be no place to dissipate heat from condensation heat exchanger. Therefore, steam cooling heat exchanger is put on the top of emergency cooling tank to maintain appropriate water level by collecting evaporating steam. Steam cooling heat exchanger is installed inside an air chimney and evaporated steam is cooled down by air natural convection. In this study, thermal sizing of steam cooling heat exchanger under air natural convection was conducted by TSCON program for the design of experimental setup as shown in Fig. 2. Thermal sizing of steam cooling heat exchanger tube under air natural convection was conducted by TSCON program for the design of experimental setup. 25 - 1' tubes which has a length 1687 mm was determined as steam cooling heat exchanger at 2 kW heat load and 100 liter water pool in emergency cooling tank (experimental limit condition). The corresponding width of two tubes is 50 mm and has 5 by 5 tube array for heat exchanger.

  20. Thermal Sizing of Heat Exchanger Tubes for Air Natural Convective Cooling System of Emergency Cooling Tank

    International Nuclear Information System (INIS)

    Kim, Myoung Jun; Lee, Hee Joon; Moon, Joo Hyung; Bae, Youngmin; Kim, Youngin

    2014-01-01

    For the long operation of secondary passive cooling system, however, water level goes down by evaporation in succession at emergency cooling tank. At the end there would be no place to dissipate heat from condensation heat exchanger. Therefore, steam cooling heat exchanger is put on the top of emergency cooling tank to maintain appropriate water level by collecting evaporating steam. Steam cooling heat exchanger is installed inside an air chimney and evaporated steam is cooled down by air natural convection. In this study, thermal sizing of steam cooling heat exchanger under air natural convection was conducted by TSCON program for the design of experimental setup as shown in Fig. 2. Thermal sizing of steam cooling heat exchanger tube under air natural convection was conducted by TSCON program for the design of experimental setup. 25 - 1' tubes which has a length 1687 mm was determined as steam cooling heat exchanger at 2 kW heat load and 100 liter water pool in emergency cooling tank (experimental limit condition). The corresponding width of two tubes is 50 mm and has 5 by 5 tube array for heat exchanger

  1. DESIGNING AND EFFICIENCY EFFECT OF AUTOMATIC BALL-CLEANING SYSTEM FOR CONDENSER 180-KTsS-1 OF TURBINE Т-180/210-130-1 LMZ. Part 1

    Directory of Open Access Journals (Sweden)

    Yu. A. Zenovich-Leshkevich-Ol’pinskiy

    2015-01-01

    Full Text Available In order to reduce losses in the cooling source (condenser and to increase effectiveness of fuel-and-power resources utilization, the authors present a modern automatic ball-cleaning system for the pipes of condenser 180-KTsS-1 of turbine unit Т-180/210-130-1 LMZ of Gomel CHP-2. The article examines exploitation challenges of the steam turbine condensers and methods of clearing them from sedimentations. Depending on the sedimentation character and composition, and the quality of cooling water at the power plant, they apply various methods of the condenser tubes clearing: heat drying, vacuum dehydration, acid-washing, pipes-shooting with water and water-air pistols, ablution with high-pressure water jet etc. All the applied cleaning methods are the periodical means to fight the sedimentations and require the turbine halting or unloading, predetermine the equipment operating between clearings with constantly smearing cooling surfaces of the condensers, i.e. with reduced efficiency of equipment operation.The installation of the ball-cleaning system practically excludes defects of the chemical and mechanical cleaning methods, which leads to the condenser pipes life-in-service increase, the full-flow condensate quality improvement, reliability and efficient performance enhancement of the steam turbines equipment. The authors consider developed algorithms of data processing and designed system control of the condenser cleaning that allowed realizing its operation in automatic mode.

  2. Heat pump system with selective space cooling

    Science.gov (United States)

    Pendergrass, J.C.

    1997-05-13

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

  3. Studies on the behaviour of a passive containment cooling system for the Indian advanced heavy water reactor

    International Nuclear Information System (INIS)

    Maheshwari, N.K.; Saha, D.; Chandraker, D.K.; Kakodkar, A.; Venkat Raj, V.

    2001-01-01

    A passive containment cooling system has been proposed for the advanced heavy water reactor being designed in India. This is to provide long term cooling for the reactor containment following a loss of coolant accident. The system removes energy released into the containment through immersed condensers kept in a pool of water. An important aspect of immersed condenser's working is the potential degradation of immersed condenser's performance due to the presence of noncondensable gases. An experimental programme to investigate the passive containment cooling system behaviour and performance has been undertaken in a phased manner. In the first phase, system response tests were conducted on a small scale model to understand the phenomena involved. Tests were conducted with constant energy input rate and with varying energy input rate simulating decay heat. With constant energy input rate, pressures in volume V 1 and V 2 reached almost steady value. With varying energy input rate V 1 pressure dropped below the pressure in V 2 . The system could efficiently purge air from V 1 to V 2 . The paper deals with the details of the tests conducted and the results obtained. (orig.) [de

  4. Counter-current flow limitation at hot leg pipe during reflux condensation cooling after small-break LOCA

    International Nuclear Information System (INIS)

    Jeong, Hae Yong; Ha, Sang Jun; Jo, Yung Jo; Jun, Hwang Yong

    1999-01-01

    The possibility of hot leg flooding is evaluated in case of a small-break loss-of-coolant accident in Korean Next Generation Reactor (KNGR) operating at the core power of 3983 MW normally. The vapor and liquid velocities in hot leg and steam generator tubes are calculated during reflux condensation cooling with the accident scenarios of three typical break sizes, 0.13 %, 1.02 % and 10.19 % cold leg break. The calculated results are compared with the existing flooding correlations. It is predicted that the hot leg flooding is excluded when two steam generators are available. It is also shown that the possibility of hot leg flooding under the operation with one steam generator is very low. Therefore, it can be said that the occurrence of hot leg flooding is unexpected when the reflux condensation cooling is maintained in steam generator tubes

  5. Heat pipe as a cooling mechanism in an aeroponic system

    Energy Technology Data Exchange (ETDEWEB)

    Srihajong, N.; Terdtoon, P.; Kamonpet, P. [Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200 (Thailand); Ruamrungsri, S. [Department of Horticulture, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200 (Thailand); Ohyama, T. [Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University (Japan)

    2006-02-01

    This paper presents an establishment of a mathematical model explaining the operation of an aeroponic system for agricultural products. The purpose is to study the rate of energy consumption in a conventional aeroponic system and the feasibility of employing a heat pipe as an energy saver in such a system. A heat pipe can be theoretically employed to remove heat from the liquid nutrient that flows through the growing chamber of an aeroponic system. When the evaporator of the heat pipe receives heat from the nutrient, the inside working fluid evaporates into vapor and flows to condense at the condenser section. The outlet temperature of the nutrient from the evaporator section is, therefore, decreased by the heat removal mechanism. The heat pipe can also be used to remove heat from the greenhouse by applying it on the greenhouse wall. By doing this, the nutrient temperature before entering into the nutrient tank decreases and the cooling load of evaporative cooling will subsequently be decreased. To justify the heat pipe application as an energy saver, numerical computations have been done on typical days in the month of April from which maximum heating load occurs and an appropriate heat pipe set was theoretically designed. It can be seen from the simulation that the heat pipe can reduce the electric energy consumption of an evaporative cooling and a refrigeration systems in a day by 17.19% and 10.34% respectively. (author)

  6. Condensate cleaning systems

    International Nuclear Information System (INIS)

    Yamamoto, Michiyoshi; Oosumi, Katsumi; Takashima, Yoshie; Mitani, Shinji.

    1982-01-01

    Purpose: To decrease the frequency for the backwash and regeneration operations due to the increase in the differential pressure resulted from claddings captured in a mixed floor type desalter, and decrease the amount of radioactive liquid wastes of claddings from the condensate systems by removing claddings with electromagnetic filters. Constitution: In an existent plant, a valves is disposed between a condensate pump and a mixed floor type desalter. A pipeway is branched from a condensate pipe between the condensate pipe and the valve, through which condensates are transferred by a pump to an electromagnetic filter such as of a high gradient type electromagntic filter to remove claddings, then returned to a condensate pipe between the valve and the mixed floor type desalter and, thereafter, are removed with ionic components in the mixed floor type desalter and fed to the reactor. (Yoshino, Y.)

  7. Research progress of control of condensate depression for condenser

    Science.gov (United States)

    Liu, Ying; Liang, Run; Li, Fengyu

    2017-08-01

    It is introduced that significance and structure of the condensate depression control system. In accordance with controller devised procedure, we analyze and elaborate how to construct the lumped parameter and dynamic mathematical model which possesses distinct physics significance. Neural network model being called black-box model is also introduced. We analyze and contrast the control technique of condensate depression as conventional PI control, fuzzy PI control and fuzzy control. It is indicated that if the controller of condensate depression were devised inappropriate, while the steam discharged of turbine varying by a large margin, would result in the rotation rate of cooling water circulating pump accelerating at a great lick even to trigger the galloping danger which is less impressive for the units operating safely.

  8. Effects of Tube Diameter and Tubeside Fin Geometry on the Heat Transfer Performance of Air-Cooled Condensers

    Science.gov (United States)

    Wang, H. S.; Honda, Hiroshi

    A theoretical study has been made on the effects of tube diameter and tubeside fin geometry on the heat transfer performance of air-cooled condensers. Extensive numerical calculations of overall heat transfer from refrigerant R410A flowing inside a horizontal microfin tube to ambient air were conducted for a typical operating condition of the air-cooled condenser. The tubeside heat transfer coefficient was calculated by applying a modified stratified flow model developed by Wang et al.8). The numerical results show that the effects of tube diameter, fin height, fin number and helix angle of groove are significant, whereas those of the width of flat portion at the fin tip, the radius of round corner at the fin tip and the fin half tip angle are small.

  9. Condensation of steam in horizontal pipes: model development and validation

    International Nuclear Information System (INIS)

    Szijarto, R.

    2015-01-01

    This thesis submitted to the Swiss Federal Institute of Technology ETH in Zurich presents the development and validation of a model for the condensation of steam in horizontal pipes. Condensation models were introduced and developed particularly for the application in the emergency cooling system of a Gen-III+ boiling water reactor. Such an emergency cooling system consists of slightly inclined horizontal pipes, which are immersed in a cold water tank. The pipes are connected to the reactor pressure vessel. They are responsible for a fast depressurization of the reactor core in the case of accident. Condensation in horizontal pipes was investigated with both one-dimensional system codes (RELAP5) and three-dimensional computational fluid dynamics software (ANSYS FLUENT). The performance of the RELAP5 code was not sufficient for transient condensation processes. Therefore, a mechanistic model was developed and implemented. Four models were tested on the LAOKOON facility, which analysed direct contact condensation in a horizontal duct

  10. Numerical Study of Condensation Heat Exchanger Design in a Subcooled Pool: Correlation Investigation

    International Nuclear Information System (INIS)

    Lee, Hee Joon; Ju, Yun Jae; Kang, Han Ok; Lee, Tae Ho; Park, Cheon Tae

    2012-01-01

    Generally the condensation heat exchanger has higher heat transfer coefficient compared to the single phase heat exchanger, so has been widely applied to the cooling systems of energy plant. Recently vertical or horizontal type condensation heat exchangers are being studied for the application to secondary passive cooling system of nuclear plants. Lee and Lee investigated the existing condensation correlation to the experiment for heat exchanger in saturated pool. They concluded Traviss' correlation showed most satisfactory results for the heat transfer coefficient and mass flow rate in a saturated water pool. In this study, a thermal sizing program of vertical condensation heat exchanger to design, TSCON(Thermal Sizing of CONdenser) was validated with the existing experimental data of condensation heat exchanger in a subcooled pool for pure steam condensation

  11. Effects of non-condensable gas on the condensation of steam

    International Nuclear Information System (INIS)

    Jackson, J.D.; An, P.; Reinert, A.; Ahmadinejad, M.

    2000-01-01

    The experimental work reported here was undertaken with the aim of extending the database currently available on the condensation of steam in the presence of non-condensable gases and thereby improving the empirical input to thermal-hydraulic codes which might be used for design and safety assessment of advanced water-cooled nuclear reactors. Heat was removed from flowing mixtures of steam and air in a test section by means of a water-cooled condensing plate. The test facility constructed for the study incorporates a degassing unit which supplies water to a boiler. This delivers steam steadily to a mixing chamber where it joins with a flow of preheated air. The mixture of steam and air is supplied to the bottom of a cylindrical test section in which it flows upwards over a double sided condensing plate which can be vertical, inclined or horizontal, The rate at which heat is removed by cooling water flowing through internal passages in the plate can de determined calorimetrically knowing the flow rate of the water and its temperature rise. After commissioning experiments had shown that reliable measurements of condensation heat transfer rate could be made using the test facility, a programme of development work followed in the course of which three different designs of condensing plate were evaluated in turn. The version eventually used in the main programme of experiments which followed was made from copper. However, its surfaces were coated with a thin layer of nickel and then with one of chromium. It was found that such a surface consistently promoted dropwise condensation and showed no signs of deterioration after lengthy periods of use. The rate of heat removal from pure steam and from mixtures of steam and air in varying proportions was measured as a function of plate sub-cooling for a variety of plate orientations. (author)

  12. Accelerator-based cold neutron sources and their cooling system

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Yanai, Masayoshi; Ishikawa, Yoshikazu.

    1985-01-01

    We have developed and installed two accelerator-based cold neutron sources within a electron linac at Hokkaido University and a proton synchrotoron at National Laboratory for High Energy Physics. Solid methane at 20K was adopted as the cold moderator. The methane condensing heat exchangers attached directly to the moderator chambers were cooled by helium gas, which was kept cooled in refrigerators and circulated by ventilation fans. Two cold neutron sources have operated smoothly and safely for the past several years. In this paper we describe some of the results obtained in the preliminary experiments by using a modest capacity refrigerator, the design philosophy of the cooling system for the pulsed cold neutron sources, and outline of two facilities. (author)

  13. A bubble column evaporator with basic flat-plate condenser for brackish and seawater desalination.

    Science.gov (United States)

    Schmack, Mario; Ho, Goen; Anda, Martin

    2016-01-01

    This paper describes the development and experimental evaluation of a novel bubble column-based humidification-dehumidification system, for small-scale desalination of saline groundwater or seawater in remote regions. A bubble evaporator prototype was built and matched with a simple flat-plate type condenser for concept assessment. Consistent bubble evaporation rates of between 80 and 88 ml per hour were demonstrated. Particular focus was on the performance of the simple condenser prototype, manufactured from rectangular polyvinylchlorid plastic pipe and copper sheet, a material with a high thermal conductivity that quickly allows for conduction of the heat energy. Under laboratory conditions, a long narrow condenser model of 1500 mm length and 100 mm width achieved condensate recovery rates of around 73%, without the need for external cooling. The condenser prototype was assessed under a range of different physical conditions, that is, external water cooling, partial insulation and aspects of air circulation, via implementing an internal honeycomb screen structure. Estimated by extrapolation, an up-scaled bubble desalination system with a 1 m2 condenser may produce around 19 l of distilled water per day. Sodium chloride salt removal was found to be highly effective with condensate salt concentrations between 70 and 135 µS. Based on findings and with the intent to reduce material cost of the system, a shorter condenser length of 750 mm for the non-cooled (passive) condenser and of 500 mm for the water-cooled condenser was considered to be equally efficient as the experimentally evaluated prototype of 1500 mm length.

  14. Valves for condenser-cooling-water circulating piping in thermal power station and nuclear power station

    International Nuclear Information System (INIS)

    Kondo, Sumio

    1977-01-01

    Sea water is mostly used as condenser cooling water in thermal and nuclear power stations in Japan. The quantity of cooling water is 6 to 7 t/sec per 100,000 kW output in nuclear power stations, and 3 to 4 t/sec in thermal power stations. The pipe diameter is 900 to 2,700 mm for the power output of 75,000 to 1,100,000 kW. The valves used are mostly butterfly valves, and the reliability, economy and maintainability must be examined sufficiently because of their important role. The construction, number and arrangement of the valves around a condenser are different according to the types of a turbine and the condenser and reverse flow washing method. Three types are illustrated. The valves for sea water are subjected to the electrochemical corrosion due to sea water, the local corrosion due to stagnant water, the fouling by marine organisms, the cavitation due to valve operation, and the erosion by earth and sand. The fundamental construction, use and features of butterfly valves are described. The cases of the failure and repair of the valves after their delivery are shown, and they are the corrosion of valve bodies and valve seats, and the separation of coating and lining. The newly developed butterfly valve with overall water-tight rubber lining is introduced. (Kako, I.)

  15. Corrosion of stainless steels in the condensate emitted from cooled exhaust gases

    International Nuclear Information System (INIS)

    Krol, S.

    2004-01-01

    The research of stainless steels 316L and 304L exposed to the water condensate forming in cooled exhausted gases and containing the aggressive sulfate and chloride ions was presented in this article. It was assumed, that after 200 days and nights of their exposition to the condensate significant losses of steel 316L created with speed of 1,6 mm/yearly were taking place. Such a tremendous speed of corrosion has come from a porous layer construction, containing beside magnetite and spinels also chlorides and sulfates. The presence of about 2% of molybdenum in steel due to the bonding of sulfur near the phase border with the metallic base reduced profoundly the corrosion effects; while the exposed at the same time and under the same conditions steel without molybdenum of type 304L was corroding with the speed of nearly 13 mm/yearly. (author)

  16. Drainage control and diffusion resistance in dropwise condensation in a compact heat exchanger

    NARCIS (Netherlands)

    Grooten, M.H.M.

    2011-01-01

    Condensation of a vapor in the presence of non-condensable gas occurs frequently in process industry. For example in compact condensers for heat recovery, in extraction of toxic components from exhaust gases, in cooling systems of nuclear power plants, seawater desalination systems, air conditioning

  17. Applicability of a desiccant dew-point cooling system independent of external water sources

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Kærn, Martin Ryhl

    2015-01-01

    The applicability of a technical solution for making desiccant cooling systems independent of external water sources is investigated. Water is produced by condensing the desorbed water vapour in a closed regeneration circuit. Desorbed water recovery is applied to a desiccant dew-point cooling...... system, which includes a desiccant wheel and a dew point cooler. The system is simulated during the summer period in the Mediterranean climate of Rome and it results completely independent of external water sources. The seasonal thermal COP drops 8% in comparison to the open regeneration circuit solution...

  18. Dry cooling with night cool storage to enhance solar power plants performance in extreme conditions areas

    International Nuclear Information System (INIS)

    Muñoz, J.; Martínez-Val, J.M.; Abbas, R.; Abánades, A.

    2012-01-01

    Highlights: ► Solar thermo-electric power plants with thermal storage for condenser cooling. ► Technology to mitigate the negative effect on Rankine cycles of the day-time high temperatures in deserts. ► Electricity production augmentation in demand-peak hours by the use of day-night temperature difference. -- Abstract: Solar thermal power plants are usually installed in locations with high yearly average solar radiation, often deserts. In such conditions, cooling water required for thermodynamic cycles is rarely available. Moreover, when solar radiation is high, ambient temperature is very high as well; this leads to excessive condensation temperature, especially when air-condensers are used, and decreases the plant efficiency. However, temperature variation in deserts is often very high, which drives to relatively low temperatures during the night. This fact can be exploited with the use of a closed cooling system, so that the coolant (water) is chilled during the night and store. Chilled water is then used during peak temperature hours to cool the condenser (dry cooling), thus enhancing power output and efficiency. The present work analyzes the performance improvement achieved by night thermal cool storage, compared to its equivalent air cooled power plant. Dry cooling is proved to be energy-effective for moderately high day–night temperature differences (20 °C), often found in desert locations. The storage volume requirement for different power plant efficiencies has also been studied, resulting on an asymptotic tendency.

  19. PH adjustment of power plant cooling water with flue gas/fly ash

    Science.gov (United States)

    Brady, Patrick V.; Krumhansl, James L.

    2015-09-22

    A system including a vessel including a heat source and a flue; a turbine; a condenser; a fluid conduit circuit disposed between the vessel, the turbine and the condenser; and a diverter coupled to the flue to direct a portion of an exhaust from the flue to contact with a cooling medium for the condenser water. A method including diverting a portion of exhaust from a flue of a vessel; modifying the pH of a cooling medium for a condenser with the portion of exhaust; and condensing heated fluid from the vessel with the pH modified cooling medium.

  20. Quantum simulation of strongly correlated condensed matter systems

    Science.gov (United States)

    Hofstetter, W.; Qin, T.

    2018-04-01

    We review recent experimental and theoretical progress in realizing and simulating many-body phases of ultracold atoms in optical lattices, which gives access to analog quantum simulations of fundamental model Hamiltonians for strongly correlated condensed matter systems, such as the Hubbard model. After a general introduction to quantum gases in optical lattices, their preparation and cooling, and measurement techniques for relevant observables, we focus on several examples, where quantum simulations of this type have been performed successfully during the past years: Mott-insulator states, itinerant quantum magnetism, disorder-induced localization and its interplay with interactions, and topological quantum states in synthetic gauge fields.

  1. Residential solar air conditioning: Energy and exergy analyses of an ammonia–water absorption cooling system

    International Nuclear Information System (INIS)

    Aman, J.; Ting, D.S.-K.; Henshaw, P.

    2014-01-01

    Large scale heat-driven absorption cooling systems are available in the marketplace for industrial applications but the concept of a solar driven absorption chiller for air-conditioning applications is relatively new. Absorption chillers have a lower efficiency than compression refrigeration systems, when used for small scale applications and this restrains the absorption cooling system from air conditioning applications in residential buildings. The potential of a solar driven ammonia–water absorption chiller for residential air conditioning application is discussed and analyzed in this paper. A thermodynamic model has been developed based on a 10 kW air cooled ammonia–water absorption chiller driven by solar thermal energy. Both energy and exergy analyses have been conducted to evaluate the performance of this residential scale cooling system. The analyses uncovered that the absorber is where the most exergy loss occurs (63%) followed by the generator (13%) and the condenser (11%). Furthermore, the exergy loss of the condenser and absorber greatly increase with temperature, the generator less so, and the exergy loss in the evaporator is the least sensitive to increasing temperature. -- Highlights: • 10 kW solar thermal driven ammonia–water air cooled absorption chiller is investigated. • Energy and exergy analyses have been done to enhance the thermal performance. • Low driving temperature heat sources have been optimized. • The efficiencies of the major components have been evaluated

  2. On the performance of air conditioner with heat pipe for cooling air in the condenser

    Energy Technology Data Exchange (ETDEWEB)

    Naphon, Paisarn, E-mail: paisarnn@swu.ac.t [Thermo-Fluids and Heat Transfer Enhancement Laboratory (TFHT), Department of Mechanical Engineering, Faculty of Engineering, Srinakharinwirot University, 63 Rangsit-Nakhornnayok Rd., Ongkharak, Nakhorn-Nayok 26120 (Thailand)

    2010-11-15

    Improvement of the air conditioning system performance by using the heat pipe for cooling air before entering the condenser is presented. In the experiment, the heat pipe is fabricated from the straight copper tube with the diameter and length of 10, 600 mm, respectively. The arrangements of the heat pipe sets are arranged in the staggered layout with the tube rows of 1, 2, 3. R134a refrigerant is used as working fluid in the heat pipe set for this present study. By comparing with a conventional air conditioning system, the air conditioning system with three rows of heat pipe gives the highest COP and EER with increasing of 6.4%, 17.5%, respectively. On the global warming and environment problems, the results of this study are expected to lead to guidelines that will allow the improved performance of the air conditioning systems which reduce its energy consumption.

  3. On the performance of air conditioner with heat pipe for cooling air in the condenser

    International Nuclear Information System (INIS)

    Naphon, Paisarn

    2010-01-01

    Improvement of the air conditioning system performance by using the heat pipe for cooling air before entering the condenser is presented. In the experiment, the heat pipe is fabricated from the straight copper tube with the diameter and length of 10, 600 mm, respectively. The arrangements of the heat pipe sets are arranged in the staggered layout with the tube rows of 1, 2, 3. R134a refrigerant is used as working fluid in the heat pipe set for this present study. By comparing with a conventional air conditioning system, the air conditioning system with three rows of heat pipe gives the highest COP and EER with increasing of 6.4%, 17.5%, respectively. On the global warming and environment problems, the results of this study are expected to lead to guidelines that will allow the improved performance of the air conditioning systems which reduce its energy consumption.

  4. Thermal performance of cooling system for a laptop computer using a boiling enhancement microstructure

    International Nuclear Information System (INIS)

    Cho, N. H.; Jeong, W. Y.; Park, S. H.

    2008-01-01

    The increasing heat generation rates in CPU of notebook computers motivate a research on cooling technologies with low thermal resistance. This paper develops a closed-loop two-phase cooling system using a micropump to circulate a dielectric liquid(PF5060). The cooling system consists of an evaporator containing a boiling enhancement microstructure connected to a condenser with mini fans providing external forced convection. The cooling system is characterized by a parametric study which determines the effects of volume fill ratio of coolant, existence of a boiling enhancement microstructure and pump flow rates on thermal performance of the closed loop. Experimental data shows the optimal parametric values which can dissipate 33.9W with a film heater maintained at 95 .deg. C

  5. Thermal performance of cooling system for a laptop computer using a boiling enhancement microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Cho, N. H.; Jeong, W. Y.; Park, S. H. [Kumoh National Institute of Technology, Gumi (Korea, Republic of)

    2008-07-01

    The increasing heat generation rates in CPU of notebook computers motivate a research on cooling technologies with low thermal resistance. This paper develops a closed-loop two-phase cooling system using a micropump to circulate a dielectric liquid(PF5060). The cooling system consists of an evaporator containing a boiling enhancement microstructure connected to a condenser with mini fans providing external forced convection. The cooling system is characterized by a parametric study which determines the effects of volume fill ratio of coolant, existence of a boiling enhancement microstructure and pump flow rates on thermal performance of the closed loop. Experimental data shows the optimal parametric values which can dissipate 33.9W with a film heater maintained at 95 .deg. C.

  6. ANN based optimization of a solar assisted hybrid cooling system in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ozgur, Arif; Yetik, Ozge; Arslan, Oguz [Mechanical Eng. Dept., Engineering Faculty, Dumlupinar University (Turkey)], email: maozgur@dpu.edu.tr, email: ozgeyetik@dpu.edu.tr, email: oarslan@dpu.edu.tr

    2011-07-01

    This study achieved optimization of a solar assisted hybrid cooling system with refrigerants such as R717, R141b, R134a and R123 using an artificial neural network (ANN) model based on average total solar radiation, ambient temperature, generator temperature, condenser temperature, intercooler temperature and fluid types. ANN is a new tool; it works rapidly and can thus be a solution for design and optimization of complex power cycles. A unique flexible ANN algorithm was introduced to evaluate the solar ejector cooling systems because of the nonlinearity of neural networks. The conclusion was that the best COPs value obtained with the ANN is 1.35 and COPc is 3.03 when the average total solar radiation, ambient temperature, generator temperature, condenser temperature, intercooler temperature and algorithm are respectively 674.72 W/m2, 17.9, 80, 15 and 13 degree celsius and LM with 14 neurons in single hidden layer, for R717.

  7. Experimental study of performance of a dry cooling and dedicated ventilation (DCDV) system under different space cooling load conditions

    International Nuclear Information System (INIS)

    Jia, Jie; Lee, W.L.; Chen, Hua

    2013-01-01

    Highlights: • This is an experimental study of the use of DCDV system for achieving the decoupling and energy saving objectives. • The study focuses on side-by-side comparison of the DCDV and conventional systems. • DCDV system can better achieve the desired space air conditions and is more energy efficient. • A prediction model has been developed to relate the possible condensation period with different operating parameters. • The results are useful for wider application of DCDV system. - Abstract: The use of DCDV system for decoupling dehumidification from cooling to achieve energy saving objective for air-conditioning of office environments in Hong Kong was confirmed effective based on simulation studies by the authors. However, given that simulation typically assumes a perfect control and feedback system, whether or not the benefits of DCDV system can be realized in practice, in particular under various space part load ratio (PLR) and sensible heat ratio (SHR) conditions, is subject to experimental verifications. In this study, a prototype which could be switched between the proposed DCDV system mode and the conventional system mode was constructed in a test facility for laboratory experiments. Through two sets of identical experiments under various space cooling load conditions, it was found that if compared to the conventional system, DCDV system could perform slightly better in achieving the desired indoor condition and in reducing the moisture-related air quality problems, but would result in 1–3% higher in cooling output. As for the overall coefficient of performance (COP o ), the DCDV system was found performed better by 5.6–7.2%. Additional experimental analysis was conducted for the development of a prediction model to relate the possible condensation period (ψ) on the DC coil with different operating parameters

  8. Bose-condensation through resonance decay

    International Nuclear Information System (INIS)

    Ornik, U.; Pluemer, M.; Strottman, D.

    1993-04-01

    We show that a system described by an equation of state which contains a high number of degrees of freedom (resonances) can create a considerable amount of superfluid (condensed) pions through the decay of short-lived resonances, if baryon number and entropy are large and the dense matter decouples from chemical equilibrium earlier than from thermal equilibrium. The system cools down faster in the presence of a condensate, an effect that may partially compensate the enhancement of the lifetime expected in the case of quark-gluon-plasma formation. (orig.). 3 figs

  9. Simulation of an adsorption solar cooling system

    International Nuclear Information System (INIS)

    Hassan, H.Z.; Mohamad, A.A.; Bennacer, R.

    2011-01-01

    A more realistic theoretical simulation model for a tubular solar adsorption refrigerating system using activated carbon-methanol (AC/M) pair has been introduced. The mathematical model represents the heat and mass transfer inside the adsorption bed, the condenser, and the evaporator. The simulation technique takes into account the variations of ambient temperature and solar radiation along the day. Furthermore, the local pressure, and local thermal conductivity variations in space and time inside the tubular reactor are investigated as well. A C++ computer program is written to solve the proposed numerical model using the finite difference method. The developed program covers the operations of all the system components along the cycle time. The performance of the tubular reactor, the condenser, and the evaporator has been discussed. Time allocation chart and switching operations for the solar refrigeration system processes are illustrated as well. The case studied has a 1 m 2 surface area solar flat plate collector integrated with a 20 stainless steel tubes containing the AC/M pair and each tube has a 5 cm outer diameter. In addition, the condenser pressure is set to 54.2 kpa. It has been found that, the solar coefficient of performance and the specific cooling power of the system are 0.211 and 2.326 respectively. In addition, the pressure distribution inside the adsorption bed has been found nearly uniform and varying only with time. Furthermore, the AC/M thermal conductivity is shown to be constant in both space and time.

  10. Theory of laminar film condensation

    CERN Document Server

    Fujii, Tetsu

    1991-01-01

    Since the petroleum crisis in the 1970s, a lot of effort to save energy was made in industry, and remarkable achievements have been made. In the research and development concerning thermal energy, however, it was clar­ ified that one of the most important problems was manufacturing con­ densing systems with smaller size and higher performance. To solve this problem we need a method which synthesizes selections_ of the type of con­ denser, cooling tube and its arrangement, assessment of fouling on the cooling surfaces, consideration of transient characteristics of a condenser, etc. The majority of effort, however, has been to devise a surface element which enhances the heat transfer coefficient in condensation of a single or multicomponent vapor. Condensation phenomena are complexly affected by a lot of physical property values, and accordingly the results of theo­ retical research are expressed with several dimensionless parameters. On the other hand, the experimental research is limited to those with som...

  11. Energy and Exergy Based Optimization of Licl-Water Absorption Cooling System

    Directory of Open Access Journals (Sweden)

    Bhargav Pandya

    2017-06-01

    Full Text Available This study presents thermodynamic analysis and optimization of single effect LiCl-H2O absorption cooling system. Thermodynamic models are employed in engineering equation solver to compute the optimum performance parameters. In this study, cut off temperature to operate system has been obtained at various operating temperatures. Analysis depicts that on 3.59 % rise in evaporator temperature, the required cut-off temperature decreased by 12.51%. By realistic comparison between thermodynamic first and second law analysis, optimum generator temperature relative to energy and exergy based prospective has been evaluated. It is found that optimum generator temperature is strong function of evaporator and condenser temperature. Thus, it is feasible to find out optimum generator temperature for various combinations of evaporator and condenser temperatures. Contour plots of optimum generator temperature for several combinations of condenser and absorber temperatures have been also depicted.

  12. CONDENSATION OF WATER VAPOR IN A VERTICAL TUBE CONDENSER

    Directory of Open Access Journals (Sweden)

    Jan Havlík

    2015-10-01

    Full Text Available This paper presents an analysis of heat transfer in the process of condensation of water vapor in a vertical shell-and-tube condenser. We analyze the use of the Nusselt model for calculating the condensation heat transfer coefficient (HTC inside a vertical tube and the Kern, Bell-Delaware and Stream-flow analysis methods for calculating the shell-side HTC from tubes to cooling water. These methods are experimentally verified for a specific condenser of waste process vapor containing air. The operating conditions of the condenser may be different from the assumptions adopted in the basic Nusselt theory. Modifications to the Nusselt condensation model are theoretically analyzed.

  13. Measurement of Total Condensation on a Shrouded Cryogenic Surface using a Single Quart Crystal Microbalance

    International Nuclear Information System (INIS)

    Haid, B.J.; Malsbury, T.N.; Gibson, C.R.; Warren, C.T.

    2008-01-01

    A single quartz crystal microbalance (QCM) is cooled to 18 K to measure condensation rates inside of a retractable ''shroud'' enclosure. The shroud is of a design intended to minimize condensate on fusion targets to be fielded at the National Ignition Facility (NIF). The shroud has a double-wall construction with an inner wall that may be cooled to 75-100 K. The QCM and the shroud system were mounted in a vacuum chamber and cooled using a cryocooler. Condensation rates were measured at various vacuum levels and compositions, and with the shroud open or closed. A technique for measuring total condensate during the cooldown of the system with an accuracy of better than 1.0 x 10 -6 g/cm 2 was also demonstrated. The technique involved a separate measurement of the condensate-free crystal frequency as a function of temperature that was later applied to the measurement of interest

  14. Thermodynamic analysis of a new combined cooling and power system using ammonia–water mixture

    International Nuclear Information System (INIS)

    Wang, Jiangfeng; Wang, Jianyong; Zhao, Pan; Dai, Yiping

    2016-01-01

    Highlights: • A new combined cooling and power system is proposed. • Exergy destruction analysis is used to identify irreversibility of components in system. • Thermodynamic parameter analysis is performed for system. - Abstract: In order to achieve both power and cooling supply for users, a new combined cooling and power system using ammonia–water mixture is proposed to utilizing low grade heat sources, such as industrial waste heat, solar energy and geothermal energy. The proposed system combines a Kalina cycle and an ammonia–water absorption refrigeration cycle, in which the ammonia–water turbine exhaust is delivered to a separator to extract purer ammonia vapor. The purer ammonia vapor enters an evaporator to generate refrigeration output after being condensed and throttled. Mathematical models are established to simulate the combined system under steady-state conditions. Exergy destruction analysis is conducted to display the exergy destruction distribution in the system qualitatively and the results show that the major exergy destruction occurs in the heat exchangers. Finally a thermodynamic sensitivity analysis is performed and reveals that with an increase in the pressure of separator I or the ammonia mass fraction of basic solution, thermal efficiency and exergy efficiency of the system increase, whereas with an increase in the temperature of separator I, the ammonia–water turbine back pressure or the condenser II pressure, thermal efficiency and exergy efficiency of the system drop.

  15. Design of condenser for 500 MWe pressurised heavy water reactors (PHWRs) - a case study

    International Nuclear Information System (INIS)

    Agarwal, N.K.; Subbarao, A.; Chaudhary, K.

    1996-01-01

    Condenser forms the major heat sink in the power plants. In recent years, power plant availability and performance have become great concern to the industry. The detailed design of the condenser and its associated cooling water (CW) system require careful optimisation of parameters which include material selection, cooling water flow rate, condenser surface areas, turbine exhaust pressures etc. This is required to produce a design offering maximum efficiency and reliability and minimum maintenance. The various parameters involved in condenser design are discussed. 5 refs., 1 fig

  16. Estimation of the Influence of Operational Factors on the Oxygen Content of the Turbine Condensate at the Outlet from the Condenser of Steam Turbine

    Directory of Open Access Journals (Sweden)

    Shempelev A. G.

    2017-08-01

    Full Text Available The aim of the article is to analyze the influence of different factors on the oxygen content in the condensate using the example of the condenser of the steam turbine unit T-110/120-130. For the first time, the authors of the article analyze in details how the basic parameters of the condenser's operation (the condenser heat load, the flow and temperature of the cooling water, the air inflow in the condenser, the condition of the heat exchange surface influence the oxygen content of the condensate. The authors come to the conclusion that with standard air inflow in the vacuum system, the equilibrium oxygen content, which corresponds to the norms in the condensate at the condenser outlet, is only possible in its operation modes when the steam flow to the condenser is more than 50% of the nominal flow and cooling water temperatures are equal to or greater than calculated for this type of condenser. The conclusions are confirmed by the experimental material. The results of the research are the basis for the development of measures aimed to increase the deaerating capacity of condensers depending on specific operating conditions.

  17. CFD study on the effects of boundary conditions on air flow through an air-cooled condenser

    Science.gov (United States)

    Sumara, Zdeněk; Šochman, Michal

    2018-06-01

    This study focuses on the effects of boundary conditions on effectiveness of an air-cooled condenser (ACC). Heat duty of ACC is very often calculated for ideal uniform velocity field which does not correspond to reality. Therefore, this study studies the effect of wind and different landscapes on air flow through ACC. For this study software OpenFOAM was used and the flow was simulated with the use of RANS equations. For verification of numerical setup a model of one ACC cell with dimensions of platform 1.5×1.5 [m] was used. In this experiment static pressures behind fan and air flows through a model of surface of condenser for different rpm of fan were measured. In OpenFOAM software a virtual clone of this experiment was built and different meshes, turbulent models and numerical schemes were tested. After tuning up numerical setup virtual model of real ACC system was built. Influence of wind, landscape and height of ACC on air flow through ACC has been investigated.

  18. Numerical analysis of transient pressure variation in the condenser of a nuclear power station

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinjun; Zhou, Zijie; Song, Zhao [Xi' an Jiaotong University, Xi' an (China); Lu, Qiankui; Li, Jiafu [Dong Fang Turbine Co., Ltd, Deyang (China)

    2016-02-15

    To research the characteristics of the transient variation of pressure in a nuclear power station condenser under accident condition, a mathematical model was established which simulated the cycling cooling water, heat transfer and pressure in the condenser. The calculation program of transient variation characteristics was established in Fortran language. The pump's parameter, cooling line's organization, check valve's feature and the parameter of siphonic water-collecting well are involved in the cooling water flow's mathematical model. The initial conditions of control volume are determined by the steady state of the condenser. The transient characteristics of a 1000 MW nuclear power station's condenser and cooling water system were examined. The results show that at the condition of plant-power suspension of pump, the cooling water flow rate decreases rapidly and refluxes, then fluctuates to 0. The variation of heat transfer coefficient in the condenser has three stages: at start it decreases sharply, then increases and decreases, and keeps constant in the end. Under three conditions (design, water and summer), the condenser pressure goes up in fluctuation. The time intervals between condenser's pressure signals under three conditions are about 26.4 s, which can fulfill the requirement for safe operation of nuclear power station.

  19. Performance in cooling mode of a heat pump using panels with PV cells as the condenser; Taiyo denchitsuki panel wo gyoshukuki to shita heat pump no reibo unten

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, T; Ito, S; Miura, N [Kanagawa Institute of Technology, Kanagawa (Japan); Fujita, M [Chubu Electric Power Co. Inc., Nagoya (Japan)

    1996-10-27

    Comparison was made between heat pumps in cooling operation, one having two panels provided with solar cells, the second having an air-cooled heat exchanger alone, and the third having a series connection of a panel unit and air-cooled heat exchanger, all serving as condenser. The results are shown below. In the case of two-panel-unit condenser, there is a difference ({Delta}t) of 15{degree}C between the daytime free air temperature and condensing temperature but, with decreased insolation, free air temperature, and wind speed in the evening, the {Delta}t lowered to approximately 8{degree}C while the COP (coefficient of performance) increased from 2.4 to 3.3. On a cloudy day in summer, the two-panel-unit condenser had a {Delta}t of 13.9{degree}C and a COP of 3.1. In the case of the series-connection condenser, the {Delta}t was approximately 8{degree}C and the COP was 3.5. The COP of the two-panel-unit condenser was lower than that of the air-cooled heat exchanger by 9% at an insolation of 442W/m{sup 2} but it rose to 12% in the absence of insolation. The COP of the two-panel-unit condenser was higher than that of a one-panel-unit condenser by 17%. When an insulator plate was attached to the back of a panel, the {Delta}t increased but the COP decreased by 14%. In the case of the series-connection condenser, the COP increased by 6% in the absence of the insulator plate. 2 refs., 9 figs.

  20. Experimental assessment of an absorption cooling system operating with the ammonia/lithium nitrate mixture

    International Nuclear Information System (INIS)

    Hernández-Magallanes, J.A.; Domínguez-Inzunza, L.A.; Gutiérrez-Urueta, G.; Soto, P.; Jiménez, C.; Rivera, W.

    2014-01-01

    This paper reports the experimental results of a single effect absorption cooling system of 3 kW of nominal cooling capacity operating with ammonia–lithium nitrate solution. The system was designed and built in the Instituto de Energías Renovables of the Universidad Nacional Autónoma de México and can be used for food conservation or air conditioning. The absorber and generator are falling film heat exchangers. The condenser, evaporator and solution heat exchanger are compact plate heat exchangers. The heat was supplied to the generator at temperatures between 85 °C and 105 °C, while the cooling water temperatures to remove the heat produced during the condensation and absorption varied between 18 °C and 36 °C. The results showed that the system can produce up to 2.7 kW of cooling capacity at heating water temperatures of 95 °C and can achieve evaporator temperatures as low as 1 °C. The experimental coefficients of performance varied between 0.45 and 0.70. Because of the developed system do not need a rectifier and reasonable good coefficients of performance were achieved, the developed system seems to be a good alternative to be used for food conservation or air conditioning. - Highlights: • An absorption cooling system was developed using NH 3 –LiNO 3 . • The achieved COP (coefficients of performance) are the highest reported for a system using NH 3 –LiNO 3 . • Evaporator temperatures as low as 1 °C were achieved. • COP varied between 0.45 and 0.7. • The developed system seems to be a good alternative for food conservation and air conditioning

  1. IMPROVEMENT OF SYSTEMS OF TECHNICAL WATER SUPPLY WITH COOLING TOWERS FOR HEAT POWER PLANTS TECHNICAL AND ECONOMIC INDICATORS PERFECTION. Part 2

    Directory of Open Access Journals (Sweden)

    Yu. A. Zenovich-Leshkevich-Olpinskiy

    2016-01-01

    Full Text Available The method of calculation of economic efficiency that can be universal and is suitable for feasibility study of modernization of irrigation and water distribution system of cooling towers has been developed. The method takes into account the effect of lower pressure exhaust steam in the condenser by lowering the temperature of the cooling water outlet of a cooling tower that aims at improvement of technical and economic indicators of heat power plants. The practical results of the modernization of irrigation and water distribution system of a cooling tower are presented. As a result, the application of new irrigation and water distribution systems of cooling towers will make it possible to increase the cooling efficiency by more than 4 оС and, therefore, to obtain the fuel savings by improving the vacuum in the turbine condensers. In addition, the available capacity of CHP in the summer period is increased. The results of the work, the experience of modernization of irrigation and water distribution systems of the Gomel CHP-2 cooling towers system, as well as the and methods of calculating of its efficiency can be disseminated for upgrading similar facilities at the power plants of the Belarusian energy system. Some measures are prosed to improve recycling systems, cooling towers and their structures; such measures might significantly improve the reliability and efficiency of technical water supply systems of heat power plants.

  2. The impacts of cooling construction on the ability distract the heat of condensation part of the heat pipe

    Directory of Open Access Journals (Sweden)

    Gavlas S.

    2013-04-01

    Full Text Available Heat pipes as cooling devices have a high potential. Their power to affect a variety of factors – the vapour pressure, the amount of media work etc. Itis therefore necessary to verify the calculated parameters also practically. To determine the performance of transmitted heat pipe is the best calorimetric method. When it is out of the flow and the temperature difference the cooling part of the heat pipe determines its transmitted power. The contribution is focused on comparison of two types of coolers. The first type is looped capillary cooler for the condenser section. The small diameter capillary is secured high coolant turbulence and hence heat dissipation. The second type is non-contact cooling, where cooling fluid washes direct heat pipe wall.

  3. Thermodynamic performance analysis of gas-fired air-cooled adiabatic absorption refrigeration systems

    International Nuclear Information System (INIS)

    Wang, L.; Chen, G.M.; Wang, Q.; Zhong, M.

    2007-01-01

    In China, the application of small size gas-fired air-cooled absorption refrigeration systems as an alternative for electric compression air conditioning systems has shown broad prospects due to occurrence of electricity peak demand in Chinese big cities and lack of water resources. However, for conventional air-cooled absorption refrigeration systems, it is difficult to enhance the heat and mass transfer process in the falling film absorber, and may cause problems, for example, remarkable increase of pressure, temperature and concentration in the generators, risk of crystallization, acceleration of corrosion, degradation of performance, and so on. This paper presents a gas-fired air-cooled adiabatic absorption refrigeration system using lithium bromide-water solutions as its working fluid, which is designed with a cooling capacity of 16 kW under standard conditions. The system has two new features of waste heat recovery of condensed water from generator and an adiabatic absorber with an air cooler. Performance simulation and characteristic analysis are crucial for the optimal control and reliability of operation in extremely hot climates. A methodology is presented to simulate thermodynamic performance of the system. The influences of outdoor air temperature on operation performances of the system are investigated

  4. A passive decay heat removal system for LWRs based on air cooling

    Energy Technology Data Exchange (ETDEWEB)

    Mochizuki, Hiroyasu, E-mail: mochizki@u-fukui.ac.jp [Research Institute of Nuclear Engineering, University of Fukui, 1-2-4 Kanawa-cho, Tsuruga, Fukui 914-0055 (Japan); Yano, Takahiro [Graduate School of Engineering, University of Fukui, 1-2-4 Kanawa-cho, Tsuruga, Fukui 914-0055 (Japan)

    2015-05-15

    Highlights: • A passive decay heat removal system for LWRs is discussed. • An air cooler model which condenses steam is developed. • The decay heat can be removed by air coolers with forced convection. • The dimensions of the air cooler are proposed. - Abstract: The present paper describes the capability of an air cooling system (ACS) to remove decay heat from a core of LWR such as an advanced boiling water reactor (ABWR) and a pressurized water reactor (PWR). The motivation of the present research is the Fukushima severe accident (SA) on 11 March 2011. Since emergency cooling systems using electricity were not available due to station blackout (SBO) and malfunctions, many engineers might understand that water cooling was not completely reliable. Therefore, a passive decay heat removal (DHR) system would be proposed in order to prevent such an SA under the conditions of an SBO event. The plant behaviors during the SBO are calculated using the system code NETFLOW++ for the ABWR and PWR with the ACS. Two types of air coolers (ACs) are applied for the ABWR, i.e., a steam condensing air cooler (SCAC) of which intake for heat transfer tubes is provided in the steam region, and single-phase type of which intake is provided in the water region. The DHR characteristics are calculated under the conditions of the forced air circulation and also the natural air convection. As a result of the calculations, the decay heat can be removed safely by the reasonably sized ACS when heat transfer tubes are cooled with the forced air circulation. The heat removal rate per one finned heat transfer tube is evaluated as a function of air flow rate. The heat removal rate increases as a function of the air flow rate.

  5. Condenser design optimization and operation characteristics of a novel miniature loop heat pipe

    International Nuclear Information System (INIS)

    Wan Zhenping; Wang Xiaowu; Tang Yong

    2012-01-01

    Highlights: ► A novel miniature LHP (mLHP) system was presented. ► Optimal design of condenser was considered. ► The heat transfer performance was investigated experimentally. - Abstract: Loop heat pipe (LHP) is a promising means for electronics cooling since LHP is a exceptionally efficient heat transfer device. In this paper, a novel miniature LHP (mLHP) system is presented and optimal design of condenser is considered seeing that evaporators have been able to handle very high-heat fluxes with low-heat transfer resistances since most of the previous researchers focused on the evaporator of mLHP. The arrayed pins were designed and machined out on the bottom of condenser to enhance condensation heat transfer. The parameters of the arrayed pins, including layout, cross-section shape and area, were optimized by finite element analysis. Tests were carried out on the mLHP with a CPU thermal simulator using forced air convection condenser cooling to validate the optimization. The operation characteristics of the mLHP with optimal design parameters of condenser were investigated experimentally. The experimental results show that the mLHP can reject head load 200 W while maintaining the cooled object temperatures below 100 °C, and for a variable power applied to the evaporator, the system presents reliable startups and continuous operation.

  6. Use of process steam in vapor absorption refrigeration system for cooling and heating applications: An exergy analysis

    Directory of Open Access Journals (Sweden)

    S. Anand

    2016-12-01

    Full Text Available The exponential increase in cost of conventional fuels shifts the interest toward the use of alternative as well waste energy sources for the operation of refrigeration and air-conditioning units. The present study therefore analyzes the performance of a process steam-operated vapor absorption system for cooling and heating applications using ammonia and water as working fluids based on first and second laws of thermodynamics. A mathematical model has been developed based on exergy analysis to investigate the performance of the system. The different performance parameters such as coefficient of performance (COP and exergetic efficiency of absorption system for cooling and heating applications are also calculated under different operating conditions. The results obtained show that cooling and heating COP along with second law efficiency (exergy efficiency increases with the heat source temperature at constant evaporator, condenser, and absorber temperature. Also, COP as well as exergy efficiency increases with an increase in the evaporator temperature at constant generator, condenser, and absorber temperature. The effect of ambient temperature on the exergetic efficiency for cooling and heating applications is also studied. The results obtained from the simulation studies can be used to optimize different components of the system so that the performance can be improved significantly.

  7. Prediction of Heat Removal Capacity of Horizontal Condensation Heat Exchanger submerged in Pool

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong-Su; Hong, Soon-Joon [FNC Tech., Yongin (Korea, Republic of); Cho, Hyoung-Kyu [Seoul National University, Seoul (Korea, Republic of); Park, Goon-Cherl [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-10-15

    As representative passive safety systems, there are the passive containment cooling system (PCCS) of ESBWR, the emergency condenser system (ECS) of the SWR-1000, the passive auxiliary feed-water system (PAFS) of the APR+ and etc. During the nuclear power plant accidents, these passive safety systems can cool the nuclear system effectively via the heat transfer through the steam condensation, and then mitigate the accidents. For the optimum design and the safety analysis of the passive safety system, it is essential to predict the heat removal capacity of the heat exchanger well. The heat removal capacity of the horizontal condensation heat exchanger submerged in a pool is determined by a combination of a horizontal in-tube condensation heat transfer and a boiling heat transfer on the horizontal tube. Since most correlations proposed in the previous nuclear engineering field were developed for the vertical tube, there is a certain limit to apply these correlations to the horizontal tube. Therefore, this study developed the heat transfer model for the horizontal Ushaped condensation heat exchanger submerged in a pool to predict well the horizontal in-tube condensation heat transfer, the boiling heat transfer on the horizontal tube and the overall heat removal capacity of the heat exchanger using the best-estimate system analysis code, MARS.

  8. Low cryogen inventory, forced flow Ne cooling system with room temperature compression stage and heat recuperation

    CERN Document Server

    Shornikov, A; Wolf, A

    2014-01-01

    We present design and commissioning results of a forced flow cooling system utilizing neon at 30 K. The cryogen is pumped through the system by a room-temperature compression stage. To decouple the cold zone from the compression stage a recuperating counterflow tube-in-tube heat exchanger is used. Commissioning demonstrated successful condensation of neon and transfer of up to 30 W cooling power to the load at 30 K using only 30 g of the cryogen circulating in the system at pressures below 170 kPa.

  9. Cooling performance and evaluation of automotive refrigeration system for a passenger car

    Science.gov (United States)

    Prajitno, Deendarlianto, Majid, Akmal Irfan; Mardani, Mahardeka Dhias; Wicaksono, Wendi; Kamal, Samsul; Purwanto, Teguh Pudji; Fauzun

    2016-06-01

    A new design of automotive refrigeration system for a passenger car was proposed. To ensure less energy consumption and optimal thermal comfort, the performance of the system were evaluated. This current research was aimed to evaluate the refrigeration characteristics of the system for several types of cooling load. In this present study, a four-passenger wagon car with 1500 cc gasoline engine that equipped by a belt driven compressor (BDC) was used as the tested vehicle. To represent the tropical condition, a set of lamps and wind sources are installed around the vehicle. The blower capacity inside a car is varied from 0.015 m/s to 0.027 m/s and the compressor speed is varied at variable 820, 1400, and 2100 rpm at a set temperature of 22°C. A set of thermocouples that combined by data logger were used to measure the temperature distribution. The system uses R-134a as the refrigerant. In order to determine the cooling capacity of the vehicle, two conditions were presented: without passengers and full load conditions. As the results, cooling capacity from any possible heating sources and transient characteristics of temperature in both systems for the cabin, engine, compressor, and condenser are presented in this work. As the load increases, the outlet temperature of evaporator also increases due to the increase of condensed air. This phenomenon also causes the increase of compressor work and compression ratio which associated to the addition of specific volume in compressor inlet.

  10. Steam blowdown experiments with the condensation pool test rig

    International Nuclear Information System (INIS)

    Purhonen, H.; Puustinen, M.; Laine, J.; Raesaenen, A.; Kyrki-Rajamaeki, R.; Vihavainen, J.

    2005-01-01

    During a possible loss-of-coolant accident (Local) a large amount of non-condensable (nitrogen) and condensable (steam) gas is blown from the upper drywell of the containment to the condensation pool through the blowdown pipes at the boiling water reactors (BWRs). The wet well pool serves as the major heat sink for condensation of steam. The blowdown causes both dynamic and structural loads to the condensation pool. There might also be a risk that the gas discharging to the pool could push its way to the emergency core cooling systems (ECCS) and undermine their performance. (author)

  11. Passive Two-Phase Cooling of Automotive Power Electronics: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, G.; Jeffers, J. R.; Narumanchi, S.; Bennion, K.

    2014-08-01

    Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated, and tests were conducted using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator design that incorporates features to improve performance and reduce size was conceived. Simulation results indicate its thermal resistance can be 37% to 48% lower than automotive dual side cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers--plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.

  12. Desiccant Dewpoint Cooling System Independent of External Water Sources

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Markussen, Wiebke B.

    2015-01-01

    the air that regenerates the desiccant dehumidifier, and using it for running the evaporative coolers in the system. A closed regeneration circuit is used for maximizing the amount of condensed water. This solution is applied to a system with a desiccant wheel dehumidifier and a dew point cooler, termed...... desiccant dew-point cooling system, for demonstrating its function and applicability. Simulations are carried out for varying outdoor conditions under constant supply conditions. The results show that the system is independent of external water supply for the majority of simulated conditions. In comparison...... to the desiccant dew-point system without water recovery, the required regeneration temperature increases and the system thermal efficiency decreases....

  13. Energic, Exergic, Exergo‐economic investigation and optimization of auxiliary cooling system (ACS equipped with compression refrigerating system (CRS

    Directory of Open Access Journals (Sweden)

    Omid Karimi Sadaghiyani

    2017-09-01

    Full Text Available Heller main cooling tower as air-cooled heat exchanger is used in the combined cycle power plants (CCPP to reduce the temperature of condenser. In extreme summer heat, the efficiency of the cooling tower is reduced and it lessens performance of Steam Turbine Generation (STG unit of Combined Cycle Power Plant (CCPP. Thus, the auxiliary cooling system (ACS is equipped with compression refrigerating system (CRS. This auxiliary system is linked with the Heller main cooling tower and improves the performance of power plant. In other words, this auxiliary system increases the generated power of STG unit of CCPP by decreasing the temperature of returning water from cooling tower Therefore, in the first step, the mentioned auxiliary cooling system (ACS as a heat exchanger and compression refrigerating system (CRS have been designed via ASPEN HTFS and EES code respectively. In order to validate their results, these two systems have been built and theirs experimentally obtained data have been compared with ASPEN and EES results. There are good agreements between results. After that, exergic and exergo-economic analysis of designed systems have been carried out. Finally, the compression refrigerating system (CRS has been optimized via Genetic Algorithm (GA. Increasing in exergy efficiency (ε from 14.23% up to 36.12% and decreasing the total cost rate (ĊSystem from 378.2 ($/h to 308.2 ($/h are as results of multi-objective optimization.

  14. Development of balanced downflow type surface condensers, (2)

    International Nuclear Information System (INIS)

    Tomida, Akira; Oshima, Yoshikuni; Okochi, Isao; Izumi, Kenkichi.

    1976-01-01

    As the size of the condensers for power generation plants grew large, the new balanced downflow type condenser was developed and completed on the basis of the experiment on steam flow according to the two-dimensional flow model, the analysis of the performance in a tube nest with a computer, and the studies on the effect of outside liquid film and the reheating deaeration of condensate. When the balanced downflow type condensers were adopted for actual plants, the construction, strength and production method were examined, and the reliability of the new condenser was confirmed by the thermal characteristic experiment with the model similar to the actual machine. The condenser comprises a condenser body, supporting plates, cooling tubes, tube plates, water chambers, and reinforcements, and the cooling tubes are arranged so as to exchange heat effectively. The arrangement of tubes is divided into three regions, namely radiation portion, densely arranged portion, and air cooling portion. In the balanced downflow type condensers, the dilution by utilizing condensate is provided against ammonia attack. The apparatuses for the thermal characteristic experiment and the experimental results, and the results of the performance test on the actual balanced downflow type condenser are reported. (Kako, I.)

  15. Thermoelectric mini cooler coupled with micro thermosiphon for CPU cooling system

    International Nuclear Information System (INIS)

    Liu, Di; Zhao, Fu-Yun; Yang, Hong-Xing; Tang, Guang-Fa

    2015-01-01

    In the present study, a thermoelectric mini cooler coupling with a micro thermosiphon cooling system has been proposed for the purpose of CPU cooling. A mathematical model of heat transfer, depending on one-dimensional treatment of thermal and electric power, is firstly established for the thermoelectric module. Analytical results demonstrate the relationship between the maximal COP (Coefficient of Performance) and Q c with the figure of merit. Full-scale experiments have been conducted to investigate the effect of thermoelectric operating voltage, power input of heat source, and thermoelectric module number on the performance of the cooling system. Experimental results indicated that the cooling production increases with promotion of thermoelectric operating voltage. Surface temperature of CPU heat source linearly increases with increasing of power input, and its maximum value reached 70 °C as the prototype CPU power input was equivalent to 84 W. Insulation between air and heat source surface can prevent the condensate water due to low surface temperature. In addition, thermal performance of this cooling system could be enhanced when the total dimension of thermoelectric module matched well with the dimension of CPU. This research could benefit the design of thermal dissipation of electronic chips and CPU units. - Highlights: • A cooling system coupled with thermoelectric module and loop thermosiphon is developed. • Thermoelectric module coupled with loop thermosiphon can achieve high heat-transfer efficiency. • A mathematical model of thermoelectric cooling is built. • An analysis of modeling results for design and experimental data are presented. • Influence of power input and operating voltage on the cooling system are researched

  16. Unlimited cooling capacity of the passive-type emergency core cooling system of the MARS reactor

    International Nuclear Information System (INIS)

    Bandini, G.; Caira, M.; Naviglio, A.; Sorabella, L.

    1995-01-01

    The MARS nuclear plant is equipped with a 600 MWth PWR type nuclear steam supply system, with completely innovative engineered core safeguards. The most relevant innovative safety system of this plant is its Emergency Core Cooling System, which is completely passive (with only one non static component). The Emergency Core Cooling System (ECCS) of the MARS reactor is natural-circulation, passive-type, and its intervention follows a core flow decrease, whatever was the cause. The operation of the system is based on a cascade of three fluid systems, functionally interfacing through heat exchangers; the first fluid system is connected to the reactor vessel and the last one includes an atmospheric-pressure condenser, cooled by external air. The infinite thermal capacity of the final heat sink provides the system an unlimited autonomy. The capability and operability of the system are based on its integrity and on the integrity of the primary coolant boundary (both of them are permanently enclosed in a pressurized containment; 100% redundancy is also foreseen) and on the operation of only one non static component (a check valve), with 400% redundancy. In the paper, all main thermal hydraulic transients occurring as a consequence of postulated accidents are analysed, to verify the capability of the passive-type ECCS to intervene always in time, without causing undue conditions of reduced coolability of the core (DNB, etc.), and to verify its capability to guarantee a long-term (indefinite) coolability of the core without the need of any external intervention. (author)

  17. Conditions for maximum isolation of stable condensate during separation in gas-condensate systems

    Energy Technology Data Exchange (ETDEWEB)

    Trivus, N.A.; Belkina, N.A.

    1969-02-01

    A thermodynamic analysis is made of the gas-liquid separation process in order to determine the relationship between conditions of maximum stable condensate separation and physico-chemical nature and composition of condensate. The analysis was made by considering the multicomponent gas-condensate fluid produced from Zyrya field as a ternary system, composed of methane, an intermediate component (propane and butane) and a heavy residue, C/sub 6+/. Composition of 5 ternary systems was calculated for a wide variation in separator conditions. At each separator pressure there is maximum condensate production at a certain temperature. This occurs because solubility of condensate components changes with temperature. Results of all calculations are shown graphically. The graphs show conditions of maximum stable condensate separation.

  18. Method and apparatus for high-efficiency direct contact condensation

    Science.gov (United States)

    Bharathan, Desikan; Parent, Yves; Hassani, A. Vahab

    1999-01-01

    A direct contact condenser having a downward vapor flow chamber and an upward vapor flow chamber, wherein each of the vapor flow chambers includes a plurality of cooling liquid supplying pipes and a vapor-liquid contact medium disposed thereunder to facilitate contact and direct heat exchange between the vapor and cooling liquid. The contact medium includes a plurality of sheets arranged to form vertical interleaved channels or passageways for the vapor and cooling liquid streams. The upward vapor flow chamber also includes a second set of cooling liquid supplying pipes disposed beneath the vapor-liquid contact medium which operate intermittently in response to a pressure differential within the upward vapor flow chamber. The condenser further includes separate wells for collecting condensate and cooling liquid from each of the vapor flow chambers. In alternate embodiments, the condenser includes a cross-current flow chamber and an upward flow chamber, a plurality of upward flow chambers, or a single upward flow chamber. The method of use of the direct contact condenser of this invention includes passing a vapor stream sequentially through the downward and upward vapor flow chambers, where the vapor is condensed as a result of heat exchange with the cooling liquid in the contact medium. The concentration of noncondensable gases in the resulting condensate-liquid mixtures can be minimized by controlling the partial pressure of the vapor, which depends in part upon the geometry of the vapor-liquid contact medium. In another aspect of this invention, the physical and chemical performance of a direct contact condenser can be predicted based on the vapor and coolant compositions, the condensation conditions. and the geometric properties of the contact medium.

  19. Water conservation and improved production efficiency using closed-loop evaporative cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Marchetta, C. [Niagara Blower Co., Buffalo, NY (United States)

    2009-07-01

    This paper described wet surface air coolers (WSAC) that can be used in refineries and hydrocarbon processing plants to address water use issues. These closed-loop evaporative cooling systems are a cost-effective technology for both heat transfer and water conservation. WSACs can help deliver required cooling water temperatures and improve plant performance while using water streams currently considered to be unusable with conventional towers and heat exchangers. WSACs are versatile and can provide solutions to water use, water quality, and outlet temperature. The benefits of the WSAC include capital cost savings, reduced system pressures, lower carbon footprint, and the ability to use poor quality water as makeup. Water makeup can be blowdown from other equipment, plant effluent, reclaimed water, produced water, flue gas desulphurization (FGD) wastewater, and even seawater. Units can be manufactured with a wide variety of materials depending on water quality, water treatment, and cycles of concentration. This paper also provided comparisons to other alternative technologies, capital and operating cost savings, and site specific case studies. Two other system designs can accommodate closed-loop heat transfer applications, notably an open tower with a heat exchanger and a dry, air-cooled system. A WSAC system is an efficient and effective heat rejection technology for several reasons. The WSAC cooler or condenser utilizes latent cooling, which is far more efficient than sensible cooling. This means that a WSAC system can cool the same heat load with a smaller footprint than all-dry systems. 6 figs.

  20. Condensate subcooling near tube exit during horizontal in-tube condensation

    International Nuclear Information System (INIS)

    Hashizume, K.; Abe, N.; Ozeki, T.

    1992-01-01

    In-tube condensation is encountered in various applications for heat exchangers, such as domestic air-conditioning equipment, industrial air-cooled condensers, and moisture separator reheaters (MSRs) for nuclear power pants. Numerous research work has been conducted to predict the condensation heat transfer coefficient, and we have now enough information for thermal design of heat exchangers with horizontal in-tube condensation. Most of the research is analytical and/or experimental work in the annular or stratified flow regime, or experimental work on bulk condensation, i.e., from saturated vapor to complete condensation. On the other hand, there exist few data about the heat transfer phenomena in the very lower-quality region near the tube exit. The purpose of this paper is to clarify the condensation heat transfer phenomena near the tube exit experimentally and analytically, and to predict the degree of condensate subcooling

  1. A method and device for cooling

    International Nuclear Information System (INIS)

    Gautier, Daniel.

    1974-01-01

    The invention relates to a method and a device for cooling steam. The invention refers to a method for cooling steam from a turbine, e.g. a turbine coupled to a high power nuclear reactor, in which a fluid F in the state of a two-phase mixture (steam and condensation liquid) is circulated, in a closed circuit, in conduits passing through a condenser associated with the turbine in which fluid F contained in said conduits vaporizes by heat-exchange with the condenser hot steam, then through a cooling tower wherein the fluid condenses by heat-exchange with a coolant. This can be applied to cooling the steam in a turbine associated with a nuclear reactor [fr

  2. Comparison of immersed liquid and air cooling of NASA's Airborne Information Management System

    Science.gov (United States)

    Hoadley, A. W.; Porter, A. J.

    1992-01-01

    The Airborne Information Management System (AIMS) is currently under development at NASA Dryden Flight Research Facility. The AIMS is designed as a modular system utilizing surface mounted integrated circuits in a high-density configuration. To maintain the temperature of the integrated circuits within manufacturer's specifications, the modules are to be filled with Fluorinert FC-72. Unlike ground based liquid cooled computers, the extreme range of the ambient pressures experienced by the AIMS requires the FC-72 be contained in a closed system. This forces the latent heat absorbed during the boiling to be released during the condensation that must take within the closed module system. Natural convection and/or pumping carries the heat to the outer surface of the AIMS module where the heat transfers to the ambient air. This paper will present an evaluation of the relative effectiveness of immersed liquid cooling and air cooling of the Airborne Information Management System.

  3. Development in cooling water intake and outfall systems for atomic or steam power stations

    International Nuclear Information System (INIS)

    Wada, Akira

    1987-01-01

    The condenser cooling water channel, in its functional aspects, is an important structure for securing a stable supply of cooling water. In its design it is necessary to give a thorough-going study to a reduction of ranges affected by discharged warm water and minimizing the effect of discharged water on navigating ships, and in its functional aspects as a structure for power generation, avoiding the recirculation of discharged warm water as well as to maintaining the operation of power stations in case of abnormalities (concentration of dirts owing to typhoons and floods, outbreak of a large amount of jellyfishes, etc.), and all these aspects must be reflected in the design of cooling water channel systems. In this paper, the present situation relating to the design of cooling water intake and outfall systems in Japan is discussed. (author). 10 figs

  4. Numerical simulation of condensation phase change flow in an inclined tube with bend

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jong Chull; Shin, Byung Soo; Do, Kyu Sik [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Lee, Yong Kap [Anflux Co., Seoul (Korea, Republic of)

    2012-10-15

    The new PWR design named APR+ incorporates a passive auxiliary feedwater system (PAFS) as shown in Fig.1. The PAFS consists of two separate divisions. Each division is equipped with one passive condensation heat exchanger (PCHX), isolation or drain or vent valves, check valves, instrumentation and control, and pipes. It is aligned to feed condensed water to its corresponding steam generator (SG). During the PAFS normal operation, steam being produced in the SG secondary side by the residual heat moves up due to buoyancy force and then flows into the PCHX where steam is condensed on the inner surface of the tubes of which the outer surfaces are cooled by the water stored in the passive condensation cooling tank (PCCT). The condensate is passively fed into the SG economizer by gravity. Because the thermal hydraulic characteristics in the PCHT determine the condensation mass rate and the possibility of system instability and water hammer, it is important to understand the condensation phase change flow in the PCHT. This paper presents a numerical simulation of the condensation phase change flow in the PCHX adopted for the APR+ PAFS.

  5. Utilization of municipal wastewater for cooling in thermoelectric power plants: Evaluation of the combined cost of makeup water treatment and increased condenser fouling

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Michael E. [Illinois Inst. of Technology, Chicago, IL (United States). Dept. of Chemical and Biological Engineering; Theregowda, Ranjani B. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept of Civil and Mechanical Engineering; Safari, Iman [Illinois Inst. of Technology, Chicago, IL (United States). Dept. of Chemical and Biological Engineering; Abbasian, Javad [Illinois Inst. of Technology, Chicago, IL (United States). Dept. of Chemical and Biological Engineering; Arastoopour, Hamid [Illinois Inst. of Technology, Chicago, IL (United States). Dept. of Chemical and Biological Engineering; Dzombak, David A. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept of Civil and Mechanical Engineering; Hsieh, Ming-Kai [Tamkang Univ., Taipei (Taiwan). Waer Resources Management and Policy Research Center; Miller, David C. [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2013-10-01

    A methodology is presented to calculate the total combined cost (TCC) of water sourcing, water treatment and condenser fouling in the recirculating cooling systems of thermoelectric power plants. The methodology is employed to evaluate the economic viability of using treated municipal wastewater (MWW) to replace the use of freshwater as makeup water to power plant cooling systems. Cost analyses are presented for a reference power plant and five different tertiary treatment scenarios to reduce the scaling tendencies of MWW. Results indicate that a 550 MW sub-critical coal fired power plant with a makeup water requirement of 29.3 ML/day has a TCC of $3.0 - 3.2 million/yr associated with the use of treated MWW for cooling. (All costs USD 2009). This translates to a freshwater conservation cost of $0.29/kL, which is considerably lower than that of dry air cooling technology, $1.5/kL, as well as the 2020 conservation cost target set by the U.S. Department of Energy, $0.74/kL. Results also show that if the available price of freshwater exceeds that of secondary-treated MWW by more than $0.13-0.14/kL, it can be economically advantageous to purchase secondary MWW and treat it for utilization in the recirculating cooling system of a thermoelectric power plant.

  6. Gd-123 bulk field pole magnets cooled with condensed neon for axial-gap type synchronous motor

    International Nuclear Information System (INIS)

    Sano, T.; Kimura, Y.; Sugyo, D.; Yamaguchi, K.; Izumi, M.; Ida, T.; Sugimoto, H.; Miki, M.

    2008-01-01

    We have conducted to develop an axial-gap type synchronous propulsion motor with Gd-bulk HTS field pole magnets. It has been established on the fundamental technology upon the liquid nitrogen cooling. In the present study, we aimed an output improvement of the motor by the magnetic flux density enhancement of the bulk HTS, in a word, the trapped magnetic flux density on the HTS bulk. The output of the motor depends on the physics of the motor, the magnetic flux density, and the electric current density flowing through the armature. We have employed a condensed neon with a helium GM refrigerator. The bulk HTS placed on the rotor disk inside the motor frame was successfully cooled down with circulating condensed neon. The temperature at the bulk HTS surface reached 38 K. Upon magnetization, we developed controlled magnetic field density distribution coil (CMDC) composed of a couple of pulsed copper armature coil. In the magnetization procedure, with decreasing magnetization temperature, minute by minute, after Sander and Kamijyo that the step cooling magnetization method was used. In addition, the CMDC coil has enabled to control the applied flux distribution. Three parameters as the temperature, the applied magnetic field, and the effective applied flux density distribution were changed within eight times pulsed magnetizations in total. Up to 4th pulsed magnetization, we kept (1st step) high temperature, and subsequent pulsed magnetizations were done at low temperature. As a result, the highest maximum trapped magnetic flux density was reached 1.31 T, about 2.5 times compared to the value obtained upon cooling with liquid nitrogen. Consequently, the output of the motor has been enhanced to 25 kW from 10 kW taken in the previous operation

  7. Jumping-droplet electronics hot-spot cooling

    Science.gov (United States)

    Oh, Junho; Birbarah, Patrick; Foulkes, Thomas; Yin, Sabrina L.; Rentauskas, Michelle; Neely, Jason; Pilawa-Podgurski, Robert C. N.; Miljkovic, Nenad

    2017-03-01

    Demand for enhanced cooling technologies within various commercial and consumer applications has increased in recent decades due to electronic devices becoming more energy dense. This study demonstrates jumping-droplet based electric-field-enhanced (EFE) condensation as a potential method to achieve active hot spot cooling in electronic devices. To test the viability of EFE condensation, we developed an experimental setup to remove heat via droplet evaporation from single and multiple high power gallium nitride (GaN) transistors acting as local hot spots (4.6 mm × 2.6 mm). An externally powered circuit was developed to direct jumping droplets from a copper oxide (CuO) nanostructured superhydrophobic surface to the transistor hot spots by applying electric fields between the condensing surface and the transistor. Heat transfer measurements were performed in ambient air (22-25 °C air temperature, 20%-45% relative humidity) to determine the effect of gap spacing (2-4 mm), electric field (50-250 V/cm) and applied heat flux (demonstrated to 13 W/cm2). EFE condensation was shown to enhance the heat transfer from the local hot spot by ≈200% compared to cooling without jumping and by 20% compared to non-EFE jumping. Dynamic switching of the electric field for a two-GaN system reveals the potential for active cooling of mobile hot spots. The opportunity for further cooling enhancement by the removal of non-condensable gases promises hot spot heat dissipation rates approaching 120 W/cm2. This work provides a framework for the development of active jumping droplet based vapor chambers and heat pipes capable of spatial and temporal thermal dissipation control.

  8. Jumping-droplet electronics hot-spot cooling

    International Nuclear Information System (INIS)

    Oh, Junho; Birbarah, Patrick; Foulkes, Thomas; Yin, Sabrina L.; Rentauskas, Michelle

    2017-01-01

    Demand for enhanced cooling technologies within various commercial and consumer applications has increased in recent decades due to electronic devices becoming more energy dense. This study demonstrates jumping-droplet based electric-field-enhanced (EFE) condensation as a potential method to achieve active hot spot cooling in electronic devices. To test the viability of EFE condensation, we developed an experimental setup to remove heat via droplet evaporation from single and multiple high power gallium nitride (GaN) transistors acting as local hot spots (4.6 mm x 2.6 mm). An externally powered circuit was developed to direct jumping droplets from a copper oxide (CuO) nanostructured superhydrophobic surface to the transistor hot spots by applying electric fields between the condensing surface and the transistor. Heat transfer measurements were performed in ambient air (22-25°C air temperature, 20-45% relative humidity) to determine the effect of gap spacing (2-4 mm), electric field (50-250 V/cm), and heat flux (demonstrated to 13 W/cm"2). EFE condensation was shown to enhance the heat transfer from the local hot spot by ≈ 200% compared to cooling without jumping and by 20% compared to non-EFE jumping. Dynamic switching of the electric field for a two-GaN system reveals the potential for active cooling of mobile hot spots. The opportunity for further cooling enhancement by the removal of non-condensable gases promises hot spot heat dissipation rates approaching 120 W/cm"2. Finally, this work provides a framework for the development of active jumping droplet based vapor chambers and heat pipes capable of spatial and temporal thermal dissipation control.

  9. Assessment of horizontal in-tube condensation models using MARS code. Part I: Stratified flow condensation

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong-Su [Department of Engineering Project, FNC Technology Co., Ltd., Bldg. 135-308, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Department of Nuclear Engineering, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Hong, Soon-Joon, E-mail: sjhong90@fnctech.com [Department of Engineering Project, FNC Technology Co., Ltd., Bldg. 135-308, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Park, Ju-Yeop; Seul, Kwang-Won [Korea Institute of Nuclear Safety, 19 Kuseong-dong, Yuseong-gu, Daejon (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer This study collected 11 horizontal in-tube condensation models for stratified flow. Black-Right-Pointing-Pointer This study assessed the predictive capability of the models for steam condensation. Black-Right-Pointing-Pointer Purdue-PCCS experiments were simulated using MARS code incorporated with models. Black-Right-Pointing-Pointer Cavallini et al. (2006) model predicts well the data for stratified flow condition. Black-Right-Pointing-Pointer Results of this study can be used to improve condensation model in RELAP5 or MARS. - Abstract: The accurate prediction of the horizontal in-tube condensation heat transfer is a primary concern in the optimum design and safety analysis of horizontal heat exchangers of passive safety systems such as the passive containment cooling system (PCCS), the emergency condenser system (ECS) and the passive auxiliary feed-water system (PAFS). It is essential to analyze and assess the predictive capability of the previous horizontal in-tube condensation models for each flow regime using various experimental data. This study assessed totally 11 condensation models for the stratified flow, one of the main flow regime encountered in the horizontal condenser, with the heat transfer data from the Purdue-PCCS experiment using the multi-dimensional analysis of reactor safety (MARS) code. From the assessments, it was found that the models by Akers and Rosson, Chato, Tandon et al., Sweeney and Chato, and Cavallini et al. (2002) under-predicted the data in the main condensation heat transfer region, on the contrary to this, the models by Rosson and Meyers, Jaster and Kosky, Fujii, Dobson and Chato, and Thome et al. similarly- or over-predicted the data, and especially, Cavallini et al. (2006) model shows good predictive capability for all test conditions. The results of this study can be used importantly to improve the condensation models in thermal hydraulic code, such as RELAP5 or MARS code.

  10. Impact of rapid condensations of large vapor spaces on natural circulation in integral systems

    International Nuclear Information System (INIS)

    Wang, Z.; Almenas, K.; DiMarzo, M.; Hsu, Y.Y.; Unal, C.

    1992-01-01

    In this study we demonstrated that the Interruption-Resumption flow mode (IRM) observed in the University of Maryland 2x4 loop is a unique and effective natural circulation cooling mode. The IRM flow mode consists of a series of large flow cycles which are initiated from a quiescent steady-state flow condition by periodic rapid condensation of large vapor spaces. The significance of this mass/energy transport mechanism is that it cannot be evaluated using the techniques developed for the commonly known density-driven natural circulation cooling mode. We also demonstrated that the rapid condensation mechanism essentially acts as a strong amplifier which will augment small perturbations and will activate several flow phenomena. The interplay of the phenomena involves a degree of randomness. This poses two important implications. First, the study of an isolated flow phenomenon is not sufficient for the understanding of the system-wide IRM fluid movement. Second, the duplication of reactor transients which involves randomness can be achieved only within certain bounds. The modeling of such transients by deterministic computer codes requires recognition of this physical reality. (orig.)

  11. Re-Condensation and Liquefaction of Helium and Hydrogen Using Coolers

    International Nuclear Information System (INIS)

    Green, Michael A.

    2009-01-01

    Coolers are used to cool cryogen free devices at temperatures from 5 to 30 K. Cryogen free cooling involves a temperature drop within the device being cooled and between the device and the cooler cold heads. Liquid cooling with a liquid cryogen distributed over the surface of a device combined with re-condensation can result in a much lower temperature drop between the cooler and the device being cooled. The next logical step beyond simple re-condensation is using a cooler to liquefy the liquid cryogen in the device. A number of tests of helium liquefaction and re-condensation of helium have been run using a pulse tube cooler in the drop-in mode. This report discusses the parameter space over which re-condensation and liquefaction for helium and hydrogen can occur.

  12. Titanium application to power plant condensers

    International Nuclear Information System (INIS)

    Itoh, H.

    1987-01-01

    Recently, the growth of operating performance and construction plan of titanium-tubed condensers in thermal and unclear power plants has been very impressive. High-quality, thinner welded titanium tubes used for cooling tubes, matching design specifications of condensers, have been stably supplied through mass production. It now can be said that various technical problems for titanium-tubed condensers have been solved, but data on operating performance in large-scale commercial plants are still scarce, and site-by-site information needs be exchanged more frequently and on a larger scale. Projects to replace existing condenser cooling tubes with those of corrosion-resistant titanium have been actively furthered, with the only remaining barrier to full employment being cost effectiveness. It is hoped that condenser and tube manufacturers will conduct more joint value analyses

  13. Cold Vacuum Drying Facility Condensate Collection System Design Description. System 19

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    2000-01-01

    The Cold Vacuum Drying (CVD) Facility of Spent Nuclear Fuel (SNF) provides required process systems, supporting equipment, and facilities to support the SNF Project mission. This system design description (SDD) addresses the Condensate Collection System (CCS). This is a general service system. The CCS begins at the condensate outlet of the general process air-handling unit (AHU) and the condensate outlets for the active process bays AHUs. The system terminates at each condensate collection tank (5 total)

  14. Impact of the use of a hybrid turbine inlet air cooling system in arid climates

    International Nuclear Information System (INIS)

    Al-Ansary, Hany A.; Orfi, Jamel A.; Ali, Mohamed E.

    2013-01-01

    Graphical abstract: Cooling the air entering the compressor section of a gas turbine is a proven method of increasing turbine power output, especially during peak summer demand, and it is increasingly being used in powerplants worldwide. Two turbine inlet air cooling (TIAC) systems are widely used: evaporative cooling and mechanical chilling. In this work, the prospects of using a hybrid turbine inlet air cooling (TIAC) system are investigated. The hybrid system consists of mechanical chilling followed by evaporative cooling. Such a system is capable of achieving a significant reduction in inlet air temperature that satisfies desired power output levels, while consuming less power than conventional mechanical chilling and less water than conventional evaporative cooling, thus combining the benefits of both approaches. Two hybrid system configurations are studied. In the first configuration, the first stage of the system uses water-cooled chillers that are coupled with dry coolers such that the condenser cooling water remains in a closed loop. In the second configuration, the first stage of the system uses water-cooled chillers but with conventional cooling towers. An assessment of the performance and economics of those two configurations is made by comparing them to conventional mechanical chilling and using realistic data. It was found that the TIAC systems are capable of boosting the power output of the gas turbine by 10% or more (of the power output of the ISO conditions). The cost operation analysis shows clearly the hybrid TIAC method with wet cooling has the advantage over the other methods and It would be profitable to install it in the new gas turbine power plants. The figure below shows a comparison of the water consumption for the three different cases. - Highlights: • New hybrid system for the turbine inlet air cooling is studied. • Hybrid system of mechanical chilling followed by evaporative cooling is used. • Hybrid turbine inlet air cooling

  15. Proceedings: Cooling tower and advanced cooling systems conference

    International Nuclear Information System (INIS)

    1995-02-01

    This Cooling Tower and Advanced Cooling Systems Conference was held August 30 through September 1, 1994, in St. Petersburg, Florida. The conference was sponsored by the Electric Power Research Institute (EPRI) and hosted by Florida Power Corporation to bring together utility representatives, manufacturers, researchers, and consultants. Nineteen technical papers were presented in four sessions. These sessions were devoted to the following topics: cooling tower upgrades and retrofits, cooling tower performance, cooling tower fouling, and dry and hybrid systems. On the final day, panel discussions addressed current issues in cooling tower operation and maintenance as well as research and technology needs for power plant cooling. More than 100 people attended the conference. This report contains the technical papers presented at the conference. Of the 19 papers, five concern cooling tower upgrades and retrofits, five to cooling tower performance, four discuss cooling tower fouling, and five describe dry and hybrid cooling systems. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  16. Deposit control in process cooling water systems

    International Nuclear Information System (INIS)

    Venkataramani, B.

    1981-01-01

    In order to achieve efficient heat transfer in cooling water systems, it is essential to control the fouling of heat exchanger surfaces. Solubilities of scale forming salts, their growth into crystals, and the nature of the surfaces play important roles in the deposition phenomenon. Condensed phosphates, organic polymers and compounds like phosphates are effective in controlling deposition of scale forming salts. The surface active agents inhibit crystal growth and modify the crystals of the scale forming salts, and thus prevent deposition of dense, uniformly structured crystalline mass on the heat transfer surface. Understanding the mechanism of biofouling is essential to control it by surface active agents. Certain measures taken in the plant, such as back flushing, to control scaling, sometimes may not be effective and can be detrimental to the system itself. (author)

  17. Performance of cooling installation for cyclotron Decy-13

    International Nuclear Information System (INIS)

    Edi Trijono Budisantoso; Suprapto; Sutadi

    2015-01-01

    Has been calculated the cooling installation performance of Decy-13 cyclotron. The cooling installation is analysed based on the technical specifications of each cooling component to proof the results of the design and implementation of installations meet the cooling requirement. Analysis of loss of pressure and flow rate in the piping installation is done empirically using Hazen-Williams equation while the analysis of heat transfer processes in the cooling tower is done using the help of psychometric charts that available. Cooling component consists of a condenser and associated piping systems with cooling towers and equipped with a pump to push the circulation of cooling. The calculations show that the installation of the condenser cooler uses the cooling tower LiangChi LBC-30 with a booster pump Grundfos 4 kW NF30-36T powered 47kW able to transfer heat with the coolant flow rate 136 lpm, input to output coolant pressure difference 2.1atm and the cooling temperature difference 5 °C. Conclusion of the calculation is the technical specifications of cooling components and installation already meets the needs of the cooling expected. (author)

  18. Analytical and experimental investigation of closed-cycle sorption cooling systems

    Science.gov (United States)

    Liu, Lianquan

    1992-01-01

    The first part of the present thesis concerns the Coefficient of Performance (COP) of two types of closed-cycle sorption cooling systems: the Single Effect Liquid (SEL) absorption system and the Regenerative Solid (RS) adsorption system. When specific cycle configurations are considered, the COP is always less than that allowed by the second law. The potential of the two systems to approach the second law limit is considered in this work. The analysis shows that COP of a SEL system using LiBr-H2O is not limited by one, as believed before, and that the COP of a RS cooling system using zeolite-water is considerably larger than that of the SEL system. This is due to recovery of the heat of adsorption which is made possible by capturing the thermal wave in the solid adsorbent. In the second part, a one dimensional model has been developed for a real RS cooling system featured by finite heat transfer coefficients. The problem is solved numerically to yield the temperature and uptake profiles, COP, and cooling capacity and cooling rates. The effects of various design and operating parameters on system performance have been investigated by using the model. The convective heat transfer coefficient at the inner wall of the fluid channel passing through the zeolite columns, the flow rate of the heat transfer fluid, the condenser and evaporator temperature are identified as the most significant factors. A new correlation of adsorption equilibrium has been derived in this thesis. The derivation is based on established thermodynamic relationships and is shown to be able to well represent the data of three adsorption pairs widely used in sorption cooling applications: zeolite-water, silica gel-water and activated carbon-methanol. Finally, in the experimental part of the present work a test set-up of a zeolite-water heat and mass regenerator was designed, instrumented and built. Temperature profiles at various operating conditions were measured. The data of a 'single blow' mode

  19. Cooling performance of a vertical ground-coupled heat pump system installed in a school building

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yujin; Lee, Jae-Keun; Jeong, Young-Man; Koo, Kyung-Min [Department of Mechanical Engineering, Pusan National University, San 30, Jangjeon-Dong, Kumjung-Ku, Busan 609-735 (Korea); Lee, Dong-Hyuk; Kim, In-Kyu; Jin, Sim-Won [LG Electronics, 391-2 Gaeumjeong-dong, Changwon City, Gyeongnam (Korea); Kim, Soo H. [Department of Nanosystems and Nanoprocess Engineering, Pusan National University, San 30, Jangjeon-Dong, Kumjung-Ku, Busan 609-735 (Korea)

    2009-03-15

    This paper presents the cooling performance of a water-to-refrigerant type ground heat source heat pump system (GSHP) installed in a school building in Korea. The evaluation of the cooling performance has been conducted under the actual operation of GSHP system in the summer of year 2007. Ten heat pump units with the capacity of 10 HP each were installed in the building. Also, a closed vertical typed-ground heat exchanger with 24 boreholes of 175 m in depth was constructed for the GSHP system. To analyze the cooling performance of the GSHP system, we monitored various operating conditions, including the outdoor temperature, the ground temperature, and the water temperature of inlet and outlet of the ground heat exchanger. Simultaneously, the cooling capacity and the input power were evaluated to determine the cooling performance of the GSHP system. The average cooling coefficient of performance (COP) and overall COP of the GSHP system were found to be {proportional_to}8.3 and {proportional_to}5.9 at 65% partial load condition, respectively. While the air source heat pump (ASHP) system, which has the same capacity with the GSHP system, was found to have the average COP of {proportional_to}3.9 and overall COP of {proportional_to}3.4, implying that the GSHP system is more efficient than the ASHP system due to its lower temperature of condenser. (author)

  20. A theoretical and experimental investigation into the thermodynamic performance of a 50 MW power plant with a novel modular air-cooled condenser

    International Nuclear Information System (INIS)

    O'Donovan, Alan; Grimes, Ronan

    2014-01-01

    Economic and environmental restrictions have resulted in an increase in the installation of air-cooled condensers (ACCs) in thermoelectric power plants located in arid regions. The traditional A-frame design is installed most frequently, despite an array of empirical evidence that shows it to suffer from significant inefficiencies. As a result, there is scope for improvement in condenser design and this paper presents one such approach – a novel modular air-cooled condenser (MACC). It is suggested that the unique ability of the MACC to continually vary fan speed could result in efficiency gains over a plant operating with existing state-of-the-art fixed speed ACCs. To determine the impact of installing the MACC on plant output, the steam-side characteristics were established through a series of experimental measurements taken on a full-scale prototype. The experimental arrangement and measurement technique ensured that conditions representative of an operational ACC were maintained throughout. The steam-side characteristics are quantified in terms of temperature, pressure and thermal resistance. Predicted values of these quantities are also presented, calculated from established theory. Both the measurements and predictions were used in a thermodynamic analysis to determine the performance of a 50 MW power plant. Results show that, for a given steam flow rate, increasing fan speed leads to a reduction in condenser pressure which ultimately, results in increased plant output. This occurs up until a certain point, at which further increases in output are offset by larger fan power consumption rates. Thus, an optimum operating point is shown to exist. The results from the thermodynamic analysis demonstrate discrepancies between the plant output evaluated from the measurements and that predicted from theory. In some cases, a difference as large as 1.5% was observed, equating to a 0.8 MW over-prediction by the theory. - Highlights: • A novel modular air-cooled

  1. The dry and adiabatic fluid cooler as an alternative to cooling towers: an experimental view.

    OpenAIRE

    Lucas Miralles, Manuel; Martínez Beltrán, Pedro Juan; Ruiz Ramírez, Javier; Sánchez Kaiser, Antonio; Zamora Parra, Blas; Viedma Robles, Antonio

    2011-01-01

    Energy and environmental implications of a refrigeration cycle are largely conditioned by the choice of condensing system. Conventional solutions transfer heat to water, and recirculated through cooling towers or to atmospheric air through a dry condenser. While the use of cooling towers means less energy consumption due to lower pressure in the condenser, a number of environmental implications are questioning their installation. Mainly, it represents an emission of chemicals or microorganism...

  2. Analysis of experiments for vertical out-tube steam condensation in presence of non-condensable gases

    International Nuclear Information System (INIS)

    Su Jiqiang; Sun Zhongning; Fan Guangming; Guo Zixuan

    2014-01-01

    In order to investigate the influence of various parameters in the steam condensation heat transfer process with non-condensable gas, and to get a more suitable empirical correlation, the wall under-cooling, pressure and the content of non-condensable gas were studied outside a vertical tube by experiments. The results showed that: at the same pressure, the relationship between wall sub-cooling and HTC is exponential, and helium stratification does not happen within the experimental range. Based on the analysis of various experimental variables, combined with a large number of experimental data, a wider scope of application of the empirical correlation associated is obtained with the experimental value of the error within ±20%. (authors)

  3. Study on UF6 condensing receiving system improvement

    International Nuclear Information System (INIS)

    Zhang Zhenxing; Li Yingfeng; Li Zhenfeng; He Ping; Wang Yanping; Tian Yushan

    2012-01-01

    In order to improve receiving capacity of UF 6 condensing system, the pressure release mode is changed through modifying gas phase inlet of the first-grade condenser, thus pressure release time is reduced from 13.1 h to 8.1 h. Be- cause of improvement of utility condensers of the two product lines, both the flexibility of feeding nitrogen and the emergency capacity of condensers are improved greatly. And modification of fluid transferring and sampling system make the remains in system transfer flexibly. The practise shows that metal direct recovery rises to the extent, and capacity of the first-grade condensing receiving system improves 8.4%, which strongly guarantees fluorination production safely, continuously and stably run. (authors)

  4. Activities of passive cooling applications and simulation of innovative nuclear power plant design

    International Nuclear Information System (INIS)

    Aglar, F.; Tanrykut, A.

    2002-01-01

    This paper gives a general insight on activities of the Turkish Atomic Energy Authority (TAEA) concerning passive cooling applications and simulation of innovative nuclear power plant design. The condensation mode of heat transfer plays an important role for the passive heat removal application in advanced water-cooled reactor systems. But it is well understood that the presence of noncondesable (NC) gases can greatly inhibit the condensation process due to the build up of NC gas concentration at the liquid/gas interface. The isolation condenser of passive containment cooling system of the simplified boiling water reactors is a typical application area of in-tube condensation in the presence of NC. The test matrix of the experimental investigation undertaken at the METU-CTF test facility (Middle East Technical University, Ankara) covers the range of parameters; Pn (system pressure) : 2-6 bar, Rev (vapor Reynolds number): 45,000-94,000, and Xi (air mass fraction): 0-52%. This experimental study is supplemented by a theoretical investigation concerning the effect of mixture flow rate on film turbulence and air mass diffusion concepts. Recently, TAEA participated to an international standard problem (OECD ISP-42) which covers a set of simulation of PANDA test facility (Paul Scherrer Institut-Switzerland) for six different phases including different natural circulation modes. The concept of condensation in the presence of air plays an important role for performance of heat exchangers, designed for passive containment cooling, which in turn affect the natural circulation behaviour in PANDA systems. (author)

  5. Air-cooled steam condensers non-freeze warranties

    Energy Technology Data Exchange (ETDEWEB)

    Larinoff, M.W.

    1995-09-01

    What this paper is suggesting is the seller quote a condenser package with a LIMITED NON-FREEZE WARRANTY. Relieve the inexperienced buyer of the responsibility for selecting freeze protection design options. The seller cannot afford to over-design because of the added costs and the need for a competitive price. Yet he cannot under-design and allow the condenser tubes to freeze periodically and then pay the repair bills in accordance with the warranty.

  6. Energy condensed packaged systems. Composition, production, properties

    Directory of Open Access Journals (Sweden)

    Igor L. Kovalenko

    2015-03-01

    Full Text Available In this paper it is presented the substantiation of choice of fuel phase composition and optimal technology of emulsion production on the basis of binary solution of ammonium and calcium nitrates, which provide the obtaining of energy condensed packaged systems with specified properties. The thermal decomposition of energy condensed systems on the basis of ammonium nitrate is investigated. It is shown that the fuel phase of emulsion systems should be based on esters of polyunsaturated acids or on combinations thereof with petroleum products. And ceresin or petroleum wax can be used as the structuring additive. The influence of the technology of energy condensed systems production on the physicochemical and detonation parameters of emulsion explosives is considered. It is shown the possibility of obtaining of emulsion systems with dispersion of 1.3...1.8 microns and viscosity higher than 103 Pa∙s in the apparatus of original design. The sensitizing effect of chlorinated paraffin CP-470 on the thermolysis of energy condensed emulsion system is shown. The composition and production technology of energy condensed packaged emulsion systems of mark Ukrainit-P for underground mining in mines not dangerous on gas and dust are developed.

  7. Cooling-water amounts, temperature, and the environment

    International Nuclear Information System (INIS)

    Koops, F.B.J.; Donze, M.; Hadderingh, R.H.

    1979-01-01

    The release of heat from power plants into a water can take place with relative small quantities of cooling water, highly warmed up accordingly, or with large quantities of cooling water slightly warmed up. The utilization of cooling water is bound to certain guidelines established by the authorities. With the intention to protect the environment, the admissable temperatures and warming-up have been strictly limited by the authorities. In the Netherlands, we have presently temporary cooling water guidelines which allow a max. temperature of the cooling water in the cooling cycle of 30 0 C and a maximum admissible temperature rise in the condenser between 7 0 C during summer and 15 0 C during winter. It has also been determined in these requirements how much cooling water at least has to be used to discharge a specified quantity of heat. Plankton, spawn and young fish are dragged with the cooling water. Harm to these organisms can be caused mechanically by pumps, sieves and the condenser or they can be harmed by the temperature rise in the condenser. Investigations showed that mechanical harm to spawn and young fish in the cooling water flow should not be ignored, and that detectable harm to plankton organisms takes place only at water temperatures above 32 0 C. The cooling water consumption can therefore be optimised as follows: The solution of a greater temperature increase and a slightly higher value for the temperature maximum can reduce the cooling water quantity. This reduction of the cooling water quantity reduces the destruction of the fish quantity, which gets into the cooling water system, especially during the summer. If the temperature rise and the temperature itself are not selected too high, the destruction of fish may be reduced without causing serious damage to the plankton. (orig.) [de

  8. Cooling device for reactor container

    International Nuclear Information System (INIS)

    Arai, Kenji.

    1996-01-01

    Upon assembling a static container cooling system to an emergency reactor core cooling system using dynamic pumps in a power plant, the present invention provides a cooling device of lowered center of gravity and having a good cooling effect by lowering the position of a cooling water pool of the static container cooling system. Namely, the emergency reactor core cooling system injects water to the inside of a pressure vessel using emergency cooling water stored in a suppression pool as at least one water source upon loss of reactor coolant accident. In addition, a cooling water pool incorporating a heat exchanger is disposed at the circumference of the suppression pool at the outside of the container. A dry well and the heat exchanger are connected by way of steam supply pipes, and the heat exchanger is connected with the suppression pool by way of a gas exhaustion pipe and a condensate returning pipeline. With such a constitution, the position of the heat exchanger is made higher than an ordinary water level of the suppression pool. As a result, the emergency cooling water of the suppression pool water is injected to the pressure vessel by the operation of the reactor cooling pumps upon loss of coolant accident to cool the reactor core. (I.S.)

  9. Investigation of the condensing vapor bubble behavior through CFD simulation

    International Nuclear Information System (INIS)

    Sablania, Sidharth; Verma, Akash; Goyal, P.; Dutta, Anu; Singh, R.K.

    2013-09-01

    In nuclear systems the sub-cooled boiling flow is an important problem due to the behavior of condensing vapor bubble which has a large effect on the heat transfer characteristics as well as pressure drops and flow instability. The sub-cooled boiling flows become very complex and dynamic phenomena by the vapor bubble-water interaction. This happens due to the boiling/condensation, break-up, and coalescence of the bubble and needs to be addressed for characterizing the above mentioned flow parameters. There have been many researches to analyze the behavior of bubble experimentally and analytically. However, it is very difficult to get complete information about the behavior of bubble because of ever changing interface between vapor and water phase due to bubble condensation/evaporation Therefore, it is necessary to carry out a CFD simulation for better understanding the complex phenomenon of the bubble behavior. The present work focuses on the simulation of condensing bubble in subcooled boiling flow using (Volume of Fluid) VOF method in the CFD code CFD-ACE+. In order to simulate the heat and mass transfer through the bubble interface, CFD modeling for the bubble condensation was developed by modeling the source terms in the governing equations of VOF model using the User-Defined Function (UDF) in CFD-ACE+ code. The effect of condensation on bubble behavior was analyzed by comparing the behavior of condensing bubble with that of adiabatic bubble. It was observed that the behavior of condensing bubble was different from that of non condensing bubble in respect of bubble shape, diameter, velocity etc. The results obtained from the present simulation in terms of various parameters such as bubble velocity, interfacial area and bubble volume agreed well with the reported experimental results verified with FLUENT code in available literature. Hence, this CFD-ACE+ simulation of single bubble condensation will be a useful computational fluid dynamics tool for analyzing the

  10. Effect on non-condensable gas on steam injector

    International Nuclear Information System (INIS)

    Kawamoto, Y.; Abe, Y.; Iwaki, C.; Narabayashi, T.; Mori, M.; Ohmori, S.

    2004-01-01

    Next-generation reactor systems have been under development aiming at simplified system and improvement of safety and credibility. A steam injector has a function of a passive pump without large motor or turbo-machinery, and has been investigated as one of the most important component of the next-generation reactor. Its performance as a pump depends on direct contact condensation phenomena between a supersonic steam and a sub-cooled water jet. Although non-condensable gases are well known for reducing heat transfer, the effect of the non-condensable gas on the condensation of supersonic steam on high-speed water jet has not been cleared. The present paper presents an experimental study of condensation of supersonic steam around turbulent water jet with model steam injector made by transparent plastic. The experimental apparatus is described. The visual observation was carried out by using high-speed camera. The non-condensable gas effect on the pump performance and flow characteristics are clarified by the image processing technique for the jet shape and gas-liquid interface behavior. (authors)

  11. Cooling system upon reactor isolation

    International Nuclear Information System (INIS)

    Yamamoto, Kohei; Oda, Shingo; Miura, Satoshi

    1992-01-01

    A water level indicator for detecting the upper limit value for a range of using a suppression pool and a thermometer for detecting the temperature of water at the cooling water inlet of an auxiliary device are disposed. When a detection signal is intaken and the water level in the suppression pool reach the upper limit value for the range of use, a secondary flow rate control value is opened and a primary flow rate control valve is closed. When the temperature of the water at the cooling water inlet of the auxiliary device reaches the upper limit value, the primary and the secondary flow rate control valves are opened. During a stand-by state, the first flow rate control valve is set open and the secondary flow rate control valve is set closed respectively. After reactor isolation, if a reactor water low level signal is received, an RCIC pump is actuated and cooling water is sent automatically under pressure from a condensate storage tank to the reactor and the auxiliary device requiring coolants by way of the primary flow rate control valve. Rated flow rate is ensured in the reactor and cooling water of an appropriate temperature can be supplied to the auxiliary device. (N.H.)

  12. Entropy generation in a condenser and related correlations

    Directory of Open Access Journals (Sweden)

    Askowski Rafał

    2015-06-01

    Full Text Available The paper presents an analysis of relations describing entropy generation in a condenser of a steam unit. Connections between entropy generation, condenser ratio, and heat exchanger effectiveness, as well as relations implied by them are shown. Theoretical considerations allowed to determine limits of individual parameters which describe the condenser operation. Various relations for average temperature of the cold fluid were compared. All the proposed relations were verified against data obtained using a simulator and actual measurement data from a 200 MW unit condenser. Based on data from a simulator it was examined how the sum of entropy rates, steam condenser effectiveness, terminal temperature difference and condenser ratio vary with the change in the inlet cooling water temperature, mass flow rate of steam and the cooling water mass flow rate.

  13. Low grade heat driven adsorption system for cooling and power generation using advanced adsorbent materials

    International Nuclear Information System (INIS)

    Al-Mousawi, Fadhel Noraldeen; Al-Dadah, Raya; Mahmoud, Saad

    2016-01-01

    Highlights: • Adsorption system based on water and advanced physical adsorbents has the potential of producing cooling and power. • Adding an expander to physisorption system enhances efficiency by up to 11%. • MIL101Cr MOF can produce 95 W/kg and 1357 W/kg of specific power and cooling. • AQSOA Z02 can produce 73 W/kg and 640 W/kg of specific power and cooling. - Abstract: Globally there is abundance of low grade heat sources (around 150 °C) from renewables like solar energy or from industrial waste heat. The exploitation of such low grade heat sources will reduce fossil fuel consumption and CO_2 emissions. Adsorption technology offers the potential of using such low grade heat to generate cooling and power. In this work, the effect of using advanced adsorbent materials like AQSOA-Z02 (SAPO-34) zeolite and MIL101Cr Metal Organic Framework (MOF) at various operating conditions on power and cooling performance compared to that of commonly used silica-gel was investigated using water as refrigerant. A mathematical model for a two bed adsorption cooling cycle has been developed with the cycle modified to produce power by incorporating an expander between the desorber and the condenser. Results show that it is possible to produce power and cooling at the same time without affecting the cooling output. Results also show that for all adsorbents used as the heat source temperature increases, the cooling effect and power generated increase. As for increasing the cold bed temperature, this will decrease the cooling effect and power output except for SAPO-34 which shows slightly increasing trend of cooling and power output. As the condenser cooling temperature increases, the cooling effect and power output will decrease while for the chilled water temperature, the cooling load and power generated increased as the temperature increased. The maximum values of average specific power generation (SP), specific cooling power (SCP) and cycle efficiency are 73 W

  14. Measurement of liquid-liquid equilibria for condensate + glycol and condensate + glycol + water systems

    DEFF Research Database (Denmark)

    Riaz, Muhammad; Kontogeorgis, Georgios; Stenby, Erling Halfdan

    2011-01-01

    ,2-ethanediol (MEG) + condensate and MEG + water + condensate systems at temperatures from (275 to 323) K at atmospheric pressure. The condensate used in this work is a stabilized natural gas condensate from an offshore field in the North Sea. Compositional analysis of the natural gas condensate was carried out...... by gas chromatography, and detailed separation of individual condensate's components has been carried out. Approximately 85 peaks eluting before nonane were identified by their retention time. Peak areas were converted to mass fraction using 1-heptene as an internal standard. The components were divided...... into boiling range groups from hexane to nonane. Paraffinic (P), naphthenic (N), and aromatic (A) distributions were obtained for the boiling point fractions up to nonane. The average molar mass and the overall density of the condensate were measured experimentally. For the mutual solubility of MEG...

  15. Development of methods for the decrease in instability of recycling water of conjugated closed-circuit cooling system of HPP

    Science.gov (United States)

    Chichirov, A. A.; Chichirova, N. D.; Vlasov, S. M.; Lyapin, A. I.; Misbakhov, R. Sh.; Silov, I. Yu.; Murtazin, A. I.

    2016-10-01

    On Russian HPPs, conjugated closed-circuit cooling systems, where purge water is used as initial for water-treatment facilities, are widespread. For this reason, it is impossible to use general methods for the stabilization treatment of recycling water in order to prevent scale formation in the units of a system, namely, turbine condensers and cooling towers. In this paper, the methods for the decrease in the instability of recycling water using the methods of chemical engineering, such as stabilization and synchronization of flows and organization of recycles, are suggested. The results of an industrial experiment on the implementation of stabilization treatment of recycling water by the organization of recycle are given. The experiment was carried out on Kazan CHPP-3. The flow scheme involved the recycle of chemically purified water (CPW) for the heat network make-up to the closed-circuit cooling system. The experiment was carried out at three stages with the gradual change of the consumption of the recycle, namely, 0, 50, and 100 t/h. According to the results of experiments, the reliable decrease in the rate of the sedimentation was recorded on the units of the system, namely, turbine condenser and chimney-type cooling tower. This is caused by two reasons. Firstly, this is periodic excessive concentration of recycling water due to the nonstationary character of inlet and outlet flows. Secondly, this is seasonal (particularly, in the summer period) exceeding of the evaporation coefficient. As a result of stabilization and synchronization of flows and organization of recycles, the quality of clarified and chemically purified water for the heat network make-up increases and the corrosion of iron- and copper-containing structural materials decreases. A natural decrease in temperature drop on the operating turbine condensers is mentioned.

  16. Effect of Mixed Working Fluid Composition on Binary Cycle Condenser Heat Transfer Coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Dan Wendt; Greg Mines

    2011-10-01

    Effect of Mixed Working Fluid Composition on Binary Cycle Condenser Heat Transfer Coefficients Dan Wendt, Greg Mines Idaho National Laboratory The use of mixed working fluids in binary power plants can provide significant increases in plant performance, provided the heat exchangers are designed to take advantage of these fluids non-isothermal phase changes. In the 1980's testing was conducted at DOE's Heat Cycle Research Facility (HCRF) where mixtures of different compositions were vaporized at supercritical pressures and then condensed. This testing had focused on using the data collected to verify that Heat Transfer Research Incorporated (HTRI) codes were suitable for the design of heat exchangers that could be used with mixtures. The HCRF data includes mixture compositions varying from 0% to 40% isopentane and condenser tube orientations of 15{sup o}, 60{sup o}, and 90{sup o} from horizontal. Testing was performed over a range of working fluid and cooling fluid conditions. Though the condenser used in this testing was water cooled, the working fluid condensation occurred on the tube-side of the heat exchanger. This tube-side condensation is analogous to that in an air-cooled condenser. Tube-side condensing heat transfer coefficient information gleaned from the HCRF testing is used in this study to assess the suitability of air-cooled condenser designs for use with mixtures. Results of an air-cooled binary plant process model performed with Aspen Plus indicate that that the optimal mixture composition (producing the maximum net power for the scenario considered) is within the range of compositions for which data exist. The HCRF data is used to assess the impact of composition, tube orientation, and process parameters on the condensing heat transfer coefficients. The sensitivity of the condensing coefficients to these factors is evaluated and the suitability of air-cooled condenser designs with mixtures is assessed. This paper summarizes the evaluation

  17. Hybrid dry cooling. Enhanced energy efficiency in steam turbines. Hybride Trockenkuehlung. Bessere Energienutzung bei Dampfturbinen

    Energy Technology Data Exchange (ETDEWEB)

    Stucki, R. (Colenco Power Consulting AG, Baden (Switzerland)); Mueller, W. (Jaeggi AG, Bern (Switzerland)); Haltiner, E.W.

    1992-09-11

    Condensation turbo groups facilitate the utilization of thermal energy from vapor production plants, for example from garbage incineration. Through an optimum design of the cooling system, the profitable electric energy can be increased through the maximum spreading of the condensation temperature and the live steam temperature. The hybrid dry cooling guarantees unsurpassable operating conditions. (orig.).

  18. Active Cooling of Oil after Deep-frying.

    Science.gov (United States)

    Totani, Nagao; Yasaki, Naoko; Doi, Rena; Hasegawa, Etsuko

    2017-10-01

    Oil used for deep-frying is often left to stand after cooking. A major concern is oxidation during standing that might be avoidable, especially in the case of oil used repeatedly for commercial deep-frying as this involves large volumes that are difficult to cool in a conventional fryer. This paper describes a method to minimize oil oxidation. French fries were deep-fried and the oil temperature decreased in a manner typical for a commercial deep-fryer. The concentration of polar compounds generated from thermally oxidized oil remarkably increased at temperature higher than 100°C but little oxidation occurred below 60°C. Heating the oil showed that the peroxide and polar compound content did not increase when the oil was actively cooled using a running water-cooled Graham-type condenser system to cool the oil from 180°C to room temperature within 30 min. When French fries were fried and the oil was then immediately cooled using the condenser, the polar compound content during cooling did not increase. Our results demonstrate that active cooling of heated oil is simple and quite effective for inhibiting oxidation.

  19. Determining the Optimum Inner Diameter of Condenser Tubes Based on Thermodynamic Objective Functions and an Economic Analysis

    Directory of Open Access Journals (Sweden)

    Rafał Laskowski

    2016-12-01

    Full Text Available The diameter and configuration of tubes are important design parameters of power condensers. If a proper tube diameter is applied during the design of a power unit, a high energy efficiency of the condenser itself can be achieved and the performance of the whole power generation unit can be improved. If a tube assembly is to be replaced, one should verify whether the chosen condenser tube diameter is correct. Using a diameter that is too large increases the heat transfer area, leading to over-dimensioning and higher costs of building the condenser. On the other hand, if the diameter is too small, water flows faster through the tubes, which results in larger flow resistance and larger pumping power of the cooling-water pump. Both simple and complex methods can be applied to determine the condenser tube diameter. The paper proposes a method of technical and economic optimisation taking into account the performance of a condenser, the low-pressure (LP part of a turbine, and a cooling-water pump as well as the profit from electric power generation and costs of building the condenser and pumping cooling water. The results obtained by this method were compared with those provided by the following simpler methods: minimization of the entropy generation rate per unit length of a condenser tube (considering entropy generation due to heat transfer and resistance of cooling-water flow, minimization of the total entropy generation rate (considering entropy generation for the system comprising the LP part of the turbine, the condenser, and the cooling-water pump, and maximization of the power unit’s output. The proposed methods were used to verify diameters of tubes in power condensers in a200-MW and a 500-MW power units.

  20. Collecting and recirculating condensate in a nuclear reactor containment

    International Nuclear Information System (INIS)

    Schultz, T.L.

    1993-01-01

    An arrangement passively cools a nuclear reactor in the event of an emergency, condensing and recycling vaporized cooling water. The reactor is surrounded by a containment structure and has a storage tank for cooling liquid, such as water, vented to the containment structure by a port. The storage tank preferably is located inside the containment structure and is thermally coupleable to the reactor, e.g. by a heat exchanger, such that water in the storage tank is boiled off to carry away heat energy. The water is released as a vapor (steam) and condenses on the cooler interior surfaces of the containment structure. The condensed water flows downwardly due to gravity and is collected and routed back to the storage tank. One or more gutters are disposed along the interior wall of the containment structure for collecting the condensate from the wall. Piping is provided for communicating the condensate from the gutters to the storage tank. 3 figures

  1. Collecting and recirculating condensate in a nuclear reactor containment

    Science.gov (United States)

    Schultz, Terry L.

    1993-01-01

    An arrangement passively cools a nuclear reactor in the event of an emergency, condensing and recycling vaporized cooling water. The reactor is surrounded by a containment structure and has a storage tank for cooling liquid, such as water, vented to the containment structure by a port. The storage tank preferably is located inside the containment structure and is thermally coupleable to the reactor, e.g. by a heat exchanger, such that water in the storage tank is boiled off to carry away heat energy. The water is released as a vapor (steam) and condenses on the cooler interior surfaces of the containment structure. The condensed water flows downwardly due to gravity and is collected and routed back to the storage tank. One or more gutters are disposed along the interior wall of the containment structure for collecting the condensate from the wall. Piping is provided for communicating the condensate from the gutters to the storage tank.

  2. Condensate treatment and oxygen control in power plants

    International Nuclear Information System (INIS)

    Sakai, Toshiaki; Iida, Kei; Ohashi, Shinichi.

    1997-01-01

    In thermal and nuclear power stations, the steam that operated turbines is cooled and condensed with condensers. The condensate is heated again with boilers, nuclear reactors or steam generators, but if corrosion products or impurities are contained in the condensate, corrosion and scale formation occur in boilers and others. The filtration facility and the desalting facility for condensate are installed to remove impurities, but water quality control is different in thermal, BWR and PWR plants, therefore, the treatment facilities corresponding to respective condensates have been adopted. In order to reduce the amount of clud generation, the treatment of injecting a small quantity of oxygen into condensate has been adopted. In thermal power plants, all volatile treatment is carried out, in which corrosion is prevented by the addition of ammonia and hydrazine to boiler feedwater. The condensate filters of various types and the NH 4 type condensate desalter for thermal power plants are described. In BWR power plants, steam is generated in nuclear reactors, therefore, the addition of chemicals into water is never carried out, and high purity neutral water is used. In PWR power plants, the addition of chemicals to water is done in the primary system, and AVT is adopted in the secondary system. Also the condensate treatment facilities are different for both reactors. (K.I.)

  3. Chiral symmetry breaking and cooling in lattice QCD

    International Nuclear Information System (INIS)

    Woloshyn, R.M.; Lee, F.X.

    1995-08-01

    Chiral symmetry breaking is calculated as a function of cooling in quenched lattice QCD. A non-zero signal is found for the chiral condensate beyond one hundred cooling steps, suggesting that there is chiral symmetry breaking associated with instantons. Quantitatively, the chiral condensate in cooled gauge field configurations is small compared to the value without cooling. (author) 7 refs., 1 tab., 3 figs

  4. Process fluid cooling system

    International Nuclear Information System (INIS)

    Farquhar, N.G.; Schwab, J.A.

    1977-01-01

    A system of heat exchangers is disclosed for cooling process fluids. The system is particularly applicable to cooling steam generator blowdown fluid in a nuclear plant prior to chemical purification of the fluid in which it minimizes the potential of boiling of the plant cooling water which cools the blowdown fluid

  5. Simulation of steam condensation in the presence of noncondensable gases in horizontal condenser tubes using RELAP5 for advanced nuclear reactors

    International Nuclear Information System (INIS)

    Macedo, Luiz Alberto; Torres, Walmir Maximo

    2009-01-01

    Horizontal heat exchangers are used in advanced light water nuclear reactors in their passive cooling systems, such as residual heat removal (RHRS) and passive containment cooling system (PCCS). Condensation studies of steam and noncondensable gases mixtures in these heat exchangers are very important due to the phenomena multidimensional nature and the condensate stratification effects. This work presents a comparison between simulation results and experimental data in steady state conditions for some inlet pressure, steam and noncondensable gases (air) inlet mass fractions. The test section is three meters long and consists of two concentric tubes containing pressure, temperature and flow rate sensors. The internal tube, called condenser, contains steam-air mixture flow and external tube is a counter current cooler with water flow rate at low temperature. This test section was modeled and simulations were performed with RELAP5 code. Experimental tests were carried out for 200 to 400 kPa inlet pressure and 5, 10, 15 and 20% of inlet air mass fractions. Comparisons between experimental data and simulation results are presented for 200 and 400 kPa pressure conditions and showed good agreement. However, for 400 kPa inlet steam pressure and inlet air mass fractions above 5%, the simulated temperatures are lower than the experimental data at the final third from the inlet condenser tube, indicating a code overestimation of heat transfer coefficient. New correlations for heat transfer coefficient in these steam-air conditions must be theoretical and experimentally studied and implemented in RELAP5 code for better representing the condensation phenomena. (author)

  6. Cryogenic cooling system for HTS cable

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shigeru [Taiyo Nippon Sanso, Tsukuba (Japan)

    2017-06-15

    Recently, Research and development activity of HTS (High Temperature Superconducting) power application is very progressive worldwide. Especially, HTS cable system and HTSFCL (HTS Fault current limiter) system are proceeding to practical stages. In such system and equipment, cryogenic cooling system, which makes HTS equipment cooled lower than critical temperature, is one of crucial components. In this article, cryogenic cooling system for HTS application, mainly cable, is reviewed. Cryogenic cooling system can be categorized into conduction cooling system and immersion cooling system. In practical HTS power application area, immersion cooling system with sub-cooled liquid nitrogen is preferred. The immersion cooling system is besides grouped into open cycle system and closed cycle system. Turbo-Brayton refrigerator is a key component for closed cycle system. Those two cooling systems are focused in this article. And, each design and component of the cooling system is explained.

  7. Cooling device for reactor suppression pool

    International Nuclear Information System (INIS)

    Togasaki, Susumu; Kato, Kiyoshi.

    1994-01-01

    In a cooling device of a reactor suppression pool, when a temperature of pool water is abnormally increased and a heat absorbing portion is heated by, for example, occurrence of an accident, coolants are sent to the outside of the reactor container to actuates a thermally operating portion by the heat energy of coolants and drive heat exchanging fluids of a secondary cooling system. If the heat exchanging fluids are sent to a cooling portion, the coolants are cooled and returned to the heat absorbing portion of the suppression pool water. If the heat absorbing portion is heat pipes, the coolants are evaporated by heat absorbed from the suppression pool water, steams are sent to the thermally operating portion, then coolants are liquefied and caused to return to the heat absorbing portion. If the thermal operation portion is a gas turbine, the gas turbine is operated by the coolants, and it is converted to a rotational force to drive heat exchanging fluids by pumps. By constituting the cooling portion with a condensator, the coolants are condensed and liquefied and returned to the heat absorbing portion of the suppression pool water. (N.H.)

  8. Air condensation plants

    International Nuclear Information System (INIS)

    Kelp, F.; Pohl, H.H.

    1978-01-01

    In this plant the steam is distributed by a ventilator from the bottom to symmetrically fixed, inclined cooling elements with tubes. The upper part of the current side of the cooling elements as well as the bottom part of the outflow side can be covered by cover plates via a control circuit. This way, part of the air amount is deviated and in case of unfavourable atmospheric conditions (cold) the air is heated. This heating is enough to prevent freezing of the condensate on the cooling tubes. (DG) [de

  9. A very cool cooling system

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The NA62 Gigatracker is a jewel of technology: its sensor, which delivers the time of the crossing particles with a precision of less than 200 picoseconds (better than similar LHC detectors), has a cooling system that might become the precursor to a completely new detector technique.   The 115 metre long vacuum tank of the NA62 experiment. The NA62 Gigatracker (GTK) is composed of a set of three innovative silicon pixel detectors, whose job is to measure the arrival time and the position of the incoming beam particles. Installed in the heart of the NA62 detector, the silicon sensors are cooled down (to about -20 degrees Celsius) by a microfluidic silicon device. “The cooling system is needed to remove the heat produced by the readout chips the silicon sensor is bonded to,” explains Alessandro Mapelli, microsystems engineer working in the Physics department. “For the NA62 Gigatracker we have designed a cooling plate on top of which both the silicon sensor and the...

  10. Study on corrosion of thermal power plant condenser tubes

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Abdolreza Rashidi; Zhaam, Ali Akbar [Niroo Research Institute, end of Poonak Bakhtari blvd., Shahrak Ghods, Tehran (Iran)

    2004-07-01

    The aim of this investigation is to study kinds of corrosion mechanisms in thermal power plant condenser tubes. Condenser is a shell and tube heat exchanger in which cooling water flows through its tubes. While the steam from low pressure turbine passes within condenser tubes, it is condensed by cooling water. The exhausted steam from low pressure turbine is condensed on external surface of condenser tubes and heat is transferred to cooling water which flow into tubes. Tubes composition is usually copper-based alloys, stainless steel or titanium. Annual damages due to corrosion cause much cost for replacement and repairing metallic equipment and installations in electric power industry. Because of existence of different contaminants in water and steam cycle, condenser tubes surfaces are exposed to corrosion. Contaminants like oxygen, carbon dioxide, chloride ion and ammonia in water and steam cycle originate several damages such as pitting and crevice corrosion, erosion, galvanic attack, SCC, condensed corrosion, de-alloying in thermal power plant condenser. The paper first states how corrosion damage takes place in condensers and then introduces types of usual alloys used in condensers and also their corrosion behavior. In continuation, a brief explanation is presented about kinds of condenser failures due to corrosion. Then, causes and locations of different mechanisms of corrosion events on condenser tubes and effects of different parameters such as composition, temperature, chloride and sulfide ion concentration, pH, water velocity and biological precipitation are examined and finally protection methods are indicated. Also some photos of tubes specimens related to power plants are studied and described in each case of mentioned mechanisms. (authors)

  11. Purification of condenser water in thermal power station by superconducting magnetic separation

    International Nuclear Information System (INIS)

    Ha, D.W.; Kwon, J.M.; Baik, S.K.; Lee, Y.J.; Han, K.S.; Ko, R.K.; Sohn, M.H.; Seong, K.C.

    2011-01-01

    Magnetic separation using cryo-cooled Nb-Ti superconducting magnet was applied for the purification of condenser water. Iron oxides in condenser water were effectively removed by superconducting magnetic separation. The effect of magnetic field strength and filter size was determined. Thermal power station is made up of a steam turbine and a steam condenser which need a lot of water. The water of steam condenser should be replaced, since scales consisting of iron oxide mainly are accumulated on the surface of condenser pipes as it goes. Superconducting high gradient magnetic separation (HGMS) system has merits to remove paramagnetic substance like iron oxides because it can generate higher magnetic field strength than electromagnet or permanent magnet. In this paper, cryo-cooled Nb-Ti superconducting magnet that can generate up to 6 T was used for HGMS systems. Magnetic filters were designed by the analysis of magnetic field distribution at superconducting magnets. The result of X-ray analysis showed contaminants were mostly α-Fe 2 O 3 (hematite) and γ-Fe 2 O 3 (maghemite). The higher magnetic field was applied up to 6 T, the more iron oxides were removed. As the wire diameter of magnetic filter decreased, the turbidity removal of the sample was enhanced.

  12. Evaporation and condensation heat transfer with a noncondensable gas present

    International Nuclear Information System (INIS)

    Murase, M.; Kataoka, Y.; Fujii, T.

    1993-01-01

    To evaluate the system pressure of an external water wall type containment vessel, which is one of the passive systems for containment cooling, the evaporation and condensation behavior under a noncondensable gas presence has been experimentally examined. In the system, steam evaporated from the suppression pool surface into the wetwell, filled with noncondensable gas, and condensed on the containment vessel wall. The system pressure was the sum of the noncondensable gas pressure and saturated steam pressure in the wetwell. The wetwell temperature was, however, lower than the suppression pool temperature and depended on the thermal resistance on the suppression pool surface. The evaporation and condensation heat transfer coefficients in the presence of air as noncondensable gas were measured and expressed by functions of steam/air mass ratio. The evaporation heat transfer coefficients were one order higher than the condensation heat transfer coefficients because the local noncondensable gas pressure was much lower on the evaporating pool surface than on the condensing liquid surface. Using logal properties of the heat transfer surfaces, there was a similar trend between evaporation and condensation even with a noncondensable gas present. (orig.)

  13. Mathematical Modeling – The Impact of Cooling Water Temperature Upsurge on Combined Cycle Power Plant Performance and Operation

    Science.gov (United States)

    Indra Siswantara, Ahmad; Pujowidodo, Hariyotejo; Darius, Asyari; Ramdlan Gunadi, Gun Gun

    2018-03-01

    This paper presents the mathematical modeling analysis on cooling system in a combined cycle power plant. The objective of this study is to get the impact of cooling water upsurge on plant performance and operation, using Engineering Equation Solver (EES™) tools. Power plant installed with total power capacity of block#1 is 505.95 MWe and block#2 is 720.8 MWe, where sea water consumed as cooling media at two unit condensers. Basic principle of analysis is heat balance calculation from steam turbine and condenser, concern to vacuum condition and heat rate values. Based on the result shown graphically, there were impact the upsurge of cooling water to increase plant heat rate and vacuum pressure in condenser so ensued decreasing plant efficiency and causing possibility steam turbine trip as back pressure raised from condenser.

  14. Performance of a compact solar absorption cooling system

    International Nuclear Information System (INIS)

    Mulyanef; Kamaruzzaman Sopian

    2006-01-01

    This paper describes the performance of a compact solar absorption system. Purpose of compact solar is collector, generator and condenser in one unit. At present, two types of absorption cooling systems are marketed: the lithium bromide-water system and the ammonia-water system. In the lithium bromide-water system, water vapor is the refrigerant and ammonia water system where ammonia is the refrigerant. In addition, the ammonia-water system requires higher generator temperature 120 o C to 150 o C than a flat-plate solar collector can provide without special techniques. The lithium bromide-water system operates satisfactorily at a generator temperature of 75 o C to 100 o C, achievable by a flat-plate collector. The lithium bromide-water system also has a higher COP than the ammonia-water system. The disadvantage of the lithium bromide-water systems is that the evaporators cannot operate at temperature below 0 o C since the refrigerant is water. The Coefficient of Performance (COP) system is 0.62 and the concentration of LiBr-H 2 O is 50%

  15. Enhancement of LNG plant propane cycle through waste heat powered absorption cooling

    International Nuclear Information System (INIS)

    Rodgers, P.; Mortazavi, A.; Eveloy, V.; Al-Hashimi, S.; Hwang, Y.; Radermacher, R.

    2012-01-01

    In liquefied natural gas (LNG) plants utilizing sea water for process cooling, both the efficiency and production capacity of the propane cycle decrease with increasing sea water temperature. To address this issue, several propane cycle enhancement approaches are investigated in this study, which require minimal modification of the existing plant configuration. These approaches rely on the use of gas turbine waste heat powered water/lithium bromide absorption cooling to either (i) subcool propane after the propane cycle condenser, or (ii) reduce propane cycle condensing pressure through pre-cooling of condenser cooling water. In the second approach, two alternative methods of pre-cooling condenser cooling water are considered, which consist of an open sea water loop, and a closed fresh water loop. In addition for all cases, three candidate absorption chiller configurations are evaluated, namely single-effect, double-effect, and cascaded double- and single-effect chillers. The thermodynamic performance of each propane cycle enhancement scheme, integrated in an actual LNG plant in the Persian Gulf, is evaluated using actual plant operating data. Subcooling propane after the propane cycle condenser is found to improve propane cycle total coefficient of performance (COP T ) and cooling capacity by 13% and 23%, respectively. The necessary cooling load could be provided by either a single-effect, double-effect or cascaded and single- and double-effect absorption refrigeration cycle recovering waste heat from a single gas turbine operated at full load. Reducing propane condensing pressure using a closed fresh water condenser cooling loop is found result in propane cycle COP T and cooling capacity enhancements of 63% and 22%, respectively, but would require substantially higher capital investment than for propane subcooling, due to higher cooling load and thus higher waste heat requirements. Considering the present trend of short process enhancement payback periods in the

  16. Triangularly arranged heat exchanger bundles to restrain wind effects on natural draft dry cooling system

    International Nuclear Information System (INIS)

    Liao, H.T.; Yang, L.J.; Du, X.Z.; Yang, Y.P.

    2016-01-01

    Highlights: • Triangularly arranged heat exchanger around the dry-cooling tower is proposed. • By coupling condenser with dry cooling system, TACHE performance is obtained. • At low wind speeds, cooling performance with TACHE is inferior to that with CACHE. • Better performance can be achieved for cooling system with TACHE at high wind speeds. • TACHE can be applied to the region with the strong prevailing wind all year around. - Abstract: It has been commonly recognized that the crosswind may deteriorate the cooling performance of the natural draft dry cooling system with vertically arranged heat exchanger bundles around the circumference of dry-cooling tower. With the purpose for restraining the adverse effects of ambient winds, a novel triangular configuration of heat exchanger bundles is proposed in this work. The air-side flow and heat transfer models coupled with the circulating water heat transfer process are developed for two kinds of natural draft dry cooling systems with the conventional circularly arranged and novel triangularly arranged heat exchanger bundles, by which the flow and temperature fields, mass flow rate of cooling air, outlet water temperature of heat exchanger and turbine back pressure are obtained. Three wind directions of 0°, 90°, and 180° are investigated at various wind speeds for the natural draft dry cooling system with triangularly arranged heat exchanger bundles, which are compared with the conventional system with circularly arranged heat exchanger bundles. The results show that the thermo-flow performances of the natural draft dry cooling system with triangularly arranged heat exchanger get improved significantly at high wind speeds and in the wind direction of 180°, thus a low turbine back pressure can be achieved, which is of benefit to the energy efficiency of the power generating unit. The natural draft dry cooling system with triangularly arranged heat exchanger is recommended to apply to the regions with

  17. Hybrid Cooling for Geothermal Power Plants: Final ARRA Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Bharathan, D.

    2013-06-01

    Many binary-cycle geothermal plants use air as the heat rejection medium. Usually this is accomplished by using an air-cooled condenser (ACC) system to condense the vapor of the working fluid in the cycle. Many air-cooled plants suffer a loss of production capacity of up to 50% during times of high ambient temperatures. Use of limited amounts of water to supplement the performance of ACCs is investigated. Deluge cooling is found to be one of the least-cost options. Limiting the use of water in such an application to less than one thousand operating hours per year can boost plant output during critical high-demand periods while minimizing water use in binary-cycle geothermal power plants.

  18. Comparison of simulated and experimental results of temperature distribution in a closed two-phase thermosyphon cooling system

    Science.gov (United States)

    Shaanika, E.; Yamaguchi, K.; Miki, M.; Ida, T.; Izumi, M.; Murase, Y.; Oryu, T.; Yanamoto, T.

    2017-12-01

    Superconducting generators offer numerous advantages over conventional generators of the same rating. They are lighter, smaller and more efficient. Amongst a host of methods for cooling HTS machinery, thermosyphon-based cooling systems have been employed due to their high heat transfer rate and near-isothermal operating characteristics associated with them. To use them optimally, it is essential to study thermal characteristics of these cryogenic thermosyphons. To this end, a stand-alone neon thermosyphon cooling system with a topology resembling an HTS rotating machine was studied. Heat load tests were conducted on the neon thermosyphon cooling system by applying a series of heat loads to the evaporator at different filling ratios. The temperature at selected points of evaporator, adiabatic tube and condenser as well as total heat leak were measured. A further study involving a computer thermal model was conducted to gain further insight into the estimated temperature distribution of thermosyphon components and heat leak of the cooling system. The model employed boundary conditions from data of heat load tests. This work presents a comparison between estimated (by model) and experimental (measured) temperature distribution in a two-phase cryogenic thermosyphon cooling system. The simulation results of temperature distribution and heat leak compared generally well with experimental data.

  19. Operations improvement of the recycling water-cooling systems of sugar mills

    Directory of Open Access Journals (Sweden)

    Shcherbakov Vladimir Ivanovich

    Full Text Available Water management in sugar factories doesn’t have analogues in its complexity among food industry enterprises. Water intensity of sugar production is very high. Circulation water, condensed water, pulp press water and others are used in technological processes. Water plays the main role in physical, chemical, thermotechnical processes of beet processing and sugar production. As a consequence of accession of Russia to the WTO the technical requirements for production processes are changing. The enforcements of ecological services to balance scheme of water consumption and water disposal increased. The reduction of fresh water expenditure is one of the main tasks in economy of sugar industry. The substantial role in fresh water expenditure is played by efficiency of cooling and aeration processes of conditionally clean waters of the 1st category. The article contains an observation of the technologies of the available solutions and recommendations for improving and upgrading the existing recycling water-cooling systems of sugar mills. The authors present the block diagram of the water sector of a sugar mill and a method of calculating the optimal constructive and technological parameters of cooling devices. Water cooling towers enhanced design and upgrades are offered.

  20. Marginal costs of water savings from cooling system retrofits: a case study for Texas power plants

    Science.gov (United States)

    Loew, Aviva; Jaramillo, Paulina; Zhai, Haibo

    2016-10-01

    The water demands of power plant cooling systems may strain water supply and make power generation vulnerable to water scarcity. Cooling systems range in their rates of water use, capital investment, and annual costs. Using Texas as a case study, we examined the cost of retrofitting existing coal and natural gas combined-cycle (NGCC) power plants with alternative cooling systems, either wet recirculating towers or air-cooled condensers for dry cooling. We applied a power plant assessment tool to model existing power plants in terms of their key plant attributes and site-specific meteorological conditions and then estimated operation characteristics of retrofitted plants and retrofit costs. We determined the anticipated annual reductions in water withdrawals and the cost-per-gallon of water saved by retrofits in both deterministic and probabilistic forms. The results demonstrate that replacing once-through cooling at coal-fired power plants with wet recirculating towers has the lowest cost per reduced water withdrawals, on average. The average marginal cost of water withdrawal savings for dry-cooling retrofits at coal-fired plants is approximately 0.68 cents per gallon, while the marginal recirculating retrofit cost is 0.008 cents per gallon. For NGCC plants, the average marginal costs of water withdrawal savings for dry-cooling and recirculating towers are 1.78 and 0.037 cents per gallon, respectively.

  1. Innovative coatings and surface modification of titanium for sea water condenser applications

    International Nuclear Information System (INIS)

    George, R.P.; Anandkumar, B.; Vanithakumari, S.C.; Kamachi Mudali, U.

    2016-01-01

    Effectiveness of cooling water systems in various power plants to maintain highest electrical energy output per tonne of fuel is important as part of good energy management. Cooling water systems of nuclear power plants using seawater for cooling comes under constant attack from the marine and sea water environment. Many metallic components and civil structures in the cooling water systems like bridges, intake wells, intake pipes, pump house wells, water boxes, condenser pipes are subjected to severe fouling and corrosion which limits the service life and availability of power plants. The experience with a coastal water cooled power plant at Kalpakkam (MAPS), India, showed that chlorination and screening control macrofouling to a great extend by controlling protozoans, invertebrates, algae and fungi. However 90% of marine bacteria are resistant to such control measures, and they cause microfouling of condenser pipes leading to poor heat transfer and microbially influenced corrosion (MIC) failures. Titanium is used as condenser for Indian nuclear power plants employing sea water cooling, including the PFBR at Kalpakkam. Though titanium is excellent with respect to corrosion behavior under sea water conditions, its biocompatible nature results in biofouling and MIC during service. Therefore innovative antifouling coatings and surface modification techniques for titanium condenser applications in seawater and marine environments are the need of the hour. Extensive investigations were carried out by different methods including nanostructuring of surfaces for making them antibacterial. The microroughness of titanium was produced by repeated pickling and polishing which by itself reduced microbial adhesion. To utilize photocatalytic activity for antibacterial property, anodization of titanium surfaces followed by heat treatment was adopted and this also has controlled microbial fouling. Electroless plating of nanofilm of copper-nickel alloy decreased biofouling of

  2. Performance of a passive emergency heat removal system of advanced reactors in two-phase flow and with high concentration of non-condensable

    International Nuclear Information System (INIS)

    Macedo, Luiz Alberto

    2008-01-01

    The research and the development of passive emergency cooling systems are necessary for the new generation of thermo-nuclear systems. Some basic information on the operation of these systems require the research of some relative processes to the natural circulation, mainly in conditions of two-phase flow involving processes of condensation in the presence of non-condensable gases, because many found situations are new. The experimental facility called Bancada de Circulacao Natural (BCN) was used for the realization of tests with diverse concentrations of non-condensable and power levels. The non-condensable gas present in the circuit decreases the rate of heat transfer for the secondary of the heat exchanger, determining low efficiency of the heat exchanger. High concentration of non-condensable in the vapor condensation, determines negative pressure, and cause the inversion of the flow in the circuit. The initial concentration of non-condensable and the geometry of the circuit, in the inlet of the heat exchanger, determines the establishment of transitory with two-phase flow. The BCN was performed with the computational code of Analysis of Accidents and Thermal-Hydraulics RELAP5/MOD 3.3 and, the calculated values had been compared with the experimental data, presenting good agreement for small non-condensable concentrations. The values calculated for high concentrations of non-condensable had been satisfactory after the circuit to have reached the temperature of saturation in the electric heater. (author)

  3. Cooling system for auxiliary reactor component

    International Nuclear Information System (INIS)

    Fujihira, Tomoko.

    1991-01-01

    A cooling system for auxiliary reactor components comprises three systems, that is, two systems of reactor component cooling water systems (RCCW systems) and a high pressure component cooling water system (HPCCW system). Connecting pipelines having partition valves are intervened each in a cooling water supply pipeline to an emmergency component of each of the RCCW systems, a cooling water return pipeline from the emmergency component of each of the RCCW systems, a cooling water supply pipeline to each of the emmergency components of one of the RCCW system and the HPCCW system and a cooling water return pipeline from each of the emmergency components of one of the RCCW system and the HPCCW system. With such constitution, cooling water can be supplied also to the emmergency components in the stand-by system upon periodical inspection or ISI, thereby enabling to improve the backup performance of the emmergency cooling system. (I.N.)

  4. Cryogenic systems for proof of the principle experiment of coherent electron cooling at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuenian; Belomestnykh, Sergey; Brutus, Jean Clifford; Lederle, Dewey; Orfin, Paul; Skaritka, John; Soria, Victor; Tallerico, Thomas; Than, Roberto [Collider Accelerator Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2014-01-29

    The Coherent electron Cooling (CeC) Proof of Principle (PoP) experiment is proposed to be installed in the Relativistic Heavy Ion Collider (RHIC) to demonstrate proton and ion beam cooling with this new technique that may increase the beam luminosity in certain cases, by as much as tenfold. Within the scope of this project, a 112 MHz, 2MeV Superconducting Radio Frequency (SRF) electron gun and a 704 MHz 20MeV 5-cell SRF cavity will be installed at IP2 in the RHIC ring. The superconducting RF electron gun will be cooled in a liquid helium bath at 4.4 K. The 704 MHz 5-cell SRF cavity will be cooled in a super-fluid helium bath at 2.0 K. This paper discusses the cryogenic systems designed for both cavities. For the 112 MHz cavity cryogenic system, a condenser/boiler heat exchanger is used to isolate the cavity helium bath from pressure pulses and microphonics noise sources. For the 704 MHz 5-cell SRF cavity, a heat exchanger is also used to isolate the SRF cavity helium bath from noise sources in the sub-atmospheric pumping system operating at room temperature. Detailed designs, thermal analyses and discussions for both systems will be presented in this paper.

  5. Core cooling system for reactor

    International Nuclear Information System (INIS)

    Kondo, Ryoichi; Amada, Tatsuo.

    1976-01-01

    Purpose: To improve the function of residual heat dissipation from the reactor core in case of emergency by providing a secondary cooling system flow channel, through which fluid having been subjected to heat exchange with the fluid flowing in a primary cooling system flow channel flows, with a core residual heat removal system in parallel with a main cooling system provided with a steam generator. Constitution: Heat generated in the core during normal reactor operation is transferred from a primary cooling system flow channel to a secondary cooling system flow channel through a main heat exchanger and then transferred through a steam generator to a water-steam system flow channel. In the event if removal of heat from the core by the main cooling system becomes impossible due to such cause as breakage of the duct line of the primary cooling system flow channel or a trouble in a primary cooling system pump, a flow control valve is opened, and steam generator inlet and outlet valves are closed, thus increasing the flow rate in the core residual heat removal system. Thereafter, a blower is started to cause dissipation of the core residual heat from the flow channel of a system for heat dissipation to atmosphere. (Seki, T.)

  6. Condensate and feedwater systems, pumps, and water chemistry. Volume seven

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Subject matter includes condensate and feedwater systems (general features of condensate and feedwater systems, condenser hotwell level control, condensate flow, feedwater flow), pumps (principles of fluid flow, types of pumps, centrifugal pumps, positive displacement pumps, jet pumps, pump operating characteristics) and water chemistry (water chemistry fundamentals, corrosion, scaling, radiochemistry, water chemistry control processes, water pretreatment, PWR water chemistry, BWR water chemistry, condenser circulating water chemistry

  7. Effect of air-water mixture drawoff from condenser discharge chamberson the Chernobylsk NPP turbine operating efficiency

    International Nuclear Information System (INIS)

    Trushin, V.N.; Aleksandrov, I.P.; Borets, V.I.

    1985-01-01

    It is established experimentally that reliable operation of air drawoffs from conden.ser discharge chambers influences greatly on efficiency of a cooling system of low-pressure condensers (LPC). The interacting influence of drawoff lines operating in parallel is outlined, which may, under certain conditions, lead to partial or total neutralization of the drawoff system, that, in its turn, leads to formation of a unique waterfall flow regime in the discharge chamber of LPC outside its partition. Waterfall regime leads to reduction of cooling water flow rate, to partial uncovering of. the fuel element cluster with the proper fall of vacuum and turbine efficiency. Experimental investigations, carried out at a condenser model, permit to find a way and give recommendations to prevent the formation of waterfall regime of outflow

  8. Optimization of operating parameters of ground source heat pump system for space heating and cooling by Taguchi method and utility concept

    International Nuclear Information System (INIS)

    Sivasakthivel, T.; Murugesan, K.; Thomas, H.R.

    2014-01-01

    Highlights: • Ground Source Heat Pump (GSHP) technology is suitable for both heating and cooling. • Important parameters that affect the GSHP performance has been listed. • Parameters of GSHP system has been optimized for heating and cooling mode. • Taguchi technique and utility concept are developed for GSHP optimization. - Abstract: Use of ground source energy for space heating applications through Ground Source Heat pump (GSHP) has been established as an efficient thermodynamic process. The electricity input to the GSHP can be reduced by increasing the COP of the system. However, the COP of a GSHP system will be different for heating and cooling mode operations. Hence in order to reduce the electricity input to the GSHP, an optimum value of COP has to be determined when GSHP is operated in both heating and cooling modes. In the present research, a methodology is proposed to optimize the operating parameters of a GSHP system which will operate on both heating and cooling modes. Condenser inlet temperature, condenser outlet temperature, dryness fraction at evaporator inlet and evaporator outlet temperature are considered as the influencing parameters of the heat pump. Optimization of these parameters for only heating or only cooling mode operation is achieved by employing Taguchi method for three level variations of the above parameters using an L 9 (3 4 ) orthogonal array. Higher the better concept has been used to get a higher COP. A computer program in FORTAN has been developed to carry out the computations and the results have been analyzed for the optimum conditions using Signal-to-Noise (SN) ratio and Analysis Of Variance (ANOVA) method. Based on this analysis, the maximum COP for only heating and only cooling operation are obtained as 4.25 and 3.32 respectively. By making use of the utility concept both the higher values of COP obtained for heating and cooling modes are optimized to get a single optimum COP for heating and cooling modes. A single

  9. Environmental impact of condenser effluents into coastal marine environments: need for continuous monitoring

    International Nuclear Information System (INIS)

    Venugopal, V.P.

    2015-01-01

    Electric plants working on the principle of steam-water cycle require large amounts of water for condenser cooling purpose. Nuclear power plants require, on an average, about 3m 3 cooling water per minute per megawatt of electricity generated. Owning to the scarcity of large sources of freshwater for cooling, newer power plants, particularly in water-stressed parts of the world, tend to get located in coastal regions, where they can make use of the abundant seawater. However, this also poses a problem, in terms of the biofouling potential of coastal marine environments. Sessile benthic organism, which are generally present as part of the coastal marine ecosystem, extend their habitat into the cooling water system of the power plant. It is often observed that massive growth of such fouling organisms may endanger normal operation of the cooling water system, unless appropriate control measures are adopted. Presence of calcareous organisms such as mussels and barnacles in the pre-condenser sections of the power plant is a common sight; but these organisms, when lodged inside condenser tubes, can not only reduce the heat transfer efficiency but also can cause localized corrosion and tube leakage, leading of ingress of seawater into the steam-water system. It is, therefore, important that appropriate control measures are adopted to discourage the growth of the organisms. However, this needs to be done in an environmentally sustainable manner, as the cooling water is ultimately discharged back into the sea. The presentation aims to give and overview of the biofouling problems generally encountered in a typical tropical coastal power station operating in India and the chemical control measures adopted and their effectiveness. The talk also throws light on the more recent advances in biofouling control such as surface modification and use of nanotechnology which, in the foreseeable future, may provide more lasting and environmentally sustainable solutions. (author)

  10. THE MODEL FOR POWER EFFICIENCY ASSESSMENT OF CONDENSATION HEATING INSTALLATIONS

    Directory of Open Access Journals (Sweden)

    D. Kovalchuk

    2017-11-01

    Full Text Available The main part of heating systems and domestic hot water systems are based on the natural gas boilers. Forincreasing the overall performance of such heating system the condensation gas boilers was developed and are used. Howevereven such type of boilers don't use all energy which is released from a fuel combustion. The main factors influencing thelowering of overall performance of condensation gas boilers in case of operation in real conditions are considered. Thestructure of the developed mathematical model allowing estimating the overall performance of condensation gas boilers(CGB in the conditions of real operation is considered. Performace evaluation computer experiments of such CGB during aheating season for real weather conditions of two regions of Ukraine was made. Graphic dependences of temperatureconditions and heating system effectiveness change throughout a heating season are given. It was proved that normal CGBdoes not completely use all calorific value of fuel, thus, it isn't effective. It was also proved that the efficiency of such boilerssignificantly changes during a heating season depending on weather conditions and doesn't reach the greatest possible value.The possibility of increasing the efficiency of CGB due to hydraulic division of heating and condensation sections and use ofthe vapor-compression heat pump for deeper cooling of combustion gases and removing of the highest possible amount ofthermal energy from them are considered. The scheme of heat pump connection to the heating system with a convenient gasboiler and the separate condensation economizer allowing to cool combustion gases deeply below a dew point and to warm upthe return heat carrier before a boiler input is provided. The technological diagram of the year-round use of the heat pump forhot water heating after the end of heating season, without gas use is offered.

  11. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  12. Radiant Floor Cooling Systems

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2008-01-01

    In many countries, hydronic radiant floor systems are widely used for heating all types of buildings such as residential, churches, gymnasiums, hospitals, hangars, storage buildings, industrial buildings, and smaller offices. However, few systems are used for cooling.This article describes a floor...... cooling system that includes such considerations as thermal comfort of the occupants, which design parameters will influence the cooling capacity and how the system should be controlled. Examples of applications are presented....

  13. Application of passive radiative cooling for dew condensation

    International Nuclear Information System (INIS)

    Beysens, Daniel; Muselli, Marc; Milimouk, Iryna

    2006-01-01

    Dew water was collected from several passive foil-based radiative condensers established in a variety of geographic settings: continental (Grenoble, in an alpine valley, and Brive-la-Gaillarde, in the Central Massif volcanic area, both in France), French Atlantic coast (Bordeaux), eastern Mediterranean (Jerusalem, Israel), and the island of Corsica (Ajaccio, France) in the Mediterranean Sea. In Ajaccio two large 30 m 2 condensers have been operating since 2000. Additional semi-quantitative dew measurements were also carried out for Komiza, island of Vis (Croatia) in the Adriatic Sea, and in Mediterranean Zadar and Dubrovnik (both in Croatia). Dew potential was calculated for the Pacific Ocean island of Tahiti (French Polynesia). The data show that significant amounts of dew water can be collected. Selected chemical and biological analyses established that dew is, in general, potable. Continued research is required for new and inexpensive materials that can enhance dew condensation

  14. Split radiator design for heat rejection optimization for a waste heat recovery system

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2016-10-18

    A cooling system provides improved heat recovery by providing a split core radiator for both engine cooling and condenser cooling for a Rankine cycle (RC). The cooling system includes a radiator having a first cooling core portion and a second cooling core portion. An engine cooling loop is fluidly connected the second cooling core portion. A condenser of an RC has a cooling loop fluidly connected to the first cooling core portion. A valve is provided between the engine cooling loop and the condenser cooling loop adjustably control the flow of coolant in the condenser cooling loop into the engine cooling loop. The cooling system includes a controller communicatively coupled to the valve and adapted to determine a load requirement for the internal combustion engine and adjust the valve in accordance with the engine load requirement.

  15. 46 CFR 153.432 - Cooling systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cooling systems. 153.432 Section 153.432 Shipping COAST... Control Systems § 153.432 Cooling systems. (a) Each cargo cooling system must have an equivalent standby... cooling system. (b) Each tankship that has a cargo tank with a required cooling system must have a manual...

  16. OPTIMAL SYSNTHESIS PROCESSES OF LOW-TEMPERATURE CONDENSATION ASSOCIATED OIL GAS PLANT REFRIGERATION SYSTEM

    Directory of Open Access Journals (Sweden)

    O. Ostapenko

    2015-10-01

    Full Text Available Design of modern high-efficient systems is a key priority for the Energy Sector of Ukraine. The cooling technological streams of gas and oil refineries, including air coolers, water cooling and refrigeration systems for specific refrigerants are the objectives of the present study. Improvement of the refrigeration unit with refrigerant separation into fractions is mandatory in order to increase cooling capacity, lowering the boiling point of coolant and increasing the coefficient of target hydrocarbons extraction from the associated gas flow. In this paper it is shown that cooling temperature plays significant role in low-temperature condensation process. Two operation modes for refrigeration unit were proposed: permanent, in which the concentration of the refrigerant mixture does not change and dynamic, in which the concentration of refrigerant mixtures depends on the ambient temperature. Based on the analysis of exergy losses the optimal concentration of refrigerant mixtures propane/ethane for both modes of operation of the refrigeration unit has been determined. On the basis of the conducted pinch-analysis the modification of refrigeration unit with refrigerant separation into fractions was developed. Additional recuperative heat exchangers for utilization heat were added to the scheme. Several important measures to increase the mass flow rate of refrigerant through the second section of the refrigeration centrifugal compressor from 22.5 to 25 kg/s without violating the agreed operational mode of the compressor sections were implemented.

  17. Emergency cooling process and device for nuclear reactor containment

    International Nuclear Information System (INIS)

    Costes, D.

    1985-01-01

    The emergency cooling system of a PWR containment, according to the principal patent, comprises a turbine fed by the humid air of the containment, a condenser in which the air flowing out of the turbine is dryed and cooled by an external coolant and a compressor actuated by the turbine and returning the dryed air in the containment [fr

  18. Reconnection–Condensation Model for Solar Prominence Formation

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Takafumi [Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Yokoyama, Takaaki, E-mail: kaneko@isee.nagoya-u.ac.jp [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2017-08-10

    We propose a reconnection–condensation model in which topological change in a coronal magnetic field via reconnection triggers radiative condensation, thereby resulting in prominence formation. Previous observational studies have suggested that reconnection at a polarity inversion line of a coronal arcade field creates a flux rope that can sustain a prominence; however, they did not explain the origin of cool dense plasmas of prominences. Using three-dimensional magnetohydrodynamic simulations, including anisotropic nonlinear thermal conduction and optically thin radiative cooling, we demonstrate that reconnection can lead not only to flux rope formation but also to radiative condensation under a certain condition. In our model, this condition is described by the Field length, which is defined as the scale length for thermal balance between radiative cooling and thermal conduction. This critical condition depends weakly on the artificial background heating. The extreme ultraviolet emissions synthesized with our simulation results have good agreement with observational signatures reported in previous studies.

  19. Ferroelectricity by Bose-Einstein condensation in a quantum magnet.

    Science.gov (United States)

    Kimura, S; Kakihata, K; Sawada, Y; Watanabe, K; Matsumoto, M; Hagiwara, M; Tanaka, H

    2016-09-26

    The Bose-Einstein condensation is a fascinating phenomenon, which results from quantum statistics for identical particles with an integer spin. Surprising properties, such as superfluidity, vortex quantization or Josephson effect, appear owing to the macroscopic quantum coherence, which spontaneously develops in Bose-Einstein condensates. Realization of Bose-Einstein condensation is not restricted in fluids like liquid helium, a superconducting phase of paired electrons in a metal and laser-cooled dilute alkali atoms. Bosonic quasi-particles like exciton-polariton and magnon in solids-state systems can also undergo Bose-Einstein condensation in certain conditions. Here, we report that the quantum coherence in Bose-Einstein condensate of the magnon quasi particles yields spontaneous electric polarization in the quantum magnet TlCuCl 3 , leading to remarkable magnetoelectric effect. Very soft ferroelectricity is realized as a consequence of the O(2) symmetry breaking by magnon Bose-Einstein condensation. The finding of this ferroelectricity will open a new window to explore multi-functionality of quantum magnets.

  20. On the occurrence and detectability of Bose-Einstein condensation in helium white dwarfs

    International Nuclear Information System (INIS)

    Benvenuto, O.G.; Vito, M.A. De

    2011-01-01

    It has been recently proposed that helium white dwarfs may provide promising conditions for the occurrence of the Bose-Einstein condensation. The argument supporting this expectation is that in some conditions attained in the core of these objects, the typical De Broglie wavelength associated with helium nuclei is of the order of the mean distance between neighboring nuclei. In these conditions the system should depart from classical behavior showing quantum effects. As helium nuclei are bosons, they are expected to condense. In order to explore the possibility of detecting the Bose-Einstein condensation in the evolution of helium white dwarfs we have computed a set of models for a variety of stellar masses and values of the condensation temperature. We do not perform a detailed treatment of the condensation process but mimic it by suppressing the nuclei contribution to the equation of state by applying an adequate function. As the cooling of white dwarfs depends on average properties of the whole stellar interior, this procedure should be suitable for exploring the departure of the cooling process from that predicted by the standard treatment. We find that the Bose-Einstein condensation has noticeable, but not dramatic effects on the cooling process only for the most massive white dwarfs compatible with a helium dominated interior ( ≈ 0.50M s un) and very low luminosities (say, Log(L/L s un) < −4.0). These facts lead us to conclude that it seems extremely difficult to find observable signals of the Bose-Einstein condensation. Recently, it has been suggested that the population of helium white dwarfs detected in the globular cluster NGC 6397 is a good candidate for detecting signals of the Bose-Einstein condensation. We find that these stars have masses too low and are too bright to have an already condensed interior

  1. Signal characteristics of guided wave for condenser tube of NPP

    International Nuclear Information System (INIS)

    Min, Lee Dong; Hoon, Choi Sang; Yeong, Yang Tae

    2012-01-01

    A Condenser is a large heat exchanger of the shell and tube type. Cooling water enters through the water box, through the tubesheet and into the tubes(about 80,000 tubes/unit). The shell side of the condenser receives steam from the low pressure turbines exhaust. The steam is cooled to a liquid by passing over the tubes where the cooling water is circulated. Because seawater is used as a coolant, condenser tubes are easily damaged. For such a reason, nondestructive testing conducted periodically. But nondestructive testing takes a lot of manpower and time. Guided wave technique can overcome these shortcomings. In this study, we made an effort evaluating a guided wave defect signal

  2. Core cooling systems

    International Nuclear Information System (INIS)

    Hoeppner, G.

    1980-01-01

    The reactor cooling system transports the heat liberated in the reactor core to the component - heat exchanger, steam generator or turbine - where the energy is removed. This basic task can be performed with a variety of coolants circulating in appropriately designed cooling systems. The choice of any one system is governed by principles of economics and natural policies, the design is determined by the laws of nuclear physics, thermal-hydraulics and by the requirement of reliability and public safety. PWR- and BWR- reactors today generate the bulk of nuclear energy. Their primary cooling systems are discussed under the following aspects: 1. General design, nuclear physics constraints, energy transfer, hydraulics, thermodynamics. 2. Design and performance under conditions of steady state and mild transients; control systems. 3. Design and performance under conditions of severe transients and loss of coolant accidents; safety systems. (orig./RW)

  3. Condensate from a two-stage gasifier

    DEFF Research Database (Denmark)

    Bentzen, Jens Dall; Henriksen, Ulrik Birk; Hindsgaul, Claus

    2000-01-01

    Condensate, produced when gas from downdraft biomass gasifier is cooled, contains organic compounds that inhibit nitrifiers. Treatment with activated carbon removes most of the organics and makes the condensate far less inhibitory. The condensate from an optimised two-stage gasifier is so clean...... that the organic compounds and the inhibition effect are very low even before treatment with activated carbon. The moderate inhibition effect relates to a high content of ammonia in the condensate. The nitrifiers become tolerant to the condensate after a few weeks of exposure. The level of organic compounds...... and the level of inhibition are so low that condensate from the optimised two-stage gasifier can be led to the public sewer....

  4. Simulations of floor cooling system capacity

    International Nuclear Information System (INIS)

    Odyjas, Andrzej; Górka, Andrzej

    2013-01-01

    Floor cooling system capacity depends on its physical and operative parameters. Using numerical simulations, it appears that cooling capacity of the system largely depends on the type of cooling loads occurring in the room. In the case of convective cooling loads capacity of the system is small. However, when radiation flux falls directly on the floor the system significantly increases productivity. The article describes the results of numerical simulations which allow to determine system capacity in steady thermal conditions, depending on the type of physical parameters of the system and the type of cooling load occurring in the room. Moreover, the paper sets out the limits of system capacity while maintaining a minimum temperature of the floor surface equal to 20 °C. The results are helpful for designing system capacity in different type of cooling loads and show maximum system capacity in acceptable thermal comfort condition. -- Highlights: ► We have developed numerical model for simulation of floor cooling system. ► We have described floor system capacity depending on its physical parameters. ► We have described floor system capacity depending on type of cooling loads. ► The most important in the obtained cooling capacities is the type of cooling loads. ► The paper sets out the possible maximum cooling floor system capacity

  5. Cooled Water Production System,

    Science.gov (United States)

    The invention refers to the field of air conditioning and regards an apparatus for obtaining cooled water . The purpose of the invention is to develop...such a system for obtaining cooled water which would permit the maximum use of the cooling effect of the water -cooling tower.

  6. Synchronous Condenser Allocation for Improving System Short Circuit Ratio

    DEFF Research Database (Denmark)

    Jia, Jundi; Yang, Guangya; Nielsen, Arne Hejde

    2018-01-01

    With converter-based renewable energy sources increasingly integrated into power systems and conventional power plants gradually phased out, future power systems will experience reduced short circuit strength. The deployment of synchronous condensers can serve as a potential solution. This paper...... presents an optimal synchronous condenser allocation method for improving system short circuit ratio at converter point of common coupling using a modified short circuit analysis approach. The total cost of installing new synchronous condensers is minimized while the system short circuit ratios...

  7. Steam generation: fossil-fired systems: utility boilers; industrial boilers; boiler auxillaries; nuclear systems: boiling water; pressurized water; in-core fuel management; steam-cycle systems: condensate/feedwater; circulating water; water treatment

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    A survey of development in steam generation is presented. First, fossil-fired systems are described. Progress in the design of utility and industrial boilers as well as in boiler auxiliaries is traced. Improvements in coal pulverizers, burners that cut pollution and improve efficiency, fans, air heaters and economisers are noted. Nuclear systems are then described, including the BWR and PWR reactors, in-core fuel management techniques are described. Finally, steam-cycle systems for fossil-fired and nuclear power plants are reviewed. Condensate/feedwater systems, circulating water systems, cooling towers, and water treatment systems are discussed

  8. Experimental Investigation of Operation of VVER Steam Generator in Condensation Mode in the Event of the Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, Andrey [Institute for Physics and Power Engineering by A.I. Leypunsky, 1 Bondarenko sq. Obninsk, 249033 (Russian Federation)

    2008-07-01

    For new Russian nuclear power plants with VVER-1200 reactor in the event of a beyond design basis accident, provision is made for the use of passive safety systems for necessary core cooling. These safety systems include the passive heat removal system (PHRS). In the case of leakage in the primary circuit this system assures the transition of steam generators (SG) to operation in the mode of condensation of the primary circuit steam. As a result, the condensate from SG arrives at the core providing its additional cooling. To investigate the condensation mode of VVER SG operation, a large scale HA2M-SG test facility was constructed. The rig incorporates: buffer tank, SG model with scale is 1:46, PHRS heat exchanger. Experiments at the test facility have been performed to investigate condensation mode of operation of SG model at the pressure 0.4 MPa, correspond to VVER reactor pressure at the last stage of the beyond design basis accident. The report presents the test procedure and the basic obtained test results. (authors)

  9. Heat Driven Cooling in District Energy Systems; Vaermedriven Kyla

    Energy Technology Data Exchange (ETDEWEB)

    Rydstrand, Magnus; Martin, Viktoria; Westermark, Mats [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2004-07-01

    This report is reviewing different heat driven technologies for the production of cooling. It is shown that the supply of cooling gives the highest fuel utilization if heat from CHP production is used for the production of cooling instead of maximizing the electricity output in a condensing plant. High fuel utilization is reached since the direct production of cooling from heat is a thermodynamic shortcut as compared to the production of electricity as an intermediate product before cooling is produced. At direct production of cooling from heat it is possible to obtain 70 percent of the obtainable cooling of an ideal process. If electricity is produced from heat, 70 percent electricity could be obtained as compared to an ideal process. If this electricity would be used for the production of cooling 70 percent of the obtainable cooling in an ideal process would the result. The total production of cooling from heat with electricity as an intermediate product would therefore give 50 percent cooling as compared to an ideal process. Hence, heat driven cooling will give more cooling for a given fuel input. In the review of the different heat driven cooling options it was found that there are many alternatives suitable for different applications. Absorption cooling is suitable for water distributed cooling if the latent cooling load is low. Desiccant cooling is believed to have a large market in climates (applications) with high latent cooling loads. In the energy efficiency evaluation it is found that the highest fuel utilization is given for a central production of electricity using either district heating or district cooling as the energy carrier to supply cooling. In fact the potential of district heating as the energy carrier is thought to be the largest in large cities with humid climates. Further it is found that the chiller heat sink can contribute significantly to the cost in many applications, especially if water and/or electricity consumption are issues with

  10. Gravitationally Driven Wicking for Enhanced Condensation Heat Transfer.

    Science.gov (United States)

    Preston, Daniel J; Wilke, Kyle L; Lu, Zhengmao; Cruz, Samuel S; Zhao, Yajing; Becerra, Laura L; Wang, Evelyn N

    2018-04-17

    Vapor condensation is routinely used as an effective means of transferring heat or separating fluids. Filmwise condensation is prevalent in typical industrial-scale systems, where the condensed fluid forms a thin liquid film due to the high surface energy associated with many industrial materials. Conversely, dropwise condensation, where the condensate forms discrete liquid droplets which grow, coalesce, and shed, results in an improvement in heat transfer performance of an order of magnitude compared to filmwise condensation. However, current state-of-the-art dropwise technology relies on functional hydrophobic coatings, for example, long chain fatty acids or polymers, which are often not robust and therefore undesirable in industrial conditions. In addition, low surface tension fluid condensates, such as hydrocarbons, pose a unique challenge because common hydrophobic condenser coatings used to shed water (with a surface tension of 73 mN/m) often do not repel fluids with lower surface tensions (condensation heat transfer using gravitationally driven flow through a porous metal wick, which takes advantage of the condensate's affinity to wet the surface and also eliminates the need for condensate-phobic coatings. The condensate-filled wick has a lower thermal resistance than the fluid film observed during filmwise condensation, resulting in an improved heat transfer coefficient of up to an order of magnitude and comparable to that observed during dropwise condensation. The improved heat transfer realized by this design presents the opportunity for significant energy savings in natural gas processing, thermal management, heating and cooling, and power generation.

  11. Influence of the ambient temperature on the cooling efficiency of the high performance cooling device with thermosiphon effect

    Science.gov (United States)

    Nemec, Patrik; Malcho, Milan

    2018-06-01

    This work deal with experimental measurement and calculation cooling efficiency of the cooling device working with a heat pipe technology. The referred device in the article is cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description, working principle and construction of cooling device. The main factor affected the dissipation of high heat flux from electronic elements through the cooling device to the surrounding is condenser construction, its capacity and option of heat removal. Experimental part describe the measuring method cooling efficiency of the cooling device depending on ambient temperature in range -20 to 40°C and at heat load of electronic components 750 W. Measured results are compared with results calculation based on physical phenomena of boiling, condensation and natural convection heat transfer.

  12. Assessment of the effect of nitrogen gas on passive containment cooling system performance

    International Nuclear Information System (INIS)

    Ha, Huiun; Suh, Jungsoo

    2016-01-01

    As a part of the passive containment cooling system (PCCS) of Innovative PWR development project, we have been investigating the effect of the nitrogen gas released from safety injection tank (SIT) on PCCS performance. With the design characteristics of APR1400 and conceptual design of PCCS, we developed a GOTHIC model of the APR1400 containment with PCCS. The calculation model is described herein, and representative results from the calculation are presented as well. The results of the present work will be used for the design of PCCS. APR1400 GOTHIC model was developed for assessment on the effect of SIT nitrogen gas on passive containment cooling system performance. Calculation results confirmed that influence of nitrogen gas release is negligible; however, further studies should be performed to confirm effect of non-condensable gas on the final performance of PCCS. These insights are important for developing the PCCS of Innovative PWR

  13. Assessment of the effect of nitrogen gas on passive containment cooling system performance

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Huiun; Suh, Jungsoo [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    As a part of the passive containment cooling system (PCCS) of Innovative PWR development project, we have been investigating the effect of the nitrogen gas released from safety injection tank (SIT) on PCCS performance. With the design characteristics of APR1400 and conceptual design of PCCS, we developed a GOTHIC model of the APR1400 containment with PCCS. The calculation model is described herein, and representative results from the calculation are presented as well. The results of the present work will be used for the design of PCCS. APR1400 GOTHIC model was developed for assessment on the effect of SIT nitrogen gas on passive containment cooling system performance. Calculation results confirmed that influence of nitrogen gas release is negligible; however, further studies should be performed to confirm effect of non-condensable gas on the final performance of PCCS. These insights are important for developing the PCCS of Innovative PWR.

  14. Computational fluid dynamics validation study of steam condensation on the containment walls

    International Nuclear Information System (INIS)

    Gera, B.; Sharma, P.K.; Singh, R.K.; Vaze, K.K.

    2012-01-01

    In water cooled power reactors, significant quantities of hydrogen could be produced following a severe accident (loss-of-coolant-accident along with non availability of emergency core cooling system). A sound understanding of dispersion, stratification and diffusion of released hydrogen during severe accidents is, therefore, of practical importance and use to better understand the possibility of ignition, combustion and explosion of such releases within the context of containment safety. The presence of air and steam in the containment atmosphere also affects the hydrogen distribution as steam condensation takes place at containment walls in presence of non condensable and bulk of the mixture diffuses towards wall. The application of general purpose CFD codes for the analysis of the hydrogen behaviour within NPP containments during severe accidents has been increasing over past few years. The commercial CFD codes generally do not have built-in steam condensations models. In the present work, the adaptation of a commercial multipurpose code to this kind of problem is explained, i.e. by the implementation of models for steam condensation onto walls in presence of non-condensable gases. Steam condensation was modeled using the Uchida correlation, which was originally developed to be used for 'lumped' (volume-averaged) modeling of steam condensation in the presence of non-condensable gases. The Uchida correlation is based on experiments on natural convection from relatively small vertical plates. The present methodology has been validated against experimental data from the TOSQAN and COPAIN experimental facilities. (orig.)

  15. Competition between Bose-Einstein Condensation and Spin Dynamics.

    Science.gov (United States)

    Naylor, B; Brewczyk, M; Gajda, M; Gorceix, O; Maréchal, E; Vernac, L; Laburthe-Tolra, B

    2016-10-28

    We study the impact of spin-exchange collisions on the dynamics of Bose-Einstein condensation by rapidly cooling a chromium multicomponent Bose gas. Despite relatively strong spin-dependent interactions, the critical temperature for Bose-Einstein condensation is reached before the spin degrees of freedom fully thermalize. The increase in density due to Bose-Einstein condensation then triggers spin dynamics, hampering the formation of condensates in spin-excited states. Small metastable spinor condensates are, nevertheless, produced, and they manifest in strong spin fluctuations.

  16. Characterization of N-Acylhomoserine Lactones Produced by Bacteria Isolated from Industrial Cooling Water Systems

    Directory of Open Access Journals (Sweden)

    Noriya Okutsu

    2015-12-01

    Full Text Available The cooling water systems are used to remove heat generated in the various industries. Biofouling of the cooling water systems causes blocking of condenser pipes and the heat exchanger tubes. In many Gram-negative bacteria, N-acylhomoserine lactone (AHL are used as quorum-sensing signal molecule and associated with biofilm formation. To investigate the relationship between quorum sensing and biofouling in the cooling water system, we isolated a total of 192 bacterial strains from the five cooling water systems, and screened for AHL production. Seven isolates stimulated AHL-mediated purple pigment production in AHL reporter strain Chromobacterium violaceum CV026 or VIR07. Based on their 16S rRNA gene sequences, AHL-producing isolates were assigned to Aeromonas hydrophila, Lysobacter sp., Methylobacterium oryzae, and Bosea massiliensis. To the best of our knowledge, B. massiliensis and Lysobacter sp. have not been reported as AHL-producing species in the previous researches. AHLs extracted from the culture supernatants of B. massiliensis and Lysobacter sp. were identified by liquid chromatography-mass spectrometry. AHLs produced by B. massiliensis were assigned as N-hexanoyl-l-homoserine lactone (C6-HSL, N-(3-oxohexanoyl-l-homoserine lactone (3-oxo-C6-HSL, and N-(3-oxooctanoyl-l-homoserine lactone (3-oxo-C8-HSL. AHLs produced by Lysobacter sp. were assigned as N-decanoyl-l-homoserine lactone (C10-HSL and N-(3-oxodecanoyl-l-homoserine lactone (3-oxo-C10-HSL. This is the first report of identification of AHLs produced by B. massiliensis and Lysobacter sp. isolated from the cooling water system.

  17. Development of a condenser for the dual catalyst water recovery system

    Science.gov (United States)

    Budinikas, P.; Rasouli, F.; Rabadi, N.

    1983-01-01

    Conceptual evaporation/condensation systems suitable for integration with the catalytic water recovery method were evaluated. The primary requirements for each concept were its capability to operate under zero-gravity conditions, condense recovered water from a vapor-noncondensable gas mixture, and integrate with the catalytic system. Specific energy requirements were estimated for concepts meeting the primary requirements, and the concept most suitable for integration with the catalytic system was proposed. A three-man rate condenser capable of integration with the proposed system, condensing water vapor in presence of noncondensables and transferring the heat of condensation to feed urine was designed, fabricated, and tested. It was treated with steam/air mixtures at atmospheric and elevated pressures and integrated with an actual catalytic water recovery system. The condenser has a condensation efficiency exceeding 90% and heat transfer rate of approximately 85% of theoretical value at coolant temperature ranging from 7 to 80 deg C.

  18. Bio-oil fractionation and condensation

    Science.gov (United States)

    Brown, Robert C; Jones, Samuel T; Pollard, Anthony

    2013-07-02

    A method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents is described. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also described are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.

  19. Moisture condensation on building envelopes in differential ventilated spaces in the tropics: quantitative assessment of influencing factors

    Directory of Open Access Journals (Sweden)

    Ali Maisarah

    2016-01-01

    Full Text Available Ventilation systems play a significant role in maintaining the indoor thermal and hygric balance. Nevertheless, the systems had been implicated to result in many problems. In the tropical climate, especially for energy efficiency purposes, building spaces are operated with differential ventilation. Such spaces operate on 24-hrs basis, some on 8-hrs while others are either naturally ventilated or served with mechanical supply-exhaust fan systems with non-conditioned outdoor air. This practice had been found to result in condensation problems. This study involves a quantitative appraisal of the effect of operative conditions and hygrothermal quality of building envelopes on condensation risk. The in-situ experiment is combined with an analytical approach to assessing the hygrothermal quality of building envelopes in a tropical climate building under differential ventilation between adjacent spaces. The case-studied building is with a known history of condensation and associated damages including mould growth. The microclimate measurement and hygrothermal performance of the wall and floor against condensation and mould growth risks had been previously reported elsewhere. As a step further, the present study evaluates the effects of various envelope insulation types and configurations together with the HVAC cooling set-points on envelope hygrothermal performance. The results revealed that overcooling the air-conditioned side increases condensation risk on the non-air-conditioned side of the envelopes. The envelopes failed criteria for surface condensation at existing operative conditions irrespective of envelope hygrothermal quality improvements. However, the envelope performed well at improved cooling operative conditions even at existing envelope hygrothermal quality. It is, therefore, important to ascertain the envelope hygrothermal quality as well the cooling operative conditions while embarking on energy efficiency operations in mechanical

  20. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: NEW CONDENSATOR, INC.--THE CONDENSATOR DIESEL ENGINE RETROFIT CRANKCASE VENTILATION SYSTEM

    Science.gov (United States)

    EPA's Environmental Technology Verification Program has tested New Condensator Inc.'s Condensator Diesel Engine Retrofit Crankcase Ventilation System. Brake specific fuel consumption (BSFC), the ratio of engine fuel consumption to the engine power output, was evaluated for engine...

  1. Dynamic Modeling of Steam Condenser and Design of PI Controller Based on Grey Wolf Optimizer

    OpenAIRE

    Shu-Xia Li; Jie-Sheng Wang

    2015-01-01

    Shell-and-tube condenser is a heat exchanger for cooling steam with high temperature and pressure, which is one of the main kinds of heat exchange equipment in thermal, nuclear, and marine power plant. Based on the lumped parameter modeling method, the dynamic mathematical model of the simplified steam condenser is established. Then, the pressure PI control system of steam condenser based on the Matlab/Simulink simulation platform is designed. In order to obtain better performance, a new meta...

  2. Performance test of condensate polishing system for Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    You Zhaojin; Qian Shijun; Lu Ruiting

    1995-11-01

    The flow chart, resin performance and water quality specifications of the condensate polishing system for Qinshan Nuclear Power Plant (QNPP) are briefly described. The initial regeneration process and the following service of the condensate polishing system are introduced. And the ability to remove corrosion products and ionic impurities of the condensate polishing system are verified during start-up, normal power operation and condenser leakage of the plant. The result shows that the performance of condensate polishing system in QNPP can completely meet the design requirements. Especially during the start-up of the unit or the leakage of the condenser, despite the inlet water quality of the polishers is far worse than the specified standard, the outlet water quality is still controlled within the indexes. Finally, several existing problems, such as 'volume ratio between resins is not optimum' and 'the inert resin and anion resin can not be stratified completely', in the condensate polishing system are also discussed. (4 refs., 1 fig., 8 tabs.)

  3. An experimental study of high pressure steam condensation in a vertical tube of passive secondary condensation system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Jae; No, Hee Cheon [KAIST, Taejon (Korea, Republic of)

    1998-07-01

    To investigate the physical parameters of PSCS (Passive Secondary Condensation System) which is a passive residual heat removal system of CP-1300, the high pressure condensation experiments are performed in a small scale experimental facility. The experimental parameters are the local heat flux and the transfer coefficient and the pressure drop in a condensation heat trasnfer. The film condensation heat transfer coefficients in a vertical tube are calculated from the measured wall temperature difference and compared with the analytical models. A new analytical condensation model is developed based on the annular film flow model. The present model gives marginally better results than those from the Shah model in comparison with the experimental data in the database. Also, experimental data are compared with the results of the RELAP5/MOD3.2 thermal hydraulic code. The RELAP5/MOD3.2 underpredicts the condensation heat transfer coefficients of the present experiment by 50 %.

  4. Method for extending the unrestricted operating range of condensing steam turbines

    International Nuclear Information System (INIS)

    Csaba, G.; Bannerth, Cs.

    2009-01-01

    The allowed condenser temperature of the condensing steam turbines is determined by the design parameters of the steam turbine (casing geometry, exhaust area, blade length, blade angle, blade profile etc.). The fluctuations of condenser temperature may lead to reduced power output of the condensing steam turbine. Solutions where the low pressure turbine casings have the same exhaust area can be kept in operation at narrow condenser temperature range without restrictions. Exceeding the mentioned temperature range the exhaust hood temperature restriction, undergoing the temperature range choking point restriction appears causing increased operation cost. The aim of the paper is to present a condensing steam turbine - direct-contact condenser system that can extend the unrestricted operating range. The examined system consists of more parallelly connected low pressure turbine casings so-called diabolo that having at least two exhausts separated at the steam side. The exhausts, utilizing varying input-temperature coolant, are connected to the condensers that are separated at the steam side and serially connected at the coolant side. The casings have the same inlet areas while the exhausts have different areas resulting different volume flows and temperature operating range. The economic advantage of this solution approaches the savings between the serially connected direct-contact condensers and condensers in parallel of a dry cooling system. It can be proven by a simple calculation using the ambient air temperature duration diagram that is presented in the paper. (author)

  5. Reactor cooling system

    International Nuclear Information System (INIS)

    Kato, Etsuji.

    1979-01-01

    Purpose: To eliminate cleaning steps in the pipelines upon reactor shut-down by connecting a filtrating and desalting device to the cooling system to thereby always clean up the water in the pipelines. Constitution: A filtrating and desalting device is connected to the pipelines in the cooling system by way of drain valves and a check valve. Desalted water is taken out from the exit of the filtrating and desalting device and injected to one end of the cooling system pipelines by way of the drain valve and the check valve and then returned by way of another drain valve to the desalting device. Water in the pipelines is thus always desalted and the cleaning step in the pipelines is no more required in the shut-down. (Kawakami, Y.)

  6. Performance characteristic of hybrid cooling system based on cooling pad and evaporator

    Science.gov (United States)

    Yoon, J. I.; Son, C. H.; Choi, K. H.; Kim, Y. B.; Sung, Y. H.; Roh, S. J.; Kim, Y. M.; Seol, S. H.

    2018-01-01

    In South Korea, most of domestic animals such as pigs and chickens might die due to thermal diseases if they are exposed to the high temperature consistently. In order to save them from the heat wave, numerous efforts have been carried out: installing a shade net, adjusting time of feeding, spraying mist and setting up a circulation fan. However, these methods have not shown significant improvements. Thus, this study proposes a hybrid cooling system combining evaporative cooler and air-conditioner in order to resolve the conventional problems caused by the high temperature in the livestock industry. The problem of cooling systems using evaporative cooling pads is that they are not effective for eliminating huge heat load due to their limited capacity. And, temperature of the supplied air cannot be low enough compared to conventional air-conditioning systems. On the other hand, conventional air-conditioning systems require relatively expensive installation cost, and high operating cost compared to evaporative cooling system. The hybrid cooling system makes up for the lack of cooling capacity of the evaporative cooler by employing the conventional air-conditioner. Additionally, temperature of supplied air can be lowered enough. In the hybrid cooling system, induced air by a fan is cooled by the evaporation of water in the cooling pad, and it is cooled again by an evaporator in the air-conditioner. Therefore, the more economical operation is possible due to additionally obtained cooling capacity from the cooling pads. Major results of experimental analysis of hybrid cooling system are as follows. The compressor power consumption of the hybrid cooling system is about 23% lower, and its COP is 17% higher than that of the conventional air-conditioners. Regarding the condition of changing ambient temperature, the total power consumption decreased by about 5% as the ambient temperature changed from 28.7°C to 31.7°C. Cooling capacity and COP also presented about 3% and 1

  7. Experimental evaluation of cooling efficiency of the high performance cooling device

    Science.gov (United States)

    Nemec, Patrik; Malcho, Milan

    2016-06-01

    This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heat of electronic components in range from 250 to 740 W.

  8. Experimental evaluation of cooling efficiency of the high performance cooling device

    Energy Technology Data Exchange (ETDEWEB)

    Nemec, Patrik, E-mail: patrik.nemec@fstroj.uniza.sk; Malcho, Milan, E-mail: milan.malcho@fstroj.uniza.sk [University of Žilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitna 1, 010 26 Žilina (Slovakia)

    2016-06-30

    This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heat of electronic components in range from 250 to 740 W.

  9. Theoretical investigations on improving performance of cooling systems for fuel cell vehicles; Theoretische Untersuchungen zur Kuehlleistungssteigerung durch innovative Kuehlsysteme fuer Brennstoffzellen-Elektrofahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Reichler, Mark

    2008-04-01

    In this work theoretical investigations are carried out for cooling systems, which are used in fuel cell vehicles. This work focuses mainly on the capability of increasing the heat rejection rate by using new alternative cooling systems and by improving the conventional cooling system. Fuel cell vehicles have a higher demand of heat rejection to the ambient than comparable vehicles with combustion engine. The performance of conventional liquid cooling systems, especially at high loads and high ambient temperatures, is often not sufficient anymore. Hence, cooling systems with improved performance are necessary for fuel cell vehicles. The investigations in this work are based on DaimlerChrysler's ''A-Class'' having a PEM-Fuel Cell system integrated. Specific computational models are developed for radiators and condensers to evaluate the performance of different cooling concepts. The models are validated with experimental data. Based on an intensive investigation in the open literature the state of the art of cooling systems for fuel cell vehicles is depicted. Furthermore new cooling concepts as an alternative to the liquid cooling system are presented. The method of cooling the fuel cell by using two-phase transition shows the greatest capability to increase the cooling performance. Hence, this concept is investigated in detail. Two different concepts with three different refrigerants (R113, R245fa und R236fa) are analyzed. Cooling performance of this concept shows improvement of 18.2 up to 32.6 % compared to the conventional liquid cooling system. Thus, a two phase cooling system represents an alternative cooling system for fuel cell vehicles, which should be closer investigated by experiments. (orig.)

  10. New state of matter: Bose-Einstein condensation

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    70 years after work by the Indian physicist Satyendra Nath Bose led Einstein to predict the existence of a new state of matter, the Bose-Einstein condensate has finally been seen. The discovery was made in July by a team from Colorado, and was followed one month later by a second sighting at Rice University at Houston, Texas. It is Bose's theoretical framework governing the behaviour of the particles we now call bosons which led to Einstein's prediction. Unlike fermions, which obey the Pauli exclusion principle of only one resident particle per allowed quantum state, any number of bosons can pack into an identical quantum state. This led Einstein to suggest that under certain conditions, bosons would lose their individual identities, condensing into a kind of 'superboson'. This condensate forms when the quantum mechanical waves of neighbouring bosons overlap, hiding the identity of the individual particles. Such a condition is difficult to achieve, since most long-lived bosons are composite particles which tend to interact and stick together before a condensate can emerge. Extremely low temperatures and high densities are required to overcome this problem. As bosons lose energy and cool down, their wavelengths become longer, and they can be packed close enough together to merge into a condensate. Up until now, however, the extreme conditions needed have not been attainable. Nevertheless, hints of the Bose- Einstein condensate have been inferred in phenomena such as superconductivity and liquid helium superfluidity. Condensates could also play an important role in particle physics and cosmology, explaining, for example, why the pion as a bound quark-antiquark state is so much lighter than the three-quark proton. A hunt to create a pure Bose- Einstein condensate has been underway for over 15 years, with different groups employing different techniques to cool their bosons. The two recent successes have been achieved by incorporating several

  11. Emissions-critical charge cooling using an organic rankine cycle

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-07-15

    The disclosure provides a system including a Rankine power cycle cooling subsystem providing emissions-critical charge cooling of an input charge flow. The system includes a boiler fluidly coupled to the input charge flow, an energy conversion device fluidly coupled to the boiler, a condenser fluidly coupled to the energy conversion device, a pump fluidly coupled to the condenser and the boiler, an adjuster that adjusts at least one parameter of the Rankine power cycle subsystem to change a temperature of the input charge exiting the boiler, and a sensor adapted to sense a temperature characteristic of the vaporized input charge. The system includes a controller that can determine a target temperature of the input charge sufficient to meet or exceed predetermined target emissions and cause the adjuster to adjust at least one parameter of the Rankine power cycle to achieve the predetermined target emissions.

  12. Development of an innovative polygeneration process in hybrid solar-biomass system for combined power, cooling and desalination

    International Nuclear Information System (INIS)

    Sahoo, U.; Kumar, R.; Pant, P.C.; Chaudhary, R.

    2017-01-01

    Highlights: • Heat utilization from solar and biomass resources are considered for hybridization. • Modeling of polygeneration process in hybrid solar-biomass power plant is considered. • Thermodynamic evaluation are performed to identify the effect of various parameters. • Primary Energy Saving of polygeneration process is determined. - Abstract: In the polygeneration process simultaneous production of power, vapor absorption refrigeration (VAR) cooling and multi-effect humidification and dehumidification (MEHD) desalination system from different heat sources in hybrid solar-biomass (HSB) system with higher energy efficiency take place. It is one of the solutions to fulfill energy requirements from renewable sources and also helps in the reduction of carbon dioxide emissions. The VAR cooling system operates using the extracted heat taken from turbine and condenser heat of the VAR cooling system is used in desalination system for production of drinking water as per demand requirement. Though the production of electricity decreases due to extraction of heat from turbine for VAR cooling and desalination, the complete system meets the energy requirements & increases the primary energy savings (PES). The thermodynamic evaluation and optimization of HSB system in polygeneration process for combined power, cooling and desalination is investigated to identify the effects of various operating parameters. Primary energy savings (PES) of polygeneration process in HSB system is achieved to 50.5%. The energy output is increased to 78.12% from this system as compared to simple power plant.

  13. Condensation nuclear power plants with water-cooled graphite-moderated channel type reactors and advances in their development

    International Nuclear Information System (INIS)

    Boldyrev, V.M.; Mikhaj, V.I.

    1985-01-01

    Consideration is being given to results of technical and economical investigations of advisability of increasing unit power by elevating steam generating capacity as a result of inserting numerous of stereotype sectional structural elements of the reactor with similar thermodynamic parameters. It is concluded that construction of power units of condensation nuclear power plants with water-cooled graphite-moderated channel type reactors of 2400-3200 MWe and higher unit power capacity represents the real method for sharp growth of efficiency and labour productivity in power industry. It can also provide the required increase of the rate of putting electrogenerating powers into operation

  14. Temperature dependence of the physical properties of Bose–Einstein condensed gases and liquids

    International Nuclear Information System (INIS)

    Mayers, J

    2014-01-01

    It is shown that in the presence of Bose–Einstein condensation (BEC) in any N particle system, the N particle Schrödinger wave functions of thermally occupied states are the sum of a ‘localized’ component and a ‘delocalized’ component, identical to the ground state wave function. It is shown that if N is sufficiently large, this implies that all physical properties of the system are the sum of two independent contributions from these two components. These results are used here to provide quantitative explanations of fundamental properties of BE condensed liquid 4 He, unexplained even qualitatively by existing theory; why BE condensed liquid 4 He is the only known physical system in which pair correlations between atomic positions reduce as it is cooled, why it is the only known liquid with sharp peaks in its dynamic structure factor, why the liquid expands with cooling and how the condensate fraction is related to the superfluid fraction. It is shown that these results also provide a relatively simple, physically transparent and quantitative explanation from first principles of macroscopic quantum effects. A new algorithm is given for the calculation of the time development of the macroscopic density of any BE condensed liquid or gas at any temperature. Unlike the Gross–Pitaevskii equation, this algorithm is valid for both strongly and weakly interacting systems. It is used here to show that macroscopic quantum interference fringes, observed between overlapping clouds of BE condensed atoms, are a necessary consequence of BEC and the N particle Schrödinger equation for the atoms in the clouds. It follows that the widely held view that these fringes are created by measurement is unnecessary. New, experimentally testable predictions are made of how the visibility of these fringes will vary with temperature. (paper)

  15. Ground experimental investigations into an ejected spray cooling system for space closed-loop application

    Directory of Open Access Journals (Sweden)

    Zhang Hongsheng

    2016-06-01

    Full Text Available Spray cooling has proved its superior heat transfer performance in removing high heat flux for ground applications. However, the dissipation of vapor–liquid mixture from the heat surface and the closed-loop circulation of the coolant are two challenges in reduced or zero gravity space environments. In this paper, an ejected spray cooling system for space closed-loop application was proposed and the negative pressure in the ejected condenser chamber was applied to sucking the two-phase mixture from the spray chamber. Its ground experimental setup was built and experimental investigations on the smooth circle heat surface with a diameter of 5 mm were conducted with distilled water as the coolant spraying from a nozzle of 0.51 mm orifice diameter at the inlet temperatures of 69.2 °C and 78.2 °C under the conditions of heat flux ranging from 69.76 W/cm2 to 311.45 W/cm2, volume flow through the spray nozzle varying from 11.22 L/h to 15.76 L/h. Work performance of the spray nozzle and heat transfer performance of the spray cooling system were analyzed; results show that this ejected spray cooling system has a good heat transfer performance and provides valid foundation for space closed-loop application in the near future.

  16. Simulating the transient regime for main condensate system at Cernavoda NPP

    International Nuclear Information System (INIS)

    Nita, Iulian; Gheorghiu, Mihai; Prisecaru, Ilie; Dupleac, Daniel

    2005-01-01

    The purpose of this project is to make a Thermal Hydraulic Analysis of Main Condensate System for getting real-time answer of installation during regimes occurring during normal and abnormal operation. To obtain the analyses the MMS code was used. The boundaries of the systems analysis are extended to Main Feedwater System in order to get a realistic response of Deaerator equipment which are situated between those two systems and have entrances from both systems. In this way we made a complex analysis with main condenser and steam generators as boundaries. We obtained a model for the entire chain of condensate and feedwater preheater with interface just turbine bleed steam. From that we could reduce the number of assumptions necessary to make the analysis. The analyses consist in hydraulics and thermal hydraulics analyses, respectively. For the first case analysed are: - the nominal operation regime with main condensate pumps; - start-up regime with total circulate of condensate to condenser; - 25% MCR (Maximum Continuous Rate) regime (this regime was used in designing the condensate regulating valves at low flow; - 40% MCR regime (with circulate of some condensate flow to condenser); - operating regime of 60% MCR with one main condensate pump operating; - operating regime with auxiliary condensate pump; - operating regime with discharging a condensate flow to condensate storage tank. The thermal hydraulic analyses deal with normal and abnormal operating regimes, respectively. In the first case analysed are the following regimes: - nominal operating regime with main condensate pump operating 100% MCR; - transient regime, 100-80% MCR; - transient regime, 100-80-60% MCR with two pumps in operation and 60 % MCR with one main condensate pump in operation; - transient regime, 100-80-60-60-40 % MCR; - shut-down regime; - start-up regime from Hot zero power to rated power regime. Finally, for the abnormal operating regimes the analyses concerned: - transient regime 100

  17. Cooling Tower Overhaul of Secondary Cooling System in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Chul; Lee, Young Sub; Jung, Hoan Sung; Lim, In Chul [KAERI, Daejeon (Korea, Republic of)

    2007-07-01

    HANARO, an open-tank-in-pool type research reactor of 30 MWth power in Korea, has been operating normally since its initial criticality in February, 1995. For the last about ten years, A cooling tower of a secondary cooling system has been operated normally in HANARO. Last year, the cooling tower has been overhauled for preservative maintenance including fills, eliminators, wood support, water distribution system, motors, driving shafts, gear reducers, basements, blades and etc. This paper describes the results of the overhaul. As results, it is confirmed that the cooling tower maintains a good operability through a filed test. And a cooling capability will be tested when a wet bulb temperature is maintained about 28 .deg. C in summer and the reactor is operated with the full power.

  18. Turbine airfoil with ambient cooling system

    Science.gov (United States)

    Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.

    2016-06-07

    A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.

  19. Emergency cooling system with hot-water jet pumps for nuclear reactors

    International Nuclear Information System (INIS)

    Reinsch, A.O.W.

    1977-01-01

    The ECCS for a PWR or BWR uses hot-water jet pumps to remove the thermal energy generated in the reactor vessel and stored in the water. The hot water expands in the nozzle part (Laval nozzle) of the jet pump and sucks in coolant (borated water) coming from a storage tank containing subcooled water. This water is mixing with the hot water/steam mixture from the Laval nozzle. The steam is condensed. The kinetic energy of the water is converted into a pressure increase which is sufficient to feed the water into the reactor vessel. The emergency cooling may further be helped by a jet condenser also operating according to the principle of a jet pump and condensing the steam generated in the reactor vessel. (DG) [de

  20. Cooling power technology at a turning point

    International Nuclear Information System (INIS)

    Hese, L.H.

    1978-01-01

    From freshwater cooling and efflux condenser cooling to wet recirculation cooling, hybrid and dry cooling towers, cooling tower technology has seen a development characterized by higher cooling tower costs and reduced power plant efficiency. Therefore, all research work done at the moment concentrates on making up for the economic losses connected with improved environmental protection. (orig.) [de

  1. Monitoring Cray Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Don E [ORNL; Ezell, Matthew A [ORNL; Becklehimer, Jeff [Cray, Inc.; Donovan, Matthew J [ORNL; Layton, Christopher C [ORNL

    2014-01-01

    While sites generally have systems in place to monitor the health of Cray computers themselves, often the cooling systems are ignored until a computer failure requires investigation into the source of the failure. The Liebert XDP units used to cool the Cray XE/XK models as well as the Cray proprietary cooling system used for the Cray XC30 models provide data useful for health monitoring. Unfortunately, this valuable information is often available only to custom solutions not accessible by a center-wide monitoring system or is simply ignored entirely. In this paper, methods and tools used to harvest the monitoring data available are discussed, and the implementation needed to integrate the data into a center-wide monitoring system at the Oak Ridge National Laboratory is provided.

  2. Cooling methods of station blackout scenario for LWR plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The objective of this study is to analyze the cooling method of station blackout scenario for both the BWR and PWR plants by RELAP5 code and to check the validity of the cooling method proposed by the utilities. In the BWR plant cooling scenario, the Reactor Core Isolation Cooling System (RCIC), which is operated with high pressure steam from the reactor, injects cooling water into the reactor to keep the core water level. The steam generated in the core is released into the suppression pool at containment vessel to condense. To restrict the containment vessel pressure rising, the ventilation from the wet-well is operated. The scenario is analyzed by RELAP5 code. In the PWR plant scenario, the primary pressure is decreased by the turbine-driven auxiliary feed water system operated with secondary side steam of the steam generators (SGs). And the core cooling is kept by the natural circulation flow at the primary loop. From the RELAP5 code analysis, it was shown that the primary system cooling was practicable by using the turbine-driven auxiliary feed water system. (author)

  3. Design of a natural draft air-cooled condenser and its heat transfer characteristics in the passive residual heat removal system for 10 MW molten salt reactor experiment

    International Nuclear Information System (INIS)

    Zhao, Hangbin; Yan, Changqi; Sun, Licheng; Zhao, Kaibin; Fa, Dan

    2015-01-01

    As one of the Generation IV reactors, Molten Salt Reactor (MSR) has its superiorities in satisfying the requirements on safety. In order to improve its inherent safety, a concept of passive residual heat removal system (PRHRS) for the 10 MW Molten Salt Reactor Experiment (MSRE) was put forward, which mainly consisted of a fuel drain tank, a feed water tank and a natural draft air-cooled condenser (NDACC). Besides, several valves and pipes are also included in the PRHRS. A NDACC for the PRHRS was preliminarily designed in this paper, which contained a finned tube bundle and a chimney. The tube bundle was installed at the bottom of the chimney for increasing the velocity of the air across the bundle. The heat transfer characteristics of the NDACC were investigated by developing a model of the PRHRS using C++ code. The effects of the environmental temperature, finned tube number and chimney height on heat removal capacity of the NDACC were analyzed. The results show that it has sufficient heat removal capacity to meet the requirements of the residual heat removal for MSRE. The effects of these three factors are obvious. With the decay heat reducing, the heat dissipation power declines after a short-time rise in the beginning. The operation of the NDACC is completely automatic without the need of any external power, resulting in a high safety and reliability of the reactor, especially once the accident of power lost occurs to the power plant. - Highlights: • A model to study the heat transfer characteristics of the NDACC was developed. • The NDACC had sufficient heat removal capacity to remove the decay heat of MSRE. • NDACC heat dissipation power depends on outside temperature and condenser geometry. • As time grown, the effects of outside temperature and condenser geometry diminish. • The NDACC could automatically adjust its heat removal capacity

  4. Preliminary Overview of a Helium Cooling System for the Secondary Helium Loop in VHTR-based SI Hydrogen Production Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Youngjoon; Cho, Mintaek; Kim, Dahee; Lee, Taehoon; Lee, Kiyoung; Kim, Yongwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Nuclear hydrogen production facilities consist of a very high temperature gas-cooled nuclear reactor (VHTR) system, intermediate heat exchanger (IHX) system, and a sulfur-iodine (SI) thermochemical process. This study focuses on the coupling system between the IHX system and SI thermochemical process. To prevent the propagation of the thermal disturbance owing to the abnormal operation of the SI process components from the IHX system to the VHTR system, a helium cooling system for the secondary helium of the IHX is required. In this paper, the helium cooling system has been studied. The temperature fluctuation of the secondary helium owing to the abnormal operation of the SI process was then calculated based on the proposed coupling system model. Finally, the preliminary conceptual design of the helium cooling system with a steam generator and forced-draft air-cooled heat exchanger to mitigate the thermal disturbance has been carried out. A conceptual flow diagram of a helium cooling system between the IHX and SI thermochemical processes in VHTR-based SI hydrogen production facilities has been proposed. A helium cooling system for the secondary helium of the IHX in this flow diagram prevents the propagation of the thermal disturbance from the IHX system to the VHTR system, owing to the abnormal operation of the SI process components. As a result of a dynamic simulation to anticipate the fluctuations of the secondary helium temperature owing to the abnormal operation of the SI process components with a hydrogen production rate of 60 mol·H{sub 2}/s, it is recommended that the maximum helium cooling capacity to recover the normal operation temperature of 450 .deg. C is 31,933.4 kJ/s. To satisfy this helium cooling capacity, a U-type steam generator, which has a heat transfer area of 12 m{sup 2}, and a forced-draft air-cooled condenser, which has a heat transfer area of 12,388.67 m{sup 2}, are required for the secondary helium cooling system.

  5. Impact of the surface roughness of AISI 316L stainless steel on biofilm adhesion in a seawater-cooled tubular heat exchanger-condenser.

    Science.gov (United States)

    García, Sergio; Trueba, Alfredo; Vega, Luis M; Madariaga, Ernesto

    2016-11-01

    The present study evaluated biofilm growth in AISI 316L stainless steel tubes for seawater-cooled exchanger-condensers that had four different arithmetic mean surface roughness values ranging from 0.14 μm to 1.2 μm. The results of fluid frictional resistance and heat transfer resistance regarding biofilm formation in the roughest surface showed increases of 28.2% and 19.1% respectively, compared with the smoothest surface. The biofilm thickness taken at the end of the experiment showed variations of up to 74% between the smoothest and roughest surfaces. The thermal efficiency of the heat transfer process in the tube with the roughest surface was 17.4% greater than that in the tube with the smoothest surface. The results suggest that the finish of the inner surfaces of the tubes in heat exchanger-condensers is critical for improving energy efficiency and avoiding biofilm adhesion. This may be utilised to reduce biofilm adhesion and growth in the design of heat exchanger-condensers.

  6. Design Of The Canal System Of KLA-60 Condensation Produce

    International Nuclear Information System (INIS)

    Sriawan; Wiranto, Slamet

    2000-01-01

    The RSG-GAS reactor pool ventilation system (KLA-60) which be used to avoid circulation of contamination air in the reactor hall, flow the 60% air from the pool surface to stack through the various filters. In case the isolation building the air from the pool surface is flooded back to the operation hall after exceed the heat exchanger, cooler and the various filters. One of the weakness of this system and must be solved by RSG is handing of the condensation water because in the canal system of the KLA-60 condensation produce is to be found some soiled like algae and to go the reactor pool. To solve this problem should be carried out research about the canal system of KLA-60 condensation produce and design the new canal system to find the good function. At the first design is carried out study about the function of the old of canal system of KLA-60 condensation produce. Base on this study have been carried out design of the canal system KLA-60 condensation produce, with can prevent the soiled to go to the reactor pool

  7. Corrosion behaviour of hyper duplex stainless steel in various metallurgical conditions for sea water cooled condensers

    International Nuclear Information System (INIS)

    Singh, Umesh Pratap; Kain, Vivekanand; Chandra, Kamlesh

    2011-01-01

    The sea water cooled condensers have to resist severe corrosion as marine environment is the most corrosive natural environment. Copper alloys are being phased out due to difficulties in water chemistry control and Titanium base alloys are extremely expensive. Austenitic stainless steels (SS) remain prone to localized corrosion in marine environments hence not suitable. These heat exchangers operate at temperatures not exceeding 50 deg C and at very low pressures. The tubes of these heat exchangers are joined to the carbon steel tube sheets by roll expansion or by roll expansion followed by seam welding. These conditions are expected to affect the localized corrosion resistance of the tube in roll joined region due to cold working and in the tube-tube sheet welded joint due to thermal effects of welding. In this study, the localized corrosion behaviour of a Hyper Duplex Stainless Steel (HDSS) has been evaluated, and compared with other materials e.g. types 304L SS, 316L SS, Duplex SS 2205, Titanium grade - 2, and Al Brass. The evaluation is done in three metallurgical conditions (a) as received, (b) cold rolled and (c) welded condition in synthetic sea water at room temperature and at 50 deg C to assess the resistance to crevice, pitting and stress corrosion cracking using standard ASTM exposure and electrochemical techniques. The results provide comparative assessment of these alloys and show their susceptibility in the three metallurgical conditions as encountered in condensers. Hyper-duplex SS has been shown to be highly resistant in sea water for the condenser tubing application. (author)

  8. Ice Thermal Storage Systems for LWR Supplemental Cooling and Peak Power Shifting

    Energy Technology Data Exchange (ETDEWEB)

    Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

    2010-06-01

    Availability of enough cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. The issues become more severe due to the new round of nuclear power expansion and global warming. During hot summer days, cooling water leaving a power plant may become too hot to threaten aquatic life so that environmental regulations may force the plant to reduce power output or even temporarily to be shutdown. For new nuclear power plants to be built at areas without enough cooling water, dry cooling can be used to remove waste heat directly into the atmosphere. However, dry cooling will result in much lower thermal efficiency when the weather is hot. One potential solution for the above mentioned issues is to use ice thermal storage systems (ITS) that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses those ice for supplemental cooling during peak demand time. ITS is suitable for supplemental cooling storage due to its very high energy storage density. ITS also provides a way to shift large amount of electricity from off peak time to peak time. Some gas turbine plants already use ITS to increase thermal efficiency during peak hours in summer. ITSs have also been widely used for building cooling to save energy cost. Among three cooling methods for LWR applications: once-through, wet cooling tower, and dry cooling tower, once-through cooling plants near a large water body like an ocean or a large lake and wet cooling plants can maintain the designed turbine backpressure (or condensation temperature) during 99% of the time; therefore, adding ITS to those plants will not generate large benefits. For once-through cooling plants near a limited water body like a river or a small lake, adding ITS can bring significant economic

  9. Design of SMART waste heat removal dry cooling tower using solar energy

    International Nuclear Information System (INIS)

    Choi, Yong Jae; Jeong, Yong Hoon

    2014-01-01

    The 85% of cooling system are once-through cooling system and closed cycle wet cooling system. However, many countries are trying to reduce the power plant water requirement due to the water shortage and water pollution. Dry cooling system is investigated for water saving advantage. There are two dry cooling system which are direct and indirect cooling system. In direct type, turbine exhaust is directly cooled by air-cooled condenser. In indirect system, turbine steam is cooled by recirculating intermediate cooling water loop, then the loop is cooled by air-cooled heat exchanger in cooling tower. In this paper, the purpose is to remove SMART waste heat, 200MW by using newly designed tower. The possibility of enhancing cooling performance by solar energy is analyzed. The simple cooling tower and solar energy cooling tower are presented and two design should meet the purpose of removing SMART waste heat, 200MW. In first design, when tower diameter is 70m, the height of tower should be 360m high. In second design, the chimney height decrease from 360m to 180m as collector radius increase from 100m to 500m due to collector temperature enhancement by solar energy, To analyze solar cooling tower further, consideration of solar energy performance at night should be analyzed

  10. Design of SMART waste heat removal dry cooling tower using solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Jae; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    The 85% of cooling system are once-through cooling system and closed cycle wet cooling system. However, many countries are trying to reduce the power plant water requirement due to the water shortage and water pollution. Dry cooling system is investigated for water saving advantage. There are two dry cooling system which are direct and indirect cooling system. In direct type, turbine exhaust is directly cooled by air-cooled condenser. In indirect system, turbine steam is cooled by recirculating intermediate cooling water loop, then the loop is cooled by air-cooled heat exchanger in cooling tower. In this paper, the purpose is to remove SMART waste heat, 200MW by using newly designed tower. The possibility of enhancing cooling performance by solar energy is analyzed. The simple cooling tower and solar energy cooling tower are presented and two design should meet the purpose of removing SMART waste heat, 200MW. In first design, when tower diameter is 70m, the height of tower should be 360m high. In second design, the chimney height decrease from 360m to 180m as collector radius increase from 100m to 500m due to collector temperature enhancement by solar energy, To analyze solar cooling tower further, consideration of solar energy performance at night should be analyzed.

  11. An investigation of heat recovery of submarine diesel engines for combined cooling, heating and power systems

    International Nuclear Information System (INIS)

    Daghigh, Roonak; Shafieian, Abdellah

    2016-01-01

    Highlights: • The power output of the cycle is about 53 kW in the mass flow rate of 0.6 kg/s. • The output cooling water temperature of evaporator is 3.64 °C. • The absorption chiller has a coefficient of performance equal to 0.94. - Abstract: High temperature and mass flow rate of the exhaust gases of submarine diesel engines provide an appropriate potential for their thermal recovery. The current study introduces a combined cooling, heating and power system for thermal recovery of submarine diesel engines. The cooling system is composed of a mixed effect absorption chiller with two high and low pressure generators. The exhaust of the diesel engine is used in the high pressure generator, and the low pressure generator was divided into two parts. The required heat for the first and second compartments is supplied by the cooling water of the engine and condensation of the vapor generated in the high pressure generator, respectively. The power generation system is a Rankine cycle with an organic working fluid, which is considered a normal thermal system to supply hot water. The whole system is encoded based on mass stability, condensation and energy equations. The obtained findings showed that the maximum heat recovery for the power cycle occurs in exhaust gas mass ratio of 0.23–0.29 and working fluid mass flow rate of 0.45–0.57 kg/s. Further, for each specific mass ratio of exhaust gas, only a certain range of working fluid mass flow rate is used. In the refrigerant mass flow rate of 0.6 kg/s and exhaust gas mass ratio of 0.27, the power output of the cycle is 53 kW, which can also be achieved by simultaneous increase of refrigerant mass flow rate and exhaust gas mass ratio in a certain range of higher powers. In the next section, the overall distribution diagram of output water temperature of the thermal system is obtained according to the exhaust gas mass ratio in various mass flow rates, which can increase the potential of designing and controlling the

  12. A study on the formation of fouling in a heat exchanging system for Han-river water as cooling water

    International Nuclear Information System (INIS)

    Sung, Sun Kyung; Suh, Sang Ho; Rho, Hyung Woon; Cho, Young Il

    2003-01-01

    Scale is formed when hard water is heated or cooled in heat transfer equipments such as heat exchangers, condensers, evaporators, cooling towers, boilers, and pipe walls. When scale deposits in a heat exchanger surface, it is traditionally called fouling. The objective of the present study is to investigate the formation of fouling in a heat exchanging system. A lab-scale heat exchanging system is built-up to observe and measure the formation of fouling experimentally. Water analyses are conducted to obtain the properties of Han river water. In the present study a microscopic observation is conducted to visualize the process of scale formation. Hardness of Han-river water is higher than that of tap water in Seoul

  13. 242-A evaporator vacuum condenser system

    International Nuclear Information System (INIS)

    Smith, V.A.

    1994-01-01

    This document is written for the 242-A evaporator vacuum condenser system (VCS), describing its purpose and operation within the evaporator. The document establishes the operating parameters specifying pressure, temperature, flow rates, interlock safety features and interfacing sub-systems to support its operation

  14. Condensation induced water hammer driven sterilization

    Science.gov (United States)

    Kullberg, Craig M.

    2004-05-11

    A method and apparatus (10) for treating a fluid or materials therein with acoustic energy has a vessel (14) for receiving the fluid with inner walls shaped to focus acoustic energy to a target zone within the vessel. One or more nozzles (26) are directed into the vessel (14) for injecting a condensable vapor, such as steam, into the vessel (14). The system may include a steam source (18) for providing steam as the condensable vapor from an industrial waste heat source. Steam drums (88) are disposed between the steam source (18) and nozzles (26) to equalize and distribute the vapor pressure. A cooling source (30) provides a secondary fluid for maintaining the liquid in the vessel (14) in subcooled conditions. A heating jacket (32) surrounds the vessel (14) to heat the walls of the vessel (14) and prevent biological growth thereon. A pressurizer (33) may operate the system at elevated pressures.

  15. Bose condensation in 4He and neutron scattering

    International Nuclear Information System (INIS)

    Silver, R.N.

    1997-01-01

    The discovery of superfluidity in liquid 4 He below T λ = 2.17 K, and its phenomenological characterization since then, has been one of the great success stories of condensed matter physics. The relation of superfluidity to the behavior of atoms was conjectured by F. London in 1938. Superfluidity is a manifestation of the Bose condensation of helium atoms, the extensive occupation of the zero momentum state. Ever since 4 He has been the paradigm in the search for Bose condensates in other systems. At the Pune meeting scientists have heard exciting new evidence for Bose condensates of laser cooled alkali atoms in magnetic traps, of excitons in Cu 2 O, and possibly pre-formed Cooper pairs of electrons in the high T c perovskite superconductors. There remains the holy-grail of forming a Bose condensate in spin-polarized hydrogen. In the current excitement for new types of Bose condensates, and new phenomena such as atom lasers, it may be useful to recall the older story of the experimental verification of a relation between superfluidity and Bose condensation in 4 He. This topic has been investigated over many years by neutron scattering experiments and quantum many-body theory. The authors goal is to illustrate the difficulties of establishing the existence of a Bose condensate in a strongly interacting system, even though its macroscopic effects are manifest. The author assumes readers have access to a review by Silver and Sokol which emphasizes the neutron scattering theory through 1990 and a review by Snow and Sokol of the deep inelastic neutron scattering (DINS) experiments through 1995

  16. Performance evaluation of an indirect pre-cooling evaporative heat exchanger operating in hot and humid climate

    International Nuclear Information System (INIS)

    Cui, X.; Chua, K.J.; Islam, M.R.; Ng, K.C.

    2015-01-01

    Highlights: • An IEHX is introduced as a pre-cooling unit for humid tropical climate. • A computational model is developed to investigate the performance of IEHX. • The air treatment process with condensation from the product air is studied. • The hybrid system shows an appreciable energy saving potential. - Abstract: A hybrid system, that combines an indirect evaporative heat exchanger (IEHX) and a vapor compression system, is introduced for humid tropical climate application. The chief purpose of the IEHX is to pre-cool the incoming air for vapor compression system. In the IEHX unit, the outdoor humid air in the product channel may potentially condense when heat is exchanged with the room exhaust air. A computational model has been developed to theoretically investigate the performance of an IEHX with condensation from the product air by employing the room exhaust air as the working air. We validated the model by comparing its temperature distribution and predicted heat flux against experimental data acquired from literature sources. The numerical model showed good agreement with the experimental findings with maximum average discrepancy of 9.7%. The validated model was employed to investigate the performance of two types of IEHX in terms of the air treatment process, temperature and humidity distribution, cooling effectiveness, cooling capacity, and energy consumption. Simulation results have indicated that the IEHX unit is able to fulfill 47% of the cooling load for the outdoor humid air while incurring a small amount of fan power. Consequently, the hybrid system is able to realize significant energy savings

  17. Experimental study of high-performance cooling system pipeline diameter and working fluid amount

    Science.gov (United States)

    Nemec, Patrik; Malcho, Milan; Hrabovsky, Peter; Papučík, Štefan

    2016-03-01

    This work deals with heat transfer resulting from the operation of power electronic components. Heat is removed from the mounting plate, which is the evaporator of the loop thermosyphon to the condenser and by natural convection is transferred to ambient. This work includes proposal of cooling device - loop thermosyphon, with its construct and follow optimization of cooling effect. Optimization proceeds by selecting the quantity of working fluid and selection of diameters vapour line and liquid line of loop thermosyphon.

  18. Emergency core cooling system

    International Nuclear Information System (INIS)

    Ando, Masaki.

    1987-01-01

    Purpose: To actuate an automatic pressure down system (ADS) and a low pressure emergency core cooling system (ECCS) upon water level reduction of a nuclear reactor other than loss of coolant accidents (LOCA). Constitution: ADS in a BWR type reactor is disposed for reducing the pressure in a reactor container thereby enabling coolant injection from a low pressure ECCS upon LOCA. That is, ADS has been actuated by AND signal for a reactor water level low signal and a dry well pressure high signal. In the present invention, ADS can be actuated further also by AND signal of the reactor water level low signal, the high pressure ECCS and not-operation signal of reactor isolation cooling system. In such an emergency core cooling system thus constituted, ADS operates in the same manner as usual upon LOCA and, further, ADS is operated also upon loss of feedwater accident in the reactor pressure vessel in the case where there is a necessity for actuating the low pressure ECCS, although other high pressure ECCS and reactor isolation cooling system are not operated. Accordingly, it is possible to improve the reliability upon reactor core accident and mitigate the operator burden. (Horiuchi, T.)

  19. Topflow-experiments on direct condensation and bubble entrainment. Technical report

    International Nuclear Information System (INIS)

    Seidel, Tobias; Lucas, Dirk; Beyer, Matthias

    2016-01-01

    Direct Contact Condensation between steam and water as well as bubble entrainment below the water surface play an important role in different accident scenarios for light water reactors. One example is the emergency core cooling water injection into a two-phase mixture. It has to be considered for example to evaluate potential pressurized thermal shock phenomena. This report documents experiments conducted in flat basin inside the TOPFLOW pressure chamber aiming on the generation of a database useful for CFD model development and validation. It comprises 3 different setups: condensation at a stratified flow of sub-cooled water, condensation at a sub-cooled water jet and a combination of both phenomena with steam bubble entrainment. The documentation includes all details on the experimental set up, on experimental conditions (experimental matrices), on the conduction of the experiments, on measuring techniques used and on data evaluation procedures. In addition, selected results are presented.

  20. Keeping condensers clean

    Energy Technology Data Exchange (ETDEWEB)

    Wicker, K.

    2006-04-15

    The humble condenser is among the biggest contributors to a steam power plant's efficiency. But although a clean condenser can provide great economic benefit, a dirty one can raise plant heat rate, resulting in large losses of generation revenue and/or unnecessarily high fuel bills. Conventional methods for cleaning fouled tubes range form chemicals to scrapers to brushes and hydro-blasters. This article compares the available options and describes how one power station, Omaha Public Power District's 600 MW North Omaha coal-fired power station, cleaned up its act. The makeup and cooling water of all its five units comes from the Missouri River. 6 figs.

  1. Water cooling system for sintering furnaces of nuclear fuel pellets; Sistema de enfriamiento con agua para hornos de sinterizado de pastillas de combustible nuclear

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    This work has as a main objective to develop a continuous cooling water system, which is necessary for the cooling of the sintering furnaces. This system is used to protect them as well as for reducing the water consumption, ejecting the heat generated into this furnaces and scattering it into the atmosphere in a fast and continuous way. The problem was defined and the reference parameters established, making the adequate research. The materials were selected as well as the length of the pipeline which will carry the secondary refrigerant fluid (water). Three possible solutions were tried,and evaluated, and from these, the thermal and economically most efficient option was selected. The layout of the solution was established and the theoretical construction of a cooling system for liquids using dichlorofluoromethane (R-22), as a refrigerant and a air cooled condenser, was accomplished. (Author).

  2. Cooling Performance Analysis of ThePrimary Cooling System ReactorTRIGA-2000Bandung

    Science.gov (United States)

    Irianto, I. D.; Dibyo, S.; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    The conversion of reactor fuel type will affect the heat transfer process resulting from the reactor core to the cooling system. This conversion resulted in changes to the cooling system performance and parameters of operation and design of key components of the reactor coolant system, especially the primary cooling system. The calculation of the operating parameters of the primary cooling system of the reactor TRIGA 2000 Bandung is done using ChemCad Package 6.1.4. The calculation of the operating parameters of the cooling system is based on mass and energy balance in each coolant flow path and unit components. Output calculation is the temperature, pressure and flow rate of the coolant used in the cooling process. The results of a simulation of the performance of the primary cooling system indicate that if the primary cooling system operates with a single pump or coolant mass flow rate of 60 kg/s, it will obtain the reactor inlet and outlet temperature respectively 32.2 °C and 40.2 °C. But if it operates with two pumps with a capacity of 75% or coolant mass flow rate of 90 kg/s, the obtained reactor inlet, and outlet temperature respectively 32.9 °C and 38.2 °C. Both models are qualified as a primary coolant for the primary coolant temperature is still below the permitted limit is 49.0 °C.

  3. Dry and mixed air cooling systems

    International Nuclear Information System (INIS)

    Gutner, Gidali.

    1975-01-01

    The various dry air cooling systems now in use or being developed are classified. The main dimensioning parameters are specified and the main systems already built are given with their characteristics. The available data allow dry air cooling to be situated against the other cooling modes and so specify the aim of the research or currently developed works. Some systems at development stages are briefly described. The interest in mixed cooling (assisted draft) and the principal available systems is analyzed. A program of research is outlined [fr

  4. Simulation of a combined heating, cooling and domestic hot water system based on ground source absorption heat pump

    International Nuclear Information System (INIS)

    Wu, Wei; You, Tian; Wang, Baolong; Shi, Wenxing; Li, Xianting

    2014-01-01

    Highlights: • A combined heating/cooling/DHW system based on GSAHP is proposed in cold regions. • The soil imbalance is effectively reduced and soil temperature can be kept stable. • 20% and 15% of condensation/absorption heat is recovered by GSAHP to produce DHW. • The combined system can improve the primary energy efficiency by 23.6% and 44.4%. - Abstract: The amount of energy used for heating and domestic hot water (DHW) is very high and will keep increasing. The conventional ground source electrical heat pump used in heating-dominated buildings has the problems of thermal imbalance, decrease of soil temperature, and deterioration of heating performance. Ground source absorption heat pump (GSAHP) is advantageous in both imbalance reduction and primary energy efficiency (PEE) improvement; however, the imbalance is still unacceptable in the warmer parts of cold regions. A combined heating/cooling/DHW (HCD) system based on GSAHP is proposed to overcome this problem. The GSAHPs using generator absorber heat exchange (GAX) and single-effect (SE) cycles are simulated to obtain the performance under various working conditions. Different HCD systems in Beijing and Shenyang are simulated comparatively in TRNSYS, based on which the thermal imbalance, soil temperature, heat recovery, and energy efficiency are analyzed. Results show that GSAHP–GAX–HCD is suitable for Beijing and GSAHP–SE–HCD is suitable for Shenyang. The imbalance ratio can be reduced to −14.8% in Beijing and to 6.0% in Shenyang with an annual soil temperature variation of only 0.5 °C and 0.1 °C. Furthermore, about 20% and 15% of the total condensation/absorption heat is recovered to produce DHW, and the PEE can reach 1.516 in Beijing and 1.163 in Shenyang. The combined HCD systems can achieve a PEE improvement of 23.6% and 44.4% compared with the normal heating/cooling systems

  5. Desalination Using the Condensation Irrigation System, A Case Study of the Research Farm of Shahid Chamran University of Ahvaz

    Directory of Open Access Journals (Sweden)

    Bagher Yousefi

    2015-07-01

    Full Text Available Condensation Irrigation (CI is a combination of simultaneous desalination and irrigation/drinking water production. As saline water evaporates in a solar distiller and the hot and humid air is transferred into an underground pipeline, fresh water will condense on the inner pipe surface due to cooling of air by the ground. The water thus condensed infiltrates into the soil through pores in the perforated drainage pipes laid in the ground to transfer the humidified air. In this study, the CI system was developed using common buried pipes to determine the amount of water produced. In this setup, condensed water is collected at the end of the pipe to be used for drinking. Observations and calculations indicated a mean water production capacity of 4 liters every 8 hours along a pipe 25m long. Less water was produced on the first day because some of the water was lost to the wetting of the internal pipe walls. Finally, examination of temperature effects revealed that water production along the pipe reduces as we move farther away from the inlet part of the pipe.

  6. Smart Cooling Controlled System Exploiting Photovoltaic Renewable Energy Systems

    Directory of Open Access Journals (Sweden)

    Ahmad Atieh

    2018-03-01

    Full Text Available A smart cooling system to control the ambient temperature of a premise in Amman, Jordan, is investigated and implemented. The premise holds 650 people and has 14 air conditioners with the cooling capacity ranging from 3 to 5 ton refrigerant (TR each. The control of the cooling system includes implementing different electronics circuits that are used to sense the ambient temperature and humidity, count the number of people in the premise and then turn ON/OFF certain air conditioner(s. The data collected by different electronic circuits are fed wirelessly to a microcontroller, which decides which air conditioner will be turned ON/OFF, its location and its desired set cooling temperature. The cooling system is integrated with an on-grid solar photovoltaic energy system to minimize the operational cost of the overall cooling system.

  7. Mathematical simulation of the process of condensing natural gas

    Science.gov (United States)

    Tastandieva, G. M.

    2015-01-01

    Presents a two-dimensional unsteady model of heat transfer in terms of condensation of natural gas at low temperatures. Performed calculations of the process heat and mass transfer of liquefied natural gas (LNG) storage tanks of cylindrical shape. The influence of model parameters on the nature of heat transfer. Defined temperature regimes eliminate evaporation by cooling liquefied natural gas. The obtained dependence of the mass flow rate of vapor condensation gas temperature. Identified the possibility of regulating the process of "cooling down" liquefied natural gas in terms of its partial evaporation with low cost energy.

  8. Use of a temperature-initiated passive cooling system (TIPACS) for the modular high-temperature gas-cooled reactor cavity cooling system (RCCS)

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Conklin, J.; Reich, W.J.

    1994-04-01

    A new type of passive cooling system has been invented (Forsberg 1993): the Temperature-Initiated Passive Cooling System (TIPACS). The characteristics of the TIPACS potentially match requirements for an improved reactor-cavity-cooling system (RCCS) for the modular high-temperature gas-cooled reactor (MHTGR). This report is an initial evaluation of the TIPACS for the MHTGR with a Rankines (steam) power conversion cycle. Limited evaluations were made of applying the TIPACS to MHTGRs with reactor pressure vessel temperatures up to 450 C. These temperatures may occur in designs of Brayton cycle (gas turbine) and process heat MHTGRs. The report is structured as follows. Section 2 describes the containment cooling issues associated with the MHTGR and the requirements for such a cooling system. Section 3 describes TIPACS in nonmathematical terms. Section 4 describes TIPACS's heat-removal capabilities. Section 5 analyzes the operation of the temperature-control mechanism that determines under what conditions the TIPACS rejects heat to the environment. Section 6 addresses other design and operational issues. Section 7 identifies uncertainties, and Section 8 provides conclusions. The appendixes provide the detailed data and models used in the analysis

  9. Use of a temperature-initiated passive cooling system (TIPACS) for the modular high-temperature gas-cooled reactor cavity cooling system (RCCS)

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Conklin, J.; Reich, W.J.

    1994-04-01

    A new type of passive cooling system has been invented (Forsberg 1993): the Temperature-Initiated Passive Cooling System (TIPACS). The characteristics of the TIPACS potentially match requirements for an improved reactor-cavity-cooling system (RCCS) for the modular high-temperature gas-cooled reactor (MHTGR). This report is an initial evaluation of the TIPACS for the MHTGR with a Rankines (steam) power conversion cycle. Limited evaluations were made of applying the TIPACS to MHTGRs with reactor pressure vessel temperatures up to 450 C. These temperatures may occur in designs of Brayton cycle (gas turbine) and process heat MHTGRs. The report is structured as follows. Section 2 describes the containment cooling issues associated with the MHTGR and the requirements for such a cooling system. Section 3 describes TIPACS in nonmathematical terms. Section 4 describes TIPACS`s heat-removal capabilities. Section 5 analyzes the operation of the temperature-control mechanism that determines under what conditions the TIPACS rejects heat to the environment. Section 6 addresses other design and operational issues. Section 7 identifies uncertainties, and Section 8 provides conclusions. The appendixes provide the detailed data and models used in the analysis.

  10. Improvement in understanding of natural circulation phenomena in water cooled nuclear power plants

    International Nuclear Information System (INIS)

    Choi, Jong-Ho; Cleveland, John; Aksan, Nusret

    2011-01-01

    Highlights: ► Phenomena influencing natural circulation in passive systems. ► Behaviour in large pools of liquid. ► Effect of non-condensable gas on condensation heat transfer. ► Behaviour of containment emergency systems. ► Natural circulation flow and pressure drop in various geometries. - Abstract: The IAEA has organized a coordinated research project (CRP) on “Natural Circulation Phenomena, Modelling, and Reliability of Passive Systems That Utilize Natural Circulation.” Specific objectives of CRP were to (i) establish the status of knowledge: reactor start-up and operation, passive system initiation and operation, flow stability, 3-D effects, and scaling laws, (ii) investigate phenomena influencing reliability of passive natural circulation systems, (iii) review experimental databases for the phenomena, (iv) examine the ability of computer codes to predict natural circulation and related phenomena, and (v) apply methodologies for examining the reliability of passive systems. Sixteen institutes from 13 IAEA Member States have participated in this CRP. Twenty reference advanced water cooled reactor designs including evolutionary and innovative designs were selected to examine the use of natural circulation and passive systems in their designs. Twelve phenomena influencing natural circulation were identified and characterized: (1) behaviour in large pools of liquid, (2) effect of non-condensable gases on condensation heat transfer, (3) condensation on the containment structures, (4) behaviour of containment emergency systems, (5) thermo-fluid dynamics and pressure drops in various geometrical configurations, (6) natural circulation in closed loop, (7) steam liquid interaction, (8) gravity driven cooling and accumulator behaviour, (9) liquid temperature stratification, (10) behaviour of emergency heat exchangers and isolation condensers, (11) stratification and mixing of boron, and (12) core make-up tank behaviour. This paper summarizes the

  11. Thermodynamic Heat Water by The Condenser of Refrigerator

    International Nuclear Information System (INIS)

    Ben Slama, Romdhane

    2009-01-01

    The present innovation relates to the coupling of a refrigerator to a cumulus to heat water and this, thanks to the heat yielded to the level of the condenser of the refrigerating system even. The heating of water is carried out thus without energy over consumption. The quantity of heat transferred by the water-cooled condenser is sufficient to raise the temperature of this latter with 60 degree at the end of five hours. This can satisfy completely or partially the requirements out of hot water of a family which can distribute its requirements out of hot water all along the day and the week. The quantity of heat recovered by water to heat rises with four multiples the power consumption by the compressor. The system thus makes it possible to save energy and to safeguard the environment

  12. Experiments with a laser cooled cloud of atoms

    International Nuclear Information System (INIS)

    Natarajan, Vasant; Banerjee, Ayan; Rapol, Umakant

    1999-01-01

    We discuss two experiments that can be performed using a cloud of laser-cooled and trapped atoms, namely Bose-Einstein condensation (BEC) and search for a permanent Electric Dipole Moment (EDM). BEC can be observed in Rb atoms in a magnetic trap by using forced evaporative cooling to continuously lower the temperature below the condensation limit. The cloud is cooled by preferentially ejecting the hottest atoms from a magnetic trap. The magnetic trap is loaded with laser-cooled atoms from a magneto-optic trap. The EDM experiment can be performed with a laser-cooled cloud of Yb atoms. The atoms are spin polarized and the precession of the spin is measured in the presence of a strong electric field applied perpendicular to the spin direction. The use of laser-cooled atoms should greatly enhance the sensitivity of the experiment. (author)

  13. Emergency cooling system for a gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Cook, R.K.; Burylo, P.S.

    1975-01-01

    The site of the gas-cooled reactor with direct-circuit gas turbine is preferably the sea coast. An emergency cooling system with safety valve and emergency feed-water addition is designed which affects at least a part of the reactor core coolant after leaving the core. The emergency cooling system includes a water emergency cooling circuit with heat exchanger for the core coolant. The safety valve releases water or steam from the emergency coolant circuit when a certain temperature is exceeded; this is, however, replaced by the emergency feed-water. If the gas turbine exhibits a high and low pressure turbine stage, which are flowed through by coolant one behind another, a part of the coolant can be removed in front of each part turbine by two valves and be added to the haet exchanger. (RW/LH) [de

  14. Superhydrophobicity of biological and technical surfaces under moisture condensation: stability in relation to surface structure.

    Science.gov (United States)

    Mockenhaupt, Bernd; Ensikat, Hans-Jürgen; Spaeth, Manuel; Barthlott, Wilhelm

    2008-12-02

    The stability of superhydrophobic properties of eight plants and four technical surfaces in respect to water condensation has been compared. Contact and sliding angles were measured after application of water drops of ambient temperature (20 degrees C) onto cooled surfaces. Water evaporating from the drops condensed, due to the temperature difference between the drops and the surface, on the cooled samples, forming "satellite droplets" in the vicinity of the drops. Surface cooling to 15, 10, and 5 degrees C showed a gradual decrease of superhydrophobicity. The decrease was dependent on the specific surface architecture of the sample. The least decrease was found on hierarchically structured surfaces with a combination of a coarse microstructure and submicrometer-sized structures, similar to that of the Lotus leaf. Control experiments with glycerol droplets, which show no evaporation, and thus no condensation, were carried out to verify that the effects with water were caused by condensation from the drop (secondary condensation). Furthermore, the superhydrophobic properties after condensation on cooled surfaces from a humid environment for 10 min were examined. After this period, the surfaces were covered with spherical water droplets, but most samples retained their superhydrophobicity. Again, the best stability of the water-repellent properties was found on hierarchically structured surfaces similar to that of the Lotus leaf.

  15. Investigations of combined used of cooling ponds with cooling towers or spraying systems

    International Nuclear Information System (INIS)

    Farforovsky, V.B.

    1990-01-01

    Based on a brief analysis of the methods of investigating cooling ponds, spraying systems and cooling towers, a conclusion is made that the direct modelling of the combined use of cooling systems listed cannot be realized. An approach to scale modelling of cooling ponds is proposed enabling all problems posed by the combined use of coolers to be solved. Emphasized is the importance of a proper choice of a scheme of including a cooler in a general water circulation system of thermal and nuclear power plants. A sequence of selecting a cooling tower of the type and spraying system of the size ensuring the specified temperature regime in a water circulation system is exemplified by the water system of the Ghorasal thermal power plant in Bangladesh

  16. Development and Performance of an Advanced Ejector Cooling System for a Sustainable Built Environment

    Directory of Open Access Journals (Sweden)

    Paulo ePereira

    2015-06-01

    Full Text Available Ejector refrigeration is a promising technology for the integration into solar driven cooling systems because of its relative simplicity and low initial cost. The major drawback of such a system is associated to its relatively low coefficient of performance (COP under variable operating conditions. In order to overcome this problem, an advanced ejector was developed that changes its geometrical features depending on the upstream and downstream conditions. This paper provides a short overview of the development process and results of a small cooling capacity (1.5 kW solar driven cooling system using a variable geometry ejector. During the design steps, a number of theoretical works have been carried out, including the selection of the working fluid, the determination of the geometrical requirements and prototype design. Based on the analysis, R600a was selected as working fluid. A prototype was constructed with two independent variable geometrical factors: the area ratio and the nozzle exit position. A test rig was also assembled in order to test the ejector performance under controlled laboratory conditions and to elaborate a control algorithm for the variable geometry. Ejector performance was assessed by calculation of cooling cycle COP, entrainment ratio and critical back pressure. The results show that for a condenser pressure of 3 bar, an 80% increase in the COP was obtained when compared to the performance of a fixed geometry ejector. Experimental COP values varied between 0.4 and 0.8, depending on operating conditions. Currently the cooling cycle is being integrated into a solar driven demonstration site for long term in situ assessment.

  17. ITER cooling systems

    International Nuclear Information System (INIS)

    Natalizio, A.; Hollies, R.E.; Sochaski, R.O.; Stubley, P.H.

    1992-06-01

    The ITER reference system uses low-temperature water for heat removal and high-temperature helium for bake-out. As these systems share common equipment, bake-out cannot be performed until the cooling system is drained and dried, and the reactor cannot be started until the helium has been purged from the cooling system. This study examines the feasibility of using a single high-temperature fluid to perform both heat removal and bake-out. The high temperature required for bake-out would also be in the range for power production. The study examines cost, operational benefits, and impact on reactor safety of two options: a high-pressure water system, and a low-pressure organic system. It was concluded that the cost savings and operational benefits are significant; there are no significant adverse safety impacts from operating either the water system or the organic system; and the capital costs of both systems are comparable

  18. Heat pipe with PCM for electronic cooling

    International Nuclear Information System (INIS)

    Weng, Ying-Che; Cho, Hung-Pin; Chang, Chih-Chung; Chen, Sih-Li

    2011-01-01

    This article experimentally investigates the thermal performances of a heat pipe with phase change material for electronic cooling. The adiabatic section of heat pipe is covered by a storage container with phase change material (PCM), which can store and release thermal energy depending upon the heating powers of evaporator and fan speeds of condenser. Experimental investigations are conducted to obtain the system temperature distributions from the charge, discharge and simultaneous charge/discharge performance tests. The parameters in this study include three kinds of PCMs, different filling PCM volumes, fan speeds, and heating powers in the PCM cooling module. The cooling module with tricosane as PCM can save 46% of the fan power consumption compared with the traditional heat pipe.

  19. Study on a heat recovery system for the thermal power plant utilizing air cooling island

    International Nuclear Information System (INIS)

    Sun, Jian; Fu, Lin; Sun, Fangtian; Zhang, Shigang

    2014-01-01

    A new heat recovery system for CHP (combined heat and power) systems named HRU (heat recovery unit) is presented, which could recover the low grade heat of exhausted steam from the turbine at the thermal power plant directly. Heat recovery of exhausted steam is often accomplished by recovering the heat of cooling water in current systems. Therefore, two processes of heat transfer is needed at least. However, exhausted steam could be condensed in the evaporator of HRU directly, which reduce one process of heat transfer. A special evaporator is designed condense the exhausted steam directly. Simulated results are compared to experiments, which could include the calculation of heat transfer coefficients of different parts of HRU. It is found that about 25Mw of exhausted steam is recovered by this system. HRU could be promising for conventional CHP systems, which could increase the total energy efficiency obviously and enlarge the heating capacity of a built CHP system. - Highlights: • A new heat recovery system for thermal power plant is presented. • A mathematical model including heat transfer coefficients calculation is given. • This heat recovery system is experimented at a thermal power plant. • Performances of this system under different working conditions are simulated

  20. Investigations on the thermal-hydraulics of a natural circulation cooled BWR fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kok, H.V.; Hagen, T.H.J.J. van der; Mudde, R.F. [Delft Univ. of Technology (Netherlands)

    1995-09-01

    A scaled natural circulation loop facility has been built after the Dodewaard Boiling Water Reactor, which is the only operating natural circulation cooled BWR in the world. The loop comprises one fuel assembly, a riser with a downcomer and a condenser with a cooling system. Freon-12 is used as a scaling liquid. This paper reports on the first measurements done with this facility. Quantities like the circulation flow, carry-under and the void-fraction have been measured as a function of power, pressure, liquid level, riser length, condensate temperature and friction factors. The behavior of the circulation flow can be understood by considering the driving force. Special attention has been paid to the carry-under, which has been shown to have a very important impact on the dynamics of a natural circulation cooled BWR.

  1. MARS Simulation of Air Cooling Heat Exchanger Connected with PAFS

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong-Su; Hong, Soon-Joon [FNC Technology Co., Yongin (Korea, Republic of); Bae, Sung-Won; Kwon, Tae-Soon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Current working time of PAFS cannot meet the required 72 hours cooling capability for the long term Station Black-Out (SBO) situation. Therefore, it is required to improve the design of PAFS for the long term cooling. In order to ensure the long term cooling of PAFS, the heat exchanger tube should be submerged in the water of the PAFS pool. It can be achieved by condensing the steam vented from the PAFS pool. The Air Cooling Heat Exchanger (ACHX) is installed above the PAFS pool. It is expected that the ACHX condenses the steam vented from the PAFS pool and delays the depletion time of the water in the PCCT. Therefore, this paper introduces the MARS-KS1.4 modeling of the ACHX and the performance analysis results on the PAFS connected with the ACHX. For the long term cooling with PAFS, KAERI proposed a new passive air-water combined cooling system. In this study, the modeling of the ACHX and the performance analysis on the PAFS connected with the ACHX were carried out with MARS. MARS predicted the behavior of main thermal-hydraulic variables of ACHX reasonably. Then, it was found that the long term cooling of PAFS could be achieved by the installation of the ACHX in which the tube length is 6 m and the number of tubes is 8000.

  2. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy; Harun Bilirgen; John DuPoint

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

  3. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Edward; Bilirgen, Harun; DuPont, John

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

  4. A simplified model of Passive Containment Cooling System in a CFD code

    International Nuclear Information System (INIS)

    Jiang, X.W.; Studer, E.; Kudriakov, S.

    2013-01-01

    Highlights: ► We have built a condensing model using Navier–Stokes equations in CAST3M code. ► We have done a benchmark work on the condensing model using the COPAIN tests data. ► We have built an evaporating model according to Aiello's model in CAST3M code. ► We used Kang and Park's film evaporation tests data to validate the model. ► An integrated model was derived by coupling two individual models with a steel plate. -- Abstract: In this paper, we built up a simplified model of the Passive Containment Cooling System in a CFD code, including a steel plate, a condensing channel and an evaporating channel. In the inner side of the plate, the condensing channel is supposed to be the source of heat transfer into the steel plate. Along the outer side, an evaporating falling film is used to extract the heat from the steel plate. Upward flow of air is also considered along the evaporating film. In the condensing channel, a flow solver based on an asymptotic model of the Navier–Stokes equations at the low Mach number regime and two turbulence models (Buleev's model and Chien's k–ε model) are considered. The condensing channel model was used to model the COPAIN test, the computed heat flux and condensation rate were compared with the experimental data. In the evaporating channel, a simplified model developed by Aiello and Ciofalo (2009) was used, which considered the heat and mass balance between the falling film and the ascending air flow. The model was validated for two cases: a dry wall case and a completely wet wall case. In the former case, the results were compared with 2D predictions obtained by using the CFX-4 CFD code. In the latter case, the results were compared with experimental data obtained by Kang and Park. The comparison showed a satisfactory agreement on heat transfer rates, despite some overprediction depending on the air velocity. At the end, the condensing channel model and the evaporating channel model were coupled by the steel plate

  5. SWR 1000 related containment cooling system tests in PANDA

    International Nuclear Information System (INIS)

    Dreier, J.; Aubert, C.; Huggenberger, M.; Strassberger, H.J.; Yadigaroglu, G.

    2000-01-01

    Since 1991 the Paul Scherrer Institute has participated in the investigations of several of the new passive Advanced Light Water Reactor designs proposed world-wide. The current phase of the project, ALPHA-II, is focused on both the boiling water and the pressurized water reactor passive designs and consists of three projects under the sponsorship of the European Commission. The paper describes the performed PANDA transient system tests related to one of these projects, called 'BWR R and D Cluster for Innovative Passive Safety Systems (IPSS)', and details the PSI contribution to the experimental investigation of passive containment cooling by a Building Condenser system which is part of the advanced Boiling Water Reactor SWR 1000 designed by Siemens. First, a short description of the relevant systems of the SWR 1000 design and its simulation in the PANDA facility are presented. After the description of the experimental programme for the large-scale integral system test investigations in the PANDA facility, the main results of the performed tests are also given. Finally, the main conclusions, based on the to date available experimental results and their analysis, are summarised. (author)

  6. Bose–Einstein condensation temperature of finite systems

    Science.gov (United States)

    Xie, Mi

    2018-05-01

    In studies of the Bose–Einstein condensation of ideal gases in finite systems, the divergence problem usually arises in the equation of state. In this paper, we present a technique based on the heat kernel expansion and zeta function regularization to solve the divergence problem, and obtain the analytical expression of the Bose–Einstein condensation temperature for general finite systems. The result is represented by the heat kernel coefficients, where the asymptotic energy spectrum of the system is used. Besides the general case, for systems with exact spectra, e.g. ideal gases in an infinite slab or in a three-sphere, the sums of the spectra can be obtained exactly and the calculation of corrections to the critical temperatures is more direct. For a system confined in a bounded potential, the form of the heat kernel is different from the usual heat kernel expansion. We show that as long as the asymptotic form of the global heat kernel can be found, our method works. For Bose gases confined in three- and two-dimensional isotropic harmonic potentials, we obtain the higher-order corrections to the usual results of the critical temperatures. Our method can also be applied to the problem of generalized condensation, and we give the correction of the boundary on the second critical temperature in a highly anisotropic slab.

  7. Spontaneous formation of quantized vortices in Bose-Einstein condensates

    Science.gov (United States)

    Weiler, Chad Nathan

    Phase transitions abound in the physical world, from the subatomic length scales of quark condensation to the decoupling forces in the early universe. In the Bose-Einstein condensation phase transition, a gas of trapped bosonic atoms is cooled to a critical temperature. Below this temperature, a macroscopic number of atoms suddenly starts to occupy a single quantum state; these atoms comprise the Bose-Einstein condensate (BEC). The dynamics of the BEC phase transition are the focus of this dissertation and the experiments described here have provided new information on the details of BEC formation. New theoretical developments are proving to be valuable tools for describing BEC phase transition dynamics and interpreting new experimental results. With their amenability to optical manipulation and probing along with the advent of new microscopic theories, BECs provide an important new avenue for gaining insight into the universal dynamics of phase transitions in general. Spontaneous symmetry breaking in the system's order parameter may be one result of cooling through a phase transition. A potential consequence of this is the spontaneous formation of topological defects, which in a BEC appear as vortices. We experimentally observed and characterized the spontaneous formation of vortices during BEC growth. We attribute vortex creation to coherence length limitations during the initial stages of the phase transition. Parallel to these experimental observations, theory collaborators have used the Stochastic Gross-Pitaevski Equation formalism to simulate the growth of a condensate from a thermal cloud. The experimental and theoretical statistical results of the spontaneous formation of vortex cores during the growth of the condensate are in good quantitative agreement with one another, supporting our understanding of the dynamics of the phase transition. We believe that our results are also qualitatively consistent with the Kibble-Zurek mechanism, a universal model for

  8. Reactor core cooling device for nuclear power plant

    International Nuclear Information System (INIS)

    Tsuda, Masahiko.

    1992-01-01

    The present invention concerns a reactor core cooling facility upon rupture of pipelines in a BWR type nuclear power plant. That is, when rupture of pipelines should occur in the reactor container, an releasing safety valve operates instantly and then a depressurization valve operates to depressurize the inside of a reactor pressure vessel. Further, an injection valve of cooling water injection pipelines is opened and cooling water is injected to cool the reactor core from the time when the pressure is lowered to a level capable of injecting water to the pressure vessel by the static water head of a pool water as a water source. Further, steams released from the pressure vessel and steams in the pressure vessel are condensed in a high pressure/low pressure emergency condensation device and the inside of the reactor container is depressurized and cooled. When the reactor is isolated, since the steams in the pressure vessel are condensed in the state that the steam supply valve and the return valve of a steam supply pipelines are opened and a vent valve is closed, the reactor can be maintained safely. (I.S.)

  9. Evaluation of Advanced Models for PAFS Condensation Heat Transfer in SPACE Code

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Byoung-Uhn; Kim, Seok; Park, Yu-Sun; Kang, Kyung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ahn, Tae-Hwan; Yun, Byong-Jo [Pusan National University, Busan (Korea, Republic of)

    2015-10-15

    The PAFS (Passive Auxiliary Feedwater System) is operated by the natural circulation to remove the core decay heat through the PCHX (Passive Condensation Heat Exchanger) which is composed of the nearly horizontal tubes. For validation of the cooling and operational performance of the PAFS, PASCAL (PAFS Condensing Heat Removal Assessment Loop) facility was constructed and the condensation heat transfer and natural convection phenomena in the PAFS was experimentally investigated at KAERI (Korea Atomic Energy Research Institute). From the PASCAL experimental result, it was found that conventional system analysis code underestimated the condensation heat transfer. In this study, advanced condensation heat transfer models which can treat the heat transfer mechanisms with the different flow regimes in the nearly horizontal heat exchanger tube were analyzed. The models were implemented in a thermal hydraulic safety analysis code, SPACE (Safety and Performance Analysis Code for Nuclear Power Plant), and it was evaluated with the PASCAL experimental data. With an aim of enhancing the prediction capability for the condensation phenomenon inside the PCHX tube of the PAFS, advanced models for the condensation heat transfer were implemented into the wall condensation model of the SPACE code, so that the PASCAL experimental result was utilized to validate the condensation models. Calculation results showed that the improved model for the condensation heat transfer coefficient enhanced the prediction capability of the SPACE code. This result confirms that the mechanistic modeling for the film condensation in the steam phase and the convection in the condensate liquid contributed to enhance the prediction capability of the wall condensation model of the SPACE code and reduce conservatism in prediction of condensation heat transfer.

  10. Mathematical simulation of the process of condensing natural gas

    Directory of Open Access Journals (Sweden)

    Tastandieva G.M.

    2015-01-01

    Full Text Available Presents a two-dimensional unsteady model of heat transfer in terms of condensation of natural gas at low temperatures. Performed calculations of the process heat and mass transfer of liquefied natural gas (LNG storage tanks of cylindrical shape. The influence of model parameters on the nature of heat transfer. Defined temperature regimes eliminate evaporation by cooling liquefied natural gas. The obtained dependence of the mass flow rate of vapor condensation gas temperature. Identified the possibility of regulating the process of “cooling down” liquefied natural gas in terms of its partial evaporation with low cost energy.

  11. Modeling and Exergy Analysis of District Cooling

    DEFF Research Database (Denmark)

    Nguyen, Chan

    in the gas cooler, pinch temperature in the evaporator and effectiveness of the IHX. These results are complemented by the exergy analysis, where the exergy destruction ratio of the CO2 system’s component is found. Heat recovery from vapour compression heat pumps has been investigated. The heat is to be used...... consists of a combined heat and power (CHP) plant with a separate refrigeration plant, where its condenser heat is rejected to the environment. The recovery system consists of the same CHP plant but with a heat pump, where the condensation heat is recovered. Five different refrigerants (R717, R600a, R290...... and surrounding temperature has been carried out. It has been demonstrated that the two methods yield significantly different results. Energy costing prices the unit cost of heating and cooling equally independent of the quality of the heat transfer, and it tends to overprice the cost of cooling in an irrational...

  12. Numerical modeling of counter-current condensation in a Black Liquor Gasification plant

    International Nuclear Information System (INIS)

    Risberg, Mikael; Gebart, Rikard

    2013-01-01

    Pressurized Entrained flow High Temperature Black Liquor Gasification is a novel technique to recover the inorganic chemicals and available energy in black liquor originating from kraft pulping. The gasifier has a direct quench that quickly cools the raw syngas when it leaves the hot reactor by spraying the gas with a water solution. As a result, the raw syngas becomes saturated with steam. Typically the gasifier operates at 30 bar which corresponds to a dew point of about 235 °C and a steam concentration in the saturated syngas that is about 3 times higher than the total concentration of the other species in the syngas. After the quench cooler the syngas is passed through a counter-current condenser where the raw syngas is cooled and most of the steam is condensed. The condenser consists of several vertical tubes where reflux condensation occurs inside the tubes due to water cooling of the tubes on the shell-side. A large part of the condensation takes place inside the tubes on the wall and results in a counterflow of water driven by gravity through the counter current condenser. In this study a computational fluid dynamics model is developed for the two-phase fluid flow on the tube-side of the condenser and for the single phase flow of the shell-side. The two-phase flow was treated using an Euler–Euler formulation with closure correlations for heat flux, condensation rate and pressure drop inside the tubes. The single-phase model for the shell side uses closure correlations for the heat flux and pressure drop. Predictions of the model are compared with results from experimental measurements in a condenser used in a 3 MW Black Liquor Gasification development plant. The results are in good agreement with the limited experimental data that has been collected in the experimental gasifier. However, more validation data is necessary before a definite conclusion can be drawn about the predictive capability of the code. -- Highlights: • A multi-phase model for a

  13. Effects of roll waves on annular flow heat transfer at horizontal condenser tube

    International Nuclear Information System (INIS)

    Kondo, Masaya; Nakamura, Hideo; Anoda, Yoshinari; Sakashita, Akihiro

    2002-01-01

    Heat removal characteristic of a horizontal in-tube condensation heat exchanger is under investigation to be used for a passive containment cooling system (PCCS) of a next generation-type BWR. Flow regime observed at the inlet of the condenser tube was annular flow, and the local heat transfer rate was ∼20% larger than the prediction by the Dobson-Chato correlation. Roll waves were found to appear on the liquid film in the annular flow. The measured local condensation heat transfer rate was being closely related to the roll waves frequency. Based on these observations, a model is proposed which predicts the condensation heat transfer coefficient for annular flows around the tube inlet. The proposed model predicts well the influences of pressure, local gas-phase velocity and film thickness. (author)

  14. Optimum Design and Operation of an HVAC Cooling Tower for Energy and Water Conservation

    Directory of Open Access Journals (Sweden)

    Clemente García Cutillas

    2017-03-01

    Full Text Available The energy consumption increase in the last few years has contributed to developing energy efficiency policies in many countries, the main goal of which is decreasing CO 2 emissions. One of the reasons for this increment has been caused by the use of air conditioning systems due to new comfort standards. In that regard, cooling towers and evaporative condensers are presented as efficient devices that operate with low-level water temperature. Moreover, the energy consumption and the cost of the equipment are lower than other systems like air condensers at the same operation conditions. This work models an air conditioning system in TRNSYS software, the main elements if which are a cooling tower, a water-water chiller and a reference building. The cooling tower model is validated using experimental data in a pilot plant. The main objective is to implement an optimizing control strategy in order to reduce both energy and water consumption. Furthermore a comparison between three typical methods of capacity control is carried out. Additionally, different cooling tower configurations are assessed, involving six drift eliminators and two water distribution systems. Results show the influence of optimizing the control strategy and cooling tower configuration, with a maximum energy savings of 10.8% per story and a reduction of 4.8% in water consumption.

  15. A Preliminary Study of Transverse Curvature Effects on Condensation Heat Transfer on Vertical Tube in the Presence of Non-condensable Gas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yeon Gun; Kim, Sin [Jeju National Univ., Jeju (Korea, Republic of); Jerng, Dong Wook [Chung Ang Univ., Seoul (Korea, Republic of)

    2013-10-15

    In this study, the effect of the transverse curvature on the condensation HTC on a vertical tube in the presence of air is preliminarily investigated by using the analysis of boundary layer for free convective heat transfer. The results indicate that the heat transfer performance can be enhanced as the outer diameter of condenser tubes is small. To confirm this curvature effect, an experimental program to obtain the condensation heat transfer data for various values of tube diameter is indispensable. Currently, by a joint research project of Jeju National University and Chung-Ang University, a condensation test facility is being designed and constructed to acquire the condensation HTC data as shown in Fig. 3. From a series of experiment on a single vertical tube, the effects of not only the tube diameter but the inclination, the existence of fins and the local velocity of a bulk mixture by natural circulation will be evaluated precisely. An empirical correlation for the condensation heat transfer of a steam-air mixture will also be developed for design optimization and performance evaluation of the PCCS. The Passive Containment Cooling System (PCCS) provides passive means to remove the decay heat and protect the integrity of the containment during severe accidents. Korea, in which all the NPPs employ the concrete containment, may adopt a PCCS using internal condensers. In the event of the loss-of-coolant accident (LOCA), steam released from the reactor coolant system is mixed with air inside the containment and condensed on the outer surface of inclined condenser tubes. It is noted that, among previous theoretical and empirical models for condensation on outer wall in the presence of non-condensable gas, no one took into account the effect of a tube diameter. Though the condensation heat transfer coefficient may vary with transverse curvature of condenser tubes, such a curvature effect has not been reported so far. In this study, a preliminary analysis is conducted

  16. A Preliminary Study of Transverse Curvature Effects on Condensation Heat Transfer on Vertical Tube in the Presence of Non-condensable Gas

    International Nuclear Information System (INIS)

    Lee, Yeon Gun; Kim, Sin; Jerng, Dong Wook

    2013-01-01

    In this study, the effect of the transverse curvature on the condensation HTC on a vertical tube in the presence of air is preliminarily investigated by using the analysis of boundary layer for free convective heat transfer. The results indicate that the heat transfer performance can be enhanced as the outer diameter of condenser tubes is small. To confirm this curvature effect, an experimental program to obtain the condensation heat transfer data for various values of tube diameter is indispensable. Currently, by a joint research project of Jeju National University and Chung-Ang University, a condensation test facility is being designed and constructed to acquire the condensation HTC data as shown in Fig. 3. From a series of experiment on a single vertical tube, the effects of not only the tube diameter but the inclination, the existence of fins and the local velocity of a bulk mixture by natural circulation will be evaluated precisely. An empirical correlation for the condensation heat transfer of a steam-air mixture will also be developed for design optimization and performance evaluation of the PCCS. The Passive Containment Cooling System (PCCS) provides passive means to remove the decay heat and protect the integrity of the containment during severe accidents. Korea, in which all the NPPs employ the concrete containment, may adopt a PCCS using internal condensers. In the event of the loss-of-coolant accident (LOCA), steam released from the reactor coolant system is mixed with air inside the containment and condensed on the outer surface of inclined condenser tubes. It is noted that, among previous theoretical and empirical models for condensation on outer wall in the presence of non-condensable gas, no one took into account the effect of a tube diameter. Though the condensation heat transfer coefficient may vary with transverse curvature of condenser tubes, such a curvature effect has not been reported so far. In this study, a preliminary analysis is conducted

  17. Triple-effect absorption refrigeration system with double-condenser coupling

    Science.gov (United States)

    DeVault, Robert C.; Biermann, Wendell J.

    1993-01-01

    A triple effect absorption refrigeration system is provided with a double-condenser coupling and a parallel or series circuit for feeding the refrigerant-containing absorbent solution through the high, medium, and low temperature generators utilized in the triple-effect system. The high temperature condenser receiving vaporous refrigerant from the high temperature generator is double coupled to both the medium temperature generator and the low temperature generator to enhance the internal recovery of heat within the system and thereby increase the thermal efficiency thereof.

  18. A calculation and measurement of the flow field in a steam condenser external to the tube nest

    International Nuclear Information System (INIS)

    Stastny, M.; Feistauer, M.

    1989-01-01

    The suggested physical and mathematical model is used to solve the flow of steam normal to the cooling tubes of condenser cross-sections in the region external to the nests. Numerical calculations are carried out by means of a multipurpose system of programmes for the finite element method and a programme for the boundary layer calculation. The results of the calculations are compared with measurements on the condenser of a 500MW steam turbine. The calculations of the flow field in a double pass condenser for the 1000MW saturated steam turbine are described. (author)

  19. Computer optimization of dry and wet/dry cooling tower systems for large fossil and nuclear power plants

    International Nuclear Information System (INIS)

    Choi, M.; Glicksman, L.R.

    1979-02-01

    This study determined the cost of dry cooling compared to the conventional cooling methods. Also, the savings by using wet/dry instead of all-dry cooling were determined. A total optimization was performed for power plants with dry cooling tower systems using metal-finned-tube heat exchangers and surface condensers. The optimization minimizes the power production cost. The program optimizes the design of the heat exchanger and its air and water flow rates. In the base case study, the method of replacing lost capacity assumes the use of gas turbines. As a result of using dry cooling towers in an 800 MWe fossil plant, the incremental costs with the use of high back pressure turbine and conventional turbine over all-wet cooling are 11 and 15%, respectively. For a 1200 MWe nuclear plant, these are 22 and 25%, respectively. Since the method of making up lost capacity depends on the situation of a utility, considerable effort has been placed on testing the effects of using different methods of replacing lost capacity at high ambient temperatures by purchased energy. The results indicate that the optimization is very sensitive to the method of making up lost capacity. It is, therefore, important to do an accurate representation of all possible methods of making up capacity loss when optimizating power plants with dry cooling towers. A solution for the problem of losing generation capability by a power plant due to the use of a dry cooling tower is to supplement the dry tower during the hours of peak ambient temperatures by a wet tower. A separate wet/dry cooling tower system with series tower arrangement was considered in this study, and proved to be an economic choice over all-dry cooling where some water is available but supplies are insufficient for a totally evaporative cooling tower

  20. Analysis study of the condensation heat transfer coefficient in the presence of noncondensable on PCCS vertical condenser tube using MARS-KS

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Dong jae; Jang, Yeong jun; Lee, Yeon-Gun [Jeju National University, Jeju (Korea, Republic of); Kim, Sin [Chung-Ang University, Seoul (Korea, Republic of)

    2015-10-15

    The Passive Containment Cooling System (PCCS) to be introduced in advanced LWRs removes released energy to an external heat sink by a naturally driven flow. Containment through the condensation heat transfer phenomenon in the event of the loss of coolant accident (LOCA) or main steam line break (MSLB). As the released steam pressurizes the containment, the PCCS will activate to transport the decay heat In this study, a numerical analysis of the condensation heat transfer coefficients on the PCCS condenser tube is conducted using the MARS-KS code. The condensation heat transfer coefficients are obtained from JNU condensation tests performed on a 1000 long and 40 mm O.D. tube. The analysis condition covers 2 and 4 bar for the air mass fraction ranging from 0.1 to 0.8. The JNU single vertical condensation experimental results, Uchida's and Dehbi's correlation compared with the MARS-KS code's results at 2 and 4 bar. Experimental results and MARS-KS predicted heat transfer coefficient is different from the thermal resistances and Wall subcooling. An average relative error is 18.8% and 15% at 2 and 4 bar, respectively. Uchida's correlation is considered the noncondensable gas mass fraction only. Therefore, that is lower than MARS-KS results at 4 bar. Dehbi's correlation affected by ratio of the height-to-diameter, so its results are higher condensation heat transfer coefficient than MARS-KS predicted results.

  1. SOLGASMIX-PV, Chemical System Equilibrium of Gaseous and Condensed Phase Mixtures

    International Nuclear Information System (INIS)

    Besmann, T.M.

    1986-01-01

    1 - Description of program or function: SOLGASMIX-PV, which is based on the earlier SOLGAS and SOLGASMIX codes, calculates equilibrium relationships in complex chemical systems. Chemical equilibrium calculations involve finding the system composition, within certain constraints, which contains the minimum free energy. The constraints are the preservation of the masses of each element present and either constant pressure or volume. SOLGASMIX-PV can calculate equilibria in systems containing a gaseous phase, condensed phase solutions, and condensed phases of invariant and variable stoichiometry. Either a constant total gas volume or a constant total pressure can be assumed. Unit activities for condensed phases and ideality for solutions are assumed, although nonideal systems can be handled provided activity coefficient relationships are available. 2 - Restrictions on the complexity of the problem: The program is designed to handle a maximum of 20 elements, 99 substances, and 10 mixtures, where the gas phase is considered a mixture. Each substance is either a gas or condensed phase species, or a member of a condensed phase mixture

  2. Chlorination for biofouling control in power plant cooling water system - a review

    International Nuclear Information System (INIS)

    Satpathy, K.K.; Ruth Nithila, S.D.

    2008-01-01

    Fresh water is becoming a rare commodity day by day and thus power plant authorities are turning into sea to make use of the copious amount of seawater available at an economical rate for condenser cooling. Unfortunately, biofouling; the growth and colonization of marine organisms affect the smooth operation of power plant cooling water systems. This is more so, if the plant is located in tropical climate having clean environment, which enhances the variety and density of organisms. Thus, biofouling needs to be controlled for efficient operation of the power plant. Biocide used for biofouling control is decided based on three major criteria viz: it should be economically, operationally and environmentally acceptable to the power plant authorities. Chlorine among others stands out on the top and meets all the above requirements in spite of a few shortcomings. Therefore it is no wonder that still chlorine rules the roost and chlorination remains the most common method of biofouling control in power plant cooling water system all over the world. Although, it is easier said than done, a good amount of R and D work is essential before a precise chlorination regime is put into pragmatic use. This paper discusses in details the chemistry of chlorination such as chlorine demand, chlorine decay, break point chlorination, speciation of chlorine residual and role of temperature and ammonia on chlorination in biofouling control. Moreover, targeted and pulse chlorination are also discussed briefly. (author)

  3. Free convective condensation in a vertical enclosure

    Energy Technology Data Exchange (ETDEWEB)

    Fox, R.J.; Peterson, P.F. [Univ. of California, Berkeley, CA (United States); Corradini, M.L.; Pernsteiner, A.P. [Univ. of Wisconsin, Madison, WI (United States)

    1995-09-01

    Free convective condensation in a vertical enclosure was studied numerically and the results were compared with experiments. In both the numerical and experimental investigations, mist formation was observed to occur near the cooling wall, with significant droplet concentrations in the bulk. Large recirculation cells near the end of the condensing section were generated as the heavy noncondensing gas collecting near the cooling wall was accelerated downward. Near the top of the enclosure the recirculation cells became weaker and smaller than those below, ultimately disappearing near the top of the condenser. In the experiment the mist density was seen to be highest near the wall and at the bottom of the condensing section, whereas the numerical model predicted a much more uniform distribution. The model used to describe the formation of mist was based on a Modified Critical Saturation Model (MCSM), which allows mist to be generated once the vapor pressure exceeds a critical value. Equilibrium, nonequilibrium, and MCSM calculations were preformed, showing the experimental results to lie somewhere in between the equilibrium and nonequilibrium predictions of the numerical model. A single adjustable constant (indicating the degree to which equilibrium is achieved) is used in the model in order to match the experimental results.

  4. The use of hybrid dry cooling towers/condensors; Einsatz von hybriden Trockenkuehltuermen/Verfluessigern

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, W. [Jaeggi/Guentner AG, Feldmeilen (Switzerland). Niederlassung Ostschweiz

    1998-03-01

    The hybride dry cooling tower/condenser has a closed circuit and an air side heat transfer surface which can be wetted. It is used for recooling of a liquide fluid (Water/Glycole) or for condensation of refrigerant by outdoor air and by evaporation of water from a secondary loop. This cooling tower concept has higher first costs, but considerably lower annual costs compared with similar cooling systems. The economy can be shown by a calculated example. (orig.) [Deutsch] Der hybride Trockenkuehlturm/Verfluessiger hat einen geschlossenen Kreislauf und eine wasserbenetzbare, luftseitige Waermeuebertragungsflaeche. Er dient der Rueckkuehlung eines fluessigen Mediums (Wasser/Glykol) oder der Verfluessigung von Kaeltemitteln mittels Umgebungsluft und durch Verdunstung von Wasser aus einem Sekundaerkreislauf. Dieser Kuehlturm hat hoehere Investitionskosten, aber wesentlich tiefere Jahreskosten als aehnliche Kuehlsysteme. Die Wirtschaftlichkeit wird anhand eines gerechneten Beispiels nachgewiesen. (orig.)

  5. THE DETECTION OF THE NECESSARY CONDITIONS OF EFFECTIVE FUNCTIONING OF THE BALL CLEANING SYSTEM OF THE TUBES OF STEAM TURBINE CONDENSERS. Part 1

    Directory of Open Access Journals (Sweden)

    A. G. Gerasimova

    2017-01-01

    Full Text Available A problem of an increase of the power of turbine by improving heat transfer in condensers of steam turbines is considered in the article as a topical one. The analysis of contamination of the internal surfaces of cooling tubes and of the influence of pollution on the process of heat transfer in turbine condensers has been fulfilled. The existing method of cleaning of condenser tubes with the use of porous elastic balls of sponge rubber that is implemented on a number of large thermal power plants and state region power plants of the Republic of Belarus is examined. In the operation of the ball cleaning system a significant drawback has been revealed, viz. a low efficiency of this method due to the failure to comply with preparation the system of circulating water for operation. Also, a certain imperfection of ball cleaning system technology has been determined. One of the prerequisites for the effective functioning of the ball cleaning system is a certain degree of purity of the pipe system of the condenser, characterized by the coefficient of purity. To determine the effectiveness of ball cleaning system a series of experiments on the launching of porous rubber balls in the pipe system of the main and the embedded bunches of the T-250/300-240 UTMZ turbine has been produced. Immediately before the experiments hydraulic cleaning of the tubes of the condenser by a high-pressure installation were carried out. During the experiments, records of the number of downloaded porous rubber balls, of the number of rubber balls captured in a loading chamber, and of the number of rubber balls that remained in a calibration device were kept. A large proportion of default of the balls caused by the presence of residues of the carbonate sediments, that obstruct the movement of porous rubber balls in the tubes of the condenser, was determined. The presence of carbonate deposits in the tubes of the condenser indicates a lack of effectiveness of antiscale treatment

  6. Improved energy performance of ammonia recycling system using floating condensing temperature control

    International Nuclear Information System (INIS)

    Lu, Wei; Meng, Zhuo; Sun, Yize; Zhong, Qianwen; Zhu, Helei

    2016-01-01

    Highlights: • Thermodynamic models for the compressor and evaporative condenser were developed. • An evaluation index was proposed to determine the optimal set point. • An algorithm was presented to compute the optimal set point. • Strategies for operating ammonia recycling system were proposed. - Abstract: Aiming at reducing the energy-consumption of ammonia recycling system, we presented floating condensing temperature control to maximize the coefficient of performance (COP) of the system. Firstly, thermodynamic models for the compressor and evaporative condenser were developed respectively. Then, an evaluation index and a solution scheme were proposed to determine the optimal set point of condensing temperature and the corresponding compressor speed. It is found that the system COP can be maximized by controlling the compressor speed to adjust the set point based on any given operating conditions. When the wet-bulb temperature is 22 °C, the system COP could be improved by 19.2–27.6% under floating condensing temperature control.

  7. ITER cooling system

    International Nuclear Information System (INIS)

    Kveton, O.K.

    1990-11-01

    The present specification of the ITER cooling system does not permit its operation with water above 150 C. However, the first wall needs to be heated to higher temperatures during conditioning at 250 C and bake-out at 350 C. In order to use the cooling water for these operations the cooling system would have to operate during conditioning at 37 Bar and during bake-out at 164 Bar. This is undesirable from the safety analysis point of view, and alternative heating methods are to be found. This review suggests that superheated steam or gas heating can be used for both baking and conditioning. The blanket design must consider the use of dual heat transfer media, allowing for change from one to another in both directions. Transfer from water to gas or steam is the most intricate and risky part of the entire heating process. Superheated steam conditioning appears unfavorable. The use of inert gas is recommended, although alternative heating fluids such as organic coolant should be investigated

  8. SNS Resonance Control Cooling Systems and Quadrupole Magnet Cooling Systems DIW Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Magda, Karoly [ORNL

    2018-01-01

    This report focuses on control of the water chemistry for the Spallation Neutron Source (SNS) Resonance Control Cooling System (RCCS)/Quadrupole Magnet Cooling System (QMCS) deionized water (DIW) cooling loops. Data collected from spring 2013 through spring 2016 are discussed, and an operations regime is recommended.It was found that the RCCS operates with an average pH of 7.24 for all lines (from 7.0 to 7.5, slightly alkaline), the average low dissolved oxygen is in the area of < 36 ppb, and the main loop average resistivity of is > 14 MΩ-cm. The QMCS was found to be operating in a similar regime, with a slightly alkaline pH of 7.5 , low dissolved oxygen in the area of < 45 ppb, and main loop resistivity of 10 to 15 MΩ-cm. During data reading, operational corrections were done on the polishing loops to improve the water chemistry regime. Therefore some trends changed over time.It is recommended that the cooling loops operate in a regime in which the water has a resistivity that is as high as achievable, a dissolved oxygen concentration that is as low as achievable, and a neutral or slightly alkaline pH.

  9. Artificial neural network analysis of a refrigeration system with an evaporative condenser

    Energy Technology Data Exchange (ETDEWEB)

    Ertunc, H.M. [Department of Mechatronics Engineering, Kocaeli University, 41040 Kocaeli (Turkey); Hosoz, M. [Department of Mechanical Education, Kocaeli University, 41380 Kocaeli (Turkey)

    2006-04-01

    This paper describes an application of artificial neural networks (ANNs) to predict the performance of a refrigeration system with an evaporative condenser. In order to gather data for training and testing the proposed ANN, an experimental refrigeration system with an evaporative condenser was set up. Then, steady-state test runs were conducted varying the evaporator load, air and water flow rates passing through the condenser and both dry and wet bulb temperatures of the air stream entering the condenser. Utilizing some of the experimental data, an ANN model for the system based on standard backpropagation algorithm was developed. The ANN was used for predicting various performance parameters of the system, namely the condenser heat rejection rate, refrigerant mass flow rate, compressor power, electric power input to the compressor motor and the coefficient of performance. The ANN predictions usually agree well with the experimental values with correlation coefficients in the range of 0.933-1.000, mean relative errors in the range of 1.90-4.18% and very low root mean square errors. Results show that refrigeration systems, even complex ones involving concurrent heat and mass transfer such as systems with an evaporative condenser, can alternatively be modelled using ANNs within a high degree of accuracy. [Author].

  10. Cooling methods of station blackout scenario for LWR plants

    International Nuclear Information System (INIS)

    2012-01-01

    The objective of this study is to analyze the cooling method of station blackout scenario for both the BWR and PWR plants by RELAP5 code and to check the validity of the cooling method proposed by the utilities. In the BWR plant cooling scenario, the Reactor Core Isolation Cooling System (RCIC), which is operated with high pressure steam from the reactor, injects cooling water into the reactor to keep the core water level. The steam generated in the core is released into the suppression pool at containment vessel to condense. To restrict the containment vessel pressure rising, the ventilation from the wet-well is operated. The scenario is analyzed by RELAP5 and CONTEMPT-LT code. In the PWR plant scenario, the primary pressure is decreased by the turbine-driven auxiliary feed water system operated with secondary side steam of the steam generators (SGs). And the core cooling is kept by the natural circulation flow at the primary loop. The analytical method of un-uniform flow behavior among the SG U-tubes, which affects the natural circulation flow rate, is developed. (author)

  11. Emergency reactor cooling systems for the experimental VHTR

    International Nuclear Information System (INIS)

    Mitake, Susumu; Suzuki, Katsuo; Miyamoto, Yoshiaki; Tamura, Kazuo; Ezaki, Masahiro.

    1983-03-01

    Performances and design of the panel cooling system which has been proposed to be equipped as an emergency reactor cooling system for the experimental multi purpose very high temperature gas-cooled reactor are explained. Effects of natural circulation flow which would develop in the core and temperature transients of the panel in starting have been precisely investigated. Conditions and procedures for settling accidents with the proposed panel cooling system have been also studied. Based on these studies, it has been shown that the panel cooling system is effective and useful for the emergency reactor cooling of the experimental VHTR. (author)

  12. Performance characterization of isolation condenser of SBWR

    International Nuclear Information System (INIS)

    Khan, H.J.; Rohatgi, U.S.

    1992-01-01

    A systematic study of the performance of the Isolation Condenser (IC) for a conceptual design of SBWR is presented. The objective of the IC is to passively remove heat and control the pressure variation in the Reactor Pressure Vessel (RPV). According to the observed trends, the IC cooling capacity and condensate flow can independently influence the ultimate performance of the IC. The transient pressure profile for the IC reaches different equilibrium values for each of the cases analyzed. The absolute magnitude of these values are a function of the cooling capacity and flow rates. With appropriate control of the liquid flow loss coefficients, the performance of the IC can be well predicted. Due to the lack of useful data, this study is limited to the numerical simulation of the IC

  13. Research on How to Remove Efficiently the Condensate Water of Sampling System

    International Nuclear Information System (INIS)

    Cho, SungHwan; Kim, MinSoo; Choi, HoYoung; In, WonHo

    2015-01-01

    Corrosion was caused in the measurement chamber inside the O 2 and H 2 analyzer, and thus measuring the concentration of O 2 and H 2 was not possible. It was confirmed that the cause of the occurrence of condensate water is due to the temperature difference caused during the process of the internal gas of the disposal and degasifier tank being brought into the analyzer. Thus, a heating system was installed inside and outside of the sampling panel for gas to remove generated condensate water in the analyzer and pipe. For the case where condensate water is not removed by the heating system, drain port is also installed in the sampling panel for gas to collect the condensate water of the sampling system. It was verified that there is a great volume of condensate water existing in the pipe line during the purging process after installing manufactured goods. The condensate water was fully removed by the installed heating cable and drain port. The heating cable was operated constantly at a temperature of 80 to 90 .deg. C, which allows the precise measurement of gas concentration and longer maintenance duration by blocking of the condensate water before being produced. To install instruments for measuring the gas, such as an O 2 and H 2 analyzer etc., consideration regarding whether there condensate water is present due to the temperature difference between the measuring system and analyzer is required

  14. Research on How to Remove Efficiently the Condensate Water of Sampling System

    Energy Technology Data Exchange (ETDEWEB)

    Cho, SungHwan; Kim, MinSoo; Choi, HoYoung; In, WonHo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Corrosion was caused in the measurement chamber inside the O{sub 2} and H{sub 2} analyzer, and thus measuring the concentration of O{sub 2} and H{sub 2} was not possible. It was confirmed that the cause of the occurrence of condensate water is due to the temperature difference caused during the process of the internal gas of the disposal and degasifier tank being brought into the analyzer. Thus, a heating system was installed inside and outside of the sampling panel for gas to remove generated condensate water in the analyzer and pipe. For the case where condensate water is not removed by the heating system, drain port is also installed in the sampling panel for gas to collect the condensate water of the sampling system. It was verified that there is a great volume of condensate water existing in the pipe line during the purging process after installing manufactured goods. The condensate water was fully removed by the installed heating cable and drain port. The heating cable was operated constantly at a temperature of 80 to 90 .deg. C, which allows the precise measurement of gas concentration and longer maintenance duration by blocking of the condensate water before being produced. To install instruments for measuring the gas, such as an O{sub 2} and H{sub 2} analyzer etc., consideration regarding whether there condensate water is present due to the temperature difference between the measuring system and analyzer is required.

  15. Implementation of wall film condensation model to two-fluid model in component thermal hydraulic analysis code CUPID - 15237

    International Nuclear Information System (INIS)

    Lee, J.H.; Park, G.C.; Cho, H.K.

    2015-01-01

    In the containment of a nuclear reactor, the wall condensation occurs when containment cooling system and structures remove the mass and energy release and this phenomenon is of great importance to ensure containment integrity. If the phenomenon occurs in the presence of non-condensable gases, their accumulation near the condensate film leads to significant reduction in heat transfer during the condensation. This study aims at simulating the wall film condensation in the presence of non-condensable gas using CUPID, a computational multi-fluid dynamics code, which is developed by the Korea Atomic Energy Research Institute (KAERI) for the analysis of transient two-phase flows in nuclear reactor components. In order to simulate the wall film condensation in containment, the code requires a proper wall condensation model and liquid film model applicable to the analysis of the large scale system. In the present study, the liquid film model and wall film condensation model were implemented in the two-fluid model of CUPID. For the condensation simulation, a wall function approach with heat and mass transfer analogy was applied in order to save computational time without considerable refinement for the boundary layer. This paper presents the implemented wall film condensation model and then, introduces the simulation result using CUPID with the model for a conceptual condensation problem in a large system. (authors)

  16. Cooling systems for waste heat. Cooling systems, review and selection criteria. Kuehlsysteme fuer Abwaerme. Kuehlsysteme, Ueberblick und Auswahlkriterien

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, W. (Jaeggi, Wallisellen (Switzerland))

    1990-05-01

    In many areas of ventilation, air-conditioning and refrigeration engineering, chemical and process engineering and energy production waste heat occurs. If a reduction in energy losses or heat recovery is not possible waste heat has to be drawn off through cooling systems. For this the following systems can be used: dry cooling systems, dry cooler with spray system, open-cycle wet cooler, hybrid dry cooler, and closed-cycle wet cooler. Particularly hybrid cooling systems can give acceptable solutions when the results with other systems are only unsatisfactory. (BWI).

  17. Effect of non-condensable gas on startup of a loop thermosyphon

    International Nuclear Information System (INIS)

    He, Jiang; Lin, Guiping; Bai, Lizhan; Miao, Jianyin; Zhang, Hongxing; Wang, Lu

    2013-01-01

    Non-condensable gas (NCG) generated inside two-phase heat transfer devices can adversely affect the thermal performance and limit the lifetime of such devices. In this work, experimental investigation of the effect of NCG on the startup of an ammonia-stainless steel loop thermosyphon was conducted. In the experiment, nitrogen was injected into the loop thermosyphon as NCG. The effect of NCG inventory on the startup behavior was investigated by adjusting the injected amount of nitrogen. The experimental results reveal that NCG prolongs the startup time and increases the startup liquid superheat and temperature overshoot; the more NCG exists in the loop thermosyphon, the higher the liquid superheat and temperature overshoot. When NCG is present in the system, boiling usually occurs in the evaporator before startup, but it does not mean the system will start up instantly, which differs from the conditions without NCG. Under all the conditions, increasing the heat load can effectively shorten the startup time but leads to a large temperature overshoot; forced convection cooling of the condenser has almost no effect on shortening the startup time especially for large NCG inventory situations, but it can effectively limit the temperature overshoot. For large NCG inventory situations, the loop thermosyphon can start up at a small heat load (5 W) or even without a heat load when the condenser is cooled by forced convection of ethanol. No failed start-ups occurred during any of the tests. (authors)

  18. COOLING STAGES OF CRYOGENIC SYSTEMS

    OpenAIRE

    Троценко, А. В.

    2011-01-01

    The formalized definition for cooling stage of low temperature system is done. Based on existing information about the known cryogenic unit cycles the possible types of cooling stages are single out. From analyses of these stages their classification by various characteristics is suggested. The results of thermodynamic optimization of final throttle stage of cooling, which are used as working fluids helium, hydrogen and nitrogen, are shown.

  19. A novel energy-saving method for air-cooled chiller plant by parallel connection

    International Nuclear Information System (INIS)

    Zhang Xiaosong; Xu Guoying; Chan, K.T.; Yi Xia

    2006-01-01

    A novel method was put forward for improving the energy efficiency of air-cooled water chiller plant operating on part load conditions. The conventional multiple-chiller plant was proposed to be integrated into one refrigeration cycle, by connecting those separate compressors, condensers and evaporators in parallel, respectively. The integrated multiple-chiller plant uses the electronic expansion valve to control refrigerant flow, achieving variable condensing temperature control. A prototype composed of four reciprocating compressors (including one variable-speed compressor), with total nominal cooling capacity of 120 kW was simulated and experimented. Both the simulative and experimental results indicated that applying this novel energy-saving method, the air-cooled chiller plant could get a significant performance improvement on various part load ratio (PLR) conditions, due to the apparent decrease of condensing temperature and some increase of evaporating temperature. Under the same outdoor temperature of 35 o C, when the PLR decreased from 100% to 50%, the COP increased by about 16.2% in simulation and 9.5% in experiment. Also, the practical refrigeration output ratio of the system was 55% on the condition of 50% PLR

  20. Operational experiences with condensate purifiers at the Paks Nuclear Power Plant, Hungary

    International Nuclear Information System (INIS)

    Doma, Arpad; Patek, Gabor

    1990-01-01

    Increasingly stricter criteria are applied to the secondary cooling circuits of nuclear power stations, due to technology development of feedwater supply systems. Demands for the minimization of ionic impurities caused by leaks and by the corrosion and erosion products from the unstable metal-water thermodynamic system are growing continuously. Therefore, a full-flow condensate purification system has been installed at the PNPP to meet increased water requirements, and its operation is described. (R.P.) 19 figs

  1. Confirmatory tests of full-scale condensers for SBWR

    International Nuclear Information System (INIS)

    Masoni, P.; Botti, S.; Fitzsimmons, G.W.

    1993-01-01

    A full-scale isolation condenser and a full-scale passive containment cooling condenser for the Simplified Boiling Water Reactor (SBWR) will be tested to confirm the thermal-hydraulic and structural design characteristics of these components. The condensers provide vital roles in removing heat from the reactor vessel and the containment during certain design basis events. This paper describes the condensers and the test facilities which are under construction and summarizes the test objectives, the planned instrumentation, and the conditions to be tested. The results of some pre-test performance predictions, calculated with the TRACG code are presented. The results of the testing program are expected to demonstrate that the condenser designs will provide the required heat removal capacity and will survive the design basis temperature/pressure cycles without structural damage

  2. Thermodynamic simulation of condensation heat recovery characteristics of a single stage centrifugal chiller in a hotel

    International Nuclear Information System (INIS)

    Gong, Guangcai; Chen, Feihu; Su, Huan; Zhou, Jianyong

    2012-01-01

    Highlights: ► Thermodynamic model of a two-condenser condensation system has been carried out. ► Dynamic simulation method has been presented. ► COP and g of the refrigerating system is better than the single condensation system. ► The optimal parameters for the two-condenser condensation system have been studied. -- Abstract: A thermodynamic simulation study has been carried out for a single stage centrifugal chiller in this paper. The cooling capacity of the chiller unit is about 1750 kW. The chiller unit has been set and tested, and the work refrigerant is R22. A heat exchanger has been set between outlet of the compressor and the condenser for sanitary hot water supplying. Then the chiller unit is a kind of combined system that can provide sanitary hot water supplying and air conditioning simultaneously. A thermodynamic simulation model of the combined system has been established with the system simulation toolbox Simulink. Performance of the components and the combined system of the chiller unit has been studied over a wide range of operating conditions. The potential energy and fuel cost saving associated with the use of the proposed combined system for a typical hotel in south China has been estimated. It is showed that the combined system of the chiller unit is very useful in hotel buildings. And the thermodynamic simulation model of the combined system is significance for the optimization of parameters of the chiller unit such as condensation and evaporation temperature, mass flow of the sanitary hot water and size of hot water storage tank.

  3. TPX heating and cooling system

    International Nuclear Information System (INIS)

    Kungl, D.J.; Knutson, D.S.; Costello, J.; Stoenescu, S.; Yemin, L.

    1995-01-01

    TPX, while having primarily super-conducting coils that do not require water cooling, still has very significant water cooling requirements for the plasma heating systems, vacuum vessel, plasma facing components, diagnostics, and ancillary equipment. This is accentuated by the 1000-second pulse requirement. Two major design changes, which have significantly affected the TPX Heating and Cooling System, have been made since the conceptual design review in March of 1993. This paper will discuss these changes and review the current status of the conceptual design. The first change involves replacing the vacuum vessel neutron shielding configuration of lead/glass composite tile by a much simpler and more reliable borated water shield. The second change reduces the operating temperature of the vacuum vessel from 150 C to ≥50 C. With this temperature reduction, all in-vessel components and the vessel will be supplied by coolant at a common ≥50 C inlet temperature. In all, six different heating and cooling supply requirements (temperature, pressure, water quality) for the various TPX components must be met. This paper will detail these requirements and provide an overview of the Heating and Cooling System design while focusing on the ramifications of the TPX changes described above

  4. Hot gas path component cooling system

    Science.gov (United States)

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  5. Decoupling dehumidification and cooling for energy saving and desirable space air conditions in hot and humid Hong Kong

    International Nuclear Information System (INIS)

    Lee, W.L.; Chen Hua; Leung, Y.C.; Zhang, Y.

    2012-01-01

    Highlights: ► The combined use of dedicated ventilation and dry cooling (DCDV) system was investigated. ► Investigations were based actual equipment performance data and realistic building and system characteristics. ► DCDV system could save 54% of the annual energy use for air-conditioning. ► DCDV system could better achieve the desired space air conditions. ► DCDV system could decouple dehumidification and cooling. - Abstract: The combined use of dedicated outdoor air ventilation (DV) and dry cooling (DC) air-conditioning system to decouple sensible and latent cooling for desirable space air conditions, better indoor air quality, and energy efficiency is proposed for hot and humid climates like Hong Kong. In this study, the performance and energy saving potential of DCDV system in comparison to conventional systems (constant air volume (CAV) system with and without reheat) for air conditioning of a typical office building in Hong Kong are evaluated. Through hour-by-hour simulations, using actual equipment performance data and realistic building and system characteristics, the cooling load profile, resultant indoor air conditions, condensation at the DC coil, and energy consumptions are calculated and analyzed. The results indicate that with the use of DCDV system, the desirable indoor conditions could be achieved and the annual energy use could be reduced by 54% over CAV system with reheat. The condensate-free characteristic at the DC coil to reduce risk of catching disease could also be realized.

  6. Research on heat and mass transfer model for passive containment cooling system

    International Nuclear Information System (INIS)

    Jiang Xiaowei; Yu Hongxing; Sun Yufa; Huang Daishun

    2013-01-01

    Different with the traditional dry style containment design without external cooling, the PCCS design increased the temperature difference between the wall and the containment atmosphere significantly, and also the absolute temperature of the containment surfaces will be lower, affecting properties relevant in the condensation process. A research on the heat and mass transfer model has been done in this paper, especially the improvement on the condensation and evaporation model in the presence of noncondensable gases. Firstly, the Peterson's diffusion layer model was proved to equivalent to the stagnant film model adopted by CONTAIN code using the Clausius-Clapeyron equation, then a factor which can be used to stagnant film model was derived from the comparison between the Y.Liao's generalized diffusion layer model and the Peterson's diffusion layer model. Finally, the model in CONTAIN code used to compute the condensation and evaporation mass flux was modified using the factor, and the Wisconsin condensation tests and Westinghouse film evaporation on heated plate tests were simulated which had proved the improved model can predict more closer value of the heat and mass transfer coefficient to experimental value than original model. (authors)

  7. Controlled cooling of an electronic system for reduced energy consumption

    Science.gov (United States)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2016-08-09

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.

  8. Controlled cooling of an electronic system for reduced energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2018-01-30

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.

  9. System performance and economic analysis of solar-assisted cooling/heating system

    KAUST Repository

    Huang, B.J.; Wu, J.H.; Yen, R.H.; Wang, J.H.; Hsu, H.Y.; Hsia, C.J.; Yen, C.W.; Chang, J.M.

    2011-01-01

    The long-term system simulation and economic analysis of solar-assisted cooling/heating system (SACH-2) was carried out in order to find an economical design. The solar heat driven ejector cooling system (ECS) is used to provide part of the cooling

  10. Cooling water systems design using process integration

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-09-01

    Full Text Available Cooling water systems are generally designed with a set of heat exchangers arranged in parallel. This arrangement results in higher cooling water flowrate and low cooling water return temperature thus reducing cooling tower efficiency. Previous...

  11. Modelling of Condensation in Vertical Tubes for Passive Safety System

    International Nuclear Information System (INIS)

    Papini, D.; Ricotti, M.; Santini, L.; Grgic, D.

    2008-01-01

    Condensation in vertical tubes plays an important role in the performance of heat exchangers in passive safety systems, widely adopted in next generation reactors. Vertical pipe condensers are implemented in the GE-SBWR1000 Isolation Condenser as well as in the Emergency Heat Removal System (EHRS) of the IRIS reactor. The transient and safety analysis is usually carried out by means of best-estimate, thermalhydraulic codes, as RELAP. Suitable heat transfer correlations are required to duly model the two-phase processes. As far as the condensation process is concerned, RELAP5/MOD3.3 adopts the Nusselt correlation to calculate the heat transfer coefficient in laminar conditions and the Shah correlation for turbulent conditions; the maximum of the predictions from laminar and turbulent regimes is used to calculate the condensation heat transfer coefficient. Shah correlation is generally considered as the best empirical correlation for turbulent annular film condensation, but suitable in proper ranges of the various parameters. Nevertheless, recent investigations have pointed out that its validity is highly questionable for high pressure and large diameter tube applications with water, as should be for the utilization for vertical tube condensers in passive safety systems. Thus, a best-estimate model, based on the theory of film condensation on a plain wall, is proposed. Condensate velocity, expressed in terms of Reynolds number, governs the development of three different regime zones: laminar, laminar wavy and turbulent. The best correlation for each regime (Nusselt's for laminar, Kutateladze's for laminar wavy and Chen's for turbulent) is considered and then implemented in RELAP code. Comparison between the Nusselt-Shah and the proposed model shows substantial differences in heat transfer coefficient prediction. Especially, a trend of increasing value of the heat transfer coefficient with tube abscissa (and quality decreasing) is predicted, when turbulence

  12. Study on condensation of biomass pyrolysis gas by spray bio-oil droplets

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Kun; Cheng, Wen-Long [University of Science and Technology of China (China)], email: wlcheng@ustc.edu.cn; Chen, Jing [Anhui Electric Power Design Institute (China); Shi, Wen-Jing [Anhui Heli Co., Ltd (China)

    2011-07-01

    This is a study of bio-oil generated by fast pyrolysis; a biomass feedstock is heated to pyrolyze at a rapid rate, the gas pyrolyzed is then condensed rapidly. The interesting result is a potential alternative fuel oil. An analysis was made of the effects of the initial pyrolysis gas temperatures, the initial bio-oil droplets temperatures and diameters, and the flow ratio of the gas and the liquid droplets on the heat and mass transfer between the gas and the liquid droplets. A few criterion equations were achieved with respect to the spray condenser. This paper established the gas-liquid phase equilibrium of an aqueous multi-composition system and the spray condensation model coupling heat and mass transfer. Model calculation and analysis showed that: spray condensation can effectively cool the high-temperature pyrolysis gas quickly; with gas liquid flowing, mass transfer rate reduces; and the relationship of gas and liquid flow ratio can achieve good accuracy.

  13. Energetic analysis of a novel vehicle power and cooling/heating cogeneration energy system using cascade cycles

    International Nuclear Information System (INIS)

    Yue, Chen; Han, Dong; Pu, Wenhao; He, Weifeng

    2015-01-01

    This study proposes and investigates a novel VCES (Vehicle power and cooling/heating Cogeneration Energy System), including a topping vehicle engine subsystem, and a bottoming waste-heat recovery subsystem which uses the zeotropic working fluid. The various grade exhaust and coolant waste-heat of the topping subsystem are cascade recovered by the bottoming subsystem, and slide-temperature thermal match in waste heat recovery heat exchangers and the condenser is considered also, obtaining power output and cooling/heating capacity. Based on the experimental data from an actual vehicle's energy demands and its waste-heat characteristics, the proposed VCES (vehicle cogeneration energy system) model is built and verified. Using ammonia-water as working fluid of the bottoming subsystem, integrated thermodynamic performances of the VCES are discussed through introducing three variables: an ambient temperature, the vehicle's velocity and the number of seated occupants. The influence of above three variables on the proposed VCES′ overall thermodynamic performance is analyzed by comparing it to a conventional VCES, and suitable operation conditions are recommended under cooling and heating conditions. - Highlights: • A novel vehicle cogeneration energy system is proposed. • Slide-temperature thermal match at two levels are considered. • Integration of the topping vehicle engine and bottoming waste heat recovery cycle is designed. • The cogeneration system model is built and verified based on experimental data. • Energy-saving potential of the proposed system is investigated

  14. Emergency condensator for BWR type reactor

    International Nuclear Information System (INIS)

    Ubakai, Yoichi; Narumi, Yuichi; Sakata, Yuji.

    1992-01-01

    An emergency condensator is constituted with heat transfer pipes, a steam chamber, an upper pipe plate, a lower pipe plate and a condensate chamber. The upper pipe plate is secured by supports, and a steam pipe is connected to the upper pipe plate. A condensate pipeline and a incondensible gas vent pipe are disposed to the condensate chamber. Taking thermal expansion of the steam pipes and thermal expansion of the heat transfer pipes into consideration, the heat transfer pipe is made as an L-shaped pipe having a vertical portion and a horizontal portion so as to absorb each of the thermal expansion smoothly. The L-shaped heat transfer pipes are constituted as a bundle of pipes having the end portions thereof secured to the upper pipe plate and the lower pipe plate. The emergency condensator is disposed in a emergency condensator pool chamber. Cooling water in contact with the outer side of the L-shaped heat transfer pipes is the pool water in the pool chamber, and the condensator chamber is disposed in concrete walls of the pool chamber. With such a constitution, stress due to thermal expansion of the heat transfer pipes is mitigated, and heat transfer performance, earth quake resistance and maintenancability are improved. (I.N.)

  15. Cooling system for the IFMIF-EVEDA radiofrequency system

    International Nuclear Information System (INIS)

    Perez Pichel, G. D.

    2012-01-01

    The IFMIF-EVEDA project consists on an accelerator prototype that will be installed at Rokkasho (Japan). Through CIEMAT, that is responsible of the development of many systems and components. Empresarios Agrupados get the responsibility of the detailed design of the cooling system for the radiofrequency system (RF system) that must feed the accelerator. the RF water cooling systems is the water primary circuit that provides the required water flow (with a certain temperature, pressure and water quality) and also dissipates the necessary thermal power of all the radiofrequency system equipment. (Author) 4 refs.

  16. Improvement of reliability of heater and condenser

    International Nuclear Information System (INIS)

    Yamagishi, Hiroki

    1988-01-01

    Recently, the diversification of the operation modes of power plants has advanced as well as daily start and stop and weekly start and stop operations, as the result, the needs for the reliability improvement of various heat exchangers around steam turbines heighten. In newly constructed plants, the design to meet this demand is carried out, but also in existing platns, the application of the latest technology is investigated. As for the reliability of condensers, aluminum brass cooling tubes have been used by doing the optimal maintenance and taking the measures against deposit attack. In the case of requiring high reliability, the examples of adopting titanium cooling tubes increased. The technology of titanium tube condensers, completely assembled condensers, the replacement of existing brass tubes with titanium tubes and so on are discussed. In the case of feed heaters, the deterioration phenomena due to the lapse of long years, such as the attack of steel tube inlet, the drain attack on the external surfaces of steel tubes, the ammonia attack of aluminum brass tubes and the adhesion of scale to heaters, are explained, and the countermeasures are shown. (Kako, I.)

  17. GOTHIC Simulation of Passive Containment Cooling System

    International Nuclear Information System (INIS)

    Ha, Huiun; Kim, Hangon

    2013-01-01

    The performance of this system depends on the condensation of steam moving downward inside externally cooled vertical tubes. AES-2006: During a DBA, heat is removed by internally cooled vertical tubes, which are located in containment. We are currently developing the conceptual design of Innovative PWR, which is will be equipped with various passive safety features, including PCCS. We have plan to use internal heat exchanger (HX) type PCCS with concrete containment. In this case, the elevation of HXs is important to ensure the heat removal during accidents. In general, steam is lighter than air mixture in containment. So, steam may be collected at the upper side of containment. It means that higher elevation of HXs, larger heat removal efficiency of those. So, the aim of the present paper is to give preliminary study on variation of heat removal performance according to elevation of HXs. With reference to the design specification of the current reactors including APR+, we had determined conceptual design of PCCS. Using it, we developed a GOTHIC model of the APR1400 containment was adopted PCCS. This calculation model is described herein and representative results of calculation are presented. APR 1400 GOTHIC model was developed for PCCS performance calculation and sensitivity test according to installation elevation of PCCXs. Calculation results confirm that PCCS is working properly. It is found that the difference due to the installation elevation of PCCXs is insignificant at this preliminary analysis, however, further studies should be performed to confirm final performance of PCCS according to the installation elevation. These insights are important for developing the PCCS of Innovative PWR

  18. GOTHIC Simulation of Passive Containment Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Huiun; Kim, Hangon [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2013-05-15

    The performance of this system depends on the condensation of steam moving downward inside externally cooled vertical tubes. AES-2006: During a DBA, heat is removed by internally cooled vertical tubes, which are located in containment. We are currently developing the conceptual design of Innovative PWR, which is will be equipped with various passive safety features, including PCCS. We have plan to use internal heat exchanger (HX) type PCCS with concrete containment. In this case, the elevation of HXs is important to ensure the heat removal during accidents. In general, steam is lighter than air mixture in containment. So, steam may be collected at the upper side of containment. It means that higher elevation of HXs, larger heat removal efficiency of those. So, the aim of the present paper is to give preliminary study on variation of heat removal performance according to elevation of HXs. With reference to the design specification of the current reactors including APR+, we had determined conceptual design of PCCS. Using it, we developed a GOTHIC model of the APR1400 containment was adopted PCCS. This calculation model is described herein and representative results of calculation are presented. APR 1400 GOTHIC model was developed for PCCS performance calculation and sensitivity test according to installation elevation of PCCXs. Calculation results confirm that PCCS is working properly. It is found that the difference due to the installation elevation of PCCXs is insignificant at this preliminary analysis, however, further studies should be performed to confirm final performance of PCCS according to the installation elevation. These insights are important for developing the PCCS of Innovative PWR.

  19. Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities

    Energy Technology Data Exchange (ETDEWEB)

    C. McGowin; M. DiFilippo; L. Weintraub

    2006-06-30

    Tree ring studies indicate that, for the greater part of the last three decades, New Mexico has been relatively 'wet' compared to the long-term historical norm. However, during the last several years, New Mexico has experienced a severe drought. Some researchers are predicting a return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters to supplement current fresh water supplies for power plant operation and cooling and other uses. The U.S. Department of Energy's National Energy Technology Laboratory sponsored three related assessments of water supplies in the San Juan Basin area of the four-corner intersection of Utah, Colorado, Arizona, and New Mexico. These were (1) an assessment of using water produced with oil and gas as a supplemental supply for the San Juan Generating Station (SJGS); (2) a field evaluation of the wet-surface air cooling (WSAC) system at SJGS; and (3) the development of a ZeroNet systems analysis module and an application of the Watershed Risk Management Framework (WARMF) to evaluate a range of water shortage management plans. The study of the possible use of produced water at SJGS showed that produce water must be treated to justify its use in any reasonable quantity at SJGS. The study identified produced water volume and quality, the infrastructure needed to deliver it to SJGS, treatment requirements, and delivery and treatment economics. A number of produced water treatment alternatives that use off-the-shelf technology were evaluated along with the equipment needed for water treatment at SJGS. Wet surface air-cooling (WSAC) technology was tested at the San Juan Generating Station (SJGS) to determine its capacity to cool power plant circulating water using degraded water. WSAC is a commercial cooling technology and has been used for many years to cool and/or condense process fluids. The purpose of the pilot test was to

  20. Effect of condensation temperature glide on the performance of organic Rankine cycles with zeotropic mixture working fluids

    International Nuclear Information System (INIS)

    Liu, Qiang; Duan, Yuanyuan; Yang, Zhen

    2014-01-01

    Highlights: • A condensation pressure determination method for ORC with zeotropic mixture is given. • The effects of condensation temperature glide on the ORC performance are analyzed. • Mixture mole fractions for the maximum power output of a geothermal ORC are identified. • The biomass ORC performance with part of the latent heat transferred in the IHE is analyzed. - Abstract: The organic Rankine cycle (ORC) has been widely used to convert low-grade ( 2 M) selected as working fluids for the cogenerative ORC driven by the biomass energy. Two optimal working fluid mole fractions maximize the cycle efficiency, exergy efficiency and net power output for cooling water temperature increases less than the maximum condensation temperature glide, while the highest net power output appears at the higher mole fraction of the more volatile component for the geothermal ORC when the condensation temperature glide of the working fluid mixture matches the cooling water temperature increase. Higher condensation temperature glides result in large thermal loss to the heat sink and exergy destruction in the condenser. There is only one optimal working fluid mole fraction that maximizes the thermal efficiency, exergy efficiency and net power output when the cooling water temperature increase is greater than the condensation temperature glide

  1. Heat Transfer Enhancement of the Air-Cooling Tower with Rotating Wind Deflectors under Crosswind Conditions

    OpenAIRE

    Xueping Du; Dongtai Han; Qiangmin Zhu

    2018-01-01

    To investigate the effect of wind deflectors on air flow and heat transfer performance of an air-cooling tower under crosswind conditions, an experimental system based on a surface condenser aluminum exchanger-type indirect air-cooling tower is established at a 1:100 proportional reduction. A 3-D computational fluid dynamics simulation model is built to study the air flow and temperature fields. The air flow rate into the cooling tower and the heat transfer rate of the radiators are used to e...

  2. Cooling system for auxiliary systems of a nuclear power plant

    International Nuclear Information System (INIS)

    Maerker, W.; Mueller, K.; Roller, W.

    1981-01-01

    From the reactor auxiliary and ancillary systems of a nuclear facility heat has to be removed without the hazard arising that radioactive liquids or gases may escape from the safe area of the nuclear facility. A cooling system is described allowing at every moment to make available cooling fluid at a temperature sufficiently low for heat exchangers to be able to remove the heat from such auxiliary systems without needing fresh water supply or water reservoirs. For this purpose a dry cooling tower is connected in series with a heat exchanger that is cooled on the secondary side by means of a refrigerating machine. The cooling pipes are filled with a nonfreezable fluid. By means of a bypass a minimum temperature is guaranteed at cold weather. (orig.) [de

  3. Experimental determination of the energy efficiency of an air-cooled chiller under part load conditions

    International Nuclear Information System (INIS)

    Yu, F.W.; Chan, K.T.

    2005-01-01

    In cities located in a subtropical climate, air-cooled chillers are commonly used to provide cooling to the indoor environment. This accounts for the increasing electricity demand of buildings over the decades. This paper investigates how the condensing temperature serves to accurately determine the energy efficiency, or coefficient of performance (COP), of air-cooled chillers under part load conditions. An experiment on an air-cooled reciprocating chiller showed that for any given operating condition, the COP of the chiller varies, depending on how the condensing temperature is controlled. A sensitivity analysis is implemented to investigate to what extent COP is responding to changes in operating variables and confirms that the condensing temperature is an adequate variable to gauge COP under various operating conditions. The specifications of the upper limit for the condensing temperature in order to improve the energy efficiency of air-cooled chillers are discussed. The results of this work will give designers and researchers a good idea about how to model chiller energy performance curves in the thermal and energy computation exercises

  4. High Stability Performance of Quinary Indium Gallium Zinc Aluminum Oxide Films and Thin-Film Transistors Deposited Using Vapor Cooling Condensation Method

    Science.gov (United States)

    Lin, Yung-Hao; Lee, Ching-Ting

    2017-08-01

    High-quality indium gallium zinc aluminum oxide (IGZAO) thin films with various Al contents have been deposited using the vapor cooling condensation method. The electron mobility of the IGZAO films was improved by 89.4% on adding Al cation to IGZO film. The change in the electron concentration and mobility of the IGZAO films was 7.3% and 7.0%, respectively, when the temperature was changed from 300 K to 225 K. These experimental results confirm the high performance and stability of the IGZAO films. The performance stability mechanisms of IGZAO thin-film transistors (TFTs) were investigated in comparison with IGZO TFTs.

  5. Analysis of a solid desiccant cooling system with indirect evaporative cooling

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo

    investigates the performance of a solid desiccant cooling system implementing in-direct evaporative cooling processes. The aim is to quantify the system thermal and electrical performance for varying component dimensions and operating conditions, and to identify its range of applicability. This information...... evaporative cooler. Detailed steady state numerical models are developed and implemented in MATLAB. The models need to be accurate and require low computational effort, for analysing the internal heat and mass transfer processes, as well as carrying out repetitive design and optimization simulations......-to-air heat exchanger for enhancing cooling capacity and thermal performance. The system perfor-mance is investigated considering regeneration temperatures between 50 ºC and 90 ºC, which enable low temperature heat sources, such as solar energy or waste heat, to be used. The effects of several geometrical...

  6. Optimisation of condenser design in waste immobilisation plants (WIP`s)

    Energy Technology Data Exchange (ETDEWEB)

    Rajani, G; Ozarde, P D; Gandhi, P M [Waste Management Projects Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    The situation under study is vertical heat exchanger with steam as the condensing vapour and NO{sub x} gases as the non condensible gas. The presence of even a small quantity of non-condensible gas in the condensible vapour has a profound influence on the resistance to heat transfer in the region of liquid-vapour heat transfer. Heat transfer coefficients go on reducing progressively, making condensers prohibitively bulky and hence optimisation of condensers is necessary for carrying out design calculations. The condenser has been divided into segments and for each segment, momentum and energy equations have been established and solved. Finally the average value for overall mass transfer coefficients has been calculated. Parametric studies giving the influence of sub cooling gases, water temperature, exit temperature etc. have been studied. (author). 5 refs., 5 figs., 2 tabs.

  7. The stochastic-cooling system for COSY-Juelich

    International Nuclear Information System (INIS)

    Brittner, P.; Danzglock, R.; Hacker, H.U.; Maier, R.; Pfister, U.; Prasuhn, D.; Singer, H.; Spiess, W.; Stockhorst, H.

    1991-01-01

    The cooling in the Cooler Synchrotron COSY will work in the ranges: Band 1: 1 to 1.8 GHz, Band 2: 1.8 to 3 GHz. The system allows cooling in the energy range of 0.8 to 2.5 GeV. The stochastic-cooling system is under development. Cooling characteristics have been calculated. The tanks are similar to those of the CERN-AC. But the COSY parameters have required changes of the tank design. Active RF components have been developed for COSY. Measured results are presented

  8. Examination of transient characteristics of two-phase natural circulation within a Freon-113 boiling/condensation loop

    International Nuclear Information System (INIS)

    Tanimoto, K.; Ishii, M.

    1998-01-01

    Transient characteristics of two-phase natural circulation within a Freon-113 loop with a large condenser have been examined mainly focused on the flashing phenomenon. General behavior was described and parametric studies were performed. The items observed were the period and duration of flashing, peak flow rate, amount of flow carryover per flashing, lowest-peak liquid level within the condenser, and the peak void distribution in the riser section. The parameters considered were the heater power input, valve friction at the heater inlet (simulating the loopwise friction), condenser cooling, degree of subcooling at the heater inlet, and the heat loss to the surroundings. As a whole, the heater power input, valve friction, and the rate of condenser cooling played important roles in flashing while the other effects being marginal. In general, the flow appeared to be more unstable with the larger condensing surface which causes the condensation-induced flashing. (orig.)

  9. Maintaining steam/condensate lines

    International Nuclear Information System (INIS)

    Russum, S.A.

    1992-01-01

    Steam and condensate systems must be maintained with the same diligence as the boiler itself. Unfortunately, they often are not. The water treatment program, critical to keeping the boiler at peak efficiency and optimizing operating life, should not stop with the boiler. The program must encompass the steam and condensate system as well. A properly maintained condensate system maximizes condensate recovery, which is a cost-free energy source. The fuel needed to turn the boiler feedwater into steam has already been provided. Returning the condensate allows a significant portion of that fuel cost to be recouped. Condensate has a high heat content. Condensate is a readily available, economical feedwater source. Properly treated, it is very pure. Condensate improves feedwater quality and reduces makeup water demand and pretreatment costs. Higher quality feedwater means more reliable boiler operation

  10. Activities on condensation in the presence of air and simulations of innovative nuclear power plant design

    International Nuclear Information System (INIS)

    Tanrikut, A.; Aglar, F.; Guenduez, Oe; Yesin, O.

    2001-01-01

    Nuclear energy is one of the options presently available to cope with energy needs along the forthcoming century. This challenge is requiring a tremendous effort to assure nuclear energy competence in terms of economics and safety with respect to the other potential sources of energy. In the case of water cooled power reactors, new advanced designs have been proposed of either an evolutionary or a passive type, the latter being particularly appealing for using natural forces to carry out safety functions under the most adverse conditions posed by hypothetical accidents. In this regard containment of passive reactors is to be equipped with what has been called Passive Containment Cooling Systems (PCCS). PCCS's features depend on specific designs. However, most of them share their reliance on steam condensation to mitigate long-term pressure rise in containment. New boundary conditions and device geometries prompted renewed to investigate steam condensation to eventually demonstrate PCCS's capability to meet their goals. As a result, experimental and analytical programs were launched worldwide, often on the basis of a fruitful international co-operation . Concepts of passive safety systems with no active components have been investigated for new generation light water reactors . The primary objectives of the passive design features are to simplify the design, which assures the minimized demand on operator, and to improve plant safety. To accomplish these features the operating principles of passive safety systems should be well understood by an experimental validation program. Such validation programs are also important for the assessment of advanced computer codes, which are currently used for design and licensing. In an application, the proposed advanced passive boiling water reactor design, simplified boiling water reactor (SBWR), utilizes as a main component of the passive containment cooling systems (PCCS) the isolation condenser (IC). The function of the IC is

  11. Conceptual design study on simplified and safer cooling systems for sodium cooled FBRs

    International Nuclear Information System (INIS)

    Hayafune, Hiroki; Shimakawa, Yoshio; Ishikawa, Hiroyasu; Kubota, Kenichi; Kobayashi, Jun; Kasai, Shigeo

    2000-06-01

    The objective of this study is to create the FBR plant concepts increasing economy and safety for the Phase-I 'Feasibility Studies on Commercialized Fast Reactor System'. In this study, various concepts of simplified 2ry cooling system for sodium cooled FBRs are considered and evaluated from the view points of technological feasibility, economy, and safety. The concepts in the study are considered on the basis of the following points of view. 1. To simplify 2ry cooling system by moderating and localizing the sodium-water reaction in the steam generator of the FBRs. 2. To simplify 2ry cooling system by eliminating the sodium-water reaction using integrated IHX-SG unit. 3. To simplify 2ry cooling system by eliminating the sodium-water reaction using a power generating system other than the steam generator. As the result of the study, 12 concepts and 3 innovative concepts are proposed. The evaluation study for those concepts shows the following technical prospects. 1. 2 concepts of integrated IHX-SG unit can eliminate the sodium-water reaction. Separated IHX and SG tubes unit using Lead-Bismuth as the heat transfer medium. Integrated IHX-SG unit using copper as the heat transfer medium. 2. Cost reduction effect by simplified 2ry cooling system using integrated IHX-SG unit is estimated 0 to 5%. 3. All of the integrated IHX-SG unit concepts have more weight and larger size than conventional steam generator unit. The weight of the unit during transporting and lifting would limit capacity of heat transfer system. These evaluation results will be compared with the results in JFY 2000 and used for the Phase-II study. (author)

  12. Performance comparison between a solar driven rotary desiccant cooling system and conventional vapor compression system (performance study of desiccant cooling)

    International Nuclear Information System (INIS)

    Ge, T.S.; Ziegler, F.; Wang, R.Z.; Wang, H.

    2010-01-01

    Solar driven rotary desiccant cooling systems have been widely recognized as alternatives to conventional vapor compression systems for their merits of energy-saving and being eco-friendly. In the previous paper, the basic performance features of desiccant wheel have been discussed. In this paper, a solar driven two-stage rotary desiccant cooling system and a vapor compression system are simulated to provide cooling for one floor in a commercial office building in two cities with different climates: Berlin and Shanghai. The model developed in the previous paper is adopted to predict the performance of the desiccant wheel. The objectives of this paper are to evaluate and compare the thermodynamic and economic performance of the two systems and to obtain useful data for practical application. Results show that the desiccant cooling system is able to meet the cooling demand and provide comfortable supply air in both of the two regions. The required regeneration temperatures are 55 deg. C in Berlin and 85 deg. C in Shanghai. As compared to the vapor compression system, the desiccant cooling system has better supply air quality and consumes less electricity. The results of the economic analysis demonstrate that the dynamic investment payback periods are 4.7 years in Berlin and 7.2 years in Shanghai.

  13. Heat transfer during condensation of HFC-134a and R-404A inside of a horizontal smooth and micro-fin tube

    Energy Technology Data Exchange (ETDEWEB)

    Sapali, S N [Govt. College of Engineering, Department of Mechanical Engineering, Shivaji Nagar, Pune, Maharashtra 411 005 (India); Patil, Pradeep A [AISSMS College of Engineering, Pune University, Mechanical Engineering Department, Kennedy Road, Near R.T.O., Pune, Maharashtra 411 001 (India)

    2010-11-15

    In recent small and medium capacity refrigeration systems, the condenser tubes are provided with micro-fins from inside. The vapour refrigerant at the compressor outlet and the condenser inlet is in superheat state. As it advances in the condenser it is in two phases and at the outlet it is in sub cooled liquid. The heat transfer coefficient (HTC) during condensation of HFC-134a and R-404A in a smooth (8.56 mm ID) and micro-fin tubes (8.96 mm ID) are experimentally investigated. Different from previous studies, the present experiments are performed for various condensing temperatures, with superheating and sub cooling and using hermetically sealed compressor. The test runs are done at average saturated condensing temperatures ranging from 35 C to 60 C. The mass fluxes are between 90 and 800 kg m{sup -2} s{sup -1}. The experimental results indicate that the average HTC increases with mass flux but decreases with increasing condensing temperature for both smooth and micro-fin tubes. The average condensation HTCs of HFC-134a and R-404A for the micro-fin tubes were 1.5-2.5 and 1.3-2 times larger than that in smooth tube respectively. The HTCs for R-404A are less than that of HFC-134a. New correlations based on the data gathered during the experimentation for predicting condensation HTCs are proposed for wide range of operating conditions. (author)

  14. Condensation of atmospheric moisture from tropical maritime air masses as a freshwater resource.

    Science.gov (United States)

    Gerard, R D; Worzel, J L

    1967-09-15

    A method is proposed whereby potable water may be obtained by condensing moisture from the atmosphere in suitable seashore or island areas. Deep, cold, offshore seawater is used as a source of cold and is pumped to condensers set up on shore to intercept the flow of highly humid, tropical, maritime air masses. This air, when cooled, condenses moisture, which is conducted away and stored for use as a water supply. Windmill-driven generators would supply low-cost power for the operation. Side benefits are derived by using the nutritious deep water to support aquiculture in nearby lagoons or to enhance the productivity of the outfall area. Additional benefits are derived from the condenser as an air-conditioning device for nearby residents. The islands of the Caribbean are used as an example of a location in the trade-winds belt where nearly optimum conditions for the operation of this system can be found.

  15. Experiments on novel solar heating and cooling system

    International Nuclear Information System (INIS)

    Wang Yiping; Cui Yong; Zhu Li; Han Lijun

    2008-01-01

    Solar heating and nocturnal radiant cooling techniques are united to produce a novel solar heating and cooling system. The radiant panel with both heating and cooling functions can be used as structural materials for the building envelope, which realizes true building integrated utilization of solar energy. Based on the natural circulation principle, the operation status can be changed automatically between the heating cycle and the cooling cycle. System performances under different climate conditions using different covers on the radiant panel are studied. The results show that the novel solar heating and cooling system has good performance of heating and cooling. For the no cover system, the daily average heat collecting efficiency is 52% with the maximum efficiency of 73%, while at night, the cooling capacity is about 47 W/m 2 on a sunny day. On a cloudy day, the daily average heat collecting efficiency is 47% with the maximum of 84%, while the cooling capacity is about 33 W/m 2 . As a polycarbonate (PC) panel or polyethylene film are used as covers, the maximum heat collecting efficiencies are 75% and 72% and the daily average heat collecting efficiencies are 61% and 58%, while the cooling capacities are 50 W/m 2 and 36 W/m 2 , respectively

  16. Performance Evaluation of a Mechanical Draft Cross Flow Cooling Towers Employed in a Subtropical Region

    Science.gov (United States)

    Muthukumar, Palanisamy; Naik, Bukke Kiran; Goswami, Amarendra

    2018-02-01

    Mechanical draft cross flow cooling towers are generally used in a large-scale water cooled condenser based air-conditioning plants for removing heat from warm water which comes out from the condensing unit. During this process considerable amount of water in the form of drift (droplets) and evaporation is carried away along with the circulated air. In this paper, the performance evaluation of a standard cross flow induced draft cooling tower in terms of water loss, range, approach and cooling tower efficiency are presented. Extensive experimental studies have been carried out in three cooling towers employed in a water cooled condenser based 1200 TR A/C plant over a period of time. Daily variation of average water loss and cooling tower performance parameters have been reported for some selected days. The reported average water loss from three cooling towers is 4080 l/h and the estimated average water loss per TR per h is about 3.1 l at an average relative humidity (RH) of 83%. The water loss during peak hours (2 pm) is about 3.4 l/h-TR corresponding to 88% of RH and the corresponding efficiency of cooling towers varied between 25% and 45%.

  17. System performance and economic analysis of solar-assisted cooling/heating system

    KAUST Repository

    Huang, B.J.

    2011-11-01

    The long-term system simulation and economic analysis of solar-assisted cooling/heating system (SACH-2) was carried out in order to find an economical design. The solar heat driven ejector cooling system (ECS) is used to provide part of the cooling load to reduce the energy consumption of the air conditioner installed as the base-load cooler. A standard SACH-2 system for cooling load 3.5. kW (1. RT) and daily cooling time 10 h is used for case study. The cooling performance is assumed only in summer seasons from May to October. In winter season from November to April, only heat is supplied. Two installation locations (Taipei and Tainan) were examined.It was found from the cooling performance simulation that in order to save 50% energy of the air conditioner, the required solar collector area is 40m2 in Taipei and 31m2 in Tainan, for COPj=0.2. If the solar collector area is designed as 20m2, the solar ejector cooling system will supply about 17-26% cooling load in Taipei in summer season and about 21-27% cooling load in Tainan. Simulation for long-term performance including cooling in summer (May-October) and hot water supply in winter (November-April) was carried out to determine the monthly-average energy savings. The corresponding daily hot water supply (with 40°C temperature rise of water) for 20m2 solar collector area is 616-858L/day in Tainan and 304-533L/day in Taipei.The economic analysis shows that the payback time of SACH-2 decreases with increasing cooling capacity. The payback time is 4.8. years in Tainan and 6.2. years in Taipei when the cooling capacity >10. RT. If the ECS is treated as an additional device used as a protective equipment to avoid overheating of solar collectors and to convert the excess solar heat in summer into cooling to reduce the energy consumption of air conditioner, the payback time is less than 3 years for cooling capacity larger than 3. RT. © 2011 Elsevier Ltd.

  18. Control systems for condensing flue-gas coolers related to natural-gas-fired heating plants

    International Nuclear Information System (INIS)

    Krighaar, M.; Paulsen, O.

    1992-01-01

    A theoretical study is made of the enthalpy-efficiency for a water-cooled heat exchanger added to a natural gas-fired boiler. Under varying conditions of both water flow and temperature and flue-gas flow and temperature, both in condensing and non-condensing mode, the efficiency seems to be constant. The result is very useful for comparison between two different working conditions. The efficiency is used to calculate the savings achieved for a district heating plant by using a heat exchanger. The energy economic calculations are also helpful for estimating the most appropriate size of heat exchanger. The annual savings are calculated by means of data regarding heat production, flue gas temperature and water return temperature. The savings achieved by using different connection principles such as bypass, reheating and controlled water temperature are also calculated. (author)

  19. Pair condensation and bound states in fermionic systems

    International Nuclear Information System (INIS)

    Sedrakian, Armen; Clark, John W.

    2006-01-01

    We study the finite temperature-density phase diagram of an attractive fermionic system that supports two-body (dimer) and three-body (trimer) bound states in free space. Using interactions characteristic for nuclear systems, we obtain the critical temperature T c2 for the superfluid phase transition and the limiting temperature T c3 for the extinction of trimers. The phase diagram features a Cooper-pair condensate in the high-density, low-temperature domain which, with decreasing density, crosses over to a Bose condensate of strongly bound dimers. The high-temperature, low-density domain is populated by trimers whose binding energy decreases toward the density-temperature domain occupied by the superfluid and vanishes at a critical temperature T c3 >T c2

  20. Influence of flow velocity on biofilm growth in a tubular heat exchanger-condenser cooled by seawater.

    Science.gov (United States)

    Trueba, Alfredo; García, Sergio; Otero, Félix M; Vega, Luis M; Madariaga, Ernesto

    2015-01-01

    The influence of flow velocity (FV) on the heat transfer process in tubes made from AISI 316L stainless steel in a heat exchanger-condenser cooled by seawater was evaluated based on the characteristics of the resulting biofilm that adhered to the internal surface of the tubes at velocities of 1, 1.2, 1.6, and 3 m s(-1). The results demonstrated that at a higher FV, despite being more compact and consistent, the biofilm was thinner with a lower concentration of solids, and smoother, which favoured the heat transfer process within the equipment. However, higher velocities increase the initial cost of the refrigerating water-pumping equipment and its energy consumption cost to compensate for the greater pressure drops produced in the tube. The velocity of 1.6 m s(-1) represented the equilibrium between the advantages and disadvantages of the variables analysed for the test conditions in this study.

  1. Engineering work plan for implementing the Process Condensate Recycle Project at the 242-A evaporator

    International Nuclear Information System (INIS)

    Haring, D.S.

    1995-01-01

    The 242-A Evaporator facility is used to reduce the volume of waste stored in the Hanford double shell tanks. This facility uses filtered raw water for cooling, de-entrainment pad sprays, pump seal water, and chemical tank make-up. Some of these uses result in the introduction of filtered raw water into the process, thus increasing the volume of waste requiring evaporation and subsequent treatment by the 200 East Effluent Treatment Facility. The pump seal water and the de-entrainment pad spray systems were identified as candidates for a waste minimization upgrade. This work plan describes the activities associated with the design, installation, testing and initial operation of the process condensate recycle system. Implementation of the process condensate recycle system will permit the use of process condensate in place of raw water for the de-entrainment pad sprays and pump seals. This will reduce the amount of low-level liquid waste and generated during facility operation through source reduction and recycling

  2. Water inventory management in condenser pool of boiling water reactor

    International Nuclear Information System (INIS)

    Gluntz, D.M.

    1996-01-01

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs

  3. Cooling device for reactor container

    International Nuclear Information System (INIS)

    Akiba, Miyuki.

    1996-01-01

    In a cooling device for a reactor container, a low pressure vessel is connected to an incondensible gas vent tube by way of an opening/closing valve. Upon occurrence of a loss of coolant accident, among steams and incondensible gases contained in the reactor container, steams are cooled and condensed in a heat exchanger. The incondensible gases are at first discharged from the heat exchanger to a suppression pool by way of the incondensible gas vent tube, but subsequently, they are stagnated in the incondensible gas vent tube to hinder heat exchanging and steam cooling and condensing effects in the heat exchanger thereby raising temperature and pressure in the reactor. However, if the opening/closing valve is opened when the incondensible gases are stagnated in the incondensible gas vent tube, since the incondensible gases stagnated in the heat exchanger are sucked and discharged to the low pressure vessel, the performance of the heat exchanger is maintained satisfactorily thereby enabling to suppress elevation of temperature and pressure in the reactor container. (N.H.)

  4. Forced draft wet cooling systems

    International Nuclear Information System (INIS)

    Daubert, A.; Caudron, L.; Viollet, P.L.

    1975-01-01

    The disposal of the heat released from a 1000MW power plant needs a natural draft tower of about 130m of diameter at the base, and 170m height, or a cooling system with a draft forced by about forty vans, a hundred meters in diameter, and thirty meters height. The plumes from atmospheric cooling systems form, in terms of fluid mechanics, hot jets in a cross current. They consist in complex flows that must be finely investigated with experimental and computer means. The study, currently being performed at the National Hydraulics Laboratory, shows that as far as the length and height of visible plumes are concerned, the comparison is favorable to some types of forced draft cooling system, for low and medium velocities, (below 5 or 6m/s at 10m height. Beyond these velocities, the forced draft sends the plume up to smaller heights, but the plume is generally more dilute [fr

  5. Experimental studies on condensation of steam mixed with noncondensable gas inside the vertical tube in a pool filled with subcooled water

    International Nuclear Information System (INIS)

    Maheshwari, N.K.; Saha, D.; Sinha, R.K.; Aritomi, M.

    2003-01-01

    A passive containment cooling system with immersed condensers has been proposed as one of the alternatives for the advanced heavy water reactor (AHWR) being designed in India. The system removes residual/decay heat released into the containment through the immersed condensers kept in a pool of water following loss of coolant accident. An important aspect of the immersed condensers is the potential degradation of its performance due to the presence of noncondensable gases. Experiments are performed to obtain reliable data on condensation phenomena in presence of air. These experiments are conducted on full-scale tubes of condensers immersed in a pool of water maintaining similar conditions as in the prototype of AHWR. A method has been proposed for the determination of the local heat transfer rate using correlations given in literature. The parametric effects of air mass fraction, pressure, steam flow, etc. on condensation heat transfer in presence of noncondensable gas have been studied. The experimental results are compared with the correlations given in literature. (orig.)

  6. Evaluation of heat exchange performance for the auxiliary component cooling water system cooling tower in HTTR

    International Nuclear Information System (INIS)

    Tochio, Daisuke; Kameyama, Yasuhiko; Shimizu, Atsushi; Inoi, Hiroyuki; Yamazaki, Kazunori; Shimizu, Yasunori; Aragaki, Etsushi; Ota, Yukimaru; Fujimoto, Nozomu

    2006-09-01

    The auxiliary component cooling water system (ACCWS) is one of the cooling system in High Temperature Engineering Test Reactor (HTTR). The ACCWS has main two features, many facilities cooling, and heat sink of the vessel cooling system which is one of the engineering safety features. Therefore, the ACCWS is required to satisfy the design criteria of heat removal performance. In this report, heat exchange performance data of the rise-to-power-up test and the in-service operation for the ACCWS cooling tower was evaluated. Moreover, the evaluated values were compared with the design values, and it is confirmed that ACCWS cooling tower has the required heat exchange performance in the design. (author)

  7. Controlled cooling of an electronic system based on projected conditions

    Science.gov (United States)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2015-08-18

    Energy efficient control of a cooling system cooling an electronic system is provided based, in part, on projected conditions. The control includes automatically determining an adjusted control setting(s) for an adjustable cooling component(s) of the cooling system. The automatically determining is based, at least in part, on projected power consumed by the electronic system at a future time and projected temperature at the future time of a heat sink to which heat extracted is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on an experimentally obtained model(s) relating the targeted temperature and power consumption of the adjustable cooling component(s) of the cooling system.

  8. Condition monitoring and life assessment of lake water cooled admiralty brass condenser tubes of a nuclear power plant

    International Nuclear Information System (INIS)

    De, P.K.; Ghosal, S.K.; Kutty, K.K.; Bhat, H.R.

    2000-01-01

    The present paper deals with the failure of condenser tubes in a nuclear power plant. The tubes were made of arsenical admiralty brass and were cooled using lake water. They were in service for over 25 years. So far about 1000 tubes have been plugged as they failed due to several reasons. In order to assess the remaining life of the existing tubes as well as to investigate the cause of recent tube failures, some of the tubes from the condenser were removed and examined in detail following several procedure. It was observed that in general, wall thickness of the tubes was reduced by 10- 15%. Maximum reduction in wall thickness took place near the water inlet ends. No denting type phenomenon was observed at the tube to tube-support plate crevice locations. At certain locations on ID surfaces of some tubes, small steps, 0.2 mm high, were noticed along the longitudinal direction of the tubes. ID surfaces of the tubes were covered with light gray coloured thin and adherent corrosion products decorated with red spots at places. EDAX analysis showed that these red spots were enriched with copper. While some pits were present on the ID surfaces, the OD surfaces were covered with shining black oxide film. Fracture surfaces of the tubes, which had lost much strength and broke while taking them out of the condenser, showed presence of cleavages with fatigue striations near the OD edges. Mechanical properties of the tubes as such had deteriorated significantly. The tubes were observed to have been degraded to a large extent due to localised corrosion on the ID surfaces and corrosion fatigue damage caused by flow induced vibration. Under the present operational conditions, the tubes are expected to perform satisfactorily for a limited period. (author)

  9. On synthesis and optimization of cooling water systems with multiple cooling towers

    CSIR Research Space (South Africa)

    Gololo, KV

    2011-01-01

    Full Text Available -1 On Synthesis and Optimization of Cooling Water Systems with Multiple Cooling Towers Khunedi Vincent Gololo?? and Thokozani Majozi*? ? Department of Chemical Engineering, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa ? Modelling...

  10. Droplet condensation in rapidly decaying pressure fields

    International Nuclear Information System (INIS)

    Peterson, P.F.; Bai, R.Y.; Schrock, V.E.; Hijikata, K.

    1992-01-01

    Certain promising schemes for cooling inertial confinement fusion reactors call for highly transient condensation in a rapidly decaying pressure field. After an initial period of condensation on a subcooled droplet, undesirable evaporation begins to occur. Recirculation within the droplet strongly impacts the character of this condensation-evaporation cycle, particularly when the recirculation time constant is of the order of the pressure decay time constant. Recirculation can augment the heat transfer, delay the onset of evaporation, and increase the maximum superheat inside the drop by as much as an order of magnitude. This numerical investigation identifies the most important parameters and physics characterizing transient, high heat flux droplet condensation. The results can be applied to conceptual designs of inertial confinement fusion reactors, where initial temperature differences on the order of 1,500 K decay to zero over time spans the order of tens of milliseconds

  11. Design and performance prediction of an adsorption heat pump with multi-cooling tubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.C.; Zhang, J.P. [College of Electromechanical Engineering, Qingdao University, Qingdao 266071 (China)

    2009-05-15

    Widespread application of adsorption heat pumps has been delayed not only by poor heat and mass transfer performance but also by low operating reliability because high vacuum must be maintained in the adsorption cooling system, especially in a water system. An adsorption cooling tube is a tube in which an adsorber, a condenser and an evaporator are all completely housed to construct a small scale adsorption cooling unit. In this work, an adsorption cooling tube and an adsorption heat pump with multi-cooling tubes are designed. A theoretical model is built to simulate the performance of the designed chiller. According to the results, the coefficient of performance and specific cooling power reach about 0.5 and 85 W/kg adsorbent, respectively, at the hot water temperature of 85 C. These results indicate that the designed heat pump in this work would provide a better choice if the operating reliability became crucial for an adsorption heat pump. (author)

  12. Design and performance prediction of an adsorption heat pump with multi-cooling tubes

    International Nuclear Information System (INIS)

    Wang, D.C.; Zhang, J.P.

    2009-01-01

    Widespread application of adsorption heat pumps has been delayed not only by poor heat and mass transfer performance but also by low operating reliability because high vacuum must be maintained in the adsorption cooling system, especially in a water system. An adsorption cooling tube is a tube in which an adsorber, a condenser and an evaporator are all completely housed to construct a small scale adsorption cooling unit. In this work, an adsorption cooling tube and an adsorption heat pump with multi-cooling tubes are designed. A theoretical model is built to simulate the performance of the designed chiller. According to the results, the coefficient of performance and specific cooling power reach about 0.5 and 85 W/kg adsorbent, respectively, at the hot water temperature of 85 deg. C. These results indicate that the designed heat pump in this work would provide a better choice if the operating reliability became crucial for an adsorption heat pump.

  13. Variable stiffness lattice support system for a condenser type nuclear reactor containment

    International Nuclear Information System (INIS)

    George, J.A.; Sutherland, J.D.

    1979-01-01

    A support structure for the lattice supporting a fusible material in the annular condenser region of a nuclear reactor containment, the flexibility of which structure can be selectively adjusted in accordance with seismic or other loading requirements. The lattice is affixed to a flexible member in a manner which allows relative movement between the two components. The flexible member is affixed to a rigid support member in a manner which selectively adjusts the resiliency of the flexible member. The support member is rigidly affixed to a wall of the containment annulus, and can also be utilized to support cooling ducts. 6 claims

  14. PEP cooling water systems and underground piped utilities design criteria report

    International Nuclear Information System (INIS)

    Hall, F.; Robbins, D.

    1975-10-01

    This paper discusses the cooling systems required by the PEP Storage Ring. Particular topics discussed are: Cooling tower systems, RF cavity and vacuum chamber LCW cooling systems, klystron and ring magnet LLW cooling systems, Injection magnet LCW Cooling Systems; PEP interaction area detector LCW Cooling Systems; and underground piped utilities. 1 ref., 20 figs

  15. Conduction cooling systems for linear accelerator cavities

    Science.gov (United States)

    Kephart, Robert

    2017-05-02

    A conduction cooling system for linear accelerator cavities. The system conducts heat from the cavities to a refrigeration unit using at least one cavity cooler interconnected with a cooling connector. The cavity cooler and cooling connector are both made from solid material having a very high thermal conductivity of approximately 1.times.10.sup.4 W m.sup.-1 K.sup.-1 at temperatures of approximately 4 degrees K. This allows for very simple and effective conduction of waste heat from the linear accelerator cavities to the cavity cooler, along the cooling connector, and thence to the refrigeration unit.

  16. Study on the Behaviors of a Conceptual Passive Containment Cooling System

    Directory of Open Access Journals (Sweden)

    Jianjun Wang

    2014-01-01

    Full Text Available The containment is an ultimate and important barrier to mitigate the consequences after the release of mass and energy during such scenarios as loss of coolant accident (LOCA or main steam line break (MSLB. In this investigation, a passive containment cooling system (PCCS concept is proposed for a large dry concrete containment. The system is composed of series of heat exchangers, long connecting pipes with relatively large diameter, valves, and a water tank, which is located at the top of the system and serves as the final heat sink. The performance of the system is numerically studied in detail under different conditions. In addition, the influences of condensation heat transfer conditions and containment environment temperature conditions are also studied on the behaviors of the system. The results reveal that four distinct operating stages could be experienced as follows: startup stage, single phase quasisteady stage, flashing speed-up transient stage, and flashing dominated quasisteady operating stage. Furthermore, the mechanisms of system behaviors are thus analyzed. Moreover, the feasibility of the system is also discussed to meet the design purpose for the containment integrity requirement. Considering the passive feature and the compactness of the system, the proposed PCCS is promising for the advanced integral type reactor.

  17. Method of injecting cooling water in emergency core cooling system (ECCS) of PWR type reactor

    International Nuclear Information System (INIS)

    Sobajima, Makoto; Adachi, Michihiro; Tasaka, Kanji; Suzuki, Mitsuhiro.

    1979-01-01

    Purpose: To provide a cooling water injection method in an ECCS, which can perform effective cooling of the reactor core. Method: In a method of injecting cooling water in an ECCS as a countermeasure against a rupture accident of a pwr type reactor, cooling water in the first pressure storage injection system is injected into the upper plenum of the reactor pressure vessel at a set pressure of from 50 to 90 atg. and a set temperature of from 80 to 200 0 C, cooling water in the second pressure storage injection system is injected into the lower plenum of the reactor pressure vessel at a pressure of from 25 to 60 atg. which is lower than the set pressure and a temperature less than 60 0 C, and further in combination with these procedures, cooling water of less than 60 0 C is injected into a high-temperature side piping, in the high-pressure injection system of upstroke of 100 atg. by means of a pump and the low-pressure injection system of upstroke of 20 atg. also by means of a pump, thereby cooling the reactor core. (Aizawa, K.)

  18. Passive safety system of a super fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sutanto, E-mail: sutanto@fuji.waseda.jp [Cooperative Major in Nuclear Energy, Waseda University, Tokyo (Japan); Polytechnic Institute of Nuclear Technology—National Nuclear Energy Agency, Yogyakarta (Indonesia); Oka, Yoshiaki [The University of Tokyo, Tokyo (Japan)

    2015-08-15

    Highlights: • Passive safety system of a Super FR is proposed. • Total loss of feedwater flow and large LOCA are analyzed. • The criteria of MCST and core pressure are satisfied. - Abstract: Passive safety systems of a Super Fast Reactor are studied. The passive safety systems consist of isolation condenser (IC), automatic depressurization system (ADS), core make-up tank (CMT), gravity driven cooling system (GDCS), and passive containment cooling system (PCCS). Two accidents of total loss of feedwater flow and 100% cold-leg break large LOCA are analyzed by using the passive systems and the criteria of maximum cladding surface temperature (MCST) and maximum core pressure are satisfied. The isolation condenser can be used for mitigation of the accident of total loss of feedwater flow at both supercritical and subcritical pressures. The ADS is used for depressurization leading to a loss of coolant during line switching to operation of the isolation condenser at subcritical pressure. Use of CMT during line switching recovers the lost coolant. In case of large LOCA, GDCS can be used for core reflooding. Coolant vaporization in the core released to containment through the break is condensed by passive containment cooling system. The condensate flows to the GDCS pool by gravity force. The maximum cladding surface temperature (MCST) of the accident satisfies the criterion.

  19. High speed auto-charging system for condenser bank

    International Nuclear Information System (INIS)

    Mizuno, Yasunori; Bito, Fumio; Fujita, Kazuhiko; Sometani, Taro

    1987-01-01

    A current-control type high-speed charging system, which is intended for auto-charging of the condenser bank, is developed. Moreover, the system can also serve to compensate the current leakage from the condenser bank so that the charged voltage can be kept constant. The system consists of a sequence circuit, a charging current control circuit (or auto-charging circuit) and a charging circuit. The auto-charging circuit is characterized by the use of a triac to control the current. The current, controlled by the circuit, is supplied to the condenser bank through a step-up transformer and voltage doubler rectifier circuit. It is demonstrated that the use of the high-speed auto-charging circuit can largely decrease the required charging time, compared to constant voltage charging. In addition, the compensation function is shown to serve effectively for maintaining a constant voltage after the completion of charging. The required charging time is decreases as the charging current increases. The maximum charging current is decided by the rating of the traic and the current rating of the rectifier diode in the secondary circuit. Major components of these circuits have decreased impedances to minimize the effect of noise, so that the possibility of an accident can be eliminated. Other various improvements are made in the grounding circuit and the charging protection circuit in order to ensure safety. (Nogami, K.)

  20. ELECTRONIC CIRCUIT BOARDS NON-UNIFORM COOLING SYSTEM MODEL

    Directory of Open Access Journals (Sweden)

    D. V. Yevdulov

    2016-01-01

    Full Text Available Abstract. The paper considers a mathematical model of non-uniform cooling of electronic circuit boards. The block diagram of the system implementing this approach, the method of calculation of the electronic board temperature field, as well as the principle of its thermal performance optimizing are presented. In the considered scheme the main heat elimination from electronic board is produced by the radiator system, and additional cooling of the most temperature-sensitive components is produced by thermoelectric batteries. Are given the two-dimensional temperature fields of the electronic board during its uniform and non-uniform cooling, is carried out their comparison. As follows from the calculations results, when using a uniform overall cooling of electronic unit there is a waste of energy for the cooling 0f electronic board parts which temperature is within acceptable temperature range without the cooling system. This approach leads to the increase in the cooling capacity of used thermoelectric batteries in comparison with the desired values. This largely reduces the efficiency of heat elimination system. The use for electronic boards cooling of non-uniform local heat elimination removes this disadvantage. The obtained dependences show that in this case, the energy required to create a given temperature is smaller than when using a common uniform cooling. In this approach the temperature field of the electronic board is more uniform and the cooling is more efficient. 

  1. Modelling and analysis of a desiccant cooling system using the regenerative indirect evaporative cooling process

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Reinholdt, Lars O.

    2013-01-01

    This paper focuses on the numerical modeling and analysis of a Desiccant Cooling (DEC) system with regenerative indirect evaporative cooling, termed Desiccant Dewpoint Cooling (DDC) system. The DDC system includes a Desiccant Wheel (DW), Dew Point Coolers (DPCs), a heat recovery unit and a heat...... in different climates: temperate in Copenhagen and Mediterranean in Venice. Cheap and clean heat sources (e.g. solar energy) strongly increase the attractiveness of the DDC system. For the Mediterranean climate the DDC system represents a convenient alternative to chiller-based systems in terms of energy costs...... and CO2 emissions. The electricity consumption for auxiliaries in the DDC system is higher than in the chiller-based systems. The number of commercial-size DPC units required to cover the cooling load during the whole period is high: 8 in Copenhagen and 12 in Venice....

  2. Allocation of synchronous condensers for restoration of system short-circuit power

    DEFF Research Database (Denmark)

    Marrazi, Emanuel; Yang, Guangya; Weinreich-Jensen, Peter

    2017-01-01

    Modern power systems, employing an increasing number of converter-based renewable energy sources (RES) and decreasing the usage of conventional power plants, are leading to lower levels of short-circuit power and rotational inertia. A solution to this is the employment of synchronous condensers...... in the grid, in order to provide sufficient short-circuit power. This results in the increase of the short-circuit ratio (SCR) at transmission system bus-bars serving as points of interconnection (POI) to renewable generation. Evaluation of the required capacity and grid-location of the synchronous condensers...... by renewable generation. Total cost of synchronous condenser installations in the system is minimized and the SCRs at the POIs of central renewable power plants are strengthened. The method has potential for application on larger grids, aiding grid-integration of RES....

  3. Generalized modeling of multi-component vaporization/condensation phenomena for multi-phase-flow analysis

    International Nuclear Information System (INIS)

    Morita, K.; Fukuda, K.; Tobita, Y.; Kondo, Sa.; Suzuki, T.; Maschek, W.

    2003-01-01

    A new multi-component vaporization/condensation (V/C) model was developed to provide a generalized model for safety analysis codes of liquid metal cooled reactors (LMRs). These codes simulate thermal-hydraulic phenomena of multi-phase, multi-component flows, which is essential to investigate core disruptive accidents of LMRs such as fast breeder reactors and accelerator driven systems. The developed model characterizes the V/C processes associated with phase transition by employing heat transfer and mass-diffusion limited models for analyses of relatively short-time-scale multi-phase, multi-component hydraulic problems, among which vaporization and condensation, or simultaneous heat and mass transfer, play an important role. The heat transfer limited model describes the non-equilibrium phase transition processes occurring at interfaces, while the mass-diffusion limited model is employed to represent effects of non-condensable gases and multi-component mixture on V/C processes. Verification of the model and method employed in the multi-component V/C model of a multi-phase flow code was performed successfully by analyzing a series of multi-bubble condensation experiments. The applicability of the model to the accident analysis of LMRs is also discussed by comparison between steam and metallic vapor systems. (orig.)

  4. Core test reactor shield cooling system analysis

    International Nuclear Information System (INIS)

    Larson, E.M.; Elliott, R.D.

    1971-01-01

    System requirements for cooling the shield within the vacuum vessel for the core test reactor are analyzed. The total heat to be removed by the coolant system is less than 22,700 Btu/hr, with an additional 4600 Btu/hr to be removed by the 2-inch thick steel plate below the shield. The maximum temperature of the concrete in the shield can be kept below 200 0 F if the shield plug walls are kept below 160 0 F. The walls of the two ''donut'' shaped shield segments, which are cooled by the water from the shield and vessel cooling system, should operate below 95 0 F. The walls of the center plug, which are cooled with nitrogen, should operate below 100 0 F. (U.S.)

  5. Studi Eksperimen Pengaruh Variasi Perubahan Refrigeran-22 Dengan Musicool-22 Pada Sistem Pengkondisian Udara Dengan Pre-cooling

    Directory of Open Access Journals (Sweden)

    Arnovia Christine Sabatiana

    2017-01-01

    Full Text Available Air conditioning system merupakan mesin sistem refrigerasi kompresi uap sederhana. Kemudian dimodifikasi menjadi dua indoor unit dan satu outdoor unit. Dimana outdoor unit memiliki dua jenis kondenser yaitu, water cooled condenser dan air cooled condenser. Pembuangan kalor pada bagian water cooled condenser dimanfaatkan untuk memanaskan air yang nantinya dapat digunakan untuk kebutuhan sehari-hari kedepannya. Penggunaan refrigeran CFC atau HCFC mengakibatkan beberapa dampak negatif terhadap lingkungan dan penggunaan mesin refrigerasi ini, diantaranya dapat merusak lapisan ozone, pemanasan global dan tidak hemat energi listrik. Penelitian pada ini adalah untuk menganalisis dan membandingkan performansi suatu sistem refrigerasi sederhana yang mampu menghemat konsumsi energi dan ramah lingkungan. Metoda penelitian ini dilakukan pertama menggunakan R-22 sebagai refrigeran primernya dan selanjutnya dilakukan proses retrofitting (penggantian refrigeran dengan menggunakan MC-22. Selanjutnya analisis dilakukan berdasarkan data dari setiap titik-titik pengukuran dengan begitu akan diperoleh suatu sistem refrigerasi dengan performansi yang paling baik dengan konsumsi energi listrik yang sedikit, serta sistem refrigerasi yang ramah lingkungan. Sistem tersebut aladah yang menggunakan MC-22 baik menggunakan atau tanpa pre-cooling dengan nilai COPelektrik 3,786; dan 3,933, COPthermal 4,501; dan 4,670, dan nilai penghematan energi listrik sekitar 20% lebih hemat dibanding sistem yang menggunakan R-22.

  6. Mathematical simulation of the process of condensing natural gas

    OpenAIRE

    Tastandieva G.M.

    2015-01-01

    Presents a two-dimensional unsteady model of heat transfer in terms of condensation of natural gas at low temperatures. Performed calculations of the process heat and mass transfer of liquefied natural gas (LNG) storage tanks of cylindrical shape. The influence of model parameters on the nature of heat transfer. Defined temperature regimes eliminate evaporation by cooling liquefied natural gas. The obtained dependence of the mass flow rate of vapor condensation gas temperature. Identified the...

  7. Testing and further development of a solar absorption cooling plant

    Science.gov (United States)

    Amannsberger, K.; Heckel, H.; Kreutmair, J.; Weber, K. H.

    1984-12-01

    Ammonia water absorption cooling units using the process heat of line-focusing solar collectors were developed and tested. Reduction of the evaporation temperature to minus 10 C; development of an air-cooled rectifying device for the refrigerant vapor; dry cooling of absorber and condenser by natural draft; refrigerating capacities of 14 to 10 kW which correspond to air temperatures of 25 to 40 C and 24 kW power consumption to heat the machine; auxiliary power requirement 450 W; full compatibility with changing heat input and air temperature, adaptation by automatic stabilization effects; and power optimization under changing boundary conditions by a simple regulating procedure independent of auxiliary power are achieved. The dynamic behavior of the directly linked collector-refrigeration machine system was determined. Operating conditions, market, and economic viability of solar cooling in third-world countries are described. Ice production procedures using absorption cooling units are demonstrated.

  8. Analysis for a PRHRS Condensation Heat Exchanger of the SMART-P Plant

    International Nuclear Information System (INIS)

    Lee, Kwon-Yeong; Kim, Moo Hwan

    2007-01-01

    When an emergency such as the unavailability of feedwater or the loss of off-site power arises with SMART-P, the PRHRS passively removes the core decay heat via natural convection. The system is connected to the feedwater and steam pipes and consists of a heat exchanger submerged in a refueling water tank, a compensation tank, and check and isolation valves. The heat exchanger removes the heat from the reactor coolant system through a steam generator via condensation heat transfer to water in the refueling water tank. The compensating tank is pressurized using a nitrogen gas to make up the water volume change in the PRHRS. Before PRHRS operation, nitrogen may be dissolved in the cooling water of the PRHRS. Therefore, during PRHRS operation, nitrogen gas might be generated due to evaporation in the steam generator, which will act as a noncondensable gas in the condensation heat exchanger. The main objective of the present study was to assess the design of a PRHRS condensation heat exchanger (PRHRS HX) by investigating its heat transfer characteristics

  9. Lamination cooling system

    Science.gov (United States)

    Rippel, Wally E.; Kobayashi, Daryl M.

    2005-10-11

    An electric motor, transformer or inductor having a lamination cooling system including a stack of laminations, each defining a plurality of apertures at least partially coincident with apertures of adjacent laminations. The apertures define a plurality of cooling-fluid passageways through the lamination stack, and gaps between the adjacent laminations are sealed to prevent a liquid cooling fluid in the passageways from escaping between the laminations. The gaps are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. The apertures of each lamination can be coincident with the same-sized apertures of adjacent laminations to form straight passageways, or they can vary in size, shape and/or position to form non-axial passageways, angled passageways, bidirectional passageways, and manifold sections of passageways that connect a plurality of different passageway sections. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  10. Augmented cooling vest system subassembly: Design and analysis

    International Nuclear Information System (INIS)

    D’Angelo, Maurissa; D’Angelo, Joseph; Almajali, Mohammad; Lafdi, Khalid; Delort, Antoine; Elmansori, Mohamed

    2014-01-01

    Highlights: • Thermoelectric cooler (TEC) was employed to provide cooling air to cooling vest. • Aluminum cooling fins were used to exchange heat for hot and cold sides of TEC. • Performance of the system was determined and the experimental technique was described. • Heat sink is capable to remove additional heat and heat exchanger provides cooling air. • Future work is proposed to optimize the efficiency of the system. - Abstract: A prototype cooling engine consisting of thermoelectric coolers (TECs) was developed and designed. In this prototype, aluminum cooling fins were employed as the heat exchange method for both the hot and cold sides of the TEC. Aluminum fins were used to cool the ambient air through a heat exchanger and dissipate heat build up from the heat sink. This system was modeled and performance capabilities were determined. The experimental technique used to monitor parameters affecting the efficiency of the designed system was described. These parameters include the temperatures of the inlets and outlets of both heat exchanger and heat sink and the flow rate of the cooled air. The experiment was run under three input DC powers; 15 V, 18 V, and 21 V. As the power increased, both the flow rate and the temperature difference between the hot and cold side of thermoelectric cooler increased, demonstrating the heat sink capability to remove the additional heat. However, the temperature difference between the inlet and outlet of the heat exchanger decreases as the power increase. The findings demonstrated the effectiveness of this cooling system and future work is proposed to optimize the heat

  11. Turbine airfoil with laterally extending snubber having internal cooling system

    Science.gov (United States)

    Scribner, Carmen Andrew; Messmann, Stephen John; Marsh, Jan H.

    2016-09-06

    A turbine airfoil usable in a turbine engine and having at least one snubber with a snubber cooling system positioned therein and in communication with an airfoil cooling system is disclosed. The snubber may extend from the outer housing of the airfoil toward an adjacent turbine airfoil positioned within a row of airfoils. The snubber cooling system may include an inner cooling channel separated from an outer cooling channel by an inner wall. The inner wall may include a plurality of impingement cooling orifices that direct impingement fluid against an outer wall defining the outer cooling channel. In one embodiment, the cooling fluids may be exhausted from the snubber, and in another embodiment, the cooling fluids may be returned to the airfoil cooling system. Flow guides may be positioned in the outer cooling channel, which may reduce cross-flow by the impingement orifices, thereby increasing effectiveness.

  12. UPTF-TRAM experiments for SBLOCA: Evaluation of condensation processes in TRAM tests A6 and A7

    Energy Technology Data Exchange (ETDEWEB)

    Sonneburg, H.G.; Tuunanen, J.; Palazov, V.V. [Gesellschaft fuer Anlagen-und Reaktorsicherheit (GRS), Muenchen (Germany)

    1995-09-01

    The investigation of thermal-hydraulic phenomena related to reactor transients with accident management measures is the goal of the TRansient and accident Management (TRAM) experimental programme being carried out at the Upper Plenum Test Facility (UPTF) at Mannheim (Germany). These experimental investigations and test analyses are funded by the German Federal Minister for Research and Technology (BMFT). The UPTF simulates these phenomena in a 1:1 such relative to the dimension of a PWR. Condensation of steam during Emergency Core Cooling (ECC) water injection from accumulators into the primary system is one of the phenomena studied within the accumulators into the primary system is one of the phenomena studied within the TRAM programme. This phenomenon partly controls the efficiency of accumulator injection if the high pressure safety systems fail. Beside this, the condensation within the nitrogen inside the accumulator for a certain period controls the pressure development inside the accumulator. Thus, both condensation phenomena determine the ECC flow rate delivered to the primary system. Concerning the condensation inside the primary system, this is also of safety relevance in the case of Pressurized Thermal Shock (PTS) during cold leg injection.

  13. Biofouling evaluation in the seawater cooling circuit of an operating coastal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, P.S.; Veeramani, P.; Ershath, M.I.M.; Venugopalan, V.P. [BARC Facilities, Water and Steam Chemistry Div., Kalpakkam, Tamil Nadu (India)

    2010-07-01

    Chlorination is the most commonly used method of biofouling control in cooling water systems of coastal power stations. In the present study, we report results of extensive sampling in different sections of the cooling water system of an operating power station undertaken during three consecutive maintenance shutdowns. The power plant employed continuous low level chlorination (0.2 ± 0.1 mg L{sup -1} TRO) with twice-a-week booster dosing (0.4 ± 0.1 mg L-1 TRO for 8 hours). In addition, the process seawater heat exchangers received supplementary dosing of bromide treatment (0.2 ± 0.1 mg L{sup -1} TRO for 1 hour in every 8 h shift). Biofouling samples were collected from the cooling water conduits, heat exchanger water boxes, pipelines, heated discharge conduits and outfall section during the annual maintenance shutdown of the plant in the years 2007, 2008 and 2009. Simultaneous monitoring of biofouling on test coupons in coastal waters enabled direct comparison of fouling situation on test panels and that in the cooling system. The data showed significant reduction in biofouling inside the cooling circuit as compared to the coastal waters. However, significant amount of fouling was still evident at several places, indicating inadequacy of the biocide treatment regime. The maximum load of 31.3 kg m{sup 2} y{sup -1} was observed in the conduits leading to the process seawater heat exchangers (PSW-HX) and the minimum of 1.3 kg m{sup 2} y{sup -1} was observed in the outfall section. Fouling loads of 12.2 - 14.7 kg m{sup 2} y{sup -1} were observed in the concrete conduits feeding the main condensers. Bromide treatment ahead of the PSW-HX could marginally reduce the fouling load in the downstream section of the dosing point; the HX inlets still showed good biofouling. Species diversity across the cooling water system showed the pre-condenser section to be dominated by green mussels (Perna viridis), pearl oysters (Pinctada sp.) and edible oysters (Crassostrea sp

  14. Biofouling evaluation in the seawater cooling circuit of an operating coastal power plant

    International Nuclear Information System (INIS)

    Murthy, P.S.; Veeramani, P.; Ershath, M.I.M.; Venugopalan, V.P.

    2010-01-01

    Chlorination is the most commonly used method of biofouling control in cooling water systems of coastal power stations. In the present study, we report results of extensive sampling in different sections of the cooling water system of an operating power station undertaken during three consecutive maintenance shutdowns. The power plant employed continuous low level chlorination (0.2 ± 0.1 mg L -1 TRO) with twice-a-week booster dosing (0.4 ± 0.1 mg L-1 TRO for 8 hours). In addition, the process seawater heat exchangers received supplementary dosing of bromide treatment (0.2 ± 0.1 mg L -1 TRO for 1 hour in every 8 h shift). Biofouling samples were collected from the cooling water conduits, heat exchanger water boxes, pipelines, heated discharge conduits and outfall section during the annual maintenance shutdown of the plant in the years 2007, 2008 and 2009. Simultaneous monitoring of biofouling on test coupons in coastal waters enabled direct comparison of fouling situation on test panels and that in the cooling system. The data showed significant reduction in biofouling inside the cooling circuit as compared to the coastal waters. However, significant amount of fouling was still evident at several places, indicating inadequacy of the biocide treatment regime. The maximum load of 31.3 kg m 2 y -1 was observed in the conduits leading to the process seawater heat exchangers (PSW-HX) and the minimum of 1.3 kg m 2 y -1 was observed in the outfall section. Fouling loads of 12.2 - 14.7 kg m 2 y -1 were observed in the concrete conduits feeding the main condensers. Bromide treatment ahead of the PSW-HX could marginally reduce the fouling load in the downstream section of the dosing point; the HX inlets still showed good biofouling. Species diversity across the cooling water system showed the pre-condenser section to be dominated by green mussels (Perna viridis), pearl oysters (Pinctada sp.) and edible oysters (Crassostrea sp.), whereas the post-condenser section and heat

  15. A combined capillary cooling system for cooling fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ana Paula; Pelizza, Pablo Rodrigo; Galante, Renan Manozzo; Bazzo, Edson [Universidade Federal de Santa Catarina (LabCET/UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Combustao e Engenharia de Sistemas Termicos], Emails: ana@labcet.ufsc.br, pablo@labcet.ufsc.br, renan@labcet.ufsc.br, ebazzo@emc.ufsc.br

    2010-07-01

    The operation temperature control has an important influence over the PEMFC (Proton Exchange Membrane Fuel Cell) performance. A two-phase heat transfer system is proposed as an alternative for cooling and thermal control of PEMFC. The proposed system consists of a CPL (Capillary Pumped Loop) connected to a set of constant conductance heat pipes. In this work ceramic wick and stainless mesh wicks have been used as capillary structure of the CPL and heat pipes, respectively. Acetone has been used as the working fluid for CPL and deionized water for the heat pipes. Experimental results of three 1/4 inch stainless steel outlet diameter heats pipes and one CPL have been carried out and presented in this paper. Further experiments are planned coupling the proposed cooling system to a module which simulates the fuel cell. (author)

  16. Dry cooling systems with plastic surfaces

    International Nuclear Information System (INIS)

    Roma, Carlo; Leonelli, Vincenzo

    1975-01-01

    Research and experiments made on dry cooling systems with plastic surfaces are described. The demonstration program planned in Italy for a 100Gcal/h dry cooling system is exposed, and an installation intended for a large 1300Mwe nuclear power station is described with reference to the assembly (exploitation and maintenance included). The performance and economic data relating to this installation are also exposed [fr

  17. Strandby Harbour on solar cooling. Demonstration of 8.000 m{sup 2} solar collectors combined with flue gas cooling with a absorption cooling system; Combined heat and power plant (CHP); Strandby havn paa solkoeling. Demonstration af 8.000 m{sup 2} solfangere kombineret med roeggaskoeling med absorptionskoeleanlaeg

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Flemming (Strandby Varmevaerk, Strandby (Denmark)); Soerensen, Per Alex (PlanEnergi, Skoerping (Denmark)); Ulbjerg, F. (Ramboell, Odense (Denmark)); Sloth, H. (Houe and Olsen, Thisted (Denmark))

    2010-04-15

    The aim of the project was to demonstrate 1) high solar heating ratio (18% annually) at a decentralized natural gas combined heat and power plant; 2) increased efficiency (5% of the heat consumption) in a natural gas CHP by using an extra flue gas cooler and an absorption heat pump; 3) a double tank system where a new tank during winter is used for cooling/ heat storage for the absorption heat pump and during summer for solar heat storage in serial operation with the old tank. The concept of combining solar power, absorption cooling and natural gas-fired small-scale CHP in Strandby met expectations and could be replicated in other CHP plants. However, it is important to note that if major construction modifications in the flue gas condensation system in the boiler or engine are required, the operating hours must not be reduced significantly in the amortisation period for the conversion. (ln)

  18. Post-accident cooling capacity analysis of the AP1000 passive spent fuel pool cooling system

    International Nuclear Information System (INIS)

    Su Xia

    2013-01-01

    The passive design is used in AP1000 spent fuel pool cooling system. The decay heat of the spent fuel is removed by heating-boiling method, and makeup water is provided passively and continuously to ensure the safety of the spent fuel. Based on the analysis of the post-accident cooling capacity of the spent fuel cooling system, it is found that post-accident first 72-hour cooling under normal refueling condition and emergency full-core offload condition can be maintained by passive makeup from safety water source; 56 hours have to be waited under full core refueling condition to ensure the safety of the core and the spent fuel pool. Long-term cooling could be conducted through reserved safety interface. Makeup measure is available after accident and limited operation is needed. Makeup under control could maintain the spent fuel at sub-critical condition. Compared with traditional spent fuel pool cooling system design, the AP1000 design respond more effectively to LOCA accidents. (authors)

  19. CAREM 25: Suppression pool cooling and purification system

    International Nuclear Information System (INIS)

    Carlevaris, Rodolfo; Patrignani, Alberto; Vindrola, Carlos; Palmerio, Hector D.; Quiroz, Horacio; Ramilo, Lucia B.

    2000-01-01

    The suppression pool cooling and purification system has the following main functions: purify and cool water from the suppression pool, cool and send water to the residual heat extraction system, and transfer water to the fuel element transference channel. In case of Loss of Coolant Accident (LOCA), the system sends water from the suppression pool to the spray network, thus cooling and reducing pressure in the primary containment. The system has been designed in accordance with the requirements of the following standards: ANSI/ANS 52.1; ANSI/ANS 57.2; ANSI/ANS 56.2; ANSI/ANS 59.1; ANSI/ANS 58.3; ANSI/ANS 58.9; and ANSI/ANS 56.5. The design of the system fulfils all the assigned functions. (author)

  20. Allocation of synchronous condensers for restoration of system short-circuit power

    DEFF Research Database (Denmark)

    Marrazi, Emanuel; Yang, Guangya; Weinreich-Jensen, Peter

    2017-01-01

    Modern power systems, employing an increasing number of converter-based renewable energy sources (RES) and decreasing the usage of conventional power plants, are leading to lower levels of short-circuit power and rotational inertia. A solution to this is the employment of synchronous condensers...... in the grid, in order to provide sufficient short-circuit power. This results in the increase of the short-circuit ratio (SCR) at transmission system bus-bars serving as points of interconnection (POI) to renewable generation. Evaluation of the required capacity and grid-location of the synchronous condensers......, isinherently a mixed integer non-linear optimization problem, which could not be done on manual basis considering each type of machine and all bus-bars. This study therefore proposes a method of optimal allocation of synchronous condensers in a hypothetic future scenario of a transmission system fed...

  1. Experimental investigations and modeling of a loop thermosyphon for cooling with zero electrical consumption

    International Nuclear Information System (INIS)

    Chehade, Ali; Louahlia-Gualous, Hasna; Le Masson, Stéphane; Lépinasse, Eric

    2015-01-01

    This paper presents an analytical model for a thermosyphon loop developed for cooling air inside a telecommunication cabinet. The proposed model is based on the combination of thermal and hydraulic management of two-phase flow in the loop. Experimental tests on a closed thermosyphon loop are conducted with different working fluids that could be used for electronic cooling. Correlations for condensation and evaporation heat transfer in the thermosyphon loop are proposed. They are used in the model to calculate condenser and evaporator thermal resistances in order to predict the cabinet operating temperature, the loop's mass flow rate and pressure drops. Furthermore, various figures of merit proposed in the previous works are evaluated in order to be used for selection of the best loop's working fluid. The comparative studies show that the present model well predicts the experimental data. The mean deviation between the predictions of the theoretical model with the measurements for operating temperature is about 6%. Besides, the model is used to define an optimal liquid and vapor lines diameters and the effect of the ambient temperature on the fluid's mass flow rate and pressure drop. - Highlights: • Modeling of thermosyphon loop for cooling telecommunication cabinet. • The cooling system operates with zero electrical consumption. • The new correlations are proposed for condensation and evaporation heat transfer. • FOM equation is defined for selecting the best working fluid. • The proposed model well predicts the experimental data and operating temperature

  2. Understanding aging in containment cooling systems

    International Nuclear Information System (INIS)

    Lofaro, R.J.

    1993-01-01

    A study has been performed to assess the effects of aging in nuclear power plant containment cooling systems. Failure records from national databases, as well as plant specific data were reviewed and analyzed to identify aging characteristics for this system. The predominant aging mechanisms were determined, along with the most frequently failed components and their associated failure modes. This paper discusses the aging mechanisms present in the containment spray system and the containment fan cooler system, which are two systems used to provide the containment cooling function. The failure modes, along with the relative frequency of each is also discussed

  3. New Protective Measures for Cooling Systems

    International Nuclear Information System (INIS)

    Carter, D. Anthony; Nonohue, Jonh M.

    1974-01-01

    Cooling water treatments have been updated and improved during the last few years. Particularly important are the nontoxic programs which conform plant cooling water effluents to local water quality standards without expenditures for capital equipment. The relationship between scaling and corrosion in natural waters has been recognized for many years. This relationship is the basis for the Langelier Saturation Index control method which was once widely applied to reduce corrosion in cooling water systems. It used solubility characteristics to maintain a very thin deposit on metal surfaces for preventing corrosion. This technique was rarely successful. That is, the solubility of calcium carbonate and most other inorganic salts depends on temperature. If good control exists on cold surfaces, excessive deposition results on the heat transfer tubes. Also, because water characteristic normally vary in a typical cooling system, precise control of scaling at both hot and cold surfaces is virtually impossible

  4. Operation method and operation control device for emergency core cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Shoichiro; Takahashi, Toshiyuki; Fujii, Tadashi [Hitachi Ltd., Tokyo (Japan); Mizutani, Akira

    1996-05-07

    The present invention provides a method of reducing continuous load capacity of an emergency cooling system of a BWR type reactor and a device reducing a rated capacity of an emergency power source facility. Namely, the emergency core cooling system comprises a first cooling system having a plurality of power source systems based on a plurality of emergency power sources and a second cooling system having a remaining heat removing function. In this case, when the first cooling system is operated the manual starting under a predetermined condition that an external power source loss event should occur, a power source division different from the first cooling system shares the operation to operate the secondary cooling system simultaneously. Further, the first cooling system is constituted as a high pressure reactor core water injection system and the second cooling system is constituted as a remaining heat removing system. With such a constitution, a high pressure reactor core water injection system for manual starting and a remaining heat removing system of different power source division can be operated simultaneously before automatic operation of the emergency core cooling system upon loss of external power source of a nuclear power plant. (I.S.)

  5. Development of the interactive model between Component Cooling Water System and Containment Cooling System using GOTHIC

    International Nuclear Information System (INIS)

    Byun, Choong Sup; Song, Dong Soo; Jun, Hwang Yong

    2006-01-01

    In a design point of view, component cooling water (CCW) system is not full-interactively designed with its heat loads. Heat loads are calculated from the CCW design flow and temperature condition which is determined with conservatism. Then the CCW heat exchanger is sized by using total maximized heat loads from above calculation. This approach does not give the optimized performance results and the exact trends of CCW system and the loads during transient. Therefore a combined model for performance analysis of containment and the component cooling water(CCW) system is developed by using GOTHIC software code. The model is verified by using the design parameters of component cooling water heat exchanger and the heat loads during the recirculation mode of loss of coolant accident scenario. This model may be used for calculating the realistic containment response and CCW performance, and increasing the ultimate heat sink temperature limits

  6. Condensation in the presence of noncondensible gases: AP600 containment simulation

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, M.H.; Corradini, M.L.

    1995-09-01

    The Westinghouse Electric Corporation has designed an advanced pressurized light water reactor, AP600. This reactor is designed with a passive cooling system to remove sensible and decay heat from the containment. The heat removal path involves condensation heat transfer, aided by natural convective forces generated by buoyancy effects. A one-twelfth scale rectangular slice of the proposed reactor containment was constructed at the University of Wisconsin to simulate conditions anticipated from transients and accidents that may occur in a full scale containment vessel under a variety of conditions. Similitude of the test facility was obtained by considering the appropriate dimensionless group for the natural convective process (modified Froude number) and the aspect ratio (H/R) of the containment vessel. An experimental investigation to determine the heat transfer coefficients associated with condensation on a vertical and horizontal cooled wall (located in the scaled test section) at several different inlet steam flow rates and test section temperatures was conducted. In this series of experiments, the non-condensible mass fraction varied between (0.9-0.4) with corresponding mixture temperatures between 60-90{degrees}C. The heat transfer coefficients of the top horizontal surface varied from (82-296)W/m{sup 2}K and the vertical side heat transfer coefficients varied form (70-269)m{sup 2}K. The results were then compared to boundary layer heat and mass transfer theory by the use of the McAdams correlation for free convection.

  7. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    Verlaat, Bartholomeus; The ATLAS collaboration

    2016-01-01

    The Atlas Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity. This paper describes the design, development, construction and commissioning of the IBL CO2 cooling system. It describes the challenges overcome and the important lessons learned for the development of future systems which are now under design for the Phase-II upgrade detectors.

  8. Mechanisms available for cooling plants’ surfaces

    Directory of Open Access Journals (Sweden)

    Prokhorov Alexey Anatolievich

    2016-12-01

    Full Text Available The essay briefly touches upon the main mechanisms to cool down the plats’ surfaces that lead to condensation of atmospheric moisture; methods for experimental verification of these mechanisms are presented therein.

  9. Computational Fluid Dynamics Analysis of an Evaporative Cooling System

    Directory of Open Access Journals (Sweden)

    Kapilan N.

    2016-11-01

    Full Text Available The use of chlorofluorocarbon based refrigerants in the air-conditioning system increases the global warming and causes the climate change. The climate change is expected to present a number of challenges for the built environment and an evaporative cooling system is one of the simplest and environmentally friendly cooling system. The evaporative cooling system is most widely used in summer and in rural and urban areas of India for human comfort. In evaporative cooling system, the addition of water into air reduces the temperature of the air as the energy needed to evaporate the water is taken from the air. Computational fluid dynamics is a numerical analysis and was used to analyse the evaporative cooling system. The CFD results are matches with the experimental results.

  10. RAMI analysis for DEMO HCPB blanket concept cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Dongiovanni, Danilo N., E-mail: danilo.dongiovanni@enea.it [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati (Italy); Pinna, Tonio [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati (Italy); Carloni, Dario [KIT, Institute of Neutron Physics and Reactor Technology (INR) – KIT (Germany)

    2015-10-15

    Highlights: • RAMI (reliability, availability, maintainability and inspectability) preliminary assessment for HCPB blanket concept cooling system. • Reliability block diagram (RBD) modeling and analysis for HCPB primary heat transfer system (PHTS), coolant purification system (CPS), pressure control system (PCS), and secondary cooling system. • Sensitivity analysis on system availability performance. • Failure models and repair models estimated on the base of data from the ENEA fusion component failure rate database (FCFRDB). - Abstract: A preliminary RAMI (reliability, availability, maintainability and inspectability) assessment for the HCPB (helium cooled pebble bed) blanket cooling system based on currently available design for DEMO fusion power plant is presented. The following sub-systems were considered in the analysis: blanket modules, primary cooling loop including pipework and steam generators lines, pressure control system (PCS), coolant purification system (CPS) and secondary cooling system. For PCS and CPS systems an extrapolation from ITER Test Blanket Module corresponding systems was used as reference design in the analysis. Helium cooled pebble bed (HCPB) system reliability block diagrams (RBD) models were implemented taking into account: system reliability-wise configuration, operating schedule currently foreseen for DEMO, maintenance schedule and plant evolution schedule as well as failure and corrective maintenance models. A simulation of plant activity was then performed on implemented RBDs to estimate plant availability performance on a mission time of 30 calendar years. The resulting availability performance was finally compared to availability goals previously proposed for DEMO plant by a panel of experts. The study suggests that inherent availability goals proposed for DEMO PHTS system and Tokamak auxiliaries are potentially achievable for the primary loop of the HCPB concept cooling system, but not for the secondary loop. A

  11. Condensation: Passenger Not Driver in Atmospheric Thermodynamics

    Directory of Open Access Journals (Sweden)

    Jack Denur

    2016-11-01

    Full Text Available The second law of thermodynamics states that processes yielding work or at least capable of yielding work are thermodynamically spontaneous, and that those costing work are thermodynamically nonspontaneous. Whether a process yields or costs heat is irrelevant. Condensation of water vapor yields work and hence is thermodynamically spontaneous only in a supersaturated atmosphere; in an unsaturated atmosphere it costs work and hence is thermodynamically nonspontaneous. Far more of Earth’s atmosphere is unsaturated than supersaturated; based on this alone evaporation is far more often work-yielding and hence thermodynamically spontaneous than condensation in Earth’s atmosphere—despite condensation always yielding heat and evaporation always costing heat. Furthermore, establishment of the unstable or at best metastable condition of supersaturation, and its maintenance in the face of condensation that would wipe it out, is always work-costing and hence thermodynamically nonspontaneous in Earth’s atmosphere or anywhere else. The work required to enable supersaturation is most usually provided at the expense of temperature differences that enable cooling to below the dew point. In the case of most interest to us, convective weather systems and storms, it is provided at the expense of vertical temperature gradients exceeding the moist adiabatic. Thus, ultimately, condensation is a work-costing and hence thermodynamically nonspontaneous process even in supersaturated regions of Earth’s or any other atmosphere. While heat engines in general can in principle extract all of the work represented by any temperature difference until it is totally neutralized to isothermality, convective weather systems and storms in particular cannot. They can extract only the work represented by partial neutralization of super-moist-adiabatic lapse rates to moist-adiabaticity. Super-moist-adiabatic lapse rates are required to enable convection of saturated air

  12. Condensation during gravity driven ECC: Experiments with PACTEL

    Energy Technology Data Exchange (ETDEWEB)

    Munther, R.; Kalli, H. [Lappeenranta Univ. of Technology (Finland); Kouhia, J. [Technical Research Centre of Finland, Lappeenranta (Finland)

    1995-09-01

    This paper provides the results of the second series of gravity driven emergency core cooling (ECC) experiments with PACTEL (Parallel Channel Test Loop). The simulated accident was a small break loss-of-coolant accident (SBLOCA) with a break in a cold leg. The ECC flow was provided from a core makeup tank (CMT) located at a higher elevation than the main part of the primary system. The CMT was pressurized with pipings from the pressurizer and a cold leg. The tests indicated that steam condensation in the CMT can prevent ECC and lead to core uncovery.

  13. Evaporation and condensation devices for passive heat removal systems in nuclear power engineering

    International Nuclear Information System (INIS)

    Gershuni, A.N.; Pis'mennyj, E.N.; Nishchik, A.P.

    2016-01-01

    The paper justifies advantages of evaporation and condensation heat transfer devices as means of passive heat removal and thermal shielding in nuclear power engineering. The main thermophysical factors that limit heat transfer capacity of evaporation and condensation systems have been examined in the research. The results of experimental studies of heat engineering properties of elongated (8-m) vertically oriented evaporation and condensation devices (two-phase thermosyphons), which showed a high enough heat transfer capacity, as well as stability and reliability both in steady state and in start-up modes, are provided. The paper presents the examples of schematic designs of evaporation and condensation systems for passive heat removal and thermal shielding in application to nuclear power equipment

  14. A Study on Condensation Heat Transfer at the Exterior Surface of S.A.M. Coated Titanium Tube Using in Steam Condensers

    Energy Technology Data Exchange (ETDEWEB)

    Im, Sung-Gu; Lee, Sang-Hyup; Ji, Dae-Yun; Park, Hyun-Gyu; Lee, Kwon-Yeong [Handong Global University, Pohang (Korea, Republic of)

    2016-10-15

    Condensation occurs when the temperature of a steam is reduced below its saturation temperature. There exist two forms of condensation on cooling surface: dropwise, and film condensations. Usually, dropwise condensation has a better heat transfer performance than film condensation, but it has limit of short period. Ma et al. executed heat transfer experiment in dropwise condensation with non-condensable gas, and studied how the amount of air and pressure difference affect condensation heat transfer coefficient. The more non-condensable gas exist, the condensation heat transfer coefficient is decreased. As a result, surface modified brass tube and stainless tube showed higher condensation heat transfer coefficient as much as 1.3 and 1.4 times comparing with their bare tubes in 70 kPa vacuum condition respectively. Most of power plants use sea water as coolant, so the surface of metal tubes could be corroded by the coolant. We had researched an experimental study related to condensation heat transfer on surface modified titanium tube. Our experimental facility was designed to show how two kinds of tube's heat transfer performances are different in a same condition. We changed the range of saturation pressure and coolant flow rate to observe tube's performance change. When saturation pressure and coolant flow rate increase, overall heat transfer coefficients were increased. When residue of non-condensable gases was decreased, the overall heat transfer coefficients were increased. S.A.M. coated tube's overall heat transfer coefficients were lower than those of bare tube, because the droplets didn't have a tendency of frequently falling down.

  15. CAREM-25. Suppression Pool Cooling and Purification System

    International Nuclear Information System (INIS)

    Carlevaris, Rodolfo; Palmerio, D.; Patrignani, A.; Quiroz, H.; Ramilo, L.; Vindrola, C.

    2000-01-01

    The Suppression Pool Cooling and Purification System has the following main functions: purify and cool water from the Suppression Pool, cool and send water to the Residual Heat Extraction System, and transfer water to the Fuel Element Transference Channel. In case of Loss of Coolant Accident (LOCA), the system sends water from the Suppression Pool to the spray network, thus cooling and reducing pressure in the primary containment.The system has been designed in accordance with the requirements of the following standards ANSI/ANS 52.1 [1], ANSI/ANS 57.2 [2], ANSI/ANS 56.2 [3], ANSI/ANS 59.1 [4] ANSI/ANS 58.3 [5], ANSI/ANS 58.9 [6], and ANSI/ANS 56.5 [7]. The design of the system fulfils all the assigned functions

  16. Exergy analysis of a gas-hydrate cool storage system

    International Nuclear Information System (INIS)

    Bi, Yuehong; Liu, Xiao; Jiang, Minghe

    2014-01-01

    Based on exergy analysis of charging and discharging processes in a gas-hydrate cool storage system, the formulas for exergy efficiency at the sensible heat transfer stage and the phase change stage corresponding to gas-hydrate charging and discharging processes are obtained. Furthermore, the overall exergy efficiency expressions of charging, discharging processes and the thermodynamic cycle of the gas-hydrate cool storage system are obtained. By using the above expressions, the effects of number of transfer units, the inlet temperatures of the cooling medium and the heating medium on exergy efficiencies of the gas-hydrate cool storage system are emphatically analyzed. The research results can be directly used to evaluate the performance of gas-hydrate cool storage systems and design more efficient energy systems by reducing the sources of inefficiency in gas-hydrate cool storage systems. - Highlights: • Formulas for exergy efficiency at four stages are obtained. • Exergy efficiency expressions of two processes and one cycle are obtained. • Three mainly influencing factors on exergy efficiencies are analyzed. • With increasing the inlet temperature of cooling medium, exergy efficiency increases. • With decreasing the inlet temperature of heating medium, exergy efficiency increases

  17. The Role of Absorption Cooling for Reaching Sustainable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lindmark, Susanne

    2005-07-01

    This thesis focuses on the role and potential of absorption cooling in future energy systems. Two types of energy systems are investigated: a district energy system based on waste incineration and a distributed energy system with natural gas as fuel. In both cases, low temperature waste heat is used as driving energy for the absorption cooling. The main focus is to evaluate the absorption technology in an environmental perspective, in terms of reduced CO{sub 2} emissions. Economic evaluations are also performed. The reduced electricity when using absorption cooling instead of compression cooling is quantified and expressed as an increased net electrical yield. The results show that absorption cooling is an environmentally friendly way to produce cooling as it reduces the use of electrically driven cooling in the energy system and therefore also reduces global CO{sub 2} emissions. In the small-scale trigeneration system the electricity use is lowered with 84 % as compared to cooling production with compression chillers only. The CO{sub 2} emissions can be lowered to 45 CO{sub 2}/MWh{sub c} by using recoverable waste heat as driving heat for absorption chillers. However, the most cost effective cooling solution in a district energy system is a combination between absorption and compression cooling technologies according to the study. Absorption chillers have the potential to be suitable bottoming cycles for power production in distributed systems. Net electrical yields over 55 % may be reached in some cases with gas motors and absorption chillers. This small-scale system for cogeneration of power and cooling shows electrical efficiencies comparable to large-scale power plants and may contribute to reducing peak electricity demand associated with the cooling demand.

  18. Thermodynamic analysis of hydrocarbon refrigerants in a sub-cooling refrigeration system

    Directory of Open Access Journals (Sweden)

    BUKOLA O. BOLAJI

    2013-06-01

    Full Text Available In this study, the performance simulation of some hydrocarbon refrigerants (R290, R600 and R600a as alternatives to R134a in refrigeration system with sub-cooling is conducted by thermodynamic calculation of performance parameters using the REFPROP software. The results obtained showed that the saturated vapour pressure and temperature characteristic profiles for R600 and R600a are very close to that of R134a. The three hydrocarbon refrigerants exhibited very high refrigerating effect and condenser duty than R134a. The best of these parameters was obtained using R600. The discharge temperatures obtained using R600 and R600a were low, while that of R290 was very much higher. The highest coefficient of performance (COP and relative capacity index were obtained using R600. Average COPs of R600 and R600a are 4.6 and 2.2% higher than that of R134a, respectively. The performances of R600 and R600a in system were better than those of R134a and R290. The best performance was obtained using R600 in the system.

  19. Effect of sponge ball cleaning on removing barnacles in condenser tubes

    Energy Technology Data Exchange (ETDEWEB)

    Mimura, K; Minamoto, K; Kyohara, S [Kobe Steel Ltd. (Japan)

    1977-07-01

    Considering environmental protection, the recent tendency has been to give up chlorination of cooling water for power stations. The experimental results show that cooling sea-water without chlorination cannot get rid of barnacles which grow inside condenser tubes when the speed of the cooling water is less than 1 m/s. Cleaning by sponge balls 2 -- 3 times a week is found to be effective for both barnacle prevention and inactive film formation on the tube surface.

  20. Survey of natural-circulation cooling in U.S. pressurized water reactors

    International Nuclear Information System (INIS)

    Boyack, B.E.

    1985-01-01

    Literature describing natural circulation analyses, experiments, and plant operation have been obtained from the Nuclear Regulatory Commission, reactor vendors, utility-sponsored research groups, utilities, national laboratories, and foreign sources. These have been reviewed and significant results and conclusions identified. Three modes of natural-circulation cooling are covered: single phase, two-phase, and reflux condensation. Single-phase natural circulation is amply verified by plant operational data, test data from scaled experimental facilities, and analysis with assessed computer codes. Ample evidence also exists that two-phase natural circulation can successfully cool pressurized water reactors. This mode occurs during certain events such as small-break loss-of-coolant accidents. The data base for reflux condensation is primarily from tests in scaled experimental facilities. There are no plant operational data and only limited assessment of thermal-hydraulic systems codes has been performed. Further work is needed before this mode of natural circulation can be confidently used